aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm-project/clang/lib/AST/Decl.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm-project/clang/lib/AST/Decl.cpp')
-rw-r--r--contrib/llvm-project/clang/lib/AST/Decl.cpp5094
1 files changed, 5094 insertions, 0 deletions
diff --git a/contrib/llvm-project/clang/lib/AST/Decl.cpp b/contrib/llvm-project/clang/lib/AST/Decl.cpp
new file mode 100644
index 000000000000..10cfe145b3f0
--- /dev/null
+++ b/contrib/llvm-project/clang/lib/AST/Decl.cpp
@@ -0,0 +1,5094 @@
+//===- Decl.cpp - Declaration AST Node Implementation ---------------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the Decl subclasses.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/AST/Decl.h"
+#include "Linkage.h"
+#include "clang/AST/ASTContext.h"
+#include "clang/AST/ASTDiagnostic.h"
+#include "clang/AST/ASTLambda.h"
+#include "clang/AST/ASTMutationListener.h"
+#include "clang/AST/Attr.h"
+#include "clang/AST/CanonicalType.h"
+#include "clang/AST/DeclBase.h"
+#include "clang/AST/DeclCXX.h"
+#include "clang/AST/DeclObjC.h"
+#include "clang/AST/DeclOpenMP.h"
+#include "clang/AST/DeclTemplate.h"
+#include "clang/AST/DeclarationName.h"
+#include "clang/AST/Expr.h"
+#include "clang/AST/ExprCXX.h"
+#include "clang/AST/ExternalASTSource.h"
+#include "clang/AST/ODRHash.h"
+#include "clang/AST/PrettyDeclStackTrace.h"
+#include "clang/AST/PrettyPrinter.h"
+#include "clang/AST/Redeclarable.h"
+#include "clang/AST/Stmt.h"
+#include "clang/AST/TemplateBase.h"
+#include "clang/AST/Type.h"
+#include "clang/AST/TypeLoc.h"
+#include "clang/Basic/Builtins.h"
+#include "clang/Basic/IdentifierTable.h"
+#include "clang/Basic/LLVM.h"
+#include "clang/Basic/LangOptions.h"
+#include "clang/Basic/Linkage.h"
+#include "clang/Basic/Module.h"
+#include "clang/Basic/PartialDiagnostic.h"
+#include "clang/Basic/SanitizerBlacklist.h"
+#include "clang/Basic/Sanitizers.h"
+#include "clang/Basic/SourceLocation.h"
+#include "clang/Basic/SourceManager.h"
+#include "clang/Basic/Specifiers.h"
+#include "clang/Basic/TargetCXXABI.h"
+#include "clang/Basic/TargetInfo.h"
+#include "clang/Basic/Visibility.h"
+#include "llvm/ADT/APSInt.h"
+#include "llvm/ADT/ArrayRef.h"
+#include "llvm/ADT/None.h"
+#include "llvm/ADT/Optional.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/StringRef.h"
+#include "llvm/ADT/StringSwitch.h"
+#include "llvm/ADT/Triple.h"
+#include "llvm/Support/Casting.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/raw_ostream.h"
+#include <algorithm>
+#include <cassert>
+#include <cstddef>
+#include <cstring>
+#include <memory>
+#include <string>
+#include <tuple>
+#include <type_traits>
+
+using namespace clang;
+
+Decl *clang::getPrimaryMergedDecl(Decl *D) {
+ return D->getASTContext().getPrimaryMergedDecl(D);
+}
+
+void PrettyDeclStackTraceEntry::print(raw_ostream &OS) const {
+ SourceLocation Loc = this->Loc;
+ if (!Loc.isValid() && TheDecl) Loc = TheDecl->getLocation();
+ if (Loc.isValid()) {
+ Loc.print(OS, Context.getSourceManager());
+ OS << ": ";
+ }
+ OS << Message;
+
+ if (auto *ND = dyn_cast_or_null<NamedDecl>(TheDecl)) {
+ OS << " '";
+ ND->getNameForDiagnostic(OS, Context.getPrintingPolicy(), true);
+ OS << "'";
+ }
+
+ OS << '\n';
+}
+
+// Defined here so that it can be inlined into its direct callers.
+bool Decl::isOutOfLine() const {
+ return !getLexicalDeclContext()->Equals(getDeclContext());
+}
+
+TranslationUnitDecl::TranslationUnitDecl(ASTContext &ctx)
+ : Decl(TranslationUnit, nullptr, SourceLocation()),
+ DeclContext(TranslationUnit), Ctx(ctx) {}
+
+//===----------------------------------------------------------------------===//
+// NamedDecl Implementation
+//===----------------------------------------------------------------------===//
+
+// Visibility rules aren't rigorously externally specified, but here
+// are the basic principles behind what we implement:
+//
+// 1. An explicit visibility attribute is generally a direct expression
+// of the user's intent and should be honored. Only the innermost
+// visibility attribute applies. If no visibility attribute applies,
+// global visibility settings are considered.
+//
+// 2. There is one caveat to the above: on or in a template pattern,
+// an explicit visibility attribute is just a default rule, and
+// visibility can be decreased by the visibility of template
+// arguments. But this, too, has an exception: an attribute on an
+// explicit specialization or instantiation causes all the visibility
+// restrictions of the template arguments to be ignored.
+//
+// 3. A variable that does not otherwise have explicit visibility can
+// be restricted by the visibility of its type.
+//
+// 4. A visibility restriction is explicit if it comes from an
+// attribute (or something like it), not a global visibility setting.
+// When emitting a reference to an external symbol, visibility
+// restrictions are ignored unless they are explicit.
+//
+// 5. When computing the visibility of a non-type, including a
+// non-type member of a class, only non-type visibility restrictions
+// are considered: the 'visibility' attribute, global value-visibility
+// settings, and a few special cases like __private_extern.
+//
+// 6. When computing the visibility of a type, including a type member
+// of a class, only type visibility restrictions are considered:
+// the 'type_visibility' attribute and global type-visibility settings.
+// However, a 'visibility' attribute counts as a 'type_visibility'
+// attribute on any declaration that only has the former.
+//
+// The visibility of a "secondary" entity, like a template argument,
+// is computed using the kind of that entity, not the kind of the
+// primary entity for which we are computing visibility. For example,
+// the visibility of a specialization of either of these templates:
+// template <class T, bool (&compare)(T, X)> bool has_match(list<T>, X);
+// template <class T, bool (&compare)(T, X)> class matcher;
+// is restricted according to the type visibility of the argument 'T',
+// the type visibility of 'bool(&)(T,X)', and the value visibility of
+// the argument function 'compare'. That 'has_match' is a value
+// and 'matcher' is a type only matters when looking for attributes
+// and settings from the immediate context.
+
+/// Does this computation kind permit us to consider additional
+/// visibility settings from attributes and the like?
+static bool hasExplicitVisibilityAlready(LVComputationKind computation) {
+ return computation.IgnoreExplicitVisibility;
+}
+
+/// Given an LVComputationKind, return one of the same type/value sort
+/// that records that it already has explicit visibility.
+static LVComputationKind
+withExplicitVisibilityAlready(LVComputationKind Kind) {
+ Kind.IgnoreExplicitVisibility = true;
+ return Kind;
+}
+
+static Optional<Visibility> getExplicitVisibility(const NamedDecl *D,
+ LVComputationKind kind) {
+ assert(!kind.IgnoreExplicitVisibility &&
+ "asking for explicit visibility when we shouldn't be");
+ return D->getExplicitVisibility(kind.getExplicitVisibilityKind());
+}
+
+/// Is the given declaration a "type" or a "value" for the purposes of
+/// visibility computation?
+static bool usesTypeVisibility(const NamedDecl *D) {
+ return isa<TypeDecl>(D) ||
+ isa<ClassTemplateDecl>(D) ||
+ isa<ObjCInterfaceDecl>(D);
+}
+
+/// Does the given declaration have member specialization information,
+/// and if so, is it an explicit specialization?
+template <class T> static typename
+std::enable_if<!std::is_base_of<RedeclarableTemplateDecl, T>::value, bool>::type
+isExplicitMemberSpecialization(const T *D) {
+ if (const MemberSpecializationInfo *member =
+ D->getMemberSpecializationInfo()) {
+ return member->isExplicitSpecialization();
+ }
+ return false;
+}
+
+/// For templates, this question is easier: a member template can't be
+/// explicitly instantiated, so there's a single bit indicating whether
+/// or not this is an explicit member specialization.
+static bool isExplicitMemberSpecialization(const RedeclarableTemplateDecl *D) {
+ return D->isMemberSpecialization();
+}
+
+/// Given a visibility attribute, return the explicit visibility
+/// associated with it.
+template <class T>
+static Visibility getVisibilityFromAttr(const T *attr) {
+ switch (attr->getVisibility()) {
+ case T::Default:
+ return DefaultVisibility;
+ case T::Hidden:
+ return HiddenVisibility;
+ case T::Protected:
+ return ProtectedVisibility;
+ }
+ llvm_unreachable("bad visibility kind");
+}
+
+/// Return the explicit visibility of the given declaration.
+static Optional<Visibility> getVisibilityOf(const NamedDecl *D,
+ NamedDecl::ExplicitVisibilityKind kind) {
+ // If we're ultimately computing the visibility of a type, look for
+ // a 'type_visibility' attribute before looking for 'visibility'.
+ if (kind == NamedDecl::VisibilityForType) {
+ if (const auto *A = D->getAttr<TypeVisibilityAttr>()) {
+ return getVisibilityFromAttr(A);
+ }
+ }
+
+ // If this declaration has an explicit visibility attribute, use it.
+ if (const auto *A = D->getAttr<VisibilityAttr>()) {
+ return getVisibilityFromAttr(A);
+ }
+
+ return None;
+}
+
+LinkageInfo LinkageComputer::getLVForType(const Type &T,
+ LVComputationKind computation) {
+ if (computation.IgnoreAllVisibility)
+ return LinkageInfo(T.getLinkage(), DefaultVisibility, true);
+ return getTypeLinkageAndVisibility(&T);
+}
+
+/// Get the most restrictive linkage for the types in the given
+/// template parameter list. For visibility purposes, template
+/// parameters are part of the signature of a template.
+LinkageInfo LinkageComputer::getLVForTemplateParameterList(
+ const TemplateParameterList *Params, LVComputationKind computation) {
+ LinkageInfo LV;
+ for (const NamedDecl *P : *Params) {
+ // Template type parameters are the most common and never
+ // contribute to visibility, pack or not.
+ if (isa<TemplateTypeParmDecl>(P))
+ continue;
+
+ // Non-type template parameters can be restricted by the value type, e.g.
+ // template <enum X> class A { ... };
+ // We have to be careful here, though, because we can be dealing with
+ // dependent types.
+ if (const auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(P)) {
+ // Handle the non-pack case first.
+ if (!NTTP->isExpandedParameterPack()) {
+ if (!NTTP->getType()->isDependentType()) {
+ LV.merge(getLVForType(*NTTP->getType(), computation));
+ }
+ continue;
+ }
+
+ // Look at all the types in an expanded pack.
+ for (unsigned i = 0, n = NTTP->getNumExpansionTypes(); i != n; ++i) {
+ QualType type = NTTP->getExpansionType(i);
+ if (!type->isDependentType())
+ LV.merge(getTypeLinkageAndVisibility(type));
+ }
+ continue;
+ }
+
+ // Template template parameters can be restricted by their
+ // template parameters, recursively.
+ const auto *TTP = cast<TemplateTemplateParmDecl>(P);
+
+ // Handle the non-pack case first.
+ if (!TTP->isExpandedParameterPack()) {
+ LV.merge(getLVForTemplateParameterList(TTP->getTemplateParameters(),
+ computation));
+ continue;
+ }
+
+ // Look at all expansions in an expanded pack.
+ for (unsigned i = 0, n = TTP->getNumExpansionTemplateParameters();
+ i != n; ++i) {
+ LV.merge(getLVForTemplateParameterList(
+ TTP->getExpansionTemplateParameters(i), computation));
+ }
+ }
+
+ return LV;
+}
+
+static const Decl *getOutermostFuncOrBlockContext(const Decl *D) {
+ const Decl *Ret = nullptr;
+ const DeclContext *DC = D->getDeclContext();
+ while (DC->getDeclKind() != Decl::TranslationUnit) {
+ if (isa<FunctionDecl>(DC) || isa<BlockDecl>(DC))
+ Ret = cast<Decl>(DC);
+ DC = DC->getParent();
+ }
+ return Ret;
+}
+
+/// Get the most restrictive linkage for the types and
+/// declarations in the given template argument list.
+///
+/// Note that we don't take an LVComputationKind because we always
+/// want to honor the visibility of template arguments in the same way.
+LinkageInfo
+LinkageComputer::getLVForTemplateArgumentList(ArrayRef<TemplateArgument> Args,
+ LVComputationKind computation) {
+ LinkageInfo LV;
+
+ for (const TemplateArgument &Arg : Args) {
+ switch (Arg.getKind()) {
+ case TemplateArgument::Null:
+ case TemplateArgument::Integral:
+ case TemplateArgument::Expression:
+ continue;
+
+ case TemplateArgument::Type:
+ LV.merge(getLVForType(*Arg.getAsType(), computation));
+ continue;
+
+ case TemplateArgument::Declaration: {
+ const NamedDecl *ND = Arg.getAsDecl();
+ assert(!usesTypeVisibility(ND));
+ LV.merge(getLVForDecl(ND, computation));
+ continue;
+ }
+
+ case TemplateArgument::NullPtr:
+ LV.merge(getTypeLinkageAndVisibility(Arg.getNullPtrType()));
+ continue;
+
+ case TemplateArgument::Template:
+ case TemplateArgument::TemplateExpansion:
+ if (TemplateDecl *Template =
+ Arg.getAsTemplateOrTemplatePattern().getAsTemplateDecl())
+ LV.merge(getLVForDecl(Template, computation));
+ continue;
+
+ case TemplateArgument::Pack:
+ LV.merge(getLVForTemplateArgumentList(Arg.getPackAsArray(), computation));
+ continue;
+ }
+ llvm_unreachable("bad template argument kind");
+ }
+
+ return LV;
+}
+
+LinkageInfo
+LinkageComputer::getLVForTemplateArgumentList(const TemplateArgumentList &TArgs,
+ LVComputationKind computation) {
+ return getLVForTemplateArgumentList(TArgs.asArray(), computation);
+}
+
+static bool shouldConsiderTemplateVisibility(const FunctionDecl *fn,
+ const FunctionTemplateSpecializationInfo *specInfo) {
+ // Include visibility from the template parameters and arguments
+ // only if this is not an explicit instantiation or specialization
+ // with direct explicit visibility. (Implicit instantiations won't
+ // have a direct attribute.)
+ if (!specInfo->isExplicitInstantiationOrSpecialization())
+ return true;
+
+ return !fn->hasAttr<VisibilityAttr>();
+}
+
+/// Merge in template-related linkage and visibility for the given
+/// function template specialization.
+///
+/// We don't need a computation kind here because we can assume
+/// LVForValue.
+///
+/// \param[out] LV the computation to use for the parent
+void LinkageComputer::mergeTemplateLV(
+ LinkageInfo &LV, const FunctionDecl *fn,
+ const FunctionTemplateSpecializationInfo *specInfo,
+ LVComputationKind computation) {
+ bool considerVisibility =
+ shouldConsiderTemplateVisibility(fn, specInfo);
+
+ // Merge information from the template parameters.
+ FunctionTemplateDecl *temp = specInfo->getTemplate();
+ LinkageInfo tempLV =
+ getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
+ LV.mergeMaybeWithVisibility(tempLV, considerVisibility);
+
+ // Merge information from the template arguments.
+ const TemplateArgumentList &templateArgs = *specInfo->TemplateArguments;
+ LinkageInfo argsLV = getLVForTemplateArgumentList(templateArgs, computation);
+ LV.mergeMaybeWithVisibility(argsLV, considerVisibility);
+}
+
+/// Does the given declaration have a direct visibility attribute
+/// that would match the given rules?
+static bool hasDirectVisibilityAttribute(const NamedDecl *D,
+ LVComputationKind computation) {
+ if (computation.IgnoreAllVisibility)
+ return false;
+
+ return (computation.isTypeVisibility() && D->hasAttr<TypeVisibilityAttr>()) ||
+ D->hasAttr<VisibilityAttr>();
+}
+
+/// Should we consider visibility associated with the template
+/// arguments and parameters of the given class template specialization?
+static bool shouldConsiderTemplateVisibility(
+ const ClassTemplateSpecializationDecl *spec,
+ LVComputationKind computation) {
+ // Include visibility from the template parameters and arguments
+ // only if this is not an explicit instantiation or specialization
+ // with direct explicit visibility (and note that implicit
+ // instantiations won't have a direct attribute).
+ //
+ // Furthermore, we want to ignore template parameters and arguments
+ // for an explicit specialization when computing the visibility of a
+ // member thereof with explicit visibility.
+ //
+ // This is a bit complex; let's unpack it.
+ //
+ // An explicit class specialization is an independent, top-level
+ // declaration. As such, if it or any of its members has an
+ // explicit visibility attribute, that must directly express the
+ // user's intent, and we should honor it. The same logic applies to
+ // an explicit instantiation of a member of such a thing.
+
+ // Fast path: if this is not an explicit instantiation or
+ // specialization, we always want to consider template-related
+ // visibility restrictions.
+ if (!spec->isExplicitInstantiationOrSpecialization())
+ return true;
+
+ // This is the 'member thereof' check.
+ if (spec->isExplicitSpecialization() &&
+ hasExplicitVisibilityAlready(computation))
+ return false;
+
+ return !hasDirectVisibilityAttribute(spec, computation);
+}
+
+/// Merge in template-related linkage and visibility for the given
+/// class template specialization.
+void LinkageComputer::mergeTemplateLV(
+ LinkageInfo &LV, const ClassTemplateSpecializationDecl *spec,
+ LVComputationKind computation) {
+ bool considerVisibility = shouldConsiderTemplateVisibility(spec, computation);
+
+ // Merge information from the template parameters, but ignore
+ // visibility if we're only considering template arguments.
+
+ ClassTemplateDecl *temp = spec->getSpecializedTemplate();
+ LinkageInfo tempLV =
+ getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
+ LV.mergeMaybeWithVisibility(tempLV,
+ considerVisibility && !hasExplicitVisibilityAlready(computation));
+
+ // Merge information from the template arguments. We ignore
+ // template-argument visibility if we've got an explicit
+ // instantiation with a visibility attribute.
+ const TemplateArgumentList &templateArgs = spec->getTemplateArgs();
+ LinkageInfo argsLV = getLVForTemplateArgumentList(templateArgs, computation);
+ if (considerVisibility)
+ LV.mergeVisibility(argsLV);
+ LV.mergeExternalVisibility(argsLV);
+}
+
+/// Should we consider visibility associated with the template
+/// arguments and parameters of the given variable template
+/// specialization? As usual, follow class template specialization
+/// logic up to initialization.
+static bool shouldConsiderTemplateVisibility(
+ const VarTemplateSpecializationDecl *spec,
+ LVComputationKind computation) {
+ // Include visibility from the template parameters and arguments
+ // only if this is not an explicit instantiation or specialization
+ // with direct explicit visibility (and note that implicit
+ // instantiations won't have a direct attribute).
+ if (!spec->isExplicitInstantiationOrSpecialization())
+ return true;
+
+ // An explicit variable specialization is an independent, top-level
+ // declaration. As such, if it has an explicit visibility attribute,
+ // that must directly express the user's intent, and we should honor
+ // it.
+ if (spec->isExplicitSpecialization() &&
+ hasExplicitVisibilityAlready(computation))
+ return false;
+
+ return !hasDirectVisibilityAttribute(spec, computation);
+}
+
+/// Merge in template-related linkage and visibility for the given
+/// variable template specialization. As usual, follow class template
+/// specialization logic up to initialization.
+void LinkageComputer::mergeTemplateLV(LinkageInfo &LV,
+ const VarTemplateSpecializationDecl *spec,
+ LVComputationKind computation) {
+ bool considerVisibility = shouldConsiderTemplateVisibility(spec, computation);
+
+ // Merge information from the template parameters, but ignore
+ // visibility if we're only considering template arguments.
+
+ VarTemplateDecl *temp = spec->getSpecializedTemplate();
+ LinkageInfo tempLV =
+ getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
+ LV.mergeMaybeWithVisibility(tempLV,
+ considerVisibility && !hasExplicitVisibilityAlready(computation));
+
+ // Merge information from the template arguments. We ignore
+ // template-argument visibility if we've got an explicit
+ // instantiation with a visibility attribute.
+ const TemplateArgumentList &templateArgs = spec->getTemplateArgs();
+ LinkageInfo argsLV = getLVForTemplateArgumentList(templateArgs, computation);
+ if (considerVisibility)
+ LV.mergeVisibility(argsLV);
+ LV.mergeExternalVisibility(argsLV);
+}
+
+static bool useInlineVisibilityHidden(const NamedDecl *D) {
+ // FIXME: we should warn if -fvisibility-inlines-hidden is used with c.
+ const LangOptions &Opts = D->getASTContext().getLangOpts();
+ if (!Opts.CPlusPlus || !Opts.InlineVisibilityHidden)
+ return false;
+
+ const auto *FD = dyn_cast<FunctionDecl>(D);
+ if (!FD)
+ return false;
+
+ TemplateSpecializationKind TSK = TSK_Undeclared;
+ if (FunctionTemplateSpecializationInfo *spec
+ = FD->getTemplateSpecializationInfo()) {
+ TSK = spec->getTemplateSpecializationKind();
+ } else if (MemberSpecializationInfo *MSI =
+ FD->getMemberSpecializationInfo()) {
+ TSK = MSI->getTemplateSpecializationKind();
+ }
+
+ const FunctionDecl *Def = nullptr;
+ // InlineVisibilityHidden only applies to definitions, and
+ // isInlined() only gives meaningful answers on definitions
+ // anyway.
+ return TSK != TSK_ExplicitInstantiationDeclaration &&
+ TSK != TSK_ExplicitInstantiationDefinition &&
+ FD->hasBody(Def) && Def->isInlined() && !Def->hasAttr<GNUInlineAttr>();
+}
+
+template <typename T> static bool isFirstInExternCContext(T *D) {
+ const T *First = D->getFirstDecl();
+ return First->isInExternCContext();
+}
+
+static bool isSingleLineLanguageLinkage(const Decl &D) {
+ if (const auto *SD = dyn_cast<LinkageSpecDecl>(D.getDeclContext()))
+ if (!SD->hasBraces())
+ return true;
+ return false;
+}
+
+/// Determine whether D is declared in the purview of a named module.
+static bool isInModulePurview(const NamedDecl *D) {
+ if (auto *M = D->getOwningModule())
+ return M->isModulePurview();
+ return false;
+}
+
+static bool isExportedFromModuleInterfaceUnit(const NamedDecl *D) {
+ // FIXME: Handle isModulePrivate.
+ switch (D->getModuleOwnershipKind()) {
+ case Decl::ModuleOwnershipKind::Unowned:
+ case Decl::ModuleOwnershipKind::ModulePrivate:
+ return false;
+ case Decl::ModuleOwnershipKind::Visible:
+ case Decl::ModuleOwnershipKind::VisibleWhenImported:
+ return isInModulePurview(D);
+ }
+ llvm_unreachable("unexpected module ownership kind");
+}
+
+static LinkageInfo getInternalLinkageFor(const NamedDecl *D) {
+ // Internal linkage declarations within a module interface unit are modeled
+ // as "module-internal linkage", which means that they have internal linkage
+ // formally but can be indirectly accessed from outside the module via inline
+ // functions and templates defined within the module.
+ if (isInModulePurview(D))
+ return LinkageInfo(ModuleInternalLinkage, DefaultVisibility, false);
+
+ return LinkageInfo::internal();
+}
+
+static LinkageInfo getExternalLinkageFor(const NamedDecl *D) {
+ // C++ Modules TS [basic.link]/6.8:
+ // - A name declared at namespace scope that does not have internal linkage
+ // by the previous rules and that is introduced by a non-exported
+ // declaration has module linkage.
+ if (isInModulePurview(D) && !isExportedFromModuleInterfaceUnit(
+ cast<NamedDecl>(D->getCanonicalDecl())))
+ return LinkageInfo(ModuleLinkage, DefaultVisibility, false);
+
+ return LinkageInfo::external();
+}
+
+static StorageClass getStorageClass(const Decl *D) {
+ if (auto *TD = dyn_cast<TemplateDecl>(D))
+ D = TD->getTemplatedDecl();
+ if (D) {
+ if (auto *VD = dyn_cast<VarDecl>(D))
+ return VD->getStorageClass();
+ if (auto *FD = dyn_cast<FunctionDecl>(D))
+ return FD->getStorageClass();
+ }
+ return SC_None;
+}
+
+LinkageInfo
+LinkageComputer::getLVForNamespaceScopeDecl(const NamedDecl *D,
+ LVComputationKind computation,
+ bool IgnoreVarTypeLinkage) {
+ assert(D->getDeclContext()->getRedeclContext()->isFileContext() &&
+ "Not a name having namespace scope");
+ ASTContext &Context = D->getASTContext();
+
+ // C++ [basic.link]p3:
+ // A name having namespace scope (3.3.6) has internal linkage if it
+ // is the name of
+
+ if (getStorageClass(D->getCanonicalDecl()) == SC_Static) {
+ // - a variable, variable template, function, or function template
+ // that is explicitly declared static; or
+ // (This bullet corresponds to C99 6.2.2p3.)
+ return getInternalLinkageFor(D);
+ }
+
+ if (const auto *Var = dyn_cast<VarDecl>(D)) {
+ // - a non-template variable of non-volatile const-qualified type, unless
+ // - it is explicitly declared extern, or
+ // - it is inline or exported, or
+ // - it was previously declared and the prior declaration did not have
+ // internal linkage
+ // (There is no equivalent in C99.)
+ if (Context.getLangOpts().CPlusPlus &&
+ Var->getType().isConstQualified() &&
+ !Var->getType().isVolatileQualified() &&
+ !Var->isInline() &&
+ !isExportedFromModuleInterfaceUnit(Var) &&
+ !isa<VarTemplateSpecializationDecl>(Var) &&
+ !Var->getDescribedVarTemplate()) {
+ const VarDecl *PrevVar = Var->getPreviousDecl();
+ if (PrevVar)
+ return getLVForDecl(PrevVar, computation);
+
+ if (Var->getStorageClass() != SC_Extern &&
+ Var->getStorageClass() != SC_PrivateExtern &&
+ !isSingleLineLanguageLinkage(*Var))
+ return getInternalLinkageFor(Var);
+ }
+
+ for (const VarDecl *PrevVar = Var->getPreviousDecl(); PrevVar;
+ PrevVar = PrevVar->getPreviousDecl()) {
+ if (PrevVar->getStorageClass() == SC_PrivateExtern &&
+ Var->getStorageClass() == SC_None)
+ return getDeclLinkageAndVisibility(PrevVar);
+ // Explicitly declared static.
+ if (PrevVar->getStorageClass() == SC_Static)
+ return getInternalLinkageFor(Var);
+ }
+ } else if (const auto *IFD = dyn_cast<IndirectFieldDecl>(D)) {
+ // - a data member of an anonymous union.
+ const VarDecl *VD = IFD->getVarDecl();
+ assert(VD && "Expected a VarDecl in this IndirectFieldDecl!");
+ return getLVForNamespaceScopeDecl(VD, computation, IgnoreVarTypeLinkage);
+ }
+ assert(!isa<FieldDecl>(D) && "Didn't expect a FieldDecl!");
+
+ // FIXME: This gives internal linkage to names that should have no linkage
+ // (those not covered by [basic.link]p6).
+ if (D->isInAnonymousNamespace()) {
+ const auto *Var = dyn_cast<VarDecl>(D);
+ const auto *Func = dyn_cast<FunctionDecl>(D);
+ // FIXME: The check for extern "C" here is not justified by the standard
+ // wording, but we retain it from the pre-DR1113 model to avoid breaking
+ // code.
+ //
+ // C++11 [basic.link]p4:
+ // An unnamed namespace or a namespace declared directly or indirectly
+ // within an unnamed namespace has internal linkage.
+ if ((!Var || !isFirstInExternCContext(Var)) &&
+ (!Func || !isFirstInExternCContext(Func)))
+ return getInternalLinkageFor(D);
+ }
+
+ // Set up the defaults.
+
+ // C99 6.2.2p5:
+ // If the declaration of an identifier for an object has file
+ // scope and no storage-class specifier, its linkage is
+ // external.
+ LinkageInfo LV = getExternalLinkageFor(D);
+
+ if (!hasExplicitVisibilityAlready(computation)) {
+ if (Optional<Visibility> Vis = getExplicitVisibility(D, computation)) {
+ LV.mergeVisibility(*Vis, true);
+ } else {
+ // If we're declared in a namespace with a visibility attribute,
+ // use that namespace's visibility, and it still counts as explicit.
+ for (const DeclContext *DC = D->getDeclContext();
+ !isa<TranslationUnitDecl>(DC);
+ DC = DC->getParent()) {
+ const auto *ND = dyn_cast<NamespaceDecl>(DC);
+ if (!ND) continue;
+ if (Optional<Visibility> Vis = getExplicitVisibility(ND, computation)) {
+ LV.mergeVisibility(*Vis, true);
+ break;
+ }
+ }
+ }
+
+ // Add in global settings if the above didn't give us direct visibility.
+ if (!LV.isVisibilityExplicit()) {
+ // Use global type/value visibility as appropriate.
+ Visibility globalVisibility =
+ computation.isValueVisibility()
+ ? Context.getLangOpts().getValueVisibilityMode()
+ : Context.getLangOpts().getTypeVisibilityMode();
+ LV.mergeVisibility(globalVisibility, /*explicit*/ false);
+
+ // If we're paying attention to global visibility, apply
+ // -finline-visibility-hidden if this is an inline method.
+ if (useInlineVisibilityHidden(D))
+ LV.mergeVisibility(HiddenVisibility, /*visibilityExplicit=*/false);
+ }
+ }
+
+ // C++ [basic.link]p4:
+
+ // A name having namespace scope that has not been given internal linkage
+ // above and that is the name of
+ // [...bullets...]
+ // has its linkage determined as follows:
+ // - if the enclosing namespace has internal linkage, the name has
+ // internal linkage; [handled above]
+ // - otherwise, if the declaration of the name is attached to a named
+ // module and is not exported, the name has module linkage;
+ // - otherwise, the name has external linkage.
+ // LV is currently set up to handle the last two bullets.
+ //
+ // The bullets are:
+
+ // - a variable; or
+ if (const auto *Var = dyn_cast<VarDecl>(D)) {
+ // GCC applies the following optimization to variables and static
+ // data members, but not to functions:
+ //
+ // Modify the variable's LV by the LV of its type unless this is
+ // C or extern "C". This follows from [basic.link]p9:
+ // A type without linkage shall not be used as the type of a
+ // variable or function with external linkage unless
+ // - the entity has C language linkage, or
+ // - the entity is declared within an unnamed namespace, or
+ // - the entity is not used or is defined in the same
+ // translation unit.
+ // and [basic.link]p10:
+ // ...the types specified by all declarations referring to a
+ // given variable or function shall be identical...
+ // C does not have an equivalent rule.
+ //
+ // Ignore this if we've got an explicit attribute; the user
+ // probably knows what they're doing.
+ //
+ // Note that we don't want to make the variable non-external
+ // because of this, but unique-external linkage suits us.
+ if (Context.getLangOpts().CPlusPlus && !isFirstInExternCContext(Var) &&
+ !IgnoreVarTypeLinkage) {
+ LinkageInfo TypeLV = getLVForType(*Var->getType(), computation);
+ if (!isExternallyVisible(TypeLV.getLinkage()))
+ return LinkageInfo::uniqueExternal();
+ if (!LV.isVisibilityExplicit())
+ LV.mergeVisibility(TypeLV);
+ }
+
+ if (Var->getStorageClass() == SC_PrivateExtern)
+ LV.mergeVisibility(HiddenVisibility, true);
+
+ // Note that Sema::MergeVarDecl already takes care of implementing
+ // C99 6.2.2p4 and propagating the visibility attribute, so we don't have
+ // to do it here.
+
+ // As per function and class template specializations (below),
+ // consider LV for the template and template arguments. We're at file
+ // scope, so we do not need to worry about nested specializations.
+ if (const auto *spec = dyn_cast<VarTemplateSpecializationDecl>(Var)) {
+ mergeTemplateLV(LV, spec, computation);
+ }
+
+ // - a function; or
+ } else if (const auto *Function = dyn_cast<FunctionDecl>(D)) {
+ // In theory, we can modify the function's LV by the LV of its
+ // type unless it has C linkage (see comment above about variables
+ // for justification). In practice, GCC doesn't do this, so it's
+ // just too painful to make work.
+
+ if (Function->getStorageClass() == SC_PrivateExtern)
+ LV.mergeVisibility(HiddenVisibility, true);
+
+ // Note that Sema::MergeCompatibleFunctionDecls already takes care of
+ // merging storage classes and visibility attributes, so we don't have to
+ // look at previous decls in here.
+
+ // In C++, then if the type of the function uses a type with
+ // unique-external linkage, it's not legally usable from outside
+ // this translation unit. However, we should use the C linkage
+ // rules instead for extern "C" declarations.
+ if (Context.getLangOpts().CPlusPlus && !isFirstInExternCContext(Function)) {
+ // Only look at the type-as-written. Otherwise, deducing the return type
+ // of a function could change its linkage.
+ QualType TypeAsWritten = Function->getType();
+ if (TypeSourceInfo *TSI = Function->getTypeSourceInfo())
+ TypeAsWritten = TSI->getType();
+ if (!isExternallyVisible(TypeAsWritten->getLinkage()))
+ return LinkageInfo::uniqueExternal();
+ }
+
+ // Consider LV from the template and the template arguments.
+ // We're at file scope, so we do not need to worry about nested
+ // specializations.
+ if (FunctionTemplateSpecializationInfo *specInfo
+ = Function->getTemplateSpecializationInfo()) {
+ mergeTemplateLV(LV, Function, specInfo, computation);
+ }
+
+ // - a named class (Clause 9), or an unnamed class defined in a
+ // typedef declaration in which the class has the typedef name
+ // for linkage purposes (7.1.3); or
+ // - a named enumeration (7.2), or an unnamed enumeration
+ // defined in a typedef declaration in which the enumeration
+ // has the typedef name for linkage purposes (7.1.3); or
+ } else if (const auto *Tag = dyn_cast<TagDecl>(D)) {
+ // Unnamed tags have no linkage.
+ if (!Tag->hasNameForLinkage())
+ return LinkageInfo::none();
+
+ // If this is a class template specialization, consider the
+ // linkage of the template and template arguments. We're at file
+ // scope, so we do not need to worry about nested specializations.
+ if (const auto *spec = dyn_cast<ClassTemplateSpecializationDecl>(Tag)) {
+ mergeTemplateLV(LV, spec, computation);
+ }
+
+ // FIXME: This is not part of the C++ standard any more.
+ // - an enumerator belonging to an enumeration with external linkage; or
+ } else if (isa<EnumConstantDecl>(D)) {
+ LinkageInfo EnumLV = getLVForDecl(cast<NamedDecl>(D->getDeclContext()),
+ computation);
+ if (!isExternalFormalLinkage(EnumLV.getLinkage()))
+ return LinkageInfo::none();
+ LV.merge(EnumLV);
+
+ // - a template
+ } else if (const auto *temp = dyn_cast<TemplateDecl>(D)) {
+ bool considerVisibility = !hasExplicitVisibilityAlready(computation);
+ LinkageInfo tempLV =
+ getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
+ LV.mergeMaybeWithVisibility(tempLV, considerVisibility);
+
+ // An unnamed namespace or a namespace declared directly or indirectly
+ // within an unnamed namespace has internal linkage. All other namespaces
+ // have external linkage.
+ //
+ // We handled names in anonymous namespaces above.
+ } else if (isa<NamespaceDecl>(D)) {
+ return LV;
+
+ // By extension, we assign external linkage to Objective-C
+ // interfaces.
+ } else if (isa<ObjCInterfaceDecl>(D)) {
+ // fallout
+
+ } else if (auto *TD = dyn_cast<TypedefNameDecl>(D)) {
+ // A typedef declaration has linkage if it gives a type a name for
+ // linkage purposes.
+ if (!TD->getAnonDeclWithTypedefName(/*AnyRedecl*/true))
+ return LinkageInfo::none();
+
+ } else if (isa<MSGuidDecl>(D)) {
+ // A GUID behaves like an inline variable with external linkage. Fall
+ // through.
+
+ // Everything not covered here has no linkage.
+ } else {
+ return LinkageInfo::none();
+ }
+
+ // If we ended up with non-externally-visible linkage, visibility should
+ // always be default.
+ if (!isExternallyVisible(LV.getLinkage()))
+ return LinkageInfo(LV.getLinkage(), DefaultVisibility, false);
+
+ // Mark the symbols as hidden when compiling for the device.
+ if (Context.getLangOpts().OpenMP && Context.getLangOpts().OpenMPIsDevice)
+ LV.mergeVisibility(HiddenVisibility, /*newExplicit=*/false);
+
+ return LV;
+}
+
+LinkageInfo
+LinkageComputer::getLVForClassMember(const NamedDecl *D,
+ LVComputationKind computation,
+ bool IgnoreVarTypeLinkage) {
+ // Only certain class members have linkage. Note that fields don't
+ // really have linkage, but it's convenient to say they do for the
+ // purposes of calculating linkage of pointer-to-data-member
+ // template arguments.
+ //
+ // Templates also don't officially have linkage, but since we ignore
+ // the C++ standard and look at template arguments when determining
+ // linkage and visibility of a template specialization, we might hit
+ // a template template argument that way. If we do, we need to
+ // consider its linkage.
+ if (!(isa<CXXMethodDecl>(D) ||
+ isa<VarDecl>(D) ||
+ isa<FieldDecl>(D) ||
+ isa<IndirectFieldDecl>(D) ||
+ isa<TagDecl>(D) ||
+ isa<TemplateDecl>(D)))
+ return LinkageInfo::none();
+
+ LinkageInfo LV;
+
+ // If we have an explicit visibility attribute, merge that in.
+ if (!hasExplicitVisibilityAlready(computation)) {
+ if (Optional<Visibility> Vis = getExplicitVisibility(D, computation))
+ LV.mergeVisibility(*Vis, true);
+ // If we're paying attention to global visibility, apply
+ // -finline-visibility-hidden if this is an inline method.
+ //
+ // Note that we do this before merging information about
+ // the class visibility.
+ if (!LV.isVisibilityExplicit() && useInlineVisibilityHidden(D))
+ LV.mergeVisibility(HiddenVisibility, /*visibilityExplicit=*/false);
+ }
+
+ // If this class member has an explicit visibility attribute, the only
+ // thing that can change its visibility is the template arguments, so
+ // only look for them when processing the class.
+ LVComputationKind classComputation = computation;
+ if (LV.isVisibilityExplicit())
+ classComputation = withExplicitVisibilityAlready(computation);
+
+ LinkageInfo classLV =
+ getLVForDecl(cast<RecordDecl>(D->getDeclContext()), classComputation);
+ // The member has the same linkage as the class. If that's not externally
+ // visible, we don't need to compute anything about the linkage.
+ // FIXME: If we're only computing linkage, can we bail out here?
+ if (!isExternallyVisible(classLV.getLinkage()))
+ return classLV;
+
+
+ // Otherwise, don't merge in classLV yet, because in certain cases
+ // we need to completely ignore the visibility from it.
+
+ // Specifically, if this decl exists and has an explicit attribute.
+ const NamedDecl *explicitSpecSuppressor = nullptr;
+
+ if (const auto *MD = dyn_cast<CXXMethodDecl>(D)) {
+ // Only look at the type-as-written. Otherwise, deducing the return type
+ // of a function could change its linkage.
+ QualType TypeAsWritten = MD->getType();
+ if (TypeSourceInfo *TSI = MD->getTypeSourceInfo())
+ TypeAsWritten = TSI->getType();
+ if (!isExternallyVisible(TypeAsWritten->getLinkage()))
+ return LinkageInfo::uniqueExternal();
+
+ // If this is a method template specialization, use the linkage for
+ // the template parameters and arguments.
+ if (FunctionTemplateSpecializationInfo *spec
+ = MD->getTemplateSpecializationInfo()) {
+ mergeTemplateLV(LV, MD, spec, computation);
+ if (spec->isExplicitSpecialization()) {
+ explicitSpecSuppressor = MD;
+ } else if (isExplicitMemberSpecialization(spec->getTemplate())) {
+ explicitSpecSuppressor = spec->getTemplate()->getTemplatedDecl();
+ }
+ } else if (isExplicitMemberSpecialization(MD)) {
+ explicitSpecSuppressor = MD;
+ }
+
+ } else if (const auto *RD = dyn_cast<CXXRecordDecl>(D)) {
+ if (const auto *spec = dyn_cast<ClassTemplateSpecializationDecl>(RD)) {
+ mergeTemplateLV(LV, spec, computation);
+ if (spec->isExplicitSpecialization()) {
+ explicitSpecSuppressor = spec;
+ } else {
+ const ClassTemplateDecl *temp = spec->getSpecializedTemplate();
+ if (isExplicitMemberSpecialization(temp)) {
+ explicitSpecSuppressor = temp->getTemplatedDecl();
+ }
+ }
+ } else if (isExplicitMemberSpecialization(RD)) {
+ explicitSpecSuppressor = RD;
+ }
+
+ // Static data members.
+ } else if (const auto *VD = dyn_cast<VarDecl>(D)) {
+ if (const auto *spec = dyn_cast<VarTemplateSpecializationDecl>(VD))
+ mergeTemplateLV(LV, spec, computation);
+
+ // Modify the variable's linkage by its type, but ignore the
+ // type's visibility unless it's a definition.
+ if (!IgnoreVarTypeLinkage) {
+ LinkageInfo typeLV = getLVForType(*VD->getType(), computation);
+ // FIXME: If the type's linkage is not externally visible, we can
+ // give this static data member UniqueExternalLinkage.
+ if (!LV.isVisibilityExplicit() && !classLV.isVisibilityExplicit())
+ LV.mergeVisibility(typeLV);
+ LV.mergeExternalVisibility(typeLV);
+ }
+
+ if (isExplicitMemberSpecialization(VD)) {
+ explicitSpecSuppressor = VD;
+ }
+
+ // Template members.
+ } else if (const auto *temp = dyn_cast<TemplateDecl>(D)) {
+ bool considerVisibility =
+ (!LV.isVisibilityExplicit() &&
+ !classLV.isVisibilityExplicit() &&
+ !hasExplicitVisibilityAlready(computation));
+ LinkageInfo tempLV =
+ getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
+ LV.mergeMaybeWithVisibility(tempLV, considerVisibility);
+
+ if (const auto *redeclTemp = dyn_cast<RedeclarableTemplateDecl>(temp)) {
+ if (isExplicitMemberSpecialization(redeclTemp)) {
+ explicitSpecSuppressor = temp->getTemplatedDecl();
+ }
+ }
+ }
+
+ // We should never be looking for an attribute directly on a template.
+ assert(!explicitSpecSuppressor || !isa<TemplateDecl>(explicitSpecSuppressor));
+
+ // If this member is an explicit member specialization, and it has
+ // an explicit attribute, ignore visibility from the parent.
+ bool considerClassVisibility = true;
+ if (explicitSpecSuppressor &&
+ // optimization: hasDVA() is true only with explicit visibility.
+ LV.isVisibilityExplicit() &&
+ classLV.getVisibility() != DefaultVisibility &&
+ hasDirectVisibilityAttribute(explicitSpecSuppressor, computation)) {
+ considerClassVisibility = false;
+ }
+
+ // Finally, merge in information from the class.
+ LV.mergeMaybeWithVisibility(classLV, considerClassVisibility);
+ return LV;
+}
+
+void NamedDecl::anchor() {}
+
+bool NamedDecl::isLinkageValid() const {
+ if (!hasCachedLinkage())
+ return true;
+
+ Linkage L = LinkageComputer{}
+ .computeLVForDecl(this, LVComputationKind::forLinkageOnly())
+ .getLinkage();
+ return L == getCachedLinkage();
+}
+
+ObjCStringFormatFamily NamedDecl::getObjCFStringFormattingFamily() const {
+ StringRef name = getName();
+ if (name.empty()) return SFF_None;
+
+ if (name.front() == 'C')
+ if (name == "CFStringCreateWithFormat" ||
+ name == "CFStringCreateWithFormatAndArguments" ||
+ name == "CFStringAppendFormat" ||
+ name == "CFStringAppendFormatAndArguments")
+ return SFF_CFString;
+ return SFF_None;
+}
+
+Linkage NamedDecl::getLinkageInternal() const {
+ // We don't care about visibility here, so ask for the cheapest
+ // possible visibility analysis.
+ return LinkageComputer{}
+ .getLVForDecl(this, LVComputationKind::forLinkageOnly())
+ .getLinkage();
+}
+
+LinkageInfo NamedDecl::getLinkageAndVisibility() const {
+ return LinkageComputer{}.getDeclLinkageAndVisibility(this);
+}
+
+static Optional<Visibility>
+getExplicitVisibilityAux(const NamedDecl *ND,
+ NamedDecl::ExplicitVisibilityKind kind,
+ bool IsMostRecent) {
+ assert(!IsMostRecent || ND == ND->getMostRecentDecl());
+
+ // Check the declaration itself first.
+ if (Optional<Visibility> V = getVisibilityOf(ND, kind))
+ return V;
+
+ // If this is a member class of a specialization of a class template
+ // and the corresponding decl has explicit visibility, use that.
+ if (const auto *RD = dyn_cast<CXXRecordDecl>(ND)) {
+ CXXRecordDecl *InstantiatedFrom = RD->getInstantiatedFromMemberClass();
+ if (InstantiatedFrom)
+ return getVisibilityOf(InstantiatedFrom, kind);
+ }
+
+ // If there wasn't explicit visibility there, and this is a
+ // specialization of a class template, check for visibility
+ // on the pattern.
+ if (const auto *spec = dyn_cast<ClassTemplateSpecializationDecl>(ND)) {
+ // Walk all the template decl till this point to see if there are
+ // explicit visibility attributes.
+ const auto *TD = spec->getSpecializedTemplate()->getTemplatedDecl();
+ while (TD != nullptr) {
+ auto Vis = getVisibilityOf(TD, kind);
+ if (Vis != None)
+ return Vis;
+ TD = TD->getPreviousDecl();
+ }
+ return None;
+ }
+
+ // Use the most recent declaration.
+ if (!IsMostRecent && !isa<NamespaceDecl>(ND)) {
+ const NamedDecl *MostRecent = ND->getMostRecentDecl();
+ if (MostRecent != ND)
+ return getExplicitVisibilityAux(MostRecent, kind, true);
+ }
+
+ if (const auto *Var = dyn_cast<VarDecl>(ND)) {
+ if (Var->isStaticDataMember()) {
+ VarDecl *InstantiatedFrom = Var->getInstantiatedFromStaticDataMember();
+ if (InstantiatedFrom)
+ return getVisibilityOf(InstantiatedFrom, kind);
+ }
+
+ if (const auto *VTSD = dyn_cast<VarTemplateSpecializationDecl>(Var))
+ return getVisibilityOf(VTSD->getSpecializedTemplate()->getTemplatedDecl(),
+ kind);
+
+ return None;
+ }
+ // Also handle function template specializations.
+ if (const auto *fn = dyn_cast<FunctionDecl>(ND)) {
+ // If the function is a specialization of a template with an
+ // explicit visibility attribute, use that.
+ if (FunctionTemplateSpecializationInfo *templateInfo
+ = fn->getTemplateSpecializationInfo())
+ return getVisibilityOf(templateInfo->getTemplate()->getTemplatedDecl(),
+ kind);
+
+ // If the function is a member of a specialization of a class template
+ // and the corresponding decl has explicit visibility, use that.
+ FunctionDecl *InstantiatedFrom = fn->getInstantiatedFromMemberFunction();
+ if (InstantiatedFrom)
+ return getVisibilityOf(InstantiatedFrom, kind);
+
+ return None;
+ }
+
+ // The visibility of a template is stored in the templated decl.
+ if (const auto *TD = dyn_cast<TemplateDecl>(ND))
+ return getVisibilityOf(TD->getTemplatedDecl(), kind);
+
+ return None;
+}
+
+Optional<Visibility>
+NamedDecl::getExplicitVisibility(ExplicitVisibilityKind kind) const {
+ return getExplicitVisibilityAux(this, kind, false);
+}
+
+LinkageInfo LinkageComputer::getLVForClosure(const DeclContext *DC,
+ Decl *ContextDecl,
+ LVComputationKind computation) {
+ // This lambda has its linkage/visibility determined by its owner.
+ const NamedDecl *Owner;
+ if (!ContextDecl)
+ Owner = dyn_cast<NamedDecl>(DC);
+ else if (isa<ParmVarDecl>(ContextDecl))
+ Owner =
+ dyn_cast<NamedDecl>(ContextDecl->getDeclContext()->getRedeclContext());
+ else
+ Owner = cast<NamedDecl>(ContextDecl);
+
+ if (!Owner)
+ return LinkageInfo::none();
+
+ // If the owner has a deduced type, we need to skip querying the linkage and
+ // visibility of that type, because it might involve this closure type. The
+ // only effect of this is that we might give a lambda VisibleNoLinkage rather
+ // than NoLinkage when we don't strictly need to, which is benign.
+ auto *VD = dyn_cast<VarDecl>(Owner);
+ LinkageInfo OwnerLV =
+ VD && VD->getType()->getContainedDeducedType()
+ ? computeLVForDecl(Owner, computation, /*IgnoreVarTypeLinkage*/true)
+ : getLVForDecl(Owner, computation);
+
+ // A lambda never formally has linkage. But if the owner is externally
+ // visible, then the lambda is too. We apply the same rules to blocks.
+ if (!isExternallyVisible(OwnerLV.getLinkage()))
+ return LinkageInfo::none();
+ return LinkageInfo(VisibleNoLinkage, OwnerLV.getVisibility(),
+ OwnerLV.isVisibilityExplicit());
+}
+
+LinkageInfo LinkageComputer::getLVForLocalDecl(const NamedDecl *D,
+ LVComputationKind computation) {
+ if (const auto *Function = dyn_cast<FunctionDecl>(D)) {
+ if (Function->isInAnonymousNamespace() &&
+ !isFirstInExternCContext(Function))
+ return getInternalLinkageFor(Function);
+
+ // This is a "void f();" which got merged with a file static.
+ if (Function->getCanonicalDecl()->getStorageClass() == SC_Static)
+ return getInternalLinkageFor(Function);
+
+ LinkageInfo LV;
+ if (!hasExplicitVisibilityAlready(computation)) {
+ if (Optional<Visibility> Vis =
+ getExplicitVisibility(Function, computation))
+ LV.mergeVisibility(*Vis, true);
+ }
+
+ // Note that Sema::MergeCompatibleFunctionDecls already takes care of
+ // merging storage classes and visibility attributes, so we don't have to
+ // look at previous decls in here.
+
+ return LV;
+ }
+
+ if (const auto *Var = dyn_cast<VarDecl>(D)) {
+ if (Var->hasExternalStorage()) {
+ if (Var->isInAnonymousNamespace() && !isFirstInExternCContext(Var))
+ return getInternalLinkageFor(Var);
+
+ LinkageInfo LV;
+ if (Var->getStorageClass() == SC_PrivateExtern)
+ LV.mergeVisibility(HiddenVisibility, true);
+ else if (!hasExplicitVisibilityAlready(computation)) {
+ if (Optional<Visibility> Vis = getExplicitVisibility(Var, computation))
+ LV.mergeVisibility(*Vis, true);
+ }
+
+ if (const VarDecl *Prev = Var->getPreviousDecl()) {
+ LinkageInfo PrevLV = getLVForDecl(Prev, computation);
+ if (PrevLV.getLinkage())
+ LV.setLinkage(PrevLV.getLinkage());
+ LV.mergeVisibility(PrevLV);
+ }
+
+ return LV;
+ }
+
+ if (!Var->isStaticLocal())
+ return LinkageInfo::none();
+ }
+
+ ASTContext &Context = D->getASTContext();
+ if (!Context.getLangOpts().CPlusPlus)
+ return LinkageInfo::none();
+
+ const Decl *OuterD = getOutermostFuncOrBlockContext(D);
+ if (!OuterD || OuterD->isInvalidDecl())
+ return LinkageInfo::none();
+
+ LinkageInfo LV;
+ if (const auto *BD = dyn_cast<BlockDecl>(OuterD)) {
+ if (!BD->getBlockManglingNumber())
+ return LinkageInfo::none();
+
+ LV = getLVForClosure(BD->getDeclContext()->getRedeclContext(),
+ BD->getBlockManglingContextDecl(), computation);
+ } else {
+ const auto *FD = cast<FunctionDecl>(OuterD);
+ if (!FD->isInlined() &&
+ !isTemplateInstantiation(FD->getTemplateSpecializationKind()))
+ return LinkageInfo::none();
+
+ // If a function is hidden by -fvisibility-inlines-hidden option and
+ // is not explicitly attributed as a hidden function,
+ // we should not make static local variables in the function hidden.
+ LV = getLVForDecl(FD, computation);
+ if (isa<VarDecl>(D) && useInlineVisibilityHidden(FD) &&
+ !LV.isVisibilityExplicit() &&
+ !Context.getLangOpts().VisibilityInlinesHiddenStaticLocalVar) {
+ assert(cast<VarDecl>(D)->isStaticLocal());
+ // If this was an implicitly hidden inline method, check again for
+ // explicit visibility on the parent class, and use that for static locals
+ // if present.
+ if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
+ LV = getLVForDecl(MD->getParent(), computation);
+ if (!LV.isVisibilityExplicit()) {
+ Visibility globalVisibility =
+ computation.isValueVisibility()
+ ? Context.getLangOpts().getValueVisibilityMode()
+ : Context.getLangOpts().getTypeVisibilityMode();
+ return LinkageInfo(VisibleNoLinkage, globalVisibility,
+ /*visibilityExplicit=*/false);
+ }
+ }
+ }
+ if (!isExternallyVisible(LV.getLinkage()))
+ return LinkageInfo::none();
+ return LinkageInfo(VisibleNoLinkage, LV.getVisibility(),
+ LV.isVisibilityExplicit());
+}
+
+LinkageInfo LinkageComputer::computeLVForDecl(const NamedDecl *D,
+ LVComputationKind computation,
+ bool IgnoreVarTypeLinkage) {
+ // Internal_linkage attribute overrides other considerations.
+ if (D->hasAttr<InternalLinkageAttr>())
+ return getInternalLinkageFor(D);
+
+ // Objective-C: treat all Objective-C declarations as having external
+ // linkage.
+ switch (D->getKind()) {
+ default:
+ break;
+
+ // Per C++ [basic.link]p2, only the names of objects, references,
+ // functions, types, templates, namespaces, and values ever have linkage.
+ //
+ // Note that the name of a typedef, namespace alias, using declaration,
+ // and so on are not the name of the corresponding type, namespace, or
+ // declaration, so they do *not* have linkage.
+ case Decl::ImplicitParam:
+ case Decl::Label:
+ case Decl::NamespaceAlias:
+ case Decl::ParmVar:
+ case Decl::Using:
+ case Decl::UsingShadow:
+ case Decl::UsingDirective:
+ return LinkageInfo::none();
+
+ case Decl::EnumConstant:
+ // C++ [basic.link]p4: an enumerator has the linkage of its enumeration.
+ if (D->getASTContext().getLangOpts().CPlusPlus)
+ return getLVForDecl(cast<EnumDecl>(D->getDeclContext()), computation);
+ return LinkageInfo::visible_none();
+
+ case Decl::Typedef:
+ case Decl::TypeAlias:
+ // A typedef declaration has linkage if it gives a type a name for
+ // linkage purposes.
+ if (!cast<TypedefNameDecl>(D)
+ ->getAnonDeclWithTypedefName(/*AnyRedecl*/true))
+ return LinkageInfo::none();
+ break;
+
+ case Decl::TemplateTemplateParm: // count these as external
+ case Decl::NonTypeTemplateParm:
+ case Decl::ObjCAtDefsField:
+ case Decl::ObjCCategory:
+ case Decl::ObjCCategoryImpl:
+ case Decl::ObjCCompatibleAlias:
+ case Decl::ObjCImplementation:
+ case Decl::ObjCMethod:
+ case Decl::ObjCProperty:
+ case Decl::ObjCPropertyImpl:
+ case Decl::ObjCProtocol:
+ return getExternalLinkageFor(D);
+
+ case Decl::CXXRecord: {
+ const auto *Record = cast<CXXRecordDecl>(D);
+ if (Record->isLambda()) {
+ if (Record->hasKnownLambdaInternalLinkage() ||
+ !Record->getLambdaManglingNumber()) {
+ // This lambda has no mangling number, so it's internal.
+ return getInternalLinkageFor(D);
+ }
+
+ return getLVForClosure(
+ Record->getDeclContext()->getRedeclContext(),
+ Record->getLambdaContextDecl(), computation);
+ }
+
+ break;
+ }
+
+ case Decl::TemplateParamObject: {
+ // The template parameter object can be referenced from anywhere its type
+ // and value can be referenced.
+ auto *TPO = cast<TemplateParamObjectDecl>(D);
+ LinkageInfo LV = getLVForType(*TPO->getType(), computation);
+ LV.merge(getLVForValue(TPO->getValue(), computation));
+ return LV;
+ }
+ }
+
+ // Handle linkage for namespace-scope names.
+ if (D->getDeclContext()->getRedeclContext()->isFileContext())
+ return getLVForNamespaceScopeDecl(D, computation, IgnoreVarTypeLinkage);
+
+ // C++ [basic.link]p5:
+ // In addition, a member function, static data member, a named
+ // class or enumeration of class scope, or an unnamed class or
+ // enumeration defined in a class-scope typedef declaration such
+ // that the class or enumeration has the typedef name for linkage
+ // purposes (7.1.3), has external linkage if the name of the class
+ // has external linkage.
+ if (D->getDeclContext()->isRecord())
+ return getLVForClassMember(D, computation, IgnoreVarTypeLinkage);
+
+ // C++ [basic.link]p6:
+ // The name of a function declared in block scope and the name of
+ // an object declared by a block scope extern declaration have
+ // linkage. If there is a visible declaration of an entity with
+ // linkage having the same name and type, ignoring entities
+ // declared outside the innermost enclosing namespace scope, the
+ // block scope declaration declares that same entity and receives
+ // the linkage of the previous declaration. If there is more than
+ // one such matching entity, the program is ill-formed. Otherwise,
+ // if no matching entity is found, the block scope entity receives
+ // external linkage.
+ if (D->getDeclContext()->isFunctionOrMethod())
+ return getLVForLocalDecl(D, computation);
+
+ // C++ [basic.link]p6:
+ // Names not covered by these rules have no linkage.
+ return LinkageInfo::none();
+}
+
+/// getLVForDecl - Get the linkage and visibility for the given declaration.
+LinkageInfo LinkageComputer::getLVForDecl(const NamedDecl *D,
+ LVComputationKind computation) {
+ // Internal_linkage attribute overrides other considerations.
+ if (D->hasAttr<InternalLinkageAttr>())
+ return getInternalLinkageFor(D);
+
+ if (computation.IgnoreAllVisibility && D->hasCachedLinkage())
+ return LinkageInfo(D->getCachedLinkage(), DefaultVisibility, false);
+
+ if (llvm::Optional<LinkageInfo> LI = lookup(D, computation))
+ return *LI;
+
+ LinkageInfo LV = computeLVForDecl(D, computation);
+ if (D->hasCachedLinkage())
+ assert(D->getCachedLinkage() == LV.getLinkage());
+
+ D->setCachedLinkage(LV.getLinkage());
+ cache(D, computation, LV);
+
+#ifndef NDEBUG
+ // In C (because of gnu inline) and in c++ with microsoft extensions an
+ // static can follow an extern, so we can have two decls with different
+ // linkages.
+ const LangOptions &Opts = D->getASTContext().getLangOpts();
+ if (!Opts.CPlusPlus || Opts.MicrosoftExt)
+ return LV;
+
+ // We have just computed the linkage for this decl. By induction we know
+ // that all other computed linkages match, check that the one we just
+ // computed also does.
+ NamedDecl *Old = nullptr;
+ for (auto I : D->redecls()) {
+ auto *T = cast<NamedDecl>(I);
+ if (T == D)
+ continue;
+ if (!T->isInvalidDecl() && T->hasCachedLinkage()) {
+ Old = T;
+ break;
+ }
+ }
+ assert(!Old || Old->getCachedLinkage() == D->getCachedLinkage());
+#endif
+
+ return LV;
+}
+
+LinkageInfo LinkageComputer::getDeclLinkageAndVisibility(const NamedDecl *D) {
+ return getLVForDecl(D,
+ LVComputationKind(usesTypeVisibility(D)
+ ? NamedDecl::VisibilityForType
+ : NamedDecl::VisibilityForValue));
+}
+
+Module *Decl::getOwningModuleForLinkage(bool IgnoreLinkage) const {
+ Module *M = getOwningModule();
+ if (!M)
+ return nullptr;
+
+ switch (M->Kind) {
+ case Module::ModuleMapModule:
+ // Module map modules have no special linkage semantics.
+ return nullptr;
+
+ case Module::ModuleInterfaceUnit:
+ return M;
+
+ case Module::GlobalModuleFragment: {
+ // External linkage declarations in the global module have no owning module
+ // for linkage purposes. But internal linkage declarations in the global
+ // module fragment of a particular module are owned by that module for
+ // linkage purposes.
+ if (IgnoreLinkage)
+ return nullptr;
+ bool InternalLinkage;
+ if (auto *ND = dyn_cast<NamedDecl>(this))
+ InternalLinkage = !ND->hasExternalFormalLinkage();
+ else {
+ auto *NSD = dyn_cast<NamespaceDecl>(this);
+ InternalLinkage = (NSD && NSD->isAnonymousNamespace()) ||
+ isInAnonymousNamespace();
+ }
+ return InternalLinkage ? M->Parent : nullptr;
+ }
+
+ case Module::PrivateModuleFragment:
+ // The private module fragment is part of its containing module for linkage
+ // purposes.
+ return M->Parent;
+ }
+
+ llvm_unreachable("unknown module kind");
+}
+
+void NamedDecl::printName(raw_ostream &os) const {
+ os << Name;
+}
+
+std::string NamedDecl::getQualifiedNameAsString() const {
+ std::string QualName;
+ llvm::raw_string_ostream OS(QualName);
+ printQualifiedName(OS, getASTContext().getPrintingPolicy());
+ return OS.str();
+}
+
+void NamedDecl::printQualifiedName(raw_ostream &OS) const {
+ printQualifiedName(OS, getASTContext().getPrintingPolicy());
+}
+
+void NamedDecl::printQualifiedName(raw_ostream &OS,
+ const PrintingPolicy &P) const {
+ if (getDeclContext()->isFunctionOrMethod()) {
+ // We do not print '(anonymous)' for function parameters without name.
+ printName(OS);
+ return;
+ }
+ printNestedNameSpecifier(OS, P);
+ if (getDeclName())
+ OS << *this;
+ else {
+ // Give the printName override a chance to pick a different name before we
+ // fall back to "(anonymous)".
+ SmallString<64> NameBuffer;
+ llvm::raw_svector_ostream NameOS(NameBuffer);
+ printName(NameOS);
+ if (NameBuffer.empty())
+ OS << "(anonymous)";
+ else
+ OS << NameBuffer;
+ }
+}
+
+void NamedDecl::printNestedNameSpecifier(raw_ostream &OS) const {
+ printNestedNameSpecifier(OS, getASTContext().getPrintingPolicy());
+}
+
+void NamedDecl::printNestedNameSpecifier(raw_ostream &OS,
+ const PrintingPolicy &P) const {
+ const DeclContext *Ctx = getDeclContext();
+
+ // For ObjC methods and properties, look through categories and use the
+ // interface as context.
+ if (auto *MD = dyn_cast<ObjCMethodDecl>(this)) {
+ if (auto *ID = MD->getClassInterface())
+ Ctx = ID;
+ } else if (auto *PD = dyn_cast<ObjCPropertyDecl>(this)) {
+ if (auto *MD = PD->getGetterMethodDecl())
+ if (auto *ID = MD->getClassInterface())
+ Ctx = ID;
+ } else if (auto *ID = dyn_cast<ObjCIvarDecl>(this)) {
+ if (auto *CI = ID->getContainingInterface())
+ Ctx = CI;
+ }
+
+ if (Ctx->isFunctionOrMethod())
+ return;
+
+ using ContextsTy = SmallVector<const DeclContext *, 8>;
+ ContextsTy Contexts;
+
+ // Collect named contexts.
+ DeclarationName NameInScope = getDeclName();
+ for (; Ctx; Ctx = Ctx->getParent()) {
+ // Suppress anonymous namespace if requested.
+ if (P.SuppressUnwrittenScope && isa<NamespaceDecl>(Ctx) &&
+ cast<NamespaceDecl>(Ctx)->isAnonymousNamespace())
+ continue;
+
+ // Suppress inline namespace if it doesn't make the result ambiguous.
+ if (P.SuppressInlineNamespace && Ctx->isInlineNamespace() && NameInScope &&
+ Ctx->lookup(NameInScope).size() ==
+ Ctx->getParent()->lookup(NameInScope).size())
+ continue;
+
+ // Skip non-named contexts such as linkage specifications and ExportDecls.
+ const NamedDecl *ND = dyn_cast<NamedDecl>(Ctx);
+ if (!ND)
+ continue;
+
+ Contexts.push_back(Ctx);
+ NameInScope = ND->getDeclName();
+ }
+
+ for (unsigned I = Contexts.size(); I != 0; --I) {
+ const DeclContext *DC = Contexts[I - 1];
+ if (const auto *Spec = dyn_cast<ClassTemplateSpecializationDecl>(DC)) {
+ OS << Spec->getName();
+ const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
+ printTemplateArgumentList(
+ OS, TemplateArgs.asArray(), P,
+ Spec->getSpecializedTemplate()->getTemplateParameters());
+ } else if (const auto *ND = dyn_cast<NamespaceDecl>(DC)) {
+ if (ND->isAnonymousNamespace()) {
+ OS << (P.MSVCFormatting ? "`anonymous namespace\'"
+ : "(anonymous namespace)");
+ }
+ else
+ OS << *ND;
+ } else if (const auto *RD = dyn_cast<RecordDecl>(DC)) {
+ if (!RD->getIdentifier())
+ OS << "(anonymous " << RD->getKindName() << ')';
+ else
+ OS << *RD;
+ } else if (const auto *FD = dyn_cast<FunctionDecl>(DC)) {
+ const FunctionProtoType *FT = nullptr;
+ if (FD->hasWrittenPrototype())
+ FT = dyn_cast<FunctionProtoType>(FD->getType()->castAs<FunctionType>());
+
+ OS << *FD << '(';
+ if (FT) {
+ unsigned NumParams = FD->getNumParams();
+ for (unsigned i = 0; i < NumParams; ++i) {
+ if (i)
+ OS << ", ";
+ OS << FD->getParamDecl(i)->getType().stream(P);
+ }
+
+ if (FT->isVariadic()) {
+ if (NumParams > 0)
+ OS << ", ";
+ OS << "...";
+ }
+ }
+ OS << ')';
+ } else if (const auto *ED = dyn_cast<EnumDecl>(DC)) {
+ // C++ [dcl.enum]p10: Each enum-name and each unscoped
+ // enumerator is declared in the scope that immediately contains
+ // the enum-specifier. Each scoped enumerator is declared in the
+ // scope of the enumeration.
+ // For the case of unscoped enumerator, do not include in the qualified
+ // name any information about its enum enclosing scope, as its visibility
+ // is global.
+ if (ED->isScoped())
+ OS << *ED;
+ else
+ continue;
+ } else {
+ OS << *cast<NamedDecl>(DC);
+ }
+ OS << "::";
+ }
+}
+
+void NamedDecl::getNameForDiagnostic(raw_ostream &OS,
+ const PrintingPolicy &Policy,
+ bool Qualified) const {
+ if (Qualified)
+ printQualifiedName(OS, Policy);
+ else
+ printName(OS);
+}
+
+template<typename T> static bool isRedeclarableImpl(Redeclarable<T> *) {
+ return true;
+}
+static bool isRedeclarableImpl(...) { return false; }
+static bool isRedeclarable(Decl::Kind K) {
+ switch (K) {
+#define DECL(Type, Base) \
+ case Decl::Type: \
+ return isRedeclarableImpl((Type##Decl *)nullptr);
+#define ABSTRACT_DECL(DECL)
+#include "clang/AST/DeclNodes.inc"
+ }
+ llvm_unreachable("unknown decl kind");
+}
+
+bool NamedDecl::declarationReplaces(NamedDecl *OldD, bool IsKnownNewer) const {
+ assert(getDeclName() == OldD->getDeclName() && "Declaration name mismatch");
+
+ // Never replace one imported declaration with another; we need both results
+ // when re-exporting.
+ if (OldD->isFromASTFile() && isFromASTFile())
+ return false;
+
+ // A kind mismatch implies that the declaration is not replaced.
+ if (OldD->getKind() != getKind())
+ return false;
+
+ // For method declarations, we never replace. (Why?)
+ if (isa<ObjCMethodDecl>(this))
+ return false;
+
+ // For parameters, pick the newer one. This is either an error or (in
+ // Objective-C) permitted as an extension.
+ if (isa<ParmVarDecl>(this))
+ return true;
+
+ // Inline namespaces can give us two declarations with the same
+ // name and kind in the same scope but different contexts; we should
+ // keep both declarations in this case.
+ if (!this->getDeclContext()->getRedeclContext()->Equals(
+ OldD->getDeclContext()->getRedeclContext()))
+ return false;
+
+ // Using declarations can be replaced if they import the same name from the
+ // same context.
+ if (auto *UD = dyn_cast<UsingDecl>(this)) {
+ ASTContext &Context = getASTContext();
+ return Context.getCanonicalNestedNameSpecifier(UD->getQualifier()) ==
+ Context.getCanonicalNestedNameSpecifier(
+ cast<UsingDecl>(OldD)->getQualifier());
+ }
+ if (auto *UUVD = dyn_cast<UnresolvedUsingValueDecl>(this)) {
+ ASTContext &Context = getASTContext();
+ return Context.getCanonicalNestedNameSpecifier(UUVD->getQualifier()) ==
+ Context.getCanonicalNestedNameSpecifier(
+ cast<UnresolvedUsingValueDecl>(OldD)->getQualifier());
+ }
+
+ if (isRedeclarable(getKind())) {
+ if (getCanonicalDecl() != OldD->getCanonicalDecl())
+ return false;
+
+ if (IsKnownNewer)
+ return true;
+
+ // Check whether this is actually newer than OldD. We want to keep the
+ // newer declaration. This loop will usually only iterate once, because
+ // OldD is usually the previous declaration.
+ for (auto D : redecls()) {
+ if (D == OldD)
+ break;
+
+ // If we reach the canonical declaration, then OldD is not actually older
+ // than this one.
+ //
+ // FIXME: In this case, we should not add this decl to the lookup table.
+ if (D->isCanonicalDecl())
+ return false;
+ }
+
+ // It's a newer declaration of the same kind of declaration in the same
+ // scope: we want this decl instead of the existing one.
+ return true;
+ }
+
+ // In all other cases, we need to keep both declarations in case they have
+ // different visibility. Any attempt to use the name will result in an
+ // ambiguity if more than one is visible.
+ return false;
+}
+
+bool NamedDecl::hasLinkage() const {
+ return getFormalLinkage() != NoLinkage;
+}
+
+NamedDecl *NamedDecl::getUnderlyingDeclImpl() {
+ NamedDecl *ND = this;
+ while (auto *UD = dyn_cast<UsingShadowDecl>(ND))
+ ND = UD->getTargetDecl();
+
+ if (auto *AD = dyn_cast<ObjCCompatibleAliasDecl>(ND))
+ return AD->getClassInterface();
+
+ if (auto *AD = dyn_cast<NamespaceAliasDecl>(ND))
+ return AD->getNamespace();
+
+ return ND;
+}
+
+bool NamedDecl::isCXXInstanceMember() const {
+ if (!isCXXClassMember())
+ return false;
+
+ const NamedDecl *D = this;
+ if (isa<UsingShadowDecl>(D))
+ D = cast<UsingShadowDecl>(D)->getTargetDecl();
+
+ if (isa<FieldDecl>(D) || isa<IndirectFieldDecl>(D) || isa<MSPropertyDecl>(D))
+ return true;
+ if (const auto *MD = dyn_cast_or_null<CXXMethodDecl>(D->getAsFunction()))
+ return MD->isInstance();
+ return false;
+}
+
+//===----------------------------------------------------------------------===//
+// DeclaratorDecl Implementation
+//===----------------------------------------------------------------------===//
+
+template <typename DeclT>
+static SourceLocation getTemplateOrInnerLocStart(const DeclT *decl) {
+ if (decl->getNumTemplateParameterLists() > 0)
+ return decl->getTemplateParameterList(0)->getTemplateLoc();
+ return decl->getInnerLocStart();
+}
+
+SourceLocation DeclaratorDecl::getTypeSpecStartLoc() const {
+ TypeSourceInfo *TSI = getTypeSourceInfo();
+ if (TSI) return TSI->getTypeLoc().getBeginLoc();
+ return SourceLocation();
+}
+
+SourceLocation DeclaratorDecl::getTypeSpecEndLoc() const {
+ TypeSourceInfo *TSI = getTypeSourceInfo();
+ if (TSI) return TSI->getTypeLoc().getEndLoc();
+ return SourceLocation();
+}
+
+void DeclaratorDecl::setQualifierInfo(NestedNameSpecifierLoc QualifierLoc) {
+ if (QualifierLoc) {
+ // Make sure the extended decl info is allocated.
+ if (!hasExtInfo()) {
+ // Save (non-extended) type source info pointer.
+ auto *savedTInfo = DeclInfo.get<TypeSourceInfo*>();
+ // Allocate external info struct.
+ DeclInfo = new (getASTContext()) ExtInfo;
+ // Restore savedTInfo into (extended) decl info.
+ getExtInfo()->TInfo = savedTInfo;
+ }
+ // Set qualifier info.
+ getExtInfo()->QualifierLoc = QualifierLoc;
+ } else if (hasExtInfo()) {
+ // Here Qualifier == 0, i.e., we are removing the qualifier (if any).
+ getExtInfo()->QualifierLoc = QualifierLoc;
+ }
+}
+
+void DeclaratorDecl::setTrailingRequiresClause(Expr *TrailingRequiresClause) {
+ assert(TrailingRequiresClause);
+ // Make sure the extended decl info is allocated.
+ if (!hasExtInfo()) {
+ // Save (non-extended) type source info pointer.
+ auto *savedTInfo = DeclInfo.get<TypeSourceInfo*>();
+ // Allocate external info struct.
+ DeclInfo = new (getASTContext()) ExtInfo;
+ // Restore savedTInfo into (extended) decl info.
+ getExtInfo()->TInfo = savedTInfo;
+ }
+ // Set requires clause info.
+ getExtInfo()->TrailingRequiresClause = TrailingRequiresClause;
+}
+
+void DeclaratorDecl::setTemplateParameterListsInfo(
+ ASTContext &Context, ArrayRef<TemplateParameterList *> TPLists) {
+ assert(!TPLists.empty());
+ // Make sure the extended decl info is allocated.
+ if (!hasExtInfo()) {
+ // Save (non-extended) type source info pointer.
+ auto *savedTInfo = DeclInfo.get<TypeSourceInfo*>();
+ // Allocate external info struct.
+ DeclInfo = new (getASTContext()) ExtInfo;
+ // Restore savedTInfo into (extended) decl info.
+ getExtInfo()->TInfo = savedTInfo;
+ }
+ // Set the template parameter lists info.
+ getExtInfo()->setTemplateParameterListsInfo(Context, TPLists);
+}
+
+SourceLocation DeclaratorDecl::getOuterLocStart() const {
+ return getTemplateOrInnerLocStart(this);
+}
+
+// Helper function: returns true if QT is or contains a type
+// having a postfix component.
+static bool typeIsPostfix(QualType QT) {
+ while (true) {
+ const Type* T = QT.getTypePtr();
+ switch (T->getTypeClass()) {
+ default:
+ return false;
+ case Type::Pointer:
+ QT = cast<PointerType>(T)->getPointeeType();
+ break;
+ case Type::BlockPointer:
+ QT = cast<BlockPointerType>(T)->getPointeeType();
+ break;
+ case Type::MemberPointer:
+ QT = cast<MemberPointerType>(T)->getPointeeType();
+ break;
+ case Type::LValueReference:
+ case Type::RValueReference:
+ QT = cast<ReferenceType>(T)->getPointeeType();
+ break;
+ case Type::PackExpansion:
+ QT = cast<PackExpansionType>(T)->getPattern();
+ break;
+ case Type::Paren:
+ case Type::ConstantArray:
+ case Type::DependentSizedArray:
+ case Type::IncompleteArray:
+ case Type::VariableArray:
+ case Type::FunctionProto:
+ case Type::FunctionNoProto:
+ return true;
+ }
+ }
+}
+
+SourceRange DeclaratorDecl::getSourceRange() const {
+ SourceLocation RangeEnd = getLocation();
+ if (TypeSourceInfo *TInfo = getTypeSourceInfo()) {
+ // If the declaration has no name or the type extends past the name take the
+ // end location of the type.
+ if (!getDeclName() || typeIsPostfix(TInfo->getType()))
+ RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd();
+ }
+ return SourceRange(getOuterLocStart(), RangeEnd);
+}
+
+void QualifierInfo::setTemplateParameterListsInfo(
+ ASTContext &Context, ArrayRef<TemplateParameterList *> TPLists) {
+ // Free previous template parameters (if any).
+ if (NumTemplParamLists > 0) {
+ Context.Deallocate(TemplParamLists);
+ TemplParamLists = nullptr;
+ NumTemplParamLists = 0;
+ }
+ // Set info on matched template parameter lists (if any).
+ if (!TPLists.empty()) {
+ TemplParamLists = new (Context) TemplateParameterList *[TPLists.size()];
+ NumTemplParamLists = TPLists.size();
+ std::copy(TPLists.begin(), TPLists.end(), TemplParamLists);
+ }
+}
+
+//===----------------------------------------------------------------------===//
+// VarDecl Implementation
+//===----------------------------------------------------------------------===//
+
+const char *VarDecl::getStorageClassSpecifierString(StorageClass SC) {
+ switch (SC) {
+ case SC_None: break;
+ case SC_Auto: return "auto";
+ case SC_Extern: return "extern";
+ case SC_PrivateExtern: return "__private_extern__";
+ case SC_Register: return "register";
+ case SC_Static: return "static";
+ }
+
+ llvm_unreachable("Invalid storage class");
+}
+
+VarDecl::VarDecl(Kind DK, ASTContext &C, DeclContext *DC,
+ SourceLocation StartLoc, SourceLocation IdLoc,
+ IdentifierInfo *Id, QualType T, TypeSourceInfo *TInfo,
+ StorageClass SC)
+ : DeclaratorDecl(DK, DC, IdLoc, Id, T, TInfo, StartLoc),
+ redeclarable_base(C) {
+ static_assert(sizeof(VarDeclBitfields) <= sizeof(unsigned),
+ "VarDeclBitfields too large!");
+ static_assert(sizeof(ParmVarDeclBitfields) <= sizeof(unsigned),
+ "ParmVarDeclBitfields too large!");
+ static_assert(sizeof(NonParmVarDeclBitfields) <= sizeof(unsigned),
+ "NonParmVarDeclBitfields too large!");
+ AllBits = 0;
+ VarDeclBits.SClass = SC;
+ // Everything else is implicitly initialized to false.
+}
+
+VarDecl *VarDecl::Create(ASTContext &C, DeclContext *DC,
+ SourceLocation StartL, SourceLocation IdL,
+ IdentifierInfo *Id, QualType T, TypeSourceInfo *TInfo,
+ StorageClass S) {
+ return new (C, DC) VarDecl(Var, C, DC, StartL, IdL, Id, T, TInfo, S);
+}
+
+VarDecl *VarDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
+ return new (C, ID)
+ VarDecl(Var, C, nullptr, SourceLocation(), SourceLocation(), nullptr,
+ QualType(), nullptr, SC_None);
+}
+
+void VarDecl::setStorageClass(StorageClass SC) {
+ assert(isLegalForVariable(SC));
+ VarDeclBits.SClass = SC;
+}
+
+VarDecl::TLSKind VarDecl::getTLSKind() const {
+ switch (VarDeclBits.TSCSpec) {
+ case TSCS_unspecified:
+ if (!hasAttr<ThreadAttr>() &&
+ !(getASTContext().getLangOpts().OpenMPUseTLS &&
+ getASTContext().getTargetInfo().isTLSSupported() &&
+ hasAttr<OMPThreadPrivateDeclAttr>()))
+ return TLS_None;
+ return ((getASTContext().getLangOpts().isCompatibleWithMSVC(
+ LangOptions::MSVC2015)) ||
+ hasAttr<OMPThreadPrivateDeclAttr>())
+ ? TLS_Dynamic
+ : TLS_Static;
+ case TSCS___thread: // Fall through.
+ case TSCS__Thread_local:
+ return TLS_Static;
+ case TSCS_thread_local:
+ return TLS_Dynamic;
+ }
+ llvm_unreachable("Unknown thread storage class specifier!");
+}
+
+SourceRange VarDecl::getSourceRange() const {
+ if (const Expr *Init = getInit()) {
+ SourceLocation InitEnd = Init->getEndLoc();
+ // If Init is implicit, ignore its source range and fallback on
+ // DeclaratorDecl::getSourceRange() to handle postfix elements.
+ if (InitEnd.isValid() && InitEnd != getLocation())
+ return SourceRange(getOuterLocStart(), InitEnd);
+ }
+ return DeclaratorDecl::getSourceRange();
+}
+
+template<typename T>
+static LanguageLinkage getDeclLanguageLinkage(const T &D) {
+ // C++ [dcl.link]p1: All function types, function names with external linkage,
+ // and variable names with external linkage have a language linkage.
+ if (!D.hasExternalFormalLinkage())
+ return NoLanguageLinkage;
+
+ // Language linkage is a C++ concept, but saying that everything else in C has
+ // C language linkage fits the implementation nicely.
+ ASTContext &Context = D.getASTContext();
+ if (!Context.getLangOpts().CPlusPlus)
+ return CLanguageLinkage;
+
+ // C++ [dcl.link]p4: A C language linkage is ignored in determining the
+ // language linkage of the names of class members and the function type of
+ // class member functions.
+ const DeclContext *DC = D.getDeclContext();
+ if (DC->isRecord())
+ return CXXLanguageLinkage;
+
+ // If the first decl is in an extern "C" context, any other redeclaration
+ // will have C language linkage. If the first one is not in an extern "C"
+ // context, we would have reported an error for any other decl being in one.
+ if (isFirstInExternCContext(&D))
+ return CLanguageLinkage;
+ return CXXLanguageLinkage;
+}
+
+template<typename T>
+static bool isDeclExternC(const T &D) {
+ // Since the context is ignored for class members, they can only have C++
+ // language linkage or no language linkage.
+ const DeclContext *DC = D.getDeclContext();
+ if (DC->isRecord()) {
+ assert(D.getASTContext().getLangOpts().CPlusPlus);
+ return false;
+ }
+
+ return D.getLanguageLinkage() == CLanguageLinkage;
+}
+
+LanguageLinkage VarDecl::getLanguageLinkage() const {
+ return getDeclLanguageLinkage(*this);
+}
+
+bool VarDecl::isExternC() const {
+ return isDeclExternC(*this);
+}
+
+bool VarDecl::isInExternCContext() const {
+ return getLexicalDeclContext()->isExternCContext();
+}
+
+bool VarDecl::isInExternCXXContext() const {
+ return getLexicalDeclContext()->isExternCXXContext();
+}
+
+VarDecl *VarDecl::getCanonicalDecl() { return getFirstDecl(); }
+
+VarDecl::DefinitionKind
+VarDecl::isThisDeclarationADefinition(ASTContext &C) const {
+ if (isThisDeclarationADemotedDefinition())
+ return DeclarationOnly;
+
+ // C++ [basic.def]p2:
+ // A declaration is a definition unless [...] it contains the 'extern'
+ // specifier or a linkage-specification and neither an initializer [...],
+ // it declares a non-inline static data member in a class declaration [...],
+ // it declares a static data member outside a class definition and the variable
+ // was defined within the class with the constexpr specifier [...],
+ // C++1y [temp.expl.spec]p15:
+ // An explicit specialization of a static data member or an explicit
+ // specialization of a static data member template is a definition if the
+ // declaration includes an initializer; otherwise, it is a declaration.
+ //
+ // FIXME: How do you declare (but not define) a partial specialization of
+ // a static data member template outside the containing class?
+ if (isStaticDataMember()) {
+ if (isOutOfLine() &&
+ !(getCanonicalDecl()->isInline() &&
+ getCanonicalDecl()->isConstexpr()) &&
+ (hasInit() ||
+ // If the first declaration is out-of-line, this may be an
+ // instantiation of an out-of-line partial specialization of a variable
+ // template for which we have not yet instantiated the initializer.
+ (getFirstDecl()->isOutOfLine()
+ ? getTemplateSpecializationKind() == TSK_Undeclared
+ : getTemplateSpecializationKind() !=
+ TSK_ExplicitSpecialization) ||
+ isa<VarTemplatePartialSpecializationDecl>(this)))
+ return Definition;
+ if (!isOutOfLine() && isInline())
+ return Definition;
+ return DeclarationOnly;
+ }
+ // C99 6.7p5:
+ // A definition of an identifier is a declaration for that identifier that
+ // [...] causes storage to be reserved for that object.
+ // Note: that applies for all non-file-scope objects.
+ // C99 6.9.2p1:
+ // If the declaration of an identifier for an object has file scope and an
+ // initializer, the declaration is an external definition for the identifier
+ if (hasInit())
+ return Definition;
+
+ if (hasDefiningAttr())
+ return Definition;
+
+ if (const auto *SAA = getAttr<SelectAnyAttr>())
+ if (!SAA->isInherited())
+ return Definition;
+
+ // A variable template specialization (other than a static data member
+ // template or an explicit specialization) is a declaration until we
+ // instantiate its initializer.
+ if (auto *VTSD = dyn_cast<VarTemplateSpecializationDecl>(this)) {
+ if (VTSD->getTemplateSpecializationKind() != TSK_ExplicitSpecialization &&
+ !isa<VarTemplatePartialSpecializationDecl>(VTSD) &&
+ !VTSD->IsCompleteDefinition)
+ return DeclarationOnly;
+ }
+
+ if (hasExternalStorage())
+ return DeclarationOnly;
+
+ // [dcl.link] p7:
+ // A declaration directly contained in a linkage-specification is treated
+ // as if it contains the extern specifier for the purpose of determining
+ // the linkage of the declared name and whether it is a definition.
+ if (isSingleLineLanguageLinkage(*this))
+ return DeclarationOnly;
+
+ // C99 6.9.2p2:
+ // A declaration of an object that has file scope without an initializer,
+ // and without a storage class specifier or the scs 'static', constitutes
+ // a tentative definition.
+ // No such thing in C++.
+ if (!C.getLangOpts().CPlusPlus && isFileVarDecl())
+ return TentativeDefinition;
+
+ // What's left is (in C, block-scope) declarations without initializers or
+ // external storage. These are definitions.
+ return Definition;
+}
+
+VarDecl *VarDecl::getActingDefinition() {
+ DefinitionKind Kind = isThisDeclarationADefinition();
+ if (Kind != TentativeDefinition)
+ return nullptr;
+
+ VarDecl *LastTentative = nullptr;
+ VarDecl *First = getFirstDecl();
+ for (auto I : First->redecls()) {
+ Kind = I->isThisDeclarationADefinition();
+ if (Kind == Definition)
+ return nullptr;
+ if (Kind == TentativeDefinition)
+ LastTentative = I;
+ }
+ return LastTentative;
+}
+
+VarDecl *VarDecl::getDefinition(ASTContext &C) {
+ VarDecl *First = getFirstDecl();
+ for (auto I : First->redecls()) {
+ if (I->isThisDeclarationADefinition(C) == Definition)
+ return I;
+ }
+ return nullptr;
+}
+
+VarDecl::DefinitionKind VarDecl::hasDefinition(ASTContext &C) const {
+ DefinitionKind Kind = DeclarationOnly;
+
+ const VarDecl *First = getFirstDecl();
+ for (auto I : First->redecls()) {
+ Kind = std::max(Kind, I->isThisDeclarationADefinition(C));
+ if (Kind == Definition)
+ break;
+ }
+
+ return Kind;
+}
+
+const Expr *VarDecl::getAnyInitializer(const VarDecl *&D) const {
+ for (auto I : redecls()) {
+ if (auto Expr = I->getInit()) {
+ D = I;
+ return Expr;
+ }
+ }
+ return nullptr;
+}
+
+bool VarDecl::hasInit() const {
+ if (auto *P = dyn_cast<ParmVarDecl>(this))
+ if (P->hasUnparsedDefaultArg() || P->hasUninstantiatedDefaultArg())
+ return false;
+
+ return !Init.isNull();
+}
+
+Expr *VarDecl::getInit() {
+ if (!hasInit())
+ return nullptr;
+
+ if (auto *S = Init.dyn_cast<Stmt *>())
+ return cast<Expr>(S);
+
+ return cast_or_null<Expr>(Init.get<EvaluatedStmt *>()->Value);
+}
+
+Stmt **VarDecl::getInitAddress() {
+ if (auto *ES = Init.dyn_cast<EvaluatedStmt *>())
+ return &ES->Value;
+
+ return Init.getAddrOfPtr1();
+}
+
+VarDecl *VarDecl::getInitializingDeclaration() {
+ VarDecl *Def = nullptr;
+ for (auto I : redecls()) {
+ if (I->hasInit())
+ return I;
+
+ if (I->isThisDeclarationADefinition()) {
+ if (isStaticDataMember())
+ return I;
+ Def = I;
+ }
+ }
+ return Def;
+}
+
+bool VarDecl::isOutOfLine() const {
+ if (Decl::isOutOfLine())
+ return true;
+
+ if (!isStaticDataMember())
+ return false;
+
+ // If this static data member was instantiated from a static data member of
+ // a class template, check whether that static data member was defined
+ // out-of-line.
+ if (VarDecl *VD = getInstantiatedFromStaticDataMember())
+ return VD->isOutOfLine();
+
+ return false;
+}
+
+void VarDecl::setInit(Expr *I) {
+ if (auto *Eval = Init.dyn_cast<EvaluatedStmt *>()) {
+ Eval->~EvaluatedStmt();
+ getASTContext().Deallocate(Eval);
+ }
+
+ Init = I;
+}
+
+bool VarDecl::mightBeUsableInConstantExpressions(const ASTContext &C) const {
+ const LangOptions &Lang = C.getLangOpts();
+
+ // OpenCL permits const integral variables to be used in constant
+ // expressions, like in C++98.
+ if (!Lang.CPlusPlus && !Lang.OpenCL)
+ return false;
+
+ // Function parameters are never usable in constant expressions.
+ if (isa<ParmVarDecl>(this))
+ return false;
+
+ // The values of weak variables are never usable in constant expressions.
+ if (isWeak())
+ return false;
+
+ // In C++11, any variable of reference type can be used in a constant
+ // expression if it is initialized by a constant expression.
+ if (Lang.CPlusPlus11 && getType()->isReferenceType())
+ return true;
+
+ // Only const objects can be used in constant expressions in C++. C++98 does
+ // not require the variable to be non-volatile, but we consider this to be a
+ // defect.
+ if (!getType().isConstant(C) || getType().isVolatileQualified())
+ return false;
+
+ // In C++, const, non-volatile variables of integral or enumeration types
+ // can be used in constant expressions.
+ if (getType()->isIntegralOrEnumerationType())
+ return true;
+
+ // Additionally, in C++11, non-volatile constexpr variables can be used in
+ // constant expressions.
+ return Lang.CPlusPlus11 && isConstexpr();
+}
+
+bool VarDecl::isUsableInConstantExpressions(const ASTContext &Context) const {
+ // C++2a [expr.const]p3:
+ // A variable is usable in constant expressions after its initializing
+ // declaration is encountered...
+ const VarDecl *DefVD = nullptr;
+ const Expr *Init = getAnyInitializer(DefVD);
+ if (!Init || Init->isValueDependent() || getType()->isDependentType())
+ return false;
+ // ... if it is a constexpr variable, or it is of reference type or of
+ // const-qualified integral or enumeration type, ...
+ if (!DefVD->mightBeUsableInConstantExpressions(Context))
+ return false;
+ // ... and its initializer is a constant initializer.
+ if (Context.getLangOpts().CPlusPlus && !DefVD->hasConstantInitialization())
+ return false;
+ // C++98 [expr.const]p1:
+ // An integral constant-expression can involve only [...] const variables
+ // or static data members of integral or enumeration types initialized with
+ // [integer] constant expressions (dcl.init)
+ if ((Context.getLangOpts().CPlusPlus || Context.getLangOpts().OpenCL) &&
+ !Context.getLangOpts().CPlusPlus11 && !DefVD->hasICEInitializer(Context))
+ return false;
+ return true;
+}
+
+/// Convert the initializer for this declaration to the elaborated EvaluatedStmt
+/// form, which contains extra information on the evaluated value of the
+/// initializer.
+EvaluatedStmt *VarDecl::ensureEvaluatedStmt() const {
+ auto *Eval = Init.dyn_cast<EvaluatedStmt *>();
+ if (!Eval) {
+ // Note: EvaluatedStmt contains an APValue, which usually holds
+ // resources not allocated from the ASTContext. We need to do some
+ // work to avoid leaking those, but we do so in VarDecl::evaluateValue
+ // where we can detect whether there's anything to clean up or not.
+ Eval = new (getASTContext()) EvaluatedStmt;
+ Eval->Value = Init.get<Stmt *>();
+ Init = Eval;
+ }
+ return Eval;
+}
+
+EvaluatedStmt *VarDecl::getEvaluatedStmt() const {
+ return Init.dyn_cast<EvaluatedStmt *>();
+}
+
+APValue *VarDecl::evaluateValue() const {
+ SmallVector<PartialDiagnosticAt, 8> Notes;
+ return evaluateValue(Notes);
+}
+
+APValue *VarDecl::evaluateValue(
+ SmallVectorImpl<PartialDiagnosticAt> &Notes) const {
+ EvaluatedStmt *Eval = ensureEvaluatedStmt();
+
+ const auto *Init = cast<Expr>(Eval->Value);
+ assert(!Init->isValueDependent());
+
+ // We only produce notes indicating why an initializer is non-constant the
+ // first time it is evaluated. FIXME: The notes won't always be emitted the
+ // first time we try evaluation, so might not be produced at all.
+ if (Eval->WasEvaluated)
+ return Eval->Evaluated.isAbsent() ? nullptr : &Eval->Evaluated;
+
+ if (Eval->IsEvaluating) {
+ // FIXME: Produce a diagnostic for self-initialization.
+ return nullptr;
+ }
+
+ Eval->IsEvaluating = true;
+
+ bool Result = Init->EvaluateAsInitializer(Eval->Evaluated, getASTContext(),
+ this, Notes);
+
+ // Ensure the computed APValue is cleaned up later if evaluation succeeded,
+ // or that it's empty (so that there's nothing to clean up) if evaluation
+ // failed.
+ if (!Result)
+ Eval->Evaluated = APValue();
+ else if (Eval->Evaluated.needsCleanup())
+ getASTContext().addDestruction(&Eval->Evaluated);
+
+ Eval->IsEvaluating = false;
+ Eval->WasEvaluated = true;
+
+ return Result ? &Eval->Evaluated : nullptr;
+}
+
+APValue *VarDecl::getEvaluatedValue() const {
+ if (EvaluatedStmt *Eval = getEvaluatedStmt())
+ if (Eval->WasEvaluated)
+ return &Eval->Evaluated;
+
+ return nullptr;
+}
+
+bool VarDecl::hasICEInitializer(const ASTContext &Context) const {
+ const Expr *Init = getInit();
+ assert(Init && "no initializer");
+
+ EvaluatedStmt *Eval = ensureEvaluatedStmt();
+ if (!Eval->CheckedForICEInit) {
+ Eval->CheckedForICEInit = true;
+ Eval->HasICEInit = Init->isIntegerConstantExpr(Context);
+ }
+ return Eval->HasICEInit;
+}
+
+bool VarDecl::hasConstantInitialization() const {
+ // In C, all globals (and only globals) have constant initialization.
+ if (hasGlobalStorage() && !getASTContext().getLangOpts().CPlusPlus)
+ return true;
+
+ // In C++, it depends on whether the evaluation at the point of definition
+ // was evaluatable as a constant initializer.
+ if (EvaluatedStmt *Eval = getEvaluatedStmt())
+ return Eval->HasConstantInitialization;
+
+ return false;
+}
+
+bool VarDecl::checkForConstantInitialization(
+ SmallVectorImpl<PartialDiagnosticAt> &Notes) const {
+ EvaluatedStmt *Eval = ensureEvaluatedStmt();
+ // If we ask for the value before we know whether we have a constant
+ // initializer, we can compute the wrong value (for example, due to
+ // std::is_constant_evaluated()).
+ assert(!Eval->WasEvaluated &&
+ "already evaluated var value before checking for constant init");
+ assert(getASTContext().getLangOpts().CPlusPlus && "only meaningful in C++");
+
+ assert(!cast<Expr>(Eval->Value)->isValueDependent());
+
+ // Evaluate the initializer to check whether it's a constant expression.
+ Eval->HasConstantInitialization = evaluateValue(Notes) && Notes.empty();
+ return Eval->HasConstantInitialization;
+}
+
+bool VarDecl::isParameterPack() const {
+ return isa<PackExpansionType>(getType());
+}
+
+template<typename DeclT>
+static DeclT *getDefinitionOrSelf(DeclT *D) {
+ assert(D);
+ if (auto *Def = D->getDefinition())
+ return Def;
+ return D;
+}
+
+bool VarDecl::isEscapingByref() const {
+ return hasAttr<BlocksAttr>() && NonParmVarDeclBits.EscapingByref;
+}
+
+bool VarDecl::isNonEscapingByref() const {
+ return hasAttr<BlocksAttr>() && !NonParmVarDeclBits.EscapingByref;
+}
+
+VarDecl *VarDecl::getTemplateInstantiationPattern() const {
+ const VarDecl *VD = this;
+
+ // If this is an instantiated member, walk back to the template from which
+ // it was instantiated.
+ if (MemberSpecializationInfo *MSInfo = VD->getMemberSpecializationInfo()) {
+ if (isTemplateInstantiation(MSInfo->getTemplateSpecializationKind())) {
+ VD = VD->getInstantiatedFromStaticDataMember();
+ while (auto *NewVD = VD->getInstantiatedFromStaticDataMember())
+ VD = NewVD;
+ }
+ }
+
+ // If it's an instantiated variable template specialization, find the
+ // template or partial specialization from which it was instantiated.
+ if (auto *VDTemplSpec = dyn_cast<VarTemplateSpecializationDecl>(VD)) {
+ if (isTemplateInstantiation(VDTemplSpec->getTemplateSpecializationKind())) {
+ auto From = VDTemplSpec->getInstantiatedFrom();
+ if (auto *VTD = From.dyn_cast<VarTemplateDecl *>()) {
+ while (!VTD->isMemberSpecialization()) {
+ auto *NewVTD = VTD->getInstantiatedFromMemberTemplate();
+ if (!NewVTD)
+ break;
+ VTD = NewVTD;
+ }
+ return getDefinitionOrSelf(VTD->getTemplatedDecl());
+ }
+ if (auto *VTPSD =
+ From.dyn_cast<VarTemplatePartialSpecializationDecl *>()) {
+ while (!VTPSD->isMemberSpecialization()) {
+ auto *NewVTPSD = VTPSD->getInstantiatedFromMember();
+ if (!NewVTPSD)
+ break;
+ VTPSD = NewVTPSD;
+ }
+ return getDefinitionOrSelf<VarDecl>(VTPSD);
+ }
+ }
+ }
+
+ // If this is the pattern of a variable template, find where it was
+ // instantiated from. FIXME: Is this necessary?
+ if (VarTemplateDecl *VarTemplate = VD->getDescribedVarTemplate()) {
+ while (!VarTemplate->isMemberSpecialization()) {
+ auto *NewVT = VarTemplate->getInstantiatedFromMemberTemplate();
+ if (!NewVT)
+ break;
+ VarTemplate = NewVT;
+ }
+
+ return getDefinitionOrSelf(VarTemplate->getTemplatedDecl());
+ }
+
+ if (VD == this)
+ return nullptr;
+ return getDefinitionOrSelf(const_cast<VarDecl*>(VD));
+}
+
+VarDecl *VarDecl::getInstantiatedFromStaticDataMember() const {
+ if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
+ return cast<VarDecl>(MSI->getInstantiatedFrom());
+
+ return nullptr;
+}
+
+TemplateSpecializationKind VarDecl::getTemplateSpecializationKind() const {
+ if (const auto *Spec = dyn_cast<VarTemplateSpecializationDecl>(this))
+ return Spec->getSpecializationKind();
+
+ if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
+ return MSI->getTemplateSpecializationKind();
+
+ return TSK_Undeclared;
+}
+
+TemplateSpecializationKind
+VarDecl::getTemplateSpecializationKindForInstantiation() const {
+ if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
+ return MSI->getTemplateSpecializationKind();
+
+ if (const auto *Spec = dyn_cast<VarTemplateSpecializationDecl>(this))
+ return Spec->getSpecializationKind();
+
+ return TSK_Undeclared;
+}
+
+SourceLocation VarDecl::getPointOfInstantiation() const {
+ if (const auto *Spec = dyn_cast<VarTemplateSpecializationDecl>(this))
+ return Spec->getPointOfInstantiation();
+
+ if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
+ return MSI->getPointOfInstantiation();
+
+ return SourceLocation();
+}
+
+VarTemplateDecl *VarDecl::getDescribedVarTemplate() const {
+ return getASTContext().getTemplateOrSpecializationInfo(this)
+ .dyn_cast<VarTemplateDecl *>();
+}
+
+void VarDecl::setDescribedVarTemplate(VarTemplateDecl *Template) {
+ getASTContext().setTemplateOrSpecializationInfo(this, Template);
+}
+
+bool VarDecl::isKnownToBeDefined() const {
+ const auto &LangOpts = getASTContext().getLangOpts();
+ // In CUDA mode without relocatable device code, variables of form 'extern
+ // __shared__ Foo foo[]' are pointers to the base of the GPU core's shared
+ // memory pool. These are never undefined variables, even if they appear
+ // inside of an anon namespace or static function.
+ //
+ // With CUDA relocatable device code enabled, these variables don't get
+ // special handling; they're treated like regular extern variables.
+ if (LangOpts.CUDA && !LangOpts.GPURelocatableDeviceCode &&
+ hasExternalStorage() && hasAttr<CUDASharedAttr>() &&
+ isa<IncompleteArrayType>(getType()))
+ return true;
+
+ return hasDefinition();
+}
+
+bool VarDecl::isNoDestroy(const ASTContext &Ctx) const {
+ return hasGlobalStorage() && (hasAttr<NoDestroyAttr>() ||
+ (!Ctx.getLangOpts().RegisterStaticDestructors &&
+ !hasAttr<AlwaysDestroyAttr>()));
+}
+
+QualType::DestructionKind
+VarDecl::needsDestruction(const ASTContext &Ctx) const {
+ if (EvaluatedStmt *Eval = getEvaluatedStmt())
+ if (Eval->HasConstantDestruction)
+ return QualType::DK_none;
+
+ if (isNoDestroy(Ctx))
+ return QualType::DK_none;
+
+ return getType().isDestructedType();
+}
+
+MemberSpecializationInfo *VarDecl::getMemberSpecializationInfo() const {
+ if (isStaticDataMember())
+ // FIXME: Remove ?
+ // return getASTContext().getInstantiatedFromStaticDataMember(this);
+ return getASTContext().getTemplateOrSpecializationInfo(this)
+ .dyn_cast<MemberSpecializationInfo *>();
+ return nullptr;
+}
+
+void VarDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK,
+ SourceLocation PointOfInstantiation) {
+ assert((isa<VarTemplateSpecializationDecl>(this) ||
+ getMemberSpecializationInfo()) &&
+ "not a variable or static data member template specialization");
+
+ if (VarTemplateSpecializationDecl *Spec =
+ dyn_cast<VarTemplateSpecializationDecl>(this)) {
+ Spec->setSpecializationKind(TSK);
+ if (TSK != TSK_ExplicitSpecialization &&
+ PointOfInstantiation.isValid() &&
+ Spec->getPointOfInstantiation().isInvalid()) {
+ Spec->setPointOfInstantiation(PointOfInstantiation);
+ if (ASTMutationListener *L = getASTContext().getASTMutationListener())
+ L->InstantiationRequested(this);
+ }
+ } else if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo()) {
+ MSI->setTemplateSpecializationKind(TSK);
+ if (TSK != TSK_ExplicitSpecialization && PointOfInstantiation.isValid() &&
+ MSI->getPointOfInstantiation().isInvalid()) {
+ MSI->setPointOfInstantiation(PointOfInstantiation);
+ if (ASTMutationListener *L = getASTContext().getASTMutationListener())
+ L->InstantiationRequested(this);
+ }
+ }
+}
+
+void
+VarDecl::setInstantiationOfStaticDataMember(VarDecl *VD,
+ TemplateSpecializationKind TSK) {
+ assert(getASTContext().getTemplateOrSpecializationInfo(this).isNull() &&
+ "Previous template or instantiation?");
+ getASTContext().setInstantiatedFromStaticDataMember(this, VD, TSK);
+}
+
+//===----------------------------------------------------------------------===//
+// ParmVarDecl Implementation
+//===----------------------------------------------------------------------===//
+
+ParmVarDecl *ParmVarDecl::Create(ASTContext &C, DeclContext *DC,
+ SourceLocation StartLoc,
+ SourceLocation IdLoc, IdentifierInfo *Id,
+ QualType T, TypeSourceInfo *TInfo,
+ StorageClass S, Expr *DefArg) {
+ return new (C, DC) ParmVarDecl(ParmVar, C, DC, StartLoc, IdLoc, Id, T, TInfo,
+ S, DefArg);
+}
+
+QualType ParmVarDecl::getOriginalType() const {
+ TypeSourceInfo *TSI = getTypeSourceInfo();
+ QualType T = TSI ? TSI->getType() : getType();
+ if (const auto *DT = dyn_cast<DecayedType>(T))
+ return DT->getOriginalType();
+ return T;
+}
+
+ParmVarDecl *ParmVarDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
+ return new (C, ID)
+ ParmVarDecl(ParmVar, C, nullptr, SourceLocation(), SourceLocation(),
+ nullptr, QualType(), nullptr, SC_None, nullptr);
+}
+
+SourceRange ParmVarDecl::getSourceRange() const {
+ if (!hasInheritedDefaultArg()) {
+ SourceRange ArgRange = getDefaultArgRange();
+ if (ArgRange.isValid())
+ return SourceRange(getOuterLocStart(), ArgRange.getEnd());
+ }
+
+ // DeclaratorDecl considers the range of postfix types as overlapping with the
+ // declaration name, but this is not the case with parameters in ObjC methods.
+ if (isa<ObjCMethodDecl>(getDeclContext()))
+ return SourceRange(DeclaratorDecl::getBeginLoc(), getLocation());
+
+ return DeclaratorDecl::getSourceRange();
+}
+
+bool ParmVarDecl::isDestroyedInCallee() const {
+ if (hasAttr<NSConsumedAttr>())
+ return true;
+
+ auto *RT = getType()->getAs<RecordType>();
+ if (RT && RT->getDecl()->isParamDestroyedInCallee())
+ return true;
+
+ return false;
+}
+
+Expr *ParmVarDecl::getDefaultArg() {
+ assert(!hasUnparsedDefaultArg() && "Default argument is not yet parsed!");
+ assert(!hasUninstantiatedDefaultArg() &&
+ "Default argument is not yet instantiated!");
+
+ Expr *Arg = getInit();
+ if (auto *E = dyn_cast_or_null<FullExpr>(Arg))
+ return E->getSubExpr();
+
+ return Arg;
+}
+
+void ParmVarDecl::setDefaultArg(Expr *defarg) {
+ ParmVarDeclBits.DefaultArgKind = DAK_Normal;
+ Init = defarg;
+}
+
+SourceRange ParmVarDecl::getDefaultArgRange() const {
+ switch (ParmVarDeclBits.DefaultArgKind) {
+ case DAK_None:
+ case DAK_Unparsed:
+ // Nothing we can do here.
+ return SourceRange();
+
+ case DAK_Uninstantiated:
+ return getUninstantiatedDefaultArg()->getSourceRange();
+
+ case DAK_Normal:
+ if (const Expr *E = getInit())
+ return E->getSourceRange();
+
+ // Missing an actual expression, may be invalid.
+ return SourceRange();
+ }
+ llvm_unreachable("Invalid default argument kind.");
+}
+
+void ParmVarDecl::setUninstantiatedDefaultArg(Expr *arg) {
+ ParmVarDeclBits.DefaultArgKind = DAK_Uninstantiated;
+ Init = arg;
+}
+
+Expr *ParmVarDecl::getUninstantiatedDefaultArg() {
+ assert(hasUninstantiatedDefaultArg() &&
+ "Wrong kind of initialization expression!");
+ return cast_or_null<Expr>(Init.get<Stmt *>());
+}
+
+bool ParmVarDecl::hasDefaultArg() const {
+ // FIXME: We should just return false for DAK_None here once callers are
+ // prepared for the case that we encountered an invalid default argument and
+ // were unable to even build an invalid expression.
+ return hasUnparsedDefaultArg() || hasUninstantiatedDefaultArg() ||
+ !Init.isNull();
+}
+
+void ParmVarDecl::setParameterIndexLarge(unsigned parameterIndex) {
+ getASTContext().setParameterIndex(this, parameterIndex);
+ ParmVarDeclBits.ParameterIndex = ParameterIndexSentinel;
+}
+
+unsigned ParmVarDecl::getParameterIndexLarge() const {
+ return getASTContext().getParameterIndex(this);
+}
+
+//===----------------------------------------------------------------------===//
+// FunctionDecl Implementation
+//===----------------------------------------------------------------------===//
+
+FunctionDecl::FunctionDecl(Kind DK, ASTContext &C, DeclContext *DC,
+ SourceLocation StartLoc,
+ const DeclarationNameInfo &NameInfo, QualType T,
+ TypeSourceInfo *TInfo, StorageClass S,
+ bool isInlineSpecified,
+ ConstexprSpecKind ConstexprKind,
+ Expr *TrailingRequiresClause)
+ : DeclaratorDecl(DK, DC, NameInfo.getLoc(), NameInfo.getName(), T, TInfo,
+ StartLoc),
+ DeclContext(DK), redeclarable_base(C), Body(), ODRHash(0),
+ EndRangeLoc(NameInfo.getEndLoc()), DNLoc(NameInfo.getInfo()) {
+ assert(T.isNull() || T->isFunctionType());
+ FunctionDeclBits.SClass = S;
+ FunctionDeclBits.IsInline = isInlineSpecified;
+ FunctionDeclBits.IsInlineSpecified = isInlineSpecified;
+ FunctionDeclBits.IsVirtualAsWritten = false;
+ FunctionDeclBits.IsPure = false;
+ FunctionDeclBits.HasInheritedPrototype = false;
+ FunctionDeclBits.HasWrittenPrototype = true;
+ FunctionDeclBits.IsDeleted = false;
+ FunctionDeclBits.IsTrivial = false;
+ FunctionDeclBits.IsTrivialForCall = false;
+ FunctionDeclBits.IsDefaulted = false;
+ FunctionDeclBits.IsExplicitlyDefaulted = false;
+ FunctionDeclBits.HasDefaultedFunctionInfo = false;
+ FunctionDeclBits.HasImplicitReturnZero = false;
+ FunctionDeclBits.IsLateTemplateParsed = false;
+ FunctionDeclBits.ConstexprKind = static_cast<uint64_t>(ConstexprKind);
+ FunctionDeclBits.InstantiationIsPending = false;
+ FunctionDeclBits.UsesSEHTry = false;
+ FunctionDeclBits.UsesFPIntrin = false;
+ FunctionDeclBits.HasSkippedBody = false;
+ FunctionDeclBits.WillHaveBody = false;
+ FunctionDeclBits.IsMultiVersion = false;
+ FunctionDeclBits.IsCopyDeductionCandidate = false;
+ FunctionDeclBits.HasODRHash = false;
+ if (TrailingRequiresClause)
+ setTrailingRequiresClause(TrailingRequiresClause);
+}
+
+void FunctionDecl::getNameForDiagnostic(
+ raw_ostream &OS, const PrintingPolicy &Policy, bool Qualified) const {
+ NamedDecl::getNameForDiagnostic(OS, Policy, Qualified);
+ const TemplateArgumentList *TemplateArgs = getTemplateSpecializationArgs();
+ if (TemplateArgs)
+ printTemplateArgumentList(OS, TemplateArgs->asArray(), Policy);
+}
+
+bool FunctionDecl::isVariadic() const {
+ if (const auto *FT = getType()->getAs<FunctionProtoType>())
+ return FT->isVariadic();
+ return false;
+}
+
+FunctionDecl::DefaultedFunctionInfo *
+FunctionDecl::DefaultedFunctionInfo::Create(ASTContext &Context,
+ ArrayRef<DeclAccessPair> Lookups) {
+ DefaultedFunctionInfo *Info = new (Context.Allocate(
+ totalSizeToAlloc<DeclAccessPair>(Lookups.size()),
+ std::max(alignof(DefaultedFunctionInfo), alignof(DeclAccessPair))))
+ DefaultedFunctionInfo;
+ Info->NumLookups = Lookups.size();
+ std::uninitialized_copy(Lookups.begin(), Lookups.end(),
+ Info->getTrailingObjects<DeclAccessPair>());
+ return Info;
+}
+
+void FunctionDecl::setDefaultedFunctionInfo(DefaultedFunctionInfo *Info) {
+ assert(!FunctionDeclBits.HasDefaultedFunctionInfo && "already have this");
+ assert(!Body && "can't replace function body with defaulted function info");
+
+ FunctionDeclBits.HasDefaultedFunctionInfo = true;
+ DefaultedInfo = Info;
+}
+
+FunctionDecl::DefaultedFunctionInfo *
+FunctionDecl::getDefaultedFunctionInfo() const {
+ return FunctionDeclBits.HasDefaultedFunctionInfo ? DefaultedInfo : nullptr;
+}
+
+bool FunctionDecl::hasBody(const FunctionDecl *&Definition) const {
+ for (auto I : redecls()) {
+ if (I->doesThisDeclarationHaveABody()) {
+ Definition = I;
+ return true;
+ }
+ }
+
+ return false;
+}
+
+bool FunctionDecl::hasTrivialBody() const {
+ Stmt *S = getBody();
+ if (!S) {
+ // Since we don't have a body for this function, we don't know if it's
+ // trivial or not.
+ return false;
+ }
+
+ if (isa<CompoundStmt>(S) && cast<CompoundStmt>(S)->body_empty())
+ return true;
+ return false;
+}
+
+bool FunctionDecl::isThisDeclarationInstantiatedFromAFriendDefinition() const {
+ if (!getFriendObjectKind())
+ return false;
+
+ // Check for a friend function instantiated from a friend function
+ // definition in a templated class.
+ if (const FunctionDecl *InstantiatedFrom =
+ getInstantiatedFromMemberFunction())
+ return InstantiatedFrom->getFriendObjectKind() &&
+ InstantiatedFrom->isThisDeclarationADefinition();
+
+ // Check for a friend function template instantiated from a friend
+ // function template definition in a templated class.
+ if (const FunctionTemplateDecl *Template = getDescribedFunctionTemplate()) {
+ if (const FunctionTemplateDecl *InstantiatedFrom =
+ Template->getInstantiatedFromMemberTemplate())
+ return InstantiatedFrom->getFriendObjectKind() &&
+ InstantiatedFrom->isThisDeclarationADefinition();
+ }
+
+ return false;
+}
+
+bool FunctionDecl::isDefined(const FunctionDecl *&Definition,
+ bool CheckForPendingFriendDefinition) const {
+ for (const FunctionDecl *FD : redecls()) {
+ if (FD->isThisDeclarationADefinition()) {
+ Definition = FD;
+ return true;
+ }
+
+ // If this is a friend function defined in a class template, it does not
+ // have a body until it is used, nevertheless it is a definition, see
+ // [temp.inst]p2:
+ //
+ // ... for the purpose of determining whether an instantiated redeclaration
+ // is valid according to [basic.def.odr] and [class.mem], a declaration that
+ // corresponds to a definition in the template is considered to be a
+ // definition.
+ //
+ // The following code must produce redefinition error:
+ //
+ // template<typename T> struct C20 { friend void func_20() {} };
+ // C20<int> c20i;
+ // void func_20() {}
+ //
+ if (CheckForPendingFriendDefinition &&
+ FD->isThisDeclarationInstantiatedFromAFriendDefinition()) {
+ Definition = FD;
+ return true;
+ }
+ }
+
+ return false;
+}
+
+Stmt *FunctionDecl::getBody(const FunctionDecl *&Definition) const {
+ if (!hasBody(Definition))
+ return nullptr;
+
+ assert(!Definition->FunctionDeclBits.HasDefaultedFunctionInfo &&
+ "definition should not have a body");
+ if (Definition->Body)
+ return Definition->Body.get(getASTContext().getExternalSource());
+
+ return nullptr;
+}
+
+void FunctionDecl::setBody(Stmt *B) {
+ FunctionDeclBits.HasDefaultedFunctionInfo = false;
+ Body = LazyDeclStmtPtr(B);
+ if (B)
+ EndRangeLoc = B->getEndLoc();
+}
+
+void FunctionDecl::setPure(bool P) {
+ FunctionDeclBits.IsPure = P;
+ if (P)
+ if (auto *Parent = dyn_cast<CXXRecordDecl>(getDeclContext()))
+ Parent->markedVirtualFunctionPure();
+}
+
+template<std::size_t Len>
+static bool isNamed(const NamedDecl *ND, const char (&Str)[Len]) {
+ IdentifierInfo *II = ND->getIdentifier();
+ return II && II->isStr(Str);
+}
+
+bool FunctionDecl::isMain() const {
+ const TranslationUnitDecl *tunit =
+ dyn_cast<TranslationUnitDecl>(getDeclContext()->getRedeclContext());
+ return tunit &&
+ !tunit->getASTContext().getLangOpts().Freestanding &&
+ isNamed(this, "main");
+}
+
+bool FunctionDecl::isMSVCRTEntryPoint() const {
+ const TranslationUnitDecl *TUnit =
+ dyn_cast<TranslationUnitDecl>(getDeclContext()->getRedeclContext());
+ if (!TUnit)
+ return false;
+
+ // Even though we aren't really targeting MSVCRT if we are freestanding,
+ // semantic analysis for these functions remains the same.
+
+ // MSVCRT entry points only exist on MSVCRT targets.
+ if (!TUnit->getASTContext().getTargetInfo().getTriple().isOSMSVCRT())
+ return false;
+
+ // Nameless functions like constructors cannot be entry points.
+ if (!getIdentifier())
+ return false;
+
+ return llvm::StringSwitch<bool>(getName())
+ .Cases("main", // an ANSI console app
+ "wmain", // a Unicode console App
+ "WinMain", // an ANSI GUI app
+ "wWinMain", // a Unicode GUI app
+ "DllMain", // a DLL
+ true)
+ .Default(false);
+}
+
+bool FunctionDecl::isReservedGlobalPlacementOperator() const {
+ assert(getDeclName().getNameKind() == DeclarationName::CXXOperatorName);
+ assert(getDeclName().getCXXOverloadedOperator() == OO_New ||
+ getDeclName().getCXXOverloadedOperator() == OO_Delete ||
+ getDeclName().getCXXOverloadedOperator() == OO_Array_New ||
+ getDeclName().getCXXOverloadedOperator() == OO_Array_Delete);
+
+ if (!getDeclContext()->getRedeclContext()->isTranslationUnit())
+ return false;
+
+ const auto *proto = getType()->castAs<FunctionProtoType>();
+ if (proto->getNumParams() != 2 || proto->isVariadic())
+ return false;
+
+ ASTContext &Context =
+ cast<TranslationUnitDecl>(getDeclContext()->getRedeclContext())
+ ->getASTContext();
+
+ // The result type and first argument type are constant across all
+ // these operators. The second argument must be exactly void*.
+ return (proto->getParamType(1).getCanonicalType() == Context.VoidPtrTy);
+}
+
+bool FunctionDecl::isReplaceableGlobalAllocationFunction(
+ Optional<unsigned> *AlignmentParam, bool *IsNothrow) const {
+ if (getDeclName().getNameKind() != DeclarationName::CXXOperatorName)
+ return false;
+ if (getDeclName().getCXXOverloadedOperator() != OO_New &&
+ getDeclName().getCXXOverloadedOperator() != OO_Delete &&
+ getDeclName().getCXXOverloadedOperator() != OO_Array_New &&
+ getDeclName().getCXXOverloadedOperator() != OO_Array_Delete)
+ return false;
+
+ if (isa<CXXRecordDecl>(getDeclContext()))
+ return false;
+
+ // This can only fail for an invalid 'operator new' declaration.
+ if (!getDeclContext()->getRedeclContext()->isTranslationUnit())
+ return false;
+
+ const auto *FPT = getType()->castAs<FunctionProtoType>();
+ if (FPT->getNumParams() == 0 || FPT->getNumParams() > 3 || FPT->isVariadic())
+ return false;
+
+ // If this is a single-parameter function, it must be a replaceable global
+ // allocation or deallocation function.
+ if (FPT->getNumParams() == 1)
+ return true;
+
+ unsigned Params = 1;
+ QualType Ty = FPT->getParamType(Params);
+ ASTContext &Ctx = getASTContext();
+
+ auto Consume = [&] {
+ ++Params;
+ Ty = Params < FPT->getNumParams() ? FPT->getParamType(Params) : QualType();
+ };
+
+ // In C++14, the next parameter can be a 'std::size_t' for sized delete.
+ bool IsSizedDelete = false;
+ if (Ctx.getLangOpts().SizedDeallocation &&
+ (getDeclName().getCXXOverloadedOperator() == OO_Delete ||
+ getDeclName().getCXXOverloadedOperator() == OO_Array_Delete) &&
+ Ctx.hasSameType(Ty, Ctx.getSizeType())) {
+ IsSizedDelete = true;
+ Consume();
+ }
+
+ // In C++17, the next parameter can be a 'std::align_val_t' for aligned
+ // new/delete.
+ if (Ctx.getLangOpts().AlignedAllocation && !Ty.isNull() && Ty->isAlignValT()) {
+ Consume();
+ if (AlignmentParam)
+ *AlignmentParam = Params;
+ }
+
+ // Finally, if this is not a sized delete, the final parameter can
+ // be a 'const std::nothrow_t&'.
+ if (!IsSizedDelete && !Ty.isNull() && Ty->isReferenceType()) {
+ Ty = Ty->getPointeeType();
+ if (Ty.getCVRQualifiers() != Qualifiers::Const)
+ return false;
+ if (Ty->isNothrowT()) {
+ if (IsNothrow)
+ *IsNothrow = true;
+ Consume();
+ }
+ }
+
+ return Params == FPT->getNumParams();
+}
+
+bool FunctionDecl::isInlineBuiltinDeclaration() const {
+ if (!getBuiltinID())
+ return false;
+
+ const FunctionDecl *Definition;
+ return hasBody(Definition) && Definition->isInlineSpecified();
+}
+
+bool FunctionDecl::isDestroyingOperatorDelete() const {
+ // C++ P0722:
+ // Within a class C, a single object deallocation function with signature
+ // (T, std::destroying_delete_t, <more params>)
+ // is a destroying operator delete.
+ if (!isa<CXXMethodDecl>(this) || getOverloadedOperator() != OO_Delete ||
+ getNumParams() < 2)
+ return false;
+
+ auto *RD = getParamDecl(1)->getType()->getAsCXXRecordDecl();
+ return RD && RD->isInStdNamespace() && RD->getIdentifier() &&
+ RD->getIdentifier()->isStr("destroying_delete_t");
+}
+
+LanguageLinkage FunctionDecl::getLanguageLinkage() const {
+ return getDeclLanguageLinkage(*this);
+}
+
+bool FunctionDecl::isExternC() const {
+ return isDeclExternC(*this);
+}
+
+bool FunctionDecl::isInExternCContext() const {
+ if (hasAttr<OpenCLKernelAttr>())
+ return true;
+ return getLexicalDeclContext()->isExternCContext();
+}
+
+bool FunctionDecl::isInExternCXXContext() const {
+ return getLexicalDeclContext()->isExternCXXContext();
+}
+
+bool FunctionDecl::isGlobal() const {
+ if (const auto *Method = dyn_cast<CXXMethodDecl>(this))
+ return Method->isStatic();
+
+ if (getCanonicalDecl()->getStorageClass() == SC_Static)
+ return false;
+
+ for (const DeclContext *DC = getDeclContext();
+ DC->isNamespace();
+ DC = DC->getParent()) {
+ if (const auto *Namespace = cast<NamespaceDecl>(DC)) {
+ if (!Namespace->getDeclName())
+ return false;
+ break;
+ }
+ }
+
+ return true;
+}
+
+bool FunctionDecl::isNoReturn() const {
+ if (hasAttr<NoReturnAttr>() || hasAttr<CXX11NoReturnAttr>() ||
+ hasAttr<C11NoReturnAttr>())
+ return true;
+
+ if (auto *FnTy = getType()->getAs<FunctionType>())
+ return FnTy->getNoReturnAttr();
+
+ return false;
+}
+
+
+MultiVersionKind FunctionDecl::getMultiVersionKind() const {
+ if (hasAttr<TargetAttr>())
+ return MultiVersionKind::Target;
+ if (hasAttr<CPUDispatchAttr>())
+ return MultiVersionKind::CPUDispatch;
+ if (hasAttr<CPUSpecificAttr>())
+ return MultiVersionKind::CPUSpecific;
+ return MultiVersionKind::None;
+}
+
+bool FunctionDecl::isCPUDispatchMultiVersion() const {
+ return isMultiVersion() && hasAttr<CPUDispatchAttr>();
+}
+
+bool FunctionDecl::isCPUSpecificMultiVersion() const {
+ return isMultiVersion() && hasAttr<CPUSpecificAttr>();
+}
+
+bool FunctionDecl::isTargetMultiVersion() const {
+ return isMultiVersion() && hasAttr<TargetAttr>();
+}
+
+void
+FunctionDecl::setPreviousDeclaration(FunctionDecl *PrevDecl) {
+ redeclarable_base::setPreviousDecl(PrevDecl);
+
+ if (FunctionTemplateDecl *FunTmpl = getDescribedFunctionTemplate()) {
+ FunctionTemplateDecl *PrevFunTmpl
+ = PrevDecl? PrevDecl->getDescribedFunctionTemplate() : nullptr;
+ assert((!PrevDecl || PrevFunTmpl) && "Function/function template mismatch");
+ FunTmpl->setPreviousDecl(PrevFunTmpl);
+ }
+
+ if (PrevDecl && PrevDecl->isInlined())
+ setImplicitlyInline(true);
+}
+
+FunctionDecl *FunctionDecl::getCanonicalDecl() { return getFirstDecl(); }
+
+/// Returns a value indicating whether this function corresponds to a builtin
+/// function.
+///
+/// The function corresponds to a built-in function if it is declared at
+/// translation scope or within an extern "C" block and its name matches with
+/// the name of a builtin. The returned value will be 0 for functions that do
+/// not correspond to a builtin, a value of type \c Builtin::ID if in the
+/// target-independent range \c [1,Builtin::First), or a target-specific builtin
+/// value.
+///
+/// \param ConsiderWrapperFunctions If true, we should consider wrapper
+/// functions as their wrapped builtins. This shouldn't be done in general, but
+/// it's useful in Sema to diagnose calls to wrappers based on their semantics.
+unsigned FunctionDecl::getBuiltinID(bool ConsiderWrapperFunctions) const {
+ unsigned BuiltinID = 0;
+
+ if (const auto *ABAA = getAttr<ArmBuiltinAliasAttr>()) {
+ BuiltinID = ABAA->getBuiltinName()->getBuiltinID();
+ } else if (const auto *A = getAttr<BuiltinAttr>()) {
+ BuiltinID = A->getID();
+ }
+
+ if (!BuiltinID)
+ return 0;
+
+ // If the function is marked "overloadable", it has a different mangled name
+ // and is not the C library function.
+ if (!ConsiderWrapperFunctions && hasAttr<OverloadableAttr>() &&
+ !hasAttr<ArmBuiltinAliasAttr>())
+ return 0;
+
+ ASTContext &Context = getASTContext();
+ if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))
+ return BuiltinID;
+
+ // This function has the name of a known C library
+ // function. Determine whether it actually refers to the C library
+ // function or whether it just has the same name.
+
+ // If this is a static function, it's not a builtin.
+ if (!ConsiderWrapperFunctions && getStorageClass() == SC_Static)
+ return 0;
+
+ // OpenCL v1.2 s6.9.f - The library functions defined in
+ // the C99 standard headers are not available.
+ if (Context.getLangOpts().OpenCL &&
+ Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))
+ return 0;
+
+ // CUDA does not have device-side standard library. printf and malloc are the
+ // only special cases that are supported by device-side runtime.
+ if (Context.getLangOpts().CUDA && hasAttr<CUDADeviceAttr>() &&
+ !hasAttr<CUDAHostAttr>() &&
+ !(BuiltinID == Builtin::BIprintf || BuiltinID == Builtin::BImalloc))
+ return 0;
+
+ // As AMDGCN implementation of OpenMP does not have a device-side standard
+ // library, none of the predefined library functions except printf and malloc
+ // should be treated as a builtin i.e. 0 should be returned for them.
+ if (Context.getTargetInfo().getTriple().isAMDGCN() &&
+ Context.getLangOpts().OpenMPIsDevice &&
+ Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID) &&
+ !(BuiltinID == Builtin::BIprintf || BuiltinID == Builtin::BImalloc))
+ return 0;
+
+ return BuiltinID;
+}
+
+/// getNumParams - Return the number of parameters this function must have
+/// based on its FunctionType. This is the length of the ParamInfo array
+/// after it has been created.
+unsigned FunctionDecl::getNumParams() const {
+ const auto *FPT = getType()->getAs<FunctionProtoType>();
+ return FPT ? FPT->getNumParams() : 0;
+}
+
+void FunctionDecl::setParams(ASTContext &C,
+ ArrayRef<ParmVarDecl *> NewParamInfo) {
+ assert(!ParamInfo && "Already has param info!");
+ assert(NewParamInfo.size() == getNumParams() && "Parameter count mismatch!");
+
+ // Zero params -> null pointer.
+ if (!NewParamInfo.empty()) {
+ ParamInfo = new (C) ParmVarDecl*[NewParamInfo.size()];
+ std::copy(NewParamInfo.begin(), NewParamInfo.end(), ParamInfo);
+ }
+}
+
+/// getMinRequiredArguments - Returns the minimum number of arguments
+/// needed to call this function. This may be fewer than the number of
+/// function parameters, if some of the parameters have default
+/// arguments (in C++) or are parameter packs (C++11).
+unsigned FunctionDecl::getMinRequiredArguments() const {
+ if (!getASTContext().getLangOpts().CPlusPlus)
+ return getNumParams();
+
+ // Note that it is possible for a parameter with no default argument to
+ // follow a parameter with a default argument.
+ unsigned NumRequiredArgs = 0;
+ unsigned MinParamsSoFar = 0;
+ for (auto *Param : parameters()) {
+ if (!Param->isParameterPack()) {
+ ++MinParamsSoFar;
+ if (!Param->hasDefaultArg())
+ NumRequiredArgs = MinParamsSoFar;
+ }
+ }
+ return NumRequiredArgs;
+}
+
+bool FunctionDecl::hasOneParamOrDefaultArgs() const {
+ return getNumParams() == 1 ||
+ (getNumParams() > 1 &&
+ std::all_of(param_begin() + 1, param_end(),
+ [](ParmVarDecl *P) { return P->hasDefaultArg(); }));
+}
+
+/// The combination of the extern and inline keywords under MSVC forces
+/// the function to be required.
+///
+/// Note: This function assumes that we will only get called when isInlined()
+/// would return true for this FunctionDecl.
+bool FunctionDecl::isMSExternInline() const {
+ assert(isInlined() && "expected to get called on an inlined function!");
+
+ const ASTContext &Context = getASTContext();
+ if (!Context.getTargetInfo().getCXXABI().isMicrosoft() &&
+ !hasAttr<DLLExportAttr>())
+ return false;
+
+ for (const FunctionDecl *FD = getMostRecentDecl(); FD;
+ FD = FD->getPreviousDecl())
+ if (!FD->isImplicit() && FD->getStorageClass() == SC_Extern)
+ return true;
+
+ return false;
+}
+
+static bool redeclForcesDefMSVC(const FunctionDecl *Redecl) {
+ if (Redecl->getStorageClass() != SC_Extern)
+ return false;
+
+ for (const FunctionDecl *FD = Redecl->getPreviousDecl(); FD;
+ FD = FD->getPreviousDecl())
+ if (!FD->isImplicit() && FD->getStorageClass() == SC_Extern)
+ return false;
+
+ return true;
+}
+
+static bool RedeclForcesDefC99(const FunctionDecl *Redecl) {
+ // Only consider file-scope declarations in this test.
+ if (!Redecl->getLexicalDeclContext()->isTranslationUnit())
+ return false;
+
+ // Only consider explicit declarations; the presence of a builtin for a
+ // libcall shouldn't affect whether a definition is externally visible.
+ if (Redecl->isImplicit())
+ return false;
+
+ if (!Redecl->isInlineSpecified() || Redecl->getStorageClass() == SC_Extern)
+ return true; // Not an inline definition
+
+ return false;
+}
+
+/// For a function declaration in C or C++, determine whether this
+/// declaration causes the definition to be externally visible.
+///
+/// For instance, this determines if adding the current declaration to the set
+/// of redeclarations of the given functions causes
+/// isInlineDefinitionExternallyVisible to change from false to true.
+bool FunctionDecl::doesDeclarationForceExternallyVisibleDefinition() const {
+ assert(!doesThisDeclarationHaveABody() &&
+ "Must have a declaration without a body.");
+
+ ASTContext &Context = getASTContext();
+
+ if (Context.getLangOpts().MSVCCompat) {
+ const FunctionDecl *Definition;
+ if (hasBody(Definition) && Definition->isInlined() &&
+ redeclForcesDefMSVC(this))
+ return true;
+ }
+
+ if (Context.getLangOpts().CPlusPlus)
+ return false;
+
+ if (Context.getLangOpts().GNUInline || hasAttr<GNUInlineAttr>()) {
+ // With GNU inlining, a declaration with 'inline' but not 'extern', forces
+ // an externally visible definition.
+ //
+ // FIXME: What happens if gnu_inline gets added on after the first
+ // declaration?
+ if (!isInlineSpecified() || getStorageClass() == SC_Extern)
+ return false;
+
+ const FunctionDecl *Prev = this;
+ bool FoundBody = false;
+ while ((Prev = Prev->getPreviousDecl())) {
+ FoundBody |= Prev->doesThisDeclarationHaveABody();
+
+ if (Prev->doesThisDeclarationHaveABody()) {
+ // If it's not the case that both 'inline' and 'extern' are
+ // specified on the definition, then it is always externally visible.
+ if (!Prev->isInlineSpecified() ||
+ Prev->getStorageClass() != SC_Extern)
+ return false;
+ } else if (Prev->isInlineSpecified() &&
+ Prev->getStorageClass() != SC_Extern) {
+ return false;
+ }
+ }
+ return FoundBody;
+ }
+
+ // C99 6.7.4p6:
+ // [...] If all of the file scope declarations for a function in a
+ // translation unit include the inline function specifier without extern,
+ // then the definition in that translation unit is an inline definition.
+ if (isInlineSpecified() && getStorageClass() != SC_Extern)
+ return false;
+ const FunctionDecl *Prev = this;
+ bool FoundBody = false;
+ while ((Prev = Prev->getPreviousDecl())) {
+ FoundBody |= Prev->doesThisDeclarationHaveABody();
+ if (RedeclForcesDefC99(Prev))
+ return false;
+ }
+ return FoundBody;
+}
+
+FunctionTypeLoc FunctionDecl::getFunctionTypeLoc() const {
+ const TypeSourceInfo *TSI = getTypeSourceInfo();
+ return TSI ? TSI->getTypeLoc().IgnoreParens().getAs<FunctionTypeLoc>()
+ : FunctionTypeLoc();
+}
+
+SourceRange FunctionDecl::getReturnTypeSourceRange() const {
+ FunctionTypeLoc FTL = getFunctionTypeLoc();
+ if (!FTL)
+ return SourceRange();
+
+ // Skip self-referential return types.
+ const SourceManager &SM = getASTContext().getSourceManager();
+ SourceRange RTRange = FTL.getReturnLoc().getSourceRange();
+ SourceLocation Boundary = getNameInfo().getBeginLoc();
+ if (RTRange.isInvalid() || Boundary.isInvalid() ||
+ !SM.isBeforeInTranslationUnit(RTRange.getEnd(), Boundary))
+ return SourceRange();
+
+ return RTRange;
+}
+
+SourceRange FunctionDecl::getParametersSourceRange() const {
+ unsigned NP = getNumParams();
+ SourceLocation EllipsisLoc = getEllipsisLoc();
+
+ if (NP == 0 && EllipsisLoc.isInvalid())
+ return SourceRange();
+
+ SourceLocation Begin =
+ NP > 0 ? ParamInfo[0]->getSourceRange().getBegin() : EllipsisLoc;
+ SourceLocation End = EllipsisLoc.isValid()
+ ? EllipsisLoc
+ : ParamInfo[NP - 1]->getSourceRange().getEnd();
+
+ return SourceRange(Begin, End);
+}
+
+SourceRange FunctionDecl::getExceptionSpecSourceRange() const {
+ FunctionTypeLoc FTL = getFunctionTypeLoc();
+ return FTL ? FTL.getExceptionSpecRange() : SourceRange();
+}
+
+/// For an inline function definition in C, or for a gnu_inline function
+/// in C++, determine whether the definition will be externally visible.
+///
+/// Inline function definitions are always available for inlining optimizations.
+/// However, depending on the language dialect, declaration specifiers, and
+/// attributes, the definition of an inline function may or may not be
+/// "externally" visible to other translation units in the program.
+///
+/// In C99, inline definitions are not externally visible by default. However,
+/// if even one of the global-scope declarations is marked "extern inline", the
+/// inline definition becomes externally visible (C99 6.7.4p6).
+///
+/// In GNU89 mode, or if the gnu_inline attribute is attached to the function
+/// definition, we use the GNU semantics for inline, which are nearly the
+/// opposite of C99 semantics. In particular, "inline" by itself will create
+/// an externally visible symbol, but "extern inline" will not create an
+/// externally visible symbol.
+bool FunctionDecl::isInlineDefinitionExternallyVisible() const {
+ assert((doesThisDeclarationHaveABody() || willHaveBody() ||
+ hasAttr<AliasAttr>()) &&
+ "Must be a function definition");
+ assert(isInlined() && "Function must be inline");
+ ASTContext &Context = getASTContext();
+
+ if (Context.getLangOpts().GNUInline || hasAttr<GNUInlineAttr>()) {
+ // Note: If you change the logic here, please change
+ // doesDeclarationForceExternallyVisibleDefinition as well.
+ //
+ // If it's not the case that both 'inline' and 'extern' are
+ // specified on the definition, then this inline definition is
+ // externally visible.
+ if (Context.getLangOpts().CPlusPlus)
+ return false;
+ if (!(isInlineSpecified() && getStorageClass() == SC_Extern))
+ return true;
+
+ // If any declaration is 'inline' but not 'extern', then this definition
+ // is externally visible.
+ for (auto Redecl : redecls()) {
+ if (Redecl->isInlineSpecified() &&
+ Redecl->getStorageClass() != SC_Extern)
+ return true;
+ }
+
+ return false;
+ }
+
+ // The rest of this function is C-only.
+ assert(!Context.getLangOpts().CPlusPlus &&
+ "should not use C inline rules in C++");
+
+ // C99 6.7.4p6:
+ // [...] If all of the file scope declarations for a function in a
+ // translation unit include the inline function specifier without extern,
+ // then the definition in that translation unit is an inline definition.
+ for (auto Redecl : redecls()) {
+ if (RedeclForcesDefC99(Redecl))
+ return true;
+ }
+
+ // C99 6.7.4p6:
+ // An inline definition does not provide an external definition for the
+ // function, and does not forbid an external definition in another
+ // translation unit.
+ return false;
+}
+
+/// getOverloadedOperator - Which C++ overloaded operator this
+/// function represents, if any.
+OverloadedOperatorKind FunctionDecl::getOverloadedOperator() const {
+ if (getDeclName().getNameKind() == DeclarationName::CXXOperatorName)
+ return getDeclName().getCXXOverloadedOperator();
+ return OO_None;
+}
+
+/// getLiteralIdentifier - The literal suffix identifier this function
+/// represents, if any.
+const IdentifierInfo *FunctionDecl::getLiteralIdentifier() const {
+ if (getDeclName().getNameKind() == DeclarationName::CXXLiteralOperatorName)
+ return getDeclName().getCXXLiteralIdentifier();
+ return nullptr;
+}
+
+FunctionDecl::TemplatedKind FunctionDecl::getTemplatedKind() const {
+ if (TemplateOrSpecialization.isNull())
+ return TK_NonTemplate;
+ if (TemplateOrSpecialization.is<FunctionTemplateDecl *>())
+ return TK_FunctionTemplate;
+ if (TemplateOrSpecialization.is<MemberSpecializationInfo *>())
+ return TK_MemberSpecialization;
+ if (TemplateOrSpecialization.is<FunctionTemplateSpecializationInfo *>())
+ return TK_FunctionTemplateSpecialization;
+ if (TemplateOrSpecialization.is
+ <DependentFunctionTemplateSpecializationInfo*>())
+ return TK_DependentFunctionTemplateSpecialization;
+
+ llvm_unreachable("Did we miss a TemplateOrSpecialization type?");
+}
+
+FunctionDecl *FunctionDecl::getInstantiatedFromMemberFunction() const {
+ if (MemberSpecializationInfo *Info = getMemberSpecializationInfo())
+ return cast<FunctionDecl>(Info->getInstantiatedFrom());
+
+ return nullptr;
+}
+
+MemberSpecializationInfo *FunctionDecl::getMemberSpecializationInfo() const {
+ if (auto *MSI =
+ TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo *>())
+ return MSI;
+ if (auto *FTSI = TemplateOrSpecialization
+ .dyn_cast<FunctionTemplateSpecializationInfo *>())
+ return FTSI->getMemberSpecializationInfo();
+ return nullptr;
+}
+
+void
+FunctionDecl::setInstantiationOfMemberFunction(ASTContext &C,
+ FunctionDecl *FD,
+ TemplateSpecializationKind TSK) {
+ assert(TemplateOrSpecialization.isNull() &&
+ "Member function is already a specialization");
+ MemberSpecializationInfo *Info
+ = new (C) MemberSpecializationInfo(FD, TSK);
+ TemplateOrSpecialization = Info;
+}
+
+FunctionTemplateDecl *FunctionDecl::getDescribedFunctionTemplate() const {
+ return TemplateOrSpecialization.dyn_cast<FunctionTemplateDecl *>();
+}
+
+void FunctionDecl::setDescribedFunctionTemplate(FunctionTemplateDecl *Template) {
+ assert(TemplateOrSpecialization.isNull() &&
+ "Member function is already a specialization");
+ TemplateOrSpecialization = Template;
+}
+
+bool FunctionDecl::isImplicitlyInstantiable() const {
+ // If the function is invalid, it can't be implicitly instantiated.
+ if (isInvalidDecl())
+ return false;
+
+ switch (getTemplateSpecializationKindForInstantiation()) {
+ case TSK_Undeclared:
+ case TSK_ExplicitInstantiationDefinition:
+ case TSK_ExplicitSpecialization:
+ return false;
+
+ case TSK_ImplicitInstantiation:
+ return true;
+
+ case TSK_ExplicitInstantiationDeclaration:
+ // Handled below.
+ break;
+ }
+
+ // Find the actual template from which we will instantiate.
+ const FunctionDecl *PatternDecl = getTemplateInstantiationPattern();
+ bool HasPattern = false;
+ if (PatternDecl)
+ HasPattern = PatternDecl->hasBody(PatternDecl);
+
+ // C++0x [temp.explicit]p9:
+ // Except for inline functions, other explicit instantiation declarations
+ // have the effect of suppressing the implicit instantiation of the entity
+ // to which they refer.
+ if (!HasPattern || !PatternDecl)
+ return true;
+
+ return PatternDecl->isInlined();
+}
+
+bool FunctionDecl::isTemplateInstantiation() const {
+ // FIXME: Remove this, it's not clear what it means. (Which template
+ // specialization kind?)
+ return clang::isTemplateInstantiation(getTemplateSpecializationKind());
+}
+
+FunctionDecl *
+FunctionDecl::getTemplateInstantiationPattern(bool ForDefinition) const {
+ // If this is a generic lambda call operator specialization, its
+ // instantiation pattern is always its primary template's pattern
+ // even if its primary template was instantiated from another
+ // member template (which happens with nested generic lambdas).
+ // Since a lambda's call operator's body is transformed eagerly,
+ // we don't have to go hunting for a prototype definition template
+ // (i.e. instantiated-from-member-template) to use as an instantiation
+ // pattern.
+
+ if (isGenericLambdaCallOperatorSpecialization(
+ dyn_cast<CXXMethodDecl>(this))) {
+ assert(getPrimaryTemplate() && "not a generic lambda call operator?");
+ return getDefinitionOrSelf(getPrimaryTemplate()->getTemplatedDecl());
+ }
+
+ // Check for a declaration of this function that was instantiated from a
+ // friend definition.
+ const FunctionDecl *FD = nullptr;
+ if (!isDefined(FD, /*CheckForPendingFriendDefinition=*/true))
+ FD = this;
+
+ if (MemberSpecializationInfo *Info = FD->getMemberSpecializationInfo()) {
+ if (ForDefinition &&
+ !clang::isTemplateInstantiation(Info->getTemplateSpecializationKind()))
+ return nullptr;
+ return getDefinitionOrSelf(cast<FunctionDecl>(Info->getInstantiatedFrom()));
+ }
+
+ if (ForDefinition &&
+ !clang::isTemplateInstantiation(getTemplateSpecializationKind()))
+ return nullptr;
+
+ if (FunctionTemplateDecl *Primary = getPrimaryTemplate()) {
+ // If we hit a point where the user provided a specialization of this
+ // template, we're done looking.
+ while (!ForDefinition || !Primary->isMemberSpecialization()) {
+ auto *NewPrimary = Primary->getInstantiatedFromMemberTemplate();
+ if (!NewPrimary)
+ break;
+ Primary = NewPrimary;
+ }
+
+ return getDefinitionOrSelf(Primary->getTemplatedDecl());
+ }
+
+ return nullptr;
+}
+
+FunctionTemplateDecl *FunctionDecl::getPrimaryTemplate() const {
+ if (FunctionTemplateSpecializationInfo *Info
+ = TemplateOrSpecialization
+ .dyn_cast<FunctionTemplateSpecializationInfo*>()) {
+ return Info->getTemplate();
+ }
+ return nullptr;
+}
+
+FunctionTemplateSpecializationInfo *
+FunctionDecl::getTemplateSpecializationInfo() const {
+ return TemplateOrSpecialization
+ .dyn_cast<FunctionTemplateSpecializationInfo *>();
+}
+
+const TemplateArgumentList *
+FunctionDecl::getTemplateSpecializationArgs() const {
+ if (FunctionTemplateSpecializationInfo *Info
+ = TemplateOrSpecialization
+ .dyn_cast<FunctionTemplateSpecializationInfo*>()) {
+ return Info->TemplateArguments;
+ }
+ return nullptr;
+}
+
+const ASTTemplateArgumentListInfo *
+FunctionDecl::getTemplateSpecializationArgsAsWritten() const {
+ if (FunctionTemplateSpecializationInfo *Info
+ = TemplateOrSpecialization
+ .dyn_cast<FunctionTemplateSpecializationInfo*>()) {
+ return Info->TemplateArgumentsAsWritten;
+ }
+ return nullptr;
+}
+
+void
+FunctionDecl::setFunctionTemplateSpecialization(ASTContext &C,
+ FunctionTemplateDecl *Template,
+ const TemplateArgumentList *TemplateArgs,
+ void *InsertPos,
+ TemplateSpecializationKind TSK,
+ const TemplateArgumentListInfo *TemplateArgsAsWritten,
+ SourceLocation PointOfInstantiation) {
+ assert((TemplateOrSpecialization.isNull() ||
+ TemplateOrSpecialization.is<MemberSpecializationInfo *>()) &&
+ "Member function is already a specialization");
+ assert(TSK != TSK_Undeclared &&
+ "Must specify the type of function template specialization");
+ assert((TemplateOrSpecialization.isNull() ||
+ TSK == TSK_ExplicitSpecialization) &&
+ "Member specialization must be an explicit specialization");
+ FunctionTemplateSpecializationInfo *Info =
+ FunctionTemplateSpecializationInfo::Create(
+ C, this, Template, TSK, TemplateArgs, TemplateArgsAsWritten,
+ PointOfInstantiation,
+ TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo *>());
+ TemplateOrSpecialization = Info;
+ Template->addSpecialization(Info, InsertPos);
+}
+
+void
+FunctionDecl::setDependentTemplateSpecialization(ASTContext &Context,
+ const UnresolvedSetImpl &Templates,
+ const TemplateArgumentListInfo &TemplateArgs) {
+ assert(TemplateOrSpecialization.isNull());
+ DependentFunctionTemplateSpecializationInfo *Info =
+ DependentFunctionTemplateSpecializationInfo::Create(Context, Templates,
+ TemplateArgs);
+ TemplateOrSpecialization = Info;
+}
+
+DependentFunctionTemplateSpecializationInfo *
+FunctionDecl::getDependentSpecializationInfo() const {
+ return TemplateOrSpecialization
+ .dyn_cast<DependentFunctionTemplateSpecializationInfo *>();
+}
+
+DependentFunctionTemplateSpecializationInfo *
+DependentFunctionTemplateSpecializationInfo::Create(
+ ASTContext &Context, const UnresolvedSetImpl &Ts,
+ const TemplateArgumentListInfo &TArgs) {
+ void *Buffer = Context.Allocate(
+ totalSizeToAlloc<TemplateArgumentLoc, FunctionTemplateDecl *>(
+ TArgs.size(), Ts.size()));
+ return new (Buffer) DependentFunctionTemplateSpecializationInfo(Ts, TArgs);
+}
+
+DependentFunctionTemplateSpecializationInfo::
+DependentFunctionTemplateSpecializationInfo(const UnresolvedSetImpl &Ts,
+ const TemplateArgumentListInfo &TArgs)
+ : AngleLocs(TArgs.getLAngleLoc(), TArgs.getRAngleLoc()) {
+ NumTemplates = Ts.size();
+ NumArgs = TArgs.size();
+
+ FunctionTemplateDecl **TsArray = getTrailingObjects<FunctionTemplateDecl *>();
+ for (unsigned I = 0, E = Ts.size(); I != E; ++I)
+ TsArray[I] = cast<FunctionTemplateDecl>(Ts[I]->getUnderlyingDecl());
+
+ TemplateArgumentLoc *ArgsArray = getTrailingObjects<TemplateArgumentLoc>();
+ for (unsigned I = 0, E = TArgs.size(); I != E; ++I)
+ new (&ArgsArray[I]) TemplateArgumentLoc(TArgs[I]);
+}
+
+TemplateSpecializationKind FunctionDecl::getTemplateSpecializationKind() const {
+ // For a function template specialization, query the specialization
+ // information object.
+ if (FunctionTemplateSpecializationInfo *FTSInfo =
+ TemplateOrSpecialization
+ .dyn_cast<FunctionTemplateSpecializationInfo *>())
+ return FTSInfo->getTemplateSpecializationKind();
+
+ if (MemberSpecializationInfo *MSInfo =
+ TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo *>())
+ return MSInfo->getTemplateSpecializationKind();
+
+ return TSK_Undeclared;
+}
+
+TemplateSpecializationKind
+FunctionDecl::getTemplateSpecializationKindForInstantiation() const {
+ // This is the same as getTemplateSpecializationKind(), except that for a
+ // function that is both a function template specialization and a member
+ // specialization, we prefer the member specialization information. Eg:
+ //
+ // template<typename T> struct A {
+ // template<typename U> void f() {}
+ // template<> void f<int>() {}
+ // };
+ //
+ // For A<int>::f<int>():
+ // * getTemplateSpecializationKind() will return TSK_ExplicitSpecialization
+ // * getTemplateSpecializationKindForInstantiation() will return
+ // TSK_ImplicitInstantiation
+ //
+ // This reflects the facts that A<int>::f<int> is an explicit specialization
+ // of A<int>::f, and that A<int>::f<int> should be implicitly instantiated
+ // from A::f<int> if a definition is needed.
+ if (FunctionTemplateSpecializationInfo *FTSInfo =
+ TemplateOrSpecialization
+ .dyn_cast<FunctionTemplateSpecializationInfo *>()) {
+ if (auto *MSInfo = FTSInfo->getMemberSpecializationInfo())
+ return MSInfo->getTemplateSpecializationKind();
+ return FTSInfo->getTemplateSpecializationKind();
+ }
+
+ if (MemberSpecializationInfo *MSInfo =
+ TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo *>())
+ return MSInfo->getTemplateSpecializationKind();
+
+ return TSK_Undeclared;
+}
+
+void
+FunctionDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK,
+ SourceLocation PointOfInstantiation) {
+ if (FunctionTemplateSpecializationInfo *FTSInfo
+ = TemplateOrSpecialization.dyn_cast<
+ FunctionTemplateSpecializationInfo*>()) {
+ FTSInfo->setTemplateSpecializationKind(TSK);
+ if (TSK != TSK_ExplicitSpecialization &&
+ PointOfInstantiation.isValid() &&
+ FTSInfo->getPointOfInstantiation().isInvalid()) {
+ FTSInfo->setPointOfInstantiation(PointOfInstantiation);
+ if (ASTMutationListener *L = getASTContext().getASTMutationListener())
+ L->InstantiationRequested(this);
+ }
+ } else if (MemberSpecializationInfo *MSInfo
+ = TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo*>()) {
+ MSInfo->setTemplateSpecializationKind(TSK);
+ if (TSK != TSK_ExplicitSpecialization &&
+ PointOfInstantiation.isValid() &&
+ MSInfo->getPointOfInstantiation().isInvalid()) {
+ MSInfo->setPointOfInstantiation(PointOfInstantiation);
+ if (ASTMutationListener *L = getASTContext().getASTMutationListener())
+ L->InstantiationRequested(this);
+ }
+ } else
+ llvm_unreachable("Function cannot have a template specialization kind");
+}
+
+SourceLocation FunctionDecl::getPointOfInstantiation() const {
+ if (FunctionTemplateSpecializationInfo *FTSInfo
+ = TemplateOrSpecialization.dyn_cast<
+ FunctionTemplateSpecializationInfo*>())
+ return FTSInfo->getPointOfInstantiation();
+ if (MemberSpecializationInfo *MSInfo =
+ TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo *>())
+ return MSInfo->getPointOfInstantiation();
+
+ return SourceLocation();
+}
+
+bool FunctionDecl::isOutOfLine() const {
+ if (Decl::isOutOfLine())
+ return true;
+
+ // If this function was instantiated from a member function of a
+ // class template, check whether that member function was defined out-of-line.
+ if (FunctionDecl *FD = getInstantiatedFromMemberFunction()) {
+ const FunctionDecl *Definition;
+ if (FD->hasBody(Definition))
+ return Definition->isOutOfLine();
+ }
+
+ // If this function was instantiated from a function template,
+ // check whether that function template was defined out-of-line.
+ if (FunctionTemplateDecl *FunTmpl = getPrimaryTemplate()) {
+ const FunctionDecl *Definition;
+ if (FunTmpl->getTemplatedDecl()->hasBody(Definition))
+ return Definition->isOutOfLine();
+ }
+
+ return false;
+}
+
+SourceRange FunctionDecl::getSourceRange() const {
+ return SourceRange(getOuterLocStart(), EndRangeLoc);
+}
+
+unsigned FunctionDecl::getMemoryFunctionKind() const {
+ IdentifierInfo *FnInfo = getIdentifier();
+
+ if (!FnInfo)
+ return 0;
+
+ // Builtin handling.
+ switch (getBuiltinID()) {
+ case Builtin::BI__builtin_memset:
+ case Builtin::BI__builtin___memset_chk:
+ case Builtin::BImemset:
+ return Builtin::BImemset;
+
+ case Builtin::BI__builtin_memcpy:
+ case Builtin::BI__builtin___memcpy_chk:
+ case Builtin::BImemcpy:
+ return Builtin::BImemcpy;
+
+ case Builtin::BI__builtin_mempcpy:
+ case Builtin::BI__builtin___mempcpy_chk:
+ case Builtin::BImempcpy:
+ return Builtin::BImempcpy;
+
+ case Builtin::BI__builtin_memmove:
+ case Builtin::BI__builtin___memmove_chk:
+ case Builtin::BImemmove:
+ return Builtin::BImemmove;
+
+ case Builtin::BIstrlcpy:
+ case Builtin::BI__builtin___strlcpy_chk:
+ return Builtin::BIstrlcpy;
+
+ case Builtin::BIstrlcat:
+ case Builtin::BI__builtin___strlcat_chk:
+ return Builtin::BIstrlcat;
+
+ case Builtin::BI__builtin_memcmp:
+ case Builtin::BImemcmp:
+ return Builtin::BImemcmp;
+
+ case Builtin::BI__builtin_bcmp:
+ case Builtin::BIbcmp:
+ return Builtin::BIbcmp;
+
+ case Builtin::BI__builtin_strncpy:
+ case Builtin::BI__builtin___strncpy_chk:
+ case Builtin::BIstrncpy:
+ return Builtin::BIstrncpy;
+
+ case Builtin::BI__builtin_strncmp:
+ case Builtin::BIstrncmp:
+ return Builtin::BIstrncmp;
+
+ case Builtin::BI__builtin_strncasecmp:
+ case Builtin::BIstrncasecmp:
+ return Builtin::BIstrncasecmp;
+
+ case Builtin::BI__builtin_strncat:
+ case Builtin::BI__builtin___strncat_chk:
+ case Builtin::BIstrncat:
+ return Builtin::BIstrncat;
+
+ case Builtin::BI__builtin_strndup:
+ case Builtin::BIstrndup:
+ return Builtin::BIstrndup;
+
+ case Builtin::BI__builtin_strlen:
+ case Builtin::BIstrlen:
+ return Builtin::BIstrlen;
+
+ case Builtin::BI__builtin_bzero:
+ case Builtin::BIbzero:
+ return Builtin::BIbzero;
+
+ case Builtin::BIfree:
+ return Builtin::BIfree;
+
+ default:
+ if (isExternC()) {
+ if (FnInfo->isStr("memset"))
+ return Builtin::BImemset;
+ if (FnInfo->isStr("memcpy"))
+ return Builtin::BImemcpy;
+ if (FnInfo->isStr("mempcpy"))
+ return Builtin::BImempcpy;
+ if (FnInfo->isStr("memmove"))
+ return Builtin::BImemmove;
+ if (FnInfo->isStr("memcmp"))
+ return Builtin::BImemcmp;
+ if (FnInfo->isStr("bcmp"))
+ return Builtin::BIbcmp;
+ if (FnInfo->isStr("strncpy"))
+ return Builtin::BIstrncpy;
+ if (FnInfo->isStr("strncmp"))
+ return Builtin::BIstrncmp;
+ if (FnInfo->isStr("strncasecmp"))
+ return Builtin::BIstrncasecmp;
+ if (FnInfo->isStr("strncat"))
+ return Builtin::BIstrncat;
+ if (FnInfo->isStr("strndup"))
+ return Builtin::BIstrndup;
+ if (FnInfo->isStr("strlen"))
+ return Builtin::BIstrlen;
+ if (FnInfo->isStr("bzero"))
+ return Builtin::BIbzero;
+ } else if (isInStdNamespace()) {
+ if (FnInfo->isStr("free"))
+ return Builtin::BIfree;
+ }
+ break;
+ }
+ return 0;
+}
+
+unsigned FunctionDecl::getODRHash() const {
+ assert(hasODRHash());
+ return ODRHash;
+}
+
+unsigned FunctionDecl::getODRHash() {
+ if (hasODRHash())
+ return ODRHash;
+
+ if (auto *FT = getInstantiatedFromMemberFunction()) {
+ setHasODRHash(true);
+ ODRHash = FT->getODRHash();
+ return ODRHash;
+ }
+
+ class ODRHash Hash;
+ Hash.AddFunctionDecl(this);
+ setHasODRHash(true);
+ ODRHash = Hash.CalculateHash();
+ return ODRHash;
+}
+
+//===----------------------------------------------------------------------===//
+// FieldDecl Implementation
+//===----------------------------------------------------------------------===//
+
+FieldDecl *FieldDecl::Create(const ASTContext &C, DeclContext *DC,
+ SourceLocation StartLoc, SourceLocation IdLoc,
+ IdentifierInfo *Id, QualType T,
+ TypeSourceInfo *TInfo, Expr *BW, bool Mutable,
+ InClassInitStyle InitStyle) {
+ return new (C, DC) FieldDecl(Decl::Field, DC, StartLoc, IdLoc, Id, T, TInfo,
+ BW, Mutable, InitStyle);
+}
+
+FieldDecl *FieldDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
+ return new (C, ID) FieldDecl(Field, nullptr, SourceLocation(),
+ SourceLocation(), nullptr, QualType(), nullptr,
+ nullptr, false, ICIS_NoInit);
+}
+
+bool FieldDecl::isAnonymousStructOrUnion() const {
+ if (!isImplicit() || getDeclName())
+ return false;
+
+ if (const auto *Record = getType()->getAs<RecordType>())
+ return Record->getDecl()->isAnonymousStructOrUnion();
+
+ return false;
+}
+
+unsigned FieldDecl::getBitWidthValue(const ASTContext &Ctx) const {
+ assert(isBitField() && "not a bitfield");
+ return getBitWidth()->EvaluateKnownConstInt(Ctx).getZExtValue();
+}
+
+bool FieldDecl::isZeroLengthBitField(const ASTContext &Ctx) const {
+ return isUnnamedBitfield() && !getBitWidth()->isValueDependent() &&
+ getBitWidthValue(Ctx) == 0;
+}
+
+bool FieldDecl::isZeroSize(const ASTContext &Ctx) const {
+ if (isZeroLengthBitField(Ctx))
+ return true;
+
+ // C++2a [intro.object]p7:
+ // An object has nonzero size if it
+ // -- is not a potentially-overlapping subobject, or
+ if (!hasAttr<NoUniqueAddressAttr>())
+ return false;
+
+ // -- is not of class type, or
+ const auto *RT = getType()->getAs<RecordType>();
+ if (!RT)
+ return false;
+ const RecordDecl *RD = RT->getDecl()->getDefinition();
+ if (!RD) {
+ assert(isInvalidDecl() && "valid field has incomplete type");
+ return false;
+ }
+
+ // -- [has] virtual member functions or virtual base classes, or
+ // -- has subobjects of nonzero size or bit-fields of nonzero length
+ const auto *CXXRD = cast<CXXRecordDecl>(RD);
+ if (!CXXRD->isEmpty())
+ return false;
+
+ // Otherwise, [...] the circumstances under which the object has zero size
+ // are implementation-defined.
+ // FIXME: This might be Itanium ABI specific; we don't yet know what the MS
+ // ABI will do.
+ return true;
+}
+
+unsigned FieldDecl::getFieldIndex() const {
+ const FieldDecl *Canonical = getCanonicalDecl();
+ if (Canonical != this)
+ return Canonical->getFieldIndex();
+
+ if (CachedFieldIndex) return CachedFieldIndex - 1;
+
+ unsigned Index = 0;
+ const RecordDecl *RD = getParent()->getDefinition();
+ assert(RD && "requested index for field of struct with no definition");
+
+ for (auto *Field : RD->fields()) {
+ Field->getCanonicalDecl()->CachedFieldIndex = Index + 1;
+ ++Index;
+ }
+
+ assert(CachedFieldIndex && "failed to find field in parent");
+ return CachedFieldIndex - 1;
+}
+
+SourceRange FieldDecl::getSourceRange() const {
+ const Expr *FinalExpr = getInClassInitializer();
+ if (!FinalExpr)
+ FinalExpr = getBitWidth();
+ if (FinalExpr)
+ return SourceRange(getInnerLocStart(), FinalExpr->getEndLoc());
+ return DeclaratorDecl::getSourceRange();
+}
+
+void FieldDecl::setCapturedVLAType(const VariableArrayType *VLAType) {
+ assert((getParent()->isLambda() || getParent()->isCapturedRecord()) &&
+ "capturing type in non-lambda or captured record.");
+ assert(InitStorage.getInt() == ISK_NoInit &&
+ InitStorage.getPointer() == nullptr &&
+ "bit width, initializer or captured type already set");
+ InitStorage.setPointerAndInt(const_cast<VariableArrayType *>(VLAType),
+ ISK_CapturedVLAType);
+}
+
+//===----------------------------------------------------------------------===//
+// TagDecl Implementation
+//===----------------------------------------------------------------------===//
+
+TagDecl::TagDecl(Kind DK, TagKind TK, const ASTContext &C, DeclContext *DC,
+ SourceLocation L, IdentifierInfo *Id, TagDecl *PrevDecl,
+ SourceLocation StartL)
+ : TypeDecl(DK, DC, L, Id, StartL), DeclContext(DK), redeclarable_base(C),
+ TypedefNameDeclOrQualifier((TypedefNameDecl *)nullptr) {
+ assert((DK != Enum || TK == TTK_Enum) &&
+ "EnumDecl not matched with TTK_Enum");
+ setPreviousDecl(PrevDecl);
+ setTagKind(TK);
+ setCompleteDefinition(false);
+ setBeingDefined(false);
+ setEmbeddedInDeclarator(false);
+ setFreeStanding(false);
+ setCompleteDefinitionRequired(false);
+}
+
+SourceLocation TagDecl::getOuterLocStart() const {
+ return getTemplateOrInnerLocStart(this);
+}
+
+SourceRange TagDecl::getSourceRange() const {
+ SourceLocation RBraceLoc = BraceRange.getEnd();
+ SourceLocation E = RBraceLoc.isValid() ? RBraceLoc : getLocation();
+ return SourceRange(getOuterLocStart(), E);
+}
+
+TagDecl *TagDecl::getCanonicalDecl() { return getFirstDecl(); }
+
+void TagDecl::setTypedefNameForAnonDecl(TypedefNameDecl *TDD) {
+ TypedefNameDeclOrQualifier = TDD;
+ if (const Type *T = getTypeForDecl()) {
+ (void)T;
+ assert(T->isLinkageValid());
+ }
+ assert(isLinkageValid());
+}
+
+void TagDecl::startDefinition() {
+ setBeingDefined(true);
+
+ if (auto *D = dyn_cast<CXXRecordDecl>(this)) {
+ struct CXXRecordDecl::DefinitionData *Data =
+ new (getASTContext()) struct CXXRecordDecl::DefinitionData(D);
+ for (auto I : redecls())
+ cast<CXXRecordDecl>(I)->DefinitionData = Data;
+ }
+}
+
+void TagDecl::completeDefinition() {
+ assert((!isa<CXXRecordDecl>(this) ||
+ cast<CXXRecordDecl>(this)->hasDefinition()) &&
+ "definition completed but not started");
+
+ setCompleteDefinition(true);
+ setBeingDefined(false);
+
+ if (ASTMutationListener *L = getASTMutationListener())
+ L->CompletedTagDefinition(this);
+}
+
+TagDecl *TagDecl::getDefinition() const {
+ if (isCompleteDefinition())
+ return const_cast<TagDecl *>(this);
+
+ // If it's possible for us to have an out-of-date definition, check now.
+ if (mayHaveOutOfDateDef()) {
+ if (IdentifierInfo *II = getIdentifier()) {
+ if (II->isOutOfDate()) {
+ updateOutOfDate(*II);
+ }
+ }
+ }
+
+ if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(this))
+ return CXXRD->getDefinition();
+
+ for (auto R : redecls())
+ if (R->isCompleteDefinition())
+ return R;
+
+ return nullptr;
+}
+
+void TagDecl::setQualifierInfo(NestedNameSpecifierLoc QualifierLoc) {
+ if (QualifierLoc) {
+ // Make sure the extended qualifier info is allocated.
+ if (!hasExtInfo())
+ TypedefNameDeclOrQualifier = new (getASTContext()) ExtInfo;
+ // Set qualifier info.
+ getExtInfo()->QualifierLoc = QualifierLoc;
+ } else {
+ // Here Qualifier == 0, i.e., we are removing the qualifier (if any).
+ if (hasExtInfo()) {
+ if (getExtInfo()->NumTemplParamLists == 0) {
+ getASTContext().Deallocate(getExtInfo());
+ TypedefNameDeclOrQualifier = (TypedefNameDecl *)nullptr;
+ }
+ else
+ getExtInfo()->QualifierLoc = QualifierLoc;
+ }
+ }
+}
+
+void TagDecl::setTemplateParameterListsInfo(
+ ASTContext &Context, ArrayRef<TemplateParameterList *> TPLists) {
+ assert(!TPLists.empty());
+ // Make sure the extended decl info is allocated.
+ if (!hasExtInfo())
+ // Allocate external info struct.
+ TypedefNameDeclOrQualifier = new (getASTContext()) ExtInfo;
+ // Set the template parameter lists info.
+ getExtInfo()->setTemplateParameterListsInfo(Context, TPLists);
+}
+
+//===----------------------------------------------------------------------===//
+// EnumDecl Implementation
+//===----------------------------------------------------------------------===//
+
+EnumDecl::EnumDecl(ASTContext &C, DeclContext *DC, SourceLocation StartLoc,
+ SourceLocation IdLoc, IdentifierInfo *Id, EnumDecl *PrevDecl,
+ bool Scoped, bool ScopedUsingClassTag, bool Fixed)
+ : TagDecl(Enum, TTK_Enum, C, DC, IdLoc, Id, PrevDecl, StartLoc) {
+ assert(Scoped || !ScopedUsingClassTag);
+ IntegerType = nullptr;
+ setNumPositiveBits(0);
+ setNumNegativeBits(0);
+ setScoped(Scoped);
+ setScopedUsingClassTag(ScopedUsingClassTag);
+ setFixed(Fixed);
+ setHasODRHash(false);
+ ODRHash = 0;
+}
+
+void EnumDecl::anchor() {}
+
+EnumDecl *EnumDecl::Create(ASTContext &C, DeclContext *DC,
+ SourceLocation StartLoc, SourceLocation IdLoc,
+ IdentifierInfo *Id,
+ EnumDecl *PrevDecl, bool IsScoped,
+ bool IsScopedUsingClassTag, bool IsFixed) {
+ auto *Enum = new (C, DC) EnumDecl(C, DC, StartLoc, IdLoc, Id, PrevDecl,
+ IsScoped, IsScopedUsingClassTag, IsFixed);
+ Enum->setMayHaveOutOfDateDef(C.getLangOpts().Modules);
+ C.getTypeDeclType(Enum, PrevDecl);
+ return Enum;
+}
+
+EnumDecl *EnumDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
+ EnumDecl *Enum =
+ new (C, ID) EnumDecl(C, nullptr, SourceLocation(), SourceLocation(),
+ nullptr, nullptr, false, false, false);
+ Enum->setMayHaveOutOfDateDef(C.getLangOpts().Modules);
+ return Enum;
+}
+
+SourceRange EnumDecl::getIntegerTypeRange() const {
+ if (const TypeSourceInfo *TI = getIntegerTypeSourceInfo())
+ return TI->getTypeLoc().getSourceRange();
+ return SourceRange();
+}
+
+void EnumDecl::completeDefinition(QualType NewType,
+ QualType NewPromotionType,
+ unsigned NumPositiveBits,
+ unsigned NumNegativeBits) {
+ assert(!isCompleteDefinition() && "Cannot redefine enums!");
+ if (!IntegerType)
+ IntegerType = NewType.getTypePtr();
+ PromotionType = NewPromotionType;
+ setNumPositiveBits(NumPositiveBits);
+ setNumNegativeBits(NumNegativeBits);
+ TagDecl::completeDefinition();
+}
+
+bool EnumDecl::isClosed() const {
+ if (const auto *A = getAttr<EnumExtensibilityAttr>())
+ return A->getExtensibility() == EnumExtensibilityAttr::Closed;
+ return true;
+}
+
+bool EnumDecl::isClosedFlag() const {
+ return isClosed() && hasAttr<FlagEnumAttr>();
+}
+
+bool EnumDecl::isClosedNonFlag() const {
+ return isClosed() && !hasAttr<FlagEnumAttr>();
+}
+
+TemplateSpecializationKind EnumDecl::getTemplateSpecializationKind() const {
+ if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
+ return MSI->getTemplateSpecializationKind();
+
+ return TSK_Undeclared;
+}
+
+void EnumDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK,
+ SourceLocation PointOfInstantiation) {
+ MemberSpecializationInfo *MSI = getMemberSpecializationInfo();
+ assert(MSI && "Not an instantiated member enumeration?");
+ MSI->setTemplateSpecializationKind(TSK);
+ if (TSK != TSK_ExplicitSpecialization &&
+ PointOfInstantiation.isValid() &&
+ MSI->getPointOfInstantiation().isInvalid())
+ MSI->setPointOfInstantiation(PointOfInstantiation);
+}
+
+EnumDecl *EnumDecl::getTemplateInstantiationPattern() const {
+ if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo()) {
+ if (isTemplateInstantiation(MSInfo->getTemplateSpecializationKind())) {
+ EnumDecl *ED = getInstantiatedFromMemberEnum();
+ while (auto *NewED = ED->getInstantiatedFromMemberEnum())
+ ED = NewED;
+ return getDefinitionOrSelf(ED);
+ }
+ }
+
+ assert(!isTemplateInstantiation(getTemplateSpecializationKind()) &&
+ "couldn't find pattern for enum instantiation");
+ return nullptr;
+}
+
+EnumDecl *EnumDecl::getInstantiatedFromMemberEnum() const {
+ if (SpecializationInfo)
+ return cast<EnumDecl>(SpecializationInfo->getInstantiatedFrom());
+
+ return nullptr;
+}
+
+void EnumDecl::setInstantiationOfMemberEnum(ASTContext &C, EnumDecl *ED,
+ TemplateSpecializationKind TSK) {
+ assert(!SpecializationInfo && "Member enum is already a specialization");
+ SpecializationInfo = new (C) MemberSpecializationInfo(ED, TSK);
+}
+
+unsigned EnumDecl::getODRHash() {
+ if (hasODRHash())
+ return ODRHash;
+
+ class ODRHash Hash;
+ Hash.AddEnumDecl(this);
+ setHasODRHash(true);
+ ODRHash = Hash.CalculateHash();
+ return ODRHash;
+}
+
+//===----------------------------------------------------------------------===//
+// RecordDecl Implementation
+//===----------------------------------------------------------------------===//
+
+RecordDecl::RecordDecl(Kind DK, TagKind TK, const ASTContext &C,
+ DeclContext *DC, SourceLocation StartLoc,
+ SourceLocation IdLoc, IdentifierInfo *Id,
+ RecordDecl *PrevDecl)
+ : TagDecl(DK, TK, C, DC, IdLoc, Id, PrevDecl, StartLoc) {
+ assert(classof(static_cast<Decl *>(this)) && "Invalid Kind!");
+ setHasFlexibleArrayMember(false);
+ setAnonymousStructOrUnion(false);
+ setHasObjectMember(false);
+ setHasVolatileMember(false);
+ setHasLoadedFieldsFromExternalStorage(false);
+ setNonTrivialToPrimitiveDefaultInitialize(false);
+ setNonTrivialToPrimitiveCopy(false);
+ setNonTrivialToPrimitiveDestroy(false);
+ setHasNonTrivialToPrimitiveDefaultInitializeCUnion(false);
+ setHasNonTrivialToPrimitiveDestructCUnion(false);
+ setHasNonTrivialToPrimitiveCopyCUnion(false);
+ setParamDestroyedInCallee(false);
+ setArgPassingRestrictions(APK_CanPassInRegs);
+}
+
+RecordDecl *RecordDecl::Create(const ASTContext &C, TagKind TK, DeclContext *DC,
+ SourceLocation StartLoc, SourceLocation IdLoc,
+ IdentifierInfo *Id, RecordDecl* PrevDecl) {
+ RecordDecl *R = new (C, DC) RecordDecl(Record, TK, C, DC,
+ StartLoc, IdLoc, Id, PrevDecl);
+ R->setMayHaveOutOfDateDef(C.getLangOpts().Modules);
+
+ C.getTypeDeclType(R, PrevDecl);
+ return R;
+}
+
+RecordDecl *RecordDecl::CreateDeserialized(const ASTContext &C, unsigned ID) {
+ RecordDecl *R =
+ new (C, ID) RecordDecl(Record, TTK_Struct, C, nullptr, SourceLocation(),
+ SourceLocation(), nullptr, nullptr);
+ R->setMayHaveOutOfDateDef(C.getLangOpts().Modules);
+ return R;
+}
+
+bool RecordDecl::isInjectedClassName() const {
+ return isImplicit() && getDeclName() && getDeclContext()->isRecord() &&
+ cast<RecordDecl>(getDeclContext())->getDeclName() == getDeclName();
+}
+
+bool RecordDecl::isLambda() const {
+ if (auto RD = dyn_cast<CXXRecordDecl>(this))
+ return RD->isLambda();
+ return false;
+}
+
+bool RecordDecl::isCapturedRecord() const {
+ return hasAttr<CapturedRecordAttr>();
+}
+
+void RecordDecl::setCapturedRecord() {
+ addAttr(CapturedRecordAttr::CreateImplicit(getASTContext()));
+}
+
+bool RecordDecl::isOrContainsUnion() const {
+ if (isUnion())
+ return true;
+
+ if (const RecordDecl *Def = getDefinition()) {
+ for (const FieldDecl *FD : Def->fields()) {
+ const RecordType *RT = FD->getType()->getAs<RecordType>();
+ if (RT && RT->getDecl()->isOrContainsUnion())
+ return true;
+ }
+ }
+
+ return false;
+}
+
+RecordDecl::field_iterator RecordDecl::field_begin() const {
+ if (hasExternalLexicalStorage() && !hasLoadedFieldsFromExternalStorage())
+ LoadFieldsFromExternalStorage();
+
+ return field_iterator(decl_iterator(FirstDecl));
+}
+
+/// completeDefinition - Notes that the definition of this type is now
+/// complete.
+void RecordDecl::completeDefinition() {
+ assert(!isCompleteDefinition() && "Cannot redefine record!");
+ TagDecl::completeDefinition();
+}
+
+/// isMsStruct - Get whether or not this record uses ms_struct layout.
+/// This which can be turned on with an attribute, pragma, or the
+/// -mms-bitfields command-line option.
+bool RecordDecl::isMsStruct(const ASTContext &C) const {
+ return hasAttr<MSStructAttr>() || C.getLangOpts().MSBitfields == 1;
+}
+
+void RecordDecl::LoadFieldsFromExternalStorage() const {
+ ExternalASTSource *Source = getASTContext().getExternalSource();
+ assert(hasExternalLexicalStorage() && Source && "No external storage?");
+
+ // Notify that we have a RecordDecl doing some initialization.
+ ExternalASTSource::Deserializing TheFields(Source);
+
+ SmallVector<Decl*, 64> Decls;
+ setHasLoadedFieldsFromExternalStorage(true);
+ Source->FindExternalLexicalDecls(this, [](Decl::Kind K) {
+ return FieldDecl::classofKind(K) || IndirectFieldDecl::classofKind(K);
+ }, Decls);
+
+#ifndef NDEBUG
+ // Check that all decls we got were FieldDecls.
+ for (unsigned i=0, e=Decls.size(); i != e; ++i)
+ assert(isa<FieldDecl>(Decls[i]) || isa<IndirectFieldDecl>(Decls[i]));
+#endif
+
+ if (Decls.empty())
+ return;
+
+ std::tie(FirstDecl, LastDecl) = BuildDeclChain(Decls,
+ /*FieldsAlreadyLoaded=*/false);
+}
+
+bool RecordDecl::mayInsertExtraPadding(bool EmitRemark) const {
+ ASTContext &Context = getASTContext();
+ const SanitizerMask EnabledAsanMask = Context.getLangOpts().Sanitize.Mask &
+ (SanitizerKind::Address | SanitizerKind::KernelAddress);
+ if (!EnabledAsanMask || !Context.getLangOpts().SanitizeAddressFieldPadding)
+ return false;
+ const auto &Blacklist = Context.getSanitizerBlacklist();
+ const auto *CXXRD = dyn_cast<CXXRecordDecl>(this);
+ // We may be able to relax some of these requirements.
+ int ReasonToReject = -1;
+ if (!CXXRD || CXXRD->isExternCContext())
+ ReasonToReject = 0; // is not C++.
+ else if (CXXRD->hasAttr<PackedAttr>())
+ ReasonToReject = 1; // is packed.
+ else if (CXXRD->isUnion())
+ ReasonToReject = 2; // is a union.
+ else if (CXXRD->isTriviallyCopyable())
+ ReasonToReject = 3; // is trivially copyable.
+ else if (CXXRD->hasTrivialDestructor())
+ ReasonToReject = 4; // has trivial destructor.
+ else if (CXXRD->isStandardLayout())
+ ReasonToReject = 5; // is standard layout.
+ else if (Blacklist.isBlacklistedLocation(EnabledAsanMask, getLocation(),
+ "field-padding"))
+ ReasonToReject = 6; // is in an excluded file.
+ else if (Blacklist.isBlacklistedType(EnabledAsanMask,
+ getQualifiedNameAsString(),
+ "field-padding"))
+ ReasonToReject = 7; // The type is excluded.
+
+ if (EmitRemark) {
+ if (ReasonToReject >= 0)
+ Context.getDiagnostics().Report(
+ getLocation(),
+ diag::remark_sanitize_address_insert_extra_padding_rejected)
+ << getQualifiedNameAsString() << ReasonToReject;
+ else
+ Context.getDiagnostics().Report(
+ getLocation(),
+ diag::remark_sanitize_address_insert_extra_padding_accepted)
+ << getQualifiedNameAsString();
+ }
+ return ReasonToReject < 0;
+}
+
+const FieldDecl *RecordDecl::findFirstNamedDataMember() const {
+ for (const auto *I : fields()) {
+ if (I->getIdentifier())
+ return I;
+
+ if (const auto *RT = I->getType()->getAs<RecordType>())
+ if (const FieldDecl *NamedDataMember =
+ RT->getDecl()->findFirstNamedDataMember())
+ return NamedDataMember;
+ }
+
+ // We didn't find a named data member.
+ return nullptr;
+}
+
+//===----------------------------------------------------------------------===//
+// BlockDecl Implementation
+//===----------------------------------------------------------------------===//
+
+BlockDecl::BlockDecl(DeclContext *DC, SourceLocation CaretLoc)
+ : Decl(Block, DC, CaretLoc), DeclContext(Block) {
+ setIsVariadic(false);
+ setCapturesCXXThis(false);
+ setBlockMissingReturnType(true);
+ setIsConversionFromLambda(false);
+ setDoesNotEscape(false);
+ setCanAvoidCopyToHeap(false);
+}
+
+void BlockDecl::setParams(ArrayRef<ParmVarDecl *> NewParamInfo) {
+ assert(!ParamInfo && "Already has param info!");
+
+ // Zero params -> null pointer.
+ if (!NewParamInfo.empty()) {
+ NumParams = NewParamInfo.size();
+ ParamInfo = new (getASTContext()) ParmVarDecl*[NewParamInfo.size()];
+ std::copy(NewParamInfo.begin(), NewParamInfo.end(), ParamInfo);
+ }
+}
+
+void BlockDecl::setCaptures(ASTContext &Context, ArrayRef<Capture> Captures,
+ bool CapturesCXXThis) {
+ this->setCapturesCXXThis(CapturesCXXThis);
+ this->NumCaptures = Captures.size();
+
+ if (Captures.empty()) {
+ this->Captures = nullptr;
+ return;
+ }
+
+ this->Captures = Captures.copy(Context).data();
+}
+
+bool BlockDecl::capturesVariable(const VarDecl *variable) const {
+ for (const auto &I : captures())
+ // Only auto vars can be captured, so no redeclaration worries.
+ if (I.getVariable() == variable)
+ return true;
+
+ return false;
+}
+
+SourceRange BlockDecl::getSourceRange() const {
+ return SourceRange(getLocation(), Body ? Body->getEndLoc() : getLocation());
+}
+
+//===----------------------------------------------------------------------===//
+// Other Decl Allocation/Deallocation Method Implementations
+//===----------------------------------------------------------------------===//
+
+void TranslationUnitDecl::anchor() {}
+
+TranslationUnitDecl *TranslationUnitDecl::Create(ASTContext &C) {
+ return new (C, (DeclContext *)nullptr) TranslationUnitDecl(C);
+}
+
+void PragmaCommentDecl::anchor() {}
+
+PragmaCommentDecl *PragmaCommentDecl::Create(const ASTContext &C,
+ TranslationUnitDecl *DC,
+ SourceLocation CommentLoc,
+ PragmaMSCommentKind CommentKind,
+ StringRef Arg) {
+ PragmaCommentDecl *PCD =
+ new (C, DC, additionalSizeToAlloc<char>(Arg.size() + 1))
+ PragmaCommentDecl(DC, CommentLoc, CommentKind);
+ memcpy(PCD->getTrailingObjects<char>(), Arg.data(), Arg.size());
+ PCD->getTrailingObjects<char>()[Arg.size()] = '\0';
+ return PCD;
+}
+
+PragmaCommentDecl *PragmaCommentDecl::CreateDeserialized(ASTContext &C,
+ unsigned ID,
+ unsigned ArgSize) {
+ return new (C, ID, additionalSizeToAlloc<char>(ArgSize + 1))
+ PragmaCommentDecl(nullptr, SourceLocation(), PCK_Unknown);
+}
+
+void PragmaDetectMismatchDecl::anchor() {}
+
+PragmaDetectMismatchDecl *
+PragmaDetectMismatchDecl::Create(const ASTContext &C, TranslationUnitDecl *DC,
+ SourceLocation Loc, StringRef Name,
+ StringRef Value) {
+ size_t ValueStart = Name.size() + 1;
+ PragmaDetectMismatchDecl *PDMD =
+ new (C, DC, additionalSizeToAlloc<char>(ValueStart + Value.size() + 1))
+ PragmaDetectMismatchDecl(DC, Loc, ValueStart);
+ memcpy(PDMD->getTrailingObjects<char>(), Name.data(), Name.size());
+ PDMD->getTrailingObjects<char>()[Name.size()] = '\0';
+ memcpy(PDMD->getTrailingObjects<char>() + ValueStart, Value.data(),
+ Value.size());
+ PDMD->getTrailingObjects<char>()[ValueStart + Value.size()] = '\0';
+ return PDMD;
+}
+
+PragmaDetectMismatchDecl *
+PragmaDetectMismatchDecl::CreateDeserialized(ASTContext &C, unsigned ID,
+ unsigned NameValueSize) {
+ return new (C, ID, additionalSizeToAlloc<char>(NameValueSize + 1))
+ PragmaDetectMismatchDecl(nullptr, SourceLocation(), 0);
+}
+
+void ExternCContextDecl::anchor() {}
+
+ExternCContextDecl *ExternCContextDecl::Create(const ASTContext &C,
+ TranslationUnitDecl *DC) {
+ return new (C, DC) ExternCContextDecl(DC);
+}
+
+void LabelDecl::anchor() {}
+
+LabelDecl *LabelDecl::Create(ASTContext &C, DeclContext *DC,
+ SourceLocation IdentL, IdentifierInfo *II) {
+ return new (C, DC) LabelDecl(DC, IdentL, II, nullptr, IdentL);
+}
+
+LabelDecl *LabelDecl::Create(ASTContext &C, DeclContext *DC,
+ SourceLocation IdentL, IdentifierInfo *II,
+ SourceLocation GnuLabelL) {
+ assert(GnuLabelL != IdentL && "Use this only for GNU local labels");
+ return new (C, DC) LabelDecl(DC, IdentL, II, nullptr, GnuLabelL);
+}
+
+LabelDecl *LabelDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
+ return new (C, ID) LabelDecl(nullptr, SourceLocation(), nullptr, nullptr,
+ SourceLocation());
+}
+
+void LabelDecl::setMSAsmLabel(StringRef Name) {
+char *Buffer = new (getASTContext(), 1) char[Name.size() + 1];
+ memcpy(Buffer, Name.data(), Name.size());
+ Buffer[Name.size()] = '\0';
+ MSAsmName = Buffer;
+}
+
+void ValueDecl::anchor() {}
+
+bool ValueDecl::isWeak() const {
+ auto *MostRecent = getMostRecentDecl();
+ return MostRecent->hasAttr<WeakAttr>() ||
+ MostRecent->hasAttr<WeakRefAttr>() || isWeakImported();
+}
+
+void ImplicitParamDecl::anchor() {}
+
+ImplicitParamDecl *ImplicitParamDecl::Create(ASTContext &C, DeclContext *DC,
+ SourceLocation IdLoc,
+ IdentifierInfo *Id, QualType Type,
+ ImplicitParamKind ParamKind) {
+ return new (C, DC) ImplicitParamDecl(C, DC, IdLoc, Id, Type, ParamKind);
+}
+
+ImplicitParamDecl *ImplicitParamDecl::Create(ASTContext &C, QualType Type,
+ ImplicitParamKind ParamKind) {
+ return new (C, nullptr) ImplicitParamDecl(C, Type, ParamKind);
+}
+
+ImplicitParamDecl *ImplicitParamDecl::CreateDeserialized(ASTContext &C,
+ unsigned ID) {
+ return new (C, ID) ImplicitParamDecl(C, QualType(), ImplicitParamKind::Other);
+}
+
+FunctionDecl *FunctionDecl::Create(ASTContext &C, DeclContext *DC,
+ SourceLocation StartLoc,
+ const DeclarationNameInfo &NameInfo,
+ QualType T, TypeSourceInfo *TInfo,
+ StorageClass SC, bool isInlineSpecified,
+ bool hasWrittenPrototype,
+ ConstexprSpecKind ConstexprKind,
+ Expr *TrailingRequiresClause) {
+ FunctionDecl *New =
+ new (C, DC) FunctionDecl(Function, C, DC, StartLoc, NameInfo, T, TInfo,
+ SC, isInlineSpecified, ConstexprKind,
+ TrailingRequiresClause);
+ New->setHasWrittenPrototype(hasWrittenPrototype);
+ return New;
+}
+
+FunctionDecl *FunctionDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
+ return new (C, ID) FunctionDecl(
+ Function, C, nullptr, SourceLocation(), DeclarationNameInfo(), QualType(),
+ nullptr, SC_None, false, ConstexprSpecKind::Unspecified, nullptr);
+}
+
+BlockDecl *BlockDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L) {
+ return new (C, DC) BlockDecl(DC, L);
+}
+
+BlockDecl *BlockDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
+ return new (C, ID) BlockDecl(nullptr, SourceLocation());
+}
+
+CapturedDecl::CapturedDecl(DeclContext *DC, unsigned NumParams)
+ : Decl(Captured, DC, SourceLocation()), DeclContext(Captured),
+ NumParams(NumParams), ContextParam(0), BodyAndNothrow(nullptr, false) {}
+
+CapturedDecl *CapturedDecl::Create(ASTContext &C, DeclContext *DC,
+ unsigned NumParams) {
+ return new (C, DC, additionalSizeToAlloc<ImplicitParamDecl *>(NumParams))
+ CapturedDecl(DC, NumParams);
+}
+
+CapturedDecl *CapturedDecl::CreateDeserialized(ASTContext &C, unsigned ID,
+ unsigned NumParams) {
+ return new (C, ID, additionalSizeToAlloc<ImplicitParamDecl *>(NumParams))
+ CapturedDecl(nullptr, NumParams);
+}
+
+Stmt *CapturedDecl::getBody() const { return BodyAndNothrow.getPointer(); }
+void CapturedDecl::setBody(Stmt *B) { BodyAndNothrow.setPointer(B); }
+
+bool CapturedDecl::isNothrow() const { return BodyAndNothrow.getInt(); }
+void CapturedDecl::setNothrow(bool Nothrow) { BodyAndNothrow.setInt(Nothrow); }
+
+EnumConstantDecl *EnumConstantDecl::Create(ASTContext &C, EnumDecl *CD,
+ SourceLocation L,
+ IdentifierInfo *Id, QualType T,
+ Expr *E, const llvm::APSInt &V) {
+ return new (C, CD) EnumConstantDecl(CD, L, Id, T, E, V);
+}
+
+EnumConstantDecl *
+EnumConstantDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
+ return new (C, ID) EnumConstantDecl(nullptr, SourceLocation(), nullptr,
+ QualType(), nullptr, llvm::APSInt());
+}
+
+void IndirectFieldDecl::anchor() {}
+
+IndirectFieldDecl::IndirectFieldDecl(ASTContext &C, DeclContext *DC,
+ SourceLocation L, DeclarationName N,
+ QualType T,
+ MutableArrayRef<NamedDecl *> CH)
+ : ValueDecl(IndirectField, DC, L, N, T), Chaining(CH.data()),
+ ChainingSize(CH.size()) {
+ // In C++, indirect field declarations conflict with tag declarations in the
+ // same scope, so add them to IDNS_Tag so that tag redeclaration finds them.
+ if (C.getLangOpts().CPlusPlus)
+ IdentifierNamespace |= IDNS_Tag;
+}
+
+IndirectFieldDecl *
+IndirectFieldDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L,
+ IdentifierInfo *Id, QualType T,
+ llvm::MutableArrayRef<NamedDecl *> CH) {
+ return new (C, DC) IndirectFieldDecl(C, DC, L, Id, T, CH);
+}
+
+IndirectFieldDecl *IndirectFieldDecl::CreateDeserialized(ASTContext &C,
+ unsigned ID) {
+ return new (C, ID) IndirectFieldDecl(C, nullptr, SourceLocation(),
+ DeclarationName(), QualType(), None);
+}
+
+SourceRange EnumConstantDecl::getSourceRange() const {
+ SourceLocation End = getLocation();
+ if (Init)
+ End = Init->getEndLoc();
+ return SourceRange(getLocation(), End);
+}
+
+void TypeDecl::anchor() {}
+
+TypedefDecl *TypedefDecl::Create(ASTContext &C, DeclContext *DC,
+ SourceLocation StartLoc, SourceLocation IdLoc,
+ IdentifierInfo *Id, TypeSourceInfo *TInfo) {
+ return new (C, DC) TypedefDecl(C, DC, StartLoc, IdLoc, Id, TInfo);
+}
+
+void TypedefNameDecl::anchor() {}
+
+TagDecl *TypedefNameDecl::getAnonDeclWithTypedefName(bool AnyRedecl) const {
+ if (auto *TT = getTypeSourceInfo()->getType()->getAs<TagType>()) {
+ auto *OwningTypedef = TT->getDecl()->getTypedefNameForAnonDecl();
+ auto *ThisTypedef = this;
+ if (AnyRedecl && OwningTypedef) {
+ OwningTypedef = OwningTypedef->getCanonicalDecl();
+ ThisTypedef = ThisTypedef->getCanonicalDecl();
+ }
+ if (OwningTypedef == ThisTypedef)
+ return TT->getDecl();
+ }
+
+ return nullptr;
+}
+
+bool TypedefNameDecl::isTransparentTagSlow() const {
+ auto determineIsTransparent = [&]() {
+ if (auto *TT = getUnderlyingType()->getAs<TagType>()) {
+ if (auto *TD = TT->getDecl()) {
+ if (TD->getName() != getName())
+ return false;
+ SourceLocation TTLoc = getLocation();
+ SourceLocation TDLoc = TD->getLocation();
+ if (!TTLoc.isMacroID() || !TDLoc.isMacroID())
+ return false;
+ SourceManager &SM = getASTContext().getSourceManager();
+ return SM.getSpellingLoc(TTLoc) == SM.getSpellingLoc(TDLoc);
+ }
+ }
+ return false;
+ };
+
+ bool isTransparent = determineIsTransparent();
+ MaybeModedTInfo.setInt((isTransparent << 1) | 1);
+ return isTransparent;
+}
+
+TypedefDecl *TypedefDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
+ return new (C, ID) TypedefDecl(C, nullptr, SourceLocation(), SourceLocation(),
+ nullptr, nullptr);
+}
+
+TypeAliasDecl *TypeAliasDecl::Create(ASTContext &C, DeclContext *DC,
+ SourceLocation StartLoc,
+ SourceLocation IdLoc, IdentifierInfo *Id,
+ TypeSourceInfo *TInfo) {
+ return new (C, DC) TypeAliasDecl(C, DC, StartLoc, IdLoc, Id, TInfo);
+}
+
+TypeAliasDecl *TypeAliasDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
+ return new (C, ID) TypeAliasDecl(C, nullptr, SourceLocation(),
+ SourceLocation(), nullptr, nullptr);
+}
+
+SourceRange TypedefDecl::getSourceRange() const {
+ SourceLocation RangeEnd = getLocation();
+ if (TypeSourceInfo *TInfo = getTypeSourceInfo()) {
+ if (typeIsPostfix(TInfo->getType()))
+ RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd();
+ }
+ return SourceRange(getBeginLoc(), RangeEnd);
+}
+
+SourceRange TypeAliasDecl::getSourceRange() const {
+ SourceLocation RangeEnd = getBeginLoc();
+ if (TypeSourceInfo *TInfo = getTypeSourceInfo())
+ RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd();
+ return SourceRange(getBeginLoc(), RangeEnd);
+}
+
+void FileScopeAsmDecl::anchor() {}
+
+FileScopeAsmDecl *FileScopeAsmDecl::Create(ASTContext &C, DeclContext *DC,
+ StringLiteral *Str,
+ SourceLocation AsmLoc,
+ SourceLocation RParenLoc) {
+ return new (C, DC) FileScopeAsmDecl(DC, Str, AsmLoc, RParenLoc);
+}
+
+FileScopeAsmDecl *FileScopeAsmDecl::CreateDeserialized(ASTContext &C,
+ unsigned ID) {
+ return new (C, ID) FileScopeAsmDecl(nullptr, nullptr, SourceLocation(),
+ SourceLocation());
+}
+
+void EmptyDecl::anchor() {}
+
+EmptyDecl *EmptyDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L) {
+ return new (C, DC) EmptyDecl(DC, L);
+}
+
+EmptyDecl *EmptyDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
+ return new (C, ID) EmptyDecl(nullptr, SourceLocation());
+}
+
+//===----------------------------------------------------------------------===//
+// ImportDecl Implementation
+//===----------------------------------------------------------------------===//
+
+/// Retrieve the number of module identifiers needed to name the given
+/// module.
+static unsigned getNumModuleIdentifiers(Module *Mod) {
+ unsigned Result = 1;
+ while (Mod->Parent) {
+ Mod = Mod->Parent;
+ ++Result;
+ }
+ return Result;
+}
+
+ImportDecl::ImportDecl(DeclContext *DC, SourceLocation StartLoc,
+ Module *Imported,
+ ArrayRef<SourceLocation> IdentifierLocs)
+ : Decl(Import, DC, StartLoc), ImportedModule(Imported),
+ NextLocalImportAndComplete(nullptr, true) {
+ assert(getNumModuleIdentifiers(Imported) == IdentifierLocs.size());
+ auto *StoredLocs = getTrailingObjects<SourceLocation>();
+ std::uninitialized_copy(IdentifierLocs.begin(), IdentifierLocs.end(),
+ StoredLocs);
+}
+
+ImportDecl::ImportDecl(DeclContext *DC, SourceLocation StartLoc,
+ Module *Imported, SourceLocation EndLoc)
+ : Decl(Import, DC, StartLoc), ImportedModule(Imported),
+ NextLocalImportAndComplete(nullptr, false) {
+ *getTrailingObjects<SourceLocation>() = EndLoc;
+}
+
+ImportDecl *ImportDecl::Create(ASTContext &C, DeclContext *DC,
+ SourceLocation StartLoc, Module *Imported,
+ ArrayRef<SourceLocation> IdentifierLocs) {
+ return new (C, DC,
+ additionalSizeToAlloc<SourceLocation>(IdentifierLocs.size()))
+ ImportDecl(DC, StartLoc, Imported, IdentifierLocs);
+}
+
+ImportDecl *ImportDecl::CreateImplicit(ASTContext &C, DeclContext *DC,
+ SourceLocation StartLoc,
+ Module *Imported,
+ SourceLocation EndLoc) {
+ ImportDecl *Import = new (C, DC, additionalSizeToAlloc<SourceLocation>(1))
+ ImportDecl(DC, StartLoc, Imported, EndLoc);
+ Import->setImplicit();
+ return Import;
+}
+
+ImportDecl *ImportDecl::CreateDeserialized(ASTContext &C, unsigned ID,
+ unsigned NumLocations) {
+ return new (C, ID, additionalSizeToAlloc<SourceLocation>(NumLocations))
+ ImportDecl(EmptyShell());
+}
+
+ArrayRef<SourceLocation> ImportDecl::getIdentifierLocs() const {
+ if (!isImportComplete())
+ return None;
+
+ const auto *StoredLocs = getTrailingObjects<SourceLocation>();
+ return llvm::makeArrayRef(StoredLocs,
+ getNumModuleIdentifiers(getImportedModule()));
+}
+
+SourceRange ImportDecl::getSourceRange() const {
+ if (!isImportComplete())
+ return SourceRange(getLocation(), *getTrailingObjects<SourceLocation>());
+
+ return SourceRange(getLocation(), getIdentifierLocs().back());
+}
+
+//===----------------------------------------------------------------------===//
+// ExportDecl Implementation
+//===----------------------------------------------------------------------===//
+
+void ExportDecl::anchor() {}
+
+ExportDecl *ExportDecl::Create(ASTContext &C, DeclContext *DC,
+ SourceLocation ExportLoc) {
+ return new (C, DC) ExportDecl(DC, ExportLoc);
+}
+
+ExportDecl *ExportDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
+ return new (C, ID) ExportDecl(nullptr, SourceLocation());
+}