aboutsummaryrefslogtreecommitdiff
path: root/compat/rb.c
diff options
context:
space:
mode:
Diffstat (limited to 'compat/rb.c')
-rw-r--r--compat/rb.c1346
1 files changed, 1346 insertions, 0 deletions
diff --git a/compat/rb.c b/compat/rb.c
new file mode 100644
index 000000000000..3c0bed5f70d5
--- /dev/null
+++ b/compat/rb.c
@@ -0,0 +1,1346 @@
+/* $NetBSD: rb.c,v 1.14 2019/03/08 09:14:54 roy Exp $ */
+
+/*-
+ * Copyright (c) 2001 The NetBSD Foundation, Inc.
+ * All rights reserved.
+ *
+ * This code is derived from software contributed to The NetBSD Foundation
+ * by Matt Thomas <matt@3am-software.com>.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * 1. Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
+ * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
+ * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
+ * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
+ * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+ * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+ * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+ * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+ * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+ * POSSIBILITY OF SUCH DAMAGE.
+ */
+
+#include "config.h"
+#include "common.h"
+
+#if !defined(_KERNEL) && !defined(_STANDALONE)
+#include <sys/types.h>
+#include <stddef.h>
+#include <assert.h>
+#include <stdbool.h>
+#ifdef RBDEBUG
+#define KASSERT(s) assert(s)
+#define __rbt_unused
+#else
+#define KASSERT(s) do { } while (/*CONSTCOND*/ 0)
+#define __rbt_unused __unused
+#endif
+__RCSID("$NetBSD: rb.c,v 1.14 2019/03/08 09:14:54 roy Exp $");
+#else
+#include <lib/libkern/libkern.h>
+__KERNEL_RCSID(0, "$NetBSD: rb.c,v 1.14 2019/03/08 09:14:54 roy Exp $");
+#ifndef DIAGNOSTIC
+#define __rbt_unused __unused
+#else
+#define __rbt_unused
+#endif
+#endif
+
+#ifdef _LIBC
+__weak_alias(rb_tree_init, _rb_tree_init)
+__weak_alias(rb_tree_find_node, _rb_tree_find_node)
+__weak_alias(rb_tree_find_node_geq, _rb_tree_find_node_geq)
+__weak_alias(rb_tree_find_node_leq, _rb_tree_find_node_leq)
+__weak_alias(rb_tree_insert_node, _rb_tree_insert_node)
+__weak_alias(rb_tree_remove_node, _rb_tree_remove_node)
+__weak_alias(rb_tree_iterate, _rb_tree_iterate)
+#ifdef RBDEBUG
+__weak_alias(rb_tree_check, _rb_tree_check)
+__weak_alias(rb_tree_depths, _rb_tree_depths)
+#endif
+
+#include "namespace.h"
+#endif
+
+#ifdef RBTEST
+#include "rbtree.h"
+#else
+#include <sys/rbtree.h>
+#endif
+
+static void rb_tree_insert_rebalance(struct rb_tree *, struct rb_node *);
+static void rb_tree_removal_rebalance(struct rb_tree *, struct rb_node *,
+ unsigned int);
+#ifdef RBDEBUG
+static const struct rb_node *rb_tree_iterate_const(const struct rb_tree *,
+ const struct rb_node *, const unsigned int);
+static bool rb_tree_check_node(const struct rb_tree *, const struct rb_node *,
+ const struct rb_node *, bool);
+#else
+#define rb_tree_check_node(a, b, c, d) true
+#endif
+
+#define RB_NODETOITEM(rbto, rbn) \
+ ((void *)((uintptr_t)(rbn) - (rbto)->rbto_node_offset))
+#define RB_ITEMTONODE(rbto, rbn) \
+ ((rb_node_t *)((uintptr_t)(rbn) + (rbto)->rbto_node_offset))
+
+#define RB_SENTINEL_NODE NULL
+
+void
+rb_tree_init(struct rb_tree *rbt, const rb_tree_ops_t *ops)
+{
+
+ rbt->rbt_ops = ops;
+ rbt->rbt_root = RB_SENTINEL_NODE;
+ RB_TAILQ_INIT(&rbt->rbt_nodes);
+#ifndef RBSMALL
+ rbt->rbt_minmax[RB_DIR_LEFT] = rbt->rbt_root; /* minimum node */
+ rbt->rbt_minmax[RB_DIR_RIGHT] = rbt->rbt_root; /* maximum node */
+#endif
+#ifdef RBSTATS
+ rbt->rbt_count = 0;
+ rbt->rbt_insertions = 0;
+ rbt->rbt_removals = 0;
+ rbt->rbt_insertion_rebalance_calls = 0;
+ rbt->rbt_insertion_rebalance_passes = 0;
+ rbt->rbt_removal_rebalance_calls = 0;
+ rbt->rbt_removal_rebalance_passes = 0;
+#endif
+}
+
+void *
+rb_tree_find_node(struct rb_tree *rbt, const void *key)
+{
+ const rb_tree_ops_t *rbto = rbt->rbt_ops;
+ rbto_compare_key_fn compare_key = rbto->rbto_compare_key;
+ struct rb_node *parent = rbt->rbt_root;
+
+ while (!RB_SENTINEL_P(parent)) {
+ void *pobj = RB_NODETOITEM(rbto, parent);
+ const signed int diff = (*compare_key)(rbto->rbto_context,
+ pobj, key);
+ if (diff == 0)
+ return pobj;
+ parent = parent->rb_nodes[diff < 0];
+ }
+
+ return NULL;
+}
+
+void *
+rb_tree_find_node_geq(struct rb_tree *rbt, const void *key)
+{
+ const rb_tree_ops_t *rbto = rbt->rbt_ops;
+ rbto_compare_key_fn compare_key = rbto->rbto_compare_key;
+ struct rb_node *parent = rbt->rbt_root, *last = NULL;
+
+ while (!RB_SENTINEL_P(parent)) {
+ void *pobj = RB_NODETOITEM(rbto, parent);
+ const signed int diff = (*compare_key)(rbto->rbto_context,
+ pobj, key);
+ if (diff == 0)
+ return pobj;
+ if (diff > 0)
+ last = parent;
+ parent = parent->rb_nodes[diff < 0];
+ }
+
+ return last == NULL ? NULL : RB_NODETOITEM(rbto, last);
+}
+
+void *
+rb_tree_find_node_leq(struct rb_tree *rbt, const void *key)
+{
+ const rb_tree_ops_t *rbto = rbt->rbt_ops;
+ rbto_compare_key_fn compare_key = rbto->rbto_compare_key;
+ struct rb_node *parent = rbt->rbt_root, *last = NULL;
+
+ while (!RB_SENTINEL_P(parent)) {
+ void *pobj = RB_NODETOITEM(rbto, parent);
+ const signed int diff = (*compare_key)(rbto->rbto_context,
+ pobj, key);
+ if (diff == 0)
+ return pobj;
+ if (diff < 0)
+ last = parent;
+ parent = parent->rb_nodes[diff < 0];
+ }
+
+ return last == NULL ? NULL : RB_NODETOITEM(rbto, last);
+}
+
+void *
+rb_tree_insert_node(struct rb_tree *rbt, void *object)
+{
+ const rb_tree_ops_t *rbto = rbt->rbt_ops;
+ rbto_compare_nodes_fn compare_nodes = rbto->rbto_compare_nodes;
+ struct rb_node *parent, *tmp, *self = RB_ITEMTONODE(rbto, object);
+ unsigned int position;
+ bool rebalance;
+
+ RBSTAT_INC(rbt->rbt_insertions);
+
+ tmp = rbt->rbt_root;
+ /*
+ * This is a hack. Because rbt->rbt_root is just a struct rb_node *,
+ * just like rb_node->rb_nodes[RB_DIR_LEFT], we can use this fact to
+ * avoid a lot of tests for root and know that even at root,
+ * updating RB_FATHER(rb_node)->rb_nodes[RB_POSITION(rb_node)] will
+ * update rbt->rbt_root.
+ */
+ parent = (struct rb_node *)(void *)&rbt->rbt_root;
+ position = RB_DIR_LEFT;
+
+ /*
+ * Find out where to place this new leaf.
+ */
+ while (!RB_SENTINEL_P(tmp)) {
+ void *tobj = RB_NODETOITEM(rbto, tmp);
+ const signed int diff = (*compare_nodes)(rbto->rbto_context,
+ tobj, object);
+ if (__predict_false(diff == 0)) {
+ /*
+ * Node already exists; return it.
+ */
+ return tobj;
+ }
+ parent = tmp;
+ position = (diff < 0);
+ tmp = parent->rb_nodes[position];
+ }
+
+#ifdef RBDEBUG
+ {
+ struct rb_node *prev = NULL, *next = NULL;
+
+ if (position == RB_DIR_RIGHT)
+ prev = parent;
+ else if (tmp != rbt->rbt_root)
+ next = parent;
+
+ /*
+ * Verify our sequential position
+ */
+ KASSERT(prev == NULL || !RB_SENTINEL_P(prev));
+ KASSERT(next == NULL || !RB_SENTINEL_P(next));
+ if (prev != NULL && next == NULL)
+ next = TAILQ_NEXT(prev, rb_link);
+ if (prev == NULL && next != NULL)
+ prev = TAILQ_PREV(next, rb_node_qh, rb_link);
+ KASSERT(prev == NULL || !RB_SENTINEL_P(prev));
+ KASSERT(next == NULL || !RB_SENTINEL_P(next));
+ KASSERT(prev == NULL || (*compare_nodes)(rbto->rbto_context,
+ RB_NODETOITEM(rbto, prev), RB_NODETOITEM(rbto, self)) < 0);
+ KASSERT(next == NULL || (*compare_nodes)(rbto->rbto_context,
+ RB_NODETOITEM(rbto, self), RB_NODETOITEM(rbto, next)) < 0);
+ }
+#endif
+
+ /*
+ * Initialize the node and insert as a leaf into the tree.
+ */
+ RB_SET_FATHER(self, parent);
+ RB_SET_POSITION(self, position);
+ if (__predict_false(parent == (struct rb_node *)(void *)&rbt->rbt_root)) {
+ RB_MARK_BLACK(self); /* root is always black */
+#ifndef RBSMALL
+ rbt->rbt_minmax[RB_DIR_LEFT] = self;
+ rbt->rbt_minmax[RB_DIR_RIGHT] = self;
+#endif
+ rebalance = false;
+ } else {
+ KASSERT(position == RB_DIR_LEFT || position == RB_DIR_RIGHT);
+#ifndef RBSMALL
+ /*
+ * Keep track of the minimum and maximum nodes. If our
+ * parent is a minmax node and we on their min/max side,
+ * we must be the new min/max node.
+ */
+ if (parent == rbt->rbt_minmax[position])
+ rbt->rbt_minmax[position] = self;
+#endif /* !RBSMALL */
+ /*
+ * All new nodes are colored red. We only need to rebalance
+ * if our parent is also red.
+ */
+ RB_MARK_RED(self);
+ rebalance = RB_RED_P(parent);
+ }
+ KASSERT(RB_SENTINEL_P(parent->rb_nodes[position]));
+ self->rb_left = parent->rb_nodes[position];
+ self->rb_right = parent->rb_nodes[position];
+ parent->rb_nodes[position] = self;
+ KASSERT(RB_CHILDLESS_P(self));
+
+ /*
+ * Insert the new node into a sorted list for easy sequential access
+ */
+ RBSTAT_INC(rbt->rbt_count);
+#ifdef RBDEBUG
+ if (RB_ROOT_P(rbt, self)) {
+ RB_TAILQ_INSERT_HEAD(&rbt->rbt_nodes, self, rb_link);
+ } else if (position == RB_DIR_LEFT) {
+ KASSERT((*compare_nodes)(rbto->rbto_context,
+ RB_NODETOITEM(rbto, self),
+ RB_NODETOITEM(rbto, RB_FATHER(self))) < 0);
+ RB_TAILQ_INSERT_BEFORE(RB_FATHER(self), self, rb_link);
+ } else {
+ KASSERT((*compare_nodes)(rbto->rbto_context,
+ RB_NODETOITEM(rbto, RB_FATHER(self)),
+ RB_NODETOITEM(rbto, self)) < 0);
+ RB_TAILQ_INSERT_AFTER(&rbt->rbt_nodes, RB_FATHER(self),
+ self, rb_link);
+ }
+#endif
+ KASSERT(rb_tree_check_node(rbt, self, NULL, !rebalance));
+
+ /*
+ * Rebalance tree after insertion
+ */
+ if (rebalance) {
+ rb_tree_insert_rebalance(rbt, self);
+ KASSERT(rb_tree_check_node(rbt, self, NULL, true));
+ }
+
+ /* Succesfully inserted, return our node pointer. */
+ return object;
+}
+
+/*
+ * Swap the location and colors of 'self' and its child @ which. The child
+ * can not be a sentinel node. This is our rotation function. However,
+ * since it preserves coloring, it great simplifies both insertion and
+ * removal since rotation almost always involves the exchanging of colors
+ * as a separate step.
+ */
+static void
+rb_tree_reparent_nodes(__rbt_unused struct rb_tree *rbt,
+ struct rb_node *old_father, const unsigned int which)
+{
+ const unsigned int other = which ^ RB_DIR_OTHER;
+ struct rb_node * const grandpa = RB_FATHER(old_father);
+ struct rb_node * const old_child = old_father->rb_nodes[which];
+ struct rb_node * const new_father = old_child;
+ struct rb_node * const new_child = old_father;
+
+ KASSERT(which == RB_DIR_LEFT || which == RB_DIR_RIGHT);
+
+ KASSERT(!RB_SENTINEL_P(old_child));
+ KASSERT(RB_FATHER(old_child) == old_father);
+
+ KASSERT(rb_tree_check_node(rbt, old_father, NULL, false));
+ KASSERT(rb_tree_check_node(rbt, old_child, NULL, false));
+ KASSERT(RB_ROOT_P(rbt, old_father) ||
+ rb_tree_check_node(rbt, grandpa, NULL, false));
+
+ /*
+ * Exchange descendant linkages.
+ */
+ grandpa->rb_nodes[RB_POSITION(old_father)] = new_father;
+ new_child->rb_nodes[which] = old_child->rb_nodes[other];
+ new_father->rb_nodes[other] = new_child;
+
+ /*
+ * Update ancestor linkages
+ */
+ RB_SET_FATHER(new_father, grandpa);
+ RB_SET_FATHER(new_child, new_father);
+
+ /*
+ * Exchange properties between new_father and new_child. The only
+ * change is that new_child's position is now on the other side.
+ */
+#if 0
+ {
+ struct rb_node tmp;
+ tmp.rb_info = 0;
+ RB_COPY_PROPERTIES(&tmp, old_child);
+ RB_COPY_PROPERTIES(new_father, old_father);
+ RB_COPY_PROPERTIES(new_child, &tmp);
+ }
+#else
+ RB_SWAP_PROPERTIES(new_father, new_child);
+#endif
+ RB_SET_POSITION(new_child, other);
+
+ /*
+ * Make sure to reparent the new child to ourself.
+ */
+ if (!RB_SENTINEL_P(new_child->rb_nodes[which])) {
+ RB_SET_FATHER(new_child->rb_nodes[which], new_child);
+ RB_SET_POSITION(new_child->rb_nodes[which], which);
+ }
+
+ KASSERT(rb_tree_check_node(rbt, new_father, NULL, false));
+ KASSERT(rb_tree_check_node(rbt, new_child, NULL, false));
+ KASSERT(RB_ROOT_P(rbt, new_father) ||
+ rb_tree_check_node(rbt, grandpa, NULL, false));
+}
+
+static void
+rb_tree_insert_rebalance(struct rb_tree *rbt, struct rb_node *self)
+{
+ struct rb_node * father = RB_FATHER(self);
+ struct rb_node * grandpa = RB_FATHER(father);
+ struct rb_node * uncle;
+ unsigned int which;
+ unsigned int other;
+
+ KASSERT(!RB_ROOT_P(rbt, self));
+ KASSERT(RB_RED_P(self));
+ KASSERT(RB_RED_P(father));
+ RBSTAT_INC(rbt->rbt_insertion_rebalance_calls);
+
+ for (;;) {
+ KASSERT(!RB_SENTINEL_P(self));
+
+ KASSERT(RB_RED_P(self));
+ KASSERT(RB_RED_P(father));
+ /*
+ * We are red and our parent is red, therefore we must have a
+ * grandfather and he must be black.
+ */
+ grandpa = RB_FATHER(father);
+ KASSERT(RB_BLACK_P(grandpa));
+ KASSERT(RB_DIR_RIGHT == 1 && RB_DIR_LEFT == 0);
+ which = (father == grandpa->rb_right);
+ other = which ^ RB_DIR_OTHER;
+ uncle = grandpa->rb_nodes[other];
+
+ if (RB_BLACK_P(uncle))
+ break;
+
+ RBSTAT_INC(rbt->rbt_insertion_rebalance_passes);
+ /*
+ * Case 1: our uncle is red
+ * Simply invert the colors of our parent and
+ * uncle and make our grandparent red. And
+ * then solve the problem up at his level.
+ */
+ RB_MARK_BLACK(uncle);
+ RB_MARK_BLACK(father);
+ if (__predict_false(RB_ROOT_P(rbt, grandpa))) {
+ /*
+ * If our grandpa is root, don't bother
+ * setting him to red, just return.
+ */
+ KASSERT(RB_BLACK_P(grandpa));
+ return;
+ }
+ RB_MARK_RED(grandpa);
+ self = grandpa;
+ father = RB_FATHER(self);
+ KASSERT(RB_RED_P(self));
+ if (RB_BLACK_P(father)) {
+ /*
+ * If our greatgrandpa is black, we're done.
+ */
+ KASSERT(RB_BLACK_P(rbt->rbt_root));
+ return;
+ }
+ }
+
+ KASSERT(!RB_ROOT_P(rbt, self));
+ KASSERT(RB_RED_P(self));
+ KASSERT(RB_RED_P(father));
+ KASSERT(RB_BLACK_P(uncle));
+ KASSERT(RB_BLACK_P(grandpa));
+ /*
+ * Case 2&3: our uncle is black.
+ */
+ if (self == father->rb_nodes[other]) {
+ /*
+ * Case 2: we are on the same side as our uncle
+ * Swap ourselves with our parent so this case
+ * becomes case 3. Basically our parent becomes our
+ * child.
+ */
+ rb_tree_reparent_nodes(rbt, father, other);
+ KASSERT(RB_FATHER(father) == self);
+ KASSERT(self->rb_nodes[which] == father);
+ KASSERT(RB_FATHER(self) == grandpa);
+ self = father;
+ father = RB_FATHER(self);
+ }
+ KASSERT(RB_RED_P(self) && RB_RED_P(father));
+ KASSERT(grandpa->rb_nodes[which] == father);
+ /*
+ * Case 3: we are opposite a child of a black uncle.
+ * Swap our parent and grandparent. Since our grandfather
+ * is black, our father will become black and our new sibling
+ * (former grandparent) will become red.
+ */
+ rb_tree_reparent_nodes(rbt, grandpa, which);
+ KASSERT(RB_FATHER(self) == father);
+ KASSERT(RB_FATHER(self)->rb_nodes[RB_POSITION(self) ^ RB_DIR_OTHER] == grandpa);
+ KASSERT(RB_RED_P(self));
+ KASSERT(RB_BLACK_P(father));
+ KASSERT(RB_RED_P(grandpa));
+
+ /*
+ * Final step: Set the root to black.
+ */
+ RB_MARK_BLACK(rbt->rbt_root);
+}
+
+static void
+rb_tree_prune_node(struct rb_tree *rbt, struct rb_node *self, bool rebalance)
+{
+ const unsigned int which = RB_POSITION(self);
+ struct rb_node *father = RB_FATHER(self);
+#ifndef RBSMALL
+ const bool was_root = RB_ROOT_P(rbt, self);
+#endif
+
+ KASSERT(rebalance || (RB_ROOT_P(rbt, self) || RB_RED_P(self)));
+ KASSERT(!rebalance || RB_BLACK_P(self));
+ KASSERT(RB_CHILDLESS_P(self));
+ KASSERT(rb_tree_check_node(rbt, self, NULL, false));
+
+ /*
+ * Since we are childless, we know that self->rb_left is pointing
+ * to the sentinel node.
+ */
+ father->rb_nodes[which] = self->rb_left;
+
+ /*
+ * Remove ourselves from the node list, decrement the count,
+ * and update min/max.
+ */
+ RB_TAILQ_REMOVE(&rbt->rbt_nodes, self, rb_link);
+ RBSTAT_DEC(rbt->rbt_count);
+#ifndef RBSMALL
+ if (__predict_false(rbt->rbt_minmax[RB_POSITION(self)] == self)) {
+ rbt->rbt_minmax[RB_POSITION(self)] = father;
+ /*
+ * When removing the root, rbt->rbt_minmax[RB_DIR_LEFT] is
+ * updated automatically, but we also need to update
+ * rbt->rbt_minmax[RB_DIR_RIGHT];
+ */
+ if (__predict_false(was_root)) {
+ rbt->rbt_minmax[RB_DIR_RIGHT] = father;
+ }
+ }
+ RB_SET_FATHER(self, NULL);
+#endif
+
+ /*
+ * Rebalance if requested.
+ */
+ if (rebalance)
+ rb_tree_removal_rebalance(rbt, father, which);
+ KASSERT(was_root || rb_tree_check_node(rbt, father, NULL, true));
+}
+
+/*
+ * When deleting an interior node
+ */
+static void
+rb_tree_swap_prune_and_rebalance(struct rb_tree *rbt, struct rb_node *self,
+ struct rb_node *standin)
+{
+ const unsigned int standin_which = RB_POSITION(standin);
+ unsigned int standin_other = standin_which ^ RB_DIR_OTHER;
+ struct rb_node *standin_son;
+ struct rb_node *standin_father = RB_FATHER(standin);
+ bool rebalance = RB_BLACK_P(standin);
+
+ if (standin_father == self) {
+ /*
+ * As a child of self, any childen would be opposite of
+ * our parent.
+ */
+ KASSERT(RB_SENTINEL_P(standin->rb_nodes[standin_other]));
+ standin_son = standin->rb_nodes[standin_which];
+ } else {
+ /*
+ * Since we aren't a child of self, any childen would be
+ * on the same side as our parent.
+ */
+ KASSERT(RB_SENTINEL_P(standin->rb_nodes[standin_which]));
+ standin_son = standin->rb_nodes[standin_other];
+ }
+
+ /*
+ * the node we are removing must have two children.
+ */
+ KASSERT(RB_TWOCHILDREN_P(self));
+ /*
+ * If standin has a child, it must be red.
+ */
+ KASSERT(RB_SENTINEL_P(standin_son) || RB_RED_P(standin_son));
+
+ /*
+ * Verify things are sane.
+ */
+ KASSERT(rb_tree_check_node(rbt, self, NULL, false));
+ KASSERT(rb_tree_check_node(rbt, standin, NULL, false));
+
+ if (__predict_false(RB_RED_P(standin_son))) {
+ /*
+ * We know we have a red child so if we flip it to black
+ * we don't have to rebalance.
+ */
+ KASSERT(rb_tree_check_node(rbt, standin_son, NULL, true));
+ RB_MARK_BLACK(standin_son);
+ rebalance = false;
+
+ if (standin_father == self) {
+ KASSERT(RB_POSITION(standin_son) == standin_which);
+ } else {
+ KASSERT(RB_POSITION(standin_son) == standin_other);
+ /*
+ * Change the son's parentage to point to his grandpa.
+ */
+ RB_SET_FATHER(standin_son, standin_father);
+ RB_SET_POSITION(standin_son, standin_which);
+ }
+ }
+
+ if (standin_father == self) {
+ /*
+ * If we are about to delete the standin's father, then when
+ * we call rebalance, we need to use ourselves as our father.
+ * Otherwise remember our original father. Also, sincef we are
+ * our standin's father we only need to reparent the standin's
+ * brother.
+ *
+ * | R --> S |
+ * | Q S --> Q T |
+ * | t --> |
+ */
+ KASSERT(RB_SENTINEL_P(standin->rb_nodes[standin_other]));
+ KASSERT(!RB_SENTINEL_P(self->rb_nodes[standin_other]));
+ KASSERT(self->rb_nodes[standin_which] == standin);
+ /*
+ * Have our son/standin adopt his brother as his new son.
+ */
+ standin_father = standin;
+ } else {
+ /*
+ * | R --> S . |
+ * | / \ | T --> / \ | / |
+ * | ..... | S --> ..... | T |
+ *
+ * Sever standin's connection to his father.
+ */
+ standin_father->rb_nodes[standin_which] = standin_son;
+ /*
+ * Adopt the far son.
+ */
+ standin->rb_nodes[standin_other] = self->rb_nodes[standin_other];
+ RB_SET_FATHER(standin->rb_nodes[standin_other], standin);
+ KASSERT(RB_POSITION(self->rb_nodes[standin_other]) == standin_other);
+ /*
+ * Use standin_other because we need to preserve standin_which
+ * for the removal_rebalance.
+ */
+ standin_other = standin_which;
+ }
+
+ /*
+ * Move the only remaining son to our standin. If our standin is our
+ * son, this will be the only son needed to be moved.
+ */
+ KASSERT(standin->rb_nodes[standin_other] != self->rb_nodes[standin_other]);
+ standin->rb_nodes[standin_other] = self->rb_nodes[standin_other];
+ RB_SET_FATHER(standin->rb_nodes[standin_other], standin);
+
+ /*
+ * Now copy the result of self to standin and then replace
+ * self with standin in the tree.
+ */
+ RB_COPY_PROPERTIES(standin, self);
+ RB_SET_FATHER(standin, RB_FATHER(self));
+ RB_FATHER(standin)->rb_nodes[RB_POSITION(standin)] = standin;
+
+ /*
+ * Remove ourselves from the node list, decrement the count,
+ * and update min/max.
+ */
+ RB_TAILQ_REMOVE(&rbt->rbt_nodes, self, rb_link);
+ RBSTAT_DEC(rbt->rbt_count);
+#ifndef RBSMALL
+ if (__predict_false(rbt->rbt_minmax[RB_POSITION(self)] == self))
+ rbt->rbt_minmax[RB_POSITION(self)] = RB_FATHER(self);
+ RB_SET_FATHER(self, NULL);
+#endif
+
+ KASSERT(rb_tree_check_node(rbt, standin, NULL, false));
+ KASSERT(RB_FATHER_SENTINEL_P(standin)
+ || rb_tree_check_node(rbt, standin_father, NULL, false));
+ KASSERT(RB_LEFT_SENTINEL_P(standin)
+ || rb_tree_check_node(rbt, standin->rb_left, NULL, false));
+ KASSERT(RB_RIGHT_SENTINEL_P(standin)
+ || rb_tree_check_node(rbt, standin->rb_right, NULL, false));
+
+ if (!rebalance)
+ return;
+
+ rb_tree_removal_rebalance(rbt, standin_father, standin_which);
+ KASSERT(rb_tree_check_node(rbt, standin, NULL, true));
+}
+
+/*
+ * We could do this by doing
+ * rb_tree_node_swap(rbt, self, which);
+ * rb_tree_prune_node(rbt, self, false);
+ *
+ * But it's more efficient to just evalate and recolor the child.
+ */
+static void
+rb_tree_prune_blackred_branch(struct rb_tree *rbt, struct rb_node *self,
+ unsigned int which)
+{
+ struct rb_node *father = RB_FATHER(self);
+ struct rb_node *son = self->rb_nodes[which];
+#ifndef RBSMALL
+ const bool was_root = RB_ROOT_P(rbt, self);
+#endif
+
+ KASSERT(which == RB_DIR_LEFT || which == RB_DIR_RIGHT);
+ KASSERT(RB_BLACK_P(self) && RB_RED_P(son));
+ KASSERT(!RB_TWOCHILDREN_P(son));
+ KASSERT(RB_CHILDLESS_P(son));
+ KASSERT(rb_tree_check_node(rbt, self, NULL, false));
+ KASSERT(rb_tree_check_node(rbt, son, NULL, false));
+
+ /*
+ * Remove ourselves from the tree and give our former child our
+ * properties (position, color, root).
+ */
+ RB_COPY_PROPERTIES(son, self);
+ father->rb_nodes[RB_POSITION(son)] = son;
+ RB_SET_FATHER(son, father);
+
+ /*
+ * Remove ourselves from the node list, decrement the count,
+ * and update minmax.
+ */
+ RB_TAILQ_REMOVE(&rbt->rbt_nodes, self, rb_link);
+ RBSTAT_DEC(rbt->rbt_count);
+#ifndef RBSMALL
+ if (__predict_false(was_root)) {
+ KASSERT(rbt->rbt_minmax[which] == son);
+ rbt->rbt_minmax[which ^ RB_DIR_OTHER] = son;
+ } else if (rbt->rbt_minmax[RB_POSITION(self)] == self) {
+ rbt->rbt_minmax[RB_POSITION(self)] = son;
+ }
+ RB_SET_FATHER(self, NULL);
+#endif
+
+ KASSERT(was_root || rb_tree_check_node(rbt, father, NULL, true));
+ KASSERT(rb_tree_check_node(rbt, son, NULL, true));
+}
+
+void
+rb_tree_remove_node(struct rb_tree *rbt, void *object)
+{
+ const rb_tree_ops_t *rbto = rbt->rbt_ops;
+ struct rb_node *standin, *self = RB_ITEMTONODE(rbto, object);
+ unsigned int which;
+
+ KASSERT(!RB_SENTINEL_P(self));
+ RBSTAT_INC(rbt->rbt_removals);
+
+ /*
+ * In the following diagrams, we (the node to be removed) are S. Red
+ * nodes are lowercase. T could be either red or black.
+ *
+ * Remember the major axiom of the red-black tree: the number of
+ * black nodes from the root to each leaf is constant across all
+ * leaves, only the number of red nodes varies.
+ *
+ * Thus removing a red leaf doesn't require any other changes to a
+ * red-black tree. So if we must remove a node, attempt to rearrange
+ * the tree so we can remove a red node.
+ *
+ * The simpliest case is a childless red node or a childless root node:
+ *
+ * | T --> T | or | R --> * |
+ * | s --> * |
+ */
+ if (RB_CHILDLESS_P(self)) {
+ const bool rebalance = RB_BLACK_P(self) && !RB_ROOT_P(rbt, self);
+ rb_tree_prune_node(rbt, self, rebalance);
+ return;
+ }
+ KASSERT(!RB_CHILDLESS_P(self));
+ if (!RB_TWOCHILDREN_P(self)) {
+ /*
+ * The next simpliest case is the node we are deleting is
+ * black and has one red child.
+ *
+ * | T --> T --> T |
+ * | S --> R --> R |
+ * | r --> s --> * |
+ */
+ which = RB_LEFT_SENTINEL_P(self) ? RB_DIR_RIGHT : RB_DIR_LEFT;
+ KASSERT(RB_BLACK_P(self));
+ KASSERT(RB_RED_P(self->rb_nodes[which]));
+ KASSERT(RB_CHILDLESS_P(self->rb_nodes[which]));
+ rb_tree_prune_blackred_branch(rbt, self, which);
+ return;
+ }
+ KASSERT(RB_TWOCHILDREN_P(self));
+
+ /*
+ * We invert these because we prefer to remove from the inside of
+ * the tree.
+ */
+ which = RB_POSITION(self) ^ RB_DIR_OTHER;
+
+ /*
+ * Let's find the node closes to us opposite of our parent
+ * Now swap it with ourself, "prune" it, and rebalance, if needed.
+ */
+ standin = RB_ITEMTONODE(rbto, rb_tree_iterate(rbt, object, which));
+ rb_tree_swap_prune_and_rebalance(rbt, self, standin);
+}
+
+static void
+rb_tree_removal_rebalance(struct rb_tree *rbt, struct rb_node *parent,
+ unsigned int which)
+{
+ KASSERT(!RB_SENTINEL_P(parent));
+ KASSERT(RB_SENTINEL_P(parent->rb_nodes[which]));
+ KASSERT(which == RB_DIR_LEFT || which == RB_DIR_RIGHT);
+ RBSTAT_INC(rbt->rbt_removal_rebalance_calls);
+
+ while (RB_BLACK_P(parent->rb_nodes[which])) {
+ unsigned int other = which ^ RB_DIR_OTHER;
+ struct rb_node *brother = parent->rb_nodes[other];
+
+ RBSTAT_INC(rbt->rbt_removal_rebalance_passes);
+
+ KASSERT(!RB_SENTINEL_P(brother));
+ /*
+ * For cases 1, 2a, and 2b, our brother's children must
+ * be black and our father must be black
+ */
+ if (RB_BLACK_P(parent)
+ && RB_BLACK_P(brother->rb_left)
+ && RB_BLACK_P(brother->rb_right)) {
+ if (RB_RED_P(brother)) {
+ /*
+ * Case 1: Our brother is red, swap its
+ * position (and colors) with our parent.
+ * This should now be case 2b (unless C or E
+ * has a red child which is case 3; thus no
+ * explicit branch to case 2b).
+ *
+ * B -> D
+ * A d -> b E
+ * C E -> A C
+ */
+ KASSERT(RB_BLACK_P(parent));
+ rb_tree_reparent_nodes(rbt, parent, other);
+ brother = parent->rb_nodes[other];
+ KASSERT(!RB_SENTINEL_P(brother));
+ KASSERT(RB_RED_P(parent));
+ KASSERT(RB_BLACK_P(brother));
+ KASSERT(rb_tree_check_node(rbt, brother, NULL, false));
+ KASSERT(rb_tree_check_node(rbt, parent, NULL, false));
+ } else {
+ /*
+ * Both our parent and brother are black.
+ * Change our brother to red, advance up rank
+ * and go through the loop again.
+ *
+ * B -> *B
+ * *A D -> A d
+ * C E -> C E
+ */
+ RB_MARK_RED(brother);
+ KASSERT(RB_BLACK_P(brother->rb_left));
+ KASSERT(RB_BLACK_P(brother->rb_right));
+ if (RB_ROOT_P(rbt, parent))
+ return; /* root == parent == black */
+ KASSERT(rb_tree_check_node(rbt, brother, NULL, false));
+ KASSERT(rb_tree_check_node(rbt, parent, NULL, false));
+ which = RB_POSITION(parent);
+ parent = RB_FATHER(parent);
+ continue;
+ }
+ }
+ /*
+ * Avoid an else here so that case 2a above can hit either
+ * case 2b, 3, or 4.
+ */
+ if (RB_RED_P(parent)
+ && RB_BLACK_P(brother)
+ && RB_BLACK_P(brother->rb_left)
+ && RB_BLACK_P(brother->rb_right)) {
+ KASSERT(RB_RED_P(parent));
+ KASSERT(RB_BLACK_P(brother));
+ KASSERT(RB_BLACK_P(brother->rb_left));
+ KASSERT(RB_BLACK_P(brother->rb_right));
+ /*
+ * We are black, our father is red, our brother and
+ * both nephews are black. Simply invert/exchange the
+ * colors of our father and brother (to black and red
+ * respectively).
+ *
+ * | f --> F |
+ * | * B --> * b |
+ * | N N --> N N |
+ */
+ RB_MARK_BLACK(parent);
+ RB_MARK_RED(brother);
+ KASSERT(rb_tree_check_node(rbt, brother, NULL, true));
+ break; /* We're done! */
+ } else {
+ /*
+ * Our brother must be black and have at least one
+ * red child (it may have two).
+ */
+ KASSERT(RB_BLACK_P(brother));
+ KASSERT(RB_RED_P(brother->rb_nodes[which]) ||
+ RB_RED_P(brother->rb_nodes[other]));
+ if (RB_BLACK_P(brother->rb_nodes[other])) {
+ /*
+ * Case 3: our brother is black, our near
+ * nephew is red, and our far nephew is black.
+ * Swap our brother with our near nephew.
+ * This result in a tree that matches case 4.
+ * (Our father could be red or black).
+ *
+ * | F --> F |
+ * | x B --> x B |
+ * | n --> n |
+ */
+ KASSERT(RB_RED_P(brother->rb_nodes[which]));
+ rb_tree_reparent_nodes(rbt, brother, which);
+ KASSERT(RB_FATHER(brother) == parent->rb_nodes[other]);
+ brother = parent->rb_nodes[other];
+ KASSERT(RB_RED_P(brother->rb_nodes[other]));
+ }
+ /*
+ * Case 4: our brother is black and our far nephew
+ * is red. Swap our father and brother locations and
+ * change our far nephew to black. (these can be
+ * done in either order so we change the color first).
+ * The result is a valid red-black tree and is a
+ * terminal case. (again we don't care about the
+ * father's color)
+ *
+ * If the father is red, we will get a red-black-black
+ * tree:
+ * | f -> f --> b |
+ * | B -> B --> F N |
+ * | n -> N --> |
+ *
+ * If the father is black, we will get an all black
+ * tree:
+ * | F -> F --> B |
+ * | B -> B --> F N |
+ * | n -> N --> |
+ *
+ * If we had two red nephews, then after the swap,
+ * our former father would have a red grandson.
+ */
+ KASSERT(RB_BLACK_P(brother));
+ KASSERT(RB_RED_P(brother->rb_nodes[other]));
+ RB_MARK_BLACK(brother->rb_nodes[other]);
+ rb_tree_reparent_nodes(rbt, parent, other);
+ break; /* We're done! */
+ }
+ }
+ KASSERT(rb_tree_check_node(rbt, parent, NULL, true));
+}
+
+void *
+rb_tree_iterate(struct rb_tree *rbt, void *object, const unsigned int direction)
+{
+ const rb_tree_ops_t *rbto = rbt->rbt_ops;
+ const unsigned int other = direction ^ RB_DIR_OTHER;
+ struct rb_node *self;
+
+ KASSERT(direction == RB_DIR_LEFT || direction == RB_DIR_RIGHT);
+
+ if (object == NULL) {
+#ifndef RBSMALL
+ if (RB_SENTINEL_P(rbt->rbt_root))
+ return NULL;
+ return RB_NODETOITEM(rbto, rbt->rbt_minmax[direction]);
+#else
+ self = rbt->rbt_root;
+ if (RB_SENTINEL_P(self))
+ return NULL;
+ while (!RB_SENTINEL_P(self->rb_nodes[direction]))
+ self = self->rb_nodes[direction];
+ return RB_NODETOITEM(rbto, self);
+#endif /* !RBSMALL */
+ }
+ self = RB_ITEMTONODE(rbto, object);
+ KASSERT(!RB_SENTINEL_P(self));
+ /*
+ * We can't go any further in this direction. We proceed up in the
+ * opposite direction until our parent is in direction we want to go.
+ */
+ if (RB_SENTINEL_P(self->rb_nodes[direction])) {
+ while (!RB_ROOT_P(rbt, self)) {
+ if (other == RB_POSITION(self))
+ return RB_NODETOITEM(rbto, RB_FATHER(self));
+ self = RB_FATHER(self);
+ }
+ return NULL;
+ }
+
+ /*
+ * Advance down one in current direction and go down as far as possible
+ * in the opposite direction.
+ */
+ self = self->rb_nodes[direction];
+ KASSERT(!RB_SENTINEL_P(self));
+ while (!RB_SENTINEL_P(self->rb_nodes[other]))
+ self = self->rb_nodes[other];
+ return RB_NODETOITEM(rbto, self);
+}
+
+#ifdef RBDEBUG
+static const struct rb_node *
+rb_tree_iterate_const(const struct rb_tree *rbt, const struct rb_node *self,
+ const unsigned int direction)
+{
+ const unsigned int other = direction ^ RB_DIR_OTHER;
+ KASSERT(direction == RB_DIR_LEFT || direction == RB_DIR_RIGHT);
+
+ if (self == NULL) {
+#ifndef RBSMALL
+ if (RB_SENTINEL_P(rbt->rbt_root))
+ return NULL;
+ return rbt->rbt_minmax[direction];
+#else
+ self = rbt->rbt_root;
+ if (RB_SENTINEL_P(self))
+ return NULL;
+ while (!RB_SENTINEL_P(self->rb_nodes[direction]))
+ self = self->rb_nodes[direction];
+ return self;
+#endif /* !RBSMALL */
+ }
+ KASSERT(!RB_SENTINEL_P(self));
+ /*
+ * We can't go any further in this direction. We proceed up in the
+ * opposite direction until our parent is in direction we want to go.
+ */
+ if (RB_SENTINEL_P(self->rb_nodes[direction])) {
+ while (!RB_ROOT_P(rbt, self)) {
+ if (other == RB_POSITION(self))
+ return RB_FATHER(self);
+ self = RB_FATHER(self);
+ }
+ return NULL;
+ }
+
+ /*
+ * Advance down one in current direction and go down as far as possible
+ * in the opposite direction.
+ */
+ self = self->rb_nodes[direction];
+ KASSERT(!RB_SENTINEL_P(self));
+ while (!RB_SENTINEL_P(self->rb_nodes[other]))
+ self = self->rb_nodes[other];
+ return self;
+}
+
+static unsigned int
+rb_tree_count_black(const struct rb_node *self)
+{
+ unsigned int left, right;
+
+ if (RB_SENTINEL_P(self))
+ return 0;
+
+ left = rb_tree_count_black(self->rb_left);
+ right = rb_tree_count_black(self->rb_right);
+
+ KASSERT(left == right);
+
+ return left + RB_BLACK_P(self);
+}
+
+static bool
+rb_tree_check_node(const struct rb_tree *rbt, const struct rb_node *self,
+ const struct rb_node *prev, bool red_check)
+{
+ const rb_tree_ops_t *rbto = rbt->rbt_ops;
+ rbto_compare_nodes_fn compare_nodes = rbto->rbto_compare_nodes;
+
+ KASSERT(!RB_SENTINEL_P(self));
+ KASSERT(prev == NULL || (*compare_nodes)(rbto->rbto_context,
+ RB_NODETOITEM(rbto, prev), RB_NODETOITEM(rbto, self)) < 0);
+
+ /*
+ * Verify our relationship to our parent.
+ */
+ if (RB_ROOT_P(rbt, self)) {
+ KASSERT(self == rbt->rbt_root);
+ KASSERT(RB_POSITION(self) == RB_DIR_LEFT);
+ KASSERT(RB_FATHER(self)->rb_nodes[RB_DIR_LEFT] == self);
+ KASSERT(RB_FATHER(self) == (const struct rb_node *) &rbt->rbt_root);
+ } else {
+ int diff = (*compare_nodes)(rbto->rbto_context,
+ RB_NODETOITEM(rbto, self),
+ RB_NODETOITEM(rbto, RB_FATHER(self)));
+
+ KASSERT(self != rbt->rbt_root);
+ KASSERT(!RB_FATHER_SENTINEL_P(self));
+ if (RB_POSITION(self) == RB_DIR_LEFT) {
+ KASSERT(diff < 0);
+ KASSERT(RB_FATHER(self)->rb_nodes[RB_DIR_LEFT] == self);
+ } else {
+ KASSERT(diff > 0);
+ KASSERT(RB_FATHER(self)->rb_nodes[RB_DIR_RIGHT] == self);
+ }
+ }
+
+ /*
+ * Verify our position in the linked list against the tree itself.
+ */
+ {
+ const struct rb_node *prev0 = rb_tree_iterate_const(rbt, self, RB_DIR_LEFT);
+ const struct rb_node *next0 = rb_tree_iterate_const(rbt, self, RB_DIR_RIGHT);
+ KASSERT(prev0 == TAILQ_PREV(self, rb_node_qh, rb_link));
+ KASSERT(next0 == TAILQ_NEXT(self, rb_link));
+#ifndef RBSMALL
+ KASSERT(prev0 != NULL || self == rbt->rbt_minmax[RB_DIR_LEFT]);
+ KASSERT(next0 != NULL || self == rbt->rbt_minmax[RB_DIR_RIGHT]);
+#endif
+ }
+
+ /*
+ * The root must be black.
+ * There can never be two adjacent red nodes.
+ */
+ if (red_check) {
+ KASSERT(!RB_ROOT_P(rbt, self) || RB_BLACK_P(self));
+ (void) rb_tree_count_black(self);
+ if (RB_RED_P(self)) {
+ const struct rb_node *brother;
+ KASSERT(!RB_ROOT_P(rbt, self));
+ brother = RB_FATHER(self)->rb_nodes[RB_POSITION(self) ^ RB_DIR_OTHER];
+ KASSERT(RB_BLACK_P(RB_FATHER(self)));
+ /*
+ * I'm red and have no children, then I must either
+ * have no brother or my brother also be red and
+ * also have no children. (black count == 0)
+ */
+ KASSERT(!RB_CHILDLESS_P(self)
+ || RB_SENTINEL_P(brother)
+ || RB_RED_P(brother)
+ || RB_CHILDLESS_P(brother));
+ /*
+ * If I'm not childless, I must have two children
+ * and they must be both be black.
+ */
+ KASSERT(RB_CHILDLESS_P(self)
+ || (RB_TWOCHILDREN_P(self)
+ && RB_BLACK_P(self->rb_left)
+ && RB_BLACK_P(self->rb_right)));
+ /*
+ * If I'm not childless, thus I have black children,
+ * then my brother must either be black or have two
+ * black children.
+ */
+ KASSERT(RB_CHILDLESS_P(self)
+ || RB_BLACK_P(brother)
+ || (RB_TWOCHILDREN_P(brother)
+ && RB_BLACK_P(brother->rb_left)
+ && RB_BLACK_P(brother->rb_right)));
+ } else {
+ /*
+ * If I'm black and have one child, that child must
+ * be red and childless.
+ */
+ KASSERT(RB_CHILDLESS_P(self)
+ || RB_TWOCHILDREN_P(self)
+ || (!RB_LEFT_SENTINEL_P(self)
+ && RB_RIGHT_SENTINEL_P(self)
+ && RB_RED_P(self->rb_left)
+ && RB_CHILDLESS_P(self->rb_left))
+ || (!RB_RIGHT_SENTINEL_P(self)
+ && RB_LEFT_SENTINEL_P(self)
+ && RB_RED_P(self->rb_right)
+ && RB_CHILDLESS_P(self->rb_right)));
+
+ /*
+ * If I'm a childless black node and my parent is
+ * black, my 2nd closet relative away from my parent
+ * is either red or has a red parent or red children.
+ */
+ if (!RB_ROOT_P(rbt, self)
+ && RB_CHILDLESS_P(self)
+ && RB_BLACK_P(RB_FATHER(self))) {
+ const unsigned int which = RB_POSITION(self);
+ const unsigned int other = which ^ RB_DIR_OTHER;
+ const struct rb_node *relative0, *relative;
+
+ relative0 = rb_tree_iterate_const(rbt,
+ self, other);
+ KASSERT(relative0 != NULL);
+ relative = rb_tree_iterate_const(rbt,
+ relative0, other);
+ KASSERT(relative != NULL);
+ KASSERT(RB_SENTINEL_P(relative->rb_nodes[which]));
+#if 0
+ KASSERT(RB_RED_P(relative)
+ || RB_RED_P(relative->rb_left)
+ || RB_RED_P(relative->rb_right)
+ || RB_RED_P(RB_FATHER(relative)));
+#endif
+ }
+ }
+ /*
+ * A grandparent's children must be real nodes and not
+ * sentinels. First check out grandparent.
+ */
+ KASSERT(RB_ROOT_P(rbt, self)
+ || RB_ROOT_P(rbt, RB_FATHER(self))
+ || RB_TWOCHILDREN_P(RB_FATHER(RB_FATHER(self))));
+ /*
+ * If we are have grandchildren on our left, then
+ * we must have a child on our right.
+ */
+ KASSERT(RB_LEFT_SENTINEL_P(self)
+ || RB_CHILDLESS_P(self->rb_left)
+ || !RB_RIGHT_SENTINEL_P(self));
+ /*
+ * If we are have grandchildren on our right, then
+ * we must have a child on our left.
+ */
+ KASSERT(RB_RIGHT_SENTINEL_P(self)
+ || RB_CHILDLESS_P(self->rb_right)
+ || !RB_LEFT_SENTINEL_P(self));
+
+ /*
+ * If we have a child on the left and it doesn't have two
+ * children make sure we don't have great-great-grandchildren on
+ * the right.
+ */
+ KASSERT(RB_TWOCHILDREN_P(self->rb_left)
+ || RB_CHILDLESS_P(self->rb_right)
+ || RB_CHILDLESS_P(self->rb_right->rb_left)
+ || RB_CHILDLESS_P(self->rb_right->rb_left->rb_left)
+ || RB_CHILDLESS_P(self->rb_right->rb_left->rb_right)
+ || RB_CHILDLESS_P(self->rb_right->rb_right)
+ || RB_CHILDLESS_P(self->rb_right->rb_right->rb_left)
+ || RB_CHILDLESS_P(self->rb_right->rb_right->rb_right));
+
+ /*
+ * If we have a child on the right and it doesn't have two
+ * children make sure we don't have great-great-grandchildren on
+ * the left.
+ */
+ KASSERT(RB_TWOCHILDREN_P(self->rb_right)
+ || RB_CHILDLESS_P(self->rb_left)
+ || RB_CHILDLESS_P(self->rb_left->rb_left)
+ || RB_CHILDLESS_P(self->rb_left->rb_left->rb_left)
+ || RB_CHILDLESS_P(self->rb_left->rb_left->rb_right)
+ || RB_CHILDLESS_P(self->rb_left->rb_right)
+ || RB_CHILDLESS_P(self->rb_left->rb_right->rb_left)
+ || RB_CHILDLESS_P(self->rb_left->rb_right->rb_right));
+
+ /*
+ * If we are fully interior node, then our predecessors and
+ * successors must have no children in our direction.
+ */
+ if (RB_TWOCHILDREN_P(self)) {
+ const struct rb_node *prev0;
+ const struct rb_node *next0;
+
+ prev0 = rb_tree_iterate_const(rbt, self, RB_DIR_LEFT);
+ KASSERT(prev0 != NULL);
+ KASSERT(RB_RIGHT_SENTINEL_P(prev0));
+
+ next0 = rb_tree_iterate_const(rbt, self, RB_DIR_RIGHT);
+ KASSERT(next0 != NULL);
+ KASSERT(RB_LEFT_SENTINEL_P(next0));
+ }
+ }
+
+ return true;
+}
+
+void
+rb_tree_check(const struct rb_tree *rbt, bool red_check)
+{
+ const struct rb_node *self;
+ const struct rb_node *prev;
+#ifdef RBSTATS
+ unsigned int count = 0;
+#endif
+
+ KASSERT(rbt->rbt_root != NULL);
+ KASSERT(RB_LEFT_P(rbt->rbt_root));
+
+#if defined(RBSTATS) && !defined(RBSMALL)
+ KASSERT(rbt->rbt_count > 1
+ || rbt->rbt_minmax[RB_DIR_LEFT] == rbt->rbt_minmax[RB_DIR_RIGHT]);
+#endif
+
+ prev = NULL;
+ TAILQ_FOREACH(self, &rbt->rbt_nodes, rb_link) {
+ rb_tree_check_node(rbt, self, prev, false);
+#ifdef RBSTATS
+ count++;
+#endif
+ }
+#ifdef RBSTATS
+ KASSERT(rbt->rbt_count == count);
+#endif
+ if (red_check) {
+ KASSERT(RB_BLACK_P(rbt->rbt_root));
+ KASSERT(RB_SENTINEL_P(rbt->rbt_root)
+ || rb_tree_count_black(rbt->rbt_root));
+
+ /*
+ * The root must be black.
+ * There can never be two adjacent red nodes.
+ */
+ TAILQ_FOREACH(self, &rbt->rbt_nodes, rb_link) {
+ rb_tree_check_node(rbt, self, NULL, true);
+ }
+ }
+}
+#endif /* RBDEBUG */
+
+#ifdef RBSTATS
+static void
+rb_tree_mark_depth(const struct rb_tree *rbt, const struct rb_node *self,
+ size_t *depths, size_t depth)
+{
+ if (RB_SENTINEL_P(self))
+ return;
+
+ if (RB_TWOCHILDREN_P(self)) {
+ rb_tree_mark_depth(rbt, self->rb_left, depths, depth + 1);
+ rb_tree_mark_depth(rbt, self->rb_right, depths, depth + 1);
+ return;
+ }
+ depths[depth]++;
+ if (!RB_LEFT_SENTINEL_P(self)) {
+ rb_tree_mark_depth(rbt, self->rb_left, depths, depth + 1);
+ }
+ if (!RB_RIGHT_SENTINEL_P(self)) {
+ rb_tree_mark_depth(rbt, self->rb_right, depths, depth + 1);
+ }
+}
+
+void
+rb_tree_depths(const struct rb_tree *rbt, size_t *depths)
+{
+ rb_tree_mark_depth(rbt, rbt->rbt_root, depths, 1);
+}
+#endif /* RBSTATS */