aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm-project/clang/lib/AST/ASTContext.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm-project/clang/lib/AST/ASTContext.cpp')
-rw-r--r--contrib/llvm-project/clang/lib/AST/ASTContext.cpp10780
1 files changed, 10780 insertions, 0 deletions
diff --git a/contrib/llvm-project/clang/lib/AST/ASTContext.cpp b/contrib/llvm-project/clang/lib/AST/ASTContext.cpp
new file mode 100644
index 000000000000..bb243d41a490
--- /dev/null
+++ b/contrib/llvm-project/clang/lib/AST/ASTContext.cpp
@@ -0,0 +1,10780 @@
+//===- ASTContext.cpp - Context to hold long-lived AST nodes --------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the ASTContext interface.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/AST/ASTContext.h"
+#include "CXXABI.h"
+#include "Interp/Context.h"
+#include "clang/AST/APValue.h"
+#include "clang/AST/ASTMutationListener.h"
+#include "clang/AST/ASTTypeTraits.h"
+#include "clang/AST/Attr.h"
+#include "clang/AST/AttrIterator.h"
+#include "clang/AST/CharUnits.h"
+#include "clang/AST/Comment.h"
+#include "clang/AST/Decl.h"
+#include "clang/AST/DeclBase.h"
+#include "clang/AST/DeclCXX.h"
+#include "clang/AST/DeclContextInternals.h"
+#include "clang/AST/DeclObjC.h"
+#include "clang/AST/DeclOpenMP.h"
+#include "clang/AST/DeclTemplate.h"
+#include "clang/AST/DeclarationName.h"
+#include "clang/AST/Expr.h"
+#include "clang/AST/ExprCXX.h"
+#include "clang/AST/ExternalASTSource.h"
+#include "clang/AST/Mangle.h"
+#include "clang/AST/MangleNumberingContext.h"
+#include "clang/AST/NestedNameSpecifier.h"
+#include "clang/AST/RawCommentList.h"
+#include "clang/AST/RecordLayout.h"
+#include "clang/AST/RecursiveASTVisitor.h"
+#include "clang/AST/Stmt.h"
+#include "clang/AST/TemplateBase.h"
+#include "clang/AST/TemplateName.h"
+#include "clang/AST/Type.h"
+#include "clang/AST/TypeLoc.h"
+#include "clang/AST/UnresolvedSet.h"
+#include "clang/AST/VTableBuilder.h"
+#include "clang/Basic/AddressSpaces.h"
+#include "clang/Basic/Builtins.h"
+#include "clang/Basic/CommentOptions.h"
+#include "clang/Basic/ExceptionSpecificationType.h"
+#include "clang/Basic/FixedPoint.h"
+#include "clang/Basic/IdentifierTable.h"
+#include "clang/Basic/LLVM.h"
+#include "clang/Basic/LangOptions.h"
+#include "clang/Basic/Linkage.h"
+#include "clang/Basic/ObjCRuntime.h"
+#include "clang/Basic/SanitizerBlacklist.h"
+#include "clang/Basic/SourceLocation.h"
+#include "clang/Basic/SourceManager.h"
+#include "clang/Basic/Specifiers.h"
+#include "clang/Basic/TargetCXXABI.h"
+#include "clang/Basic/TargetInfo.h"
+#include "clang/Basic/XRayLists.h"
+#include "llvm/ADT/APInt.h"
+#include "llvm/ADT/APSInt.h"
+#include "llvm/ADT/ArrayRef.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/DenseSet.h"
+#include "llvm/ADT/FoldingSet.h"
+#include "llvm/ADT/None.h"
+#include "llvm/ADT/Optional.h"
+#include "llvm/ADT/PointerUnion.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/SmallPtrSet.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/StringExtras.h"
+#include "llvm/ADT/StringRef.h"
+#include "llvm/ADT/Triple.h"
+#include "llvm/Support/Capacity.h"
+#include "llvm/Support/Casting.h"
+#include "llvm/Support/Compiler.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/MathExtras.h"
+#include "llvm/Support/raw_ostream.h"
+#include <algorithm>
+#include <cassert>
+#include <cstddef>
+#include <cstdint>
+#include <cstdlib>
+#include <map>
+#include <memory>
+#include <string>
+#include <tuple>
+#include <utility>
+
+using namespace clang;
+
+enum FloatingRank {
+ Float16Rank, HalfRank, FloatRank, DoubleRank, LongDoubleRank, Float128Rank
+};
+
+/// \returns location that is relevant when searching for Doc comments related
+/// to \p D.
+static SourceLocation getDeclLocForCommentSearch(const Decl *D,
+ SourceManager &SourceMgr) {
+ assert(D);
+
+ // User can not attach documentation to implicit declarations.
+ if (D->isImplicit())
+ return {};
+
+ // User can not attach documentation to implicit instantiations.
+ if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
+ if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
+ return {};
+ }
+
+ if (const auto *VD = dyn_cast<VarDecl>(D)) {
+ if (VD->isStaticDataMember() &&
+ VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
+ return {};
+ }
+
+ if (const auto *CRD = dyn_cast<CXXRecordDecl>(D)) {
+ if (CRD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
+ return {};
+ }
+
+ if (const auto *CTSD = dyn_cast<ClassTemplateSpecializationDecl>(D)) {
+ TemplateSpecializationKind TSK = CTSD->getSpecializationKind();
+ if (TSK == TSK_ImplicitInstantiation ||
+ TSK == TSK_Undeclared)
+ return {};
+ }
+
+ if (const auto *ED = dyn_cast<EnumDecl>(D)) {
+ if (ED->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
+ return {};
+ }
+ if (const auto *TD = dyn_cast<TagDecl>(D)) {
+ // When tag declaration (but not definition!) is part of the
+ // decl-specifier-seq of some other declaration, it doesn't get comment
+ if (TD->isEmbeddedInDeclarator() && !TD->isCompleteDefinition())
+ return {};
+ }
+ // TODO: handle comments for function parameters properly.
+ if (isa<ParmVarDecl>(D))
+ return {};
+
+ // TODO: we could look up template parameter documentation in the template
+ // documentation.
+ if (isa<TemplateTypeParmDecl>(D) ||
+ isa<NonTypeTemplateParmDecl>(D) ||
+ isa<TemplateTemplateParmDecl>(D))
+ return {};
+
+ // Find declaration location.
+ // For Objective-C declarations we generally don't expect to have multiple
+ // declarators, thus use declaration starting location as the "declaration
+ // location".
+ // For all other declarations multiple declarators are used quite frequently,
+ // so we use the location of the identifier as the "declaration location".
+ if (isa<ObjCMethodDecl>(D) || isa<ObjCContainerDecl>(D) ||
+ isa<ObjCPropertyDecl>(D) ||
+ isa<RedeclarableTemplateDecl>(D) ||
+ isa<ClassTemplateSpecializationDecl>(D))
+ return D->getBeginLoc();
+ else {
+ const SourceLocation DeclLoc = D->getLocation();
+ if (DeclLoc.isMacroID()) {
+ if (isa<TypedefDecl>(D)) {
+ // If location of the typedef name is in a macro, it is because being
+ // declared via a macro. Try using declaration's starting location as
+ // the "declaration location".
+ return D->getBeginLoc();
+ } else if (const auto *TD = dyn_cast<TagDecl>(D)) {
+ // If location of the tag decl is inside a macro, but the spelling of
+ // the tag name comes from a macro argument, it looks like a special
+ // macro like NS_ENUM is being used to define the tag decl. In that
+ // case, adjust the source location to the expansion loc so that we can
+ // attach the comment to the tag decl.
+ if (SourceMgr.isMacroArgExpansion(DeclLoc) &&
+ TD->isCompleteDefinition())
+ return SourceMgr.getExpansionLoc(DeclLoc);
+ }
+ }
+ return DeclLoc;
+ }
+
+ return {};
+}
+
+RawComment *ASTContext::getRawCommentForDeclNoCacheImpl(
+ const Decl *D, const SourceLocation RepresentativeLocForDecl,
+ const std::map<unsigned, RawComment *> &CommentsInTheFile) const {
+ // If the declaration doesn't map directly to a location in a file, we
+ // can't find the comment.
+ if (RepresentativeLocForDecl.isInvalid() ||
+ !RepresentativeLocForDecl.isFileID())
+ return nullptr;
+
+ // If there are no comments anywhere, we won't find anything.
+ if (CommentsInTheFile.empty())
+ return nullptr;
+
+ // Decompose the location for the declaration and find the beginning of the
+ // file buffer.
+ const std::pair<FileID, unsigned> DeclLocDecomp =
+ SourceMgr.getDecomposedLoc(RepresentativeLocForDecl);
+
+ // Slow path.
+ auto OffsetCommentBehindDecl =
+ CommentsInTheFile.lower_bound(DeclLocDecomp.second);
+
+ // First check whether we have a trailing comment.
+ if (OffsetCommentBehindDecl != CommentsInTheFile.end()) {
+ RawComment *CommentBehindDecl = OffsetCommentBehindDecl->second;
+ if ((CommentBehindDecl->isDocumentation() ||
+ LangOpts.CommentOpts.ParseAllComments) &&
+ CommentBehindDecl->isTrailingComment() &&
+ (isa<FieldDecl>(D) || isa<EnumConstantDecl>(D) || isa<VarDecl>(D) ||
+ isa<ObjCMethodDecl>(D) || isa<ObjCPropertyDecl>(D))) {
+
+ // Check that Doxygen trailing comment comes after the declaration, starts
+ // on the same line and in the same file as the declaration.
+ if (SourceMgr.getLineNumber(DeclLocDecomp.first, DeclLocDecomp.second) ==
+ Comments.getCommentBeginLine(CommentBehindDecl, DeclLocDecomp.first,
+ OffsetCommentBehindDecl->first)) {
+ return CommentBehindDecl;
+ }
+ }
+ }
+
+ // The comment just after the declaration was not a trailing comment.
+ // Let's look at the previous comment.
+ if (OffsetCommentBehindDecl == CommentsInTheFile.begin())
+ return nullptr;
+
+ auto OffsetCommentBeforeDecl = --OffsetCommentBehindDecl;
+ RawComment *CommentBeforeDecl = OffsetCommentBeforeDecl->second;
+
+ // Check that we actually have a non-member Doxygen comment.
+ if (!(CommentBeforeDecl->isDocumentation() ||
+ LangOpts.CommentOpts.ParseAllComments) ||
+ CommentBeforeDecl->isTrailingComment())
+ return nullptr;
+
+ // Decompose the end of the comment.
+ const unsigned CommentEndOffset =
+ Comments.getCommentEndOffset(CommentBeforeDecl);
+
+ // Get the corresponding buffer.
+ bool Invalid = false;
+ const char *Buffer = SourceMgr.getBufferData(DeclLocDecomp.first,
+ &Invalid).data();
+ if (Invalid)
+ return nullptr;
+
+ // Extract text between the comment and declaration.
+ StringRef Text(Buffer + CommentEndOffset,
+ DeclLocDecomp.second - CommentEndOffset);
+
+ // There should be no other declarations or preprocessor directives between
+ // comment and declaration.
+ if (Text.find_first_of(";{}#@") != StringRef::npos)
+ return nullptr;
+
+ return CommentBeforeDecl;
+}
+
+RawComment *ASTContext::getRawCommentForDeclNoCache(const Decl *D) const {
+ const SourceLocation DeclLoc = getDeclLocForCommentSearch(D, SourceMgr);
+
+ // If the declaration doesn't map directly to a location in a file, we
+ // can't find the comment.
+ if (DeclLoc.isInvalid() || !DeclLoc.isFileID())
+ return nullptr;
+
+ if (ExternalSource && !CommentsLoaded) {
+ ExternalSource->ReadComments();
+ CommentsLoaded = true;
+ }
+
+ if (Comments.empty())
+ return nullptr;
+
+ const FileID File = SourceMgr.getDecomposedLoc(DeclLoc).first;
+ const auto CommentsInThisFile = Comments.getCommentsInFile(File);
+ if (!CommentsInThisFile || CommentsInThisFile->empty())
+ return nullptr;
+
+ return getRawCommentForDeclNoCacheImpl(D, DeclLoc, *CommentsInThisFile);
+}
+
+/// If we have a 'templated' declaration for a template, adjust 'D' to
+/// refer to the actual template.
+/// If we have an implicit instantiation, adjust 'D' to refer to template.
+static const Decl &adjustDeclToTemplate(const Decl &D) {
+ if (const auto *FD = dyn_cast<FunctionDecl>(&D)) {
+ // Is this function declaration part of a function template?
+ if (const FunctionTemplateDecl *FTD = FD->getDescribedFunctionTemplate())
+ return *FTD;
+
+ // Nothing to do if function is not an implicit instantiation.
+ if (FD->getTemplateSpecializationKind() != TSK_ImplicitInstantiation)
+ return D;
+
+ // Function is an implicit instantiation of a function template?
+ if (const FunctionTemplateDecl *FTD = FD->getPrimaryTemplate())
+ return *FTD;
+
+ // Function is instantiated from a member definition of a class template?
+ if (const FunctionDecl *MemberDecl =
+ FD->getInstantiatedFromMemberFunction())
+ return *MemberDecl;
+
+ return D;
+ }
+ if (const auto *VD = dyn_cast<VarDecl>(&D)) {
+ // Static data member is instantiated from a member definition of a class
+ // template?
+ if (VD->isStaticDataMember())
+ if (const VarDecl *MemberDecl = VD->getInstantiatedFromStaticDataMember())
+ return *MemberDecl;
+
+ return D;
+ }
+ if (const auto *CRD = dyn_cast<CXXRecordDecl>(&D)) {
+ // Is this class declaration part of a class template?
+ if (const ClassTemplateDecl *CTD = CRD->getDescribedClassTemplate())
+ return *CTD;
+
+ // Class is an implicit instantiation of a class template or partial
+ // specialization?
+ if (const auto *CTSD = dyn_cast<ClassTemplateSpecializationDecl>(CRD)) {
+ if (CTSD->getSpecializationKind() != TSK_ImplicitInstantiation)
+ return D;
+ llvm::PointerUnion<ClassTemplateDecl *,
+ ClassTemplatePartialSpecializationDecl *>
+ PU = CTSD->getSpecializedTemplateOrPartial();
+ return PU.is<ClassTemplateDecl *>()
+ ? *static_cast<const Decl *>(PU.get<ClassTemplateDecl *>())
+ : *static_cast<const Decl *>(
+ PU.get<ClassTemplatePartialSpecializationDecl *>());
+ }
+
+ // Class is instantiated from a member definition of a class template?
+ if (const MemberSpecializationInfo *Info =
+ CRD->getMemberSpecializationInfo())
+ return *Info->getInstantiatedFrom();
+
+ return D;
+ }
+ if (const auto *ED = dyn_cast<EnumDecl>(&D)) {
+ // Enum is instantiated from a member definition of a class template?
+ if (const EnumDecl *MemberDecl = ED->getInstantiatedFromMemberEnum())
+ return *MemberDecl;
+
+ return D;
+ }
+ // FIXME: Adjust alias templates?
+ return D;
+}
+
+const RawComment *ASTContext::getRawCommentForAnyRedecl(
+ const Decl *D,
+ const Decl **OriginalDecl) const {
+ if (!D) {
+ if (OriginalDecl)
+ OriginalDecl = nullptr;
+ return nullptr;
+ }
+
+ D = &adjustDeclToTemplate(*D);
+
+ // Any comment directly attached to D?
+ {
+ auto DeclComment = DeclRawComments.find(D);
+ if (DeclComment != DeclRawComments.end()) {
+ if (OriginalDecl)
+ *OriginalDecl = D;
+ return DeclComment->second;
+ }
+ }
+
+ // Any comment attached to any redeclaration of D?
+ const Decl *CanonicalD = D->getCanonicalDecl();
+ if (!CanonicalD)
+ return nullptr;
+
+ {
+ auto RedeclComment = RedeclChainComments.find(CanonicalD);
+ if (RedeclComment != RedeclChainComments.end()) {
+ if (OriginalDecl)
+ *OriginalDecl = RedeclComment->second;
+ auto CommentAtRedecl = DeclRawComments.find(RedeclComment->second);
+ assert(CommentAtRedecl != DeclRawComments.end() &&
+ "This decl is supposed to have comment attached.");
+ return CommentAtRedecl->second;
+ }
+ }
+
+ // Any redeclarations of D that we haven't checked for comments yet?
+ // We can't use DenseMap::iterator directly since it'd get invalid.
+ auto LastCheckedRedecl = [this, CanonicalD]() -> const Decl * {
+ auto LookupRes = CommentlessRedeclChains.find(CanonicalD);
+ if (LookupRes != CommentlessRedeclChains.end())
+ return LookupRes->second;
+ return nullptr;
+ }();
+
+ for (const auto Redecl : D->redecls()) {
+ assert(Redecl);
+ // Skip all redeclarations that have been checked previously.
+ if (LastCheckedRedecl) {
+ if (LastCheckedRedecl == Redecl) {
+ LastCheckedRedecl = nullptr;
+ }
+ continue;
+ }
+ const RawComment *RedeclComment = getRawCommentForDeclNoCache(Redecl);
+ if (RedeclComment) {
+ cacheRawCommentForDecl(*Redecl, *RedeclComment);
+ if (OriginalDecl)
+ *OriginalDecl = Redecl;
+ return RedeclComment;
+ }
+ CommentlessRedeclChains[CanonicalD] = Redecl;
+ }
+
+ if (OriginalDecl)
+ *OriginalDecl = nullptr;
+ return nullptr;
+}
+
+void ASTContext::cacheRawCommentForDecl(const Decl &OriginalD,
+ const RawComment &Comment) const {
+ assert(Comment.isDocumentation() || LangOpts.CommentOpts.ParseAllComments);
+ DeclRawComments.try_emplace(&OriginalD, &Comment);
+ const Decl *const CanonicalDecl = OriginalD.getCanonicalDecl();
+ RedeclChainComments.try_emplace(CanonicalDecl, &OriginalD);
+ CommentlessRedeclChains.erase(CanonicalDecl);
+}
+
+static void addRedeclaredMethods(const ObjCMethodDecl *ObjCMethod,
+ SmallVectorImpl<const NamedDecl *> &Redeclared) {
+ const DeclContext *DC = ObjCMethod->getDeclContext();
+ if (const auto *IMD = dyn_cast<ObjCImplDecl>(DC)) {
+ const ObjCInterfaceDecl *ID = IMD->getClassInterface();
+ if (!ID)
+ return;
+ // Add redeclared method here.
+ for (const auto *Ext : ID->known_extensions()) {
+ if (ObjCMethodDecl *RedeclaredMethod =
+ Ext->getMethod(ObjCMethod->getSelector(),
+ ObjCMethod->isInstanceMethod()))
+ Redeclared.push_back(RedeclaredMethod);
+ }
+ }
+}
+
+void ASTContext::attachCommentsToJustParsedDecls(ArrayRef<Decl *> Decls,
+ const Preprocessor *PP) {
+ if (Comments.empty() || Decls.empty())
+ return;
+
+ // See if there are any new comments that are not attached to a decl.
+ // The location doesn't have to be precise - we care only about the file.
+ const FileID File =
+ SourceMgr.getDecomposedLoc((*Decls.begin())->getLocation()).first;
+ auto CommentsInThisFile = Comments.getCommentsInFile(File);
+ if (!CommentsInThisFile || CommentsInThisFile->empty() ||
+ CommentsInThisFile->rbegin()->second->isAttached())
+ return;
+
+ // There is at least one comment not attached to a decl.
+ // Maybe it should be attached to one of Decls?
+ //
+ // Note that this way we pick up not only comments that precede the
+ // declaration, but also comments that *follow* the declaration -- thanks to
+ // the lookahead in the lexer: we've consumed the semicolon and looked
+ // ahead through comments.
+
+ for (const Decl *D : Decls) {
+ assert(D);
+ if (D->isInvalidDecl())
+ continue;
+
+ D = &adjustDeclToTemplate(*D);
+
+ const SourceLocation DeclLoc = getDeclLocForCommentSearch(D, SourceMgr);
+
+ if (DeclLoc.isInvalid() || !DeclLoc.isFileID())
+ continue;
+
+ if (DeclRawComments.count(D) > 0)
+ continue;
+
+ if (RawComment *const DocComment =
+ getRawCommentForDeclNoCacheImpl(D, DeclLoc, *CommentsInThisFile)) {
+ cacheRawCommentForDecl(*D, *DocComment);
+ comments::FullComment *FC = DocComment->parse(*this, PP, D);
+ ParsedComments[D->getCanonicalDecl()] = FC;
+ }
+ }
+}
+
+comments::FullComment *ASTContext::cloneFullComment(comments::FullComment *FC,
+ const Decl *D) const {
+ auto *ThisDeclInfo = new (*this) comments::DeclInfo;
+ ThisDeclInfo->CommentDecl = D;
+ ThisDeclInfo->IsFilled = false;
+ ThisDeclInfo->fill();
+ ThisDeclInfo->CommentDecl = FC->getDecl();
+ if (!ThisDeclInfo->TemplateParameters)
+ ThisDeclInfo->TemplateParameters = FC->getDeclInfo()->TemplateParameters;
+ comments::FullComment *CFC =
+ new (*this) comments::FullComment(FC->getBlocks(),
+ ThisDeclInfo);
+ return CFC;
+}
+
+comments::FullComment *ASTContext::getLocalCommentForDeclUncached(const Decl *D) const {
+ const RawComment *RC = getRawCommentForDeclNoCache(D);
+ return RC ? RC->parse(*this, nullptr, D) : nullptr;
+}
+
+comments::FullComment *ASTContext::getCommentForDecl(
+ const Decl *D,
+ const Preprocessor *PP) const {
+ if (!D || D->isInvalidDecl())
+ return nullptr;
+ D = &adjustDeclToTemplate(*D);
+
+ const Decl *Canonical = D->getCanonicalDecl();
+ llvm::DenseMap<const Decl *, comments::FullComment *>::iterator Pos =
+ ParsedComments.find(Canonical);
+
+ if (Pos != ParsedComments.end()) {
+ if (Canonical != D) {
+ comments::FullComment *FC = Pos->second;
+ comments::FullComment *CFC = cloneFullComment(FC, D);
+ return CFC;
+ }
+ return Pos->second;
+ }
+
+ const Decl *OriginalDecl = nullptr;
+
+ const RawComment *RC = getRawCommentForAnyRedecl(D, &OriginalDecl);
+ if (!RC) {
+ if (isa<ObjCMethodDecl>(D) || isa<FunctionDecl>(D)) {
+ SmallVector<const NamedDecl*, 8> Overridden;
+ const auto *OMD = dyn_cast<ObjCMethodDecl>(D);
+ if (OMD && OMD->isPropertyAccessor())
+ if (const ObjCPropertyDecl *PDecl = OMD->findPropertyDecl())
+ if (comments::FullComment *FC = getCommentForDecl(PDecl, PP))
+ return cloneFullComment(FC, D);
+ if (OMD)
+ addRedeclaredMethods(OMD, Overridden);
+ getOverriddenMethods(dyn_cast<NamedDecl>(D), Overridden);
+ for (unsigned i = 0, e = Overridden.size(); i < e; i++)
+ if (comments::FullComment *FC = getCommentForDecl(Overridden[i], PP))
+ return cloneFullComment(FC, D);
+ }
+ else if (const auto *TD = dyn_cast<TypedefNameDecl>(D)) {
+ // Attach any tag type's documentation to its typedef if latter
+ // does not have one of its own.
+ QualType QT = TD->getUnderlyingType();
+ if (const auto *TT = QT->getAs<TagType>())
+ if (const Decl *TD = TT->getDecl())
+ if (comments::FullComment *FC = getCommentForDecl(TD, PP))
+ return cloneFullComment(FC, D);
+ }
+ else if (const auto *IC = dyn_cast<ObjCInterfaceDecl>(D)) {
+ while (IC->getSuperClass()) {
+ IC = IC->getSuperClass();
+ if (comments::FullComment *FC = getCommentForDecl(IC, PP))
+ return cloneFullComment(FC, D);
+ }
+ }
+ else if (const auto *CD = dyn_cast<ObjCCategoryDecl>(D)) {
+ if (const ObjCInterfaceDecl *IC = CD->getClassInterface())
+ if (comments::FullComment *FC = getCommentForDecl(IC, PP))
+ return cloneFullComment(FC, D);
+ }
+ else if (const auto *RD = dyn_cast<CXXRecordDecl>(D)) {
+ if (!(RD = RD->getDefinition()))
+ return nullptr;
+ // Check non-virtual bases.
+ for (const auto &I : RD->bases()) {
+ if (I.isVirtual() || (I.getAccessSpecifier() != AS_public))
+ continue;
+ QualType Ty = I.getType();
+ if (Ty.isNull())
+ continue;
+ if (const CXXRecordDecl *NonVirtualBase = Ty->getAsCXXRecordDecl()) {
+ if (!(NonVirtualBase= NonVirtualBase->getDefinition()))
+ continue;
+
+ if (comments::FullComment *FC = getCommentForDecl((NonVirtualBase), PP))
+ return cloneFullComment(FC, D);
+ }
+ }
+ // Check virtual bases.
+ for (const auto &I : RD->vbases()) {
+ if (I.getAccessSpecifier() != AS_public)
+ continue;
+ QualType Ty = I.getType();
+ if (Ty.isNull())
+ continue;
+ if (const CXXRecordDecl *VirtualBase = Ty->getAsCXXRecordDecl()) {
+ if (!(VirtualBase= VirtualBase->getDefinition()))
+ continue;
+ if (comments::FullComment *FC = getCommentForDecl((VirtualBase), PP))
+ return cloneFullComment(FC, D);
+ }
+ }
+ }
+ return nullptr;
+ }
+
+ // If the RawComment was attached to other redeclaration of this Decl, we
+ // should parse the comment in context of that other Decl. This is important
+ // because comments can contain references to parameter names which can be
+ // different across redeclarations.
+ if (D != OriginalDecl && OriginalDecl)
+ return getCommentForDecl(OriginalDecl, PP);
+
+ comments::FullComment *FC = RC->parse(*this, PP, D);
+ ParsedComments[Canonical] = FC;
+ return FC;
+}
+
+void
+ASTContext::CanonicalTemplateTemplateParm::Profile(llvm::FoldingSetNodeID &ID,
+ TemplateTemplateParmDecl *Parm) {
+ ID.AddInteger(Parm->getDepth());
+ ID.AddInteger(Parm->getPosition());
+ ID.AddBoolean(Parm->isParameterPack());
+
+ TemplateParameterList *Params = Parm->getTemplateParameters();
+ ID.AddInteger(Params->size());
+ for (TemplateParameterList::const_iterator P = Params->begin(),
+ PEnd = Params->end();
+ P != PEnd; ++P) {
+ if (const auto *TTP = dyn_cast<TemplateTypeParmDecl>(*P)) {
+ ID.AddInteger(0);
+ ID.AddBoolean(TTP->isParameterPack());
+ continue;
+ }
+
+ if (const auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(*P)) {
+ ID.AddInteger(1);
+ ID.AddBoolean(NTTP->isParameterPack());
+ ID.AddPointer(NTTP->getType().getCanonicalType().getAsOpaquePtr());
+ if (NTTP->isExpandedParameterPack()) {
+ ID.AddBoolean(true);
+ ID.AddInteger(NTTP->getNumExpansionTypes());
+ for (unsigned I = 0, N = NTTP->getNumExpansionTypes(); I != N; ++I) {
+ QualType T = NTTP->getExpansionType(I);
+ ID.AddPointer(T.getCanonicalType().getAsOpaquePtr());
+ }
+ } else
+ ID.AddBoolean(false);
+ continue;
+ }
+
+ auto *TTP = cast<TemplateTemplateParmDecl>(*P);
+ ID.AddInteger(2);
+ Profile(ID, TTP);
+ }
+}
+
+TemplateTemplateParmDecl *
+ASTContext::getCanonicalTemplateTemplateParmDecl(
+ TemplateTemplateParmDecl *TTP) const {
+ // Check if we already have a canonical template template parameter.
+ llvm::FoldingSetNodeID ID;
+ CanonicalTemplateTemplateParm::Profile(ID, TTP);
+ void *InsertPos = nullptr;
+ CanonicalTemplateTemplateParm *Canonical
+ = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos);
+ if (Canonical)
+ return Canonical->getParam();
+
+ // Build a canonical template parameter list.
+ TemplateParameterList *Params = TTP->getTemplateParameters();
+ SmallVector<NamedDecl *, 4> CanonParams;
+ CanonParams.reserve(Params->size());
+ for (TemplateParameterList::const_iterator P = Params->begin(),
+ PEnd = Params->end();
+ P != PEnd; ++P) {
+ if (const auto *TTP = dyn_cast<TemplateTypeParmDecl>(*P))
+ CanonParams.push_back(
+ TemplateTypeParmDecl::Create(*this, getTranslationUnitDecl(),
+ SourceLocation(),
+ SourceLocation(),
+ TTP->getDepth(),
+ TTP->getIndex(), nullptr, false,
+ TTP->isParameterPack()));
+ else if (const auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(*P)) {
+ QualType T = getCanonicalType(NTTP->getType());
+ TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(T);
+ NonTypeTemplateParmDecl *Param;
+ if (NTTP->isExpandedParameterPack()) {
+ SmallVector<QualType, 2> ExpandedTypes;
+ SmallVector<TypeSourceInfo *, 2> ExpandedTInfos;
+ for (unsigned I = 0, N = NTTP->getNumExpansionTypes(); I != N; ++I) {
+ ExpandedTypes.push_back(getCanonicalType(NTTP->getExpansionType(I)));
+ ExpandedTInfos.push_back(
+ getTrivialTypeSourceInfo(ExpandedTypes.back()));
+ }
+
+ Param = NonTypeTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
+ SourceLocation(),
+ SourceLocation(),
+ NTTP->getDepth(),
+ NTTP->getPosition(), nullptr,
+ T,
+ TInfo,
+ ExpandedTypes,
+ ExpandedTInfos);
+ } else {
+ Param = NonTypeTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
+ SourceLocation(),
+ SourceLocation(),
+ NTTP->getDepth(),
+ NTTP->getPosition(), nullptr,
+ T,
+ NTTP->isParameterPack(),
+ TInfo);
+ }
+ CanonParams.push_back(Param);
+
+ } else
+ CanonParams.push_back(getCanonicalTemplateTemplateParmDecl(
+ cast<TemplateTemplateParmDecl>(*P)));
+ }
+
+ assert(!TTP->getTemplateParameters()->getRequiresClause() &&
+ "Unexpected requires-clause on template template-parameter");
+ Expr *const CanonRequiresClause = nullptr;
+
+ TemplateTemplateParmDecl *CanonTTP
+ = TemplateTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
+ SourceLocation(), TTP->getDepth(),
+ TTP->getPosition(),
+ TTP->isParameterPack(),
+ nullptr,
+ TemplateParameterList::Create(*this, SourceLocation(),
+ SourceLocation(),
+ CanonParams,
+ SourceLocation(),
+ CanonRequiresClause));
+
+ // Get the new insert position for the node we care about.
+ Canonical = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos);
+ assert(!Canonical && "Shouldn't be in the map!");
+ (void)Canonical;
+
+ // Create the canonical template template parameter entry.
+ Canonical = new (*this) CanonicalTemplateTemplateParm(CanonTTP);
+ CanonTemplateTemplateParms.InsertNode(Canonical, InsertPos);
+ return CanonTTP;
+}
+
+CXXABI *ASTContext::createCXXABI(const TargetInfo &T) {
+ if (!LangOpts.CPlusPlus) return nullptr;
+
+ switch (T.getCXXABI().getKind()) {
+ case TargetCXXABI::GenericARM: // Same as Itanium at this level
+ case TargetCXXABI::iOS:
+ case TargetCXXABI::iOS64:
+ case TargetCXXABI::WatchOS:
+ case TargetCXXABI::GenericAArch64:
+ case TargetCXXABI::GenericMIPS:
+ case TargetCXXABI::GenericItanium:
+ case TargetCXXABI::WebAssembly:
+ return CreateItaniumCXXABI(*this);
+ case TargetCXXABI::Microsoft:
+ return CreateMicrosoftCXXABI(*this);
+ }
+ llvm_unreachable("Invalid CXXABI type!");
+}
+
+interp::Context &ASTContext::getInterpContext() {
+ if (!InterpContext) {
+ InterpContext.reset(new interp::Context(*this));
+ }
+ return *InterpContext.get();
+}
+
+static const LangASMap *getAddressSpaceMap(const TargetInfo &T,
+ const LangOptions &LOpts) {
+ if (LOpts.FakeAddressSpaceMap) {
+ // The fake address space map must have a distinct entry for each
+ // language-specific address space.
+ static const unsigned FakeAddrSpaceMap[] = {
+ 0, // Default
+ 1, // opencl_global
+ 3, // opencl_local
+ 2, // opencl_constant
+ 0, // opencl_private
+ 4, // opencl_generic
+ 5, // cuda_device
+ 6, // cuda_constant
+ 7 // cuda_shared
+ };
+ return &FakeAddrSpaceMap;
+ } else {
+ return &T.getAddressSpaceMap();
+ }
+}
+
+static bool isAddrSpaceMapManglingEnabled(const TargetInfo &TI,
+ const LangOptions &LangOpts) {
+ switch (LangOpts.getAddressSpaceMapMangling()) {
+ case LangOptions::ASMM_Target:
+ return TI.useAddressSpaceMapMangling();
+ case LangOptions::ASMM_On:
+ return true;
+ case LangOptions::ASMM_Off:
+ return false;
+ }
+ llvm_unreachable("getAddressSpaceMapMangling() doesn't cover anything.");
+}
+
+ASTContext::ASTContext(LangOptions &LOpts, SourceManager &SM,
+ IdentifierTable &idents, SelectorTable &sels,
+ Builtin::Context &builtins)
+ : ConstantArrayTypes(this_()), FunctionProtoTypes(this_()),
+ TemplateSpecializationTypes(this_()),
+ DependentTemplateSpecializationTypes(this_()),
+ SubstTemplateTemplateParmPacks(this_()), SourceMgr(SM), LangOpts(LOpts),
+ SanitizerBL(new SanitizerBlacklist(LangOpts.SanitizerBlacklistFiles, SM)),
+ XRayFilter(new XRayFunctionFilter(LangOpts.XRayAlwaysInstrumentFiles,
+ LangOpts.XRayNeverInstrumentFiles,
+ LangOpts.XRayAttrListFiles, SM)),
+ PrintingPolicy(LOpts), Idents(idents), Selectors(sels),
+ BuiltinInfo(builtins), DeclarationNames(*this), Comments(SM),
+ CommentCommandTraits(BumpAlloc, LOpts.CommentOpts),
+ CompCategories(this_()), LastSDM(nullptr, 0) {
+ TUDecl = TranslationUnitDecl::Create(*this);
+ TraversalScope = {TUDecl};
+}
+
+ASTContext::~ASTContext() {
+ // Release the DenseMaps associated with DeclContext objects.
+ // FIXME: Is this the ideal solution?
+ ReleaseDeclContextMaps();
+
+ // Call all of the deallocation functions on all of their targets.
+ for (auto &Pair : Deallocations)
+ (Pair.first)(Pair.second);
+
+ // ASTRecordLayout objects in ASTRecordLayouts must always be destroyed
+ // because they can contain DenseMaps.
+ for (llvm::DenseMap<const ObjCContainerDecl*,
+ const ASTRecordLayout*>::iterator
+ I = ObjCLayouts.begin(), E = ObjCLayouts.end(); I != E; )
+ // Increment in loop to prevent using deallocated memory.
+ if (auto *R = const_cast<ASTRecordLayout *>((I++)->second))
+ R->Destroy(*this);
+
+ for (llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*>::iterator
+ I = ASTRecordLayouts.begin(), E = ASTRecordLayouts.end(); I != E; ) {
+ // Increment in loop to prevent using deallocated memory.
+ if (auto *R = const_cast<ASTRecordLayout *>((I++)->second))
+ R->Destroy(*this);
+ }
+
+ for (llvm::DenseMap<const Decl*, AttrVec*>::iterator A = DeclAttrs.begin(),
+ AEnd = DeclAttrs.end();
+ A != AEnd; ++A)
+ A->second->~AttrVec();
+
+ for (std::pair<const MaterializeTemporaryExpr *, APValue *> &MTVPair :
+ MaterializedTemporaryValues)
+ MTVPair.second->~APValue();
+
+ for (const auto &Value : ModuleInitializers)
+ Value.second->~PerModuleInitializers();
+
+ for (APValue *Value : APValueCleanups)
+ Value->~APValue();
+}
+
+class ASTContext::ParentMap {
+ /// Contains parents of a node.
+ using ParentVector = llvm::SmallVector<ast_type_traits::DynTypedNode, 2>;
+
+ /// Maps from a node to its parents. This is used for nodes that have
+ /// pointer identity only, which are more common and we can save space by
+ /// only storing a unique pointer to them.
+ using ParentMapPointers = llvm::DenseMap<
+ const void *,
+ llvm::PointerUnion4<const Decl *, const Stmt *,
+ ast_type_traits::DynTypedNode *, ParentVector *>>;
+
+ /// Parent map for nodes without pointer identity. We store a full
+ /// DynTypedNode for all keys.
+ using ParentMapOtherNodes = llvm::DenseMap<
+ ast_type_traits::DynTypedNode,
+ llvm::PointerUnion4<const Decl *, const Stmt *,
+ ast_type_traits::DynTypedNode *, ParentVector *>>;
+
+ ParentMapPointers PointerParents;
+ ParentMapOtherNodes OtherParents;
+ class ASTVisitor;
+
+ static ast_type_traits::DynTypedNode
+ getSingleDynTypedNodeFromParentMap(ParentMapPointers::mapped_type U) {
+ if (const auto *D = U.dyn_cast<const Decl *>())
+ return ast_type_traits::DynTypedNode::create(*D);
+ if (const auto *S = U.dyn_cast<const Stmt *>())
+ return ast_type_traits::DynTypedNode::create(*S);
+ return *U.get<ast_type_traits::DynTypedNode *>();
+ }
+
+ template <typename NodeTy, typename MapTy>
+ static ASTContext::DynTypedNodeList getDynNodeFromMap(const NodeTy &Node,
+ const MapTy &Map) {
+ auto I = Map.find(Node);
+ if (I == Map.end()) {
+ return llvm::ArrayRef<ast_type_traits::DynTypedNode>();
+ }
+ if (const auto *V = I->second.template dyn_cast<ParentVector *>()) {
+ return llvm::makeArrayRef(*V);
+ }
+ return getSingleDynTypedNodeFromParentMap(I->second);
+ }
+
+public:
+ ParentMap(ASTContext &Ctx);
+ ~ParentMap() {
+ for (const auto &Entry : PointerParents) {
+ if (Entry.second.is<ast_type_traits::DynTypedNode *>()) {
+ delete Entry.second.get<ast_type_traits::DynTypedNode *>();
+ } else if (Entry.second.is<ParentVector *>()) {
+ delete Entry.second.get<ParentVector *>();
+ }
+ }
+ for (const auto &Entry : OtherParents) {
+ if (Entry.second.is<ast_type_traits::DynTypedNode *>()) {
+ delete Entry.second.get<ast_type_traits::DynTypedNode *>();
+ } else if (Entry.second.is<ParentVector *>()) {
+ delete Entry.second.get<ParentVector *>();
+ }
+ }
+ }
+
+ DynTypedNodeList getParents(const ast_type_traits::DynTypedNode &Node) {
+ if (Node.getNodeKind().hasPointerIdentity())
+ return getDynNodeFromMap(Node.getMemoizationData(), PointerParents);
+ return getDynNodeFromMap(Node, OtherParents);
+ }
+};
+
+void ASTContext::setTraversalScope(const std::vector<Decl *> &TopLevelDecls) {
+ TraversalScope = TopLevelDecls;
+ Parents.reset();
+}
+
+void ASTContext::AddDeallocation(void (*Callback)(void *), void *Data) const {
+ Deallocations.push_back({Callback, Data});
+}
+
+void
+ASTContext::setExternalSource(IntrusiveRefCntPtr<ExternalASTSource> Source) {
+ ExternalSource = std::move(Source);
+}
+
+void ASTContext::PrintStats() const {
+ llvm::errs() << "\n*** AST Context Stats:\n";
+ llvm::errs() << " " << Types.size() << " types total.\n";
+
+ unsigned counts[] = {
+#define TYPE(Name, Parent) 0,
+#define ABSTRACT_TYPE(Name, Parent)
+#include "clang/AST/TypeNodes.inc"
+ 0 // Extra
+ };
+
+ for (unsigned i = 0, e = Types.size(); i != e; ++i) {
+ Type *T = Types[i];
+ counts[(unsigned)T->getTypeClass()]++;
+ }
+
+ unsigned Idx = 0;
+ unsigned TotalBytes = 0;
+#define TYPE(Name, Parent) \
+ if (counts[Idx]) \
+ llvm::errs() << " " << counts[Idx] << " " << #Name \
+ << " types, " << sizeof(Name##Type) << " each " \
+ << "(" << counts[Idx] * sizeof(Name##Type) \
+ << " bytes)\n"; \
+ TotalBytes += counts[Idx] * sizeof(Name##Type); \
+ ++Idx;
+#define ABSTRACT_TYPE(Name, Parent)
+#include "clang/AST/TypeNodes.inc"
+
+ llvm::errs() << "Total bytes = " << TotalBytes << "\n";
+
+ // Implicit special member functions.
+ llvm::errs() << NumImplicitDefaultConstructorsDeclared << "/"
+ << NumImplicitDefaultConstructors
+ << " implicit default constructors created\n";
+ llvm::errs() << NumImplicitCopyConstructorsDeclared << "/"
+ << NumImplicitCopyConstructors
+ << " implicit copy constructors created\n";
+ if (getLangOpts().CPlusPlus)
+ llvm::errs() << NumImplicitMoveConstructorsDeclared << "/"
+ << NumImplicitMoveConstructors
+ << " implicit move constructors created\n";
+ llvm::errs() << NumImplicitCopyAssignmentOperatorsDeclared << "/"
+ << NumImplicitCopyAssignmentOperators
+ << " implicit copy assignment operators created\n";
+ if (getLangOpts().CPlusPlus)
+ llvm::errs() << NumImplicitMoveAssignmentOperatorsDeclared << "/"
+ << NumImplicitMoveAssignmentOperators
+ << " implicit move assignment operators created\n";
+ llvm::errs() << NumImplicitDestructorsDeclared << "/"
+ << NumImplicitDestructors
+ << " implicit destructors created\n";
+
+ if (ExternalSource) {
+ llvm::errs() << "\n";
+ ExternalSource->PrintStats();
+ }
+
+ BumpAlloc.PrintStats();
+}
+
+void ASTContext::mergeDefinitionIntoModule(NamedDecl *ND, Module *M,
+ bool NotifyListeners) {
+ if (NotifyListeners)
+ if (auto *Listener = getASTMutationListener())
+ Listener->RedefinedHiddenDefinition(ND, M);
+
+ MergedDefModules[cast<NamedDecl>(ND->getCanonicalDecl())].push_back(M);
+}
+
+void ASTContext::deduplicateMergedDefinitonsFor(NamedDecl *ND) {
+ auto It = MergedDefModules.find(cast<NamedDecl>(ND->getCanonicalDecl()));
+ if (It == MergedDefModules.end())
+ return;
+
+ auto &Merged = It->second;
+ llvm::DenseSet<Module*> Found;
+ for (Module *&M : Merged)
+ if (!Found.insert(M).second)
+ M = nullptr;
+ Merged.erase(std::remove(Merged.begin(), Merged.end(), nullptr), Merged.end());
+}
+
+void ASTContext::PerModuleInitializers::resolve(ASTContext &Ctx) {
+ if (LazyInitializers.empty())
+ return;
+
+ auto *Source = Ctx.getExternalSource();
+ assert(Source && "lazy initializers but no external source");
+
+ auto LazyInits = std::move(LazyInitializers);
+ LazyInitializers.clear();
+
+ for (auto ID : LazyInits)
+ Initializers.push_back(Source->GetExternalDecl(ID));
+
+ assert(LazyInitializers.empty() &&
+ "GetExternalDecl for lazy module initializer added more inits");
+}
+
+void ASTContext::addModuleInitializer(Module *M, Decl *D) {
+ // One special case: if we add a module initializer that imports another
+ // module, and that module's only initializer is an ImportDecl, simplify.
+ if (const auto *ID = dyn_cast<ImportDecl>(D)) {
+ auto It = ModuleInitializers.find(ID->getImportedModule());
+
+ // Maybe the ImportDecl does nothing at all. (Common case.)
+ if (It == ModuleInitializers.end())
+ return;
+
+ // Maybe the ImportDecl only imports another ImportDecl.
+ auto &Imported = *It->second;
+ if (Imported.Initializers.size() + Imported.LazyInitializers.size() == 1) {
+ Imported.resolve(*this);
+ auto *OnlyDecl = Imported.Initializers.front();
+ if (isa<ImportDecl>(OnlyDecl))
+ D = OnlyDecl;
+ }
+ }
+
+ auto *&Inits = ModuleInitializers[M];
+ if (!Inits)
+ Inits = new (*this) PerModuleInitializers;
+ Inits->Initializers.push_back(D);
+}
+
+void ASTContext::addLazyModuleInitializers(Module *M, ArrayRef<uint32_t> IDs) {
+ auto *&Inits = ModuleInitializers[M];
+ if (!Inits)
+ Inits = new (*this) PerModuleInitializers;
+ Inits->LazyInitializers.insert(Inits->LazyInitializers.end(),
+ IDs.begin(), IDs.end());
+}
+
+ArrayRef<Decl *> ASTContext::getModuleInitializers(Module *M) {
+ auto It = ModuleInitializers.find(M);
+ if (It == ModuleInitializers.end())
+ return None;
+
+ auto *Inits = It->second;
+ Inits->resolve(*this);
+ return Inits->Initializers;
+}
+
+ExternCContextDecl *ASTContext::getExternCContextDecl() const {
+ if (!ExternCContext)
+ ExternCContext = ExternCContextDecl::Create(*this, getTranslationUnitDecl());
+
+ return ExternCContext;
+}
+
+BuiltinTemplateDecl *
+ASTContext::buildBuiltinTemplateDecl(BuiltinTemplateKind BTK,
+ const IdentifierInfo *II) const {
+ auto *BuiltinTemplate = BuiltinTemplateDecl::Create(*this, TUDecl, II, BTK);
+ BuiltinTemplate->setImplicit();
+ TUDecl->addDecl(BuiltinTemplate);
+
+ return BuiltinTemplate;
+}
+
+BuiltinTemplateDecl *
+ASTContext::getMakeIntegerSeqDecl() const {
+ if (!MakeIntegerSeqDecl)
+ MakeIntegerSeqDecl = buildBuiltinTemplateDecl(BTK__make_integer_seq,
+ getMakeIntegerSeqName());
+ return MakeIntegerSeqDecl;
+}
+
+BuiltinTemplateDecl *
+ASTContext::getTypePackElementDecl() const {
+ if (!TypePackElementDecl)
+ TypePackElementDecl = buildBuiltinTemplateDecl(BTK__type_pack_element,
+ getTypePackElementName());
+ return TypePackElementDecl;
+}
+
+RecordDecl *ASTContext::buildImplicitRecord(StringRef Name,
+ RecordDecl::TagKind TK) const {
+ SourceLocation Loc;
+ RecordDecl *NewDecl;
+ if (getLangOpts().CPlusPlus)
+ NewDecl = CXXRecordDecl::Create(*this, TK, getTranslationUnitDecl(), Loc,
+ Loc, &Idents.get(Name));
+ else
+ NewDecl = RecordDecl::Create(*this, TK, getTranslationUnitDecl(), Loc, Loc,
+ &Idents.get(Name));
+ NewDecl->setImplicit();
+ NewDecl->addAttr(TypeVisibilityAttr::CreateImplicit(
+ const_cast<ASTContext &>(*this), TypeVisibilityAttr::Default));
+ return NewDecl;
+}
+
+TypedefDecl *ASTContext::buildImplicitTypedef(QualType T,
+ StringRef Name) const {
+ TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(T);
+ TypedefDecl *NewDecl = TypedefDecl::Create(
+ const_cast<ASTContext &>(*this), getTranslationUnitDecl(),
+ SourceLocation(), SourceLocation(), &Idents.get(Name), TInfo);
+ NewDecl->setImplicit();
+ return NewDecl;
+}
+
+TypedefDecl *ASTContext::getInt128Decl() const {
+ if (!Int128Decl)
+ Int128Decl = buildImplicitTypedef(Int128Ty, "__int128_t");
+ return Int128Decl;
+}
+
+TypedefDecl *ASTContext::getUInt128Decl() const {
+ if (!UInt128Decl)
+ UInt128Decl = buildImplicitTypedef(UnsignedInt128Ty, "__uint128_t");
+ return UInt128Decl;
+}
+
+void ASTContext::InitBuiltinType(CanQualType &R, BuiltinType::Kind K) {
+ auto *Ty = new (*this, TypeAlignment) BuiltinType(K);
+ R = CanQualType::CreateUnsafe(QualType(Ty, 0));
+ Types.push_back(Ty);
+}
+
+void ASTContext::InitBuiltinTypes(const TargetInfo &Target,
+ const TargetInfo *AuxTarget) {
+ assert((!this->Target || this->Target == &Target) &&
+ "Incorrect target reinitialization");
+ assert(VoidTy.isNull() && "Context reinitialized?");
+
+ this->Target = &Target;
+ this->AuxTarget = AuxTarget;
+
+ ABI.reset(createCXXABI(Target));
+ AddrSpaceMap = getAddressSpaceMap(Target, LangOpts);
+ AddrSpaceMapMangling = isAddrSpaceMapManglingEnabled(Target, LangOpts);
+
+ // C99 6.2.5p19.
+ InitBuiltinType(VoidTy, BuiltinType::Void);
+
+ // C99 6.2.5p2.
+ InitBuiltinType(BoolTy, BuiltinType::Bool);
+ // C99 6.2.5p3.
+ if (LangOpts.CharIsSigned)
+ InitBuiltinType(CharTy, BuiltinType::Char_S);
+ else
+ InitBuiltinType(CharTy, BuiltinType::Char_U);
+ // C99 6.2.5p4.
+ InitBuiltinType(SignedCharTy, BuiltinType::SChar);
+ InitBuiltinType(ShortTy, BuiltinType::Short);
+ InitBuiltinType(IntTy, BuiltinType::Int);
+ InitBuiltinType(LongTy, BuiltinType::Long);
+ InitBuiltinType(LongLongTy, BuiltinType::LongLong);
+
+ // C99 6.2.5p6.
+ InitBuiltinType(UnsignedCharTy, BuiltinType::UChar);
+ InitBuiltinType(UnsignedShortTy, BuiltinType::UShort);
+ InitBuiltinType(UnsignedIntTy, BuiltinType::UInt);
+ InitBuiltinType(UnsignedLongTy, BuiltinType::ULong);
+ InitBuiltinType(UnsignedLongLongTy, BuiltinType::ULongLong);
+
+ // C99 6.2.5p10.
+ InitBuiltinType(FloatTy, BuiltinType::Float);
+ InitBuiltinType(DoubleTy, BuiltinType::Double);
+ InitBuiltinType(LongDoubleTy, BuiltinType::LongDouble);
+
+ // GNU extension, __float128 for IEEE quadruple precision
+ InitBuiltinType(Float128Ty, BuiltinType::Float128);
+
+ // C11 extension ISO/IEC TS 18661-3
+ InitBuiltinType(Float16Ty, BuiltinType::Float16);
+
+ // ISO/IEC JTC1 SC22 WG14 N1169 Extension
+ InitBuiltinType(ShortAccumTy, BuiltinType::ShortAccum);
+ InitBuiltinType(AccumTy, BuiltinType::Accum);
+ InitBuiltinType(LongAccumTy, BuiltinType::LongAccum);
+ InitBuiltinType(UnsignedShortAccumTy, BuiltinType::UShortAccum);
+ InitBuiltinType(UnsignedAccumTy, BuiltinType::UAccum);
+ InitBuiltinType(UnsignedLongAccumTy, BuiltinType::ULongAccum);
+ InitBuiltinType(ShortFractTy, BuiltinType::ShortFract);
+ InitBuiltinType(FractTy, BuiltinType::Fract);
+ InitBuiltinType(LongFractTy, BuiltinType::LongFract);
+ InitBuiltinType(UnsignedShortFractTy, BuiltinType::UShortFract);
+ InitBuiltinType(UnsignedFractTy, BuiltinType::UFract);
+ InitBuiltinType(UnsignedLongFractTy, BuiltinType::ULongFract);
+ InitBuiltinType(SatShortAccumTy, BuiltinType::SatShortAccum);
+ InitBuiltinType(SatAccumTy, BuiltinType::SatAccum);
+ InitBuiltinType(SatLongAccumTy, BuiltinType::SatLongAccum);
+ InitBuiltinType(SatUnsignedShortAccumTy, BuiltinType::SatUShortAccum);
+ InitBuiltinType(SatUnsignedAccumTy, BuiltinType::SatUAccum);
+ InitBuiltinType(SatUnsignedLongAccumTy, BuiltinType::SatULongAccum);
+ InitBuiltinType(SatShortFractTy, BuiltinType::SatShortFract);
+ InitBuiltinType(SatFractTy, BuiltinType::SatFract);
+ InitBuiltinType(SatLongFractTy, BuiltinType::SatLongFract);
+ InitBuiltinType(SatUnsignedShortFractTy, BuiltinType::SatUShortFract);
+ InitBuiltinType(SatUnsignedFractTy, BuiltinType::SatUFract);
+ InitBuiltinType(SatUnsignedLongFractTy, BuiltinType::SatULongFract);
+
+ // GNU extension, 128-bit integers.
+ InitBuiltinType(Int128Ty, BuiltinType::Int128);
+ InitBuiltinType(UnsignedInt128Ty, BuiltinType::UInt128);
+
+ // C++ 3.9.1p5
+ if (TargetInfo::isTypeSigned(Target.getWCharType()))
+ InitBuiltinType(WCharTy, BuiltinType::WChar_S);
+ else // -fshort-wchar makes wchar_t be unsigned.
+ InitBuiltinType(WCharTy, BuiltinType::WChar_U);
+ if (LangOpts.CPlusPlus && LangOpts.WChar)
+ WideCharTy = WCharTy;
+ else {
+ // C99 (or C++ using -fno-wchar).
+ WideCharTy = getFromTargetType(Target.getWCharType());
+ }
+
+ WIntTy = getFromTargetType(Target.getWIntType());
+
+ // C++20 (proposed)
+ InitBuiltinType(Char8Ty, BuiltinType::Char8);
+
+ if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
+ InitBuiltinType(Char16Ty, BuiltinType::Char16);
+ else // C99
+ Char16Ty = getFromTargetType(Target.getChar16Type());
+
+ if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
+ InitBuiltinType(Char32Ty, BuiltinType::Char32);
+ else // C99
+ Char32Ty = getFromTargetType(Target.getChar32Type());
+
+ // Placeholder type for type-dependent expressions whose type is
+ // completely unknown. No code should ever check a type against
+ // DependentTy and users should never see it; however, it is here to
+ // help diagnose failures to properly check for type-dependent
+ // expressions.
+ InitBuiltinType(DependentTy, BuiltinType::Dependent);
+
+ // Placeholder type for functions.
+ InitBuiltinType(OverloadTy, BuiltinType::Overload);
+
+ // Placeholder type for bound members.
+ InitBuiltinType(BoundMemberTy, BuiltinType::BoundMember);
+
+ // Placeholder type for pseudo-objects.
+ InitBuiltinType(PseudoObjectTy, BuiltinType::PseudoObject);
+
+ // "any" type; useful for debugger-like clients.
+ InitBuiltinType(UnknownAnyTy, BuiltinType::UnknownAny);
+
+ // Placeholder type for unbridged ARC casts.
+ InitBuiltinType(ARCUnbridgedCastTy, BuiltinType::ARCUnbridgedCast);
+
+ // Placeholder type for builtin functions.
+ InitBuiltinType(BuiltinFnTy, BuiltinType::BuiltinFn);
+
+ // Placeholder type for OMP array sections.
+ if (LangOpts.OpenMP)
+ InitBuiltinType(OMPArraySectionTy, BuiltinType::OMPArraySection);
+
+ // C99 6.2.5p11.
+ FloatComplexTy = getComplexType(FloatTy);
+ DoubleComplexTy = getComplexType(DoubleTy);
+ LongDoubleComplexTy = getComplexType(LongDoubleTy);
+ Float128ComplexTy = getComplexType(Float128Ty);
+
+ // Builtin types for 'id', 'Class', and 'SEL'.
+ InitBuiltinType(ObjCBuiltinIdTy, BuiltinType::ObjCId);
+ InitBuiltinType(ObjCBuiltinClassTy, BuiltinType::ObjCClass);
+ InitBuiltinType(ObjCBuiltinSelTy, BuiltinType::ObjCSel);
+
+ if (LangOpts.OpenCL) {
+#define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
+ InitBuiltinType(SingletonId, BuiltinType::Id);
+#include "clang/Basic/OpenCLImageTypes.def"
+
+ InitBuiltinType(OCLSamplerTy, BuiltinType::OCLSampler);
+ InitBuiltinType(OCLEventTy, BuiltinType::OCLEvent);
+ InitBuiltinType(OCLClkEventTy, BuiltinType::OCLClkEvent);
+ InitBuiltinType(OCLQueueTy, BuiltinType::OCLQueue);
+ InitBuiltinType(OCLReserveIDTy, BuiltinType::OCLReserveID);
+
+#define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
+ InitBuiltinType(Id##Ty, BuiltinType::Id);
+#include "clang/Basic/OpenCLExtensionTypes.def"
+ }
+
+ if (Target.hasAArch64SVETypes()) {
+#define SVE_TYPE(Name, Id, SingletonId) \
+ InitBuiltinType(SingletonId, BuiltinType::Id);
+#include "clang/Basic/AArch64SVEACLETypes.def"
+ }
+
+ // Builtin type for __objc_yes and __objc_no
+ ObjCBuiltinBoolTy = (Target.useSignedCharForObjCBool() ?
+ SignedCharTy : BoolTy);
+
+ ObjCConstantStringType = QualType();
+
+ ObjCSuperType = QualType();
+
+ // void * type
+ if (LangOpts.OpenCLVersion >= 200) {
+ auto Q = VoidTy.getQualifiers();
+ Q.setAddressSpace(LangAS::opencl_generic);
+ VoidPtrTy = getPointerType(getCanonicalType(
+ getQualifiedType(VoidTy.getUnqualifiedType(), Q)));
+ } else {
+ VoidPtrTy = getPointerType(VoidTy);
+ }
+
+ // nullptr type (C++0x 2.14.7)
+ InitBuiltinType(NullPtrTy, BuiltinType::NullPtr);
+
+ // half type (OpenCL 6.1.1.1) / ARM NEON __fp16
+ InitBuiltinType(HalfTy, BuiltinType::Half);
+
+ // Builtin type used to help define __builtin_va_list.
+ VaListTagDecl = nullptr;
+}
+
+DiagnosticsEngine &ASTContext::getDiagnostics() const {
+ return SourceMgr.getDiagnostics();
+}
+
+AttrVec& ASTContext::getDeclAttrs(const Decl *D) {
+ AttrVec *&Result = DeclAttrs[D];
+ if (!Result) {
+ void *Mem = Allocate(sizeof(AttrVec));
+ Result = new (Mem) AttrVec;
+ }
+
+ return *Result;
+}
+
+/// Erase the attributes corresponding to the given declaration.
+void ASTContext::eraseDeclAttrs(const Decl *D) {
+ llvm::DenseMap<const Decl*, AttrVec*>::iterator Pos = DeclAttrs.find(D);
+ if (Pos != DeclAttrs.end()) {
+ Pos->second->~AttrVec();
+ DeclAttrs.erase(Pos);
+ }
+}
+
+// FIXME: Remove ?
+MemberSpecializationInfo *
+ASTContext::getInstantiatedFromStaticDataMember(const VarDecl *Var) {
+ assert(Var->isStaticDataMember() && "Not a static data member");
+ return getTemplateOrSpecializationInfo(Var)
+ .dyn_cast<MemberSpecializationInfo *>();
+}
+
+ASTContext::TemplateOrSpecializationInfo
+ASTContext::getTemplateOrSpecializationInfo(const VarDecl *Var) {
+ llvm::DenseMap<const VarDecl *, TemplateOrSpecializationInfo>::iterator Pos =
+ TemplateOrInstantiation.find(Var);
+ if (Pos == TemplateOrInstantiation.end())
+ return {};
+
+ return Pos->second;
+}
+
+void
+ASTContext::setInstantiatedFromStaticDataMember(VarDecl *Inst, VarDecl *Tmpl,
+ TemplateSpecializationKind TSK,
+ SourceLocation PointOfInstantiation) {
+ assert(Inst->isStaticDataMember() && "Not a static data member");
+ assert(Tmpl->isStaticDataMember() && "Not a static data member");
+ setTemplateOrSpecializationInfo(Inst, new (*this) MemberSpecializationInfo(
+ Tmpl, TSK, PointOfInstantiation));
+}
+
+void
+ASTContext::setTemplateOrSpecializationInfo(VarDecl *Inst,
+ TemplateOrSpecializationInfo TSI) {
+ assert(!TemplateOrInstantiation[Inst] &&
+ "Already noted what the variable was instantiated from");
+ TemplateOrInstantiation[Inst] = TSI;
+}
+
+NamedDecl *
+ASTContext::getInstantiatedFromUsingDecl(NamedDecl *UUD) {
+ auto Pos = InstantiatedFromUsingDecl.find(UUD);
+ if (Pos == InstantiatedFromUsingDecl.end())
+ return nullptr;
+
+ return Pos->second;
+}
+
+void
+ASTContext::setInstantiatedFromUsingDecl(NamedDecl *Inst, NamedDecl *Pattern) {
+ assert((isa<UsingDecl>(Pattern) ||
+ isa<UnresolvedUsingValueDecl>(Pattern) ||
+ isa<UnresolvedUsingTypenameDecl>(Pattern)) &&
+ "pattern decl is not a using decl");
+ assert((isa<UsingDecl>(Inst) ||
+ isa<UnresolvedUsingValueDecl>(Inst) ||
+ isa<UnresolvedUsingTypenameDecl>(Inst)) &&
+ "instantiation did not produce a using decl");
+ assert(!InstantiatedFromUsingDecl[Inst] && "pattern already exists");
+ InstantiatedFromUsingDecl[Inst] = Pattern;
+}
+
+UsingShadowDecl *
+ASTContext::getInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst) {
+ llvm::DenseMap<UsingShadowDecl*, UsingShadowDecl*>::const_iterator Pos
+ = InstantiatedFromUsingShadowDecl.find(Inst);
+ if (Pos == InstantiatedFromUsingShadowDecl.end())
+ return nullptr;
+
+ return Pos->second;
+}
+
+void
+ASTContext::setInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst,
+ UsingShadowDecl *Pattern) {
+ assert(!InstantiatedFromUsingShadowDecl[Inst] && "pattern already exists");
+ InstantiatedFromUsingShadowDecl[Inst] = Pattern;
+}
+
+FieldDecl *ASTContext::getInstantiatedFromUnnamedFieldDecl(FieldDecl *Field) {
+ llvm::DenseMap<FieldDecl *, FieldDecl *>::iterator Pos
+ = InstantiatedFromUnnamedFieldDecl.find(Field);
+ if (Pos == InstantiatedFromUnnamedFieldDecl.end())
+ return nullptr;
+
+ return Pos->second;
+}
+
+void ASTContext::setInstantiatedFromUnnamedFieldDecl(FieldDecl *Inst,
+ FieldDecl *Tmpl) {
+ assert(!Inst->getDeclName() && "Instantiated field decl is not unnamed");
+ assert(!Tmpl->getDeclName() && "Template field decl is not unnamed");
+ assert(!InstantiatedFromUnnamedFieldDecl[Inst] &&
+ "Already noted what unnamed field was instantiated from");
+
+ InstantiatedFromUnnamedFieldDecl[Inst] = Tmpl;
+}
+
+ASTContext::overridden_cxx_method_iterator
+ASTContext::overridden_methods_begin(const CXXMethodDecl *Method) const {
+ return overridden_methods(Method).begin();
+}
+
+ASTContext::overridden_cxx_method_iterator
+ASTContext::overridden_methods_end(const CXXMethodDecl *Method) const {
+ return overridden_methods(Method).end();
+}
+
+unsigned
+ASTContext::overridden_methods_size(const CXXMethodDecl *Method) const {
+ auto Range = overridden_methods(Method);
+ return Range.end() - Range.begin();
+}
+
+ASTContext::overridden_method_range
+ASTContext::overridden_methods(const CXXMethodDecl *Method) const {
+ llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos =
+ OverriddenMethods.find(Method->getCanonicalDecl());
+ if (Pos == OverriddenMethods.end())
+ return overridden_method_range(nullptr, nullptr);
+ return overridden_method_range(Pos->second.begin(), Pos->second.end());
+}
+
+void ASTContext::addOverriddenMethod(const CXXMethodDecl *Method,
+ const CXXMethodDecl *Overridden) {
+ assert(Method->isCanonicalDecl() && Overridden->isCanonicalDecl());
+ OverriddenMethods[Method].push_back(Overridden);
+}
+
+void ASTContext::getOverriddenMethods(
+ const NamedDecl *D,
+ SmallVectorImpl<const NamedDecl *> &Overridden) const {
+ assert(D);
+
+ if (const auto *CXXMethod = dyn_cast<CXXMethodDecl>(D)) {
+ Overridden.append(overridden_methods_begin(CXXMethod),
+ overridden_methods_end(CXXMethod));
+ return;
+ }
+
+ const auto *Method = dyn_cast<ObjCMethodDecl>(D);
+ if (!Method)
+ return;
+
+ SmallVector<const ObjCMethodDecl *, 8> OverDecls;
+ Method->getOverriddenMethods(OverDecls);
+ Overridden.append(OverDecls.begin(), OverDecls.end());
+}
+
+void ASTContext::addedLocalImportDecl(ImportDecl *Import) {
+ assert(!Import->NextLocalImport && "Import declaration already in the chain");
+ assert(!Import->isFromASTFile() && "Non-local import declaration");
+ if (!FirstLocalImport) {
+ FirstLocalImport = Import;
+ LastLocalImport = Import;
+ return;
+ }
+
+ LastLocalImport->NextLocalImport = Import;
+ LastLocalImport = Import;
+}
+
+//===----------------------------------------------------------------------===//
+// Type Sizing and Analysis
+//===----------------------------------------------------------------------===//
+
+/// getFloatTypeSemantics - Return the APFloat 'semantics' for the specified
+/// scalar floating point type.
+const llvm::fltSemantics &ASTContext::getFloatTypeSemantics(QualType T) const {
+ switch (T->castAs<BuiltinType>()->getKind()) {
+ default:
+ llvm_unreachable("Not a floating point type!");
+ case BuiltinType::Float16:
+ case BuiltinType::Half:
+ return Target->getHalfFormat();
+ case BuiltinType::Float: return Target->getFloatFormat();
+ case BuiltinType::Double: return Target->getDoubleFormat();
+ case BuiltinType::LongDouble:
+ if (getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice)
+ return AuxTarget->getLongDoubleFormat();
+ return Target->getLongDoubleFormat();
+ case BuiltinType::Float128:
+ if (getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice)
+ return AuxTarget->getFloat128Format();
+ return Target->getFloat128Format();
+ }
+}
+
+CharUnits ASTContext::getDeclAlign(const Decl *D, bool ForAlignof) const {
+ unsigned Align = Target->getCharWidth();
+
+ bool UseAlignAttrOnly = false;
+ if (unsigned AlignFromAttr = D->getMaxAlignment()) {
+ Align = AlignFromAttr;
+
+ // __attribute__((aligned)) can increase or decrease alignment
+ // *except* on a struct or struct member, where it only increases
+ // alignment unless 'packed' is also specified.
+ //
+ // It is an error for alignas to decrease alignment, so we can
+ // ignore that possibility; Sema should diagnose it.
+ if (isa<FieldDecl>(D)) {
+ UseAlignAttrOnly = D->hasAttr<PackedAttr>() ||
+ cast<FieldDecl>(D)->getParent()->hasAttr<PackedAttr>();
+ } else {
+ UseAlignAttrOnly = true;
+ }
+ }
+ else if (isa<FieldDecl>(D))
+ UseAlignAttrOnly =
+ D->hasAttr<PackedAttr>() ||
+ cast<FieldDecl>(D)->getParent()->hasAttr<PackedAttr>();
+
+ // If we're using the align attribute only, just ignore everything
+ // else about the declaration and its type.
+ if (UseAlignAttrOnly) {
+ // do nothing
+ } else if (const auto *VD = dyn_cast<ValueDecl>(D)) {
+ QualType T = VD->getType();
+ if (const auto *RT = T->getAs<ReferenceType>()) {
+ if (ForAlignof)
+ T = RT->getPointeeType();
+ else
+ T = getPointerType(RT->getPointeeType());
+ }
+ QualType BaseT = getBaseElementType(T);
+ if (T->isFunctionType())
+ Align = getTypeInfoImpl(T.getTypePtr()).Align;
+ else if (!BaseT->isIncompleteType()) {
+ // Adjust alignments of declarations with array type by the
+ // large-array alignment on the target.
+ if (const ArrayType *arrayType = getAsArrayType(T)) {
+ unsigned MinWidth = Target->getLargeArrayMinWidth();
+ if (!ForAlignof && MinWidth) {
+ if (isa<VariableArrayType>(arrayType))
+ Align = std::max(Align, Target->getLargeArrayAlign());
+ else if (isa<ConstantArrayType>(arrayType) &&
+ MinWidth <= getTypeSize(cast<ConstantArrayType>(arrayType)))
+ Align = std::max(Align, Target->getLargeArrayAlign());
+ }
+ }
+ Align = std::max(Align, getPreferredTypeAlign(T.getTypePtr()));
+ if (BaseT.getQualifiers().hasUnaligned())
+ Align = Target->getCharWidth();
+ if (const auto *VD = dyn_cast<VarDecl>(D)) {
+ if (VD->hasGlobalStorage() && !ForAlignof) {
+ uint64_t TypeSize = getTypeSize(T.getTypePtr());
+ Align = std::max(Align, getTargetInfo().getMinGlobalAlign(TypeSize));
+ }
+ }
+ }
+
+ // Fields can be subject to extra alignment constraints, like if
+ // the field is packed, the struct is packed, or the struct has a
+ // a max-field-alignment constraint (#pragma pack). So calculate
+ // the actual alignment of the field within the struct, and then
+ // (as we're expected to) constrain that by the alignment of the type.
+ if (const auto *Field = dyn_cast<FieldDecl>(VD)) {
+ const RecordDecl *Parent = Field->getParent();
+ // We can only produce a sensible answer if the record is valid.
+ if (!Parent->isInvalidDecl()) {
+ const ASTRecordLayout &Layout = getASTRecordLayout(Parent);
+
+ // Start with the record's overall alignment.
+ unsigned FieldAlign = toBits(Layout.getAlignment());
+
+ // Use the GCD of that and the offset within the record.
+ uint64_t Offset = Layout.getFieldOffset(Field->getFieldIndex());
+ if (Offset > 0) {
+ // Alignment is always a power of 2, so the GCD will be a power of 2,
+ // which means we get to do this crazy thing instead of Euclid's.
+ uint64_t LowBitOfOffset = Offset & (~Offset + 1);
+ if (LowBitOfOffset < FieldAlign)
+ FieldAlign = static_cast<unsigned>(LowBitOfOffset);
+ }
+
+ Align = std::min(Align, FieldAlign);
+ }
+ }
+ }
+
+ return toCharUnitsFromBits(Align);
+}
+
+// getTypeInfoDataSizeInChars - Return the size of a type, in
+// chars. If the type is a record, its data size is returned. This is
+// the size of the memcpy that's performed when assigning this type
+// using a trivial copy/move assignment operator.
+std::pair<CharUnits, CharUnits>
+ASTContext::getTypeInfoDataSizeInChars(QualType T) const {
+ std::pair<CharUnits, CharUnits> sizeAndAlign = getTypeInfoInChars(T);
+
+ // In C++, objects can sometimes be allocated into the tail padding
+ // of a base-class subobject. We decide whether that's possible
+ // during class layout, so here we can just trust the layout results.
+ if (getLangOpts().CPlusPlus) {
+ if (const auto *RT = T->getAs<RecordType>()) {
+ const ASTRecordLayout &layout = getASTRecordLayout(RT->getDecl());
+ sizeAndAlign.first = layout.getDataSize();
+ }
+ }
+
+ return sizeAndAlign;
+}
+
+/// getConstantArrayInfoInChars - Performing the computation in CharUnits
+/// instead of in bits prevents overflowing the uint64_t for some large arrays.
+std::pair<CharUnits, CharUnits>
+static getConstantArrayInfoInChars(const ASTContext &Context,
+ const ConstantArrayType *CAT) {
+ std::pair<CharUnits, CharUnits> EltInfo =
+ Context.getTypeInfoInChars(CAT->getElementType());
+ uint64_t Size = CAT->getSize().getZExtValue();
+ assert((Size == 0 || static_cast<uint64_t>(EltInfo.first.getQuantity()) <=
+ (uint64_t)(-1)/Size) &&
+ "Overflow in array type char size evaluation");
+ uint64_t Width = EltInfo.first.getQuantity() * Size;
+ unsigned Align = EltInfo.second.getQuantity();
+ if (!Context.getTargetInfo().getCXXABI().isMicrosoft() ||
+ Context.getTargetInfo().getPointerWidth(0) == 64)
+ Width = llvm::alignTo(Width, Align);
+ return std::make_pair(CharUnits::fromQuantity(Width),
+ CharUnits::fromQuantity(Align));
+}
+
+std::pair<CharUnits, CharUnits>
+ASTContext::getTypeInfoInChars(const Type *T) const {
+ if (const auto *CAT = dyn_cast<ConstantArrayType>(T))
+ return getConstantArrayInfoInChars(*this, CAT);
+ TypeInfo Info = getTypeInfo(T);
+ return std::make_pair(toCharUnitsFromBits(Info.Width),
+ toCharUnitsFromBits(Info.Align));
+}
+
+std::pair<CharUnits, CharUnits>
+ASTContext::getTypeInfoInChars(QualType T) const {
+ return getTypeInfoInChars(T.getTypePtr());
+}
+
+bool ASTContext::isAlignmentRequired(const Type *T) const {
+ return getTypeInfo(T).AlignIsRequired;
+}
+
+bool ASTContext::isAlignmentRequired(QualType T) const {
+ return isAlignmentRequired(T.getTypePtr());
+}
+
+unsigned ASTContext::getTypeAlignIfKnown(QualType T) const {
+ // An alignment on a typedef overrides anything else.
+ if (const auto *TT = T->getAs<TypedefType>())
+ if (unsigned Align = TT->getDecl()->getMaxAlignment())
+ return Align;
+
+ // If we have an (array of) complete type, we're done.
+ T = getBaseElementType(T);
+ if (!T->isIncompleteType())
+ return getTypeAlign(T);
+
+ // If we had an array type, its element type might be a typedef
+ // type with an alignment attribute.
+ if (const auto *TT = T->getAs<TypedefType>())
+ if (unsigned Align = TT->getDecl()->getMaxAlignment())
+ return Align;
+
+ // Otherwise, see if the declaration of the type had an attribute.
+ if (const auto *TT = T->getAs<TagType>())
+ return TT->getDecl()->getMaxAlignment();
+
+ return 0;
+}
+
+TypeInfo ASTContext::getTypeInfo(const Type *T) const {
+ TypeInfoMap::iterator I = MemoizedTypeInfo.find(T);
+ if (I != MemoizedTypeInfo.end())
+ return I->second;
+
+ // This call can invalidate MemoizedTypeInfo[T], so we need a second lookup.
+ TypeInfo TI = getTypeInfoImpl(T);
+ MemoizedTypeInfo[T] = TI;
+ return TI;
+}
+
+/// getTypeInfoImpl - Return the size of the specified type, in bits. This
+/// method does not work on incomplete types.
+///
+/// FIXME: Pointers into different addr spaces could have different sizes and
+/// alignment requirements: getPointerInfo should take an AddrSpace, this
+/// should take a QualType, &c.
+TypeInfo ASTContext::getTypeInfoImpl(const Type *T) const {
+ uint64_t Width = 0;
+ unsigned Align = 8;
+ bool AlignIsRequired = false;
+ unsigned AS = 0;
+ switch (T->getTypeClass()) {
+#define TYPE(Class, Base)
+#define ABSTRACT_TYPE(Class, Base)
+#define NON_CANONICAL_TYPE(Class, Base)
+#define DEPENDENT_TYPE(Class, Base) case Type::Class:
+#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) \
+ case Type::Class: \
+ assert(!T->isDependentType() && "should not see dependent types here"); \
+ return getTypeInfo(cast<Class##Type>(T)->desugar().getTypePtr());
+#include "clang/AST/TypeNodes.inc"
+ llvm_unreachable("Should not see dependent types");
+
+ case Type::FunctionNoProto:
+ case Type::FunctionProto:
+ // GCC extension: alignof(function) = 32 bits
+ Width = 0;
+ Align = 32;
+ break;
+
+ case Type::IncompleteArray:
+ case Type::VariableArray:
+ Width = 0;
+ Align = getTypeAlign(cast<ArrayType>(T)->getElementType());
+ break;
+
+ case Type::ConstantArray: {
+ const auto *CAT = cast<ConstantArrayType>(T);
+
+ TypeInfo EltInfo = getTypeInfo(CAT->getElementType());
+ uint64_t Size = CAT->getSize().getZExtValue();
+ assert((Size == 0 || EltInfo.Width <= (uint64_t)(-1) / Size) &&
+ "Overflow in array type bit size evaluation");
+ Width = EltInfo.Width * Size;
+ Align = EltInfo.Align;
+ if (!getTargetInfo().getCXXABI().isMicrosoft() ||
+ getTargetInfo().getPointerWidth(0) == 64)
+ Width = llvm::alignTo(Width, Align);
+ break;
+ }
+ case Type::ExtVector:
+ case Type::Vector: {
+ const auto *VT = cast<VectorType>(T);
+ TypeInfo EltInfo = getTypeInfo(VT->getElementType());
+ Width = EltInfo.Width * VT->getNumElements();
+ Align = Width;
+ // If the alignment is not a power of 2, round up to the next power of 2.
+ // This happens for non-power-of-2 length vectors.
+ if (Align & (Align-1)) {
+ Align = llvm::NextPowerOf2(Align);
+ Width = llvm::alignTo(Width, Align);
+ }
+ // Adjust the alignment based on the target max.
+ uint64_t TargetVectorAlign = Target->getMaxVectorAlign();
+ if (TargetVectorAlign && TargetVectorAlign < Align)
+ Align = TargetVectorAlign;
+ break;
+ }
+
+ case Type::Builtin:
+ switch (cast<BuiltinType>(T)->getKind()) {
+ default: llvm_unreachable("Unknown builtin type!");
+ case BuiltinType::Void:
+ // GCC extension: alignof(void) = 8 bits.
+ Width = 0;
+ Align = 8;
+ break;
+ case BuiltinType::Bool:
+ Width = Target->getBoolWidth();
+ Align = Target->getBoolAlign();
+ break;
+ case BuiltinType::Char_S:
+ case BuiltinType::Char_U:
+ case BuiltinType::UChar:
+ case BuiltinType::SChar:
+ case BuiltinType::Char8:
+ Width = Target->getCharWidth();
+ Align = Target->getCharAlign();
+ break;
+ case BuiltinType::WChar_S:
+ case BuiltinType::WChar_U:
+ Width = Target->getWCharWidth();
+ Align = Target->getWCharAlign();
+ break;
+ case BuiltinType::Char16:
+ Width = Target->getChar16Width();
+ Align = Target->getChar16Align();
+ break;
+ case BuiltinType::Char32:
+ Width = Target->getChar32Width();
+ Align = Target->getChar32Align();
+ break;
+ case BuiltinType::UShort:
+ case BuiltinType::Short:
+ Width = Target->getShortWidth();
+ Align = Target->getShortAlign();
+ break;
+ case BuiltinType::UInt:
+ case BuiltinType::Int:
+ Width = Target->getIntWidth();
+ Align = Target->getIntAlign();
+ break;
+ case BuiltinType::ULong:
+ case BuiltinType::Long:
+ Width = Target->getLongWidth();
+ Align = Target->getLongAlign();
+ break;
+ case BuiltinType::ULongLong:
+ case BuiltinType::LongLong:
+ Width = Target->getLongLongWidth();
+ Align = Target->getLongLongAlign();
+ break;
+ case BuiltinType::Int128:
+ case BuiltinType::UInt128:
+ Width = 128;
+ Align = 128; // int128_t is 128-bit aligned on all targets.
+ break;
+ case BuiltinType::ShortAccum:
+ case BuiltinType::UShortAccum:
+ case BuiltinType::SatShortAccum:
+ case BuiltinType::SatUShortAccum:
+ Width = Target->getShortAccumWidth();
+ Align = Target->getShortAccumAlign();
+ break;
+ case BuiltinType::Accum:
+ case BuiltinType::UAccum:
+ case BuiltinType::SatAccum:
+ case BuiltinType::SatUAccum:
+ Width = Target->getAccumWidth();
+ Align = Target->getAccumAlign();
+ break;
+ case BuiltinType::LongAccum:
+ case BuiltinType::ULongAccum:
+ case BuiltinType::SatLongAccum:
+ case BuiltinType::SatULongAccum:
+ Width = Target->getLongAccumWidth();
+ Align = Target->getLongAccumAlign();
+ break;
+ case BuiltinType::ShortFract:
+ case BuiltinType::UShortFract:
+ case BuiltinType::SatShortFract:
+ case BuiltinType::SatUShortFract:
+ Width = Target->getShortFractWidth();
+ Align = Target->getShortFractAlign();
+ break;
+ case BuiltinType::Fract:
+ case BuiltinType::UFract:
+ case BuiltinType::SatFract:
+ case BuiltinType::SatUFract:
+ Width = Target->getFractWidth();
+ Align = Target->getFractAlign();
+ break;
+ case BuiltinType::LongFract:
+ case BuiltinType::ULongFract:
+ case BuiltinType::SatLongFract:
+ case BuiltinType::SatULongFract:
+ Width = Target->getLongFractWidth();
+ Align = Target->getLongFractAlign();
+ break;
+ case BuiltinType::Float16:
+ case BuiltinType::Half:
+ if (Target->hasFloat16Type() || !getLangOpts().OpenMP ||
+ !getLangOpts().OpenMPIsDevice) {
+ Width = Target->getHalfWidth();
+ Align = Target->getHalfAlign();
+ } else {
+ assert(getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice &&
+ "Expected OpenMP device compilation.");
+ Width = AuxTarget->getHalfWidth();
+ Align = AuxTarget->getHalfAlign();
+ }
+ break;
+ case BuiltinType::Float:
+ Width = Target->getFloatWidth();
+ Align = Target->getFloatAlign();
+ break;
+ case BuiltinType::Double:
+ Width = Target->getDoubleWidth();
+ Align = Target->getDoubleAlign();
+ break;
+ case BuiltinType::LongDouble:
+ if (getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice &&
+ (Target->getLongDoubleWidth() != AuxTarget->getLongDoubleWidth() ||
+ Target->getLongDoubleAlign() != AuxTarget->getLongDoubleAlign())) {
+ Width = AuxTarget->getLongDoubleWidth();
+ Align = AuxTarget->getLongDoubleAlign();
+ } else {
+ Width = Target->getLongDoubleWidth();
+ Align = Target->getLongDoubleAlign();
+ }
+ break;
+ case BuiltinType::Float128:
+ if (Target->hasFloat128Type() || !getLangOpts().OpenMP ||
+ !getLangOpts().OpenMPIsDevice) {
+ Width = Target->getFloat128Width();
+ Align = Target->getFloat128Align();
+ } else {
+ assert(getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice &&
+ "Expected OpenMP device compilation.");
+ Width = AuxTarget->getFloat128Width();
+ Align = AuxTarget->getFloat128Align();
+ }
+ break;
+ case BuiltinType::NullPtr:
+ Width = Target->getPointerWidth(0); // C++ 3.9.1p11: sizeof(nullptr_t)
+ Align = Target->getPointerAlign(0); // == sizeof(void*)
+ break;
+ case BuiltinType::ObjCId:
+ case BuiltinType::ObjCClass:
+ case BuiltinType::ObjCSel:
+ Width = Target->getPointerWidth(0);
+ Align = Target->getPointerAlign(0);
+ break;
+ case BuiltinType::OCLSampler:
+ case BuiltinType::OCLEvent:
+ case BuiltinType::OCLClkEvent:
+ case BuiltinType::OCLQueue:
+ case BuiltinType::OCLReserveID:
+#define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
+ case BuiltinType::Id:
+#include "clang/Basic/OpenCLImageTypes.def"
+#define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
+ case BuiltinType::Id:
+#include "clang/Basic/OpenCLExtensionTypes.def"
+ AS = getTargetAddressSpace(
+ Target->getOpenCLTypeAddrSpace(getOpenCLTypeKind(T)));
+ Width = Target->getPointerWidth(AS);
+ Align = Target->getPointerAlign(AS);
+ break;
+ // The SVE types are effectively target-specific. The length of an
+ // SVE_VECTOR_TYPE is only known at runtime, but it is always a multiple
+ // of 128 bits. There is one predicate bit for each vector byte, so the
+ // length of an SVE_PREDICATE_TYPE is always a multiple of 16 bits.
+ //
+ // Because the length is only known at runtime, we use a dummy value
+ // of 0 for the static length. The alignment values are those defined
+ // by the Procedure Call Standard for the Arm Architecture.
+#define SVE_VECTOR_TYPE(Name, Id, SingletonId, ElKind, ElBits, IsSigned, IsFP)\
+ case BuiltinType::Id: \
+ Width = 0; \
+ Align = 128; \
+ break;
+#define SVE_PREDICATE_TYPE(Name, Id, SingletonId, ElKind) \
+ case BuiltinType::Id: \
+ Width = 0; \
+ Align = 16; \
+ break;
+#include "clang/Basic/AArch64SVEACLETypes.def"
+ }
+ break;
+ case Type::ObjCObjectPointer:
+ Width = Target->getPointerWidth(0);
+ Align = Target->getPointerAlign(0);
+ break;
+ case Type::BlockPointer:
+ AS = getTargetAddressSpace(cast<BlockPointerType>(T)->getPointeeType());
+ Width = Target->getPointerWidth(AS);
+ Align = Target->getPointerAlign(AS);
+ break;
+ case Type::LValueReference:
+ case Type::RValueReference:
+ // alignof and sizeof should never enter this code path here, so we go
+ // the pointer route.
+ AS = getTargetAddressSpace(cast<ReferenceType>(T)->getPointeeType());
+ Width = Target->getPointerWidth(AS);
+ Align = Target->getPointerAlign(AS);
+ break;
+ case Type::Pointer:
+ AS = getTargetAddressSpace(cast<PointerType>(T)->getPointeeType());
+ Width = Target->getPointerWidth(AS);
+ Align = Target->getPointerAlign(AS);
+ break;
+ case Type::MemberPointer: {
+ const auto *MPT = cast<MemberPointerType>(T);
+ CXXABI::MemberPointerInfo MPI = ABI->getMemberPointerInfo(MPT);
+ Width = MPI.Width;
+ Align = MPI.Align;
+ break;
+ }
+ case Type::Complex: {
+ // Complex types have the same alignment as their elements, but twice the
+ // size.
+ TypeInfo EltInfo = getTypeInfo(cast<ComplexType>(T)->getElementType());
+ Width = EltInfo.Width * 2;
+ Align = EltInfo.Align;
+ break;
+ }
+ case Type::ObjCObject:
+ return getTypeInfo(cast<ObjCObjectType>(T)->getBaseType().getTypePtr());
+ case Type::Adjusted:
+ case Type::Decayed:
+ return getTypeInfo(cast<AdjustedType>(T)->getAdjustedType().getTypePtr());
+ case Type::ObjCInterface: {
+ const auto *ObjCI = cast<ObjCInterfaceType>(T);
+ const ASTRecordLayout &Layout = getASTObjCInterfaceLayout(ObjCI->getDecl());
+ Width = toBits(Layout.getSize());
+ Align = toBits(Layout.getAlignment());
+ break;
+ }
+ case Type::Record:
+ case Type::Enum: {
+ const auto *TT = cast<TagType>(T);
+
+ if (TT->getDecl()->isInvalidDecl()) {
+ Width = 8;
+ Align = 8;
+ break;
+ }
+
+ if (const auto *ET = dyn_cast<EnumType>(TT)) {
+ const EnumDecl *ED = ET->getDecl();
+ TypeInfo Info =
+ getTypeInfo(ED->getIntegerType()->getUnqualifiedDesugaredType());
+ if (unsigned AttrAlign = ED->getMaxAlignment()) {
+ Info.Align = AttrAlign;
+ Info.AlignIsRequired = true;
+ }
+ return Info;
+ }
+
+ const auto *RT = cast<RecordType>(TT);
+ const RecordDecl *RD = RT->getDecl();
+ const ASTRecordLayout &Layout = getASTRecordLayout(RD);
+ Width = toBits(Layout.getSize());
+ Align = toBits(Layout.getAlignment());
+ AlignIsRequired = RD->hasAttr<AlignedAttr>();
+ break;
+ }
+
+ case Type::SubstTemplateTypeParm:
+ return getTypeInfo(cast<SubstTemplateTypeParmType>(T)->
+ getReplacementType().getTypePtr());
+
+ case Type::Auto:
+ case Type::DeducedTemplateSpecialization: {
+ const auto *A = cast<DeducedType>(T);
+ assert(!A->getDeducedType().isNull() &&
+ "cannot request the size of an undeduced or dependent auto type");
+ return getTypeInfo(A->getDeducedType().getTypePtr());
+ }
+
+ case Type::Paren:
+ return getTypeInfo(cast<ParenType>(T)->getInnerType().getTypePtr());
+
+ case Type::MacroQualified:
+ return getTypeInfo(
+ cast<MacroQualifiedType>(T)->getUnderlyingType().getTypePtr());
+
+ case Type::ObjCTypeParam:
+ return getTypeInfo(cast<ObjCTypeParamType>(T)->desugar().getTypePtr());
+
+ case Type::Typedef: {
+ const TypedefNameDecl *Typedef = cast<TypedefType>(T)->getDecl();
+ TypeInfo Info = getTypeInfo(Typedef->getUnderlyingType().getTypePtr());
+ // If the typedef has an aligned attribute on it, it overrides any computed
+ // alignment we have. This violates the GCC documentation (which says that
+ // attribute(aligned) can only round up) but matches its implementation.
+ if (unsigned AttrAlign = Typedef->getMaxAlignment()) {
+ Align = AttrAlign;
+ AlignIsRequired = true;
+ } else {
+ Align = Info.Align;
+ AlignIsRequired = Info.AlignIsRequired;
+ }
+ Width = Info.Width;
+ break;
+ }
+
+ case Type::Elaborated:
+ return getTypeInfo(cast<ElaboratedType>(T)->getNamedType().getTypePtr());
+
+ case Type::Attributed:
+ return getTypeInfo(
+ cast<AttributedType>(T)->getEquivalentType().getTypePtr());
+
+ case Type::Atomic: {
+ // Start with the base type information.
+ TypeInfo Info = getTypeInfo(cast<AtomicType>(T)->getValueType());
+ Width = Info.Width;
+ Align = Info.Align;
+
+ if (!Width) {
+ // An otherwise zero-sized type should still generate an
+ // atomic operation.
+ Width = Target->getCharWidth();
+ assert(Align);
+ } else if (Width <= Target->getMaxAtomicPromoteWidth()) {
+ // If the size of the type doesn't exceed the platform's max
+ // atomic promotion width, make the size and alignment more
+ // favorable to atomic operations:
+
+ // Round the size up to a power of 2.
+ if (!llvm::isPowerOf2_64(Width))
+ Width = llvm::NextPowerOf2(Width);
+
+ // Set the alignment equal to the size.
+ Align = static_cast<unsigned>(Width);
+ }
+ }
+ break;
+
+ case Type::Pipe:
+ Width = Target->getPointerWidth(getTargetAddressSpace(LangAS::opencl_global));
+ Align = Target->getPointerAlign(getTargetAddressSpace(LangAS::opencl_global));
+ break;
+ }
+
+ assert(llvm::isPowerOf2_32(Align) && "Alignment must be power of 2");
+ return TypeInfo(Width, Align, AlignIsRequired);
+}
+
+unsigned ASTContext::getTypeUnadjustedAlign(const Type *T) const {
+ UnadjustedAlignMap::iterator I = MemoizedUnadjustedAlign.find(T);
+ if (I != MemoizedUnadjustedAlign.end())
+ return I->second;
+
+ unsigned UnadjustedAlign;
+ if (const auto *RT = T->getAs<RecordType>()) {
+ const RecordDecl *RD = RT->getDecl();
+ const ASTRecordLayout &Layout = getASTRecordLayout(RD);
+ UnadjustedAlign = toBits(Layout.getUnadjustedAlignment());
+ } else if (const auto *ObjCI = T->getAs<ObjCInterfaceType>()) {
+ const ASTRecordLayout &Layout = getASTObjCInterfaceLayout(ObjCI->getDecl());
+ UnadjustedAlign = toBits(Layout.getUnadjustedAlignment());
+ } else {
+ UnadjustedAlign = getTypeAlign(T->getUnqualifiedDesugaredType());
+ }
+
+ MemoizedUnadjustedAlign[T] = UnadjustedAlign;
+ return UnadjustedAlign;
+}
+
+unsigned ASTContext::getOpenMPDefaultSimdAlign(QualType T) const {
+ unsigned SimdAlign = getTargetInfo().getSimdDefaultAlign();
+ // Target ppc64 with QPX: simd default alignment for pointer to double is 32.
+ if ((getTargetInfo().getTriple().getArch() == llvm::Triple::ppc64 ||
+ getTargetInfo().getTriple().getArch() == llvm::Triple::ppc64le) &&
+ getTargetInfo().getABI() == "elfv1-qpx" &&
+ T->isSpecificBuiltinType(BuiltinType::Double))
+ SimdAlign = 256;
+ return SimdAlign;
+}
+
+/// toCharUnitsFromBits - Convert a size in bits to a size in characters.
+CharUnits ASTContext::toCharUnitsFromBits(int64_t BitSize) const {
+ return CharUnits::fromQuantity(BitSize / getCharWidth());
+}
+
+/// toBits - Convert a size in characters to a size in characters.
+int64_t ASTContext::toBits(CharUnits CharSize) const {
+ return CharSize.getQuantity() * getCharWidth();
+}
+
+/// getTypeSizeInChars - Return the size of the specified type, in characters.
+/// This method does not work on incomplete types.
+CharUnits ASTContext::getTypeSizeInChars(QualType T) const {
+ return getTypeInfoInChars(T).first;
+}
+CharUnits ASTContext::getTypeSizeInChars(const Type *T) const {
+ return getTypeInfoInChars(T).first;
+}
+
+/// getTypeAlignInChars - Return the ABI-specified alignment of a type, in
+/// characters. This method does not work on incomplete types.
+CharUnits ASTContext::getTypeAlignInChars(QualType T) const {
+ return toCharUnitsFromBits(getTypeAlign(T));
+}
+CharUnits ASTContext::getTypeAlignInChars(const Type *T) const {
+ return toCharUnitsFromBits(getTypeAlign(T));
+}
+
+/// getTypeUnadjustedAlignInChars - Return the ABI-specified alignment of a
+/// type, in characters, before alignment adustments. This method does
+/// not work on incomplete types.
+CharUnits ASTContext::getTypeUnadjustedAlignInChars(QualType T) const {
+ return toCharUnitsFromBits(getTypeUnadjustedAlign(T));
+}
+CharUnits ASTContext::getTypeUnadjustedAlignInChars(const Type *T) const {
+ return toCharUnitsFromBits(getTypeUnadjustedAlign(T));
+}
+
+/// getPreferredTypeAlign - Return the "preferred" alignment of the specified
+/// type for the current target in bits. This can be different than the ABI
+/// alignment in cases where it is beneficial for performance to overalign
+/// a data type.
+unsigned ASTContext::getPreferredTypeAlign(const Type *T) const {
+ TypeInfo TI = getTypeInfo(T);
+ unsigned ABIAlign = TI.Align;
+
+ T = T->getBaseElementTypeUnsafe();
+
+ // The preferred alignment of member pointers is that of a pointer.
+ if (T->isMemberPointerType())
+ return getPreferredTypeAlign(getPointerDiffType().getTypePtr());
+
+ if (!Target->allowsLargerPreferedTypeAlignment())
+ return ABIAlign;
+
+ // Double and long long should be naturally aligned if possible.
+ if (const auto *CT = T->getAs<ComplexType>())
+ T = CT->getElementType().getTypePtr();
+ if (const auto *ET = T->getAs<EnumType>())
+ T = ET->getDecl()->getIntegerType().getTypePtr();
+ if (T->isSpecificBuiltinType(BuiltinType::Double) ||
+ T->isSpecificBuiltinType(BuiltinType::LongLong) ||
+ T->isSpecificBuiltinType(BuiltinType::ULongLong))
+ // Don't increase the alignment if an alignment attribute was specified on a
+ // typedef declaration.
+ if (!TI.AlignIsRequired)
+ return std::max(ABIAlign, (unsigned)getTypeSize(T));
+
+ return ABIAlign;
+}
+
+/// getTargetDefaultAlignForAttributeAligned - Return the default alignment
+/// for __attribute__((aligned)) on this target, to be used if no alignment
+/// value is specified.
+unsigned ASTContext::getTargetDefaultAlignForAttributeAligned() const {
+ return getTargetInfo().getDefaultAlignForAttributeAligned();
+}
+
+/// getAlignOfGlobalVar - Return the alignment in bits that should be given
+/// to a global variable of the specified type.
+unsigned ASTContext::getAlignOfGlobalVar(QualType T) const {
+ uint64_t TypeSize = getTypeSize(T.getTypePtr());
+ return std::max(getTypeAlign(T), getTargetInfo().getMinGlobalAlign(TypeSize));
+}
+
+/// getAlignOfGlobalVarInChars - Return the alignment in characters that
+/// should be given to a global variable of the specified type.
+CharUnits ASTContext::getAlignOfGlobalVarInChars(QualType T) const {
+ return toCharUnitsFromBits(getAlignOfGlobalVar(T));
+}
+
+CharUnits ASTContext::getOffsetOfBaseWithVBPtr(const CXXRecordDecl *RD) const {
+ CharUnits Offset = CharUnits::Zero();
+ const ASTRecordLayout *Layout = &getASTRecordLayout(RD);
+ while (const CXXRecordDecl *Base = Layout->getBaseSharingVBPtr()) {
+ Offset += Layout->getBaseClassOffset(Base);
+ Layout = &getASTRecordLayout(Base);
+ }
+ return Offset;
+}
+
+/// DeepCollectObjCIvars -
+/// This routine first collects all declared, but not synthesized, ivars in
+/// super class and then collects all ivars, including those synthesized for
+/// current class. This routine is used for implementation of current class
+/// when all ivars, declared and synthesized are known.
+void ASTContext::DeepCollectObjCIvars(const ObjCInterfaceDecl *OI,
+ bool leafClass,
+ SmallVectorImpl<const ObjCIvarDecl*> &Ivars) const {
+ if (const ObjCInterfaceDecl *SuperClass = OI->getSuperClass())
+ DeepCollectObjCIvars(SuperClass, false, Ivars);
+ if (!leafClass) {
+ for (const auto *I : OI->ivars())
+ Ivars.push_back(I);
+ } else {
+ auto *IDecl = const_cast<ObjCInterfaceDecl *>(OI);
+ for (const ObjCIvarDecl *Iv = IDecl->all_declared_ivar_begin(); Iv;
+ Iv= Iv->getNextIvar())
+ Ivars.push_back(Iv);
+ }
+}
+
+/// CollectInheritedProtocols - Collect all protocols in current class and
+/// those inherited by it.
+void ASTContext::CollectInheritedProtocols(const Decl *CDecl,
+ llvm::SmallPtrSet<ObjCProtocolDecl*, 8> &Protocols) {
+ if (const auto *OI = dyn_cast<ObjCInterfaceDecl>(CDecl)) {
+ // We can use protocol_iterator here instead of
+ // all_referenced_protocol_iterator since we are walking all categories.
+ for (auto *Proto : OI->all_referenced_protocols()) {
+ CollectInheritedProtocols(Proto, Protocols);
+ }
+
+ // Categories of this Interface.
+ for (const auto *Cat : OI->visible_categories())
+ CollectInheritedProtocols(Cat, Protocols);
+
+ if (ObjCInterfaceDecl *SD = OI->getSuperClass())
+ while (SD) {
+ CollectInheritedProtocols(SD, Protocols);
+ SD = SD->getSuperClass();
+ }
+ } else if (const auto *OC = dyn_cast<ObjCCategoryDecl>(CDecl)) {
+ for (auto *Proto : OC->protocols()) {
+ CollectInheritedProtocols(Proto, Protocols);
+ }
+ } else if (const auto *OP = dyn_cast<ObjCProtocolDecl>(CDecl)) {
+ // Insert the protocol.
+ if (!Protocols.insert(
+ const_cast<ObjCProtocolDecl *>(OP->getCanonicalDecl())).second)
+ return;
+
+ for (auto *Proto : OP->protocols())
+ CollectInheritedProtocols(Proto, Protocols);
+ }
+}
+
+static bool unionHasUniqueObjectRepresentations(const ASTContext &Context,
+ const RecordDecl *RD) {
+ assert(RD->isUnion() && "Must be union type");
+ CharUnits UnionSize = Context.getTypeSizeInChars(RD->getTypeForDecl());
+
+ for (const auto *Field : RD->fields()) {
+ if (!Context.hasUniqueObjectRepresentations(Field->getType()))
+ return false;
+ CharUnits FieldSize = Context.getTypeSizeInChars(Field->getType());
+ if (FieldSize != UnionSize)
+ return false;
+ }
+ return !RD->field_empty();
+}
+
+static bool isStructEmpty(QualType Ty) {
+ const RecordDecl *RD = Ty->castAs<RecordType>()->getDecl();
+
+ if (!RD->field_empty())
+ return false;
+
+ if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>(RD))
+ return ClassDecl->isEmpty();
+
+ return true;
+}
+
+static llvm::Optional<int64_t>
+structHasUniqueObjectRepresentations(const ASTContext &Context,
+ const RecordDecl *RD) {
+ assert(!RD->isUnion() && "Must be struct/class type");
+ const auto &Layout = Context.getASTRecordLayout(RD);
+
+ int64_t CurOffsetInBits = 0;
+ if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>(RD)) {
+ if (ClassDecl->isDynamicClass())
+ return llvm::None;
+
+ SmallVector<std::pair<QualType, int64_t>, 4> Bases;
+ for (const auto Base : ClassDecl->bases()) {
+ // Empty types can be inherited from, and non-empty types can potentially
+ // have tail padding, so just make sure there isn't an error.
+ if (!isStructEmpty(Base.getType())) {
+ llvm::Optional<int64_t> Size = structHasUniqueObjectRepresentations(
+ Context, Base.getType()->castAs<RecordType>()->getDecl());
+ if (!Size)
+ return llvm::None;
+ Bases.emplace_back(Base.getType(), Size.getValue());
+ }
+ }
+
+ llvm::sort(Bases, [&](const std::pair<QualType, int64_t> &L,
+ const std::pair<QualType, int64_t> &R) {
+ return Layout.getBaseClassOffset(L.first->getAsCXXRecordDecl()) <
+ Layout.getBaseClassOffset(R.first->getAsCXXRecordDecl());
+ });
+
+ for (const auto Base : Bases) {
+ int64_t BaseOffset = Context.toBits(
+ Layout.getBaseClassOffset(Base.first->getAsCXXRecordDecl()));
+ int64_t BaseSize = Base.second;
+ if (BaseOffset != CurOffsetInBits)
+ return llvm::None;
+ CurOffsetInBits = BaseOffset + BaseSize;
+ }
+ }
+
+ for (const auto *Field : RD->fields()) {
+ if (!Field->getType()->isReferenceType() &&
+ !Context.hasUniqueObjectRepresentations(Field->getType()))
+ return llvm::None;
+
+ int64_t FieldSizeInBits =
+ Context.toBits(Context.getTypeSizeInChars(Field->getType()));
+ if (Field->isBitField()) {
+ int64_t BitfieldSize = Field->getBitWidthValue(Context);
+
+ if (BitfieldSize > FieldSizeInBits)
+ return llvm::None;
+ FieldSizeInBits = BitfieldSize;
+ }
+
+ int64_t FieldOffsetInBits = Context.getFieldOffset(Field);
+
+ if (FieldOffsetInBits != CurOffsetInBits)
+ return llvm::None;
+
+ CurOffsetInBits = FieldSizeInBits + FieldOffsetInBits;
+ }
+
+ return CurOffsetInBits;
+}
+
+bool ASTContext::hasUniqueObjectRepresentations(QualType Ty) const {
+ // C++17 [meta.unary.prop]:
+ // The predicate condition for a template specialization
+ // has_unique_object_representations<T> shall be
+ // satisfied if and only if:
+ // (9.1) - T is trivially copyable, and
+ // (9.2) - any two objects of type T with the same value have the same
+ // object representation, where two objects
+ // of array or non-union class type are considered to have the same value
+ // if their respective sequences of
+ // direct subobjects have the same values, and two objects of union type
+ // are considered to have the same
+ // value if they have the same active member and the corresponding members
+ // have the same value.
+ // The set of scalar types for which this condition holds is
+ // implementation-defined. [ Note: If a type has padding
+ // bits, the condition does not hold; otherwise, the condition holds true
+ // for unsigned integral types. -- end note ]
+ assert(!Ty.isNull() && "Null QualType sent to unique object rep check");
+
+ // Arrays are unique only if their element type is unique.
+ if (Ty->isArrayType())
+ return hasUniqueObjectRepresentations(getBaseElementType(Ty));
+
+ // (9.1) - T is trivially copyable...
+ if (!Ty.isTriviallyCopyableType(*this))
+ return false;
+
+ // All integrals and enums are unique.
+ if (Ty->isIntegralOrEnumerationType())
+ return true;
+
+ // All other pointers are unique.
+ if (Ty->isPointerType())
+ return true;
+
+ if (Ty->isMemberPointerType()) {
+ const auto *MPT = Ty->getAs<MemberPointerType>();
+ return !ABI->getMemberPointerInfo(MPT).HasPadding;
+ }
+
+ if (Ty->isRecordType()) {
+ const RecordDecl *Record = Ty->castAs<RecordType>()->getDecl();
+
+ if (Record->isInvalidDecl())
+ return false;
+
+ if (Record->isUnion())
+ return unionHasUniqueObjectRepresentations(*this, Record);
+
+ Optional<int64_t> StructSize =
+ structHasUniqueObjectRepresentations(*this, Record);
+
+ return StructSize &&
+ StructSize.getValue() == static_cast<int64_t>(getTypeSize(Ty));
+ }
+
+ // FIXME: More cases to handle here (list by rsmith):
+ // vectors (careful about, eg, vector of 3 foo)
+ // _Complex int and friends
+ // _Atomic T
+ // Obj-C block pointers
+ // Obj-C object pointers
+ // and perhaps OpenCL's various builtin types (pipe, sampler_t, event_t,
+ // clk_event_t, queue_t, reserve_id_t)
+ // There're also Obj-C class types and the Obj-C selector type, but I think it
+ // makes sense for those to return false here.
+
+ return false;
+}
+
+unsigned ASTContext::CountNonClassIvars(const ObjCInterfaceDecl *OI) const {
+ unsigned count = 0;
+ // Count ivars declared in class extension.
+ for (const auto *Ext : OI->known_extensions())
+ count += Ext->ivar_size();
+
+ // Count ivar defined in this class's implementation. This
+ // includes synthesized ivars.
+ if (ObjCImplementationDecl *ImplDecl = OI->getImplementation())
+ count += ImplDecl->ivar_size();
+
+ return count;
+}
+
+bool ASTContext::isSentinelNullExpr(const Expr *E) {
+ if (!E)
+ return false;
+
+ // nullptr_t is always treated as null.
+ if (E->getType()->isNullPtrType()) return true;
+
+ if (E->getType()->isAnyPointerType() &&
+ E->IgnoreParenCasts()->isNullPointerConstant(*this,
+ Expr::NPC_ValueDependentIsNull))
+ return true;
+
+ // Unfortunately, __null has type 'int'.
+ if (isa<GNUNullExpr>(E)) return true;
+
+ return false;
+}
+
+/// Get the implementation of ObjCInterfaceDecl, or nullptr if none
+/// exists.
+ObjCImplementationDecl *ASTContext::getObjCImplementation(ObjCInterfaceDecl *D) {
+ llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
+ I = ObjCImpls.find(D);
+ if (I != ObjCImpls.end())
+ return cast<ObjCImplementationDecl>(I->second);
+ return nullptr;
+}
+
+/// Get the implementation of ObjCCategoryDecl, or nullptr if none
+/// exists.
+ObjCCategoryImplDecl *ASTContext::getObjCImplementation(ObjCCategoryDecl *D) {
+ llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
+ I = ObjCImpls.find(D);
+ if (I != ObjCImpls.end())
+ return cast<ObjCCategoryImplDecl>(I->second);
+ return nullptr;
+}
+
+/// Set the implementation of ObjCInterfaceDecl.
+void ASTContext::setObjCImplementation(ObjCInterfaceDecl *IFaceD,
+ ObjCImplementationDecl *ImplD) {
+ assert(IFaceD && ImplD && "Passed null params");
+ ObjCImpls[IFaceD] = ImplD;
+}
+
+/// Set the implementation of ObjCCategoryDecl.
+void ASTContext::setObjCImplementation(ObjCCategoryDecl *CatD,
+ ObjCCategoryImplDecl *ImplD) {
+ assert(CatD && ImplD && "Passed null params");
+ ObjCImpls[CatD] = ImplD;
+}
+
+const ObjCMethodDecl *
+ASTContext::getObjCMethodRedeclaration(const ObjCMethodDecl *MD) const {
+ return ObjCMethodRedecls.lookup(MD);
+}
+
+void ASTContext::setObjCMethodRedeclaration(const ObjCMethodDecl *MD,
+ const ObjCMethodDecl *Redecl) {
+ assert(!getObjCMethodRedeclaration(MD) && "MD already has a redeclaration");
+ ObjCMethodRedecls[MD] = Redecl;
+}
+
+const ObjCInterfaceDecl *ASTContext::getObjContainingInterface(
+ const NamedDecl *ND) const {
+ if (const auto *ID = dyn_cast<ObjCInterfaceDecl>(ND->getDeclContext()))
+ return ID;
+ if (const auto *CD = dyn_cast<ObjCCategoryDecl>(ND->getDeclContext()))
+ return CD->getClassInterface();
+ if (const auto *IMD = dyn_cast<ObjCImplDecl>(ND->getDeclContext()))
+ return IMD->getClassInterface();
+
+ return nullptr;
+}
+
+/// Get the copy initialization expression of VarDecl, or nullptr if
+/// none exists.
+ASTContext::BlockVarCopyInit
+ASTContext::getBlockVarCopyInit(const VarDecl*VD) const {
+ assert(VD && "Passed null params");
+ assert(VD->hasAttr<BlocksAttr>() &&
+ "getBlockVarCopyInits - not __block var");
+ auto I = BlockVarCopyInits.find(VD);
+ if (I != BlockVarCopyInits.end())
+ return I->second;
+ return {nullptr, false};
+}
+
+/// Set the copy initialization expression of a block var decl.
+void ASTContext::setBlockVarCopyInit(const VarDecl*VD, Expr *CopyExpr,
+ bool CanThrow) {
+ assert(VD && CopyExpr && "Passed null params");
+ assert(VD->hasAttr<BlocksAttr>() &&
+ "setBlockVarCopyInits - not __block var");
+ BlockVarCopyInits[VD].setExprAndFlag(CopyExpr, CanThrow);
+}
+
+TypeSourceInfo *ASTContext::CreateTypeSourceInfo(QualType T,
+ unsigned DataSize) const {
+ if (!DataSize)
+ DataSize = TypeLoc::getFullDataSizeForType(T);
+ else
+ assert(DataSize == TypeLoc::getFullDataSizeForType(T) &&
+ "incorrect data size provided to CreateTypeSourceInfo!");
+
+ auto *TInfo =
+ (TypeSourceInfo*)BumpAlloc.Allocate(sizeof(TypeSourceInfo) + DataSize, 8);
+ new (TInfo) TypeSourceInfo(T);
+ return TInfo;
+}
+
+TypeSourceInfo *ASTContext::getTrivialTypeSourceInfo(QualType T,
+ SourceLocation L) const {
+ TypeSourceInfo *DI = CreateTypeSourceInfo(T);
+ DI->getTypeLoc().initialize(const_cast<ASTContext &>(*this), L);
+ return DI;
+}
+
+const ASTRecordLayout &
+ASTContext::getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D) const {
+ return getObjCLayout(D, nullptr);
+}
+
+const ASTRecordLayout &
+ASTContext::getASTObjCImplementationLayout(
+ const ObjCImplementationDecl *D) const {
+ return getObjCLayout(D->getClassInterface(), D);
+}
+
+//===----------------------------------------------------------------------===//
+// Type creation/memoization methods
+//===----------------------------------------------------------------------===//
+
+QualType
+ASTContext::getExtQualType(const Type *baseType, Qualifiers quals) const {
+ unsigned fastQuals = quals.getFastQualifiers();
+ quals.removeFastQualifiers();
+
+ // Check if we've already instantiated this type.
+ llvm::FoldingSetNodeID ID;
+ ExtQuals::Profile(ID, baseType, quals);
+ void *insertPos = nullptr;
+ if (ExtQuals *eq = ExtQualNodes.FindNodeOrInsertPos(ID, insertPos)) {
+ assert(eq->getQualifiers() == quals);
+ return QualType(eq, fastQuals);
+ }
+
+ // If the base type is not canonical, make the appropriate canonical type.
+ QualType canon;
+ if (!baseType->isCanonicalUnqualified()) {
+ SplitQualType canonSplit = baseType->getCanonicalTypeInternal().split();
+ canonSplit.Quals.addConsistentQualifiers(quals);
+ canon = getExtQualType(canonSplit.Ty, canonSplit.Quals);
+
+ // Re-find the insert position.
+ (void) ExtQualNodes.FindNodeOrInsertPos(ID, insertPos);
+ }
+
+ auto *eq = new (*this, TypeAlignment) ExtQuals(baseType, canon, quals);
+ ExtQualNodes.InsertNode(eq, insertPos);
+ return QualType(eq, fastQuals);
+}
+
+QualType ASTContext::getAddrSpaceQualType(QualType T,
+ LangAS AddressSpace) const {
+ QualType CanT = getCanonicalType(T);
+ if (CanT.getAddressSpace() == AddressSpace)
+ return T;
+
+ // If we are composing extended qualifiers together, merge together
+ // into one ExtQuals node.
+ QualifierCollector Quals;
+ const Type *TypeNode = Quals.strip(T);
+
+ // If this type already has an address space specified, it cannot get
+ // another one.
+ assert(!Quals.hasAddressSpace() &&
+ "Type cannot be in multiple addr spaces!");
+ Quals.addAddressSpace(AddressSpace);
+
+ return getExtQualType(TypeNode, Quals);
+}
+
+QualType ASTContext::removeAddrSpaceQualType(QualType T) const {
+ // If we are composing extended qualifiers together, merge together
+ // into one ExtQuals node.
+ QualifierCollector Quals;
+ const Type *TypeNode = Quals.strip(T);
+
+ // If the qualifier doesn't have an address space just return it.
+ if (!Quals.hasAddressSpace())
+ return T;
+
+ Quals.removeAddressSpace();
+
+ // Removal of the address space can mean there are no longer any
+ // non-fast qualifiers, so creating an ExtQualType isn't possible (asserts)
+ // or required.
+ if (Quals.hasNonFastQualifiers())
+ return getExtQualType(TypeNode, Quals);
+ else
+ return QualType(TypeNode, Quals.getFastQualifiers());
+}
+
+QualType ASTContext::getObjCGCQualType(QualType T,
+ Qualifiers::GC GCAttr) const {
+ QualType CanT = getCanonicalType(T);
+ if (CanT.getObjCGCAttr() == GCAttr)
+ return T;
+
+ if (const auto *ptr = T->getAs<PointerType>()) {
+ QualType Pointee = ptr->getPointeeType();
+ if (Pointee->isAnyPointerType()) {
+ QualType ResultType = getObjCGCQualType(Pointee, GCAttr);
+ return getPointerType(ResultType);
+ }
+ }
+
+ // If we are composing extended qualifiers together, merge together
+ // into one ExtQuals node.
+ QualifierCollector Quals;
+ const Type *TypeNode = Quals.strip(T);
+
+ // If this type already has an ObjCGC specified, it cannot get
+ // another one.
+ assert(!Quals.hasObjCGCAttr() &&
+ "Type cannot have multiple ObjCGCs!");
+ Quals.addObjCGCAttr(GCAttr);
+
+ return getExtQualType(TypeNode, Quals);
+}
+
+const FunctionType *ASTContext::adjustFunctionType(const FunctionType *T,
+ FunctionType::ExtInfo Info) {
+ if (T->getExtInfo() == Info)
+ return T;
+
+ QualType Result;
+ if (const auto *FNPT = dyn_cast<FunctionNoProtoType>(T)) {
+ Result = getFunctionNoProtoType(FNPT->getReturnType(), Info);
+ } else {
+ const auto *FPT = cast<FunctionProtoType>(T);
+ FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
+ EPI.ExtInfo = Info;
+ Result = getFunctionType(FPT->getReturnType(), FPT->getParamTypes(), EPI);
+ }
+
+ return cast<FunctionType>(Result.getTypePtr());
+}
+
+void ASTContext::adjustDeducedFunctionResultType(FunctionDecl *FD,
+ QualType ResultType) {
+ FD = FD->getMostRecentDecl();
+ while (true) {
+ const auto *FPT = FD->getType()->castAs<FunctionProtoType>();
+ FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
+ FD->setType(getFunctionType(ResultType, FPT->getParamTypes(), EPI));
+ if (FunctionDecl *Next = FD->getPreviousDecl())
+ FD = Next;
+ else
+ break;
+ }
+ if (ASTMutationListener *L = getASTMutationListener())
+ L->DeducedReturnType(FD, ResultType);
+}
+
+/// Get a function type and produce the equivalent function type with the
+/// specified exception specification. Type sugar that can be present on a
+/// declaration of a function with an exception specification is permitted
+/// and preserved. Other type sugar (for instance, typedefs) is not.
+QualType ASTContext::getFunctionTypeWithExceptionSpec(
+ QualType Orig, const FunctionProtoType::ExceptionSpecInfo &ESI) {
+ // Might have some parens.
+ if (const auto *PT = dyn_cast<ParenType>(Orig))
+ return getParenType(
+ getFunctionTypeWithExceptionSpec(PT->getInnerType(), ESI));
+
+ // Might be wrapped in a macro qualified type.
+ if (const auto *MQT = dyn_cast<MacroQualifiedType>(Orig))
+ return getMacroQualifiedType(
+ getFunctionTypeWithExceptionSpec(MQT->getUnderlyingType(), ESI),
+ MQT->getMacroIdentifier());
+
+ // Might have a calling-convention attribute.
+ if (const auto *AT = dyn_cast<AttributedType>(Orig))
+ return getAttributedType(
+ AT->getAttrKind(),
+ getFunctionTypeWithExceptionSpec(AT->getModifiedType(), ESI),
+ getFunctionTypeWithExceptionSpec(AT->getEquivalentType(), ESI));
+
+ // Anything else must be a function type. Rebuild it with the new exception
+ // specification.
+ const auto *Proto = Orig->castAs<FunctionProtoType>();
+ return getFunctionType(
+ Proto->getReturnType(), Proto->getParamTypes(),
+ Proto->getExtProtoInfo().withExceptionSpec(ESI));
+}
+
+bool ASTContext::hasSameFunctionTypeIgnoringExceptionSpec(QualType T,
+ QualType U) {
+ return hasSameType(T, U) ||
+ (getLangOpts().CPlusPlus17 &&
+ hasSameType(getFunctionTypeWithExceptionSpec(T, EST_None),
+ getFunctionTypeWithExceptionSpec(U, EST_None)));
+}
+
+void ASTContext::adjustExceptionSpec(
+ FunctionDecl *FD, const FunctionProtoType::ExceptionSpecInfo &ESI,
+ bool AsWritten) {
+ // Update the type.
+ QualType Updated =
+ getFunctionTypeWithExceptionSpec(FD->getType(), ESI);
+ FD->setType(Updated);
+
+ if (!AsWritten)
+ return;
+
+ // Update the type in the type source information too.
+ if (TypeSourceInfo *TSInfo = FD->getTypeSourceInfo()) {
+ // If the type and the type-as-written differ, we may need to update
+ // the type-as-written too.
+ if (TSInfo->getType() != FD->getType())
+ Updated = getFunctionTypeWithExceptionSpec(TSInfo->getType(), ESI);
+
+ // FIXME: When we get proper type location information for exceptions,
+ // we'll also have to rebuild the TypeSourceInfo. For now, we just patch
+ // up the TypeSourceInfo;
+ assert(TypeLoc::getFullDataSizeForType(Updated) ==
+ TypeLoc::getFullDataSizeForType(TSInfo->getType()) &&
+ "TypeLoc size mismatch from updating exception specification");
+ TSInfo->overrideType(Updated);
+ }
+}
+
+/// getComplexType - Return the uniqued reference to the type for a complex
+/// number with the specified element type.
+QualType ASTContext::getComplexType(QualType T) const {
+ // Unique pointers, to guarantee there is only one pointer of a particular
+ // structure.
+ llvm::FoldingSetNodeID ID;
+ ComplexType::Profile(ID, T);
+
+ void *InsertPos = nullptr;
+ if (ComplexType *CT = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos))
+ return QualType(CT, 0);
+
+ // If the pointee type isn't canonical, this won't be a canonical type either,
+ // so fill in the canonical type field.
+ QualType Canonical;
+ if (!T.isCanonical()) {
+ Canonical = getComplexType(getCanonicalType(T));
+
+ // Get the new insert position for the node we care about.
+ ComplexType *NewIP = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos);
+ assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
+ }
+ auto *New = new (*this, TypeAlignment) ComplexType(T, Canonical);
+ Types.push_back(New);
+ ComplexTypes.InsertNode(New, InsertPos);
+ return QualType(New, 0);
+}
+
+/// getPointerType - Return the uniqued reference to the type for a pointer to
+/// the specified type.
+QualType ASTContext::getPointerType(QualType T) const {
+ // Unique pointers, to guarantee there is only one pointer of a particular
+ // structure.
+ llvm::FoldingSetNodeID ID;
+ PointerType::Profile(ID, T);
+
+ void *InsertPos = nullptr;
+ if (PointerType *PT = PointerTypes.FindNodeOrInsertPos(ID, InsertPos))
+ return QualType(PT, 0);
+
+ // If the pointee type isn't canonical, this won't be a canonical type either,
+ // so fill in the canonical type field.
+ QualType Canonical;
+ if (!T.isCanonical()) {
+ Canonical = getPointerType(getCanonicalType(T));
+
+ // Get the new insert position for the node we care about.
+ PointerType *NewIP = PointerTypes.FindNodeOrInsertPos(ID, InsertPos);
+ assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
+ }
+ auto *New = new (*this, TypeAlignment) PointerType(T, Canonical);
+ Types.push_back(New);
+ PointerTypes.InsertNode(New, InsertPos);
+ return QualType(New, 0);
+}
+
+QualType ASTContext::getAdjustedType(QualType Orig, QualType New) const {
+ llvm::FoldingSetNodeID ID;
+ AdjustedType::Profile(ID, Orig, New);
+ void *InsertPos = nullptr;
+ AdjustedType *AT = AdjustedTypes.FindNodeOrInsertPos(ID, InsertPos);
+ if (AT)
+ return QualType(AT, 0);
+
+ QualType Canonical = getCanonicalType(New);
+
+ // Get the new insert position for the node we care about.
+ AT = AdjustedTypes.FindNodeOrInsertPos(ID, InsertPos);
+ assert(!AT && "Shouldn't be in the map!");
+
+ AT = new (*this, TypeAlignment)
+ AdjustedType(Type::Adjusted, Orig, New, Canonical);
+ Types.push_back(AT);
+ AdjustedTypes.InsertNode(AT, InsertPos);
+ return QualType(AT, 0);
+}
+
+QualType ASTContext::getDecayedType(QualType T) const {
+ assert((T->isArrayType() || T->isFunctionType()) && "T does not decay");
+
+ QualType Decayed;
+
+ // C99 6.7.5.3p7:
+ // A declaration of a parameter as "array of type" shall be
+ // adjusted to "qualified pointer to type", where the type
+ // qualifiers (if any) are those specified within the [ and ] of
+ // the array type derivation.
+ if (T->isArrayType())
+ Decayed = getArrayDecayedType(T);
+
+ // C99 6.7.5.3p8:
+ // A declaration of a parameter as "function returning type"
+ // shall be adjusted to "pointer to function returning type", as
+ // in 6.3.2.1.
+ if (T->isFunctionType())
+ Decayed = getPointerType(T);
+
+ llvm::FoldingSetNodeID ID;
+ AdjustedType::Profile(ID, T, Decayed);
+ void *InsertPos = nullptr;
+ AdjustedType *AT = AdjustedTypes.FindNodeOrInsertPos(ID, InsertPos);
+ if (AT)
+ return QualType(AT, 0);
+
+ QualType Canonical = getCanonicalType(Decayed);
+
+ // Get the new insert position for the node we care about.
+ AT = AdjustedTypes.FindNodeOrInsertPos(ID, InsertPos);
+ assert(!AT && "Shouldn't be in the map!");
+
+ AT = new (*this, TypeAlignment) DecayedType(T, Decayed, Canonical);
+ Types.push_back(AT);
+ AdjustedTypes.InsertNode(AT, InsertPos);
+ return QualType(AT, 0);
+}
+
+/// getBlockPointerType - Return the uniqued reference to the type for
+/// a pointer to the specified block.
+QualType ASTContext::getBlockPointerType(QualType T) const {
+ assert(T->isFunctionType() && "block of function types only");
+ // Unique pointers, to guarantee there is only one block of a particular
+ // structure.
+ llvm::FoldingSetNodeID ID;
+ BlockPointerType::Profile(ID, T);
+
+ void *InsertPos = nullptr;
+ if (BlockPointerType *PT =
+ BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
+ return QualType(PT, 0);
+
+ // If the block pointee type isn't canonical, this won't be a canonical
+ // type either so fill in the canonical type field.
+ QualType Canonical;
+ if (!T.isCanonical()) {
+ Canonical = getBlockPointerType(getCanonicalType(T));
+
+ // Get the new insert position for the node we care about.
+ BlockPointerType *NewIP =
+ BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
+ assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
+ }
+ auto *New = new (*this, TypeAlignment) BlockPointerType(T, Canonical);
+ Types.push_back(New);
+ BlockPointerTypes.InsertNode(New, InsertPos);
+ return QualType(New, 0);
+}
+
+/// getLValueReferenceType - Return the uniqued reference to the type for an
+/// lvalue reference to the specified type.
+QualType
+ASTContext::getLValueReferenceType(QualType T, bool SpelledAsLValue) const {
+ assert(getCanonicalType(T) != OverloadTy &&
+ "Unresolved overloaded function type");
+
+ // Unique pointers, to guarantee there is only one pointer of a particular
+ // structure.
+ llvm::FoldingSetNodeID ID;
+ ReferenceType::Profile(ID, T, SpelledAsLValue);
+
+ void *InsertPos = nullptr;
+ if (LValueReferenceType *RT =
+ LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
+ return QualType(RT, 0);
+
+ const auto *InnerRef = T->getAs<ReferenceType>();
+
+ // If the referencee type isn't canonical, this won't be a canonical type
+ // either, so fill in the canonical type field.
+ QualType Canonical;
+ if (!SpelledAsLValue || InnerRef || !T.isCanonical()) {
+ QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
+ Canonical = getLValueReferenceType(getCanonicalType(PointeeType));
+
+ // Get the new insert position for the node we care about.
+ LValueReferenceType *NewIP =
+ LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
+ assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
+ }
+
+ auto *New = new (*this, TypeAlignment) LValueReferenceType(T, Canonical,
+ SpelledAsLValue);
+ Types.push_back(New);
+ LValueReferenceTypes.InsertNode(New, InsertPos);
+
+ return QualType(New, 0);
+}
+
+/// getRValueReferenceType - Return the uniqued reference to the type for an
+/// rvalue reference to the specified type.
+QualType ASTContext::getRValueReferenceType(QualType T) const {
+ // Unique pointers, to guarantee there is only one pointer of a particular
+ // structure.
+ llvm::FoldingSetNodeID ID;
+ ReferenceType::Profile(ID, T, false);
+
+ void *InsertPos = nullptr;
+ if (RValueReferenceType *RT =
+ RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
+ return QualType(RT, 0);
+
+ const auto *InnerRef = T->getAs<ReferenceType>();
+
+ // If the referencee type isn't canonical, this won't be a canonical type
+ // either, so fill in the canonical type field.
+ QualType Canonical;
+ if (InnerRef || !T.isCanonical()) {
+ QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
+ Canonical = getRValueReferenceType(getCanonicalType(PointeeType));
+
+ // Get the new insert position for the node we care about.
+ RValueReferenceType *NewIP =
+ RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
+ assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
+ }
+
+ auto *New = new (*this, TypeAlignment) RValueReferenceType(T, Canonical);
+ Types.push_back(New);
+ RValueReferenceTypes.InsertNode(New, InsertPos);
+ return QualType(New, 0);
+}
+
+/// getMemberPointerType - Return the uniqued reference to the type for a
+/// member pointer to the specified type, in the specified class.
+QualType ASTContext::getMemberPointerType(QualType T, const Type *Cls) const {
+ // Unique pointers, to guarantee there is only one pointer of a particular
+ // structure.
+ llvm::FoldingSetNodeID ID;
+ MemberPointerType::Profile(ID, T, Cls);
+
+ void *InsertPos = nullptr;
+ if (MemberPointerType *PT =
+ MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
+ return QualType(PT, 0);
+
+ // If the pointee or class type isn't canonical, this won't be a canonical
+ // type either, so fill in the canonical type field.
+ QualType Canonical;
+ if (!T.isCanonical() || !Cls->isCanonicalUnqualified()) {
+ Canonical = getMemberPointerType(getCanonicalType(T),getCanonicalType(Cls));
+
+ // Get the new insert position for the node we care about.
+ MemberPointerType *NewIP =
+ MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
+ assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
+ }
+ auto *New = new (*this, TypeAlignment) MemberPointerType(T, Cls, Canonical);
+ Types.push_back(New);
+ MemberPointerTypes.InsertNode(New, InsertPos);
+ return QualType(New, 0);
+}
+
+/// getConstantArrayType - Return the unique reference to the type for an
+/// array of the specified element type.
+QualType ASTContext::getConstantArrayType(QualType EltTy,
+ const llvm::APInt &ArySizeIn,
+ const Expr *SizeExpr,
+ ArrayType::ArraySizeModifier ASM,
+ unsigned IndexTypeQuals) const {
+ assert((EltTy->isDependentType() ||
+ EltTy->isIncompleteType() || EltTy->isConstantSizeType()) &&
+ "Constant array of VLAs is illegal!");
+
+ // We only need the size as part of the type if it's instantiation-dependent.
+ if (SizeExpr && !SizeExpr->isInstantiationDependent())
+ SizeExpr = nullptr;
+
+ // Convert the array size into a canonical width matching the pointer size for
+ // the target.
+ llvm::APInt ArySize(ArySizeIn);
+ ArySize = ArySize.zextOrTrunc(Target->getMaxPointerWidth());
+
+ llvm::FoldingSetNodeID ID;
+ ConstantArrayType::Profile(ID, *this, EltTy, ArySize, SizeExpr, ASM,
+ IndexTypeQuals);
+
+ void *InsertPos = nullptr;
+ if (ConstantArrayType *ATP =
+ ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
+ return QualType(ATP, 0);
+
+ // If the element type isn't canonical or has qualifiers, or the array bound
+ // is instantiation-dependent, this won't be a canonical type either, so fill
+ // in the canonical type field.
+ QualType Canon;
+ if (!EltTy.isCanonical() || EltTy.hasLocalQualifiers() || SizeExpr) {
+ SplitQualType canonSplit = getCanonicalType(EltTy).split();
+ Canon = getConstantArrayType(QualType(canonSplit.Ty, 0), ArySize, nullptr,
+ ASM, IndexTypeQuals);
+ Canon = getQualifiedType(Canon, canonSplit.Quals);
+
+ // Get the new insert position for the node we care about.
+ ConstantArrayType *NewIP =
+ ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
+ assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
+ }
+
+ void *Mem = Allocate(
+ ConstantArrayType::totalSizeToAlloc<const Expr *>(SizeExpr ? 1 : 0),
+ TypeAlignment);
+ auto *New = new (Mem)
+ ConstantArrayType(EltTy, Canon, ArySize, SizeExpr, ASM, IndexTypeQuals);
+ ConstantArrayTypes.InsertNode(New, InsertPos);
+ Types.push_back(New);
+ return QualType(New, 0);
+}
+
+/// getVariableArrayDecayedType - Turns the given type, which may be
+/// variably-modified, into the corresponding type with all the known
+/// sizes replaced with [*].
+QualType ASTContext::getVariableArrayDecayedType(QualType type) const {
+ // Vastly most common case.
+ if (!type->isVariablyModifiedType()) return type;
+
+ QualType result;
+
+ SplitQualType split = type.getSplitDesugaredType();
+ const Type *ty = split.Ty;
+ switch (ty->getTypeClass()) {
+#define TYPE(Class, Base)
+#define ABSTRACT_TYPE(Class, Base)
+#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
+#include "clang/AST/TypeNodes.inc"
+ llvm_unreachable("didn't desugar past all non-canonical types?");
+
+ // These types should never be variably-modified.
+ case Type::Builtin:
+ case Type::Complex:
+ case Type::Vector:
+ case Type::DependentVector:
+ case Type::ExtVector:
+ case Type::DependentSizedExtVector:
+ case Type::DependentAddressSpace:
+ case Type::ObjCObject:
+ case Type::ObjCInterface:
+ case Type::ObjCObjectPointer:
+ case Type::Record:
+ case Type::Enum:
+ case Type::UnresolvedUsing:
+ case Type::TypeOfExpr:
+ case Type::TypeOf:
+ case Type::Decltype:
+ case Type::UnaryTransform:
+ case Type::DependentName:
+ case Type::InjectedClassName:
+ case Type::TemplateSpecialization:
+ case Type::DependentTemplateSpecialization:
+ case Type::TemplateTypeParm:
+ case Type::SubstTemplateTypeParmPack:
+ case Type::Auto:
+ case Type::DeducedTemplateSpecialization:
+ case Type::PackExpansion:
+ llvm_unreachable("type should never be variably-modified");
+
+ // These types can be variably-modified but should never need to
+ // further decay.
+ case Type::FunctionNoProto:
+ case Type::FunctionProto:
+ case Type::BlockPointer:
+ case Type::MemberPointer:
+ case Type::Pipe:
+ return type;
+
+ // These types can be variably-modified. All these modifications
+ // preserve structure except as noted by comments.
+ // TODO: if we ever care about optimizing VLAs, there are no-op
+ // optimizations available here.
+ case Type::Pointer:
+ result = getPointerType(getVariableArrayDecayedType(
+ cast<PointerType>(ty)->getPointeeType()));
+ break;
+
+ case Type::LValueReference: {
+ const auto *lv = cast<LValueReferenceType>(ty);
+ result = getLValueReferenceType(
+ getVariableArrayDecayedType(lv->getPointeeType()),
+ lv->isSpelledAsLValue());
+ break;
+ }
+
+ case Type::RValueReference: {
+ const auto *lv = cast<RValueReferenceType>(ty);
+ result = getRValueReferenceType(
+ getVariableArrayDecayedType(lv->getPointeeType()));
+ break;
+ }
+
+ case Type::Atomic: {
+ const auto *at = cast<AtomicType>(ty);
+ result = getAtomicType(getVariableArrayDecayedType(at->getValueType()));
+ break;
+ }
+
+ case Type::ConstantArray: {
+ const auto *cat = cast<ConstantArrayType>(ty);
+ result = getConstantArrayType(
+ getVariableArrayDecayedType(cat->getElementType()),
+ cat->getSize(),
+ cat->getSizeExpr(),
+ cat->getSizeModifier(),
+ cat->getIndexTypeCVRQualifiers());
+ break;
+ }
+
+ case Type::DependentSizedArray: {
+ const auto *dat = cast<DependentSizedArrayType>(ty);
+ result = getDependentSizedArrayType(
+ getVariableArrayDecayedType(dat->getElementType()),
+ dat->getSizeExpr(),
+ dat->getSizeModifier(),
+ dat->getIndexTypeCVRQualifiers(),
+ dat->getBracketsRange());
+ break;
+ }
+
+ // Turn incomplete types into [*] types.
+ case Type::IncompleteArray: {
+ const auto *iat = cast<IncompleteArrayType>(ty);
+ result = getVariableArrayType(
+ getVariableArrayDecayedType(iat->getElementType()),
+ /*size*/ nullptr,
+ ArrayType::Normal,
+ iat->getIndexTypeCVRQualifiers(),
+ SourceRange());
+ break;
+ }
+
+ // Turn VLA types into [*] types.
+ case Type::VariableArray: {
+ const auto *vat = cast<VariableArrayType>(ty);
+ result = getVariableArrayType(
+ getVariableArrayDecayedType(vat->getElementType()),
+ /*size*/ nullptr,
+ ArrayType::Star,
+ vat->getIndexTypeCVRQualifiers(),
+ vat->getBracketsRange());
+ break;
+ }
+ }
+
+ // Apply the top-level qualifiers from the original.
+ return getQualifiedType(result, split.Quals);
+}
+
+/// getVariableArrayType - Returns a non-unique reference to the type for a
+/// variable array of the specified element type.
+QualType ASTContext::getVariableArrayType(QualType EltTy,
+ Expr *NumElts,
+ ArrayType::ArraySizeModifier ASM,
+ unsigned IndexTypeQuals,
+ SourceRange Brackets) const {
+ // Since we don't unique expressions, it isn't possible to unique VLA's
+ // that have an expression provided for their size.
+ QualType Canon;
+
+ // Be sure to pull qualifiers off the element type.
+ if (!EltTy.isCanonical() || EltTy.hasLocalQualifiers()) {
+ SplitQualType canonSplit = getCanonicalType(EltTy).split();
+ Canon = getVariableArrayType(QualType(canonSplit.Ty, 0), NumElts, ASM,
+ IndexTypeQuals, Brackets);
+ Canon = getQualifiedType(Canon, canonSplit.Quals);
+ }
+
+ auto *New = new (*this, TypeAlignment)
+ VariableArrayType(EltTy, Canon, NumElts, ASM, IndexTypeQuals, Brackets);
+
+ VariableArrayTypes.push_back(New);
+ Types.push_back(New);
+ return QualType(New, 0);
+}
+
+/// getDependentSizedArrayType - Returns a non-unique reference to
+/// the type for a dependently-sized array of the specified element
+/// type.
+QualType ASTContext::getDependentSizedArrayType(QualType elementType,
+ Expr *numElements,
+ ArrayType::ArraySizeModifier ASM,
+ unsigned elementTypeQuals,
+ SourceRange brackets) const {
+ assert((!numElements || numElements->isTypeDependent() ||
+ numElements->isValueDependent()) &&
+ "Size must be type- or value-dependent!");
+
+ // Dependently-sized array types that do not have a specified number
+ // of elements will have their sizes deduced from a dependent
+ // initializer. We do no canonicalization here at all, which is okay
+ // because they can't be used in most locations.
+ if (!numElements) {
+ auto *newType
+ = new (*this, TypeAlignment)
+ DependentSizedArrayType(*this, elementType, QualType(),
+ numElements, ASM, elementTypeQuals,
+ brackets);
+ Types.push_back(newType);
+ return QualType(newType, 0);
+ }
+
+ // Otherwise, we actually build a new type every time, but we
+ // also build a canonical type.
+
+ SplitQualType canonElementType = getCanonicalType(elementType).split();
+
+ void *insertPos = nullptr;
+ llvm::FoldingSetNodeID ID;
+ DependentSizedArrayType::Profile(ID, *this,
+ QualType(canonElementType.Ty, 0),
+ ASM, elementTypeQuals, numElements);
+
+ // Look for an existing type with these properties.
+ DependentSizedArrayType *canonTy =
+ DependentSizedArrayTypes.FindNodeOrInsertPos(ID, insertPos);
+
+ // If we don't have one, build one.
+ if (!canonTy) {
+ canonTy = new (*this, TypeAlignment)
+ DependentSizedArrayType(*this, QualType(canonElementType.Ty, 0),
+ QualType(), numElements, ASM, elementTypeQuals,
+ brackets);
+ DependentSizedArrayTypes.InsertNode(canonTy, insertPos);
+ Types.push_back(canonTy);
+ }
+
+ // Apply qualifiers from the element type to the array.
+ QualType canon = getQualifiedType(QualType(canonTy,0),
+ canonElementType.Quals);
+
+ // If we didn't need extra canonicalization for the element type or the size
+ // expression, then just use that as our result.
+ if (QualType(canonElementType.Ty, 0) == elementType &&
+ canonTy->getSizeExpr() == numElements)
+ return canon;
+
+ // Otherwise, we need to build a type which follows the spelling
+ // of the element type.
+ auto *sugaredType
+ = new (*this, TypeAlignment)
+ DependentSizedArrayType(*this, elementType, canon, numElements,
+ ASM, elementTypeQuals, brackets);
+ Types.push_back(sugaredType);
+ return QualType(sugaredType, 0);
+}
+
+QualType ASTContext::getIncompleteArrayType(QualType elementType,
+ ArrayType::ArraySizeModifier ASM,
+ unsigned elementTypeQuals) const {
+ llvm::FoldingSetNodeID ID;
+ IncompleteArrayType::Profile(ID, elementType, ASM, elementTypeQuals);
+
+ void *insertPos = nullptr;
+ if (IncompleteArrayType *iat =
+ IncompleteArrayTypes.FindNodeOrInsertPos(ID, insertPos))
+ return QualType(iat, 0);
+
+ // If the element type isn't canonical, this won't be a canonical type
+ // either, so fill in the canonical type field. We also have to pull
+ // qualifiers off the element type.
+ QualType canon;
+
+ if (!elementType.isCanonical() || elementType.hasLocalQualifiers()) {
+ SplitQualType canonSplit = getCanonicalType(elementType).split();
+ canon = getIncompleteArrayType(QualType(canonSplit.Ty, 0),
+ ASM, elementTypeQuals);
+ canon = getQualifiedType(canon, canonSplit.Quals);
+
+ // Get the new insert position for the node we care about.
+ IncompleteArrayType *existing =
+ IncompleteArrayTypes.FindNodeOrInsertPos(ID, insertPos);
+ assert(!existing && "Shouldn't be in the map!"); (void) existing;
+ }
+
+ auto *newType = new (*this, TypeAlignment)
+ IncompleteArrayType(elementType, canon, ASM, elementTypeQuals);
+
+ IncompleteArrayTypes.InsertNode(newType, insertPos);
+ Types.push_back(newType);
+ return QualType(newType, 0);
+}
+
+/// getVectorType - Return the unique reference to a vector type of
+/// the specified element type and size. VectorType must be a built-in type.
+QualType ASTContext::getVectorType(QualType vecType, unsigned NumElts,
+ VectorType::VectorKind VecKind) const {
+ assert(vecType->isBuiltinType());
+
+ // Check if we've already instantiated a vector of this type.
+ llvm::FoldingSetNodeID ID;
+ VectorType::Profile(ID, vecType, NumElts, Type::Vector, VecKind);
+
+ void *InsertPos = nullptr;
+ if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
+ return QualType(VTP, 0);
+
+ // If the element type isn't canonical, this won't be a canonical type either,
+ // so fill in the canonical type field.
+ QualType Canonical;
+ if (!vecType.isCanonical()) {
+ Canonical = getVectorType(getCanonicalType(vecType), NumElts, VecKind);
+
+ // Get the new insert position for the node we care about.
+ VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
+ assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
+ }
+ auto *New = new (*this, TypeAlignment)
+ VectorType(vecType, NumElts, Canonical, VecKind);
+ VectorTypes.InsertNode(New, InsertPos);
+ Types.push_back(New);
+ return QualType(New, 0);
+}
+
+QualType
+ASTContext::getDependentVectorType(QualType VecType, Expr *SizeExpr,
+ SourceLocation AttrLoc,
+ VectorType::VectorKind VecKind) const {
+ llvm::FoldingSetNodeID ID;
+ DependentVectorType::Profile(ID, *this, getCanonicalType(VecType), SizeExpr,
+ VecKind);
+ void *InsertPos = nullptr;
+ DependentVectorType *Canon =
+ DependentVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
+ DependentVectorType *New;
+
+ if (Canon) {
+ New = new (*this, TypeAlignment) DependentVectorType(
+ *this, VecType, QualType(Canon, 0), SizeExpr, AttrLoc, VecKind);
+ } else {
+ QualType CanonVecTy = getCanonicalType(VecType);
+ if (CanonVecTy == VecType) {
+ New = new (*this, TypeAlignment) DependentVectorType(
+ *this, VecType, QualType(), SizeExpr, AttrLoc, VecKind);
+
+ DependentVectorType *CanonCheck =
+ DependentVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
+ assert(!CanonCheck &&
+ "Dependent-sized vector_size canonical type broken");
+ (void)CanonCheck;
+ DependentVectorTypes.InsertNode(New, InsertPos);
+ } else {
+ QualType Canon = getDependentSizedExtVectorType(CanonVecTy, SizeExpr,
+ SourceLocation());
+ New = new (*this, TypeAlignment) DependentVectorType(
+ *this, VecType, Canon, SizeExpr, AttrLoc, VecKind);
+ }
+ }
+
+ Types.push_back(New);
+ return QualType(New, 0);
+}
+
+/// getExtVectorType - Return the unique reference to an extended vector type of
+/// the specified element type and size. VectorType must be a built-in type.
+QualType
+ASTContext::getExtVectorType(QualType vecType, unsigned NumElts) const {
+ assert(vecType->isBuiltinType() || vecType->isDependentType());
+
+ // Check if we've already instantiated a vector of this type.
+ llvm::FoldingSetNodeID ID;
+ VectorType::Profile(ID, vecType, NumElts, Type::ExtVector,
+ VectorType::GenericVector);
+ void *InsertPos = nullptr;
+ if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
+ return QualType(VTP, 0);
+
+ // If the element type isn't canonical, this won't be a canonical type either,
+ // so fill in the canonical type field.
+ QualType Canonical;
+ if (!vecType.isCanonical()) {
+ Canonical = getExtVectorType(getCanonicalType(vecType), NumElts);
+
+ // Get the new insert position for the node we care about.
+ VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
+ assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
+ }
+ auto *New = new (*this, TypeAlignment)
+ ExtVectorType(vecType, NumElts, Canonical);
+ VectorTypes.InsertNode(New, InsertPos);
+ Types.push_back(New);
+ return QualType(New, 0);
+}
+
+QualType
+ASTContext::getDependentSizedExtVectorType(QualType vecType,
+ Expr *SizeExpr,
+ SourceLocation AttrLoc) const {
+ llvm::FoldingSetNodeID ID;
+ DependentSizedExtVectorType::Profile(ID, *this, getCanonicalType(vecType),
+ SizeExpr);
+
+ void *InsertPos = nullptr;
+ DependentSizedExtVectorType *Canon
+ = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
+ DependentSizedExtVectorType *New;
+ if (Canon) {
+ // We already have a canonical version of this array type; use it as
+ // the canonical type for a newly-built type.
+ New = new (*this, TypeAlignment)
+ DependentSizedExtVectorType(*this, vecType, QualType(Canon, 0),
+ SizeExpr, AttrLoc);
+ } else {
+ QualType CanonVecTy = getCanonicalType(vecType);
+ if (CanonVecTy == vecType) {
+ New = new (*this, TypeAlignment)
+ DependentSizedExtVectorType(*this, vecType, QualType(), SizeExpr,
+ AttrLoc);
+
+ DependentSizedExtVectorType *CanonCheck
+ = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
+ assert(!CanonCheck && "Dependent-sized ext_vector canonical type broken");
+ (void)CanonCheck;
+ DependentSizedExtVectorTypes.InsertNode(New, InsertPos);
+ } else {
+ QualType Canon = getDependentSizedExtVectorType(CanonVecTy, SizeExpr,
+ SourceLocation());
+ New = new (*this, TypeAlignment)
+ DependentSizedExtVectorType(*this, vecType, Canon, SizeExpr, AttrLoc);
+ }
+ }
+
+ Types.push_back(New);
+ return QualType(New, 0);
+}
+
+QualType ASTContext::getDependentAddressSpaceType(QualType PointeeType,
+ Expr *AddrSpaceExpr,
+ SourceLocation AttrLoc) const {
+ assert(AddrSpaceExpr->isInstantiationDependent());
+
+ QualType canonPointeeType = getCanonicalType(PointeeType);
+
+ void *insertPos = nullptr;
+ llvm::FoldingSetNodeID ID;
+ DependentAddressSpaceType::Profile(ID, *this, canonPointeeType,
+ AddrSpaceExpr);
+
+ DependentAddressSpaceType *canonTy =
+ DependentAddressSpaceTypes.FindNodeOrInsertPos(ID, insertPos);
+
+ if (!canonTy) {
+ canonTy = new (*this, TypeAlignment)
+ DependentAddressSpaceType(*this, canonPointeeType,
+ QualType(), AddrSpaceExpr, AttrLoc);
+ DependentAddressSpaceTypes.InsertNode(canonTy, insertPos);
+ Types.push_back(canonTy);
+ }
+
+ if (canonPointeeType == PointeeType &&
+ canonTy->getAddrSpaceExpr() == AddrSpaceExpr)
+ return QualType(canonTy, 0);
+
+ auto *sugaredType
+ = new (*this, TypeAlignment)
+ DependentAddressSpaceType(*this, PointeeType, QualType(canonTy, 0),
+ AddrSpaceExpr, AttrLoc);
+ Types.push_back(sugaredType);
+ return QualType(sugaredType, 0);
+}
+
+/// Determine whether \p T is canonical as the result type of a function.
+static bool isCanonicalResultType(QualType T) {
+ return T.isCanonical() &&
+ (T.getObjCLifetime() == Qualifiers::OCL_None ||
+ T.getObjCLifetime() == Qualifiers::OCL_ExplicitNone);
+}
+
+/// getFunctionNoProtoType - Return a K&R style C function type like 'int()'.
+QualType
+ASTContext::getFunctionNoProtoType(QualType ResultTy,
+ const FunctionType::ExtInfo &Info) const {
+ // Unique functions, to guarantee there is only one function of a particular
+ // structure.
+ llvm::FoldingSetNodeID ID;
+ FunctionNoProtoType::Profile(ID, ResultTy, Info);
+
+ void *InsertPos = nullptr;
+ if (FunctionNoProtoType *FT =
+ FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
+ return QualType(FT, 0);
+
+ QualType Canonical;
+ if (!isCanonicalResultType(ResultTy)) {
+ Canonical =
+ getFunctionNoProtoType(getCanonicalFunctionResultType(ResultTy), Info);
+
+ // Get the new insert position for the node we care about.
+ FunctionNoProtoType *NewIP =
+ FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
+ assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
+ }
+
+ auto *New = new (*this, TypeAlignment)
+ FunctionNoProtoType(ResultTy, Canonical, Info);
+ Types.push_back(New);
+ FunctionNoProtoTypes.InsertNode(New, InsertPos);
+ return QualType(New, 0);
+}
+
+CanQualType
+ASTContext::getCanonicalFunctionResultType(QualType ResultType) const {
+ CanQualType CanResultType = getCanonicalType(ResultType);
+
+ // Canonical result types do not have ARC lifetime qualifiers.
+ if (CanResultType.getQualifiers().hasObjCLifetime()) {
+ Qualifiers Qs = CanResultType.getQualifiers();
+ Qs.removeObjCLifetime();
+ return CanQualType::CreateUnsafe(
+ getQualifiedType(CanResultType.getUnqualifiedType(), Qs));
+ }
+
+ return CanResultType;
+}
+
+static bool isCanonicalExceptionSpecification(
+ const FunctionProtoType::ExceptionSpecInfo &ESI, bool NoexceptInType) {
+ if (ESI.Type == EST_None)
+ return true;
+ if (!NoexceptInType)
+ return false;
+
+ // C++17 onwards: exception specification is part of the type, as a simple
+ // boolean "can this function type throw".
+ if (ESI.Type == EST_BasicNoexcept)
+ return true;
+
+ // A noexcept(expr) specification is (possibly) canonical if expr is
+ // value-dependent.
+ if (ESI.Type == EST_DependentNoexcept)
+ return true;
+
+ // A dynamic exception specification is canonical if it only contains pack
+ // expansions (so we can't tell whether it's non-throwing) and all its
+ // contained types are canonical.
+ if (ESI.Type == EST_Dynamic) {
+ bool AnyPackExpansions = false;
+ for (QualType ET : ESI.Exceptions) {
+ if (!ET.isCanonical())
+ return false;
+ if (ET->getAs<PackExpansionType>())
+ AnyPackExpansions = true;
+ }
+ return AnyPackExpansions;
+ }
+
+ return false;
+}
+
+QualType ASTContext::getFunctionTypeInternal(
+ QualType ResultTy, ArrayRef<QualType> ArgArray,
+ const FunctionProtoType::ExtProtoInfo &EPI, bool OnlyWantCanonical) const {
+ size_t NumArgs = ArgArray.size();
+
+ // Unique functions, to guarantee there is only one function of a particular
+ // structure.
+ llvm::FoldingSetNodeID ID;
+ FunctionProtoType::Profile(ID, ResultTy, ArgArray.begin(), NumArgs, EPI,
+ *this, true);
+
+ QualType Canonical;
+ bool Unique = false;
+
+ void *InsertPos = nullptr;
+ if (FunctionProtoType *FPT =
+ FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos)) {
+ QualType Existing = QualType(FPT, 0);
+
+ // If we find a pre-existing equivalent FunctionProtoType, we can just reuse
+ // it so long as our exception specification doesn't contain a dependent
+ // noexcept expression, or we're just looking for a canonical type.
+ // Otherwise, we're going to need to create a type
+ // sugar node to hold the concrete expression.
+ if (OnlyWantCanonical || !isComputedNoexcept(EPI.ExceptionSpec.Type) ||
+ EPI.ExceptionSpec.NoexceptExpr == FPT->getNoexceptExpr())
+ return Existing;
+
+ // We need a new type sugar node for this one, to hold the new noexcept
+ // expression. We do no canonicalization here, but that's OK since we don't
+ // expect to see the same noexcept expression much more than once.
+ Canonical = getCanonicalType(Existing);
+ Unique = true;
+ }
+
+ bool NoexceptInType = getLangOpts().CPlusPlus17;
+ bool IsCanonicalExceptionSpec =
+ isCanonicalExceptionSpecification(EPI.ExceptionSpec, NoexceptInType);
+
+ // Determine whether the type being created is already canonical or not.
+ bool isCanonical = !Unique && IsCanonicalExceptionSpec &&
+ isCanonicalResultType(ResultTy) && !EPI.HasTrailingReturn;
+ for (unsigned i = 0; i != NumArgs && isCanonical; ++i)
+ if (!ArgArray[i].isCanonicalAsParam())
+ isCanonical = false;
+
+ if (OnlyWantCanonical)
+ assert(isCanonical &&
+ "given non-canonical parameters constructing canonical type");
+
+ // If this type isn't canonical, get the canonical version of it if we don't
+ // already have it. The exception spec is only partially part of the
+ // canonical type, and only in C++17 onwards.
+ if (!isCanonical && Canonical.isNull()) {
+ SmallVector<QualType, 16> CanonicalArgs;
+ CanonicalArgs.reserve(NumArgs);
+ for (unsigned i = 0; i != NumArgs; ++i)
+ CanonicalArgs.push_back(getCanonicalParamType(ArgArray[i]));
+
+ llvm::SmallVector<QualType, 8> ExceptionTypeStorage;
+ FunctionProtoType::ExtProtoInfo CanonicalEPI = EPI;
+ CanonicalEPI.HasTrailingReturn = false;
+
+ if (IsCanonicalExceptionSpec) {
+ // Exception spec is already OK.
+ } else if (NoexceptInType) {
+ switch (EPI.ExceptionSpec.Type) {
+ case EST_Unparsed: case EST_Unevaluated: case EST_Uninstantiated:
+ // We don't know yet. It shouldn't matter what we pick here; no-one
+ // should ever look at this.
+ LLVM_FALLTHROUGH;
+ case EST_None: case EST_MSAny: case EST_NoexceptFalse:
+ CanonicalEPI.ExceptionSpec.Type = EST_None;
+ break;
+
+ // A dynamic exception specification is almost always "not noexcept",
+ // with the exception that a pack expansion might expand to no types.
+ case EST_Dynamic: {
+ bool AnyPacks = false;
+ for (QualType ET : EPI.ExceptionSpec.Exceptions) {
+ if (ET->getAs<PackExpansionType>())
+ AnyPacks = true;
+ ExceptionTypeStorage.push_back(getCanonicalType(ET));
+ }
+ if (!AnyPacks)
+ CanonicalEPI.ExceptionSpec.Type = EST_None;
+ else {
+ CanonicalEPI.ExceptionSpec.Type = EST_Dynamic;
+ CanonicalEPI.ExceptionSpec.Exceptions = ExceptionTypeStorage;
+ }
+ break;
+ }
+
+ case EST_DynamicNone:
+ case EST_BasicNoexcept:
+ case EST_NoexceptTrue:
+ case EST_NoThrow:
+ CanonicalEPI.ExceptionSpec.Type = EST_BasicNoexcept;
+ break;
+
+ case EST_DependentNoexcept:
+ llvm_unreachable("dependent noexcept is already canonical");
+ }
+ } else {
+ CanonicalEPI.ExceptionSpec = FunctionProtoType::ExceptionSpecInfo();
+ }
+
+ // Adjust the canonical function result type.
+ CanQualType CanResultTy = getCanonicalFunctionResultType(ResultTy);
+ Canonical =
+ getFunctionTypeInternal(CanResultTy, CanonicalArgs, CanonicalEPI, true);
+
+ // Get the new insert position for the node we care about.
+ FunctionProtoType *NewIP =
+ FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
+ assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
+ }
+
+ // Compute the needed size to hold this FunctionProtoType and the
+ // various trailing objects.
+ auto ESH = FunctionProtoType::getExceptionSpecSize(
+ EPI.ExceptionSpec.Type, EPI.ExceptionSpec.Exceptions.size());
+ size_t Size = FunctionProtoType::totalSizeToAlloc<
+ QualType, FunctionType::FunctionTypeExtraBitfields,
+ FunctionType::ExceptionType, Expr *, FunctionDecl *,
+ FunctionProtoType::ExtParameterInfo, Qualifiers>(
+ NumArgs, FunctionProtoType::hasExtraBitfields(EPI.ExceptionSpec.Type),
+ ESH.NumExceptionType, ESH.NumExprPtr, ESH.NumFunctionDeclPtr,
+ EPI.ExtParameterInfos ? NumArgs : 0,
+ EPI.TypeQuals.hasNonFastQualifiers() ? 1 : 0);
+
+ auto *FTP = (FunctionProtoType *)Allocate(Size, TypeAlignment);
+ FunctionProtoType::ExtProtoInfo newEPI = EPI;
+ new (FTP) FunctionProtoType(ResultTy, ArgArray, Canonical, newEPI);
+ Types.push_back(FTP);
+ if (!Unique)
+ FunctionProtoTypes.InsertNode(FTP, InsertPos);
+ return QualType(FTP, 0);
+}
+
+QualType ASTContext::getPipeType(QualType T, bool ReadOnly) const {
+ llvm::FoldingSetNodeID ID;
+ PipeType::Profile(ID, T, ReadOnly);
+
+ void *InsertPos = nullptr;
+ if (PipeType *PT = PipeTypes.FindNodeOrInsertPos(ID, InsertPos))
+ return QualType(PT, 0);
+
+ // If the pipe element type isn't canonical, this won't be a canonical type
+ // either, so fill in the canonical type field.
+ QualType Canonical;
+ if (!T.isCanonical()) {
+ Canonical = getPipeType(getCanonicalType(T), ReadOnly);
+
+ // Get the new insert position for the node we care about.
+ PipeType *NewIP = PipeTypes.FindNodeOrInsertPos(ID, InsertPos);
+ assert(!NewIP && "Shouldn't be in the map!");
+ (void)NewIP;
+ }
+ auto *New = new (*this, TypeAlignment) PipeType(T, Canonical, ReadOnly);
+ Types.push_back(New);
+ PipeTypes.InsertNode(New, InsertPos);
+ return QualType(New, 0);
+}
+
+QualType ASTContext::adjustStringLiteralBaseType(QualType Ty) const {
+ // OpenCL v1.1 s6.5.3: a string literal is in the constant address space.
+ return LangOpts.OpenCL ? getAddrSpaceQualType(Ty, LangAS::opencl_constant)
+ : Ty;
+}
+
+QualType ASTContext::getReadPipeType(QualType T) const {
+ return getPipeType(T, true);
+}
+
+QualType ASTContext::getWritePipeType(QualType T) const {
+ return getPipeType(T, false);
+}
+
+#ifndef NDEBUG
+static bool NeedsInjectedClassNameType(const RecordDecl *D) {
+ if (!isa<CXXRecordDecl>(D)) return false;
+ const auto *RD = cast<CXXRecordDecl>(D);
+ if (isa<ClassTemplatePartialSpecializationDecl>(RD))
+ return true;
+ if (RD->getDescribedClassTemplate() &&
+ !isa<ClassTemplateSpecializationDecl>(RD))
+ return true;
+ return false;
+}
+#endif
+
+/// getInjectedClassNameType - Return the unique reference to the
+/// injected class name type for the specified templated declaration.
+QualType ASTContext::getInjectedClassNameType(CXXRecordDecl *Decl,
+ QualType TST) const {
+ assert(NeedsInjectedClassNameType(Decl));
+ if (Decl->TypeForDecl) {
+ assert(isa<InjectedClassNameType>(Decl->TypeForDecl));
+ } else if (CXXRecordDecl *PrevDecl = Decl->getPreviousDecl()) {
+ assert(PrevDecl->TypeForDecl && "previous declaration has no type");
+ Decl->TypeForDecl = PrevDecl->TypeForDecl;
+ assert(isa<InjectedClassNameType>(Decl->TypeForDecl));
+ } else {
+ Type *newType =
+ new (*this, TypeAlignment) InjectedClassNameType(Decl, TST);
+ Decl->TypeForDecl = newType;
+ Types.push_back(newType);
+ }
+ return QualType(Decl->TypeForDecl, 0);
+}
+
+/// getTypeDeclType - Return the unique reference to the type for the
+/// specified type declaration.
+QualType ASTContext::getTypeDeclTypeSlow(const TypeDecl *Decl) const {
+ assert(Decl && "Passed null for Decl param");
+ assert(!Decl->TypeForDecl && "TypeForDecl present in slow case");
+
+ if (const auto *Typedef = dyn_cast<TypedefNameDecl>(Decl))
+ return getTypedefType(Typedef);
+
+ assert(!isa<TemplateTypeParmDecl>(Decl) &&
+ "Template type parameter types are always available.");
+
+ if (const auto *Record = dyn_cast<RecordDecl>(Decl)) {
+ assert(Record->isFirstDecl() && "struct/union has previous declaration");
+ assert(!NeedsInjectedClassNameType(Record));
+ return getRecordType(Record);
+ } else if (const auto *Enum = dyn_cast<EnumDecl>(Decl)) {
+ assert(Enum->isFirstDecl() && "enum has previous declaration");
+ return getEnumType(Enum);
+ } else if (const auto *Using = dyn_cast<UnresolvedUsingTypenameDecl>(Decl)) {
+ Type *newType = new (*this, TypeAlignment) UnresolvedUsingType(Using);
+ Decl->TypeForDecl = newType;
+ Types.push_back(newType);
+ } else
+ llvm_unreachable("TypeDecl without a type?");
+
+ return QualType(Decl->TypeForDecl, 0);
+}
+
+/// getTypedefType - Return the unique reference to the type for the
+/// specified typedef name decl.
+QualType
+ASTContext::getTypedefType(const TypedefNameDecl *Decl,
+ QualType Canonical) const {
+ if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
+
+ if (Canonical.isNull())
+ Canonical = getCanonicalType(Decl->getUnderlyingType());
+ auto *newType = new (*this, TypeAlignment)
+ TypedefType(Type::Typedef, Decl, Canonical);
+ Decl->TypeForDecl = newType;
+ Types.push_back(newType);
+ return QualType(newType, 0);
+}
+
+QualType ASTContext::getRecordType(const RecordDecl *Decl) const {
+ if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
+
+ if (const RecordDecl *PrevDecl = Decl->getPreviousDecl())
+ if (PrevDecl->TypeForDecl)
+ return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0);
+
+ auto *newType = new (*this, TypeAlignment) RecordType(Decl);
+ Decl->TypeForDecl = newType;
+ Types.push_back(newType);
+ return QualType(newType, 0);
+}
+
+QualType ASTContext::getEnumType(const EnumDecl *Decl) const {
+ if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
+
+ if (const EnumDecl *PrevDecl = Decl->getPreviousDecl())
+ if (PrevDecl->TypeForDecl)
+ return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0);
+
+ auto *newType = new (*this, TypeAlignment) EnumType(Decl);
+ Decl->TypeForDecl = newType;
+ Types.push_back(newType);
+ return QualType(newType, 0);
+}
+
+QualType ASTContext::getAttributedType(attr::Kind attrKind,
+ QualType modifiedType,
+ QualType equivalentType) {
+ llvm::FoldingSetNodeID id;
+ AttributedType::Profile(id, attrKind, modifiedType, equivalentType);
+
+ void *insertPos = nullptr;
+ AttributedType *type = AttributedTypes.FindNodeOrInsertPos(id, insertPos);
+ if (type) return QualType(type, 0);
+
+ QualType canon = getCanonicalType(equivalentType);
+ type = new (*this, TypeAlignment)
+ AttributedType(canon, attrKind, modifiedType, equivalentType);
+
+ Types.push_back(type);
+ AttributedTypes.InsertNode(type, insertPos);
+
+ return QualType(type, 0);
+}
+
+/// Retrieve a substitution-result type.
+QualType
+ASTContext::getSubstTemplateTypeParmType(const TemplateTypeParmType *Parm,
+ QualType Replacement) const {
+ assert(Replacement.isCanonical()
+ && "replacement types must always be canonical");
+
+ llvm::FoldingSetNodeID ID;
+ SubstTemplateTypeParmType::Profile(ID, Parm, Replacement);
+ void *InsertPos = nullptr;
+ SubstTemplateTypeParmType *SubstParm
+ = SubstTemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
+
+ if (!SubstParm) {
+ SubstParm = new (*this, TypeAlignment)
+ SubstTemplateTypeParmType(Parm, Replacement);
+ Types.push_back(SubstParm);
+ SubstTemplateTypeParmTypes.InsertNode(SubstParm, InsertPos);
+ }
+
+ return QualType(SubstParm, 0);
+}
+
+/// Retrieve a
+QualType ASTContext::getSubstTemplateTypeParmPackType(
+ const TemplateTypeParmType *Parm,
+ const TemplateArgument &ArgPack) {
+#ifndef NDEBUG
+ for (const auto &P : ArgPack.pack_elements()) {
+ assert(P.getKind() == TemplateArgument::Type &&"Pack contains a non-type");
+ assert(P.getAsType().isCanonical() && "Pack contains non-canonical type");
+ }
+#endif
+
+ llvm::FoldingSetNodeID ID;
+ SubstTemplateTypeParmPackType::Profile(ID, Parm, ArgPack);
+ void *InsertPos = nullptr;
+ if (SubstTemplateTypeParmPackType *SubstParm
+ = SubstTemplateTypeParmPackTypes.FindNodeOrInsertPos(ID, InsertPos))
+ return QualType(SubstParm, 0);
+
+ QualType Canon;
+ if (!Parm->isCanonicalUnqualified()) {
+ Canon = getCanonicalType(QualType(Parm, 0));
+ Canon = getSubstTemplateTypeParmPackType(cast<TemplateTypeParmType>(Canon),
+ ArgPack);
+ SubstTemplateTypeParmPackTypes.FindNodeOrInsertPos(ID, InsertPos);
+ }
+
+ auto *SubstParm
+ = new (*this, TypeAlignment) SubstTemplateTypeParmPackType(Parm, Canon,
+ ArgPack);
+ Types.push_back(SubstParm);
+ SubstTemplateTypeParmPackTypes.InsertNode(SubstParm, InsertPos);
+ return QualType(SubstParm, 0);
+}
+
+/// Retrieve the template type parameter type for a template
+/// parameter or parameter pack with the given depth, index, and (optionally)
+/// name.
+QualType ASTContext::getTemplateTypeParmType(unsigned Depth, unsigned Index,
+ bool ParameterPack,
+ TemplateTypeParmDecl *TTPDecl) const {
+ llvm::FoldingSetNodeID ID;
+ TemplateTypeParmType::Profile(ID, Depth, Index, ParameterPack, TTPDecl);
+ void *InsertPos = nullptr;
+ TemplateTypeParmType *TypeParm
+ = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
+
+ if (TypeParm)
+ return QualType(TypeParm, 0);
+
+ if (TTPDecl) {
+ QualType Canon = getTemplateTypeParmType(Depth, Index, ParameterPack);
+ TypeParm = new (*this, TypeAlignment) TemplateTypeParmType(TTPDecl, Canon);
+
+ TemplateTypeParmType *TypeCheck
+ = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
+ assert(!TypeCheck && "Template type parameter canonical type broken");
+ (void)TypeCheck;
+ } else
+ TypeParm = new (*this, TypeAlignment)
+ TemplateTypeParmType(Depth, Index, ParameterPack);
+
+ Types.push_back(TypeParm);
+ TemplateTypeParmTypes.InsertNode(TypeParm, InsertPos);
+
+ return QualType(TypeParm, 0);
+}
+
+TypeSourceInfo *
+ASTContext::getTemplateSpecializationTypeInfo(TemplateName Name,
+ SourceLocation NameLoc,
+ const TemplateArgumentListInfo &Args,
+ QualType Underlying) const {
+ assert(!Name.getAsDependentTemplateName() &&
+ "No dependent template names here!");
+ QualType TST = getTemplateSpecializationType(Name, Args, Underlying);
+
+ TypeSourceInfo *DI = CreateTypeSourceInfo(TST);
+ TemplateSpecializationTypeLoc TL =
+ DI->getTypeLoc().castAs<TemplateSpecializationTypeLoc>();
+ TL.setTemplateKeywordLoc(SourceLocation());
+ TL.setTemplateNameLoc(NameLoc);
+ TL.setLAngleLoc(Args.getLAngleLoc());
+ TL.setRAngleLoc(Args.getRAngleLoc());
+ for (unsigned i = 0, e = TL.getNumArgs(); i != e; ++i)
+ TL.setArgLocInfo(i, Args[i].getLocInfo());
+ return DI;
+}
+
+QualType
+ASTContext::getTemplateSpecializationType(TemplateName Template,
+ const TemplateArgumentListInfo &Args,
+ QualType Underlying) const {
+ assert(!Template.getAsDependentTemplateName() &&
+ "No dependent template names here!");
+
+ SmallVector<TemplateArgument, 4> ArgVec;
+ ArgVec.reserve(Args.size());
+ for (const TemplateArgumentLoc &Arg : Args.arguments())
+ ArgVec.push_back(Arg.getArgument());
+
+ return getTemplateSpecializationType(Template, ArgVec, Underlying);
+}
+
+#ifndef NDEBUG
+static bool hasAnyPackExpansions(ArrayRef<TemplateArgument> Args) {
+ for (const TemplateArgument &Arg : Args)
+ if (Arg.isPackExpansion())
+ return true;
+
+ return true;
+}
+#endif
+
+QualType
+ASTContext::getTemplateSpecializationType(TemplateName Template,
+ ArrayRef<TemplateArgument> Args,
+ QualType Underlying) const {
+ assert(!Template.getAsDependentTemplateName() &&
+ "No dependent template names here!");
+ // Look through qualified template names.
+ if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName())
+ Template = TemplateName(QTN->getTemplateDecl());
+
+ bool IsTypeAlias =
+ Template.getAsTemplateDecl() &&
+ isa<TypeAliasTemplateDecl>(Template.getAsTemplateDecl());
+ QualType CanonType;
+ if (!Underlying.isNull())
+ CanonType = getCanonicalType(Underlying);
+ else {
+ // We can get here with an alias template when the specialization contains
+ // a pack expansion that does not match up with a parameter pack.
+ assert((!IsTypeAlias || hasAnyPackExpansions(Args)) &&
+ "Caller must compute aliased type");
+ IsTypeAlias = false;
+ CanonType = getCanonicalTemplateSpecializationType(Template, Args);
+ }
+
+ // Allocate the (non-canonical) template specialization type, but don't
+ // try to unique it: these types typically have location information that
+ // we don't unique and don't want to lose.
+ void *Mem = Allocate(sizeof(TemplateSpecializationType) +
+ sizeof(TemplateArgument) * Args.size() +
+ (IsTypeAlias? sizeof(QualType) : 0),
+ TypeAlignment);
+ auto *Spec
+ = new (Mem) TemplateSpecializationType(Template, Args, CanonType,
+ IsTypeAlias ? Underlying : QualType());
+
+ Types.push_back(Spec);
+ return QualType(Spec, 0);
+}
+
+QualType ASTContext::getCanonicalTemplateSpecializationType(
+ TemplateName Template, ArrayRef<TemplateArgument> Args) const {
+ assert(!Template.getAsDependentTemplateName() &&
+ "No dependent template names here!");
+
+ // Look through qualified template names.
+ if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName())
+ Template = TemplateName(QTN->getTemplateDecl());
+
+ // Build the canonical template specialization type.
+ TemplateName CanonTemplate = getCanonicalTemplateName(Template);
+ SmallVector<TemplateArgument, 4> CanonArgs;
+ unsigned NumArgs = Args.size();
+ CanonArgs.reserve(NumArgs);
+ for (const TemplateArgument &Arg : Args)
+ CanonArgs.push_back(getCanonicalTemplateArgument(Arg));
+
+ // Determine whether this canonical template specialization type already
+ // exists.
+ llvm::FoldingSetNodeID ID;
+ TemplateSpecializationType::Profile(ID, CanonTemplate,
+ CanonArgs, *this);
+
+ void *InsertPos = nullptr;
+ TemplateSpecializationType *Spec
+ = TemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
+
+ if (!Spec) {
+ // Allocate a new canonical template specialization type.
+ void *Mem = Allocate((sizeof(TemplateSpecializationType) +
+ sizeof(TemplateArgument) * NumArgs),
+ TypeAlignment);
+ Spec = new (Mem) TemplateSpecializationType(CanonTemplate,
+ CanonArgs,
+ QualType(), QualType());
+ Types.push_back(Spec);
+ TemplateSpecializationTypes.InsertNode(Spec, InsertPos);
+ }
+
+ assert(Spec->isDependentType() &&
+ "Non-dependent template-id type must have a canonical type");
+ return QualType(Spec, 0);
+}
+
+QualType ASTContext::getElaboratedType(ElaboratedTypeKeyword Keyword,
+ NestedNameSpecifier *NNS,
+ QualType NamedType,
+ TagDecl *OwnedTagDecl) const {
+ llvm::FoldingSetNodeID ID;
+ ElaboratedType::Profile(ID, Keyword, NNS, NamedType, OwnedTagDecl);
+
+ void *InsertPos = nullptr;
+ ElaboratedType *T = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
+ if (T)
+ return QualType(T, 0);
+
+ QualType Canon = NamedType;
+ if (!Canon.isCanonical()) {
+ Canon = getCanonicalType(NamedType);
+ ElaboratedType *CheckT = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
+ assert(!CheckT && "Elaborated canonical type broken");
+ (void)CheckT;
+ }
+
+ void *Mem = Allocate(ElaboratedType::totalSizeToAlloc<TagDecl *>(!!OwnedTagDecl),
+ TypeAlignment);
+ T = new (Mem) ElaboratedType(Keyword, NNS, NamedType, Canon, OwnedTagDecl);
+
+ Types.push_back(T);
+ ElaboratedTypes.InsertNode(T, InsertPos);
+ return QualType(T, 0);
+}
+
+QualType
+ASTContext::getParenType(QualType InnerType) const {
+ llvm::FoldingSetNodeID ID;
+ ParenType::Profile(ID, InnerType);
+
+ void *InsertPos = nullptr;
+ ParenType *T = ParenTypes.FindNodeOrInsertPos(ID, InsertPos);
+ if (T)
+ return QualType(T, 0);
+
+ QualType Canon = InnerType;
+ if (!Canon.isCanonical()) {
+ Canon = getCanonicalType(InnerType);
+ ParenType *CheckT = ParenTypes.FindNodeOrInsertPos(ID, InsertPos);
+ assert(!CheckT && "Paren canonical type broken");
+ (void)CheckT;
+ }
+
+ T = new (*this, TypeAlignment) ParenType(InnerType, Canon);
+ Types.push_back(T);
+ ParenTypes.InsertNode(T, InsertPos);
+ return QualType(T, 0);
+}
+
+QualType
+ASTContext::getMacroQualifiedType(QualType UnderlyingTy,
+ const IdentifierInfo *MacroII) const {
+ QualType Canon = UnderlyingTy;
+ if (!Canon.isCanonical())
+ Canon = getCanonicalType(UnderlyingTy);
+
+ auto *newType = new (*this, TypeAlignment)
+ MacroQualifiedType(UnderlyingTy, Canon, MacroII);
+ Types.push_back(newType);
+ return QualType(newType, 0);
+}
+
+QualType ASTContext::getDependentNameType(ElaboratedTypeKeyword Keyword,
+ NestedNameSpecifier *NNS,
+ const IdentifierInfo *Name,
+ QualType Canon) const {
+ if (Canon.isNull()) {
+ NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
+ if (CanonNNS != NNS)
+ Canon = getDependentNameType(Keyword, CanonNNS, Name);
+ }
+
+ llvm::FoldingSetNodeID ID;
+ DependentNameType::Profile(ID, Keyword, NNS, Name);
+
+ void *InsertPos = nullptr;
+ DependentNameType *T
+ = DependentNameTypes.FindNodeOrInsertPos(ID, InsertPos);
+ if (T)
+ return QualType(T, 0);
+
+ T = new (*this, TypeAlignment) DependentNameType(Keyword, NNS, Name, Canon);
+ Types.push_back(T);
+ DependentNameTypes.InsertNode(T, InsertPos);
+ return QualType(T, 0);
+}
+
+QualType
+ASTContext::getDependentTemplateSpecializationType(
+ ElaboratedTypeKeyword Keyword,
+ NestedNameSpecifier *NNS,
+ const IdentifierInfo *Name,
+ const TemplateArgumentListInfo &Args) const {
+ // TODO: avoid this copy
+ SmallVector<TemplateArgument, 16> ArgCopy;
+ for (unsigned I = 0, E = Args.size(); I != E; ++I)
+ ArgCopy.push_back(Args[I].getArgument());
+ return getDependentTemplateSpecializationType(Keyword, NNS, Name, ArgCopy);
+}
+
+QualType
+ASTContext::getDependentTemplateSpecializationType(
+ ElaboratedTypeKeyword Keyword,
+ NestedNameSpecifier *NNS,
+ const IdentifierInfo *Name,
+ ArrayRef<TemplateArgument> Args) const {
+ assert((!NNS || NNS->isDependent()) &&
+ "nested-name-specifier must be dependent");
+
+ llvm::FoldingSetNodeID ID;
+ DependentTemplateSpecializationType::Profile(ID, *this, Keyword, NNS,
+ Name, Args);
+
+ void *InsertPos = nullptr;
+ DependentTemplateSpecializationType *T
+ = DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
+ if (T)
+ return QualType(T, 0);
+
+ NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
+
+ ElaboratedTypeKeyword CanonKeyword = Keyword;
+ if (Keyword == ETK_None) CanonKeyword = ETK_Typename;
+
+ bool AnyNonCanonArgs = false;
+ unsigned NumArgs = Args.size();
+ SmallVector<TemplateArgument, 16> CanonArgs(NumArgs);
+ for (unsigned I = 0; I != NumArgs; ++I) {
+ CanonArgs[I] = getCanonicalTemplateArgument(Args[I]);
+ if (!CanonArgs[I].structurallyEquals(Args[I]))
+ AnyNonCanonArgs = true;
+ }
+
+ QualType Canon;
+ if (AnyNonCanonArgs || CanonNNS != NNS || CanonKeyword != Keyword) {
+ Canon = getDependentTemplateSpecializationType(CanonKeyword, CanonNNS,
+ Name,
+ CanonArgs);
+
+ // Find the insert position again.
+ DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
+ }
+
+ void *Mem = Allocate((sizeof(DependentTemplateSpecializationType) +
+ sizeof(TemplateArgument) * NumArgs),
+ TypeAlignment);
+ T = new (Mem) DependentTemplateSpecializationType(Keyword, NNS,
+ Name, Args, Canon);
+ Types.push_back(T);
+ DependentTemplateSpecializationTypes.InsertNode(T, InsertPos);
+ return QualType(T, 0);
+}
+
+TemplateArgument ASTContext::getInjectedTemplateArg(NamedDecl *Param) {
+ TemplateArgument Arg;
+ if (const auto *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) {
+ QualType ArgType = getTypeDeclType(TTP);
+ if (TTP->isParameterPack())
+ ArgType = getPackExpansionType(ArgType, None);
+
+ Arg = TemplateArgument(ArgType);
+ } else if (auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
+ Expr *E = new (*this) DeclRefExpr(
+ *this, NTTP, /*enclosing*/ false,
+ NTTP->getType().getNonLValueExprType(*this),
+ Expr::getValueKindForType(NTTP->getType()), NTTP->getLocation());
+
+ if (NTTP->isParameterPack())
+ E = new (*this) PackExpansionExpr(DependentTy, E, NTTP->getLocation(),
+ None);
+ Arg = TemplateArgument(E);
+ } else {
+ auto *TTP = cast<TemplateTemplateParmDecl>(Param);
+ if (TTP->isParameterPack())
+ Arg = TemplateArgument(TemplateName(TTP), Optional<unsigned>());
+ else
+ Arg = TemplateArgument(TemplateName(TTP));
+ }
+
+ if (Param->isTemplateParameterPack())
+ Arg = TemplateArgument::CreatePackCopy(*this, Arg);
+
+ return Arg;
+}
+
+void
+ASTContext::getInjectedTemplateArgs(const TemplateParameterList *Params,
+ SmallVectorImpl<TemplateArgument> &Args) {
+ Args.reserve(Args.size() + Params->size());
+
+ for (NamedDecl *Param : *Params)
+ Args.push_back(getInjectedTemplateArg(Param));
+}
+
+QualType ASTContext::getPackExpansionType(QualType Pattern,
+ Optional<unsigned> NumExpansions) {
+ llvm::FoldingSetNodeID ID;
+ PackExpansionType::Profile(ID, Pattern, NumExpansions);
+
+ // A deduced type can deduce to a pack, eg
+ // auto ...x = some_pack;
+ // That declaration isn't (yet) valid, but is created as part of building an
+ // init-capture pack:
+ // [...x = some_pack] {}
+ assert((Pattern->containsUnexpandedParameterPack() ||
+ Pattern->getContainedDeducedType()) &&
+ "Pack expansions must expand one or more parameter packs");
+ void *InsertPos = nullptr;
+ PackExpansionType *T
+ = PackExpansionTypes.FindNodeOrInsertPos(ID, InsertPos);
+ if (T)
+ return QualType(T, 0);
+
+ QualType Canon;
+ if (!Pattern.isCanonical()) {
+ Canon = getCanonicalType(Pattern);
+ // The canonical type might not contain an unexpanded parameter pack, if it
+ // contains an alias template specialization which ignores one of its
+ // parameters.
+ if (Canon->containsUnexpandedParameterPack()) {
+ Canon = getPackExpansionType(Canon, NumExpansions);
+
+ // Find the insert position again, in case we inserted an element into
+ // PackExpansionTypes and invalidated our insert position.
+ PackExpansionTypes.FindNodeOrInsertPos(ID, InsertPos);
+ }
+ }
+
+ T = new (*this, TypeAlignment)
+ PackExpansionType(Pattern, Canon, NumExpansions);
+ Types.push_back(T);
+ PackExpansionTypes.InsertNode(T, InsertPos);
+ return QualType(T, 0);
+}
+
+/// CmpProtocolNames - Comparison predicate for sorting protocols
+/// alphabetically.
+static int CmpProtocolNames(ObjCProtocolDecl *const *LHS,
+ ObjCProtocolDecl *const *RHS) {
+ return DeclarationName::compare((*LHS)->getDeclName(), (*RHS)->getDeclName());
+}
+
+static bool areSortedAndUniqued(ArrayRef<ObjCProtocolDecl *> Protocols) {
+ if (Protocols.empty()) return true;
+
+ if (Protocols[0]->getCanonicalDecl() != Protocols[0])
+ return false;
+
+ for (unsigned i = 1; i != Protocols.size(); ++i)
+ if (CmpProtocolNames(&Protocols[i - 1], &Protocols[i]) >= 0 ||
+ Protocols[i]->getCanonicalDecl() != Protocols[i])
+ return false;
+ return true;
+}
+
+static void
+SortAndUniqueProtocols(SmallVectorImpl<ObjCProtocolDecl *> &Protocols) {
+ // Sort protocols, keyed by name.
+ llvm::array_pod_sort(Protocols.begin(), Protocols.end(), CmpProtocolNames);
+
+ // Canonicalize.
+ for (ObjCProtocolDecl *&P : Protocols)
+ P = P->getCanonicalDecl();
+
+ // Remove duplicates.
+ auto ProtocolsEnd = std::unique(Protocols.begin(), Protocols.end());
+ Protocols.erase(ProtocolsEnd, Protocols.end());
+}
+
+QualType ASTContext::getObjCObjectType(QualType BaseType,
+ ObjCProtocolDecl * const *Protocols,
+ unsigned NumProtocols) const {
+ return getObjCObjectType(BaseType, {},
+ llvm::makeArrayRef(Protocols, NumProtocols),
+ /*isKindOf=*/false);
+}
+
+QualType ASTContext::getObjCObjectType(
+ QualType baseType,
+ ArrayRef<QualType> typeArgs,
+ ArrayRef<ObjCProtocolDecl *> protocols,
+ bool isKindOf) const {
+ // If the base type is an interface and there aren't any protocols or
+ // type arguments to add, then the interface type will do just fine.
+ if (typeArgs.empty() && protocols.empty() && !isKindOf &&
+ isa<ObjCInterfaceType>(baseType))
+ return baseType;
+
+ // Look in the folding set for an existing type.
+ llvm::FoldingSetNodeID ID;
+ ObjCObjectTypeImpl::Profile(ID, baseType, typeArgs, protocols, isKindOf);
+ void *InsertPos = nullptr;
+ if (ObjCObjectType *QT = ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos))
+ return QualType(QT, 0);
+
+ // Determine the type arguments to be used for canonicalization,
+ // which may be explicitly specified here or written on the base
+ // type.
+ ArrayRef<QualType> effectiveTypeArgs = typeArgs;
+ if (effectiveTypeArgs.empty()) {
+ if (const auto *baseObject = baseType->getAs<ObjCObjectType>())
+ effectiveTypeArgs = baseObject->getTypeArgs();
+ }
+
+ // Build the canonical type, which has the canonical base type and a
+ // sorted-and-uniqued list of protocols and the type arguments
+ // canonicalized.
+ QualType canonical;
+ bool typeArgsAreCanonical = std::all_of(effectiveTypeArgs.begin(),
+ effectiveTypeArgs.end(),
+ [&](QualType type) {
+ return type.isCanonical();
+ });
+ bool protocolsSorted = areSortedAndUniqued(protocols);
+ if (!typeArgsAreCanonical || !protocolsSorted || !baseType.isCanonical()) {
+ // Determine the canonical type arguments.
+ ArrayRef<QualType> canonTypeArgs;
+ SmallVector<QualType, 4> canonTypeArgsVec;
+ if (!typeArgsAreCanonical) {
+ canonTypeArgsVec.reserve(effectiveTypeArgs.size());
+ for (auto typeArg : effectiveTypeArgs)
+ canonTypeArgsVec.push_back(getCanonicalType(typeArg));
+ canonTypeArgs = canonTypeArgsVec;
+ } else {
+ canonTypeArgs = effectiveTypeArgs;
+ }
+
+ ArrayRef<ObjCProtocolDecl *> canonProtocols;
+ SmallVector<ObjCProtocolDecl*, 8> canonProtocolsVec;
+ if (!protocolsSorted) {
+ canonProtocolsVec.append(protocols.begin(), protocols.end());
+ SortAndUniqueProtocols(canonProtocolsVec);
+ canonProtocols = canonProtocolsVec;
+ } else {
+ canonProtocols = protocols;
+ }
+
+ canonical = getObjCObjectType(getCanonicalType(baseType), canonTypeArgs,
+ canonProtocols, isKindOf);
+
+ // Regenerate InsertPos.
+ ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos);
+ }
+
+ unsigned size = sizeof(ObjCObjectTypeImpl);
+ size += typeArgs.size() * sizeof(QualType);
+ size += protocols.size() * sizeof(ObjCProtocolDecl *);
+ void *mem = Allocate(size, TypeAlignment);
+ auto *T =
+ new (mem) ObjCObjectTypeImpl(canonical, baseType, typeArgs, protocols,
+ isKindOf);
+
+ Types.push_back(T);
+ ObjCObjectTypes.InsertNode(T, InsertPos);
+ return QualType(T, 0);
+}
+
+/// Apply Objective-C protocol qualifiers to the given type.
+/// If this is for the canonical type of a type parameter, we can apply
+/// protocol qualifiers on the ObjCObjectPointerType.
+QualType
+ASTContext::applyObjCProtocolQualifiers(QualType type,
+ ArrayRef<ObjCProtocolDecl *> protocols, bool &hasError,
+ bool allowOnPointerType) const {
+ hasError = false;
+
+ if (const auto *objT = dyn_cast<ObjCTypeParamType>(type.getTypePtr())) {
+ return getObjCTypeParamType(objT->getDecl(), protocols);
+ }
+
+ // Apply protocol qualifiers to ObjCObjectPointerType.
+ if (allowOnPointerType) {
+ if (const auto *objPtr =
+ dyn_cast<ObjCObjectPointerType>(type.getTypePtr())) {
+ const ObjCObjectType *objT = objPtr->getObjectType();
+ // Merge protocol lists and construct ObjCObjectType.
+ SmallVector<ObjCProtocolDecl*, 8> protocolsVec;
+ protocolsVec.append(objT->qual_begin(),
+ objT->qual_end());
+ protocolsVec.append(protocols.begin(), protocols.end());
+ ArrayRef<ObjCProtocolDecl *> protocols = protocolsVec;
+ type = getObjCObjectType(
+ objT->getBaseType(),
+ objT->getTypeArgsAsWritten(),
+ protocols,
+ objT->isKindOfTypeAsWritten());
+ return getObjCObjectPointerType(type);
+ }
+ }
+
+ // Apply protocol qualifiers to ObjCObjectType.
+ if (const auto *objT = dyn_cast<ObjCObjectType>(type.getTypePtr())){
+ // FIXME: Check for protocols to which the class type is already
+ // known to conform.
+
+ return getObjCObjectType(objT->getBaseType(),
+ objT->getTypeArgsAsWritten(),
+ protocols,
+ objT->isKindOfTypeAsWritten());
+ }
+
+ // If the canonical type is ObjCObjectType, ...
+ if (type->isObjCObjectType()) {
+ // Silently overwrite any existing protocol qualifiers.
+ // TODO: determine whether that's the right thing to do.
+
+ // FIXME: Check for protocols to which the class type is already
+ // known to conform.
+ return getObjCObjectType(type, {}, protocols, false);
+ }
+
+ // id<protocol-list>
+ if (type->isObjCIdType()) {
+ const auto *objPtr = type->castAs<ObjCObjectPointerType>();
+ type = getObjCObjectType(ObjCBuiltinIdTy, {}, protocols,
+ objPtr->isKindOfType());
+ return getObjCObjectPointerType(type);
+ }
+
+ // Class<protocol-list>
+ if (type->isObjCClassType()) {
+ const auto *objPtr = type->castAs<ObjCObjectPointerType>();
+ type = getObjCObjectType(ObjCBuiltinClassTy, {}, protocols,
+ objPtr->isKindOfType());
+ return getObjCObjectPointerType(type);
+ }
+
+ hasError = true;
+ return type;
+}
+
+QualType
+ASTContext::getObjCTypeParamType(const ObjCTypeParamDecl *Decl,
+ ArrayRef<ObjCProtocolDecl *> protocols) const {
+ // Look in the folding set for an existing type.
+ llvm::FoldingSetNodeID ID;
+ ObjCTypeParamType::Profile(ID, Decl, protocols);
+ void *InsertPos = nullptr;
+ if (ObjCTypeParamType *TypeParam =
+ ObjCTypeParamTypes.FindNodeOrInsertPos(ID, InsertPos))
+ return QualType(TypeParam, 0);
+
+ // We canonicalize to the underlying type.
+ QualType Canonical = getCanonicalType(Decl->getUnderlyingType());
+ if (!protocols.empty()) {
+ // Apply the protocol qualifers.
+ bool hasError;
+ Canonical = getCanonicalType(applyObjCProtocolQualifiers(
+ Canonical, protocols, hasError, true /*allowOnPointerType*/));
+ assert(!hasError && "Error when apply protocol qualifier to bound type");
+ }
+
+ unsigned size = sizeof(ObjCTypeParamType);
+ size += protocols.size() * sizeof(ObjCProtocolDecl *);
+ void *mem = Allocate(size, TypeAlignment);
+ auto *newType = new (mem) ObjCTypeParamType(Decl, Canonical, protocols);
+
+ Types.push_back(newType);
+ ObjCTypeParamTypes.InsertNode(newType, InsertPos);
+ return QualType(newType, 0);
+}
+
+/// ObjCObjectAdoptsQTypeProtocols - Checks that protocols in IC's
+/// protocol list adopt all protocols in QT's qualified-id protocol
+/// list.
+bool ASTContext::ObjCObjectAdoptsQTypeProtocols(QualType QT,
+ ObjCInterfaceDecl *IC) {
+ if (!QT->isObjCQualifiedIdType())
+ return false;
+
+ if (const auto *OPT = QT->getAs<ObjCObjectPointerType>()) {
+ // If both the right and left sides have qualifiers.
+ for (auto *Proto : OPT->quals()) {
+ if (!IC->ClassImplementsProtocol(Proto, false))
+ return false;
+ }
+ return true;
+ }
+ return false;
+}
+
+/// QIdProtocolsAdoptObjCObjectProtocols - Checks that protocols in
+/// QT's qualified-id protocol list adopt all protocols in IDecl's list
+/// of protocols.
+bool ASTContext::QIdProtocolsAdoptObjCObjectProtocols(QualType QT,
+ ObjCInterfaceDecl *IDecl) {
+ if (!QT->isObjCQualifiedIdType())
+ return false;
+ const auto *OPT = QT->getAs<ObjCObjectPointerType>();
+ if (!OPT)
+ return false;
+ if (!IDecl->hasDefinition())
+ return false;
+ llvm::SmallPtrSet<ObjCProtocolDecl *, 8> InheritedProtocols;
+ CollectInheritedProtocols(IDecl, InheritedProtocols);
+ if (InheritedProtocols.empty())
+ return false;
+ // Check that if every protocol in list of id<plist> conforms to a protocol
+ // of IDecl's, then bridge casting is ok.
+ bool Conforms = false;
+ for (auto *Proto : OPT->quals()) {
+ Conforms = false;
+ for (auto *PI : InheritedProtocols) {
+ if (ProtocolCompatibleWithProtocol(Proto, PI)) {
+ Conforms = true;
+ break;
+ }
+ }
+ if (!Conforms)
+ break;
+ }
+ if (Conforms)
+ return true;
+
+ for (auto *PI : InheritedProtocols) {
+ // If both the right and left sides have qualifiers.
+ bool Adopts = false;
+ for (auto *Proto : OPT->quals()) {
+ // return 'true' if 'PI' is in the inheritance hierarchy of Proto
+ if ((Adopts = ProtocolCompatibleWithProtocol(PI, Proto)))
+ break;
+ }
+ if (!Adopts)
+ return false;
+ }
+ return true;
+}
+
+/// getObjCObjectPointerType - Return a ObjCObjectPointerType type for
+/// the given object type.
+QualType ASTContext::getObjCObjectPointerType(QualType ObjectT) const {
+ llvm::FoldingSetNodeID ID;
+ ObjCObjectPointerType::Profile(ID, ObjectT);
+
+ void *InsertPos = nullptr;
+ if (ObjCObjectPointerType *QT =
+ ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
+ return QualType(QT, 0);
+
+ // Find the canonical object type.
+ QualType Canonical;
+ if (!ObjectT.isCanonical()) {
+ Canonical = getObjCObjectPointerType(getCanonicalType(ObjectT));
+
+ // Regenerate InsertPos.
+ ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
+ }
+
+ // No match.
+ void *Mem = Allocate(sizeof(ObjCObjectPointerType), TypeAlignment);
+ auto *QType =
+ new (Mem) ObjCObjectPointerType(Canonical, ObjectT);
+
+ Types.push_back(QType);
+ ObjCObjectPointerTypes.InsertNode(QType, InsertPos);
+ return QualType(QType, 0);
+}
+
+/// getObjCInterfaceType - Return the unique reference to the type for the
+/// specified ObjC interface decl. The list of protocols is optional.
+QualType ASTContext::getObjCInterfaceType(const ObjCInterfaceDecl *Decl,
+ ObjCInterfaceDecl *PrevDecl) const {
+ if (Decl->TypeForDecl)
+ return QualType(Decl->TypeForDecl, 0);
+
+ if (PrevDecl) {
+ assert(PrevDecl->TypeForDecl && "previous decl has no TypeForDecl");
+ Decl->TypeForDecl = PrevDecl->TypeForDecl;
+ return QualType(PrevDecl->TypeForDecl, 0);
+ }
+
+ // Prefer the definition, if there is one.
+ if (const ObjCInterfaceDecl *Def = Decl->getDefinition())
+ Decl = Def;
+
+ void *Mem = Allocate(sizeof(ObjCInterfaceType), TypeAlignment);
+ auto *T = new (Mem) ObjCInterfaceType(Decl);
+ Decl->TypeForDecl = T;
+ Types.push_back(T);
+ return QualType(T, 0);
+}
+
+/// getTypeOfExprType - Unlike many "get<Type>" functions, we can't unique
+/// TypeOfExprType AST's (since expression's are never shared). For example,
+/// multiple declarations that refer to "typeof(x)" all contain different
+/// DeclRefExpr's. This doesn't effect the type checker, since it operates
+/// on canonical type's (which are always unique).
+QualType ASTContext::getTypeOfExprType(Expr *tofExpr) const {
+ TypeOfExprType *toe;
+ if (tofExpr->isTypeDependent()) {
+ llvm::FoldingSetNodeID ID;
+ DependentTypeOfExprType::Profile(ID, *this, tofExpr);
+
+ void *InsertPos = nullptr;
+ DependentTypeOfExprType *Canon
+ = DependentTypeOfExprTypes.FindNodeOrInsertPos(ID, InsertPos);
+ if (Canon) {
+ // We already have a "canonical" version of an identical, dependent
+ // typeof(expr) type. Use that as our canonical type.
+ toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr,
+ QualType((TypeOfExprType*)Canon, 0));
+ } else {
+ // Build a new, canonical typeof(expr) type.
+ Canon
+ = new (*this, TypeAlignment) DependentTypeOfExprType(*this, tofExpr);
+ DependentTypeOfExprTypes.InsertNode(Canon, InsertPos);
+ toe = Canon;
+ }
+ } else {
+ QualType Canonical = getCanonicalType(tofExpr->getType());
+ toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr, Canonical);
+ }
+ Types.push_back(toe);
+ return QualType(toe, 0);
+}
+
+/// getTypeOfType - Unlike many "get<Type>" functions, we don't unique
+/// TypeOfType nodes. The only motivation to unique these nodes would be
+/// memory savings. Since typeof(t) is fairly uncommon, space shouldn't be
+/// an issue. This doesn't affect the type checker, since it operates
+/// on canonical types (which are always unique).
+QualType ASTContext::getTypeOfType(QualType tofType) const {
+ QualType Canonical = getCanonicalType(tofType);
+ auto *tot = new (*this, TypeAlignment) TypeOfType(tofType, Canonical);
+ Types.push_back(tot);
+ return QualType(tot, 0);
+}
+
+/// Unlike many "get<Type>" functions, we don't unique DecltypeType
+/// nodes. This would never be helpful, since each such type has its own
+/// expression, and would not give a significant memory saving, since there
+/// is an Expr tree under each such type.
+QualType ASTContext::getDecltypeType(Expr *e, QualType UnderlyingType) const {
+ DecltypeType *dt;
+
+ // C++11 [temp.type]p2:
+ // If an expression e involves a template parameter, decltype(e) denotes a
+ // unique dependent type. Two such decltype-specifiers refer to the same
+ // type only if their expressions are equivalent (14.5.6.1).
+ if (e->isInstantiationDependent()) {
+ llvm::FoldingSetNodeID ID;
+ DependentDecltypeType::Profile(ID, *this, e);
+
+ void *InsertPos = nullptr;
+ DependentDecltypeType *Canon
+ = DependentDecltypeTypes.FindNodeOrInsertPos(ID, InsertPos);
+ if (!Canon) {
+ // Build a new, canonical decltype(expr) type.
+ Canon = new (*this, TypeAlignment) DependentDecltypeType(*this, e);
+ DependentDecltypeTypes.InsertNode(Canon, InsertPos);
+ }
+ dt = new (*this, TypeAlignment)
+ DecltypeType(e, UnderlyingType, QualType((DecltypeType *)Canon, 0));
+ } else {
+ dt = new (*this, TypeAlignment)
+ DecltypeType(e, UnderlyingType, getCanonicalType(UnderlyingType));
+ }
+ Types.push_back(dt);
+ return QualType(dt, 0);
+}
+
+/// getUnaryTransformationType - We don't unique these, since the memory
+/// savings are minimal and these are rare.
+QualType ASTContext::getUnaryTransformType(QualType BaseType,
+ QualType UnderlyingType,
+ UnaryTransformType::UTTKind Kind)
+ const {
+ UnaryTransformType *ut = nullptr;
+
+ if (BaseType->isDependentType()) {
+ // Look in the folding set for an existing type.
+ llvm::FoldingSetNodeID ID;
+ DependentUnaryTransformType::Profile(ID, getCanonicalType(BaseType), Kind);
+
+ void *InsertPos = nullptr;
+ DependentUnaryTransformType *Canon
+ = DependentUnaryTransformTypes.FindNodeOrInsertPos(ID, InsertPos);
+
+ if (!Canon) {
+ // Build a new, canonical __underlying_type(type) type.
+ Canon = new (*this, TypeAlignment)
+ DependentUnaryTransformType(*this, getCanonicalType(BaseType),
+ Kind);
+ DependentUnaryTransformTypes.InsertNode(Canon, InsertPos);
+ }
+ ut = new (*this, TypeAlignment) UnaryTransformType (BaseType,
+ QualType(), Kind,
+ QualType(Canon, 0));
+ } else {
+ QualType CanonType = getCanonicalType(UnderlyingType);
+ ut = new (*this, TypeAlignment) UnaryTransformType (BaseType,
+ UnderlyingType, Kind,
+ CanonType);
+ }
+ Types.push_back(ut);
+ return QualType(ut, 0);
+}
+
+/// getAutoType - Return the uniqued reference to the 'auto' type which has been
+/// deduced to the given type, or to the canonical undeduced 'auto' type, or the
+/// canonical deduced-but-dependent 'auto' type.
+QualType ASTContext::getAutoType(QualType DeducedType, AutoTypeKeyword Keyword,
+ bool IsDependent, bool IsPack) const {
+ assert((!IsPack || IsDependent) && "only use IsPack for a dependent pack");
+ if (DeducedType.isNull() && Keyword == AutoTypeKeyword::Auto && !IsDependent)
+ return getAutoDeductType();
+
+ // Look in the folding set for an existing type.
+ void *InsertPos = nullptr;
+ llvm::FoldingSetNodeID ID;
+ AutoType::Profile(ID, DeducedType, Keyword, IsDependent, IsPack);
+ if (AutoType *AT = AutoTypes.FindNodeOrInsertPos(ID, InsertPos))
+ return QualType(AT, 0);
+
+ auto *AT = new (*this, TypeAlignment)
+ AutoType(DeducedType, Keyword, IsDependent, IsPack);
+ Types.push_back(AT);
+ if (InsertPos)
+ AutoTypes.InsertNode(AT, InsertPos);
+ return QualType(AT, 0);
+}
+
+/// Return the uniqued reference to the deduced template specialization type
+/// which has been deduced to the given type, or to the canonical undeduced
+/// such type, or the canonical deduced-but-dependent such type.
+QualType ASTContext::getDeducedTemplateSpecializationType(
+ TemplateName Template, QualType DeducedType, bool IsDependent) const {
+ // Look in the folding set for an existing type.
+ void *InsertPos = nullptr;
+ llvm::FoldingSetNodeID ID;
+ DeducedTemplateSpecializationType::Profile(ID, Template, DeducedType,
+ IsDependent);
+ if (DeducedTemplateSpecializationType *DTST =
+ DeducedTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos))
+ return QualType(DTST, 0);
+
+ auto *DTST = new (*this, TypeAlignment)
+ DeducedTemplateSpecializationType(Template, DeducedType, IsDependent);
+ Types.push_back(DTST);
+ if (InsertPos)
+ DeducedTemplateSpecializationTypes.InsertNode(DTST, InsertPos);
+ return QualType(DTST, 0);
+}
+
+/// getAtomicType - Return the uniqued reference to the atomic type for
+/// the given value type.
+QualType ASTContext::getAtomicType(QualType T) const {
+ // Unique pointers, to guarantee there is only one pointer of a particular
+ // structure.
+ llvm::FoldingSetNodeID ID;
+ AtomicType::Profile(ID, T);
+
+ void *InsertPos = nullptr;
+ if (AtomicType *AT = AtomicTypes.FindNodeOrInsertPos(ID, InsertPos))
+ return QualType(AT, 0);
+
+ // If the atomic value type isn't canonical, this won't be a canonical type
+ // either, so fill in the canonical type field.
+ QualType Canonical;
+ if (!T.isCanonical()) {
+ Canonical = getAtomicType(getCanonicalType(T));
+
+ // Get the new insert position for the node we care about.
+ AtomicType *NewIP = AtomicTypes.FindNodeOrInsertPos(ID, InsertPos);
+ assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
+ }
+ auto *New = new (*this, TypeAlignment) AtomicType(T, Canonical);
+ Types.push_back(New);
+ AtomicTypes.InsertNode(New, InsertPos);
+ return QualType(New, 0);
+}
+
+/// getAutoDeductType - Get type pattern for deducing against 'auto'.
+QualType ASTContext::getAutoDeductType() const {
+ if (AutoDeductTy.isNull())
+ AutoDeductTy = QualType(
+ new (*this, TypeAlignment) AutoType(QualType(), AutoTypeKeyword::Auto,
+ /*dependent*/false, /*pack*/false),
+ 0);
+ return AutoDeductTy;
+}
+
+/// getAutoRRefDeductType - Get type pattern for deducing against 'auto &&'.
+QualType ASTContext::getAutoRRefDeductType() const {
+ if (AutoRRefDeductTy.isNull())
+ AutoRRefDeductTy = getRValueReferenceType(getAutoDeductType());
+ assert(!AutoRRefDeductTy.isNull() && "can't build 'auto &&' pattern");
+ return AutoRRefDeductTy;
+}
+
+/// getTagDeclType - Return the unique reference to the type for the
+/// specified TagDecl (struct/union/class/enum) decl.
+QualType ASTContext::getTagDeclType(const TagDecl *Decl) const {
+ assert(Decl);
+ // FIXME: What is the design on getTagDeclType when it requires casting
+ // away const? mutable?
+ return getTypeDeclType(const_cast<TagDecl*>(Decl));
+}
+
+/// getSizeType - Return the unique type for "size_t" (C99 7.17), the result
+/// of the sizeof operator (C99 6.5.3.4p4). The value is target dependent and
+/// needs to agree with the definition in <stddef.h>.
+CanQualType ASTContext::getSizeType() const {
+ return getFromTargetType(Target->getSizeType());
+}
+
+/// Return the unique signed counterpart of the integer type
+/// corresponding to size_t.
+CanQualType ASTContext::getSignedSizeType() const {
+ return getFromTargetType(Target->getSignedSizeType());
+}
+
+/// getIntMaxType - Return the unique type for "intmax_t" (C99 7.18.1.5).
+CanQualType ASTContext::getIntMaxType() const {
+ return getFromTargetType(Target->getIntMaxType());
+}
+
+/// getUIntMaxType - Return the unique type for "uintmax_t" (C99 7.18.1.5).
+CanQualType ASTContext::getUIntMaxType() const {
+ return getFromTargetType(Target->getUIntMaxType());
+}
+
+/// getSignedWCharType - Return the type of "signed wchar_t".
+/// Used when in C++, as a GCC extension.
+QualType ASTContext::getSignedWCharType() const {
+ // FIXME: derive from "Target" ?
+ return WCharTy;
+}
+
+/// getUnsignedWCharType - Return the type of "unsigned wchar_t".
+/// Used when in C++, as a GCC extension.
+QualType ASTContext::getUnsignedWCharType() const {
+ // FIXME: derive from "Target" ?
+ return UnsignedIntTy;
+}
+
+QualType ASTContext::getIntPtrType() const {
+ return getFromTargetType(Target->getIntPtrType());
+}
+
+QualType ASTContext::getUIntPtrType() const {
+ return getCorrespondingUnsignedType(getIntPtrType());
+}
+
+/// getPointerDiffType - Return the unique type for "ptrdiff_t" (C99 7.17)
+/// defined in <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
+QualType ASTContext::getPointerDiffType() const {
+ return getFromTargetType(Target->getPtrDiffType(0));
+}
+
+/// Return the unique unsigned counterpart of "ptrdiff_t"
+/// integer type. The standard (C11 7.21.6.1p7) refers to this type
+/// in the definition of %tu format specifier.
+QualType ASTContext::getUnsignedPointerDiffType() const {
+ return getFromTargetType(Target->getUnsignedPtrDiffType(0));
+}
+
+/// Return the unique type for "pid_t" defined in
+/// <sys/types.h>. We need this to compute the correct type for vfork().
+QualType ASTContext::getProcessIDType() const {
+ return getFromTargetType(Target->getProcessIDType());
+}
+
+//===----------------------------------------------------------------------===//
+// Type Operators
+//===----------------------------------------------------------------------===//
+
+CanQualType ASTContext::getCanonicalParamType(QualType T) const {
+ // Push qualifiers into arrays, and then discard any remaining
+ // qualifiers.
+ T = getCanonicalType(T);
+ T = getVariableArrayDecayedType(T);
+ const Type *Ty = T.getTypePtr();
+ QualType Result;
+ if (isa<ArrayType>(Ty)) {
+ Result = getArrayDecayedType(QualType(Ty,0));
+ } else if (isa<FunctionType>(Ty)) {
+ Result = getPointerType(QualType(Ty, 0));
+ } else {
+ Result = QualType(Ty, 0);
+ }
+
+ return CanQualType::CreateUnsafe(Result);
+}
+
+QualType ASTContext::getUnqualifiedArrayType(QualType type,
+ Qualifiers &quals) {
+ SplitQualType splitType = type.getSplitUnqualifiedType();
+
+ // FIXME: getSplitUnqualifiedType() actually walks all the way to
+ // the unqualified desugared type and then drops it on the floor.
+ // We then have to strip that sugar back off with
+ // getUnqualifiedDesugaredType(), which is silly.
+ const auto *AT =
+ dyn_cast<ArrayType>(splitType.Ty->getUnqualifiedDesugaredType());
+
+ // If we don't have an array, just use the results in splitType.
+ if (!AT) {
+ quals = splitType.Quals;
+ return QualType(splitType.Ty, 0);
+ }
+
+ // Otherwise, recurse on the array's element type.
+ QualType elementType = AT->getElementType();
+ QualType unqualElementType = getUnqualifiedArrayType(elementType, quals);
+
+ // If that didn't change the element type, AT has no qualifiers, so we
+ // can just use the results in splitType.
+ if (elementType == unqualElementType) {
+ assert(quals.empty()); // from the recursive call
+ quals = splitType.Quals;
+ return QualType(splitType.Ty, 0);
+ }
+
+ // Otherwise, add in the qualifiers from the outermost type, then
+ // build the type back up.
+ quals.addConsistentQualifiers(splitType.Quals);
+
+ if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) {
+ return getConstantArrayType(unqualElementType, CAT->getSize(),
+ CAT->getSizeExpr(), CAT->getSizeModifier(), 0);
+ }
+
+ if (const auto *IAT = dyn_cast<IncompleteArrayType>(AT)) {
+ return getIncompleteArrayType(unqualElementType, IAT->getSizeModifier(), 0);
+ }
+
+ if (const auto *VAT = dyn_cast<VariableArrayType>(AT)) {
+ return getVariableArrayType(unqualElementType,
+ VAT->getSizeExpr(),
+ VAT->getSizeModifier(),
+ VAT->getIndexTypeCVRQualifiers(),
+ VAT->getBracketsRange());
+ }
+
+ const auto *DSAT = cast<DependentSizedArrayType>(AT);
+ return getDependentSizedArrayType(unqualElementType, DSAT->getSizeExpr(),
+ DSAT->getSizeModifier(), 0,
+ SourceRange());
+}
+
+/// Attempt to unwrap two types that may both be array types with the same bound
+/// (or both be array types of unknown bound) for the purpose of comparing the
+/// cv-decomposition of two types per C++ [conv.qual].
+bool ASTContext::UnwrapSimilarArrayTypes(QualType &T1, QualType &T2) {
+ bool UnwrappedAny = false;
+ while (true) {
+ auto *AT1 = getAsArrayType(T1);
+ if (!AT1) return UnwrappedAny;
+
+ auto *AT2 = getAsArrayType(T2);
+ if (!AT2) return UnwrappedAny;
+
+ // If we don't have two array types with the same constant bound nor two
+ // incomplete array types, we've unwrapped everything we can.
+ if (auto *CAT1 = dyn_cast<ConstantArrayType>(AT1)) {
+ auto *CAT2 = dyn_cast<ConstantArrayType>(AT2);
+ if (!CAT2 || CAT1->getSize() != CAT2->getSize())
+ return UnwrappedAny;
+ } else if (!isa<IncompleteArrayType>(AT1) ||
+ !isa<IncompleteArrayType>(AT2)) {
+ return UnwrappedAny;
+ }
+
+ T1 = AT1->getElementType();
+ T2 = AT2->getElementType();
+ UnwrappedAny = true;
+ }
+}
+
+/// Attempt to unwrap two types that may be similar (C++ [conv.qual]).
+///
+/// If T1 and T2 are both pointer types of the same kind, or both array types
+/// with the same bound, unwraps layers from T1 and T2 until a pointer type is
+/// unwrapped. Top-level qualifiers on T1 and T2 are ignored.
+///
+/// This function will typically be called in a loop that successively
+/// "unwraps" pointer and pointer-to-member types to compare them at each
+/// level.
+///
+/// \return \c true if a pointer type was unwrapped, \c false if we reached a
+/// pair of types that can't be unwrapped further.
+bool ASTContext::UnwrapSimilarTypes(QualType &T1, QualType &T2) {
+ UnwrapSimilarArrayTypes(T1, T2);
+
+ const auto *T1PtrType = T1->getAs<PointerType>();
+ const auto *T2PtrType = T2->getAs<PointerType>();
+ if (T1PtrType && T2PtrType) {
+ T1 = T1PtrType->getPointeeType();
+ T2 = T2PtrType->getPointeeType();
+ return true;
+ }
+
+ const auto *T1MPType = T1->getAs<MemberPointerType>();
+ const auto *T2MPType = T2->getAs<MemberPointerType>();
+ if (T1MPType && T2MPType &&
+ hasSameUnqualifiedType(QualType(T1MPType->getClass(), 0),
+ QualType(T2MPType->getClass(), 0))) {
+ T1 = T1MPType->getPointeeType();
+ T2 = T2MPType->getPointeeType();
+ return true;
+ }
+
+ if (getLangOpts().ObjC) {
+ const auto *T1OPType = T1->getAs<ObjCObjectPointerType>();
+ const auto *T2OPType = T2->getAs<ObjCObjectPointerType>();
+ if (T1OPType && T2OPType) {
+ T1 = T1OPType->getPointeeType();
+ T2 = T2OPType->getPointeeType();
+ return true;
+ }
+ }
+
+ // FIXME: Block pointers, too?
+
+ return false;
+}
+
+bool ASTContext::hasSimilarType(QualType T1, QualType T2) {
+ while (true) {
+ Qualifiers Quals;
+ T1 = getUnqualifiedArrayType(T1, Quals);
+ T2 = getUnqualifiedArrayType(T2, Quals);
+ if (hasSameType(T1, T2))
+ return true;
+ if (!UnwrapSimilarTypes(T1, T2))
+ return false;
+ }
+}
+
+bool ASTContext::hasCvrSimilarType(QualType T1, QualType T2) {
+ while (true) {
+ Qualifiers Quals1, Quals2;
+ T1 = getUnqualifiedArrayType(T1, Quals1);
+ T2 = getUnqualifiedArrayType(T2, Quals2);
+
+ Quals1.removeCVRQualifiers();
+ Quals2.removeCVRQualifiers();
+ if (Quals1 != Quals2)
+ return false;
+
+ if (hasSameType(T1, T2))
+ return true;
+
+ if (!UnwrapSimilarTypes(T1, T2))
+ return false;
+ }
+}
+
+DeclarationNameInfo
+ASTContext::getNameForTemplate(TemplateName Name,
+ SourceLocation NameLoc) const {
+ switch (Name.getKind()) {
+ case TemplateName::QualifiedTemplate:
+ case TemplateName::Template:
+ // DNInfo work in progress: CHECKME: what about DNLoc?
+ return DeclarationNameInfo(Name.getAsTemplateDecl()->getDeclName(),
+ NameLoc);
+
+ case TemplateName::OverloadedTemplate: {
+ OverloadedTemplateStorage *Storage = Name.getAsOverloadedTemplate();
+ // DNInfo work in progress: CHECKME: what about DNLoc?
+ return DeclarationNameInfo((*Storage->begin())->getDeclName(), NameLoc);
+ }
+
+ case TemplateName::AssumedTemplate: {
+ AssumedTemplateStorage *Storage = Name.getAsAssumedTemplateName();
+ return DeclarationNameInfo(Storage->getDeclName(), NameLoc);
+ }
+
+ case TemplateName::DependentTemplate: {
+ DependentTemplateName *DTN = Name.getAsDependentTemplateName();
+ DeclarationName DName;
+ if (DTN->isIdentifier()) {
+ DName = DeclarationNames.getIdentifier(DTN->getIdentifier());
+ return DeclarationNameInfo(DName, NameLoc);
+ } else {
+ DName = DeclarationNames.getCXXOperatorName(DTN->getOperator());
+ // DNInfo work in progress: FIXME: source locations?
+ DeclarationNameLoc DNLoc;
+ DNLoc.CXXOperatorName.BeginOpNameLoc = SourceLocation().getRawEncoding();
+ DNLoc.CXXOperatorName.EndOpNameLoc = SourceLocation().getRawEncoding();
+ return DeclarationNameInfo(DName, NameLoc, DNLoc);
+ }
+ }
+
+ case TemplateName::SubstTemplateTemplateParm: {
+ SubstTemplateTemplateParmStorage *subst
+ = Name.getAsSubstTemplateTemplateParm();
+ return DeclarationNameInfo(subst->getParameter()->getDeclName(),
+ NameLoc);
+ }
+
+ case TemplateName::SubstTemplateTemplateParmPack: {
+ SubstTemplateTemplateParmPackStorage *subst
+ = Name.getAsSubstTemplateTemplateParmPack();
+ return DeclarationNameInfo(subst->getParameterPack()->getDeclName(),
+ NameLoc);
+ }
+ }
+
+ llvm_unreachable("bad template name kind!");
+}
+
+TemplateName ASTContext::getCanonicalTemplateName(TemplateName Name) const {
+ switch (Name.getKind()) {
+ case TemplateName::QualifiedTemplate:
+ case TemplateName::Template: {
+ TemplateDecl *Template = Name.getAsTemplateDecl();
+ if (auto *TTP = dyn_cast<TemplateTemplateParmDecl>(Template))
+ Template = getCanonicalTemplateTemplateParmDecl(TTP);
+
+ // The canonical template name is the canonical template declaration.
+ return TemplateName(cast<TemplateDecl>(Template->getCanonicalDecl()));
+ }
+
+ case TemplateName::OverloadedTemplate:
+ case TemplateName::AssumedTemplate:
+ llvm_unreachable("cannot canonicalize unresolved template");
+
+ case TemplateName::DependentTemplate: {
+ DependentTemplateName *DTN = Name.getAsDependentTemplateName();
+ assert(DTN && "Non-dependent template names must refer to template decls.");
+ return DTN->CanonicalTemplateName;
+ }
+
+ case TemplateName::SubstTemplateTemplateParm: {
+ SubstTemplateTemplateParmStorage *subst
+ = Name.getAsSubstTemplateTemplateParm();
+ return getCanonicalTemplateName(subst->getReplacement());
+ }
+
+ case TemplateName::SubstTemplateTemplateParmPack: {
+ SubstTemplateTemplateParmPackStorage *subst
+ = Name.getAsSubstTemplateTemplateParmPack();
+ TemplateTemplateParmDecl *canonParameter
+ = getCanonicalTemplateTemplateParmDecl(subst->getParameterPack());
+ TemplateArgument canonArgPack
+ = getCanonicalTemplateArgument(subst->getArgumentPack());
+ return getSubstTemplateTemplateParmPack(canonParameter, canonArgPack);
+ }
+ }
+
+ llvm_unreachable("bad template name!");
+}
+
+bool ASTContext::hasSameTemplateName(TemplateName X, TemplateName Y) {
+ X = getCanonicalTemplateName(X);
+ Y = getCanonicalTemplateName(Y);
+ return X.getAsVoidPointer() == Y.getAsVoidPointer();
+}
+
+TemplateArgument
+ASTContext::getCanonicalTemplateArgument(const TemplateArgument &Arg) const {
+ switch (Arg.getKind()) {
+ case TemplateArgument::Null:
+ return Arg;
+
+ case TemplateArgument::Expression:
+ return Arg;
+
+ case TemplateArgument::Declaration: {
+ auto *D = cast<ValueDecl>(Arg.getAsDecl()->getCanonicalDecl());
+ return TemplateArgument(D, Arg.getParamTypeForDecl());
+ }
+
+ case TemplateArgument::NullPtr:
+ return TemplateArgument(getCanonicalType(Arg.getNullPtrType()),
+ /*isNullPtr*/true);
+
+ case TemplateArgument::Template:
+ return TemplateArgument(getCanonicalTemplateName(Arg.getAsTemplate()));
+
+ case TemplateArgument::TemplateExpansion:
+ return TemplateArgument(getCanonicalTemplateName(
+ Arg.getAsTemplateOrTemplatePattern()),
+ Arg.getNumTemplateExpansions());
+
+ case TemplateArgument::Integral:
+ return TemplateArgument(Arg, getCanonicalType(Arg.getIntegralType()));
+
+ case TemplateArgument::Type:
+ return TemplateArgument(getCanonicalType(Arg.getAsType()));
+
+ case TemplateArgument::Pack: {
+ if (Arg.pack_size() == 0)
+ return Arg;
+
+ auto *CanonArgs = new (*this) TemplateArgument[Arg.pack_size()];
+ unsigned Idx = 0;
+ for (TemplateArgument::pack_iterator A = Arg.pack_begin(),
+ AEnd = Arg.pack_end();
+ A != AEnd; (void)++A, ++Idx)
+ CanonArgs[Idx] = getCanonicalTemplateArgument(*A);
+
+ return TemplateArgument(llvm::makeArrayRef(CanonArgs, Arg.pack_size()));
+ }
+ }
+
+ // Silence GCC warning
+ llvm_unreachable("Unhandled template argument kind");
+}
+
+NestedNameSpecifier *
+ASTContext::getCanonicalNestedNameSpecifier(NestedNameSpecifier *NNS) const {
+ if (!NNS)
+ return nullptr;
+
+ switch (NNS->getKind()) {
+ case NestedNameSpecifier::Identifier:
+ // Canonicalize the prefix but keep the identifier the same.
+ return NestedNameSpecifier::Create(*this,
+ getCanonicalNestedNameSpecifier(NNS->getPrefix()),
+ NNS->getAsIdentifier());
+
+ case NestedNameSpecifier::Namespace:
+ // A namespace is canonical; build a nested-name-specifier with
+ // this namespace and no prefix.
+ return NestedNameSpecifier::Create(*this, nullptr,
+ NNS->getAsNamespace()->getOriginalNamespace());
+
+ case NestedNameSpecifier::NamespaceAlias:
+ // A namespace is canonical; build a nested-name-specifier with
+ // this namespace and no prefix.
+ return NestedNameSpecifier::Create(*this, nullptr,
+ NNS->getAsNamespaceAlias()->getNamespace()
+ ->getOriginalNamespace());
+
+ case NestedNameSpecifier::TypeSpec:
+ case NestedNameSpecifier::TypeSpecWithTemplate: {
+ QualType T = getCanonicalType(QualType(NNS->getAsType(), 0));
+
+ // If we have some kind of dependent-named type (e.g., "typename T::type"),
+ // break it apart into its prefix and identifier, then reconsititute those
+ // as the canonical nested-name-specifier. This is required to canonicalize
+ // a dependent nested-name-specifier involving typedefs of dependent-name
+ // types, e.g.,
+ // typedef typename T::type T1;
+ // typedef typename T1::type T2;
+ if (const auto *DNT = T->getAs<DependentNameType>())
+ return NestedNameSpecifier::Create(*this, DNT->getQualifier(),
+ const_cast<IdentifierInfo *>(DNT->getIdentifier()));
+
+ // Otherwise, just canonicalize the type, and force it to be a TypeSpec.
+ // FIXME: Why are TypeSpec and TypeSpecWithTemplate distinct in the
+ // first place?
+ return NestedNameSpecifier::Create(*this, nullptr, false,
+ const_cast<Type *>(T.getTypePtr()));
+ }
+
+ case NestedNameSpecifier::Global:
+ case NestedNameSpecifier::Super:
+ // The global specifier and __super specifer are canonical and unique.
+ return NNS;
+ }
+
+ llvm_unreachable("Invalid NestedNameSpecifier::Kind!");
+}
+
+const ArrayType *ASTContext::getAsArrayType(QualType T) const {
+ // Handle the non-qualified case efficiently.
+ if (!T.hasLocalQualifiers()) {
+ // Handle the common positive case fast.
+ if (const auto *AT = dyn_cast<ArrayType>(T))
+ return AT;
+ }
+
+ // Handle the common negative case fast.
+ if (!isa<ArrayType>(T.getCanonicalType()))
+ return nullptr;
+
+ // Apply any qualifiers from the array type to the element type. This
+ // implements C99 6.7.3p8: "If the specification of an array type includes
+ // any type qualifiers, the element type is so qualified, not the array type."
+
+ // If we get here, we either have type qualifiers on the type, or we have
+ // sugar such as a typedef in the way. If we have type qualifiers on the type
+ // we must propagate them down into the element type.
+
+ SplitQualType split = T.getSplitDesugaredType();
+ Qualifiers qs = split.Quals;
+
+ // If we have a simple case, just return now.
+ const auto *ATy = dyn_cast<ArrayType>(split.Ty);
+ if (!ATy || qs.empty())
+ return ATy;
+
+ // Otherwise, we have an array and we have qualifiers on it. Push the
+ // qualifiers into the array element type and return a new array type.
+ QualType NewEltTy = getQualifiedType(ATy->getElementType(), qs);
+
+ if (const auto *CAT = dyn_cast<ConstantArrayType>(ATy))
+ return cast<ArrayType>(getConstantArrayType(NewEltTy, CAT->getSize(),
+ CAT->getSizeExpr(),
+ CAT->getSizeModifier(),
+ CAT->getIndexTypeCVRQualifiers()));
+ if (const auto *IAT = dyn_cast<IncompleteArrayType>(ATy))
+ return cast<ArrayType>(getIncompleteArrayType(NewEltTy,
+ IAT->getSizeModifier(),
+ IAT->getIndexTypeCVRQualifiers()));
+
+ if (const auto *DSAT = dyn_cast<DependentSizedArrayType>(ATy))
+ return cast<ArrayType>(
+ getDependentSizedArrayType(NewEltTy,
+ DSAT->getSizeExpr(),
+ DSAT->getSizeModifier(),
+ DSAT->getIndexTypeCVRQualifiers(),
+ DSAT->getBracketsRange()));
+
+ const auto *VAT = cast<VariableArrayType>(ATy);
+ return cast<ArrayType>(getVariableArrayType(NewEltTy,
+ VAT->getSizeExpr(),
+ VAT->getSizeModifier(),
+ VAT->getIndexTypeCVRQualifiers(),
+ VAT->getBracketsRange()));
+}
+
+QualType ASTContext::getAdjustedParameterType(QualType T) const {
+ if (T->isArrayType() || T->isFunctionType())
+ return getDecayedType(T);
+ return T;
+}
+
+QualType ASTContext::getSignatureParameterType(QualType T) const {
+ T = getVariableArrayDecayedType(T);
+ T = getAdjustedParameterType(T);
+ return T.getUnqualifiedType();
+}
+
+QualType ASTContext::getExceptionObjectType(QualType T) const {
+ // C++ [except.throw]p3:
+ // A throw-expression initializes a temporary object, called the exception
+ // object, the type of which is determined by removing any top-level
+ // cv-qualifiers from the static type of the operand of throw and adjusting
+ // the type from "array of T" or "function returning T" to "pointer to T"
+ // or "pointer to function returning T", [...]
+ T = getVariableArrayDecayedType(T);
+ if (T->isArrayType() || T->isFunctionType())
+ T = getDecayedType(T);
+ return T.getUnqualifiedType();
+}
+
+/// getArrayDecayedType - Return the properly qualified result of decaying the
+/// specified array type to a pointer. This operation is non-trivial when
+/// handling typedefs etc. The canonical type of "T" must be an array type,
+/// this returns a pointer to a properly qualified element of the array.
+///
+/// See C99 6.7.5.3p7 and C99 6.3.2.1p3.
+QualType ASTContext::getArrayDecayedType(QualType Ty) const {
+ // Get the element type with 'getAsArrayType' so that we don't lose any
+ // typedefs in the element type of the array. This also handles propagation
+ // of type qualifiers from the array type into the element type if present
+ // (C99 6.7.3p8).
+ const ArrayType *PrettyArrayType = getAsArrayType(Ty);
+ assert(PrettyArrayType && "Not an array type!");
+
+ QualType PtrTy = getPointerType(PrettyArrayType->getElementType());
+
+ // int x[restrict 4] -> int *restrict
+ QualType Result = getQualifiedType(PtrTy,
+ PrettyArrayType->getIndexTypeQualifiers());
+
+ // int x[_Nullable] -> int * _Nullable
+ if (auto Nullability = Ty->getNullability(*this)) {
+ Result = const_cast<ASTContext *>(this)->getAttributedType(
+ AttributedType::getNullabilityAttrKind(*Nullability), Result, Result);
+ }
+ return Result;
+}
+
+QualType ASTContext::getBaseElementType(const ArrayType *array) const {
+ return getBaseElementType(array->getElementType());
+}
+
+QualType ASTContext::getBaseElementType(QualType type) const {
+ Qualifiers qs;
+ while (true) {
+ SplitQualType split = type.getSplitDesugaredType();
+ const ArrayType *array = split.Ty->getAsArrayTypeUnsafe();
+ if (!array) break;
+
+ type = array->getElementType();
+ qs.addConsistentQualifiers(split.Quals);
+ }
+
+ return getQualifiedType(type, qs);
+}
+
+/// getConstantArrayElementCount - Returns number of constant array elements.
+uint64_t
+ASTContext::getConstantArrayElementCount(const ConstantArrayType *CA) const {
+ uint64_t ElementCount = 1;
+ do {
+ ElementCount *= CA->getSize().getZExtValue();
+ CA = dyn_cast_or_null<ConstantArrayType>(
+ CA->getElementType()->getAsArrayTypeUnsafe());
+ } while (CA);
+ return ElementCount;
+}
+
+/// getFloatingRank - Return a relative rank for floating point types.
+/// This routine will assert if passed a built-in type that isn't a float.
+static FloatingRank getFloatingRank(QualType T) {
+ if (const auto *CT = T->getAs<ComplexType>())
+ return getFloatingRank(CT->getElementType());
+
+ switch (T->castAs<BuiltinType>()->getKind()) {
+ default: llvm_unreachable("getFloatingRank(): not a floating type");
+ case BuiltinType::Float16: return Float16Rank;
+ case BuiltinType::Half: return HalfRank;
+ case BuiltinType::Float: return FloatRank;
+ case BuiltinType::Double: return DoubleRank;
+ case BuiltinType::LongDouble: return LongDoubleRank;
+ case BuiltinType::Float128: return Float128Rank;
+ }
+}
+
+/// getFloatingTypeOfSizeWithinDomain - Returns a real floating
+/// point or a complex type (based on typeDomain/typeSize).
+/// 'typeDomain' is a real floating point or complex type.
+/// 'typeSize' is a real floating point or complex type.
+QualType ASTContext::getFloatingTypeOfSizeWithinDomain(QualType Size,
+ QualType Domain) const {
+ FloatingRank EltRank = getFloatingRank(Size);
+ if (Domain->isComplexType()) {
+ switch (EltRank) {
+ case Float16Rank:
+ case HalfRank: llvm_unreachable("Complex half is not supported");
+ case FloatRank: return FloatComplexTy;
+ case DoubleRank: return DoubleComplexTy;
+ case LongDoubleRank: return LongDoubleComplexTy;
+ case Float128Rank: return Float128ComplexTy;
+ }
+ }
+
+ assert(Domain->isRealFloatingType() && "Unknown domain!");
+ switch (EltRank) {
+ case Float16Rank: return HalfTy;
+ case HalfRank: return HalfTy;
+ case FloatRank: return FloatTy;
+ case DoubleRank: return DoubleTy;
+ case LongDoubleRank: return LongDoubleTy;
+ case Float128Rank: return Float128Ty;
+ }
+ llvm_unreachable("getFloatingRank(): illegal value for rank");
+}
+
+/// getFloatingTypeOrder - Compare the rank of the two specified floating
+/// point types, ignoring the domain of the type (i.e. 'double' ==
+/// '_Complex double'). If LHS > RHS, return 1. If LHS == RHS, return 0. If
+/// LHS < RHS, return -1.
+int ASTContext::getFloatingTypeOrder(QualType LHS, QualType RHS) const {
+ FloatingRank LHSR = getFloatingRank(LHS);
+ FloatingRank RHSR = getFloatingRank(RHS);
+
+ if (LHSR == RHSR)
+ return 0;
+ if (LHSR > RHSR)
+ return 1;
+ return -1;
+}
+
+int ASTContext::getFloatingTypeSemanticOrder(QualType LHS, QualType RHS) const {
+ if (&getFloatTypeSemantics(LHS) == &getFloatTypeSemantics(RHS))
+ return 0;
+ return getFloatingTypeOrder(LHS, RHS);
+}
+
+/// getIntegerRank - Return an integer conversion rank (C99 6.3.1.1p1). This
+/// routine will assert if passed a built-in type that isn't an integer or enum,
+/// or if it is not canonicalized.
+unsigned ASTContext::getIntegerRank(const Type *T) const {
+ assert(T->isCanonicalUnqualified() && "T should be canonicalized");
+
+ switch (cast<BuiltinType>(T)->getKind()) {
+ default: llvm_unreachable("getIntegerRank(): not a built-in integer");
+ case BuiltinType::Bool:
+ return 1 + (getIntWidth(BoolTy) << 3);
+ case BuiltinType::Char_S:
+ case BuiltinType::Char_U:
+ case BuiltinType::SChar:
+ case BuiltinType::UChar:
+ return 2 + (getIntWidth(CharTy) << 3);
+ case BuiltinType::Short:
+ case BuiltinType::UShort:
+ return 3 + (getIntWidth(ShortTy) << 3);
+ case BuiltinType::Int:
+ case BuiltinType::UInt:
+ return 4 + (getIntWidth(IntTy) << 3);
+ case BuiltinType::Long:
+ case BuiltinType::ULong:
+ return 5 + (getIntWidth(LongTy) << 3);
+ case BuiltinType::LongLong:
+ case BuiltinType::ULongLong:
+ return 6 + (getIntWidth(LongLongTy) << 3);
+ case BuiltinType::Int128:
+ case BuiltinType::UInt128:
+ return 7 + (getIntWidth(Int128Ty) << 3);
+ }
+}
+
+/// Whether this is a promotable bitfield reference according
+/// to C99 6.3.1.1p2, bullet 2 (and GCC extensions).
+///
+/// \returns the type this bit-field will promote to, or NULL if no
+/// promotion occurs.
+QualType ASTContext::isPromotableBitField(Expr *E) const {
+ if (E->isTypeDependent() || E->isValueDependent())
+ return {};
+
+ // C++ [conv.prom]p5:
+ // If the bit-field has an enumerated type, it is treated as any other
+ // value of that type for promotion purposes.
+ if (getLangOpts().CPlusPlus && E->getType()->isEnumeralType())
+ return {};
+
+ // FIXME: We should not do this unless E->refersToBitField() is true. This
+ // matters in C where getSourceBitField() will find bit-fields for various
+ // cases where the source expression is not a bit-field designator.
+
+ FieldDecl *Field = E->getSourceBitField(); // FIXME: conditional bit-fields?
+ if (!Field)
+ return {};
+
+ QualType FT = Field->getType();
+
+ uint64_t BitWidth = Field->getBitWidthValue(*this);
+ uint64_t IntSize = getTypeSize(IntTy);
+ // C++ [conv.prom]p5:
+ // A prvalue for an integral bit-field can be converted to a prvalue of type
+ // int if int can represent all the values of the bit-field; otherwise, it
+ // can be converted to unsigned int if unsigned int can represent all the
+ // values of the bit-field. If the bit-field is larger yet, no integral
+ // promotion applies to it.
+ // C11 6.3.1.1/2:
+ // [For a bit-field of type _Bool, int, signed int, or unsigned int:]
+ // If an int can represent all values of the original type (as restricted by
+ // the width, for a bit-field), the value is converted to an int; otherwise,
+ // it is converted to an unsigned int.
+ //
+ // FIXME: C does not permit promotion of a 'long : 3' bitfield to int.
+ // We perform that promotion here to match GCC and C++.
+ // FIXME: C does not permit promotion of an enum bit-field whose rank is
+ // greater than that of 'int'. We perform that promotion to match GCC.
+ if (BitWidth < IntSize)
+ return IntTy;
+
+ if (BitWidth == IntSize)
+ return FT->isSignedIntegerType() ? IntTy : UnsignedIntTy;
+
+ // Bit-fields wider than int are not subject to promotions, and therefore act
+ // like the base type. GCC has some weird bugs in this area that we
+ // deliberately do not follow (GCC follows a pre-standard resolution to
+ // C's DR315 which treats bit-width as being part of the type, and this leaks
+ // into their semantics in some cases).
+ return {};
+}
+
+/// getPromotedIntegerType - Returns the type that Promotable will
+/// promote to: C99 6.3.1.1p2, assuming that Promotable is a promotable
+/// integer type.
+QualType ASTContext::getPromotedIntegerType(QualType Promotable) const {
+ assert(!Promotable.isNull());
+ assert(Promotable->isPromotableIntegerType());
+ if (const auto *ET = Promotable->getAs<EnumType>())
+ return ET->getDecl()->getPromotionType();
+
+ if (const auto *BT = Promotable->getAs<BuiltinType>()) {
+ // C++ [conv.prom]: A prvalue of type char16_t, char32_t, or wchar_t
+ // (3.9.1) can be converted to a prvalue of the first of the following
+ // types that can represent all the values of its underlying type:
+ // int, unsigned int, long int, unsigned long int, long long int, or
+ // unsigned long long int [...]
+ // FIXME: Is there some better way to compute this?
+ if (BT->getKind() == BuiltinType::WChar_S ||
+ BT->getKind() == BuiltinType::WChar_U ||
+ BT->getKind() == BuiltinType::Char8 ||
+ BT->getKind() == BuiltinType::Char16 ||
+ BT->getKind() == BuiltinType::Char32) {
+ bool FromIsSigned = BT->getKind() == BuiltinType::WChar_S;
+ uint64_t FromSize = getTypeSize(BT);
+ QualType PromoteTypes[] = { IntTy, UnsignedIntTy, LongTy, UnsignedLongTy,
+ LongLongTy, UnsignedLongLongTy };
+ for (size_t Idx = 0; Idx < llvm::array_lengthof(PromoteTypes); ++Idx) {
+ uint64_t ToSize = getTypeSize(PromoteTypes[Idx]);
+ if (FromSize < ToSize ||
+ (FromSize == ToSize &&
+ FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType()))
+ return PromoteTypes[Idx];
+ }
+ llvm_unreachable("char type should fit into long long");
+ }
+ }
+
+ // At this point, we should have a signed or unsigned integer type.
+ if (Promotable->isSignedIntegerType())
+ return IntTy;
+ uint64_t PromotableSize = getIntWidth(Promotable);
+ uint64_t IntSize = getIntWidth(IntTy);
+ assert(Promotable->isUnsignedIntegerType() && PromotableSize <= IntSize);
+ return (PromotableSize != IntSize) ? IntTy : UnsignedIntTy;
+}
+
+/// Recurses in pointer/array types until it finds an objc retainable
+/// type and returns its ownership.
+Qualifiers::ObjCLifetime ASTContext::getInnerObjCOwnership(QualType T) const {
+ while (!T.isNull()) {
+ if (T.getObjCLifetime() != Qualifiers::OCL_None)
+ return T.getObjCLifetime();
+ if (T->isArrayType())
+ T = getBaseElementType(T);
+ else if (const auto *PT = T->getAs<PointerType>())
+ T = PT->getPointeeType();
+ else if (const auto *RT = T->getAs<ReferenceType>())
+ T = RT->getPointeeType();
+ else
+ break;
+ }
+
+ return Qualifiers::OCL_None;
+}
+
+static const Type *getIntegerTypeForEnum(const EnumType *ET) {
+ // Incomplete enum types are not treated as integer types.
+ // FIXME: In C++, enum types are never integer types.
+ if (ET->getDecl()->isComplete() && !ET->getDecl()->isScoped())
+ return ET->getDecl()->getIntegerType().getTypePtr();
+ return nullptr;
+}
+
+/// getIntegerTypeOrder - Returns the highest ranked integer type:
+/// C99 6.3.1.8p1. If LHS > RHS, return 1. If LHS == RHS, return 0. If
+/// LHS < RHS, return -1.
+int ASTContext::getIntegerTypeOrder(QualType LHS, QualType RHS) const {
+ const Type *LHSC = getCanonicalType(LHS).getTypePtr();
+ const Type *RHSC = getCanonicalType(RHS).getTypePtr();
+
+ // Unwrap enums to their underlying type.
+ if (const auto *ET = dyn_cast<EnumType>(LHSC))
+ LHSC = getIntegerTypeForEnum(ET);
+ if (const auto *ET = dyn_cast<EnumType>(RHSC))
+ RHSC = getIntegerTypeForEnum(ET);
+
+ if (LHSC == RHSC) return 0;
+
+ bool LHSUnsigned = LHSC->isUnsignedIntegerType();
+ bool RHSUnsigned = RHSC->isUnsignedIntegerType();
+
+ unsigned LHSRank = getIntegerRank(LHSC);
+ unsigned RHSRank = getIntegerRank(RHSC);
+
+ if (LHSUnsigned == RHSUnsigned) { // Both signed or both unsigned.
+ if (LHSRank == RHSRank) return 0;
+ return LHSRank > RHSRank ? 1 : -1;
+ }
+
+ // Otherwise, the LHS is signed and the RHS is unsigned or visa versa.
+ if (LHSUnsigned) {
+ // If the unsigned [LHS] type is larger, return it.
+ if (LHSRank >= RHSRank)
+ return 1;
+
+ // If the signed type can represent all values of the unsigned type, it
+ // wins. Because we are dealing with 2's complement and types that are
+ // powers of two larger than each other, this is always safe.
+ return -1;
+ }
+
+ // If the unsigned [RHS] type is larger, return it.
+ if (RHSRank >= LHSRank)
+ return -1;
+
+ // If the signed type can represent all values of the unsigned type, it
+ // wins. Because we are dealing with 2's complement and types that are
+ // powers of two larger than each other, this is always safe.
+ return 1;
+}
+
+TypedefDecl *ASTContext::getCFConstantStringDecl() const {
+ if (CFConstantStringTypeDecl)
+ return CFConstantStringTypeDecl;
+
+ assert(!CFConstantStringTagDecl &&
+ "tag and typedef should be initialized together");
+ CFConstantStringTagDecl = buildImplicitRecord("__NSConstantString_tag");
+ CFConstantStringTagDecl->startDefinition();
+
+ struct {
+ QualType Type;
+ const char *Name;
+ } Fields[5];
+ unsigned Count = 0;
+
+ /// Objective-C ABI
+ ///
+ /// typedef struct __NSConstantString_tag {
+ /// const int *isa;
+ /// int flags;
+ /// const char *str;
+ /// long length;
+ /// } __NSConstantString;
+ ///
+ /// Swift ABI (4.1, 4.2)
+ ///
+ /// typedef struct __NSConstantString_tag {
+ /// uintptr_t _cfisa;
+ /// uintptr_t _swift_rc;
+ /// _Atomic(uint64_t) _cfinfoa;
+ /// const char *_ptr;
+ /// uint32_t _length;
+ /// } __NSConstantString;
+ ///
+ /// Swift ABI (5.0)
+ ///
+ /// typedef struct __NSConstantString_tag {
+ /// uintptr_t _cfisa;
+ /// uintptr_t _swift_rc;
+ /// _Atomic(uint64_t) _cfinfoa;
+ /// const char *_ptr;
+ /// uintptr_t _length;
+ /// } __NSConstantString;
+
+ const auto CFRuntime = getLangOpts().CFRuntime;
+ if (static_cast<unsigned>(CFRuntime) <
+ static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift)) {
+ Fields[Count++] = { getPointerType(IntTy.withConst()), "isa" };
+ Fields[Count++] = { IntTy, "flags" };
+ Fields[Count++] = { getPointerType(CharTy.withConst()), "str" };
+ Fields[Count++] = { LongTy, "length" };
+ } else {
+ Fields[Count++] = { getUIntPtrType(), "_cfisa" };
+ Fields[Count++] = { getUIntPtrType(), "_swift_rc" };
+ Fields[Count++] = { getFromTargetType(Target->getUInt64Type()), "_swift_rc" };
+ Fields[Count++] = { getPointerType(CharTy.withConst()), "_ptr" };
+ if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 ||
+ CFRuntime == LangOptions::CoreFoundationABI::Swift4_2)
+ Fields[Count++] = { IntTy, "_ptr" };
+ else
+ Fields[Count++] = { getUIntPtrType(), "_ptr" };
+ }
+
+ // Create fields
+ for (unsigned i = 0; i < Count; ++i) {
+ FieldDecl *Field =
+ FieldDecl::Create(*this, CFConstantStringTagDecl, SourceLocation(),
+ SourceLocation(), &Idents.get(Fields[i].Name),
+ Fields[i].Type, /*TInfo=*/nullptr,
+ /*BitWidth=*/nullptr, /*Mutable=*/false, ICIS_NoInit);
+ Field->setAccess(AS_public);
+ CFConstantStringTagDecl->addDecl(Field);
+ }
+
+ CFConstantStringTagDecl->completeDefinition();
+ // This type is designed to be compatible with NSConstantString, but cannot
+ // use the same name, since NSConstantString is an interface.
+ auto tagType = getTagDeclType(CFConstantStringTagDecl);
+ CFConstantStringTypeDecl =
+ buildImplicitTypedef(tagType, "__NSConstantString");
+
+ return CFConstantStringTypeDecl;
+}
+
+RecordDecl *ASTContext::getCFConstantStringTagDecl() const {
+ if (!CFConstantStringTagDecl)
+ getCFConstantStringDecl(); // Build the tag and the typedef.
+ return CFConstantStringTagDecl;
+}
+
+// getCFConstantStringType - Return the type used for constant CFStrings.
+QualType ASTContext::getCFConstantStringType() const {
+ return getTypedefType(getCFConstantStringDecl());
+}
+
+QualType ASTContext::getObjCSuperType() const {
+ if (ObjCSuperType.isNull()) {
+ RecordDecl *ObjCSuperTypeDecl = buildImplicitRecord("objc_super");
+ TUDecl->addDecl(ObjCSuperTypeDecl);
+ ObjCSuperType = getTagDeclType(ObjCSuperTypeDecl);
+ }
+ return ObjCSuperType;
+}
+
+void ASTContext::setCFConstantStringType(QualType T) {
+ const auto *TD = T->castAs<TypedefType>();
+ CFConstantStringTypeDecl = cast<TypedefDecl>(TD->getDecl());
+ const auto *TagType =
+ CFConstantStringTypeDecl->getUnderlyingType()->castAs<RecordType>();
+ CFConstantStringTagDecl = TagType->getDecl();
+}
+
+QualType ASTContext::getBlockDescriptorType() const {
+ if (BlockDescriptorType)
+ return getTagDeclType(BlockDescriptorType);
+
+ RecordDecl *RD;
+ // FIXME: Needs the FlagAppleBlock bit.
+ RD = buildImplicitRecord("__block_descriptor");
+ RD->startDefinition();
+
+ QualType FieldTypes[] = {
+ UnsignedLongTy,
+ UnsignedLongTy,
+ };
+
+ static const char *const FieldNames[] = {
+ "reserved",
+ "Size"
+ };
+
+ for (size_t i = 0; i < 2; ++i) {
+ FieldDecl *Field = FieldDecl::Create(
+ *this, RD, SourceLocation(), SourceLocation(),
+ &Idents.get(FieldNames[i]), FieldTypes[i], /*TInfo=*/nullptr,
+ /*BitWidth=*/nullptr, /*Mutable=*/false, ICIS_NoInit);
+ Field->setAccess(AS_public);
+ RD->addDecl(Field);
+ }
+
+ RD->completeDefinition();
+
+ BlockDescriptorType = RD;
+
+ return getTagDeclType(BlockDescriptorType);
+}
+
+QualType ASTContext::getBlockDescriptorExtendedType() const {
+ if (BlockDescriptorExtendedType)
+ return getTagDeclType(BlockDescriptorExtendedType);
+
+ RecordDecl *RD;
+ // FIXME: Needs the FlagAppleBlock bit.
+ RD = buildImplicitRecord("__block_descriptor_withcopydispose");
+ RD->startDefinition();
+
+ QualType FieldTypes[] = {
+ UnsignedLongTy,
+ UnsignedLongTy,
+ getPointerType(VoidPtrTy),
+ getPointerType(VoidPtrTy)
+ };
+
+ static const char *const FieldNames[] = {
+ "reserved",
+ "Size",
+ "CopyFuncPtr",
+ "DestroyFuncPtr"
+ };
+
+ for (size_t i = 0; i < 4; ++i) {
+ FieldDecl *Field = FieldDecl::Create(
+ *this, RD, SourceLocation(), SourceLocation(),
+ &Idents.get(FieldNames[i]), FieldTypes[i], /*TInfo=*/nullptr,
+ /*BitWidth=*/nullptr,
+ /*Mutable=*/false, ICIS_NoInit);
+ Field->setAccess(AS_public);
+ RD->addDecl(Field);
+ }
+
+ RD->completeDefinition();
+
+ BlockDescriptorExtendedType = RD;
+ return getTagDeclType(BlockDescriptorExtendedType);
+}
+
+TargetInfo::OpenCLTypeKind ASTContext::getOpenCLTypeKind(const Type *T) const {
+ const auto *BT = dyn_cast<BuiltinType>(T);
+
+ if (!BT) {
+ if (isa<PipeType>(T))
+ return TargetInfo::OCLTK_Pipe;
+
+ return TargetInfo::OCLTK_Default;
+ }
+
+ switch (BT->getKind()) {
+#define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
+ case BuiltinType::Id: \
+ return TargetInfo::OCLTK_Image;
+#include "clang/Basic/OpenCLImageTypes.def"
+
+ case BuiltinType::OCLClkEvent:
+ return TargetInfo::OCLTK_ClkEvent;
+
+ case BuiltinType::OCLEvent:
+ return TargetInfo::OCLTK_Event;
+
+ case BuiltinType::OCLQueue:
+ return TargetInfo::OCLTK_Queue;
+
+ case BuiltinType::OCLReserveID:
+ return TargetInfo::OCLTK_ReserveID;
+
+ case BuiltinType::OCLSampler:
+ return TargetInfo::OCLTK_Sampler;
+
+ default:
+ return TargetInfo::OCLTK_Default;
+ }
+}
+
+LangAS ASTContext::getOpenCLTypeAddrSpace(const Type *T) const {
+ return Target->getOpenCLTypeAddrSpace(getOpenCLTypeKind(T));
+}
+
+/// BlockRequiresCopying - Returns true if byref variable "D" of type "Ty"
+/// requires copy/dispose. Note that this must match the logic
+/// in buildByrefHelpers.
+bool ASTContext::BlockRequiresCopying(QualType Ty,
+ const VarDecl *D) {
+ if (const CXXRecordDecl *record = Ty->getAsCXXRecordDecl()) {
+ const Expr *copyExpr = getBlockVarCopyInit(D).getCopyExpr();
+ if (!copyExpr && record->hasTrivialDestructor()) return false;
+
+ return true;
+ }
+
+ // The block needs copy/destroy helpers if Ty is non-trivial to destructively
+ // move or destroy.
+ if (Ty.isNonTrivialToPrimitiveDestructiveMove() || Ty.isDestructedType())
+ return true;
+
+ if (!Ty->isObjCRetainableType()) return false;
+
+ Qualifiers qs = Ty.getQualifiers();
+
+ // If we have lifetime, that dominates.
+ if (Qualifiers::ObjCLifetime lifetime = qs.getObjCLifetime()) {
+ switch (lifetime) {
+ case Qualifiers::OCL_None: llvm_unreachable("impossible");
+
+ // These are just bits as far as the runtime is concerned.
+ case Qualifiers::OCL_ExplicitNone:
+ case Qualifiers::OCL_Autoreleasing:
+ return false;
+
+ // These cases should have been taken care of when checking the type's
+ // non-triviality.
+ case Qualifiers::OCL_Weak:
+ case Qualifiers::OCL_Strong:
+ llvm_unreachable("impossible");
+ }
+ llvm_unreachable("fell out of lifetime switch!");
+ }
+ return (Ty->isBlockPointerType() || isObjCNSObjectType(Ty) ||
+ Ty->isObjCObjectPointerType());
+}
+
+bool ASTContext::getByrefLifetime(QualType Ty,
+ Qualifiers::ObjCLifetime &LifeTime,
+ bool &HasByrefExtendedLayout) const {
+ if (!getLangOpts().ObjC ||
+ getLangOpts().getGC() != LangOptions::NonGC)
+ return false;
+
+ HasByrefExtendedLayout = false;
+ if (Ty->isRecordType()) {
+ HasByrefExtendedLayout = true;
+ LifeTime = Qualifiers::OCL_None;
+ } else if ((LifeTime = Ty.getObjCLifetime())) {
+ // Honor the ARC qualifiers.
+ } else if (Ty->isObjCObjectPointerType() || Ty->isBlockPointerType()) {
+ // The MRR rule.
+ LifeTime = Qualifiers::OCL_ExplicitNone;
+ } else {
+ LifeTime = Qualifiers::OCL_None;
+ }
+ return true;
+}
+
+TypedefDecl *ASTContext::getObjCInstanceTypeDecl() {
+ if (!ObjCInstanceTypeDecl)
+ ObjCInstanceTypeDecl =
+ buildImplicitTypedef(getObjCIdType(), "instancetype");
+ return ObjCInstanceTypeDecl;
+}
+
+// This returns true if a type has been typedefed to BOOL:
+// typedef <type> BOOL;
+static bool isTypeTypedefedAsBOOL(QualType T) {
+ if (const auto *TT = dyn_cast<TypedefType>(T))
+ if (IdentifierInfo *II = TT->getDecl()->getIdentifier())
+ return II->isStr("BOOL");
+
+ return false;
+}
+
+/// getObjCEncodingTypeSize returns size of type for objective-c encoding
+/// purpose.
+CharUnits ASTContext::getObjCEncodingTypeSize(QualType type) const {
+ if (!type->isIncompleteArrayType() && type->isIncompleteType())
+ return CharUnits::Zero();
+
+ CharUnits sz = getTypeSizeInChars(type);
+
+ // Make all integer and enum types at least as large as an int
+ if (sz.isPositive() && type->isIntegralOrEnumerationType())
+ sz = std::max(sz, getTypeSizeInChars(IntTy));
+ // Treat arrays as pointers, since that's how they're passed in.
+ else if (type->isArrayType())
+ sz = getTypeSizeInChars(VoidPtrTy);
+ return sz;
+}
+
+bool ASTContext::isMSStaticDataMemberInlineDefinition(const VarDecl *VD) const {
+ return getTargetInfo().getCXXABI().isMicrosoft() &&
+ VD->isStaticDataMember() &&
+ VD->getType()->isIntegralOrEnumerationType() &&
+ !VD->getFirstDecl()->isOutOfLine() && VD->getFirstDecl()->hasInit();
+}
+
+ASTContext::InlineVariableDefinitionKind
+ASTContext::getInlineVariableDefinitionKind(const VarDecl *VD) const {
+ if (!VD->isInline())
+ return InlineVariableDefinitionKind::None;
+
+ // In almost all cases, it's a weak definition.
+ auto *First = VD->getFirstDecl();
+ if (First->isInlineSpecified() || !First->isStaticDataMember())
+ return InlineVariableDefinitionKind::Weak;
+
+ // If there's a file-context declaration in this translation unit, it's a
+ // non-discardable definition.
+ for (auto *D : VD->redecls())
+ if (D->getLexicalDeclContext()->isFileContext() &&
+ !D->isInlineSpecified() && (D->isConstexpr() || First->isConstexpr()))
+ return InlineVariableDefinitionKind::Strong;
+
+ // If we've not seen one yet, we don't know.
+ return InlineVariableDefinitionKind::WeakUnknown;
+}
+
+static std::string charUnitsToString(const CharUnits &CU) {
+ return llvm::itostr(CU.getQuantity());
+}
+
+/// getObjCEncodingForBlock - Return the encoded type for this block
+/// declaration.
+std::string ASTContext::getObjCEncodingForBlock(const BlockExpr *Expr) const {
+ std::string S;
+
+ const BlockDecl *Decl = Expr->getBlockDecl();
+ QualType BlockTy =
+ Expr->getType()->castAs<BlockPointerType>()->getPointeeType();
+ QualType BlockReturnTy = BlockTy->castAs<FunctionType>()->getReturnType();
+ // Encode result type.
+ if (getLangOpts().EncodeExtendedBlockSig)
+ getObjCEncodingForMethodParameter(Decl::OBJC_TQ_None, BlockReturnTy, S,
+ true /*Extended*/);
+ else
+ getObjCEncodingForType(BlockReturnTy, S);
+ // Compute size of all parameters.
+ // Start with computing size of a pointer in number of bytes.
+ // FIXME: There might(should) be a better way of doing this computation!
+ CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
+ CharUnits ParmOffset = PtrSize;
+ for (auto PI : Decl->parameters()) {
+ QualType PType = PI->getType();
+ CharUnits sz = getObjCEncodingTypeSize(PType);
+ if (sz.isZero())
+ continue;
+ assert(sz.isPositive() && "BlockExpr - Incomplete param type");
+ ParmOffset += sz;
+ }
+ // Size of the argument frame
+ S += charUnitsToString(ParmOffset);
+ // Block pointer and offset.
+ S += "@?0";
+
+ // Argument types.
+ ParmOffset = PtrSize;
+ for (auto PVDecl : Decl->parameters()) {
+ QualType PType = PVDecl->getOriginalType();
+ if (const auto *AT =
+ dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
+ // Use array's original type only if it has known number of
+ // elements.
+ if (!isa<ConstantArrayType>(AT))
+ PType = PVDecl->getType();
+ } else if (PType->isFunctionType())
+ PType = PVDecl->getType();
+ if (getLangOpts().EncodeExtendedBlockSig)
+ getObjCEncodingForMethodParameter(Decl::OBJC_TQ_None, PType,
+ S, true /*Extended*/);
+ else
+ getObjCEncodingForType(PType, S);
+ S += charUnitsToString(ParmOffset);
+ ParmOffset += getObjCEncodingTypeSize(PType);
+ }
+
+ return S;
+}
+
+std::string
+ASTContext::getObjCEncodingForFunctionDecl(const FunctionDecl *Decl) const {
+ std::string S;
+ // Encode result type.
+ getObjCEncodingForType(Decl->getReturnType(), S);
+ CharUnits ParmOffset;
+ // Compute size of all parameters.
+ for (auto PI : Decl->parameters()) {
+ QualType PType = PI->getType();
+ CharUnits sz = getObjCEncodingTypeSize(PType);
+ if (sz.isZero())
+ continue;
+
+ assert(sz.isPositive() &&
+ "getObjCEncodingForFunctionDecl - Incomplete param type");
+ ParmOffset += sz;
+ }
+ S += charUnitsToString(ParmOffset);
+ ParmOffset = CharUnits::Zero();
+
+ // Argument types.
+ for (auto PVDecl : Decl->parameters()) {
+ QualType PType = PVDecl->getOriginalType();
+ if (const auto *AT =
+ dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
+ // Use array's original type only if it has known number of
+ // elements.
+ if (!isa<ConstantArrayType>(AT))
+ PType = PVDecl->getType();
+ } else if (PType->isFunctionType())
+ PType = PVDecl->getType();
+ getObjCEncodingForType(PType, S);
+ S += charUnitsToString(ParmOffset);
+ ParmOffset += getObjCEncodingTypeSize(PType);
+ }
+
+ return S;
+}
+
+/// getObjCEncodingForMethodParameter - Return the encoded type for a single
+/// method parameter or return type. If Extended, include class names and
+/// block object types.
+void ASTContext::getObjCEncodingForMethodParameter(Decl::ObjCDeclQualifier QT,
+ QualType T, std::string& S,
+ bool Extended) const {
+ // Encode type qualifer, 'in', 'inout', etc. for the parameter.
+ getObjCEncodingForTypeQualifier(QT, S);
+ // Encode parameter type.
+ ObjCEncOptions Options = ObjCEncOptions()
+ .setExpandPointedToStructures()
+ .setExpandStructures()
+ .setIsOutermostType();
+ if (Extended)
+ Options.setEncodeBlockParameters().setEncodeClassNames();
+ getObjCEncodingForTypeImpl(T, S, Options, /*Field=*/nullptr);
+}
+
+/// getObjCEncodingForMethodDecl - Return the encoded type for this method
+/// declaration.
+std::string ASTContext::getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl,
+ bool Extended) const {
+ // FIXME: This is not very efficient.
+ // Encode return type.
+ std::string S;
+ getObjCEncodingForMethodParameter(Decl->getObjCDeclQualifier(),
+ Decl->getReturnType(), S, Extended);
+ // Compute size of all parameters.
+ // Start with computing size of a pointer in number of bytes.
+ // FIXME: There might(should) be a better way of doing this computation!
+ CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
+ // The first two arguments (self and _cmd) are pointers; account for
+ // their size.
+ CharUnits ParmOffset = 2 * PtrSize;
+ for (ObjCMethodDecl::param_const_iterator PI = Decl->param_begin(),
+ E = Decl->sel_param_end(); PI != E; ++PI) {
+ QualType PType = (*PI)->getType();
+ CharUnits sz = getObjCEncodingTypeSize(PType);
+ if (sz.isZero())
+ continue;
+
+ assert(sz.isPositive() &&
+ "getObjCEncodingForMethodDecl - Incomplete param type");
+ ParmOffset += sz;
+ }
+ S += charUnitsToString(ParmOffset);
+ S += "@0:";
+ S += charUnitsToString(PtrSize);
+
+ // Argument types.
+ ParmOffset = 2 * PtrSize;
+ for (ObjCMethodDecl::param_const_iterator PI = Decl->param_begin(),
+ E = Decl->sel_param_end(); PI != E; ++PI) {
+ const ParmVarDecl *PVDecl = *PI;
+ QualType PType = PVDecl->getOriginalType();
+ if (const auto *AT =
+ dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
+ // Use array's original type only if it has known number of
+ // elements.
+ if (!isa<ConstantArrayType>(AT))
+ PType = PVDecl->getType();
+ } else if (PType->isFunctionType())
+ PType = PVDecl->getType();
+ getObjCEncodingForMethodParameter(PVDecl->getObjCDeclQualifier(),
+ PType, S, Extended);
+ S += charUnitsToString(ParmOffset);
+ ParmOffset += getObjCEncodingTypeSize(PType);
+ }
+
+ return S;
+}
+
+ObjCPropertyImplDecl *
+ASTContext::getObjCPropertyImplDeclForPropertyDecl(
+ const ObjCPropertyDecl *PD,
+ const Decl *Container) const {
+ if (!Container)
+ return nullptr;
+ if (const auto *CID = dyn_cast<ObjCCategoryImplDecl>(Container)) {
+ for (auto *PID : CID->property_impls())
+ if (PID->getPropertyDecl() == PD)
+ return PID;
+ } else {
+ const auto *OID = cast<ObjCImplementationDecl>(Container);
+ for (auto *PID : OID->property_impls())
+ if (PID->getPropertyDecl() == PD)
+ return PID;
+ }
+ return nullptr;
+}
+
+/// getObjCEncodingForPropertyDecl - Return the encoded type for this
+/// property declaration. If non-NULL, Container must be either an
+/// ObjCCategoryImplDecl or ObjCImplementationDecl; it should only be
+/// NULL when getting encodings for protocol properties.
+/// Property attributes are stored as a comma-delimited C string. The simple
+/// attributes readonly and bycopy are encoded as single characters. The
+/// parametrized attributes, getter=name, setter=name, and ivar=name, are
+/// encoded as single characters, followed by an identifier. Property types
+/// are also encoded as a parametrized attribute. The characters used to encode
+/// these attributes are defined by the following enumeration:
+/// @code
+/// enum PropertyAttributes {
+/// kPropertyReadOnly = 'R', // property is read-only.
+/// kPropertyBycopy = 'C', // property is a copy of the value last assigned
+/// kPropertyByref = '&', // property is a reference to the value last assigned
+/// kPropertyDynamic = 'D', // property is dynamic
+/// kPropertyGetter = 'G', // followed by getter selector name
+/// kPropertySetter = 'S', // followed by setter selector name
+/// kPropertyInstanceVariable = 'V' // followed by instance variable name
+/// kPropertyType = 'T' // followed by old-style type encoding.
+/// kPropertyWeak = 'W' // 'weak' property
+/// kPropertyStrong = 'P' // property GC'able
+/// kPropertyNonAtomic = 'N' // property non-atomic
+/// };
+/// @endcode
+std::string
+ASTContext::getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD,
+ const Decl *Container) const {
+ // Collect information from the property implementation decl(s).
+ bool Dynamic = false;
+ ObjCPropertyImplDecl *SynthesizePID = nullptr;
+
+ if (ObjCPropertyImplDecl *PropertyImpDecl =
+ getObjCPropertyImplDeclForPropertyDecl(PD, Container)) {
+ if (PropertyImpDecl->getPropertyImplementation() == ObjCPropertyImplDecl::Dynamic)
+ Dynamic = true;
+ else
+ SynthesizePID = PropertyImpDecl;
+ }
+
+ // FIXME: This is not very efficient.
+ std::string S = "T";
+
+ // Encode result type.
+ // GCC has some special rules regarding encoding of properties which
+ // closely resembles encoding of ivars.
+ getObjCEncodingForPropertyType(PD->getType(), S);
+
+ if (PD->isReadOnly()) {
+ S += ",R";
+ if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_copy)
+ S += ",C";
+ if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_retain)
+ S += ",&";
+ if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_weak)
+ S += ",W";
+ } else {
+ switch (PD->getSetterKind()) {
+ case ObjCPropertyDecl::Assign: break;
+ case ObjCPropertyDecl::Copy: S += ",C"; break;
+ case ObjCPropertyDecl::Retain: S += ",&"; break;
+ case ObjCPropertyDecl::Weak: S += ",W"; break;
+ }
+ }
+
+ // It really isn't clear at all what this means, since properties
+ // are "dynamic by default".
+ if (Dynamic)
+ S += ",D";
+
+ if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_nonatomic)
+ S += ",N";
+
+ if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_getter) {
+ S += ",G";
+ S += PD->getGetterName().getAsString();
+ }
+
+ if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_setter) {
+ S += ",S";
+ S += PD->getSetterName().getAsString();
+ }
+
+ if (SynthesizePID) {
+ const ObjCIvarDecl *OID = SynthesizePID->getPropertyIvarDecl();
+ S += ",V";
+ S += OID->getNameAsString();
+ }
+
+ // FIXME: OBJCGC: weak & strong
+ return S;
+}
+
+/// getLegacyIntegralTypeEncoding -
+/// Another legacy compatibility encoding: 32-bit longs are encoded as
+/// 'l' or 'L' , but not always. For typedefs, we need to use
+/// 'i' or 'I' instead if encoding a struct field, or a pointer!
+void ASTContext::getLegacyIntegralTypeEncoding (QualType &PointeeTy) const {
+ if (isa<TypedefType>(PointeeTy.getTypePtr())) {
+ if (const auto *BT = PointeeTy->getAs<BuiltinType>()) {
+ if (BT->getKind() == BuiltinType::ULong && getIntWidth(PointeeTy) == 32)
+ PointeeTy = UnsignedIntTy;
+ else
+ if (BT->getKind() == BuiltinType::Long && getIntWidth(PointeeTy) == 32)
+ PointeeTy = IntTy;
+ }
+ }
+}
+
+void ASTContext::getObjCEncodingForType(QualType T, std::string& S,
+ const FieldDecl *Field,
+ QualType *NotEncodedT) const {
+ // We follow the behavior of gcc, expanding structures which are
+ // directly pointed to, and expanding embedded structures. Note that
+ // these rules are sufficient to prevent recursive encoding of the
+ // same type.
+ getObjCEncodingForTypeImpl(T, S,
+ ObjCEncOptions()
+ .setExpandPointedToStructures()
+ .setExpandStructures()
+ .setIsOutermostType(),
+ Field, NotEncodedT);
+}
+
+void ASTContext::getObjCEncodingForPropertyType(QualType T,
+ std::string& S) const {
+ // Encode result type.
+ // GCC has some special rules regarding encoding of properties which
+ // closely resembles encoding of ivars.
+ getObjCEncodingForTypeImpl(T, S,
+ ObjCEncOptions()
+ .setExpandPointedToStructures()
+ .setExpandStructures()
+ .setIsOutermostType()
+ .setEncodingProperty(),
+ /*Field=*/nullptr);
+}
+
+static char getObjCEncodingForPrimitiveType(const ASTContext *C,
+ const BuiltinType *BT) {
+ BuiltinType::Kind kind = BT->getKind();
+ switch (kind) {
+ case BuiltinType::Void: return 'v';
+ case BuiltinType::Bool: return 'B';
+ case BuiltinType::Char8:
+ case BuiltinType::Char_U:
+ case BuiltinType::UChar: return 'C';
+ case BuiltinType::Char16:
+ case BuiltinType::UShort: return 'S';
+ case BuiltinType::Char32:
+ case BuiltinType::UInt: return 'I';
+ case BuiltinType::ULong:
+ return C->getTargetInfo().getLongWidth() == 32 ? 'L' : 'Q';
+ case BuiltinType::UInt128: return 'T';
+ case BuiltinType::ULongLong: return 'Q';
+ case BuiltinType::Char_S:
+ case BuiltinType::SChar: return 'c';
+ case BuiltinType::Short: return 's';
+ case BuiltinType::WChar_S:
+ case BuiltinType::WChar_U:
+ case BuiltinType::Int: return 'i';
+ case BuiltinType::Long:
+ return C->getTargetInfo().getLongWidth() == 32 ? 'l' : 'q';
+ case BuiltinType::LongLong: return 'q';
+ case BuiltinType::Int128: return 't';
+ case BuiltinType::Float: return 'f';
+ case BuiltinType::Double: return 'd';
+ case BuiltinType::LongDouble: return 'D';
+ case BuiltinType::NullPtr: return '*'; // like char*
+
+ case BuiltinType::Float16:
+ case BuiltinType::Float128:
+ case BuiltinType::Half:
+ case BuiltinType::ShortAccum:
+ case BuiltinType::Accum:
+ case BuiltinType::LongAccum:
+ case BuiltinType::UShortAccum:
+ case BuiltinType::UAccum:
+ case BuiltinType::ULongAccum:
+ case BuiltinType::ShortFract:
+ case BuiltinType::Fract:
+ case BuiltinType::LongFract:
+ case BuiltinType::UShortFract:
+ case BuiltinType::UFract:
+ case BuiltinType::ULongFract:
+ case BuiltinType::SatShortAccum:
+ case BuiltinType::SatAccum:
+ case BuiltinType::SatLongAccum:
+ case BuiltinType::SatUShortAccum:
+ case BuiltinType::SatUAccum:
+ case BuiltinType::SatULongAccum:
+ case BuiltinType::SatShortFract:
+ case BuiltinType::SatFract:
+ case BuiltinType::SatLongFract:
+ case BuiltinType::SatUShortFract:
+ case BuiltinType::SatUFract:
+ case BuiltinType::SatULongFract:
+ // FIXME: potentially need @encodes for these!
+ return ' ';
+
+#define SVE_TYPE(Name, Id, SingletonId) \
+ case BuiltinType::Id:
+#include "clang/Basic/AArch64SVEACLETypes.def"
+ {
+ DiagnosticsEngine &Diags = C->getDiagnostics();
+ unsigned DiagID = Diags.getCustomDiagID(
+ DiagnosticsEngine::Error, "cannot yet @encode type %0");
+ Diags.Report(DiagID) << BT->getName(C->getPrintingPolicy());
+ return ' ';
+ }
+
+ case BuiltinType::ObjCId:
+ case BuiltinType::ObjCClass:
+ case BuiltinType::ObjCSel:
+ llvm_unreachable("@encoding ObjC primitive type");
+
+ // OpenCL and placeholder types don't need @encodings.
+#define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
+ case BuiltinType::Id:
+#include "clang/Basic/OpenCLImageTypes.def"
+#define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
+ case BuiltinType::Id:
+#include "clang/Basic/OpenCLExtensionTypes.def"
+ case BuiltinType::OCLEvent:
+ case BuiltinType::OCLClkEvent:
+ case BuiltinType::OCLQueue:
+ case BuiltinType::OCLReserveID:
+ case BuiltinType::OCLSampler:
+ case BuiltinType::Dependent:
+#define BUILTIN_TYPE(KIND, ID)
+#define PLACEHOLDER_TYPE(KIND, ID) \
+ case BuiltinType::KIND:
+#include "clang/AST/BuiltinTypes.def"
+ llvm_unreachable("invalid builtin type for @encode");
+ }
+ llvm_unreachable("invalid BuiltinType::Kind value");
+}
+
+static char ObjCEncodingForEnumType(const ASTContext *C, const EnumType *ET) {
+ EnumDecl *Enum = ET->getDecl();
+
+ // The encoding of an non-fixed enum type is always 'i', regardless of size.
+ if (!Enum->isFixed())
+ return 'i';
+
+ // The encoding of a fixed enum type matches its fixed underlying type.
+ const auto *BT = Enum->getIntegerType()->castAs<BuiltinType>();
+ return getObjCEncodingForPrimitiveType(C, BT);
+}
+
+static void EncodeBitField(const ASTContext *Ctx, std::string& S,
+ QualType T, const FieldDecl *FD) {
+ assert(FD->isBitField() && "not a bitfield - getObjCEncodingForTypeImpl");
+ S += 'b';
+ // The NeXT runtime encodes bit fields as b followed by the number of bits.
+ // The GNU runtime requires more information; bitfields are encoded as b,
+ // then the offset (in bits) of the first element, then the type of the
+ // bitfield, then the size in bits. For example, in this structure:
+ //
+ // struct
+ // {
+ // int integer;
+ // int flags:2;
+ // };
+ // On a 32-bit system, the encoding for flags would be b2 for the NeXT
+ // runtime, but b32i2 for the GNU runtime. The reason for this extra
+ // information is not especially sensible, but we're stuck with it for
+ // compatibility with GCC, although providing it breaks anything that
+ // actually uses runtime introspection and wants to work on both runtimes...
+ if (Ctx->getLangOpts().ObjCRuntime.isGNUFamily()) {
+ uint64_t Offset;
+
+ if (const auto *IVD = dyn_cast<ObjCIvarDecl>(FD)) {
+ Offset = Ctx->lookupFieldBitOffset(IVD->getContainingInterface(), nullptr,
+ IVD);
+ } else {
+ const RecordDecl *RD = FD->getParent();
+ const ASTRecordLayout &RL = Ctx->getASTRecordLayout(RD);
+ Offset = RL.getFieldOffset(FD->getFieldIndex());
+ }
+
+ S += llvm::utostr(Offset);
+
+ if (const auto *ET = T->getAs<EnumType>())
+ S += ObjCEncodingForEnumType(Ctx, ET);
+ else {
+ const auto *BT = T->castAs<BuiltinType>();
+ S += getObjCEncodingForPrimitiveType(Ctx, BT);
+ }
+ }
+ S += llvm::utostr(FD->getBitWidthValue(*Ctx));
+}
+
+// FIXME: Use SmallString for accumulating string.
+void ASTContext::getObjCEncodingForTypeImpl(QualType T, std::string &S,
+ const ObjCEncOptions Options,
+ const FieldDecl *FD,
+ QualType *NotEncodedT) const {
+ CanQualType CT = getCanonicalType(T);
+ switch (CT->getTypeClass()) {
+ case Type::Builtin:
+ case Type::Enum:
+ if (FD && FD->isBitField())
+ return EncodeBitField(this, S, T, FD);
+ if (const auto *BT = dyn_cast<BuiltinType>(CT))
+ S += getObjCEncodingForPrimitiveType(this, BT);
+ else
+ S += ObjCEncodingForEnumType(this, cast<EnumType>(CT));
+ return;
+
+ case Type::Complex: {
+ const auto *CT = T->castAs<ComplexType>();
+ S += 'j';
+ getObjCEncodingForTypeImpl(CT->getElementType(), S, ObjCEncOptions(),
+ /*Field=*/nullptr);
+ return;
+ }
+
+ case Type::Atomic: {
+ const auto *AT = T->castAs<AtomicType>();
+ S += 'A';
+ getObjCEncodingForTypeImpl(AT->getValueType(), S, ObjCEncOptions(),
+ /*Field=*/nullptr);
+ return;
+ }
+
+ // encoding for pointer or reference types.
+ case Type::Pointer:
+ case Type::LValueReference:
+ case Type::RValueReference: {
+ QualType PointeeTy;
+ if (isa<PointerType>(CT)) {
+ const auto *PT = T->castAs<PointerType>();
+ if (PT->isObjCSelType()) {
+ S += ':';
+ return;
+ }
+ PointeeTy = PT->getPointeeType();
+ } else {
+ PointeeTy = T->castAs<ReferenceType>()->getPointeeType();
+ }
+
+ bool isReadOnly = false;
+ // For historical/compatibility reasons, the read-only qualifier of the
+ // pointee gets emitted _before_ the '^'. The read-only qualifier of
+ // the pointer itself gets ignored, _unless_ we are looking at a typedef!
+ // Also, do not emit the 'r' for anything but the outermost type!
+ if (isa<TypedefType>(T.getTypePtr())) {
+ if (Options.IsOutermostType() && T.isConstQualified()) {
+ isReadOnly = true;
+ S += 'r';
+ }
+ } else if (Options.IsOutermostType()) {
+ QualType P = PointeeTy;
+ while (auto PT = P->getAs<PointerType>())
+ P = PT->getPointeeType();
+ if (P.isConstQualified()) {
+ isReadOnly = true;
+ S += 'r';
+ }
+ }
+ if (isReadOnly) {
+ // Another legacy compatibility encoding. Some ObjC qualifier and type
+ // combinations need to be rearranged.
+ // Rewrite "in const" from "nr" to "rn"
+ if (StringRef(S).endswith("nr"))
+ S.replace(S.end()-2, S.end(), "rn");
+ }
+
+ if (PointeeTy->isCharType()) {
+ // char pointer types should be encoded as '*' unless it is a
+ // type that has been typedef'd to 'BOOL'.
+ if (!isTypeTypedefedAsBOOL(PointeeTy)) {
+ S += '*';
+ return;
+ }
+ } else if (const auto *RTy = PointeeTy->getAs<RecordType>()) {
+ // GCC binary compat: Need to convert "struct objc_class *" to "#".
+ if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_class")) {
+ S += '#';
+ return;
+ }
+ // GCC binary compat: Need to convert "struct objc_object *" to "@".
+ if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_object")) {
+ S += '@';
+ return;
+ }
+ // fall through...
+ }
+ S += '^';
+ getLegacyIntegralTypeEncoding(PointeeTy);
+
+ ObjCEncOptions NewOptions;
+ if (Options.ExpandPointedToStructures())
+ NewOptions.setExpandStructures();
+ getObjCEncodingForTypeImpl(PointeeTy, S, NewOptions,
+ /*Field=*/nullptr, NotEncodedT);
+ return;
+ }
+
+ case Type::ConstantArray:
+ case Type::IncompleteArray:
+ case Type::VariableArray: {
+ const auto *AT = cast<ArrayType>(CT);
+
+ if (isa<IncompleteArrayType>(AT) && !Options.IsStructField()) {
+ // Incomplete arrays are encoded as a pointer to the array element.
+ S += '^';
+
+ getObjCEncodingForTypeImpl(
+ AT->getElementType(), S,
+ Options.keepingOnly(ObjCEncOptions().setExpandStructures()), FD);
+ } else {
+ S += '[';
+
+ if (const auto *CAT = dyn_cast<ConstantArrayType>(AT))
+ S += llvm::utostr(CAT->getSize().getZExtValue());
+ else {
+ //Variable length arrays are encoded as a regular array with 0 elements.
+ assert((isa<VariableArrayType>(AT) || isa<IncompleteArrayType>(AT)) &&
+ "Unknown array type!");
+ S += '0';
+ }
+
+ getObjCEncodingForTypeImpl(
+ AT->getElementType(), S,
+ Options.keepingOnly(ObjCEncOptions().setExpandStructures()), FD,
+ NotEncodedT);
+ S += ']';
+ }
+ return;
+ }
+
+ case Type::FunctionNoProto:
+ case Type::FunctionProto:
+ S += '?';
+ return;
+
+ case Type::Record: {
+ RecordDecl *RDecl = cast<RecordType>(CT)->getDecl();
+ S += RDecl->isUnion() ? '(' : '{';
+ // Anonymous structures print as '?'
+ if (const IdentifierInfo *II = RDecl->getIdentifier()) {
+ S += II->getName();
+ if (const auto *Spec = dyn_cast<ClassTemplateSpecializationDecl>(RDecl)) {
+ const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
+ llvm::raw_string_ostream OS(S);
+ printTemplateArgumentList(OS, TemplateArgs.asArray(),
+ getPrintingPolicy());
+ }
+ } else {
+ S += '?';
+ }
+ if (Options.ExpandStructures()) {
+ S += '=';
+ if (!RDecl->isUnion()) {
+ getObjCEncodingForStructureImpl(RDecl, S, FD, true, NotEncodedT);
+ } else {
+ for (const auto *Field : RDecl->fields()) {
+ if (FD) {
+ S += '"';
+ S += Field->getNameAsString();
+ S += '"';
+ }
+
+ // Special case bit-fields.
+ if (Field->isBitField()) {
+ getObjCEncodingForTypeImpl(Field->getType(), S,
+ ObjCEncOptions().setExpandStructures(),
+ Field);
+ } else {
+ QualType qt = Field->getType();
+ getLegacyIntegralTypeEncoding(qt);
+ getObjCEncodingForTypeImpl(
+ qt, S,
+ ObjCEncOptions().setExpandStructures().setIsStructField(), FD,
+ NotEncodedT);
+ }
+ }
+ }
+ }
+ S += RDecl->isUnion() ? ')' : '}';
+ return;
+ }
+
+ case Type::BlockPointer: {
+ const auto *BT = T->castAs<BlockPointerType>();
+ S += "@?"; // Unlike a pointer-to-function, which is "^?".
+ if (Options.EncodeBlockParameters()) {
+ const auto *FT = BT->getPointeeType()->castAs<FunctionType>();
+
+ S += '<';
+ // Block return type
+ getObjCEncodingForTypeImpl(FT->getReturnType(), S,
+ Options.forComponentType(), FD, NotEncodedT);
+ // Block self
+ S += "@?";
+ // Block parameters
+ if (const auto *FPT = dyn_cast<FunctionProtoType>(FT)) {
+ for (const auto &I : FPT->param_types())
+ getObjCEncodingForTypeImpl(I, S, Options.forComponentType(), FD,
+ NotEncodedT);
+ }
+ S += '>';
+ }
+ return;
+ }
+
+ case Type::ObjCObject: {
+ // hack to match legacy encoding of *id and *Class
+ QualType Ty = getObjCObjectPointerType(CT);
+ if (Ty->isObjCIdType()) {
+ S += "{objc_object=}";
+ return;
+ }
+ else if (Ty->isObjCClassType()) {
+ S += "{objc_class=}";
+ return;
+ }
+ // TODO: Double check to make sure this intentionally falls through.
+ LLVM_FALLTHROUGH;
+ }
+
+ case Type::ObjCInterface: {
+ // Ignore protocol qualifiers when mangling at this level.
+ // @encode(class_name)
+ ObjCInterfaceDecl *OI = T->castAs<ObjCObjectType>()->getInterface();
+ S += '{';
+ S += OI->getObjCRuntimeNameAsString();
+ if (Options.ExpandStructures()) {
+ S += '=';
+ SmallVector<const ObjCIvarDecl*, 32> Ivars;
+ DeepCollectObjCIvars(OI, true, Ivars);
+ for (unsigned i = 0, e = Ivars.size(); i != e; ++i) {
+ const FieldDecl *Field = Ivars[i];
+ if (Field->isBitField())
+ getObjCEncodingForTypeImpl(Field->getType(), S,
+ ObjCEncOptions().setExpandStructures(),
+ Field);
+ else
+ getObjCEncodingForTypeImpl(Field->getType(), S,
+ ObjCEncOptions().setExpandStructures(), FD,
+ NotEncodedT);
+ }
+ }
+ S += '}';
+ return;
+ }
+
+ case Type::ObjCObjectPointer: {
+ const auto *OPT = T->castAs<ObjCObjectPointerType>();
+ if (OPT->isObjCIdType()) {
+ S += '@';
+ return;
+ }
+
+ if (OPT->isObjCClassType() || OPT->isObjCQualifiedClassType()) {
+ // FIXME: Consider if we need to output qualifiers for 'Class<p>'.
+ // Since this is a binary compatibility issue, need to consult with
+ // runtime folks. Fortunately, this is a *very* obscure construct.
+ S += '#';
+ return;
+ }
+
+ if (OPT->isObjCQualifiedIdType()) {
+ getObjCEncodingForTypeImpl(
+ getObjCIdType(), S,
+ Options.keepingOnly(ObjCEncOptions()
+ .setExpandPointedToStructures()
+ .setExpandStructures()),
+ FD);
+ if (FD || Options.EncodingProperty() || Options.EncodeClassNames()) {
+ // Note that we do extended encoding of protocol qualifer list
+ // Only when doing ivar or property encoding.
+ S += '"';
+ for (const auto *I : OPT->quals()) {
+ S += '<';
+ S += I->getObjCRuntimeNameAsString();
+ S += '>';
+ }
+ S += '"';
+ }
+ return;
+ }
+
+ S += '@';
+ if (OPT->getInterfaceDecl() &&
+ (FD || Options.EncodingProperty() || Options.EncodeClassNames())) {
+ S += '"';
+ S += OPT->getInterfaceDecl()->getObjCRuntimeNameAsString();
+ for (const auto *I : OPT->quals()) {
+ S += '<';
+ S += I->getObjCRuntimeNameAsString();
+ S += '>';
+ }
+ S += '"';
+ }
+ return;
+ }
+
+ // gcc just blithely ignores member pointers.
+ // FIXME: we should do better than that. 'M' is available.
+ case Type::MemberPointer:
+ // This matches gcc's encoding, even though technically it is insufficient.
+ //FIXME. We should do a better job than gcc.
+ case Type::Vector:
+ case Type::ExtVector:
+ // Until we have a coherent encoding of these three types, issue warning.
+ if (NotEncodedT)
+ *NotEncodedT = T;
+ return;
+
+ // We could see an undeduced auto type here during error recovery.
+ // Just ignore it.
+ case Type::Auto:
+ case Type::DeducedTemplateSpecialization:
+ return;
+
+ case Type::Pipe:
+#define ABSTRACT_TYPE(KIND, BASE)
+#define TYPE(KIND, BASE)
+#define DEPENDENT_TYPE(KIND, BASE) \
+ case Type::KIND:
+#define NON_CANONICAL_TYPE(KIND, BASE) \
+ case Type::KIND:
+#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(KIND, BASE) \
+ case Type::KIND:
+#include "clang/AST/TypeNodes.inc"
+ llvm_unreachable("@encode for dependent type!");
+ }
+ llvm_unreachable("bad type kind!");
+}
+
+void ASTContext::getObjCEncodingForStructureImpl(RecordDecl *RDecl,
+ std::string &S,
+ const FieldDecl *FD,
+ bool includeVBases,
+ QualType *NotEncodedT) const {
+ assert(RDecl && "Expected non-null RecordDecl");
+ assert(!RDecl->isUnion() && "Should not be called for unions");
+ if (!RDecl->getDefinition() || RDecl->getDefinition()->isInvalidDecl())
+ return;
+
+ const auto *CXXRec = dyn_cast<CXXRecordDecl>(RDecl);
+ std::multimap<uint64_t, NamedDecl *> FieldOrBaseOffsets;
+ const ASTRecordLayout &layout = getASTRecordLayout(RDecl);
+
+ if (CXXRec) {
+ for (const auto &BI : CXXRec->bases()) {
+ if (!BI.isVirtual()) {
+ CXXRecordDecl *base = BI.getType()->getAsCXXRecordDecl();
+ if (base->isEmpty())
+ continue;
+ uint64_t offs = toBits(layout.getBaseClassOffset(base));
+ FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
+ std::make_pair(offs, base));
+ }
+ }
+ }
+
+ unsigned i = 0;
+ for (auto *Field : RDecl->fields()) {
+ uint64_t offs = layout.getFieldOffset(i);
+ FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
+ std::make_pair(offs, Field));
+ ++i;
+ }
+
+ if (CXXRec && includeVBases) {
+ for (const auto &BI : CXXRec->vbases()) {
+ CXXRecordDecl *base = BI.getType()->getAsCXXRecordDecl();
+ if (base->isEmpty())
+ continue;
+ uint64_t offs = toBits(layout.getVBaseClassOffset(base));
+ if (offs >= uint64_t(toBits(layout.getNonVirtualSize())) &&
+ FieldOrBaseOffsets.find(offs) == FieldOrBaseOffsets.end())
+ FieldOrBaseOffsets.insert(FieldOrBaseOffsets.end(),
+ std::make_pair(offs, base));
+ }
+ }
+
+ CharUnits size;
+ if (CXXRec) {
+ size = includeVBases ? layout.getSize() : layout.getNonVirtualSize();
+ } else {
+ size = layout.getSize();
+ }
+
+#ifndef NDEBUG
+ uint64_t CurOffs = 0;
+#endif
+ std::multimap<uint64_t, NamedDecl *>::iterator
+ CurLayObj = FieldOrBaseOffsets.begin();
+
+ if (CXXRec && CXXRec->isDynamicClass() &&
+ (CurLayObj == FieldOrBaseOffsets.end() || CurLayObj->first != 0)) {
+ if (FD) {
+ S += "\"_vptr$";
+ std::string recname = CXXRec->getNameAsString();
+ if (recname.empty()) recname = "?";
+ S += recname;
+ S += '"';
+ }
+ S += "^^?";
+#ifndef NDEBUG
+ CurOffs += getTypeSize(VoidPtrTy);
+#endif
+ }
+
+ if (!RDecl->hasFlexibleArrayMember()) {
+ // Mark the end of the structure.
+ uint64_t offs = toBits(size);
+ FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
+ std::make_pair(offs, nullptr));
+ }
+
+ for (; CurLayObj != FieldOrBaseOffsets.end(); ++CurLayObj) {
+#ifndef NDEBUG
+ assert(CurOffs <= CurLayObj->first);
+ if (CurOffs < CurLayObj->first) {
+ uint64_t padding = CurLayObj->first - CurOffs;
+ // FIXME: There doesn't seem to be a way to indicate in the encoding that
+ // packing/alignment of members is different that normal, in which case
+ // the encoding will be out-of-sync with the real layout.
+ // If the runtime switches to just consider the size of types without
+ // taking into account alignment, we could make padding explicit in the
+ // encoding (e.g. using arrays of chars). The encoding strings would be
+ // longer then though.
+ CurOffs += padding;
+ }
+#endif
+
+ NamedDecl *dcl = CurLayObj->second;
+ if (!dcl)
+ break; // reached end of structure.
+
+ if (auto *base = dyn_cast<CXXRecordDecl>(dcl)) {
+ // We expand the bases without their virtual bases since those are going
+ // in the initial structure. Note that this differs from gcc which
+ // expands virtual bases each time one is encountered in the hierarchy,
+ // making the encoding type bigger than it really is.
+ getObjCEncodingForStructureImpl(base, S, FD, /*includeVBases*/false,
+ NotEncodedT);
+ assert(!base->isEmpty());
+#ifndef NDEBUG
+ CurOffs += toBits(getASTRecordLayout(base).getNonVirtualSize());
+#endif
+ } else {
+ const auto *field = cast<FieldDecl>(dcl);
+ if (FD) {
+ S += '"';
+ S += field->getNameAsString();
+ S += '"';
+ }
+
+ if (field->isBitField()) {
+ EncodeBitField(this, S, field->getType(), field);
+#ifndef NDEBUG
+ CurOffs += field->getBitWidthValue(*this);
+#endif
+ } else {
+ QualType qt = field->getType();
+ getLegacyIntegralTypeEncoding(qt);
+ getObjCEncodingForTypeImpl(
+ qt, S, ObjCEncOptions().setExpandStructures().setIsStructField(),
+ FD, NotEncodedT);
+#ifndef NDEBUG
+ CurOffs += getTypeSize(field->getType());
+#endif
+ }
+ }
+ }
+}
+
+void ASTContext::getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,
+ std::string& S) const {
+ if (QT & Decl::OBJC_TQ_In)
+ S += 'n';
+ if (QT & Decl::OBJC_TQ_Inout)
+ S += 'N';
+ if (QT & Decl::OBJC_TQ_Out)
+ S += 'o';
+ if (QT & Decl::OBJC_TQ_Bycopy)
+ S += 'O';
+ if (QT & Decl::OBJC_TQ_Byref)
+ S += 'R';
+ if (QT & Decl::OBJC_TQ_Oneway)
+ S += 'V';
+}
+
+TypedefDecl *ASTContext::getObjCIdDecl() const {
+ if (!ObjCIdDecl) {
+ QualType T = getObjCObjectType(ObjCBuiltinIdTy, {}, {});
+ T = getObjCObjectPointerType(T);
+ ObjCIdDecl = buildImplicitTypedef(T, "id");
+ }
+ return ObjCIdDecl;
+}
+
+TypedefDecl *ASTContext::getObjCSelDecl() const {
+ if (!ObjCSelDecl) {
+ QualType T = getPointerType(ObjCBuiltinSelTy);
+ ObjCSelDecl = buildImplicitTypedef(T, "SEL");
+ }
+ return ObjCSelDecl;
+}
+
+TypedefDecl *ASTContext::getObjCClassDecl() const {
+ if (!ObjCClassDecl) {
+ QualType T = getObjCObjectType(ObjCBuiltinClassTy, {}, {});
+ T = getObjCObjectPointerType(T);
+ ObjCClassDecl = buildImplicitTypedef(T, "Class");
+ }
+ return ObjCClassDecl;
+}
+
+ObjCInterfaceDecl *ASTContext::getObjCProtocolDecl() const {
+ if (!ObjCProtocolClassDecl) {
+ ObjCProtocolClassDecl
+ = ObjCInterfaceDecl::Create(*this, getTranslationUnitDecl(),
+ SourceLocation(),
+ &Idents.get("Protocol"),
+ /*typeParamList=*/nullptr,
+ /*PrevDecl=*/nullptr,
+ SourceLocation(), true);
+ }
+
+ return ObjCProtocolClassDecl;
+}
+
+//===----------------------------------------------------------------------===//
+// __builtin_va_list Construction Functions
+//===----------------------------------------------------------------------===//
+
+static TypedefDecl *CreateCharPtrNamedVaListDecl(const ASTContext *Context,
+ StringRef Name) {
+ // typedef char* __builtin[_ms]_va_list;
+ QualType T = Context->getPointerType(Context->CharTy);
+ return Context->buildImplicitTypedef(T, Name);
+}
+
+static TypedefDecl *CreateMSVaListDecl(const ASTContext *Context) {
+ return CreateCharPtrNamedVaListDecl(Context, "__builtin_ms_va_list");
+}
+
+static TypedefDecl *CreateCharPtrBuiltinVaListDecl(const ASTContext *Context) {
+ return CreateCharPtrNamedVaListDecl(Context, "__builtin_va_list");
+}
+
+static TypedefDecl *CreateVoidPtrBuiltinVaListDecl(const ASTContext *Context) {
+ // typedef void* __builtin_va_list;
+ QualType T = Context->getPointerType(Context->VoidTy);
+ return Context->buildImplicitTypedef(T, "__builtin_va_list");
+}
+
+static TypedefDecl *
+CreateAArch64ABIBuiltinVaListDecl(const ASTContext *Context) {
+ // struct __va_list
+ RecordDecl *VaListTagDecl = Context->buildImplicitRecord("__va_list");
+ if (Context->getLangOpts().CPlusPlus) {
+ // namespace std { struct __va_list {
+ NamespaceDecl *NS;
+ NS = NamespaceDecl::Create(const_cast<ASTContext &>(*Context),
+ Context->getTranslationUnitDecl(),
+ /*Inline*/ false, SourceLocation(),
+ SourceLocation(), &Context->Idents.get("std"),
+ /*PrevDecl*/ nullptr);
+ NS->setImplicit();
+ VaListTagDecl->setDeclContext(NS);
+ }
+
+ VaListTagDecl->startDefinition();
+
+ const size_t NumFields = 5;
+ QualType FieldTypes[NumFields];
+ const char *FieldNames[NumFields];
+
+ // void *__stack;
+ FieldTypes[0] = Context->getPointerType(Context->VoidTy);
+ FieldNames[0] = "__stack";
+
+ // void *__gr_top;
+ FieldTypes[1] = Context->getPointerType(Context->VoidTy);
+ FieldNames[1] = "__gr_top";
+
+ // void *__vr_top;
+ FieldTypes[2] = Context->getPointerType(Context->VoidTy);
+ FieldNames[2] = "__vr_top";
+
+ // int __gr_offs;
+ FieldTypes[3] = Context->IntTy;
+ FieldNames[3] = "__gr_offs";
+
+ // int __vr_offs;
+ FieldTypes[4] = Context->IntTy;
+ FieldNames[4] = "__vr_offs";
+
+ // Create fields
+ for (unsigned i = 0; i < NumFields; ++i) {
+ FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context),
+ VaListTagDecl,
+ SourceLocation(),
+ SourceLocation(),
+ &Context->Idents.get(FieldNames[i]),
+ FieldTypes[i], /*TInfo=*/nullptr,
+ /*BitWidth=*/nullptr,
+ /*Mutable=*/false,
+ ICIS_NoInit);
+ Field->setAccess(AS_public);
+ VaListTagDecl->addDecl(Field);
+ }
+ VaListTagDecl->completeDefinition();
+ Context->VaListTagDecl = VaListTagDecl;
+ QualType VaListTagType = Context->getRecordType(VaListTagDecl);
+
+ // } __builtin_va_list;
+ return Context->buildImplicitTypedef(VaListTagType, "__builtin_va_list");
+}
+
+static TypedefDecl *CreatePowerABIBuiltinVaListDecl(const ASTContext *Context) {
+ // typedef struct __va_list_tag {
+ RecordDecl *VaListTagDecl;
+
+ VaListTagDecl = Context->buildImplicitRecord("__va_list_tag");
+ VaListTagDecl->startDefinition();
+
+ const size_t NumFields = 5;
+ QualType FieldTypes[NumFields];
+ const char *FieldNames[NumFields];
+
+ // unsigned char gpr;
+ FieldTypes[0] = Context->UnsignedCharTy;
+ FieldNames[0] = "gpr";
+
+ // unsigned char fpr;
+ FieldTypes[1] = Context->UnsignedCharTy;
+ FieldNames[1] = "fpr";
+
+ // unsigned short reserved;
+ FieldTypes[2] = Context->UnsignedShortTy;
+ FieldNames[2] = "reserved";
+
+ // void* overflow_arg_area;
+ FieldTypes[3] = Context->getPointerType(Context->VoidTy);
+ FieldNames[3] = "overflow_arg_area";
+
+ // void* reg_save_area;
+ FieldTypes[4] = Context->getPointerType(Context->VoidTy);
+ FieldNames[4] = "reg_save_area";
+
+ // Create fields
+ for (unsigned i = 0; i < NumFields; ++i) {
+ FieldDecl *Field = FieldDecl::Create(*Context, VaListTagDecl,
+ SourceLocation(),
+ SourceLocation(),
+ &Context->Idents.get(FieldNames[i]),
+ FieldTypes[i], /*TInfo=*/nullptr,
+ /*BitWidth=*/nullptr,
+ /*Mutable=*/false,
+ ICIS_NoInit);
+ Field->setAccess(AS_public);
+ VaListTagDecl->addDecl(Field);
+ }
+ VaListTagDecl->completeDefinition();
+ Context->VaListTagDecl = VaListTagDecl;
+ QualType VaListTagType = Context->getRecordType(VaListTagDecl);
+
+ // } __va_list_tag;
+ TypedefDecl *VaListTagTypedefDecl =
+ Context->buildImplicitTypedef(VaListTagType, "__va_list_tag");
+
+ QualType VaListTagTypedefType =
+ Context->getTypedefType(VaListTagTypedefDecl);
+
+ // typedef __va_list_tag __builtin_va_list[1];
+ llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1);
+ QualType VaListTagArrayType
+ = Context->getConstantArrayType(VaListTagTypedefType,
+ Size, nullptr, ArrayType::Normal, 0);
+ return Context->buildImplicitTypedef(VaListTagArrayType, "__builtin_va_list");
+}
+
+static TypedefDecl *
+CreateX86_64ABIBuiltinVaListDecl(const ASTContext *Context) {
+ // struct __va_list_tag {
+ RecordDecl *VaListTagDecl;
+ VaListTagDecl = Context->buildImplicitRecord("__va_list_tag");
+ VaListTagDecl->startDefinition();
+
+ const size_t NumFields = 4;
+ QualType FieldTypes[NumFields];
+ const char *FieldNames[NumFields];
+
+ // unsigned gp_offset;
+ FieldTypes[0] = Context->UnsignedIntTy;
+ FieldNames[0] = "gp_offset";
+
+ // unsigned fp_offset;
+ FieldTypes[1] = Context->UnsignedIntTy;
+ FieldNames[1] = "fp_offset";
+
+ // void* overflow_arg_area;
+ FieldTypes[2] = Context->getPointerType(Context->VoidTy);
+ FieldNames[2] = "overflow_arg_area";
+
+ // void* reg_save_area;
+ FieldTypes[3] = Context->getPointerType(Context->VoidTy);
+ FieldNames[3] = "reg_save_area";
+
+ // Create fields
+ for (unsigned i = 0; i < NumFields; ++i) {
+ FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context),
+ VaListTagDecl,
+ SourceLocation(),
+ SourceLocation(),
+ &Context->Idents.get(FieldNames[i]),
+ FieldTypes[i], /*TInfo=*/nullptr,
+ /*BitWidth=*/nullptr,
+ /*Mutable=*/false,
+ ICIS_NoInit);
+ Field->setAccess(AS_public);
+ VaListTagDecl->addDecl(Field);
+ }
+ VaListTagDecl->completeDefinition();
+ Context->VaListTagDecl = VaListTagDecl;
+ QualType VaListTagType = Context->getRecordType(VaListTagDecl);
+
+ // };
+
+ // typedef struct __va_list_tag __builtin_va_list[1];
+ llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1);
+ QualType VaListTagArrayType = Context->getConstantArrayType(
+ VaListTagType, Size, nullptr, ArrayType::Normal, 0);
+ return Context->buildImplicitTypedef(VaListTagArrayType, "__builtin_va_list");
+}
+
+static TypedefDecl *CreatePNaClABIBuiltinVaListDecl(const ASTContext *Context) {
+ // typedef int __builtin_va_list[4];
+ llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 4);
+ QualType IntArrayType = Context->getConstantArrayType(
+ Context->IntTy, Size, nullptr, ArrayType::Normal, 0);
+ return Context->buildImplicitTypedef(IntArrayType, "__builtin_va_list");
+}
+
+static TypedefDecl *
+CreateAAPCSABIBuiltinVaListDecl(const ASTContext *Context) {
+ // struct __va_list
+ RecordDecl *VaListDecl = Context->buildImplicitRecord("__va_list");
+ if (Context->getLangOpts().CPlusPlus) {
+ // namespace std { struct __va_list {
+ NamespaceDecl *NS;
+ NS = NamespaceDecl::Create(const_cast<ASTContext &>(*Context),
+ Context->getTranslationUnitDecl(),
+ /*Inline*/false, SourceLocation(),
+ SourceLocation(), &Context->Idents.get("std"),
+ /*PrevDecl*/ nullptr);
+ NS->setImplicit();
+ VaListDecl->setDeclContext(NS);
+ }
+
+ VaListDecl->startDefinition();
+
+ // void * __ap;
+ FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context),
+ VaListDecl,
+ SourceLocation(),
+ SourceLocation(),
+ &Context->Idents.get("__ap"),
+ Context->getPointerType(Context->VoidTy),
+ /*TInfo=*/nullptr,
+ /*BitWidth=*/nullptr,
+ /*Mutable=*/false,
+ ICIS_NoInit);
+ Field->setAccess(AS_public);
+ VaListDecl->addDecl(Field);
+
+ // };
+ VaListDecl->completeDefinition();
+ Context->VaListTagDecl = VaListDecl;
+
+ // typedef struct __va_list __builtin_va_list;
+ QualType T = Context->getRecordType(VaListDecl);
+ return Context->buildImplicitTypedef(T, "__builtin_va_list");
+}
+
+static TypedefDecl *
+CreateSystemZBuiltinVaListDecl(const ASTContext *Context) {
+ // struct __va_list_tag {
+ RecordDecl *VaListTagDecl;
+ VaListTagDecl = Context->buildImplicitRecord("__va_list_tag");
+ VaListTagDecl->startDefinition();
+
+ const size_t NumFields = 4;
+ QualType FieldTypes[NumFields];
+ const char *FieldNames[NumFields];
+
+ // long __gpr;
+ FieldTypes[0] = Context->LongTy;
+ FieldNames[0] = "__gpr";
+
+ // long __fpr;
+ FieldTypes[1] = Context->LongTy;
+ FieldNames[1] = "__fpr";
+
+ // void *__overflow_arg_area;
+ FieldTypes[2] = Context->getPointerType(Context->VoidTy);
+ FieldNames[2] = "__overflow_arg_area";
+
+ // void *__reg_save_area;
+ FieldTypes[3] = Context->getPointerType(Context->VoidTy);
+ FieldNames[3] = "__reg_save_area";
+
+ // Create fields
+ for (unsigned i = 0; i < NumFields; ++i) {
+ FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context),
+ VaListTagDecl,
+ SourceLocation(),
+ SourceLocation(),
+ &Context->Idents.get(FieldNames[i]),
+ FieldTypes[i], /*TInfo=*/nullptr,
+ /*BitWidth=*/nullptr,
+ /*Mutable=*/false,
+ ICIS_NoInit);
+ Field->setAccess(AS_public);
+ VaListTagDecl->addDecl(Field);
+ }
+ VaListTagDecl->completeDefinition();
+ Context->VaListTagDecl = VaListTagDecl;
+ QualType VaListTagType = Context->getRecordType(VaListTagDecl);
+
+ // };
+
+ // typedef __va_list_tag __builtin_va_list[1];
+ llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1);
+ QualType VaListTagArrayType = Context->getConstantArrayType(
+ VaListTagType, Size, nullptr, ArrayType::Normal, 0);
+
+ return Context->buildImplicitTypedef(VaListTagArrayType, "__builtin_va_list");
+}
+
+static TypedefDecl *CreateVaListDecl(const ASTContext *Context,
+ TargetInfo::BuiltinVaListKind Kind) {
+ switch (Kind) {
+ case TargetInfo::CharPtrBuiltinVaList:
+ return CreateCharPtrBuiltinVaListDecl(Context);
+ case TargetInfo::VoidPtrBuiltinVaList:
+ return CreateVoidPtrBuiltinVaListDecl(Context);
+ case TargetInfo::AArch64ABIBuiltinVaList:
+ return CreateAArch64ABIBuiltinVaListDecl(Context);
+ case TargetInfo::PowerABIBuiltinVaList:
+ return CreatePowerABIBuiltinVaListDecl(Context);
+ case TargetInfo::X86_64ABIBuiltinVaList:
+ return CreateX86_64ABIBuiltinVaListDecl(Context);
+ case TargetInfo::PNaClABIBuiltinVaList:
+ return CreatePNaClABIBuiltinVaListDecl(Context);
+ case TargetInfo::AAPCSABIBuiltinVaList:
+ return CreateAAPCSABIBuiltinVaListDecl(Context);
+ case TargetInfo::SystemZBuiltinVaList:
+ return CreateSystemZBuiltinVaListDecl(Context);
+ }
+
+ llvm_unreachable("Unhandled __builtin_va_list type kind");
+}
+
+TypedefDecl *ASTContext::getBuiltinVaListDecl() const {
+ if (!BuiltinVaListDecl) {
+ BuiltinVaListDecl = CreateVaListDecl(this, Target->getBuiltinVaListKind());
+ assert(BuiltinVaListDecl->isImplicit());
+ }
+
+ return BuiltinVaListDecl;
+}
+
+Decl *ASTContext::getVaListTagDecl() const {
+ // Force the creation of VaListTagDecl by building the __builtin_va_list
+ // declaration.
+ if (!VaListTagDecl)
+ (void)getBuiltinVaListDecl();
+
+ return VaListTagDecl;
+}
+
+TypedefDecl *ASTContext::getBuiltinMSVaListDecl() const {
+ if (!BuiltinMSVaListDecl)
+ BuiltinMSVaListDecl = CreateMSVaListDecl(this);
+
+ return BuiltinMSVaListDecl;
+}
+
+bool ASTContext::canBuiltinBeRedeclared(const FunctionDecl *FD) const {
+ return BuiltinInfo.canBeRedeclared(FD->getBuiltinID());
+}
+
+void ASTContext::setObjCConstantStringInterface(ObjCInterfaceDecl *Decl) {
+ assert(ObjCConstantStringType.isNull() &&
+ "'NSConstantString' type already set!");
+
+ ObjCConstantStringType = getObjCInterfaceType(Decl);
+}
+
+/// Retrieve the template name that corresponds to a non-empty
+/// lookup.
+TemplateName
+ASTContext::getOverloadedTemplateName(UnresolvedSetIterator Begin,
+ UnresolvedSetIterator End) const {
+ unsigned size = End - Begin;
+ assert(size > 1 && "set is not overloaded!");
+
+ void *memory = Allocate(sizeof(OverloadedTemplateStorage) +
+ size * sizeof(FunctionTemplateDecl*));
+ auto *OT = new (memory) OverloadedTemplateStorage(size);
+
+ NamedDecl **Storage = OT->getStorage();
+ for (UnresolvedSetIterator I = Begin; I != End; ++I) {
+ NamedDecl *D = *I;
+ assert(isa<FunctionTemplateDecl>(D) ||
+ isa<UnresolvedUsingValueDecl>(D) ||
+ (isa<UsingShadowDecl>(D) &&
+ isa<FunctionTemplateDecl>(D->getUnderlyingDecl())));
+ *Storage++ = D;
+ }
+
+ return TemplateName(OT);
+}
+
+/// Retrieve a template name representing an unqualified-id that has been
+/// assumed to name a template for ADL purposes.
+TemplateName ASTContext::getAssumedTemplateName(DeclarationName Name) const {
+ auto *OT = new (*this) AssumedTemplateStorage(Name);
+ return TemplateName(OT);
+}
+
+/// Retrieve the template name that represents a qualified
+/// template name such as \c std::vector.
+TemplateName
+ASTContext::getQualifiedTemplateName(NestedNameSpecifier *NNS,
+ bool TemplateKeyword,
+ TemplateDecl *Template) const {
+ assert(NNS && "Missing nested-name-specifier in qualified template name");
+
+ // FIXME: Canonicalization?
+ llvm::FoldingSetNodeID ID;
+ QualifiedTemplateName::Profile(ID, NNS, TemplateKeyword, Template);
+
+ void *InsertPos = nullptr;
+ QualifiedTemplateName *QTN =
+ QualifiedTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
+ if (!QTN) {
+ QTN = new (*this, alignof(QualifiedTemplateName))
+ QualifiedTemplateName(NNS, TemplateKeyword, Template);
+ QualifiedTemplateNames.InsertNode(QTN, InsertPos);
+ }
+
+ return TemplateName(QTN);
+}
+
+/// Retrieve the template name that represents a dependent
+/// template name such as \c MetaFun::template apply.
+TemplateName
+ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
+ const IdentifierInfo *Name) const {
+ assert((!NNS || NNS->isDependent()) &&
+ "Nested name specifier must be dependent");
+
+ llvm::FoldingSetNodeID ID;
+ DependentTemplateName::Profile(ID, NNS, Name);
+
+ void *InsertPos = nullptr;
+ DependentTemplateName *QTN =
+ DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
+
+ if (QTN)
+ return TemplateName(QTN);
+
+ NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
+ if (CanonNNS == NNS) {
+ QTN = new (*this, alignof(DependentTemplateName))
+ DependentTemplateName(NNS, Name);
+ } else {
+ TemplateName Canon = getDependentTemplateName(CanonNNS, Name);
+ QTN = new (*this, alignof(DependentTemplateName))
+ DependentTemplateName(NNS, Name, Canon);
+ DependentTemplateName *CheckQTN =
+ DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
+ assert(!CheckQTN && "Dependent type name canonicalization broken");
+ (void)CheckQTN;
+ }
+
+ DependentTemplateNames.InsertNode(QTN, InsertPos);
+ return TemplateName(QTN);
+}
+
+/// Retrieve the template name that represents a dependent
+/// template name such as \c MetaFun::template operator+.
+TemplateName
+ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
+ OverloadedOperatorKind Operator) const {
+ assert((!NNS || NNS->isDependent()) &&
+ "Nested name specifier must be dependent");
+
+ llvm::FoldingSetNodeID ID;
+ DependentTemplateName::Profile(ID, NNS, Operator);
+
+ void *InsertPos = nullptr;
+ DependentTemplateName *QTN
+ = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
+
+ if (QTN)
+ return TemplateName(QTN);
+
+ NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
+ if (CanonNNS == NNS) {
+ QTN = new (*this, alignof(DependentTemplateName))
+ DependentTemplateName(NNS, Operator);
+ } else {
+ TemplateName Canon = getDependentTemplateName(CanonNNS, Operator);
+ QTN = new (*this, alignof(DependentTemplateName))
+ DependentTemplateName(NNS, Operator, Canon);
+
+ DependentTemplateName *CheckQTN
+ = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
+ assert(!CheckQTN && "Dependent template name canonicalization broken");
+ (void)CheckQTN;
+ }
+
+ DependentTemplateNames.InsertNode(QTN, InsertPos);
+ return TemplateName(QTN);
+}
+
+TemplateName
+ASTContext::getSubstTemplateTemplateParm(TemplateTemplateParmDecl *param,
+ TemplateName replacement) const {
+ llvm::FoldingSetNodeID ID;
+ SubstTemplateTemplateParmStorage::Profile(ID, param, replacement);
+
+ void *insertPos = nullptr;
+ SubstTemplateTemplateParmStorage *subst
+ = SubstTemplateTemplateParms.FindNodeOrInsertPos(ID, insertPos);
+
+ if (!subst) {
+ subst = new (*this) SubstTemplateTemplateParmStorage(param, replacement);
+ SubstTemplateTemplateParms.InsertNode(subst, insertPos);
+ }
+
+ return TemplateName(subst);
+}
+
+TemplateName
+ASTContext::getSubstTemplateTemplateParmPack(TemplateTemplateParmDecl *Param,
+ const TemplateArgument &ArgPack) const {
+ auto &Self = const_cast<ASTContext &>(*this);
+ llvm::FoldingSetNodeID ID;
+ SubstTemplateTemplateParmPackStorage::Profile(ID, Self, Param, ArgPack);
+
+ void *InsertPos = nullptr;
+ SubstTemplateTemplateParmPackStorage *Subst
+ = SubstTemplateTemplateParmPacks.FindNodeOrInsertPos(ID, InsertPos);
+
+ if (!Subst) {
+ Subst = new (*this) SubstTemplateTemplateParmPackStorage(Param,
+ ArgPack.pack_size(),
+ ArgPack.pack_begin());
+ SubstTemplateTemplateParmPacks.InsertNode(Subst, InsertPos);
+ }
+
+ return TemplateName(Subst);
+}
+
+/// getFromTargetType - Given one of the integer types provided by
+/// TargetInfo, produce the corresponding type. The unsigned @p Type
+/// is actually a value of type @c TargetInfo::IntType.
+CanQualType ASTContext::getFromTargetType(unsigned Type) const {
+ switch (Type) {
+ case TargetInfo::NoInt: return {};
+ case TargetInfo::SignedChar: return SignedCharTy;
+ case TargetInfo::UnsignedChar: return UnsignedCharTy;
+ case TargetInfo::SignedShort: return ShortTy;
+ case TargetInfo::UnsignedShort: return UnsignedShortTy;
+ case TargetInfo::SignedInt: return IntTy;
+ case TargetInfo::UnsignedInt: return UnsignedIntTy;
+ case TargetInfo::SignedLong: return LongTy;
+ case TargetInfo::UnsignedLong: return UnsignedLongTy;
+ case TargetInfo::SignedLongLong: return LongLongTy;
+ case TargetInfo::UnsignedLongLong: return UnsignedLongLongTy;
+ }
+
+ llvm_unreachable("Unhandled TargetInfo::IntType value");
+}
+
+//===----------------------------------------------------------------------===//
+// Type Predicates.
+//===----------------------------------------------------------------------===//
+
+/// getObjCGCAttr - Returns one of GCNone, Weak or Strong objc's
+/// garbage collection attribute.
+///
+Qualifiers::GC ASTContext::getObjCGCAttrKind(QualType Ty) const {
+ if (getLangOpts().getGC() == LangOptions::NonGC)
+ return Qualifiers::GCNone;
+
+ assert(getLangOpts().ObjC);
+ Qualifiers::GC GCAttrs = Ty.getObjCGCAttr();
+
+ // Default behaviour under objective-C's gc is for ObjC pointers
+ // (or pointers to them) be treated as though they were declared
+ // as __strong.
+ if (GCAttrs == Qualifiers::GCNone) {
+ if (Ty->isObjCObjectPointerType() || Ty->isBlockPointerType())
+ return Qualifiers::Strong;
+ else if (Ty->isPointerType())
+ return getObjCGCAttrKind(Ty->castAs<PointerType>()->getPointeeType());
+ } else {
+ // It's not valid to set GC attributes on anything that isn't a
+ // pointer.
+#ifndef NDEBUG
+ QualType CT = Ty->getCanonicalTypeInternal();
+ while (const auto *AT = dyn_cast<ArrayType>(CT))
+ CT = AT->getElementType();
+ assert(CT->isAnyPointerType() || CT->isBlockPointerType());
+#endif
+ }
+ return GCAttrs;
+}
+
+//===----------------------------------------------------------------------===//
+// Type Compatibility Testing
+//===----------------------------------------------------------------------===//
+
+/// areCompatVectorTypes - Return true if the two specified vector types are
+/// compatible.
+static bool areCompatVectorTypes(const VectorType *LHS,
+ const VectorType *RHS) {
+ assert(LHS->isCanonicalUnqualified() && RHS->isCanonicalUnqualified());
+ return LHS->getElementType() == RHS->getElementType() &&
+ LHS->getNumElements() == RHS->getNumElements();
+}
+
+bool ASTContext::areCompatibleVectorTypes(QualType FirstVec,
+ QualType SecondVec) {
+ assert(FirstVec->isVectorType() && "FirstVec should be a vector type");
+ assert(SecondVec->isVectorType() && "SecondVec should be a vector type");
+
+ if (hasSameUnqualifiedType(FirstVec, SecondVec))
+ return true;
+
+ // Treat Neon vector types and most AltiVec vector types as if they are the
+ // equivalent GCC vector types.
+ const auto *First = FirstVec->castAs<VectorType>();
+ const auto *Second = SecondVec->castAs<VectorType>();
+ if (First->getNumElements() == Second->getNumElements() &&
+ hasSameType(First->getElementType(), Second->getElementType()) &&
+ First->getVectorKind() != VectorType::AltiVecPixel &&
+ First->getVectorKind() != VectorType::AltiVecBool &&
+ Second->getVectorKind() != VectorType::AltiVecPixel &&
+ Second->getVectorKind() != VectorType::AltiVecBool)
+ return true;
+
+ return false;
+}
+
+bool ASTContext::hasDirectOwnershipQualifier(QualType Ty) const {
+ while (true) {
+ // __strong id
+ if (const AttributedType *Attr = dyn_cast<AttributedType>(Ty)) {
+ if (Attr->getAttrKind() == attr::ObjCOwnership)
+ return true;
+
+ Ty = Attr->getModifiedType();
+
+ // X *__strong (...)
+ } else if (const ParenType *Paren = dyn_cast<ParenType>(Ty)) {
+ Ty = Paren->getInnerType();
+
+ // We do not want to look through typedefs, typeof(expr),
+ // typeof(type), or any other way that the type is somehow
+ // abstracted.
+ } else {
+ return false;
+ }
+ }
+}
+
+//===----------------------------------------------------------------------===//
+// ObjCQualifiedIdTypesAreCompatible - Compatibility testing for qualified id's.
+//===----------------------------------------------------------------------===//
+
+/// ProtocolCompatibleWithProtocol - return 'true' if 'lProto' is in the
+/// inheritance hierarchy of 'rProto'.
+bool
+ASTContext::ProtocolCompatibleWithProtocol(ObjCProtocolDecl *lProto,
+ ObjCProtocolDecl *rProto) const {
+ if (declaresSameEntity(lProto, rProto))
+ return true;
+ for (auto *PI : rProto->protocols())
+ if (ProtocolCompatibleWithProtocol(lProto, PI))
+ return true;
+ return false;
+}
+
+/// ObjCQualifiedClassTypesAreCompatible - compare Class<pr,...> and
+/// Class<pr1, ...>.
+bool ASTContext::ObjCQualifiedClassTypesAreCompatible(
+ const ObjCObjectPointerType *lhs, const ObjCObjectPointerType *rhs) {
+ for (auto *lhsProto : lhs->quals()) {
+ bool match = false;
+ for (auto *rhsProto : rhs->quals()) {
+ if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto)) {
+ match = true;
+ break;
+ }
+ }
+ if (!match)
+ return false;
+ }
+ return true;
+}
+
+/// ObjCQualifiedIdTypesAreCompatible - We know that one of lhs/rhs is an
+/// ObjCQualifiedIDType.
+bool ASTContext::ObjCQualifiedIdTypesAreCompatible(
+ const ObjCObjectPointerType *lhs, const ObjCObjectPointerType *rhs,
+ bool compare) {
+ // Allow id<P..> and an 'id' in all cases.
+ if (lhs->isObjCIdType() || rhs->isObjCIdType())
+ return true;
+
+ // Don't allow id<P..> to convert to Class or Class<P..> in either direction.
+ if (lhs->isObjCClassType() || lhs->isObjCQualifiedClassType() ||
+ rhs->isObjCClassType() || rhs->isObjCQualifiedClassType())
+ return false;
+
+ if (lhs->isObjCQualifiedIdType()) {
+ if (rhs->qual_empty()) {
+ // If the RHS is a unqualified interface pointer "NSString*",
+ // make sure we check the class hierarchy.
+ if (ObjCInterfaceDecl *rhsID = rhs->getInterfaceDecl()) {
+ for (auto *I : lhs->quals()) {
+ // when comparing an id<P> on lhs with a static type on rhs,
+ // see if static class implements all of id's protocols, directly or
+ // through its super class and categories.
+ if (!rhsID->ClassImplementsProtocol(I, true))
+ return false;
+ }
+ }
+ // If there are no qualifiers and no interface, we have an 'id'.
+ return true;
+ }
+ // Both the right and left sides have qualifiers.
+ for (auto *lhsProto : lhs->quals()) {
+ bool match = false;
+
+ // when comparing an id<P> on lhs with a static type on rhs,
+ // see if static class implements all of id's protocols, directly or
+ // through its super class and categories.
+ for (auto *rhsProto : rhs->quals()) {
+ if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
+ (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
+ match = true;
+ break;
+ }
+ }
+ // If the RHS is a qualified interface pointer "NSString<P>*",
+ // make sure we check the class hierarchy.
+ if (ObjCInterfaceDecl *rhsID = rhs->getInterfaceDecl()) {
+ for (auto *I : lhs->quals()) {
+ // when comparing an id<P> on lhs with a static type on rhs,
+ // see if static class implements all of id's protocols, directly or
+ // through its super class and categories.
+ if (rhsID->ClassImplementsProtocol(I, true)) {
+ match = true;
+ break;
+ }
+ }
+ }
+ if (!match)
+ return false;
+ }
+
+ return true;
+ }
+
+ assert(rhs->isObjCQualifiedIdType() && "One of the LHS/RHS should be id<x>");
+
+ if (lhs->getInterfaceType()) {
+ // If both the right and left sides have qualifiers.
+ for (auto *lhsProto : lhs->quals()) {
+ bool match = false;
+
+ // when comparing an id<P> on rhs with a static type on lhs,
+ // see if static class implements all of id's protocols, directly or
+ // through its super class and categories.
+ // First, lhs protocols in the qualifier list must be found, direct
+ // or indirect in rhs's qualifier list or it is a mismatch.
+ for (auto *rhsProto : rhs->quals()) {
+ if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
+ (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
+ match = true;
+ break;
+ }
+ }
+ if (!match)
+ return false;
+ }
+
+ // Static class's protocols, or its super class or category protocols
+ // must be found, direct or indirect in rhs's qualifier list or it is a mismatch.
+ if (ObjCInterfaceDecl *lhsID = lhs->getInterfaceDecl()) {
+ llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSInheritedProtocols;
+ CollectInheritedProtocols(lhsID, LHSInheritedProtocols);
+ // This is rather dubious but matches gcc's behavior. If lhs has
+ // no type qualifier and its class has no static protocol(s)
+ // assume that it is mismatch.
+ if (LHSInheritedProtocols.empty() && lhs->qual_empty())
+ return false;
+ for (auto *lhsProto : LHSInheritedProtocols) {
+ bool match = false;
+ for (auto *rhsProto : rhs->quals()) {
+ if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
+ (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
+ match = true;
+ break;
+ }
+ }
+ if (!match)
+ return false;
+ }
+ }
+ return true;
+ }
+ return false;
+}
+
+/// canAssignObjCInterfaces - Return true if the two interface types are
+/// compatible for assignment from RHS to LHS. This handles validation of any
+/// protocol qualifiers on the LHS or RHS.
+bool ASTContext::canAssignObjCInterfaces(const ObjCObjectPointerType *LHSOPT,
+ const ObjCObjectPointerType *RHSOPT) {
+ const ObjCObjectType* LHS = LHSOPT->getObjectType();
+ const ObjCObjectType* RHS = RHSOPT->getObjectType();
+
+ // If either type represents the built-in 'id' type, return true.
+ if (LHS->isObjCUnqualifiedId() || RHS->isObjCUnqualifiedId())
+ return true;
+
+ // Function object that propagates a successful result or handles
+ // __kindof types.
+ auto finish = [&](bool succeeded) -> bool {
+ if (succeeded)
+ return true;
+
+ if (!RHS->isKindOfType())
+ return false;
+
+ // Strip off __kindof and protocol qualifiers, then check whether
+ // we can assign the other way.
+ return canAssignObjCInterfaces(RHSOPT->stripObjCKindOfTypeAndQuals(*this),
+ LHSOPT->stripObjCKindOfTypeAndQuals(*this));
+ };
+
+ // Casts from or to id<P> are allowed when the other side has compatible
+ // protocols.
+ if (LHS->isObjCQualifiedId() || RHS->isObjCQualifiedId()) {
+ return finish(ObjCQualifiedIdTypesAreCompatible(LHSOPT, RHSOPT, false));
+ }
+
+ // Verify protocol compatibility for casts from Class<P1> to Class<P2>.
+ if (LHS->isObjCQualifiedClass() && RHS->isObjCQualifiedClass()) {
+ return finish(ObjCQualifiedClassTypesAreCompatible(LHSOPT, RHSOPT));
+ }
+
+ // Casts from Class to Class<Foo>, or vice-versa, are allowed.
+ if (LHS->isObjCClass() && RHS->isObjCClass()) {
+ return true;
+ }
+
+ // If we have 2 user-defined types, fall into that path.
+ if (LHS->getInterface() && RHS->getInterface()) {
+ return finish(canAssignObjCInterfaces(LHS, RHS));
+ }
+
+ return false;
+}
+
+/// canAssignObjCInterfacesInBlockPointer - This routine is specifically written
+/// for providing type-safety for objective-c pointers used to pass/return
+/// arguments in block literals. When passed as arguments, passing 'A*' where
+/// 'id' is expected is not OK. Passing 'Sub *" where 'Super *" is expected is
+/// not OK. For the return type, the opposite is not OK.
+bool ASTContext::canAssignObjCInterfacesInBlockPointer(
+ const ObjCObjectPointerType *LHSOPT,
+ const ObjCObjectPointerType *RHSOPT,
+ bool BlockReturnType) {
+
+ // Function object that propagates a successful result or handles
+ // __kindof types.
+ auto finish = [&](bool succeeded) -> bool {
+ if (succeeded)
+ return true;
+
+ const ObjCObjectPointerType *Expected = BlockReturnType ? RHSOPT : LHSOPT;
+ if (!Expected->isKindOfType())
+ return false;
+
+ // Strip off __kindof and protocol qualifiers, then check whether
+ // we can assign the other way.
+ return canAssignObjCInterfacesInBlockPointer(
+ RHSOPT->stripObjCKindOfTypeAndQuals(*this),
+ LHSOPT->stripObjCKindOfTypeAndQuals(*this),
+ BlockReturnType);
+ };
+
+ if (RHSOPT->isObjCBuiltinType() || LHSOPT->isObjCIdType())
+ return true;
+
+ if (LHSOPT->isObjCBuiltinType()) {
+ return finish(RHSOPT->isObjCBuiltinType() ||
+ RHSOPT->isObjCQualifiedIdType());
+ }
+
+ if (LHSOPT->isObjCQualifiedIdType() || RHSOPT->isObjCQualifiedIdType())
+ return finish(ObjCQualifiedIdTypesAreCompatible(
+ (BlockReturnType ? LHSOPT : RHSOPT),
+ (BlockReturnType ? RHSOPT : LHSOPT), false));
+
+ const ObjCInterfaceType* LHS = LHSOPT->getInterfaceType();
+ const ObjCInterfaceType* RHS = RHSOPT->getInterfaceType();
+ if (LHS && RHS) { // We have 2 user-defined types.
+ if (LHS != RHS) {
+ if (LHS->getDecl()->isSuperClassOf(RHS->getDecl()))
+ return finish(BlockReturnType);
+ if (RHS->getDecl()->isSuperClassOf(LHS->getDecl()))
+ return finish(!BlockReturnType);
+ }
+ else
+ return true;
+ }
+ return false;
+}
+
+/// Comparison routine for Objective-C protocols to be used with
+/// llvm::array_pod_sort.
+static int compareObjCProtocolsByName(ObjCProtocolDecl * const *lhs,
+ ObjCProtocolDecl * const *rhs) {
+ return (*lhs)->getName().compare((*rhs)->getName());
+}
+
+/// getIntersectionOfProtocols - This routine finds the intersection of set
+/// of protocols inherited from two distinct objective-c pointer objects with
+/// the given common base.
+/// It is used to build composite qualifier list of the composite type of
+/// the conditional expression involving two objective-c pointer objects.
+static
+void getIntersectionOfProtocols(ASTContext &Context,
+ const ObjCInterfaceDecl *CommonBase,
+ const ObjCObjectPointerType *LHSOPT,
+ const ObjCObjectPointerType *RHSOPT,
+ SmallVectorImpl<ObjCProtocolDecl *> &IntersectionSet) {
+
+ const ObjCObjectType* LHS = LHSOPT->getObjectType();
+ const ObjCObjectType* RHS = RHSOPT->getObjectType();
+ assert(LHS->getInterface() && "LHS must have an interface base");
+ assert(RHS->getInterface() && "RHS must have an interface base");
+
+ // Add all of the protocols for the LHS.
+ llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSProtocolSet;
+
+ // Start with the protocol qualifiers.
+ for (auto proto : LHS->quals()) {
+ Context.CollectInheritedProtocols(proto, LHSProtocolSet);
+ }
+
+ // Also add the protocols associated with the LHS interface.
+ Context.CollectInheritedProtocols(LHS->getInterface(), LHSProtocolSet);
+
+ // Add all of the protocols for the RHS.
+ llvm::SmallPtrSet<ObjCProtocolDecl *, 8> RHSProtocolSet;
+
+ // Start with the protocol qualifiers.
+ for (auto proto : RHS->quals()) {
+ Context.CollectInheritedProtocols(proto, RHSProtocolSet);
+ }
+
+ // Also add the protocols associated with the RHS interface.
+ Context.CollectInheritedProtocols(RHS->getInterface(), RHSProtocolSet);
+
+ // Compute the intersection of the collected protocol sets.
+ for (auto proto : LHSProtocolSet) {
+ if (RHSProtocolSet.count(proto))
+ IntersectionSet.push_back(proto);
+ }
+
+ // Compute the set of protocols that is implied by either the common type or
+ // the protocols within the intersection.
+ llvm::SmallPtrSet<ObjCProtocolDecl *, 8> ImpliedProtocols;
+ Context.CollectInheritedProtocols(CommonBase, ImpliedProtocols);
+
+ // Remove any implied protocols from the list of inherited protocols.
+ if (!ImpliedProtocols.empty()) {
+ IntersectionSet.erase(
+ std::remove_if(IntersectionSet.begin(),
+ IntersectionSet.end(),
+ [&](ObjCProtocolDecl *proto) -> bool {
+ return ImpliedProtocols.count(proto) > 0;
+ }),
+ IntersectionSet.end());
+ }
+
+ // Sort the remaining protocols by name.
+ llvm::array_pod_sort(IntersectionSet.begin(), IntersectionSet.end(),
+ compareObjCProtocolsByName);
+}
+
+/// Determine whether the first type is a subtype of the second.
+static bool canAssignObjCObjectTypes(ASTContext &ctx, QualType lhs,
+ QualType rhs) {
+ // Common case: two object pointers.
+ const auto *lhsOPT = lhs->getAs<ObjCObjectPointerType>();
+ const auto *rhsOPT = rhs->getAs<ObjCObjectPointerType>();
+ if (lhsOPT && rhsOPT)
+ return ctx.canAssignObjCInterfaces(lhsOPT, rhsOPT);
+
+ // Two block pointers.
+ const auto *lhsBlock = lhs->getAs<BlockPointerType>();
+ const auto *rhsBlock = rhs->getAs<BlockPointerType>();
+ if (lhsBlock && rhsBlock)
+ return ctx.typesAreBlockPointerCompatible(lhs, rhs);
+
+ // If either is an unqualified 'id' and the other is a block, it's
+ // acceptable.
+ if ((lhsOPT && lhsOPT->isObjCIdType() && rhsBlock) ||
+ (rhsOPT && rhsOPT->isObjCIdType() && lhsBlock))
+ return true;
+
+ return false;
+}
+
+// Check that the given Objective-C type argument lists are equivalent.
+static bool sameObjCTypeArgs(ASTContext &ctx,
+ const ObjCInterfaceDecl *iface,
+ ArrayRef<QualType> lhsArgs,
+ ArrayRef<QualType> rhsArgs,
+ bool stripKindOf) {
+ if (lhsArgs.size() != rhsArgs.size())
+ return false;
+
+ ObjCTypeParamList *typeParams = iface->getTypeParamList();
+ for (unsigned i = 0, n = lhsArgs.size(); i != n; ++i) {
+ if (ctx.hasSameType(lhsArgs[i], rhsArgs[i]))
+ continue;
+
+ switch (typeParams->begin()[i]->getVariance()) {
+ case ObjCTypeParamVariance::Invariant:
+ if (!stripKindOf ||
+ !ctx.hasSameType(lhsArgs[i].stripObjCKindOfType(ctx),
+ rhsArgs[i].stripObjCKindOfType(ctx))) {
+ return false;
+ }
+ break;
+
+ case ObjCTypeParamVariance::Covariant:
+ if (!canAssignObjCObjectTypes(ctx, lhsArgs[i], rhsArgs[i]))
+ return false;
+ break;
+
+ case ObjCTypeParamVariance::Contravariant:
+ if (!canAssignObjCObjectTypes(ctx, rhsArgs[i], lhsArgs[i]))
+ return false;
+ break;
+ }
+ }
+
+ return true;
+}
+
+QualType ASTContext::areCommonBaseCompatible(
+ const ObjCObjectPointerType *Lptr,
+ const ObjCObjectPointerType *Rptr) {
+ const ObjCObjectType *LHS = Lptr->getObjectType();
+ const ObjCObjectType *RHS = Rptr->getObjectType();
+ const ObjCInterfaceDecl* LDecl = LHS->getInterface();
+ const ObjCInterfaceDecl* RDecl = RHS->getInterface();
+
+ if (!LDecl || !RDecl)
+ return {};
+
+ // When either LHS or RHS is a kindof type, we should return a kindof type.
+ // For example, for common base of kindof(ASub1) and kindof(ASub2), we return
+ // kindof(A).
+ bool anyKindOf = LHS->isKindOfType() || RHS->isKindOfType();
+
+ // Follow the left-hand side up the class hierarchy until we either hit a
+ // root or find the RHS. Record the ancestors in case we don't find it.
+ llvm::SmallDenseMap<const ObjCInterfaceDecl *, const ObjCObjectType *, 4>
+ LHSAncestors;
+ while (true) {
+ // Record this ancestor. We'll need this if the common type isn't in the
+ // path from the LHS to the root.
+ LHSAncestors[LHS->getInterface()->getCanonicalDecl()] = LHS;
+
+ if (declaresSameEntity(LHS->getInterface(), RDecl)) {
+ // Get the type arguments.
+ ArrayRef<QualType> LHSTypeArgs = LHS->getTypeArgsAsWritten();
+ bool anyChanges = false;
+ if (LHS->isSpecialized() && RHS->isSpecialized()) {
+ // Both have type arguments, compare them.
+ if (!sameObjCTypeArgs(*this, LHS->getInterface(),
+ LHS->getTypeArgs(), RHS->getTypeArgs(),
+ /*stripKindOf=*/true))
+ return {};
+ } else if (LHS->isSpecialized() != RHS->isSpecialized()) {
+ // If only one has type arguments, the result will not have type
+ // arguments.
+ LHSTypeArgs = {};
+ anyChanges = true;
+ }
+
+ // Compute the intersection of protocols.
+ SmallVector<ObjCProtocolDecl *, 8> Protocols;
+ getIntersectionOfProtocols(*this, LHS->getInterface(), Lptr, Rptr,
+ Protocols);
+ if (!Protocols.empty())
+ anyChanges = true;
+
+ // If anything in the LHS will have changed, build a new result type.
+ // If we need to return a kindof type but LHS is not a kindof type, we
+ // build a new result type.
+ if (anyChanges || LHS->isKindOfType() != anyKindOf) {
+ QualType Result = getObjCInterfaceType(LHS->getInterface());
+ Result = getObjCObjectType(Result, LHSTypeArgs, Protocols,
+ anyKindOf || LHS->isKindOfType());
+ return getObjCObjectPointerType(Result);
+ }
+
+ return getObjCObjectPointerType(QualType(LHS, 0));
+ }
+
+ // Find the superclass.
+ QualType LHSSuperType = LHS->getSuperClassType();
+ if (LHSSuperType.isNull())
+ break;
+
+ LHS = LHSSuperType->castAs<ObjCObjectType>();
+ }
+
+ // We didn't find anything by following the LHS to its root; now check
+ // the RHS against the cached set of ancestors.
+ while (true) {
+ auto KnownLHS = LHSAncestors.find(RHS->getInterface()->getCanonicalDecl());
+ if (KnownLHS != LHSAncestors.end()) {
+ LHS = KnownLHS->second;
+
+ // Get the type arguments.
+ ArrayRef<QualType> RHSTypeArgs = RHS->getTypeArgsAsWritten();
+ bool anyChanges = false;
+ if (LHS->isSpecialized() && RHS->isSpecialized()) {
+ // Both have type arguments, compare them.
+ if (!sameObjCTypeArgs(*this, LHS->getInterface(),
+ LHS->getTypeArgs(), RHS->getTypeArgs(),
+ /*stripKindOf=*/true))
+ return {};
+ } else if (LHS->isSpecialized() != RHS->isSpecialized()) {
+ // If only one has type arguments, the result will not have type
+ // arguments.
+ RHSTypeArgs = {};
+ anyChanges = true;
+ }
+
+ // Compute the intersection of protocols.
+ SmallVector<ObjCProtocolDecl *, 8> Protocols;
+ getIntersectionOfProtocols(*this, RHS->getInterface(), Lptr, Rptr,
+ Protocols);
+ if (!Protocols.empty())
+ anyChanges = true;
+
+ // If we need to return a kindof type but RHS is not a kindof type, we
+ // build a new result type.
+ if (anyChanges || RHS->isKindOfType() != anyKindOf) {
+ QualType Result = getObjCInterfaceType(RHS->getInterface());
+ Result = getObjCObjectType(Result, RHSTypeArgs, Protocols,
+ anyKindOf || RHS->isKindOfType());
+ return getObjCObjectPointerType(Result);
+ }
+
+ return getObjCObjectPointerType(QualType(RHS, 0));
+ }
+
+ // Find the superclass of the RHS.
+ QualType RHSSuperType = RHS->getSuperClassType();
+ if (RHSSuperType.isNull())
+ break;
+
+ RHS = RHSSuperType->castAs<ObjCObjectType>();
+ }
+
+ return {};
+}
+
+bool ASTContext::canAssignObjCInterfaces(const ObjCObjectType *LHS,
+ const ObjCObjectType *RHS) {
+ assert(LHS->getInterface() && "LHS is not an interface type");
+ assert(RHS->getInterface() && "RHS is not an interface type");
+
+ // Verify that the base decls are compatible: the RHS must be a subclass of
+ // the LHS.
+ ObjCInterfaceDecl *LHSInterface = LHS->getInterface();
+ bool IsSuperClass = LHSInterface->isSuperClassOf(RHS->getInterface());
+ if (!IsSuperClass)
+ return false;
+
+ // If the LHS has protocol qualifiers, determine whether all of them are
+ // satisfied by the RHS (i.e., the RHS has a superset of the protocols in the
+ // LHS).
+ if (LHS->getNumProtocols() > 0) {
+ // OK if conversion of LHS to SuperClass results in narrowing of types
+ // ; i.e., SuperClass may implement at least one of the protocols
+ // in LHS's protocol list. Example, SuperObj<P1> = lhs<P1,P2> is ok.
+ // But not SuperObj<P1,P2,P3> = lhs<P1,P2>.
+ llvm::SmallPtrSet<ObjCProtocolDecl *, 8> SuperClassInheritedProtocols;
+ CollectInheritedProtocols(RHS->getInterface(), SuperClassInheritedProtocols);
+ // Also, if RHS has explicit quelifiers, include them for comparing with LHS's
+ // qualifiers.
+ for (auto *RHSPI : RHS->quals())
+ CollectInheritedProtocols(RHSPI, SuperClassInheritedProtocols);
+ // If there is no protocols associated with RHS, it is not a match.
+ if (SuperClassInheritedProtocols.empty())
+ return false;
+
+ for (const auto *LHSProto : LHS->quals()) {
+ bool SuperImplementsProtocol = false;
+ for (auto *SuperClassProto : SuperClassInheritedProtocols)
+ if (SuperClassProto->lookupProtocolNamed(LHSProto->getIdentifier())) {
+ SuperImplementsProtocol = true;
+ break;
+ }
+ if (!SuperImplementsProtocol)
+ return false;
+ }
+ }
+
+ // If the LHS is specialized, we may need to check type arguments.
+ if (LHS->isSpecialized()) {
+ // Follow the superclass chain until we've matched the LHS class in the
+ // hierarchy. This substitutes type arguments through.
+ const ObjCObjectType *RHSSuper = RHS;
+ while (!declaresSameEntity(RHSSuper->getInterface(), LHSInterface))
+ RHSSuper = RHSSuper->getSuperClassType()->castAs<ObjCObjectType>();
+
+ // If the RHS is specializd, compare type arguments.
+ if (RHSSuper->isSpecialized() &&
+ !sameObjCTypeArgs(*this, LHS->getInterface(),
+ LHS->getTypeArgs(), RHSSuper->getTypeArgs(),
+ /*stripKindOf=*/true)) {
+ return false;
+ }
+ }
+
+ return true;
+}
+
+bool ASTContext::areComparableObjCPointerTypes(QualType LHS, QualType RHS) {
+ // get the "pointed to" types
+ const auto *LHSOPT = LHS->getAs<ObjCObjectPointerType>();
+ const auto *RHSOPT = RHS->getAs<ObjCObjectPointerType>();
+
+ if (!LHSOPT || !RHSOPT)
+ return false;
+
+ return canAssignObjCInterfaces(LHSOPT, RHSOPT) ||
+ canAssignObjCInterfaces(RHSOPT, LHSOPT);
+}
+
+bool ASTContext::canBindObjCObjectType(QualType To, QualType From) {
+ return canAssignObjCInterfaces(
+ getObjCObjectPointerType(To)->getAs<ObjCObjectPointerType>(),
+ getObjCObjectPointerType(From)->getAs<ObjCObjectPointerType>());
+}
+
+/// typesAreCompatible - C99 6.7.3p9: For two qualified types to be compatible,
+/// both shall have the identically qualified version of a compatible type.
+/// C99 6.2.7p1: Two types have compatible types if their types are the
+/// same. See 6.7.[2,3,5] for additional rules.
+bool ASTContext::typesAreCompatible(QualType LHS, QualType RHS,
+ bool CompareUnqualified) {
+ if (getLangOpts().CPlusPlus)
+ return hasSameType(LHS, RHS);
+
+ return !mergeTypes(LHS, RHS, false, CompareUnqualified).isNull();
+}
+
+bool ASTContext::propertyTypesAreCompatible(QualType LHS, QualType RHS) {
+ return typesAreCompatible(LHS, RHS);
+}
+
+bool ASTContext::typesAreBlockPointerCompatible(QualType LHS, QualType RHS) {
+ return !mergeTypes(LHS, RHS, true).isNull();
+}
+
+/// mergeTransparentUnionType - if T is a transparent union type and a member
+/// of T is compatible with SubType, return the merged type, else return
+/// QualType()
+QualType ASTContext::mergeTransparentUnionType(QualType T, QualType SubType,
+ bool OfBlockPointer,
+ bool Unqualified) {
+ if (const RecordType *UT = T->getAsUnionType()) {
+ RecordDecl *UD = UT->getDecl();
+ if (UD->hasAttr<TransparentUnionAttr>()) {
+ for (const auto *I : UD->fields()) {
+ QualType ET = I->getType().getUnqualifiedType();
+ QualType MT = mergeTypes(ET, SubType, OfBlockPointer, Unqualified);
+ if (!MT.isNull())
+ return MT;
+ }
+ }
+ }
+
+ return {};
+}
+
+/// mergeFunctionParameterTypes - merge two types which appear as function
+/// parameter types
+QualType ASTContext::mergeFunctionParameterTypes(QualType lhs, QualType rhs,
+ bool OfBlockPointer,
+ bool Unqualified) {
+ // GNU extension: two types are compatible if they appear as a function
+ // argument, one of the types is a transparent union type and the other
+ // type is compatible with a union member
+ QualType lmerge = mergeTransparentUnionType(lhs, rhs, OfBlockPointer,
+ Unqualified);
+ if (!lmerge.isNull())
+ return lmerge;
+
+ QualType rmerge = mergeTransparentUnionType(rhs, lhs, OfBlockPointer,
+ Unqualified);
+ if (!rmerge.isNull())
+ return rmerge;
+
+ return mergeTypes(lhs, rhs, OfBlockPointer, Unqualified);
+}
+
+QualType ASTContext::mergeFunctionTypes(QualType lhs, QualType rhs,
+ bool OfBlockPointer,
+ bool Unqualified) {
+ const auto *lbase = lhs->getAs<FunctionType>();
+ const auto *rbase = rhs->getAs<FunctionType>();
+ const auto *lproto = dyn_cast<FunctionProtoType>(lbase);
+ const auto *rproto = dyn_cast<FunctionProtoType>(rbase);
+ bool allLTypes = true;
+ bool allRTypes = true;
+
+ // Check return type
+ QualType retType;
+ if (OfBlockPointer) {
+ QualType RHS = rbase->getReturnType();
+ QualType LHS = lbase->getReturnType();
+ bool UnqualifiedResult = Unqualified;
+ if (!UnqualifiedResult)
+ UnqualifiedResult = (!RHS.hasQualifiers() && LHS.hasQualifiers());
+ retType = mergeTypes(LHS, RHS, true, UnqualifiedResult, true);
+ }
+ else
+ retType = mergeTypes(lbase->getReturnType(), rbase->getReturnType(), false,
+ Unqualified);
+ if (retType.isNull())
+ return {};
+
+ if (Unqualified)
+ retType = retType.getUnqualifiedType();
+
+ CanQualType LRetType = getCanonicalType(lbase->getReturnType());
+ CanQualType RRetType = getCanonicalType(rbase->getReturnType());
+ if (Unqualified) {
+ LRetType = LRetType.getUnqualifiedType();
+ RRetType = RRetType.getUnqualifiedType();
+ }
+
+ if (getCanonicalType(retType) != LRetType)
+ allLTypes = false;
+ if (getCanonicalType(retType) != RRetType)
+ allRTypes = false;
+
+ // FIXME: double check this
+ // FIXME: should we error if lbase->getRegParmAttr() != 0 &&
+ // rbase->getRegParmAttr() != 0 &&
+ // lbase->getRegParmAttr() != rbase->getRegParmAttr()?
+ FunctionType::ExtInfo lbaseInfo = lbase->getExtInfo();
+ FunctionType::ExtInfo rbaseInfo = rbase->getExtInfo();
+
+ // Compatible functions must have compatible calling conventions
+ if (lbaseInfo.getCC() != rbaseInfo.getCC())
+ return {};
+
+ // Regparm is part of the calling convention.
+ if (lbaseInfo.getHasRegParm() != rbaseInfo.getHasRegParm())
+ return {};
+ if (lbaseInfo.getRegParm() != rbaseInfo.getRegParm())
+ return {};
+
+ if (lbaseInfo.getProducesResult() != rbaseInfo.getProducesResult())
+ return {};
+ if (lbaseInfo.getNoCallerSavedRegs() != rbaseInfo.getNoCallerSavedRegs())
+ return {};
+ if (lbaseInfo.getNoCfCheck() != rbaseInfo.getNoCfCheck())
+ return {};
+
+ // FIXME: some uses, e.g. conditional exprs, really want this to be 'both'.
+ bool NoReturn = lbaseInfo.getNoReturn() || rbaseInfo.getNoReturn();
+
+ if (lbaseInfo.getNoReturn() != NoReturn)
+ allLTypes = false;
+ if (rbaseInfo.getNoReturn() != NoReturn)
+ allRTypes = false;
+
+ FunctionType::ExtInfo einfo = lbaseInfo.withNoReturn(NoReturn);
+
+ if (lproto && rproto) { // two C99 style function prototypes
+ assert(!lproto->hasExceptionSpec() && !rproto->hasExceptionSpec() &&
+ "C++ shouldn't be here");
+ // Compatible functions must have the same number of parameters
+ if (lproto->getNumParams() != rproto->getNumParams())
+ return {};
+
+ // Variadic and non-variadic functions aren't compatible
+ if (lproto->isVariadic() != rproto->isVariadic())
+ return {};
+
+ if (lproto->getMethodQuals() != rproto->getMethodQuals())
+ return {};
+
+ SmallVector<FunctionProtoType::ExtParameterInfo, 4> newParamInfos;
+ bool canUseLeft, canUseRight;
+ if (!mergeExtParameterInfo(lproto, rproto, canUseLeft, canUseRight,
+ newParamInfos))
+ return {};
+
+ if (!canUseLeft)
+ allLTypes = false;
+ if (!canUseRight)
+ allRTypes = false;
+
+ // Check parameter type compatibility
+ SmallVector<QualType, 10> types;
+ for (unsigned i = 0, n = lproto->getNumParams(); i < n; i++) {
+ QualType lParamType = lproto->getParamType(i).getUnqualifiedType();
+ QualType rParamType = rproto->getParamType(i).getUnqualifiedType();
+ QualType paramType = mergeFunctionParameterTypes(
+ lParamType, rParamType, OfBlockPointer, Unqualified);
+ if (paramType.isNull())
+ return {};
+
+ if (Unqualified)
+ paramType = paramType.getUnqualifiedType();
+
+ types.push_back(paramType);
+ if (Unqualified) {
+ lParamType = lParamType.getUnqualifiedType();
+ rParamType = rParamType.getUnqualifiedType();
+ }
+
+ if (getCanonicalType(paramType) != getCanonicalType(lParamType))
+ allLTypes = false;
+ if (getCanonicalType(paramType) != getCanonicalType(rParamType))
+ allRTypes = false;
+ }
+
+ if (allLTypes) return lhs;
+ if (allRTypes) return rhs;
+
+ FunctionProtoType::ExtProtoInfo EPI = lproto->getExtProtoInfo();
+ EPI.ExtInfo = einfo;
+ EPI.ExtParameterInfos =
+ newParamInfos.empty() ? nullptr : newParamInfos.data();
+ return getFunctionType(retType, types, EPI);
+ }
+
+ if (lproto) allRTypes = false;
+ if (rproto) allLTypes = false;
+
+ const FunctionProtoType *proto = lproto ? lproto : rproto;
+ if (proto) {
+ assert(!proto->hasExceptionSpec() && "C++ shouldn't be here");
+ if (proto->isVariadic())
+ return {};
+ // Check that the types are compatible with the types that
+ // would result from default argument promotions (C99 6.7.5.3p15).
+ // The only types actually affected are promotable integer
+ // types and floats, which would be passed as a different
+ // type depending on whether the prototype is visible.
+ for (unsigned i = 0, n = proto->getNumParams(); i < n; ++i) {
+ QualType paramTy = proto->getParamType(i);
+
+ // Look at the converted type of enum types, since that is the type used
+ // to pass enum values.
+ if (const auto *Enum = paramTy->getAs<EnumType>()) {
+ paramTy = Enum->getDecl()->getIntegerType();
+ if (paramTy.isNull())
+ return {};
+ }
+
+ if (paramTy->isPromotableIntegerType() ||
+ getCanonicalType(paramTy).getUnqualifiedType() == FloatTy)
+ return {};
+ }
+
+ if (allLTypes) return lhs;
+ if (allRTypes) return rhs;
+
+ FunctionProtoType::ExtProtoInfo EPI = proto->getExtProtoInfo();
+ EPI.ExtInfo = einfo;
+ return getFunctionType(retType, proto->getParamTypes(), EPI);
+ }
+
+ if (allLTypes) return lhs;
+ if (allRTypes) return rhs;
+ return getFunctionNoProtoType(retType, einfo);
+}
+
+/// Given that we have an enum type and a non-enum type, try to merge them.
+static QualType mergeEnumWithInteger(ASTContext &Context, const EnumType *ET,
+ QualType other, bool isBlockReturnType) {
+ // C99 6.7.2.2p4: Each enumerated type shall be compatible with char,
+ // a signed integer type, or an unsigned integer type.
+ // Compatibility is based on the underlying type, not the promotion
+ // type.
+ QualType underlyingType = ET->getDecl()->getIntegerType();
+ if (underlyingType.isNull())
+ return {};
+ if (Context.hasSameType(underlyingType, other))
+ return other;
+
+ // In block return types, we're more permissive and accept any
+ // integral type of the same size.
+ if (isBlockReturnType && other->isIntegerType() &&
+ Context.getTypeSize(underlyingType) == Context.getTypeSize(other))
+ return other;
+
+ return {};
+}
+
+QualType ASTContext::mergeTypes(QualType LHS, QualType RHS,
+ bool OfBlockPointer,
+ bool Unqualified, bool BlockReturnType) {
+ // C++ [expr]: If an expression initially has the type "reference to T", the
+ // type is adjusted to "T" prior to any further analysis, the expression
+ // designates the object or function denoted by the reference, and the
+ // expression is an lvalue unless the reference is an rvalue reference and
+ // the expression is a function call (possibly inside parentheses).
+ assert(!LHS->getAs<ReferenceType>() && "LHS is a reference type?");
+ assert(!RHS->getAs<ReferenceType>() && "RHS is a reference type?");
+
+ if (Unqualified) {
+ LHS = LHS.getUnqualifiedType();
+ RHS = RHS.getUnqualifiedType();
+ }
+
+ QualType LHSCan = getCanonicalType(LHS),
+ RHSCan = getCanonicalType(RHS);
+
+ // If two types are identical, they are compatible.
+ if (LHSCan == RHSCan)
+ return LHS;
+
+ // If the qualifiers are different, the types aren't compatible... mostly.
+ Qualifiers LQuals = LHSCan.getLocalQualifiers();
+ Qualifiers RQuals = RHSCan.getLocalQualifiers();
+ if (LQuals != RQuals) {
+ // If any of these qualifiers are different, we have a type
+ // mismatch.
+ if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() ||
+ LQuals.getAddressSpace() != RQuals.getAddressSpace() ||
+ LQuals.getObjCLifetime() != RQuals.getObjCLifetime() ||
+ LQuals.hasUnaligned() != RQuals.hasUnaligned())
+ return {};
+
+ // Exactly one GC qualifier difference is allowed: __strong is
+ // okay if the other type has no GC qualifier but is an Objective
+ // C object pointer (i.e. implicitly strong by default). We fix
+ // this by pretending that the unqualified type was actually
+ // qualified __strong.
+ Qualifiers::GC GC_L = LQuals.getObjCGCAttr();
+ Qualifiers::GC GC_R = RQuals.getObjCGCAttr();
+ assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements");
+
+ if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak)
+ return {};
+
+ if (GC_L == Qualifiers::Strong && RHSCan->isObjCObjectPointerType()) {
+ return mergeTypes(LHS, getObjCGCQualType(RHS, Qualifiers::Strong));
+ }
+ if (GC_R == Qualifiers::Strong && LHSCan->isObjCObjectPointerType()) {
+ return mergeTypes(getObjCGCQualType(LHS, Qualifiers::Strong), RHS);
+ }
+ return {};
+ }
+
+ // Okay, qualifiers are equal.
+
+ Type::TypeClass LHSClass = LHSCan->getTypeClass();
+ Type::TypeClass RHSClass = RHSCan->getTypeClass();
+
+ // We want to consider the two function types to be the same for these
+ // comparisons, just force one to the other.
+ if (LHSClass == Type::FunctionProto) LHSClass = Type::FunctionNoProto;
+ if (RHSClass == Type::FunctionProto) RHSClass = Type::FunctionNoProto;
+
+ // Same as above for arrays
+ if (LHSClass == Type::VariableArray || LHSClass == Type::IncompleteArray)
+ LHSClass = Type::ConstantArray;
+ if (RHSClass == Type::VariableArray || RHSClass == Type::IncompleteArray)
+ RHSClass = Type::ConstantArray;
+
+ // ObjCInterfaces are just specialized ObjCObjects.
+ if (LHSClass == Type::ObjCInterface) LHSClass = Type::ObjCObject;
+ if (RHSClass == Type::ObjCInterface) RHSClass = Type::ObjCObject;
+
+ // Canonicalize ExtVector -> Vector.
+ if (LHSClass == Type::ExtVector) LHSClass = Type::Vector;
+ if (RHSClass == Type::ExtVector) RHSClass = Type::Vector;
+
+ // If the canonical type classes don't match.
+ if (LHSClass != RHSClass) {
+ // Note that we only have special rules for turning block enum
+ // returns into block int returns, not vice-versa.
+ if (const auto *ETy = LHS->getAs<EnumType>()) {
+ return mergeEnumWithInteger(*this, ETy, RHS, false);
+ }
+ if (const EnumType* ETy = RHS->getAs<EnumType>()) {
+ return mergeEnumWithInteger(*this, ETy, LHS, BlockReturnType);
+ }
+ // allow block pointer type to match an 'id' type.
+ if (OfBlockPointer && !BlockReturnType) {
+ if (LHS->isObjCIdType() && RHS->isBlockPointerType())
+ return LHS;
+ if (RHS->isObjCIdType() && LHS->isBlockPointerType())
+ return RHS;
+ }
+
+ return {};
+ }
+
+ // The canonical type classes match.
+ switch (LHSClass) {
+#define TYPE(Class, Base)
+#define ABSTRACT_TYPE(Class, Base)
+#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
+#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
+#define DEPENDENT_TYPE(Class, Base) case Type::Class:
+#include "clang/AST/TypeNodes.inc"
+ llvm_unreachable("Non-canonical and dependent types shouldn't get here");
+
+ case Type::Auto:
+ case Type::DeducedTemplateSpecialization:
+ case Type::LValueReference:
+ case Type::RValueReference:
+ case Type::MemberPointer:
+ llvm_unreachable("C++ should never be in mergeTypes");
+
+ case Type::ObjCInterface:
+ case Type::IncompleteArray:
+ case Type::VariableArray:
+ case Type::FunctionProto:
+ case Type::ExtVector:
+ llvm_unreachable("Types are eliminated above");
+
+ case Type::Pointer:
+ {
+ // Merge two pointer types, while trying to preserve typedef info
+ QualType LHSPointee = LHS->castAs<PointerType>()->getPointeeType();
+ QualType RHSPointee = RHS->castAs<PointerType>()->getPointeeType();
+ if (Unqualified) {
+ LHSPointee = LHSPointee.getUnqualifiedType();
+ RHSPointee = RHSPointee.getUnqualifiedType();
+ }
+ QualType ResultType = mergeTypes(LHSPointee, RHSPointee, false,
+ Unqualified);
+ if (ResultType.isNull())
+ return {};
+ if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
+ return LHS;
+ if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
+ return RHS;
+ return getPointerType(ResultType);
+ }
+ case Type::BlockPointer:
+ {
+ // Merge two block pointer types, while trying to preserve typedef info
+ QualType LHSPointee = LHS->castAs<BlockPointerType>()->getPointeeType();
+ QualType RHSPointee = RHS->castAs<BlockPointerType>()->getPointeeType();
+ if (Unqualified) {
+ LHSPointee = LHSPointee.getUnqualifiedType();
+ RHSPointee = RHSPointee.getUnqualifiedType();
+ }
+ if (getLangOpts().OpenCL) {
+ Qualifiers LHSPteeQual = LHSPointee.getQualifiers();
+ Qualifiers RHSPteeQual = RHSPointee.getQualifiers();
+ // Blocks can't be an expression in a ternary operator (OpenCL v2.0
+ // 6.12.5) thus the following check is asymmetric.
+ if (!LHSPteeQual.isAddressSpaceSupersetOf(RHSPteeQual))
+ return {};
+ LHSPteeQual.removeAddressSpace();
+ RHSPteeQual.removeAddressSpace();
+ LHSPointee =
+ QualType(LHSPointee.getTypePtr(), LHSPteeQual.getAsOpaqueValue());
+ RHSPointee =
+ QualType(RHSPointee.getTypePtr(), RHSPteeQual.getAsOpaqueValue());
+ }
+ QualType ResultType = mergeTypes(LHSPointee, RHSPointee, OfBlockPointer,
+ Unqualified);
+ if (ResultType.isNull())
+ return {};
+ if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
+ return LHS;
+ if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
+ return RHS;
+ return getBlockPointerType(ResultType);
+ }
+ case Type::Atomic:
+ {
+ // Merge two pointer types, while trying to preserve typedef info
+ QualType LHSValue = LHS->castAs<AtomicType>()->getValueType();
+ QualType RHSValue = RHS->castAs<AtomicType>()->getValueType();
+ if (Unqualified) {
+ LHSValue = LHSValue.getUnqualifiedType();
+ RHSValue = RHSValue.getUnqualifiedType();
+ }
+ QualType ResultType = mergeTypes(LHSValue, RHSValue, false,
+ Unqualified);
+ if (ResultType.isNull())
+ return {};
+ if (getCanonicalType(LHSValue) == getCanonicalType(ResultType))
+ return LHS;
+ if (getCanonicalType(RHSValue) == getCanonicalType(ResultType))
+ return RHS;
+ return getAtomicType(ResultType);
+ }
+ case Type::ConstantArray:
+ {
+ const ConstantArrayType* LCAT = getAsConstantArrayType(LHS);
+ const ConstantArrayType* RCAT = getAsConstantArrayType(RHS);
+ if (LCAT && RCAT && RCAT->getSize() != LCAT->getSize())
+ return {};
+
+ QualType LHSElem = getAsArrayType(LHS)->getElementType();
+ QualType RHSElem = getAsArrayType(RHS)->getElementType();
+ if (Unqualified) {
+ LHSElem = LHSElem.getUnqualifiedType();
+ RHSElem = RHSElem.getUnqualifiedType();
+ }
+
+ QualType ResultType = mergeTypes(LHSElem, RHSElem, false, Unqualified);
+ if (ResultType.isNull())
+ return {};
+
+ const VariableArrayType* LVAT = getAsVariableArrayType(LHS);
+ const VariableArrayType* RVAT = getAsVariableArrayType(RHS);
+
+ // If either side is a variable array, and both are complete, check whether
+ // the current dimension is definite.
+ if (LVAT || RVAT) {
+ auto SizeFetch = [this](const VariableArrayType* VAT,
+ const ConstantArrayType* CAT)
+ -> std::pair<bool,llvm::APInt> {
+ if (VAT) {
+ llvm::APSInt TheInt;
+ Expr *E = VAT->getSizeExpr();
+ if (E && E->isIntegerConstantExpr(TheInt, *this))
+ return std::make_pair(true, TheInt);
+ else
+ return std::make_pair(false, TheInt);
+ } else if (CAT) {
+ return std::make_pair(true, CAT->getSize());
+ } else {
+ return std::make_pair(false, llvm::APInt());
+ }
+ };
+
+ bool HaveLSize, HaveRSize;
+ llvm::APInt LSize, RSize;
+ std::tie(HaveLSize, LSize) = SizeFetch(LVAT, LCAT);
+ std::tie(HaveRSize, RSize) = SizeFetch(RVAT, RCAT);
+ if (HaveLSize && HaveRSize && !llvm::APInt::isSameValue(LSize, RSize))
+ return {}; // Definite, but unequal, array dimension
+ }
+
+ if (LCAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
+ return LHS;
+ if (RCAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
+ return RHS;
+ if (LCAT)
+ return getConstantArrayType(ResultType, LCAT->getSize(),
+ LCAT->getSizeExpr(),
+ ArrayType::ArraySizeModifier(), 0);
+ if (RCAT)
+ return getConstantArrayType(ResultType, RCAT->getSize(),
+ RCAT->getSizeExpr(),
+ ArrayType::ArraySizeModifier(), 0);
+ if (LVAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
+ return LHS;
+ if (RVAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
+ return RHS;
+ if (LVAT) {
+ // FIXME: This isn't correct! But tricky to implement because
+ // the array's size has to be the size of LHS, but the type
+ // has to be different.
+ return LHS;
+ }
+ if (RVAT) {
+ // FIXME: This isn't correct! But tricky to implement because
+ // the array's size has to be the size of RHS, but the type
+ // has to be different.
+ return RHS;
+ }
+ if (getCanonicalType(LHSElem) == getCanonicalType(ResultType)) return LHS;
+ if (getCanonicalType(RHSElem) == getCanonicalType(ResultType)) return RHS;
+ return getIncompleteArrayType(ResultType,
+ ArrayType::ArraySizeModifier(), 0);
+ }
+ case Type::FunctionNoProto:
+ return mergeFunctionTypes(LHS, RHS, OfBlockPointer, Unqualified);
+ case Type::Record:
+ case Type::Enum:
+ return {};
+ case Type::Builtin:
+ // Only exactly equal builtin types are compatible, which is tested above.
+ return {};
+ case Type::Complex:
+ // Distinct complex types are incompatible.
+ return {};
+ case Type::Vector:
+ // FIXME: The merged type should be an ExtVector!
+ if (areCompatVectorTypes(LHSCan->castAs<VectorType>(),
+ RHSCan->castAs<VectorType>()))
+ return LHS;
+ return {};
+ case Type::ObjCObject: {
+ // Check if the types are assignment compatible.
+ // FIXME: This should be type compatibility, e.g. whether
+ // "LHS x; RHS x;" at global scope is legal.
+ if (canAssignObjCInterfaces(LHS->castAs<ObjCObjectType>(),
+ RHS->castAs<ObjCObjectType>()))
+ return LHS;
+ return {};
+ }
+ case Type::ObjCObjectPointer:
+ if (OfBlockPointer) {
+ if (canAssignObjCInterfacesInBlockPointer(
+ LHS->castAs<ObjCObjectPointerType>(),
+ RHS->castAs<ObjCObjectPointerType>(), BlockReturnType))
+ return LHS;
+ return {};
+ }
+ if (canAssignObjCInterfaces(LHS->castAs<ObjCObjectPointerType>(),
+ RHS->castAs<ObjCObjectPointerType>()))
+ return LHS;
+ return {};
+ case Type::Pipe:
+ assert(LHS != RHS &&
+ "Equivalent pipe types should have already been handled!");
+ return {};
+ }
+
+ llvm_unreachable("Invalid Type::Class!");
+}
+
+bool ASTContext::mergeExtParameterInfo(
+ const FunctionProtoType *FirstFnType, const FunctionProtoType *SecondFnType,
+ bool &CanUseFirst, bool &CanUseSecond,
+ SmallVectorImpl<FunctionProtoType::ExtParameterInfo> &NewParamInfos) {
+ assert(NewParamInfos.empty() && "param info list not empty");
+ CanUseFirst = CanUseSecond = true;
+ bool FirstHasInfo = FirstFnType->hasExtParameterInfos();
+ bool SecondHasInfo = SecondFnType->hasExtParameterInfos();
+
+ // Fast path: if the first type doesn't have ext parameter infos,
+ // we match if and only if the second type also doesn't have them.
+ if (!FirstHasInfo && !SecondHasInfo)
+ return true;
+
+ bool NeedParamInfo = false;
+ size_t E = FirstHasInfo ? FirstFnType->getExtParameterInfos().size()
+ : SecondFnType->getExtParameterInfos().size();
+
+ for (size_t I = 0; I < E; ++I) {
+ FunctionProtoType::ExtParameterInfo FirstParam, SecondParam;
+ if (FirstHasInfo)
+ FirstParam = FirstFnType->getExtParameterInfo(I);
+ if (SecondHasInfo)
+ SecondParam = SecondFnType->getExtParameterInfo(I);
+
+ // Cannot merge unless everything except the noescape flag matches.
+ if (FirstParam.withIsNoEscape(false) != SecondParam.withIsNoEscape(false))
+ return false;
+
+ bool FirstNoEscape = FirstParam.isNoEscape();
+ bool SecondNoEscape = SecondParam.isNoEscape();
+ bool IsNoEscape = FirstNoEscape && SecondNoEscape;
+ NewParamInfos.push_back(FirstParam.withIsNoEscape(IsNoEscape));
+ if (NewParamInfos.back().getOpaqueValue())
+ NeedParamInfo = true;
+ if (FirstNoEscape != IsNoEscape)
+ CanUseFirst = false;
+ if (SecondNoEscape != IsNoEscape)
+ CanUseSecond = false;
+ }
+
+ if (!NeedParamInfo)
+ NewParamInfos.clear();
+
+ return true;
+}
+
+void ASTContext::ResetObjCLayout(const ObjCContainerDecl *CD) {
+ ObjCLayouts[CD] = nullptr;
+}
+
+/// mergeObjCGCQualifiers - This routine merges ObjC's GC attribute of 'LHS' and
+/// 'RHS' attributes and returns the merged version; including for function
+/// return types.
+QualType ASTContext::mergeObjCGCQualifiers(QualType LHS, QualType RHS) {
+ QualType LHSCan = getCanonicalType(LHS),
+ RHSCan = getCanonicalType(RHS);
+ // If two types are identical, they are compatible.
+ if (LHSCan == RHSCan)
+ return LHS;
+ if (RHSCan->isFunctionType()) {
+ if (!LHSCan->isFunctionType())
+ return {};
+ QualType OldReturnType =
+ cast<FunctionType>(RHSCan.getTypePtr())->getReturnType();
+ QualType NewReturnType =
+ cast<FunctionType>(LHSCan.getTypePtr())->getReturnType();
+ QualType ResReturnType =
+ mergeObjCGCQualifiers(NewReturnType, OldReturnType);
+ if (ResReturnType.isNull())
+ return {};
+ if (ResReturnType == NewReturnType || ResReturnType == OldReturnType) {
+ // id foo(); ... __strong id foo(); or: __strong id foo(); ... id foo();
+ // In either case, use OldReturnType to build the new function type.
+ const auto *F = LHS->castAs<FunctionType>();
+ if (const auto *FPT = cast<FunctionProtoType>(F)) {
+ FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
+ EPI.ExtInfo = getFunctionExtInfo(LHS);
+ QualType ResultType =
+ getFunctionType(OldReturnType, FPT->getParamTypes(), EPI);
+ return ResultType;
+ }
+ }
+ return {};
+ }
+
+ // If the qualifiers are different, the types can still be merged.
+ Qualifiers LQuals = LHSCan.getLocalQualifiers();
+ Qualifiers RQuals = RHSCan.getLocalQualifiers();
+ if (LQuals != RQuals) {
+ // If any of these qualifiers are different, we have a type mismatch.
+ if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() ||
+ LQuals.getAddressSpace() != RQuals.getAddressSpace())
+ return {};
+
+ // Exactly one GC qualifier difference is allowed: __strong is
+ // okay if the other type has no GC qualifier but is an Objective
+ // C object pointer (i.e. implicitly strong by default). We fix
+ // this by pretending that the unqualified type was actually
+ // qualified __strong.
+ Qualifiers::GC GC_L = LQuals.getObjCGCAttr();
+ Qualifiers::GC GC_R = RQuals.getObjCGCAttr();
+ assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements");
+
+ if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak)
+ return {};
+
+ if (GC_L == Qualifiers::Strong)
+ return LHS;
+ if (GC_R == Qualifiers::Strong)
+ return RHS;
+ return {};
+ }
+
+ if (LHSCan->isObjCObjectPointerType() && RHSCan->isObjCObjectPointerType()) {
+ QualType LHSBaseQT = LHS->castAs<ObjCObjectPointerType>()->getPointeeType();
+ QualType RHSBaseQT = RHS->castAs<ObjCObjectPointerType>()->getPointeeType();
+ QualType ResQT = mergeObjCGCQualifiers(LHSBaseQT, RHSBaseQT);
+ if (ResQT == LHSBaseQT)
+ return LHS;
+ if (ResQT == RHSBaseQT)
+ return RHS;
+ }
+ return {};
+}
+
+//===----------------------------------------------------------------------===//
+// Integer Predicates
+//===----------------------------------------------------------------------===//
+
+unsigned ASTContext::getIntWidth(QualType T) const {
+ if (const auto *ET = T->getAs<EnumType>())
+ T = ET->getDecl()->getIntegerType();
+ if (T->isBooleanType())
+ return 1;
+ // For builtin types, just use the standard type sizing method
+ return (unsigned)getTypeSize(T);
+}
+
+QualType ASTContext::getCorrespondingUnsignedType(QualType T) const {
+ assert((T->hasSignedIntegerRepresentation() || T->isSignedFixedPointType()) &&
+ "Unexpected type");
+
+ // Turn <4 x signed int> -> <4 x unsigned int>
+ if (const auto *VTy = T->getAs<VectorType>())
+ return getVectorType(getCorrespondingUnsignedType(VTy->getElementType()),
+ VTy->getNumElements(), VTy->getVectorKind());
+
+ // For enums, we return the unsigned version of the base type.
+ if (const auto *ETy = T->getAs<EnumType>())
+ T = ETy->getDecl()->getIntegerType();
+
+ switch (T->castAs<BuiltinType>()->getKind()) {
+ case BuiltinType::Char_S:
+ case BuiltinType::SChar:
+ return UnsignedCharTy;
+ case BuiltinType::Short:
+ return UnsignedShortTy;
+ case BuiltinType::Int:
+ return UnsignedIntTy;
+ case BuiltinType::Long:
+ return UnsignedLongTy;
+ case BuiltinType::LongLong:
+ return UnsignedLongLongTy;
+ case BuiltinType::Int128:
+ return UnsignedInt128Ty;
+
+ case BuiltinType::ShortAccum:
+ return UnsignedShortAccumTy;
+ case BuiltinType::Accum:
+ return UnsignedAccumTy;
+ case BuiltinType::LongAccum:
+ return UnsignedLongAccumTy;
+ case BuiltinType::SatShortAccum:
+ return SatUnsignedShortAccumTy;
+ case BuiltinType::SatAccum:
+ return SatUnsignedAccumTy;
+ case BuiltinType::SatLongAccum:
+ return SatUnsignedLongAccumTy;
+ case BuiltinType::ShortFract:
+ return UnsignedShortFractTy;
+ case BuiltinType::Fract:
+ return UnsignedFractTy;
+ case BuiltinType::LongFract:
+ return UnsignedLongFractTy;
+ case BuiltinType::SatShortFract:
+ return SatUnsignedShortFractTy;
+ case BuiltinType::SatFract:
+ return SatUnsignedFractTy;
+ case BuiltinType::SatLongFract:
+ return SatUnsignedLongFractTy;
+ default:
+ llvm_unreachable("Unexpected signed integer or fixed point type");
+ }
+}
+
+ASTMutationListener::~ASTMutationListener() = default;
+
+void ASTMutationListener::DeducedReturnType(const FunctionDecl *FD,
+ QualType ReturnType) {}
+
+//===----------------------------------------------------------------------===//
+// Builtin Type Computation
+//===----------------------------------------------------------------------===//
+
+/// DecodeTypeFromStr - This decodes one type descriptor from Str, advancing the
+/// pointer over the consumed characters. This returns the resultant type. If
+/// AllowTypeModifiers is false then modifier like * are not parsed, just basic
+/// types. This allows "v2i*" to be parsed as a pointer to a v2i instead of
+/// a vector of "i*".
+///
+/// RequiresICE is filled in on return to indicate whether the value is required
+/// to be an Integer Constant Expression.
+static QualType DecodeTypeFromStr(const char *&Str, const ASTContext &Context,
+ ASTContext::GetBuiltinTypeError &Error,
+ bool &RequiresICE,
+ bool AllowTypeModifiers) {
+ // Modifiers.
+ int HowLong = 0;
+ bool Signed = false, Unsigned = false;
+ RequiresICE = false;
+
+ // Read the prefixed modifiers first.
+ bool Done = false;
+ #ifndef NDEBUG
+ bool IsSpecial = false;
+ #endif
+ while (!Done) {
+ switch (*Str++) {
+ default: Done = true; --Str; break;
+ case 'I':
+ RequiresICE = true;
+ break;
+ case 'S':
+ assert(!Unsigned && "Can't use both 'S' and 'U' modifiers!");
+ assert(!Signed && "Can't use 'S' modifier multiple times!");
+ Signed = true;
+ break;
+ case 'U':
+ assert(!Signed && "Can't use both 'S' and 'U' modifiers!");
+ assert(!Unsigned && "Can't use 'U' modifier multiple times!");
+ Unsigned = true;
+ break;
+ case 'L':
+ assert(!IsSpecial && "Can't use 'L' with 'W', 'N', 'Z' or 'O' modifiers");
+ assert(HowLong <= 2 && "Can't have LLLL modifier");
+ ++HowLong;
+ break;
+ case 'N':
+ // 'N' behaves like 'L' for all non LP64 targets and 'int' otherwise.
+ assert(!IsSpecial && "Can't use two 'N', 'W', 'Z' or 'O' modifiers!");
+ assert(HowLong == 0 && "Can't use both 'L' and 'N' modifiers!");
+ #ifndef NDEBUG
+ IsSpecial = true;
+ #endif
+ if (Context.getTargetInfo().getLongWidth() == 32)
+ ++HowLong;
+ break;
+ case 'W':
+ // This modifier represents int64 type.
+ assert(!IsSpecial && "Can't use two 'N', 'W', 'Z' or 'O' modifiers!");
+ assert(HowLong == 0 && "Can't use both 'L' and 'W' modifiers!");
+ #ifndef NDEBUG
+ IsSpecial = true;
+ #endif
+ switch (Context.getTargetInfo().getInt64Type()) {
+ default:
+ llvm_unreachable("Unexpected integer type");
+ case TargetInfo::SignedLong:
+ HowLong = 1;
+ break;
+ case TargetInfo::SignedLongLong:
+ HowLong = 2;
+ break;
+ }
+ break;
+ case 'Z':
+ // This modifier represents int32 type.
+ assert(!IsSpecial && "Can't use two 'N', 'W', 'Z' or 'O' modifiers!");
+ assert(HowLong == 0 && "Can't use both 'L' and 'Z' modifiers!");
+ #ifndef NDEBUG
+ IsSpecial = true;
+ #endif
+ switch (Context.getTargetInfo().getIntTypeByWidth(32, true)) {
+ default:
+ llvm_unreachable("Unexpected integer type");
+ case TargetInfo::SignedInt:
+ HowLong = 0;
+ break;
+ case TargetInfo::SignedLong:
+ HowLong = 1;
+ break;
+ case TargetInfo::SignedLongLong:
+ HowLong = 2;
+ break;
+ }
+ break;
+ case 'O':
+ assert(!IsSpecial && "Can't use two 'N', 'W', 'Z' or 'O' modifiers!");
+ assert(HowLong == 0 && "Can't use both 'L' and 'O' modifiers!");
+ #ifndef NDEBUG
+ IsSpecial = true;
+ #endif
+ if (Context.getLangOpts().OpenCL)
+ HowLong = 1;
+ else
+ HowLong = 2;
+ break;
+ }
+ }
+
+ QualType Type;
+
+ // Read the base type.
+ switch (*Str++) {
+ default: llvm_unreachable("Unknown builtin type letter!");
+ case 'v':
+ assert(HowLong == 0 && !Signed && !Unsigned &&
+ "Bad modifiers used with 'v'!");
+ Type = Context.VoidTy;
+ break;
+ case 'h':
+ assert(HowLong == 0 && !Signed && !Unsigned &&
+ "Bad modifiers used with 'h'!");
+ Type = Context.HalfTy;
+ break;
+ case 'f':
+ assert(HowLong == 0 && !Signed && !Unsigned &&
+ "Bad modifiers used with 'f'!");
+ Type = Context.FloatTy;
+ break;
+ case 'd':
+ assert(HowLong < 3 && !Signed && !Unsigned &&
+ "Bad modifiers used with 'd'!");
+ if (HowLong == 1)
+ Type = Context.LongDoubleTy;
+ else if (HowLong == 2)
+ Type = Context.Float128Ty;
+ else
+ Type = Context.DoubleTy;
+ break;
+ case 's':
+ assert(HowLong == 0 && "Bad modifiers used with 's'!");
+ if (Unsigned)
+ Type = Context.UnsignedShortTy;
+ else
+ Type = Context.ShortTy;
+ break;
+ case 'i':
+ if (HowLong == 3)
+ Type = Unsigned ? Context.UnsignedInt128Ty : Context.Int128Ty;
+ else if (HowLong == 2)
+ Type = Unsigned ? Context.UnsignedLongLongTy : Context.LongLongTy;
+ else if (HowLong == 1)
+ Type = Unsigned ? Context.UnsignedLongTy : Context.LongTy;
+ else
+ Type = Unsigned ? Context.UnsignedIntTy : Context.IntTy;
+ break;
+ case 'c':
+ assert(HowLong == 0 && "Bad modifiers used with 'c'!");
+ if (Signed)
+ Type = Context.SignedCharTy;
+ else if (Unsigned)
+ Type = Context.UnsignedCharTy;
+ else
+ Type = Context.CharTy;
+ break;
+ case 'b': // boolean
+ assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'b'!");
+ Type = Context.BoolTy;
+ break;
+ case 'z': // size_t.
+ assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'z'!");
+ Type = Context.getSizeType();
+ break;
+ case 'w': // wchar_t.
+ assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'w'!");
+ Type = Context.getWideCharType();
+ break;
+ case 'F':
+ Type = Context.getCFConstantStringType();
+ break;
+ case 'G':
+ Type = Context.getObjCIdType();
+ break;
+ case 'H':
+ Type = Context.getObjCSelType();
+ break;
+ case 'M':
+ Type = Context.getObjCSuperType();
+ break;
+ case 'a':
+ Type = Context.getBuiltinVaListType();
+ assert(!Type.isNull() && "builtin va list type not initialized!");
+ break;
+ case 'A':
+ // This is a "reference" to a va_list; however, what exactly
+ // this means depends on how va_list is defined. There are two
+ // different kinds of va_list: ones passed by value, and ones
+ // passed by reference. An example of a by-value va_list is
+ // x86, where va_list is a char*. An example of by-ref va_list
+ // is x86-64, where va_list is a __va_list_tag[1]. For x86,
+ // we want this argument to be a char*&; for x86-64, we want
+ // it to be a __va_list_tag*.
+ Type = Context.getBuiltinVaListType();
+ assert(!Type.isNull() && "builtin va list type not initialized!");
+ if (Type->isArrayType())
+ Type = Context.getArrayDecayedType(Type);
+ else
+ Type = Context.getLValueReferenceType(Type);
+ break;
+ case 'V': {
+ char *End;
+ unsigned NumElements = strtoul(Str, &End, 10);
+ assert(End != Str && "Missing vector size");
+ Str = End;
+
+ QualType ElementType = DecodeTypeFromStr(Str, Context, Error,
+ RequiresICE, false);
+ assert(!RequiresICE && "Can't require vector ICE");
+
+ // TODO: No way to make AltiVec vectors in builtins yet.
+ Type = Context.getVectorType(ElementType, NumElements,
+ VectorType::GenericVector);
+ break;
+ }
+ case 'E': {
+ char *End;
+
+ unsigned NumElements = strtoul(Str, &End, 10);
+ assert(End != Str && "Missing vector size");
+
+ Str = End;
+
+ QualType ElementType = DecodeTypeFromStr(Str, Context, Error, RequiresICE,
+ false);
+ Type = Context.getExtVectorType(ElementType, NumElements);
+ break;
+ }
+ case 'X': {
+ QualType ElementType = DecodeTypeFromStr(Str, Context, Error, RequiresICE,
+ false);
+ assert(!RequiresICE && "Can't require complex ICE");
+ Type = Context.getComplexType(ElementType);
+ break;
+ }
+ case 'Y':
+ Type = Context.getPointerDiffType();
+ break;
+ case 'P':
+ Type = Context.getFILEType();
+ if (Type.isNull()) {
+ Error = ASTContext::GE_Missing_stdio;
+ return {};
+ }
+ break;
+ case 'J':
+ if (Signed)
+ Type = Context.getsigjmp_bufType();
+ else
+ Type = Context.getjmp_bufType();
+
+ if (Type.isNull()) {
+ Error = ASTContext::GE_Missing_setjmp;
+ return {};
+ }
+ break;
+ case 'K':
+ assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'K'!");
+ Type = Context.getucontext_tType();
+
+ if (Type.isNull()) {
+ Error = ASTContext::GE_Missing_ucontext;
+ return {};
+ }
+ break;
+ case 'p':
+ Type = Context.getProcessIDType();
+ break;
+ }
+
+ // If there are modifiers and if we're allowed to parse them, go for it.
+ Done = !AllowTypeModifiers;
+ while (!Done) {
+ switch (char c = *Str++) {
+ default: Done = true; --Str; break;
+ case '*':
+ case '&': {
+ // Both pointers and references can have their pointee types
+ // qualified with an address space.
+ char *End;
+ unsigned AddrSpace = strtoul(Str, &End, 10);
+ if (End != Str) {
+ // Note AddrSpace == 0 is not the same as an unspecified address space.
+ Type = Context.getAddrSpaceQualType(
+ Type,
+ Context.getLangASForBuiltinAddressSpace(AddrSpace));
+ Str = End;
+ }
+ if (c == '*')
+ Type = Context.getPointerType(Type);
+ else
+ Type = Context.getLValueReferenceType(Type);
+ break;
+ }
+ // FIXME: There's no way to have a built-in with an rvalue ref arg.
+ case 'C':
+ Type = Type.withConst();
+ break;
+ case 'D':
+ Type = Context.getVolatileType(Type);
+ break;
+ case 'R':
+ Type = Type.withRestrict();
+ break;
+ }
+ }
+
+ assert((!RequiresICE || Type->isIntegralOrEnumerationType()) &&
+ "Integer constant 'I' type must be an integer");
+
+ return Type;
+}
+
+/// GetBuiltinType - Return the type for the specified builtin.
+QualType ASTContext::GetBuiltinType(unsigned Id,
+ GetBuiltinTypeError &Error,
+ unsigned *IntegerConstantArgs) const {
+ const char *TypeStr = BuiltinInfo.getTypeString(Id);
+ if (TypeStr[0] == '\0') {
+ Error = GE_Missing_type;
+ return {};
+ }
+
+ SmallVector<QualType, 8> ArgTypes;
+
+ bool RequiresICE = false;
+ Error = GE_None;
+ QualType ResType = DecodeTypeFromStr(TypeStr, *this, Error,
+ RequiresICE, true);
+ if (Error != GE_None)
+ return {};
+
+ assert(!RequiresICE && "Result of intrinsic cannot be required to be an ICE");
+
+ while (TypeStr[0] && TypeStr[0] != '.') {
+ QualType Ty = DecodeTypeFromStr(TypeStr, *this, Error, RequiresICE, true);
+ if (Error != GE_None)
+ return {};
+
+ // If this argument is required to be an IntegerConstantExpression and the
+ // caller cares, fill in the bitmask we return.
+ if (RequiresICE && IntegerConstantArgs)
+ *IntegerConstantArgs |= 1 << ArgTypes.size();
+
+ // Do array -> pointer decay. The builtin should use the decayed type.
+ if (Ty->isArrayType())
+ Ty = getArrayDecayedType(Ty);
+
+ ArgTypes.push_back(Ty);
+ }
+
+ if (Id == Builtin::BI__GetExceptionInfo)
+ return {};
+
+ assert((TypeStr[0] != '.' || TypeStr[1] == 0) &&
+ "'.' should only occur at end of builtin type list!");
+
+ bool Variadic = (TypeStr[0] == '.');
+
+ FunctionType::ExtInfo EI(getDefaultCallingConvention(
+ Variadic, /*IsCXXMethod=*/false, /*IsBuiltin=*/true));
+ if (BuiltinInfo.isNoReturn(Id)) EI = EI.withNoReturn(true);
+
+
+ // We really shouldn't be making a no-proto type here.
+ if (ArgTypes.empty() && Variadic && !getLangOpts().CPlusPlus)
+ return getFunctionNoProtoType(ResType, EI);
+
+ FunctionProtoType::ExtProtoInfo EPI;
+ EPI.ExtInfo = EI;
+ EPI.Variadic = Variadic;
+ if (getLangOpts().CPlusPlus && BuiltinInfo.isNoThrow(Id))
+ EPI.ExceptionSpec.Type =
+ getLangOpts().CPlusPlus11 ? EST_BasicNoexcept : EST_DynamicNone;
+
+ return getFunctionType(ResType, ArgTypes, EPI);
+}
+
+static GVALinkage basicGVALinkageForFunction(const ASTContext &Context,
+ const FunctionDecl *FD) {
+ if (!FD->isExternallyVisible())
+ return GVA_Internal;
+
+ // Non-user-provided functions get emitted as weak definitions with every
+ // use, no matter whether they've been explicitly instantiated etc.
+ if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
+ if (!MD->isUserProvided())
+ return GVA_DiscardableODR;
+
+ GVALinkage External;
+ switch (FD->getTemplateSpecializationKind()) {
+ case TSK_Undeclared:
+ case TSK_ExplicitSpecialization:
+ External = GVA_StrongExternal;
+ break;
+
+ case TSK_ExplicitInstantiationDefinition:
+ return GVA_StrongODR;
+
+ // C++11 [temp.explicit]p10:
+ // [ Note: The intent is that an inline function that is the subject of
+ // an explicit instantiation declaration will still be implicitly
+ // instantiated when used so that the body can be considered for
+ // inlining, but that no out-of-line copy of the inline function would be
+ // generated in the translation unit. -- end note ]
+ case TSK_ExplicitInstantiationDeclaration:
+ return GVA_AvailableExternally;
+
+ case TSK_ImplicitInstantiation:
+ External = GVA_DiscardableODR;
+ break;
+ }
+
+ if (!FD->isInlined())
+ return External;
+
+ if ((!Context.getLangOpts().CPlusPlus &&
+ !Context.getTargetInfo().getCXXABI().isMicrosoft() &&
+ !FD->hasAttr<DLLExportAttr>()) ||
+ FD->hasAttr<GNUInlineAttr>()) {
+ // FIXME: This doesn't match gcc's behavior for dllexport inline functions.
+
+ // GNU or C99 inline semantics. Determine whether this symbol should be
+ // externally visible.
+ if (FD->isInlineDefinitionExternallyVisible())
+ return External;
+
+ // C99 inline semantics, where the symbol is not externally visible.
+ return GVA_AvailableExternally;
+ }
+
+ // Functions specified with extern and inline in -fms-compatibility mode
+ // forcibly get emitted. While the body of the function cannot be later
+ // replaced, the function definition cannot be discarded.
+ if (FD->isMSExternInline())
+ return GVA_StrongODR;
+
+ return GVA_DiscardableODR;
+}
+
+static GVALinkage adjustGVALinkageForAttributes(const ASTContext &Context,
+ const Decl *D, GVALinkage L) {
+ // See http://msdn.microsoft.com/en-us/library/xa0d9ste.aspx
+ // dllexport/dllimport on inline functions.
+ if (D->hasAttr<DLLImportAttr>()) {
+ if (L == GVA_DiscardableODR || L == GVA_StrongODR)
+ return GVA_AvailableExternally;
+ } else if (D->hasAttr<DLLExportAttr>()) {
+ if (L == GVA_DiscardableODR)
+ return GVA_StrongODR;
+ } else if (Context.getLangOpts().CUDA && Context.getLangOpts().CUDAIsDevice &&
+ D->hasAttr<CUDAGlobalAttr>()) {
+ // Device-side functions with __global__ attribute must always be
+ // visible externally so they can be launched from host.
+ if (L == GVA_DiscardableODR || L == GVA_Internal)
+ return GVA_StrongODR;
+ }
+ return L;
+}
+
+/// Adjust the GVALinkage for a declaration based on what an external AST source
+/// knows about whether there can be other definitions of this declaration.
+static GVALinkage
+adjustGVALinkageForExternalDefinitionKind(const ASTContext &Ctx, const Decl *D,
+ GVALinkage L) {
+ ExternalASTSource *Source = Ctx.getExternalSource();
+ if (!Source)
+ return L;
+
+ switch (Source->hasExternalDefinitions(D)) {
+ case ExternalASTSource::EK_Never:
+ // Other translation units rely on us to provide the definition.
+ if (L == GVA_DiscardableODR)
+ return GVA_StrongODR;
+ break;
+
+ case ExternalASTSource::EK_Always:
+ return GVA_AvailableExternally;
+
+ case ExternalASTSource::EK_ReplyHazy:
+ break;
+ }
+ return L;
+}
+
+GVALinkage ASTContext::GetGVALinkageForFunction(const FunctionDecl *FD) const {
+ return adjustGVALinkageForExternalDefinitionKind(*this, FD,
+ adjustGVALinkageForAttributes(*this, FD,
+ basicGVALinkageForFunction(*this, FD)));
+}
+
+static GVALinkage basicGVALinkageForVariable(const ASTContext &Context,
+ const VarDecl *VD) {
+ if (!VD->isExternallyVisible())
+ return GVA_Internal;
+
+ if (VD->isStaticLocal()) {
+ const DeclContext *LexicalContext = VD->getParentFunctionOrMethod();
+ while (LexicalContext && !isa<FunctionDecl>(LexicalContext))
+ LexicalContext = LexicalContext->getLexicalParent();
+
+ // ObjC Blocks can create local variables that don't have a FunctionDecl
+ // LexicalContext.
+ if (!LexicalContext)
+ return GVA_DiscardableODR;
+
+ // Otherwise, let the static local variable inherit its linkage from the
+ // nearest enclosing function.
+ auto StaticLocalLinkage =
+ Context.GetGVALinkageForFunction(cast<FunctionDecl>(LexicalContext));
+
+ // Itanium ABI 5.2.2: "Each COMDAT group [for a static local variable] must
+ // be emitted in any object with references to the symbol for the object it
+ // contains, whether inline or out-of-line."
+ // Similar behavior is observed with MSVC. An alternative ABI could use
+ // StrongODR/AvailableExternally to match the function, but none are
+ // known/supported currently.
+ if (StaticLocalLinkage == GVA_StrongODR ||
+ StaticLocalLinkage == GVA_AvailableExternally)
+ return GVA_DiscardableODR;
+ return StaticLocalLinkage;
+ }
+
+ // MSVC treats in-class initialized static data members as definitions.
+ // By giving them non-strong linkage, out-of-line definitions won't
+ // cause link errors.
+ if (Context.isMSStaticDataMemberInlineDefinition(VD))
+ return GVA_DiscardableODR;
+
+ // Most non-template variables have strong linkage; inline variables are
+ // linkonce_odr or (occasionally, for compatibility) weak_odr.
+ GVALinkage StrongLinkage;
+ switch (Context.getInlineVariableDefinitionKind(VD)) {
+ case ASTContext::InlineVariableDefinitionKind::None:
+ StrongLinkage = GVA_StrongExternal;
+ break;
+ case ASTContext::InlineVariableDefinitionKind::Weak:
+ case ASTContext::InlineVariableDefinitionKind::WeakUnknown:
+ StrongLinkage = GVA_DiscardableODR;
+ break;
+ case ASTContext::InlineVariableDefinitionKind::Strong:
+ StrongLinkage = GVA_StrongODR;
+ break;
+ }
+
+ switch (VD->getTemplateSpecializationKind()) {
+ case TSK_Undeclared:
+ return StrongLinkage;
+
+ case TSK_ExplicitSpecialization:
+ if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
+ // If this is a fully specialized constexpr variable template, pretend it
+ // was marked inline. MSVC 14.21.27702 headers define _Is_integral in a
+ // header this way, and we don't want to emit non-discardable definitions
+ // of these variables in every TU that includes <type_traits>. This
+ // behavior is non-conforming, since another TU could use an extern
+ // template declaration for this variable, but for constexpr variables,
+ // it's unlikely for a user to want to do that. This behavior can be
+ // removed if the headers change to explicitly mark such variable template
+ // specializations inline.
+ if (isa<VarTemplateSpecializationDecl>(VD) && VD->isConstexpr())
+ return GVA_DiscardableODR;
+
+ // Use ODR linkage for static data members of fully specialized templates
+ // to prevent duplicate definition errors with MSVC.
+ if (VD->isStaticDataMember())
+ return GVA_StrongODR;
+ }
+ return StrongLinkage;
+
+ case TSK_ExplicitInstantiationDefinition:
+ return GVA_StrongODR;
+
+ case TSK_ExplicitInstantiationDeclaration:
+ return GVA_AvailableExternally;
+
+ case TSK_ImplicitInstantiation:
+ return GVA_DiscardableODR;
+ }
+
+ llvm_unreachable("Invalid Linkage!");
+}
+
+GVALinkage ASTContext::GetGVALinkageForVariable(const VarDecl *VD) {
+ return adjustGVALinkageForExternalDefinitionKind(*this, VD,
+ adjustGVALinkageForAttributes(*this, VD,
+ basicGVALinkageForVariable(*this, VD)));
+}
+
+bool ASTContext::DeclMustBeEmitted(const Decl *D) {
+ if (const auto *VD = dyn_cast<VarDecl>(D)) {
+ if (!VD->isFileVarDecl())
+ return false;
+ // Global named register variables (GNU extension) are never emitted.
+ if (VD->getStorageClass() == SC_Register)
+ return false;
+ if (VD->getDescribedVarTemplate() ||
+ isa<VarTemplatePartialSpecializationDecl>(VD))
+ return false;
+ } else if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
+ // We never need to emit an uninstantiated function template.
+ if (FD->getTemplatedKind() == FunctionDecl::TK_FunctionTemplate)
+ return false;
+ } else if (isa<PragmaCommentDecl>(D))
+ return true;
+ else if (isa<PragmaDetectMismatchDecl>(D))
+ return true;
+ else if (isa<OMPThreadPrivateDecl>(D))
+ return !D->getDeclContext()->isDependentContext();
+ else if (isa<OMPAllocateDecl>(D))
+ return !D->getDeclContext()->isDependentContext();
+ else if (isa<OMPDeclareReductionDecl>(D) || isa<OMPDeclareMapperDecl>(D))
+ return !D->getDeclContext()->isDependentContext();
+ else if (isa<ImportDecl>(D))
+ return true;
+ else
+ return false;
+
+ if (D->isFromASTFile() && !LangOpts.BuildingPCHWithObjectFile) {
+ assert(getExternalSource() && "It's from an AST file; must have a source.");
+ // On Windows, PCH files are built together with an object file. If this
+ // declaration comes from such a PCH and DeclMustBeEmitted would return
+ // true, it would have returned true and the decl would have been emitted
+ // into that object file, so it doesn't need to be emitted here.
+ // Note that decls are still emitted if they're referenced, as usual;
+ // DeclMustBeEmitted is used to decide whether a decl must be emitted even
+ // if it's not referenced.
+ //
+ // Explicit template instantiation definitions are tricky. If there was an
+ // explicit template instantiation decl in the PCH before, it will look like
+ // the definition comes from there, even if that was just the declaration.
+ // (Explicit instantiation defs of variable templates always get emitted.)
+ bool IsExpInstDef =
+ isa<FunctionDecl>(D) &&
+ cast<FunctionDecl>(D)->getTemplateSpecializationKind() ==
+ TSK_ExplicitInstantiationDefinition;
+
+ // Implicit member function definitions, such as operator= might not be
+ // marked as template specializations, since they're not coming from a
+ // template but synthesized directly on the class.
+ IsExpInstDef |=
+ isa<CXXMethodDecl>(D) &&
+ cast<CXXMethodDecl>(D)->getParent()->getTemplateSpecializationKind() ==
+ TSK_ExplicitInstantiationDefinition;
+
+ if (getExternalSource()->DeclIsFromPCHWithObjectFile(D) && !IsExpInstDef)
+ return false;
+ }
+
+ // If this is a member of a class template, we do not need to emit it.
+ if (D->getDeclContext()->isDependentContext())
+ return false;
+
+ // Weak references don't produce any output by themselves.
+ if (D->hasAttr<WeakRefAttr>())
+ return false;
+
+ // Aliases and used decls are required.
+ if (D->hasAttr<AliasAttr>() || D->hasAttr<UsedAttr>())
+ return true;
+
+ if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
+ // Forward declarations aren't required.
+ if (!FD->doesThisDeclarationHaveABody())
+ return FD->doesDeclarationForceExternallyVisibleDefinition();
+
+ // Constructors and destructors are required.
+ if (FD->hasAttr<ConstructorAttr>() || FD->hasAttr<DestructorAttr>())
+ return true;
+
+ // The key function for a class is required. This rule only comes
+ // into play when inline functions can be key functions, though.
+ if (getTargetInfo().getCXXABI().canKeyFunctionBeInline()) {
+ if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) {
+ const CXXRecordDecl *RD = MD->getParent();
+ if (MD->isOutOfLine() && RD->isDynamicClass()) {
+ const CXXMethodDecl *KeyFunc = getCurrentKeyFunction(RD);
+ if (KeyFunc && KeyFunc->getCanonicalDecl() == MD->getCanonicalDecl())
+ return true;
+ }
+ }
+ }
+
+ GVALinkage Linkage = GetGVALinkageForFunction(FD);
+
+ // static, static inline, always_inline, and extern inline functions can
+ // always be deferred. Normal inline functions can be deferred in C99/C++.
+ // Implicit template instantiations can also be deferred in C++.
+ return !isDiscardableGVALinkage(Linkage);
+ }
+
+ const auto *VD = cast<VarDecl>(D);
+ assert(VD->isFileVarDecl() && "Expected file scoped var");
+
+ // If the decl is marked as `declare target to`, it should be emitted for the
+ // host and for the device.
+ if (LangOpts.OpenMP &&
+ OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD))
+ return true;
+
+ if (VD->isThisDeclarationADefinition() == VarDecl::DeclarationOnly &&
+ !isMSStaticDataMemberInlineDefinition(VD))
+ return false;
+
+ // Variables that can be needed in other TUs are required.
+ auto Linkage = GetGVALinkageForVariable(VD);
+ if (!isDiscardableGVALinkage(Linkage))
+ return true;
+
+ // We never need to emit a variable that is available in another TU.
+ if (Linkage == GVA_AvailableExternally)
+ return false;
+
+ // Variables that have destruction with side-effects are required.
+ if (VD->needsDestruction(*this))
+ return true;
+
+ // Variables that have initialization with side-effects are required.
+ if (VD->getInit() && VD->getInit()->HasSideEffects(*this) &&
+ // We can get a value-dependent initializer during error recovery.
+ (VD->getInit()->isValueDependent() || !VD->evaluateValue()))
+ return true;
+
+ // Likewise, variables with tuple-like bindings are required if their
+ // bindings have side-effects.
+ if (const auto *DD = dyn_cast<DecompositionDecl>(VD))
+ for (const auto *BD : DD->bindings())
+ if (const auto *BindingVD = BD->getHoldingVar())
+ if (DeclMustBeEmitted(BindingVD))
+ return true;
+
+ return false;
+}
+
+void ASTContext::forEachMultiversionedFunctionVersion(
+ const FunctionDecl *FD,
+ llvm::function_ref<void(FunctionDecl *)> Pred) const {
+ assert(FD->isMultiVersion() && "Only valid for multiversioned functions");
+ llvm::SmallDenseSet<const FunctionDecl*, 4> SeenDecls;
+ FD = FD->getMostRecentDecl();
+ for (auto *CurDecl :
+ FD->getDeclContext()->getRedeclContext()->lookup(FD->getDeclName())) {
+ FunctionDecl *CurFD = CurDecl->getAsFunction()->getMostRecentDecl();
+ if (CurFD && hasSameType(CurFD->getType(), FD->getType()) &&
+ std::end(SeenDecls) == llvm::find(SeenDecls, CurFD)) {
+ SeenDecls.insert(CurFD);
+ Pred(CurFD);
+ }
+ }
+}
+
+CallingConv ASTContext::getDefaultCallingConvention(bool IsVariadic,
+ bool IsCXXMethod,
+ bool IsBuiltin) const {
+ // Pass through to the C++ ABI object
+ if (IsCXXMethod)
+ return ABI->getDefaultMethodCallConv(IsVariadic);
+
+ // Builtins ignore user-specified default calling convention and remain the
+ // Target's default calling convention.
+ if (!IsBuiltin) {
+ switch (LangOpts.getDefaultCallingConv()) {
+ case LangOptions::DCC_None:
+ break;
+ case LangOptions::DCC_CDecl:
+ return CC_C;
+ case LangOptions::DCC_FastCall:
+ if (getTargetInfo().hasFeature("sse2") && !IsVariadic)
+ return CC_X86FastCall;
+ break;
+ case LangOptions::DCC_StdCall:
+ if (!IsVariadic)
+ return CC_X86StdCall;
+ break;
+ case LangOptions::DCC_VectorCall:
+ // __vectorcall cannot be applied to variadic functions.
+ if (!IsVariadic)
+ return CC_X86VectorCall;
+ break;
+ case LangOptions::DCC_RegCall:
+ // __regcall cannot be applied to variadic functions.
+ if (!IsVariadic)
+ return CC_X86RegCall;
+ break;
+ }
+ }
+ return Target->getDefaultCallingConv();
+}
+
+bool ASTContext::isNearlyEmpty(const CXXRecordDecl *RD) const {
+ // Pass through to the C++ ABI object
+ return ABI->isNearlyEmpty(RD);
+}
+
+VTableContextBase *ASTContext::getVTableContext() {
+ if (!VTContext.get()) {
+ if (Target->getCXXABI().isMicrosoft())
+ VTContext.reset(new MicrosoftVTableContext(*this));
+ else
+ VTContext.reset(new ItaniumVTableContext(*this));
+ }
+ return VTContext.get();
+}
+
+MangleContext *ASTContext::createMangleContext(const TargetInfo *T) {
+ if (!T)
+ T = Target;
+ switch (T->getCXXABI().getKind()) {
+ case TargetCXXABI::GenericAArch64:
+ case TargetCXXABI::GenericItanium:
+ case TargetCXXABI::GenericARM:
+ case TargetCXXABI::GenericMIPS:
+ case TargetCXXABI::iOS:
+ case TargetCXXABI::iOS64:
+ case TargetCXXABI::WebAssembly:
+ case TargetCXXABI::WatchOS:
+ return ItaniumMangleContext::create(*this, getDiagnostics());
+ case TargetCXXABI::Microsoft:
+ return MicrosoftMangleContext::create(*this, getDiagnostics());
+ }
+ llvm_unreachable("Unsupported ABI");
+}
+
+CXXABI::~CXXABI() = default;
+
+size_t ASTContext::getSideTableAllocatedMemory() const {
+ return ASTRecordLayouts.getMemorySize() +
+ llvm::capacity_in_bytes(ObjCLayouts) +
+ llvm::capacity_in_bytes(KeyFunctions) +
+ llvm::capacity_in_bytes(ObjCImpls) +
+ llvm::capacity_in_bytes(BlockVarCopyInits) +
+ llvm::capacity_in_bytes(DeclAttrs) +
+ llvm::capacity_in_bytes(TemplateOrInstantiation) +
+ llvm::capacity_in_bytes(InstantiatedFromUsingDecl) +
+ llvm::capacity_in_bytes(InstantiatedFromUsingShadowDecl) +
+ llvm::capacity_in_bytes(InstantiatedFromUnnamedFieldDecl) +
+ llvm::capacity_in_bytes(OverriddenMethods) +
+ llvm::capacity_in_bytes(Types) +
+ llvm::capacity_in_bytes(VariableArrayTypes);
+}
+
+/// getIntTypeForBitwidth -
+/// sets integer QualTy according to specified details:
+/// bitwidth, signed/unsigned.
+/// Returns empty type if there is no appropriate target types.
+QualType ASTContext::getIntTypeForBitwidth(unsigned DestWidth,
+ unsigned Signed) const {
+ TargetInfo::IntType Ty = getTargetInfo().getIntTypeByWidth(DestWidth, Signed);
+ CanQualType QualTy = getFromTargetType(Ty);
+ if (!QualTy && DestWidth == 128)
+ return Signed ? Int128Ty : UnsignedInt128Ty;
+ return QualTy;
+}
+
+/// getRealTypeForBitwidth -
+/// sets floating point QualTy according to specified bitwidth.
+/// Returns empty type if there is no appropriate target types.
+QualType ASTContext::getRealTypeForBitwidth(unsigned DestWidth) const {
+ TargetInfo::RealType Ty = getTargetInfo().getRealTypeByWidth(DestWidth);
+ switch (Ty) {
+ case TargetInfo::Float:
+ return FloatTy;
+ case TargetInfo::Double:
+ return DoubleTy;
+ case TargetInfo::LongDouble:
+ return LongDoubleTy;
+ case TargetInfo::Float128:
+ return Float128Ty;
+ case TargetInfo::NoFloat:
+ return {};
+ }
+
+ llvm_unreachable("Unhandled TargetInfo::RealType value");
+}
+
+void ASTContext::setManglingNumber(const NamedDecl *ND, unsigned Number) {
+ if (Number > 1)
+ MangleNumbers[ND] = Number;
+}
+
+unsigned ASTContext::getManglingNumber(const NamedDecl *ND) const {
+ auto I = MangleNumbers.find(ND);
+ return I != MangleNumbers.end() ? I->second : 1;
+}
+
+void ASTContext::setStaticLocalNumber(const VarDecl *VD, unsigned Number) {
+ if (Number > 1)
+ StaticLocalNumbers[VD] = Number;
+}
+
+unsigned ASTContext::getStaticLocalNumber(const VarDecl *VD) const {
+ auto I = StaticLocalNumbers.find(VD);
+ return I != StaticLocalNumbers.end() ? I->second : 1;
+}
+
+MangleNumberingContext &
+ASTContext::getManglingNumberContext(const DeclContext *DC) {
+ assert(LangOpts.CPlusPlus); // We don't need mangling numbers for plain C.
+ std::unique_ptr<MangleNumberingContext> &MCtx = MangleNumberingContexts[DC];
+ if (!MCtx)
+ MCtx = createMangleNumberingContext();
+ return *MCtx;
+}
+
+MangleNumberingContext &
+ASTContext::getManglingNumberContext(NeedExtraManglingDecl_t, const Decl *D) {
+ assert(LangOpts.CPlusPlus); // We don't need mangling numbers for plain C.
+ std::unique_ptr<MangleNumberingContext> &MCtx =
+ ExtraMangleNumberingContexts[D];
+ if (!MCtx)
+ MCtx = createMangleNumberingContext();
+ return *MCtx;
+}
+
+std::unique_ptr<MangleNumberingContext>
+ASTContext::createMangleNumberingContext() const {
+ return ABI->createMangleNumberingContext();
+}
+
+const CXXConstructorDecl *
+ASTContext::getCopyConstructorForExceptionObject(CXXRecordDecl *RD) {
+ return ABI->getCopyConstructorForExceptionObject(
+ cast<CXXRecordDecl>(RD->getFirstDecl()));
+}
+
+void ASTContext::addCopyConstructorForExceptionObject(CXXRecordDecl *RD,
+ CXXConstructorDecl *CD) {
+ return ABI->addCopyConstructorForExceptionObject(
+ cast<CXXRecordDecl>(RD->getFirstDecl()),
+ cast<CXXConstructorDecl>(CD->getFirstDecl()));
+}
+
+void ASTContext::addTypedefNameForUnnamedTagDecl(TagDecl *TD,
+ TypedefNameDecl *DD) {
+ return ABI->addTypedefNameForUnnamedTagDecl(TD, DD);
+}
+
+TypedefNameDecl *
+ASTContext::getTypedefNameForUnnamedTagDecl(const TagDecl *TD) {
+ return ABI->getTypedefNameForUnnamedTagDecl(TD);
+}
+
+void ASTContext::addDeclaratorForUnnamedTagDecl(TagDecl *TD,
+ DeclaratorDecl *DD) {
+ return ABI->addDeclaratorForUnnamedTagDecl(TD, DD);
+}
+
+DeclaratorDecl *ASTContext::getDeclaratorForUnnamedTagDecl(const TagDecl *TD) {
+ return ABI->getDeclaratorForUnnamedTagDecl(TD);
+}
+
+void ASTContext::setParameterIndex(const ParmVarDecl *D, unsigned int index) {
+ ParamIndices[D] = index;
+}
+
+unsigned ASTContext::getParameterIndex(const ParmVarDecl *D) const {
+ ParameterIndexTable::const_iterator I = ParamIndices.find(D);
+ assert(I != ParamIndices.end() &&
+ "ParmIndices lacks entry set by ParmVarDecl");
+ return I->second;
+}
+
+APValue *
+ASTContext::getMaterializedTemporaryValue(const MaterializeTemporaryExpr *E,
+ bool MayCreate) {
+ assert(E && E->getStorageDuration() == SD_Static &&
+ "don't need to cache the computed value for this temporary");
+ if (MayCreate) {
+ APValue *&MTVI = MaterializedTemporaryValues[E];
+ if (!MTVI)
+ MTVI = new (*this) APValue;
+ return MTVI;
+ }
+
+ return MaterializedTemporaryValues.lookup(E);
+}
+
+QualType ASTContext::getStringLiteralArrayType(QualType EltTy,
+ unsigned Length) const {
+ // A C++ string literal has a const-qualified element type (C++ 2.13.4p1).
+ if (getLangOpts().CPlusPlus || getLangOpts().ConstStrings)
+ EltTy = EltTy.withConst();
+
+ EltTy = adjustStringLiteralBaseType(EltTy);
+
+ // Get an array type for the string, according to C99 6.4.5. This includes
+ // the null terminator character.
+ return getConstantArrayType(EltTy, llvm::APInt(32, Length + 1), nullptr,
+ ArrayType::Normal, /*IndexTypeQuals*/ 0);
+}
+
+StringLiteral *
+ASTContext::getPredefinedStringLiteralFromCache(StringRef Key) const {
+ StringLiteral *&Result = StringLiteralCache[Key];
+ if (!Result)
+ Result = StringLiteral::Create(
+ *this, Key, StringLiteral::Ascii,
+ /*Pascal*/ false, getStringLiteralArrayType(CharTy, Key.size()),
+ SourceLocation());
+ return Result;
+}
+
+bool ASTContext::AtomicUsesUnsupportedLibcall(const AtomicExpr *E) const {
+ const llvm::Triple &T = getTargetInfo().getTriple();
+ if (!T.isOSDarwin())
+ return false;
+
+ if (!(T.isiOS() && T.isOSVersionLT(7)) &&
+ !(T.isMacOSX() && T.isOSVersionLT(10, 9)))
+ return false;
+
+ QualType AtomicTy = E->getPtr()->getType()->getPointeeType();
+ CharUnits sizeChars = getTypeSizeInChars(AtomicTy);
+ uint64_t Size = sizeChars.getQuantity();
+ CharUnits alignChars = getTypeAlignInChars(AtomicTy);
+ unsigned Align = alignChars.getQuantity();
+ unsigned MaxInlineWidthInBits = getTargetInfo().getMaxAtomicInlineWidth();
+ return (Size != Align || toBits(sizeChars) > MaxInlineWidthInBits);
+}
+
+/// Template specializations to abstract away from pointers and TypeLocs.
+/// @{
+template <typename T>
+static ast_type_traits::DynTypedNode createDynTypedNode(const T &Node) {
+ return ast_type_traits::DynTypedNode::create(*Node);
+}
+template <>
+ast_type_traits::DynTypedNode createDynTypedNode(const TypeLoc &Node) {
+ return ast_type_traits::DynTypedNode::create(Node);
+}
+template <>
+ast_type_traits::DynTypedNode
+createDynTypedNode(const NestedNameSpecifierLoc &Node) {
+ return ast_type_traits::DynTypedNode::create(Node);
+}
+/// @}
+
+/// A \c RecursiveASTVisitor that builds a map from nodes to their
+/// parents as defined by the \c RecursiveASTVisitor.
+///
+/// Note that the relationship described here is purely in terms of AST
+/// traversal - there are other relationships (for example declaration context)
+/// in the AST that are better modeled by special matchers.
+///
+/// FIXME: Currently only builds up the map using \c Stmt and \c Decl nodes.
+class ASTContext::ParentMap::ASTVisitor
+ : public RecursiveASTVisitor<ASTVisitor> {
+public:
+ ASTVisitor(ParentMap &Map) : Map(Map) {}
+
+private:
+ friend class RecursiveASTVisitor<ASTVisitor>;
+
+ using VisitorBase = RecursiveASTVisitor<ASTVisitor>;
+
+ bool shouldVisitTemplateInstantiations() const { return true; }
+
+ bool shouldVisitImplicitCode() const { return true; }
+
+ template <typename T, typename MapNodeTy, typename BaseTraverseFn,
+ typename MapTy>
+ bool TraverseNode(T Node, MapNodeTy MapNode, BaseTraverseFn BaseTraverse,
+ MapTy *Parents) {
+ if (!Node)
+ return true;
+ if (ParentStack.size() > 0) {
+ // FIXME: Currently we add the same parent multiple times, but only
+ // when no memoization data is available for the type.
+ // For example when we visit all subexpressions of template
+ // instantiations; this is suboptimal, but benign: the only way to
+ // visit those is with hasAncestor / hasParent, and those do not create
+ // new matches.
+ // The plan is to enable DynTypedNode to be storable in a map or hash
+ // map. The main problem there is to implement hash functions /
+ // comparison operators for all types that DynTypedNode supports that
+ // do not have pointer identity.
+ auto &NodeOrVector = (*Parents)[MapNode];
+ if (NodeOrVector.isNull()) {
+ if (const auto *D = ParentStack.back().get<Decl>())
+ NodeOrVector = D;
+ else if (const auto *S = ParentStack.back().get<Stmt>())
+ NodeOrVector = S;
+ else
+ NodeOrVector = new ast_type_traits::DynTypedNode(ParentStack.back());
+ } else {
+ if (!NodeOrVector.template is<ParentVector *>()) {
+ auto *Vector = new ParentVector(
+ 1, getSingleDynTypedNodeFromParentMap(NodeOrVector));
+ delete NodeOrVector
+ .template dyn_cast<ast_type_traits::DynTypedNode *>();
+ NodeOrVector = Vector;
+ }
+
+ auto *Vector = NodeOrVector.template get<ParentVector *>();
+ // Skip duplicates for types that have memoization data.
+ // We must check that the type has memoization data before calling
+ // std::find() because DynTypedNode::operator== can't compare all
+ // types.
+ bool Found = ParentStack.back().getMemoizationData() &&
+ std::find(Vector->begin(), Vector->end(),
+ ParentStack.back()) != Vector->end();
+ if (!Found)
+ Vector->push_back(ParentStack.back());
+ }
+ }
+ ParentStack.push_back(createDynTypedNode(Node));
+ bool Result = BaseTraverse();
+ ParentStack.pop_back();
+ return Result;
+ }
+
+ bool TraverseDecl(Decl *DeclNode) {
+ return TraverseNode(
+ DeclNode, DeclNode, [&] { return VisitorBase::TraverseDecl(DeclNode); },
+ &Map.PointerParents);
+ }
+
+ bool TraverseStmt(Stmt *StmtNode) {
+ return TraverseNode(
+ StmtNode, StmtNode, [&] { return VisitorBase::TraverseStmt(StmtNode); },
+ &Map.PointerParents);
+ }
+
+ bool TraverseTypeLoc(TypeLoc TypeLocNode) {
+ return TraverseNode(
+ TypeLocNode, ast_type_traits::DynTypedNode::create(TypeLocNode),
+ [&] { return VisitorBase::TraverseTypeLoc(TypeLocNode); },
+ &Map.OtherParents);
+ }
+
+ bool TraverseNestedNameSpecifierLoc(NestedNameSpecifierLoc NNSLocNode) {
+ return TraverseNode(
+ NNSLocNode, ast_type_traits::DynTypedNode::create(NNSLocNode),
+ [&] { return VisitorBase::TraverseNestedNameSpecifierLoc(NNSLocNode); },
+ &Map.OtherParents);
+ }
+
+ ParentMap &Map;
+ llvm::SmallVector<ast_type_traits::DynTypedNode, 16> ParentStack;
+};
+
+ASTContext::ParentMap::ParentMap(ASTContext &Ctx) {
+ ASTVisitor(*this).TraverseAST(Ctx);
+}
+
+ASTContext::DynTypedNodeList
+ASTContext::getParents(const ast_type_traits::DynTypedNode &Node) {
+ if (!Parents)
+ // We build the parent map for the traversal scope (usually whole TU), as
+ // hasAncestor can escape any subtree.
+ Parents = std::make_unique<ParentMap>(*this);
+ return Parents->getParents(Node);
+}
+
+bool
+ASTContext::ObjCMethodsAreEqual(const ObjCMethodDecl *MethodDecl,
+ const ObjCMethodDecl *MethodImpl) {
+ // No point trying to match an unavailable/deprecated mothod.
+ if (MethodDecl->hasAttr<UnavailableAttr>()
+ || MethodDecl->hasAttr<DeprecatedAttr>())
+ return false;
+ if (MethodDecl->getObjCDeclQualifier() !=
+ MethodImpl->getObjCDeclQualifier())
+ return false;
+ if (!hasSameType(MethodDecl->getReturnType(), MethodImpl->getReturnType()))
+ return false;
+
+ if (MethodDecl->param_size() != MethodImpl->param_size())
+ return false;
+
+ for (ObjCMethodDecl::param_const_iterator IM = MethodImpl->param_begin(),
+ IF = MethodDecl->param_begin(), EM = MethodImpl->param_end(),
+ EF = MethodDecl->param_end();
+ IM != EM && IF != EF; ++IM, ++IF) {
+ const ParmVarDecl *DeclVar = (*IF);
+ const ParmVarDecl *ImplVar = (*IM);
+ if (ImplVar->getObjCDeclQualifier() != DeclVar->getObjCDeclQualifier())
+ return false;
+ if (!hasSameType(DeclVar->getType(), ImplVar->getType()))
+ return false;
+ }
+
+ return (MethodDecl->isVariadic() == MethodImpl->isVariadic());
+}
+
+uint64_t ASTContext::getTargetNullPointerValue(QualType QT) const {
+ LangAS AS;
+ if (QT->getUnqualifiedDesugaredType()->isNullPtrType())
+ AS = LangAS::Default;
+ else
+ AS = QT->getPointeeType().getAddressSpace();
+
+ return getTargetInfo().getNullPointerValue(AS);
+}
+
+unsigned ASTContext::getTargetAddressSpace(LangAS AS) const {
+ if (isTargetAddressSpace(AS))
+ return toTargetAddressSpace(AS);
+ else
+ return (*AddrSpaceMap)[(unsigned)AS];
+}
+
+QualType ASTContext::getCorrespondingSaturatedType(QualType Ty) const {
+ assert(Ty->isFixedPointType());
+
+ if (Ty->isSaturatedFixedPointType()) return Ty;
+
+ switch (Ty->castAs<BuiltinType>()->getKind()) {
+ default:
+ llvm_unreachable("Not a fixed point type!");
+ case BuiltinType::ShortAccum:
+ return SatShortAccumTy;
+ case BuiltinType::Accum:
+ return SatAccumTy;
+ case BuiltinType::LongAccum:
+ return SatLongAccumTy;
+ case BuiltinType::UShortAccum:
+ return SatUnsignedShortAccumTy;
+ case BuiltinType::UAccum:
+ return SatUnsignedAccumTy;
+ case BuiltinType::ULongAccum:
+ return SatUnsignedLongAccumTy;
+ case BuiltinType::ShortFract:
+ return SatShortFractTy;
+ case BuiltinType::Fract:
+ return SatFractTy;
+ case BuiltinType::LongFract:
+ return SatLongFractTy;
+ case BuiltinType::UShortFract:
+ return SatUnsignedShortFractTy;
+ case BuiltinType::UFract:
+ return SatUnsignedFractTy;
+ case BuiltinType::ULongFract:
+ return SatUnsignedLongFractTy;
+ }
+}
+
+LangAS ASTContext::getLangASForBuiltinAddressSpace(unsigned AS) const {
+ if (LangOpts.OpenCL)
+ return getTargetInfo().getOpenCLBuiltinAddressSpace(AS);
+
+ if (LangOpts.CUDA)
+ return getTargetInfo().getCUDABuiltinAddressSpace(AS);
+
+ return getLangASFromTargetAS(AS);
+}
+
+// Explicitly instantiate this in case a Redeclarable<T> is used from a TU that
+// doesn't include ASTContext.h
+template
+clang::LazyGenerationalUpdatePtr<
+ const Decl *, Decl *, &ExternalASTSource::CompleteRedeclChain>::ValueType
+clang::LazyGenerationalUpdatePtr<
+ const Decl *, Decl *, &ExternalASTSource::CompleteRedeclChain>::makeValue(
+ const clang::ASTContext &Ctx, Decl *Value);
+
+unsigned char ASTContext::getFixedPointScale(QualType Ty) const {
+ assert(Ty->isFixedPointType());
+
+ const TargetInfo &Target = getTargetInfo();
+ switch (Ty->castAs<BuiltinType>()->getKind()) {
+ default:
+ llvm_unreachable("Not a fixed point type!");
+ case BuiltinType::ShortAccum:
+ case BuiltinType::SatShortAccum:
+ return Target.getShortAccumScale();
+ case BuiltinType::Accum:
+ case BuiltinType::SatAccum:
+ return Target.getAccumScale();
+ case BuiltinType::LongAccum:
+ case BuiltinType::SatLongAccum:
+ return Target.getLongAccumScale();
+ case BuiltinType::UShortAccum:
+ case BuiltinType::SatUShortAccum:
+ return Target.getUnsignedShortAccumScale();
+ case BuiltinType::UAccum:
+ case BuiltinType::SatUAccum:
+ return Target.getUnsignedAccumScale();
+ case BuiltinType::ULongAccum:
+ case BuiltinType::SatULongAccum:
+ return Target.getUnsignedLongAccumScale();
+ case BuiltinType::ShortFract:
+ case BuiltinType::SatShortFract:
+ return Target.getShortFractScale();
+ case BuiltinType::Fract:
+ case BuiltinType::SatFract:
+ return Target.getFractScale();
+ case BuiltinType::LongFract:
+ case BuiltinType::SatLongFract:
+ return Target.getLongFractScale();
+ case BuiltinType::UShortFract:
+ case BuiltinType::SatUShortFract:
+ return Target.getUnsignedShortFractScale();
+ case BuiltinType::UFract:
+ case BuiltinType::SatUFract:
+ return Target.getUnsignedFractScale();
+ case BuiltinType::ULongFract:
+ case BuiltinType::SatULongFract:
+ return Target.getUnsignedLongFractScale();
+ }
+}
+
+unsigned char ASTContext::getFixedPointIBits(QualType Ty) const {
+ assert(Ty->isFixedPointType());
+
+ const TargetInfo &Target = getTargetInfo();
+ switch (Ty->castAs<BuiltinType>()->getKind()) {
+ default:
+ llvm_unreachable("Not a fixed point type!");
+ case BuiltinType::ShortAccum:
+ case BuiltinType::SatShortAccum:
+ return Target.getShortAccumIBits();
+ case BuiltinType::Accum:
+ case BuiltinType::SatAccum:
+ return Target.getAccumIBits();
+ case BuiltinType::LongAccum:
+ case BuiltinType::SatLongAccum:
+ return Target.getLongAccumIBits();
+ case BuiltinType::UShortAccum:
+ case BuiltinType::SatUShortAccum:
+ return Target.getUnsignedShortAccumIBits();
+ case BuiltinType::UAccum:
+ case BuiltinType::SatUAccum:
+ return Target.getUnsignedAccumIBits();
+ case BuiltinType::ULongAccum:
+ case BuiltinType::SatULongAccum:
+ return Target.getUnsignedLongAccumIBits();
+ case BuiltinType::ShortFract:
+ case BuiltinType::SatShortFract:
+ case BuiltinType::Fract:
+ case BuiltinType::SatFract:
+ case BuiltinType::LongFract:
+ case BuiltinType::SatLongFract:
+ case BuiltinType::UShortFract:
+ case BuiltinType::SatUShortFract:
+ case BuiltinType::UFract:
+ case BuiltinType::SatUFract:
+ case BuiltinType::ULongFract:
+ case BuiltinType::SatULongFract:
+ return 0;
+ }
+}
+
+FixedPointSemantics ASTContext::getFixedPointSemantics(QualType Ty) const {
+ assert((Ty->isFixedPointType() || Ty->isIntegerType()) &&
+ "Can only get the fixed point semantics for a "
+ "fixed point or integer type.");
+ if (Ty->isIntegerType())
+ return FixedPointSemantics::GetIntegerSemantics(getIntWidth(Ty),
+ Ty->isSignedIntegerType());
+
+ bool isSigned = Ty->isSignedFixedPointType();
+ return FixedPointSemantics(
+ static_cast<unsigned>(getTypeSize(Ty)), getFixedPointScale(Ty), isSigned,
+ Ty->isSaturatedFixedPointType(),
+ !isSigned && getTargetInfo().doUnsignedFixedPointTypesHavePadding());
+}
+
+APFixedPoint ASTContext::getFixedPointMax(QualType Ty) const {
+ assert(Ty->isFixedPointType());
+ return APFixedPoint::getMax(getFixedPointSemantics(Ty));
+}
+
+APFixedPoint ASTContext::getFixedPointMin(QualType Ty) const {
+ assert(Ty->isFixedPointType());
+ return APFixedPoint::getMin(getFixedPointSemantics(Ty));
+}
+
+QualType ASTContext::getCorrespondingSignedFixedPointType(QualType Ty) const {
+ assert(Ty->isUnsignedFixedPointType() &&
+ "Expected unsigned fixed point type");
+
+ switch (Ty->castAs<BuiltinType>()->getKind()) {
+ case BuiltinType::UShortAccum:
+ return ShortAccumTy;
+ case BuiltinType::UAccum:
+ return AccumTy;
+ case BuiltinType::ULongAccum:
+ return LongAccumTy;
+ case BuiltinType::SatUShortAccum:
+ return SatShortAccumTy;
+ case BuiltinType::SatUAccum:
+ return SatAccumTy;
+ case BuiltinType::SatULongAccum:
+ return SatLongAccumTy;
+ case BuiltinType::UShortFract:
+ return ShortFractTy;
+ case BuiltinType::UFract:
+ return FractTy;
+ case BuiltinType::ULongFract:
+ return LongFractTy;
+ case BuiltinType::SatUShortFract:
+ return SatShortFractTy;
+ case BuiltinType::SatUFract:
+ return SatFractTy;
+ case BuiltinType::SatULongFract:
+ return SatLongFractTy;
+ default:
+ llvm_unreachable("Unexpected unsigned fixed point type");
+ }
+}