diff options
Diffstat (limited to 'compat/rb.c')
| -rw-r--r-- | compat/rb.c | 1346 |
1 files changed, 1346 insertions, 0 deletions
diff --git a/compat/rb.c b/compat/rb.c new file mode 100644 index 000000000000..3c0bed5f70d5 --- /dev/null +++ b/compat/rb.c @@ -0,0 +1,1346 @@ +/* $NetBSD: rb.c,v 1.14 2019/03/08 09:14:54 roy Exp $ */ + +/*- + * Copyright (c) 2001 The NetBSD Foundation, Inc. + * All rights reserved. + * + * This code is derived from software contributed to The NetBSD Foundation + * by Matt Thomas <matt@3am-software.com>. + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * 1. Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in the + * documentation and/or other materials provided with the distribution. + * + * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS + * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED + * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR + * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS + * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR + * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF + * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS + * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN + * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) + * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE + * POSSIBILITY OF SUCH DAMAGE. + */ + +#include "config.h" +#include "common.h" + +#if !defined(_KERNEL) && !defined(_STANDALONE) +#include <sys/types.h> +#include <stddef.h> +#include <assert.h> +#include <stdbool.h> +#ifdef RBDEBUG +#define KASSERT(s) assert(s) +#define __rbt_unused +#else +#define KASSERT(s) do { } while (/*CONSTCOND*/ 0) +#define __rbt_unused __unused +#endif +__RCSID("$NetBSD: rb.c,v 1.14 2019/03/08 09:14:54 roy Exp $"); +#else +#include <lib/libkern/libkern.h> +__KERNEL_RCSID(0, "$NetBSD: rb.c,v 1.14 2019/03/08 09:14:54 roy Exp $"); +#ifndef DIAGNOSTIC +#define __rbt_unused __unused +#else +#define __rbt_unused +#endif +#endif + +#ifdef _LIBC +__weak_alias(rb_tree_init, _rb_tree_init) +__weak_alias(rb_tree_find_node, _rb_tree_find_node) +__weak_alias(rb_tree_find_node_geq, _rb_tree_find_node_geq) +__weak_alias(rb_tree_find_node_leq, _rb_tree_find_node_leq) +__weak_alias(rb_tree_insert_node, _rb_tree_insert_node) +__weak_alias(rb_tree_remove_node, _rb_tree_remove_node) +__weak_alias(rb_tree_iterate, _rb_tree_iterate) +#ifdef RBDEBUG +__weak_alias(rb_tree_check, _rb_tree_check) +__weak_alias(rb_tree_depths, _rb_tree_depths) +#endif + +#include "namespace.h" +#endif + +#ifdef RBTEST +#include "rbtree.h" +#else +#include <sys/rbtree.h> +#endif + +static void rb_tree_insert_rebalance(struct rb_tree *, struct rb_node *); +static void rb_tree_removal_rebalance(struct rb_tree *, struct rb_node *, + unsigned int); +#ifdef RBDEBUG +static const struct rb_node *rb_tree_iterate_const(const struct rb_tree *, + const struct rb_node *, const unsigned int); +static bool rb_tree_check_node(const struct rb_tree *, const struct rb_node *, + const struct rb_node *, bool); +#else +#define rb_tree_check_node(a, b, c, d) true +#endif + +#define RB_NODETOITEM(rbto, rbn) \ + ((void *)((uintptr_t)(rbn) - (rbto)->rbto_node_offset)) +#define RB_ITEMTONODE(rbto, rbn) \ + ((rb_node_t *)((uintptr_t)(rbn) + (rbto)->rbto_node_offset)) + +#define RB_SENTINEL_NODE NULL + +void +rb_tree_init(struct rb_tree *rbt, const rb_tree_ops_t *ops) +{ + + rbt->rbt_ops = ops; + rbt->rbt_root = RB_SENTINEL_NODE; + RB_TAILQ_INIT(&rbt->rbt_nodes); +#ifndef RBSMALL + rbt->rbt_minmax[RB_DIR_LEFT] = rbt->rbt_root; /* minimum node */ + rbt->rbt_minmax[RB_DIR_RIGHT] = rbt->rbt_root; /* maximum node */ +#endif +#ifdef RBSTATS + rbt->rbt_count = 0; + rbt->rbt_insertions = 0; + rbt->rbt_removals = 0; + rbt->rbt_insertion_rebalance_calls = 0; + rbt->rbt_insertion_rebalance_passes = 0; + rbt->rbt_removal_rebalance_calls = 0; + rbt->rbt_removal_rebalance_passes = 0; +#endif +} + +void * +rb_tree_find_node(struct rb_tree *rbt, const void *key) +{ + const rb_tree_ops_t *rbto = rbt->rbt_ops; + rbto_compare_key_fn compare_key = rbto->rbto_compare_key; + struct rb_node *parent = rbt->rbt_root; + + while (!RB_SENTINEL_P(parent)) { + void *pobj = RB_NODETOITEM(rbto, parent); + const signed int diff = (*compare_key)(rbto->rbto_context, + pobj, key); + if (diff == 0) + return pobj; + parent = parent->rb_nodes[diff < 0]; + } + + return NULL; +} + +void * +rb_tree_find_node_geq(struct rb_tree *rbt, const void *key) +{ + const rb_tree_ops_t *rbto = rbt->rbt_ops; + rbto_compare_key_fn compare_key = rbto->rbto_compare_key; + struct rb_node *parent = rbt->rbt_root, *last = NULL; + + while (!RB_SENTINEL_P(parent)) { + void *pobj = RB_NODETOITEM(rbto, parent); + const signed int diff = (*compare_key)(rbto->rbto_context, + pobj, key); + if (diff == 0) + return pobj; + if (diff > 0) + last = parent; + parent = parent->rb_nodes[diff < 0]; + } + + return last == NULL ? NULL : RB_NODETOITEM(rbto, last); +} + +void * +rb_tree_find_node_leq(struct rb_tree *rbt, const void *key) +{ + const rb_tree_ops_t *rbto = rbt->rbt_ops; + rbto_compare_key_fn compare_key = rbto->rbto_compare_key; + struct rb_node *parent = rbt->rbt_root, *last = NULL; + + while (!RB_SENTINEL_P(parent)) { + void *pobj = RB_NODETOITEM(rbto, parent); + const signed int diff = (*compare_key)(rbto->rbto_context, + pobj, key); + if (diff == 0) + return pobj; + if (diff < 0) + last = parent; + parent = parent->rb_nodes[diff < 0]; + } + + return last == NULL ? NULL : RB_NODETOITEM(rbto, last); +} + +void * +rb_tree_insert_node(struct rb_tree *rbt, void *object) +{ + const rb_tree_ops_t *rbto = rbt->rbt_ops; + rbto_compare_nodes_fn compare_nodes = rbto->rbto_compare_nodes; + struct rb_node *parent, *tmp, *self = RB_ITEMTONODE(rbto, object); + unsigned int position; + bool rebalance; + + RBSTAT_INC(rbt->rbt_insertions); + + tmp = rbt->rbt_root; + /* + * This is a hack. Because rbt->rbt_root is just a struct rb_node *, + * just like rb_node->rb_nodes[RB_DIR_LEFT], we can use this fact to + * avoid a lot of tests for root and know that even at root, + * updating RB_FATHER(rb_node)->rb_nodes[RB_POSITION(rb_node)] will + * update rbt->rbt_root. + */ + parent = (struct rb_node *)(void *)&rbt->rbt_root; + position = RB_DIR_LEFT; + + /* + * Find out where to place this new leaf. + */ + while (!RB_SENTINEL_P(tmp)) { + void *tobj = RB_NODETOITEM(rbto, tmp); + const signed int diff = (*compare_nodes)(rbto->rbto_context, + tobj, object); + if (__predict_false(diff == 0)) { + /* + * Node already exists; return it. + */ + return tobj; + } + parent = tmp; + position = (diff < 0); + tmp = parent->rb_nodes[position]; + } + +#ifdef RBDEBUG + { + struct rb_node *prev = NULL, *next = NULL; + + if (position == RB_DIR_RIGHT) + prev = parent; + else if (tmp != rbt->rbt_root) + next = parent; + + /* + * Verify our sequential position + */ + KASSERT(prev == NULL || !RB_SENTINEL_P(prev)); + KASSERT(next == NULL || !RB_SENTINEL_P(next)); + if (prev != NULL && next == NULL) + next = TAILQ_NEXT(prev, rb_link); + if (prev == NULL && next != NULL) + prev = TAILQ_PREV(next, rb_node_qh, rb_link); + KASSERT(prev == NULL || !RB_SENTINEL_P(prev)); + KASSERT(next == NULL || !RB_SENTINEL_P(next)); + KASSERT(prev == NULL || (*compare_nodes)(rbto->rbto_context, + RB_NODETOITEM(rbto, prev), RB_NODETOITEM(rbto, self)) < 0); + KASSERT(next == NULL || (*compare_nodes)(rbto->rbto_context, + RB_NODETOITEM(rbto, self), RB_NODETOITEM(rbto, next)) < 0); + } +#endif + + /* + * Initialize the node and insert as a leaf into the tree. + */ + RB_SET_FATHER(self, parent); + RB_SET_POSITION(self, position); + if (__predict_false(parent == (struct rb_node *)(void *)&rbt->rbt_root)) { + RB_MARK_BLACK(self); /* root is always black */ +#ifndef RBSMALL + rbt->rbt_minmax[RB_DIR_LEFT] = self; + rbt->rbt_minmax[RB_DIR_RIGHT] = self; +#endif + rebalance = false; + } else { + KASSERT(position == RB_DIR_LEFT || position == RB_DIR_RIGHT); +#ifndef RBSMALL + /* + * Keep track of the minimum and maximum nodes. If our + * parent is a minmax node and we on their min/max side, + * we must be the new min/max node. + */ + if (parent == rbt->rbt_minmax[position]) + rbt->rbt_minmax[position] = self; +#endif /* !RBSMALL */ + /* + * All new nodes are colored red. We only need to rebalance + * if our parent is also red. + */ + RB_MARK_RED(self); + rebalance = RB_RED_P(parent); + } + KASSERT(RB_SENTINEL_P(parent->rb_nodes[position])); + self->rb_left = parent->rb_nodes[position]; + self->rb_right = parent->rb_nodes[position]; + parent->rb_nodes[position] = self; + KASSERT(RB_CHILDLESS_P(self)); + + /* + * Insert the new node into a sorted list for easy sequential access + */ + RBSTAT_INC(rbt->rbt_count); +#ifdef RBDEBUG + if (RB_ROOT_P(rbt, self)) { + RB_TAILQ_INSERT_HEAD(&rbt->rbt_nodes, self, rb_link); + } else if (position == RB_DIR_LEFT) { + KASSERT((*compare_nodes)(rbto->rbto_context, + RB_NODETOITEM(rbto, self), + RB_NODETOITEM(rbto, RB_FATHER(self))) < 0); + RB_TAILQ_INSERT_BEFORE(RB_FATHER(self), self, rb_link); + } else { + KASSERT((*compare_nodes)(rbto->rbto_context, + RB_NODETOITEM(rbto, RB_FATHER(self)), + RB_NODETOITEM(rbto, self)) < 0); + RB_TAILQ_INSERT_AFTER(&rbt->rbt_nodes, RB_FATHER(self), + self, rb_link); + } +#endif + KASSERT(rb_tree_check_node(rbt, self, NULL, !rebalance)); + + /* + * Rebalance tree after insertion + */ + if (rebalance) { + rb_tree_insert_rebalance(rbt, self); + KASSERT(rb_tree_check_node(rbt, self, NULL, true)); + } + + /* Succesfully inserted, return our node pointer. */ + return object; +} + +/* + * Swap the location and colors of 'self' and its child @ which. The child + * can not be a sentinel node. This is our rotation function. However, + * since it preserves coloring, it great simplifies both insertion and + * removal since rotation almost always involves the exchanging of colors + * as a separate step. + */ +static void +rb_tree_reparent_nodes(__rbt_unused struct rb_tree *rbt, + struct rb_node *old_father, const unsigned int which) +{ + const unsigned int other = which ^ RB_DIR_OTHER; + struct rb_node * const grandpa = RB_FATHER(old_father); + struct rb_node * const old_child = old_father->rb_nodes[which]; + struct rb_node * const new_father = old_child; + struct rb_node * const new_child = old_father; + + KASSERT(which == RB_DIR_LEFT || which == RB_DIR_RIGHT); + + KASSERT(!RB_SENTINEL_P(old_child)); + KASSERT(RB_FATHER(old_child) == old_father); + + KASSERT(rb_tree_check_node(rbt, old_father, NULL, false)); + KASSERT(rb_tree_check_node(rbt, old_child, NULL, false)); + KASSERT(RB_ROOT_P(rbt, old_father) || + rb_tree_check_node(rbt, grandpa, NULL, false)); + + /* + * Exchange descendant linkages. + */ + grandpa->rb_nodes[RB_POSITION(old_father)] = new_father; + new_child->rb_nodes[which] = old_child->rb_nodes[other]; + new_father->rb_nodes[other] = new_child; + + /* + * Update ancestor linkages + */ + RB_SET_FATHER(new_father, grandpa); + RB_SET_FATHER(new_child, new_father); + + /* + * Exchange properties between new_father and new_child. The only + * change is that new_child's position is now on the other side. + */ +#if 0 + { + struct rb_node tmp; + tmp.rb_info = 0; + RB_COPY_PROPERTIES(&tmp, old_child); + RB_COPY_PROPERTIES(new_father, old_father); + RB_COPY_PROPERTIES(new_child, &tmp); + } +#else + RB_SWAP_PROPERTIES(new_father, new_child); +#endif + RB_SET_POSITION(new_child, other); + + /* + * Make sure to reparent the new child to ourself. + */ + if (!RB_SENTINEL_P(new_child->rb_nodes[which])) { + RB_SET_FATHER(new_child->rb_nodes[which], new_child); + RB_SET_POSITION(new_child->rb_nodes[which], which); + } + + KASSERT(rb_tree_check_node(rbt, new_father, NULL, false)); + KASSERT(rb_tree_check_node(rbt, new_child, NULL, false)); + KASSERT(RB_ROOT_P(rbt, new_father) || + rb_tree_check_node(rbt, grandpa, NULL, false)); +} + +static void +rb_tree_insert_rebalance(struct rb_tree *rbt, struct rb_node *self) +{ + struct rb_node * father = RB_FATHER(self); + struct rb_node * grandpa = RB_FATHER(father); + struct rb_node * uncle; + unsigned int which; + unsigned int other; + + KASSERT(!RB_ROOT_P(rbt, self)); + KASSERT(RB_RED_P(self)); + KASSERT(RB_RED_P(father)); + RBSTAT_INC(rbt->rbt_insertion_rebalance_calls); + + for (;;) { + KASSERT(!RB_SENTINEL_P(self)); + + KASSERT(RB_RED_P(self)); + KASSERT(RB_RED_P(father)); + /* + * We are red and our parent is red, therefore we must have a + * grandfather and he must be black. + */ + grandpa = RB_FATHER(father); + KASSERT(RB_BLACK_P(grandpa)); + KASSERT(RB_DIR_RIGHT == 1 && RB_DIR_LEFT == 0); + which = (father == grandpa->rb_right); + other = which ^ RB_DIR_OTHER; + uncle = grandpa->rb_nodes[other]; + + if (RB_BLACK_P(uncle)) + break; + + RBSTAT_INC(rbt->rbt_insertion_rebalance_passes); + /* + * Case 1: our uncle is red + * Simply invert the colors of our parent and + * uncle and make our grandparent red. And + * then solve the problem up at his level. + */ + RB_MARK_BLACK(uncle); + RB_MARK_BLACK(father); + if (__predict_false(RB_ROOT_P(rbt, grandpa))) { + /* + * If our grandpa is root, don't bother + * setting him to red, just return. + */ + KASSERT(RB_BLACK_P(grandpa)); + return; + } + RB_MARK_RED(grandpa); + self = grandpa; + father = RB_FATHER(self); + KASSERT(RB_RED_P(self)); + if (RB_BLACK_P(father)) { + /* + * If our greatgrandpa is black, we're done. + */ + KASSERT(RB_BLACK_P(rbt->rbt_root)); + return; + } + } + + KASSERT(!RB_ROOT_P(rbt, self)); + KASSERT(RB_RED_P(self)); + KASSERT(RB_RED_P(father)); + KASSERT(RB_BLACK_P(uncle)); + KASSERT(RB_BLACK_P(grandpa)); + /* + * Case 2&3: our uncle is black. + */ + if (self == father->rb_nodes[other]) { + /* + * Case 2: we are on the same side as our uncle + * Swap ourselves with our parent so this case + * becomes case 3. Basically our parent becomes our + * child. + */ + rb_tree_reparent_nodes(rbt, father, other); + KASSERT(RB_FATHER(father) == self); + KASSERT(self->rb_nodes[which] == father); + KASSERT(RB_FATHER(self) == grandpa); + self = father; + father = RB_FATHER(self); + } + KASSERT(RB_RED_P(self) && RB_RED_P(father)); + KASSERT(grandpa->rb_nodes[which] == father); + /* + * Case 3: we are opposite a child of a black uncle. + * Swap our parent and grandparent. Since our grandfather + * is black, our father will become black and our new sibling + * (former grandparent) will become red. + */ + rb_tree_reparent_nodes(rbt, grandpa, which); + KASSERT(RB_FATHER(self) == father); + KASSERT(RB_FATHER(self)->rb_nodes[RB_POSITION(self) ^ RB_DIR_OTHER] == grandpa); + KASSERT(RB_RED_P(self)); + KASSERT(RB_BLACK_P(father)); + KASSERT(RB_RED_P(grandpa)); + + /* + * Final step: Set the root to black. + */ + RB_MARK_BLACK(rbt->rbt_root); +} + +static void +rb_tree_prune_node(struct rb_tree *rbt, struct rb_node *self, bool rebalance) +{ + const unsigned int which = RB_POSITION(self); + struct rb_node *father = RB_FATHER(self); +#ifndef RBSMALL + const bool was_root = RB_ROOT_P(rbt, self); +#endif + + KASSERT(rebalance || (RB_ROOT_P(rbt, self) || RB_RED_P(self))); + KASSERT(!rebalance || RB_BLACK_P(self)); + KASSERT(RB_CHILDLESS_P(self)); + KASSERT(rb_tree_check_node(rbt, self, NULL, false)); + + /* + * Since we are childless, we know that self->rb_left is pointing + * to the sentinel node. + */ + father->rb_nodes[which] = self->rb_left; + + /* + * Remove ourselves from the node list, decrement the count, + * and update min/max. + */ + RB_TAILQ_REMOVE(&rbt->rbt_nodes, self, rb_link); + RBSTAT_DEC(rbt->rbt_count); +#ifndef RBSMALL + if (__predict_false(rbt->rbt_minmax[RB_POSITION(self)] == self)) { + rbt->rbt_minmax[RB_POSITION(self)] = father; + /* + * When removing the root, rbt->rbt_minmax[RB_DIR_LEFT] is + * updated automatically, but we also need to update + * rbt->rbt_minmax[RB_DIR_RIGHT]; + */ + if (__predict_false(was_root)) { + rbt->rbt_minmax[RB_DIR_RIGHT] = father; + } + } + RB_SET_FATHER(self, NULL); +#endif + + /* + * Rebalance if requested. + */ + if (rebalance) + rb_tree_removal_rebalance(rbt, father, which); + KASSERT(was_root || rb_tree_check_node(rbt, father, NULL, true)); +} + +/* + * When deleting an interior node + */ +static void +rb_tree_swap_prune_and_rebalance(struct rb_tree *rbt, struct rb_node *self, + struct rb_node *standin) +{ + const unsigned int standin_which = RB_POSITION(standin); + unsigned int standin_other = standin_which ^ RB_DIR_OTHER; + struct rb_node *standin_son; + struct rb_node *standin_father = RB_FATHER(standin); + bool rebalance = RB_BLACK_P(standin); + + if (standin_father == self) { + /* + * As a child of self, any childen would be opposite of + * our parent. + */ + KASSERT(RB_SENTINEL_P(standin->rb_nodes[standin_other])); + standin_son = standin->rb_nodes[standin_which]; + } else { + /* + * Since we aren't a child of self, any childen would be + * on the same side as our parent. + */ + KASSERT(RB_SENTINEL_P(standin->rb_nodes[standin_which])); + standin_son = standin->rb_nodes[standin_other]; + } + + /* + * the node we are removing must have two children. + */ + KASSERT(RB_TWOCHILDREN_P(self)); + /* + * If standin has a child, it must be red. + */ + KASSERT(RB_SENTINEL_P(standin_son) || RB_RED_P(standin_son)); + + /* + * Verify things are sane. + */ + KASSERT(rb_tree_check_node(rbt, self, NULL, false)); + KASSERT(rb_tree_check_node(rbt, standin, NULL, false)); + + if (__predict_false(RB_RED_P(standin_son))) { + /* + * We know we have a red child so if we flip it to black + * we don't have to rebalance. + */ + KASSERT(rb_tree_check_node(rbt, standin_son, NULL, true)); + RB_MARK_BLACK(standin_son); + rebalance = false; + + if (standin_father == self) { + KASSERT(RB_POSITION(standin_son) == standin_which); + } else { + KASSERT(RB_POSITION(standin_son) == standin_other); + /* + * Change the son's parentage to point to his grandpa. + */ + RB_SET_FATHER(standin_son, standin_father); + RB_SET_POSITION(standin_son, standin_which); + } + } + + if (standin_father == self) { + /* + * If we are about to delete the standin's father, then when + * we call rebalance, we need to use ourselves as our father. + * Otherwise remember our original father. Also, sincef we are + * our standin's father we only need to reparent the standin's + * brother. + * + * | R --> S | + * | Q S --> Q T | + * | t --> | + */ + KASSERT(RB_SENTINEL_P(standin->rb_nodes[standin_other])); + KASSERT(!RB_SENTINEL_P(self->rb_nodes[standin_other])); + KASSERT(self->rb_nodes[standin_which] == standin); + /* + * Have our son/standin adopt his brother as his new son. + */ + standin_father = standin; + } else { + /* + * | R --> S . | + * | / \ | T --> / \ | / | + * | ..... | S --> ..... | T | + * + * Sever standin's connection to his father. + */ + standin_father->rb_nodes[standin_which] = standin_son; + /* + * Adopt the far son. + */ + standin->rb_nodes[standin_other] = self->rb_nodes[standin_other]; + RB_SET_FATHER(standin->rb_nodes[standin_other], standin); + KASSERT(RB_POSITION(self->rb_nodes[standin_other]) == standin_other); + /* + * Use standin_other because we need to preserve standin_which + * for the removal_rebalance. + */ + standin_other = standin_which; + } + + /* + * Move the only remaining son to our standin. If our standin is our + * son, this will be the only son needed to be moved. + */ + KASSERT(standin->rb_nodes[standin_other] != self->rb_nodes[standin_other]); + standin->rb_nodes[standin_other] = self->rb_nodes[standin_other]; + RB_SET_FATHER(standin->rb_nodes[standin_other], standin); + + /* + * Now copy the result of self to standin and then replace + * self with standin in the tree. + */ + RB_COPY_PROPERTIES(standin, self); + RB_SET_FATHER(standin, RB_FATHER(self)); + RB_FATHER(standin)->rb_nodes[RB_POSITION(standin)] = standin; + + /* + * Remove ourselves from the node list, decrement the count, + * and update min/max. + */ + RB_TAILQ_REMOVE(&rbt->rbt_nodes, self, rb_link); + RBSTAT_DEC(rbt->rbt_count); +#ifndef RBSMALL + if (__predict_false(rbt->rbt_minmax[RB_POSITION(self)] == self)) + rbt->rbt_minmax[RB_POSITION(self)] = RB_FATHER(self); + RB_SET_FATHER(self, NULL); +#endif + + KASSERT(rb_tree_check_node(rbt, standin, NULL, false)); + KASSERT(RB_FATHER_SENTINEL_P(standin) + || rb_tree_check_node(rbt, standin_father, NULL, false)); + KASSERT(RB_LEFT_SENTINEL_P(standin) + || rb_tree_check_node(rbt, standin->rb_left, NULL, false)); + KASSERT(RB_RIGHT_SENTINEL_P(standin) + || rb_tree_check_node(rbt, standin->rb_right, NULL, false)); + + if (!rebalance) + return; + + rb_tree_removal_rebalance(rbt, standin_father, standin_which); + KASSERT(rb_tree_check_node(rbt, standin, NULL, true)); +} + +/* + * We could do this by doing + * rb_tree_node_swap(rbt, self, which); + * rb_tree_prune_node(rbt, self, false); + * + * But it's more efficient to just evalate and recolor the child. + */ +static void +rb_tree_prune_blackred_branch(struct rb_tree *rbt, struct rb_node *self, + unsigned int which) +{ + struct rb_node *father = RB_FATHER(self); + struct rb_node *son = self->rb_nodes[which]; +#ifndef RBSMALL + const bool was_root = RB_ROOT_P(rbt, self); +#endif + + KASSERT(which == RB_DIR_LEFT || which == RB_DIR_RIGHT); + KASSERT(RB_BLACK_P(self) && RB_RED_P(son)); + KASSERT(!RB_TWOCHILDREN_P(son)); + KASSERT(RB_CHILDLESS_P(son)); + KASSERT(rb_tree_check_node(rbt, self, NULL, false)); + KASSERT(rb_tree_check_node(rbt, son, NULL, false)); + + /* + * Remove ourselves from the tree and give our former child our + * properties (position, color, root). + */ + RB_COPY_PROPERTIES(son, self); + father->rb_nodes[RB_POSITION(son)] = son; + RB_SET_FATHER(son, father); + + /* + * Remove ourselves from the node list, decrement the count, + * and update minmax. + */ + RB_TAILQ_REMOVE(&rbt->rbt_nodes, self, rb_link); + RBSTAT_DEC(rbt->rbt_count); +#ifndef RBSMALL + if (__predict_false(was_root)) { + KASSERT(rbt->rbt_minmax[which] == son); + rbt->rbt_minmax[which ^ RB_DIR_OTHER] = son; + } else if (rbt->rbt_minmax[RB_POSITION(self)] == self) { + rbt->rbt_minmax[RB_POSITION(self)] = son; + } + RB_SET_FATHER(self, NULL); +#endif + + KASSERT(was_root || rb_tree_check_node(rbt, father, NULL, true)); + KASSERT(rb_tree_check_node(rbt, son, NULL, true)); +} + +void +rb_tree_remove_node(struct rb_tree *rbt, void *object) +{ + const rb_tree_ops_t *rbto = rbt->rbt_ops; + struct rb_node *standin, *self = RB_ITEMTONODE(rbto, object); + unsigned int which; + + KASSERT(!RB_SENTINEL_P(self)); + RBSTAT_INC(rbt->rbt_removals); + + /* + * In the following diagrams, we (the node to be removed) are S. Red + * nodes are lowercase. T could be either red or black. + * + * Remember the major axiom of the red-black tree: the number of + * black nodes from the root to each leaf is constant across all + * leaves, only the number of red nodes varies. + * + * Thus removing a red leaf doesn't require any other changes to a + * red-black tree. So if we must remove a node, attempt to rearrange + * the tree so we can remove a red node. + * + * The simpliest case is a childless red node or a childless root node: + * + * | T --> T | or | R --> * | + * | s --> * | + */ + if (RB_CHILDLESS_P(self)) { + const bool rebalance = RB_BLACK_P(self) && !RB_ROOT_P(rbt, self); + rb_tree_prune_node(rbt, self, rebalance); + return; + } + KASSERT(!RB_CHILDLESS_P(self)); + if (!RB_TWOCHILDREN_P(self)) { + /* + * The next simpliest case is the node we are deleting is + * black and has one red child. + * + * | T --> T --> T | + * | S --> R --> R | + * | r --> s --> * | + */ + which = RB_LEFT_SENTINEL_P(self) ? RB_DIR_RIGHT : RB_DIR_LEFT; + KASSERT(RB_BLACK_P(self)); + KASSERT(RB_RED_P(self->rb_nodes[which])); + KASSERT(RB_CHILDLESS_P(self->rb_nodes[which])); + rb_tree_prune_blackred_branch(rbt, self, which); + return; + } + KASSERT(RB_TWOCHILDREN_P(self)); + + /* + * We invert these because we prefer to remove from the inside of + * the tree. + */ + which = RB_POSITION(self) ^ RB_DIR_OTHER; + + /* + * Let's find the node closes to us opposite of our parent + * Now swap it with ourself, "prune" it, and rebalance, if needed. + */ + standin = RB_ITEMTONODE(rbto, rb_tree_iterate(rbt, object, which)); + rb_tree_swap_prune_and_rebalance(rbt, self, standin); +} + +static void +rb_tree_removal_rebalance(struct rb_tree *rbt, struct rb_node *parent, + unsigned int which) +{ + KASSERT(!RB_SENTINEL_P(parent)); + KASSERT(RB_SENTINEL_P(parent->rb_nodes[which])); + KASSERT(which == RB_DIR_LEFT || which == RB_DIR_RIGHT); + RBSTAT_INC(rbt->rbt_removal_rebalance_calls); + + while (RB_BLACK_P(parent->rb_nodes[which])) { + unsigned int other = which ^ RB_DIR_OTHER; + struct rb_node *brother = parent->rb_nodes[other]; + + RBSTAT_INC(rbt->rbt_removal_rebalance_passes); + + KASSERT(!RB_SENTINEL_P(brother)); + /* + * For cases 1, 2a, and 2b, our brother's children must + * be black and our father must be black + */ + if (RB_BLACK_P(parent) + && RB_BLACK_P(brother->rb_left) + && RB_BLACK_P(brother->rb_right)) { + if (RB_RED_P(brother)) { + /* + * Case 1: Our brother is red, swap its + * position (and colors) with our parent. + * This should now be case 2b (unless C or E + * has a red child which is case 3; thus no + * explicit branch to case 2b). + * + * B -> D + * A d -> b E + * C E -> A C + */ + KASSERT(RB_BLACK_P(parent)); + rb_tree_reparent_nodes(rbt, parent, other); + brother = parent->rb_nodes[other]; + KASSERT(!RB_SENTINEL_P(brother)); + KASSERT(RB_RED_P(parent)); + KASSERT(RB_BLACK_P(brother)); + KASSERT(rb_tree_check_node(rbt, brother, NULL, false)); + KASSERT(rb_tree_check_node(rbt, parent, NULL, false)); + } else { + /* + * Both our parent and brother are black. + * Change our brother to red, advance up rank + * and go through the loop again. + * + * B -> *B + * *A D -> A d + * C E -> C E + */ + RB_MARK_RED(brother); + KASSERT(RB_BLACK_P(brother->rb_left)); + KASSERT(RB_BLACK_P(brother->rb_right)); + if (RB_ROOT_P(rbt, parent)) + return; /* root == parent == black */ + KASSERT(rb_tree_check_node(rbt, brother, NULL, false)); + KASSERT(rb_tree_check_node(rbt, parent, NULL, false)); + which = RB_POSITION(parent); + parent = RB_FATHER(parent); + continue; + } + } + /* + * Avoid an else here so that case 2a above can hit either + * case 2b, 3, or 4. + */ + if (RB_RED_P(parent) + && RB_BLACK_P(brother) + && RB_BLACK_P(brother->rb_left) + && RB_BLACK_P(brother->rb_right)) { + KASSERT(RB_RED_P(parent)); + KASSERT(RB_BLACK_P(brother)); + KASSERT(RB_BLACK_P(brother->rb_left)); + KASSERT(RB_BLACK_P(brother->rb_right)); + /* + * We are black, our father is red, our brother and + * both nephews are black. Simply invert/exchange the + * colors of our father and brother (to black and red + * respectively). + * + * | f --> F | + * | * B --> * b | + * | N N --> N N | + */ + RB_MARK_BLACK(parent); + RB_MARK_RED(brother); + KASSERT(rb_tree_check_node(rbt, brother, NULL, true)); + break; /* We're done! */ + } else { + /* + * Our brother must be black and have at least one + * red child (it may have two). + */ + KASSERT(RB_BLACK_P(brother)); + KASSERT(RB_RED_P(brother->rb_nodes[which]) || + RB_RED_P(brother->rb_nodes[other])); + if (RB_BLACK_P(brother->rb_nodes[other])) { + /* + * Case 3: our brother is black, our near + * nephew is red, and our far nephew is black. + * Swap our brother with our near nephew. + * This result in a tree that matches case 4. + * (Our father could be red or black). + * + * | F --> F | + * | x B --> x B | + * | n --> n | + */ + KASSERT(RB_RED_P(brother->rb_nodes[which])); + rb_tree_reparent_nodes(rbt, brother, which); + KASSERT(RB_FATHER(brother) == parent->rb_nodes[other]); + brother = parent->rb_nodes[other]; + KASSERT(RB_RED_P(brother->rb_nodes[other])); + } + /* + * Case 4: our brother is black and our far nephew + * is red. Swap our father and brother locations and + * change our far nephew to black. (these can be + * done in either order so we change the color first). + * The result is a valid red-black tree and is a + * terminal case. (again we don't care about the + * father's color) + * + * If the father is red, we will get a red-black-black + * tree: + * | f -> f --> b | + * | B -> B --> F N | + * | n -> N --> | + * + * If the father is black, we will get an all black + * tree: + * | F -> F --> B | + * | B -> B --> F N | + * | n -> N --> | + * + * If we had two red nephews, then after the swap, + * our former father would have a red grandson. + */ + KASSERT(RB_BLACK_P(brother)); + KASSERT(RB_RED_P(brother->rb_nodes[other])); + RB_MARK_BLACK(brother->rb_nodes[other]); + rb_tree_reparent_nodes(rbt, parent, other); + break; /* We're done! */ + } + } + KASSERT(rb_tree_check_node(rbt, parent, NULL, true)); +} + +void * +rb_tree_iterate(struct rb_tree *rbt, void *object, const unsigned int direction) +{ + const rb_tree_ops_t *rbto = rbt->rbt_ops; + const unsigned int other = direction ^ RB_DIR_OTHER; + struct rb_node *self; + + KASSERT(direction == RB_DIR_LEFT || direction == RB_DIR_RIGHT); + + if (object == NULL) { +#ifndef RBSMALL + if (RB_SENTINEL_P(rbt->rbt_root)) + return NULL; + return RB_NODETOITEM(rbto, rbt->rbt_minmax[direction]); +#else + self = rbt->rbt_root; + if (RB_SENTINEL_P(self)) + return NULL; + while (!RB_SENTINEL_P(self->rb_nodes[direction])) + self = self->rb_nodes[direction]; + return RB_NODETOITEM(rbto, self); +#endif /* !RBSMALL */ + } + self = RB_ITEMTONODE(rbto, object); + KASSERT(!RB_SENTINEL_P(self)); + /* + * We can't go any further in this direction. We proceed up in the + * opposite direction until our parent is in direction we want to go. + */ + if (RB_SENTINEL_P(self->rb_nodes[direction])) { + while (!RB_ROOT_P(rbt, self)) { + if (other == RB_POSITION(self)) + return RB_NODETOITEM(rbto, RB_FATHER(self)); + self = RB_FATHER(self); + } + return NULL; + } + + /* + * Advance down one in current direction and go down as far as possible + * in the opposite direction. + */ + self = self->rb_nodes[direction]; + KASSERT(!RB_SENTINEL_P(self)); + while (!RB_SENTINEL_P(self->rb_nodes[other])) + self = self->rb_nodes[other]; + return RB_NODETOITEM(rbto, self); +} + +#ifdef RBDEBUG +static const struct rb_node * +rb_tree_iterate_const(const struct rb_tree *rbt, const struct rb_node *self, + const unsigned int direction) +{ + const unsigned int other = direction ^ RB_DIR_OTHER; + KASSERT(direction == RB_DIR_LEFT || direction == RB_DIR_RIGHT); + + if (self == NULL) { +#ifndef RBSMALL + if (RB_SENTINEL_P(rbt->rbt_root)) + return NULL; + return rbt->rbt_minmax[direction]; +#else + self = rbt->rbt_root; + if (RB_SENTINEL_P(self)) + return NULL; + while (!RB_SENTINEL_P(self->rb_nodes[direction])) + self = self->rb_nodes[direction]; + return self; +#endif /* !RBSMALL */ + } + KASSERT(!RB_SENTINEL_P(self)); + /* + * We can't go any further in this direction. We proceed up in the + * opposite direction until our parent is in direction we want to go. + */ + if (RB_SENTINEL_P(self->rb_nodes[direction])) { + while (!RB_ROOT_P(rbt, self)) { + if (other == RB_POSITION(self)) + return RB_FATHER(self); + self = RB_FATHER(self); + } + return NULL; + } + + /* + * Advance down one in current direction and go down as far as possible + * in the opposite direction. + */ + self = self->rb_nodes[direction]; + KASSERT(!RB_SENTINEL_P(self)); + while (!RB_SENTINEL_P(self->rb_nodes[other])) + self = self->rb_nodes[other]; + return self; +} + +static unsigned int +rb_tree_count_black(const struct rb_node *self) +{ + unsigned int left, right; + + if (RB_SENTINEL_P(self)) + return 0; + + left = rb_tree_count_black(self->rb_left); + right = rb_tree_count_black(self->rb_right); + + KASSERT(left == right); + + return left + RB_BLACK_P(self); +} + +static bool +rb_tree_check_node(const struct rb_tree *rbt, const struct rb_node *self, + const struct rb_node *prev, bool red_check) +{ + const rb_tree_ops_t *rbto = rbt->rbt_ops; + rbto_compare_nodes_fn compare_nodes = rbto->rbto_compare_nodes; + + KASSERT(!RB_SENTINEL_P(self)); + KASSERT(prev == NULL || (*compare_nodes)(rbto->rbto_context, + RB_NODETOITEM(rbto, prev), RB_NODETOITEM(rbto, self)) < 0); + + /* + * Verify our relationship to our parent. + */ + if (RB_ROOT_P(rbt, self)) { + KASSERT(self == rbt->rbt_root); + KASSERT(RB_POSITION(self) == RB_DIR_LEFT); + KASSERT(RB_FATHER(self)->rb_nodes[RB_DIR_LEFT] == self); + KASSERT(RB_FATHER(self) == (const struct rb_node *) &rbt->rbt_root); + } else { + int diff = (*compare_nodes)(rbto->rbto_context, + RB_NODETOITEM(rbto, self), + RB_NODETOITEM(rbto, RB_FATHER(self))); + + KASSERT(self != rbt->rbt_root); + KASSERT(!RB_FATHER_SENTINEL_P(self)); + if (RB_POSITION(self) == RB_DIR_LEFT) { + KASSERT(diff < 0); + KASSERT(RB_FATHER(self)->rb_nodes[RB_DIR_LEFT] == self); + } else { + KASSERT(diff > 0); + KASSERT(RB_FATHER(self)->rb_nodes[RB_DIR_RIGHT] == self); + } + } + + /* + * Verify our position in the linked list against the tree itself. + */ + { + const struct rb_node *prev0 = rb_tree_iterate_const(rbt, self, RB_DIR_LEFT); + const struct rb_node *next0 = rb_tree_iterate_const(rbt, self, RB_DIR_RIGHT); + KASSERT(prev0 == TAILQ_PREV(self, rb_node_qh, rb_link)); + KASSERT(next0 == TAILQ_NEXT(self, rb_link)); +#ifndef RBSMALL + KASSERT(prev0 != NULL || self == rbt->rbt_minmax[RB_DIR_LEFT]); + KASSERT(next0 != NULL || self == rbt->rbt_minmax[RB_DIR_RIGHT]); +#endif + } + + /* + * The root must be black. + * There can never be two adjacent red nodes. + */ + if (red_check) { + KASSERT(!RB_ROOT_P(rbt, self) || RB_BLACK_P(self)); + (void) rb_tree_count_black(self); + if (RB_RED_P(self)) { + const struct rb_node *brother; + KASSERT(!RB_ROOT_P(rbt, self)); + brother = RB_FATHER(self)->rb_nodes[RB_POSITION(self) ^ RB_DIR_OTHER]; + KASSERT(RB_BLACK_P(RB_FATHER(self))); + /* + * I'm red and have no children, then I must either + * have no brother or my brother also be red and + * also have no children. (black count == 0) + */ + KASSERT(!RB_CHILDLESS_P(self) + || RB_SENTINEL_P(brother) + || RB_RED_P(brother) + || RB_CHILDLESS_P(brother)); + /* + * If I'm not childless, I must have two children + * and they must be both be black. + */ + KASSERT(RB_CHILDLESS_P(self) + || (RB_TWOCHILDREN_P(self) + && RB_BLACK_P(self->rb_left) + && RB_BLACK_P(self->rb_right))); + /* + * If I'm not childless, thus I have black children, + * then my brother must either be black or have two + * black children. + */ + KASSERT(RB_CHILDLESS_P(self) + || RB_BLACK_P(brother) + || (RB_TWOCHILDREN_P(brother) + && RB_BLACK_P(brother->rb_left) + && RB_BLACK_P(brother->rb_right))); + } else { + /* + * If I'm black and have one child, that child must + * be red and childless. + */ + KASSERT(RB_CHILDLESS_P(self) + || RB_TWOCHILDREN_P(self) + || (!RB_LEFT_SENTINEL_P(self) + && RB_RIGHT_SENTINEL_P(self) + && RB_RED_P(self->rb_left) + && RB_CHILDLESS_P(self->rb_left)) + || (!RB_RIGHT_SENTINEL_P(self) + && RB_LEFT_SENTINEL_P(self) + && RB_RED_P(self->rb_right) + && RB_CHILDLESS_P(self->rb_right))); + + /* + * If I'm a childless black node and my parent is + * black, my 2nd closet relative away from my parent + * is either red or has a red parent or red children. + */ + if (!RB_ROOT_P(rbt, self) + && RB_CHILDLESS_P(self) + && RB_BLACK_P(RB_FATHER(self))) { + const unsigned int which = RB_POSITION(self); + const unsigned int other = which ^ RB_DIR_OTHER; + const struct rb_node *relative0, *relative; + + relative0 = rb_tree_iterate_const(rbt, + self, other); + KASSERT(relative0 != NULL); + relative = rb_tree_iterate_const(rbt, + relative0, other); + KASSERT(relative != NULL); + KASSERT(RB_SENTINEL_P(relative->rb_nodes[which])); +#if 0 + KASSERT(RB_RED_P(relative) + || RB_RED_P(relative->rb_left) + || RB_RED_P(relative->rb_right) + || RB_RED_P(RB_FATHER(relative))); +#endif + } + } + /* + * A grandparent's children must be real nodes and not + * sentinels. First check out grandparent. + */ + KASSERT(RB_ROOT_P(rbt, self) + || RB_ROOT_P(rbt, RB_FATHER(self)) + || RB_TWOCHILDREN_P(RB_FATHER(RB_FATHER(self)))); + /* + * If we are have grandchildren on our left, then + * we must have a child on our right. + */ + KASSERT(RB_LEFT_SENTINEL_P(self) + || RB_CHILDLESS_P(self->rb_left) + || !RB_RIGHT_SENTINEL_P(self)); + /* + * If we are have grandchildren on our right, then + * we must have a child on our left. + */ + KASSERT(RB_RIGHT_SENTINEL_P(self) + || RB_CHILDLESS_P(self->rb_right) + || !RB_LEFT_SENTINEL_P(self)); + + /* + * If we have a child on the left and it doesn't have two + * children make sure we don't have great-great-grandchildren on + * the right. + */ + KASSERT(RB_TWOCHILDREN_P(self->rb_left) + || RB_CHILDLESS_P(self->rb_right) + || RB_CHILDLESS_P(self->rb_right->rb_left) + || RB_CHILDLESS_P(self->rb_right->rb_left->rb_left) + || RB_CHILDLESS_P(self->rb_right->rb_left->rb_right) + || RB_CHILDLESS_P(self->rb_right->rb_right) + || RB_CHILDLESS_P(self->rb_right->rb_right->rb_left) + || RB_CHILDLESS_P(self->rb_right->rb_right->rb_right)); + + /* + * If we have a child on the right and it doesn't have two + * children make sure we don't have great-great-grandchildren on + * the left. + */ + KASSERT(RB_TWOCHILDREN_P(self->rb_right) + || RB_CHILDLESS_P(self->rb_left) + || RB_CHILDLESS_P(self->rb_left->rb_left) + || RB_CHILDLESS_P(self->rb_left->rb_left->rb_left) + || RB_CHILDLESS_P(self->rb_left->rb_left->rb_right) + || RB_CHILDLESS_P(self->rb_left->rb_right) + || RB_CHILDLESS_P(self->rb_left->rb_right->rb_left) + || RB_CHILDLESS_P(self->rb_left->rb_right->rb_right)); + + /* + * If we are fully interior node, then our predecessors and + * successors must have no children in our direction. + */ + if (RB_TWOCHILDREN_P(self)) { + const struct rb_node *prev0; + const struct rb_node *next0; + + prev0 = rb_tree_iterate_const(rbt, self, RB_DIR_LEFT); + KASSERT(prev0 != NULL); + KASSERT(RB_RIGHT_SENTINEL_P(prev0)); + + next0 = rb_tree_iterate_const(rbt, self, RB_DIR_RIGHT); + KASSERT(next0 != NULL); + KASSERT(RB_LEFT_SENTINEL_P(next0)); + } + } + + return true; +} + +void +rb_tree_check(const struct rb_tree *rbt, bool red_check) +{ + const struct rb_node *self; + const struct rb_node *prev; +#ifdef RBSTATS + unsigned int count = 0; +#endif + + KASSERT(rbt->rbt_root != NULL); + KASSERT(RB_LEFT_P(rbt->rbt_root)); + +#if defined(RBSTATS) && !defined(RBSMALL) + KASSERT(rbt->rbt_count > 1 + || rbt->rbt_minmax[RB_DIR_LEFT] == rbt->rbt_minmax[RB_DIR_RIGHT]); +#endif + + prev = NULL; + TAILQ_FOREACH(self, &rbt->rbt_nodes, rb_link) { + rb_tree_check_node(rbt, self, prev, false); +#ifdef RBSTATS + count++; +#endif + } +#ifdef RBSTATS + KASSERT(rbt->rbt_count == count); +#endif + if (red_check) { + KASSERT(RB_BLACK_P(rbt->rbt_root)); + KASSERT(RB_SENTINEL_P(rbt->rbt_root) + || rb_tree_count_black(rbt->rbt_root)); + + /* + * The root must be black. + * There can never be two adjacent red nodes. + */ + TAILQ_FOREACH(self, &rbt->rbt_nodes, rb_link) { + rb_tree_check_node(rbt, self, NULL, true); + } + } +} +#endif /* RBDEBUG */ + +#ifdef RBSTATS +static void +rb_tree_mark_depth(const struct rb_tree *rbt, const struct rb_node *self, + size_t *depths, size_t depth) +{ + if (RB_SENTINEL_P(self)) + return; + + if (RB_TWOCHILDREN_P(self)) { + rb_tree_mark_depth(rbt, self->rb_left, depths, depth + 1); + rb_tree_mark_depth(rbt, self->rb_right, depths, depth + 1); + return; + } + depths[depth]++; + if (!RB_LEFT_SENTINEL_P(self)) { + rb_tree_mark_depth(rbt, self->rb_left, depths, depth + 1); + } + if (!RB_RIGHT_SENTINEL_P(self)) { + rb_tree_mark_depth(rbt, self->rb_right, depths, depth + 1); + } +} + +void +rb_tree_depths(const struct rb_tree *rbt, size_t *depths) +{ + rb_tree_mark_depth(rbt, rbt->rbt_root, depths, 1); +} +#endif /* RBSTATS */ |
