diff options
Diffstat (limited to 'contrib/llvm-project/clang/lib/AST/ExprConstant.cpp')
-rw-r--r-- | contrib/llvm-project/clang/lib/AST/ExprConstant.cpp | 14458 |
1 files changed, 14458 insertions, 0 deletions
diff --git a/contrib/llvm-project/clang/lib/AST/ExprConstant.cpp b/contrib/llvm-project/clang/lib/AST/ExprConstant.cpp new file mode 100644 index 000000000000..309282f333d0 --- /dev/null +++ b/contrib/llvm-project/clang/lib/AST/ExprConstant.cpp @@ -0,0 +1,14458 @@ +//===--- ExprConstant.cpp - Expression Constant Evaluator -----------------===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// This file implements the Expr constant evaluator. +// +// Constant expression evaluation produces four main results: +// +// * A success/failure flag indicating whether constant folding was successful. +// This is the 'bool' return value used by most of the code in this file. A +// 'false' return value indicates that constant folding has failed, and any +// appropriate diagnostic has already been produced. +// +// * An evaluated result, valid only if constant folding has not failed. +// +// * A flag indicating if evaluation encountered (unevaluated) side-effects. +// These arise in cases such as (sideEffect(), 0) and (sideEffect() || 1), +// where it is possible to determine the evaluated result regardless. +// +// * A set of notes indicating why the evaluation was not a constant expression +// (under the C++11 / C++1y rules only, at the moment), or, if folding failed +// too, why the expression could not be folded. +// +// If we are checking for a potential constant expression, failure to constant +// fold a potential constant sub-expression will be indicated by a 'false' +// return value (the expression could not be folded) and no diagnostic (the +// expression is not necessarily non-constant). +// +//===----------------------------------------------------------------------===// + +#include <cstring> +#include <functional> +#include "Interp/Context.h" +#include "Interp/Frame.h" +#include "Interp/State.h" +#include "clang/AST/APValue.h" +#include "clang/AST/ASTContext.h" +#include "clang/AST/ASTDiagnostic.h" +#include "clang/AST/ASTLambda.h" +#include "clang/AST/CXXInheritance.h" +#include "clang/AST/CharUnits.h" +#include "clang/AST/CurrentSourceLocExprScope.h" +#include "clang/AST/Expr.h" +#include "clang/AST/OSLog.h" +#include "clang/AST/OptionalDiagnostic.h" +#include "clang/AST/RecordLayout.h" +#include "clang/AST/StmtVisitor.h" +#include "clang/AST/TypeLoc.h" +#include "clang/Basic/Builtins.h" +#include "clang/Basic/FixedPoint.h" +#include "clang/Basic/TargetInfo.h" +#include "llvm/ADT/Optional.h" +#include "llvm/ADT/SmallBitVector.h" +#include "llvm/Support/SaveAndRestore.h" +#include "llvm/Support/raw_ostream.h" + +#define DEBUG_TYPE "exprconstant" + +using namespace clang; +using llvm::APInt; +using llvm::APSInt; +using llvm::APFloat; +using llvm::Optional; + +namespace { + struct LValue; + class CallStackFrame; + class EvalInfo; + + using SourceLocExprScopeGuard = + CurrentSourceLocExprScope::SourceLocExprScopeGuard; + + static QualType getType(APValue::LValueBase B) { + if (!B) return QualType(); + if (const ValueDecl *D = B.dyn_cast<const ValueDecl*>()) { + // FIXME: It's unclear where we're supposed to take the type from, and + // this actually matters for arrays of unknown bound. Eg: + // + // extern int arr[]; void f() { extern int arr[3]; }; + // constexpr int *p = &arr[1]; // valid? + // + // For now, we take the array bound from the most recent declaration. + for (auto *Redecl = cast<ValueDecl>(D->getMostRecentDecl()); Redecl; + Redecl = cast_or_null<ValueDecl>(Redecl->getPreviousDecl())) { + QualType T = Redecl->getType(); + if (!T->isIncompleteArrayType()) + return T; + } + return D->getType(); + } + + if (B.is<TypeInfoLValue>()) + return B.getTypeInfoType(); + + if (B.is<DynamicAllocLValue>()) + return B.getDynamicAllocType(); + + const Expr *Base = B.get<const Expr*>(); + + // For a materialized temporary, the type of the temporary we materialized + // may not be the type of the expression. + if (const MaterializeTemporaryExpr *MTE = + dyn_cast<MaterializeTemporaryExpr>(Base)) { + SmallVector<const Expr *, 2> CommaLHSs; + SmallVector<SubobjectAdjustment, 2> Adjustments; + const Expr *Temp = MTE->GetTemporaryExpr(); + const Expr *Inner = Temp->skipRValueSubobjectAdjustments(CommaLHSs, + Adjustments); + // Keep any cv-qualifiers from the reference if we generated a temporary + // for it directly. Otherwise use the type after adjustment. + if (!Adjustments.empty()) + return Inner->getType(); + } + + return Base->getType(); + } + + /// Get an LValue path entry, which is known to not be an array index, as a + /// field declaration. + static const FieldDecl *getAsField(APValue::LValuePathEntry E) { + return dyn_cast_or_null<FieldDecl>(E.getAsBaseOrMember().getPointer()); + } + /// Get an LValue path entry, which is known to not be an array index, as a + /// base class declaration. + static const CXXRecordDecl *getAsBaseClass(APValue::LValuePathEntry E) { + return dyn_cast_or_null<CXXRecordDecl>(E.getAsBaseOrMember().getPointer()); + } + /// Determine whether this LValue path entry for a base class names a virtual + /// base class. + static bool isVirtualBaseClass(APValue::LValuePathEntry E) { + return E.getAsBaseOrMember().getInt(); + } + + /// Given an expression, determine the type used to store the result of + /// evaluating that expression. + static QualType getStorageType(const ASTContext &Ctx, const Expr *E) { + if (E->isRValue()) + return E->getType(); + return Ctx.getLValueReferenceType(E->getType()); + } + + /// Given a CallExpr, try to get the alloc_size attribute. May return null. + static const AllocSizeAttr *getAllocSizeAttr(const CallExpr *CE) { + const FunctionDecl *Callee = CE->getDirectCallee(); + return Callee ? Callee->getAttr<AllocSizeAttr>() : nullptr; + } + + /// Attempts to unwrap a CallExpr (with an alloc_size attribute) from an Expr. + /// This will look through a single cast. + /// + /// Returns null if we couldn't unwrap a function with alloc_size. + static const CallExpr *tryUnwrapAllocSizeCall(const Expr *E) { + if (!E->getType()->isPointerType()) + return nullptr; + + E = E->IgnoreParens(); + // If we're doing a variable assignment from e.g. malloc(N), there will + // probably be a cast of some kind. In exotic cases, we might also see a + // top-level ExprWithCleanups. Ignore them either way. + if (const auto *FE = dyn_cast<FullExpr>(E)) + E = FE->getSubExpr()->IgnoreParens(); + + if (const auto *Cast = dyn_cast<CastExpr>(E)) + E = Cast->getSubExpr()->IgnoreParens(); + + if (const auto *CE = dyn_cast<CallExpr>(E)) + return getAllocSizeAttr(CE) ? CE : nullptr; + return nullptr; + } + + /// Determines whether or not the given Base contains a call to a function + /// with the alloc_size attribute. + static bool isBaseAnAllocSizeCall(APValue::LValueBase Base) { + const auto *E = Base.dyn_cast<const Expr *>(); + return E && E->getType()->isPointerType() && tryUnwrapAllocSizeCall(E); + } + + /// The bound to claim that an array of unknown bound has. + /// The value in MostDerivedArraySize is undefined in this case. So, set it + /// to an arbitrary value that's likely to loudly break things if it's used. + static const uint64_t AssumedSizeForUnsizedArray = + std::numeric_limits<uint64_t>::max() / 2; + + /// Determines if an LValue with the given LValueBase will have an unsized + /// array in its designator. + /// Find the path length and type of the most-derived subobject in the given + /// path, and find the size of the containing array, if any. + static unsigned + findMostDerivedSubobject(ASTContext &Ctx, APValue::LValueBase Base, + ArrayRef<APValue::LValuePathEntry> Path, + uint64_t &ArraySize, QualType &Type, bool &IsArray, + bool &FirstEntryIsUnsizedArray) { + // This only accepts LValueBases from APValues, and APValues don't support + // arrays that lack size info. + assert(!isBaseAnAllocSizeCall(Base) && + "Unsized arrays shouldn't appear here"); + unsigned MostDerivedLength = 0; + Type = getType(Base); + + for (unsigned I = 0, N = Path.size(); I != N; ++I) { + if (Type->isArrayType()) { + const ArrayType *AT = Ctx.getAsArrayType(Type); + Type = AT->getElementType(); + MostDerivedLength = I + 1; + IsArray = true; + + if (auto *CAT = dyn_cast<ConstantArrayType>(AT)) { + ArraySize = CAT->getSize().getZExtValue(); + } else { + assert(I == 0 && "unexpected unsized array designator"); + FirstEntryIsUnsizedArray = true; + ArraySize = AssumedSizeForUnsizedArray; + } + } else if (Type->isAnyComplexType()) { + const ComplexType *CT = Type->castAs<ComplexType>(); + Type = CT->getElementType(); + ArraySize = 2; + MostDerivedLength = I + 1; + IsArray = true; + } else if (const FieldDecl *FD = getAsField(Path[I])) { + Type = FD->getType(); + ArraySize = 0; + MostDerivedLength = I + 1; + IsArray = false; + } else { + // Path[I] describes a base class. + ArraySize = 0; + IsArray = false; + } + } + return MostDerivedLength; + } + + /// A path from a glvalue to a subobject of that glvalue. + struct SubobjectDesignator { + /// True if the subobject was named in a manner not supported by C++11. Such + /// lvalues can still be folded, but they are not core constant expressions + /// and we cannot perform lvalue-to-rvalue conversions on them. + unsigned Invalid : 1; + + /// Is this a pointer one past the end of an object? + unsigned IsOnePastTheEnd : 1; + + /// Indicator of whether the first entry is an unsized array. + unsigned FirstEntryIsAnUnsizedArray : 1; + + /// Indicator of whether the most-derived object is an array element. + unsigned MostDerivedIsArrayElement : 1; + + /// The length of the path to the most-derived object of which this is a + /// subobject. + unsigned MostDerivedPathLength : 28; + + /// The size of the array of which the most-derived object is an element. + /// This will always be 0 if the most-derived object is not an array + /// element. 0 is not an indicator of whether or not the most-derived object + /// is an array, however, because 0-length arrays are allowed. + /// + /// If the current array is an unsized array, the value of this is + /// undefined. + uint64_t MostDerivedArraySize; + + /// The type of the most derived object referred to by this address. + QualType MostDerivedType; + + typedef APValue::LValuePathEntry PathEntry; + + /// The entries on the path from the glvalue to the designated subobject. + SmallVector<PathEntry, 8> Entries; + + SubobjectDesignator() : Invalid(true) {} + + explicit SubobjectDesignator(QualType T) + : Invalid(false), IsOnePastTheEnd(false), + FirstEntryIsAnUnsizedArray(false), MostDerivedIsArrayElement(false), + MostDerivedPathLength(0), MostDerivedArraySize(0), + MostDerivedType(T) {} + + SubobjectDesignator(ASTContext &Ctx, const APValue &V) + : Invalid(!V.isLValue() || !V.hasLValuePath()), IsOnePastTheEnd(false), + FirstEntryIsAnUnsizedArray(false), MostDerivedIsArrayElement(false), + MostDerivedPathLength(0), MostDerivedArraySize(0) { + assert(V.isLValue() && "Non-LValue used to make an LValue designator?"); + if (!Invalid) { + IsOnePastTheEnd = V.isLValueOnePastTheEnd(); + ArrayRef<PathEntry> VEntries = V.getLValuePath(); + Entries.insert(Entries.end(), VEntries.begin(), VEntries.end()); + if (V.getLValueBase()) { + bool IsArray = false; + bool FirstIsUnsizedArray = false; + MostDerivedPathLength = findMostDerivedSubobject( + Ctx, V.getLValueBase(), V.getLValuePath(), MostDerivedArraySize, + MostDerivedType, IsArray, FirstIsUnsizedArray); + MostDerivedIsArrayElement = IsArray; + FirstEntryIsAnUnsizedArray = FirstIsUnsizedArray; + } + } + } + + void truncate(ASTContext &Ctx, APValue::LValueBase Base, + unsigned NewLength) { + if (Invalid) + return; + + assert(Base && "cannot truncate path for null pointer"); + assert(NewLength <= Entries.size() && "not a truncation"); + + if (NewLength == Entries.size()) + return; + Entries.resize(NewLength); + + bool IsArray = false; + bool FirstIsUnsizedArray = false; + MostDerivedPathLength = findMostDerivedSubobject( + Ctx, Base, Entries, MostDerivedArraySize, MostDerivedType, IsArray, + FirstIsUnsizedArray); + MostDerivedIsArrayElement = IsArray; + FirstEntryIsAnUnsizedArray = FirstIsUnsizedArray; + } + + void setInvalid() { + Invalid = true; + Entries.clear(); + } + + /// Determine whether the most derived subobject is an array without a + /// known bound. + bool isMostDerivedAnUnsizedArray() const { + assert(!Invalid && "Calling this makes no sense on invalid designators"); + return Entries.size() == 1 && FirstEntryIsAnUnsizedArray; + } + + /// Determine what the most derived array's size is. Results in an assertion + /// failure if the most derived array lacks a size. + uint64_t getMostDerivedArraySize() const { + assert(!isMostDerivedAnUnsizedArray() && "Unsized array has no size"); + return MostDerivedArraySize; + } + + /// Determine whether this is a one-past-the-end pointer. + bool isOnePastTheEnd() const { + assert(!Invalid); + if (IsOnePastTheEnd) + return true; + if (!isMostDerivedAnUnsizedArray() && MostDerivedIsArrayElement && + Entries[MostDerivedPathLength - 1].getAsArrayIndex() == + MostDerivedArraySize) + return true; + return false; + } + + /// Get the range of valid index adjustments in the form + /// {maximum value that can be subtracted from this pointer, + /// maximum value that can be added to this pointer} + std::pair<uint64_t, uint64_t> validIndexAdjustments() { + if (Invalid || isMostDerivedAnUnsizedArray()) + return {0, 0}; + + // [expr.add]p4: For the purposes of these operators, a pointer to a + // nonarray object behaves the same as a pointer to the first element of + // an array of length one with the type of the object as its element type. + bool IsArray = MostDerivedPathLength == Entries.size() && + MostDerivedIsArrayElement; + uint64_t ArrayIndex = IsArray ? Entries.back().getAsArrayIndex() + : (uint64_t)IsOnePastTheEnd; + uint64_t ArraySize = + IsArray ? getMostDerivedArraySize() : (uint64_t)1; + return {ArrayIndex, ArraySize - ArrayIndex}; + } + + /// Check that this refers to a valid subobject. + bool isValidSubobject() const { + if (Invalid) + return false; + return !isOnePastTheEnd(); + } + /// Check that this refers to a valid subobject, and if not, produce a + /// relevant diagnostic and set the designator as invalid. + bool checkSubobject(EvalInfo &Info, const Expr *E, CheckSubobjectKind CSK); + + /// Get the type of the designated object. + QualType getType(ASTContext &Ctx) const { + assert(!Invalid && "invalid designator has no subobject type"); + return MostDerivedPathLength == Entries.size() + ? MostDerivedType + : Ctx.getRecordType(getAsBaseClass(Entries.back())); + } + + /// Update this designator to refer to the first element within this array. + void addArrayUnchecked(const ConstantArrayType *CAT) { + Entries.push_back(PathEntry::ArrayIndex(0)); + + // This is a most-derived object. + MostDerivedType = CAT->getElementType(); + MostDerivedIsArrayElement = true; + MostDerivedArraySize = CAT->getSize().getZExtValue(); + MostDerivedPathLength = Entries.size(); + } + /// Update this designator to refer to the first element within the array of + /// elements of type T. This is an array of unknown size. + void addUnsizedArrayUnchecked(QualType ElemTy) { + Entries.push_back(PathEntry::ArrayIndex(0)); + + MostDerivedType = ElemTy; + MostDerivedIsArrayElement = true; + // The value in MostDerivedArraySize is undefined in this case. So, set it + // to an arbitrary value that's likely to loudly break things if it's + // used. + MostDerivedArraySize = AssumedSizeForUnsizedArray; + MostDerivedPathLength = Entries.size(); + } + /// Update this designator to refer to the given base or member of this + /// object. + void addDeclUnchecked(const Decl *D, bool Virtual = false) { + Entries.push_back(APValue::BaseOrMemberType(D, Virtual)); + + // If this isn't a base class, it's a new most-derived object. + if (const FieldDecl *FD = dyn_cast<FieldDecl>(D)) { + MostDerivedType = FD->getType(); + MostDerivedIsArrayElement = false; + MostDerivedArraySize = 0; + MostDerivedPathLength = Entries.size(); + } + } + /// Update this designator to refer to the given complex component. + void addComplexUnchecked(QualType EltTy, bool Imag) { + Entries.push_back(PathEntry::ArrayIndex(Imag)); + + // This is technically a most-derived object, though in practice this + // is unlikely to matter. + MostDerivedType = EltTy; + MostDerivedIsArrayElement = true; + MostDerivedArraySize = 2; + MostDerivedPathLength = Entries.size(); + } + void diagnoseUnsizedArrayPointerArithmetic(EvalInfo &Info, const Expr *E); + void diagnosePointerArithmetic(EvalInfo &Info, const Expr *E, + const APSInt &N); + /// Add N to the address of this subobject. + void adjustIndex(EvalInfo &Info, const Expr *E, APSInt N) { + if (Invalid || !N) return; + uint64_t TruncatedN = N.extOrTrunc(64).getZExtValue(); + if (isMostDerivedAnUnsizedArray()) { + diagnoseUnsizedArrayPointerArithmetic(Info, E); + // Can't verify -- trust that the user is doing the right thing (or if + // not, trust that the caller will catch the bad behavior). + // FIXME: Should we reject if this overflows, at least? + Entries.back() = PathEntry::ArrayIndex( + Entries.back().getAsArrayIndex() + TruncatedN); + return; + } + + // [expr.add]p4: For the purposes of these operators, a pointer to a + // nonarray object behaves the same as a pointer to the first element of + // an array of length one with the type of the object as its element type. + bool IsArray = MostDerivedPathLength == Entries.size() && + MostDerivedIsArrayElement; + uint64_t ArrayIndex = IsArray ? Entries.back().getAsArrayIndex() + : (uint64_t)IsOnePastTheEnd; + uint64_t ArraySize = + IsArray ? getMostDerivedArraySize() : (uint64_t)1; + + if (N < -(int64_t)ArrayIndex || N > ArraySize - ArrayIndex) { + // Calculate the actual index in a wide enough type, so we can include + // it in the note. + N = N.extend(std::max<unsigned>(N.getBitWidth() + 1, 65)); + (llvm::APInt&)N += ArrayIndex; + assert(N.ugt(ArraySize) && "bounds check failed for in-bounds index"); + diagnosePointerArithmetic(Info, E, N); + setInvalid(); + return; + } + + ArrayIndex += TruncatedN; + assert(ArrayIndex <= ArraySize && + "bounds check succeeded for out-of-bounds index"); + + if (IsArray) + Entries.back() = PathEntry::ArrayIndex(ArrayIndex); + else + IsOnePastTheEnd = (ArrayIndex != 0); + } + }; + + /// A stack frame in the constexpr call stack. + class CallStackFrame : public interp::Frame { + public: + EvalInfo &Info; + + /// Parent - The caller of this stack frame. + CallStackFrame *Caller; + + /// Callee - The function which was called. + const FunctionDecl *Callee; + + /// This - The binding for the this pointer in this call, if any. + const LValue *This; + + /// Arguments - Parameter bindings for this function call, indexed by + /// parameters' function scope indices. + APValue *Arguments; + + /// Source location information about the default argument or default + /// initializer expression we're evaluating, if any. + CurrentSourceLocExprScope CurSourceLocExprScope; + + // Note that we intentionally use std::map here so that references to + // values are stable. + typedef std::pair<const void *, unsigned> MapKeyTy; + typedef std::map<MapKeyTy, APValue> MapTy; + /// Temporaries - Temporary lvalues materialized within this stack frame. + MapTy Temporaries; + + /// CallLoc - The location of the call expression for this call. + SourceLocation CallLoc; + + /// Index - The call index of this call. + unsigned Index; + + /// The stack of integers for tracking version numbers for temporaries. + SmallVector<unsigned, 2> TempVersionStack = {1}; + unsigned CurTempVersion = TempVersionStack.back(); + + unsigned getTempVersion() const { return TempVersionStack.back(); } + + void pushTempVersion() { + TempVersionStack.push_back(++CurTempVersion); + } + + void popTempVersion() { + TempVersionStack.pop_back(); + } + + // FIXME: Adding this to every 'CallStackFrame' may have a nontrivial impact + // on the overall stack usage of deeply-recursing constexpr evaluations. + // (We should cache this map rather than recomputing it repeatedly.) + // But let's try this and see how it goes; we can look into caching the map + // as a later change. + + /// LambdaCaptureFields - Mapping from captured variables/this to + /// corresponding data members in the closure class. + llvm::DenseMap<const VarDecl *, FieldDecl *> LambdaCaptureFields; + FieldDecl *LambdaThisCaptureField; + + CallStackFrame(EvalInfo &Info, SourceLocation CallLoc, + const FunctionDecl *Callee, const LValue *This, + APValue *Arguments); + ~CallStackFrame(); + + // Return the temporary for Key whose version number is Version. + APValue *getTemporary(const void *Key, unsigned Version) { + MapKeyTy KV(Key, Version); + auto LB = Temporaries.lower_bound(KV); + if (LB != Temporaries.end() && LB->first == KV) + return &LB->second; + // Pair (Key,Version) wasn't found in the map. Check that no elements + // in the map have 'Key' as their key. + assert((LB == Temporaries.end() || LB->first.first != Key) && + (LB == Temporaries.begin() || std::prev(LB)->first.first != Key) && + "Element with key 'Key' found in map"); + return nullptr; + } + + // Return the current temporary for Key in the map. + APValue *getCurrentTemporary(const void *Key) { + auto UB = Temporaries.upper_bound(MapKeyTy(Key, UINT_MAX)); + if (UB != Temporaries.begin() && std::prev(UB)->first.first == Key) + return &std::prev(UB)->second; + return nullptr; + } + + // Return the version number of the current temporary for Key. + unsigned getCurrentTemporaryVersion(const void *Key) const { + auto UB = Temporaries.upper_bound(MapKeyTy(Key, UINT_MAX)); + if (UB != Temporaries.begin() && std::prev(UB)->first.first == Key) + return std::prev(UB)->first.second; + return 0; + } + + /// Allocate storage for an object of type T in this stack frame. + /// Populates LV with a handle to the created object. Key identifies + /// the temporary within the stack frame, and must not be reused without + /// bumping the temporary version number. + template<typename KeyT> + APValue &createTemporary(const KeyT *Key, QualType T, + bool IsLifetimeExtended, LValue &LV); + + void describe(llvm::raw_ostream &OS) override; + + Frame *getCaller() const override { return Caller; } + SourceLocation getCallLocation() const override { return CallLoc; } + const FunctionDecl *getCallee() const override { return Callee; } + + bool isStdFunction() const { + for (const DeclContext *DC = Callee; DC; DC = DC->getParent()) + if (DC->isStdNamespace()) + return true; + return false; + } + }; + + /// Temporarily override 'this'. + class ThisOverrideRAII { + public: + ThisOverrideRAII(CallStackFrame &Frame, const LValue *NewThis, bool Enable) + : Frame(Frame), OldThis(Frame.This) { + if (Enable) + Frame.This = NewThis; + } + ~ThisOverrideRAII() { + Frame.This = OldThis; + } + private: + CallStackFrame &Frame; + const LValue *OldThis; + }; +} + +static bool HandleDestruction(EvalInfo &Info, const Expr *E, + const LValue &This, QualType ThisType); +static bool HandleDestruction(EvalInfo &Info, SourceLocation Loc, + APValue::LValueBase LVBase, APValue &Value, + QualType T); + +namespace { + /// A cleanup, and a flag indicating whether it is lifetime-extended. + class Cleanup { + llvm::PointerIntPair<APValue*, 1, bool> Value; + APValue::LValueBase Base; + QualType T; + + public: + Cleanup(APValue *Val, APValue::LValueBase Base, QualType T, + bool IsLifetimeExtended) + : Value(Val, IsLifetimeExtended), Base(Base), T(T) {} + + bool isLifetimeExtended() const { return Value.getInt(); } + bool endLifetime(EvalInfo &Info, bool RunDestructors) { + if (RunDestructors) { + SourceLocation Loc; + if (const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>()) + Loc = VD->getLocation(); + else if (const Expr *E = Base.dyn_cast<const Expr*>()) + Loc = E->getExprLoc(); + return HandleDestruction(Info, Loc, Base, *Value.getPointer(), T); + } + *Value.getPointer() = APValue(); + return true; + } + + bool hasSideEffect() { + return T.isDestructedType(); + } + }; + + /// A reference to an object whose construction we are currently evaluating. + struct ObjectUnderConstruction { + APValue::LValueBase Base; + ArrayRef<APValue::LValuePathEntry> Path; + friend bool operator==(const ObjectUnderConstruction &LHS, + const ObjectUnderConstruction &RHS) { + return LHS.Base == RHS.Base && LHS.Path == RHS.Path; + } + friend llvm::hash_code hash_value(const ObjectUnderConstruction &Obj) { + return llvm::hash_combine(Obj.Base, Obj.Path); + } + }; + enum class ConstructionPhase { + None, + Bases, + AfterBases, + Destroying, + DestroyingBases + }; +} + +namespace llvm { +template<> struct DenseMapInfo<ObjectUnderConstruction> { + using Base = DenseMapInfo<APValue::LValueBase>; + static ObjectUnderConstruction getEmptyKey() { + return {Base::getEmptyKey(), {}}; } + static ObjectUnderConstruction getTombstoneKey() { + return {Base::getTombstoneKey(), {}}; + } + static unsigned getHashValue(const ObjectUnderConstruction &Object) { + return hash_value(Object); + } + static bool isEqual(const ObjectUnderConstruction &LHS, + const ObjectUnderConstruction &RHS) { + return LHS == RHS; + } +}; +} + +namespace { + /// A dynamically-allocated heap object. + struct DynAlloc { + /// The value of this heap-allocated object. + APValue Value; + /// The allocating expression; used for diagnostics. Either a CXXNewExpr + /// or a CallExpr (the latter is for direct calls to operator new inside + /// std::allocator<T>::allocate). + const Expr *AllocExpr = nullptr; + + enum Kind { + New, + ArrayNew, + StdAllocator + }; + + /// Get the kind of the allocation. This must match between allocation + /// and deallocation. + Kind getKind() const { + if (auto *NE = dyn_cast<CXXNewExpr>(AllocExpr)) + return NE->isArray() ? ArrayNew : New; + assert(isa<CallExpr>(AllocExpr)); + return StdAllocator; + } + }; + + struct DynAllocOrder { + bool operator()(DynamicAllocLValue L, DynamicAllocLValue R) const { + return L.getIndex() < R.getIndex(); + } + }; + + /// EvalInfo - This is a private struct used by the evaluator to capture + /// information about a subexpression as it is folded. It retains information + /// about the AST context, but also maintains information about the folded + /// expression. + /// + /// If an expression could be evaluated, it is still possible it is not a C + /// "integer constant expression" or constant expression. If not, this struct + /// captures information about how and why not. + /// + /// One bit of information passed *into* the request for constant folding + /// indicates whether the subexpression is "evaluated" or not according to C + /// rules. For example, the RHS of (0 && foo()) is not evaluated. We can + /// evaluate the expression regardless of what the RHS is, but C only allows + /// certain things in certain situations. + class EvalInfo : public interp::State { + public: + ASTContext &Ctx; + + /// EvalStatus - Contains information about the evaluation. + Expr::EvalStatus &EvalStatus; + + /// CurrentCall - The top of the constexpr call stack. + CallStackFrame *CurrentCall; + + /// CallStackDepth - The number of calls in the call stack right now. + unsigned CallStackDepth; + + /// NextCallIndex - The next call index to assign. + unsigned NextCallIndex; + + /// StepsLeft - The remaining number of evaluation steps we're permitted + /// to perform. This is essentially a limit for the number of statements + /// we will evaluate. + unsigned StepsLeft; + + /// Force the use of the experimental new constant interpreter, bailing out + /// with an error if a feature is not supported. + bool ForceNewConstInterp; + + /// Enable the experimental new constant interpreter. + bool EnableNewConstInterp; + + /// BottomFrame - The frame in which evaluation started. This must be + /// initialized after CurrentCall and CallStackDepth. + CallStackFrame BottomFrame; + + /// A stack of values whose lifetimes end at the end of some surrounding + /// evaluation frame. + llvm::SmallVector<Cleanup, 16> CleanupStack; + + /// EvaluatingDecl - This is the declaration whose initializer is being + /// evaluated, if any. + APValue::LValueBase EvaluatingDecl; + + enum class EvaluatingDeclKind { + None, + /// We're evaluating the construction of EvaluatingDecl. + Ctor, + /// We're evaluating the destruction of EvaluatingDecl. + Dtor, + }; + EvaluatingDeclKind IsEvaluatingDecl = EvaluatingDeclKind::None; + + /// EvaluatingDeclValue - This is the value being constructed for the + /// declaration whose initializer is being evaluated, if any. + APValue *EvaluatingDeclValue; + + /// Set of objects that are currently being constructed. + llvm::DenseMap<ObjectUnderConstruction, ConstructionPhase> + ObjectsUnderConstruction; + + /// Current heap allocations, along with the location where each was + /// allocated. We use std::map here because we need stable addresses + /// for the stored APValues. + std::map<DynamicAllocLValue, DynAlloc, DynAllocOrder> HeapAllocs; + + /// The number of heap allocations performed so far in this evaluation. + unsigned NumHeapAllocs = 0; + + struct EvaluatingConstructorRAII { + EvalInfo &EI; + ObjectUnderConstruction Object; + bool DidInsert; + EvaluatingConstructorRAII(EvalInfo &EI, ObjectUnderConstruction Object, + bool HasBases) + : EI(EI), Object(Object) { + DidInsert = + EI.ObjectsUnderConstruction + .insert({Object, HasBases ? ConstructionPhase::Bases + : ConstructionPhase::AfterBases}) + .second; + } + void finishedConstructingBases() { + EI.ObjectsUnderConstruction[Object] = ConstructionPhase::AfterBases; + } + ~EvaluatingConstructorRAII() { + if (DidInsert) EI.ObjectsUnderConstruction.erase(Object); + } + }; + + struct EvaluatingDestructorRAII { + EvalInfo &EI; + ObjectUnderConstruction Object; + bool DidInsert; + EvaluatingDestructorRAII(EvalInfo &EI, ObjectUnderConstruction Object) + : EI(EI), Object(Object) { + DidInsert = EI.ObjectsUnderConstruction + .insert({Object, ConstructionPhase::Destroying}) + .second; + } + void startedDestroyingBases() { + EI.ObjectsUnderConstruction[Object] = + ConstructionPhase::DestroyingBases; + } + ~EvaluatingDestructorRAII() { + if (DidInsert) + EI.ObjectsUnderConstruction.erase(Object); + } + }; + + ConstructionPhase + isEvaluatingCtorDtor(APValue::LValueBase Base, + ArrayRef<APValue::LValuePathEntry> Path) { + return ObjectsUnderConstruction.lookup({Base, Path}); + } + + /// If we're currently speculatively evaluating, the outermost call stack + /// depth at which we can mutate state, otherwise 0. + unsigned SpeculativeEvaluationDepth = 0; + + /// The current array initialization index, if we're performing array + /// initialization. + uint64_t ArrayInitIndex = -1; + + /// HasActiveDiagnostic - Was the previous diagnostic stored? If so, further + /// notes attached to it will also be stored, otherwise they will not be. + bool HasActiveDiagnostic; + + /// Have we emitted a diagnostic explaining why we couldn't constant + /// fold (not just why it's not strictly a constant expression)? + bool HasFoldFailureDiagnostic; + + /// Whether or not we're in a context where the front end requires a + /// constant value. + bool InConstantContext; + + /// Whether we're checking that an expression is a potential constant + /// expression. If so, do not fail on constructs that could become constant + /// later on (such as a use of an undefined global). + bool CheckingPotentialConstantExpression = false; + + /// Whether we're checking for an expression that has undefined behavior. + /// If so, we will produce warnings if we encounter an operation that is + /// always undefined. + bool CheckingForUndefinedBehavior = false; + + enum EvaluationMode { + /// Evaluate as a constant expression. Stop if we find that the expression + /// is not a constant expression. + EM_ConstantExpression, + + /// Evaluate as a constant expression. Stop if we find that the expression + /// is not a constant expression. Some expressions can be retried in the + /// optimizer if we don't constant fold them here, but in an unevaluated + /// context we try to fold them immediately since the optimizer never + /// gets a chance to look at it. + EM_ConstantExpressionUnevaluated, + + /// Fold the expression to a constant. Stop if we hit a side-effect that + /// we can't model. + EM_ConstantFold, + + /// Evaluate in any way we know how. Don't worry about side-effects that + /// can't be modeled. + EM_IgnoreSideEffects, + } EvalMode; + + /// Are we checking whether the expression is a potential constant + /// expression? + bool checkingPotentialConstantExpression() const override { + return CheckingPotentialConstantExpression; + } + + /// Are we checking an expression for overflow? + // FIXME: We should check for any kind of undefined or suspicious behavior + // in such constructs, not just overflow. + bool checkingForUndefinedBehavior() const override { + return CheckingForUndefinedBehavior; + } + + EvalInfo(const ASTContext &C, Expr::EvalStatus &S, EvaluationMode Mode) + : Ctx(const_cast<ASTContext &>(C)), EvalStatus(S), CurrentCall(nullptr), + CallStackDepth(0), NextCallIndex(1), + StepsLeft(getLangOpts().ConstexprStepLimit), + ForceNewConstInterp(getLangOpts().ForceNewConstInterp), + EnableNewConstInterp(ForceNewConstInterp || + getLangOpts().EnableNewConstInterp), + BottomFrame(*this, SourceLocation(), nullptr, nullptr, nullptr), + EvaluatingDecl((const ValueDecl *)nullptr), + EvaluatingDeclValue(nullptr), HasActiveDiagnostic(false), + HasFoldFailureDiagnostic(false), InConstantContext(false), + EvalMode(Mode) {} + + ~EvalInfo() { + discardCleanups(); + } + + void setEvaluatingDecl(APValue::LValueBase Base, APValue &Value, + EvaluatingDeclKind EDK = EvaluatingDeclKind::Ctor) { + EvaluatingDecl = Base; + IsEvaluatingDecl = EDK; + EvaluatingDeclValue = &Value; + } + + bool CheckCallLimit(SourceLocation Loc) { + // Don't perform any constexpr calls (other than the call we're checking) + // when checking a potential constant expression. + if (checkingPotentialConstantExpression() && CallStackDepth > 1) + return false; + if (NextCallIndex == 0) { + // NextCallIndex has wrapped around. + FFDiag(Loc, diag::note_constexpr_call_limit_exceeded); + return false; + } + if (CallStackDepth <= getLangOpts().ConstexprCallDepth) + return true; + FFDiag(Loc, diag::note_constexpr_depth_limit_exceeded) + << getLangOpts().ConstexprCallDepth; + return false; + } + + std::pair<CallStackFrame *, unsigned> + getCallFrameAndDepth(unsigned CallIndex) { + assert(CallIndex && "no call index in getCallFrameAndDepth"); + // We will eventually hit BottomFrame, which has Index 1, so Frame can't + // be null in this loop. + unsigned Depth = CallStackDepth; + CallStackFrame *Frame = CurrentCall; + while (Frame->Index > CallIndex) { + Frame = Frame->Caller; + --Depth; + } + if (Frame->Index == CallIndex) + return {Frame, Depth}; + return {nullptr, 0}; + } + + bool nextStep(const Stmt *S) { + if (!StepsLeft) { + FFDiag(S->getBeginLoc(), diag::note_constexpr_step_limit_exceeded); + return false; + } + --StepsLeft; + return true; + } + + APValue *createHeapAlloc(const Expr *E, QualType T, LValue &LV); + + Optional<DynAlloc*> lookupDynamicAlloc(DynamicAllocLValue DA) { + Optional<DynAlloc*> Result; + auto It = HeapAllocs.find(DA); + if (It != HeapAllocs.end()) + Result = &It->second; + return Result; + } + + /// Information about a stack frame for std::allocator<T>::[de]allocate. + struct StdAllocatorCaller { + unsigned FrameIndex; + QualType ElemType; + explicit operator bool() const { return FrameIndex != 0; }; + }; + + StdAllocatorCaller getStdAllocatorCaller(StringRef FnName) const { + for (const CallStackFrame *Call = CurrentCall; Call != &BottomFrame; + Call = Call->Caller) { + const auto *MD = dyn_cast_or_null<CXXMethodDecl>(Call->Callee); + if (!MD) + continue; + const IdentifierInfo *FnII = MD->getIdentifier(); + if (!FnII || !FnII->isStr(FnName)) + continue; + + const auto *CTSD = + dyn_cast<ClassTemplateSpecializationDecl>(MD->getParent()); + if (!CTSD) + continue; + + const IdentifierInfo *ClassII = CTSD->getIdentifier(); + const TemplateArgumentList &TAL = CTSD->getTemplateArgs(); + if (CTSD->isInStdNamespace() && ClassII && + ClassII->isStr("allocator") && TAL.size() >= 1 && + TAL[0].getKind() == TemplateArgument::Type) + return {Call->Index, TAL[0].getAsType()}; + } + + return {}; + } + + void performLifetimeExtension() { + // Disable the cleanups for lifetime-extended temporaries. + CleanupStack.erase( + std::remove_if(CleanupStack.begin(), CleanupStack.end(), + [](Cleanup &C) { return C.isLifetimeExtended(); }), + CleanupStack.end()); + } + + /// Throw away any remaining cleanups at the end of evaluation. If any + /// cleanups would have had a side-effect, note that as an unmodeled + /// side-effect and return false. Otherwise, return true. + bool discardCleanups() { + for (Cleanup &C : CleanupStack) + if (C.hasSideEffect()) + if (!noteSideEffect()) + return false; + return true; + } + + private: + interp::Frame *getCurrentFrame() override { return CurrentCall; } + const interp::Frame *getBottomFrame() const override { return &BottomFrame; } + + bool hasActiveDiagnostic() override { return HasActiveDiagnostic; } + void setActiveDiagnostic(bool Flag) override { HasActiveDiagnostic = Flag; } + + void setFoldFailureDiagnostic(bool Flag) override { + HasFoldFailureDiagnostic = Flag; + } + + Expr::EvalStatus &getEvalStatus() const override { return EvalStatus; } + + ASTContext &getCtx() const override { return Ctx; } + + // If we have a prior diagnostic, it will be noting that the expression + // isn't a constant expression. This diagnostic is more important, + // unless we require this evaluation to produce a constant expression. + // + // FIXME: We might want to show both diagnostics to the user in + // EM_ConstantFold mode. + bool hasPriorDiagnostic() override { + if (!EvalStatus.Diag->empty()) { + switch (EvalMode) { + case EM_ConstantFold: + case EM_IgnoreSideEffects: + if (!HasFoldFailureDiagnostic) + break; + // We've already failed to fold something. Keep that diagnostic. + LLVM_FALLTHROUGH; + case EM_ConstantExpression: + case EM_ConstantExpressionUnevaluated: + setActiveDiagnostic(false); + return true; + } + } + return false; + } + + unsigned getCallStackDepth() override { return CallStackDepth; } + + public: + /// Should we continue evaluation after encountering a side-effect that we + /// couldn't model? + bool keepEvaluatingAfterSideEffect() { + switch (EvalMode) { + case EM_IgnoreSideEffects: + return true; + + case EM_ConstantExpression: + case EM_ConstantExpressionUnevaluated: + case EM_ConstantFold: + // By default, assume any side effect might be valid in some other + // evaluation of this expression from a different context. + return checkingPotentialConstantExpression() || + checkingForUndefinedBehavior(); + } + llvm_unreachable("Missed EvalMode case"); + } + + /// Note that we have had a side-effect, and determine whether we should + /// keep evaluating. + bool noteSideEffect() { + EvalStatus.HasSideEffects = true; + return keepEvaluatingAfterSideEffect(); + } + + /// Should we continue evaluation after encountering undefined behavior? + bool keepEvaluatingAfterUndefinedBehavior() { + switch (EvalMode) { + case EM_IgnoreSideEffects: + case EM_ConstantFold: + return true; + + case EM_ConstantExpression: + case EM_ConstantExpressionUnevaluated: + return checkingForUndefinedBehavior(); + } + llvm_unreachable("Missed EvalMode case"); + } + + /// Note that we hit something that was technically undefined behavior, but + /// that we can evaluate past it (such as signed overflow or floating-point + /// division by zero.) + bool noteUndefinedBehavior() override { + EvalStatus.HasUndefinedBehavior = true; + return keepEvaluatingAfterUndefinedBehavior(); + } + + /// Should we continue evaluation as much as possible after encountering a + /// construct which can't be reduced to a value? + bool keepEvaluatingAfterFailure() const override { + if (!StepsLeft) + return false; + + switch (EvalMode) { + case EM_ConstantExpression: + case EM_ConstantExpressionUnevaluated: + case EM_ConstantFold: + case EM_IgnoreSideEffects: + return checkingPotentialConstantExpression() || + checkingForUndefinedBehavior(); + } + llvm_unreachable("Missed EvalMode case"); + } + + /// Notes that we failed to evaluate an expression that other expressions + /// directly depend on, and determine if we should keep evaluating. This + /// should only be called if we actually intend to keep evaluating. + /// + /// Call noteSideEffect() instead if we may be able to ignore the value that + /// we failed to evaluate, e.g. if we failed to evaluate Foo() in: + /// + /// (Foo(), 1) // use noteSideEffect + /// (Foo() || true) // use noteSideEffect + /// Foo() + 1 // use noteFailure + LLVM_NODISCARD bool noteFailure() { + // Failure when evaluating some expression often means there is some + // subexpression whose evaluation was skipped. Therefore, (because we + // don't track whether we skipped an expression when unwinding after an + // evaluation failure) every evaluation failure that bubbles up from a + // subexpression implies that a side-effect has potentially happened. We + // skip setting the HasSideEffects flag to true until we decide to + // continue evaluating after that point, which happens here. + bool KeepGoing = keepEvaluatingAfterFailure(); + EvalStatus.HasSideEffects |= KeepGoing; + return KeepGoing; + } + + class ArrayInitLoopIndex { + EvalInfo &Info; + uint64_t OuterIndex; + + public: + ArrayInitLoopIndex(EvalInfo &Info) + : Info(Info), OuterIndex(Info.ArrayInitIndex) { + Info.ArrayInitIndex = 0; + } + ~ArrayInitLoopIndex() { Info.ArrayInitIndex = OuterIndex; } + + operator uint64_t&() { return Info.ArrayInitIndex; } + }; + }; + + /// Object used to treat all foldable expressions as constant expressions. + struct FoldConstant { + EvalInfo &Info; + bool Enabled; + bool HadNoPriorDiags; + EvalInfo::EvaluationMode OldMode; + + explicit FoldConstant(EvalInfo &Info, bool Enabled) + : Info(Info), + Enabled(Enabled), + HadNoPriorDiags(Info.EvalStatus.Diag && + Info.EvalStatus.Diag->empty() && + !Info.EvalStatus.HasSideEffects), + OldMode(Info.EvalMode) { + if (Enabled) + Info.EvalMode = EvalInfo::EM_ConstantFold; + } + void keepDiagnostics() { Enabled = false; } + ~FoldConstant() { + if (Enabled && HadNoPriorDiags && !Info.EvalStatus.Diag->empty() && + !Info.EvalStatus.HasSideEffects) + Info.EvalStatus.Diag->clear(); + Info.EvalMode = OldMode; + } + }; + + /// RAII object used to set the current evaluation mode to ignore + /// side-effects. + struct IgnoreSideEffectsRAII { + EvalInfo &Info; + EvalInfo::EvaluationMode OldMode; + explicit IgnoreSideEffectsRAII(EvalInfo &Info) + : Info(Info), OldMode(Info.EvalMode) { + Info.EvalMode = EvalInfo::EM_IgnoreSideEffects; + } + + ~IgnoreSideEffectsRAII() { Info.EvalMode = OldMode; } + }; + + /// RAII object used to optionally suppress diagnostics and side-effects from + /// a speculative evaluation. + class SpeculativeEvaluationRAII { + EvalInfo *Info = nullptr; + Expr::EvalStatus OldStatus; + unsigned OldSpeculativeEvaluationDepth; + + void moveFromAndCancel(SpeculativeEvaluationRAII &&Other) { + Info = Other.Info; + OldStatus = Other.OldStatus; + OldSpeculativeEvaluationDepth = Other.OldSpeculativeEvaluationDepth; + Other.Info = nullptr; + } + + void maybeRestoreState() { + if (!Info) + return; + + Info->EvalStatus = OldStatus; + Info->SpeculativeEvaluationDepth = OldSpeculativeEvaluationDepth; + } + + public: + SpeculativeEvaluationRAII() = default; + + SpeculativeEvaluationRAII( + EvalInfo &Info, SmallVectorImpl<PartialDiagnosticAt> *NewDiag = nullptr) + : Info(&Info), OldStatus(Info.EvalStatus), + OldSpeculativeEvaluationDepth(Info.SpeculativeEvaluationDepth) { + Info.EvalStatus.Diag = NewDiag; + Info.SpeculativeEvaluationDepth = Info.CallStackDepth + 1; + } + + SpeculativeEvaluationRAII(const SpeculativeEvaluationRAII &Other) = delete; + SpeculativeEvaluationRAII(SpeculativeEvaluationRAII &&Other) { + moveFromAndCancel(std::move(Other)); + } + + SpeculativeEvaluationRAII &operator=(SpeculativeEvaluationRAII &&Other) { + maybeRestoreState(); + moveFromAndCancel(std::move(Other)); + return *this; + } + + ~SpeculativeEvaluationRAII() { maybeRestoreState(); } + }; + + /// RAII object wrapping a full-expression or block scope, and handling + /// the ending of the lifetime of temporaries created within it. + template<bool IsFullExpression> + class ScopeRAII { + EvalInfo &Info; + unsigned OldStackSize; + public: + ScopeRAII(EvalInfo &Info) + : Info(Info), OldStackSize(Info.CleanupStack.size()) { + // Push a new temporary version. This is needed to distinguish between + // temporaries created in different iterations of a loop. + Info.CurrentCall->pushTempVersion(); + } + bool destroy(bool RunDestructors = true) { + bool OK = cleanup(Info, RunDestructors, OldStackSize); + OldStackSize = -1U; + return OK; + } + ~ScopeRAII() { + if (OldStackSize != -1U) + destroy(false); + // Body moved to a static method to encourage the compiler to inline away + // instances of this class. + Info.CurrentCall->popTempVersion(); + } + private: + static bool cleanup(EvalInfo &Info, bool RunDestructors, + unsigned OldStackSize) { + assert(OldStackSize <= Info.CleanupStack.size() && + "running cleanups out of order?"); + + // Run all cleanups for a block scope, and non-lifetime-extended cleanups + // for a full-expression scope. + bool Success = true; + for (unsigned I = Info.CleanupStack.size(); I > OldStackSize; --I) { + if (!(IsFullExpression && + Info.CleanupStack[I - 1].isLifetimeExtended())) { + if (!Info.CleanupStack[I - 1].endLifetime(Info, RunDestructors)) { + Success = false; + break; + } + } + } + + // Compact lifetime-extended cleanups. + auto NewEnd = Info.CleanupStack.begin() + OldStackSize; + if (IsFullExpression) + NewEnd = + std::remove_if(NewEnd, Info.CleanupStack.end(), + [](Cleanup &C) { return !C.isLifetimeExtended(); }); + Info.CleanupStack.erase(NewEnd, Info.CleanupStack.end()); + return Success; + } + }; + typedef ScopeRAII<false> BlockScopeRAII; + typedef ScopeRAII<true> FullExpressionRAII; +} + +bool SubobjectDesignator::checkSubobject(EvalInfo &Info, const Expr *E, + CheckSubobjectKind CSK) { + if (Invalid) + return false; + if (isOnePastTheEnd()) { + Info.CCEDiag(E, diag::note_constexpr_past_end_subobject) + << CSK; + setInvalid(); + return false; + } + // Note, we do not diagnose if isMostDerivedAnUnsizedArray(), because there + // must actually be at least one array element; even a VLA cannot have a + // bound of zero. And if our index is nonzero, we already had a CCEDiag. + return true; +} + +void SubobjectDesignator::diagnoseUnsizedArrayPointerArithmetic(EvalInfo &Info, + const Expr *E) { + Info.CCEDiag(E, diag::note_constexpr_unsized_array_indexed); + // Do not set the designator as invalid: we can represent this situation, + // and correct handling of __builtin_object_size requires us to do so. +} + +void SubobjectDesignator::diagnosePointerArithmetic(EvalInfo &Info, + const Expr *E, + const APSInt &N) { + // If we're complaining, we must be able to statically determine the size of + // the most derived array. + if (MostDerivedPathLength == Entries.size() && MostDerivedIsArrayElement) + Info.CCEDiag(E, diag::note_constexpr_array_index) + << N << /*array*/ 0 + << static_cast<unsigned>(getMostDerivedArraySize()); + else + Info.CCEDiag(E, diag::note_constexpr_array_index) + << N << /*non-array*/ 1; + setInvalid(); +} + +CallStackFrame::CallStackFrame(EvalInfo &Info, SourceLocation CallLoc, + const FunctionDecl *Callee, const LValue *This, + APValue *Arguments) + : Info(Info), Caller(Info.CurrentCall), Callee(Callee), This(This), + Arguments(Arguments), CallLoc(CallLoc), Index(Info.NextCallIndex++) { + Info.CurrentCall = this; + ++Info.CallStackDepth; +} + +CallStackFrame::~CallStackFrame() { + assert(Info.CurrentCall == this && "calls retired out of order"); + --Info.CallStackDepth; + Info.CurrentCall = Caller; +} + +static bool isRead(AccessKinds AK) { + return AK == AK_Read || AK == AK_ReadObjectRepresentation; +} + +static bool isModification(AccessKinds AK) { + switch (AK) { + case AK_Read: + case AK_ReadObjectRepresentation: + case AK_MemberCall: + case AK_DynamicCast: + case AK_TypeId: + return false; + case AK_Assign: + case AK_Increment: + case AK_Decrement: + case AK_Construct: + case AK_Destroy: + return true; + } + llvm_unreachable("unknown access kind"); +} + +static bool isAnyAccess(AccessKinds AK) { + return isRead(AK) || isModification(AK); +} + +/// Is this an access per the C++ definition? +static bool isFormalAccess(AccessKinds AK) { + return isAnyAccess(AK) && AK != AK_Construct && AK != AK_Destroy; +} + +namespace { + struct ComplexValue { + private: + bool IsInt; + + public: + APSInt IntReal, IntImag; + APFloat FloatReal, FloatImag; + + ComplexValue() : FloatReal(APFloat::Bogus()), FloatImag(APFloat::Bogus()) {} + + void makeComplexFloat() { IsInt = false; } + bool isComplexFloat() const { return !IsInt; } + APFloat &getComplexFloatReal() { return FloatReal; } + APFloat &getComplexFloatImag() { return FloatImag; } + + void makeComplexInt() { IsInt = true; } + bool isComplexInt() const { return IsInt; } + APSInt &getComplexIntReal() { return IntReal; } + APSInt &getComplexIntImag() { return IntImag; } + + void moveInto(APValue &v) const { + if (isComplexFloat()) + v = APValue(FloatReal, FloatImag); + else + v = APValue(IntReal, IntImag); + } + void setFrom(const APValue &v) { + assert(v.isComplexFloat() || v.isComplexInt()); + if (v.isComplexFloat()) { + makeComplexFloat(); + FloatReal = v.getComplexFloatReal(); + FloatImag = v.getComplexFloatImag(); + } else { + makeComplexInt(); + IntReal = v.getComplexIntReal(); + IntImag = v.getComplexIntImag(); + } + } + }; + + struct LValue { + APValue::LValueBase Base; + CharUnits Offset; + SubobjectDesignator Designator; + bool IsNullPtr : 1; + bool InvalidBase : 1; + + const APValue::LValueBase getLValueBase() const { return Base; } + CharUnits &getLValueOffset() { return Offset; } + const CharUnits &getLValueOffset() const { return Offset; } + SubobjectDesignator &getLValueDesignator() { return Designator; } + const SubobjectDesignator &getLValueDesignator() const { return Designator;} + bool isNullPointer() const { return IsNullPtr;} + + unsigned getLValueCallIndex() const { return Base.getCallIndex(); } + unsigned getLValueVersion() const { return Base.getVersion(); } + + void moveInto(APValue &V) const { + if (Designator.Invalid) + V = APValue(Base, Offset, APValue::NoLValuePath(), IsNullPtr); + else { + assert(!InvalidBase && "APValues can't handle invalid LValue bases"); + V = APValue(Base, Offset, Designator.Entries, + Designator.IsOnePastTheEnd, IsNullPtr); + } + } + void setFrom(ASTContext &Ctx, const APValue &V) { + assert(V.isLValue() && "Setting LValue from a non-LValue?"); + Base = V.getLValueBase(); + Offset = V.getLValueOffset(); + InvalidBase = false; + Designator = SubobjectDesignator(Ctx, V); + IsNullPtr = V.isNullPointer(); + } + + void set(APValue::LValueBase B, bool BInvalid = false) { +#ifndef NDEBUG + // We only allow a few types of invalid bases. Enforce that here. + if (BInvalid) { + const auto *E = B.get<const Expr *>(); + assert((isa<MemberExpr>(E) || tryUnwrapAllocSizeCall(E)) && + "Unexpected type of invalid base"); + } +#endif + + Base = B; + Offset = CharUnits::fromQuantity(0); + InvalidBase = BInvalid; + Designator = SubobjectDesignator(getType(B)); + IsNullPtr = false; + } + + void setNull(ASTContext &Ctx, QualType PointerTy) { + Base = (Expr *)nullptr; + Offset = + CharUnits::fromQuantity(Ctx.getTargetNullPointerValue(PointerTy)); + InvalidBase = false; + Designator = SubobjectDesignator(PointerTy->getPointeeType()); + IsNullPtr = true; + } + + void setInvalid(APValue::LValueBase B, unsigned I = 0) { + set(B, true); + } + + std::string toString(ASTContext &Ctx, QualType T) const { + APValue Printable; + moveInto(Printable); + return Printable.getAsString(Ctx, T); + } + + private: + // Check that this LValue is not based on a null pointer. If it is, produce + // a diagnostic and mark the designator as invalid. + template <typename GenDiagType> + bool checkNullPointerDiagnosingWith(const GenDiagType &GenDiag) { + if (Designator.Invalid) + return false; + if (IsNullPtr) { + GenDiag(); + Designator.setInvalid(); + return false; + } + return true; + } + + public: + bool checkNullPointer(EvalInfo &Info, const Expr *E, + CheckSubobjectKind CSK) { + return checkNullPointerDiagnosingWith([&Info, E, CSK] { + Info.CCEDiag(E, diag::note_constexpr_null_subobject) << CSK; + }); + } + + bool checkNullPointerForFoldAccess(EvalInfo &Info, const Expr *E, + AccessKinds AK) { + return checkNullPointerDiagnosingWith([&Info, E, AK] { + Info.FFDiag(E, diag::note_constexpr_access_null) << AK; + }); + } + + // Check this LValue refers to an object. If not, set the designator to be + // invalid and emit a diagnostic. + bool checkSubobject(EvalInfo &Info, const Expr *E, CheckSubobjectKind CSK) { + return (CSK == CSK_ArrayToPointer || checkNullPointer(Info, E, CSK)) && + Designator.checkSubobject(Info, E, CSK); + } + + void addDecl(EvalInfo &Info, const Expr *E, + const Decl *D, bool Virtual = false) { + if (checkSubobject(Info, E, isa<FieldDecl>(D) ? CSK_Field : CSK_Base)) + Designator.addDeclUnchecked(D, Virtual); + } + void addUnsizedArray(EvalInfo &Info, const Expr *E, QualType ElemTy) { + if (!Designator.Entries.empty()) { + Info.CCEDiag(E, diag::note_constexpr_unsupported_unsized_array); + Designator.setInvalid(); + return; + } + if (checkSubobject(Info, E, CSK_ArrayToPointer)) { + assert(getType(Base)->isPointerType() || getType(Base)->isArrayType()); + Designator.FirstEntryIsAnUnsizedArray = true; + Designator.addUnsizedArrayUnchecked(ElemTy); + } + } + void addArray(EvalInfo &Info, const Expr *E, const ConstantArrayType *CAT) { + if (checkSubobject(Info, E, CSK_ArrayToPointer)) + Designator.addArrayUnchecked(CAT); + } + void addComplex(EvalInfo &Info, const Expr *E, QualType EltTy, bool Imag) { + if (checkSubobject(Info, E, Imag ? CSK_Imag : CSK_Real)) + Designator.addComplexUnchecked(EltTy, Imag); + } + void clearIsNullPointer() { + IsNullPtr = false; + } + void adjustOffsetAndIndex(EvalInfo &Info, const Expr *E, + const APSInt &Index, CharUnits ElementSize) { + // An index of 0 has no effect. (In C, adding 0 to a null pointer is UB, + // but we're not required to diagnose it and it's valid in C++.) + if (!Index) + return; + + // Compute the new offset in the appropriate width, wrapping at 64 bits. + // FIXME: When compiling for a 32-bit target, we should use 32-bit + // offsets. + uint64_t Offset64 = Offset.getQuantity(); + uint64_t ElemSize64 = ElementSize.getQuantity(); + uint64_t Index64 = Index.extOrTrunc(64).getZExtValue(); + Offset = CharUnits::fromQuantity(Offset64 + ElemSize64 * Index64); + + if (checkNullPointer(Info, E, CSK_ArrayIndex)) + Designator.adjustIndex(Info, E, Index); + clearIsNullPointer(); + } + void adjustOffset(CharUnits N) { + Offset += N; + if (N.getQuantity()) + clearIsNullPointer(); + } + }; + + struct MemberPtr { + MemberPtr() {} + explicit MemberPtr(const ValueDecl *Decl) : + DeclAndIsDerivedMember(Decl, false), Path() {} + + /// The member or (direct or indirect) field referred to by this member + /// pointer, or 0 if this is a null member pointer. + const ValueDecl *getDecl() const { + return DeclAndIsDerivedMember.getPointer(); + } + /// Is this actually a member of some type derived from the relevant class? + bool isDerivedMember() const { + return DeclAndIsDerivedMember.getInt(); + } + /// Get the class which the declaration actually lives in. + const CXXRecordDecl *getContainingRecord() const { + return cast<CXXRecordDecl>( + DeclAndIsDerivedMember.getPointer()->getDeclContext()); + } + + void moveInto(APValue &V) const { + V = APValue(getDecl(), isDerivedMember(), Path); + } + void setFrom(const APValue &V) { + assert(V.isMemberPointer()); + DeclAndIsDerivedMember.setPointer(V.getMemberPointerDecl()); + DeclAndIsDerivedMember.setInt(V.isMemberPointerToDerivedMember()); + Path.clear(); + ArrayRef<const CXXRecordDecl*> P = V.getMemberPointerPath(); + Path.insert(Path.end(), P.begin(), P.end()); + } + + /// DeclAndIsDerivedMember - The member declaration, and a flag indicating + /// whether the member is a member of some class derived from the class type + /// of the member pointer. + llvm::PointerIntPair<const ValueDecl*, 1, bool> DeclAndIsDerivedMember; + /// Path - The path of base/derived classes from the member declaration's + /// class (exclusive) to the class type of the member pointer (inclusive). + SmallVector<const CXXRecordDecl*, 4> Path; + + /// Perform a cast towards the class of the Decl (either up or down the + /// hierarchy). + bool castBack(const CXXRecordDecl *Class) { + assert(!Path.empty()); + const CXXRecordDecl *Expected; + if (Path.size() >= 2) + Expected = Path[Path.size() - 2]; + else + Expected = getContainingRecord(); + if (Expected->getCanonicalDecl() != Class->getCanonicalDecl()) { + // C++11 [expr.static.cast]p12: In a conversion from (D::*) to (B::*), + // if B does not contain the original member and is not a base or + // derived class of the class containing the original member, the result + // of the cast is undefined. + // C++11 [conv.mem]p2 does not cover this case for a cast from (B::*) to + // (D::*). We consider that to be a language defect. + return false; + } + Path.pop_back(); + return true; + } + /// Perform a base-to-derived member pointer cast. + bool castToDerived(const CXXRecordDecl *Derived) { + if (!getDecl()) + return true; + if (!isDerivedMember()) { + Path.push_back(Derived); + return true; + } + if (!castBack(Derived)) + return false; + if (Path.empty()) + DeclAndIsDerivedMember.setInt(false); + return true; + } + /// Perform a derived-to-base member pointer cast. + bool castToBase(const CXXRecordDecl *Base) { + if (!getDecl()) + return true; + if (Path.empty()) + DeclAndIsDerivedMember.setInt(true); + if (isDerivedMember()) { + Path.push_back(Base); + return true; + } + return castBack(Base); + } + }; + + /// Compare two member pointers, which are assumed to be of the same type. + static bool operator==(const MemberPtr &LHS, const MemberPtr &RHS) { + if (!LHS.getDecl() || !RHS.getDecl()) + return !LHS.getDecl() && !RHS.getDecl(); + if (LHS.getDecl()->getCanonicalDecl() != RHS.getDecl()->getCanonicalDecl()) + return false; + return LHS.Path == RHS.Path; + } +} + +static bool Evaluate(APValue &Result, EvalInfo &Info, const Expr *E); +static bool EvaluateInPlace(APValue &Result, EvalInfo &Info, + const LValue &This, const Expr *E, + bool AllowNonLiteralTypes = false); +static bool EvaluateLValue(const Expr *E, LValue &Result, EvalInfo &Info, + bool InvalidBaseOK = false); +static bool EvaluatePointer(const Expr *E, LValue &Result, EvalInfo &Info, + bool InvalidBaseOK = false); +static bool EvaluateMemberPointer(const Expr *E, MemberPtr &Result, + EvalInfo &Info); +static bool EvaluateTemporary(const Expr *E, LValue &Result, EvalInfo &Info); +static bool EvaluateInteger(const Expr *E, APSInt &Result, EvalInfo &Info); +static bool EvaluateIntegerOrLValue(const Expr *E, APValue &Result, + EvalInfo &Info); +static bool EvaluateFloat(const Expr *E, APFloat &Result, EvalInfo &Info); +static bool EvaluateComplex(const Expr *E, ComplexValue &Res, EvalInfo &Info); +static bool EvaluateAtomic(const Expr *E, const LValue *This, APValue &Result, + EvalInfo &Info); +static bool EvaluateAsRValue(EvalInfo &Info, const Expr *E, APValue &Result); + +/// Evaluate an integer or fixed point expression into an APResult. +static bool EvaluateFixedPointOrInteger(const Expr *E, APFixedPoint &Result, + EvalInfo &Info); + +/// Evaluate only a fixed point expression into an APResult. +static bool EvaluateFixedPoint(const Expr *E, APFixedPoint &Result, + EvalInfo &Info); + +//===----------------------------------------------------------------------===// +// Misc utilities +//===----------------------------------------------------------------------===// + +/// Negate an APSInt in place, converting it to a signed form if necessary, and +/// preserving its value (by extending by up to one bit as needed). +static void negateAsSigned(APSInt &Int) { + if (Int.isUnsigned() || Int.isMinSignedValue()) { + Int = Int.extend(Int.getBitWidth() + 1); + Int.setIsSigned(true); + } + Int = -Int; +} + +template<typename KeyT> +APValue &CallStackFrame::createTemporary(const KeyT *Key, QualType T, + bool IsLifetimeExtended, LValue &LV) { + unsigned Version = getTempVersion(); + APValue::LValueBase Base(Key, Index, Version); + LV.set(Base); + APValue &Result = Temporaries[MapKeyTy(Key, Version)]; + assert(Result.isAbsent() && "temporary created multiple times"); + + // If we're creating a temporary immediately in the operand of a speculative + // evaluation, don't register a cleanup to be run outside the speculative + // evaluation context, since we won't actually be able to initialize this + // object. + if (Index <= Info.SpeculativeEvaluationDepth) { + if (T.isDestructedType()) + Info.noteSideEffect(); + } else { + Info.CleanupStack.push_back(Cleanup(&Result, Base, T, IsLifetimeExtended)); + } + return Result; +} + +APValue *EvalInfo::createHeapAlloc(const Expr *E, QualType T, LValue &LV) { + if (NumHeapAllocs > DynamicAllocLValue::getMaxIndex()) { + FFDiag(E, diag::note_constexpr_heap_alloc_limit_exceeded); + return nullptr; + } + + DynamicAllocLValue DA(NumHeapAllocs++); + LV.set(APValue::LValueBase::getDynamicAlloc(DA, T)); + auto Result = HeapAllocs.emplace(std::piecewise_construct, + std::forward_as_tuple(DA), std::tuple<>()); + assert(Result.second && "reused a heap alloc index?"); + Result.first->second.AllocExpr = E; + return &Result.first->second.Value; +} + +/// Produce a string describing the given constexpr call. +void CallStackFrame::describe(raw_ostream &Out) { + unsigned ArgIndex = 0; + bool IsMemberCall = isa<CXXMethodDecl>(Callee) && + !isa<CXXConstructorDecl>(Callee) && + cast<CXXMethodDecl>(Callee)->isInstance(); + + if (!IsMemberCall) + Out << *Callee << '('; + + if (This && IsMemberCall) { + APValue Val; + This->moveInto(Val); + Val.printPretty(Out, Info.Ctx, + This->Designator.MostDerivedType); + // FIXME: Add parens around Val if needed. + Out << "->" << *Callee << '('; + IsMemberCall = false; + } + + for (FunctionDecl::param_const_iterator I = Callee->param_begin(), + E = Callee->param_end(); I != E; ++I, ++ArgIndex) { + if (ArgIndex > (unsigned)IsMemberCall) + Out << ", "; + + const ParmVarDecl *Param = *I; + const APValue &Arg = Arguments[ArgIndex]; + Arg.printPretty(Out, Info.Ctx, Param->getType()); + + if (ArgIndex == 0 && IsMemberCall) + Out << "->" << *Callee << '('; + } + + Out << ')'; +} + +/// Evaluate an expression to see if it had side-effects, and discard its +/// result. +/// \return \c true if the caller should keep evaluating. +static bool EvaluateIgnoredValue(EvalInfo &Info, const Expr *E) { + APValue Scratch; + if (!Evaluate(Scratch, Info, E)) + // We don't need the value, but we might have skipped a side effect here. + return Info.noteSideEffect(); + return true; +} + +/// Should this call expression be treated as a string literal? +static bool IsStringLiteralCall(const CallExpr *E) { + unsigned Builtin = E->getBuiltinCallee(); + return (Builtin == Builtin::BI__builtin___CFStringMakeConstantString || + Builtin == Builtin::BI__builtin___NSStringMakeConstantString); +} + +static bool IsGlobalLValue(APValue::LValueBase B) { + // C++11 [expr.const]p3 An address constant expression is a prvalue core + // constant expression of pointer type that evaluates to... + + // ... a null pointer value, or a prvalue core constant expression of type + // std::nullptr_t. + if (!B) return true; + + if (const ValueDecl *D = B.dyn_cast<const ValueDecl*>()) { + // ... the address of an object with static storage duration, + if (const VarDecl *VD = dyn_cast<VarDecl>(D)) + return VD->hasGlobalStorage(); + // ... the address of a function, + return isa<FunctionDecl>(D); + } + + if (B.is<TypeInfoLValue>() || B.is<DynamicAllocLValue>()) + return true; + + const Expr *E = B.get<const Expr*>(); + switch (E->getStmtClass()) { + default: + return false; + case Expr::CompoundLiteralExprClass: { + const CompoundLiteralExpr *CLE = cast<CompoundLiteralExpr>(E); + return CLE->isFileScope() && CLE->isLValue(); + } + case Expr::MaterializeTemporaryExprClass: + // A materialized temporary might have been lifetime-extended to static + // storage duration. + return cast<MaterializeTemporaryExpr>(E)->getStorageDuration() == SD_Static; + // A string literal has static storage duration. + case Expr::StringLiteralClass: + case Expr::PredefinedExprClass: + case Expr::ObjCStringLiteralClass: + case Expr::ObjCEncodeExprClass: + case Expr::CXXUuidofExprClass: + return true; + case Expr::ObjCBoxedExprClass: + return cast<ObjCBoxedExpr>(E)->isExpressibleAsConstantInitializer(); + case Expr::CallExprClass: + return IsStringLiteralCall(cast<CallExpr>(E)); + // For GCC compatibility, &&label has static storage duration. + case Expr::AddrLabelExprClass: + return true; + // A Block literal expression may be used as the initialization value for + // Block variables at global or local static scope. + case Expr::BlockExprClass: + return !cast<BlockExpr>(E)->getBlockDecl()->hasCaptures(); + case Expr::ImplicitValueInitExprClass: + // FIXME: + // We can never form an lvalue with an implicit value initialization as its + // base through expression evaluation, so these only appear in one case: the + // implicit variable declaration we invent when checking whether a constexpr + // constructor can produce a constant expression. We must assume that such + // an expression might be a global lvalue. + return true; + } +} + +static const ValueDecl *GetLValueBaseDecl(const LValue &LVal) { + return LVal.Base.dyn_cast<const ValueDecl*>(); +} + +static bool IsLiteralLValue(const LValue &Value) { + if (Value.getLValueCallIndex()) + return false; + const Expr *E = Value.Base.dyn_cast<const Expr*>(); + return E && !isa<MaterializeTemporaryExpr>(E); +} + +static bool IsWeakLValue(const LValue &Value) { + const ValueDecl *Decl = GetLValueBaseDecl(Value); + return Decl && Decl->isWeak(); +} + +static bool isZeroSized(const LValue &Value) { + const ValueDecl *Decl = GetLValueBaseDecl(Value); + if (Decl && isa<VarDecl>(Decl)) { + QualType Ty = Decl->getType(); + if (Ty->isArrayType()) + return Ty->isIncompleteType() || + Decl->getASTContext().getTypeSize(Ty) == 0; + } + return false; +} + +static bool HasSameBase(const LValue &A, const LValue &B) { + if (!A.getLValueBase()) + return !B.getLValueBase(); + if (!B.getLValueBase()) + return false; + + if (A.getLValueBase().getOpaqueValue() != + B.getLValueBase().getOpaqueValue()) { + const Decl *ADecl = GetLValueBaseDecl(A); + if (!ADecl) + return false; + const Decl *BDecl = GetLValueBaseDecl(B); + if (!BDecl || ADecl->getCanonicalDecl() != BDecl->getCanonicalDecl()) + return false; + } + + return IsGlobalLValue(A.getLValueBase()) || + (A.getLValueCallIndex() == B.getLValueCallIndex() && + A.getLValueVersion() == B.getLValueVersion()); +} + +static void NoteLValueLocation(EvalInfo &Info, APValue::LValueBase Base) { + assert(Base && "no location for a null lvalue"); + const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>(); + if (VD) + Info.Note(VD->getLocation(), diag::note_declared_at); + else if (const Expr *E = Base.dyn_cast<const Expr*>()) + Info.Note(E->getExprLoc(), diag::note_constexpr_temporary_here); + else if (DynamicAllocLValue DA = Base.dyn_cast<DynamicAllocLValue>()) { + // FIXME: Produce a note for dangling pointers too. + if (Optional<DynAlloc*> Alloc = Info.lookupDynamicAlloc(DA)) + Info.Note((*Alloc)->AllocExpr->getExprLoc(), + diag::note_constexpr_dynamic_alloc_here); + } + // We have no information to show for a typeid(T) object. +} + +enum class CheckEvaluationResultKind { + ConstantExpression, + FullyInitialized, +}; + +/// Materialized temporaries that we've already checked to determine if they're +/// initializsed by a constant expression. +using CheckedTemporaries = + llvm::SmallPtrSet<const MaterializeTemporaryExpr *, 8>; + +static bool CheckEvaluationResult(CheckEvaluationResultKind CERK, + EvalInfo &Info, SourceLocation DiagLoc, + QualType Type, const APValue &Value, + Expr::ConstExprUsage Usage, + SourceLocation SubobjectLoc, + CheckedTemporaries &CheckedTemps); + +/// Check that this reference or pointer core constant expression is a valid +/// value for an address or reference constant expression. Return true if we +/// can fold this expression, whether or not it's a constant expression. +static bool CheckLValueConstantExpression(EvalInfo &Info, SourceLocation Loc, + QualType Type, const LValue &LVal, + Expr::ConstExprUsage Usage, + CheckedTemporaries &CheckedTemps) { + bool IsReferenceType = Type->isReferenceType(); + + APValue::LValueBase Base = LVal.getLValueBase(); + const SubobjectDesignator &Designator = LVal.getLValueDesignator(); + + // Check that the object is a global. Note that the fake 'this' object we + // manufacture when checking potential constant expressions is conservatively + // assumed to be global here. + if (!IsGlobalLValue(Base)) { + if (Info.getLangOpts().CPlusPlus11) { + const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>(); + Info.FFDiag(Loc, diag::note_constexpr_non_global, 1) + << IsReferenceType << !Designator.Entries.empty() + << !!VD << VD; + NoteLValueLocation(Info, Base); + } else { + Info.FFDiag(Loc); + } + // Don't allow references to temporaries to escape. + return false; + } + assert((Info.checkingPotentialConstantExpression() || + LVal.getLValueCallIndex() == 0) && + "have call index for global lvalue"); + + if (Base.is<DynamicAllocLValue>()) { + Info.FFDiag(Loc, diag::note_constexpr_dynamic_alloc) + << IsReferenceType << !Designator.Entries.empty(); + NoteLValueLocation(Info, Base); + return false; + } + + if (const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>()) { + if (const VarDecl *Var = dyn_cast<const VarDecl>(VD)) { + // Check if this is a thread-local variable. + if (Var->getTLSKind()) + // FIXME: Diagnostic! + return false; + + // A dllimport variable never acts like a constant. + if (Usage == Expr::EvaluateForCodeGen && Var->hasAttr<DLLImportAttr>()) + // FIXME: Diagnostic! + return false; + } + if (const auto *FD = dyn_cast<const FunctionDecl>(VD)) { + // __declspec(dllimport) must be handled very carefully: + // We must never initialize an expression with the thunk in C++. + // Doing otherwise would allow the same id-expression to yield + // different addresses for the same function in different translation + // units. However, this means that we must dynamically initialize the + // expression with the contents of the import address table at runtime. + // + // The C language has no notion of ODR; furthermore, it has no notion of + // dynamic initialization. This means that we are permitted to + // perform initialization with the address of the thunk. + if (Info.getLangOpts().CPlusPlus && Usage == Expr::EvaluateForCodeGen && + FD->hasAttr<DLLImportAttr>()) + // FIXME: Diagnostic! + return false; + } + } else if (const auto *MTE = dyn_cast_or_null<MaterializeTemporaryExpr>( + Base.dyn_cast<const Expr *>())) { + if (CheckedTemps.insert(MTE).second) { + QualType TempType = getType(Base); + if (TempType.isDestructedType()) { + Info.FFDiag(MTE->getExprLoc(), + diag::note_constexpr_unsupported_tempoarary_nontrivial_dtor) + << TempType; + return false; + } + + APValue *V = Info.Ctx.getMaterializedTemporaryValue(MTE, false); + assert(V && "evasluation result refers to uninitialised temporary"); + if (!CheckEvaluationResult(CheckEvaluationResultKind::ConstantExpression, + Info, MTE->getExprLoc(), TempType, *V, + Usage, SourceLocation(), CheckedTemps)) + return false; + } + } + + // Allow address constant expressions to be past-the-end pointers. This is + // an extension: the standard requires them to point to an object. + if (!IsReferenceType) + return true; + + // A reference constant expression must refer to an object. + if (!Base) { + // FIXME: diagnostic + Info.CCEDiag(Loc); + return true; + } + + // Does this refer one past the end of some object? + if (!Designator.Invalid && Designator.isOnePastTheEnd()) { + const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>(); + Info.FFDiag(Loc, diag::note_constexpr_past_end, 1) + << !Designator.Entries.empty() << !!VD << VD; + NoteLValueLocation(Info, Base); + } + + return true; +} + +/// Member pointers are constant expressions unless they point to a +/// non-virtual dllimport member function. +static bool CheckMemberPointerConstantExpression(EvalInfo &Info, + SourceLocation Loc, + QualType Type, + const APValue &Value, + Expr::ConstExprUsage Usage) { + const ValueDecl *Member = Value.getMemberPointerDecl(); + const auto *FD = dyn_cast_or_null<CXXMethodDecl>(Member); + if (!FD) + return true; + return Usage == Expr::EvaluateForMangling || FD->isVirtual() || + !FD->hasAttr<DLLImportAttr>(); +} + +/// Check that this core constant expression is of literal type, and if not, +/// produce an appropriate diagnostic. +static bool CheckLiteralType(EvalInfo &Info, const Expr *E, + const LValue *This = nullptr) { + if (!E->isRValue() || E->getType()->isLiteralType(Info.Ctx)) + return true; + + // C++1y: A constant initializer for an object o [...] may also invoke + // constexpr constructors for o and its subobjects even if those objects + // are of non-literal class types. + // + // C++11 missed this detail for aggregates, so classes like this: + // struct foo_t { union { int i; volatile int j; } u; }; + // are not (obviously) initializable like so: + // __attribute__((__require_constant_initialization__)) + // static const foo_t x = {{0}}; + // because "i" is a subobject with non-literal initialization (due to the + // volatile member of the union). See: + // http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#1677 + // Therefore, we use the C++1y behavior. + if (This && Info.EvaluatingDecl == This->getLValueBase()) + return true; + + // Prvalue constant expressions must be of literal types. + if (Info.getLangOpts().CPlusPlus11) + Info.FFDiag(E, diag::note_constexpr_nonliteral) + << E->getType(); + else + Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr); + return false; +} + +static bool CheckEvaluationResult(CheckEvaluationResultKind CERK, + EvalInfo &Info, SourceLocation DiagLoc, + QualType Type, const APValue &Value, + Expr::ConstExprUsage Usage, + SourceLocation SubobjectLoc, + CheckedTemporaries &CheckedTemps) { + if (!Value.hasValue()) { + Info.FFDiag(DiagLoc, diag::note_constexpr_uninitialized) + << true << Type; + if (SubobjectLoc.isValid()) + Info.Note(SubobjectLoc, diag::note_constexpr_subobject_declared_here); + return false; + } + + // We allow _Atomic(T) to be initialized from anything that T can be + // initialized from. + if (const AtomicType *AT = Type->getAs<AtomicType>()) + Type = AT->getValueType(); + + // Core issue 1454: For a literal constant expression of array or class type, + // each subobject of its value shall have been initialized by a constant + // expression. + if (Value.isArray()) { + QualType EltTy = Type->castAsArrayTypeUnsafe()->getElementType(); + for (unsigned I = 0, N = Value.getArrayInitializedElts(); I != N; ++I) { + if (!CheckEvaluationResult(CERK, Info, DiagLoc, EltTy, + Value.getArrayInitializedElt(I), Usage, + SubobjectLoc, CheckedTemps)) + return false; + } + if (!Value.hasArrayFiller()) + return true; + return CheckEvaluationResult(CERK, Info, DiagLoc, EltTy, + Value.getArrayFiller(), Usage, SubobjectLoc, + CheckedTemps); + } + if (Value.isUnion() && Value.getUnionField()) { + return CheckEvaluationResult( + CERK, Info, DiagLoc, Value.getUnionField()->getType(), + Value.getUnionValue(), Usage, Value.getUnionField()->getLocation(), + CheckedTemps); + } + if (Value.isStruct()) { + RecordDecl *RD = Type->castAs<RecordType>()->getDecl(); + if (const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(RD)) { + unsigned BaseIndex = 0; + for (const CXXBaseSpecifier &BS : CD->bases()) { + if (!CheckEvaluationResult(CERK, Info, DiagLoc, BS.getType(), + Value.getStructBase(BaseIndex), Usage, + BS.getBeginLoc(), CheckedTemps)) + return false; + ++BaseIndex; + } + } + for (const auto *I : RD->fields()) { + if (I->isUnnamedBitfield()) + continue; + + if (!CheckEvaluationResult(CERK, Info, DiagLoc, I->getType(), + Value.getStructField(I->getFieldIndex()), + Usage, I->getLocation(), CheckedTemps)) + return false; + } + } + + if (Value.isLValue() && + CERK == CheckEvaluationResultKind::ConstantExpression) { + LValue LVal; + LVal.setFrom(Info.Ctx, Value); + return CheckLValueConstantExpression(Info, DiagLoc, Type, LVal, Usage, + CheckedTemps); + } + + if (Value.isMemberPointer() && + CERK == CheckEvaluationResultKind::ConstantExpression) + return CheckMemberPointerConstantExpression(Info, DiagLoc, Type, Value, Usage); + + // Everything else is fine. + return true; +} + +/// Check that this core constant expression value is a valid value for a +/// constant expression. If not, report an appropriate diagnostic. Does not +/// check that the expression is of literal type. +static bool +CheckConstantExpression(EvalInfo &Info, SourceLocation DiagLoc, QualType Type, + const APValue &Value, + Expr::ConstExprUsage Usage = Expr::EvaluateForCodeGen) { + CheckedTemporaries CheckedTemps; + return CheckEvaluationResult(CheckEvaluationResultKind::ConstantExpression, + Info, DiagLoc, Type, Value, Usage, + SourceLocation(), CheckedTemps); +} + +/// Check that this evaluated value is fully-initialized and can be loaded by +/// an lvalue-to-rvalue conversion. +static bool CheckFullyInitialized(EvalInfo &Info, SourceLocation DiagLoc, + QualType Type, const APValue &Value) { + CheckedTemporaries CheckedTemps; + return CheckEvaluationResult( + CheckEvaluationResultKind::FullyInitialized, Info, DiagLoc, Type, Value, + Expr::EvaluateForCodeGen, SourceLocation(), CheckedTemps); +} + +/// Enforce C++2a [expr.const]/4.17, which disallows new-expressions unless +/// "the allocated storage is deallocated within the evaluation". +static bool CheckMemoryLeaks(EvalInfo &Info) { + if (!Info.HeapAllocs.empty()) { + // We can still fold to a constant despite a compile-time memory leak, + // so long as the heap allocation isn't referenced in the result (we check + // that in CheckConstantExpression). + Info.CCEDiag(Info.HeapAllocs.begin()->second.AllocExpr, + diag::note_constexpr_memory_leak) + << unsigned(Info.HeapAllocs.size() - 1); + } + return true; +} + +static bool EvalPointerValueAsBool(const APValue &Value, bool &Result) { + // A null base expression indicates a null pointer. These are always + // evaluatable, and they are false unless the offset is zero. + if (!Value.getLValueBase()) { + Result = !Value.getLValueOffset().isZero(); + return true; + } + + // We have a non-null base. These are generally known to be true, but if it's + // a weak declaration it can be null at runtime. + Result = true; + const ValueDecl *Decl = Value.getLValueBase().dyn_cast<const ValueDecl*>(); + return !Decl || !Decl->isWeak(); +} + +static bool HandleConversionToBool(const APValue &Val, bool &Result) { + switch (Val.getKind()) { + case APValue::None: + case APValue::Indeterminate: + return false; + case APValue::Int: + Result = Val.getInt().getBoolValue(); + return true; + case APValue::FixedPoint: + Result = Val.getFixedPoint().getBoolValue(); + return true; + case APValue::Float: + Result = !Val.getFloat().isZero(); + return true; + case APValue::ComplexInt: + Result = Val.getComplexIntReal().getBoolValue() || + Val.getComplexIntImag().getBoolValue(); + return true; + case APValue::ComplexFloat: + Result = !Val.getComplexFloatReal().isZero() || + !Val.getComplexFloatImag().isZero(); + return true; + case APValue::LValue: + return EvalPointerValueAsBool(Val, Result); + case APValue::MemberPointer: + Result = Val.getMemberPointerDecl(); + return true; + case APValue::Vector: + case APValue::Array: + case APValue::Struct: + case APValue::Union: + case APValue::AddrLabelDiff: + return false; + } + + llvm_unreachable("unknown APValue kind"); +} + +static bool EvaluateAsBooleanCondition(const Expr *E, bool &Result, + EvalInfo &Info) { + assert(E->isRValue() && "missing lvalue-to-rvalue conv in bool condition"); + APValue Val; + if (!Evaluate(Val, Info, E)) + return false; + return HandleConversionToBool(Val, Result); +} + +template<typename T> +static bool HandleOverflow(EvalInfo &Info, const Expr *E, + const T &SrcValue, QualType DestType) { + Info.CCEDiag(E, diag::note_constexpr_overflow) + << SrcValue << DestType; + return Info.noteUndefinedBehavior(); +} + +static bool HandleFloatToIntCast(EvalInfo &Info, const Expr *E, + QualType SrcType, const APFloat &Value, + QualType DestType, APSInt &Result) { + unsigned DestWidth = Info.Ctx.getIntWidth(DestType); + // Determine whether we are converting to unsigned or signed. + bool DestSigned = DestType->isSignedIntegerOrEnumerationType(); + + Result = APSInt(DestWidth, !DestSigned); + bool ignored; + if (Value.convertToInteger(Result, llvm::APFloat::rmTowardZero, &ignored) + & APFloat::opInvalidOp) + return HandleOverflow(Info, E, Value, DestType); + return true; +} + +static bool HandleFloatToFloatCast(EvalInfo &Info, const Expr *E, + QualType SrcType, QualType DestType, + APFloat &Result) { + APFloat Value = Result; + bool ignored; + Result.convert(Info.Ctx.getFloatTypeSemantics(DestType), + APFloat::rmNearestTiesToEven, &ignored); + return true; +} + +static APSInt HandleIntToIntCast(EvalInfo &Info, const Expr *E, + QualType DestType, QualType SrcType, + const APSInt &Value) { + unsigned DestWidth = Info.Ctx.getIntWidth(DestType); + // Figure out if this is a truncate, extend or noop cast. + // If the input is signed, do a sign extend, noop, or truncate. + APSInt Result = Value.extOrTrunc(DestWidth); + Result.setIsUnsigned(DestType->isUnsignedIntegerOrEnumerationType()); + if (DestType->isBooleanType()) + Result = Value.getBoolValue(); + return Result; +} + +static bool HandleIntToFloatCast(EvalInfo &Info, const Expr *E, + QualType SrcType, const APSInt &Value, + QualType DestType, APFloat &Result) { + Result = APFloat(Info.Ctx.getFloatTypeSemantics(DestType), 1); + Result.convertFromAPInt(Value, Value.isSigned(), + APFloat::rmNearestTiesToEven); + return true; +} + +static bool truncateBitfieldValue(EvalInfo &Info, const Expr *E, + APValue &Value, const FieldDecl *FD) { + assert(FD->isBitField() && "truncateBitfieldValue on non-bitfield"); + + if (!Value.isInt()) { + // Trying to store a pointer-cast-to-integer into a bitfield. + // FIXME: In this case, we should provide the diagnostic for casting + // a pointer to an integer. + assert(Value.isLValue() && "integral value neither int nor lvalue?"); + Info.FFDiag(E); + return false; + } + + APSInt &Int = Value.getInt(); + unsigned OldBitWidth = Int.getBitWidth(); + unsigned NewBitWidth = FD->getBitWidthValue(Info.Ctx); + if (NewBitWidth < OldBitWidth) + Int = Int.trunc(NewBitWidth).extend(OldBitWidth); + return true; +} + +static bool EvalAndBitcastToAPInt(EvalInfo &Info, const Expr *E, + llvm::APInt &Res) { + APValue SVal; + if (!Evaluate(SVal, Info, E)) + return false; + if (SVal.isInt()) { + Res = SVal.getInt(); + return true; + } + if (SVal.isFloat()) { + Res = SVal.getFloat().bitcastToAPInt(); + return true; + } + if (SVal.isVector()) { + QualType VecTy = E->getType(); + unsigned VecSize = Info.Ctx.getTypeSize(VecTy); + QualType EltTy = VecTy->castAs<VectorType>()->getElementType(); + unsigned EltSize = Info.Ctx.getTypeSize(EltTy); + bool BigEndian = Info.Ctx.getTargetInfo().isBigEndian(); + Res = llvm::APInt::getNullValue(VecSize); + for (unsigned i = 0; i < SVal.getVectorLength(); i++) { + APValue &Elt = SVal.getVectorElt(i); + llvm::APInt EltAsInt; + if (Elt.isInt()) { + EltAsInt = Elt.getInt(); + } else if (Elt.isFloat()) { + EltAsInt = Elt.getFloat().bitcastToAPInt(); + } else { + // Don't try to handle vectors of anything other than int or float + // (not sure if it's possible to hit this case). + Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr); + return false; + } + unsigned BaseEltSize = EltAsInt.getBitWidth(); + if (BigEndian) + Res |= EltAsInt.zextOrTrunc(VecSize).rotr(i*EltSize+BaseEltSize); + else + Res |= EltAsInt.zextOrTrunc(VecSize).rotl(i*EltSize); + } + return true; + } + // Give up if the input isn't an int, float, or vector. For example, we + // reject "(v4i16)(intptr_t)&a". + Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr); + return false; +} + +/// Perform the given integer operation, which is known to need at most BitWidth +/// bits, and check for overflow in the original type (if that type was not an +/// unsigned type). +template<typename Operation> +static bool CheckedIntArithmetic(EvalInfo &Info, const Expr *E, + const APSInt &LHS, const APSInt &RHS, + unsigned BitWidth, Operation Op, + APSInt &Result) { + if (LHS.isUnsigned()) { + Result = Op(LHS, RHS); + return true; + } + + APSInt Value(Op(LHS.extend(BitWidth), RHS.extend(BitWidth)), false); + Result = Value.trunc(LHS.getBitWidth()); + if (Result.extend(BitWidth) != Value) { + if (Info.checkingForUndefinedBehavior()) + Info.Ctx.getDiagnostics().Report(E->getExprLoc(), + diag::warn_integer_constant_overflow) + << Result.toString(10) << E->getType(); + else + return HandleOverflow(Info, E, Value, E->getType()); + } + return true; +} + +/// Perform the given binary integer operation. +static bool handleIntIntBinOp(EvalInfo &Info, const Expr *E, const APSInt &LHS, + BinaryOperatorKind Opcode, APSInt RHS, + APSInt &Result) { + switch (Opcode) { + default: + Info.FFDiag(E); + return false; + case BO_Mul: + return CheckedIntArithmetic(Info, E, LHS, RHS, LHS.getBitWidth() * 2, + std::multiplies<APSInt>(), Result); + case BO_Add: + return CheckedIntArithmetic(Info, E, LHS, RHS, LHS.getBitWidth() + 1, + std::plus<APSInt>(), Result); + case BO_Sub: + return CheckedIntArithmetic(Info, E, LHS, RHS, LHS.getBitWidth() + 1, + std::minus<APSInt>(), Result); + case BO_And: Result = LHS & RHS; return true; + case BO_Xor: Result = LHS ^ RHS; return true; + case BO_Or: Result = LHS | RHS; return true; + case BO_Div: + case BO_Rem: + if (RHS == 0) { + Info.FFDiag(E, diag::note_expr_divide_by_zero); + return false; + } + Result = (Opcode == BO_Rem ? LHS % RHS : LHS / RHS); + // Check for overflow case: INT_MIN / -1 or INT_MIN % -1. APSInt supports + // this operation and gives the two's complement result. + if (RHS.isNegative() && RHS.isAllOnesValue() && + LHS.isSigned() && LHS.isMinSignedValue()) + return HandleOverflow(Info, E, -LHS.extend(LHS.getBitWidth() + 1), + E->getType()); + return true; + case BO_Shl: { + if (Info.getLangOpts().OpenCL) + // OpenCL 6.3j: shift values are effectively % word size of LHS. + RHS &= APSInt(llvm::APInt(RHS.getBitWidth(), + static_cast<uint64_t>(LHS.getBitWidth() - 1)), + RHS.isUnsigned()); + else if (RHS.isSigned() && RHS.isNegative()) { + // During constant-folding, a negative shift is an opposite shift. Such + // a shift is not a constant expression. + Info.CCEDiag(E, diag::note_constexpr_negative_shift) << RHS; + RHS = -RHS; + goto shift_right; + } + shift_left: + // C++11 [expr.shift]p1: Shift width must be less than the bit width of + // the shifted type. + unsigned SA = (unsigned) RHS.getLimitedValue(LHS.getBitWidth()-1); + if (SA != RHS) { + Info.CCEDiag(E, diag::note_constexpr_large_shift) + << RHS << E->getType() << LHS.getBitWidth(); + } else if (LHS.isSigned() && !Info.getLangOpts().CPlusPlus2a) { + // C++11 [expr.shift]p2: A signed left shift must have a non-negative + // operand, and must not overflow the corresponding unsigned type. + // C++2a [expr.shift]p2: E1 << E2 is the unique value congruent to + // E1 x 2^E2 module 2^N. + if (LHS.isNegative()) + Info.CCEDiag(E, diag::note_constexpr_lshift_of_negative) << LHS; + else if (LHS.countLeadingZeros() < SA) + Info.CCEDiag(E, diag::note_constexpr_lshift_discards); + } + Result = LHS << SA; + return true; + } + case BO_Shr: { + if (Info.getLangOpts().OpenCL) + // OpenCL 6.3j: shift values are effectively % word size of LHS. + RHS &= APSInt(llvm::APInt(RHS.getBitWidth(), + static_cast<uint64_t>(LHS.getBitWidth() - 1)), + RHS.isUnsigned()); + else if (RHS.isSigned() && RHS.isNegative()) { + // During constant-folding, a negative shift is an opposite shift. Such a + // shift is not a constant expression. + Info.CCEDiag(E, diag::note_constexpr_negative_shift) << RHS; + RHS = -RHS; + goto shift_left; + } + shift_right: + // C++11 [expr.shift]p1: Shift width must be less than the bit width of the + // shifted type. + unsigned SA = (unsigned) RHS.getLimitedValue(LHS.getBitWidth()-1); + if (SA != RHS) + Info.CCEDiag(E, diag::note_constexpr_large_shift) + << RHS << E->getType() << LHS.getBitWidth(); + Result = LHS >> SA; + return true; + } + + case BO_LT: Result = LHS < RHS; return true; + case BO_GT: Result = LHS > RHS; return true; + case BO_LE: Result = LHS <= RHS; return true; + case BO_GE: Result = LHS >= RHS; return true; + case BO_EQ: Result = LHS == RHS; return true; + case BO_NE: Result = LHS != RHS; return true; + case BO_Cmp: + llvm_unreachable("BO_Cmp should be handled elsewhere"); + } +} + +/// Perform the given binary floating-point operation, in-place, on LHS. +static bool handleFloatFloatBinOp(EvalInfo &Info, const Expr *E, + APFloat &LHS, BinaryOperatorKind Opcode, + const APFloat &RHS) { + switch (Opcode) { + default: + Info.FFDiag(E); + return false; + case BO_Mul: + LHS.multiply(RHS, APFloat::rmNearestTiesToEven); + break; + case BO_Add: + LHS.add(RHS, APFloat::rmNearestTiesToEven); + break; + case BO_Sub: + LHS.subtract(RHS, APFloat::rmNearestTiesToEven); + break; + case BO_Div: + // [expr.mul]p4: + // If the second operand of / or % is zero the behavior is undefined. + if (RHS.isZero()) + Info.CCEDiag(E, diag::note_expr_divide_by_zero); + LHS.divide(RHS, APFloat::rmNearestTiesToEven); + break; + } + + // [expr.pre]p4: + // If during the evaluation of an expression, the result is not + // mathematically defined [...], the behavior is undefined. + // FIXME: C++ rules require us to not conform to IEEE 754 here. + if (LHS.isNaN()) { + Info.CCEDiag(E, diag::note_constexpr_float_arithmetic) << LHS.isNaN(); + return Info.noteUndefinedBehavior(); + } + return true; +} + +/// Cast an lvalue referring to a base subobject to a derived class, by +/// truncating the lvalue's path to the given length. +static bool CastToDerivedClass(EvalInfo &Info, const Expr *E, LValue &Result, + const RecordDecl *TruncatedType, + unsigned TruncatedElements) { + SubobjectDesignator &D = Result.Designator; + + // Check we actually point to a derived class object. + if (TruncatedElements == D.Entries.size()) + return true; + assert(TruncatedElements >= D.MostDerivedPathLength && + "not casting to a derived class"); + if (!Result.checkSubobject(Info, E, CSK_Derived)) + return false; + + // Truncate the path to the subobject, and remove any derived-to-base offsets. + const RecordDecl *RD = TruncatedType; + for (unsigned I = TruncatedElements, N = D.Entries.size(); I != N; ++I) { + if (RD->isInvalidDecl()) return false; + const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD); + const CXXRecordDecl *Base = getAsBaseClass(D.Entries[I]); + if (isVirtualBaseClass(D.Entries[I])) + Result.Offset -= Layout.getVBaseClassOffset(Base); + else + Result.Offset -= Layout.getBaseClassOffset(Base); + RD = Base; + } + D.Entries.resize(TruncatedElements); + return true; +} + +static bool HandleLValueDirectBase(EvalInfo &Info, const Expr *E, LValue &Obj, + const CXXRecordDecl *Derived, + const CXXRecordDecl *Base, + const ASTRecordLayout *RL = nullptr) { + if (!RL) { + if (Derived->isInvalidDecl()) return false; + RL = &Info.Ctx.getASTRecordLayout(Derived); + } + + Obj.getLValueOffset() += RL->getBaseClassOffset(Base); + Obj.addDecl(Info, E, Base, /*Virtual*/ false); + return true; +} + +static bool HandleLValueBase(EvalInfo &Info, const Expr *E, LValue &Obj, + const CXXRecordDecl *DerivedDecl, + const CXXBaseSpecifier *Base) { + const CXXRecordDecl *BaseDecl = Base->getType()->getAsCXXRecordDecl(); + + if (!Base->isVirtual()) + return HandleLValueDirectBase(Info, E, Obj, DerivedDecl, BaseDecl); + + SubobjectDesignator &D = Obj.Designator; + if (D.Invalid) + return false; + + // Extract most-derived object and corresponding type. + DerivedDecl = D.MostDerivedType->getAsCXXRecordDecl(); + if (!CastToDerivedClass(Info, E, Obj, DerivedDecl, D.MostDerivedPathLength)) + return false; + + // Find the virtual base class. + if (DerivedDecl->isInvalidDecl()) return false; + const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(DerivedDecl); + Obj.getLValueOffset() += Layout.getVBaseClassOffset(BaseDecl); + Obj.addDecl(Info, E, BaseDecl, /*Virtual*/ true); + return true; +} + +static bool HandleLValueBasePath(EvalInfo &Info, const CastExpr *E, + QualType Type, LValue &Result) { + for (CastExpr::path_const_iterator PathI = E->path_begin(), + PathE = E->path_end(); + PathI != PathE; ++PathI) { + if (!HandleLValueBase(Info, E, Result, Type->getAsCXXRecordDecl(), + *PathI)) + return false; + Type = (*PathI)->getType(); + } + return true; +} + +/// Cast an lvalue referring to a derived class to a known base subobject. +static bool CastToBaseClass(EvalInfo &Info, const Expr *E, LValue &Result, + const CXXRecordDecl *DerivedRD, + const CXXRecordDecl *BaseRD) { + CXXBasePaths Paths(/*FindAmbiguities=*/false, + /*RecordPaths=*/true, /*DetectVirtual=*/false); + if (!DerivedRD->isDerivedFrom(BaseRD, Paths)) + llvm_unreachable("Class must be derived from the passed in base class!"); + + for (CXXBasePathElement &Elem : Paths.front()) + if (!HandleLValueBase(Info, E, Result, Elem.Class, Elem.Base)) + return false; + return true; +} + +/// Update LVal to refer to the given field, which must be a member of the type +/// currently described by LVal. +static bool HandleLValueMember(EvalInfo &Info, const Expr *E, LValue &LVal, + const FieldDecl *FD, + const ASTRecordLayout *RL = nullptr) { + if (!RL) { + if (FD->getParent()->isInvalidDecl()) return false; + RL = &Info.Ctx.getASTRecordLayout(FD->getParent()); + } + + unsigned I = FD->getFieldIndex(); + LVal.adjustOffset(Info.Ctx.toCharUnitsFromBits(RL->getFieldOffset(I))); + LVal.addDecl(Info, E, FD); + return true; +} + +/// Update LVal to refer to the given indirect field. +static bool HandleLValueIndirectMember(EvalInfo &Info, const Expr *E, + LValue &LVal, + const IndirectFieldDecl *IFD) { + for (const auto *C : IFD->chain()) + if (!HandleLValueMember(Info, E, LVal, cast<FieldDecl>(C))) + return false; + return true; +} + +/// Get the size of the given type in char units. +static bool HandleSizeof(EvalInfo &Info, SourceLocation Loc, + QualType Type, CharUnits &Size) { + // sizeof(void), __alignof__(void), sizeof(function) = 1 as a gcc + // extension. + if (Type->isVoidType() || Type->isFunctionType()) { + Size = CharUnits::One(); + return true; + } + + if (Type->isDependentType()) { + Info.FFDiag(Loc); + return false; + } + + if (!Type->isConstantSizeType()) { + // sizeof(vla) is not a constantexpr: C99 6.5.3.4p2. + // FIXME: Better diagnostic. + Info.FFDiag(Loc); + return false; + } + + Size = Info.Ctx.getTypeSizeInChars(Type); + return true; +} + +/// Update a pointer value to model pointer arithmetic. +/// \param Info - Information about the ongoing evaluation. +/// \param E - The expression being evaluated, for diagnostic purposes. +/// \param LVal - The pointer value to be updated. +/// \param EltTy - The pointee type represented by LVal. +/// \param Adjustment - The adjustment, in objects of type EltTy, to add. +static bool HandleLValueArrayAdjustment(EvalInfo &Info, const Expr *E, + LValue &LVal, QualType EltTy, + APSInt Adjustment) { + CharUnits SizeOfPointee; + if (!HandleSizeof(Info, E->getExprLoc(), EltTy, SizeOfPointee)) + return false; + + LVal.adjustOffsetAndIndex(Info, E, Adjustment, SizeOfPointee); + return true; +} + +static bool HandleLValueArrayAdjustment(EvalInfo &Info, const Expr *E, + LValue &LVal, QualType EltTy, + int64_t Adjustment) { + return HandleLValueArrayAdjustment(Info, E, LVal, EltTy, + APSInt::get(Adjustment)); +} + +/// Update an lvalue to refer to a component of a complex number. +/// \param Info - Information about the ongoing evaluation. +/// \param LVal - The lvalue to be updated. +/// \param EltTy - The complex number's component type. +/// \param Imag - False for the real component, true for the imaginary. +static bool HandleLValueComplexElement(EvalInfo &Info, const Expr *E, + LValue &LVal, QualType EltTy, + bool Imag) { + if (Imag) { + CharUnits SizeOfComponent; + if (!HandleSizeof(Info, E->getExprLoc(), EltTy, SizeOfComponent)) + return false; + LVal.Offset += SizeOfComponent; + } + LVal.addComplex(Info, E, EltTy, Imag); + return true; +} + +/// Try to evaluate the initializer for a variable declaration. +/// +/// \param Info Information about the ongoing evaluation. +/// \param E An expression to be used when printing diagnostics. +/// \param VD The variable whose initializer should be obtained. +/// \param Frame The frame in which the variable was created. Must be null +/// if this variable is not local to the evaluation. +/// \param Result Filled in with a pointer to the value of the variable. +static bool evaluateVarDeclInit(EvalInfo &Info, const Expr *E, + const VarDecl *VD, CallStackFrame *Frame, + APValue *&Result, const LValue *LVal) { + + // If this is a parameter to an active constexpr function call, perform + // argument substitution. + if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD)) { + // Assume arguments of a potential constant expression are unknown + // constant expressions. + if (Info.checkingPotentialConstantExpression()) + return false; + if (!Frame || !Frame->Arguments) { + Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr); + return false; + } + Result = &Frame->Arguments[PVD->getFunctionScopeIndex()]; + return true; + } + + // If this is a local variable, dig out its value. + if (Frame) { + Result = LVal ? Frame->getTemporary(VD, LVal->getLValueVersion()) + : Frame->getCurrentTemporary(VD); + if (!Result) { + // Assume variables referenced within a lambda's call operator that were + // not declared within the call operator are captures and during checking + // of a potential constant expression, assume they are unknown constant + // expressions. + assert(isLambdaCallOperator(Frame->Callee) && + (VD->getDeclContext() != Frame->Callee || VD->isInitCapture()) && + "missing value for local variable"); + if (Info.checkingPotentialConstantExpression()) + return false; + // FIXME: implement capture evaluation during constant expr evaluation. + Info.FFDiag(E->getBeginLoc(), + diag::note_unimplemented_constexpr_lambda_feature_ast) + << "captures not currently allowed"; + return false; + } + return true; + } + + // Dig out the initializer, and use the declaration which it's attached to. + const Expr *Init = VD->getAnyInitializer(VD); + if (!Init || Init->isValueDependent()) { + // If we're checking a potential constant expression, the variable could be + // initialized later. + if (!Info.checkingPotentialConstantExpression()) + Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr); + return false; + } + + // If we're currently evaluating the initializer of this declaration, use that + // in-flight value. + if (Info.EvaluatingDecl.dyn_cast<const ValueDecl*>() == VD) { + Result = Info.EvaluatingDeclValue; + return true; + } + + // Never evaluate the initializer of a weak variable. We can't be sure that + // this is the definition which will be used. + if (VD->isWeak()) { + Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr); + return false; + } + + // Check that we can fold the initializer. In C++, we will have already done + // this in the cases where it matters for conformance. + SmallVector<PartialDiagnosticAt, 8> Notes; + if (!VD->evaluateValue(Notes)) { + Info.FFDiag(E, diag::note_constexpr_var_init_non_constant, + Notes.size() + 1) << VD; + Info.Note(VD->getLocation(), diag::note_declared_at); + Info.addNotes(Notes); + return false; + } else if (!VD->checkInitIsICE()) { + Info.CCEDiag(E, diag::note_constexpr_var_init_non_constant, + Notes.size() + 1) << VD; + Info.Note(VD->getLocation(), diag::note_declared_at); + Info.addNotes(Notes); + } + + Result = VD->getEvaluatedValue(); + return true; +} + +static bool IsConstNonVolatile(QualType T) { + Qualifiers Quals = T.getQualifiers(); + return Quals.hasConst() && !Quals.hasVolatile(); +} + +/// Get the base index of the given base class within an APValue representing +/// the given derived class. +static unsigned getBaseIndex(const CXXRecordDecl *Derived, + const CXXRecordDecl *Base) { + Base = Base->getCanonicalDecl(); + unsigned Index = 0; + for (CXXRecordDecl::base_class_const_iterator I = Derived->bases_begin(), + E = Derived->bases_end(); I != E; ++I, ++Index) { + if (I->getType()->getAsCXXRecordDecl()->getCanonicalDecl() == Base) + return Index; + } + + llvm_unreachable("base class missing from derived class's bases list"); +} + +/// Extract the value of a character from a string literal. +static APSInt extractStringLiteralCharacter(EvalInfo &Info, const Expr *Lit, + uint64_t Index) { + assert(!isa<SourceLocExpr>(Lit) && + "SourceLocExpr should have already been converted to a StringLiteral"); + + // FIXME: Support MakeStringConstant + if (const auto *ObjCEnc = dyn_cast<ObjCEncodeExpr>(Lit)) { + std::string Str; + Info.Ctx.getObjCEncodingForType(ObjCEnc->getEncodedType(), Str); + assert(Index <= Str.size() && "Index too large"); + return APSInt::getUnsigned(Str.c_str()[Index]); + } + + if (auto PE = dyn_cast<PredefinedExpr>(Lit)) + Lit = PE->getFunctionName(); + const StringLiteral *S = cast<StringLiteral>(Lit); + const ConstantArrayType *CAT = + Info.Ctx.getAsConstantArrayType(S->getType()); + assert(CAT && "string literal isn't an array"); + QualType CharType = CAT->getElementType(); + assert(CharType->isIntegerType() && "unexpected character type"); + + APSInt Value(S->getCharByteWidth() * Info.Ctx.getCharWidth(), + CharType->isUnsignedIntegerType()); + if (Index < S->getLength()) + Value = S->getCodeUnit(Index); + return Value; +} + +// Expand a string literal into an array of characters. +// +// FIXME: This is inefficient; we should probably introduce something similar +// to the LLVM ConstantDataArray to make this cheaper. +static void expandStringLiteral(EvalInfo &Info, const StringLiteral *S, + APValue &Result, + QualType AllocType = QualType()) { + const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType( + AllocType.isNull() ? S->getType() : AllocType); + assert(CAT && "string literal isn't an array"); + QualType CharType = CAT->getElementType(); + assert(CharType->isIntegerType() && "unexpected character type"); + + unsigned Elts = CAT->getSize().getZExtValue(); + Result = APValue(APValue::UninitArray(), + std::min(S->getLength(), Elts), Elts); + APSInt Value(S->getCharByteWidth() * Info.Ctx.getCharWidth(), + CharType->isUnsignedIntegerType()); + if (Result.hasArrayFiller()) + Result.getArrayFiller() = APValue(Value); + for (unsigned I = 0, N = Result.getArrayInitializedElts(); I != N; ++I) { + Value = S->getCodeUnit(I); + Result.getArrayInitializedElt(I) = APValue(Value); + } +} + +// Expand an array so that it has more than Index filled elements. +static void expandArray(APValue &Array, unsigned Index) { + unsigned Size = Array.getArraySize(); + assert(Index < Size); + + // Always at least double the number of elements for which we store a value. + unsigned OldElts = Array.getArrayInitializedElts(); + unsigned NewElts = std::max(Index+1, OldElts * 2); + NewElts = std::min(Size, std::max(NewElts, 8u)); + + // Copy the data across. + APValue NewValue(APValue::UninitArray(), NewElts, Size); + for (unsigned I = 0; I != OldElts; ++I) + NewValue.getArrayInitializedElt(I).swap(Array.getArrayInitializedElt(I)); + for (unsigned I = OldElts; I != NewElts; ++I) + NewValue.getArrayInitializedElt(I) = Array.getArrayFiller(); + if (NewValue.hasArrayFiller()) + NewValue.getArrayFiller() = Array.getArrayFiller(); + Array.swap(NewValue); +} + +/// Determine whether a type would actually be read by an lvalue-to-rvalue +/// conversion. If it's of class type, we may assume that the copy operation +/// is trivial. Note that this is never true for a union type with fields +/// (because the copy always "reads" the active member) and always true for +/// a non-class type. +static bool isReadByLvalueToRvalueConversion(QualType T) { + CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); + if (!RD || (RD->isUnion() && !RD->field_empty())) + return true; + if (RD->isEmpty()) + return false; + + for (auto *Field : RD->fields()) + if (isReadByLvalueToRvalueConversion(Field->getType())) + return true; + + for (auto &BaseSpec : RD->bases()) + if (isReadByLvalueToRvalueConversion(BaseSpec.getType())) + return true; + + return false; +} + +/// Diagnose an attempt to read from any unreadable field within the specified +/// type, which might be a class type. +static bool diagnoseMutableFields(EvalInfo &Info, const Expr *E, AccessKinds AK, + QualType T) { + CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); + if (!RD) + return false; + + if (!RD->hasMutableFields()) + return false; + + for (auto *Field : RD->fields()) { + // If we're actually going to read this field in some way, then it can't + // be mutable. If we're in a union, then assigning to a mutable field + // (even an empty one) can change the active member, so that's not OK. + // FIXME: Add core issue number for the union case. + if (Field->isMutable() && + (RD->isUnion() || isReadByLvalueToRvalueConversion(Field->getType()))) { + Info.FFDiag(E, diag::note_constexpr_access_mutable, 1) << AK << Field; + Info.Note(Field->getLocation(), diag::note_declared_at); + return true; + } + + if (diagnoseMutableFields(Info, E, AK, Field->getType())) + return true; + } + + for (auto &BaseSpec : RD->bases()) + if (diagnoseMutableFields(Info, E, AK, BaseSpec.getType())) + return true; + + // All mutable fields were empty, and thus not actually read. + return false; +} + +static bool lifetimeStartedInEvaluation(EvalInfo &Info, + APValue::LValueBase Base, + bool MutableSubobject = false) { + // A temporary we created. + if (Base.getCallIndex()) + return true; + + auto *Evaluating = Info.EvaluatingDecl.dyn_cast<const ValueDecl*>(); + if (!Evaluating) + return false; + + auto *BaseD = Base.dyn_cast<const ValueDecl*>(); + + switch (Info.IsEvaluatingDecl) { + case EvalInfo::EvaluatingDeclKind::None: + return false; + + case EvalInfo::EvaluatingDeclKind::Ctor: + // The variable whose initializer we're evaluating. + if (BaseD) + return declaresSameEntity(Evaluating, BaseD); + + // A temporary lifetime-extended by the variable whose initializer we're + // evaluating. + if (auto *BaseE = Base.dyn_cast<const Expr *>()) + if (auto *BaseMTE = dyn_cast<MaterializeTemporaryExpr>(BaseE)) + return declaresSameEntity(BaseMTE->getExtendingDecl(), Evaluating); + return false; + + case EvalInfo::EvaluatingDeclKind::Dtor: + // C++2a [expr.const]p6: + // [during constant destruction] the lifetime of a and its non-mutable + // subobjects (but not its mutable subobjects) [are] considered to start + // within e. + // + // FIXME: We can meaningfully extend this to cover non-const objects, but + // we will need special handling: we should be able to access only + // subobjects of such objects that are themselves declared const. + if (!BaseD || + !(BaseD->getType().isConstQualified() || + BaseD->getType()->isReferenceType()) || + MutableSubobject) + return false; + return declaresSameEntity(Evaluating, BaseD); + } + + llvm_unreachable("unknown evaluating decl kind"); +} + +namespace { +/// A handle to a complete object (an object that is not a subobject of +/// another object). +struct CompleteObject { + /// The identity of the object. + APValue::LValueBase Base; + /// The value of the complete object. + APValue *Value; + /// The type of the complete object. + QualType Type; + + CompleteObject() : Value(nullptr) {} + CompleteObject(APValue::LValueBase Base, APValue *Value, QualType Type) + : Base(Base), Value(Value), Type(Type) {} + + bool mayAccessMutableMembers(EvalInfo &Info, AccessKinds AK) const { + // In C++14 onwards, it is permitted to read a mutable member whose + // lifetime began within the evaluation. + // FIXME: Should we also allow this in C++11? + if (!Info.getLangOpts().CPlusPlus14) + return false; + return lifetimeStartedInEvaluation(Info, Base, /*MutableSubobject*/true); + } + + explicit operator bool() const { return !Type.isNull(); } +}; +} // end anonymous namespace + +static QualType getSubobjectType(QualType ObjType, QualType SubobjType, + bool IsMutable = false) { + // C++ [basic.type.qualifier]p1: + // - A const object is an object of type const T or a non-mutable subobject + // of a const object. + if (ObjType.isConstQualified() && !IsMutable) + SubobjType.addConst(); + // - A volatile object is an object of type const T or a subobject of a + // volatile object. + if (ObjType.isVolatileQualified()) + SubobjType.addVolatile(); + return SubobjType; +} + +/// Find the designated sub-object of an rvalue. +template<typename SubobjectHandler> +typename SubobjectHandler::result_type +findSubobject(EvalInfo &Info, const Expr *E, const CompleteObject &Obj, + const SubobjectDesignator &Sub, SubobjectHandler &handler) { + if (Sub.Invalid) + // A diagnostic will have already been produced. + return handler.failed(); + if (Sub.isOnePastTheEnd() || Sub.isMostDerivedAnUnsizedArray()) { + if (Info.getLangOpts().CPlusPlus11) + Info.FFDiag(E, Sub.isOnePastTheEnd() + ? diag::note_constexpr_access_past_end + : diag::note_constexpr_access_unsized_array) + << handler.AccessKind; + else + Info.FFDiag(E); + return handler.failed(); + } + + APValue *O = Obj.Value; + QualType ObjType = Obj.Type; + const FieldDecl *LastField = nullptr; + const FieldDecl *VolatileField = nullptr; + + // Walk the designator's path to find the subobject. + for (unsigned I = 0, N = Sub.Entries.size(); /**/; ++I) { + // Reading an indeterminate value is undefined, but assigning over one is OK. + if ((O->isAbsent() && !(handler.AccessKind == AK_Construct && I == N)) || + (O->isIndeterminate() && handler.AccessKind != AK_Construct && + handler.AccessKind != AK_Assign && + handler.AccessKind != AK_ReadObjectRepresentation)) { + if (!Info.checkingPotentialConstantExpression()) + Info.FFDiag(E, diag::note_constexpr_access_uninit) + << handler.AccessKind << O->isIndeterminate(); + return handler.failed(); + } + + // C++ [class.ctor]p5, C++ [class.dtor]p5: + // const and volatile semantics are not applied on an object under + // {con,de}struction. + if ((ObjType.isConstQualified() || ObjType.isVolatileQualified()) && + ObjType->isRecordType() && + Info.isEvaluatingCtorDtor( + Obj.Base, llvm::makeArrayRef(Sub.Entries.begin(), + Sub.Entries.begin() + I)) != + ConstructionPhase::None) { + ObjType = Info.Ctx.getCanonicalType(ObjType); + ObjType.removeLocalConst(); + ObjType.removeLocalVolatile(); + } + + // If this is our last pass, check that the final object type is OK. + if (I == N || (I == N - 1 && ObjType->isAnyComplexType())) { + // Accesses to volatile objects are prohibited. + if (ObjType.isVolatileQualified() && isFormalAccess(handler.AccessKind)) { + if (Info.getLangOpts().CPlusPlus) { + int DiagKind; + SourceLocation Loc; + const NamedDecl *Decl = nullptr; + if (VolatileField) { + DiagKind = 2; + Loc = VolatileField->getLocation(); + Decl = VolatileField; + } else if (auto *VD = Obj.Base.dyn_cast<const ValueDecl*>()) { + DiagKind = 1; + Loc = VD->getLocation(); + Decl = VD; + } else { + DiagKind = 0; + if (auto *E = Obj.Base.dyn_cast<const Expr *>()) + Loc = E->getExprLoc(); + } + Info.FFDiag(E, diag::note_constexpr_access_volatile_obj, 1) + << handler.AccessKind << DiagKind << Decl; + Info.Note(Loc, diag::note_constexpr_volatile_here) << DiagKind; + } else { + Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr); + } + return handler.failed(); + } + + // If we are reading an object of class type, there may still be more + // things we need to check: if there are any mutable subobjects, we + // cannot perform this read. (This only happens when performing a trivial + // copy or assignment.) + if (ObjType->isRecordType() && + !Obj.mayAccessMutableMembers(Info, handler.AccessKind) && + diagnoseMutableFields(Info, E, handler.AccessKind, ObjType)) + return handler.failed(); + } + + if (I == N) { + if (!handler.found(*O, ObjType)) + return false; + + // If we modified a bit-field, truncate it to the right width. + if (isModification(handler.AccessKind) && + LastField && LastField->isBitField() && + !truncateBitfieldValue(Info, E, *O, LastField)) + return false; + + return true; + } + + LastField = nullptr; + if (ObjType->isArrayType()) { + // Next subobject is an array element. + const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(ObjType); + assert(CAT && "vla in literal type?"); + uint64_t Index = Sub.Entries[I].getAsArrayIndex(); + if (CAT->getSize().ule(Index)) { + // Note, it should not be possible to form a pointer with a valid + // designator which points more than one past the end of the array. + if (Info.getLangOpts().CPlusPlus11) + Info.FFDiag(E, diag::note_constexpr_access_past_end) + << handler.AccessKind; + else + Info.FFDiag(E); + return handler.failed(); + } + + ObjType = CAT->getElementType(); + + if (O->getArrayInitializedElts() > Index) + O = &O->getArrayInitializedElt(Index); + else if (!isRead(handler.AccessKind)) { + expandArray(*O, Index); + O = &O->getArrayInitializedElt(Index); + } else + O = &O->getArrayFiller(); + } else if (ObjType->isAnyComplexType()) { + // Next subobject is a complex number. + uint64_t Index = Sub.Entries[I].getAsArrayIndex(); + if (Index > 1) { + if (Info.getLangOpts().CPlusPlus11) + Info.FFDiag(E, diag::note_constexpr_access_past_end) + << handler.AccessKind; + else + Info.FFDiag(E); + return handler.failed(); + } + + ObjType = getSubobjectType( + ObjType, ObjType->castAs<ComplexType>()->getElementType()); + + assert(I == N - 1 && "extracting subobject of scalar?"); + if (O->isComplexInt()) { + return handler.found(Index ? O->getComplexIntImag() + : O->getComplexIntReal(), ObjType); + } else { + assert(O->isComplexFloat()); + return handler.found(Index ? O->getComplexFloatImag() + : O->getComplexFloatReal(), ObjType); + } + } else if (const FieldDecl *Field = getAsField(Sub.Entries[I])) { + if (Field->isMutable() && + !Obj.mayAccessMutableMembers(Info, handler.AccessKind)) { + Info.FFDiag(E, diag::note_constexpr_access_mutable, 1) + << handler.AccessKind << Field; + Info.Note(Field->getLocation(), diag::note_declared_at); + return handler.failed(); + } + + // Next subobject is a class, struct or union field. + RecordDecl *RD = ObjType->castAs<RecordType>()->getDecl(); + if (RD->isUnion()) { + const FieldDecl *UnionField = O->getUnionField(); + if (!UnionField || + UnionField->getCanonicalDecl() != Field->getCanonicalDecl()) { + if (I == N - 1 && handler.AccessKind == AK_Construct) { + // Placement new onto an inactive union member makes it active. + O->setUnion(Field, APValue()); + } else { + // FIXME: If O->getUnionValue() is absent, report that there's no + // active union member rather than reporting the prior active union + // member. We'll need to fix nullptr_t to not use APValue() as its + // representation first. + Info.FFDiag(E, diag::note_constexpr_access_inactive_union_member) + << handler.AccessKind << Field << !UnionField << UnionField; + return handler.failed(); + } + } + O = &O->getUnionValue(); + } else + O = &O->getStructField(Field->getFieldIndex()); + + ObjType = getSubobjectType(ObjType, Field->getType(), Field->isMutable()); + LastField = Field; + if (Field->getType().isVolatileQualified()) + VolatileField = Field; + } else { + // Next subobject is a base class. + const CXXRecordDecl *Derived = ObjType->getAsCXXRecordDecl(); + const CXXRecordDecl *Base = getAsBaseClass(Sub.Entries[I]); + O = &O->getStructBase(getBaseIndex(Derived, Base)); + + ObjType = getSubobjectType(ObjType, Info.Ctx.getRecordType(Base)); + } + } +} + +namespace { +struct ExtractSubobjectHandler { + EvalInfo &Info; + const Expr *E; + APValue &Result; + const AccessKinds AccessKind; + + typedef bool result_type; + bool failed() { return false; } + bool found(APValue &Subobj, QualType SubobjType) { + Result = Subobj; + if (AccessKind == AK_ReadObjectRepresentation) + return true; + return CheckFullyInitialized(Info, E->getExprLoc(), SubobjType, Result); + } + bool found(APSInt &Value, QualType SubobjType) { + Result = APValue(Value); + return true; + } + bool found(APFloat &Value, QualType SubobjType) { + Result = APValue(Value); + return true; + } +}; +} // end anonymous namespace + +/// Extract the designated sub-object of an rvalue. +static bool extractSubobject(EvalInfo &Info, const Expr *E, + const CompleteObject &Obj, + const SubobjectDesignator &Sub, APValue &Result, + AccessKinds AK = AK_Read) { + assert(AK == AK_Read || AK == AK_ReadObjectRepresentation); + ExtractSubobjectHandler Handler = {Info, E, Result, AK}; + return findSubobject(Info, E, Obj, Sub, Handler); +} + +namespace { +struct ModifySubobjectHandler { + EvalInfo &Info; + APValue &NewVal; + const Expr *E; + + typedef bool result_type; + static const AccessKinds AccessKind = AK_Assign; + + bool checkConst(QualType QT) { + // Assigning to a const object has undefined behavior. + if (QT.isConstQualified()) { + Info.FFDiag(E, diag::note_constexpr_modify_const_type) << QT; + return false; + } + return true; + } + + bool failed() { return false; } + bool found(APValue &Subobj, QualType SubobjType) { + if (!checkConst(SubobjType)) + return false; + // We've been given ownership of NewVal, so just swap it in. + Subobj.swap(NewVal); + return true; + } + bool found(APSInt &Value, QualType SubobjType) { + if (!checkConst(SubobjType)) + return false; + if (!NewVal.isInt()) { + // Maybe trying to write a cast pointer value into a complex? + Info.FFDiag(E); + return false; + } + Value = NewVal.getInt(); + return true; + } + bool found(APFloat &Value, QualType SubobjType) { + if (!checkConst(SubobjType)) + return false; + Value = NewVal.getFloat(); + return true; + } +}; +} // end anonymous namespace + +const AccessKinds ModifySubobjectHandler::AccessKind; + +/// Update the designated sub-object of an rvalue to the given value. +static bool modifySubobject(EvalInfo &Info, const Expr *E, + const CompleteObject &Obj, + const SubobjectDesignator &Sub, + APValue &NewVal) { + ModifySubobjectHandler Handler = { Info, NewVal, E }; + return findSubobject(Info, E, Obj, Sub, Handler); +} + +/// Find the position where two subobject designators diverge, or equivalently +/// the length of the common initial subsequence. +static unsigned FindDesignatorMismatch(QualType ObjType, + const SubobjectDesignator &A, + const SubobjectDesignator &B, + bool &WasArrayIndex) { + unsigned I = 0, N = std::min(A.Entries.size(), B.Entries.size()); + for (/**/; I != N; ++I) { + if (!ObjType.isNull() && + (ObjType->isArrayType() || ObjType->isAnyComplexType())) { + // Next subobject is an array element. + if (A.Entries[I].getAsArrayIndex() != B.Entries[I].getAsArrayIndex()) { + WasArrayIndex = true; + return I; + } + if (ObjType->isAnyComplexType()) + ObjType = ObjType->castAs<ComplexType>()->getElementType(); + else + ObjType = ObjType->castAsArrayTypeUnsafe()->getElementType(); + } else { + if (A.Entries[I].getAsBaseOrMember() != + B.Entries[I].getAsBaseOrMember()) { + WasArrayIndex = false; + return I; + } + if (const FieldDecl *FD = getAsField(A.Entries[I])) + // Next subobject is a field. + ObjType = FD->getType(); + else + // Next subobject is a base class. + ObjType = QualType(); + } + } + WasArrayIndex = false; + return I; +} + +/// Determine whether the given subobject designators refer to elements of the +/// same array object. +static bool AreElementsOfSameArray(QualType ObjType, + const SubobjectDesignator &A, + const SubobjectDesignator &B) { + if (A.Entries.size() != B.Entries.size()) + return false; + + bool IsArray = A.MostDerivedIsArrayElement; + if (IsArray && A.MostDerivedPathLength != A.Entries.size()) + // A is a subobject of the array element. + return false; + + // If A (and B) designates an array element, the last entry will be the array + // index. That doesn't have to match. Otherwise, we're in the 'implicit array + // of length 1' case, and the entire path must match. + bool WasArrayIndex; + unsigned CommonLength = FindDesignatorMismatch(ObjType, A, B, WasArrayIndex); + return CommonLength >= A.Entries.size() - IsArray; +} + +/// Find the complete object to which an LValue refers. +static CompleteObject findCompleteObject(EvalInfo &Info, const Expr *E, + AccessKinds AK, const LValue &LVal, + QualType LValType) { + if (LVal.InvalidBase) { + Info.FFDiag(E); + return CompleteObject(); + } + + if (!LVal.Base) { + Info.FFDiag(E, diag::note_constexpr_access_null) << AK; + return CompleteObject(); + } + + CallStackFrame *Frame = nullptr; + unsigned Depth = 0; + if (LVal.getLValueCallIndex()) { + std::tie(Frame, Depth) = + Info.getCallFrameAndDepth(LVal.getLValueCallIndex()); + if (!Frame) { + Info.FFDiag(E, diag::note_constexpr_lifetime_ended, 1) + << AK << LVal.Base.is<const ValueDecl*>(); + NoteLValueLocation(Info, LVal.Base); + return CompleteObject(); + } + } + + bool IsAccess = isAnyAccess(AK); + + // C++11 DR1311: An lvalue-to-rvalue conversion on a volatile-qualified type + // is not a constant expression (even if the object is non-volatile). We also + // apply this rule to C++98, in order to conform to the expected 'volatile' + // semantics. + if (isFormalAccess(AK) && LValType.isVolatileQualified()) { + if (Info.getLangOpts().CPlusPlus) + Info.FFDiag(E, diag::note_constexpr_access_volatile_type) + << AK << LValType; + else + Info.FFDiag(E); + return CompleteObject(); + } + + // Compute value storage location and type of base object. + APValue *BaseVal = nullptr; + QualType BaseType = getType(LVal.Base); + + if (const ValueDecl *D = LVal.Base.dyn_cast<const ValueDecl*>()) { + // In C++98, const, non-volatile integers initialized with ICEs are ICEs. + // In C++11, constexpr, non-volatile variables initialized with constant + // expressions are constant expressions too. Inside constexpr functions, + // parameters are constant expressions even if they're non-const. + // In C++1y, objects local to a constant expression (those with a Frame) are + // both readable and writable inside constant expressions. + // In C, such things can also be folded, although they are not ICEs. + const VarDecl *VD = dyn_cast<VarDecl>(D); + if (VD) { + if (const VarDecl *VDef = VD->getDefinition(Info.Ctx)) + VD = VDef; + } + if (!VD || VD->isInvalidDecl()) { + Info.FFDiag(E); + return CompleteObject(); + } + + // Unless we're looking at a local variable or argument in a constexpr call, + // the variable we're reading must be const. + if (!Frame) { + if (Info.getLangOpts().CPlusPlus14 && + lifetimeStartedInEvaluation(Info, LVal.Base)) { + // OK, we can read and modify an object if we're in the process of + // evaluating its initializer, because its lifetime began in this + // evaluation. + } else if (isModification(AK)) { + // All the remaining cases do not permit modification of the object. + Info.FFDiag(E, diag::note_constexpr_modify_global); + return CompleteObject(); + } else if (VD->isConstexpr()) { + // OK, we can read this variable. + } else if (BaseType->isIntegralOrEnumerationType()) { + // In OpenCL if a variable is in constant address space it is a const + // value. + if (!(BaseType.isConstQualified() || + (Info.getLangOpts().OpenCL && + BaseType.getAddressSpace() == LangAS::opencl_constant))) { + if (!IsAccess) + return CompleteObject(LVal.getLValueBase(), nullptr, BaseType); + if (Info.getLangOpts().CPlusPlus) { + Info.FFDiag(E, diag::note_constexpr_ltor_non_const_int, 1) << VD; + Info.Note(VD->getLocation(), diag::note_declared_at); + } else { + Info.FFDiag(E); + } + return CompleteObject(); + } + } else if (!IsAccess) { + return CompleteObject(LVal.getLValueBase(), nullptr, BaseType); + } else if (BaseType->isFloatingType() && BaseType.isConstQualified()) { + // We support folding of const floating-point types, in order to make + // static const data members of such types (supported as an extension) + // more useful. + if (Info.getLangOpts().CPlusPlus11) { + Info.CCEDiag(E, diag::note_constexpr_ltor_non_constexpr, 1) << VD; + Info.Note(VD->getLocation(), diag::note_declared_at); + } else { + Info.CCEDiag(E); + } + } else if (BaseType.isConstQualified() && VD->hasDefinition(Info.Ctx)) { + Info.CCEDiag(E, diag::note_constexpr_ltor_non_constexpr) << VD; + // Keep evaluating to see what we can do. + } else { + // FIXME: Allow folding of values of any literal type in all languages. + if (Info.checkingPotentialConstantExpression() && + VD->getType().isConstQualified() && !VD->hasDefinition(Info.Ctx)) { + // The definition of this variable could be constexpr. We can't + // access it right now, but may be able to in future. + } else if (Info.getLangOpts().CPlusPlus11) { + Info.FFDiag(E, diag::note_constexpr_ltor_non_constexpr, 1) << VD; + Info.Note(VD->getLocation(), diag::note_declared_at); + } else { + Info.FFDiag(E); + } + return CompleteObject(); + } + } + + if (!evaluateVarDeclInit(Info, E, VD, Frame, BaseVal, &LVal)) + return CompleteObject(); + } else if (DynamicAllocLValue DA = LVal.Base.dyn_cast<DynamicAllocLValue>()) { + Optional<DynAlloc*> Alloc = Info.lookupDynamicAlloc(DA); + if (!Alloc) { + Info.FFDiag(E, diag::note_constexpr_access_deleted_object) << AK; + return CompleteObject(); + } + return CompleteObject(LVal.Base, &(*Alloc)->Value, + LVal.Base.getDynamicAllocType()); + } else { + const Expr *Base = LVal.Base.dyn_cast<const Expr*>(); + + if (!Frame) { + if (const MaterializeTemporaryExpr *MTE = + dyn_cast_or_null<MaterializeTemporaryExpr>(Base)) { + assert(MTE->getStorageDuration() == SD_Static && + "should have a frame for a non-global materialized temporary"); + + // Per C++1y [expr.const]p2: + // an lvalue-to-rvalue conversion [is not allowed unless it applies to] + // - a [...] glvalue of integral or enumeration type that refers to + // a non-volatile const object [...] + // [...] + // - a [...] glvalue of literal type that refers to a non-volatile + // object whose lifetime began within the evaluation of e. + // + // C++11 misses the 'began within the evaluation of e' check and + // instead allows all temporaries, including things like: + // int &&r = 1; + // int x = ++r; + // constexpr int k = r; + // Therefore we use the C++14 rules in C++11 too. + // + // Note that temporaries whose lifetimes began while evaluating a + // variable's constructor are not usable while evaluating the + // corresponding destructor, not even if they're of const-qualified + // types. + if (!(BaseType.isConstQualified() && + BaseType->isIntegralOrEnumerationType()) && + !lifetimeStartedInEvaluation(Info, LVal.Base)) { + if (!IsAccess) + return CompleteObject(LVal.getLValueBase(), nullptr, BaseType); + Info.FFDiag(E, diag::note_constexpr_access_static_temporary, 1) << AK; + Info.Note(MTE->getExprLoc(), diag::note_constexpr_temporary_here); + return CompleteObject(); + } + + BaseVal = Info.Ctx.getMaterializedTemporaryValue(MTE, false); + assert(BaseVal && "got reference to unevaluated temporary"); + } else { + if (!IsAccess) + return CompleteObject(LVal.getLValueBase(), nullptr, BaseType); + APValue Val; + LVal.moveInto(Val); + Info.FFDiag(E, diag::note_constexpr_access_unreadable_object) + << AK + << Val.getAsString(Info.Ctx, + Info.Ctx.getLValueReferenceType(LValType)); + NoteLValueLocation(Info, LVal.Base); + return CompleteObject(); + } + } else { + BaseVal = Frame->getTemporary(Base, LVal.Base.getVersion()); + assert(BaseVal && "missing value for temporary"); + } + } + + // In C++14, we can't safely access any mutable state when we might be + // evaluating after an unmodeled side effect. + // + // FIXME: Not all local state is mutable. Allow local constant subobjects + // to be read here (but take care with 'mutable' fields). + if ((Frame && Info.getLangOpts().CPlusPlus14 && + Info.EvalStatus.HasSideEffects) || + (isModification(AK) && Depth < Info.SpeculativeEvaluationDepth)) + return CompleteObject(); + + return CompleteObject(LVal.getLValueBase(), BaseVal, BaseType); +} + +/// Perform an lvalue-to-rvalue conversion on the given glvalue. This +/// can also be used for 'lvalue-to-lvalue' conversions for looking up the +/// glvalue referred to by an entity of reference type. +/// +/// \param Info - Information about the ongoing evaluation. +/// \param Conv - The expression for which we are performing the conversion. +/// Used for diagnostics. +/// \param Type - The type of the glvalue (before stripping cv-qualifiers in the +/// case of a non-class type). +/// \param LVal - The glvalue on which we are attempting to perform this action. +/// \param RVal - The produced value will be placed here. +/// \param WantObjectRepresentation - If true, we're looking for the object +/// representation rather than the value, and in particular, +/// there is no requirement that the result be fully initialized. +static bool +handleLValueToRValueConversion(EvalInfo &Info, const Expr *Conv, QualType Type, + const LValue &LVal, APValue &RVal, + bool WantObjectRepresentation = false) { + if (LVal.Designator.Invalid) + return false; + + // Check for special cases where there is no existing APValue to look at. + const Expr *Base = LVal.Base.dyn_cast<const Expr*>(); + + AccessKinds AK = + WantObjectRepresentation ? AK_ReadObjectRepresentation : AK_Read; + + if (Base && !LVal.getLValueCallIndex() && !Type.isVolatileQualified()) { + if (const CompoundLiteralExpr *CLE = dyn_cast<CompoundLiteralExpr>(Base)) { + // In C99, a CompoundLiteralExpr is an lvalue, and we defer evaluating the + // initializer until now for such expressions. Such an expression can't be + // an ICE in C, so this only matters for fold. + if (Type.isVolatileQualified()) { + Info.FFDiag(Conv); + return false; + } + APValue Lit; + if (!Evaluate(Lit, Info, CLE->getInitializer())) + return false; + CompleteObject LitObj(LVal.Base, &Lit, Base->getType()); + return extractSubobject(Info, Conv, LitObj, LVal.Designator, RVal, AK); + } else if (isa<StringLiteral>(Base) || isa<PredefinedExpr>(Base)) { + // Special-case character extraction so we don't have to construct an + // APValue for the whole string. + assert(LVal.Designator.Entries.size() <= 1 && + "Can only read characters from string literals"); + if (LVal.Designator.Entries.empty()) { + // Fail for now for LValue to RValue conversion of an array. + // (This shouldn't show up in C/C++, but it could be triggered by a + // weird EvaluateAsRValue call from a tool.) + Info.FFDiag(Conv); + return false; + } + if (LVal.Designator.isOnePastTheEnd()) { + if (Info.getLangOpts().CPlusPlus11) + Info.FFDiag(Conv, diag::note_constexpr_access_past_end) << AK; + else + Info.FFDiag(Conv); + return false; + } + uint64_t CharIndex = LVal.Designator.Entries[0].getAsArrayIndex(); + RVal = APValue(extractStringLiteralCharacter(Info, Base, CharIndex)); + return true; + } + } + + CompleteObject Obj = findCompleteObject(Info, Conv, AK, LVal, Type); + return Obj && extractSubobject(Info, Conv, Obj, LVal.Designator, RVal, AK); +} + +/// Perform an assignment of Val to LVal. Takes ownership of Val. +static bool handleAssignment(EvalInfo &Info, const Expr *E, const LValue &LVal, + QualType LValType, APValue &Val) { + if (LVal.Designator.Invalid) + return false; + + if (!Info.getLangOpts().CPlusPlus14) { + Info.FFDiag(E); + return false; + } + + CompleteObject Obj = findCompleteObject(Info, E, AK_Assign, LVal, LValType); + return Obj && modifySubobject(Info, E, Obj, LVal.Designator, Val); +} + +namespace { +struct CompoundAssignSubobjectHandler { + EvalInfo &Info; + const Expr *E; + QualType PromotedLHSType; + BinaryOperatorKind Opcode; + const APValue &RHS; + + static const AccessKinds AccessKind = AK_Assign; + + typedef bool result_type; + + bool checkConst(QualType QT) { + // Assigning to a const object has undefined behavior. + if (QT.isConstQualified()) { + Info.FFDiag(E, diag::note_constexpr_modify_const_type) << QT; + return false; + } + return true; + } + + bool failed() { return false; } + bool found(APValue &Subobj, QualType SubobjType) { + switch (Subobj.getKind()) { + case APValue::Int: + return found(Subobj.getInt(), SubobjType); + case APValue::Float: + return found(Subobj.getFloat(), SubobjType); + case APValue::ComplexInt: + case APValue::ComplexFloat: + // FIXME: Implement complex compound assignment. + Info.FFDiag(E); + return false; + case APValue::LValue: + return foundPointer(Subobj, SubobjType); + default: + // FIXME: can this happen? + Info.FFDiag(E); + return false; + } + } + bool found(APSInt &Value, QualType SubobjType) { + if (!checkConst(SubobjType)) + return false; + + if (!SubobjType->isIntegerType()) { + // We don't support compound assignment on integer-cast-to-pointer + // values. + Info.FFDiag(E); + return false; + } + + if (RHS.isInt()) { + APSInt LHS = + HandleIntToIntCast(Info, E, PromotedLHSType, SubobjType, Value); + if (!handleIntIntBinOp(Info, E, LHS, Opcode, RHS.getInt(), LHS)) + return false; + Value = HandleIntToIntCast(Info, E, SubobjType, PromotedLHSType, LHS); + return true; + } else if (RHS.isFloat()) { + APFloat FValue(0.0); + return HandleIntToFloatCast(Info, E, SubobjType, Value, PromotedLHSType, + FValue) && + handleFloatFloatBinOp(Info, E, FValue, Opcode, RHS.getFloat()) && + HandleFloatToIntCast(Info, E, PromotedLHSType, FValue, SubobjType, + Value); + } + + Info.FFDiag(E); + return false; + } + bool found(APFloat &Value, QualType SubobjType) { + return checkConst(SubobjType) && + HandleFloatToFloatCast(Info, E, SubobjType, PromotedLHSType, + Value) && + handleFloatFloatBinOp(Info, E, Value, Opcode, RHS.getFloat()) && + HandleFloatToFloatCast(Info, E, PromotedLHSType, SubobjType, Value); + } + bool foundPointer(APValue &Subobj, QualType SubobjType) { + if (!checkConst(SubobjType)) + return false; + + QualType PointeeType; + if (const PointerType *PT = SubobjType->getAs<PointerType>()) + PointeeType = PT->getPointeeType(); + + if (PointeeType.isNull() || !RHS.isInt() || + (Opcode != BO_Add && Opcode != BO_Sub)) { + Info.FFDiag(E); + return false; + } + + APSInt Offset = RHS.getInt(); + if (Opcode == BO_Sub) + negateAsSigned(Offset); + + LValue LVal; + LVal.setFrom(Info.Ctx, Subobj); + if (!HandleLValueArrayAdjustment(Info, E, LVal, PointeeType, Offset)) + return false; + LVal.moveInto(Subobj); + return true; + } +}; +} // end anonymous namespace + +const AccessKinds CompoundAssignSubobjectHandler::AccessKind; + +/// Perform a compound assignment of LVal <op>= RVal. +static bool handleCompoundAssignment( + EvalInfo &Info, const Expr *E, + const LValue &LVal, QualType LValType, QualType PromotedLValType, + BinaryOperatorKind Opcode, const APValue &RVal) { + if (LVal.Designator.Invalid) + return false; + + if (!Info.getLangOpts().CPlusPlus14) { + Info.FFDiag(E); + return false; + } + + CompleteObject Obj = findCompleteObject(Info, E, AK_Assign, LVal, LValType); + CompoundAssignSubobjectHandler Handler = { Info, E, PromotedLValType, Opcode, + RVal }; + return Obj && findSubobject(Info, E, Obj, LVal.Designator, Handler); +} + +namespace { +struct IncDecSubobjectHandler { + EvalInfo &Info; + const UnaryOperator *E; + AccessKinds AccessKind; + APValue *Old; + + typedef bool result_type; + + bool checkConst(QualType QT) { + // Assigning to a const object has undefined behavior. + if (QT.isConstQualified()) { + Info.FFDiag(E, diag::note_constexpr_modify_const_type) << QT; + return false; + } + return true; + } + + bool failed() { return false; } + bool found(APValue &Subobj, QualType SubobjType) { + // Stash the old value. Also clear Old, so we don't clobber it later + // if we're post-incrementing a complex. + if (Old) { + *Old = Subobj; + Old = nullptr; + } + + switch (Subobj.getKind()) { + case APValue::Int: + return found(Subobj.getInt(), SubobjType); + case APValue::Float: + return found(Subobj.getFloat(), SubobjType); + case APValue::ComplexInt: + return found(Subobj.getComplexIntReal(), + SubobjType->castAs<ComplexType>()->getElementType() + .withCVRQualifiers(SubobjType.getCVRQualifiers())); + case APValue::ComplexFloat: + return found(Subobj.getComplexFloatReal(), + SubobjType->castAs<ComplexType>()->getElementType() + .withCVRQualifiers(SubobjType.getCVRQualifiers())); + case APValue::LValue: + return foundPointer(Subobj, SubobjType); + default: + // FIXME: can this happen? + Info.FFDiag(E); + return false; + } + } + bool found(APSInt &Value, QualType SubobjType) { + if (!checkConst(SubobjType)) + return false; + + if (!SubobjType->isIntegerType()) { + // We don't support increment / decrement on integer-cast-to-pointer + // values. + Info.FFDiag(E); + return false; + } + + if (Old) *Old = APValue(Value); + + // bool arithmetic promotes to int, and the conversion back to bool + // doesn't reduce mod 2^n, so special-case it. + if (SubobjType->isBooleanType()) { + if (AccessKind == AK_Increment) + Value = 1; + else + Value = !Value; + return true; + } + + bool WasNegative = Value.isNegative(); + if (AccessKind == AK_Increment) { + ++Value; + + if (!WasNegative && Value.isNegative() && E->canOverflow()) { + APSInt ActualValue(Value, /*IsUnsigned*/true); + return HandleOverflow(Info, E, ActualValue, SubobjType); + } + } else { + --Value; + + if (WasNegative && !Value.isNegative() && E->canOverflow()) { + unsigned BitWidth = Value.getBitWidth(); + APSInt ActualValue(Value.sext(BitWidth + 1), /*IsUnsigned*/false); + ActualValue.setBit(BitWidth); + return HandleOverflow(Info, E, ActualValue, SubobjType); + } + } + return true; + } + bool found(APFloat &Value, QualType SubobjType) { + if (!checkConst(SubobjType)) + return false; + + if (Old) *Old = APValue(Value); + + APFloat One(Value.getSemantics(), 1); + if (AccessKind == AK_Increment) + Value.add(One, APFloat::rmNearestTiesToEven); + else + Value.subtract(One, APFloat::rmNearestTiesToEven); + return true; + } + bool foundPointer(APValue &Subobj, QualType SubobjType) { + if (!checkConst(SubobjType)) + return false; + + QualType PointeeType; + if (const PointerType *PT = SubobjType->getAs<PointerType>()) + PointeeType = PT->getPointeeType(); + else { + Info.FFDiag(E); + return false; + } + + LValue LVal; + LVal.setFrom(Info.Ctx, Subobj); + if (!HandleLValueArrayAdjustment(Info, E, LVal, PointeeType, + AccessKind == AK_Increment ? 1 : -1)) + return false; + LVal.moveInto(Subobj); + return true; + } +}; +} // end anonymous namespace + +/// Perform an increment or decrement on LVal. +static bool handleIncDec(EvalInfo &Info, const Expr *E, const LValue &LVal, + QualType LValType, bool IsIncrement, APValue *Old) { + if (LVal.Designator.Invalid) + return false; + + if (!Info.getLangOpts().CPlusPlus14) { + Info.FFDiag(E); + return false; + } + + AccessKinds AK = IsIncrement ? AK_Increment : AK_Decrement; + CompleteObject Obj = findCompleteObject(Info, E, AK, LVal, LValType); + IncDecSubobjectHandler Handler = {Info, cast<UnaryOperator>(E), AK, Old}; + return Obj && findSubobject(Info, E, Obj, LVal.Designator, Handler); +} + +/// Build an lvalue for the object argument of a member function call. +static bool EvaluateObjectArgument(EvalInfo &Info, const Expr *Object, + LValue &This) { + if (Object->getType()->isPointerType() && Object->isRValue()) + return EvaluatePointer(Object, This, Info); + + if (Object->isGLValue()) + return EvaluateLValue(Object, This, Info); + + if (Object->getType()->isLiteralType(Info.Ctx)) + return EvaluateTemporary(Object, This, Info); + + Info.FFDiag(Object, diag::note_constexpr_nonliteral) << Object->getType(); + return false; +} + +/// HandleMemberPointerAccess - Evaluate a member access operation and build an +/// lvalue referring to the result. +/// +/// \param Info - Information about the ongoing evaluation. +/// \param LV - An lvalue referring to the base of the member pointer. +/// \param RHS - The member pointer expression. +/// \param IncludeMember - Specifies whether the member itself is included in +/// the resulting LValue subobject designator. This is not possible when +/// creating a bound member function. +/// \return The field or method declaration to which the member pointer refers, +/// or 0 if evaluation fails. +static const ValueDecl *HandleMemberPointerAccess(EvalInfo &Info, + QualType LVType, + LValue &LV, + const Expr *RHS, + bool IncludeMember = true) { + MemberPtr MemPtr; + if (!EvaluateMemberPointer(RHS, MemPtr, Info)) + return nullptr; + + // C++11 [expr.mptr.oper]p6: If the second operand is the null pointer to + // member value, the behavior is undefined. + if (!MemPtr.getDecl()) { + // FIXME: Specific diagnostic. + Info.FFDiag(RHS); + return nullptr; + } + + if (MemPtr.isDerivedMember()) { + // This is a member of some derived class. Truncate LV appropriately. + // The end of the derived-to-base path for the base object must match the + // derived-to-base path for the member pointer. + if (LV.Designator.MostDerivedPathLength + MemPtr.Path.size() > + LV.Designator.Entries.size()) { + Info.FFDiag(RHS); + return nullptr; + } + unsigned PathLengthToMember = + LV.Designator.Entries.size() - MemPtr.Path.size(); + for (unsigned I = 0, N = MemPtr.Path.size(); I != N; ++I) { + const CXXRecordDecl *LVDecl = getAsBaseClass( + LV.Designator.Entries[PathLengthToMember + I]); + const CXXRecordDecl *MPDecl = MemPtr.Path[I]; + if (LVDecl->getCanonicalDecl() != MPDecl->getCanonicalDecl()) { + Info.FFDiag(RHS); + return nullptr; + } + } + + // Truncate the lvalue to the appropriate derived class. + if (!CastToDerivedClass(Info, RHS, LV, MemPtr.getContainingRecord(), + PathLengthToMember)) + return nullptr; + } else if (!MemPtr.Path.empty()) { + // Extend the LValue path with the member pointer's path. + LV.Designator.Entries.reserve(LV.Designator.Entries.size() + + MemPtr.Path.size() + IncludeMember); + + // Walk down to the appropriate base class. + if (const PointerType *PT = LVType->getAs<PointerType>()) + LVType = PT->getPointeeType(); + const CXXRecordDecl *RD = LVType->getAsCXXRecordDecl(); + assert(RD && "member pointer access on non-class-type expression"); + // The first class in the path is that of the lvalue. + for (unsigned I = 1, N = MemPtr.Path.size(); I != N; ++I) { + const CXXRecordDecl *Base = MemPtr.Path[N - I - 1]; + if (!HandleLValueDirectBase(Info, RHS, LV, RD, Base)) + return nullptr; + RD = Base; + } + // Finally cast to the class containing the member. + if (!HandleLValueDirectBase(Info, RHS, LV, RD, + MemPtr.getContainingRecord())) + return nullptr; + } + + // Add the member. Note that we cannot build bound member functions here. + if (IncludeMember) { + if (const FieldDecl *FD = dyn_cast<FieldDecl>(MemPtr.getDecl())) { + if (!HandleLValueMember(Info, RHS, LV, FD)) + return nullptr; + } else if (const IndirectFieldDecl *IFD = + dyn_cast<IndirectFieldDecl>(MemPtr.getDecl())) { + if (!HandleLValueIndirectMember(Info, RHS, LV, IFD)) + return nullptr; + } else { + llvm_unreachable("can't construct reference to bound member function"); + } + } + + return MemPtr.getDecl(); +} + +static const ValueDecl *HandleMemberPointerAccess(EvalInfo &Info, + const BinaryOperator *BO, + LValue &LV, + bool IncludeMember = true) { + assert(BO->getOpcode() == BO_PtrMemD || BO->getOpcode() == BO_PtrMemI); + + if (!EvaluateObjectArgument(Info, BO->getLHS(), LV)) { + if (Info.noteFailure()) { + MemberPtr MemPtr; + EvaluateMemberPointer(BO->getRHS(), MemPtr, Info); + } + return nullptr; + } + + return HandleMemberPointerAccess(Info, BO->getLHS()->getType(), LV, + BO->getRHS(), IncludeMember); +} + +/// HandleBaseToDerivedCast - Apply the given base-to-derived cast operation on +/// the provided lvalue, which currently refers to the base object. +static bool HandleBaseToDerivedCast(EvalInfo &Info, const CastExpr *E, + LValue &Result) { + SubobjectDesignator &D = Result.Designator; + if (D.Invalid || !Result.checkNullPointer(Info, E, CSK_Derived)) + return false; + + QualType TargetQT = E->getType(); + if (const PointerType *PT = TargetQT->getAs<PointerType>()) + TargetQT = PT->getPointeeType(); + + // Check this cast lands within the final derived-to-base subobject path. + if (D.MostDerivedPathLength + E->path_size() > D.Entries.size()) { + Info.CCEDiag(E, diag::note_constexpr_invalid_downcast) + << D.MostDerivedType << TargetQT; + return false; + } + + // Check the type of the final cast. We don't need to check the path, + // since a cast can only be formed if the path is unique. + unsigned NewEntriesSize = D.Entries.size() - E->path_size(); + const CXXRecordDecl *TargetType = TargetQT->getAsCXXRecordDecl(); + const CXXRecordDecl *FinalType; + if (NewEntriesSize == D.MostDerivedPathLength) + FinalType = D.MostDerivedType->getAsCXXRecordDecl(); + else + FinalType = getAsBaseClass(D.Entries[NewEntriesSize - 1]); + if (FinalType->getCanonicalDecl() != TargetType->getCanonicalDecl()) { + Info.CCEDiag(E, diag::note_constexpr_invalid_downcast) + << D.MostDerivedType << TargetQT; + return false; + } + + // Truncate the lvalue to the appropriate derived class. + return CastToDerivedClass(Info, E, Result, TargetType, NewEntriesSize); +} + +/// Get the value to use for a default-initialized object of type T. +static APValue getDefaultInitValue(QualType T) { + if (auto *RD = T->getAsCXXRecordDecl()) { + if (RD->isUnion()) + return APValue((const FieldDecl*)nullptr); + + APValue Struct(APValue::UninitStruct(), RD->getNumBases(), + std::distance(RD->field_begin(), RD->field_end())); + + unsigned Index = 0; + for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(), + End = RD->bases_end(); I != End; ++I, ++Index) + Struct.getStructBase(Index) = getDefaultInitValue(I->getType()); + + for (const auto *I : RD->fields()) { + if (I->isUnnamedBitfield()) + continue; + Struct.getStructField(I->getFieldIndex()) = + getDefaultInitValue(I->getType()); + } + return Struct; + } + + if (auto *AT = + dyn_cast_or_null<ConstantArrayType>(T->getAsArrayTypeUnsafe())) { + APValue Array(APValue::UninitArray(), 0, AT->getSize().getZExtValue()); + if (Array.hasArrayFiller()) + Array.getArrayFiller() = getDefaultInitValue(AT->getElementType()); + return Array; + } + + return APValue::IndeterminateValue(); +} + +namespace { +enum EvalStmtResult { + /// Evaluation failed. + ESR_Failed, + /// Hit a 'return' statement. + ESR_Returned, + /// Evaluation succeeded. + ESR_Succeeded, + /// Hit a 'continue' statement. + ESR_Continue, + /// Hit a 'break' statement. + ESR_Break, + /// Still scanning for 'case' or 'default' statement. + ESR_CaseNotFound +}; +} + +static bool EvaluateVarDecl(EvalInfo &Info, const VarDecl *VD) { + // We don't need to evaluate the initializer for a static local. + if (!VD->hasLocalStorage()) + return true; + + LValue Result; + APValue &Val = + Info.CurrentCall->createTemporary(VD, VD->getType(), true, Result); + + const Expr *InitE = VD->getInit(); + if (!InitE) { + Val = getDefaultInitValue(VD->getType()); + return true; + } + + if (InitE->isValueDependent()) + return false; + + if (!EvaluateInPlace(Val, Info, Result, InitE)) { + // Wipe out any partially-computed value, to allow tracking that this + // evaluation failed. + Val = APValue(); + return false; + } + + return true; +} + +static bool EvaluateDecl(EvalInfo &Info, const Decl *D) { + bool OK = true; + + if (const VarDecl *VD = dyn_cast<VarDecl>(D)) + OK &= EvaluateVarDecl(Info, VD); + + if (const DecompositionDecl *DD = dyn_cast<DecompositionDecl>(D)) + for (auto *BD : DD->bindings()) + if (auto *VD = BD->getHoldingVar()) + OK &= EvaluateDecl(Info, VD); + + return OK; +} + + +/// Evaluate a condition (either a variable declaration or an expression). +static bool EvaluateCond(EvalInfo &Info, const VarDecl *CondDecl, + const Expr *Cond, bool &Result) { + FullExpressionRAII Scope(Info); + if (CondDecl && !EvaluateDecl(Info, CondDecl)) + return false; + if (!EvaluateAsBooleanCondition(Cond, Result, Info)) + return false; + return Scope.destroy(); +} + +namespace { +/// A location where the result (returned value) of evaluating a +/// statement should be stored. +struct StmtResult { + /// The APValue that should be filled in with the returned value. + APValue &Value; + /// The location containing the result, if any (used to support RVO). + const LValue *Slot; +}; + +struct TempVersionRAII { + CallStackFrame &Frame; + + TempVersionRAII(CallStackFrame &Frame) : Frame(Frame) { + Frame.pushTempVersion(); + } + + ~TempVersionRAII() { + Frame.popTempVersion(); + } +}; + +} + +static EvalStmtResult EvaluateStmt(StmtResult &Result, EvalInfo &Info, + const Stmt *S, + const SwitchCase *SC = nullptr); + +/// Evaluate the body of a loop, and translate the result as appropriate. +static EvalStmtResult EvaluateLoopBody(StmtResult &Result, EvalInfo &Info, + const Stmt *Body, + const SwitchCase *Case = nullptr) { + BlockScopeRAII Scope(Info); + + EvalStmtResult ESR = EvaluateStmt(Result, Info, Body, Case); + if (ESR != ESR_Failed && ESR != ESR_CaseNotFound && !Scope.destroy()) + ESR = ESR_Failed; + + switch (ESR) { + case ESR_Break: + return ESR_Succeeded; + case ESR_Succeeded: + case ESR_Continue: + return ESR_Continue; + case ESR_Failed: + case ESR_Returned: + case ESR_CaseNotFound: + return ESR; + } + llvm_unreachable("Invalid EvalStmtResult!"); +} + +/// Evaluate a switch statement. +static EvalStmtResult EvaluateSwitch(StmtResult &Result, EvalInfo &Info, + const SwitchStmt *SS) { + BlockScopeRAII Scope(Info); + + // Evaluate the switch condition. + APSInt Value; + { + if (const Stmt *Init = SS->getInit()) { + EvalStmtResult ESR = EvaluateStmt(Result, Info, Init); + if (ESR != ESR_Succeeded) { + if (ESR != ESR_Failed && !Scope.destroy()) + ESR = ESR_Failed; + return ESR; + } + } + + FullExpressionRAII CondScope(Info); + if (SS->getConditionVariable() && + !EvaluateDecl(Info, SS->getConditionVariable())) + return ESR_Failed; + if (!EvaluateInteger(SS->getCond(), Value, Info)) + return ESR_Failed; + if (!CondScope.destroy()) + return ESR_Failed; + } + + // Find the switch case corresponding to the value of the condition. + // FIXME: Cache this lookup. + const SwitchCase *Found = nullptr; + for (const SwitchCase *SC = SS->getSwitchCaseList(); SC; + SC = SC->getNextSwitchCase()) { + if (isa<DefaultStmt>(SC)) { + Found = SC; + continue; + } + + const CaseStmt *CS = cast<CaseStmt>(SC); + APSInt LHS = CS->getLHS()->EvaluateKnownConstInt(Info.Ctx); + APSInt RHS = CS->getRHS() ? CS->getRHS()->EvaluateKnownConstInt(Info.Ctx) + : LHS; + if (LHS <= Value && Value <= RHS) { + Found = SC; + break; + } + } + + if (!Found) + return Scope.destroy() ? ESR_Succeeded : ESR_Failed; + + // Search the switch body for the switch case and evaluate it from there. + EvalStmtResult ESR = EvaluateStmt(Result, Info, SS->getBody(), Found); + if (ESR != ESR_Failed && ESR != ESR_CaseNotFound && !Scope.destroy()) + return ESR_Failed; + + switch (ESR) { + case ESR_Break: + return ESR_Succeeded; + case ESR_Succeeded: + case ESR_Continue: + case ESR_Failed: + case ESR_Returned: + return ESR; + case ESR_CaseNotFound: + // This can only happen if the switch case is nested within a statement + // expression. We have no intention of supporting that. + Info.FFDiag(Found->getBeginLoc(), + diag::note_constexpr_stmt_expr_unsupported); + return ESR_Failed; + } + llvm_unreachable("Invalid EvalStmtResult!"); +} + +// Evaluate a statement. +static EvalStmtResult EvaluateStmt(StmtResult &Result, EvalInfo &Info, + const Stmt *S, const SwitchCase *Case) { + if (!Info.nextStep(S)) + return ESR_Failed; + + // If we're hunting down a 'case' or 'default' label, recurse through + // substatements until we hit the label. + if (Case) { + switch (S->getStmtClass()) { + case Stmt::CompoundStmtClass: + // FIXME: Precompute which substatement of a compound statement we + // would jump to, and go straight there rather than performing a + // linear scan each time. + case Stmt::LabelStmtClass: + case Stmt::AttributedStmtClass: + case Stmt::DoStmtClass: + break; + + case Stmt::CaseStmtClass: + case Stmt::DefaultStmtClass: + if (Case == S) + Case = nullptr; + break; + + case Stmt::IfStmtClass: { + // FIXME: Precompute which side of an 'if' we would jump to, and go + // straight there rather than scanning both sides. + const IfStmt *IS = cast<IfStmt>(S); + + // Wrap the evaluation in a block scope, in case it's a DeclStmt + // preceded by our switch label. + BlockScopeRAII Scope(Info); + + // Step into the init statement in case it brings an (uninitialized) + // variable into scope. + if (const Stmt *Init = IS->getInit()) { + EvalStmtResult ESR = EvaluateStmt(Result, Info, Init, Case); + if (ESR != ESR_CaseNotFound) { + assert(ESR != ESR_Succeeded); + return ESR; + } + } + + // Condition variable must be initialized if it exists. + // FIXME: We can skip evaluating the body if there's a condition + // variable, as there can't be any case labels within it. + // (The same is true for 'for' statements.) + + EvalStmtResult ESR = EvaluateStmt(Result, Info, IS->getThen(), Case); + if (ESR == ESR_Failed) + return ESR; + if (ESR != ESR_CaseNotFound) + return Scope.destroy() ? ESR : ESR_Failed; + if (!IS->getElse()) + return ESR_CaseNotFound; + + ESR = EvaluateStmt(Result, Info, IS->getElse(), Case); + if (ESR == ESR_Failed) + return ESR; + if (ESR != ESR_CaseNotFound) + return Scope.destroy() ? ESR : ESR_Failed; + return ESR_CaseNotFound; + } + + case Stmt::WhileStmtClass: { + EvalStmtResult ESR = + EvaluateLoopBody(Result, Info, cast<WhileStmt>(S)->getBody(), Case); + if (ESR != ESR_Continue) + return ESR; + break; + } + + case Stmt::ForStmtClass: { + const ForStmt *FS = cast<ForStmt>(S); + BlockScopeRAII Scope(Info); + + // Step into the init statement in case it brings an (uninitialized) + // variable into scope. + if (const Stmt *Init = FS->getInit()) { + EvalStmtResult ESR = EvaluateStmt(Result, Info, Init, Case); + if (ESR != ESR_CaseNotFound) { + assert(ESR != ESR_Succeeded); + return ESR; + } + } + + EvalStmtResult ESR = + EvaluateLoopBody(Result, Info, FS->getBody(), Case); + if (ESR != ESR_Continue) + return ESR; + if (FS->getInc()) { + FullExpressionRAII IncScope(Info); + if (!EvaluateIgnoredValue(Info, FS->getInc()) || !IncScope.destroy()) + return ESR_Failed; + } + break; + } + + case Stmt::DeclStmtClass: { + // Start the lifetime of any uninitialized variables we encounter. They + // might be used by the selected branch of the switch. + const DeclStmt *DS = cast<DeclStmt>(S); + for (const auto *D : DS->decls()) { + if (const auto *VD = dyn_cast<VarDecl>(D)) { + if (VD->hasLocalStorage() && !VD->getInit()) + if (!EvaluateVarDecl(Info, VD)) + return ESR_Failed; + // FIXME: If the variable has initialization that can't be jumped + // over, bail out of any immediately-surrounding compound-statement + // too. There can't be any case labels here. + } + } + return ESR_CaseNotFound; + } + + default: + return ESR_CaseNotFound; + } + } + + switch (S->getStmtClass()) { + default: + if (const Expr *E = dyn_cast<Expr>(S)) { + // Don't bother evaluating beyond an expression-statement which couldn't + // be evaluated. + // FIXME: Do we need the FullExpressionRAII object here? + // VisitExprWithCleanups should create one when necessary. + FullExpressionRAII Scope(Info); + if (!EvaluateIgnoredValue(Info, E) || !Scope.destroy()) + return ESR_Failed; + return ESR_Succeeded; + } + + Info.FFDiag(S->getBeginLoc()); + return ESR_Failed; + + case Stmt::NullStmtClass: + return ESR_Succeeded; + + case Stmt::DeclStmtClass: { + const DeclStmt *DS = cast<DeclStmt>(S); + for (const auto *D : DS->decls()) { + // Each declaration initialization is its own full-expression. + FullExpressionRAII Scope(Info); + if (!EvaluateDecl(Info, D) && !Info.noteFailure()) + return ESR_Failed; + if (!Scope.destroy()) + return ESR_Failed; + } + return ESR_Succeeded; + } + + case Stmt::ReturnStmtClass: { + const Expr *RetExpr = cast<ReturnStmt>(S)->getRetValue(); + FullExpressionRAII Scope(Info); + if (RetExpr && + !(Result.Slot + ? EvaluateInPlace(Result.Value, Info, *Result.Slot, RetExpr) + : Evaluate(Result.Value, Info, RetExpr))) + return ESR_Failed; + return Scope.destroy() ? ESR_Returned : ESR_Failed; + } + + case Stmt::CompoundStmtClass: { + BlockScopeRAII Scope(Info); + + const CompoundStmt *CS = cast<CompoundStmt>(S); + for (const auto *BI : CS->body()) { + EvalStmtResult ESR = EvaluateStmt(Result, Info, BI, Case); + if (ESR == ESR_Succeeded) + Case = nullptr; + else if (ESR != ESR_CaseNotFound) { + if (ESR != ESR_Failed && !Scope.destroy()) + return ESR_Failed; + return ESR; + } + } + if (Case) + return ESR_CaseNotFound; + return Scope.destroy() ? ESR_Succeeded : ESR_Failed; + } + + case Stmt::IfStmtClass: { + const IfStmt *IS = cast<IfStmt>(S); + + // Evaluate the condition, as either a var decl or as an expression. + BlockScopeRAII Scope(Info); + if (const Stmt *Init = IS->getInit()) { + EvalStmtResult ESR = EvaluateStmt(Result, Info, Init); + if (ESR != ESR_Succeeded) { + if (ESR != ESR_Failed && !Scope.destroy()) + return ESR_Failed; + return ESR; + } + } + bool Cond; + if (!EvaluateCond(Info, IS->getConditionVariable(), IS->getCond(), Cond)) + return ESR_Failed; + + if (const Stmt *SubStmt = Cond ? IS->getThen() : IS->getElse()) { + EvalStmtResult ESR = EvaluateStmt(Result, Info, SubStmt); + if (ESR != ESR_Succeeded) { + if (ESR != ESR_Failed && !Scope.destroy()) + return ESR_Failed; + return ESR; + } + } + return Scope.destroy() ? ESR_Succeeded : ESR_Failed; + } + + case Stmt::WhileStmtClass: { + const WhileStmt *WS = cast<WhileStmt>(S); + while (true) { + BlockScopeRAII Scope(Info); + bool Continue; + if (!EvaluateCond(Info, WS->getConditionVariable(), WS->getCond(), + Continue)) + return ESR_Failed; + if (!Continue) + break; + + EvalStmtResult ESR = EvaluateLoopBody(Result, Info, WS->getBody()); + if (ESR != ESR_Continue) { + if (ESR != ESR_Failed && !Scope.destroy()) + return ESR_Failed; + return ESR; + } + if (!Scope.destroy()) + return ESR_Failed; + } + return ESR_Succeeded; + } + + case Stmt::DoStmtClass: { + const DoStmt *DS = cast<DoStmt>(S); + bool Continue; + do { + EvalStmtResult ESR = EvaluateLoopBody(Result, Info, DS->getBody(), Case); + if (ESR != ESR_Continue) + return ESR; + Case = nullptr; + + FullExpressionRAII CondScope(Info); + if (!EvaluateAsBooleanCondition(DS->getCond(), Continue, Info) || + !CondScope.destroy()) + return ESR_Failed; + } while (Continue); + return ESR_Succeeded; + } + + case Stmt::ForStmtClass: { + const ForStmt *FS = cast<ForStmt>(S); + BlockScopeRAII ForScope(Info); + if (FS->getInit()) { + EvalStmtResult ESR = EvaluateStmt(Result, Info, FS->getInit()); + if (ESR != ESR_Succeeded) { + if (ESR != ESR_Failed && !ForScope.destroy()) + return ESR_Failed; + return ESR; + } + } + while (true) { + BlockScopeRAII IterScope(Info); + bool Continue = true; + if (FS->getCond() && !EvaluateCond(Info, FS->getConditionVariable(), + FS->getCond(), Continue)) + return ESR_Failed; + if (!Continue) + break; + + EvalStmtResult ESR = EvaluateLoopBody(Result, Info, FS->getBody()); + if (ESR != ESR_Continue) { + if (ESR != ESR_Failed && (!IterScope.destroy() || !ForScope.destroy())) + return ESR_Failed; + return ESR; + } + + if (FS->getInc()) { + FullExpressionRAII IncScope(Info); + if (!EvaluateIgnoredValue(Info, FS->getInc()) || !IncScope.destroy()) + return ESR_Failed; + } + + if (!IterScope.destroy()) + return ESR_Failed; + } + return ForScope.destroy() ? ESR_Succeeded : ESR_Failed; + } + + case Stmt::CXXForRangeStmtClass: { + const CXXForRangeStmt *FS = cast<CXXForRangeStmt>(S); + BlockScopeRAII Scope(Info); + + // Evaluate the init-statement if present. + if (FS->getInit()) { + EvalStmtResult ESR = EvaluateStmt(Result, Info, FS->getInit()); + if (ESR != ESR_Succeeded) { + if (ESR != ESR_Failed && !Scope.destroy()) + return ESR_Failed; + return ESR; + } + } + + // Initialize the __range variable. + EvalStmtResult ESR = EvaluateStmt(Result, Info, FS->getRangeStmt()); + if (ESR != ESR_Succeeded) { + if (ESR != ESR_Failed && !Scope.destroy()) + return ESR_Failed; + return ESR; + } + + // Create the __begin and __end iterators. + ESR = EvaluateStmt(Result, Info, FS->getBeginStmt()); + if (ESR != ESR_Succeeded) { + if (ESR != ESR_Failed && !Scope.destroy()) + return ESR_Failed; + return ESR; + } + ESR = EvaluateStmt(Result, Info, FS->getEndStmt()); + if (ESR != ESR_Succeeded) { + if (ESR != ESR_Failed && !Scope.destroy()) + return ESR_Failed; + return ESR; + } + + while (true) { + // Condition: __begin != __end. + { + bool Continue = true; + FullExpressionRAII CondExpr(Info); + if (!EvaluateAsBooleanCondition(FS->getCond(), Continue, Info)) + return ESR_Failed; + if (!Continue) + break; + } + + // User's variable declaration, initialized by *__begin. + BlockScopeRAII InnerScope(Info); + ESR = EvaluateStmt(Result, Info, FS->getLoopVarStmt()); + if (ESR != ESR_Succeeded) { + if (ESR != ESR_Failed && (!InnerScope.destroy() || !Scope.destroy())) + return ESR_Failed; + return ESR; + } + + // Loop body. + ESR = EvaluateLoopBody(Result, Info, FS->getBody()); + if (ESR != ESR_Continue) { + if (ESR != ESR_Failed && (!InnerScope.destroy() || !Scope.destroy())) + return ESR_Failed; + return ESR; + } + + // Increment: ++__begin + if (!EvaluateIgnoredValue(Info, FS->getInc())) + return ESR_Failed; + + if (!InnerScope.destroy()) + return ESR_Failed; + } + + return Scope.destroy() ? ESR_Succeeded : ESR_Failed; + } + + case Stmt::SwitchStmtClass: + return EvaluateSwitch(Result, Info, cast<SwitchStmt>(S)); + + case Stmt::ContinueStmtClass: + return ESR_Continue; + + case Stmt::BreakStmtClass: + return ESR_Break; + + case Stmt::LabelStmtClass: + return EvaluateStmt(Result, Info, cast<LabelStmt>(S)->getSubStmt(), Case); + + case Stmt::AttributedStmtClass: + // As a general principle, C++11 attributes can be ignored without + // any semantic impact. + return EvaluateStmt(Result, Info, cast<AttributedStmt>(S)->getSubStmt(), + Case); + + case Stmt::CaseStmtClass: + case Stmt::DefaultStmtClass: + return EvaluateStmt(Result, Info, cast<SwitchCase>(S)->getSubStmt(), Case); + case Stmt::CXXTryStmtClass: + // Evaluate try blocks by evaluating all sub statements. + return EvaluateStmt(Result, Info, cast<CXXTryStmt>(S)->getTryBlock(), Case); + } +} + +/// CheckTrivialDefaultConstructor - Check whether a constructor is a trivial +/// default constructor. If so, we'll fold it whether or not it's marked as +/// constexpr. If it is marked as constexpr, we will never implicitly define it, +/// so we need special handling. +static bool CheckTrivialDefaultConstructor(EvalInfo &Info, SourceLocation Loc, + const CXXConstructorDecl *CD, + bool IsValueInitialization) { + if (!CD->isTrivial() || !CD->isDefaultConstructor()) + return false; + + // Value-initialization does not call a trivial default constructor, so such a + // call is a core constant expression whether or not the constructor is + // constexpr. + if (!CD->isConstexpr() && !IsValueInitialization) { + if (Info.getLangOpts().CPlusPlus11) { + // FIXME: If DiagDecl is an implicitly-declared special member function, + // we should be much more explicit about why it's not constexpr. + Info.CCEDiag(Loc, diag::note_constexpr_invalid_function, 1) + << /*IsConstexpr*/0 << /*IsConstructor*/1 << CD; + Info.Note(CD->getLocation(), diag::note_declared_at); + } else { + Info.CCEDiag(Loc, diag::note_invalid_subexpr_in_const_expr); + } + } + return true; +} + +/// CheckConstexprFunction - Check that a function can be called in a constant +/// expression. +static bool CheckConstexprFunction(EvalInfo &Info, SourceLocation CallLoc, + const FunctionDecl *Declaration, + const FunctionDecl *Definition, + const Stmt *Body) { + // Potential constant expressions can contain calls to declared, but not yet + // defined, constexpr functions. + if (Info.checkingPotentialConstantExpression() && !Definition && + Declaration->isConstexpr()) + return false; + + // Bail out if the function declaration itself is invalid. We will + // have produced a relevant diagnostic while parsing it, so just + // note the problematic sub-expression. + if (Declaration->isInvalidDecl()) { + Info.FFDiag(CallLoc, diag::note_invalid_subexpr_in_const_expr); + return false; + } + + // DR1872: An instantiated virtual constexpr function can't be called in a + // constant expression (prior to C++20). We can still constant-fold such a + // call. + if (!Info.Ctx.getLangOpts().CPlusPlus2a && isa<CXXMethodDecl>(Declaration) && + cast<CXXMethodDecl>(Declaration)->isVirtual()) + Info.CCEDiag(CallLoc, diag::note_constexpr_virtual_call); + + if (Definition && Definition->isInvalidDecl()) { + Info.FFDiag(CallLoc, diag::note_invalid_subexpr_in_const_expr); + return false; + } + + // Can we evaluate this function call? + if (Definition && Definition->isConstexpr() && Body) + return true; + + if (Info.getLangOpts().CPlusPlus11) { + const FunctionDecl *DiagDecl = Definition ? Definition : Declaration; + + // If this function is not constexpr because it is an inherited + // non-constexpr constructor, diagnose that directly. + auto *CD = dyn_cast<CXXConstructorDecl>(DiagDecl); + if (CD && CD->isInheritingConstructor()) { + auto *Inherited = CD->getInheritedConstructor().getConstructor(); + if (!Inherited->isConstexpr()) + DiagDecl = CD = Inherited; + } + + // FIXME: If DiagDecl is an implicitly-declared special member function + // or an inheriting constructor, we should be much more explicit about why + // it's not constexpr. + if (CD && CD->isInheritingConstructor()) + Info.FFDiag(CallLoc, diag::note_constexpr_invalid_inhctor, 1) + << CD->getInheritedConstructor().getConstructor()->getParent(); + else + Info.FFDiag(CallLoc, diag::note_constexpr_invalid_function, 1) + << DiagDecl->isConstexpr() << (bool)CD << DiagDecl; + Info.Note(DiagDecl->getLocation(), diag::note_declared_at); + } else { + Info.FFDiag(CallLoc, diag::note_invalid_subexpr_in_const_expr); + } + return false; +} + +namespace { +struct CheckDynamicTypeHandler { + AccessKinds AccessKind; + typedef bool result_type; + bool failed() { return false; } + bool found(APValue &Subobj, QualType SubobjType) { return true; } + bool found(APSInt &Value, QualType SubobjType) { return true; } + bool found(APFloat &Value, QualType SubobjType) { return true; } +}; +} // end anonymous namespace + +/// Check that we can access the notional vptr of an object / determine its +/// dynamic type. +static bool checkDynamicType(EvalInfo &Info, const Expr *E, const LValue &This, + AccessKinds AK, bool Polymorphic) { + if (This.Designator.Invalid) + return false; + + CompleteObject Obj = findCompleteObject(Info, E, AK, This, QualType()); + + if (!Obj) + return false; + + if (!Obj.Value) { + // The object is not usable in constant expressions, so we can't inspect + // its value to see if it's in-lifetime or what the active union members + // are. We can still check for a one-past-the-end lvalue. + if (This.Designator.isOnePastTheEnd() || + This.Designator.isMostDerivedAnUnsizedArray()) { + Info.FFDiag(E, This.Designator.isOnePastTheEnd() + ? diag::note_constexpr_access_past_end + : diag::note_constexpr_access_unsized_array) + << AK; + return false; + } else if (Polymorphic) { + // Conservatively refuse to perform a polymorphic operation if we would + // not be able to read a notional 'vptr' value. + APValue Val; + This.moveInto(Val); + QualType StarThisType = + Info.Ctx.getLValueReferenceType(This.Designator.getType(Info.Ctx)); + Info.FFDiag(E, diag::note_constexpr_polymorphic_unknown_dynamic_type) + << AK << Val.getAsString(Info.Ctx, StarThisType); + return false; + } + return true; + } + + CheckDynamicTypeHandler Handler{AK}; + return Obj && findSubobject(Info, E, Obj, This.Designator, Handler); +} + +/// Check that the pointee of the 'this' pointer in a member function call is +/// either within its lifetime or in its period of construction or destruction. +static bool +checkNonVirtualMemberCallThisPointer(EvalInfo &Info, const Expr *E, + const LValue &This, + const CXXMethodDecl *NamedMember) { + return checkDynamicType( + Info, E, This, + isa<CXXDestructorDecl>(NamedMember) ? AK_Destroy : AK_MemberCall, false); +} + +struct DynamicType { + /// The dynamic class type of the object. + const CXXRecordDecl *Type; + /// The corresponding path length in the lvalue. + unsigned PathLength; +}; + +static const CXXRecordDecl *getBaseClassType(SubobjectDesignator &Designator, + unsigned PathLength) { + assert(PathLength >= Designator.MostDerivedPathLength && PathLength <= + Designator.Entries.size() && "invalid path length"); + return (PathLength == Designator.MostDerivedPathLength) + ? Designator.MostDerivedType->getAsCXXRecordDecl() + : getAsBaseClass(Designator.Entries[PathLength - 1]); +} + +/// Determine the dynamic type of an object. +static Optional<DynamicType> ComputeDynamicType(EvalInfo &Info, const Expr *E, + LValue &This, AccessKinds AK) { + // If we don't have an lvalue denoting an object of class type, there is no + // meaningful dynamic type. (We consider objects of non-class type to have no + // dynamic type.) + if (!checkDynamicType(Info, E, This, AK, true)) + return None; + + // Refuse to compute a dynamic type in the presence of virtual bases. This + // shouldn't happen other than in constant-folding situations, since literal + // types can't have virtual bases. + // + // Note that consumers of DynamicType assume that the type has no virtual + // bases, and will need modifications if this restriction is relaxed. + const CXXRecordDecl *Class = + This.Designator.MostDerivedType->getAsCXXRecordDecl(); + if (!Class || Class->getNumVBases()) { + Info.FFDiag(E); + return None; + } + + // FIXME: For very deep class hierarchies, it might be beneficial to use a + // binary search here instead. But the overwhelmingly common case is that + // we're not in the middle of a constructor, so it probably doesn't matter + // in practice. + ArrayRef<APValue::LValuePathEntry> Path = This.Designator.Entries; + for (unsigned PathLength = This.Designator.MostDerivedPathLength; + PathLength <= Path.size(); ++PathLength) { + switch (Info.isEvaluatingCtorDtor(This.getLValueBase(), + Path.slice(0, PathLength))) { + case ConstructionPhase::Bases: + case ConstructionPhase::DestroyingBases: + // We're constructing or destroying a base class. This is not the dynamic + // type. + break; + + case ConstructionPhase::None: + case ConstructionPhase::AfterBases: + case ConstructionPhase::Destroying: + // We've finished constructing the base classes and not yet started + // destroying them again, so this is the dynamic type. + return DynamicType{getBaseClassType(This.Designator, PathLength), + PathLength}; + } + } + + // CWG issue 1517: we're constructing a base class of the object described by + // 'This', so that object has not yet begun its period of construction and + // any polymorphic operation on it results in undefined behavior. + Info.FFDiag(E); + return None; +} + +/// Perform virtual dispatch. +static const CXXMethodDecl *HandleVirtualDispatch( + EvalInfo &Info, const Expr *E, LValue &This, const CXXMethodDecl *Found, + llvm::SmallVectorImpl<QualType> &CovariantAdjustmentPath) { + Optional<DynamicType> DynType = ComputeDynamicType( + Info, E, This, + isa<CXXDestructorDecl>(Found) ? AK_Destroy : AK_MemberCall); + if (!DynType) + return nullptr; + + // Find the final overrider. It must be declared in one of the classes on the + // path from the dynamic type to the static type. + // FIXME: If we ever allow literal types to have virtual base classes, that + // won't be true. + const CXXMethodDecl *Callee = Found; + unsigned PathLength = DynType->PathLength; + for (/**/; PathLength <= This.Designator.Entries.size(); ++PathLength) { + const CXXRecordDecl *Class = getBaseClassType(This.Designator, PathLength); + const CXXMethodDecl *Overrider = + Found->getCorrespondingMethodDeclaredInClass(Class, false); + if (Overrider) { + Callee = Overrider; + break; + } + } + + // C++2a [class.abstract]p6: + // the effect of making a virtual call to a pure virtual function [...] is + // undefined + if (Callee->isPure()) { + Info.FFDiag(E, diag::note_constexpr_pure_virtual_call, 1) << Callee; + Info.Note(Callee->getLocation(), diag::note_declared_at); + return nullptr; + } + + // If necessary, walk the rest of the path to determine the sequence of + // covariant adjustment steps to apply. + if (!Info.Ctx.hasSameUnqualifiedType(Callee->getReturnType(), + Found->getReturnType())) { + CovariantAdjustmentPath.push_back(Callee->getReturnType()); + for (unsigned CovariantPathLength = PathLength + 1; + CovariantPathLength != This.Designator.Entries.size(); + ++CovariantPathLength) { + const CXXRecordDecl *NextClass = + getBaseClassType(This.Designator, CovariantPathLength); + const CXXMethodDecl *Next = + Found->getCorrespondingMethodDeclaredInClass(NextClass, false); + if (Next && !Info.Ctx.hasSameUnqualifiedType( + Next->getReturnType(), CovariantAdjustmentPath.back())) + CovariantAdjustmentPath.push_back(Next->getReturnType()); + } + if (!Info.Ctx.hasSameUnqualifiedType(Found->getReturnType(), + CovariantAdjustmentPath.back())) + CovariantAdjustmentPath.push_back(Found->getReturnType()); + } + + // Perform 'this' adjustment. + if (!CastToDerivedClass(Info, E, This, Callee->getParent(), PathLength)) + return nullptr; + + return Callee; +} + +/// Perform the adjustment from a value returned by a virtual function to +/// a value of the statically expected type, which may be a pointer or +/// reference to a base class of the returned type. +static bool HandleCovariantReturnAdjustment(EvalInfo &Info, const Expr *E, + APValue &Result, + ArrayRef<QualType> Path) { + assert(Result.isLValue() && + "unexpected kind of APValue for covariant return"); + if (Result.isNullPointer()) + return true; + + LValue LVal; + LVal.setFrom(Info.Ctx, Result); + + const CXXRecordDecl *OldClass = Path[0]->getPointeeCXXRecordDecl(); + for (unsigned I = 1; I != Path.size(); ++I) { + const CXXRecordDecl *NewClass = Path[I]->getPointeeCXXRecordDecl(); + assert(OldClass && NewClass && "unexpected kind of covariant return"); + if (OldClass != NewClass && + !CastToBaseClass(Info, E, LVal, OldClass, NewClass)) + return false; + OldClass = NewClass; + } + + LVal.moveInto(Result); + return true; +} + +/// Determine whether \p Base, which is known to be a direct base class of +/// \p Derived, is a public base class. +static bool isBaseClassPublic(const CXXRecordDecl *Derived, + const CXXRecordDecl *Base) { + for (const CXXBaseSpecifier &BaseSpec : Derived->bases()) { + auto *BaseClass = BaseSpec.getType()->getAsCXXRecordDecl(); + if (BaseClass && declaresSameEntity(BaseClass, Base)) + return BaseSpec.getAccessSpecifier() == AS_public; + } + llvm_unreachable("Base is not a direct base of Derived"); +} + +/// Apply the given dynamic cast operation on the provided lvalue. +/// +/// This implements the hard case of dynamic_cast, requiring a "runtime check" +/// to find a suitable target subobject. +static bool HandleDynamicCast(EvalInfo &Info, const ExplicitCastExpr *E, + LValue &Ptr) { + // We can't do anything with a non-symbolic pointer value. + SubobjectDesignator &D = Ptr.Designator; + if (D.Invalid) + return false; + + // C++ [expr.dynamic.cast]p6: + // If v is a null pointer value, the result is a null pointer value. + if (Ptr.isNullPointer() && !E->isGLValue()) + return true; + + // For all the other cases, we need the pointer to point to an object within + // its lifetime / period of construction / destruction, and we need to know + // its dynamic type. + Optional<DynamicType> DynType = + ComputeDynamicType(Info, E, Ptr, AK_DynamicCast); + if (!DynType) + return false; + + // C++ [expr.dynamic.cast]p7: + // If T is "pointer to cv void", then the result is a pointer to the most + // derived object + if (E->getType()->isVoidPointerType()) + return CastToDerivedClass(Info, E, Ptr, DynType->Type, DynType->PathLength); + + const CXXRecordDecl *C = E->getTypeAsWritten()->getPointeeCXXRecordDecl(); + assert(C && "dynamic_cast target is not void pointer nor class"); + CanQualType CQT = Info.Ctx.getCanonicalType(Info.Ctx.getRecordType(C)); + + auto RuntimeCheckFailed = [&] (CXXBasePaths *Paths) { + // C++ [expr.dynamic.cast]p9: + if (!E->isGLValue()) { + // The value of a failed cast to pointer type is the null pointer value + // of the required result type. + Ptr.setNull(Info.Ctx, E->getType()); + return true; + } + + // A failed cast to reference type throws [...] std::bad_cast. + unsigned DiagKind; + if (!Paths && (declaresSameEntity(DynType->Type, C) || + DynType->Type->isDerivedFrom(C))) + DiagKind = 0; + else if (!Paths || Paths->begin() == Paths->end()) + DiagKind = 1; + else if (Paths->isAmbiguous(CQT)) + DiagKind = 2; + else { + assert(Paths->front().Access != AS_public && "why did the cast fail?"); + DiagKind = 3; + } + Info.FFDiag(E, diag::note_constexpr_dynamic_cast_to_reference_failed) + << DiagKind << Ptr.Designator.getType(Info.Ctx) + << Info.Ctx.getRecordType(DynType->Type) + << E->getType().getUnqualifiedType(); + return false; + }; + + // Runtime check, phase 1: + // Walk from the base subobject towards the derived object looking for the + // target type. + for (int PathLength = Ptr.Designator.Entries.size(); + PathLength >= (int)DynType->PathLength; --PathLength) { + const CXXRecordDecl *Class = getBaseClassType(Ptr.Designator, PathLength); + if (declaresSameEntity(Class, C)) + return CastToDerivedClass(Info, E, Ptr, Class, PathLength); + // We can only walk across public inheritance edges. + if (PathLength > (int)DynType->PathLength && + !isBaseClassPublic(getBaseClassType(Ptr.Designator, PathLength - 1), + Class)) + return RuntimeCheckFailed(nullptr); + } + + // Runtime check, phase 2: + // Search the dynamic type for an unambiguous public base of type C. + CXXBasePaths Paths(/*FindAmbiguities=*/true, + /*RecordPaths=*/true, /*DetectVirtual=*/false); + if (DynType->Type->isDerivedFrom(C, Paths) && !Paths.isAmbiguous(CQT) && + Paths.front().Access == AS_public) { + // Downcast to the dynamic type... + if (!CastToDerivedClass(Info, E, Ptr, DynType->Type, DynType->PathLength)) + return false; + // ... then upcast to the chosen base class subobject. + for (CXXBasePathElement &Elem : Paths.front()) + if (!HandleLValueBase(Info, E, Ptr, Elem.Class, Elem.Base)) + return false; + return true; + } + + // Otherwise, the runtime check fails. + return RuntimeCheckFailed(&Paths); +} + +namespace { +struct StartLifetimeOfUnionMemberHandler { + const FieldDecl *Field; + + static const AccessKinds AccessKind = AK_Assign; + + typedef bool result_type; + bool failed() { return false; } + bool found(APValue &Subobj, QualType SubobjType) { + // We are supposed to perform no initialization but begin the lifetime of + // the object. We interpret that as meaning to do what default + // initialization of the object would do if all constructors involved were + // trivial: + // * All base, non-variant member, and array element subobjects' lifetimes + // begin + // * No variant members' lifetimes begin + // * All scalar subobjects whose lifetimes begin have indeterminate values + assert(SubobjType->isUnionType()); + if (!declaresSameEntity(Subobj.getUnionField(), Field) || + !Subobj.getUnionValue().hasValue()) + Subobj.setUnion(Field, getDefaultInitValue(Field->getType())); + return true; + } + bool found(APSInt &Value, QualType SubobjType) { + llvm_unreachable("wrong value kind for union object"); + } + bool found(APFloat &Value, QualType SubobjType) { + llvm_unreachable("wrong value kind for union object"); + } +}; +} // end anonymous namespace + +const AccessKinds StartLifetimeOfUnionMemberHandler::AccessKind; + +/// Handle a builtin simple-assignment or a call to a trivial assignment +/// operator whose left-hand side might involve a union member access. If it +/// does, implicitly start the lifetime of any accessed union elements per +/// C++20 [class.union]5. +static bool HandleUnionActiveMemberChange(EvalInfo &Info, const Expr *LHSExpr, + const LValue &LHS) { + if (LHS.InvalidBase || LHS.Designator.Invalid) + return false; + + llvm::SmallVector<std::pair<unsigned, const FieldDecl*>, 4> UnionPathLengths; + // C++ [class.union]p5: + // define the set S(E) of subexpressions of E as follows: + unsigned PathLength = LHS.Designator.Entries.size(); + for (const Expr *E = LHSExpr; E != nullptr;) { + // -- If E is of the form A.B, S(E) contains the elements of S(A)... + if (auto *ME = dyn_cast<MemberExpr>(E)) { + auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl()); + // Note that we can't implicitly start the lifetime of a reference, + // so we don't need to proceed any further if we reach one. + if (!FD || FD->getType()->isReferenceType()) + break; + + // ... and also contains A.B if B names a union member + if (FD->getParent()->isUnion()) + UnionPathLengths.push_back({PathLength - 1, FD}); + + E = ME->getBase(); + --PathLength; + assert(declaresSameEntity(FD, + LHS.Designator.Entries[PathLength] + .getAsBaseOrMember().getPointer())); + + // -- If E is of the form A[B] and is interpreted as a built-in array + // subscripting operator, S(E) is [S(the array operand, if any)]. + } else if (auto *ASE = dyn_cast<ArraySubscriptExpr>(E)) { + // Step over an ArrayToPointerDecay implicit cast. + auto *Base = ASE->getBase()->IgnoreImplicit(); + if (!Base->getType()->isArrayType()) + break; + + E = Base; + --PathLength; + + } else if (auto *ICE = dyn_cast<ImplicitCastExpr>(E)) { + // Step over a derived-to-base conversion. + E = ICE->getSubExpr(); + if (ICE->getCastKind() == CK_NoOp) + continue; + if (ICE->getCastKind() != CK_DerivedToBase && + ICE->getCastKind() != CK_UncheckedDerivedToBase) + break; + // Walk path backwards as we walk up from the base to the derived class. + for (const CXXBaseSpecifier *Elt : llvm::reverse(ICE->path())) { + --PathLength; + (void)Elt; + assert(declaresSameEntity(Elt->getType()->getAsCXXRecordDecl(), + LHS.Designator.Entries[PathLength] + .getAsBaseOrMember().getPointer())); + } + + // -- Otherwise, S(E) is empty. + } else { + break; + } + } + + // Common case: no unions' lifetimes are started. + if (UnionPathLengths.empty()) + return true; + + // if modification of X [would access an inactive union member], an object + // of the type of X is implicitly created + CompleteObject Obj = + findCompleteObject(Info, LHSExpr, AK_Assign, LHS, LHSExpr->getType()); + if (!Obj) + return false; + for (std::pair<unsigned, const FieldDecl *> LengthAndField : + llvm::reverse(UnionPathLengths)) { + // Form a designator for the union object. + SubobjectDesignator D = LHS.Designator; + D.truncate(Info.Ctx, LHS.Base, LengthAndField.first); + + StartLifetimeOfUnionMemberHandler StartLifetime{LengthAndField.second}; + if (!findSubobject(Info, LHSExpr, Obj, D, StartLifetime)) + return false; + } + + return true; +} + +/// Determine if a class has any fields that might need to be copied by a +/// trivial copy or move operation. +static bool hasFields(const CXXRecordDecl *RD) { + if (!RD || RD->isEmpty()) + return false; + for (auto *FD : RD->fields()) { + if (FD->isUnnamedBitfield()) + continue; + return true; + } + for (auto &Base : RD->bases()) + if (hasFields(Base.getType()->getAsCXXRecordDecl())) + return true; + return false; +} + +namespace { +typedef SmallVector<APValue, 8> ArgVector; +} + +/// EvaluateArgs - Evaluate the arguments to a function call. +static bool EvaluateArgs(ArrayRef<const Expr *> Args, ArgVector &ArgValues, + EvalInfo &Info, const FunctionDecl *Callee) { + bool Success = true; + llvm::SmallBitVector ForbiddenNullArgs; + if (Callee->hasAttr<NonNullAttr>()) { + ForbiddenNullArgs.resize(Args.size()); + for (const auto *Attr : Callee->specific_attrs<NonNullAttr>()) { + if (!Attr->args_size()) { + ForbiddenNullArgs.set(); + break; + } else + for (auto Idx : Attr->args()) { + unsigned ASTIdx = Idx.getASTIndex(); + if (ASTIdx >= Args.size()) + continue; + ForbiddenNullArgs[ASTIdx] = 1; + } + } + } + for (unsigned Idx = 0; Idx < Args.size(); Idx++) { + if (!Evaluate(ArgValues[Idx], Info, Args[Idx])) { + // If we're checking for a potential constant expression, evaluate all + // initializers even if some of them fail. + if (!Info.noteFailure()) + return false; + Success = false; + } else if (!ForbiddenNullArgs.empty() && + ForbiddenNullArgs[Idx] && + ArgValues[Idx].isLValue() && + ArgValues[Idx].isNullPointer()) { + Info.CCEDiag(Args[Idx], diag::note_non_null_attribute_failed); + if (!Info.noteFailure()) + return false; + Success = false; + } + } + return Success; +} + +/// Evaluate a function call. +static bool HandleFunctionCall(SourceLocation CallLoc, + const FunctionDecl *Callee, const LValue *This, + ArrayRef<const Expr*> Args, const Stmt *Body, + EvalInfo &Info, APValue &Result, + const LValue *ResultSlot) { + ArgVector ArgValues(Args.size()); + if (!EvaluateArgs(Args, ArgValues, Info, Callee)) + return false; + + if (!Info.CheckCallLimit(CallLoc)) + return false; + + CallStackFrame Frame(Info, CallLoc, Callee, This, ArgValues.data()); + + // For a trivial copy or move assignment, perform an APValue copy. This is + // essential for unions, where the operations performed by the assignment + // operator cannot be represented as statements. + // + // Skip this for non-union classes with no fields; in that case, the defaulted + // copy/move does not actually read the object. + const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Callee); + if (MD && MD->isDefaulted() && + (MD->getParent()->isUnion() || + (MD->isTrivial() && hasFields(MD->getParent())))) { + assert(This && + (MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator())); + LValue RHS; + RHS.setFrom(Info.Ctx, ArgValues[0]); + APValue RHSValue; + if (!handleLValueToRValueConversion(Info, Args[0], Args[0]->getType(), RHS, + RHSValue, MD->getParent()->isUnion())) + return false; + if (Info.getLangOpts().CPlusPlus2a && MD->isTrivial() && + !HandleUnionActiveMemberChange(Info, Args[0], *This)) + return false; + if (!handleAssignment(Info, Args[0], *This, MD->getThisType(), + RHSValue)) + return false; + This->moveInto(Result); + return true; + } else if (MD && isLambdaCallOperator(MD)) { + // We're in a lambda; determine the lambda capture field maps unless we're + // just constexpr checking a lambda's call operator. constexpr checking is + // done before the captures have been added to the closure object (unless + // we're inferring constexpr-ness), so we don't have access to them in this + // case. But since we don't need the captures to constexpr check, we can + // just ignore them. + if (!Info.checkingPotentialConstantExpression()) + MD->getParent()->getCaptureFields(Frame.LambdaCaptureFields, + Frame.LambdaThisCaptureField); + } + + StmtResult Ret = {Result, ResultSlot}; + EvalStmtResult ESR = EvaluateStmt(Ret, Info, Body); + if (ESR == ESR_Succeeded) { + if (Callee->getReturnType()->isVoidType()) + return true; + Info.FFDiag(Callee->getEndLoc(), diag::note_constexpr_no_return); + } + return ESR == ESR_Returned; +} + +/// Evaluate a constructor call. +static bool HandleConstructorCall(const Expr *E, const LValue &This, + APValue *ArgValues, + const CXXConstructorDecl *Definition, + EvalInfo &Info, APValue &Result) { + SourceLocation CallLoc = E->getExprLoc(); + if (!Info.CheckCallLimit(CallLoc)) + return false; + + const CXXRecordDecl *RD = Definition->getParent(); + if (RD->getNumVBases()) { + Info.FFDiag(CallLoc, diag::note_constexpr_virtual_base) << RD; + return false; + } + + EvalInfo::EvaluatingConstructorRAII EvalObj( + Info, + ObjectUnderConstruction{This.getLValueBase(), This.Designator.Entries}, + RD->getNumBases()); + CallStackFrame Frame(Info, CallLoc, Definition, &This, ArgValues); + + // FIXME: Creating an APValue just to hold a nonexistent return value is + // wasteful. + APValue RetVal; + StmtResult Ret = {RetVal, nullptr}; + + // If it's a delegating constructor, delegate. + if (Definition->isDelegatingConstructor()) { + CXXConstructorDecl::init_const_iterator I = Definition->init_begin(); + { + FullExpressionRAII InitScope(Info); + if (!EvaluateInPlace(Result, Info, This, (*I)->getInit()) || + !InitScope.destroy()) + return false; + } + return EvaluateStmt(Ret, Info, Definition->getBody()) != ESR_Failed; + } + + // For a trivial copy or move constructor, perform an APValue copy. This is + // essential for unions (or classes with anonymous union members), where the + // operations performed by the constructor cannot be represented by + // ctor-initializers. + // + // Skip this for empty non-union classes; we should not perform an + // lvalue-to-rvalue conversion on them because their copy constructor does not + // actually read them. + if (Definition->isDefaulted() && Definition->isCopyOrMoveConstructor() && + (Definition->getParent()->isUnion() || + (Definition->isTrivial() && hasFields(Definition->getParent())))) { + LValue RHS; + RHS.setFrom(Info.Ctx, ArgValues[0]); + return handleLValueToRValueConversion( + Info, E, Definition->getParamDecl(0)->getType().getNonReferenceType(), + RHS, Result, Definition->getParent()->isUnion()); + } + + // Reserve space for the struct members. + if (!RD->isUnion() && !Result.hasValue()) + Result = APValue(APValue::UninitStruct(), RD->getNumBases(), + std::distance(RD->field_begin(), RD->field_end())); + + if (RD->isInvalidDecl()) return false; + const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD); + + // A scope for temporaries lifetime-extended by reference members. + BlockScopeRAII LifetimeExtendedScope(Info); + + bool Success = true; + unsigned BasesSeen = 0; +#ifndef NDEBUG + CXXRecordDecl::base_class_const_iterator BaseIt = RD->bases_begin(); +#endif + CXXRecordDecl::field_iterator FieldIt = RD->field_begin(); + auto SkipToField = [&](FieldDecl *FD, bool Indirect) { + // We might be initializing the same field again if this is an indirect + // field initialization. + if (FieldIt == RD->field_end() || + FieldIt->getFieldIndex() > FD->getFieldIndex()) { + assert(Indirect && "fields out of order?"); + return; + } + + // Default-initialize any fields with no explicit initializer. + for (; !declaresSameEntity(*FieldIt, FD); ++FieldIt) { + assert(FieldIt != RD->field_end() && "missing field?"); + if (!FieldIt->isUnnamedBitfield()) + Result.getStructField(FieldIt->getFieldIndex()) = + getDefaultInitValue(FieldIt->getType()); + } + ++FieldIt; + }; + for (const auto *I : Definition->inits()) { + LValue Subobject = This; + LValue SubobjectParent = This; + APValue *Value = &Result; + + // Determine the subobject to initialize. + FieldDecl *FD = nullptr; + if (I->isBaseInitializer()) { + QualType BaseType(I->getBaseClass(), 0); +#ifndef NDEBUG + // Non-virtual base classes are initialized in the order in the class + // definition. We have already checked for virtual base classes. + assert(!BaseIt->isVirtual() && "virtual base for literal type"); + assert(Info.Ctx.hasSameType(BaseIt->getType(), BaseType) && + "base class initializers not in expected order"); + ++BaseIt; +#endif + if (!HandleLValueDirectBase(Info, I->getInit(), Subobject, RD, + BaseType->getAsCXXRecordDecl(), &Layout)) + return false; + Value = &Result.getStructBase(BasesSeen++); + } else if ((FD = I->getMember())) { + if (!HandleLValueMember(Info, I->getInit(), Subobject, FD, &Layout)) + return false; + if (RD->isUnion()) { + Result = APValue(FD); + Value = &Result.getUnionValue(); + } else { + SkipToField(FD, false); + Value = &Result.getStructField(FD->getFieldIndex()); + } + } else if (IndirectFieldDecl *IFD = I->getIndirectMember()) { + // Walk the indirect field decl's chain to find the object to initialize, + // and make sure we've initialized every step along it. + auto IndirectFieldChain = IFD->chain(); + for (auto *C : IndirectFieldChain) { + FD = cast<FieldDecl>(C); + CXXRecordDecl *CD = cast<CXXRecordDecl>(FD->getParent()); + // Switch the union field if it differs. This happens if we had + // preceding zero-initialization, and we're now initializing a union + // subobject other than the first. + // FIXME: In this case, the values of the other subobjects are + // specified, since zero-initialization sets all padding bits to zero. + if (!Value->hasValue() || + (Value->isUnion() && Value->getUnionField() != FD)) { + if (CD->isUnion()) + *Value = APValue(FD); + else + // FIXME: This immediately starts the lifetime of all members of an + // anonymous struct. It would be preferable to strictly start member + // lifetime in initialization order. + *Value = getDefaultInitValue(Info.Ctx.getRecordType(CD)); + } + // Store Subobject as its parent before updating it for the last element + // in the chain. + if (C == IndirectFieldChain.back()) + SubobjectParent = Subobject; + if (!HandleLValueMember(Info, I->getInit(), Subobject, FD)) + return false; + if (CD->isUnion()) + Value = &Value->getUnionValue(); + else { + if (C == IndirectFieldChain.front() && !RD->isUnion()) + SkipToField(FD, true); + Value = &Value->getStructField(FD->getFieldIndex()); + } + } + } else { + llvm_unreachable("unknown base initializer kind"); + } + + // Need to override This for implicit field initializers as in this case + // This refers to innermost anonymous struct/union containing initializer, + // not to currently constructed class. + const Expr *Init = I->getInit(); + ThisOverrideRAII ThisOverride(*Info.CurrentCall, &SubobjectParent, + isa<CXXDefaultInitExpr>(Init)); + FullExpressionRAII InitScope(Info); + if (!EvaluateInPlace(*Value, Info, Subobject, Init) || + (FD && FD->isBitField() && + !truncateBitfieldValue(Info, Init, *Value, FD))) { + // If we're checking for a potential constant expression, evaluate all + // initializers even if some of them fail. + if (!Info.noteFailure()) + return false; + Success = false; + } + + // This is the point at which the dynamic type of the object becomes this + // class type. + if (I->isBaseInitializer() && BasesSeen == RD->getNumBases()) + EvalObj.finishedConstructingBases(); + } + + // Default-initialize any remaining fields. + if (!RD->isUnion()) { + for (; FieldIt != RD->field_end(); ++FieldIt) { + if (!FieldIt->isUnnamedBitfield()) + Result.getStructField(FieldIt->getFieldIndex()) = + getDefaultInitValue(FieldIt->getType()); + } + } + + return Success && + EvaluateStmt(Ret, Info, Definition->getBody()) != ESR_Failed && + LifetimeExtendedScope.destroy(); +} + +static bool HandleConstructorCall(const Expr *E, const LValue &This, + ArrayRef<const Expr*> Args, + const CXXConstructorDecl *Definition, + EvalInfo &Info, APValue &Result) { + ArgVector ArgValues(Args.size()); + if (!EvaluateArgs(Args, ArgValues, Info, Definition)) + return false; + + return HandleConstructorCall(E, This, ArgValues.data(), Definition, + Info, Result); +} + +static bool HandleDestructionImpl(EvalInfo &Info, SourceLocation CallLoc, + const LValue &This, APValue &Value, + QualType T) { + // Objects can only be destroyed while they're within their lifetimes. + // FIXME: We have no representation for whether an object of type nullptr_t + // is in its lifetime; it usually doesn't matter. Perhaps we should model it + // as indeterminate instead? + if (Value.isAbsent() && !T->isNullPtrType()) { + APValue Printable; + This.moveInto(Printable); + Info.FFDiag(CallLoc, diag::note_constexpr_destroy_out_of_lifetime) + << Printable.getAsString(Info.Ctx, Info.Ctx.getLValueReferenceType(T)); + return false; + } + + // Invent an expression for location purposes. + // FIXME: We shouldn't need to do this. + OpaqueValueExpr LocE(CallLoc, Info.Ctx.IntTy, VK_RValue); + + // For arrays, destroy elements right-to-left. + if (const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(T)) { + uint64_t Size = CAT->getSize().getZExtValue(); + QualType ElemT = CAT->getElementType(); + + LValue ElemLV = This; + ElemLV.addArray(Info, &LocE, CAT); + if (!HandleLValueArrayAdjustment(Info, &LocE, ElemLV, ElemT, Size)) + return false; + + // Ensure that we have actual array elements available to destroy; the + // destructors might mutate the value, so we can't run them on the array + // filler. + if (Size && Size > Value.getArrayInitializedElts()) + expandArray(Value, Value.getArraySize() - 1); + + for (; Size != 0; --Size) { + APValue &Elem = Value.getArrayInitializedElt(Size - 1); + if (!HandleLValueArrayAdjustment(Info, &LocE, ElemLV, ElemT, -1) || + !HandleDestructionImpl(Info, CallLoc, ElemLV, Elem, ElemT)) + return false; + } + + // End the lifetime of this array now. + Value = APValue(); + return true; + } + + const CXXRecordDecl *RD = T->getAsCXXRecordDecl(); + if (!RD) { + if (T.isDestructedType()) { + Info.FFDiag(CallLoc, diag::note_constexpr_unsupported_destruction) << T; + return false; + } + + Value = APValue(); + return true; + } + + if (RD->getNumVBases()) { + Info.FFDiag(CallLoc, diag::note_constexpr_virtual_base) << RD; + return false; + } + + const CXXDestructorDecl *DD = RD->getDestructor(); + if (!DD && !RD->hasTrivialDestructor()) { + Info.FFDiag(CallLoc); + return false; + } + + if (!DD || DD->isTrivial() || + (RD->isAnonymousStructOrUnion() && RD->isUnion())) { + // A trivial destructor just ends the lifetime of the object. Check for + // this case before checking for a body, because we might not bother + // building a body for a trivial destructor. Note that it doesn't matter + // whether the destructor is constexpr in this case; all trivial + // destructors are constexpr. + // + // If an anonymous union would be destroyed, some enclosing destructor must + // have been explicitly defined, and the anonymous union destruction should + // have no effect. + Value = APValue(); + return true; + } + + if (!Info.CheckCallLimit(CallLoc)) + return false; + + const FunctionDecl *Definition = nullptr; + const Stmt *Body = DD->getBody(Definition); + + if (!CheckConstexprFunction(Info, CallLoc, DD, Definition, Body)) + return false; + + CallStackFrame Frame(Info, CallLoc, Definition, &This, nullptr); + + // We're now in the period of destruction of this object. + unsigned BasesLeft = RD->getNumBases(); + EvalInfo::EvaluatingDestructorRAII EvalObj( + Info, + ObjectUnderConstruction{This.getLValueBase(), This.Designator.Entries}); + if (!EvalObj.DidInsert) { + // C++2a [class.dtor]p19: + // the behavior is undefined if the destructor is invoked for an object + // whose lifetime has ended + // (Note that formally the lifetime ends when the period of destruction + // begins, even though certain uses of the object remain valid until the + // period of destruction ends.) + Info.FFDiag(CallLoc, diag::note_constexpr_double_destroy); + return false; + } + + // FIXME: Creating an APValue just to hold a nonexistent return value is + // wasteful. + APValue RetVal; + StmtResult Ret = {RetVal, nullptr}; + if (EvaluateStmt(Ret, Info, Definition->getBody()) == ESR_Failed) + return false; + + // A union destructor does not implicitly destroy its members. + if (RD->isUnion()) + return true; + + const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD); + + // We don't have a good way to iterate fields in reverse, so collect all the + // fields first and then walk them backwards. + SmallVector<FieldDecl*, 16> Fields(RD->field_begin(), RD->field_end()); + for (const FieldDecl *FD : llvm::reverse(Fields)) { + if (FD->isUnnamedBitfield()) + continue; + + LValue Subobject = This; + if (!HandleLValueMember(Info, &LocE, Subobject, FD, &Layout)) + return false; + + APValue *SubobjectValue = &Value.getStructField(FD->getFieldIndex()); + if (!HandleDestructionImpl(Info, CallLoc, Subobject, *SubobjectValue, + FD->getType())) + return false; + } + + if (BasesLeft != 0) + EvalObj.startedDestroyingBases(); + + // Destroy base classes in reverse order. + for (const CXXBaseSpecifier &Base : llvm::reverse(RD->bases())) { + --BasesLeft; + + QualType BaseType = Base.getType(); + LValue Subobject = This; + if (!HandleLValueDirectBase(Info, &LocE, Subobject, RD, + BaseType->getAsCXXRecordDecl(), &Layout)) + return false; + + APValue *SubobjectValue = &Value.getStructBase(BasesLeft); + if (!HandleDestructionImpl(Info, CallLoc, Subobject, *SubobjectValue, + BaseType)) + return false; + } + assert(BasesLeft == 0 && "NumBases was wrong?"); + + // The period of destruction ends now. The object is gone. + Value = APValue(); + return true; +} + +namespace { +struct DestroyObjectHandler { + EvalInfo &Info; + const Expr *E; + const LValue &This; + const AccessKinds AccessKind; + + typedef bool result_type; + bool failed() { return false; } + bool found(APValue &Subobj, QualType SubobjType) { + return HandleDestructionImpl(Info, E->getExprLoc(), This, Subobj, + SubobjType); + } + bool found(APSInt &Value, QualType SubobjType) { + Info.FFDiag(E, diag::note_constexpr_destroy_complex_elem); + return false; + } + bool found(APFloat &Value, QualType SubobjType) { + Info.FFDiag(E, diag::note_constexpr_destroy_complex_elem); + return false; + } +}; +} + +/// Perform a destructor or pseudo-destructor call on the given object, which +/// might in general not be a complete object. +static bool HandleDestruction(EvalInfo &Info, const Expr *E, + const LValue &This, QualType ThisType) { + CompleteObject Obj = findCompleteObject(Info, E, AK_Destroy, This, ThisType); + DestroyObjectHandler Handler = {Info, E, This, AK_Destroy}; + return Obj && findSubobject(Info, E, Obj, This.Designator, Handler); +} + +/// Destroy and end the lifetime of the given complete object. +static bool HandleDestruction(EvalInfo &Info, SourceLocation Loc, + APValue::LValueBase LVBase, APValue &Value, + QualType T) { + // If we've had an unmodeled side-effect, we can't rely on mutable state + // (such as the object we're about to destroy) being correct. + if (Info.EvalStatus.HasSideEffects) + return false; + + LValue LV; + LV.set({LVBase}); + return HandleDestructionImpl(Info, Loc, LV, Value, T); +} + +/// Perform a call to 'perator new' or to `__builtin_operator_new'. +static bool HandleOperatorNewCall(EvalInfo &Info, const CallExpr *E, + LValue &Result) { + if (Info.checkingPotentialConstantExpression() || + Info.SpeculativeEvaluationDepth) + return false; + + // This is permitted only within a call to std::allocator<T>::allocate. + auto Caller = Info.getStdAllocatorCaller("allocate"); + if (!Caller) { + Info.FFDiag(E->getExprLoc(), Info.getLangOpts().CPlusPlus2a + ? diag::note_constexpr_new_untyped + : diag::note_constexpr_new); + return false; + } + + QualType ElemType = Caller.ElemType; + if (ElemType->isIncompleteType() || ElemType->isFunctionType()) { + Info.FFDiag(E->getExprLoc(), + diag::note_constexpr_new_not_complete_object_type) + << (ElemType->isIncompleteType() ? 0 : 1) << ElemType; + return false; + } + + APSInt ByteSize; + if (!EvaluateInteger(E->getArg(0), ByteSize, Info)) + return false; + bool IsNothrow = false; + for (unsigned I = 1, N = E->getNumArgs(); I != N; ++I) { + EvaluateIgnoredValue(Info, E->getArg(I)); + IsNothrow |= E->getType()->isNothrowT(); + } + + CharUnits ElemSize; + if (!HandleSizeof(Info, E->getExprLoc(), ElemType, ElemSize)) + return false; + APInt Size, Remainder; + APInt ElemSizeAP(ByteSize.getBitWidth(), ElemSize.getQuantity()); + APInt::udivrem(ByteSize, ElemSizeAP, Size, Remainder); + if (Remainder != 0) { + // This likely indicates a bug in the implementation of 'std::allocator'. + Info.FFDiag(E->getExprLoc(), diag::note_constexpr_operator_new_bad_size) + << ByteSize << APSInt(ElemSizeAP, true) << ElemType; + return false; + } + + if (ByteSize.getActiveBits() > ConstantArrayType::getMaxSizeBits(Info.Ctx)) { + if (IsNothrow) { + Result.setNull(Info.Ctx, E->getType()); + return true; + } + + Info.FFDiag(E, diag::note_constexpr_new_too_large) << APSInt(Size, true); + return false; + } + + QualType AllocType = Info.Ctx.getConstantArrayType(ElemType, Size, nullptr, + ArrayType::Normal, 0); + APValue *Val = Info.createHeapAlloc(E, AllocType, Result); + *Val = APValue(APValue::UninitArray(), 0, Size.getZExtValue()); + Result.addArray(Info, E, cast<ConstantArrayType>(AllocType)); + return true; +} + +static bool hasVirtualDestructor(QualType T) { + if (CXXRecordDecl *RD = T->getAsCXXRecordDecl()) + if (CXXDestructorDecl *DD = RD->getDestructor()) + return DD->isVirtual(); + return false; +} + +static const FunctionDecl *getVirtualOperatorDelete(QualType T) { + if (CXXRecordDecl *RD = T->getAsCXXRecordDecl()) + if (CXXDestructorDecl *DD = RD->getDestructor()) + return DD->isVirtual() ? DD->getOperatorDelete() : nullptr; + return nullptr; +} + +/// Check that the given object is a suitable pointer to a heap allocation that +/// still exists and is of the right kind for the purpose of a deletion. +/// +/// On success, returns the heap allocation to deallocate. On failure, produces +/// a diagnostic and returns None. +static Optional<DynAlloc *> CheckDeleteKind(EvalInfo &Info, const Expr *E, + const LValue &Pointer, + DynAlloc::Kind DeallocKind) { + auto PointerAsString = [&] { + return Pointer.toString(Info.Ctx, Info.Ctx.VoidPtrTy); + }; + + DynamicAllocLValue DA = Pointer.Base.dyn_cast<DynamicAllocLValue>(); + if (!DA) { + Info.FFDiag(E, diag::note_constexpr_delete_not_heap_alloc) + << PointerAsString(); + if (Pointer.Base) + NoteLValueLocation(Info, Pointer.Base); + return None; + } + + Optional<DynAlloc *> Alloc = Info.lookupDynamicAlloc(DA); + if (!Alloc) { + Info.FFDiag(E, diag::note_constexpr_double_delete); + return None; + } + + QualType AllocType = Pointer.Base.getDynamicAllocType(); + if (DeallocKind != (*Alloc)->getKind()) { + Info.FFDiag(E, diag::note_constexpr_new_delete_mismatch) + << DeallocKind << (*Alloc)->getKind() << AllocType; + NoteLValueLocation(Info, Pointer.Base); + return None; + } + + bool Subobject = false; + if (DeallocKind == DynAlloc::New) { + Subobject = Pointer.Designator.MostDerivedPathLength != 0 || + Pointer.Designator.isOnePastTheEnd(); + } else { + Subobject = Pointer.Designator.Entries.size() != 1 || + Pointer.Designator.Entries[0].getAsArrayIndex() != 0; + } + if (Subobject) { + Info.FFDiag(E, diag::note_constexpr_delete_subobject) + << PointerAsString() << Pointer.Designator.isOnePastTheEnd(); + return None; + } + + return Alloc; +} + +// Perform a call to 'operator delete' or '__builtin_operator_delete'. +bool HandleOperatorDeleteCall(EvalInfo &Info, const CallExpr *E) { + if (Info.checkingPotentialConstantExpression() || + Info.SpeculativeEvaluationDepth) + return false; + + // This is permitted only within a call to std::allocator<T>::deallocate. + if (!Info.getStdAllocatorCaller("deallocate")) { + Info.FFDiag(E->getExprLoc()); + return true; + } + + LValue Pointer; + if (!EvaluatePointer(E->getArg(0), Pointer, Info)) + return false; + for (unsigned I = 1, N = E->getNumArgs(); I != N; ++I) + EvaluateIgnoredValue(Info, E->getArg(I)); + + if (Pointer.Designator.Invalid) + return false; + + // Deleting a null pointer has no effect. + if (Pointer.isNullPointer()) + return true; + + if (!CheckDeleteKind(Info, E, Pointer, DynAlloc::StdAllocator)) + return false; + + Info.HeapAllocs.erase(Pointer.Base.get<DynamicAllocLValue>()); + return true; +} + +//===----------------------------------------------------------------------===// +// Generic Evaluation +//===----------------------------------------------------------------------===// +namespace { + +class BitCastBuffer { + // FIXME: We're going to need bit-level granularity when we support + // bit-fields. + // FIXME: Its possible under the C++ standard for 'char' to not be 8 bits, but + // we don't support a host or target where that is the case. Still, we should + // use a more generic type in case we ever do. + SmallVector<Optional<unsigned char>, 32> Bytes; + + static_assert(std::numeric_limits<unsigned char>::digits >= 8, + "Need at least 8 bit unsigned char"); + + bool TargetIsLittleEndian; + +public: + BitCastBuffer(CharUnits Width, bool TargetIsLittleEndian) + : Bytes(Width.getQuantity()), + TargetIsLittleEndian(TargetIsLittleEndian) {} + + LLVM_NODISCARD + bool readObject(CharUnits Offset, CharUnits Width, + SmallVectorImpl<unsigned char> &Output) const { + for (CharUnits I = Offset, E = Offset + Width; I != E; ++I) { + // If a byte of an integer is uninitialized, then the whole integer is + // uninitalized. + if (!Bytes[I.getQuantity()]) + return false; + Output.push_back(*Bytes[I.getQuantity()]); + } + if (llvm::sys::IsLittleEndianHost != TargetIsLittleEndian) + std::reverse(Output.begin(), Output.end()); + return true; + } + + void writeObject(CharUnits Offset, SmallVectorImpl<unsigned char> &Input) { + if (llvm::sys::IsLittleEndianHost != TargetIsLittleEndian) + std::reverse(Input.begin(), Input.end()); + + size_t Index = 0; + for (unsigned char Byte : Input) { + assert(!Bytes[Offset.getQuantity() + Index] && "overwriting a byte?"); + Bytes[Offset.getQuantity() + Index] = Byte; + ++Index; + } + } + + size_t size() { return Bytes.size(); } +}; + +/// Traverse an APValue to produce an BitCastBuffer, emulating how the current +/// target would represent the value at runtime. +class APValueToBufferConverter { + EvalInfo &Info; + BitCastBuffer Buffer; + const CastExpr *BCE; + + APValueToBufferConverter(EvalInfo &Info, CharUnits ObjectWidth, + const CastExpr *BCE) + : Info(Info), + Buffer(ObjectWidth, Info.Ctx.getTargetInfo().isLittleEndian()), + BCE(BCE) {} + + bool visit(const APValue &Val, QualType Ty) { + return visit(Val, Ty, CharUnits::fromQuantity(0)); + } + + // Write out Val with type Ty into Buffer starting at Offset. + bool visit(const APValue &Val, QualType Ty, CharUnits Offset) { + assert((size_t)Offset.getQuantity() <= Buffer.size()); + + // As a special case, nullptr_t has an indeterminate value. + if (Ty->isNullPtrType()) + return true; + + // Dig through Src to find the byte at SrcOffset. + switch (Val.getKind()) { + case APValue::Indeterminate: + case APValue::None: + return true; + + case APValue::Int: + return visitInt(Val.getInt(), Ty, Offset); + case APValue::Float: + return visitFloat(Val.getFloat(), Ty, Offset); + case APValue::Array: + return visitArray(Val, Ty, Offset); + case APValue::Struct: + return visitRecord(Val, Ty, Offset); + + case APValue::ComplexInt: + case APValue::ComplexFloat: + case APValue::Vector: + case APValue::FixedPoint: + // FIXME: We should support these. + + case APValue::Union: + case APValue::MemberPointer: + case APValue::AddrLabelDiff: { + Info.FFDiag(BCE->getBeginLoc(), + diag::note_constexpr_bit_cast_unsupported_type) + << Ty; + return false; + } + + case APValue::LValue: + llvm_unreachable("LValue subobject in bit_cast?"); + } + llvm_unreachable("Unhandled APValue::ValueKind"); + } + + bool visitRecord(const APValue &Val, QualType Ty, CharUnits Offset) { + const RecordDecl *RD = Ty->getAsRecordDecl(); + const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD); + + // Visit the base classes. + if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { + for (size_t I = 0, E = CXXRD->getNumBases(); I != E; ++I) { + const CXXBaseSpecifier &BS = CXXRD->bases_begin()[I]; + CXXRecordDecl *BaseDecl = BS.getType()->getAsCXXRecordDecl(); + + if (!visitRecord(Val.getStructBase(I), BS.getType(), + Layout.getBaseClassOffset(BaseDecl) + Offset)) + return false; + } + } + + // Visit the fields. + unsigned FieldIdx = 0; + for (FieldDecl *FD : RD->fields()) { + if (FD->isBitField()) { + Info.FFDiag(BCE->getBeginLoc(), + diag::note_constexpr_bit_cast_unsupported_bitfield); + return false; + } + + uint64_t FieldOffsetBits = Layout.getFieldOffset(FieldIdx); + + assert(FieldOffsetBits % Info.Ctx.getCharWidth() == 0 && + "only bit-fields can have sub-char alignment"); + CharUnits FieldOffset = + Info.Ctx.toCharUnitsFromBits(FieldOffsetBits) + Offset; + QualType FieldTy = FD->getType(); + if (!visit(Val.getStructField(FieldIdx), FieldTy, FieldOffset)) + return false; + ++FieldIdx; + } + + return true; + } + + bool visitArray(const APValue &Val, QualType Ty, CharUnits Offset) { + const auto *CAT = + dyn_cast_or_null<ConstantArrayType>(Ty->getAsArrayTypeUnsafe()); + if (!CAT) + return false; + + CharUnits ElemWidth = Info.Ctx.getTypeSizeInChars(CAT->getElementType()); + unsigned NumInitializedElts = Val.getArrayInitializedElts(); + unsigned ArraySize = Val.getArraySize(); + // First, initialize the initialized elements. + for (unsigned I = 0; I != NumInitializedElts; ++I) { + const APValue &SubObj = Val.getArrayInitializedElt(I); + if (!visit(SubObj, CAT->getElementType(), Offset + I * ElemWidth)) + return false; + } + + // Next, initialize the rest of the array using the filler. + if (Val.hasArrayFiller()) { + const APValue &Filler = Val.getArrayFiller(); + for (unsigned I = NumInitializedElts; I != ArraySize; ++I) { + if (!visit(Filler, CAT->getElementType(), Offset + I * ElemWidth)) + return false; + } + } + + return true; + } + + bool visitInt(const APSInt &Val, QualType Ty, CharUnits Offset) { + CharUnits Width = Info.Ctx.getTypeSizeInChars(Ty); + SmallVector<unsigned char, 8> Bytes(Width.getQuantity()); + llvm::StoreIntToMemory(Val, &*Bytes.begin(), Width.getQuantity()); + Buffer.writeObject(Offset, Bytes); + return true; + } + + bool visitFloat(const APFloat &Val, QualType Ty, CharUnits Offset) { + APSInt AsInt(Val.bitcastToAPInt()); + return visitInt(AsInt, Ty, Offset); + } + +public: + static Optional<BitCastBuffer> convert(EvalInfo &Info, const APValue &Src, + const CastExpr *BCE) { + CharUnits DstSize = Info.Ctx.getTypeSizeInChars(BCE->getType()); + APValueToBufferConverter Converter(Info, DstSize, BCE); + if (!Converter.visit(Src, BCE->getSubExpr()->getType())) + return None; + return Converter.Buffer; + } +}; + +/// Write an BitCastBuffer into an APValue. +class BufferToAPValueConverter { + EvalInfo &Info; + const BitCastBuffer &Buffer; + const CastExpr *BCE; + + BufferToAPValueConverter(EvalInfo &Info, const BitCastBuffer &Buffer, + const CastExpr *BCE) + : Info(Info), Buffer(Buffer), BCE(BCE) {} + + // Emit an unsupported bit_cast type error. Sema refuses to build a bit_cast + // with an invalid type, so anything left is a deficiency on our part (FIXME). + // Ideally this will be unreachable. + llvm::NoneType unsupportedType(QualType Ty) { + Info.FFDiag(BCE->getBeginLoc(), + diag::note_constexpr_bit_cast_unsupported_type) + << Ty; + return None; + } + + Optional<APValue> visit(const BuiltinType *T, CharUnits Offset, + const EnumType *EnumSugar = nullptr) { + if (T->isNullPtrType()) { + uint64_t NullValue = Info.Ctx.getTargetNullPointerValue(QualType(T, 0)); + return APValue((Expr *)nullptr, + /*Offset=*/CharUnits::fromQuantity(NullValue), + APValue::NoLValuePath{}, /*IsNullPtr=*/true); + } + + CharUnits SizeOf = Info.Ctx.getTypeSizeInChars(T); + SmallVector<uint8_t, 8> Bytes; + if (!Buffer.readObject(Offset, SizeOf, Bytes)) { + // If this is std::byte or unsigned char, then its okay to store an + // indeterminate value. + bool IsStdByte = EnumSugar && EnumSugar->isStdByteType(); + bool IsUChar = + !EnumSugar && (T->isSpecificBuiltinType(BuiltinType::UChar) || + T->isSpecificBuiltinType(BuiltinType::Char_U)); + if (!IsStdByte && !IsUChar) { + QualType DisplayType(EnumSugar ? (const Type *)EnumSugar : T, 0); + Info.FFDiag(BCE->getExprLoc(), + diag::note_constexpr_bit_cast_indet_dest) + << DisplayType << Info.Ctx.getLangOpts().CharIsSigned; + return None; + } + + return APValue::IndeterminateValue(); + } + + APSInt Val(SizeOf.getQuantity() * Info.Ctx.getCharWidth(), true); + llvm::LoadIntFromMemory(Val, &*Bytes.begin(), Bytes.size()); + + if (T->isIntegralOrEnumerationType()) { + Val.setIsSigned(T->isSignedIntegerOrEnumerationType()); + return APValue(Val); + } + + if (T->isRealFloatingType()) { + const llvm::fltSemantics &Semantics = + Info.Ctx.getFloatTypeSemantics(QualType(T, 0)); + return APValue(APFloat(Semantics, Val)); + } + + return unsupportedType(QualType(T, 0)); + } + + Optional<APValue> visit(const RecordType *RTy, CharUnits Offset) { + const RecordDecl *RD = RTy->getAsRecordDecl(); + const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD); + + unsigned NumBases = 0; + if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) + NumBases = CXXRD->getNumBases(); + + APValue ResultVal(APValue::UninitStruct(), NumBases, + std::distance(RD->field_begin(), RD->field_end())); + + // Visit the base classes. + if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { + for (size_t I = 0, E = CXXRD->getNumBases(); I != E; ++I) { + const CXXBaseSpecifier &BS = CXXRD->bases_begin()[I]; + CXXRecordDecl *BaseDecl = BS.getType()->getAsCXXRecordDecl(); + if (BaseDecl->isEmpty() || + Info.Ctx.getASTRecordLayout(BaseDecl).getNonVirtualSize().isZero()) + continue; + + Optional<APValue> SubObj = visitType( + BS.getType(), Layout.getBaseClassOffset(BaseDecl) + Offset); + if (!SubObj) + return None; + ResultVal.getStructBase(I) = *SubObj; + } + } + + // Visit the fields. + unsigned FieldIdx = 0; + for (FieldDecl *FD : RD->fields()) { + // FIXME: We don't currently support bit-fields. A lot of the logic for + // this is in CodeGen, so we need to factor it around. + if (FD->isBitField()) { + Info.FFDiag(BCE->getBeginLoc(), + diag::note_constexpr_bit_cast_unsupported_bitfield); + return None; + } + + uint64_t FieldOffsetBits = Layout.getFieldOffset(FieldIdx); + assert(FieldOffsetBits % Info.Ctx.getCharWidth() == 0); + + CharUnits FieldOffset = + CharUnits::fromQuantity(FieldOffsetBits / Info.Ctx.getCharWidth()) + + Offset; + QualType FieldTy = FD->getType(); + Optional<APValue> SubObj = visitType(FieldTy, FieldOffset); + if (!SubObj) + return None; + ResultVal.getStructField(FieldIdx) = *SubObj; + ++FieldIdx; + } + + return ResultVal; + } + + Optional<APValue> visit(const EnumType *Ty, CharUnits Offset) { + QualType RepresentationType = Ty->getDecl()->getIntegerType(); + assert(!RepresentationType.isNull() && + "enum forward decl should be caught by Sema"); + const auto *AsBuiltin = + RepresentationType.getCanonicalType()->castAs<BuiltinType>(); + // Recurse into the underlying type. Treat std::byte transparently as + // unsigned char. + return visit(AsBuiltin, Offset, /*EnumTy=*/Ty); + } + + Optional<APValue> visit(const ConstantArrayType *Ty, CharUnits Offset) { + size_t Size = Ty->getSize().getLimitedValue(); + CharUnits ElementWidth = Info.Ctx.getTypeSizeInChars(Ty->getElementType()); + + APValue ArrayValue(APValue::UninitArray(), Size, Size); + for (size_t I = 0; I != Size; ++I) { + Optional<APValue> ElementValue = + visitType(Ty->getElementType(), Offset + I * ElementWidth); + if (!ElementValue) + return None; + ArrayValue.getArrayInitializedElt(I) = std::move(*ElementValue); + } + + return ArrayValue; + } + + Optional<APValue> visit(const Type *Ty, CharUnits Offset) { + return unsupportedType(QualType(Ty, 0)); + } + + Optional<APValue> visitType(QualType Ty, CharUnits Offset) { + QualType Can = Ty.getCanonicalType(); + + switch (Can->getTypeClass()) { +#define TYPE(Class, Base) \ + case Type::Class: \ + return visit(cast<Class##Type>(Can.getTypePtr()), Offset); +#define ABSTRACT_TYPE(Class, Base) +#define NON_CANONICAL_TYPE(Class, Base) \ + case Type::Class: \ + llvm_unreachable("non-canonical type should be impossible!"); +#define DEPENDENT_TYPE(Class, Base) \ + case Type::Class: \ + llvm_unreachable( \ + "dependent types aren't supported in the constant evaluator!"); +#define NON_CANONICAL_UNLESS_DEPENDENT(Class, Base) \ + case Type::Class: \ + llvm_unreachable("either dependent or not canonical!"); +#include "clang/AST/TypeNodes.inc" + } + llvm_unreachable("Unhandled Type::TypeClass"); + } + +public: + // Pull out a full value of type DstType. + static Optional<APValue> convert(EvalInfo &Info, BitCastBuffer &Buffer, + const CastExpr *BCE) { + BufferToAPValueConverter Converter(Info, Buffer, BCE); + return Converter.visitType(BCE->getType(), CharUnits::fromQuantity(0)); + } +}; + +static bool checkBitCastConstexprEligibilityType(SourceLocation Loc, + QualType Ty, EvalInfo *Info, + const ASTContext &Ctx, + bool CheckingDest) { + Ty = Ty.getCanonicalType(); + + auto diag = [&](int Reason) { + if (Info) + Info->FFDiag(Loc, diag::note_constexpr_bit_cast_invalid_type) + << CheckingDest << (Reason == 4) << Reason; + return false; + }; + auto note = [&](int Construct, QualType NoteTy, SourceLocation NoteLoc) { + if (Info) + Info->Note(NoteLoc, diag::note_constexpr_bit_cast_invalid_subtype) + << NoteTy << Construct << Ty; + return false; + }; + + if (Ty->isUnionType()) + return diag(0); + if (Ty->isPointerType()) + return diag(1); + if (Ty->isMemberPointerType()) + return diag(2); + if (Ty.isVolatileQualified()) + return diag(3); + + if (RecordDecl *Record = Ty->getAsRecordDecl()) { + if (auto *CXXRD = dyn_cast<CXXRecordDecl>(Record)) { + for (CXXBaseSpecifier &BS : CXXRD->bases()) + if (!checkBitCastConstexprEligibilityType(Loc, BS.getType(), Info, Ctx, + CheckingDest)) + return note(1, BS.getType(), BS.getBeginLoc()); + } + for (FieldDecl *FD : Record->fields()) { + if (FD->getType()->isReferenceType()) + return diag(4); + if (!checkBitCastConstexprEligibilityType(Loc, FD->getType(), Info, Ctx, + CheckingDest)) + return note(0, FD->getType(), FD->getBeginLoc()); + } + } + + if (Ty->isArrayType() && + !checkBitCastConstexprEligibilityType(Loc, Ctx.getBaseElementType(Ty), + Info, Ctx, CheckingDest)) + return false; + + return true; +} + +static bool checkBitCastConstexprEligibility(EvalInfo *Info, + const ASTContext &Ctx, + const CastExpr *BCE) { + bool DestOK = checkBitCastConstexprEligibilityType( + BCE->getBeginLoc(), BCE->getType(), Info, Ctx, true); + bool SourceOK = DestOK && checkBitCastConstexprEligibilityType( + BCE->getBeginLoc(), + BCE->getSubExpr()->getType(), Info, Ctx, false); + return SourceOK; +} + +static bool handleLValueToRValueBitCast(EvalInfo &Info, APValue &DestValue, + APValue &SourceValue, + const CastExpr *BCE) { + assert(CHAR_BIT == 8 && Info.Ctx.getTargetInfo().getCharWidth() == 8 && + "no host or target supports non 8-bit chars"); + assert(SourceValue.isLValue() && + "LValueToRValueBitcast requires an lvalue operand!"); + + if (!checkBitCastConstexprEligibility(&Info, Info.Ctx, BCE)) + return false; + + LValue SourceLValue; + APValue SourceRValue; + SourceLValue.setFrom(Info.Ctx, SourceValue); + if (!handleLValueToRValueConversion( + Info, BCE, BCE->getSubExpr()->getType().withConst(), SourceLValue, + SourceRValue, /*WantObjectRepresentation=*/true)) + return false; + + // Read out SourceValue into a char buffer. + Optional<BitCastBuffer> Buffer = + APValueToBufferConverter::convert(Info, SourceRValue, BCE); + if (!Buffer) + return false; + + // Write out the buffer into a new APValue. + Optional<APValue> MaybeDestValue = + BufferToAPValueConverter::convert(Info, *Buffer, BCE); + if (!MaybeDestValue) + return false; + + DestValue = std::move(*MaybeDestValue); + return true; +} + +template <class Derived> +class ExprEvaluatorBase + : public ConstStmtVisitor<Derived, bool> { +private: + Derived &getDerived() { return static_cast<Derived&>(*this); } + bool DerivedSuccess(const APValue &V, const Expr *E) { + return getDerived().Success(V, E); + } + bool DerivedZeroInitialization(const Expr *E) { + return getDerived().ZeroInitialization(E); + } + + // Check whether a conditional operator with a non-constant condition is a + // potential constant expression. If neither arm is a potential constant + // expression, then the conditional operator is not either. + template<typename ConditionalOperator> + void CheckPotentialConstantConditional(const ConditionalOperator *E) { + assert(Info.checkingPotentialConstantExpression()); + + // Speculatively evaluate both arms. + SmallVector<PartialDiagnosticAt, 8> Diag; + { + SpeculativeEvaluationRAII Speculate(Info, &Diag); + StmtVisitorTy::Visit(E->getFalseExpr()); + if (Diag.empty()) + return; + } + + { + SpeculativeEvaluationRAII Speculate(Info, &Diag); + Diag.clear(); + StmtVisitorTy::Visit(E->getTrueExpr()); + if (Diag.empty()) + return; + } + + Error(E, diag::note_constexpr_conditional_never_const); + } + + + template<typename ConditionalOperator> + bool HandleConditionalOperator(const ConditionalOperator *E) { + bool BoolResult; + if (!EvaluateAsBooleanCondition(E->getCond(), BoolResult, Info)) { + if (Info.checkingPotentialConstantExpression() && Info.noteFailure()) { + CheckPotentialConstantConditional(E); + return false; + } + if (Info.noteFailure()) { + StmtVisitorTy::Visit(E->getTrueExpr()); + StmtVisitorTy::Visit(E->getFalseExpr()); + } + return false; + } + + Expr *EvalExpr = BoolResult ? E->getTrueExpr() : E->getFalseExpr(); + return StmtVisitorTy::Visit(EvalExpr); + } + +protected: + EvalInfo &Info; + typedef ConstStmtVisitor<Derived, bool> StmtVisitorTy; + typedef ExprEvaluatorBase ExprEvaluatorBaseTy; + + OptionalDiagnostic CCEDiag(const Expr *E, diag::kind D) { + return Info.CCEDiag(E, D); + } + + bool ZeroInitialization(const Expr *E) { return Error(E); } + +public: + ExprEvaluatorBase(EvalInfo &Info) : Info(Info) {} + + EvalInfo &getEvalInfo() { return Info; } + + /// Report an evaluation error. This should only be called when an error is + /// first discovered. When propagating an error, just return false. + bool Error(const Expr *E, diag::kind D) { + Info.FFDiag(E, D); + return false; + } + bool Error(const Expr *E) { + return Error(E, diag::note_invalid_subexpr_in_const_expr); + } + + bool VisitStmt(const Stmt *) { + llvm_unreachable("Expression evaluator should not be called on stmts"); + } + bool VisitExpr(const Expr *E) { + return Error(E); + } + + bool VisitConstantExpr(const ConstantExpr *E) + { return StmtVisitorTy::Visit(E->getSubExpr()); } + bool VisitParenExpr(const ParenExpr *E) + { return StmtVisitorTy::Visit(E->getSubExpr()); } + bool VisitUnaryExtension(const UnaryOperator *E) + { return StmtVisitorTy::Visit(E->getSubExpr()); } + bool VisitUnaryPlus(const UnaryOperator *E) + { return StmtVisitorTy::Visit(E->getSubExpr()); } + bool VisitChooseExpr(const ChooseExpr *E) + { return StmtVisitorTy::Visit(E->getChosenSubExpr()); } + bool VisitGenericSelectionExpr(const GenericSelectionExpr *E) + { return StmtVisitorTy::Visit(E->getResultExpr()); } + bool VisitSubstNonTypeTemplateParmExpr(const SubstNonTypeTemplateParmExpr *E) + { return StmtVisitorTy::Visit(E->getReplacement()); } + bool VisitCXXDefaultArgExpr(const CXXDefaultArgExpr *E) { + TempVersionRAII RAII(*Info.CurrentCall); + SourceLocExprScopeGuard Guard(E, Info.CurrentCall->CurSourceLocExprScope); + return StmtVisitorTy::Visit(E->getExpr()); + } + bool VisitCXXDefaultInitExpr(const CXXDefaultInitExpr *E) { + TempVersionRAII RAII(*Info.CurrentCall); + // The initializer may not have been parsed yet, or might be erroneous. + if (!E->getExpr()) + return Error(E); + SourceLocExprScopeGuard Guard(E, Info.CurrentCall->CurSourceLocExprScope); + return StmtVisitorTy::Visit(E->getExpr()); + } + + bool VisitExprWithCleanups(const ExprWithCleanups *E) { + FullExpressionRAII Scope(Info); + return StmtVisitorTy::Visit(E->getSubExpr()) && Scope.destroy(); + } + + // Temporaries are registered when created, so we don't care about + // CXXBindTemporaryExpr. + bool VisitCXXBindTemporaryExpr(const CXXBindTemporaryExpr *E) { + return StmtVisitorTy::Visit(E->getSubExpr()); + } + + bool VisitCXXReinterpretCastExpr(const CXXReinterpretCastExpr *E) { + CCEDiag(E, diag::note_constexpr_invalid_cast) << 0; + return static_cast<Derived*>(this)->VisitCastExpr(E); + } + bool VisitCXXDynamicCastExpr(const CXXDynamicCastExpr *E) { + if (!Info.Ctx.getLangOpts().CPlusPlus2a) + CCEDiag(E, diag::note_constexpr_invalid_cast) << 1; + return static_cast<Derived*>(this)->VisitCastExpr(E); + } + bool VisitBuiltinBitCastExpr(const BuiltinBitCastExpr *E) { + return static_cast<Derived*>(this)->VisitCastExpr(E); + } + + bool VisitBinaryOperator(const BinaryOperator *E) { + switch (E->getOpcode()) { + default: + return Error(E); + + case BO_Comma: + VisitIgnoredValue(E->getLHS()); + return StmtVisitorTy::Visit(E->getRHS()); + + case BO_PtrMemD: + case BO_PtrMemI: { + LValue Obj; + if (!HandleMemberPointerAccess(Info, E, Obj)) + return false; + APValue Result; + if (!handleLValueToRValueConversion(Info, E, E->getType(), Obj, Result)) + return false; + return DerivedSuccess(Result, E); + } + } + } + + bool VisitCXXRewrittenBinaryOperator(const CXXRewrittenBinaryOperator *E) { + return StmtVisitorTy::Visit(E->getSemanticForm()); + } + + bool VisitBinaryConditionalOperator(const BinaryConditionalOperator *E) { + // Evaluate and cache the common expression. We treat it as a temporary, + // even though it's not quite the same thing. + LValue CommonLV; + if (!Evaluate(Info.CurrentCall->createTemporary( + E->getOpaqueValue(), + getStorageType(Info.Ctx, E->getOpaqueValue()), false, + CommonLV), + Info, E->getCommon())) + return false; + + return HandleConditionalOperator(E); + } + + bool VisitConditionalOperator(const ConditionalOperator *E) { + bool IsBcpCall = false; + // If the condition (ignoring parens) is a __builtin_constant_p call, + // the result is a constant expression if it can be folded without + // side-effects. This is an important GNU extension. See GCC PR38377 + // for discussion. + if (const CallExpr *CallCE = + dyn_cast<CallExpr>(E->getCond()->IgnoreParenCasts())) + if (CallCE->getBuiltinCallee() == Builtin::BI__builtin_constant_p) + IsBcpCall = true; + + // Always assume __builtin_constant_p(...) ? ... : ... is a potential + // constant expression; we can't check whether it's potentially foldable. + // FIXME: We should instead treat __builtin_constant_p as non-constant if + // it would return 'false' in this mode. + if (Info.checkingPotentialConstantExpression() && IsBcpCall) + return false; + + FoldConstant Fold(Info, IsBcpCall); + if (!HandleConditionalOperator(E)) { + Fold.keepDiagnostics(); + return false; + } + + return true; + } + + bool VisitOpaqueValueExpr(const OpaqueValueExpr *E) { + if (APValue *Value = Info.CurrentCall->getCurrentTemporary(E)) + return DerivedSuccess(*Value, E); + + const Expr *Source = E->getSourceExpr(); + if (!Source) + return Error(E); + if (Source == E) { // sanity checking. + assert(0 && "OpaqueValueExpr recursively refers to itself"); + return Error(E); + } + return StmtVisitorTy::Visit(Source); + } + + bool VisitCallExpr(const CallExpr *E) { + APValue Result; + if (!handleCallExpr(E, Result, nullptr)) + return false; + return DerivedSuccess(Result, E); + } + + bool handleCallExpr(const CallExpr *E, APValue &Result, + const LValue *ResultSlot) { + const Expr *Callee = E->getCallee()->IgnoreParens(); + QualType CalleeType = Callee->getType(); + + const FunctionDecl *FD = nullptr; + LValue *This = nullptr, ThisVal; + auto Args = llvm::makeArrayRef(E->getArgs(), E->getNumArgs()); + bool HasQualifier = false; + + // Extract function decl and 'this' pointer from the callee. + if (CalleeType->isSpecificBuiltinType(BuiltinType::BoundMember)) { + const CXXMethodDecl *Member = nullptr; + if (const MemberExpr *ME = dyn_cast<MemberExpr>(Callee)) { + // Explicit bound member calls, such as x.f() or p->g(); + if (!EvaluateObjectArgument(Info, ME->getBase(), ThisVal)) + return false; + Member = dyn_cast<CXXMethodDecl>(ME->getMemberDecl()); + if (!Member) + return Error(Callee); + This = &ThisVal; + HasQualifier = ME->hasQualifier(); + } else if (const BinaryOperator *BE = dyn_cast<BinaryOperator>(Callee)) { + // Indirect bound member calls ('.*' or '->*'). + const ValueDecl *D = + HandleMemberPointerAccess(Info, BE, ThisVal, false); + if (!D) + return false; + Member = dyn_cast<CXXMethodDecl>(D); + if (!Member) + return Error(Callee); + This = &ThisVal; + } else if (const auto *PDE = dyn_cast<CXXPseudoDestructorExpr>(Callee)) { + if (!Info.getLangOpts().CPlusPlus2a) + Info.CCEDiag(PDE, diag::note_constexpr_pseudo_destructor); + // FIXME: If pseudo-destructor calls ever start ending the lifetime of + // their callee, we should start calling HandleDestruction here. + // For now, we just evaluate the object argument and discard it. + return EvaluateObjectArgument(Info, PDE->getBase(), ThisVal); + } else + return Error(Callee); + FD = Member; + } else if (CalleeType->isFunctionPointerType()) { + LValue Call; + if (!EvaluatePointer(Callee, Call, Info)) + return false; + + if (!Call.getLValueOffset().isZero()) + return Error(Callee); + FD = dyn_cast_or_null<FunctionDecl>( + Call.getLValueBase().dyn_cast<const ValueDecl*>()); + if (!FD) + return Error(Callee); + // Don't call function pointers which have been cast to some other type. + // Per DR (no number yet), the caller and callee can differ in noexcept. + if (!Info.Ctx.hasSameFunctionTypeIgnoringExceptionSpec( + CalleeType->getPointeeType(), FD->getType())) { + return Error(E); + } + + // Overloaded operator calls to member functions are represented as normal + // calls with '*this' as the first argument. + const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD); + if (MD && !MD->isStatic()) { + // FIXME: When selecting an implicit conversion for an overloaded + // operator delete, we sometimes try to evaluate calls to conversion + // operators without a 'this' parameter! + if (Args.empty()) + return Error(E); + + if (!EvaluateObjectArgument(Info, Args[0], ThisVal)) + return false; + This = &ThisVal; + Args = Args.slice(1); + } else if (MD && MD->isLambdaStaticInvoker()) { + // Map the static invoker for the lambda back to the call operator. + // Conveniently, we don't have to slice out the 'this' argument (as is + // being done for the non-static case), since a static member function + // doesn't have an implicit argument passed in. + const CXXRecordDecl *ClosureClass = MD->getParent(); + assert( + ClosureClass->captures_begin() == ClosureClass->captures_end() && + "Number of captures must be zero for conversion to function-ptr"); + + const CXXMethodDecl *LambdaCallOp = + ClosureClass->getLambdaCallOperator(); + + // Set 'FD', the function that will be called below, to the call + // operator. If the closure object represents a generic lambda, find + // the corresponding specialization of the call operator. + + if (ClosureClass->isGenericLambda()) { + assert(MD->isFunctionTemplateSpecialization() && + "A generic lambda's static-invoker function must be a " + "template specialization"); + const TemplateArgumentList *TAL = MD->getTemplateSpecializationArgs(); + FunctionTemplateDecl *CallOpTemplate = + LambdaCallOp->getDescribedFunctionTemplate(); + void *InsertPos = nullptr; + FunctionDecl *CorrespondingCallOpSpecialization = + CallOpTemplate->findSpecialization(TAL->asArray(), InsertPos); + assert(CorrespondingCallOpSpecialization && + "We must always have a function call operator specialization " + "that corresponds to our static invoker specialization"); + FD = cast<CXXMethodDecl>(CorrespondingCallOpSpecialization); + } else + FD = LambdaCallOp; + } else if (FD->isReplaceableGlobalAllocationFunction()) { + if (FD->getDeclName().getCXXOverloadedOperator() == OO_New || + FD->getDeclName().getCXXOverloadedOperator() == OO_Array_New) { + LValue Ptr; + if (!HandleOperatorNewCall(Info, E, Ptr)) + return false; + Ptr.moveInto(Result); + return true; + } else { + return HandleOperatorDeleteCall(Info, E); + } + } + } else + return Error(E); + + SmallVector<QualType, 4> CovariantAdjustmentPath; + if (This) { + auto *NamedMember = dyn_cast<CXXMethodDecl>(FD); + if (NamedMember && NamedMember->isVirtual() && !HasQualifier) { + // Perform virtual dispatch, if necessary. + FD = HandleVirtualDispatch(Info, E, *This, NamedMember, + CovariantAdjustmentPath); + if (!FD) + return false; + } else { + // Check that the 'this' pointer points to an object of the right type. + // FIXME: If this is an assignment operator call, we may need to change + // the active union member before we check this. + if (!checkNonVirtualMemberCallThisPointer(Info, E, *This, NamedMember)) + return false; + } + } + + // Destructor calls are different enough that they have their own codepath. + if (auto *DD = dyn_cast<CXXDestructorDecl>(FD)) { + assert(This && "no 'this' pointer for destructor call"); + return HandleDestruction(Info, E, *This, + Info.Ctx.getRecordType(DD->getParent())); + } + + const FunctionDecl *Definition = nullptr; + Stmt *Body = FD->getBody(Definition); + + if (!CheckConstexprFunction(Info, E->getExprLoc(), FD, Definition, Body) || + !HandleFunctionCall(E->getExprLoc(), Definition, This, Args, Body, Info, + Result, ResultSlot)) + return false; + + if (!CovariantAdjustmentPath.empty() && + !HandleCovariantReturnAdjustment(Info, E, Result, + CovariantAdjustmentPath)) + return false; + + return true; + } + + bool VisitCompoundLiteralExpr(const CompoundLiteralExpr *E) { + return StmtVisitorTy::Visit(E->getInitializer()); + } + bool VisitInitListExpr(const InitListExpr *E) { + if (E->getNumInits() == 0) + return DerivedZeroInitialization(E); + if (E->getNumInits() == 1) + return StmtVisitorTy::Visit(E->getInit(0)); + return Error(E); + } + bool VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) { + return DerivedZeroInitialization(E); + } + bool VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) { + return DerivedZeroInitialization(E); + } + bool VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) { + return DerivedZeroInitialization(E); + } + + /// A member expression where the object is a prvalue is itself a prvalue. + bool VisitMemberExpr(const MemberExpr *E) { + assert(!Info.Ctx.getLangOpts().CPlusPlus11 && + "missing temporary materialization conversion"); + assert(!E->isArrow() && "missing call to bound member function?"); + + APValue Val; + if (!Evaluate(Val, Info, E->getBase())) + return false; + + QualType BaseTy = E->getBase()->getType(); + + const FieldDecl *FD = dyn_cast<FieldDecl>(E->getMemberDecl()); + if (!FD) return Error(E); + assert(!FD->getType()->isReferenceType() && "prvalue reference?"); + assert(BaseTy->castAs<RecordType>()->getDecl()->getCanonicalDecl() == + FD->getParent()->getCanonicalDecl() && "record / field mismatch"); + + // Note: there is no lvalue base here. But this case should only ever + // happen in C or in C++98, where we cannot be evaluating a constexpr + // constructor, which is the only case the base matters. + CompleteObject Obj(APValue::LValueBase(), &Val, BaseTy); + SubobjectDesignator Designator(BaseTy); + Designator.addDeclUnchecked(FD); + + APValue Result; + return extractSubobject(Info, E, Obj, Designator, Result) && + DerivedSuccess(Result, E); + } + + bool VisitCastExpr(const CastExpr *E) { + switch (E->getCastKind()) { + default: + break; + + case CK_AtomicToNonAtomic: { + APValue AtomicVal; + // This does not need to be done in place even for class/array types: + // atomic-to-non-atomic conversion implies copying the object + // representation. + if (!Evaluate(AtomicVal, Info, E->getSubExpr())) + return false; + return DerivedSuccess(AtomicVal, E); + } + + case CK_NoOp: + case CK_UserDefinedConversion: + return StmtVisitorTy::Visit(E->getSubExpr()); + + case CK_LValueToRValue: { + LValue LVal; + if (!EvaluateLValue(E->getSubExpr(), LVal, Info)) + return false; + APValue RVal; + // Note, we use the subexpression's type in order to retain cv-qualifiers. + if (!handleLValueToRValueConversion(Info, E, E->getSubExpr()->getType(), + LVal, RVal)) + return false; + return DerivedSuccess(RVal, E); + } + case CK_LValueToRValueBitCast: { + APValue DestValue, SourceValue; + if (!Evaluate(SourceValue, Info, E->getSubExpr())) + return false; + if (!handleLValueToRValueBitCast(Info, DestValue, SourceValue, E)) + return false; + return DerivedSuccess(DestValue, E); + } + } + + return Error(E); + } + + bool VisitUnaryPostInc(const UnaryOperator *UO) { + return VisitUnaryPostIncDec(UO); + } + bool VisitUnaryPostDec(const UnaryOperator *UO) { + return VisitUnaryPostIncDec(UO); + } + bool VisitUnaryPostIncDec(const UnaryOperator *UO) { + if (!Info.getLangOpts().CPlusPlus14 && !Info.keepEvaluatingAfterFailure()) + return Error(UO); + + LValue LVal; + if (!EvaluateLValue(UO->getSubExpr(), LVal, Info)) + return false; + APValue RVal; + if (!handleIncDec(this->Info, UO, LVal, UO->getSubExpr()->getType(), + UO->isIncrementOp(), &RVal)) + return false; + return DerivedSuccess(RVal, UO); + } + + bool VisitStmtExpr(const StmtExpr *E) { + // We will have checked the full-expressions inside the statement expression + // when they were completed, and don't need to check them again now. + if (Info.checkingForUndefinedBehavior()) + return Error(E); + + const CompoundStmt *CS = E->getSubStmt(); + if (CS->body_empty()) + return true; + + BlockScopeRAII Scope(Info); + for (CompoundStmt::const_body_iterator BI = CS->body_begin(), + BE = CS->body_end(); + /**/; ++BI) { + if (BI + 1 == BE) { + const Expr *FinalExpr = dyn_cast<Expr>(*BI); + if (!FinalExpr) { + Info.FFDiag((*BI)->getBeginLoc(), + diag::note_constexpr_stmt_expr_unsupported); + return false; + } + return this->Visit(FinalExpr) && Scope.destroy(); + } + + APValue ReturnValue; + StmtResult Result = { ReturnValue, nullptr }; + EvalStmtResult ESR = EvaluateStmt(Result, Info, *BI); + if (ESR != ESR_Succeeded) { + // FIXME: If the statement-expression terminated due to 'return', + // 'break', or 'continue', it would be nice to propagate that to + // the outer statement evaluation rather than bailing out. + if (ESR != ESR_Failed) + Info.FFDiag((*BI)->getBeginLoc(), + diag::note_constexpr_stmt_expr_unsupported); + return false; + } + } + + llvm_unreachable("Return from function from the loop above."); + } + + /// Visit a value which is evaluated, but whose value is ignored. + void VisitIgnoredValue(const Expr *E) { + EvaluateIgnoredValue(Info, E); + } + + /// Potentially visit a MemberExpr's base expression. + void VisitIgnoredBaseExpression(const Expr *E) { + // While MSVC doesn't evaluate the base expression, it does diagnose the + // presence of side-effecting behavior. + if (Info.getLangOpts().MSVCCompat && !E->HasSideEffects(Info.Ctx)) + return; + VisitIgnoredValue(E); + } +}; + +} // namespace + +//===----------------------------------------------------------------------===// +// Common base class for lvalue and temporary evaluation. +//===----------------------------------------------------------------------===// +namespace { +template<class Derived> +class LValueExprEvaluatorBase + : public ExprEvaluatorBase<Derived> { +protected: + LValue &Result; + bool InvalidBaseOK; + typedef LValueExprEvaluatorBase LValueExprEvaluatorBaseTy; + typedef ExprEvaluatorBase<Derived> ExprEvaluatorBaseTy; + + bool Success(APValue::LValueBase B) { + Result.set(B); + return true; + } + + bool evaluatePointer(const Expr *E, LValue &Result) { + return EvaluatePointer(E, Result, this->Info, InvalidBaseOK); + } + +public: + LValueExprEvaluatorBase(EvalInfo &Info, LValue &Result, bool InvalidBaseOK) + : ExprEvaluatorBaseTy(Info), Result(Result), + InvalidBaseOK(InvalidBaseOK) {} + + bool Success(const APValue &V, const Expr *E) { + Result.setFrom(this->Info.Ctx, V); + return true; + } + + bool VisitMemberExpr(const MemberExpr *E) { + // Handle non-static data members. + QualType BaseTy; + bool EvalOK; + if (E->isArrow()) { + EvalOK = evaluatePointer(E->getBase(), Result); + BaseTy = E->getBase()->getType()->castAs<PointerType>()->getPointeeType(); + } else if (E->getBase()->isRValue()) { + assert(E->getBase()->getType()->isRecordType()); + EvalOK = EvaluateTemporary(E->getBase(), Result, this->Info); + BaseTy = E->getBase()->getType(); + } else { + EvalOK = this->Visit(E->getBase()); + BaseTy = E->getBase()->getType(); + } + if (!EvalOK) { + if (!InvalidBaseOK) + return false; + Result.setInvalid(E); + return true; + } + + const ValueDecl *MD = E->getMemberDecl(); + if (const FieldDecl *FD = dyn_cast<FieldDecl>(E->getMemberDecl())) { + assert(BaseTy->castAs<RecordType>()->getDecl()->getCanonicalDecl() == + FD->getParent()->getCanonicalDecl() && "record / field mismatch"); + (void)BaseTy; + if (!HandleLValueMember(this->Info, E, Result, FD)) + return false; + } else if (const IndirectFieldDecl *IFD = dyn_cast<IndirectFieldDecl>(MD)) { + if (!HandleLValueIndirectMember(this->Info, E, Result, IFD)) + return false; + } else + return this->Error(E); + + if (MD->getType()->isReferenceType()) { + APValue RefValue; + if (!handleLValueToRValueConversion(this->Info, E, MD->getType(), Result, + RefValue)) + return false; + return Success(RefValue, E); + } + return true; + } + + bool VisitBinaryOperator(const BinaryOperator *E) { + switch (E->getOpcode()) { + default: + return ExprEvaluatorBaseTy::VisitBinaryOperator(E); + + case BO_PtrMemD: + case BO_PtrMemI: + return HandleMemberPointerAccess(this->Info, E, Result); + } + } + + bool VisitCastExpr(const CastExpr *E) { + switch (E->getCastKind()) { + default: + return ExprEvaluatorBaseTy::VisitCastExpr(E); + + case CK_DerivedToBase: + case CK_UncheckedDerivedToBase: + if (!this->Visit(E->getSubExpr())) + return false; + + // Now figure out the necessary offset to add to the base LV to get from + // the derived class to the base class. + return HandleLValueBasePath(this->Info, E, E->getSubExpr()->getType(), + Result); + } + } +}; +} + +//===----------------------------------------------------------------------===// +// LValue Evaluation +// +// This is used for evaluating lvalues (in C and C++), xvalues (in C++11), +// function designators (in C), decl references to void objects (in C), and +// temporaries (if building with -Wno-address-of-temporary). +// +// LValue evaluation produces values comprising a base expression of one of the +// following types: +// - Declarations +// * VarDecl +// * FunctionDecl +// - Literals +// * CompoundLiteralExpr in C (and in global scope in C++) +// * StringLiteral +// * PredefinedExpr +// * ObjCStringLiteralExpr +// * ObjCEncodeExpr +// * AddrLabelExpr +// * BlockExpr +// * CallExpr for a MakeStringConstant builtin +// - typeid(T) expressions, as TypeInfoLValues +// - Locals and temporaries +// * MaterializeTemporaryExpr +// * Any Expr, with a CallIndex indicating the function in which the temporary +// was evaluated, for cases where the MaterializeTemporaryExpr is missing +// from the AST (FIXME). +// * A MaterializeTemporaryExpr that has static storage duration, with no +// CallIndex, for a lifetime-extended temporary. +// plus an offset in bytes. +//===----------------------------------------------------------------------===// +namespace { +class LValueExprEvaluator + : public LValueExprEvaluatorBase<LValueExprEvaluator> { +public: + LValueExprEvaluator(EvalInfo &Info, LValue &Result, bool InvalidBaseOK) : + LValueExprEvaluatorBaseTy(Info, Result, InvalidBaseOK) {} + + bool VisitVarDecl(const Expr *E, const VarDecl *VD); + bool VisitUnaryPreIncDec(const UnaryOperator *UO); + + bool VisitDeclRefExpr(const DeclRefExpr *E); + bool VisitPredefinedExpr(const PredefinedExpr *E) { return Success(E); } + bool VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E); + bool VisitCompoundLiteralExpr(const CompoundLiteralExpr *E); + bool VisitMemberExpr(const MemberExpr *E); + bool VisitStringLiteral(const StringLiteral *E) { return Success(E); } + bool VisitObjCEncodeExpr(const ObjCEncodeExpr *E) { return Success(E); } + bool VisitCXXTypeidExpr(const CXXTypeidExpr *E); + bool VisitCXXUuidofExpr(const CXXUuidofExpr *E); + bool VisitArraySubscriptExpr(const ArraySubscriptExpr *E); + bool VisitUnaryDeref(const UnaryOperator *E); + bool VisitUnaryReal(const UnaryOperator *E); + bool VisitUnaryImag(const UnaryOperator *E); + bool VisitUnaryPreInc(const UnaryOperator *UO) { + return VisitUnaryPreIncDec(UO); + } + bool VisitUnaryPreDec(const UnaryOperator *UO) { + return VisitUnaryPreIncDec(UO); + } + bool VisitBinAssign(const BinaryOperator *BO); + bool VisitCompoundAssignOperator(const CompoundAssignOperator *CAO); + + bool VisitCastExpr(const CastExpr *E) { + switch (E->getCastKind()) { + default: + return LValueExprEvaluatorBaseTy::VisitCastExpr(E); + + case CK_LValueBitCast: + this->CCEDiag(E, diag::note_constexpr_invalid_cast) << 2; + if (!Visit(E->getSubExpr())) + return false; + Result.Designator.setInvalid(); + return true; + + case CK_BaseToDerived: + if (!Visit(E->getSubExpr())) + return false; + return HandleBaseToDerivedCast(Info, E, Result); + + case CK_Dynamic: + if (!Visit(E->getSubExpr())) + return false; + return HandleDynamicCast(Info, cast<ExplicitCastExpr>(E), Result); + } + } +}; +} // end anonymous namespace + +/// Evaluate an expression as an lvalue. This can be legitimately called on +/// expressions which are not glvalues, in three cases: +/// * function designators in C, and +/// * "extern void" objects +/// * @selector() expressions in Objective-C +static bool EvaluateLValue(const Expr *E, LValue &Result, EvalInfo &Info, + bool InvalidBaseOK) { + assert(E->isGLValue() || E->getType()->isFunctionType() || + E->getType()->isVoidType() || isa<ObjCSelectorExpr>(E)); + return LValueExprEvaluator(Info, Result, InvalidBaseOK).Visit(E); +} + +bool LValueExprEvaluator::VisitDeclRefExpr(const DeclRefExpr *E) { + if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(E->getDecl())) + return Success(FD); + if (const VarDecl *VD = dyn_cast<VarDecl>(E->getDecl())) + return VisitVarDecl(E, VD); + if (const BindingDecl *BD = dyn_cast<BindingDecl>(E->getDecl())) + return Visit(BD->getBinding()); + return Error(E); +} + + +bool LValueExprEvaluator::VisitVarDecl(const Expr *E, const VarDecl *VD) { + + // If we are within a lambda's call operator, check whether the 'VD' referred + // to within 'E' actually represents a lambda-capture that maps to a + // data-member/field within the closure object, and if so, evaluate to the + // field or what the field refers to. + if (Info.CurrentCall && isLambdaCallOperator(Info.CurrentCall->Callee) && + isa<DeclRefExpr>(E) && + cast<DeclRefExpr>(E)->refersToEnclosingVariableOrCapture()) { + // We don't always have a complete capture-map when checking or inferring if + // the function call operator meets the requirements of a constexpr function + // - but we don't need to evaluate the captures to determine constexprness + // (dcl.constexpr C++17). + if (Info.checkingPotentialConstantExpression()) + return false; + + if (auto *FD = Info.CurrentCall->LambdaCaptureFields.lookup(VD)) { + // Start with 'Result' referring to the complete closure object... + Result = *Info.CurrentCall->This; + // ... then update it to refer to the field of the closure object + // that represents the capture. + if (!HandleLValueMember(Info, E, Result, FD)) + return false; + // And if the field is of reference type, update 'Result' to refer to what + // the field refers to. + if (FD->getType()->isReferenceType()) { + APValue RVal; + if (!handleLValueToRValueConversion(Info, E, FD->getType(), Result, + RVal)) + return false; + Result.setFrom(Info.Ctx, RVal); + } + return true; + } + } + CallStackFrame *Frame = nullptr; + if (VD->hasLocalStorage() && Info.CurrentCall->Index > 1) { + // Only if a local variable was declared in the function currently being + // evaluated, do we expect to be able to find its value in the current + // frame. (Otherwise it was likely declared in an enclosing context and + // could either have a valid evaluatable value (for e.g. a constexpr + // variable) or be ill-formed (and trigger an appropriate evaluation + // diagnostic)). + if (Info.CurrentCall->Callee && + Info.CurrentCall->Callee->Equals(VD->getDeclContext())) { + Frame = Info.CurrentCall; + } + } + + if (!VD->getType()->isReferenceType()) { + if (Frame) { + Result.set({VD, Frame->Index, + Info.CurrentCall->getCurrentTemporaryVersion(VD)}); + return true; + } + return Success(VD); + } + + APValue *V; + if (!evaluateVarDeclInit(Info, E, VD, Frame, V, nullptr)) + return false; + if (!V->hasValue()) { + // FIXME: Is it possible for V to be indeterminate here? If so, we should + // adjust the diagnostic to say that. + if (!Info.checkingPotentialConstantExpression()) + Info.FFDiag(E, diag::note_constexpr_use_uninit_reference); + return false; + } + return Success(*V, E); +} + +bool LValueExprEvaluator::VisitMaterializeTemporaryExpr( + const MaterializeTemporaryExpr *E) { + // Walk through the expression to find the materialized temporary itself. + SmallVector<const Expr *, 2> CommaLHSs; + SmallVector<SubobjectAdjustment, 2> Adjustments; + const Expr *Inner = E->GetTemporaryExpr()-> + skipRValueSubobjectAdjustments(CommaLHSs, Adjustments); + + // If we passed any comma operators, evaluate their LHSs. + for (unsigned I = 0, N = CommaLHSs.size(); I != N; ++I) + if (!EvaluateIgnoredValue(Info, CommaLHSs[I])) + return false; + + // A materialized temporary with static storage duration can appear within the + // result of a constant expression evaluation, so we need to preserve its + // value for use outside this evaluation. + APValue *Value; + if (E->getStorageDuration() == SD_Static) { + Value = Info.Ctx.getMaterializedTemporaryValue(E, true); + *Value = APValue(); + Result.set(E); + } else { + Value = &Info.CurrentCall->createTemporary( + E, E->getType(), E->getStorageDuration() == SD_Automatic, Result); + } + + QualType Type = Inner->getType(); + + // Materialize the temporary itself. + if (!EvaluateInPlace(*Value, Info, Result, Inner)) { + *Value = APValue(); + return false; + } + + // Adjust our lvalue to refer to the desired subobject. + for (unsigned I = Adjustments.size(); I != 0; /**/) { + --I; + switch (Adjustments[I].Kind) { + case SubobjectAdjustment::DerivedToBaseAdjustment: + if (!HandleLValueBasePath(Info, Adjustments[I].DerivedToBase.BasePath, + Type, Result)) + return false; + Type = Adjustments[I].DerivedToBase.BasePath->getType(); + break; + + case SubobjectAdjustment::FieldAdjustment: + if (!HandleLValueMember(Info, E, Result, Adjustments[I].Field)) + return false; + Type = Adjustments[I].Field->getType(); + break; + + case SubobjectAdjustment::MemberPointerAdjustment: + if (!HandleMemberPointerAccess(this->Info, Type, Result, + Adjustments[I].Ptr.RHS)) + return false; + Type = Adjustments[I].Ptr.MPT->getPointeeType(); + break; + } + } + + return true; +} + +bool +LValueExprEvaluator::VisitCompoundLiteralExpr(const CompoundLiteralExpr *E) { + assert((!Info.getLangOpts().CPlusPlus || E->isFileScope()) && + "lvalue compound literal in c++?"); + // Defer visiting the literal until the lvalue-to-rvalue conversion. We can + // only see this when folding in C, so there's no standard to follow here. + return Success(E); +} + +bool LValueExprEvaluator::VisitCXXTypeidExpr(const CXXTypeidExpr *E) { + TypeInfoLValue TypeInfo; + + if (!E->isPotentiallyEvaluated()) { + if (E->isTypeOperand()) + TypeInfo = TypeInfoLValue(E->getTypeOperand(Info.Ctx).getTypePtr()); + else + TypeInfo = TypeInfoLValue(E->getExprOperand()->getType().getTypePtr()); + } else { + if (!Info.Ctx.getLangOpts().CPlusPlus2a) { + Info.CCEDiag(E, diag::note_constexpr_typeid_polymorphic) + << E->getExprOperand()->getType() + << E->getExprOperand()->getSourceRange(); + } + + if (!Visit(E->getExprOperand())) + return false; + + Optional<DynamicType> DynType = + ComputeDynamicType(Info, E, Result, AK_TypeId); + if (!DynType) + return false; + + TypeInfo = + TypeInfoLValue(Info.Ctx.getRecordType(DynType->Type).getTypePtr()); + } + + return Success(APValue::LValueBase::getTypeInfo(TypeInfo, E->getType())); +} + +bool LValueExprEvaluator::VisitCXXUuidofExpr(const CXXUuidofExpr *E) { + return Success(E); +} + +bool LValueExprEvaluator::VisitMemberExpr(const MemberExpr *E) { + // Handle static data members. + if (const VarDecl *VD = dyn_cast<VarDecl>(E->getMemberDecl())) { + VisitIgnoredBaseExpression(E->getBase()); + return VisitVarDecl(E, VD); + } + + // Handle static member functions. + if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(E->getMemberDecl())) { + if (MD->isStatic()) { + VisitIgnoredBaseExpression(E->getBase()); + return Success(MD); + } + } + + // Handle non-static data members. + return LValueExprEvaluatorBaseTy::VisitMemberExpr(E); +} + +bool LValueExprEvaluator::VisitArraySubscriptExpr(const ArraySubscriptExpr *E) { + // FIXME: Deal with vectors as array subscript bases. + if (E->getBase()->getType()->isVectorType()) + return Error(E); + + bool Success = true; + if (!evaluatePointer(E->getBase(), Result)) { + if (!Info.noteFailure()) + return false; + Success = false; + } + + APSInt Index; + if (!EvaluateInteger(E->getIdx(), Index, Info)) + return false; + + return Success && + HandleLValueArrayAdjustment(Info, E, Result, E->getType(), Index); +} + +bool LValueExprEvaluator::VisitUnaryDeref(const UnaryOperator *E) { + return evaluatePointer(E->getSubExpr(), Result); +} + +bool LValueExprEvaluator::VisitUnaryReal(const UnaryOperator *E) { + if (!Visit(E->getSubExpr())) + return false; + // __real is a no-op on scalar lvalues. + if (E->getSubExpr()->getType()->isAnyComplexType()) + HandleLValueComplexElement(Info, E, Result, E->getType(), false); + return true; +} + +bool LValueExprEvaluator::VisitUnaryImag(const UnaryOperator *E) { + assert(E->getSubExpr()->getType()->isAnyComplexType() && + "lvalue __imag__ on scalar?"); + if (!Visit(E->getSubExpr())) + return false; + HandleLValueComplexElement(Info, E, Result, E->getType(), true); + return true; +} + +bool LValueExprEvaluator::VisitUnaryPreIncDec(const UnaryOperator *UO) { + if (!Info.getLangOpts().CPlusPlus14 && !Info.keepEvaluatingAfterFailure()) + return Error(UO); + + if (!this->Visit(UO->getSubExpr())) + return false; + + return handleIncDec( + this->Info, UO, Result, UO->getSubExpr()->getType(), + UO->isIncrementOp(), nullptr); +} + +bool LValueExprEvaluator::VisitCompoundAssignOperator( + const CompoundAssignOperator *CAO) { + if (!Info.getLangOpts().CPlusPlus14 && !Info.keepEvaluatingAfterFailure()) + return Error(CAO); + + APValue RHS; + + // The overall lvalue result is the result of evaluating the LHS. + if (!this->Visit(CAO->getLHS())) { + if (Info.noteFailure()) + Evaluate(RHS, this->Info, CAO->getRHS()); + return false; + } + + if (!Evaluate(RHS, this->Info, CAO->getRHS())) + return false; + + return handleCompoundAssignment( + this->Info, CAO, + Result, CAO->getLHS()->getType(), CAO->getComputationLHSType(), + CAO->getOpForCompoundAssignment(CAO->getOpcode()), RHS); +} + +bool LValueExprEvaluator::VisitBinAssign(const BinaryOperator *E) { + if (!Info.getLangOpts().CPlusPlus14 && !Info.keepEvaluatingAfterFailure()) + return Error(E); + + APValue NewVal; + + if (!this->Visit(E->getLHS())) { + if (Info.noteFailure()) + Evaluate(NewVal, this->Info, E->getRHS()); + return false; + } + + if (!Evaluate(NewVal, this->Info, E->getRHS())) + return false; + + if (Info.getLangOpts().CPlusPlus2a && + !HandleUnionActiveMemberChange(Info, E->getLHS(), Result)) + return false; + + return handleAssignment(this->Info, E, Result, E->getLHS()->getType(), + NewVal); +} + +//===----------------------------------------------------------------------===// +// Pointer Evaluation +//===----------------------------------------------------------------------===// + +/// Attempts to compute the number of bytes available at the pointer +/// returned by a function with the alloc_size attribute. Returns true if we +/// were successful. Places an unsigned number into `Result`. +/// +/// This expects the given CallExpr to be a call to a function with an +/// alloc_size attribute. +static bool getBytesReturnedByAllocSizeCall(const ASTContext &Ctx, + const CallExpr *Call, + llvm::APInt &Result) { + const AllocSizeAttr *AllocSize = getAllocSizeAttr(Call); + + assert(AllocSize && AllocSize->getElemSizeParam().isValid()); + unsigned SizeArgNo = AllocSize->getElemSizeParam().getASTIndex(); + unsigned BitsInSizeT = Ctx.getTypeSize(Ctx.getSizeType()); + if (Call->getNumArgs() <= SizeArgNo) + return false; + + auto EvaluateAsSizeT = [&](const Expr *E, APSInt &Into) { + Expr::EvalResult ExprResult; + if (!E->EvaluateAsInt(ExprResult, Ctx, Expr::SE_AllowSideEffects)) + return false; + Into = ExprResult.Val.getInt(); + if (Into.isNegative() || !Into.isIntN(BitsInSizeT)) + return false; + Into = Into.zextOrSelf(BitsInSizeT); + return true; + }; + + APSInt SizeOfElem; + if (!EvaluateAsSizeT(Call->getArg(SizeArgNo), SizeOfElem)) + return false; + + if (!AllocSize->getNumElemsParam().isValid()) { + Result = std::move(SizeOfElem); + return true; + } + + APSInt NumberOfElems; + unsigned NumArgNo = AllocSize->getNumElemsParam().getASTIndex(); + if (!EvaluateAsSizeT(Call->getArg(NumArgNo), NumberOfElems)) + return false; + + bool Overflow; + llvm::APInt BytesAvailable = SizeOfElem.umul_ov(NumberOfElems, Overflow); + if (Overflow) + return false; + + Result = std::move(BytesAvailable); + return true; +} + +/// Convenience function. LVal's base must be a call to an alloc_size +/// function. +static bool getBytesReturnedByAllocSizeCall(const ASTContext &Ctx, + const LValue &LVal, + llvm::APInt &Result) { + assert(isBaseAnAllocSizeCall(LVal.getLValueBase()) && + "Can't get the size of a non alloc_size function"); + const auto *Base = LVal.getLValueBase().get<const Expr *>(); + const CallExpr *CE = tryUnwrapAllocSizeCall(Base); + return getBytesReturnedByAllocSizeCall(Ctx, CE, Result); +} + +/// Attempts to evaluate the given LValueBase as the result of a call to +/// a function with the alloc_size attribute. If it was possible to do so, this +/// function will return true, make Result's Base point to said function call, +/// and mark Result's Base as invalid. +static bool evaluateLValueAsAllocSize(EvalInfo &Info, APValue::LValueBase Base, + LValue &Result) { + if (Base.isNull()) + return false; + + // Because we do no form of static analysis, we only support const variables. + // + // Additionally, we can't support parameters, nor can we support static + // variables (in the latter case, use-before-assign isn't UB; in the former, + // we have no clue what they'll be assigned to). + const auto *VD = + dyn_cast_or_null<VarDecl>(Base.dyn_cast<const ValueDecl *>()); + if (!VD || !VD->isLocalVarDecl() || !VD->getType().isConstQualified()) + return false; + + const Expr *Init = VD->getAnyInitializer(); + if (!Init) + return false; + + const Expr *E = Init->IgnoreParens(); + if (!tryUnwrapAllocSizeCall(E)) + return false; + + // Store E instead of E unwrapped so that the type of the LValue's base is + // what the user wanted. + Result.setInvalid(E); + + QualType Pointee = E->getType()->castAs<PointerType>()->getPointeeType(); + Result.addUnsizedArray(Info, E, Pointee); + return true; +} + +namespace { +class PointerExprEvaluator + : public ExprEvaluatorBase<PointerExprEvaluator> { + LValue &Result; + bool InvalidBaseOK; + + bool Success(const Expr *E) { + Result.set(E); + return true; + } + + bool evaluateLValue(const Expr *E, LValue &Result) { + return EvaluateLValue(E, Result, Info, InvalidBaseOK); + } + + bool evaluatePointer(const Expr *E, LValue &Result) { + return EvaluatePointer(E, Result, Info, InvalidBaseOK); + } + + bool visitNonBuiltinCallExpr(const CallExpr *E); +public: + + PointerExprEvaluator(EvalInfo &info, LValue &Result, bool InvalidBaseOK) + : ExprEvaluatorBaseTy(info), Result(Result), + InvalidBaseOK(InvalidBaseOK) {} + + bool Success(const APValue &V, const Expr *E) { + Result.setFrom(Info.Ctx, V); + return true; + } + bool ZeroInitialization(const Expr *E) { + Result.setNull(Info.Ctx, E->getType()); + return true; + } + + bool VisitBinaryOperator(const BinaryOperator *E); + bool VisitCastExpr(const CastExpr* E); + bool VisitUnaryAddrOf(const UnaryOperator *E); + bool VisitObjCStringLiteral(const ObjCStringLiteral *E) + { return Success(E); } + bool VisitObjCBoxedExpr(const ObjCBoxedExpr *E) { + if (E->isExpressibleAsConstantInitializer()) + return Success(E); + if (Info.noteFailure()) + EvaluateIgnoredValue(Info, E->getSubExpr()); + return Error(E); + } + bool VisitAddrLabelExpr(const AddrLabelExpr *E) + { return Success(E); } + bool VisitCallExpr(const CallExpr *E); + bool VisitBuiltinCallExpr(const CallExpr *E, unsigned BuiltinOp); + bool VisitBlockExpr(const BlockExpr *E) { + if (!E->getBlockDecl()->hasCaptures()) + return Success(E); + return Error(E); + } + bool VisitCXXThisExpr(const CXXThisExpr *E) { + // Can't look at 'this' when checking a potential constant expression. + if (Info.checkingPotentialConstantExpression()) + return false; + if (!Info.CurrentCall->This) { + if (Info.getLangOpts().CPlusPlus11) + Info.FFDiag(E, diag::note_constexpr_this) << E->isImplicit(); + else + Info.FFDiag(E); + return false; + } + Result = *Info.CurrentCall->This; + // If we are inside a lambda's call operator, the 'this' expression refers + // to the enclosing '*this' object (either by value or reference) which is + // either copied into the closure object's field that represents the '*this' + // or refers to '*this'. + if (isLambdaCallOperator(Info.CurrentCall->Callee)) { + // Update 'Result' to refer to the data member/field of the closure object + // that represents the '*this' capture. + if (!HandleLValueMember(Info, E, Result, + Info.CurrentCall->LambdaThisCaptureField)) + return false; + // If we captured '*this' by reference, replace the field with its referent. + if (Info.CurrentCall->LambdaThisCaptureField->getType() + ->isPointerType()) { + APValue RVal; + if (!handleLValueToRValueConversion(Info, E, E->getType(), Result, + RVal)) + return false; + + Result.setFrom(Info.Ctx, RVal); + } + } + return true; + } + + bool VisitCXXNewExpr(const CXXNewExpr *E); + + bool VisitSourceLocExpr(const SourceLocExpr *E) { + assert(E->isStringType() && "SourceLocExpr isn't a pointer type?"); + APValue LValResult = E->EvaluateInContext( + Info.Ctx, Info.CurrentCall->CurSourceLocExprScope.getDefaultExpr()); + Result.setFrom(Info.Ctx, LValResult); + return true; + } + + // FIXME: Missing: @protocol, @selector +}; +} // end anonymous namespace + +static bool EvaluatePointer(const Expr* E, LValue& Result, EvalInfo &Info, + bool InvalidBaseOK) { + assert(E->isRValue() && E->getType()->hasPointerRepresentation()); + return PointerExprEvaluator(Info, Result, InvalidBaseOK).Visit(E); +} + +bool PointerExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) { + if (E->getOpcode() != BO_Add && + E->getOpcode() != BO_Sub) + return ExprEvaluatorBaseTy::VisitBinaryOperator(E); + + const Expr *PExp = E->getLHS(); + const Expr *IExp = E->getRHS(); + if (IExp->getType()->isPointerType()) + std::swap(PExp, IExp); + + bool EvalPtrOK = evaluatePointer(PExp, Result); + if (!EvalPtrOK && !Info.noteFailure()) + return false; + + llvm::APSInt Offset; + if (!EvaluateInteger(IExp, Offset, Info) || !EvalPtrOK) + return false; + + if (E->getOpcode() == BO_Sub) + negateAsSigned(Offset); + + QualType Pointee = PExp->getType()->castAs<PointerType>()->getPointeeType(); + return HandleLValueArrayAdjustment(Info, E, Result, Pointee, Offset); +} + +bool PointerExprEvaluator::VisitUnaryAddrOf(const UnaryOperator *E) { + return evaluateLValue(E->getSubExpr(), Result); +} + +bool PointerExprEvaluator::VisitCastExpr(const CastExpr *E) { + const Expr *SubExpr = E->getSubExpr(); + + switch (E->getCastKind()) { + default: + break; + case CK_BitCast: + case CK_CPointerToObjCPointerCast: + case CK_BlockPointerToObjCPointerCast: + case CK_AnyPointerToBlockPointerCast: + case CK_AddressSpaceConversion: + if (!Visit(SubExpr)) + return false; + // Bitcasts to cv void* are static_casts, not reinterpret_casts, so are + // permitted in constant expressions in C++11. Bitcasts from cv void* are + // also static_casts, but we disallow them as a resolution to DR1312. + if (!E->getType()->isVoidPointerType()) { + if (!Result.InvalidBase && !Result.Designator.Invalid && + !Result.IsNullPtr && + Info.Ctx.hasSameUnqualifiedType(Result.Designator.getType(Info.Ctx), + E->getType()->getPointeeType()) && + Info.getStdAllocatorCaller("allocate")) { + // Inside a call to std::allocator::allocate and friends, we permit + // casting from void* back to cv1 T* for a pointer that points to a + // cv2 T. + } else { + Result.Designator.setInvalid(); + if (SubExpr->getType()->isVoidPointerType()) + CCEDiag(E, diag::note_constexpr_invalid_cast) + << 3 << SubExpr->getType(); + else + CCEDiag(E, diag::note_constexpr_invalid_cast) << 2; + } + } + if (E->getCastKind() == CK_AddressSpaceConversion && Result.IsNullPtr) + ZeroInitialization(E); + return true; + + case CK_DerivedToBase: + case CK_UncheckedDerivedToBase: + if (!evaluatePointer(E->getSubExpr(), Result)) + return false; + if (!Result.Base && Result.Offset.isZero()) + return true; + + // Now figure out the necessary offset to add to the base LV to get from + // the derived class to the base class. + return HandleLValueBasePath(Info, E, E->getSubExpr()->getType()-> + castAs<PointerType>()->getPointeeType(), + Result); + + case CK_BaseToDerived: + if (!Visit(E->getSubExpr())) + return false; + if (!Result.Base && Result.Offset.isZero()) + return true; + return HandleBaseToDerivedCast(Info, E, Result); + + case CK_Dynamic: + if (!Visit(E->getSubExpr())) + return false; + return HandleDynamicCast(Info, cast<ExplicitCastExpr>(E), Result); + + case CK_NullToPointer: + VisitIgnoredValue(E->getSubExpr()); + return ZeroInitialization(E); + + case CK_IntegralToPointer: { + CCEDiag(E, diag::note_constexpr_invalid_cast) << 2; + + APValue Value; + if (!EvaluateIntegerOrLValue(SubExpr, Value, Info)) + break; + + if (Value.isInt()) { + unsigned Size = Info.Ctx.getTypeSize(E->getType()); + uint64_t N = Value.getInt().extOrTrunc(Size).getZExtValue(); + Result.Base = (Expr*)nullptr; + Result.InvalidBase = false; + Result.Offset = CharUnits::fromQuantity(N); + Result.Designator.setInvalid(); + Result.IsNullPtr = false; + return true; + } else { + // Cast is of an lvalue, no need to change value. + Result.setFrom(Info.Ctx, Value); + return true; + } + } + + case CK_ArrayToPointerDecay: { + if (SubExpr->isGLValue()) { + if (!evaluateLValue(SubExpr, Result)) + return false; + } else { + APValue &Value = Info.CurrentCall->createTemporary( + SubExpr, SubExpr->getType(), false, Result); + if (!EvaluateInPlace(Value, Info, Result, SubExpr)) + return false; + } + // The result is a pointer to the first element of the array. + auto *AT = Info.Ctx.getAsArrayType(SubExpr->getType()); + if (auto *CAT = dyn_cast<ConstantArrayType>(AT)) + Result.addArray(Info, E, CAT); + else + Result.addUnsizedArray(Info, E, AT->getElementType()); + return true; + } + + case CK_FunctionToPointerDecay: + return evaluateLValue(SubExpr, Result); + + case CK_LValueToRValue: { + LValue LVal; + if (!evaluateLValue(E->getSubExpr(), LVal)) + return false; + + APValue RVal; + // Note, we use the subexpression's type in order to retain cv-qualifiers. + if (!handleLValueToRValueConversion(Info, E, E->getSubExpr()->getType(), + LVal, RVal)) + return InvalidBaseOK && + evaluateLValueAsAllocSize(Info, LVal.Base, Result); + return Success(RVal, E); + } + } + + return ExprEvaluatorBaseTy::VisitCastExpr(E); +} + +static CharUnits GetAlignOfType(EvalInfo &Info, QualType T, + UnaryExprOrTypeTrait ExprKind) { + // C++ [expr.alignof]p3: + // When alignof is applied to a reference type, the result is the + // alignment of the referenced type. + if (const ReferenceType *Ref = T->getAs<ReferenceType>()) + T = Ref->getPointeeType(); + + if (T.getQualifiers().hasUnaligned()) + return CharUnits::One(); + + const bool AlignOfReturnsPreferred = + Info.Ctx.getLangOpts().getClangABICompat() <= LangOptions::ClangABI::Ver7; + + // __alignof is defined to return the preferred alignment. + // Before 8, clang returned the preferred alignment for alignof and _Alignof + // as well. + if (ExprKind == UETT_PreferredAlignOf || AlignOfReturnsPreferred) + return Info.Ctx.toCharUnitsFromBits( + Info.Ctx.getPreferredTypeAlign(T.getTypePtr())); + // alignof and _Alignof are defined to return the ABI alignment. + else if (ExprKind == UETT_AlignOf) + return Info.Ctx.getTypeAlignInChars(T.getTypePtr()); + else + llvm_unreachable("GetAlignOfType on a non-alignment ExprKind"); +} + +static CharUnits GetAlignOfExpr(EvalInfo &Info, const Expr *E, + UnaryExprOrTypeTrait ExprKind) { + E = E->IgnoreParens(); + + // The kinds of expressions that we have special-case logic here for + // should be kept up to date with the special checks for those + // expressions in Sema. + + // alignof decl is always accepted, even if it doesn't make sense: we default + // to 1 in those cases. + if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) + return Info.Ctx.getDeclAlign(DRE->getDecl(), + /*RefAsPointee*/true); + + if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) + return Info.Ctx.getDeclAlign(ME->getMemberDecl(), + /*RefAsPointee*/true); + + return GetAlignOfType(Info, E->getType(), ExprKind); +} + +// To be clear: this happily visits unsupported builtins. Better name welcomed. +bool PointerExprEvaluator::visitNonBuiltinCallExpr(const CallExpr *E) { + if (ExprEvaluatorBaseTy::VisitCallExpr(E)) + return true; + + if (!(InvalidBaseOK && getAllocSizeAttr(E))) + return false; + + Result.setInvalid(E); + QualType PointeeTy = E->getType()->castAs<PointerType>()->getPointeeType(); + Result.addUnsizedArray(Info, E, PointeeTy); + return true; +} + +bool PointerExprEvaluator::VisitCallExpr(const CallExpr *E) { + if (IsStringLiteralCall(E)) + return Success(E); + + if (unsigned BuiltinOp = E->getBuiltinCallee()) + return VisitBuiltinCallExpr(E, BuiltinOp); + + return visitNonBuiltinCallExpr(E); +} + +bool PointerExprEvaluator::VisitBuiltinCallExpr(const CallExpr *E, + unsigned BuiltinOp) { + switch (BuiltinOp) { + case Builtin::BI__builtin_addressof: + return evaluateLValue(E->getArg(0), Result); + case Builtin::BI__builtin_assume_aligned: { + // We need to be very careful here because: if the pointer does not have the + // asserted alignment, then the behavior is undefined, and undefined + // behavior is non-constant. + if (!evaluatePointer(E->getArg(0), Result)) + return false; + + LValue OffsetResult(Result); + APSInt Alignment; + if (!EvaluateInteger(E->getArg(1), Alignment, Info)) + return false; + CharUnits Align = CharUnits::fromQuantity(Alignment.getZExtValue()); + + if (E->getNumArgs() > 2) { + APSInt Offset; + if (!EvaluateInteger(E->getArg(2), Offset, Info)) + return false; + + int64_t AdditionalOffset = -Offset.getZExtValue(); + OffsetResult.Offset += CharUnits::fromQuantity(AdditionalOffset); + } + + // If there is a base object, then it must have the correct alignment. + if (OffsetResult.Base) { + CharUnits BaseAlignment; + if (const ValueDecl *VD = + OffsetResult.Base.dyn_cast<const ValueDecl*>()) { + BaseAlignment = Info.Ctx.getDeclAlign(VD); + } else if (const Expr *E = OffsetResult.Base.dyn_cast<const Expr *>()) { + BaseAlignment = GetAlignOfExpr(Info, E, UETT_AlignOf); + } else { + BaseAlignment = GetAlignOfType( + Info, OffsetResult.Base.getTypeInfoType(), UETT_AlignOf); + } + + if (BaseAlignment < Align) { + Result.Designator.setInvalid(); + // FIXME: Add support to Diagnostic for long / long long. + CCEDiag(E->getArg(0), + diag::note_constexpr_baa_insufficient_alignment) << 0 + << (unsigned)BaseAlignment.getQuantity() + << (unsigned)Align.getQuantity(); + return false; + } + } + + // The offset must also have the correct alignment. + if (OffsetResult.Offset.alignTo(Align) != OffsetResult.Offset) { + Result.Designator.setInvalid(); + + (OffsetResult.Base + ? CCEDiag(E->getArg(0), + diag::note_constexpr_baa_insufficient_alignment) << 1 + : CCEDiag(E->getArg(0), + diag::note_constexpr_baa_value_insufficient_alignment)) + << (int)OffsetResult.Offset.getQuantity() + << (unsigned)Align.getQuantity(); + return false; + } + + return true; + } + case Builtin::BI__builtin_operator_new: + return HandleOperatorNewCall(Info, E, Result); + case Builtin::BI__builtin_launder: + return evaluatePointer(E->getArg(0), Result); + case Builtin::BIstrchr: + case Builtin::BIwcschr: + case Builtin::BImemchr: + case Builtin::BIwmemchr: + if (Info.getLangOpts().CPlusPlus11) + Info.CCEDiag(E, diag::note_constexpr_invalid_function) + << /*isConstexpr*/0 << /*isConstructor*/0 + << (std::string("'") + Info.Ctx.BuiltinInfo.getName(BuiltinOp) + "'"); + else + Info.CCEDiag(E, diag::note_invalid_subexpr_in_const_expr); + LLVM_FALLTHROUGH; + case Builtin::BI__builtin_strchr: + case Builtin::BI__builtin_wcschr: + case Builtin::BI__builtin_memchr: + case Builtin::BI__builtin_char_memchr: + case Builtin::BI__builtin_wmemchr: { + if (!Visit(E->getArg(0))) + return false; + APSInt Desired; + if (!EvaluateInteger(E->getArg(1), Desired, Info)) + return false; + uint64_t MaxLength = uint64_t(-1); + if (BuiltinOp != Builtin::BIstrchr && + BuiltinOp != Builtin::BIwcschr && + BuiltinOp != Builtin::BI__builtin_strchr && + BuiltinOp != Builtin::BI__builtin_wcschr) { + APSInt N; + if (!EvaluateInteger(E->getArg(2), N, Info)) + return false; + MaxLength = N.getExtValue(); + } + // We cannot find the value if there are no candidates to match against. + if (MaxLength == 0u) + return ZeroInitialization(E); + if (!Result.checkNullPointerForFoldAccess(Info, E, AK_Read) || + Result.Designator.Invalid) + return false; + QualType CharTy = Result.Designator.getType(Info.Ctx); + bool IsRawByte = BuiltinOp == Builtin::BImemchr || + BuiltinOp == Builtin::BI__builtin_memchr; + assert(IsRawByte || + Info.Ctx.hasSameUnqualifiedType( + CharTy, E->getArg(0)->getType()->getPointeeType())); + // Pointers to const void may point to objects of incomplete type. + if (IsRawByte && CharTy->isIncompleteType()) { + Info.FFDiag(E, diag::note_constexpr_ltor_incomplete_type) << CharTy; + return false; + } + // Give up on byte-oriented matching against multibyte elements. + // FIXME: We can compare the bytes in the correct order. + if (IsRawByte && Info.Ctx.getTypeSizeInChars(CharTy) != CharUnits::One()) + return false; + // Figure out what value we're actually looking for (after converting to + // the corresponding unsigned type if necessary). + uint64_t DesiredVal; + bool StopAtNull = false; + switch (BuiltinOp) { + case Builtin::BIstrchr: + case Builtin::BI__builtin_strchr: + // strchr compares directly to the passed integer, and therefore + // always fails if given an int that is not a char. + if (!APSInt::isSameValue(HandleIntToIntCast(Info, E, CharTy, + E->getArg(1)->getType(), + Desired), + Desired)) + return ZeroInitialization(E); + StopAtNull = true; + LLVM_FALLTHROUGH; + case Builtin::BImemchr: + case Builtin::BI__builtin_memchr: + case Builtin::BI__builtin_char_memchr: + // memchr compares by converting both sides to unsigned char. That's also + // correct for strchr if we get this far (to cope with plain char being + // unsigned in the strchr case). + DesiredVal = Desired.trunc(Info.Ctx.getCharWidth()).getZExtValue(); + break; + + case Builtin::BIwcschr: + case Builtin::BI__builtin_wcschr: + StopAtNull = true; + LLVM_FALLTHROUGH; + case Builtin::BIwmemchr: + case Builtin::BI__builtin_wmemchr: + // wcschr and wmemchr are given a wchar_t to look for. Just use it. + DesiredVal = Desired.getZExtValue(); + break; + } + + for (; MaxLength; --MaxLength) { + APValue Char; + if (!handleLValueToRValueConversion(Info, E, CharTy, Result, Char) || + !Char.isInt()) + return false; + if (Char.getInt().getZExtValue() == DesiredVal) + return true; + if (StopAtNull && !Char.getInt()) + break; + if (!HandleLValueArrayAdjustment(Info, E, Result, CharTy, 1)) + return false; + } + // Not found: return nullptr. + return ZeroInitialization(E); + } + + case Builtin::BImemcpy: + case Builtin::BImemmove: + case Builtin::BIwmemcpy: + case Builtin::BIwmemmove: + if (Info.getLangOpts().CPlusPlus11) + Info.CCEDiag(E, diag::note_constexpr_invalid_function) + << /*isConstexpr*/0 << /*isConstructor*/0 + << (std::string("'") + Info.Ctx.BuiltinInfo.getName(BuiltinOp) + "'"); + else + Info.CCEDiag(E, diag::note_invalid_subexpr_in_const_expr); + LLVM_FALLTHROUGH; + case Builtin::BI__builtin_memcpy: + case Builtin::BI__builtin_memmove: + case Builtin::BI__builtin_wmemcpy: + case Builtin::BI__builtin_wmemmove: { + bool WChar = BuiltinOp == Builtin::BIwmemcpy || + BuiltinOp == Builtin::BIwmemmove || + BuiltinOp == Builtin::BI__builtin_wmemcpy || + BuiltinOp == Builtin::BI__builtin_wmemmove; + bool Move = BuiltinOp == Builtin::BImemmove || + BuiltinOp == Builtin::BIwmemmove || + BuiltinOp == Builtin::BI__builtin_memmove || + BuiltinOp == Builtin::BI__builtin_wmemmove; + + // The result of mem* is the first argument. + if (!Visit(E->getArg(0))) + return false; + LValue Dest = Result; + + LValue Src; + if (!EvaluatePointer(E->getArg(1), Src, Info)) + return false; + + APSInt N; + if (!EvaluateInteger(E->getArg(2), N, Info)) + return false; + assert(!N.isSigned() && "memcpy and friends take an unsigned size"); + + // If the size is zero, we treat this as always being a valid no-op. + // (Even if one of the src and dest pointers is null.) + if (!N) + return true; + + // Otherwise, if either of the operands is null, we can't proceed. Don't + // try to determine the type of the copied objects, because there aren't + // any. + if (!Src.Base || !Dest.Base) { + APValue Val; + (!Src.Base ? Src : Dest).moveInto(Val); + Info.FFDiag(E, diag::note_constexpr_memcpy_null) + << Move << WChar << !!Src.Base + << Val.getAsString(Info.Ctx, E->getArg(0)->getType()); + return false; + } + if (Src.Designator.Invalid || Dest.Designator.Invalid) + return false; + + // We require that Src and Dest are both pointers to arrays of + // trivially-copyable type. (For the wide version, the designator will be + // invalid if the designated object is not a wchar_t.) + QualType T = Dest.Designator.getType(Info.Ctx); + QualType SrcT = Src.Designator.getType(Info.Ctx); + if (!Info.Ctx.hasSameUnqualifiedType(T, SrcT)) { + Info.FFDiag(E, diag::note_constexpr_memcpy_type_pun) << Move << SrcT << T; + return false; + } + if (T->isIncompleteType()) { + Info.FFDiag(E, diag::note_constexpr_memcpy_incomplete_type) << Move << T; + return false; + } + if (!T.isTriviallyCopyableType(Info.Ctx)) { + Info.FFDiag(E, diag::note_constexpr_memcpy_nontrivial) << Move << T; + return false; + } + + // Figure out how many T's we're copying. + uint64_t TSize = Info.Ctx.getTypeSizeInChars(T).getQuantity(); + if (!WChar) { + uint64_t Remainder; + llvm::APInt OrigN = N; + llvm::APInt::udivrem(OrigN, TSize, N, Remainder); + if (Remainder) { + Info.FFDiag(E, diag::note_constexpr_memcpy_unsupported) + << Move << WChar << 0 << T << OrigN.toString(10, /*Signed*/false) + << (unsigned)TSize; + return false; + } + } + + // Check that the copying will remain within the arrays, just so that we + // can give a more meaningful diagnostic. This implicitly also checks that + // N fits into 64 bits. + uint64_t RemainingSrcSize = Src.Designator.validIndexAdjustments().second; + uint64_t RemainingDestSize = Dest.Designator.validIndexAdjustments().second; + if (N.ugt(RemainingSrcSize) || N.ugt(RemainingDestSize)) { + Info.FFDiag(E, diag::note_constexpr_memcpy_unsupported) + << Move << WChar << (N.ugt(RemainingSrcSize) ? 1 : 2) << T + << N.toString(10, /*Signed*/false); + return false; + } + uint64_t NElems = N.getZExtValue(); + uint64_t NBytes = NElems * TSize; + + // Check for overlap. + int Direction = 1; + if (HasSameBase(Src, Dest)) { + uint64_t SrcOffset = Src.getLValueOffset().getQuantity(); + uint64_t DestOffset = Dest.getLValueOffset().getQuantity(); + if (DestOffset >= SrcOffset && DestOffset - SrcOffset < NBytes) { + // Dest is inside the source region. + if (!Move) { + Info.FFDiag(E, diag::note_constexpr_memcpy_overlap) << WChar; + return false; + } + // For memmove and friends, copy backwards. + if (!HandleLValueArrayAdjustment(Info, E, Src, T, NElems - 1) || + !HandleLValueArrayAdjustment(Info, E, Dest, T, NElems - 1)) + return false; + Direction = -1; + } else if (!Move && SrcOffset >= DestOffset && + SrcOffset - DestOffset < NBytes) { + // Src is inside the destination region for memcpy: invalid. + Info.FFDiag(E, diag::note_constexpr_memcpy_overlap) << WChar; + return false; + } + } + + while (true) { + APValue Val; + // FIXME: Set WantObjectRepresentation to true if we're copying a + // char-like type? + if (!handleLValueToRValueConversion(Info, E, T, Src, Val) || + !handleAssignment(Info, E, Dest, T, Val)) + return false; + // Do not iterate past the last element; if we're copying backwards, that + // might take us off the start of the array. + if (--NElems == 0) + return true; + if (!HandleLValueArrayAdjustment(Info, E, Src, T, Direction) || + !HandleLValueArrayAdjustment(Info, E, Dest, T, Direction)) + return false; + } + } + + default: + break; + } + + return visitNonBuiltinCallExpr(E); +} + +static bool EvaluateArrayNewInitList(EvalInfo &Info, LValue &This, + APValue &Result, const InitListExpr *ILE, + QualType AllocType); + +bool PointerExprEvaluator::VisitCXXNewExpr(const CXXNewExpr *E) { + if (!Info.getLangOpts().CPlusPlus2a) + Info.CCEDiag(E, diag::note_constexpr_new); + + // We cannot speculatively evaluate a delete expression. + if (Info.SpeculativeEvaluationDepth) + return false; + + FunctionDecl *OperatorNew = E->getOperatorNew(); + + bool IsNothrow = false; + bool IsPlacement = false; + if (OperatorNew->isReservedGlobalPlacementOperator() && + Info.CurrentCall->isStdFunction() && !E->isArray()) { + // FIXME Support array placement new. + assert(E->getNumPlacementArgs() == 1); + if (!EvaluatePointer(E->getPlacementArg(0), Result, Info)) + return false; + if (Result.Designator.Invalid) + return false; + IsPlacement = true; + } else if (!OperatorNew->isReplaceableGlobalAllocationFunction()) { + Info.FFDiag(E, diag::note_constexpr_new_non_replaceable) + << isa<CXXMethodDecl>(OperatorNew) << OperatorNew; + return false; + } else if (E->getNumPlacementArgs()) { + // The only new-placement list we support is of the form (std::nothrow). + // + // FIXME: There is no restriction on this, but it's not clear that any + // other form makes any sense. We get here for cases such as: + // + // new (std::align_val_t{N}) X(int) + // + // (which should presumably be valid only if N is a multiple of + // alignof(int), and in any case can't be deallocated unless N is + // alignof(X) and X has new-extended alignment). + if (E->getNumPlacementArgs() != 1 || + !E->getPlacementArg(0)->getType()->isNothrowT()) + return Error(E, diag::note_constexpr_new_placement); + + LValue Nothrow; + if (!EvaluateLValue(E->getPlacementArg(0), Nothrow, Info)) + return false; + IsNothrow = true; + } + + const Expr *Init = E->getInitializer(); + const InitListExpr *ResizedArrayILE = nullptr; + + QualType AllocType = E->getAllocatedType(); + if (Optional<const Expr*> ArraySize = E->getArraySize()) { + const Expr *Stripped = *ArraySize; + for (; auto *ICE = dyn_cast<ImplicitCastExpr>(Stripped); + Stripped = ICE->getSubExpr()) + if (ICE->getCastKind() != CK_NoOp && + ICE->getCastKind() != CK_IntegralCast) + break; + + llvm::APSInt ArrayBound; + if (!EvaluateInteger(Stripped, ArrayBound, Info)) + return false; + + // C++ [expr.new]p9: + // The expression is erroneous if: + // -- [...] its value before converting to size_t [or] applying the + // second standard conversion sequence is less than zero + if (ArrayBound.isSigned() && ArrayBound.isNegative()) { + if (IsNothrow) + return ZeroInitialization(E); + + Info.FFDiag(*ArraySize, diag::note_constexpr_new_negative) + << ArrayBound << (*ArraySize)->getSourceRange(); + return false; + } + + // -- its value is such that the size of the allocated object would + // exceed the implementation-defined limit + if (ConstantArrayType::getNumAddressingBits(Info.Ctx, AllocType, + ArrayBound) > + ConstantArrayType::getMaxSizeBits(Info.Ctx)) { + if (IsNothrow) + return ZeroInitialization(E); + + Info.FFDiag(*ArraySize, diag::note_constexpr_new_too_large) + << ArrayBound << (*ArraySize)->getSourceRange(); + return false; + } + + // -- the new-initializer is a braced-init-list and the number of + // array elements for which initializers are provided [...] + // exceeds the number of elements to initialize + if (Init) { + auto *CAT = Info.Ctx.getAsConstantArrayType(Init->getType()); + assert(CAT && "unexpected type for array initializer"); + + unsigned Bits = + std::max(CAT->getSize().getBitWidth(), ArrayBound.getBitWidth()); + llvm::APInt InitBound = CAT->getSize().zextOrSelf(Bits); + llvm::APInt AllocBound = ArrayBound.zextOrSelf(Bits); + if (InitBound.ugt(AllocBound)) { + if (IsNothrow) + return ZeroInitialization(E); + + Info.FFDiag(*ArraySize, diag::note_constexpr_new_too_small) + << AllocBound.toString(10, /*Signed=*/false) + << InitBound.toString(10, /*Signed=*/false) + << (*ArraySize)->getSourceRange(); + return false; + } + + // If the sizes differ, we must have an initializer list, and we need + // special handling for this case when we initialize. + if (InitBound != AllocBound) + ResizedArrayILE = cast<InitListExpr>(Init); + } + + AllocType = Info.Ctx.getConstantArrayType(AllocType, ArrayBound, nullptr, + ArrayType::Normal, 0); + } else { + assert(!AllocType->isArrayType() && + "array allocation with non-array new"); + } + + APValue *Val; + if (IsPlacement) { + AccessKinds AK = AK_Construct; + struct FindObjectHandler { + EvalInfo &Info; + const Expr *E; + QualType AllocType; + const AccessKinds AccessKind; + APValue *Value; + + typedef bool result_type; + bool failed() { return false; } + bool found(APValue &Subobj, QualType SubobjType) { + // FIXME: Reject the cases where [basic.life]p8 would not permit the + // old name of the object to be used to name the new object. + if (!Info.Ctx.hasSameUnqualifiedType(SubobjType, AllocType)) { + Info.FFDiag(E, diag::note_constexpr_placement_new_wrong_type) << + SubobjType << AllocType; + return false; + } + Value = &Subobj; + return true; + } + bool found(APSInt &Value, QualType SubobjType) { + Info.FFDiag(E, diag::note_constexpr_construct_complex_elem); + return false; + } + bool found(APFloat &Value, QualType SubobjType) { + Info.FFDiag(E, diag::note_constexpr_construct_complex_elem); + return false; + } + } Handler = {Info, E, AllocType, AK, nullptr}; + + CompleteObject Obj = findCompleteObject(Info, E, AK, Result, AllocType); + if (!Obj || !findSubobject(Info, E, Obj, Result.Designator, Handler)) + return false; + + Val = Handler.Value; + + // [basic.life]p1: + // The lifetime of an object o of type T ends when [...] the storage + // which the object occupies is [...] reused by an object that is not + // nested within o (6.6.2). + *Val = APValue(); + } else { + // Perform the allocation and obtain a pointer to the resulting object. + Val = Info.createHeapAlloc(E, AllocType, Result); + if (!Val) + return false; + } + + if (ResizedArrayILE) { + if (!EvaluateArrayNewInitList(Info, Result, *Val, ResizedArrayILE, + AllocType)) + return false; + } else if (Init) { + if (!EvaluateInPlace(*Val, Info, Result, Init)) + return false; + } else { + *Val = getDefaultInitValue(AllocType); + } + + // Array new returns a pointer to the first element, not a pointer to the + // array. + if (auto *AT = AllocType->getAsArrayTypeUnsafe()) + Result.addArray(Info, E, cast<ConstantArrayType>(AT)); + + return true; +} +//===----------------------------------------------------------------------===// +// Member Pointer Evaluation +//===----------------------------------------------------------------------===// + +namespace { +class MemberPointerExprEvaluator + : public ExprEvaluatorBase<MemberPointerExprEvaluator> { + MemberPtr &Result; + + bool Success(const ValueDecl *D) { + Result = MemberPtr(D); + return true; + } +public: + + MemberPointerExprEvaluator(EvalInfo &Info, MemberPtr &Result) + : ExprEvaluatorBaseTy(Info), Result(Result) {} + + bool Success(const APValue &V, const Expr *E) { + Result.setFrom(V); + return true; + } + bool ZeroInitialization(const Expr *E) { + return Success((const ValueDecl*)nullptr); + } + + bool VisitCastExpr(const CastExpr *E); + bool VisitUnaryAddrOf(const UnaryOperator *E); +}; +} // end anonymous namespace + +static bool EvaluateMemberPointer(const Expr *E, MemberPtr &Result, + EvalInfo &Info) { + assert(E->isRValue() && E->getType()->isMemberPointerType()); + return MemberPointerExprEvaluator(Info, Result).Visit(E); +} + +bool MemberPointerExprEvaluator::VisitCastExpr(const CastExpr *E) { + switch (E->getCastKind()) { + default: + return ExprEvaluatorBaseTy::VisitCastExpr(E); + + case CK_NullToMemberPointer: + VisitIgnoredValue(E->getSubExpr()); + return ZeroInitialization(E); + + case CK_BaseToDerivedMemberPointer: { + if (!Visit(E->getSubExpr())) + return false; + if (E->path_empty()) + return true; + // Base-to-derived member pointer casts store the path in derived-to-base + // order, so iterate backwards. The CXXBaseSpecifier also provides us with + // the wrong end of the derived->base arc, so stagger the path by one class. + typedef std::reverse_iterator<CastExpr::path_const_iterator> ReverseIter; + for (ReverseIter PathI(E->path_end() - 1), PathE(E->path_begin()); + PathI != PathE; ++PathI) { + assert(!(*PathI)->isVirtual() && "memptr cast through vbase"); + const CXXRecordDecl *Derived = (*PathI)->getType()->getAsCXXRecordDecl(); + if (!Result.castToDerived(Derived)) + return Error(E); + } + const Type *FinalTy = E->getType()->castAs<MemberPointerType>()->getClass(); + if (!Result.castToDerived(FinalTy->getAsCXXRecordDecl())) + return Error(E); + return true; + } + + case CK_DerivedToBaseMemberPointer: + if (!Visit(E->getSubExpr())) + return false; + for (CastExpr::path_const_iterator PathI = E->path_begin(), + PathE = E->path_end(); PathI != PathE; ++PathI) { + assert(!(*PathI)->isVirtual() && "memptr cast through vbase"); + const CXXRecordDecl *Base = (*PathI)->getType()->getAsCXXRecordDecl(); + if (!Result.castToBase(Base)) + return Error(E); + } + return true; + } +} + +bool MemberPointerExprEvaluator::VisitUnaryAddrOf(const UnaryOperator *E) { + // C++11 [expr.unary.op]p3 has very strict rules on how the address of a + // member can be formed. + return Success(cast<DeclRefExpr>(E->getSubExpr())->getDecl()); +} + +//===----------------------------------------------------------------------===// +// Record Evaluation +//===----------------------------------------------------------------------===// + +namespace { + class RecordExprEvaluator + : public ExprEvaluatorBase<RecordExprEvaluator> { + const LValue &This; + APValue &Result; + public: + + RecordExprEvaluator(EvalInfo &info, const LValue &This, APValue &Result) + : ExprEvaluatorBaseTy(info), This(This), Result(Result) {} + + bool Success(const APValue &V, const Expr *E) { + Result = V; + return true; + } + bool ZeroInitialization(const Expr *E) { + return ZeroInitialization(E, E->getType()); + } + bool ZeroInitialization(const Expr *E, QualType T); + + bool VisitCallExpr(const CallExpr *E) { + return handleCallExpr(E, Result, &This); + } + bool VisitCastExpr(const CastExpr *E); + bool VisitInitListExpr(const InitListExpr *E); + bool VisitCXXConstructExpr(const CXXConstructExpr *E) { + return VisitCXXConstructExpr(E, E->getType()); + } + bool VisitLambdaExpr(const LambdaExpr *E); + bool VisitCXXInheritedCtorInitExpr(const CXXInheritedCtorInitExpr *E); + bool VisitCXXConstructExpr(const CXXConstructExpr *E, QualType T); + bool VisitCXXStdInitializerListExpr(const CXXStdInitializerListExpr *E); + bool VisitBinCmp(const BinaryOperator *E); + }; +} + +/// Perform zero-initialization on an object of non-union class type. +/// C++11 [dcl.init]p5: +/// To zero-initialize an object or reference of type T means: +/// [...] +/// -- if T is a (possibly cv-qualified) non-union class type, +/// each non-static data member and each base-class subobject is +/// zero-initialized +static bool HandleClassZeroInitialization(EvalInfo &Info, const Expr *E, + const RecordDecl *RD, + const LValue &This, APValue &Result) { + assert(!RD->isUnion() && "Expected non-union class type"); + const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(RD); + Result = APValue(APValue::UninitStruct(), CD ? CD->getNumBases() : 0, + std::distance(RD->field_begin(), RD->field_end())); + + if (RD->isInvalidDecl()) return false; + const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD); + + if (CD) { + unsigned Index = 0; + for (CXXRecordDecl::base_class_const_iterator I = CD->bases_begin(), + End = CD->bases_end(); I != End; ++I, ++Index) { + const CXXRecordDecl *Base = I->getType()->getAsCXXRecordDecl(); + LValue Subobject = This; + if (!HandleLValueDirectBase(Info, E, Subobject, CD, Base, &Layout)) + return false; + if (!HandleClassZeroInitialization(Info, E, Base, Subobject, + Result.getStructBase(Index))) + return false; + } + } + + for (const auto *I : RD->fields()) { + // -- if T is a reference type, no initialization is performed. + if (I->getType()->isReferenceType()) + continue; + + LValue Subobject = This; + if (!HandleLValueMember(Info, E, Subobject, I, &Layout)) + return false; + + ImplicitValueInitExpr VIE(I->getType()); + if (!EvaluateInPlace( + Result.getStructField(I->getFieldIndex()), Info, Subobject, &VIE)) + return false; + } + + return true; +} + +bool RecordExprEvaluator::ZeroInitialization(const Expr *E, QualType T) { + const RecordDecl *RD = T->castAs<RecordType>()->getDecl(); + if (RD->isInvalidDecl()) return false; + if (RD->isUnion()) { + // C++11 [dcl.init]p5: If T is a (possibly cv-qualified) union type, the + // object's first non-static named data member is zero-initialized + RecordDecl::field_iterator I = RD->field_begin(); + if (I == RD->field_end()) { + Result = APValue((const FieldDecl*)nullptr); + return true; + } + + LValue Subobject = This; + if (!HandleLValueMember(Info, E, Subobject, *I)) + return false; + Result = APValue(*I); + ImplicitValueInitExpr VIE(I->getType()); + return EvaluateInPlace(Result.getUnionValue(), Info, Subobject, &VIE); + } + + if (isa<CXXRecordDecl>(RD) && cast<CXXRecordDecl>(RD)->getNumVBases()) { + Info.FFDiag(E, diag::note_constexpr_virtual_base) << RD; + return false; + } + + return HandleClassZeroInitialization(Info, E, RD, This, Result); +} + +bool RecordExprEvaluator::VisitCastExpr(const CastExpr *E) { + switch (E->getCastKind()) { + default: + return ExprEvaluatorBaseTy::VisitCastExpr(E); + + case CK_ConstructorConversion: + return Visit(E->getSubExpr()); + + case CK_DerivedToBase: + case CK_UncheckedDerivedToBase: { + APValue DerivedObject; + if (!Evaluate(DerivedObject, Info, E->getSubExpr())) + return false; + if (!DerivedObject.isStruct()) + return Error(E->getSubExpr()); + + // Derived-to-base rvalue conversion: just slice off the derived part. + APValue *Value = &DerivedObject; + const CXXRecordDecl *RD = E->getSubExpr()->getType()->getAsCXXRecordDecl(); + for (CastExpr::path_const_iterator PathI = E->path_begin(), + PathE = E->path_end(); PathI != PathE; ++PathI) { + assert(!(*PathI)->isVirtual() && "record rvalue with virtual base"); + const CXXRecordDecl *Base = (*PathI)->getType()->getAsCXXRecordDecl(); + Value = &Value->getStructBase(getBaseIndex(RD, Base)); + RD = Base; + } + Result = *Value; + return true; + } + } +} + +bool RecordExprEvaluator::VisitInitListExpr(const InitListExpr *E) { + if (E->isTransparent()) + return Visit(E->getInit(0)); + + const RecordDecl *RD = E->getType()->castAs<RecordType>()->getDecl(); + if (RD->isInvalidDecl()) return false; + const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD); + auto *CXXRD = dyn_cast<CXXRecordDecl>(RD); + + EvalInfo::EvaluatingConstructorRAII EvalObj( + Info, + ObjectUnderConstruction{This.getLValueBase(), This.Designator.Entries}, + CXXRD && CXXRD->getNumBases()); + + if (RD->isUnion()) { + const FieldDecl *Field = E->getInitializedFieldInUnion(); + Result = APValue(Field); + if (!Field) + return true; + + // If the initializer list for a union does not contain any elements, the + // first element of the union is value-initialized. + // FIXME: The element should be initialized from an initializer list. + // Is this difference ever observable for initializer lists which + // we don't build? + ImplicitValueInitExpr VIE(Field->getType()); + const Expr *InitExpr = E->getNumInits() ? E->getInit(0) : &VIE; + + LValue Subobject = This; + if (!HandleLValueMember(Info, InitExpr, Subobject, Field, &Layout)) + return false; + + // Temporarily override This, in case there's a CXXDefaultInitExpr in here. + ThisOverrideRAII ThisOverride(*Info.CurrentCall, &This, + isa<CXXDefaultInitExpr>(InitExpr)); + + return EvaluateInPlace(Result.getUnionValue(), Info, Subobject, InitExpr); + } + + if (!Result.hasValue()) + Result = APValue(APValue::UninitStruct(), CXXRD ? CXXRD->getNumBases() : 0, + std::distance(RD->field_begin(), RD->field_end())); + unsigned ElementNo = 0; + bool Success = true; + + // Initialize base classes. + if (CXXRD && CXXRD->getNumBases()) { + for (const auto &Base : CXXRD->bases()) { + assert(ElementNo < E->getNumInits() && "missing init for base class"); + const Expr *Init = E->getInit(ElementNo); + + LValue Subobject = This; + if (!HandleLValueBase(Info, Init, Subobject, CXXRD, &Base)) + return false; + + APValue &FieldVal = Result.getStructBase(ElementNo); + if (!EvaluateInPlace(FieldVal, Info, Subobject, Init)) { + if (!Info.noteFailure()) + return false; + Success = false; + } + ++ElementNo; + } + + EvalObj.finishedConstructingBases(); + } + + // Initialize members. + for (const auto *Field : RD->fields()) { + // Anonymous bit-fields are not considered members of the class for + // purposes of aggregate initialization. + if (Field->isUnnamedBitfield()) + continue; + + LValue Subobject = This; + + bool HaveInit = ElementNo < E->getNumInits(); + + // FIXME: Diagnostics here should point to the end of the initializer + // list, not the start. + if (!HandleLValueMember(Info, HaveInit ? E->getInit(ElementNo) : E, + Subobject, Field, &Layout)) + return false; + + // Perform an implicit value-initialization for members beyond the end of + // the initializer list. + ImplicitValueInitExpr VIE(HaveInit ? Info.Ctx.IntTy : Field->getType()); + const Expr *Init = HaveInit ? E->getInit(ElementNo++) : &VIE; + + // Temporarily override This, in case there's a CXXDefaultInitExpr in here. + ThisOverrideRAII ThisOverride(*Info.CurrentCall, &This, + isa<CXXDefaultInitExpr>(Init)); + + APValue &FieldVal = Result.getStructField(Field->getFieldIndex()); + if (!EvaluateInPlace(FieldVal, Info, Subobject, Init) || + (Field->isBitField() && !truncateBitfieldValue(Info, Init, + FieldVal, Field))) { + if (!Info.noteFailure()) + return false; + Success = false; + } + } + + return Success; +} + +bool RecordExprEvaluator::VisitCXXConstructExpr(const CXXConstructExpr *E, + QualType T) { + // Note that E's type is not necessarily the type of our class here; we might + // be initializing an array element instead. + const CXXConstructorDecl *FD = E->getConstructor(); + if (FD->isInvalidDecl() || FD->getParent()->isInvalidDecl()) return false; + + bool ZeroInit = E->requiresZeroInitialization(); + if (CheckTrivialDefaultConstructor(Info, E->getExprLoc(), FD, ZeroInit)) { + // If we've already performed zero-initialization, we're already done. + if (Result.hasValue()) + return true; + + if (ZeroInit) + return ZeroInitialization(E, T); + + Result = getDefaultInitValue(T); + return true; + } + + const FunctionDecl *Definition = nullptr; + auto Body = FD->getBody(Definition); + + if (!CheckConstexprFunction(Info, E->getExprLoc(), FD, Definition, Body)) + return false; + + // Avoid materializing a temporary for an elidable copy/move constructor. + if (E->isElidable() && !ZeroInit) + if (const MaterializeTemporaryExpr *ME + = dyn_cast<MaterializeTemporaryExpr>(E->getArg(0))) + return Visit(ME->GetTemporaryExpr()); + + if (ZeroInit && !ZeroInitialization(E, T)) + return false; + + auto Args = llvm::makeArrayRef(E->getArgs(), E->getNumArgs()); + return HandleConstructorCall(E, This, Args, + cast<CXXConstructorDecl>(Definition), Info, + Result); +} + +bool RecordExprEvaluator::VisitCXXInheritedCtorInitExpr( + const CXXInheritedCtorInitExpr *E) { + if (!Info.CurrentCall) { + assert(Info.checkingPotentialConstantExpression()); + return false; + } + + const CXXConstructorDecl *FD = E->getConstructor(); + if (FD->isInvalidDecl() || FD->getParent()->isInvalidDecl()) + return false; + + const FunctionDecl *Definition = nullptr; + auto Body = FD->getBody(Definition); + + if (!CheckConstexprFunction(Info, E->getExprLoc(), FD, Definition, Body)) + return false; + + return HandleConstructorCall(E, This, Info.CurrentCall->Arguments, + cast<CXXConstructorDecl>(Definition), Info, + Result); +} + +bool RecordExprEvaluator::VisitCXXStdInitializerListExpr( + const CXXStdInitializerListExpr *E) { + const ConstantArrayType *ArrayType = + Info.Ctx.getAsConstantArrayType(E->getSubExpr()->getType()); + + LValue Array; + if (!EvaluateLValue(E->getSubExpr(), Array, Info)) + return false; + + // Get a pointer to the first element of the array. + Array.addArray(Info, E, ArrayType); + + // FIXME: Perform the checks on the field types in SemaInit. + RecordDecl *Record = E->getType()->castAs<RecordType>()->getDecl(); + RecordDecl::field_iterator Field = Record->field_begin(); + if (Field == Record->field_end()) + return Error(E); + + // Start pointer. + if (!Field->getType()->isPointerType() || + !Info.Ctx.hasSameType(Field->getType()->getPointeeType(), + ArrayType->getElementType())) + return Error(E); + + // FIXME: What if the initializer_list type has base classes, etc? + Result = APValue(APValue::UninitStruct(), 0, 2); + Array.moveInto(Result.getStructField(0)); + + if (++Field == Record->field_end()) + return Error(E); + + if (Field->getType()->isPointerType() && + Info.Ctx.hasSameType(Field->getType()->getPointeeType(), + ArrayType->getElementType())) { + // End pointer. + if (!HandleLValueArrayAdjustment(Info, E, Array, + ArrayType->getElementType(), + ArrayType->getSize().getZExtValue())) + return false; + Array.moveInto(Result.getStructField(1)); + } else if (Info.Ctx.hasSameType(Field->getType(), Info.Ctx.getSizeType())) + // Length. + Result.getStructField(1) = APValue(APSInt(ArrayType->getSize())); + else + return Error(E); + + if (++Field != Record->field_end()) + return Error(E); + + return true; +} + +bool RecordExprEvaluator::VisitLambdaExpr(const LambdaExpr *E) { + const CXXRecordDecl *ClosureClass = E->getLambdaClass(); + if (ClosureClass->isInvalidDecl()) + return false; + + const size_t NumFields = + std::distance(ClosureClass->field_begin(), ClosureClass->field_end()); + + assert(NumFields == (size_t)std::distance(E->capture_init_begin(), + E->capture_init_end()) && + "The number of lambda capture initializers should equal the number of " + "fields within the closure type"); + + Result = APValue(APValue::UninitStruct(), /*NumBases*/0, NumFields); + // Iterate through all the lambda's closure object's fields and initialize + // them. + auto *CaptureInitIt = E->capture_init_begin(); + const LambdaCapture *CaptureIt = ClosureClass->captures_begin(); + bool Success = true; + for (const auto *Field : ClosureClass->fields()) { + assert(CaptureInitIt != E->capture_init_end()); + // Get the initializer for this field + Expr *const CurFieldInit = *CaptureInitIt++; + + // If there is no initializer, either this is a VLA or an error has + // occurred. + if (!CurFieldInit) + return Error(E); + + APValue &FieldVal = Result.getStructField(Field->getFieldIndex()); + if (!EvaluateInPlace(FieldVal, Info, This, CurFieldInit)) { + if (!Info.keepEvaluatingAfterFailure()) + return false; + Success = false; + } + ++CaptureIt; + } + return Success; +} + +static bool EvaluateRecord(const Expr *E, const LValue &This, + APValue &Result, EvalInfo &Info) { + assert(E->isRValue() && E->getType()->isRecordType() && + "can't evaluate expression as a record rvalue"); + return RecordExprEvaluator(Info, This, Result).Visit(E); +} + +//===----------------------------------------------------------------------===// +// Temporary Evaluation +// +// Temporaries are represented in the AST as rvalues, but generally behave like +// lvalues. The full-object of which the temporary is a subobject is implicitly +// materialized so that a reference can bind to it. +//===----------------------------------------------------------------------===// +namespace { +class TemporaryExprEvaluator + : public LValueExprEvaluatorBase<TemporaryExprEvaluator> { +public: + TemporaryExprEvaluator(EvalInfo &Info, LValue &Result) : + LValueExprEvaluatorBaseTy(Info, Result, false) {} + + /// Visit an expression which constructs the value of this temporary. + bool VisitConstructExpr(const Expr *E) { + APValue &Value = + Info.CurrentCall->createTemporary(E, E->getType(), false, Result); + return EvaluateInPlace(Value, Info, Result, E); + } + + bool VisitCastExpr(const CastExpr *E) { + switch (E->getCastKind()) { + default: + return LValueExprEvaluatorBaseTy::VisitCastExpr(E); + + case CK_ConstructorConversion: + return VisitConstructExpr(E->getSubExpr()); + } + } + bool VisitInitListExpr(const InitListExpr *E) { + return VisitConstructExpr(E); + } + bool VisitCXXConstructExpr(const CXXConstructExpr *E) { + return VisitConstructExpr(E); + } + bool VisitCallExpr(const CallExpr *E) { + return VisitConstructExpr(E); + } + bool VisitCXXStdInitializerListExpr(const CXXStdInitializerListExpr *E) { + return VisitConstructExpr(E); + } + bool VisitLambdaExpr(const LambdaExpr *E) { + return VisitConstructExpr(E); + } +}; +} // end anonymous namespace + +/// Evaluate an expression of record type as a temporary. +static bool EvaluateTemporary(const Expr *E, LValue &Result, EvalInfo &Info) { + assert(E->isRValue() && E->getType()->isRecordType()); + return TemporaryExprEvaluator(Info, Result).Visit(E); +} + +//===----------------------------------------------------------------------===// +// Vector Evaluation +//===----------------------------------------------------------------------===// + +namespace { + class VectorExprEvaluator + : public ExprEvaluatorBase<VectorExprEvaluator> { + APValue &Result; + public: + + VectorExprEvaluator(EvalInfo &info, APValue &Result) + : ExprEvaluatorBaseTy(info), Result(Result) {} + + bool Success(ArrayRef<APValue> V, const Expr *E) { + assert(V.size() == E->getType()->castAs<VectorType>()->getNumElements()); + // FIXME: remove this APValue copy. + Result = APValue(V.data(), V.size()); + return true; + } + bool Success(const APValue &V, const Expr *E) { + assert(V.isVector()); + Result = V; + return true; + } + bool ZeroInitialization(const Expr *E); + + bool VisitUnaryReal(const UnaryOperator *E) + { return Visit(E->getSubExpr()); } + bool VisitCastExpr(const CastExpr* E); + bool VisitInitListExpr(const InitListExpr *E); + bool VisitUnaryImag(const UnaryOperator *E); + // FIXME: Missing: unary -, unary ~, binary add/sub/mul/div, + // binary comparisons, binary and/or/xor, + // shufflevector, ExtVectorElementExpr + }; +} // end anonymous namespace + +static bool EvaluateVector(const Expr* E, APValue& Result, EvalInfo &Info) { + assert(E->isRValue() && E->getType()->isVectorType() &&"not a vector rvalue"); + return VectorExprEvaluator(Info, Result).Visit(E); +} + +bool VectorExprEvaluator::VisitCastExpr(const CastExpr *E) { + const VectorType *VTy = E->getType()->castAs<VectorType>(); + unsigned NElts = VTy->getNumElements(); + + const Expr *SE = E->getSubExpr(); + QualType SETy = SE->getType(); + + switch (E->getCastKind()) { + case CK_VectorSplat: { + APValue Val = APValue(); + if (SETy->isIntegerType()) { + APSInt IntResult; + if (!EvaluateInteger(SE, IntResult, Info)) + return false; + Val = APValue(std::move(IntResult)); + } else if (SETy->isRealFloatingType()) { + APFloat FloatResult(0.0); + if (!EvaluateFloat(SE, FloatResult, Info)) + return false; + Val = APValue(std::move(FloatResult)); + } else { + return Error(E); + } + + // Splat and create vector APValue. + SmallVector<APValue, 4> Elts(NElts, Val); + return Success(Elts, E); + } + case CK_BitCast: { + // Evaluate the operand into an APInt we can extract from. + llvm::APInt SValInt; + if (!EvalAndBitcastToAPInt(Info, SE, SValInt)) + return false; + // Extract the elements + QualType EltTy = VTy->getElementType(); + unsigned EltSize = Info.Ctx.getTypeSize(EltTy); + bool BigEndian = Info.Ctx.getTargetInfo().isBigEndian(); + SmallVector<APValue, 4> Elts; + if (EltTy->isRealFloatingType()) { + const llvm::fltSemantics &Sem = Info.Ctx.getFloatTypeSemantics(EltTy); + unsigned FloatEltSize = EltSize; + if (&Sem == &APFloat::x87DoubleExtended()) + FloatEltSize = 80; + for (unsigned i = 0; i < NElts; i++) { + llvm::APInt Elt; + if (BigEndian) + Elt = SValInt.rotl(i*EltSize+FloatEltSize).trunc(FloatEltSize); + else + Elt = SValInt.rotr(i*EltSize).trunc(FloatEltSize); + Elts.push_back(APValue(APFloat(Sem, Elt))); + } + } else if (EltTy->isIntegerType()) { + for (unsigned i = 0; i < NElts; i++) { + llvm::APInt Elt; + if (BigEndian) + Elt = SValInt.rotl(i*EltSize+EltSize).zextOrTrunc(EltSize); + else + Elt = SValInt.rotr(i*EltSize).zextOrTrunc(EltSize); + Elts.push_back(APValue(APSInt(Elt, EltTy->isSignedIntegerType()))); + } + } else { + return Error(E); + } + return Success(Elts, E); + } + default: + return ExprEvaluatorBaseTy::VisitCastExpr(E); + } +} + +bool +VectorExprEvaluator::VisitInitListExpr(const InitListExpr *E) { + const VectorType *VT = E->getType()->castAs<VectorType>(); + unsigned NumInits = E->getNumInits(); + unsigned NumElements = VT->getNumElements(); + + QualType EltTy = VT->getElementType(); + SmallVector<APValue, 4> Elements; + + // The number of initializers can be less than the number of + // vector elements. For OpenCL, this can be due to nested vector + // initialization. For GCC compatibility, missing trailing elements + // should be initialized with zeroes. + unsigned CountInits = 0, CountElts = 0; + while (CountElts < NumElements) { + // Handle nested vector initialization. + if (CountInits < NumInits + && E->getInit(CountInits)->getType()->isVectorType()) { + APValue v; + if (!EvaluateVector(E->getInit(CountInits), v, Info)) + return Error(E); + unsigned vlen = v.getVectorLength(); + for (unsigned j = 0; j < vlen; j++) + Elements.push_back(v.getVectorElt(j)); + CountElts += vlen; + } else if (EltTy->isIntegerType()) { + llvm::APSInt sInt(32); + if (CountInits < NumInits) { + if (!EvaluateInteger(E->getInit(CountInits), sInt, Info)) + return false; + } else // trailing integer zero. + sInt = Info.Ctx.MakeIntValue(0, EltTy); + Elements.push_back(APValue(sInt)); + CountElts++; + } else { + llvm::APFloat f(0.0); + if (CountInits < NumInits) { + if (!EvaluateFloat(E->getInit(CountInits), f, Info)) + return false; + } else // trailing float zero. + f = APFloat::getZero(Info.Ctx.getFloatTypeSemantics(EltTy)); + Elements.push_back(APValue(f)); + CountElts++; + } + CountInits++; + } + return Success(Elements, E); +} + +bool +VectorExprEvaluator::ZeroInitialization(const Expr *E) { + const auto *VT = E->getType()->castAs<VectorType>(); + QualType EltTy = VT->getElementType(); + APValue ZeroElement; + if (EltTy->isIntegerType()) + ZeroElement = APValue(Info.Ctx.MakeIntValue(0, EltTy)); + else + ZeroElement = + APValue(APFloat::getZero(Info.Ctx.getFloatTypeSemantics(EltTy))); + + SmallVector<APValue, 4> Elements(VT->getNumElements(), ZeroElement); + return Success(Elements, E); +} + +bool VectorExprEvaluator::VisitUnaryImag(const UnaryOperator *E) { + VisitIgnoredValue(E->getSubExpr()); + return ZeroInitialization(E); +} + +//===----------------------------------------------------------------------===// +// Array Evaluation +//===----------------------------------------------------------------------===// + +namespace { + class ArrayExprEvaluator + : public ExprEvaluatorBase<ArrayExprEvaluator> { + const LValue &This; + APValue &Result; + public: + + ArrayExprEvaluator(EvalInfo &Info, const LValue &This, APValue &Result) + : ExprEvaluatorBaseTy(Info), This(This), Result(Result) {} + + bool Success(const APValue &V, const Expr *E) { + assert(V.isArray() && "expected array"); + Result = V; + return true; + } + + bool ZeroInitialization(const Expr *E) { + const ConstantArrayType *CAT = + Info.Ctx.getAsConstantArrayType(E->getType()); + if (!CAT) + return Error(E); + + Result = APValue(APValue::UninitArray(), 0, + CAT->getSize().getZExtValue()); + if (!Result.hasArrayFiller()) return true; + + // Zero-initialize all elements. + LValue Subobject = This; + Subobject.addArray(Info, E, CAT); + ImplicitValueInitExpr VIE(CAT->getElementType()); + return EvaluateInPlace(Result.getArrayFiller(), Info, Subobject, &VIE); + } + + bool VisitCallExpr(const CallExpr *E) { + return handleCallExpr(E, Result, &This); + } + bool VisitInitListExpr(const InitListExpr *E, + QualType AllocType = QualType()); + bool VisitArrayInitLoopExpr(const ArrayInitLoopExpr *E); + bool VisitCXXConstructExpr(const CXXConstructExpr *E); + bool VisitCXXConstructExpr(const CXXConstructExpr *E, + const LValue &Subobject, + APValue *Value, QualType Type); + bool VisitStringLiteral(const StringLiteral *E, + QualType AllocType = QualType()) { + expandStringLiteral(Info, E, Result, AllocType); + return true; + } + }; +} // end anonymous namespace + +static bool EvaluateArray(const Expr *E, const LValue &This, + APValue &Result, EvalInfo &Info) { + assert(E->isRValue() && E->getType()->isArrayType() && "not an array rvalue"); + return ArrayExprEvaluator(Info, This, Result).Visit(E); +} + +static bool EvaluateArrayNewInitList(EvalInfo &Info, LValue &This, + APValue &Result, const InitListExpr *ILE, + QualType AllocType) { + assert(ILE->isRValue() && ILE->getType()->isArrayType() && + "not an array rvalue"); + return ArrayExprEvaluator(Info, This, Result) + .VisitInitListExpr(ILE, AllocType); +} + +// Return true iff the given array filler may depend on the element index. +static bool MaybeElementDependentArrayFiller(const Expr *FillerExpr) { + // For now, just whitelist non-class value-initialization and initialization + // lists comprised of them. + if (isa<ImplicitValueInitExpr>(FillerExpr)) + return false; + if (const InitListExpr *ILE = dyn_cast<InitListExpr>(FillerExpr)) { + for (unsigned I = 0, E = ILE->getNumInits(); I != E; ++I) { + if (MaybeElementDependentArrayFiller(ILE->getInit(I))) + return true; + } + return false; + } + return true; +} + +bool ArrayExprEvaluator::VisitInitListExpr(const InitListExpr *E, + QualType AllocType) { + const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType( + AllocType.isNull() ? E->getType() : AllocType); + if (!CAT) + return Error(E); + + // C++11 [dcl.init.string]p1: A char array [...] can be initialized by [...] + // an appropriately-typed string literal enclosed in braces. + if (E->isStringLiteralInit()) { + auto *SL = dyn_cast<StringLiteral>(E->getInit(0)->IgnoreParens()); + // FIXME: Support ObjCEncodeExpr here once we support it in + // ArrayExprEvaluator generally. + if (!SL) + return Error(E); + return VisitStringLiteral(SL, AllocType); + } + + bool Success = true; + + assert((!Result.isArray() || Result.getArrayInitializedElts() == 0) && + "zero-initialized array shouldn't have any initialized elts"); + APValue Filler; + if (Result.isArray() && Result.hasArrayFiller()) + Filler = Result.getArrayFiller(); + + unsigned NumEltsToInit = E->getNumInits(); + unsigned NumElts = CAT->getSize().getZExtValue(); + const Expr *FillerExpr = E->hasArrayFiller() ? E->getArrayFiller() : nullptr; + + // If the initializer might depend on the array index, run it for each + // array element. + if (NumEltsToInit != NumElts && MaybeElementDependentArrayFiller(FillerExpr)) + NumEltsToInit = NumElts; + + LLVM_DEBUG(llvm::dbgs() << "The number of elements to initialize: " + << NumEltsToInit << ".\n"); + + Result = APValue(APValue::UninitArray(), NumEltsToInit, NumElts); + + // If the array was previously zero-initialized, preserve the + // zero-initialized values. + if (Filler.hasValue()) { + for (unsigned I = 0, E = Result.getArrayInitializedElts(); I != E; ++I) + Result.getArrayInitializedElt(I) = Filler; + if (Result.hasArrayFiller()) + Result.getArrayFiller() = Filler; + } + + LValue Subobject = This; + Subobject.addArray(Info, E, CAT); + for (unsigned Index = 0; Index != NumEltsToInit; ++Index) { + const Expr *Init = + Index < E->getNumInits() ? E->getInit(Index) : FillerExpr; + if (!EvaluateInPlace(Result.getArrayInitializedElt(Index), + Info, Subobject, Init) || + !HandleLValueArrayAdjustment(Info, Init, Subobject, + CAT->getElementType(), 1)) { + if (!Info.noteFailure()) + return false; + Success = false; + } + } + + if (!Result.hasArrayFiller()) + return Success; + + // If we get here, we have a trivial filler, which we can just evaluate + // once and splat over the rest of the array elements. + assert(FillerExpr && "no array filler for incomplete init list"); + return EvaluateInPlace(Result.getArrayFiller(), Info, Subobject, + FillerExpr) && Success; +} + +bool ArrayExprEvaluator::VisitArrayInitLoopExpr(const ArrayInitLoopExpr *E) { + LValue CommonLV; + if (E->getCommonExpr() && + !Evaluate(Info.CurrentCall->createTemporary( + E->getCommonExpr(), + getStorageType(Info.Ctx, E->getCommonExpr()), false, + CommonLV), + Info, E->getCommonExpr()->getSourceExpr())) + return false; + + auto *CAT = cast<ConstantArrayType>(E->getType()->castAsArrayTypeUnsafe()); + + uint64_t Elements = CAT->getSize().getZExtValue(); + Result = APValue(APValue::UninitArray(), Elements, Elements); + + LValue Subobject = This; + Subobject.addArray(Info, E, CAT); + + bool Success = true; + for (EvalInfo::ArrayInitLoopIndex Index(Info); Index != Elements; ++Index) { + if (!EvaluateInPlace(Result.getArrayInitializedElt(Index), + Info, Subobject, E->getSubExpr()) || + !HandleLValueArrayAdjustment(Info, E, Subobject, + CAT->getElementType(), 1)) { + if (!Info.noteFailure()) + return false; + Success = false; + } + } + + return Success; +} + +bool ArrayExprEvaluator::VisitCXXConstructExpr(const CXXConstructExpr *E) { + return VisitCXXConstructExpr(E, This, &Result, E->getType()); +} + +bool ArrayExprEvaluator::VisitCXXConstructExpr(const CXXConstructExpr *E, + const LValue &Subobject, + APValue *Value, + QualType Type) { + bool HadZeroInit = Value->hasValue(); + + if (const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(Type)) { + unsigned N = CAT->getSize().getZExtValue(); + + // Preserve the array filler if we had prior zero-initialization. + APValue Filler = + HadZeroInit && Value->hasArrayFiller() ? Value->getArrayFiller() + : APValue(); + + *Value = APValue(APValue::UninitArray(), N, N); + + if (HadZeroInit) + for (unsigned I = 0; I != N; ++I) + Value->getArrayInitializedElt(I) = Filler; + + // Initialize the elements. + LValue ArrayElt = Subobject; + ArrayElt.addArray(Info, E, CAT); + for (unsigned I = 0; I != N; ++I) + if (!VisitCXXConstructExpr(E, ArrayElt, &Value->getArrayInitializedElt(I), + CAT->getElementType()) || + !HandleLValueArrayAdjustment(Info, E, ArrayElt, + CAT->getElementType(), 1)) + return false; + + return true; + } + + if (!Type->isRecordType()) + return Error(E); + + return RecordExprEvaluator(Info, Subobject, *Value) + .VisitCXXConstructExpr(E, Type); +} + +//===----------------------------------------------------------------------===// +// Integer Evaluation +// +// As a GNU extension, we support casting pointers to sufficiently-wide integer +// types and back in constant folding. Integer values are thus represented +// either as an integer-valued APValue, or as an lvalue-valued APValue. +//===----------------------------------------------------------------------===// + +namespace { +class IntExprEvaluator + : public ExprEvaluatorBase<IntExprEvaluator> { + APValue &Result; +public: + IntExprEvaluator(EvalInfo &info, APValue &result) + : ExprEvaluatorBaseTy(info), Result(result) {} + + bool Success(const llvm::APSInt &SI, const Expr *E, APValue &Result) { + assert(E->getType()->isIntegralOrEnumerationType() && + "Invalid evaluation result."); + assert(SI.isSigned() == E->getType()->isSignedIntegerOrEnumerationType() && + "Invalid evaluation result."); + assert(SI.getBitWidth() == Info.Ctx.getIntWidth(E->getType()) && + "Invalid evaluation result."); + Result = APValue(SI); + return true; + } + bool Success(const llvm::APSInt &SI, const Expr *E) { + return Success(SI, E, Result); + } + + bool Success(const llvm::APInt &I, const Expr *E, APValue &Result) { + assert(E->getType()->isIntegralOrEnumerationType() && + "Invalid evaluation result."); + assert(I.getBitWidth() == Info.Ctx.getIntWidth(E->getType()) && + "Invalid evaluation result."); + Result = APValue(APSInt(I)); + Result.getInt().setIsUnsigned( + E->getType()->isUnsignedIntegerOrEnumerationType()); + return true; + } + bool Success(const llvm::APInt &I, const Expr *E) { + return Success(I, E, Result); + } + + bool Success(uint64_t Value, const Expr *E, APValue &Result) { + assert(E->getType()->isIntegralOrEnumerationType() && + "Invalid evaluation result."); + Result = APValue(Info.Ctx.MakeIntValue(Value, E->getType())); + return true; + } + bool Success(uint64_t Value, const Expr *E) { + return Success(Value, E, Result); + } + + bool Success(CharUnits Size, const Expr *E) { + return Success(Size.getQuantity(), E); + } + + bool Success(const APValue &V, const Expr *E) { + if (V.isLValue() || V.isAddrLabelDiff() || V.isIndeterminate()) { + Result = V; + return true; + } + return Success(V.getInt(), E); + } + + bool ZeroInitialization(const Expr *E) { return Success(0, E); } + + //===--------------------------------------------------------------------===// + // Visitor Methods + //===--------------------------------------------------------------------===// + + bool VisitConstantExpr(const ConstantExpr *E); + + bool VisitIntegerLiteral(const IntegerLiteral *E) { + return Success(E->getValue(), E); + } + bool VisitCharacterLiteral(const CharacterLiteral *E) { + return Success(E->getValue(), E); + } + + bool CheckReferencedDecl(const Expr *E, const Decl *D); + bool VisitDeclRefExpr(const DeclRefExpr *E) { + if (CheckReferencedDecl(E, E->getDecl())) + return true; + + return ExprEvaluatorBaseTy::VisitDeclRefExpr(E); + } + bool VisitMemberExpr(const MemberExpr *E) { + if (CheckReferencedDecl(E, E->getMemberDecl())) { + VisitIgnoredBaseExpression(E->getBase()); + return true; + } + + return ExprEvaluatorBaseTy::VisitMemberExpr(E); + } + + bool VisitCallExpr(const CallExpr *E); + bool VisitBuiltinCallExpr(const CallExpr *E, unsigned BuiltinOp); + bool VisitBinaryOperator(const BinaryOperator *E); + bool VisitOffsetOfExpr(const OffsetOfExpr *E); + bool VisitUnaryOperator(const UnaryOperator *E); + + bool VisitCastExpr(const CastExpr* E); + bool VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E); + + bool VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) { + return Success(E->getValue(), E); + } + + bool VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) { + return Success(E->getValue(), E); + } + + bool VisitArrayInitIndexExpr(const ArrayInitIndexExpr *E) { + if (Info.ArrayInitIndex == uint64_t(-1)) { + // We were asked to evaluate this subexpression independent of the + // enclosing ArrayInitLoopExpr. We can't do that. + Info.FFDiag(E); + return false; + } + return Success(Info.ArrayInitIndex, E); + } + + // Note, GNU defines __null as an integer, not a pointer. + bool VisitGNUNullExpr(const GNUNullExpr *E) { + return ZeroInitialization(E); + } + + bool VisitTypeTraitExpr(const TypeTraitExpr *E) { + return Success(E->getValue(), E); + } + + bool VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) { + return Success(E->getValue(), E); + } + + bool VisitExpressionTraitExpr(const ExpressionTraitExpr *E) { + return Success(E->getValue(), E); + } + + bool VisitUnaryReal(const UnaryOperator *E); + bool VisitUnaryImag(const UnaryOperator *E); + + bool VisitCXXNoexceptExpr(const CXXNoexceptExpr *E); + bool VisitSizeOfPackExpr(const SizeOfPackExpr *E); + bool VisitSourceLocExpr(const SourceLocExpr *E); + bool VisitConceptSpecializationExpr(const ConceptSpecializationExpr *E); + // FIXME: Missing: array subscript of vector, member of vector +}; + +class FixedPointExprEvaluator + : public ExprEvaluatorBase<FixedPointExprEvaluator> { + APValue &Result; + + public: + FixedPointExprEvaluator(EvalInfo &info, APValue &result) + : ExprEvaluatorBaseTy(info), Result(result) {} + + bool Success(const llvm::APInt &I, const Expr *E) { + return Success( + APFixedPoint(I, Info.Ctx.getFixedPointSemantics(E->getType())), E); + } + + bool Success(uint64_t Value, const Expr *E) { + return Success( + APFixedPoint(Value, Info.Ctx.getFixedPointSemantics(E->getType())), E); + } + + bool Success(const APValue &V, const Expr *E) { + return Success(V.getFixedPoint(), E); + } + + bool Success(const APFixedPoint &V, const Expr *E) { + assert(E->getType()->isFixedPointType() && "Invalid evaluation result."); + assert(V.getWidth() == Info.Ctx.getIntWidth(E->getType()) && + "Invalid evaluation result."); + Result = APValue(V); + return true; + } + + //===--------------------------------------------------------------------===// + // Visitor Methods + //===--------------------------------------------------------------------===// + + bool VisitFixedPointLiteral(const FixedPointLiteral *E) { + return Success(E->getValue(), E); + } + + bool VisitCastExpr(const CastExpr *E); + bool VisitUnaryOperator(const UnaryOperator *E); + bool VisitBinaryOperator(const BinaryOperator *E); +}; +} // end anonymous namespace + +/// EvaluateIntegerOrLValue - Evaluate an rvalue integral-typed expression, and +/// produce either the integer value or a pointer. +/// +/// GCC has a heinous extension which folds casts between pointer types and +/// pointer-sized integral types. We support this by allowing the evaluation of +/// an integer rvalue to produce a pointer (represented as an lvalue) instead. +/// Some simple arithmetic on such values is supported (they are treated much +/// like char*). +static bool EvaluateIntegerOrLValue(const Expr *E, APValue &Result, + EvalInfo &Info) { + assert(E->isRValue() && E->getType()->isIntegralOrEnumerationType()); + return IntExprEvaluator(Info, Result).Visit(E); +} + +static bool EvaluateInteger(const Expr *E, APSInt &Result, EvalInfo &Info) { + APValue Val; + if (!EvaluateIntegerOrLValue(E, Val, Info)) + return false; + if (!Val.isInt()) { + // FIXME: It would be better to produce the diagnostic for casting + // a pointer to an integer. + Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr); + return false; + } + Result = Val.getInt(); + return true; +} + +bool IntExprEvaluator::VisitSourceLocExpr(const SourceLocExpr *E) { + APValue Evaluated = E->EvaluateInContext( + Info.Ctx, Info.CurrentCall->CurSourceLocExprScope.getDefaultExpr()); + return Success(Evaluated, E); +} + +static bool EvaluateFixedPoint(const Expr *E, APFixedPoint &Result, + EvalInfo &Info) { + if (E->getType()->isFixedPointType()) { + APValue Val; + if (!FixedPointExprEvaluator(Info, Val).Visit(E)) + return false; + if (!Val.isFixedPoint()) + return false; + + Result = Val.getFixedPoint(); + return true; + } + return false; +} + +static bool EvaluateFixedPointOrInteger(const Expr *E, APFixedPoint &Result, + EvalInfo &Info) { + if (E->getType()->isIntegerType()) { + auto FXSema = Info.Ctx.getFixedPointSemantics(E->getType()); + APSInt Val; + if (!EvaluateInteger(E, Val, Info)) + return false; + Result = APFixedPoint(Val, FXSema); + return true; + } else if (E->getType()->isFixedPointType()) { + return EvaluateFixedPoint(E, Result, Info); + } + return false; +} + +/// Check whether the given declaration can be directly converted to an integral +/// rvalue. If not, no diagnostic is produced; there are other things we can +/// try. +bool IntExprEvaluator::CheckReferencedDecl(const Expr* E, const Decl* D) { + // Enums are integer constant exprs. + if (const EnumConstantDecl *ECD = dyn_cast<EnumConstantDecl>(D)) { + // Check for signedness/width mismatches between E type and ECD value. + bool SameSign = (ECD->getInitVal().isSigned() + == E->getType()->isSignedIntegerOrEnumerationType()); + bool SameWidth = (ECD->getInitVal().getBitWidth() + == Info.Ctx.getIntWidth(E->getType())); + if (SameSign && SameWidth) + return Success(ECD->getInitVal(), E); + else { + // Get rid of mismatch (otherwise Success assertions will fail) + // by computing a new value matching the type of E. + llvm::APSInt Val = ECD->getInitVal(); + if (!SameSign) + Val.setIsSigned(!ECD->getInitVal().isSigned()); + if (!SameWidth) + Val = Val.extOrTrunc(Info.Ctx.getIntWidth(E->getType())); + return Success(Val, E); + } + } + return false; +} + +/// Values returned by __builtin_classify_type, chosen to match the values +/// produced by GCC's builtin. +enum class GCCTypeClass { + None = -1, + Void = 0, + Integer = 1, + // GCC reserves 2 for character types, but instead classifies them as + // integers. + Enum = 3, + Bool = 4, + Pointer = 5, + // GCC reserves 6 for references, but appears to never use it (because + // expressions never have reference type, presumably). + PointerToDataMember = 7, + RealFloat = 8, + Complex = 9, + // GCC reserves 10 for functions, but does not use it since GCC version 6 due + // to decay to pointer. (Prior to version 6 it was only used in C++ mode). + // GCC claims to reserve 11 for pointers to member functions, but *actually* + // uses 12 for that purpose, same as for a class or struct. Maybe it + // internally implements a pointer to member as a struct? Who knows. + PointerToMemberFunction = 12, // Not a bug, see above. + ClassOrStruct = 12, + Union = 13, + // GCC reserves 14 for arrays, but does not use it since GCC version 6 due to + // decay to pointer. (Prior to version 6 it was only used in C++ mode). + // GCC reserves 15 for strings, but actually uses 5 (pointer) for string + // literals. +}; + +/// EvaluateBuiltinClassifyType - Evaluate __builtin_classify_type the same way +/// as GCC. +static GCCTypeClass +EvaluateBuiltinClassifyType(QualType T, const LangOptions &LangOpts) { + assert(!T->isDependentType() && "unexpected dependent type"); + + QualType CanTy = T.getCanonicalType(); + const BuiltinType *BT = dyn_cast<BuiltinType>(CanTy); + + switch (CanTy->getTypeClass()) { +#define TYPE(ID, BASE) +#define DEPENDENT_TYPE(ID, BASE) case Type::ID: +#define NON_CANONICAL_TYPE(ID, BASE) case Type::ID: +#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(ID, BASE) case Type::ID: +#include "clang/AST/TypeNodes.inc" + case Type::Auto: + case Type::DeducedTemplateSpecialization: + llvm_unreachable("unexpected non-canonical or dependent type"); + + case Type::Builtin: + switch (BT->getKind()) { +#define BUILTIN_TYPE(ID, SINGLETON_ID) +#define SIGNED_TYPE(ID, SINGLETON_ID) \ + case BuiltinType::ID: return GCCTypeClass::Integer; +#define FLOATING_TYPE(ID, SINGLETON_ID) \ + case BuiltinType::ID: return GCCTypeClass::RealFloat; +#define PLACEHOLDER_TYPE(ID, SINGLETON_ID) \ + case BuiltinType::ID: break; +#include "clang/AST/BuiltinTypes.def" + case BuiltinType::Void: + return GCCTypeClass::Void; + + case BuiltinType::Bool: + return GCCTypeClass::Bool; + + case BuiltinType::Char_U: + case BuiltinType::UChar: + case BuiltinType::WChar_U: + case BuiltinType::Char8: + case BuiltinType::Char16: + case BuiltinType::Char32: + case BuiltinType::UShort: + case BuiltinType::UInt: + case BuiltinType::ULong: + case BuiltinType::ULongLong: + case BuiltinType::UInt128: + return GCCTypeClass::Integer; + + case BuiltinType::UShortAccum: + case BuiltinType::UAccum: + case BuiltinType::ULongAccum: + case BuiltinType::UShortFract: + case BuiltinType::UFract: + case BuiltinType::ULongFract: + case BuiltinType::SatUShortAccum: + case BuiltinType::SatUAccum: + case BuiltinType::SatULongAccum: + case BuiltinType::SatUShortFract: + case BuiltinType::SatUFract: + case BuiltinType::SatULongFract: + return GCCTypeClass::None; + + case BuiltinType::NullPtr: + + case BuiltinType::ObjCId: + case BuiltinType::ObjCClass: + case BuiltinType::ObjCSel: +#define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \ + case BuiltinType::Id: +#include "clang/Basic/OpenCLImageTypes.def" +#define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \ + case BuiltinType::Id: +#include "clang/Basic/OpenCLExtensionTypes.def" + case BuiltinType::OCLSampler: + case BuiltinType::OCLEvent: + case BuiltinType::OCLClkEvent: + case BuiltinType::OCLQueue: + case BuiltinType::OCLReserveID: +#define SVE_TYPE(Name, Id, SingletonId) \ + case BuiltinType::Id: +#include "clang/Basic/AArch64SVEACLETypes.def" + return GCCTypeClass::None; + + case BuiltinType::Dependent: + llvm_unreachable("unexpected dependent type"); + }; + llvm_unreachable("unexpected placeholder type"); + + case Type::Enum: + return LangOpts.CPlusPlus ? GCCTypeClass::Enum : GCCTypeClass::Integer; + + case Type::Pointer: + case Type::ConstantArray: + case Type::VariableArray: + case Type::IncompleteArray: + case Type::FunctionNoProto: + case Type::FunctionProto: + return GCCTypeClass::Pointer; + + case Type::MemberPointer: + return CanTy->isMemberDataPointerType() + ? GCCTypeClass::PointerToDataMember + : GCCTypeClass::PointerToMemberFunction; + + case Type::Complex: + return GCCTypeClass::Complex; + + case Type::Record: + return CanTy->isUnionType() ? GCCTypeClass::Union + : GCCTypeClass::ClassOrStruct; + + case Type::Atomic: + // GCC classifies _Atomic T the same as T. + return EvaluateBuiltinClassifyType( + CanTy->castAs<AtomicType>()->getValueType(), LangOpts); + + case Type::BlockPointer: + case Type::Vector: + case Type::ExtVector: + case Type::ObjCObject: + case Type::ObjCInterface: + case Type::ObjCObjectPointer: + case Type::Pipe: + // GCC classifies vectors as None. We follow its lead and classify all + // other types that don't fit into the regular classification the same way. + return GCCTypeClass::None; + + case Type::LValueReference: + case Type::RValueReference: + llvm_unreachable("invalid type for expression"); + } + + llvm_unreachable("unexpected type class"); +} + +/// EvaluateBuiltinClassifyType - Evaluate __builtin_classify_type the same way +/// as GCC. +static GCCTypeClass +EvaluateBuiltinClassifyType(const CallExpr *E, const LangOptions &LangOpts) { + // If no argument was supplied, default to None. This isn't + // ideal, however it is what gcc does. + if (E->getNumArgs() == 0) + return GCCTypeClass::None; + + // FIXME: Bizarrely, GCC treats a call with more than one argument as not + // being an ICE, but still folds it to a constant using the type of the first + // argument. + return EvaluateBuiltinClassifyType(E->getArg(0)->getType(), LangOpts); +} + +/// EvaluateBuiltinConstantPForLValue - Determine the result of +/// __builtin_constant_p when applied to the given pointer. +/// +/// A pointer is only "constant" if it is null (or a pointer cast to integer) +/// or it points to the first character of a string literal. +static bool EvaluateBuiltinConstantPForLValue(const APValue &LV) { + APValue::LValueBase Base = LV.getLValueBase(); + if (Base.isNull()) { + // A null base is acceptable. + return true; + } else if (const Expr *E = Base.dyn_cast<const Expr *>()) { + if (!isa<StringLiteral>(E)) + return false; + return LV.getLValueOffset().isZero(); + } else if (Base.is<TypeInfoLValue>()) { + // Surprisingly, GCC considers __builtin_constant_p(&typeid(int)) to + // evaluate to true. + return true; + } else { + // Any other base is not constant enough for GCC. + return false; + } +} + +/// EvaluateBuiltinConstantP - Evaluate __builtin_constant_p as similarly to +/// GCC as we can manage. +static bool EvaluateBuiltinConstantP(EvalInfo &Info, const Expr *Arg) { + // This evaluation is not permitted to have side-effects, so evaluate it in + // a speculative evaluation context. + SpeculativeEvaluationRAII SpeculativeEval(Info); + + // Constant-folding is always enabled for the operand of __builtin_constant_p + // (even when the enclosing evaluation context otherwise requires a strict + // language-specific constant expression). + FoldConstant Fold(Info, true); + + QualType ArgType = Arg->getType(); + + // __builtin_constant_p always has one operand. The rules which gcc follows + // are not precisely documented, but are as follows: + // + // - If the operand is of integral, floating, complex or enumeration type, + // and can be folded to a known value of that type, it returns 1. + // - If the operand can be folded to a pointer to the first character + // of a string literal (or such a pointer cast to an integral type) + // or to a null pointer or an integer cast to a pointer, it returns 1. + // + // Otherwise, it returns 0. + // + // FIXME: GCC also intends to return 1 for literals of aggregate types, but + // its support for this did not work prior to GCC 9 and is not yet well + // understood. + if (ArgType->isIntegralOrEnumerationType() || ArgType->isFloatingType() || + ArgType->isAnyComplexType() || ArgType->isPointerType() || + ArgType->isNullPtrType()) { + APValue V; + if (!::EvaluateAsRValue(Info, Arg, V)) { + Fold.keepDiagnostics(); + return false; + } + + // For a pointer (possibly cast to integer), there are special rules. + if (V.getKind() == APValue::LValue) + return EvaluateBuiltinConstantPForLValue(V); + + // Otherwise, any constant value is good enough. + return V.hasValue(); + } + + // Anything else isn't considered to be sufficiently constant. + return false; +} + +/// Retrieves the "underlying object type" of the given expression, +/// as used by __builtin_object_size. +static QualType getObjectType(APValue::LValueBase B) { + if (const ValueDecl *D = B.dyn_cast<const ValueDecl*>()) { + if (const VarDecl *VD = dyn_cast<VarDecl>(D)) + return VD->getType(); + } else if (const Expr *E = B.get<const Expr*>()) { + if (isa<CompoundLiteralExpr>(E)) + return E->getType(); + } else if (B.is<TypeInfoLValue>()) { + return B.getTypeInfoType(); + } else if (B.is<DynamicAllocLValue>()) { + return B.getDynamicAllocType(); + } + + return QualType(); +} + +/// A more selective version of E->IgnoreParenCasts for +/// tryEvaluateBuiltinObjectSize. This ignores some casts/parens that serve only +/// to change the type of E. +/// Ex. For E = `(short*)((char*)(&foo))`, returns `&foo` +/// +/// Always returns an RValue with a pointer representation. +static const Expr *ignorePointerCastsAndParens(const Expr *E) { + assert(E->isRValue() && E->getType()->hasPointerRepresentation()); + + auto *NoParens = E->IgnoreParens(); + auto *Cast = dyn_cast<CastExpr>(NoParens); + if (Cast == nullptr) + return NoParens; + + // We only conservatively allow a few kinds of casts, because this code is + // inherently a simple solution that seeks to support the common case. + auto CastKind = Cast->getCastKind(); + if (CastKind != CK_NoOp && CastKind != CK_BitCast && + CastKind != CK_AddressSpaceConversion) + return NoParens; + + auto *SubExpr = Cast->getSubExpr(); + if (!SubExpr->getType()->hasPointerRepresentation() || !SubExpr->isRValue()) + return NoParens; + return ignorePointerCastsAndParens(SubExpr); +} + +/// Checks to see if the given LValue's Designator is at the end of the LValue's +/// record layout. e.g. +/// struct { struct { int a, b; } fst, snd; } obj; +/// obj.fst // no +/// obj.snd // yes +/// obj.fst.a // no +/// obj.fst.b // no +/// obj.snd.a // no +/// obj.snd.b // yes +/// +/// Please note: this function is specialized for how __builtin_object_size +/// views "objects". +/// +/// If this encounters an invalid RecordDecl or otherwise cannot determine the +/// correct result, it will always return true. +static bool isDesignatorAtObjectEnd(const ASTContext &Ctx, const LValue &LVal) { + assert(!LVal.Designator.Invalid); + + auto IsLastOrInvalidFieldDecl = [&Ctx](const FieldDecl *FD, bool &Invalid) { + const RecordDecl *Parent = FD->getParent(); + Invalid = Parent->isInvalidDecl(); + if (Invalid || Parent->isUnion()) + return true; + const ASTRecordLayout &Layout = Ctx.getASTRecordLayout(Parent); + return FD->getFieldIndex() + 1 == Layout.getFieldCount(); + }; + + auto &Base = LVal.getLValueBase(); + if (auto *ME = dyn_cast_or_null<MemberExpr>(Base.dyn_cast<const Expr *>())) { + if (auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) { + bool Invalid; + if (!IsLastOrInvalidFieldDecl(FD, Invalid)) + return Invalid; + } else if (auto *IFD = dyn_cast<IndirectFieldDecl>(ME->getMemberDecl())) { + for (auto *FD : IFD->chain()) { + bool Invalid; + if (!IsLastOrInvalidFieldDecl(cast<FieldDecl>(FD), Invalid)) + return Invalid; + } + } + } + + unsigned I = 0; + QualType BaseType = getType(Base); + if (LVal.Designator.FirstEntryIsAnUnsizedArray) { + // If we don't know the array bound, conservatively assume we're looking at + // the final array element. + ++I; + if (BaseType->isIncompleteArrayType()) + BaseType = Ctx.getAsArrayType(BaseType)->getElementType(); + else + BaseType = BaseType->castAs<PointerType>()->getPointeeType(); + } + + for (unsigned E = LVal.Designator.Entries.size(); I != E; ++I) { + const auto &Entry = LVal.Designator.Entries[I]; + if (BaseType->isArrayType()) { + // Because __builtin_object_size treats arrays as objects, we can ignore + // the index iff this is the last array in the Designator. + if (I + 1 == E) + return true; + const auto *CAT = cast<ConstantArrayType>(Ctx.getAsArrayType(BaseType)); + uint64_t Index = Entry.getAsArrayIndex(); + if (Index + 1 != CAT->getSize()) + return false; + BaseType = CAT->getElementType(); + } else if (BaseType->isAnyComplexType()) { + const auto *CT = BaseType->castAs<ComplexType>(); + uint64_t Index = Entry.getAsArrayIndex(); + if (Index != 1) + return false; + BaseType = CT->getElementType(); + } else if (auto *FD = getAsField(Entry)) { + bool Invalid; + if (!IsLastOrInvalidFieldDecl(FD, Invalid)) + return Invalid; + BaseType = FD->getType(); + } else { + assert(getAsBaseClass(Entry) && "Expecting cast to a base class"); + return false; + } + } + return true; +} + +/// Tests to see if the LValue has a user-specified designator (that isn't +/// necessarily valid). Note that this always returns 'true' if the LValue has +/// an unsized array as its first designator entry, because there's currently no +/// way to tell if the user typed *foo or foo[0]. +static bool refersToCompleteObject(const LValue &LVal) { + if (LVal.Designator.Invalid) + return false; + + if (!LVal.Designator.Entries.empty()) + return LVal.Designator.isMostDerivedAnUnsizedArray(); + + if (!LVal.InvalidBase) + return true; + + // If `E` is a MemberExpr, then the first part of the designator is hiding in + // the LValueBase. + const auto *E = LVal.Base.dyn_cast<const Expr *>(); + return !E || !isa<MemberExpr>(E); +} + +/// Attempts to detect a user writing into a piece of memory that's impossible +/// to figure out the size of by just using types. +static bool isUserWritingOffTheEnd(const ASTContext &Ctx, const LValue &LVal) { + const SubobjectDesignator &Designator = LVal.Designator; + // Notes: + // - Users can only write off of the end when we have an invalid base. Invalid + // bases imply we don't know where the memory came from. + // - We used to be a bit more aggressive here; we'd only be conservative if + // the array at the end was flexible, or if it had 0 or 1 elements. This + // broke some common standard library extensions (PR30346), but was + // otherwise seemingly fine. It may be useful to reintroduce this behavior + // with some sort of whitelist. OTOH, it seems that GCC is always + // conservative with the last element in structs (if it's an array), so our + // current behavior is more compatible than a whitelisting approach would + // be. + return LVal.InvalidBase && + Designator.Entries.size() == Designator.MostDerivedPathLength && + Designator.MostDerivedIsArrayElement && + isDesignatorAtObjectEnd(Ctx, LVal); +} + +/// Converts the given APInt to CharUnits, assuming the APInt is unsigned. +/// Fails if the conversion would cause loss of precision. +static bool convertUnsignedAPIntToCharUnits(const llvm::APInt &Int, + CharUnits &Result) { + auto CharUnitsMax = std::numeric_limits<CharUnits::QuantityType>::max(); + if (Int.ugt(CharUnitsMax)) + return false; + Result = CharUnits::fromQuantity(Int.getZExtValue()); + return true; +} + +/// Helper for tryEvaluateBuiltinObjectSize -- Given an LValue, this will +/// determine how many bytes exist from the beginning of the object to either +/// the end of the current subobject, or the end of the object itself, depending +/// on what the LValue looks like + the value of Type. +/// +/// If this returns false, the value of Result is undefined. +static bool determineEndOffset(EvalInfo &Info, SourceLocation ExprLoc, + unsigned Type, const LValue &LVal, + CharUnits &EndOffset) { + bool DetermineForCompleteObject = refersToCompleteObject(LVal); + + auto CheckedHandleSizeof = [&](QualType Ty, CharUnits &Result) { + if (Ty.isNull() || Ty->isIncompleteType() || Ty->isFunctionType()) + return false; + return HandleSizeof(Info, ExprLoc, Ty, Result); + }; + + // We want to evaluate the size of the entire object. This is a valid fallback + // for when Type=1 and the designator is invalid, because we're asked for an + // upper-bound. + if (!(Type & 1) || LVal.Designator.Invalid || DetermineForCompleteObject) { + // Type=3 wants a lower bound, so we can't fall back to this. + if (Type == 3 && !DetermineForCompleteObject) + return false; + + llvm::APInt APEndOffset; + if (isBaseAnAllocSizeCall(LVal.getLValueBase()) && + getBytesReturnedByAllocSizeCall(Info.Ctx, LVal, APEndOffset)) + return convertUnsignedAPIntToCharUnits(APEndOffset, EndOffset); + + if (LVal.InvalidBase) + return false; + + QualType BaseTy = getObjectType(LVal.getLValueBase()); + return CheckedHandleSizeof(BaseTy, EndOffset); + } + + // We want to evaluate the size of a subobject. + const SubobjectDesignator &Designator = LVal.Designator; + + // The following is a moderately common idiom in C: + // + // struct Foo { int a; char c[1]; }; + // struct Foo *F = (struct Foo *)malloc(sizeof(struct Foo) + strlen(Bar)); + // strcpy(&F->c[0], Bar); + // + // In order to not break too much legacy code, we need to support it. + if (isUserWritingOffTheEnd(Info.Ctx, LVal)) { + // If we can resolve this to an alloc_size call, we can hand that back, + // because we know for certain how many bytes there are to write to. + llvm::APInt APEndOffset; + if (isBaseAnAllocSizeCall(LVal.getLValueBase()) && + getBytesReturnedByAllocSizeCall(Info.Ctx, LVal, APEndOffset)) + return convertUnsignedAPIntToCharUnits(APEndOffset, EndOffset); + + // If we cannot determine the size of the initial allocation, then we can't + // given an accurate upper-bound. However, we are still able to give + // conservative lower-bounds for Type=3. + if (Type == 1) + return false; + } + + CharUnits BytesPerElem; + if (!CheckedHandleSizeof(Designator.MostDerivedType, BytesPerElem)) + return false; + + // According to the GCC documentation, we want the size of the subobject + // denoted by the pointer. But that's not quite right -- what we actually + // want is the size of the immediately-enclosing array, if there is one. + int64_t ElemsRemaining; + if (Designator.MostDerivedIsArrayElement && + Designator.Entries.size() == Designator.MostDerivedPathLength) { + uint64_t ArraySize = Designator.getMostDerivedArraySize(); + uint64_t ArrayIndex = Designator.Entries.back().getAsArrayIndex(); + ElemsRemaining = ArraySize <= ArrayIndex ? 0 : ArraySize - ArrayIndex; + } else { + ElemsRemaining = Designator.isOnePastTheEnd() ? 0 : 1; + } + + EndOffset = LVal.getLValueOffset() + BytesPerElem * ElemsRemaining; + return true; +} + +/// Tries to evaluate the __builtin_object_size for @p E. If successful, +/// returns true and stores the result in @p Size. +/// +/// If @p WasError is non-null, this will report whether the failure to evaluate +/// is to be treated as an Error in IntExprEvaluator. +static bool tryEvaluateBuiltinObjectSize(const Expr *E, unsigned Type, + EvalInfo &Info, uint64_t &Size) { + // Determine the denoted object. + LValue LVal; + { + // The operand of __builtin_object_size is never evaluated for side-effects. + // If there are any, but we can determine the pointed-to object anyway, then + // ignore the side-effects. + SpeculativeEvaluationRAII SpeculativeEval(Info); + IgnoreSideEffectsRAII Fold(Info); + + if (E->isGLValue()) { + // It's possible for us to be given GLValues if we're called via + // Expr::tryEvaluateObjectSize. + APValue RVal; + if (!EvaluateAsRValue(Info, E, RVal)) + return false; + LVal.setFrom(Info.Ctx, RVal); + } else if (!EvaluatePointer(ignorePointerCastsAndParens(E), LVal, Info, + /*InvalidBaseOK=*/true)) + return false; + } + + // If we point to before the start of the object, there are no accessible + // bytes. + if (LVal.getLValueOffset().isNegative()) { + Size = 0; + return true; + } + + CharUnits EndOffset; + if (!determineEndOffset(Info, E->getExprLoc(), Type, LVal, EndOffset)) + return false; + + // If we've fallen outside of the end offset, just pretend there's nothing to + // write to/read from. + if (EndOffset <= LVal.getLValueOffset()) + Size = 0; + else + Size = (EndOffset - LVal.getLValueOffset()).getQuantity(); + return true; +} + +bool IntExprEvaluator::VisitConstantExpr(const ConstantExpr *E) { + llvm::SaveAndRestore<bool> InConstantContext(Info.InConstantContext, true); + if (E->getResultAPValueKind() != APValue::None) + return Success(E->getAPValueResult(), E); + return ExprEvaluatorBaseTy::VisitConstantExpr(E); +} + +bool IntExprEvaluator::VisitCallExpr(const CallExpr *E) { + if (unsigned BuiltinOp = E->getBuiltinCallee()) + return VisitBuiltinCallExpr(E, BuiltinOp); + + return ExprEvaluatorBaseTy::VisitCallExpr(E); +} + +bool IntExprEvaluator::VisitBuiltinCallExpr(const CallExpr *E, + unsigned BuiltinOp) { + switch (unsigned BuiltinOp = E->getBuiltinCallee()) { + default: + return ExprEvaluatorBaseTy::VisitCallExpr(E); + + case Builtin::BI__builtin_dynamic_object_size: + case Builtin::BI__builtin_object_size: { + // The type was checked when we built the expression. + unsigned Type = + E->getArg(1)->EvaluateKnownConstInt(Info.Ctx).getZExtValue(); + assert(Type <= 3 && "unexpected type"); + + uint64_t Size; + if (tryEvaluateBuiltinObjectSize(E->getArg(0), Type, Info, Size)) + return Success(Size, E); + + if (E->getArg(0)->HasSideEffects(Info.Ctx)) + return Success((Type & 2) ? 0 : -1, E); + + // Expression had no side effects, but we couldn't statically determine the + // size of the referenced object. + switch (Info.EvalMode) { + case EvalInfo::EM_ConstantExpression: + case EvalInfo::EM_ConstantFold: + case EvalInfo::EM_IgnoreSideEffects: + // Leave it to IR generation. + return Error(E); + case EvalInfo::EM_ConstantExpressionUnevaluated: + // Reduce it to a constant now. + return Success((Type & 2) ? 0 : -1, E); + } + + llvm_unreachable("unexpected EvalMode"); + } + + case Builtin::BI__builtin_os_log_format_buffer_size: { + analyze_os_log::OSLogBufferLayout Layout; + analyze_os_log::computeOSLogBufferLayout(Info.Ctx, E, Layout); + return Success(Layout.size().getQuantity(), E); + } + + case Builtin::BI__builtin_bswap16: + case Builtin::BI__builtin_bswap32: + case Builtin::BI__builtin_bswap64: { + APSInt Val; + if (!EvaluateInteger(E->getArg(0), Val, Info)) + return false; + + return Success(Val.byteSwap(), E); + } + + case Builtin::BI__builtin_classify_type: + return Success((int)EvaluateBuiltinClassifyType(E, Info.getLangOpts()), E); + + case Builtin::BI__builtin_clrsb: + case Builtin::BI__builtin_clrsbl: + case Builtin::BI__builtin_clrsbll: { + APSInt Val; + if (!EvaluateInteger(E->getArg(0), Val, Info)) + return false; + + return Success(Val.getBitWidth() - Val.getMinSignedBits(), E); + } + + case Builtin::BI__builtin_clz: + case Builtin::BI__builtin_clzl: + case Builtin::BI__builtin_clzll: + case Builtin::BI__builtin_clzs: { + APSInt Val; + if (!EvaluateInteger(E->getArg(0), Val, Info)) + return false; + if (!Val) + return Error(E); + + return Success(Val.countLeadingZeros(), E); + } + + case Builtin::BI__builtin_constant_p: { + const Expr *Arg = E->getArg(0); + if (EvaluateBuiltinConstantP(Info, Arg)) + return Success(true, E); + if (Info.InConstantContext || Arg->HasSideEffects(Info.Ctx)) { + // Outside a constant context, eagerly evaluate to false in the presence + // of side-effects in order to avoid -Wunsequenced false-positives in + // a branch on __builtin_constant_p(expr). + return Success(false, E); + } + Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr); + return false; + } + + case Builtin::BI__builtin_is_constant_evaluated: + return Success(Info.InConstantContext, E); + + case Builtin::BI__builtin_ctz: + case Builtin::BI__builtin_ctzl: + case Builtin::BI__builtin_ctzll: + case Builtin::BI__builtin_ctzs: { + APSInt Val; + if (!EvaluateInteger(E->getArg(0), Val, Info)) + return false; + if (!Val) + return Error(E); + + return Success(Val.countTrailingZeros(), E); + } + + case Builtin::BI__builtin_eh_return_data_regno: { + int Operand = E->getArg(0)->EvaluateKnownConstInt(Info.Ctx).getZExtValue(); + Operand = Info.Ctx.getTargetInfo().getEHDataRegisterNumber(Operand); + return Success(Operand, E); + } + + case Builtin::BI__builtin_expect: + return Visit(E->getArg(0)); + + case Builtin::BI__builtin_ffs: + case Builtin::BI__builtin_ffsl: + case Builtin::BI__builtin_ffsll: { + APSInt Val; + if (!EvaluateInteger(E->getArg(0), Val, Info)) + return false; + + unsigned N = Val.countTrailingZeros(); + return Success(N == Val.getBitWidth() ? 0 : N + 1, E); + } + + case Builtin::BI__builtin_fpclassify: { + APFloat Val(0.0); + if (!EvaluateFloat(E->getArg(5), Val, Info)) + return false; + unsigned Arg; + switch (Val.getCategory()) { + case APFloat::fcNaN: Arg = 0; break; + case APFloat::fcInfinity: Arg = 1; break; + case APFloat::fcNormal: Arg = Val.isDenormal() ? 3 : 2; break; + case APFloat::fcZero: Arg = 4; break; + } + return Visit(E->getArg(Arg)); + } + + case Builtin::BI__builtin_isinf_sign: { + APFloat Val(0.0); + return EvaluateFloat(E->getArg(0), Val, Info) && + Success(Val.isInfinity() ? (Val.isNegative() ? -1 : 1) : 0, E); + } + + case Builtin::BI__builtin_isinf: { + APFloat Val(0.0); + return EvaluateFloat(E->getArg(0), Val, Info) && + Success(Val.isInfinity() ? 1 : 0, E); + } + + case Builtin::BI__builtin_isfinite: { + APFloat Val(0.0); + return EvaluateFloat(E->getArg(0), Val, Info) && + Success(Val.isFinite() ? 1 : 0, E); + } + + case Builtin::BI__builtin_isnan: { + APFloat Val(0.0); + return EvaluateFloat(E->getArg(0), Val, Info) && + Success(Val.isNaN() ? 1 : 0, E); + } + + case Builtin::BI__builtin_isnormal: { + APFloat Val(0.0); + return EvaluateFloat(E->getArg(0), Val, Info) && + Success(Val.isNormal() ? 1 : 0, E); + } + + case Builtin::BI__builtin_parity: + case Builtin::BI__builtin_parityl: + case Builtin::BI__builtin_parityll: { + APSInt Val; + if (!EvaluateInteger(E->getArg(0), Val, Info)) + return false; + + return Success(Val.countPopulation() % 2, E); + } + + case Builtin::BI__builtin_popcount: + case Builtin::BI__builtin_popcountl: + case Builtin::BI__builtin_popcountll: { + APSInt Val; + if (!EvaluateInteger(E->getArg(0), Val, Info)) + return false; + + return Success(Val.countPopulation(), E); + } + + case Builtin::BIstrlen: + case Builtin::BIwcslen: + // A call to strlen is not a constant expression. + if (Info.getLangOpts().CPlusPlus11) + Info.CCEDiag(E, diag::note_constexpr_invalid_function) + << /*isConstexpr*/0 << /*isConstructor*/0 + << (std::string("'") + Info.Ctx.BuiltinInfo.getName(BuiltinOp) + "'"); + else + Info.CCEDiag(E, diag::note_invalid_subexpr_in_const_expr); + LLVM_FALLTHROUGH; + case Builtin::BI__builtin_strlen: + case Builtin::BI__builtin_wcslen: { + // As an extension, we support __builtin_strlen() as a constant expression, + // and support folding strlen() to a constant. + LValue String; + if (!EvaluatePointer(E->getArg(0), String, Info)) + return false; + + QualType CharTy = E->getArg(0)->getType()->getPointeeType(); + + // Fast path: if it's a string literal, search the string value. + if (const StringLiteral *S = dyn_cast_or_null<StringLiteral>( + String.getLValueBase().dyn_cast<const Expr *>())) { + // The string literal may have embedded null characters. Find the first + // one and truncate there. + StringRef Str = S->getBytes(); + int64_t Off = String.Offset.getQuantity(); + if (Off >= 0 && (uint64_t)Off <= (uint64_t)Str.size() && + S->getCharByteWidth() == 1 && + // FIXME: Add fast-path for wchar_t too. + Info.Ctx.hasSameUnqualifiedType(CharTy, Info.Ctx.CharTy)) { + Str = Str.substr(Off); + + StringRef::size_type Pos = Str.find(0); + if (Pos != StringRef::npos) + Str = Str.substr(0, Pos); + + return Success(Str.size(), E); + } + + // Fall through to slow path to issue appropriate diagnostic. + } + + // Slow path: scan the bytes of the string looking for the terminating 0. + for (uint64_t Strlen = 0; /**/; ++Strlen) { + APValue Char; + if (!handleLValueToRValueConversion(Info, E, CharTy, String, Char) || + !Char.isInt()) + return false; + if (!Char.getInt()) + return Success(Strlen, E); + if (!HandleLValueArrayAdjustment(Info, E, String, CharTy, 1)) + return false; + } + } + + case Builtin::BIstrcmp: + case Builtin::BIwcscmp: + case Builtin::BIstrncmp: + case Builtin::BIwcsncmp: + case Builtin::BImemcmp: + case Builtin::BIbcmp: + case Builtin::BIwmemcmp: + // A call to strlen is not a constant expression. + if (Info.getLangOpts().CPlusPlus11) + Info.CCEDiag(E, diag::note_constexpr_invalid_function) + << /*isConstexpr*/0 << /*isConstructor*/0 + << (std::string("'") + Info.Ctx.BuiltinInfo.getName(BuiltinOp) + "'"); + else + Info.CCEDiag(E, diag::note_invalid_subexpr_in_const_expr); + LLVM_FALLTHROUGH; + case Builtin::BI__builtin_strcmp: + case Builtin::BI__builtin_wcscmp: + case Builtin::BI__builtin_strncmp: + case Builtin::BI__builtin_wcsncmp: + case Builtin::BI__builtin_memcmp: + case Builtin::BI__builtin_bcmp: + case Builtin::BI__builtin_wmemcmp: { + LValue String1, String2; + if (!EvaluatePointer(E->getArg(0), String1, Info) || + !EvaluatePointer(E->getArg(1), String2, Info)) + return false; + + uint64_t MaxLength = uint64_t(-1); + if (BuiltinOp != Builtin::BIstrcmp && + BuiltinOp != Builtin::BIwcscmp && + BuiltinOp != Builtin::BI__builtin_strcmp && + BuiltinOp != Builtin::BI__builtin_wcscmp) { + APSInt N; + if (!EvaluateInteger(E->getArg(2), N, Info)) + return false; + MaxLength = N.getExtValue(); + } + + // Empty substrings compare equal by definition. + if (MaxLength == 0u) + return Success(0, E); + + if (!String1.checkNullPointerForFoldAccess(Info, E, AK_Read) || + !String2.checkNullPointerForFoldAccess(Info, E, AK_Read) || + String1.Designator.Invalid || String2.Designator.Invalid) + return false; + + QualType CharTy1 = String1.Designator.getType(Info.Ctx); + QualType CharTy2 = String2.Designator.getType(Info.Ctx); + + bool IsRawByte = BuiltinOp == Builtin::BImemcmp || + BuiltinOp == Builtin::BIbcmp || + BuiltinOp == Builtin::BI__builtin_memcmp || + BuiltinOp == Builtin::BI__builtin_bcmp; + + assert(IsRawByte || + (Info.Ctx.hasSameUnqualifiedType( + CharTy1, E->getArg(0)->getType()->getPointeeType()) && + Info.Ctx.hasSameUnqualifiedType(CharTy1, CharTy2))); + + const auto &ReadCurElems = [&](APValue &Char1, APValue &Char2) { + return handleLValueToRValueConversion(Info, E, CharTy1, String1, Char1) && + handleLValueToRValueConversion(Info, E, CharTy2, String2, Char2) && + Char1.isInt() && Char2.isInt(); + }; + const auto &AdvanceElems = [&] { + return HandleLValueArrayAdjustment(Info, E, String1, CharTy1, 1) && + HandleLValueArrayAdjustment(Info, E, String2, CharTy2, 1); + }; + + if (IsRawByte) { + uint64_t BytesRemaining = MaxLength; + // Pointers to const void may point to objects of incomplete type. + if (CharTy1->isIncompleteType()) { + Info.FFDiag(E, diag::note_constexpr_ltor_incomplete_type) << CharTy1; + return false; + } + if (CharTy2->isIncompleteType()) { + Info.FFDiag(E, diag::note_constexpr_ltor_incomplete_type) << CharTy2; + return false; + } + uint64_t CharTy1Width{Info.Ctx.getTypeSize(CharTy1)}; + CharUnits CharTy1Size = Info.Ctx.toCharUnitsFromBits(CharTy1Width); + // Give up on comparing between elements with disparate widths. + if (CharTy1Size != Info.Ctx.getTypeSizeInChars(CharTy2)) + return false; + uint64_t BytesPerElement = CharTy1Size.getQuantity(); + assert(BytesRemaining && "BytesRemaining should not be zero: the " + "following loop considers at least one element"); + while (true) { + APValue Char1, Char2; + if (!ReadCurElems(Char1, Char2)) + return false; + // We have compatible in-memory widths, but a possible type and + // (for `bool`) internal representation mismatch. + // Assuming two's complement representation, including 0 for `false` and + // 1 for `true`, we can check an appropriate number of elements for + // equality even if they are not byte-sized. + APSInt Char1InMem = Char1.getInt().extOrTrunc(CharTy1Width); + APSInt Char2InMem = Char2.getInt().extOrTrunc(CharTy1Width); + if (Char1InMem.ne(Char2InMem)) { + // If the elements are byte-sized, then we can produce a three-way + // comparison result in a straightforward manner. + if (BytesPerElement == 1u) { + // memcmp always compares unsigned chars. + return Success(Char1InMem.ult(Char2InMem) ? -1 : 1, E); + } + // The result is byte-order sensitive, and we have multibyte elements. + // FIXME: We can compare the remaining bytes in the correct order. + return false; + } + if (!AdvanceElems()) + return false; + if (BytesRemaining <= BytesPerElement) + break; + BytesRemaining -= BytesPerElement; + } + // Enough elements are equal to account for the memcmp limit. + return Success(0, E); + } + + bool StopAtNull = + (BuiltinOp != Builtin::BImemcmp && BuiltinOp != Builtin::BIbcmp && + BuiltinOp != Builtin::BIwmemcmp && + BuiltinOp != Builtin::BI__builtin_memcmp && + BuiltinOp != Builtin::BI__builtin_bcmp && + BuiltinOp != Builtin::BI__builtin_wmemcmp); + bool IsWide = BuiltinOp == Builtin::BIwcscmp || + BuiltinOp == Builtin::BIwcsncmp || + BuiltinOp == Builtin::BIwmemcmp || + BuiltinOp == Builtin::BI__builtin_wcscmp || + BuiltinOp == Builtin::BI__builtin_wcsncmp || + BuiltinOp == Builtin::BI__builtin_wmemcmp; + + for (; MaxLength; --MaxLength) { + APValue Char1, Char2; + if (!ReadCurElems(Char1, Char2)) + return false; + if (Char1.getInt() != Char2.getInt()) { + if (IsWide) // wmemcmp compares with wchar_t signedness. + return Success(Char1.getInt() < Char2.getInt() ? -1 : 1, E); + // memcmp always compares unsigned chars. + return Success(Char1.getInt().ult(Char2.getInt()) ? -1 : 1, E); + } + if (StopAtNull && !Char1.getInt()) + return Success(0, E); + assert(!(StopAtNull && !Char2.getInt())); + if (!AdvanceElems()) + return false; + } + // We hit the strncmp / memcmp limit. + return Success(0, E); + } + + case Builtin::BI__atomic_always_lock_free: + case Builtin::BI__atomic_is_lock_free: + case Builtin::BI__c11_atomic_is_lock_free: { + APSInt SizeVal; + if (!EvaluateInteger(E->getArg(0), SizeVal, Info)) + return false; + + // For __atomic_is_lock_free(sizeof(_Atomic(T))), if the size is a power + // of two less than the maximum inline atomic width, we know it is + // lock-free. If the size isn't a power of two, or greater than the + // maximum alignment where we promote atomics, we know it is not lock-free + // (at least not in the sense of atomic_is_lock_free). Otherwise, + // the answer can only be determined at runtime; for example, 16-byte + // atomics have lock-free implementations on some, but not all, + // x86-64 processors. + + // Check power-of-two. + CharUnits Size = CharUnits::fromQuantity(SizeVal.getZExtValue()); + if (Size.isPowerOfTwo()) { + // Check against inlining width. + unsigned InlineWidthBits = + Info.Ctx.getTargetInfo().getMaxAtomicInlineWidth(); + if (Size <= Info.Ctx.toCharUnitsFromBits(InlineWidthBits)) { + if (BuiltinOp == Builtin::BI__c11_atomic_is_lock_free || + Size == CharUnits::One() || + E->getArg(1)->isNullPointerConstant(Info.Ctx, + Expr::NPC_NeverValueDependent)) + // OK, we will inline appropriately-aligned operations of this size, + // and _Atomic(T) is appropriately-aligned. + return Success(1, E); + + QualType PointeeType = E->getArg(1)->IgnoreImpCasts()->getType()-> + castAs<PointerType>()->getPointeeType(); + if (!PointeeType->isIncompleteType() && + Info.Ctx.getTypeAlignInChars(PointeeType) >= Size) { + // OK, we will inline operations on this object. + return Success(1, E); + } + } + } + + // Avoid emiting call for runtime decision on PowerPC 32-bit + // The lock free possibilities on this platform are covered by the lines + // above and we know in advance other cases require lock + if (Info.Ctx.getTargetInfo().getTriple().getArch() == llvm::Triple::ppc) { + return Success(0, E); + } + + return BuiltinOp == Builtin::BI__atomic_always_lock_free ? + Success(0, E) : Error(E); + } + case Builtin::BIomp_is_initial_device: + // We can decide statically which value the runtime would return if called. + return Success(Info.getLangOpts().OpenMPIsDevice ? 0 : 1, E); + case Builtin::BI__builtin_add_overflow: + case Builtin::BI__builtin_sub_overflow: + case Builtin::BI__builtin_mul_overflow: + case Builtin::BI__builtin_sadd_overflow: + case Builtin::BI__builtin_uadd_overflow: + case Builtin::BI__builtin_uaddl_overflow: + case Builtin::BI__builtin_uaddll_overflow: + case Builtin::BI__builtin_usub_overflow: + case Builtin::BI__builtin_usubl_overflow: + case Builtin::BI__builtin_usubll_overflow: + case Builtin::BI__builtin_umul_overflow: + case Builtin::BI__builtin_umull_overflow: + case Builtin::BI__builtin_umulll_overflow: + case Builtin::BI__builtin_saddl_overflow: + case Builtin::BI__builtin_saddll_overflow: + case Builtin::BI__builtin_ssub_overflow: + case Builtin::BI__builtin_ssubl_overflow: + case Builtin::BI__builtin_ssubll_overflow: + case Builtin::BI__builtin_smul_overflow: + case Builtin::BI__builtin_smull_overflow: + case Builtin::BI__builtin_smulll_overflow: { + LValue ResultLValue; + APSInt LHS, RHS; + + QualType ResultType = E->getArg(2)->getType()->getPointeeType(); + if (!EvaluateInteger(E->getArg(0), LHS, Info) || + !EvaluateInteger(E->getArg(1), RHS, Info) || + !EvaluatePointer(E->getArg(2), ResultLValue, Info)) + return false; + + APSInt Result; + bool DidOverflow = false; + + // If the types don't have to match, enlarge all 3 to the largest of them. + if (BuiltinOp == Builtin::BI__builtin_add_overflow || + BuiltinOp == Builtin::BI__builtin_sub_overflow || + BuiltinOp == Builtin::BI__builtin_mul_overflow) { + bool IsSigned = LHS.isSigned() || RHS.isSigned() || + ResultType->isSignedIntegerOrEnumerationType(); + bool AllSigned = LHS.isSigned() && RHS.isSigned() && + ResultType->isSignedIntegerOrEnumerationType(); + uint64_t LHSSize = LHS.getBitWidth(); + uint64_t RHSSize = RHS.getBitWidth(); + uint64_t ResultSize = Info.Ctx.getTypeSize(ResultType); + uint64_t MaxBits = std::max(std::max(LHSSize, RHSSize), ResultSize); + + // Add an additional bit if the signedness isn't uniformly agreed to. We + // could do this ONLY if there is a signed and an unsigned that both have + // MaxBits, but the code to check that is pretty nasty. The issue will be + // caught in the shrink-to-result later anyway. + if (IsSigned && !AllSigned) + ++MaxBits; + + LHS = APSInt(LHS.extOrTrunc(MaxBits), !IsSigned); + RHS = APSInt(RHS.extOrTrunc(MaxBits), !IsSigned); + Result = APSInt(MaxBits, !IsSigned); + } + + // Find largest int. + switch (BuiltinOp) { + default: + llvm_unreachable("Invalid value for BuiltinOp"); + case Builtin::BI__builtin_add_overflow: + case Builtin::BI__builtin_sadd_overflow: + case Builtin::BI__builtin_saddl_overflow: + case Builtin::BI__builtin_saddll_overflow: + case Builtin::BI__builtin_uadd_overflow: + case Builtin::BI__builtin_uaddl_overflow: + case Builtin::BI__builtin_uaddll_overflow: + Result = LHS.isSigned() ? LHS.sadd_ov(RHS, DidOverflow) + : LHS.uadd_ov(RHS, DidOverflow); + break; + case Builtin::BI__builtin_sub_overflow: + case Builtin::BI__builtin_ssub_overflow: + case Builtin::BI__builtin_ssubl_overflow: + case Builtin::BI__builtin_ssubll_overflow: + case Builtin::BI__builtin_usub_overflow: + case Builtin::BI__builtin_usubl_overflow: + case Builtin::BI__builtin_usubll_overflow: + Result = LHS.isSigned() ? LHS.ssub_ov(RHS, DidOverflow) + : LHS.usub_ov(RHS, DidOverflow); + break; + case Builtin::BI__builtin_mul_overflow: + case Builtin::BI__builtin_smul_overflow: + case Builtin::BI__builtin_smull_overflow: + case Builtin::BI__builtin_smulll_overflow: + case Builtin::BI__builtin_umul_overflow: + case Builtin::BI__builtin_umull_overflow: + case Builtin::BI__builtin_umulll_overflow: + Result = LHS.isSigned() ? LHS.smul_ov(RHS, DidOverflow) + : LHS.umul_ov(RHS, DidOverflow); + break; + } + + // In the case where multiple sizes are allowed, truncate and see if + // the values are the same. + if (BuiltinOp == Builtin::BI__builtin_add_overflow || + BuiltinOp == Builtin::BI__builtin_sub_overflow || + BuiltinOp == Builtin::BI__builtin_mul_overflow) { + // APSInt doesn't have a TruncOrSelf, so we use extOrTrunc instead, + // since it will give us the behavior of a TruncOrSelf in the case where + // its parameter <= its size. We previously set Result to be at least the + // type-size of the result, so getTypeSize(ResultType) <= Result.BitWidth + // will work exactly like TruncOrSelf. + APSInt Temp = Result.extOrTrunc(Info.Ctx.getTypeSize(ResultType)); + Temp.setIsSigned(ResultType->isSignedIntegerOrEnumerationType()); + + if (!APSInt::isSameValue(Temp, Result)) + DidOverflow = true; + Result = Temp; + } + + APValue APV{Result}; + if (!handleAssignment(Info, E, ResultLValue, ResultType, APV)) + return false; + return Success(DidOverflow, E); + } + } +} + +/// Determine whether this is a pointer past the end of the complete +/// object referred to by the lvalue. +static bool isOnePastTheEndOfCompleteObject(const ASTContext &Ctx, + const LValue &LV) { + // A null pointer can be viewed as being "past the end" but we don't + // choose to look at it that way here. + if (!LV.getLValueBase()) + return false; + + // If the designator is valid and refers to a subobject, we're not pointing + // past the end. + if (!LV.getLValueDesignator().Invalid && + !LV.getLValueDesignator().isOnePastTheEnd()) + return false; + + // A pointer to an incomplete type might be past-the-end if the type's size is + // zero. We cannot tell because the type is incomplete. + QualType Ty = getType(LV.getLValueBase()); + if (Ty->isIncompleteType()) + return true; + + // We're a past-the-end pointer if we point to the byte after the object, + // no matter what our type or path is. + auto Size = Ctx.getTypeSizeInChars(Ty); + return LV.getLValueOffset() == Size; +} + +namespace { + +/// Data recursive integer evaluator of certain binary operators. +/// +/// We use a data recursive algorithm for binary operators so that we are able +/// to handle extreme cases of chained binary operators without causing stack +/// overflow. +class DataRecursiveIntBinOpEvaluator { + struct EvalResult { + APValue Val; + bool Failed; + + EvalResult() : Failed(false) { } + + void swap(EvalResult &RHS) { + Val.swap(RHS.Val); + Failed = RHS.Failed; + RHS.Failed = false; + } + }; + + struct Job { + const Expr *E; + EvalResult LHSResult; // meaningful only for binary operator expression. + enum { AnyExprKind, BinOpKind, BinOpVisitedLHSKind } Kind; + + Job() = default; + Job(Job &&) = default; + + void startSpeculativeEval(EvalInfo &Info) { + SpecEvalRAII = SpeculativeEvaluationRAII(Info); + } + + private: + SpeculativeEvaluationRAII SpecEvalRAII; + }; + + SmallVector<Job, 16> Queue; + + IntExprEvaluator &IntEval; + EvalInfo &Info; + APValue &FinalResult; + +public: + DataRecursiveIntBinOpEvaluator(IntExprEvaluator &IntEval, APValue &Result) + : IntEval(IntEval), Info(IntEval.getEvalInfo()), FinalResult(Result) { } + + /// True if \param E is a binary operator that we are going to handle + /// data recursively. + /// We handle binary operators that are comma, logical, or that have operands + /// with integral or enumeration type. + static bool shouldEnqueue(const BinaryOperator *E) { + return E->getOpcode() == BO_Comma || E->isLogicalOp() || + (E->isRValue() && E->getType()->isIntegralOrEnumerationType() && + E->getLHS()->getType()->isIntegralOrEnumerationType() && + E->getRHS()->getType()->isIntegralOrEnumerationType()); + } + + bool Traverse(const BinaryOperator *E) { + enqueue(E); + EvalResult PrevResult; + while (!Queue.empty()) + process(PrevResult); + + if (PrevResult.Failed) return false; + + FinalResult.swap(PrevResult.Val); + return true; + } + +private: + bool Success(uint64_t Value, const Expr *E, APValue &Result) { + return IntEval.Success(Value, E, Result); + } + bool Success(const APSInt &Value, const Expr *E, APValue &Result) { + return IntEval.Success(Value, E, Result); + } + bool Error(const Expr *E) { + return IntEval.Error(E); + } + bool Error(const Expr *E, diag::kind D) { + return IntEval.Error(E, D); + } + + OptionalDiagnostic CCEDiag(const Expr *E, diag::kind D) { + return Info.CCEDiag(E, D); + } + + // Returns true if visiting the RHS is necessary, false otherwise. + bool VisitBinOpLHSOnly(EvalResult &LHSResult, const BinaryOperator *E, + bool &SuppressRHSDiags); + + bool VisitBinOp(const EvalResult &LHSResult, const EvalResult &RHSResult, + const BinaryOperator *E, APValue &Result); + + void EvaluateExpr(const Expr *E, EvalResult &Result) { + Result.Failed = !Evaluate(Result.Val, Info, E); + if (Result.Failed) + Result.Val = APValue(); + } + + void process(EvalResult &Result); + + void enqueue(const Expr *E) { + E = E->IgnoreParens(); + Queue.resize(Queue.size()+1); + Queue.back().E = E; + Queue.back().Kind = Job::AnyExprKind; + } +}; + +} + +bool DataRecursiveIntBinOpEvaluator:: + VisitBinOpLHSOnly(EvalResult &LHSResult, const BinaryOperator *E, + bool &SuppressRHSDiags) { + if (E->getOpcode() == BO_Comma) { + // Ignore LHS but note if we could not evaluate it. + if (LHSResult.Failed) + return Info.noteSideEffect(); + return true; + } + + if (E->isLogicalOp()) { + bool LHSAsBool; + if (!LHSResult.Failed && HandleConversionToBool(LHSResult.Val, LHSAsBool)) { + // We were able to evaluate the LHS, see if we can get away with not + // evaluating the RHS: 0 && X -> 0, 1 || X -> 1 + if (LHSAsBool == (E->getOpcode() == BO_LOr)) { + Success(LHSAsBool, E, LHSResult.Val); + return false; // Ignore RHS + } + } else { + LHSResult.Failed = true; + + // Since we weren't able to evaluate the left hand side, it + // might have had side effects. + if (!Info.noteSideEffect()) + return false; + + // We can't evaluate the LHS; however, sometimes the result + // is determined by the RHS: X && 0 -> 0, X || 1 -> 1. + // Don't ignore RHS and suppress diagnostics from this arm. + SuppressRHSDiags = true; + } + + return true; + } + + assert(E->getLHS()->getType()->isIntegralOrEnumerationType() && + E->getRHS()->getType()->isIntegralOrEnumerationType()); + + if (LHSResult.Failed && !Info.noteFailure()) + return false; // Ignore RHS; + + return true; +} + +static void addOrSubLValueAsInteger(APValue &LVal, const APSInt &Index, + bool IsSub) { + // Compute the new offset in the appropriate width, wrapping at 64 bits. + // FIXME: When compiling for a 32-bit target, we should use 32-bit + // offsets. + assert(!LVal.hasLValuePath() && "have designator for integer lvalue"); + CharUnits &Offset = LVal.getLValueOffset(); + uint64_t Offset64 = Offset.getQuantity(); + uint64_t Index64 = Index.extOrTrunc(64).getZExtValue(); + Offset = CharUnits::fromQuantity(IsSub ? Offset64 - Index64 + : Offset64 + Index64); +} + +bool DataRecursiveIntBinOpEvaluator:: + VisitBinOp(const EvalResult &LHSResult, const EvalResult &RHSResult, + const BinaryOperator *E, APValue &Result) { + if (E->getOpcode() == BO_Comma) { + if (RHSResult.Failed) + return false; + Result = RHSResult.Val; + return true; + } + + if (E->isLogicalOp()) { + bool lhsResult, rhsResult; + bool LHSIsOK = HandleConversionToBool(LHSResult.Val, lhsResult); + bool RHSIsOK = HandleConversionToBool(RHSResult.Val, rhsResult); + + if (LHSIsOK) { + if (RHSIsOK) { + if (E->getOpcode() == BO_LOr) + return Success(lhsResult || rhsResult, E, Result); + else + return Success(lhsResult && rhsResult, E, Result); + } + } else { + if (RHSIsOK) { + // We can't evaluate the LHS; however, sometimes the result + // is determined by the RHS: X && 0 -> 0, X || 1 -> 1. + if (rhsResult == (E->getOpcode() == BO_LOr)) + return Success(rhsResult, E, Result); + } + } + + return false; + } + + assert(E->getLHS()->getType()->isIntegralOrEnumerationType() && + E->getRHS()->getType()->isIntegralOrEnumerationType()); + + if (LHSResult.Failed || RHSResult.Failed) + return false; + + const APValue &LHSVal = LHSResult.Val; + const APValue &RHSVal = RHSResult.Val; + + // Handle cases like (unsigned long)&a + 4. + if (E->isAdditiveOp() && LHSVal.isLValue() && RHSVal.isInt()) { + Result = LHSVal; + addOrSubLValueAsInteger(Result, RHSVal.getInt(), E->getOpcode() == BO_Sub); + return true; + } + + // Handle cases like 4 + (unsigned long)&a + if (E->getOpcode() == BO_Add && + RHSVal.isLValue() && LHSVal.isInt()) { + Result = RHSVal; + addOrSubLValueAsInteger(Result, LHSVal.getInt(), /*IsSub*/false); + return true; + } + + if (E->getOpcode() == BO_Sub && LHSVal.isLValue() && RHSVal.isLValue()) { + // Handle (intptr_t)&&A - (intptr_t)&&B. + if (!LHSVal.getLValueOffset().isZero() || + !RHSVal.getLValueOffset().isZero()) + return false; + const Expr *LHSExpr = LHSVal.getLValueBase().dyn_cast<const Expr*>(); + const Expr *RHSExpr = RHSVal.getLValueBase().dyn_cast<const Expr*>(); + if (!LHSExpr || !RHSExpr) + return false; + const AddrLabelExpr *LHSAddrExpr = dyn_cast<AddrLabelExpr>(LHSExpr); + const AddrLabelExpr *RHSAddrExpr = dyn_cast<AddrLabelExpr>(RHSExpr); + if (!LHSAddrExpr || !RHSAddrExpr) + return false; + // Make sure both labels come from the same function. + if (LHSAddrExpr->getLabel()->getDeclContext() != + RHSAddrExpr->getLabel()->getDeclContext()) + return false; + Result = APValue(LHSAddrExpr, RHSAddrExpr); + return true; + } + + // All the remaining cases expect both operands to be an integer + if (!LHSVal.isInt() || !RHSVal.isInt()) + return Error(E); + + // Set up the width and signedness manually, in case it can't be deduced + // from the operation we're performing. + // FIXME: Don't do this in the cases where we can deduce it. + APSInt Value(Info.Ctx.getIntWidth(E->getType()), + E->getType()->isUnsignedIntegerOrEnumerationType()); + if (!handleIntIntBinOp(Info, E, LHSVal.getInt(), E->getOpcode(), + RHSVal.getInt(), Value)) + return false; + return Success(Value, E, Result); +} + +void DataRecursiveIntBinOpEvaluator::process(EvalResult &Result) { + Job &job = Queue.back(); + + switch (job.Kind) { + case Job::AnyExprKind: { + if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(job.E)) { + if (shouldEnqueue(Bop)) { + job.Kind = Job::BinOpKind; + enqueue(Bop->getLHS()); + return; + } + } + + EvaluateExpr(job.E, Result); + Queue.pop_back(); + return; + } + + case Job::BinOpKind: { + const BinaryOperator *Bop = cast<BinaryOperator>(job.E); + bool SuppressRHSDiags = false; + if (!VisitBinOpLHSOnly(Result, Bop, SuppressRHSDiags)) { + Queue.pop_back(); + return; + } + if (SuppressRHSDiags) + job.startSpeculativeEval(Info); + job.LHSResult.swap(Result); + job.Kind = Job::BinOpVisitedLHSKind; + enqueue(Bop->getRHS()); + return; + } + + case Job::BinOpVisitedLHSKind: { + const BinaryOperator *Bop = cast<BinaryOperator>(job.E); + EvalResult RHS; + RHS.swap(Result); + Result.Failed = !VisitBinOp(job.LHSResult, RHS, Bop, Result.Val); + Queue.pop_back(); + return; + } + } + + llvm_unreachable("Invalid Job::Kind!"); +} + +namespace { +/// Used when we determine that we should fail, but can keep evaluating prior to +/// noting that we had a failure. +class DelayedNoteFailureRAII { + EvalInfo &Info; + bool NoteFailure; + +public: + DelayedNoteFailureRAII(EvalInfo &Info, bool NoteFailure = true) + : Info(Info), NoteFailure(NoteFailure) {} + ~DelayedNoteFailureRAII() { + if (NoteFailure) { + bool ContinueAfterFailure = Info.noteFailure(); + (void)ContinueAfterFailure; + assert(ContinueAfterFailure && + "Shouldn't have kept evaluating on failure."); + } + } +}; +} + +template <class SuccessCB, class AfterCB> +static bool +EvaluateComparisonBinaryOperator(EvalInfo &Info, const BinaryOperator *E, + SuccessCB &&Success, AfterCB &&DoAfter) { + assert(E->isComparisonOp() && "expected comparison operator"); + assert((E->getOpcode() == BO_Cmp || + E->getType()->isIntegralOrEnumerationType()) && + "unsupported binary expression evaluation"); + auto Error = [&](const Expr *E) { + Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr); + return false; + }; + + using CCR = ComparisonCategoryResult; + bool IsRelational = E->isRelationalOp(); + bool IsEquality = E->isEqualityOp(); + if (E->getOpcode() == BO_Cmp) { + const ComparisonCategoryInfo &CmpInfo = + Info.Ctx.CompCategories.getInfoForType(E->getType()); + IsRelational = CmpInfo.isOrdered(); + IsEquality = CmpInfo.isEquality(); + } + + QualType LHSTy = E->getLHS()->getType(); + QualType RHSTy = E->getRHS()->getType(); + + if (LHSTy->isIntegralOrEnumerationType() && + RHSTy->isIntegralOrEnumerationType()) { + APSInt LHS, RHS; + bool LHSOK = EvaluateInteger(E->getLHS(), LHS, Info); + if (!LHSOK && !Info.noteFailure()) + return false; + if (!EvaluateInteger(E->getRHS(), RHS, Info) || !LHSOK) + return false; + if (LHS < RHS) + return Success(CCR::Less, E); + if (LHS > RHS) + return Success(CCR::Greater, E); + return Success(CCR::Equal, E); + } + + if (LHSTy->isFixedPointType() || RHSTy->isFixedPointType()) { + APFixedPoint LHSFX(Info.Ctx.getFixedPointSemantics(LHSTy)); + APFixedPoint RHSFX(Info.Ctx.getFixedPointSemantics(RHSTy)); + + bool LHSOK = EvaluateFixedPointOrInteger(E->getLHS(), LHSFX, Info); + if (!LHSOK && !Info.noteFailure()) + return false; + if (!EvaluateFixedPointOrInteger(E->getRHS(), RHSFX, Info) || !LHSOK) + return false; + if (LHSFX < RHSFX) + return Success(CCR::Less, E); + if (LHSFX > RHSFX) + return Success(CCR::Greater, E); + return Success(CCR::Equal, E); + } + + if (LHSTy->isAnyComplexType() || RHSTy->isAnyComplexType()) { + ComplexValue LHS, RHS; + bool LHSOK; + if (E->isAssignmentOp()) { + LValue LV; + EvaluateLValue(E->getLHS(), LV, Info); + LHSOK = false; + } else if (LHSTy->isRealFloatingType()) { + LHSOK = EvaluateFloat(E->getLHS(), LHS.FloatReal, Info); + if (LHSOK) { + LHS.makeComplexFloat(); + LHS.FloatImag = APFloat(LHS.FloatReal.getSemantics()); + } + } else { + LHSOK = EvaluateComplex(E->getLHS(), LHS, Info); + } + if (!LHSOK && !Info.noteFailure()) + return false; + + if (E->getRHS()->getType()->isRealFloatingType()) { + if (!EvaluateFloat(E->getRHS(), RHS.FloatReal, Info) || !LHSOK) + return false; + RHS.makeComplexFloat(); + RHS.FloatImag = APFloat(RHS.FloatReal.getSemantics()); + } else if (!EvaluateComplex(E->getRHS(), RHS, Info) || !LHSOK) + return false; + + if (LHS.isComplexFloat()) { + APFloat::cmpResult CR_r = + LHS.getComplexFloatReal().compare(RHS.getComplexFloatReal()); + APFloat::cmpResult CR_i = + LHS.getComplexFloatImag().compare(RHS.getComplexFloatImag()); + bool IsEqual = CR_r == APFloat::cmpEqual && CR_i == APFloat::cmpEqual; + return Success(IsEqual ? CCR::Equal : CCR::Nonequal, E); + } else { + assert(IsEquality && "invalid complex comparison"); + bool IsEqual = LHS.getComplexIntReal() == RHS.getComplexIntReal() && + LHS.getComplexIntImag() == RHS.getComplexIntImag(); + return Success(IsEqual ? CCR::Equal : CCR::Nonequal, E); + } + } + + if (LHSTy->isRealFloatingType() && + RHSTy->isRealFloatingType()) { + APFloat RHS(0.0), LHS(0.0); + + bool LHSOK = EvaluateFloat(E->getRHS(), RHS, Info); + if (!LHSOK && !Info.noteFailure()) + return false; + + if (!EvaluateFloat(E->getLHS(), LHS, Info) || !LHSOK) + return false; + + assert(E->isComparisonOp() && "Invalid binary operator!"); + auto GetCmpRes = [&]() { + switch (LHS.compare(RHS)) { + case APFloat::cmpEqual: + return CCR::Equal; + case APFloat::cmpLessThan: + return CCR::Less; + case APFloat::cmpGreaterThan: + return CCR::Greater; + case APFloat::cmpUnordered: + return CCR::Unordered; + } + llvm_unreachable("Unrecognised APFloat::cmpResult enum"); + }; + return Success(GetCmpRes(), E); + } + + if (LHSTy->isPointerType() && RHSTy->isPointerType()) { + LValue LHSValue, RHSValue; + + bool LHSOK = EvaluatePointer(E->getLHS(), LHSValue, Info); + if (!LHSOK && !Info.noteFailure()) + return false; + + if (!EvaluatePointer(E->getRHS(), RHSValue, Info) || !LHSOK) + return false; + + // Reject differing bases from the normal codepath; we special-case + // comparisons to null. + if (!HasSameBase(LHSValue, RHSValue)) { + // Inequalities and subtractions between unrelated pointers have + // unspecified or undefined behavior. + if (!IsEquality) + return Error(E); + // A constant address may compare equal to the address of a symbol. + // The one exception is that address of an object cannot compare equal + // to a null pointer constant. + if ((!LHSValue.Base && !LHSValue.Offset.isZero()) || + (!RHSValue.Base && !RHSValue.Offset.isZero())) + return Error(E); + // It's implementation-defined whether distinct literals will have + // distinct addresses. In clang, the result of such a comparison is + // unspecified, so it is not a constant expression. However, we do know + // that the address of a literal will be non-null. + if ((IsLiteralLValue(LHSValue) || IsLiteralLValue(RHSValue)) && + LHSValue.Base && RHSValue.Base) + return Error(E); + // We can't tell whether weak symbols will end up pointing to the same + // object. + if (IsWeakLValue(LHSValue) || IsWeakLValue(RHSValue)) + return Error(E); + // We can't compare the address of the start of one object with the + // past-the-end address of another object, per C++ DR1652. + if ((LHSValue.Base && LHSValue.Offset.isZero() && + isOnePastTheEndOfCompleteObject(Info.Ctx, RHSValue)) || + (RHSValue.Base && RHSValue.Offset.isZero() && + isOnePastTheEndOfCompleteObject(Info.Ctx, LHSValue))) + return Error(E); + // We can't tell whether an object is at the same address as another + // zero sized object. + if ((RHSValue.Base && isZeroSized(LHSValue)) || + (LHSValue.Base && isZeroSized(RHSValue))) + return Error(E); + return Success(CCR::Nonequal, E); + } + + const CharUnits &LHSOffset = LHSValue.getLValueOffset(); + const CharUnits &RHSOffset = RHSValue.getLValueOffset(); + + SubobjectDesignator &LHSDesignator = LHSValue.getLValueDesignator(); + SubobjectDesignator &RHSDesignator = RHSValue.getLValueDesignator(); + + // C++11 [expr.rel]p3: + // Pointers to void (after pointer conversions) can be compared, with a + // result defined as follows: If both pointers represent the same + // address or are both the null pointer value, the result is true if the + // operator is <= or >= and false otherwise; otherwise the result is + // unspecified. + // We interpret this as applying to pointers to *cv* void. + if (LHSTy->isVoidPointerType() && LHSOffset != RHSOffset && IsRelational) + Info.CCEDiag(E, diag::note_constexpr_void_comparison); + + // C++11 [expr.rel]p2: + // - If two pointers point to non-static data members of the same object, + // or to subobjects or array elements fo such members, recursively, the + // pointer to the later declared member compares greater provided the + // two members have the same access control and provided their class is + // not a union. + // [...] + // - Otherwise pointer comparisons are unspecified. + if (!LHSDesignator.Invalid && !RHSDesignator.Invalid && IsRelational) { + bool WasArrayIndex; + unsigned Mismatch = FindDesignatorMismatch( + getType(LHSValue.Base), LHSDesignator, RHSDesignator, WasArrayIndex); + // At the point where the designators diverge, the comparison has a + // specified value if: + // - we are comparing array indices + // - we are comparing fields of a union, or fields with the same access + // Otherwise, the result is unspecified and thus the comparison is not a + // constant expression. + if (!WasArrayIndex && Mismatch < LHSDesignator.Entries.size() && + Mismatch < RHSDesignator.Entries.size()) { + const FieldDecl *LF = getAsField(LHSDesignator.Entries[Mismatch]); + const FieldDecl *RF = getAsField(RHSDesignator.Entries[Mismatch]); + if (!LF && !RF) + Info.CCEDiag(E, diag::note_constexpr_pointer_comparison_base_classes); + else if (!LF) + Info.CCEDiag(E, diag::note_constexpr_pointer_comparison_base_field) + << getAsBaseClass(LHSDesignator.Entries[Mismatch]) + << RF->getParent() << RF; + else if (!RF) + Info.CCEDiag(E, diag::note_constexpr_pointer_comparison_base_field) + << getAsBaseClass(RHSDesignator.Entries[Mismatch]) + << LF->getParent() << LF; + else if (!LF->getParent()->isUnion() && + LF->getAccess() != RF->getAccess()) + Info.CCEDiag(E, + diag::note_constexpr_pointer_comparison_differing_access) + << LF << LF->getAccess() << RF << RF->getAccess() + << LF->getParent(); + } + } + + // The comparison here must be unsigned, and performed with the same + // width as the pointer. + unsigned PtrSize = Info.Ctx.getTypeSize(LHSTy); + uint64_t CompareLHS = LHSOffset.getQuantity(); + uint64_t CompareRHS = RHSOffset.getQuantity(); + assert(PtrSize <= 64 && "Unexpected pointer width"); + uint64_t Mask = ~0ULL >> (64 - PtrSize); + CompareLHS &= Mask; + CompareRHS &= Mask; + + // If there is a base and this is a relational operator, we can only + // compare pointers within the object in question; otherwise, the result + // depends on where the object is located in memory. + if (!LHSValue.Base.isNull() && IsRelational) { + QualType BaseTy = getType(LHSValue.Base); + if (BaseTy->isIncompleteType()) + return Error(E); + CharUnits Size = Info.Ctx.getTypeSizeInChars(BaseTy); + uint64_t OffsetLimit = Size.getQuantity(); + if (CompareLHS > OffsetLimit || CompareRHS > OffsetLimit) + return Error(E); + } + + if (CompareLHS < CompareRHS) + return Success(CCR::Less, E); + if (CompareLHS > CompareRHS) + return Success(CCR::Greater, E); + return Success(CCR::Equal, E); + } + + if (LHSTy->isMemberPointerType()) { + assert(IsEquality && "unexpected member pointer operation"); + assert(RHSTy->isMemberPointerType() && "invalid comparison"); + + MemberPtr LHSValue, RHSValue; + + bool LHSOK = EvaluateMemberPointer(E->getLHS(), LHSValue, Info); + if (!LHSOK && !Info.noteFailure()) + return false; + + if (!EvaluateMemberPointer(E->getRHS(), RHSValue, Info) || !LHSOK) + return false; + + // C++11 [expr.eq]p2: + // If both operands are null, they compare equal. Otherwise if only one is + // null, they compare unequal. + if (!LHSValue.getDecl() || !RHSValue.getDecl()) { + bool Equal = !LHSValue.getDecl() && !RHSValue.getDecl(); + return Success(Equal ? CCR::Equal : CCR::Nonequal, E); + } + + // Otherwise if either is a pointer to a virtual member function, the + // result is unspecified. + if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(LHSValue.getDecl())) + if (MD->isVirtual()) + Info.CCEDiag(E, diag::note_constexpr_compare_virtual_mem_ptr) << MD; + if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(RHSValue.getDecl())) + if (MD->isVirtual()) + Info.CCEDiag(E, diag::note_constexpr_compare_virtual_mem_ptr) << MD; + + // Otherwise they compare equal if and only if they would refer to the + // same member of the same most derived object or the same subobject if + // they were dereferenced with a hypothetical object of the associated + // class type. + bool Equal = LHSValue == RHSValue; + return Success(Equal ? CCR::Equal : CCR::Nonequal, E); + } + + if (LHSTy->isNullPtrType()) { + assert(E->isComparisonOp() && "unexpected nullptr operation"); + assert(RHSTy->isNullPtrType() && "missing pointer conversion"); + // C++11 [expr.rel]p4, [expr.eq]p3: If two operands of type std::nullptr_t + // are compared, the result is true of the operator is <=, >= or ==, and + // false otherwise. + return Success(CCR::Equal, E); + } + + return DoAfter(); +} + +bool RecordExprEvaluator::VisitBinCmp(const BinaryOperator *E) { + if (!CheckLiteralType(Info, E)) + return false; + + auto OnSuccess = [&](ComparisonCategoryResult ResKind, + const BinaryOperator *E) { + // Evaluation succeeded. Lookup the information for the comparison category + // type and fetch the VarDecl for the result. + const ComparisonCategoryInfo &CmpInfo = + Info.Ctx.CompCategories.getInfoForType(E->getType()); + const VarDecl *VD = + CmpInfo.getValueInfo(CmpInfo.makeWeakResult(ResKind))->VD; + // Check and evaluate the result as a constant expression. + LValue LV; + LV.set(VD); + if (!handleLValueToRValueConversion(Info, E, E->getType(), LV, Result)) + return false; + return CheckConstantExpression(Info, E->getExprLoc(), E->getType(), Result); + }; + return EvaluateComparisonBinaryOperator(Info, E, OnSuccess, [&]() { + return ExprEvaluatorBaseTy::VisitBinCmp(E); + }); +} + +bool IntExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) { + // We don't call noteFailure immediately because the assignment happens after + // we evaluate LHS and RHS. + if (!Info.keepEvaluatingAfterFailure() && E->isAssignmentOp()) + return Error(E); + + DelayedNoteFailureRAII MaybeNoteFailureLater(Info, E->isAssignmentOp()); + if (DataRecursiveIntBinOpEvaluator::shouldEnqueue(E)) + return DataRecursiveIntBinOpEvaluator(*this, Result).Traverse(E); + + assert((!E->getLHS()->getType()->isIntegralOrEnumerationType() || + !E->getRHS()->getType()->isIntegralOrEnumerationType()) && + "DataRecursiveIntBinOpEvaluator should have handled integral types"); + + if (E->isComparisonOp()) { + // Evaluate builtin binary comparisons by evaluating them as C++2a three-way + // comparisons and then translating the result. + auto OnSuccess = [&](ComparisonCategoryResult ResKind, + const BinaryOperator *E) { + using CCR = ComparisonCategoryResult; + bool IsEqual = ResKind == CCR::Equal, + IsLess = ResKind == CCR::Less, + IsGreater = ResKind == CCR::Greater; + auto Op = E->getOpcode(); + switch (Op) { + default: + llvm_unreachable("unsupported binary operator"); + case BO_EQ: + case BO_NE: + return Success(IsEqual == (Op == BO_EQ), E); + case BO_LT: return Success(IsLess, E); + case BO_GT: return Success(IsGreater, E); + case BO_LE: return Success(IsEqual || IsLess, E); + case BO_GE: return Success(IsEqual || IsGreater, E); + } + }; + return EvaluateComparisonBinaryOperator(Info, E, OnSuccess, [&]() { + return ExprEvaluatorBaseTy::VisitBinaryOperator(E); + }); + } + + QualType LHSTy = E->getLHS()->getType(); + QualType RHSTy = E->getRHS()->getType(); + + if (LHSTy->isPointerType() && RHSTy->isPointerType() && + E->getOpcode() == BO_Sub) { + LValue LHSValue, RHSValue; + + bool LHSOK = EvaluatePointer(E->getLHS(), LHSValue, Info); + if (!LHSOK && !Info.noteFailure()) + return false; + + if (!EvaluatePointer(E->getRHS(), RHSValue, Info) || !LHSOK) + return false; + + // Reject differing bases from the normal codepath; we special-case + // comparisons to null. + if (!HasSameBase(LHSValue, RHSValue)) { + // Handle &&A - &&B. + if (!LHSValue.Offset.isZero() || !RHSValue.Offset.isZero()) + return Error(E); + const Expr *LHSExpr = LHSValue.Base.dyn_cast<const Expr *>(); + const Expr *RHSExpr = RHSValue.Base.dyn_cast<const Expr *>(); + if (!LHSExpr || !RHSExpr) + return Error(E); + const AddrLabelExpr *LHSAddrExpr = dyn_cast<AddrLabelExpr>(LHSExpr); + const AddrLabelExpr *RHSAddrExpr = dyn_cast<AddrLabelExpr>(RHSExpr); + if (!LHSAddrExpr || !RHSAddrExpr) + return Error(E); + // Make sure both labels come from the same function. + if (LHSAddrExpr->getLabel()->getDeclContext() != + RHSAddrExpr->getLabel()->getDeclContext()) + return Error(E); + return Success(APValue(LHSAddrExpr, RHSAddrExpr), E); + } + const CharUnits &LHSOffset = LHSValue.getLValueOffset(); + const CharUnits &RHSOffset = RHSValue.getLValueOffset(); + + SubobjectDesignator &LHSDesignator = LHSValue.getLValueDesignator(); + SubobjectDesignator &RHSDesignator = RHSValue.getLValueDesignator(); + + // C++11 [expr.add]p6: + // Unless both pointers point to elements of the same array object, or + // one past the last element of the array object, the behavior is + // undefined. + if (!LHSDesignator.Invalid && !RHSDesignator.Invalid && + !AreElementsOfSameArray(getType(LHSValue.Base), LHSDesignator, + RHSDesignator)) + Info.CCEDiag(E, diag::note_constexpr_pointer_subtraction_not_same_array); + + QualType Type = E->getLHS()->getType(); + QualType ElementType = Type->castAs<PointerType>()->getPointeeType(); + + CharUnits ElementSize; + if (!HandleSizeof(Info, E->getExprLoc(), ElementType, ElementSize)) + return false; + + // As an extension, a type may have zero size (empty struct or union in + // C, array of zero length). Pointer subtraction in such cases has + // undefined behavior, so is not constant. + if (ElementSize.isZero()) { + Info.FFDiag(E, diag::note_constexpr_pointer_subtraction_zero_size) + << ElementType; + return false; + } + + // FIXME: LLVM and GCC both compute LHSOffset - RHSOffset at runtime, + // and produce incorrect results when it overflows. Such behavior + // appears to be non-conforming, but is common, so perhaps we should + // assume the standard intended for such cases to be undefined behavior + // and check for them. + + // Compute (LHSOffset - RHSOffset) / Size carefully, checking for + // overflow in the final conversion to ptrdiff_t. + APSInt LHS(llvm::APInt(65, (int64_t)LHSOffset.getQuantity(), true), false); + APSInt RHS(llvm::APInt(65, (int64_t)RHSOffset.getQuantity(), true), false); + APSInt ElemSize(llvm::APInt(65, (int64_t)ElementSize.getQuantity(), true), + false); + APSInt TrueResult = (LHS - RHS) / ElemSize; + APSInt Result = TrueResult.trunc(Info.Ctx.getIntWidth(E->getType())); + + if (Result.extend(65) != TrueResult && + !HandleOverflow(Info, E, TrueResult, E->getType())) + return false; + return Success(Result, E); + } + + return ExprEvaluatorBaseTy::VisitBinaryOperator(E); +} + +/// VisitUnaryExprOrTypeTraitExpr - Evaluate a sizeof, alignof or vec_step with +/// a result as the expression's type. +bool IntExprEvaluator::VisitUnaryExprOrTypeTraitExpr( + const UnaryExprOrTypeTraitExpr *E) { + switch(E->getKind()) { + case UETT_PreferredAlignOf: + case UETT_AlignOf: { + if (E->isArgumentType()) + return Success(GetAlignOfType(Info, E->getArgumentType(), E->getKind()), + E); + else + return Success(GetAlignOfExpr(Info, E->getArgumentExpr(), E->getKind()), + E); + } + + case UETT_VecStep: { + QualType Ty = E->getTypeOfArgument(); + + if (Ty->isVectorType()) { + unsigned n = Ty->castAs<VectorType>()->getNumElements(); + + // The vec_step built-in functions that take a 3-component + // vector return 4. (OpenCL 1.1 spec 6.11.12) + if (n == 3) + n = 4; + + return Success(n, E); + } else + return Success(1, E); + } + + case UETT_SizeOf: { + QualType SrcTy = E->getTypeOfArgument(); + // C++ [expr.sizeof]p2: "When applied to a reference or a reference type, + // the result is the size of the referenced type." + if (const ReferenceType *Ref = SrcTy->getAs<ReferenceType>()) + SrcTy = Ref->getPointeeType(); + + CharUnits Sizeof; + if (!HandleSizeof(Info, E->getExprLoc(), SrcTy, Sizeof)) + return false; + return Success(Sizeof, E); + } + case UETT_OpenMPRequiredSimdAlign: + assert(E->isArgumentType()); + return Success( + Info.Ctx.toCharUnitsFromBits( + Info.Ctx.getOpenMPDefaultSimdAlign(E->getArgumentType())) + .getQuantity(), + E); + } + + llvm_unreachable("unknown expr/type trait"); +} + +bool IntExprEvaluator::VisitOffsetOfExpr(const OffsetOfExpr *OOE) { + CharUnits Result; + unsigned n = OOE->getNumComponents(); + if (n == 0) + return Error(OOE); + QualType CurrentType = OOE->getTypeSourceInfo()->getType(); + for (unsigned i = 0; i != n; ++i) { + OffsetOfNode ON = OOE->getComponent(i); + switch (ON.getKind()) { + case OffsetOfNode::Array: { + const Expr *Idx = OOE->getIndexExpr(ON.getArrayExprIndex()); + APSInt IdxResult; + if (!EvaluateInteger(Idx, IdxResult, Info)) + return false; + const ArrayType *AT = Info.Ctx.getAsArrayType(CurrentType); + if (!AT) + return Error(OOE); + CurrentType = AT->getElementType(); + CharUnits ElementSize = Info.Ctx.getTypeSizeInChars(CurrentType); + Result += IdxResult.getSExtValue() * ElementSize; + break; + } + + case OffsetOfNode::Field: { + FieldDecl *MemberDecl = ON.getField(); + const RecordType *RT = CurrentType->getAs<RecordType>(); + if (!RT) + return Error(OOE); + RecordDecl *RD = RT->getDecl(); + if (RD->isInvalidDecl()) return false; + const ASTRecordLayout &RL = Info.Ctx.getASTRecordLayout(RD); + unsigned i = MemberDecl->getFieldIndex(); + assert(i < RL.getFieldCount() && "offsetof field in wrong type"); + Result += Info.Ctx.toCharUnitsFromBits(RL.getFieldOffset(i)); + CurrentType = MemberDecl->getType().getNonReferenceType(); + break; + } + + case OffsetOfNode::Identifier: + llvm_unreachable("dependent __builtin_offsetof"); + + case OffsetOfNode::Base: { + CXXBaseSpecifier *BaseSpec = ON.getBase(); + if (BaseSpec->isVirtual()) + return Error(OOE); + + // Find the layout of the class whose base we are looking into. + const RecordType *RT = CurrentType->getAs<RecordType>(); + if (!RT) + return Error(OOE); + RecordDecl *RD = RT->getDecl(); + if (RD->isInvalidDecl()) return false; + const ASTRecordLayout &RL = Info.Ctx.getASTRecordLayout(RD); + + // Find the base class itself. + CurrentType = BaseSpec->getType(); + const RecordType *BaseRT = CurrentType->getAs<RecordType>(); + if (!BaseRT) + return Error(OOE); + + // Add the offset to the base. + Result += RL.getBaseClassOffset(cast<CXXRecordDecl>(BaseRT->getDecl())); + break; + } + } + } + return Success(Result, OOE); +} + +bool IntExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) { + switch (E->getOpcode()) { + default: + // Address, indirect, pre/post inc/dec, etc are not valid constant exprs. + // See C99 6.6p3. + return Error(E); + case UO_Extension: + // FIXME: Should extension allow i-c-e extension expressions in its scope? + // If so, we could clear the diagnostic ID. + return Visit(E->getSubExpr()); + case UO_Plus: + // The result is just the value. + return Visit(E->getSubExpr()); + case UO_Minus: { + if (!Visit(E->getSubExpr())) + return false; + if (!Result.isInt()) return Error(E); + const APSInt &Value = Result.getInt(); + if (Value.isSigned() && Value.isMinSignedValue() && E->canOverflow() && + !HandleOverflow(Info, E, -Value.extend(Value.getBitWidth() + 1), + E->getType())) + return false; + return Success(-Value, E); + } + case UO_Not: { + if (!Visit(E->getSubExpr())) + return false; + if (!Result.isInt()) return Error(E); + return Success(~Result.getInt(), E); + } + case UO_LNot: { + bool bres; + if (!EvaluateAsBooleanCondition(E->getSubExpr(), bres, Info)) + return false; + return Success(!bres, E); + } + } +} + +/// HandleCast - This is used to evaluate implicit or explicit casts where the +/// result type is integer. +bool IntExprEvaluator::VisitCastExpr(const CastExpr *E) { + const Expr *SubExpr = E->getSubExpr(); + QualType DestType = E->getType(); + QualType SrcType = SubExpr->getType(); + + switch (E->getCastKind()) { + case CK_BaseToDerived: + case CK_DerivedToBase: + case CK_UncheckedDerivedToBase: + case CK_Dynamic: + case CK_ToUnion: + case CK_ArrayToPointerDecay: + case CK_FunctionToPointerDecay: + case CK_NullToPointer: + case CK_NullToMemberPointer: + case CK_BaseToDerivedMemberPointer: + case CK_DerivedToBaseMemberPointer: + case CK_ReinterpretMemberPointer: + case CK_ConstructorConversion: + case CK_IntegralToPointer: + case CK_ToVoid: + case CK_VectorSplat: + case CK_IntegralToFloating: + case CK_FloatingCast: + case CK_CPointerToObjCPointerCast: + case CK_BlockPointerToObjCPointerCast: + case CK_AnyPointerToBlockPointerCast: + case CK_ObjCObjectLValueCast: + case CK_FloatingRealToComplex: + case CK_FloatingComplexToReal: + case CK_FloatingComplexCast: + case CK_FloatingComplexToIntegralComplex: + case CK_IntegralRealToComplex: + case CK_IntegralComplexCast: + case CK_IntegralComplexToFloatingComplex: + case CK_BuiltinFnToFnPtr: + case CK_ZeroToOCLOpaqueType: + case CK_NonAtomicToAtomic: + case CK_AddressSpaceConversion: + case CK_IntToOCLSampler: + case CK_FixedPointCast: + case CK_IntegralToFixedPoint: + llvm_unreachable("invalid cast kind for integral value"); + + case CK_BitCast: + case CK_Dependent: + case CK_LValueBitCast: + case CK_ARCProduceObject: + case CK_ARCConsumeObject: + case CK_ARCReclaimReturnedObject: + case CK_ARCExtendBlockObject: + case CK_CopyAndAutoreleaseBlockObject: + return Error(E); + + case CK_UserDefinedConversion: + case CK_LValueToRValue: + case CK_AtomicToNonAtomic: + case CK_NoOp: + case CK_LValueToRValueBitCast: + return ExprEvaluatorBaseTy::VisitCastExpr(E); + + case CK_MemberPointerToBoolean: + case CK_PointerToBoolean: + case CK_IntegralToBoolean: + case CK_FloatingToBoolean: + case CK_BooleanToSignedIntegral: + case CK_FloatingComplexToBoolean: + case CK_IntegralComplexToBoolean: { + bool BoolResult; + if (!EvaluateAsBooleanCondition(SubExpr, BoolResult, Info)) + return false; + uint64_t IntResult = BoolResult; + if (BoolResult && E->getCastKind() == CK_BooleanToSignedIntegral) + IntResult = (uint64_t)-1; + return Success(IntResult, E); + } + + case CK_FixedPointToIntegral: { + APFixedPoint Src(Info.Ctx.getFixedPointSemantics(SrcType)); + if (!EvaluateFixedPoint(SubExpr, Src, Info)) + return false; + bool Overflowed; + llvm::APSInt Result = Src.convertToInt( + Info.Ctx.getIntWidth(DestType), + DestType->isSignedIntegerOrEnumerationType(), &Overflowed); + if (Overflowed && !HandleOverflow(Info, E, Result, DestType)) + return false; + return Success(Result, E); + } + + case CK_FixedPointToBoolean: { + // Unsigned padding does not affect this. + APValue Val; + if (!Evaluate(Val, Info, SubExpr)) + return false; + return Success(Val.getFixedPoint().getBoolValue(), E); + } + + case CK_IntegralCast: { + if (!Visit(SubExpr)) + return false; + + if (!Result.isInt()) { + // Allow casts of address-of-label differences if they are no-ops + // or narrowing. (The narrowing case isn't actually guaranteed to + // be constant-evaluatable except in some narrow cases which are hard + // to detect here. We let it through on the assumption the user knows + // what they are doing.) + if (Result.isAddrLabelDiff()) + return Info.Ctx.getTypeSize(DestType) <= Info.Ctx.getTypeSize(SrcType); + // Only allow casts of lvalues if they are lossless. + return Info.Ctx.getTypeSize(DestType) == Info.Ctx.getTypeSize(SrcType); + } + + return Success(HandleIntToIntCast(Info, E, DestType, SrcType, + Result.getInt()), E); + } + + case CK_PointerToIntegral: { + CCEDiag(E, diag::note_constexpr_invalid_cast) << 2; + + LValue LV; + if (!EvaluatePointer(SubExpr, LV, Info)) + return false; + + if (LV.getLValueBase()) { + // Only allow based lvalue casts if they are lossless. + // FIXME: Allow a larger integer size than the pointer size, and allow + // narrowing back down to pointer width in subsequent integral casts. + // FIXME: Check integer type's active bits, not its type size. + if (Info.Ctx.getTypeSize(DestType) != Info.Ctx.getTypeSize(SrcType)) + return Error(E); + + LV.Designator.setInvalid(); + LV.moveInto(Result); + return true; + } + + APSInt AsInt; + APValue V; + LV.moveInto(V); + if (!V.toIntegralConstant(AsInt, SrcType, Info.Ctx)) + llvm_unreachable("Can't cast this!"); + + return Success(HandleIntToIntCast(Info, E, DestType, SrcType, AsInt), E); + } + + case CK_IntegralComplexToReal: { + ComplexValue C; + if (!EvaluateComplex(SubExpr, C, Info)) + return false; + return Success(C.getComplexIntReal(), E); + } + + case CK_FloatingToIntegral: { + APFloat F(0.0); + if (!EvaluateFloat(SubExpr, F, Info)) + return false; + + APSInt Value; + if (!HandleFloatToIntCast(Info, E, SrcType, F, DestType, Value)) + return false; + return Success(Value, E); + } + } + + llvm_unreachable("unknown cast resulting in integral value"); +} + +bool IntExprEvaluator::VisitUnaryReal(const UnaryOperator *E) { + if (E->getSubExpr()->getType()->isAnyComplexType()) { + ComplexValue LV; + if (!EvaluateComplex(E->getSubExpr(), LV, Info)) + return false; + if (!LV.isComplexInt()) + return Error(E); + return Success(LV.getComplexIntReal(), E); + } + + return Visit(E->getSubExpr()); +} + +bool IntExprEvaluator::VisitUnaryImag(const UnaryOperator *E) { + if (E->getSubExpr()->getType()->isComplexIntegerType()) { + ComplexValue LV; + if (!EvaluateComplex(E->getSubExpr(), LV, Info)) + return false; + if (!LV.isComplexInt()) + return Error(E); + return Success(LV.getComplexIntImag(), E); + } + + VisitIgnoredValue(E->getSubExpr()); + return Success(0, E); +} + +bool IntExprEvaluator::VisitSizeOfPackExpr(const SizeOfPackExpr *E) { + return Success(E->getPackLength(), E); +} + +bool IntExprEvaluator::VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) { + return Success(E->getValue(), E); +} + +bool IntExprEvaluator::VisitConceptSpecializationExpr( + const ConceptSpecializationExpr *E) { + return Success(E->isSatisfied(), E); +} + + +bool FixedPointExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) { + switch (E->getOpcode()) { + default: + // Invalid unary operators + return Error(E); + case UO_Plus: + // The result is just the value. + return Visit(E->getSubExpr()); + case UO_Minus: { + if (!Visit(E->getSubExpr())) return false; + if (!Result.isFixedPoint()) + return Error(E); + bool Overflowed; + APFixedPoint Negated = Result.getFixedPoint().negate(&Overflowed); + if (Overflowed && !HandleOverflow(Info, E, Negated, E->getType())) + return false; + return Success(Negated, E); + } + case UO_LNot: { + bool bres; + if (!EvaluateAsBooleanCondition(E->getSubExpr(), bres, Info)) + return false; + return Success(!bres, E); + } + } +} + +bool FixedPointExprEvaluator::VisitCastExpr(const CastExpr *E) { + const Expr *SubExpr = E->getSubExpr(); + QualType DestType = E->getType(); + assert(DestType->isFixedPointType() && + "Expected destination type to be a fixed point type"); + auto DestFXSema = Info.Ctx.getFixedPointSemantics(DestType); + + switch (E->getCastKind()) { + case CK_FixedPointCast: { + APFixedPoint Src(Info.Ctx.getFixedPointSemantics(SubExpr->getType())); + if (!EvaluateFixedPoint(SubExpr, Src, Info)) + return false; + bool Overflowed; + APFixedPoint Result = Src.convert(DestFXSema, &Overflowed); + if (Overflowed && !HandleOverflow(Info, E, Result, DestType)) + return false; + return Success(Result, E); + } + case CK_IntegralToFixedPoint: { + APSInt Src; + if (!EvaluateInteger(SubExpr, Src, Info)) + return false; + + bool Overflowed; + APFixedPoint IntResult = APFixedPoint::getFromIntValue( + Src, Info.Ctx.getFixedPointSemantics(DestType), &Overflowed); + + if (Overflowed && !HandleOverflow(Info, E, IntResult, DestType)) + return false; + + return Success(IntResult, E); + } + case CK_NoOp: + case CK_LValueToRValue: + return ExprEvaluatorBaseTy::VisitCastExpr(E); + default: + return Error(E); + } +} + +bool FixedPointExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) { + const Expr *LHS = E->getLHS(); + const Expr *RHS = E->getRHS(); + FixedPointSemantics ResultFXSema = + Info.Ctx.getFixedPointSemantics(E->getType()); + + APFixedPoint LHSFX(Info.Ctx.getFixedPointSemantics(LHS->getType())); + if (!EvaluateFixedPointOrInteger(LHS, LHSFX, Info)) + return false; + APFixedPoint RHSFX(Info.Ctx.getFixedPointSemantics(RHS->getType())); + if (!EvaluateFixedPointOrInteger(RHS, RHSFX, Info)) + return false; + + switch (E->getOpcode()) { + case BO_Add: { + bool AddOverflow, ConversionOverflow; + APFixedPoint Result = LHSFX.add(RHSFX, &AddOverflow) + .convert(ResultFXSema, &ConversionOverflow); + if ((AddOverflow || ConversionOverflow) && + !HandleOverflow(Info, E, Result, E->getType())) + return false; + return Success(Result, E); + } + default: + return false; + } + llvm_unreachable("Should've exited before this"); +} + +//===----------------------------------------------------------------------===// +// Float Evaluation +//===----------------------------------------------------------------------===// + +namespace { +class FloatExprEvaluator + : public ExprEvaluatorBase<FloatExprEvaluator> { + APFloat &Result; +public: + FloatExprEvaluator(EvalInfo &info, APFloat &result) + : ExprEvaluatorBaseTy(info), Result(result) {} + + bool Success(const APValue &V, const Expr *e) { + Result = V.getFloat(); + return true; + } + + bool ZeroInitialization(const Expr *E) { + Result = APFloat::getZero(Info.Ctx.getFloatTypeSemantics(E->getType())); + return true; + } + + bool VisitCallExpr(const CallExpr *E); + + bool VisitUnaryOperator(const UnaryOperator *E); + bool VisitBinaryOperator(const BinaryOperator *E); + bool VisitFloatingLiteral(const FloatingLiteral *E); + bool VisitCastExpr(const CastExpr *E); + + bool VisitUnaryReal(const UnaryOperator *E); + bool VisitUnaryImag(const UnaryOperator *E); + + // FIXME: Missing: array subscript of vector, member of vector +}; +} // end anonymous namespace + +static bool EvaluateFloat(const Expr* E, APFloat& Result, EvalInfo &Info) { + assert(E->isRValue() && E->getType()->isRealFloatingType()); + return FloatExprEvaluator(Info, Result).Visit(E); +} + +static bool TryEvaluateBuiltinNaN(const ASTContext &Context, + QualType ResultTy, + const Expr *Arg, + bool SNaN, + llvm::APFloat &Result) { + const StringLiteral *S = dyn_cast<StringLiteral>(Arg->IgnoreParenCasts()); + if (!S) return false; + + const llvm::fltSemantics &Sem = Context.getFloatTypeSemantics(ResultTy); + + llvm::APInt fill; + + // Treat empty strings as if they were zero. + if (S->getString().empty()) + fill = llvm::APInt(32, 0); + else if (S->getString().getAsInteger(0, fill)) + return false; + + if (Context.getTargetInfo().isNan2008()) { + if (SNaN) + Result = llvm::APFloat::getSNaN(Sem, false, &fill); + else + Result = llvm::APFloat::getQNaN(Sem, false, &fill); + } else { + // Prior to IEEE 754-2008, architectures were allowed to choose whether + // the first bit of their significand was set for qNaN or sNaN. MIPS chose + // a different encoding to what became a standard in 2008, and for pre- + // 2008 revisions, MIPS interpreted sNaN-2008 as qNan and qNaN-2008 as + // sNaN. This is now known as "legacy NaN" encoding. + if (SNaN) + Result = llvm::APFloat::getQNaN(Sem, false, &fill); + else + Result = llvm::APFloat::getSNaN(Sem, false, &fill); + } + + return true; +} + +bool FloatExprEvaluator::VisitCallExpr(const CallExpr *E) { + switch (E->getBuiltinCallee()) { + default: + return ExprEvaluatorBaseTy::VisitCallExpr(E); + + case Builtin::BI__builtin_huge_val: + case Builtin::BI__builtin_huge_valf: + case Builtin::BI__builtin_huge_vall: + case Builtin::BI__builtin_huge_valf128: + case Builtin::BI__builtin_inf: + case Builtin::BI__builtin_inff: + case Builtin::BI__builtin_infl: + case Builtin::BI__builtin_inff128: { + const llvm::fltSemantics &Sem = + Info.Ctx.getFloatTypeSemantics(E->getType()); + Result = llvm::APFloat::getInf(Sem); + return true; + } + + case Builtin::BI__builtin_nans: + case Builtin::BI__builtin_nansf: + case Builtin::BI__builtin_nansl: + case Builtin::BI__builtin_nansf128: + if (!TryEvaluateBuiltinNaN(Info.Ctx, E->getType(), E->getArg(0), + true, Result)) + return Error(E); + return true; + + case Builtin::BI__builtin_nan: + case Builtin::BI__builtin_nanf: + case Builtin::BI__builtin_nanl: + case Builtin::BI__builtin_nanf128: + // If this is __builtin_nan() turn this into a nan, otherwise we + // can't constant fold it. + if (!TryEvaluateBuiltinNaN(Info.Ctx, E->getType(), E->getArg(0), + false, Result)) + return Error(E); + return true; + + case Builtin::BI__builtin_fabs: + case Builtin::BI__builtin_fabsf: + case Builtin::BI__builtin_fabsl: + case Builtin::BI__builtin_fabsf128: + if (!EvaluateFloat(E->getArg(0), Result, Info)) + return false; + + if (Result.isNegative()) + Result.changeSign(); + return true; + + // FIXME: Builtin::BI__builtin_powi + // FIXME: Builtin::BI__builtin_powif + // FIXME: Builtin::BI__builtin_powil + + case Builtin::BI__builtin_copysign: + case Builtin::BI__builtin_copysignf: + case Builtin::BI__builtin_copysignl: + case Builtin::BI__builtin_copysignf128: { + APFloat RHS(0.); + if (!EvaluateFloat(E->getArg(0), Result, Info) || + !EvaluateFloat(E->getArg(1), RHS, Info)) + return false; + Result.copySign(RHS); + return true; + } + } +} + +bool FloatExprEvaluator::VisitUnaryReal(const UnaryOperator *E) { + if (E->getSubExpr()->getType()->isAnyComplexType()) { + ComplexValue CV; + if (!EvaluateComplex(E->getSubExpr(), CV, Info)) + return false; + Result = CV.FloatReal; + return true; + } + + return Visit(E->getSubExpr()); +} + +bool FloatExprEvaluator::VisitUnaryImag(const UnaryOperator *E) { + if (E->getSubExpr()->getType()->isAnyComplexType()) { + ComplexValue CV; + if (!EvaluateComplex(E->getSubExpr(), CV, Info)) + return false; + Result = CV.FloatImag; + return true; + } + + VisitIgnoredValue(E->getSubExpr()); + const llvm::fltSemantics &Sem = Info.Ctx.getFloatTypeSemantics(E->getType()); + Result = llvm::APFloat::getZero(Sem); + return true; +} + +bool FloatExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) { + switch (E->getOpcode()) { + default: return Error(E); + case UO_Plus: + return EvaluateFloat(E->getSubExpr(), Result, Info); + case UO_Minus: + if (!EvaluateFloat(E->getSubExpr(), Result, Info)) + return false; + Result.changeSign(); + return true; + } +} + +bool FloatExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) { + if (E->isPtrMemOp() || E->isAssignmentOp() || E->getOpcode() == BO_Comma) + return ExprEvaluatorBaseTy::VisitBinaryOperator(E); + + APFloat RHS(0.0); + bool LHSOK = EvaluateFloat(E->getLHS(), Result, Info); + if (!LHSOK && !Info.noteFailure()) + return false; + return EvaluateFloat(E->getRHS(), RHS, Info) && LHSOK && + handleFloatFloatBinOp(Info, E, Result, E->getOpcode(), RHS); +} + +bool FloatExprEvaluator::VisitFloatingLiteral(const FloatingLiteral *E) { + Result = E->getValue(); + return true; +} + +bool FloatExprEvaluator::VisitCastExpr(const CastExpr *E) { + const Expr* SubExpr = E->getSubExpr(); + + switch (E->getCastKind()) { + default: + return ExprEvaluatorBaseTy::VisitCastExpr(E); + + case CK_IntegralToFloating: { + APSInt IntResult; + return EvaluateInteger(SubExpr, IntResult, Info) && + HandleIntToFloatCast(Info, E, SubExpr->getType(), IntResult, + E->getType(), Result); + } + + case CK_FloatingCast: { + if (!Visit(SubExpr)) + return false; + return HandleFloatToFloatCast(Info, E, SubExpr->getType(), E->getType(), + Result); + } + + case CK_FloatingComplexToReal: { + ComplexValue V; + if (!EvaluateComplex(SubExpr, V, Info)) + return false; + Result = V.getComplexFloatReal(); + return true; + } + } +} + +//===----------------------------------------------------------------------===// +// Complex Evaluation (for float and integer) +//===----------------------------------------------------------------------===// + +namespace { +class ComplexExprEvaluator + : public ExprEvaluatorBase<ComplexExprEvaluator> { + ComplexValue &Result; + +public: + ComplexExprEvaluator(EvalInfo &info, ComplexValue &Result) + : ExprEvaluatorBaseTy(info), Result(Result) {} + + bool Success(const APValue &V, const Expr *e) { + Result.setFrom(V); + return true; + } + + bool ZeroInitialization(const Expr *E); + + //===--------------------------------------------------------------------===// + // Visitor Methods + //===--------------------------------------------------------------------===// + + bool VisitImaginaryLiteral(const ImaginaryLiteral *E); + bool VisitCastExpr(const CastExpr *E); + bool VisitBinaryOperator(const BinaryOperator *E); + bool VisitUnaryOperator(const UnaryOperator *E); + bool VisitInitListExpr(const InitListExpr *E); +}; +} // end anonymous namespace + +static bool EvaluateComplex(const Expr *E, ComplexValue &Result, + EvalInfo &Info) { + assert(E->isRValue() && E->getType()->isAnyComplexType()); + return ComplexExprEvaluator(Info, Result).Visit(E); +} + +bool ComplexExprEvaluator::ZeroInitialization(const Expr *E) { + QualType ElemTy = E->getType()->castAs<ComplexType>()->getElementType(); + if (ElemTy->isRealFloatingType()) { + Result.makeComplexFloat(); + APFloat Zero = APFloat::getZero(Info.Ctx.getFloatTypeSemantics(ElemTy)); + Result.FloatReal = Zero; + Result.FloatImag = Zero; + } else { + Result.makeComplexInt(); + APSInt Zero = Info.Ctx.MakeIntValue(0, ElemTy); + Result.IntReal = Zero; + Result.IntImag = Zero; + } + return true; +} + +bool ComplexExprEvaluator::VisitImaginaryLiteral(const ImaginaryLiteral *E) { + const Expr* SubExpr = E->getSubExpr(); + + if (SubExpr->getType()->isRealFloatingType()) { + Result.makeComplexFloat(); + APFloat &Imag = Result.FloatImag; + if (!EvaluateFloat(SubExpr, Imag, Info)) + return false; + + Result.FloatReal = APFloat(Imag.getSemantics()); + return true; + } else { + assert(SubExpr->getType()->isIntegerType() && + "Unexpected imaginary literal."); + + Result.makeComplexInt(); + APSInt &Imag = Result.IntImag; + if (!EvaluateInteger(SubExpr, Imag, Info)) + return false; + + Result.IntReal = APSInt(Imag.getBitWidth(), !Imag.isSigned()); + return true; + } +} + +bool ComplexExprEvaluator::VisitCastExpr(const CastExpr *E) { + + switch (E->getCastKind()) { + case CK_BitCast: + case CK_BaseToDerived: + case CK_DerivedToBase: + case CK_UncheckedDerivedToBase: + case CK_Dynamic: + case CK_ToUnion: + case CK_ArrayToPointerDecay: + case CK_FunctionToPointerDecay: + case CK_NullToPointer: + case CK_NullToMemberPointer: + case CK_BaseToDerivedMemberPointer: + case CK_DerivedToBaseMemberPointer: + case CK_MemberPointerToBoolean: + case CK_ReinterpretMemberPointer: + case CK_ConstructorConversion: + case CK_IntegralToPointer: + case CK_PointerToIntegral: + case CK_PointerToBoolean: + case CK_ToVoid: + case CK_VectorSplat: + case CK_IntegralCast: + case CK_BooleanToSignedIntegral: + case CK_IntegralToBoolean: + case CK_IntegralToFloating: + case CK_FloatingToIntegral: + case CK_FloatingToBoolean: + case CK_FloatingCast: + case CK_CPointerToObjCPointerCast: + case CK_BlockPointerToObjCPointerCast: + case CK_AnyPointerToBlockPointerCast: + case CK_ObjCObjectLValueCast: + case CK_FloatingComplexToReal: + case CK_FloatingComplexToBoolean: + case CK_IntegralComplexToReal: + case CK_IntegralComplexToBoolean: + case CK_ARCProduceObject: + case CK_ARCConsumeObject: + case CK_ARCReclaimReturnedObject: + case CK_ARCExtendBlockObject: + case CK_CopyAndAutoreleaseBlockObject: + case CK_BuiltinFnToFnPtr: + case CK_ZeroToOCLOpaqueType: + case CK_NonAtomicToAtomic: + case CK_AddressSpaceConversion: + case CK_IntToOCLSampler: + case CK_FixedPointCast: + case CK_FixedPointToBoolean: + case CK_FixedPointToIntegral: + case CK_IntegralToFixedPoint: + llvm_unreachable("invalid cast kind for complex value"); + + case CK_LValueToRValue: + case CK_AtomicToNonAtomic: + case CK_NoOp: + case CK_LValueToRValueBitCast: + return ExprEvaluatorBaseTy::VisitCastExpr(E); + + case CK_Dependent: + case CK_LValueBitCast: + case CK_UserDefinedConversion: + return Error(E); + + case CK_FloatingRealToComplex: { + APFloat &Real = Result.FloatReal; + if (!EvaluateFloat(E->getSubExpr(), Real, Info)) + return false; + + Result.makeComplexFloat(); + Result.FloatImag = APFloat(Real.getSemantics()); + return true; + } + + case CK_FloatingComplexCast: { + if (!Visit(E->getSubExpr())) + return false; + + QualType To = E->getType()->castAs<ComplexType>()->getElementType(); + QualType From + = E->getSubExpr()->getType()->castAs<ComplexType>()->getElementType(); + + return HandleFloatToFloatCast(Info, E, From, To, Result.FloatReal) && + HandleFloatToFloatCast(Info, E, From, To, Result.FloatImag); + } + + case CK_FloatingComplexToIntegralComplex: { + if (!Visit(E->getSubExpr())) + return false; + + QualType To = E->getType()->castAs<ComplexType>()->getElementType(); + QualType From + = E->getSubExpr()->getType()->castAs<ComplexType>()->getElementType(); + Result.makeComplexInt(); + return HandleFloatToIntCast(Info, E, From, Result.FloatReal, + To, Result.IntReal) && + HandleFloatToIntCast(Info, E, From, Result.FloatImag, + To, Result.IntImag); + } + + case CK_IntegralRealToComplex: { + APSInt &Real = Result.IntReal; + if (!EvaluateInteger(E->getSubExpr(), Real, Info)) + return false; + + Result.makeComplexInt(); + Result.IntImag = APSInt(Real.getBitWidth(), !Real.isSigned()); + return true; + } + + case CK_IntegralComplexCast: { + if (!Visit(E->getSubExpr())) + return false; + + QualType To = E->getType()->castAs<ComplexType>()->getElementType(); + QualType From + = E->getSubExpr()->getType()->castAs<ComplexType>()->getElementType(); + + Result.IntReal = HandleIntToIntCast(Info, E, To, From, Result.IntReal); + Result.IntImag = HandleIntToIntCast(Info, E, To, From, Result.IntImag); + return true; + } + + case CK_IntegralComplexToFloatingComplex: { + if (!Visit(E->getSubExpr())) + return false; + + QualType To = E->getType()->castAs<ComplexType>()->getElementType(); + QualType From + = E->getSubExpr()->getType()->castAs<ComplexType>()->getElementType(); + Result.makeComplexFloat(); + return HandleIntToFloatCast(Info, E, From, Result.IntReal, + To, Result.FloatReal) && + HandleIntToFloatCast(Info, E, From, Result.IntImag, + To, Result.FloatImag); + } + } + + llvm_unreachable("unknown cast resulting in complex value"); +} + +bool ComplexExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) { + if (E->isPtrMemOp() || E->isAssignmentOp() || E->getOpcode() == BO_Comma) + return ExprEvaluatorBaseTy::VisitBinaryOperator(E); + + // Track whether the LHS or RHS is real at the type system level. When this is + // the case we can simplify our evaluation strategy. + bool LHSReal = false, RHSReal = false; + + bool LHSOK; + if (E->getLHS()->getType()->isRealFloatingType()) { + LHSReal = true; + APFloat &Real = Result.FloatReal; + LHSOK = EvaluateFloat(E->getLHS(), Real, Info); + if (LHSOK) { + Result.makeComplexFloat(); + Result.FloatImag = APFloat(Real.getSemantics()); + } + } else { + LHSOK = Visit(E->getLHS()); + } + if (!LHSOK && !Info.noteFailure()) + return false; + + ComplexValue RHS; + if (E->getRHS()->getType()->isRealFloatingType()) { + RHSReal = true; + APFloat &Real = RHS.FloatReal; + if (!EvaluateFloat(E->getRHS(), Real, Info) || !LHSOK) + return false; + RHS.makeComplexFloat(); + RHS.FloatImag = APFloat(Real.getSemantics()); + } else if (!EvaluateComplex(E->getRHS(), RHS, Info) || !LHSOK) + return false; + + assert(!(LHSReal && RHSReal) && + "Cannot have both operands of a complex operation be real."); + switch (E->getOpcode()) { + default: return Error(E); + case BO_Add: + if (Result.isComplexFloat()) { + Result.getComplexFloatReal().add(RHS.getComplexFloatReal(), + APFloat::rmNearestTiesToEven); + if (LHSReal) + Result.getComplexFloatImag() = RHS.getComplexFloatImag(); + else if (!RHSReal) + Result.getComplexFloatImag().add(RHS.getComplexFloatImag(), + APFloat::rmNearestTiesToEven); + } else { + Result.getComplexIntReal() += RHS.getComplexIntReal(); + Result.getComplexIntImag() += RHS.getComplexIntImag(); + } + break; + case BO_Sub: + if (Result.isComplexFloat()) { + Result.getComplexFloatReal().subtract(RHS.getComplexFloatReal(), + APFloat::rmNearestTiesToEven); + if (LHSReal) { + Result.getComplexFloatImag() = RHS.getComplexFloatImag(); + Result.getComplexFloatImag().changeSign(); + } else if (!RHSReal) { + Result.getComplexFloatImag().subtract(RHS.getComplexFloatImag(), + APFloat::rmNearestTiesToEven); + } + } else { + Result.getComplexIntReal() -= RHS.getComplexIntReal(); + Result.getComplexIntImag() -= RHS.getComplexIntImag(); + } + break; + case BO_Mul: + if (Result.isComplexFloat()) { + // This is an implementation of complex multiplication according to the + // constraints laid out in C11 Annex G. The implementation uses the + // following naming scheme: + // (a + ib) * (c + id) + ComplexValue LHS = Result; + APFloat &A = LHS.getComplexFloatReal(); + APFloat &B = LHS.getComplexFloatImag(); + APFloat &C = RHS.getComplexFloatReal(); + APFloat &D = RHS.getComplexFloatImag(); + APFloat &ResR = Result.getComplexFloatReal(); + APFloat &ResI = Result.getComplexFloatImag(); + if (LHSReal) { + assert(!RHSReal && "Cannot have two real operands for a complex op!"); + ResR = A * C; + ResI = A * D; + } else if (RHSReal) { + ResR = C * A; + ResI = C * B; + } else { + // In the fully general case, we need to handle NaNs and infinities + // robustly. + APFloat AC = A * C; + APFloat BD = B * D; + APFloat AD = A * D; + APFloat BC = B * C; + ResR = AC - BD; + ResI = AD + BC; + if (ResR.isNaN() && ResI.isNaN()) { + bool Recalc = false; + if (A.isInfinity() || B.isInfinity()) { + A = APFloat::copySign( + APFloat(A.getSemantics(), A.isInfinity() ? 1 : 0), A); + B = APFloat::copySign( + APFloat(B.getSemantics(), B.isInfinity() ? 1 : 0), B); + if (C.isNaN()) + C = APFloat::copySign(APFloat(C.getSemantics()), C); + if (D.isNaN()) + D = APFloat::copySign(APFloat(D.getSemantics()), D); + Recalc = true; + } + if (C.isInfinity() || D.isInfinity()) { + C = APFloat::copySign( + APFloat(C.getSemantics(), C.isInfinity() ? 1 : 0), C); + D = APFloat::copySign( + APFloat(D.getSemantics(), D.isInfinity() ? 1 : 0), D); + if (A.isNaN()) + A = APFloat::copySign(APFloat(A.getSemantics()), A); + if (B.isNaN()) + B = APFloat::copySign(APFloat(B.getSemantics()), B); + Recalc = true; + } + if (!Recalc && (AC.isInfinity() || BD.isInfinity() || + AD.isInfinity() || BC.isInfinity())) { + if (A.isNaN()) + A = APFloat::copySign(APFloat(A.getSemantics()), A); + if (B.isNaN()) + B = APFloat::copySign(APFloat(B.getSemantics()), B); + if (C.isNaN()) + C = APFloat::copySign(APFloat(C.getSemantics()), C); + if (D.isNaN()) + D = APFloat::copySign(APFloat(D.getSemantics()), D); + Recalc = true; + } + if (Recalc) { + ResR = APFloat::getInf(A.getSemantics()) * (A * C - B * D); + ResI = APFloat::getInf(A.getSemantics()) * (A * D + B * C); + } + } + } + } else { + ComplexValue LHS = Result; + Result.getComplexIntReal() = + (LHS.getComplexIntReal() * RHS.getComplexIntReal() - + LHS.getComplexIntImag() * RHS.getComplexIntImag()); + Result.getComplexIntImag() = + (LHS.getComplexIntReal() * RHS.getComplexIntImag() + + LHS.getComplexIntImag() * RHS.getComplexIntReal()); + } + break; + case BO_Div: + if (Result.isComplexFloat()) { + // This is an implementation of complex division according to the + // constraints laid out in C11 Annex G. The implementation uses the + // following naming scheme: + // (a + ib) / (c + id) + ComplexValue LHS = Result; + APFloat &A = LHS.getComplexFloatReal(); + APFloat &B = LHS.getComplexFloatImag(); + APFloat &C = RHS.getComplexFloatReal(); + APFloat &D = RHS.getComplexFloatImag(); + APFloat &ResR = Result.getComplexFloatReal(); + APFloat &ResI = Result.getComplexFloatImag(); + if (RHSReal) { + ResR = A / C; + ResI = B / C; + } else { + if (LHSReal) { + // No real optimizations we can do here, stub out with zero. + B = APFloat::getZero(A.getSemantics()); + } + int DenomLogB = 0; + APFloat MaxCD = maxnum(abs(C), abs(D)); + if (MaxCD.isFinite()) { + DenomLogB = ilogb(MaxCD); + C = scalbn(C, -DenomLogB, APFloat::rmNearestTiesToEven); + D = scalbn(D, -DenomLogB, APFloat::rmNearestTiesToEven); + } + APFloat Denom = C * C + D * D; + ResR = scalbn((A * C + B * D) / Denom, -DenomLogB, + APFloat::rmNearestTiesToEven); + ResI = scalbn((B * C - A * D) / Denom, -DenomLogB, + APFloat::rmNearestTiesToEven); + if (ResR.isNaN() && ResI.isNaN()) { + if (Denom.isPosZero() && (!A.isNaN() || !B.isNaN())) { + ResR = APFloat::getInf(ResR.getSemantics(), C.isNegative()) * A; + ResI = APFloat::getInf(ResR.getSemantics(), C.isNegative()) * B; + } else if ((A.isInfinity() || B.isInfinity()) && C.isFinite() && + D.isFinite()) { + A = APFloat::copySign( + APFloat(A.getSemantics(), A.isInfinity() ? 1 : 0), A); + B = APFloat::copySign( + APFloat(B.getSemantics(), B.isInfinity() ? 1 : 0), B); + ResR = APFloat::getInf(ResR.getSemantics()) * (A * C + B * D); + ResI = APFloat::getInf(ResI.getSemantics()) * (B * C - A * D); + } else if (MaxCD.isInfinity() && A.isFinite() && B.isFinite()) { + C = APFloat::copySign( + APFloat(C.getSemantics(), C.isInfinity() ? 1 : 0), C); + D = APFloat::copySign( + APFloat(D.getSemantics(), D.isInfinity() ? 1 : 0), D); + ResR = APFloat::getZero(ResR.getSemantics()) * (A * C + B * D); + ResI = APFloat::getZero(ResI.getSemantics()) * (B * C - A * D); + } + } + } + } else { + if (RHS.getComplexIntReal() == 0 && RHS.getComplexIntImag() == 0) + return Error(E, diag::note_expr_divide_by_zero); + + ComplexValue LHS = Result; + APSInt Den = RHS.getComplexIntReal() * RHS.getComplexIntReal() + + RHS.getComplexIntImag() * RHS.getComplexIntImag(); + Result.getComplexIntReal() = + (LHS.getComplexIntReal() * RHS.getComplexIntReal() + + LHS.getComplexIntImag() * RHS.getComplexIntImag()) / Den; + Result.getComplexIntImag() = + (LHS.getComplexIntImag() * RHS.getComplexIntReal() - + LHS.getComplexIntReal() * RHS.getComplexIntImag()) / Den; + } + break; + } + + return true; +} + +bool ComplexExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) { + // Get the operand value into 'Result'. + if (!Visit(E->getSubExpr())) + return false; + + switch (E->getOpcode()) { + default: + return Error(E); + case UO_Extension: + return true; + case UO_Plus: + // The result is always just the subexpr. + return true; + case UO_Minus: + if (Result.isComplexFloat()) { + Result.getComplexFloatReal().changeSign(); + Result.getComplexFloatImag().changeSign(); + } + else { + Result.getComplexIntReal() = -Result.getComplexIntReal(); + Result.getComplexIntImag() = -Result.getComplexIntImag(); + } + return true; + case UO_Not: + if (Result.isComplexFloat()) + Result.getComplexFloatImag().changeSign(); + else + Result.getComplexIntImag() = -Result.getComplexIntImag(); + return true; + } +} + +bool ComplexExprEvaluator::VisitInitListExpr(const InitListExpr *E) { + if (E->getNumInits() == 2) { + if (E->getType()->isComplexType()) { + Result.makeComplexFloat(); + if (!EvaluateFloat(E->getInit(0), Result.FloatReal, Info)) + return false; + if (!EvaluateFloat(E->getInit(1), Result.FloatImag, Info)) + return false; + } else { + Result.makeComplexInt(); + if (!EvaluateInteger(E->getInit(0), Result.IntReal, Info)) + return false; + if (!EvaluateInteger(E->getInit(1), Result.IntImag, Info)) + return false; + } + return true; + } + return ExprEvaluatorBaseTy::VisitInitListExpr(E); +} + +//===----------------------------------------------------------------------===// +// Atomic expression evaluation, essentially just handling the NonAtomicToAtomic +// implicit conversion. +//===----------------------------------------------------------------------===// + +namespace { +class AtomicExprEvaluator : + public ExprEvaluatorBase<AtomicExprEvaluator> { + const LValue *This; + APValue &Result; +public: + AtomicExprEvaluator(EvalInfo &Info, const LValue *This, APValue &Result) + : ExprEvaluatorBaseTy(Info), This(This), Result(Result) {} + + bool Success(const APValue &V, const Expr *E) { + Result = V; + return true; + } + + bool ZeroInitialization(const Expr *E) { + ImplicitValueInitExpr VIE( + E->getType()->castAs<AtomicType>()->getValueType()); + // For atomic-qualified class (and array) types in C++, initialize the + // _Atomic-wrapped subobject directly, in-place. + return This ? EvaluateInPlace(Result, Info, *This, &VIE) + : Evaluate(Result, Info, &VIE); + } + + bool VisitCastExpr(const CastExpr *E) { + switch (E->getCastKind()) { + default: + return ExprEvaluatorBaseTy::VisitCastExpr(E); + case CK_NonAtomicToAtomic: + return This ? EvaluateInPlace(Result, Info, *This, E->getSubExpr()) + : Evaluate(Result, Info, E->getSubExpr()); + } + } +}; +} // end anonymous namespace + +static bool EvaluateAtomic(const Expr *E, const LValue *This, APValue &Result, + EvalInfo &Info) { + assert(E->isRValue() && E->getType()->isAtomicType()); + return AtomicExprEvaluator(Info, This, Result).Visit(E); +} + +//===----------------------------------------------------------------------===// +// Void expression evaluation, primarily for a cast to void on the LHS of a +// comma operator +//===----------------------------------------------------------------------===// + +namespace { +class VoidExprEvaluator + : public ExprEvaluatorBase<VoidExprEvaluator> { +public: + VoidExprEvaluator(EvalInfo &Info) : ExprEvaluatorBaseTy(Info) {} + + bool Success(const APValue &V, const Expr *e) { return true; } + + bool ZeroInitialization(const Expr *E) { return true; } + + bool VisitCastExpr(const CastExpr *E) { + switch (E->getCastKind()) { + default: + return ExprEvaluatorBaseTy::VisitCastExpr(E); + case CK_ToVoid: + VisitIgnoredValue(E->getSubExpr()); + return true; + } + } + + bool VisitCallExpr(const CallExpr *E) { + switch (E->getBuiltinCallee()) { + case Builtin::BI__assume: + case Builtin::BI__builtin_assume: + // The argument is not evaluated! + return true; + + case Builtin::BI__builtin_operator_delete: + return HandleOperatorDeleteCall(Info, E); + + default: + break; + } + + return ExprEvaluatorBaseTy::VisitCallExpr(E); + } + + bool VisitCXXDeleteExpr(const CXXDeleteExpr *E); +}; +} // end anonymous namespace + +bool VoidExprEvaluator::VisitCXXDeleteExpr(const CXXDeleteExpr *E) { + // We cannot speculatively evaluate a delete expression. + if (Info.SpeculativeEvaluationDepth) + return false; + + FunctionDecl *OperatorDelete = E->getOperatorDelete(); + if (!OperatorDelete->isReplaceableGlobalAllocationFunction()) { + Info.FFDiag(E, diag::note_constexpr_new_non_replaceable) + << isa<CXXMethodDecl>(OperatorDelete) << OperatorDelete; + return false; + } + + const Expr *Arg = E->getArgument(); + + LValue Pointer; + if (!EvaluatePointer(Arg, Pointer, Info)) + return false; + if (Pointer.Designator.Invalid) + return false; + + // Deleting a null pointer has no effect. + if (Pointer.isNullPointer()) { + // This is the only case where we need to produce an extension warning: + // the only other way we can succeed is if we find a dynamic allocation, + // and we will have warned when we allocated it in that case. + if (!Info.getLangOpts().CPlusPlus2a) + Info.CCEDiag(E, diag::note_constexpr_new); + return true; + } + + Optional<DynAlloc *> Alloc = CheckDeleteKind( + Info, E, Pointer, E->isArrayForm() ? DynAlloc::ArrayNew : DynAlloc::New); + if (!Alloc) + return false; + QualType AllocType = Pointer.Base.getDynamicAllocType(); + + // For the non-array case, the designator must be empty if the static type + // does not have a virtual destructor. + if (!E->isArrayForm() && Pointer.Designator.Entries.size() != 0 && + !hasVirtualDestructor(Arg->getType()->getPointeeType())) { + Info.FFDiag(E, diag::note_constexpr_delete_base_nonvirt_dtor) + << Arg->getType()->getPointeeType() << AllocType; + return false; + } + + // For a class type with a virtual destructor, the selected operator delete + // is the one looked up when building the destructor. + if (!E->isArrayForm() && !E->isGlobalDelete()) { + const FunctionDecl *VirtualDelete = getVirtualOperatorDelete(AllocType); + if (VirtualDelete && + !VirtualDelete->isReplaceableGlobalAllocationFunction()) { + Info.FFDiag(E, diag::note_constexpr_new_non_replaceable) + << isa<CXXMethodDecl>(VirtualDelete) << VirtualDelete; + return false; + } + } + + if (!HandleDestruction(Info, E->getExprLoc(), Pointer.getLValueBase(), + (*Alloc)->Value, AllocType)) + return false; + + if (!Info.HeapAllocs.erase(Pointer.Base.dyn_cast<DynamicAllocLValue>())) { + // The element was already erased. This means the destructor call also + // deleted the object. + // FIXME: This probably results in undefined behavior before we get this + // far, and should be diagnosed elsewhere first. + Info.FFDiag(E, diag::note_constexpr_double_delete); + return false; + } + + return true; +} + +static bool EvaluateVoid(const Expr *E, EvalInfo &Info) { + assert(E->isRValue() && E->getType()->isVoidType()); + return VoidExprEvaluator(Info).Visit(E); +} + +//===----------------------------------------------------------------------===// +// Top level Expr::EvaluateAsRValue method. +//===----------------------------------------------------------------------===// + +static bool Evaluate(APValue &Result, EvalInfo &Info, const Expr *E) { + // In C, function designators are not lvalues, but we evaluate them as if they + // are. + QualType T = E->getType(); + if (E->isGLValue() || T->isFunctionType()) { + LValue LV; + if (!EvaluateLValue(E, LV, Info)) + return false; + LV.moveInto(Result); + } else if (T->isVectorType()) { + if (!EvaluateVector(E, Result, Info)) + return false; + } else if (T->isIntegralOrEnumerationType()) { + if (!IntExprEvaluator(Info, Result).Visit(E)) + return false; + } else if (T->hasPointerRepresentation()) { + LValue LV; + if (!EvaluatePointer(E, LV, Info)) + return false; + LV.moveInto(Result); + } else if (T->isRealFloatingType()) { + llvm::APFloat F(0.0); + if (!EvaluateFloat(E, F, Info)) + return false; + Result = APValue(F); + } else if (T->isAnyComplexType()) { + ComplexValue C; + if (!EvaluateComplex(E, C, Info)) + return false; + C.moveInto(Result); + } else if (T->isFixedPointType()) { + if (!FixedPointExprEvaluator(Info, Result).Visit(E)) return false; + } else if (T->isMemberPointerType()) { + MemberPtr P; + if (!EvaluateMemberPointer(E, P, Info)) + return false; + P.moveInto(Result); + return true; + } else if (T->isArrayType()) { + LValue LV; + APValue &Value = + Info.CurrentCall->createTemporary(E, T, false, LV); + if (!EvaluateArray(E, LV, Value, Info)) + return false; + Result = Value; + } else if (T->isRecordType()) { + LValue LV; + APValue &Value = Info.CurrentCall->createTemporary(E, T, false, LV); + if (!EvaluateRecord(E, LV, Value, Info)) + return false; + Result = Value; + } else if (T->isVoidType()) { + if (!Info.getLangOpts().CPlusPlus11) + Info.CCEDiag(E, diag::note_constexpr_nonliteral) + << E->getType(); + if (!EvaluateVoid(E, Info)) + return false; + } else if (T->isAtomicType()) { + QualType Unqual = T.getAtomicUnqualifiedType(); + if (Unqual->isArrayType() || Unqual->isRecordType()) { + LValue LV; + APValue &Value = Info.CurrentCall->createTemporary(E, Unqual, false, LV); + if (!EvaluateAtomic(E, &LV, Value, Info)) + return false; + } else { + if (!EvaluateAtomic(E, nullptr, Result, Info)) + return false; + } + } else if (Info.getLangOpts().CPlusPlus11) { + Info.FFDiag(E, diag::note_constexpr_nonliteral) << E->getType(); + return false; + } else { + Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr); + return false; + } + + return true; +} + +/// EvaluateInPlace - Evaluate an expression in-place in an APValue. In some +/// cases, the in-place evaluation is essential, since later initializers for +/// an object can indirectly refer to subobjects which were initialized earlier. +static bool EvaluateInPlace(APValue &Result, EvalInfo &Info, const LValue &This, + const Expr *E, bool AllowNonLiteralTypes) { + assert(!E->isValueDependent()); + + if (!AllowNonLiteralTypes && !CheckLiteralType(Info, E, &This)) + return false; + + if (E->isRValue()) { + // Evaluate arrays and record types in-place, so that later initializers can + // refer to earlier-initialized members of the object. + QualType T = E->getType(); + if (T->isArrayType()) + return EvaluateArray(E, This, Result, Info); + else if (T->isRecordType()) + return EvaluateRecord(E, This, Result, Info); + else if (T->isAtomicType()) { + QualType Unqual = T.getAtomicUnqualifiedType(); + if (Unqual->isArrayType() || Unqual->isRecordType()) + return EvaluateAtomic(E, &This, Result, Info); + } + } + + // For any other type, in-place evaluation is unimportant. + return Evaluate(Result, Info, E); +} + +/// EvaluateAsRValue - Try to evaluate this expression, performing an implicit +/// lvalue-to-rvalue cast if it is an lvalue. +static bool EvaluateAsRValue(EvalInfo &Info, const Expr *E, APValue &Result) { + if (Info.EnableNewConstInterp) { + auto &InterpCtx = Info.Ctx.getInterpContext(); + switch (InterpCtx.evaluateAsRValue(Info, E, Result)) { + case interp::InterpResult::Success: + return true; + case interp::InterpResult::Fail: + return false; + case interp::InterpResult::Bail: + break; + } + } + + if (E->getType().isNull()) + return false; + + if (!CheckLiteralType(Info, E)) + return false; + + if (!::Evaluate(Result, Info, E)) + return false; + + if (E->isGLValue()) { + LValue LV; + LV.setFrom(Info.Ctx, Result); + if (!handleLValueToRValueConversion(Info, E, E->getType(), LV, Result)) + return false; + } + + // Check this core constant expression is a constant expression. + return CheckConstantExpression(Info, E->getExprLoc(), E->getType(), Result) && + CheckMemoryLeaks(Info); +} + +static bool FastEvaluateAsRValue(const Expr *Exp, Expr::EvalResult &Result, + const ASTContext &Ctx, bool &IsConst) { + // Fast-path evaluations of integer literals, since we sometimes see files + // containing vast quantities of these. + if (const IntegerLiteral *L = dyn_cast<IntegerLiteral>(Exp)) { + Result.Val = APValue(APSInt(L->getValue(), + L->getType()->isUnsignedIntegerType())); + IsConst = true; + return true; + } + + // This case should be rare, but we need to check it before we check on + // the type below. + if (Exp->getType().isNull()) { + IsConst = false; + return true; + } + + // FIXME: Evaluating values of large array and record types can cause + // performance problems. Only do so in C++11 for now. + if (Exp->isRValue() && (Exp->getType()->isArrayType() || + Exp->getType()->isRecordType()) && + !Ctx.getLangOpts().CPlusPlus11) { + IsConst = false; + return true; + } + return false; +} + +static bool hasUnacceptableSideEffect(Expr::EvalStatus &Result, + Expr::SideEffectsKind SEK) { + return (SEK < Expr::SE_AllowSideEffects && Result.HasSideEffects) || + (SEK < Expr::SE_AllowUndefinedBehavior && Result.HasUndefinedBehavior); +} + +static bool EvaluateAsRValue(const Expr *E, Expr::EvalResult &Result, + const ASTContext &Ctx, EvalInfo &Info) { + bool IsConst; + if (FastEvaluateAsRValue(E, Result, Ctx, IsConst)) + return IsConst; + + return EvaluateAsRValue(Info, E, Result.Val); +} + +static bool EvaluateAsInt(const Expr *E, Expr::EvalResult &ExprResult, + const ASTContext &Ctx, + Expr::SideEffectsKind AllowSideEffects, + EvalInfo &Info) { + if (!E->getType()->isIntegralOrEnumerationType()) + return false; + + if (!::EvaluateAsRValue(E, ExprResult, Ctx, Info) || + !ExprResult.Val.isInt() || + hasUnacceptableSideEffect(ExprResult, AllowSideEffects)) + return false; + + return true; +} + +static bool EvaluateAsFixedPoint(const Expr *E, Expr::EvalResult &ExprResult, + const ASTContext &Ctx, + Expr::SideEffectsKind AllowSideEffects, + EvalInfo &Info) { + if (!E->getType()->isFixedPointType()) + return false; + + if (!::EvaluateAsRValue(E, ExprResult, Ctx, Info)) + return false; + + if (!ExprResult.Val.isFixedPoint() || + hasUnacceptableSideEffect(ExprResult, AllowSideEffects)) + return false; + + return true; +} + +/// EvaluateAsRValue - Return true if this is a constant which we can fold using +/// any crazy technique (that has nothing to do with language standards) that +/// we want to. If this function returns true, it returns the folded constant +/// in Result. If this expression is a glvalue, an lvalue-to-rvalue conversion +/// will be applied to the result. +bool Expr::EvaluateAsRValue(EvalResult &Result, const ASTContext &Ctx, + bool InConstantContext) const { + assert(!isValueDependent() && + "Expression evaluator can't be called on a dependent expression."); + EvalInfo Info(Ctx, Result, EvalInfo::EM_IgnoreSideEffects); + Info.InConstantContext = InConstantContext; + return ::EvaluateAsRValue(this, Result, Ctx, Info); +} + +bool Expr::EvaluateAsBooleanCondition(bool &Result, const ASTContext &Ctx, + bool InConstantContext) const { + assert(!isValueDependent() && + "Expression evaluator can't be called on a dependent expression."); + EvalResult Scratch; + return EvaluateAsRValue(Scratch, Ctx, InConstantContext) && + HandleConversionToBool(Scratch.Val, Result); +} + +bool Expr::EvaluateAsInt(EvalResult &Result, const ASTContext &Ctx, + SideEffectsKind AllowSideEffects, + bool InConstantContext) const { + assert(!isValueDependent() && + "Expression evaluator can't be called on a dependent expression."); + EvalInfo Info(Ctx, Result, EvalInfo::EM_IgnoreSideEffects); + Info.InConstantContext = InConstantContext; + return ::EvaluateAsInt(this, Result, Ctx, AllowSideEffects, Info); +} + +bool Expr::EvaluateAsFixedPoint(EvalResult &Result, const ASTContext &Ctx, + SideEffectsKind AllowSideEffects, + bool InConstantContext) const { + assert(!isValueDependent() && + "Expression evaluator can't be called on a dependent expression."); + EvalInfo Info(Ctx, Result, EvalInfo::EM_IgnoreSideEffects); + Info.InConstantContext = InConstantContext; + return ::EvaluateAsFixedPoint(this, Result, Ctx, AllowSideEffects, Info); +} + +bool Expr::EvaluateAsFloat(APFloat &Result, const ASTContext &Ctx, + SideEffectsKind AllowSideEffects, + bool InConstantContext) const { + assert(!isValueDependent() && + "Expression evaluator can't be called on a dependent expression."); + + if (!getType()->isRealFloatingType()) + return false; + + EvalResult ExprResult; + if (!EvaluateAsRValue(ExprResult, Ctx, InConstantContext) || + !ExprResult.Val.isFloat() || + hasUnacceptableSideEffect(ExprResult, AllowSideEffects)) + return false; + + Result = ExprResult.Val.getFloat(); + return true; +} + +bool Expr::EvaluateAsLValue(EvalResult &Result, const ASTContext &Ctx, + bool InConstantContext) const { + assert(!isValueDependent() && + "Expression evaluator can't be called on a dependent expression."); + + EvalInfo Info(Ctx, Result, EvalInfo::EM_ConstantFold); + Info.InConstantContext = InConstantContext; + LValue LV; + CheckedTemporaries CheckedTemps; + if (!EvaluateLValue(this, LV, Info) || !Info.discardCleanups() || + Result.HasSideEffects || + !CheckLValueConstantExpression(Info, getExprLoc(), + Ctx.getLValueReferenceType(getType()), LV, + Expr::EvaluateForCodeGen, CheckedTemps)) + return false; + + LV.moveInto(Result.Val); + return true; +} + +bool Expr::EvaluateAsConstantExpr(EvalResult &Result, ConstExprUsage Usage, + const ASTContext &Ctx) const { + assert(!isValueDependent() && + "Expression evaluator can't be called on a dependent expression."); + + EvalInfo::EvaluationMode EM = EvalInfo::EM_ConstantExpression; + EvalInfo Info(Ctx, Result, EM); + Info.InConstantContext = true; + + if (!::Evaluate(Result.Val, Info, this) || Result.HasSideEffects) + return false; + + if (!Info.discardCleanups()) + llvm_unreachable("Unhandled cleanup; missing full expression marker?"); + + return CheckConstantExpression(Info, getExprLoc(), getStorageType(Ctx, this), + Result.Val, Usage) && + CheckMemoryLeaks(Info); +} + +bool Expr::EvaluateAsInitializer(APValue &Value, const ASTContext &Ctx, + const VarDecl *VD, + SmallVectorImpl<PartialDiagnosticAt> &Notes) const { + assert(!isValueDependent() && + "Expression evaluator can't be called on a dependent expression."); + + // FIXME: Evaluating initializers for large array and record types can cause + // performance problems. Only do so in C++11 for now. + if (isRValue() && (getType()->isArrayType() || getType()->isRecordType()) && + !Ctx.getLangOpts().CPlusPlus11) + return false; + + Expr::EvalStatus EStatus; + EStatus.Diag = &Notes; + + EvalInfo Info(Ctx, EStatus, VD->isConstexpr() + ? EvalInfo::EM_ConstantExpression + : EvalInfo::EM_ConstantFold); + Info.setEvaluatingDecl(VD, Value); + Info.InConstantContext = true; + + SourceLocation DeclLoc = VD->getLocation(); + QualType DeclTy = VD->getType(); + + if (Info.EnableNewConstInterp) { + auto &InterpCtx = const_cast<ASTContext &>(Ctx).getInterpContext(); + switch (InterpCtx.evaluateAsInitializer(Info, VD, Value)) { + case interp::InterpResult::Fail: + // Bail out if an error was encountered. + return false; + case interp::InterpResult::Success: + // Evaluation succeeded and value was set. + return CheckConstantExpression(Info, DeclLoc, DeclTy, Value); + case interp::InterpResult::Bail: + // Evaluate the value again for the tree evaluator to use. + break; + } + } + + LValue LVal; + LVal.set(VD); + + // C++11 [basic.start.init]p2: + // Variables with static storage duration or thread storage duration shall be + // zero-initialized before any other initialization takes place. + // This behavior is not present in C. + if (Ctx.getLangOpts().CPlusPlus && !VD->hasLocalStorage() && + !DeclTy->isReferenceType()) { + ImplicitValueInitExpr VIE(DeclTy); + if (!EvaluateInPlace(Value, Info, LVal, &VIE, + /*AllowNonLiteralTypes=*/true)) + return false; + } + + if (!EvaluateInPlace(Value, Info, LVal, this, + /*AllowNonLiteralTypes=*/true) || + EStatus.HasSideEffects) + return false; + + // At this point, any lifetime-extended temporaries are completely + // initialized. + Info.performLifetimeExtension(); + + if (!Info.discardCleanups()) + llvm_unreachable("Unhandled cleanup; missing full expression marker?"); + + return CheckConstantExpression(Info, DeclLoc, DeclTy, Value) && + CheckMemoryLeaks(Info); +} + +bool VarDecl::evaluateDestruction( + SmallVectorImpl<PartialDiagnosticAt> &Notes) const { + assert(getEvaluatedValue() && !getEvaluatedValue()->isAbsent() && + "cannot evaluate destruction of non-constant-initialized variable"); + + Expr::EvalStatus EStatus; + EStatus.Diag = &Notes; + + // Make a copy of the value for the destructor to mutate. + APValue DestroyedValue = *getEvaluatedValue(); + + EvalInfo Info(getASTContext(), EStatus, EvalInfo::EM_ConstantExpression); + Info.setEvaluatingDecl(this, DestroyedValue, + EvalInfo::EvaluatingDeclKind::Dtor); + Info.InConstantContext = true; + + SourceLocation DeclLoc = getLocation(); + QualType DeclTy = getType(); + + LValue LVal; + LVal.set(this); + + // FIXME: Consider storing whether this variable has constant destruction in + // the EvaluatedStmt so that CodeGen can query it. + if (!HandleDestruction(Info, DeclLoc, LVal.Base, DestroyedValue, DeclTy) || + EStatus.HasSideEffects) + return false; + + if (!Info.discardCleanups()) + llvm_unreachable("Unhandled cleanup; missing full expression marker?"); + + ensureEvaluatedStmt()->HasConstantDestruction = true; + return true; +} + +/// isEvaluatable - Call EvaluateAsRValue to see if this expression can be +/// constant folded, but discard the result. +bool Expr::isEvaluatable(const ASTContext &Ctx, SideEffectsKind SEK) const { + assert(!isValueDependent() && + "Expression evaluator can't be called on a dependent expression."); + + EvalResult Result; + return EvaluateAsRValue(Result, Ctx, /* in constant context */ true) && + !hasUnacceptableSideEffect(Result, SEK); +} + +APSInt Expr::EvaluateKnownConstInt(const ASTContext &Ctx, + SmallVectorImpl<PartialDiagnosticAt> *Diag) const { + assert(!isValueDependent() && + "Expression evaluator can't be called on a dependent expression."); + + EvalResult EVResult; + EVResult.Diag = Diag; + EvalInfo Info(Ctx, EVResult, EvalInfo::EM_IgnoreSideEffects); + Info.InConstantContext = true; + + bool Result = ::EvaluateAsRValue(this, EVResult, Ctx, Info); + (void)Result; + assert(Result && "Could not evaluate expression"); + assert(EVResult.Val.isInt() && "Expression did not evaluate to integer"); + + return EVResult.Val.getInt(); +} + +APSInt Expr::EvaluateKnownConstIntCheckOverflow( + const ASTContext &Ctx, SmallVectorImpl<PartialDiagnosticAt> *Diag) const { + assert(!isValueDependent() && + "Expression evaluator can't be called on a dependent expression."); + + EvalResult EVResult; + EVResult.Diag = Diag; + EvalInfo Info(Ctx, EVResult, EvalInfo::EM_IgnoreSideEffects); + Info.InConstantContext = true; + Info.CheckingForUndefinedBehavior = true; + + bool Result = ::EvaluateAsRValue(Info, this, EVResult.Val); + (void)Result; + assert(Result && "Could not evaluate expression"); + assert(EVResult.Val.isInt() && "Expression did not evaluate to integer"); + + return EVResult.Val.getInt(); +} + +void Expr::EvaluateForOverflow(const ASTContext &Ctx) const { + assert(!isValueDependent() && + "Expression evaluator can't be called on a dependent expression."); + + bool IsConst; + EvalResult EVResult; + if (!FastEvaluateAsRValue(this, EVResult, Ctx, IsConst)) { + EvalInfo Info(Ctx, EVResult, EvalInfo::EM_IgnoreSideEffects); + Info.CheckingForUndefinedBehavior = true; + (void)::EvaluateAsRValue(Info, this, EVResult.Val); + } +} + +bool Expr::EvalResult::isGlobalLValue() const { + assert(Val.isLValue()); + return IsGlobalLValue(Val.getLValueBase()); +} + + +/// isIntegerConstantExpr - this recursive routine will test if an expression is +/// an integer constant expression. + +/// FIXME: Pass up a reason why! Invalid operation in i-c-e, division by zero, +/// comma, etc + +// CheckICE - This function does the fundamental ICE checking: the returned +// ICEDiag contains an ICEKind indicating whether the expression is an ICE, +// and a (possibly null) SourceLocation indicating the location of the problem. +// +// Note that to reduce code duplication, this helper does no evaluation +// itself; the caller checks whether the expression is evaluatable, and +// in the rare cases where CheckICE actually cares about the evaluated +// value, it calls into Evaluate. + +namespace { + +enum ICEKind { + /// This expression is an ICE. + IK_ICE, + /// This expression is not an ICE, but if it isn't evaluated, it's + /// a legal subexpression for an ICE. This return value is used to handle + /// the comma operator in C99 mode, and non-constant subexpressions. + IK_ICEIfUnevaluated, + /// This expression is not an ICE, and is not a legal subexpression for one. + IK_NotICE +}; + +struct ICEDiag { + ICEKind Kind; + SourceLocation Loc; + + ICEDiag(ICEKind IK, SourceLocation l) : Kind(IK), Loc(l) {} +}; + +} + +static ICEDiag NoDiag() { return ICEDiag(IK_ICE, SourceLocation()); } + +static ICEDiag Worst(ICEDiag A, ICEDiag B) { return A.Kind >= B.Kind ? A : B; } + +static ICEDiag CheckEvalInICE(const Expr* E, const ASTContext &Ctx) { + Expr::EvalResult EVResult; + Expr::EvalStatus Status; + EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantExpression); + + Info.InConstantContext = true; + if (!::EvaluateAsRValue(E, EVResult, Ctx, Info) || EVResult.HasSideEffects || + !EVResult.Val.isInt()) + return ICEDiag(IK_NotICE, E->getBeginLoc()); + + return NoDiag(); +} + +static ICEDiag CheckICE(const Expr* E, const ASTContext &Ctx) { + assert(!E->isValueDependent() && "Should not see value dependent exprs!"); + if (!E->getType()->isIntegralOrEnumerationType()) + return ICEDiag(IK_NotICE, E->getBeginLoc()); + + switch (E->getStmtClass()) { +#define ABSTRACT_STMT(Node) +#define STMT(Node, Base) case Expr::Node##Class: +#define EXPR(Node, Base) +#include "clang/AST/StmtNodes.inc" + case Expr::PredefinedExprClass: + case Expr::FloatingLiteralClass: + case Expr::ImaginaryLiteralClass: + case Expr::StringLiteralClass: + case Expr::ArraySubscriptExprClass: + case Expr::OMPArraySectionExprClass: + case Expr::MemberExprClass: + case Expr::CompoundAssignOperatorClass: + case Expr::CompoundLiteralExprClass: + case Expr::ExtVectorElementExprClass: + case Expr::DesignatedInitExprClass: + case Expr::ArrayInitLoopExprClass: + case Expr::ArrayInitIndexExprClass: + case Expr::NoInitExprClass: + case Expr::DesignatedInitUpdateExprClass: + case Expr::ImplicitValueInitExprClass: + case Expr::ParenListExprClass: + case Expr::VAArgExprClass: + case Expr::AddrLabelExprClass: + case Expr::StmtExprClass: + case Expr::CXXMemberCallExprClass: + case Expr::CUDAKernelCallExprClass: + case Expr::CXXDynamicCastExprClass: + case Expr::CXXTypeidExprClass: + case Expr::CXXUuidofExprClass: + case Expr::MSPropertyRefExprClass: + case Expr::MSPropertySubscriptExprClass: + case Expr::CXXNullPtrLiteralExprClass: + case Expr::UserDefinedLiteralClass: + case Expr::CXXThisExprClass: + case Expr::CXXThrowExprClass: + case Expr::CXXNewExprClass: + case Expr::CXXDeleteExprClass: + case Expr::CXXPseudoDestructorExprClass: + case Expr::UnresolvedLookupExprClass: + case Expr::TypoExprClass: + case Expr::DependentScopeDeclRefExprClass: + case Expr::CXXConstructExprClass: + case Expr::CXXInheritedCtorInitExprClass: + case Expr::CXXStdInitializerListExprClass: + case Expr::CXXBindTemporaryExprClass: + case Expr::ExprWithCleanupsClass: + case Expr::CXXTemporaryObjectExprClass: + case Expr::CXXUnresolvedConstructExprClass: + case Expr::CXXDependentScopeMemberExprClass: + case Expr::UnresolvedMemberExprClass: + case Expr::ObjCStringLiteralClass: + case Expr::ObjCBoxedExprClass: + case Expr::ObjCArrayLiteralClass: + case Expr::ObjCDictionaryLiteralClass: + case Expr::ObjCEncodeExprClass: + case Expr::ObjCMessageExprClass: + case Expr::ObjCSelectorExprClass: + case Expr::ObjCProtocolExprClass: + case Expr::ObjCIvarRefExprClass: + case Expr::ObjCPropertyRefExprClass: + case Expr::ObjCSubscriptRefExprClass: + case Expr::ObjCIsaExprClass: + case Expr::ObjCAvailabilityCheckExprClass: + case Expr::ShuffleVectorExprClass: + case Expr::ConvertVectorExprClass: + case Expr::BlockExprClass: + case Expr::NoStmtClass: + case Expr::OpaqueValueExprClass: + case Expr::PackExpansionExprClass: + case Expr::SubstNonTypeTemplateParmPackExprClass: + case Expr::FunctionParmPackExprClass: + case Expr::AsTypeExprClass: + case Expr::ObjCIndirectCopyRestoreExprClass: + case Expr::MaterializeTemporaryExprClass: + case Expr::PseudoObjectExprClass: + case Expr::AtomicExprClass: + case Expr::LambdaExprClass: + case Expr::CXXFoldExprClass: + case Expr::CoawaitExprClass: + case Expr::DependentCoawaitExprClass: + case Expr::CoyieldExprClass: + return ICEDiag(IK_NotICE, E->getBeginLoc()); + + case Expr::InitListExprClass: { + // C++03 [dcl.init]p13: If T is a scalar type, then a declaration of the + // form "T x = { a };" is equivalent to "T x = a;". + // Unless we're initializing a reference, T is a scalar as it is known to be + // of integral or enumeration type. + if (E->isRValue()) + if (cast<InitListExpr>(E)->getNumInits() == 1) + return CheckICE(cast<InitListExpr>(E)->getInit(0), Ctx); + return ICEDiag(IK_NotICE, E->getBeginLoc()); + } + + case Expr::SizeOfPackExprClass: + case Expr::GNUNullExprClass: + case Expr::SourceLocExprClass: + return NoDiag(); + + case Expr::SubstNonTypeTemplateParmExprClass: + return + CheckICE(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement(), Ctx); + + case Expr::ConstantExprClass: + return CheckICE(cast<ConstantExpr>(E)->getSubExpr(), Ctx); + + case Expr::ParenExprClass: + return CheckICE(cast<ParenExpr>(E)->getSubExpr(), Ctx); + case Expr::GenericSelectionExprClass: + return CheckICE(cast<GenericSelectionExpr>(E)->getResultExpr(), Ctx); + case Expr::IntegerLiteralClass: + case Expr::FixedPointLiteralClass: + case Expr::CharacterLiteralClass: + case Expr::ObjCBoolLiteralExprClass: + case Expr::CXXBoolLiteralExprClass: + case Expr::CXXScalarValueInitExprClass: + case Expr::TypeTraitExprClass: + case Expr::ConceptSpecializationExprClass: + case Expr::ArrayTypeTraitExprClass: + case Expr::ExpressionTraitExprClass: + case Expr::CXXNoexceptExprClass: + return NoDiag(); + case Expr::CallExprClass: + case Expr::CXXOperatorCallExprClass: { + // C99 6.6/3 allows function calls within unevaluated subexpressions of + // constant expressions, but they can never be ICEs because an ICE cannot + // contain an operand of (pointer to) function type. + const CallExpr *CE = cast<CallExpr>(E); + if (CE->getBuiltinCallee()) + return CheckEvalInICE(E, Ctx); + return ICEDiag(IK_NotICE, E->getBeginLoc()); + } + case Expr::CXXRewrittenBinaryOperatorClass: + return CheckICE(cast<CXXRewrittenBinaryOperator>(E)->getSemanticForm(), + Ctx); + case Expr::DeclRefExprClass: { + if (isa<EnumConstantDecl>(cast<DeclRefExpr>(E)->getDecl())) + return NoDiag(); + const ValueDecl *D = cast<DeclRefExpr>(E)->getDecl(); + if (Ctx.getLangOpts().CPlusPlus && + D && IsConstNonVolatile(D->getType())) { + // Parameter variables are never constants. Without this check, + // getAnyInitializer() can find a default argument, which leads + // to chaos. + if (isa<ParmVarDecl>(D)) + return ICEDiag(IK_NotICE, cast<DeclRefExpr>(E)->getLocation()); + + // C++ 7.1.5.1p2 + // A variable of non-volatile const-qualified integral or enumeration + // type initialized by an ICE can be used in ICEs. + if (const VarDecl *Dcl = dyn_cast<VarDecl>(D)) { + if (!Dcl->getType()->isIntegralOrEnumerationType()) + return ICEDiag(IK_NotICE, cast<DeclRefExpr>(E)->getLocation()); + + const VarDecl *VD; + // Look for a declaration of this variable that has an initializer, and + // check whether it is an ICE. + if (Dcl->getAnyInitializer(VD) && VD->checkInitIsICE()) + return NoDiag(); + else + return ICEDiag(IK_NotICE, cast<DeclRefExpr>(E)->getLocation()); + } + } + return ICEDiag(IK_NotICE, E->getBeginLoc()); + } + case Expr::UnaryOperatorClass: { + const UnaryOperator *Exp = cast<UnaryOperator>(E); + switch (Exp->getOpcode()) { + case UO_PostInc: + case UO_PostDec: + case UO_PreInc: + case UO_PreDec: + case UO_AddrOf: + case UO_Deref: + case UO_Coawait: + // C99 6.6/3 allows increment and decrement within unevaluated + // subexpressions of constant expressions, but they can never be ICEs + // because an ICE cannot contain an lvalue operand. + return ICEDiag(IK_NotICE, E->getBeginLoc()); + case UO_Extension: + case UO_LNot: + case UO_Plus: + case UO_Minus: + case UO_Not: + case UO_Real: + case UO_Imag: + return CheckICE(Exp->getSubExpr(), Ctx); + } + llvm_unreachable("invalid unary operator class"); + } + case Expr::OffsetOfExprClass: { + // Note that per C99, offsetof must be an ICE. And AFAIK, using + // EvaluateAsRValue matches the proposed gcc behavior for cases like + // "offsetof(struct s{int x[4];}, x[1.0])". This doesn't affect + // compliance: we should warn earlier for offsetof expressions with + // array subscripts that aren't ICEs, and if the array subscripts + // are ICEs, the value of the offsetof must be an integer constant. + return CheckEvalInICE(E, Ctx); + } + case Expr::UnaryExprOrTypeTraitExprClass: { + const UnaryExprOrTypeTraitExpr *Exp = cast<UnaryExprOrTypeTraitExpr>(E); + if ((Exp->getKind() == UETT_SizeOf) && + Exp->getTypeOfArgument()->isVariableArrayType()) + return ICEDiag(IK_NotICE, E->getBeginLoc()); + return NoDiag(); + } + case Expr::BinaryOperatorClass: { + const BinaryOperator *Exp = cast<BinaryOperator>(E); + switch (Exp->getOpcode()) { + case BO_PtrMemD: + case BO_PtrMemI: + case BO_Assign: + case BO_MulAssign: + case BO_DivAssign: + case BO_RemAssign: + case BO_AddAssign: + case BO_SubAssign: + case BO_ShlAssign: + case BO_ShrAssign: + case BO_AndAssign: + case BO_XorAssign: + case BO_OrAssign: + // C99 6.6/3 allows assignments within unevaluated subexpressions of + // constant expressions, but they can never be ICEs because an ICE cannot + // contain an lvalue operand. + return ICEDiag(IK_NotICE, E->getBeginLoc()); + + case BO_Mul: + case BO_Div: + case BO_Rem: + case BO_Add: + case BO_Sub: + case BO_Shl: + case BO_Shr: + case BO_LT: + case BO_GT: + case BO_LE: + case BO_GE: + case BO_EQ: + case BO_NE: + case BO_And: + case BO_Xor: + case BO_Or: + case BO_Comma: + case BO_Cmp: { + ICEDiag LHSResult = CheckICE(Exp->getLHS(), Ctx); + ICEDiag RHSResult = CheckICE(Exp->getRHS(), Ctx); + if (Exp->getOpcode() == BO_Div || + Exp->getOpcode() == BO_Rem) { + // EvaluateAsRValue gives an error for undefined Div/Rem, so make sure + // we don't evaluate one. + if (LHSResult.Kind == IK_ICE && RHSResult.Kind == IK_ICE) { + llvm::APSInt REval = Exp->getRHS()->EvaluateKnownConstInt(Ctx); + if (REval == 0) + return ICEDiag(IK_ICEIfUnevaluated, E->getBeginLoc()); + if (REval.isSigned() && REval.isAllOnesValue()) { + llvm::APSInt LEval = Exp->getLHS()->EvaluateKnownConstInt(Ctx); + if (LEval.isMinSignedValue()) + return ICEDiag(IK_ICEIfUnevaluated, E->getBeginLoc()); + } + } + } + if (Exp->getOpcode() == BO_Comma) { + if (Ctx.getLangOpts().C99) { + // C99 6.6p3 introduces a strange edge case: comma can be in an ICE + // if it isn't evaluated. + if (LHSResult.Kind == IK_ICE && RHSResult.Kind == IK_ICE) + return ICEDiag(IK_ICEIfUnevaluated, E->getBeginLoc()); + } else { + // In both C89 and C++, commas in ICEs are illegal. + return ICEDiag(IK_NotICE, E->getBeginLoc()); + } + } + return Worst(LHSResult, RHSResult); + } + case BO_LAnd: + case BO_LOr: { + ICEDiag LHSResult = CheckICE(Exp->getLHS(), Ctx); + ICEDiag RHSResult = CheckICE(Exp->getRHS(), Ctx); + if (LHSResult.Kind == IK_ICE && RHSResult.Kind == IK_ICEIfUnevaluated) { + // Rare case where the RHS has a comma "side-effect"; we need + // to actually check the condition to see whether the side + // with the comma is evaluated. + if ((Exp->getOpcode() == BO_LAnd) != + (Exp->getLHS()->EvaluateKnownConstInt(Ctx) == 0)) + return RHSResult; + return NoDiag(); + } + + return Worst(LHSResult, RHSResult); + } + } + llvm_unreachable("invalid binary operator kind"); + } + case Expr::ImplicitCastExprClass: + case Expr::CStyleCastExprClass: + case Expr::CXXFunctionalCastExprClass: + case Expr::CXXStaticCastExprClass: + case Expr::CXXReinterpretCastExprClass: + case Expr::CXXConstCastExprClass: + case Expr::ObjCBridgedCastExprClass: { + const Expr *SubExpr = cast<CastExpr>(E)->getSubExpr(); + if (isa<ExplicitCastExpr>(E)) { + if (const FloatingLiteral *FL + = dyn_cast<FloatingLiteral>(SubExpr->IgnoreParenImpCasts())) { + unsigned DestWidth = Ctx.getIntWidth(E->getType()); + bool DestSigned = E->getType()->isSignedIntegerOrEnumerationType(); + APSInt IgnoredVal(DestWidth, !DestSigned); + bool Ignored; + // If the value does not fit in the destination type, the behavior is + // undefined, so we are not required to treat it as a constant + // expression. + if (FL->getValue().convertToInteger(IgnoredVal, + llvm::APFloat::rmTowardZero, + &Ignored) & APFloat::opInvalidOp) + return ICEDiag(IK_NotICE, E->getBeginLoc()); + return NoDiag(); + } + } + switch (cast<CastExpr>(E)->getCastKind()) { + case CK_LValueToRValue: + case CK_AtomicToNonAtomic: + case CK_NonAtomicToAtomic: + case CK_NoOp: + case CK_IntegralToBoolean: + case CK_IntegralCast: + return CheckICE(SubExpr, Ctx); + default: + return ICEDiag(IK_NotICE, E->getBeginLoc()); + } + } + case Expr::BinaryConditionalOperatorClass: { + const BinaryConditionalOperator *Exp = cast<BinaryConditionalOperator>(E); + ICEDiag CommonResult = CheckICE(Exp->getCommon(), Ctx); + if (CommonResult.Kind == IK_NotICE) return CommonResult; + ICEDiag FalseResult = CheckICE(Exp->getFalseExpr(), Ctx); + if (FalseResult.Kind == IK_NotICE) return FalseResult; + if (CommonResult.Kind == IK_ICEIfUnevaluated) return CommonResult; + if (FalseResult.Kind == IK_ICEIfUnevaluated && + Exp->getCommon()->EvaluateKnownConstInt(Ctx) != 0) return NoDiag(); + return FalseResult; + } + case Expr::ConditionalOperatorClass: { + const ConditionalOperator *Exp = cast<ConditionalOperator>(E); + // If the condition (ignoring parens) is a __builtin_constant_p call, + // then only the true side is actually considered in an integer constant + // expression, and it is fully evaluated. This is an important GNU + // extension. See GCC PR38377 for discussion. + if (const CallExpr *CallCE + = dyn_cast<CallExpr>(Exp->getCond()->IgnoreParenCasts())) + if (CallCE->getBuiltinCallee() == Builtin::BI__builtin_constant_p) + return CheckEvalInICE(E, Ctx); + ICEDiag CondResult = CheckICE(Exp->getCond(), Ctx); + if (CondResult.Kind == IK_NotICE) + return CondResult; + + ICEDiag TrueResult = CheckICE(Exp->getTrueExpr(), Ctx); + ICEDiag FalseResult = CheckICE(Exp->getFalseExpr(), Ctx); + + if (TrueResult.Kind == IK_NotICE) + return TrueResult; + if (FalseResult.Kind == IK_NotICE) + return FalseResult; + if (CondResult.Kind == IK_ICEIfUnevaluated) + return CondResult; + if (TrueResult.Kind == IK_ICE && FalseResult.Kind == IK_ICE) + return NoDiag(); + // Rare case where the diagnostics depend on which side is evaluated + // Note that if we get here, CondResult is 0, and at least one of + // TrueResult and FalseResult is non-zero. + if (Exp->getCond()->EvaluateKnownConstInt(Ctx) == 0) + return FalseResult; + return TrueResult; + } + case Expr::CXXDefaultArgExprClass: + return CheckICE(cast<CXXDefaultArgExpr>(E)->getExpr(), Ctx); + case Expr::CXXDefaultInitExprClass: + return CheckICE(cast<CXXDefaultInitExpr>(E)->getExpr(), Ctx); + case Expr::ChooseExprClass: { + return CheckICE(cast<ChooseExpr>(E)->getChosenSubExpr(), Ctx); + } + case Expr::BuiltinBitCastExprClass: { + if (!checkBitCastConstexprEligibility(nullptr, Ctx, cast<CastExpr>(E))) + return ICEDiag(IK_NotICE, E->getBeginLoc()); + return CheckICE(cast<CastExpr>(E)->getSubExpr(), Ctx); + } + } + + llvm_unreachable("Invalid StmtClass!"); +} + +/// Evaluate an expression as a C++11 integral constant expression. +static bool EvaluateCPlusPlus11IntegralConstantExpr(const ASTContext &Ctx, + const Expr *E, + llvm::APSInt *Value, + SourceLocation *Loc) { + if (!E->getType()->isIntegralOrUnscopedEnumerationType()) { + if (Loc) *Loc = E->getExprLoc(); + return false; + } + + APValue Result; + if (!E->isCXX11ConstantExpr(Ctx, &Result, Loc)) + return false; + + if (!Result.isInt()) { + if (Loc) *Loc = E->getExprLoc(); + return false; + } + + if (Value) *Value = Result.getInt(); + return true; +} + +bool Expr::isIntegerConstantExpr(const ASTContext &Ctx, + SourceLocation *Loc) const { + assert(!isValueDependent() && + "Expression evaluator can't be called on a dependent expression."); + + if (Ctx.getLangOpts().CPlusPlus11) + return EvaluateCPlusPlus11IntegralConstantExpr(Ctx, this, nullptr, Loc); + + ICEDiag D = CheckICE(this, Ctx); + if (D.Kind != IK_ICE) { + if (Loc) *Loc = D.Loc; + return false; + } + return true; +} + +bool Expr::isIntegerConstantExpr(llvm::APSInt &Value, const ASTContext &Ctx, + SourceLocation *Loc, bool isEvaluated) const { + assert(!isValueDependent() && + "Expression evaluator can't be called on a dependent expression."); + + if (Ctx.getLangOpts().CPlusPlus11) + return EvaluateCPlusPlus11IntegralConstantExpr(Ctx, this, &Value, Loc); + + if (!isIntegerConstantExpr(Ctx, Loc)) + return false; + + // The only possible side-effects here are due to UB discovered in the + // evaluation (for instance, INT_MAX + 1). In such a case, we are still + // required to treat the expression as an ICE, so we produce the folded + // value. + EvalResult ExprResult; + Expr::EvalStatus Status; + EvalInfo Info(Ctx, Status, EvalInfo::EM_IgnoreSideEffects); + Info.InConstantContext = true; + + if (!::EvaluateAsInt(this, ExprResult, Ctx, SE_AllowSideEffects, Info)) + llvm_unreachable("ICE cannot be evaluated!"); + + Value = ExprResult.Val.getInt(); + return true; +} + +bool Expr::isCXX98IntegralConstantExpr(const ASTContext &Ctx) const { + assert(!isValueDependent() && + "Expression evaluator can't be called on a dependent expression."); + + return CheckICE(this, Ctx).Kind == IK_ICE; +} + +bool Expr::isCXX11ConstantExpr(const ASTContext &Ctx, APValue *Result, + SourceLocation *Loc) const { + assert(!isValueDependent() && + "Expression evaluator can't be called on a dependent expression."); + + // We support this checking in C++98 mode in order to diagnose compatibility + // issues. + assert(Ctx.getLangOpts().CPlusPlus); + + // Build evaluation settings. + Expr::EvalStatus Status; + SmallVector<PartialDiagnosticAt, 8> Diags; + Status.Diag = &Diags; + EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantExpression); + + APValue Scratch; + bool IsConstExpr = + ::EvaluateAsRValue(Info, this, Result ? *Result : Scratch) && + // FIXME: We don't produce a diagnostic for this, but the callers that + // call us on arbitrary full-expressions should generally not care. + Info.discardCleanups() && !Status.HasSideEffects; + + if (!Diags.empty()) { + IsConstExpr = false; + if (Loc) *Loc = Diags[0].first; + } else if (!IsConstExpr) { + // FIXME: This shouldn't happen. + if (Loc) *Loc = getExprLoc(); + } + + return IsConstExpr; +} + +bool Expr::EvaluateWithSubstitution(APValue &Value, ASTContext &Ctx, + const FunctionDecl *Callee, + ArrayRef<const Expr*> Args, + const Expr *This) const { + assert(!isValueDependent() && + "Expression evaluator can't be called on a dependent expression."); + + Expr::EvalStatus Status; + EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantExpressionUnevaluated); + Info.InConstantContext = true; + + LValue ThisVal; + const LValue *ThisPtr = nullptr; + if (This) { +#ifndef NDEBUG + auto *MD = dyn_cast<CXXMethodDecl>(Callee); + assert(MD && "Don't provide `this` for non-methods."); + assert(!MD->isStatic() && "Don't provide `this` for static methods."); +#endif + if (EvaluateObjectArgument(Info, This, ThisVal)) + ThisPtr = &ThisVal; + if (Info.EvalStatus.HasSideEffects) + return false; + } + + ArgVector ArgValues(Args.size()); + for (ArrayRef<const Expr*>::iterator I = Args.begin(), E = Args.end(); + I != E; ++I) { + if ((*I)->isValueDependent() || + !Evaluate(ArgValues[I - Args.begin()], Info, *I)) + // If evaluation fails, throw away the argument entirely. + ArgValues[I - Args.begin()] = APValue(); + if (Info.EvalStatus.HasSideEffects) + return false; + } + + // Build fake call to Callee. + CallStackFrame Frame(Info, Callee->getLocation(), Callee, ThisPtr, + ArgValues.data()); + return Evaluate(Value, Info, this) && Info.discardCleanups() && + !Info.EvalStatus.HasSideEffects; +} + +bool Expr::isPotentialConstantExpr(const FunctionDecl *FD, + SmallVectorImpl< + PartialDiagnosticAt> &Diags) { + // FIXME: It would be useful to check constexpr function templates, but at the + // moment the constant expression evaluator cannot cope with the non-rigorous + // ASTs which we build for dependent expressions. + if (FD->isDependentContext()) + return true; + + Expr::EvalStatus Status; + Status.Diag = &Diags; + + EvalInfo Info(FD->getASTContext(), Status, EvalInfo::EM_ConstantExpression); + Info.InConstantContext = true; + Info.CheckingPotentialConstantExpression = true; + + // The constexpr VM attempts to compile all methods to bytecode here. + if (Info.EnableNewConstInterp) { + auto &InterpCtx = Info.Ctx.getInterpContext(); + switch (InterpCtx.isPotentialConstantExpr(Info, FD)) { + case interp::InterpResult::Success: + case interp::InterpResult::Fail: + return Diags.empty(); + case interp::InterpResult::Bail: + break; + } + } + + const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD); + const CXXRecordDecl *RD = MD ? MD->getParent()->getCanonicalDecl() : nullptr; + + // Fabricate an arbitrary expression on the stack and pretend that it + // is a temporary being used as the 'this' pointer. + LValue This; + ImplicitValueInitExpr VIE(RD ? Info.Ctx.getRecordType(RD) : Info.Ctx.IntTy); + This.set({&VIE, Info.CurrentCall->Index}); + + ArrayRef<const Expr*> Args; + + APValue Scratch; + if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) { + // Evaluate the call as a constant initializer, to allow the construction + // of objects of non-literal types. + Info.setEvaluatingDecl(This.getLValueBase(), Scratch); + HandleConstructorCall(&VIE, This, Args, CD, Info, Scratch); + } else { + SourceLocation Loc = FD->getLocation(); + HandleFunctionCall(Loc, FD, (MD && MD->isInstance()) ? &This : nullptr, + Args, FD->getBody(), Info, Scratch, nullptr); + } + + return Diags.empty(); +} + +bool Expr::isPotentialConstantExprUnevaluated(Expr *E, + const FunctionDecl *FD, + SmallVectorImpl< + PartialDiagnosticAt> &Diags) { + assert(!E->isValueDependent() && + "Expression evaluator can't be called on a dependent expression."); + + Expr::EvalStatus Status; + Status.Diag = &Diags; + + EvalInfo Info(FD->getASTContext(), Status, + EvalInfo::EM_ConstantExpressionUnevaluated); + Info.InConstantContext = true; + Info.CheckingPotentialConstantExpression = true; + + // Fabricate a call stack frame to give the arguments a plausible cover story. + ArrayRef<const Expr*> Args; + ArgVector ArgValues(0); + bool Success = EvaluateArgs(Args, ArgValues, Info, FD); + (void)Success; + assert(Success && + "Failed to set up arguments for potential constant evaluation"); + CallStackFrame Frame(Info, SourceLocation(), FD, nullptr, ArgValues.data()); + + APValue ResultScratch; + Evaluate(ResultScratch, Info, E); + return Diags.empty(); +} + +bool Expr::tryEvaluateObjectSize(uint64_t &Result, ASTContext &Ctx, + unsigned Type) const { + if (!getType()->isPointerType()) + return false; + + Expr::EvalStatus Status; + EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantFold); + return tryEvaluateBuiltinObjectSize(this, Type, Info, Result); +} |