diff options
Diffstat (limited to 'clang/lib/Sema/SemaCUDA.cpp')
| -rw-r--r-- | clang/lib/Sema/SemaCUDA.cpp | 805 | 
1 files changed, 805 insertions, 0 deletions
diff --git a/clang/lib/Sema/SemaCUDA.cpp b/clang/lib/Sema/SemaCUDA.cpp new file mode 100644 index 000000000000..d0ddfd040c9c --- /dev/null +++ b/clang/lib/Sema/SemaCUDA.cpp @@ -0,0 +1,805 @@ +//===--- SemaCUDA.cpp - Semantic Analysis for CUDA constructs -------------===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +/// \file +/// This file implements semantic analysis for CUDA constructs. +/// +//===----------------------------------------------------------------------===// + +#include "clang/AST/ASTContext.h" +#include "clang/AST/Decl.h" +#include "clang/AST/ExprCXX.h" +#include "clang/Basic/Cuda.h" +#include "clang/Lex/Preprocessor.h" +#include "clang/Sema/Lookup.h" +#include "clang/Sema/Sema.h" +#include "clang/Sema/SemaDiagnostic.h" +#include "clang/Sema/SemaInternal.h" +#include "clang/Sema/Template.h" +#include "llvm/ADT/Optional.h" +#include "llvm/ADT/SmallVector.h" +using namespace clang; + +void Sema::PushForceCUDAHostDevice() { +  assert(getLangOpts().CUDA && "Should only be called during CUDA compilation"); +  ForceCUDAHostDeviceDepth++; +} + +bool Sema::PopForceCUDAHostDevice() { +  assert(getLangOpts().CUDA && "Should only be called during CUDA compilation"); +  if (ForceCUDAHostDeviceDepth == 0) +    return false; +  ForceCUDAHostDeviceDepth--; +  return true; +} + +ExprResult Sema::ActOnCUDAExecConfigExpr(Scope *S, SourceLocation LLLLoc, +                                         MultiExprArg ExecConfig, +                                         SourceLocation GGGLoc) { +  FunctionDecl *ConfigDecl = Context.getcudaConfigureCallDecl(); +  if (!ConfigDecl) +    return ExprError(Diag(LLLLoc, diag::err_undeclared_var_use) +                     << getCudaConfigureFuncName()); +  QualType ConfigQTy = ConfigDecl->getType(); + +  DeclRefExpr *ConfigDR = new (Context) +      DeclRefExpr(Context, ConfigDecl, false, ConfigQTy, VK_LValue, LLLLoc); +  MarkFunctionReferenced(LLLLoc, ConfigDecl); + +  return BuildCallExpr(S, ConfigDR, LLLLoc, ExecConfig, GGGLoc, nullptr, +                       /*IsExecConfig=*/true); +} + +Sema::CUDAFunctionTarget +Sema::IdentifyCUDATarget(const ParsedAttributesView &Attrs) { +  bool HasHostAttr = false; +  bool HasDeviceAttr = false; +  bool HasGlobalAttr = false; +  bool HasInvalidTargetAttr = false; +  for (const ParsedAttr &AL : Attrs) { +    switch (AL.getKind()) { +    case ParsedAttr::AT_CUDAGlobal: +      HasGlobalAttr = true; +      break; +    case ParsedAttr::AT_CUDAHost: +      HasHostAttr = true; +      break; +    case ParsedAttr::AT_CUDADevice: +      HasDeviceAttr = true; +      break; +    case ParsedAttr::AT_CUDAInvalidTarget: +      HasInvalidTargetAttr = true; +      break; +    default: +      break; +    } +  } + +  if (HasInvalidTargetAttr) +    return CFT_InvalidTarget; + +  if (HasGlobalAttr) +    return CFT_Global; + +  if (HasHostAttr && HasDeviceAttr) +    return CFT_HostDevice; + +  if (HasDeviceAttr) +    return CFT_Device; + +  return CFT_Host; +} + +template <typename A> +static bool hasAttr(const FunctionDecl *D, bool IgnoreImplicitAttr) { +  return D->hasAttrs() && llvm::any_of(D->getAttrs(), [&](Attr *Attribute) { +           return isa<A>(Attribute) && +                  !(IgnoreImplicitAttr && Attribute->isImplicit()); +         }); +} + +/// IdentifyCUDATarget - Determine the CUDA compilation target for this function +Sema::CUDAFunctionTarget Sema::IdentifyCUDATarget(const FunctionDecl *D, +                                                  bool IgnoreImplicitHDAttr) { +  // Code that lives outside a function is run on the host. +  if (D == nullptr) +    return CFT_Host; + +  if (D->hasAttr<CUDAInvalidTargetAttr>()) +    return CFT_InvalidTarget; + +  if (D->hasAttr<CUDAGlobalAttr>()) +    return CFT_Global; + +  if (hasAttr<CUDADeviceAttr>(D, IgnoreImplicitHDAttr)) { +    if (hasAttr<CUDAHostAttr>(D, IgnoreImplicitHDAttr)) +      return CFT_HostDevice; +    return CFT_Device; +  } else if (hasAttr<CUDAHostAttr>(D, IgnoreImplicitHDAttr)) { +    return CFT_Host; +  } else if (D->isImplicit() && !IgnoreImplicitHDAttr) { +    // Some implicit declarations (like intrinsic functions) are not marked. +    // Set the most lenient target on them for maximal flexibility. +    return CFT_HostDevice; +  } + +  return CFT_Host; +} + +// * CUDA Call preference table +// +// F - from, +// T - to +// Ph - preference in host mode +// Pd - preference in device mode +// H  - handled in (x) +// Preferences: N:native, SS:same side, HD:host-device, WS:wrong side, --:never. +// +// | F  | T  | Ph  | Pd  |  H  | +// |----+----+-----+-----+-----+ +// | d  | d  | N   | N   | (c) | +// | d  | g  | --  | --  | (a) | +// | d  | h  | --  | --  | (e) | +// | d  | hd | HD  | HD  | (b) | +// | g  | d  | N   | N   | (c) | +// | g  | g  | --  | --  | (a) | +// | g  | h  | --  | --  | (e) | +// | g  | hd | HD  | HD  | (b) | +// | h  | d  | --  | --  | (e) | +// | h  | g  | N   | N   | (c) | +// | h  | h  | N   | N   | (c) | +// | h  | hd | HD  | HD  | (b) | +// | hd | d  | WS  | SS  | (d) | +// | hd | g  | SS  | --  |(d/a)| +// | hd | h  | SS  | WS  | (d) | +// | hd | hd | HD  | HD  | (b) | + +Sema::CUDAFunctionPreference +Sema::IdentifyCUDAPreference(const FunctionDecl *Caller, +                             const FunctionDecl *Callee) { +  assert(Callee && "Callee must be valid."); +  CUDAFunctionTarget CallerTarget = IdentifyCUDATarget(Caller); +  CUDAFunctionTarget CalleeTarget = IdentifyCUDATarget(Callee); + +  // If one of the targets is invalid, the check always fails, no matter what +  // the other target is. +  if (CallerTarget == CFT_InvalidTarget || CalleeTarget == CFT_InvalidTarget) +    return CFP_Never; + +  // (a) Can't call global from some contexts until we support CUDA's +  // dynamic parallelism. +  if (CalleeTarget == CFT_Global && +      (CallerTarget == CFT_Global || CallerTarget == CFT_Device)) +    return CFP_Never; + +  // (b) Calling HostDevice is OK for everyone. +  if (CalleeTarget == CFT_HostDevice) +    return CFP_HostDevice; + +  // (c) Best case scenarios +  if (CalleeTarget == CallerTarget || +      (CallerTarget == CFT_Host && CalleeTarget == CFT_Global) || +      (CallerTarget == CFT_Global && CalleeTarget == CFT_Device)) +    return CFP_Native; + +  // (d) HostDevice behavior depends on compilation mode. +  if (CallerTarget == CFT_HostDevice) { +    // It's OK to call a compilation-mode matching function from an HD one. +    if ((getLangOpts().CUDAIsDevice && CalleeTarget == CFT_Device) || +        (!getLangOpts().CUDAIsDevice && +         (CalleeTarget == CFT_Host || CalleeTarget == CFT_Global))) +      return CFP_SameSide; + +    // Calls from HD to non-mode-matching functions (i.e., to host functions +    // when compiling in device mode or to device functions when compiling in +    // host mode) are allowed at the sema level, but eventually rejected if +    // they're ever codegened.  TODO: Reject said calls earlier. +    return CFP_WrongSide; +  } + +  // (e) Calling across device/host boundary is not something you should do. +  if ((CallerTarget == CFT_Host && CalleeTarget == CFT_Device) || +      (CallerTarget == CFT_Device && CalleeTarget == CFT_Host) || +      (CallerTarget == CFT_Global && CalleeTarget == CFT_Host)) +    return CFP_Never; + +  llvm_unreachable("All cases should've been handled by now."); +} + +void Sema::EraseUnwantedCUDAMatches( +    const FunctionDecl *Caller, +    SmallVectorImpl<std::pair<DeclAccessPair, FunctionDecl *>> &Matches) { +  if (Matches.size() <= 1) +    return; + +  using Pair = std::pair<DeclAccessPair, FunctionDecl*>; + +  // Gets the CUDA function preference for a call from Caller to Match. +  auto GetCFP = [&](const Pair &Match) { +    return IdentifyCUDAPreference(Caller, Match.second); +  }; + +  // Find the best call preference among the functions in Matches. +  CUDAFunctionPreference BestCFP = GetCFP(*std::max_element( +      Matches.begin(), Matches.end(), +      [&](const Pair &M1, const Pair &M2) { return GetCFP(M1) < GetCFP(M2); })); + +  // Erase all functions with lower priority. +  llvm::erase_if(Matches, +                 [&](const Pair &Match) { return GetCFP(Match) < BestCFP; }); +} + +/// When an implicitly-declared special member has to invoke more than one +/// base/field special member, conflicts may occur in the targets of these +/// members. For example, if one base's member __host__ and another's is +/// __device__, it's a conflict. +/// This function figures out if the given targets \param Target1 and +/// \param Target2 conflict, and if they do not it fills in +/// \param ResolvedTarget with a target that resolves for both calls. +/// \return true if there's a conflict, false otherwise. +static bool +resolveCalleeCUDATargetConflict(Sema::CUDAFunctionTarget Target1, +                                Sema::CUDAFunctionTarget Target2, +                                Sema::CUDAFunctionTarget *ResolvedTarget) { +  // Only free functions and static member functions may be global. +  assert(Target1 != Sema::CFT_Global); +  assert(Target2 != Sema::CFT_Global); + +  if (Target1 == Sema::CFT_HostDevice) { +    *ResolvedTarget = Target2; +  } else if (Target2 == Sema::CFT_HostDevice) { +    *ResolvedTarget = Target1; +  } else if (Target1 != Target2) { +    return true; +  } else { +    *ResolvedTarget = Target1; +  } + +  return false; +} + +bool Sema::inferCUDATargetForImplicitSpecialMember(CXXRecordDecl *ClassDecl, +                                                   CXXSpecialMember CSM, +                                                   CXXMethodDecl *MemberDecl, +                                                   bool ConstRHS, +                                                   bool Diagnose) { +  // If the defaulted special member is defined lexically outside of its +  // owning class, or the special member already has explicit device or host +  // attributes, do not infer. +  bool InClass = MemberDecl->getLexicalParent() == MemberDecl->getParent(); +  bool HasH = MemberDecl->hasAttr<CUDAHostAttr>(); +  bool HasD = MemberDecl->hasAttr<CUDADeviceAttr>(); +  bool HasExplicitAttr = +      (HasD && !MemberDecl->getAttr<CUDADeviceAttr>()->isImplicit()) || +      (HasH && !MemberDecl->getAttr<CUDAHostAttr>()->isImplicit()); +  if (!InClass || HasExplicitAttr) +    return false; + +  llvm::Optional<CUDAFunctionTarget> InferredTarget; + +  // We're going to invoke special member lookup; mark that these special +  // members are called from this one, and not from its caller. +  ContextRAII MethodContext(*this, MemberDecl); + +  // Look for special members in base classes that should be invoked from here. +  // Infer the target of this member base on the ones it should call. +  // Skip direct and indirect virtual bases for abstract classes. +  llvm::SmallVector<const CXXBaseSpecifier *, 16> Bases; +  for (const auto &B : ClassDecl->bases()) { +    if (!B.isVirtual()) { +      Bases.push_back(&B); +    } +  } + +  if (!ClassDecl->isAbstract()) { +    for (const auto &VB : ClassDecl->vbases()) { +      Bases.push_back(&VB); +    } +  } + +  for (const auto *B : Bases) { +    const RecordType *BaseType = B->getType()->getAs<RecordType>(); +    if (!BaseType) { +      continue; +    } + +    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl()); +    Sema::SpecialMemberOverloadResult SMOR = +        LookupSpecialMember(BaseClassDecl, CSM, +                            /* ConstArg */ ConstRHS, +                            /* VolatileArg */ false, +                            /* RValueThis */ false, +                            /* ConstThis */ false, +                            /* VolatileThis */ false); + +    if (!SMOR.getMethod()) +      continue; + +    CUDAFunctionTarget BaseMethodTarget = IdentifyCUDATarget(SMOR.getMethod()); +    if (!InferredTarget.hasValue()) { +      InferredTarget = BaseMethodTarget; +    } else { +      bool ResolutionError = resolveCalleeCUDATargetConflict( +          InferredTarget.getValue(), BaseMethodTarget, +          InferredTarget.getPointer()); +      if (ResolutionError) { +        if (Diagnose) { +          Diag(ClassDecl->getLocation(), +               diag::note_implicit_member_target_infer_collision) +              << (unsigned)CSM << InferredTarget.getValue() << BaseMethodTarget; +        } +        MemberDecl->addAttr(CUDAInvalidTargetAttr::CreateImplicit(Context)); +        return true; +      } +    } +  } + +  // Same as for bases, but now for special members of fields. +  for (const auto *F : ClassDecl->fields()) { +    if (F->isInvalidDecl()) { +      continue; +    } + +    const RecordType *FieldType = +        Context.getBaseElementType(F->getType())->getAs<RecordType>(); +    if (!FieldType) { +      continue; +    } + +    CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(FieldType->getDecl()); +    Sema::SpecialMemberOverloadResult SMOR = +        LookupSpecialMember(FieldRecDecl, CSM, +                            /* ConstArg */ ConstRHS && !F->isMutable(), +                            /* VolatileArg */ false, +                            /* RValueThis */ false, +                            /* ConstThis */ false, +                            /* VolatileThis */ false); + +    if (!SMOR.getMethod()) +      continue; + +    CUDAFunctionTarget FieldMethodTarget = +        IdentifyCUDATarget(SMOR.getMethod()); +    if (!InferredTarget.hasValue()) { +      InferredTarget = FieldMethodTarget; +    } else { +      bool ResolutionError = resolveCalleeCUDATargetConflict( +          InferredTarget.getValue(), FieldMethodTarget, +          InferredTarget.getPointer()); +      if (ResolutionError) { +        if (Diagnose) { +          Diag(ClassDecl->getLocation(), +               diag::note_implicit_member_target_infer_collision) +              << (unsigned)CSM << InferredTarget.getValue() +              << FieldMethodTarget; +        } +        MemberDecl->addAttr(CUDAInvalidTargetAttr::CreateImplicit(Context)); +        return true; +      } +    } +  } + + +  // If no target was inferred, mark this member as __host__ __device__; +  // it's the least restrictive option that can be invoked from any target. +  bool NeedsH = true, NeedsD = true; +  if (InferredTarget.hasValue()) { +    if (InferredTarget.getValue() == CFT_Device) +      NeedsH = false; +    else if (InferredTarget.getValue() == CFT_Host) +      NeedsD = false; +  } + +  // We either setting attributes first time, or the inferred ones must match +  // previously set ones. +  if (NeedsD && !HasD) +    MemberDecl->addAttr(CUDADeviceAttr::CreateImplicit(Context)); +  if (NeedsH && !HasH) +    MemberDecl->addAttr(CUDAHostAttr::CreateImplicit(Context)); + +  return false; +} + +bool Sema::isEmptyCudaConstructor(SourceLocation Loc, CXXConstructorDecl *CD) { +  if (!CD->isDefined() && CD->isTemplateInstantiation()) +    InstantiateFunctionDefinition(Loc, CD->getFirstDecl()); + +  // (E.2.3.1, CUDA 7.5) A constructor for a class type is considered +  // empty at a point in the translation unit, if it is either a +  // trivial constructor +  if (CD->isTrivial()) +    return true; + +  // ... or it satisfies all of the following conditions: +  // The constructor function has been defined. +  // The constructor function has no parameters, +  // and the function body is an empty compound statement. +  if (!(CD->hasTrivialBody() && CD->getNumParams() == 0)) +    return false; + +  // Its class has no virtual functions and no virtual base classes. +  if (CD->getParent()->isDynamicClass()) +    return false; + +  // The only form of initializer allowed is an empty constructor. +  // This will recursively check all base classes and member initializers +  if (!llvm::all_of(CD->inits(), [&](const CXXCtorInitializer *CI) { +        if (const CXXConstructExpr *CE = +                dyn_cast<CXXConstructExpr>(CI->getInit())) +          return isEmptyCudaConstructor(Loc, CE->getConstructor()); +        return false; +      })) +    return false; + +  return true; +} + +bool Sema::isEmptyCudaDestructor(SourceLocation Loc, CXXDestructorDecl *DD) { +  // No destructor -> no problem. +  if (!DD) +    return true; + +  if (!DD->isDefined() && DD->isTemplateInstantiation()) +    InstantiateFunctionDefinition(Loc, DD->getFirstDecl()); + +  // (E.2.3.1, CUDA 7.5) A destructor for a class type is considered +  // empty at a point in the translation unit, if it is either a +  // trivial constructor +  if (DD->isTrivial()) +    return true; + +  // ... or it satisfies all of the following conditions: +  // The destructor function has been defined. +  // and the function body is an empty compound statement. +  if (!DD->hasTrivialBody()) +    return false; + +  const CXXRecordDecl *ClassDecl = DD->getParent(); + +  // Its class has no virtual functions and no virtual base classes. +  if (ClassDecl->isDynamicClass()) +    return false; + +  // Only empty destructors are allowed. This will recursively check +  // destructors for all base classes... +  if (!llvm::all_of(ClassDecl->bases(), [&](const CXXBaseSpecifier &BS) { +        if (CXXRecordDecl *RD = BS.getType()->getAsCXXRecordDecl()) +          return isEmptyCudaDestructor(Loc, RD->getDestructor()); +        return true; +      })) +    return false; + +  // ... and member fields. +  if (!llvm::all_of(ClassDecl->fields(), [&](const FieldDecl *Field) { +        if (CXXRecordDecl *RD = Field->getType() +                                    ->getBaseElementTypeUnsafe() +                                    ->getAsCXXRecordDecl()) +          return isEmptyCudaDestructor(Loc, RD->getDestructor()); +        return true; +      })) +    return false; + +  return true; +} + +void Sema::checkAllowedCUDAInitializer(VarDecl *VD) { +  if (VD->isInvalidDecl() || !VD->hasInit() || !VD->hasGlobalStorage()) +    return; +  const Expr *Init = VD->getInit(); +  if (VD->hasAttr<CUDADeviceAttr>() || VD->hasAttr<CUDAConstantAttr>() || +      VD->hasAttr<CUDASharedAttr>()) { +    assert(!VD->isStaticLocal() || VD->hasAttr<CUDASharedAttr>()); +    bool AllowedInit = false; +    if (const CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(Init)) +      AllowedInit = +          isEmptyCudaConstructor(VD->getLocation(), CE->getConstructor()); +    // We'll allow constant initializers even if it's a non-empty +    // constructor according to CUDA rules. This deviates from NVCC, +    // but allows us to handle things like constexpr constructors. +    if (!AllowedInit && +        (VD->hasAttr<CUDADeviceAttr>() || VD->hasAttr<CUDAConstantAttr>())) +      AllowedInit = VD->getInit()->isConstantInitializer( +          Context, VD->getType()->isReferenceType()); + +    // Also make sure that destructor, if there is one, is empty. +    if (AllowedInit) +      if (CXXRecordDecl *RD = VD->getType()->getAsCXXRecordDecl()) +        AllowedInit = +            isEmptyCudaDestructor(VD->getLocation(), RD->getDestructor()); + +    if (!AllowedInit) { +      Diag(VD->getLocation(), VD->hasAttr<CUDASharedAttr>() +                                  ? diag::err_shared_var_init +                                  : diag::err_dynamic_var_init) +          << Init->getSourceRange(); +      VD->setInvalidDecl(); +    } +  } else { +    // This is a host-side global variable.  Check that the initializer is +    // callable from the host side. +    const FunctionDecl *InitFn = nullptr; +    if (const CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(Init)) { +      InitFn = CE->getConstructor(); +    } else if (const CallExpr *CE = dyn_cast<CallExpr>(Init)) { +      InitFn = CE->getDirectCallee(); +    } +    if (InitFn) { +      CUDAFunctionTarget InitFnTarget = IdentifyCUDATarget(InitFn); +      if (InitFnTarget != CFT_Host && InitFnTarget != CFT_HostDevice) { +        Diag(VD->getLocation(), diag::err_ref_bad_target_global_initializer) +            << InitFnTarget << InitFn; +        Diag(InitFn->getLocation(), diag::note_previous_decl) << InitFn; +        VD->setInvalidDecl(); +      } +    } +  } +} + +// With -fcuda-host-device-constexpr, an unattributed constexpr function is +// treated as implicitly __host__ __device__, unless: +//  * it is a variadic function (device-side variadic functions are not +//    allowed), or +//  * a __device__ function with this signature was already declared, in which +//    case in which case we output an error, unless the __device__ decl is in a +//    system header, in which case we leave the constexpr function unattributed. +// +// In addition, all function decls are treated as __host__ __device__ when +// ForceCUDAHostDeviceDepth > 0 (corresponding to code within a +//   #pragma clang force_cuda_host_device_begin/end +// pair). +void Sema::maybeAddCUDAHostDeviceAttrs(FunctionDecl *NewD, +                                       const LookupResult &Previous) { +  assert(getLangOpts().CUDA && "Should only be called during CUDA compilation"); + +  if (ForceCUDAHostDeviceDepth > 0) { +    if (!NewD->hasAttr<CUDAHostAttr>()) +      NewD->addAttr(CUDAHostAttr::CreateImplicit(Context)); +    if (!NewD->hasAttr<CUDADeviceAttr>()) +      NewD->addAttr(CUDADeviceAttr::CreateImplicit(Context)); +    return; +  } + +  if (!getLangOpts().CUDAHostDeviceConstexpr || !NewD->isConstexpr() || +      NewD->isVariadic() || NewD->hasAttr<CUDAHostAttr>() || +      NewD->hasAttr<CUDADeviceAttr>() || NewD->hasAttr<CUDAGlobalAttr>()) +    return; + +  // Is D a __device__ function with the same signature as NewD, ignoring CUDA +  // attributes? +  auto IsMatchingDeviceFn = [&](NamedDecl *D) { +    if (UsingShadowDecl *Using = dyn_cast<UsingShadowDecl>(D)) +      D = Using->getTargetDecl(); +    FunctionDecl *OldD = D->getAsFunction(); +    return OldD && OldD->hasAttr<CUDADeviceAttr>() && +           !OldD->hasAttr<CUDAHostAttr>() && +           !IsOverload(NewD, OldD, /* UseMemberUsingDeclRules = */ false, +                       /* ConsiderCudaAttrs = */ false); +  }; +  auto It = llvm::find_if(Previous, IsMatchingDeviceFn); +  if (It != Previous.end()) { +    // We found a __device__ function with the same name and signature as NewD +    // (ignoring CUDA attrs).  This is an error unless that function is defined +    // in a system header, in which case we simply return without making NewD +    // host+device. +    NamedDecl *Match = *It; +    if (!getSourceManager().isInSystemHeader(Match->getLocation())) { +      Diag(NewD->getLocation(), +           diag::err_cuda_unattributed_constexpr_cannot_overload_device) +          << NewD; +      Diag(Match->getLocation(), +           diag::note_cuda_conflicting_device_function_declared_here); +    } +    return; +  } + +  NewD->addAttr(CUDAHostAttr::CreateImplicit(Context)); +  NewD->addAttr(CUDADeviceAttr::CreateImplicit(Context)); +} + +Sema::DeviceDiagBuilder Sema::CUDADiagIfDeviceCode(SourceLocation Loc, +                                                   unsigned DiagID) { +  assert(getLangOpts().CUDA && "Should only be called during CUDA compilation"); +  DeviceDiagBuilder::Kind DiagKind = [this] { +    switch (CurrentCUDATarget()) { +    case CFT_Global: +    case CFT_Device: +      return DeviceDiagBuilder::K_Immediate; +    case CFT_HostDevice: +      // An HD function counts as host code if we're compiling for host, and +      // device code if we're compiling for device.  Defer any errors in device +      // mode until the function is known-emitted. +      if (getLangOpts().CUDAIsDevice) { +        return (getEmissionStatus(cast<FunctionDecl>(CurContext)) == +                FunctionEmissionStatus::Emitted) +                   ? DeviceDiagBuilder::K_ImmediateWithCallStack +                   : DeviceDiagBuilder::K_Deferred; +      } +      return DeviceDiagBuilder::K_Nop; + +    default: +      return DeviceDiagBuilder::K_Nop; +    } +  }(); +  return DeviceDiagBuilder(DiagKind, Loc, DiagID, +                           dyn_cast<FunctionDecl>(CurContext), *this); +} + +Sema::DeviceDiagBuilder Sema::CUDADiagIfHostCode(SourceLocation Loc, +                                                 unsigned DiagID) { +  assert(getLangOpts().CUDA && "Should only be called during CUDA compilation"); +  DeviceDiagBuilder::Kind DiagKind = [this] { +    switch (CurrentCUDATarget()) { +    case CFT_Host: +      return DeviceDiagBuilder::K_Immediate; +    case CFT_HostDevice: +      // An HD function counts as host code if we're compiling for host, and +      // device code if we're compiling for device.  Defer any errors in device +      // mode until the function is known-emitted. +      if (getLangOpts().CUDAIsDevice) +        return DeviceDiagBuilder::K_Nop; + +      return (getEmissionStatus(cast<FunctionDecl>(CurContext)) == +              FunctionEmissionStatus::Emitted) +                 ? DeviceDiagBuilder::K_ImmediateWithCallStack +                 : DeviceDiagBuilder::K_Deferred; +    default: +      return DeviceDiagBuilder::K_Nop; +    } +  }(); +  return DeviceDiagBuilder(DiagKind, Loc, DiagID, +                           dyn_cast<FunctionDecl>(CurContext), *this); +} + +bool Sema::CheckCUDACall(SourceLocation Loc, FunctionDecl *Callee) { +  assert(getLangOpts().CUDA && "Should only be called during CUDA compilation"); +  assert(Callee && "Callee may not be null."); + +  auto &ExprEvalCtx = ExprEvalContexts.back(); +  if (ExprEvalCtx.isUnevaluated() || ExprEvalCtx.isConstantEvaluated()) +    return true; + +  // FIXME: Is bailing out early correct here?  Should we instead assume that +  // the caller is a global initializer? +  FunctionDecl *Caller = dyn_cast<FunctionDecl>(CurContext); +  if (!Caller) +    return true; + +  // If the caller is known-emitted, mark the callee as known-emitted. +  // Otherwise, mark the call in our call graph so we can traverse it later. +  bool CallerKnownEmitted = +      getEmissionStatus(Caller) == FunctionEmissionStatus::Emitted; +  if (CallerKnownEmitted) { +    // Host-side references to a __global__ function refer to the stub, so the +    // function itself is never emitted and therefore should not be marked. +    if (!shouldIgnoreInHostDeviceCheck(Callee)) +      markKnownEmitted( +          *this, Caller, Callee, Loc, [](Sema &S, FunctionDecl *FD) { +            return S.getEmissionStatus(FD) == FunctionEmissionStatus::Emitted; +          }); +  } else { +    // If we have +    //   host fn calls kernel fn calls host+device, +    // the HD function does not get instantiated on the host.  We model this by +    // omitting at the call to the kernel from the callgraph.  This ensures +    // that, when compiling for host, only HD functions actually called from the +    // host get marked as known-emitted. +    if (!shouldIgnoreInHostDeviceCheck(Callee)) +      DeviceCallGraph[Caller].insert({Callee, Loc}); +  } + +  DeviceDiagBuilder::Kind DiagKind = [this, Caller, Callee, +                                      CallerKnownEmitted] { +    switch (IdentifyCUDAPreference(Caller, Callee)) { +    case CFP_Never: +      return DeviceDiagBuilder::K_Immediate; +    case CFP_WrongSide: +      assert(Caller && "WrongSide calls require a non-null caller"); +      // If we know the caller will be emitted, we know this wrong-side call +      // will be emitted, so it's an immediate error.  Otherwise, defer the +      // error until we know the caller is emitted. +      return CallerKnownEmitted ? DeviceDiagBuilder::K_ImmediateWithCallStack +                                : DeviceDiagBuilder::K_Deferred; +    default: +      return DeviceDiagBuilder::K_Nop; +    } +  }(); + +  if (DiagKind == DeviceDiagBuilder::K_Nop) +    return true; + +  // Avoid emitting this error twice for the same location.  Using a hashtable +  // like this is unfortunate, but because we must continue parsing as normal +  // after encountering a deferred error, it's otherwise very tricky for us to +  // ensure that we only emit this deferred error once. +  if (!LocsWithCUDACallDiags.insert({Caller, Loc}).second) +    return true; + +  DeviceDiagBuilder(DiagKind, Loc, diag::err_ref_bad_target, Caller, *this) +      << IdentifyCUDATarget(Callee) << Callee << IdentifyCUDATarget(Caller); +  DeviceDiagBuilder(DiagKind, Callee->getLocation(), diag::note_previous_decl, +                    Caller, *this) +      << Callee; +  return DiagKind != DeviceDiagBuilder::K_Immediate && +         DiagKind != DeviceDiagBuilder::K_ImmediateWithCallStack; +} + +void Sema::CUDASetLambdaAttrs(CXXMethodDecl *Method) { +  assert(getLangOpts().CUDA && "Should only be called during CUDA compilation"); +  if (Method->hasAttr<CUDAHostAttr>() || Method->hasAttr<CUDADeviceAttr>()) +    return; +  FunctionDecl *CurFn = dyn_cast<FunctionDecl>(CurContext); +  if (!CurFn) +    return; +  CUDAFunctionTarget Target = IdentifyCUDATarget(CurFn); +  if (Target == CFT_Global || Target == CFT_Device) { +    Method->addAttr(CUDADeviceAttr::CreateImplicit(Context)); +  } else if (Target == CFT_HostDevice) { +    Method->addAttr(CUDADeviceAttr::CreateImplicit(Context)); +    Method->addAttr(CUDAHostAttr::CreateImplicit(Context)); +  } +} + +void Sema::checkCUDATargetOverload(FunctionDecl *NewFD, +                                   const LookupResult &Previous) { +  assert(getLangOpts().CUDA && "Should only be called during CUDA compilation"); +  CUDAFunctionTarget NewTarget = IdentifyCUDATarget(NewFD); +  for (NamedDecl *OldND : Previous) { +    FunctionDecl *OldFD = OldND->getAsFunction(); +    if (!OldFD) +      continue; + +    CUDAFunctionTarget OldTarget = IdentifyCUDATarget(OldFD); +    // Don't allow HD and global functions to overload other functions with the +    // same signature.  We allow overloading based on CUDA attributes so that +    // functions can have different implementations on the host and device, but +    // HD/global functions "exist" in some sense on both the host and device, so +    // should have the same implementation on both sides. +    if (NewTarget != OldTarget && +        ((NewTarget == CFT_HostDevice) || (OldTarget == CFT_HostDevice) || +         (NewTarget == CFT_Global) || (OldTarget == CFT_Global)) && +        !IsOverload(NewFD, OldFD, /* UseMemberUsingDeclRules = */ false, +                    /* ConsiderCudaAttrs = */ false)) { +      Diag(NewFD->getLocation(), diag::err_cuda_ovl_target) +          << NewTarget << NewFD->getDeclName() << OldTarget << OldFD; +      Diag(OldFD->getLocation(), diag::note_previous_declaration); +      NewFD->setInvalidDecl(); +      break; +    } +  } +} + +template <typename AttrTy> +static void copyAttrIfPresent(Sema &S, FunctionDecl *FD, +                              const FunctionDecl &TemplateFD) { +  if (AttrTy *Attribute = TemplateFD.getAttr<AttrTy>()) { +    AttrTy *Clone = Attribute->clone(S.Context); +    Clone->setInherited(true); +    FD->addAttr(Clone); +  } +} + +void Sema::inheritCUDATargetAttrs(FunctionDecl *FD, +                                  const FunctionTemplateDecl &TD) { +  const FunctionDecl &TemplateFD = *TD.getTemplatedDecl(); +  copyAttrIfPresent<CUDAGlobalAttr>(*this, FD, TemplateFD); +  copyAttrIfPresent<CUDAHostAttr>(*this, FD, TemplateFD); +  copyAttrIfPresent<CUDADeviceAttr>(*this, FD, TemplateFD); +} + +std::string Sema::getCudaConfigureFuncName() const { +  if (getLangOpts().HIP) +    return getLangOpts().HIPUseNewLaunchAPI ? "__hipPushCallConfiguration" +                                            : "hipConfigureCall"; + +  // New CUDA kernel launch sequence. +  if (CudaFeatureEnabled(Context.getTargetInfo().getSDKVersion(), +                         CudaFeature::CUDA_USES_NEW_LAUNCH)) +    return "__cudaPushCallConfiguration"; + +  // Legacy CUDA kernel configuration call +  return "cudaConfigureCall"; +}  | 
