aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm-project/clang/lib/AST/ExprConstant.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm-project/clang/lib/AST/ExprConstant.cpp')
-rw-r--r--contrib/llvm-project/clang/lib/AST/ExprConstant.cpp14458
1 files changed, 14458 insertions, 0 deletions
diff --git a/contrib/llvm-project/clang/lib/AST/ExprConstant.cpp b/contrib/llvm-project/clang/lib/AST/ExprConstant.cpp
new file mode 100644
index 000000000000..309282f333d0
--- /dev/null
+++ b/contrib/llvm-project/clang/lib/AST/ExprConstant.cpp
@@ -0,0 +1,14458 @@
+//===--- ExprConstant.cpp - Expression Constant Evaluator -----------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the Expr constant evaluator.
+//
+// Constant expression evaluation produces four main results:
+//
+// * A success/failure flag indicating whether constant folding was successful.
+// This is the 'bool' return value used by most of the code in this file. A
+// 'false' return value indicates that constant folding has failed, and any
+// appropriate diagnostic has already been produced.
+//
+// * An evaluated result, valid only if constant folding has not failed.
+//
+// * A flag indicating if evaluation encountered (unevaluated) side-effects.
+// These arise in cases such as (sideEffect(), 0) and (sideEffect() || 1),
+// where it is possible to determine the evaluated result regardless.
+//
+// * A set of notes indicating why the evaluation was not a constant expression
+// (under the C++11 / C++1y rules only, at the moment), or, if folding failed
+// too, why the expression could not be folded.
+//
+// If we are checking for a potential constant expression, failure to constant
+// fold a potential constant sub-expression will be indicated by a 'false'
+// return value (the expression could not be folded) and no diagnostic (the
+// expression is not necessarily non-constant).
+//
+//===----------------------------------------------------------------------===//
+
+#include <cstring>
+#include <functional>
+#include "Interp/Context.h"
+#include "Interp/Frame.h"
+#include "Interp/State.h"
+#include "clang/AST/APValue.h"
+#include "clang/AST/ASTContext.h"
+#include "clang/AST/ASTDiagnostic.h"
+#include "clang/AST/ASTLambda.h"
+#include "clang/AST/CXXInheritance.h"
+#include "clang/AST/CharUnits.h"
+#include "clang/AST/CurrentSourceLocExprScope.h"
+#include "clang/AST/Expr.h"
+#include "clang/AST/OSLog.h"
+#include "clang/AST/OptionalDiagnostic.h"
+#include "clang/AST/RecordLayout.h"
+#include "clang/AST/StmtVisitor.h"
+#include "clang/AST/TypeLoc.h"
+#include "clang/Basic/Builtins.h"
+#include "clang/Basic/FixedPoint.h"
+#include "clang/Basic/TargetInfo.h"
+#include "llvm/ADT/Optional.h"
+#include "llvm/ADT/SmallBitVector.h"
+#include "llvm/Support/SaveAndRestore.h"
+#include "llvm/Support/raw_ostream.h"
+
+#define DEBUG_TYPE "exprconstant"
+
+using namespace clang;
+using llvm::APInt;
+using llvm::APSInt;
+using llvm::APFloat;
+using llvm::Optional;
+
+namespace {
+ struct LValue;
+ class CallStackFrame;
+ class EvalInfo;
+
+ using SourceLocExprScopeGuard =
+ CurrentSourceLocExprScope::SourceLocExprScopeGuard;
+
+ static QualType getType(APValue::LValueBase B) {
+ if (!B) return QualType();
+ if (const ValueDecl *D = B.dyn_cast<const ValueDecl*>()) {
+ // FIXME: It's unclear where we're supposed to take the type from, and
+ // this actually matters for arrays of unknown bound. Eg:
+ //
+ // extern int arr[]; void f() { extern int arr[3]; };
+ // constexpr int *p = &arr[1]; // valid?
+ //
+ // For now, we take the array bound from the most recent declaration.
+ for (auto *Redecl = cast<ValueDecl>(D->getMostRecentDecl()); Redecl;
+ Redecl = cast_or_null<ValueDecl>(Redecl->getPreviousDecl())) {
+ QualType T = Redecl->getType();
+ if (!T->isIncompleteArrayType())
+ return T;
+ }
+ return D->getType();
+ }
+
+ if (B.is<TypeInfoLValue>())
+ return B.getTypeInfoType();
+
+ if (B.is<DynamicAllocLValue>())
+ return B.getDynamicAllocType();
+
+ const Expr *Base = B.get<const Expr*>();
+
+ // For a materialized temporary, the type of the temporary we materialized
+ // may not be the type of the expression.
+ if (const MaterializeTemporaryExpr *MTE =
+ dyn_cast<MaterializeTemporaryExpr>(Base)) {
+ SmallVector<const Expr *, 2> CommaLHSs;
+ SmallVector<SubobjectAdjustment, 2> Adjustments;
+ const Expr *Temp = MTE->GetTemporaryExpr();
+ const Expr *Inner = Temp->skipRValueSubobjectAdjustments(CommaLHSs,
+ Adjustments);
+ // Keep any cv-qualifiers from the reference if we generated a temporary
+ // for it directly. Otherwise use the type after adjustment.
+ if (!Adjustments.empty())
+ return Inner->getType();
+ }
+
+ return Base->getType();
+ }
+
+ /// Get an LValue path entry, which is known to not be an array index, as a
+ /// field declaration.
+ static const FieldDecl *getAsField(APValue::LValuePathEntry E) {
+ return dyn_cast_or_null<FieldDecl>(E.getAsBaseOrMember().getPointer());
+ }
+ /// Get an LValue path entry, which is known to not be an array index, as a
+ /// base class declaration.
+ static const CXXRecordDecl *getAsBaseClass(APValue::LValuePathEntry E) {
+ return dyn_cast_or_null<CXXRecordDecl>(E.getAsBaseOrMember().getPointer());
+ }
+ /// Determine whether this LValue path entry for a base class names a virtual
+ /// base class.
+ static bool isVirtualBaseClass(APValue::LValuePathEntry E) {
+ return E.getAsBaseOrMember().getInt();
+ }
+
+ /// Given an expression, determine the type used to store the result of
+ /// evaluating that expression.
+ static QualType getStorageType(const ASTContext &Ctx, const Expr *E) {
+ if (E->isRValue())
+ return E->getType();
+ return Ctx.getLValueReferenceType(E->getType());
+ }
+
+ /// Given a CallExpr, try to get the alloc_size attribute. May return null.
+ static const AllocSizeAttr *getAllocSizeAttr(const CallExpr *CE) {
+ const FunctionDecl *Callee = CE->getDirectCallee();
+ return Callee ? Callee->getAttr<AllocSizeAttr>() : nullptr;
+ }
+
+ /// Attempts to unwrap a CallExpr (with an alloc_size attribute) from an Expr.
+ /// This will look through a single cast.
+ ///
+ /// Returns null if we couldn't unwrap a function with alloc_size.
+ static const CallExpr *tryUnwrapAllocSizeCall(const Expr *E) {
+ if (!E->getType()->isPointerType())
+ return nullptr;
+
+ E = E->IgnoreParens();
+ // If we're doing a variable assignment from e.g. malloc(N), there will
+ // probably be a cast of some kind. In exotic cases, we might also see a
+ // top-level ExprWithCleanups. Ignore them either way.
+ if (const auto *FE = dyn_cast<FullExpr>(E))
+ E = FE->getSubExpr()->IgnoreParens();
+
+ if (const auto *Cast = dyn_cast<CastExpr>(E))
+ E = Cast->getSubExpr()->IgnoreParens();
+
+ if (const auto *CE = dyn_cast<CallExpr>(E))
+ return getAllocSizeAttr(CE) ? CE : nullptr;
+ return nullptr;
+ }
+
+ /// Determines whether or not the given Base contains a call to a function
+ /// with the alloc_size attribute.
+ static bool isBaseAnAllocSizeCall(APValue::LValueBase Base) {
+ const auto *E = Base.dyn_cast<const Expr *>();
+ return E && E->getType()->isPointerType() && tryUnwrapAllocSizeCall(E);
+ }
+
+ /// The bound to claim that an array of unknown bound has.
+ /// The value in MostDerivedArraySize is undefined in this case. So, set it
+ /// to an arbitrary value that's likely to loudly break things if it's used.
+ static const uint64_t AssumedSizeForUnsizedArray =
+ std::numeric_limits<uint64_t>::max() / 2;
+
+ /// Determines if an LValue with the given LValueBase will have an unsized
+ /// array in its designator.
+ /// Find the path length and type of the most-derived subobject in the given
+ /// path, and find the size of the containing array, if any.
+ static unsigned
+ findMostDerivedSubobject(ASTContext &Ctx, APValue::LValueBase Base,
+ ArrayRef<APValue::LValuePathEntry> Path,
+ uint64_t &ArraySize, QualType &Type, bool &IsArray,
+ bool &FirstEntryIsUnsizedArray) {
+ // This only accepts LValueBases from APValues, and APValues don't support
+ // arrays that lack size info.
+ assert(!isBaseAnAllocSizeCall(Base) &&
+ "Unsized arrays shouldn't appear here");
+ unsigned MostDerivedLength = 0;
+ Type = getType(Base);
+
+ for (unsigned I = 0, N = Path.size(); I != N; ++I) {
+ if (Type->isArrayType()) {
+ const ArrayType *AT = Ctx.getAsArrayType(Type);
+ Type = AT->getElementType();
+ MostDerivedLength = I + 1;
+ IsArray = true;
+
+ if (auto *CAT = dyn_cast<ConstantArrayType>(AT)) {
+ ArraySize = CAT->getSize().getZExtValue();
+ } else {
+ assert(I == 0 && "unexpected unsized array designator");
+ FirstEntryIsUnsizedArray = true;
+ ArraySize = AssumedSizeForUnsizedArray;
+ }
+ } else if (Type->isAnyComplexType()) {
+ const ComplexType *CT = Type->castAs<ComplexType>();
+ Type = CT->getElementType();
+ ArraySize = 2;
+ MostDerivedLength = I + 1;
+ IsArray = true;
+ } else if (const FieldDecl *FD = getAsField(Path[I])) {
+ Type = FD->getType();
+ ArraySize = 0;
+ MostDerivedLength = I + 1;
+ IsArray = false;
+ } else {
+ // Path[I] describes a base class.
+ ArraySize = 0;
+ IsArray = false;
+ }
+ }
+ return MostDerivedLength;
+ }
+
+ /// A path from a glvalue to a subobject of that glvalue.
+ struct SubobjectDesignator {
+ /// True if the subobject was named in a manner not supported by C++11. Such
+ /// lvalues can still be folded, but they are not core constant expressions
+ /// and we cannot perform lvalue-to-rvalue conversions on them.
+ unsigned Invalid : 1;
+
+ /// Is this a pointer one past the end of an object?
+ unsigned IsOnePastTheEnd : 1;
+
+ /// Indicator of whether the first entry is an unsized array.
+ unsigned FirstEntryIsAnUnsizedArray : 1;
+
+ /// Indicator of whether the most-derived object is an array element.
+ unsigned MostDerivedIsArrayElement : 1;
+
+ /// The length of the path to the most-derived object of which this is a
+ /// subobject.
+ unsigned MostDerivedPathLength : 28;
+
+ /// The size of the array of which the most-derived object is an element.
+ /// This will always be 0 if the most-derived object is not an array
+ /// element. 0 is not an indicator of whether or not the most-derived object
+ /// is an array, however, because 0-length arrays are allowed.
+ ///
+ /// If the current array is an unsized array, the value of this is
+ /// undefined.
+ uint64_t MostDerivedArraySize;
+
+ /// The type of the most derived object referred to by this address.
+ QualType MostDerivedType;
+
+ typedef APValue::LValuePathEntry PathEntry;
+
+ /// The entries on the path from the glvalue to the designated subobject.
+ SmallVector<PathEntry, 8> Entries;
+
+ SubobjectDesignator() : Invalid(true) {}
+
+ explicit SubobjectDesignator(QualType T)
+ : Invalid(false), IsOnePastTheEnd(false),
+ FirstEntryIsAnUnsizedArray(false), MostDerivedIsArrayElement(false),
+ MostDerivedPathLength(0), MostDerivedArraySize(0),
+ MostDerivedType(T) {}
+
+ SubobjectDesignator(ASTContext &Ctx, const APValue &V)
+ : Invalid(!V.isLValue() || !V.hasLValuePath()), IsOnePastTheEnd(false),
+ FirstEntryIsAnUnsizedArray(false), MostDerivedIsArrayElement(false),
+ MostDerivedPathLength(0), MostDerivedArraySize(0) {
+ assert(V.isLValue() && "Non-LValue used to make an LValue designator?");
+ if (!Invalid) {
+ IsOnePastTheEnd = V.isLValueOnePastTheEnd();
+ ArrayRef<PathEntry> VEntries = V.getLValuePath();
+ Entries.insert(Entries.end(), VEntries.begin(), VEntries.end());
+ if (V.getLValueBase()) {
+ bool IsArray = false;
+ bool FirstIsUnsizedArray = false;
+ MostDerivedPathLength = findMostDerivedSubobject(
+ Ctx, V.getLValueBase(), V.getLValuePath(), MostDerivedArraySize,
+ MostDerivedType, IsArray, FirstIsUnsizedArray);
+ MostDerivedIsArrayElement = IsArray;
+ FirstEntryIsAnUnsizedArray = FirstIsUnsizedArray;
+ }
+ }
+ }
+
+ void truncate(ASTContext &Ctx, APValue::LValueBase Base,
+ unsigned NewLength) {
+ if (Invalid)
+ return;
+
+ assert(Base && "cannot truncate path for null pointer");
+ assert(NewLength <= Entries.size() && "not a truncation");
+
+ if (NewLength == Entries.size())
+ return;
+ Entries.resize(NewLength);
+
+ bool IsArray = false;
+ bool FirstIsUnsizedArray = false;
+ MostDerivedPathLength = findMostDerivedSubobject(
+ Ctx, Base, Entries, MostDerivedArraySize, MostDerivedType, IsArray,
+ FirstIsUnsizedArray);
+ MostDerivedIsArrayElement = IsArray;
+ FirstEntryIsAnUnsizedArray = FirstIsUnsizedArray;
+ }
+
+ void setInvalid() {
+ Invalid = true;
+ Entries.clear();
+ }
+
+ /// Determine whether the most derived subobject is an array without a
+ /// known bound.
+ bool isMostDerivedAnUnsizedArray() const {
+ assert(!Invalid && "Calling this makes no sense on invalid designators");
+ return Entries.size() == 1 && FirstEntryIsAnUnsizedArray;
+ }
+
+ /// Determine what the most derived array's size is. Results in an assertion
+ /// failure if the most derived array lacks a size.
+ uint64_t getMostDerivedArraySize() const {
+ assert(!isMostDerivedAnUnsizedArray() && "Unsized array has no size");
+ return MostDerivedArraySize;
+ }
+
+ /// Determine whether this is a one-past-the-end pointer.
+ bool isOnePastTheEnd() const {
+ assert(!Invalid);
+ if (IsOnePastTheEnd)
+ return true;
+ if (!isMostDerivedAnUnsizedArray() && MostDerivedIsArrayElement &&
+ Entries[MostDerivedPathLength - 1].getAsArrayIndex() ==
+ MostDerivedArraySize)
+ return true;
+ return false;
+ }
+
+ /// Get the range of valid index adjustments in the form
+ /// {maximum value that can be subtracted from this pointer,
+ /// maximum value that can be added to this pointer}
+ std::pair<uint64_t, uint64_t> validIndexAdjustments() {
+ if (Invalid || isMostDerivedAnUnsizedArray())
+ return {0, 0};
+
+ // [expr.add]p4: For the purposes of these operators, a pointer to a
+ // nonarray object behaves the same as a pointer to the first element of
+ // an array of length one with the type of the object as its element type.
+ bool IsArray = MostDerivedPathLength == Entries.size() &&
+ MostDerivedIsArrayElement;
+ uint64_t ArrayIndex = IsArray ? Entries.back().getAsArrayIndex()
+ : (uint64_t)IsOnePastTheEnd;
+ uint64_t ArraySize =
+ IsArray ? getMostDerivedArraySize() : (uint64_t)1;
+ return {ArrayIndex, ArraySize - ArrayIndex};
+ }
+
+ /// Check that this refers to a valid subobject.
+ bool isValidSubobject() const {
+ if (Invalid)
+ return false;
+ return !isOnePastTheEnd();
+ }
+ /// Check that this refers to a valid subobject, and if not, produce a
+ /// relevant diagnostic and set the designator as invalid.
+ bool checkSubobject(EvalInfo &Info, const Expr *E, CheckSubobjectKind CSK);
+
+ /// Get the type of the designated object.
+ QualType getType(ASTContext &Ctx) const {
+ assert(!Invalid && "invalid designator has no subobject type");
+ return MostDerivedPathLength == Entries.size()
+ ? MostDerivedType
+ : Ctx.getRecordType(getAsBaseClass(Entries.back()));
+ }
+
+ /// Update this designator to refer to the first element within this array.
+ void addArrayUnchecked(const ConstantArrayType *CAT) {
+ Entries.push_back(PathEntry::ArrayIndex(0));
+
+ // This is a most-derived object.
+ MostDerivedType = CAT->getElementType();
+ MostDerivedIsArrayElement = true;
+ MostDerivedArraySize = CAT->getSize().getZExtValue();
+ MostDerivedPathLength = Entries.size();
+ }
+ /// Update this designator to refer to the first element within the array of
+ /// elements of type T. This is an array of unknown size.
+ void addUnsizedArrayUnchecked(QualType ElemTy) {
+ Entries.push_back(PathEntry::ArrayIndex(0));
+
+ MostDerivedType = ElemTy;
+ MostDerivedIsArrayElement = true;
+ // The value in MostDerivedArraySize is undefined in this case. So, set it
+ // to an arbitrary value that's likely to loudly break things if it's
+ // used.
+ MostDerivedArraySize = AssumedSizeForUnsizedArray;
+ MostDerivedPathLength = Entries.size();
+ }
+ /// Update this designator to refer to the given base or member of this
+ /// object.
+ void addDeclUnchecked(const Decl *D, bool Virtual = false) {
+ Entries.push_back(APValue::BaseOrMemberType(D, Virtual));
+
+ // If this isn't a base class, it's a new most-derived object.
+ if (const FieldDecl *FD = dyn_cast<FieldDecl>(D)) {
+ MostDerivedType = FD->getType();
+ MostDerivedIsArrayElement = false;
+ MostDerivedArraySize = 0;
+ MostDerivedPathLength = Entries.size();
+ }
+ }
+ /// Update this designator to refer to the given complex component.
+ void addComplexUnchecked(QualType EltTy, bool Imag) {
+ Entries.push_back(PathEntry::ArrayIndex(Imag));
+
+ // This is technically a most-derived object, though in practice this
+ // is unlikely to matter.
+ MostDerivedType = EltTy;
+ MostDerivedIsArrayElement = true;
+ MostDerivedArraySize = 2;
+ MostDerivedPathLength = Entries.size();
+ }
+ void diagnoseUnsizedArrayPointerArithmetic(EvalInfo &Info, const Expr *E);
+ void diagnosePointerArithmetic(EvalInfo &Info, const Expr *E,
+ const APSInt &N);
+ /// Add N to the address of this subobject.
+ void adjustIndex(EvalInfo &Info, const Expr *E, APSInt N) {
+ if (Invalid || !N) return;
+ uint64_t TruncatedN = N.extOrTrunc(64).getZExtValue();
+ if (isMostDerivedAnUnsizedArray()) {
+ diagnoseUnsizedArrayPointerArithmetic(Info, E);
+ // Can't verify -- trust that the user is doing the right thing (or if
+ // not, trust that the caller will catch the bad behavior).
+ // FIXME: Should we reject if this overflows, at least?
+ Entries.back() = PathEntry::ArrayIndex(
+ Entries.back().getAsArrayIndex() + TruncatedN);
+ return;
+ }
+
+ // [expr.add]p4: For the purposes of these operators, a pointer to a
+ // nonarray object behaves the same as a pointer to the first element of
+ // an array of length one with the type of the object as its element type.
+ bool IsArray = MostDerivedPathLength == Entries.size() &&
+ MostDerivedIsArrayElement;
+ uint64_t ArrayIndex = IsArray ? Entries.back().getAsArrayIndex()
+ : (uint64_t)IsOnePastTheEnd;
+ uint64_t ArraySize =
+ IsArray ? getMostDerivedArraySize() : (uint64_t)1;
+
+ if (N < -(int64_t)ArrayIndex || N > ArraySize - ArrayIndex) {
+ // Calculate the actual index in a wide enough type, so we can include
+ // it in the note.
+ N = N.extend(std::max<unsigned>(N.getBitWidth() + 1, 65));
+ (llvm::APInt&)N += ArrayIndex;
+ assert(N.ugt(ArraySize) && "bounds check failed for in-bounds index");
+ diagnosePointerArithmetic(Info, E, N);
+ setInvalid();
+ return;
+ }
+
+ ArrayIndex += TruncatedN;
+ assert(ArrayIndex <= ArraySize &&
+ "bounds check succeeded for out-of-bounds index");
+
+ if (IsArray)
+ Entries.back() = PathEntry::ArrayIndex(ArrayIndex);
+ else
+ IsOnePastTheEnd = (ArrayIndex != 0);
+ }
+ };
+
+ /// A stack frame in the constexpr call stack.
+ class CallStackFrame : public interp::Frame {
+ public:
+ EvalInfo &Info;
+
+ /// Parent - The caller of this stack frame.
+ CallStackFrame *Caller;
+
+ /// Callee - The function which was called.
+ const FunctionDecl *Callee;
+
+ /// This - The binding for the this pointer in this call, if any.
+ const LValue *This;
+
+ /// Arguments - Parameter bindings for this function call, indexed by
+ /// parameters' function scope indices.
+ APValue *Arguments;
+
+ /// Source location information about the default argument or default
+ /// initializer expression we're evaluating, if any.
+ CurrentSourceLocExprScope CurSourceLocExprScope;
+
+ // Note that we intentionally use std::map here so that references to
+ // values are stable.
+ typedef std::pair<const void *, unsigned> MapKeyTy;
+ typedef std::map<MapKeyTy, APValue> MapTy;
+ /// Temporaries - Temporary lvalues materialized within this stack frame.
+ MapTy Temporaries;
+
+ /// CallLoc - The location of the call expression for this call.
+ SourceLocation CallLoc;
+
+ /// Index - The call index of this call.
+ unsigned Index;
+
+ /// The stack of integers for tracking version numbers for temporaries.
+ SmallVector<unsigned, 2> TempVersionStack = {1};
+ unsigned CurTempVersion = TempVersionStack.back();
+
+ unsigned getTempVersion() const { return TempVersionStack.back(); }
+
+ void pushTempVersion() {
+ TempVersionStack.push_back(++CurTempVersion);
+ }
+
+ void popTempVersion() {
+ TempVersionStack.pop_back();
+ }
+
+ // FIXME: Adding this to every 'CallStackFrame' may have a nontrivial impact
+ // on the overall stack usage of deeply-recursing constexpr evaluations.
+ // (We should cache this map rather than recomputing it repeatedly.)
+ // But let's try this and see how it goes; we can look into caching the map
+ // as a later change.
+
+ /// LambdaCaptureFields - Mapping from captured variables/this to
+ /// corresponding data members in the closure class.
+ llvm::DenseMap<const VarDecl *, FieldDecl *> LambdaCaptureFields;
+ FieldDecl *LambdaThisCaptureField;
+
+ CallStackFrame(EvalInfo &Info, SourceLocation CallLoc,
+ const FunctionDecl *Callee, const LValue *This,
+ APValue *Arguments);
+ ~CallStackFrame();
+
+ // Return the temporary for Key whose version number is Version.
+ APValue *getTemporary(const void *Key, unsigned Version) {
+ MapKeyTy KV(Key, Version);
+ auto LB = Temporaries.lower_bound(KV);
+ if (LB != Temporaries.end() && LB->first == KV)
+ return &LB->second;
+ // Pair (Key,Version) wasn't found in the map. Check that no elements
+ // in the map have 'Key' as their key.
+ assert((LB == Temporaries.end() || LB->first.first != Key) &&
+ (LB == Temporaries.begin() || std::prev(LB)->first.first != Key) &&
+ "Element with key 'Key' found in map");
+ return nullptr;
+ }
+
+ // Return the current temporary for Key in the map.
+ APValue *getCurrentTemporary(const void *Key) {
+ auto UB = Temporaries.upper_bound(MapKeyTy(Key, UINT_MAX));
+ if (UB != Temporaries.begin() && std::prev(UB)->first.first == Key)
+ return &std::prev(UB)->second;
+ return nullptr;
+ }
+
+ // Return the version number of the current temporary for Key.
+ unsigned getCurrentTemporaryVersion(const void *Key) const {
+ auto UB = Temporaries.upper_bound(MapKeyTy(Key, UINT_MAX));
+ if (UB != Temporaries.begin() && std::prev(UB)->first.first == Key)
+ return std::prev(UB)->first.second;
+ return 0;
+ }
+
+ /// Allocate storage for an object of type T in this stack frame.
+ /// Populates LV with a handle to the created object. Key identifies
+ /// the temporary within the stack frame, and must not be reused without
+ /// bumping the temporary version number.
+ template<typename KeyT>
+ APValue &createTemporary(const KeyT *Key, QualType T,
+ bool IsLifetimeExtended, LValue &LV);
+
+ void describe(llvm::raw_ostream &OS) override;
+
+ Frame *getCaller() const override { return Caller; }
+ SourceLocation getCallLocation() const override { return CallLoc; }
+ const FunctionDecl *getCallee() const override { return Callee; }
+
+ bool isStdFunction() const {
+ for (const DeclContext *DC = Callee; DC; DC = DC->getParent())
+ if (DC->isStdNamespace())
+ return true;
+ return false;
+ }
+ };
+
+ /// Temporarily override 'this'.
+ class ThisOverrideRAII {
+ public:
+ ThisOverrideRAII(CallStackFrame &Frame, const LValue *NewThis, bool Enable)
+ : Frame(Frame), OldThis(Frame.This) {
+ if (Enable)
+ Frame.This = NewThis;
+ }
+ ~ThisOverrideRAII() {
+ Frame.This = OldThis;
+ }
+ private:
+ CallStackFrame &Frame;
+ const LValue *OldThis;
+ };
+}
+
+static bool HandleDestruction(EvalInfo &Info, const Expr *E,
+ const LValue &This, QualType ThisType);
+static bool HandleDestruction(EvalInfo &Info, SourceLocation Loc,
+ APValue::LValueBase LVBase, APValue &Value,
+ QualType T);
+
+namespace {
+ /// A cleanup, and a flag indicating whether it is lifetime-extended.
+ class Cleanup {
+ llvm::PointerIntPair<APValue*, 1, bool> Value;
+ APValue::LValueBase Base;
+ QualType T;
+
+ public:
+ Cleanup(APValue *Val, APValue::LValueBase Base, QualType T,
+ bool IsLifetimeExtended)
+ : Value(Val, IsLifetimeExtended), Base(Base), T(T) {}
+
+ bool isLifetimeExtended() const { return Value.getInt(); }
+ bool endLifetime(EvalInfo &Info, bool RunDestructors) {
+ if (RunDestructors) {
+ SourceLocation Loc;
+ if (const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>())
+ Loc = VD->getLocation();
+ else if (const Expr *E = Base.dyn_cast<const Expr*>())
+ Loc = E->getExprLoc();
+ return HandleDestruction(Info, Loc, Base, *Value.getPointer(), T);
+ }
+ *Value.getPointer() = APValue();
+ return true;
+ }
+
+ bool hasSideEffect() {
+ return T.isDestructedType();
+ }
+ };
+
+ /// A reference to an object whose construction we are currently evaluating.
+ struct ObjectUnderConstruction {
+ APValue::LValueBase Base;
+ ArrayRef<APValue::LValuePathEntry> Path;
+ friend bool operator==(const ObjectUnderConstruction &LHS,
+ const ObjectUnderConstruction &RHS) {
+ return LHS.Base == RHS.Base && LHS.Path == RHS.Path;
+ }
+ friend llvm::hash_code hash_value(const ObjectUnderConstruction &Obj) {
+ return llvm::hash_combine(Obj.Base, Obj.Path);
+ }
+ };
+ enum class ConstructionPhase {
+ None,
+ Bases,
+ AfterBases,
+ Destroying,
+ DestroyingBases
+ };
+}
+
+namespace llvm {
+template<> struct DenseMapInfo<ObjectUnderConstruction> {
+ using Base = DenseMapInfo<APValue::LValueBase>;
+ static ObjectUnderConstruction getEmptyKey() {
+ return {Base::getEmptyKey(), {}}; }
+ static ObjectUnderConstruction getTombstoneKey() {
+ return {Base::getTombstoneKey(), {}};
+ }
+ static unsigned getHashValue(const ObjectUnderConstruction &Object) {
+ return hash_value(Object);
+ }
+ static bool isEqual(const ObjectUnderConstruction &LHS,
+ const ObjectUnderConstruction &RHS) {
+ return LHS == RHS;
+ }
+};
+}
+
+namespace {
+ /// A dynamically-allocated heap object.
+ struct DynAlloc {
+ /// The value of this heap-allocated object.
+ APValue Value;
+ /// The allocating expression; used for diagnostics. Either a CXXNewExpr
+ /// or a CallExpr (the latter is for direct calls to operator new inside
+ /// std::allocator<T>::allocate).
+ const Expr *AllocExpr = nullptr;
+
+ enum Kind {
+ New,
+ ArrayNew,
+ StdAllocator
+ };
+
+ /// Get the kind of the allocation. This must match between allocation
+ /// and deallocation.
+ Kind getKind() const {
+ if (auto *NE = dyn_cast<CXXNewExpr>(AllocExpr))
+ return NE->isArray() ? ArrayNew : New;
+ assert(isa<CallExpr>(AllocExpr));
+ return StdAllocator;
+ }
+ };
+
+ struct DynAllocOrder {
+ bool operator()(DynamicAllocLValue L, DynamicAllocLValue R) const {
+ return L.getIndex() < R.getIndex();
+ }
+ };
+
+ /// EvalInfo - This is a private struct used by the evaluator to capture
+ /// information about a subexpression as it is folded. It retains information
+ /// about the AST context, but also maintains information about the folded
+ /// expression.
+ ///
+ /// If an expression could be evaluated, it is still possible it is not a C
+ /// "integer constant expression" or constant expression. If not, this struct
+ /// captures information about how and why not.
+ ///
+ /// One bit of information passed *into* the request for constant folding
+ /// indicates whether the subexpression is "evaluated" or not according to C
+ /// rules. For example, the RHS of (0 && foo()) is not evaluated. We can
+ /// evaluate the expression regardless of what the RHS is, but C only allows
+ /// certain things in certain situations.
+ class EvalInfo : public interp::State {
+ public:
+ ASTContext &Ctx;
+
+ /// EvalStatus - Contains information about the evaluation.
+ Expr::EvalStatus &EvalStatus;
+
+ /// CurrentCall - The top of the constexpr call stack.
+ CallStackFrame *CurrentCall;
+
+ /// CallStackDepth - The number of calls in the call stack right now.
+ unsigned CallStackDepth;
+
+ /// NextCallIndex - The next call index to assign.
+ unsigned NextCallIndex;
+
+ /// StepsLeft - The remaining number of evaluation steps we're permitted
+ /// to perform. This is essentially a limit for the number of statements
+ /// we will evaluate.
+ unsigned StepsLeft;
+
+ /// Force the use of the experimental new constant interpreter, bailing out
+ /// with an error if a feature is not supported.
+ bool ForceNewConstInterp;
+
+ /// Enable the experimental new constant interpreter.
+ bool EnableNewConstInterp;
+
+ /// BottomFrame - The frame in which evaluation started. This must be
+ /// initialized after CurrentCall and CallStackDepth.
+ CallStackFrame BottomFrame;
+
+ /// A stack of values whose lifetimes end at the end of some surrounding
+ /// evaluation frame.
+ llvm::SmallVector<Cleanup, 16> CleanupStack;
+
+ /// EvaluatingDecl - This is the declaration whose initializer is being
+ /// evaluated, if any.
+ APValue::LValueBase EvaluatingDecl;
+
+ enum class EvaluatingDeclKind {
+ None,
+ /// We're evaluating the construction of EvaluatingDecl.
+ Ctor,
+ /// We're evaluating the destruction of EvaluatingDecl.
+ Dtor,
+ };
+ EvaluatingDeclKind IsEvaluatingDecl = EvaluatingDeclKind::None;
+
+ /// EvaluatingDeclValue - This is the value being constructed for the
+ /// declaration whose initializer is being evaluated, if any.
+ APValue *EvaluatingDeclValue;
+
+ /// Set of objects that are currently being constructed.
+ llvm::DenseMap<ObjectUnderConstruction, ConstructionPhase>
+ ObjectsUnderConstruction;
+
+ /// Current heap allocations, along with the location where each was
+ /// allocated. We use std::map here because we need stable addresses
+ /// for the stored APValues.
+ std::map<DynamicAllocLValue, DynAlloc, DynAllocOrder> HeapAllocs;
+
+ /// The number of heap allocations performed so far in this evaluation.
+ unsigned NumHeapAllocs = 0;
+
+ struct EvaluatingConstructorRAII {
+ EvalInfo &EI;
+ ObjectUnderConstruction Object;
+ bool DidInsert;
+ EvaluatingConstructorRAII(EvalInfo &EI, ObjectUnderConstruction Object,
+ bool HasBases)
+ : EI(EI), Object(Object) {
+ DidInsert =
+ EI.ObjectsUnderConstruction
+ .insert({Object, HasBases ? ConstructionPhase::Bases
+ : ConstructionPhase::AfterBases})
+ .second;
+ }
+ void finishedConstructingBases() {
+ EI.ObjectsUnderConstruction[Object] = ConstructionPhase::AfterBases;
+ }
+ ~EvaluatingConstructorRAII() {
+ if (DidInsert) EI.ObjectsUnderConstruction.erase(Object);
+ }
+ };
+
+ struct EvaluatingDestructorRAII {
+ EvalInfo &EI;
+ ObjectUnderConstruction Object;
+ bool DidInsert;
+ EvaluatingDestructorRAII(EvalInfo &EI, ObjectUnderConstruction Object)
+ : EI(EI), Object(Object) {
+ DidInsert = EI.ObjectsUnderConstruction
+ .insert({Object, ConstructionPhase::Destroying})
+ .second;
+ }
+ void startedDestroyingBases() {
+ EI.ObjectsUnderConstruction[Object] =
+ ConstructionPhase::DestroyingBases;
+ }
+ ~EvaluatingDestructorRAII() {
+ if (DidInsert)
+ EI.ObjectsUnderConstruction.erase(Object);
+ }
+ };
+
+ ConstructionPhase
+ isEvaluatingCtorDtor(APValue::LValueBase Base,
+ ArrayRef<APValue::LValuePathEntry> Path) {
+ return ObjectsUnderConstruction.lookup({Base, Path});
+ }
+
+ /// If we're currently speculatively evaluating, the outermost call stack
+ /// depth at which we can mutate state, otherwise 0.
+ unsigned SpeculativeEvaluationDepth = 0;
+
+ /// The current array initialization index, if we're performing array
+ /// initialization.
+ uint64_t ArrayInitIndex = -1;
+
+ /// HasActiveDiagnostic - Was the previous diagnostic stored? If so, further
+ /// notes attached to it will also be stored, otherwise they will not be.
+ bool HasActiveDiagnostic;
+
+ /// Have we emitted a diagnostic explaining why we couldn't constant
+ /// fold (not just why it's not strictly a constant expression)?
+ bool HasFoldFailureDiagnostic;
+
+ /// Whether or not we're in a context where the front end requires a
+ /// constant value.
+ bool InConstantContext;
+
+ /// Whether we're checking that an expression is a potential constant
+ /// expression. If so, do not fail on constructs that could become constant
+ /// later on (such as a use of an undefined global).
+ bool CheckingPotentialConstantExpression = false;
+
+ /// Whether we're checking for an expression that has undefined behavior.
+ /// If so, we will produce warnings if we encounter an operation that is
+ /// always undefined.
+ bool CheckingForUndefinedBehavior = false;
+
+ enum EvaluationMode {
+ /// Evaluate as a constant expression. Stop if we find that the expression
+ /// is not a constant expression.
+ EM_ConstantExpression,
+
+ /// Evaluate as a constant expression. Stop if we find that the expression
+ /// is not a constant expression. Some expressions can be retried in the
+ /// optimizer if we don't constant fold them here, but in an unevaluated
+ /// context we try to fold them immediately since the optimizer never
+ /// gets a chance to look at it.
+ EM_ConstantExpressionUnevaluated,
+
+ /// Fold the expression to a constant. Stop if we hit a side-effect that
+ /// we can't model.
+ EM_ConstantFold,
+
+ /// Evaluate in any way we know how. Don't worry about side-effects that
+ /// can't be modeled.
+ EM_IgnoreSideEffects,
+ } EvalMode;
+
+ /// Are we checking whether the expression is a potential constant
+ /// expression?
+ bool checkingPotentialConstantExpression() const override {
+ return CheckingPotentialConstantExpression;
+ }
+
+ /// Are we checking an expression for overflow?
+ // FIXME: We should check for any kind of undefined or suspicious behavior
+ // in such constructs, not just overflow.
+ bool checkingForUndefinedBehavior() const override {
+ return CheckingForUndefinedBehavior;
+ }
+
+ EvalInfo(const ASTContext &C, Expr::EvalStatus &S, EvaluationMode Mode)
+ : Ctx(const_cast<ASTContext &>(C)), EvalStatus(S), CurrentCall(nullptr),
+ CallStackDepth(0), NextCallIndex(1),
+ StepsLeft(getLangOpts().ConstexprStepLimit),
+ ForceNewConstInterp(getLangOpts().ForceNewConstInterp),
+ EnableNewConstInterp(ForceNewConstInterp ||
+ getLangOpts().EnableNewConstInterp),
+ BottomFrame(*this, SourceLocation(), nullptr, nullptr, nullptr),
+ EvaluatingDecl((const ValueDecl *)nullptr),
+ EvaluatingDeclValue(nullptr), HasActiveDiagnostic(false),
+ HasFoldFailureDiagnostic(false), InConstantContext(false),
+ EvalMode(Mode) {}
+
+ ~EvalInfo() {
+ discardCleanups();
+ }
+
+ void setEvaluatingDecl(APValue::LValueBase Base, APValue &Value,
+ EvaluatingDeclKind EDK = EvaluatingDeclKind::Ctor) {
+ EvaluatingDecl = Base;
+ IsEvaluatingDecl = EDK;
+ EvaluatingDeclValue = &Value;
+ }
+
+ bool CheckCallLimit(SourceLocation Loc) {
+ // Don't perform any constexpr calls (other than the call we're checking)
+ // when checking a potential constant expression.
+ if (checkingPotentialConstantExpression() && CallStackDepth > 1)
+ return false;
+ if (NextCallIndex == 0) {
+ // NextCallIndex has wrapped around.
+ FFDiag(Loc, diag::note_constexpr_call_limit_exceeded);
+ return false;
+ }
+ if (CallStackDepth <= getLangOpts().ConstexprCallDepth)
+ return true;
+ FFDiag(Loc, diag::note_constexpr_depth_limit_exceeded)
+ << getLangOpts().ConstexprCallDepth;
+ return false;
+ }
+
+ std::pair<CallStackFrame *, unsigned>
+ getCallFrameAndDepth(unsigned CallIndex) {
+ assert(CallIndex && "no call index in getCallFrameAndDepth");
+ // We will eventually hit BottomFrame, which has Index 1, so Frame can't
+ // be null in this loop.
+ unsigned Depth = CallStackDepth;
+ CallStackFrame *Frame = CurrentCall;
+ while (Frame->Index > CallIndex) {
+ Frame = Frame->Caller;
+ --Depth;
+ }
+ if (Frame->Index == CallIndex)
+ return {Frame, Depth};
+ return {nullptr, 0};
+ }
+
+ bool nextStep(const Stmt *S) {
+ if (!StepsLeft) {
+ FFDiag(S->getBeginLoc(), diag::note_constexpr_step_limit_exceeded);
+ return false;
+ }
+ --StepsLeft;
+ return true;
+ }
+
+ APValue *createHeapAlloc(const Expr *E, QualType T, LValue &LV);
+
+ Optional<DynAlloc*> lookupDynamicAlloc(DynamicAllocLValue DA) {
+ Optional<DynAlloc*> Result;
+ auto It = HeapAllocs.find(DA);
+ if (It != HeapAllocs.end())
+ Result = &It->second;
+ return Result;
+ }
+
+ /// Information about a stack frame for std::allocator<T>::[de]allocate.
+ struct StdAllocatorCaller {
+ unsigned FrameIndex;
+ QualType ElemType;
+ explicit operator bool() const { return FrameIndex != 0; };
+ };
+
+ StdAllocatorCaller getStdAllocatorCaller(StringRef FnName) const {
+ for (const CallStackFrame *Call = CurrentCall; Call != &BottomFrame;
+ Call = Call->Caller) {
+ const auto *MD = dyn_cast_or_null<CXXMethodDecl>(Call->Callee);
+ if (!MD)
+ continue;
+ const IdentifierInfo *FnII = MD->getIdentifier();
+ if (!FnII || !FnII->isStr(FnName))
+ continue;
+
+ const auto *CTSD =
+ dyn_cast<ClassTemplateSpecializationDecl>(MD->getParent());
+ if (!CTSD)
+ continue;
+
+ const IdentifierInfo *ClassII = CTSD->getIdentifier();
+ const TemplateArgumentList &TAL = CTSD->getTemplateArgs();
+ if (CTSD->isInStdNamespace() && ClassII &&
+ ClassII->isStr("allocator") && TAL.size() >= 1 &&
+ TAL[0].getKind() == TemplateArgument::Type)
+ return {Call->Index, TAL[0].getAsType()};
+ }
+
+ return {};
+ }
+
+ void performLifetimeExtension() {
+ // Disable the cleanups for lifetime-extended temporaries.
+ CleanupStack.erase(
+ std::remove_if(CleanupStack.begin(), CleanupStack.end(),
+ [](Cleanup &C) { return C.isLifetimeExtended(); }),
+ CleanupStack.end());
+ }
+
+ /// Throw away any remaining cleanups at the end of evaluation. If any
+ /// cleanups would have had a side-effect, note that as an unmodeled
+ /// side-effect and return false. Otherwise, return true.
+ bool discardCleanups() {
+ for (Cleanup &C : CleanupStack)
+ if (C.hasSideEffect())
+ if (!noteSideEffect())
+ return false;
+ return true;
+ }
+
+ private:
+ interp::Frame *getCurrentFrame() override { return CurrentCall; }
+ const interp::Frame *getBottomFrame() const override { return &BottomFrame; }
+
+ bool hasActiveDiagnostic() override { return HasActiveDiagnostic; }
+ void setActiveDiagnostic(bool Flag) override { HasActiveDiagnostic = Flag; }
+
+ void setFoldFailureDiagnostic(bool Flag) override {
+ HasFoldFailureDiagnostic = Flag;
+ }
+
+ Expr::EvalStatus &getEvalStatus() const override { return EvalStatus; }
+
+ ASTContext &getCtx() const override { return Ctx; }
+
+ // If we have a prior diagnostic, it will be noting that the expression
+ // isn't a constant expression. This diagnostic is more important,
+ // unless we require this evaluation to produce a constant expression.
+ //
+ // FIXME: We might want to show both diagnostics to the user in
+ // EM_ConstantFold mode.
+ bool hasPriorDiagnostic() override {
+ if (!EvalStatus.Diag->empty()) {
+ switch (EvalMode) {
+ case EM_ConstantFold:
+ case EM_IgnoreSideEffects:
+ if (!HasFoldFailureDiagnostic)
+ break;
+ // We've already failed to fold something. Keep that diagnostic.
+ LLVM_FALLTHROUGH;
+ case EM_ConstantExpression:
+ case EM_ConstantExpressionUnevaluated:
+ setActiveDiagnostic(false);
+ return true;
+ }
+ }
+ return false;
+ }
+
+ unsigned getCallStackDepth() override { return CallStackDepth; }
+
+ public:
+ /// Should we continue evaluation after encountering a side-effect that we
+ /// couldn't model?
+ bool keepEvaluatingAfterSideEffect() {
+ switch (EvalMode) {
+ case EM_IgnoreSideEffects:
+ return true;
+
+ case EM_ConstantExpression:
+ case EM_ConstantExpressionUnevaluated:
+ case EM_ConstantFold:
+ // By default, assume any side effect might be valid in some other
+ // evaluation of this expression from a different context.
+ return checkingPotentialConstantExpression() ||
+ checkingForUndefinedBehavior();
+ }
+ llvm_unreachable("Missed EvalMode case");
+ }
+
+ /// Note that we have had a side-effect, and determine whether we should
+ /// keep evaluating.
+ bool noteSideEffect() {
+ EvalStatus.HasSideEffects = true;
+ return keepEvaluatingAfterSideEffect();
+ }
+
+ /// Should we continue evaluation after encountering undefined behavior?
+ bool keepEvaluatingAfterUndefinedBehavior() {
+ switch (EvalMode) {
+ case EM_IgnoreSideEffects:
+ case EM_ConstantFold:
+ return true;
+
+ case EM_ConstantExpression:
+ case EM_ConstantExpressionUnevaluated:
+ return checkingForUndefinedBehavior();
+ }
+ llvm_unreachable("Missed EvalMode case");
+ }
+
+ /// Note that we hit something that was technically undefined behavior, but
+ /// that we can evaluate past it (such as signed overflow or floating-point
+ /// division by zero.)
+ bool noteUndefinedBehavior() override {
+ EvalStatus.HasUndefinedBehavior = true;
+ return keepEvaluatingAfterUndefinedBehavior();
+ }
+
+ /// Should we continue evaluation as much as possible after encountering a
+ /// construct which can't be reduced to a value?
+ bool keepEvaluatingAfterFailure() const override {
+ if (!StepsLeft)
+ return false;
+
+ switch (EvalMode) {
+ case EM_ConstantExpression:
+ case EM_ConstantExpressionUnevaluated:
+ case EM_ConstantFold:
+ case EM_IgnoreSideEffects:
+ return checkingPotentialConstantExpression() ||
+ checkingForUndefinedBehavior();
+ }
+ llvm_unreachable("Missed EvalMode case");
+ }
+
+ /// Notes that we failed to evaluate an expression that other expressions
+ /// directly depend on, and determine if we should keep evaluating. This
+ /// should only be called if we actually intend to keep evaluating.
+ ///
+ /// Call noteSideEffect() instead if we may be able to ignore the value that
+ /// we failed to evaluate, e.g. if we failed to evaluate Foo() in:
+ ///
+ /// (Foo(), 1) // use noteSideEffect
+ /// (Foo() || true) // use noteSideEffect
+ /// Foo() + 1 // use noteFailure
+ LLVM_NODISCARD bool noteFailure() {
+ // Failure when evaluating some expression often means there is some
+ // subexpression whose evaluation was skipped. Therefore, (because we
+ // don't track whether we skipped an expression when unwinding after an
+ // evaluation failure) every evaluation failure that bubbles up from a
+ // subexpression implies that a side-effect has potentially happened. We
+ // skip setting the HasSideEffects flag to true until we decide to
+ // continue evaluating after that point, which happens here.
+ bool KeepGoing = keepEvaluatingAfterFailure();
+ EvalStatus.HasSideEffects |= KeepGoing;
+ return KeepGoing;
+ }
+
+ class ArrayInitLoopIndex {
+ EvalInfo &Info;
+ uint64_t OuterIndex;
+
+ public:
+ ArrayInitLoopIndex(EvalInfo &Info)
+ : Info(Info), OuterIndex(Info.ArrayInitIndex) {
+ Info.ArrayInitIndex = 0;
+ }
+ ~ArrayInitLoopIndex() { Info.ArrayInitIndex = OuterIndex; }
+
+ operator uint64_t&() { return Info.ArrayInitIndex; }
+ };
+ };
+
+ /// Object used to treat all foldable expressions as constant expressions.
+ struct FoldConstant {
+ EvalInfo &Info;
+ bool Enabled;
+ bool HadNoPriorDiags;
+ EvalInfo::EvaluationMode OldMode;
+
+ explicit FoldConstant(EvalInfo &Info, bool Enabled)
+ : Info(Info),
+ Enabled(Enabled),
+ HadNoPriorDiags(Info.EvalStatus.Diag &&
+ Info.EvalStatus.Diag->empty() &&
+ !Info.EvalStatus.HasSideEffects),
+ OldMode(Info.EvalMode) {
+ if (Enabled)
+ Info.EvalMode = EvalInfo::EM_ConstantFold;
+ }
+ void keepDiagnostics() { Enabled = false; }
+ ~FoldConstant() {
+ if (Enabled && HadNoPriorDiags && !Info.EvalStatus.Diag->empty() &&
+ !Info.EvalStatus.HasSideEffects)
+ Info.EvalStatus.Diag->clear();
+ Info.EvalMode = OldMode;
+ }
+ };
+
+ /// RAII object used to set the current evaluation mode to ignore
+ /// side-effects.
+ struct IgnoreSideEffectsRAII {
+ EvalInfo &Info;
+ EvalInfo::EvaluationMode OldMode;
+ explicit IgnoreSideEffectsRAII(EvalInfo &Info)
+ : Info(Info), OldMode(Info.EvalMode) {
+ Info.EvalMode = EvalInfo::EM_IgnoreSideEffects;
+ }
+
+ ~IgnoreSideEffectsRAII() { Info.EvalMode = OldMode; }
+ };
+
+ /// RAII object used to optionally suppress diagnostics and side-effects from
+ /// a speculative evaluation.
+ class SpeculativeEvaluationRAII {
+ EvalInfo *Info = nullptr;
+ Expr::EvalStatus OldStatus;
+ unsigned OldSpeculativeEvaluationDepth;
+
+ void moveFromAndCancel(SpeculativeEvaluationRAII &&Other) {
+ Info = Other.Info;
+ OldStatus = Other.OldStatus;
+ OldSpeculativeEvaluationDepth = Other.OldSpeculativeEvaluationDepth;
+ Other.Info = nullptr;
+ }
+
+ void maybeRestoreState() {
+ if (!Info)
+ return;
+
+ Info->EvalStatus = OldStatus;
+ Info->SpeculativeEvaluationDepth = OldSpeculativeEvaluationDepth;
+ }
+
+ public:
+ SpeculativeEvaluationRAII() = default;
+
+ SpeculativeEvaluationRAII(
+ EvalInfo &Info, SmallVectorImpl<PartialDiagnosticAt> *NewDiag = nullptr)
+ : Info(&Info), OldStatus(Info.EvalStatus),
+ OldSpeculativeEvaluationDepth(Info.SpeculativeEvaluationDepth) {
+ Info.EvalStatus.Diag = NewDiag;
+ Info.SpeculativeEvaluationDepth = Info.CallStackDepth + 1;
+ }
+
+ SpeculativeEvaluationRAII(const SpeculativeEvaluationRAII &Other) = delete;
+ SpeculativeEvaluationRAII(SpeculativeEvaluationRAII &&Other) {
+ moveFromAndCancel(std::move(Other));
+ }
+
+ SpeculativeEvaluationRAII &operator=(SpeculativeEvaluationRAII &&Other) {
+ maybeRestoreState();
+ moveFromAndCancel(std::move(Other));
+ return *this;
+ }
+
+ ~SpeculativeEvaluationRAII() { maybeRestoreState(); }
+ };
+
+ /// RAII object wrapping a full-expression or block scope, and handling
+ /// the ending of the lifetime of temporaries created within it.
+ template<bool IsFullExpression>
+ class ScopeRAII {
+ EvalInfo &Info;
+ unsigned OldStackSize;
+ public:
+ ScopeRAII(EvalInfo &Info)
+ : Info(Info), OldStackSize(Info.CleanupStack.size()) {
+ // Push a new temporary version. This is needed to distinguish between
+ // temporaries created in different iterations of a loop.
+ Info.CurrentCall->pushTempVersion();
+ }
+ bool destroy(bool RunDestructors = true) {
+ bool OK = cleanup(Info, RunDestructors, OldStackSize);
+ OldStackSize = -1U;
+ return OK;
+ }
+ ~ScopeRAII() {
+ if (OldStackSize != -1U)
+ destroy(false);
+ // Body moved to a static method to encourage the compiler to inline away
+ // instances of this class.
+ Info.CurrentCall->popTempVersion();
+ }
+ private:
+ static bool cleanup(EvalInfo &Info, bool RunDestructors,
+ unsigned OldStackSize) {
+ assert(OldStackSize <= Info.CleanupStack.size() &&
+ "running cleanups out of order?");
+
+ // Run all cleanups for a block scope, and non-lifetime-extended cleanups
+ // for a full-expression scope.
+ bool Success = true;
+ for (unsigned I = Info.CleanupStack.size(); I > OldStackSize; --I) {
+ if (!(IsFullExpression &&
+ Info.CleanupStack[I - 1].isLifetimeExtended())) {
+ if (!Info.CleanupStack[I - 1].endLifetime(Info, RunDestructors)) {
+ Success = false;
+ break;
+ }
+ }
+ }
+
+ // Compact lifetime-extended cleanups.
+ auto NewEnd = Info.CleanupStack.begin() + OldStackSize;
+ if (IsFullExpression)
+ NewEnd =
+ std::remove_if(NewEnd, Info.CleanupStack.end(),
+ [](Cleanup &C) { return !C.isLifetimeExtended(); });
+ Info.CleanupStack.erase(NewEnd, Info.CleanupStack.end());
+ return Success;
+ }
+ };
+ typedef ScopeRAII<false> BlockScopeRAII;
+ typedef ScopeRAII<true> FullExpressionRAII;
+}
+
+bool SubobjectDesignator::checkSubobject(EvalInfo &Info, const Expr *E,
+ CheckSubobjectKind CSK) {
+ if (Invalid)
+ return false;
+ if (isOnePastTheEnd()) {
+ Info.CCEDiag(E, diag::note_constexpr_past_end_subobject)
+ << CSK;
+ setInvalid();
+ return false;
+ }
+ // Note, we do not diagnose if isMostDerivedAnUnsizedArray(), because there
+ // must actually be at least one array element; even a VLA cannot have a
+ // bound of zero. And if our index is nonzero, we already had a CCEDiag.
+ return true;
+}
+
+void SubobjectDesignator::diagnoseUnsizedArrayPointerArithmetic(EvalInfo &Info,
+ const Expr *E) {
+ Info.CCEDiag(E, diag::note_constexpr_unsized_array_indexed);
+ // Do not set the designator as invalid: we can represent this situation,
+ // and correct handling of __builtin_object_size requires us to do so.
+}
+
+void SubobjectDesignator::diagnosePointerArithmetic(EvalInfo &Info,
+ const Expr *E,
+ const APSInt &N) {
+ // If we're complaining, we must be able to statically determine the size of
+ // the most derived array.
+ if (MostDerivedPathLength == Entries.size() && MostDerivedIsArrayElement)
+ Info.CCEDiag(E, diag::note_constexpr_array_index)
+ << N << /*array*/ 0
+ << static_cast<unsigned>(getMostDerivedArraySize());
+ else
+ Info.CCEDiag(E, diag::note_constexpr_array_index)
+ << N << /*non-array*/ 1;
+ setInvalid();
+}
+
+CallStackFrame::CallStackFrame(EvalInfo &Info, SourceLocation CallLoc,
+ const FunctionDecl *Callee, const LValue *This,
+ APValue *Arguments)
+ : Info(Info), Caller(Info.CurrentCall), Callee(Callee), This(This),
+ Arguments(Arguments), CallLoc(CallLoc), Index(Info.NextCallIndex++) {
+ Info.CurrentCall = this;
+ ++Info.CallStackDepth;
+}
+
+CallStackFrame::~CallStackFrame() {
+ assert(Info.CurrentCall == this && "calls retired out of order");
+ --Info.CallStackDepth;
+ Info.CurrentCall = Caller;
+}
+
+static bool isRead(AccessKinds AK) {
+ return AK == AK_Read || AK == AK_ReadObjectRepresentation;
+}
+
+static bool isModification(AccessKinds AK) {
+ switch (AK) {
+ case AK_Read:
+ case AK_ReadObjectRepresentation:
+ case AK_MemberCall:
+ case AK_DynamicCast:
+ case AK_TypeId:
+ return false;
+ case AK_Assign:
+ case AK_Increment:
+ case AK_Decrement:
+ case AK_Construct:
+ case AK_Destroy:
+ return true;
+ }
+ llvm_unreachable("unknown access kind");
+}
+
+static bool isAnyAccess(AccessKinds AK) {
+ return isRead(AK) || isModification(AK);
+}
+
+/// Is this an access per the C++ definition?
+static bool isFormalAccess(AccessKinds AK) {
+ return isAnyAccess(AK) && AK != AK_Construct && AK != AK_Destroy;
+}
+
+namespace {
+ struct ComplexValue {
+ private:
+ bool IsInt;
+
+ public:
+ APSInt IntReal, IntImag;
+ APFloat FloatReal, FloatImag;
+
+ ComplexValue() : FloatReal(APFloat::Bogus()), FloatImag(APFloat::Bogus()) {}
+
+ void makeComplexFloat() { IsInt = false; }
+ bool isComplexFloat() const { return !IsInt; }
+ APFloat &getComplexFloatReal() { return FloatReal; }
+ APFloat &getComplexFloatImag() { return FloatImag; }
+
+ void makeComplexInt() { IsInt = true; }
+ bool isComplexInt() const { return IsInt; }
+ APSInt &getComplexIntReal() { return IntReal; }
+ APSInt &getComplexIntImag() { return IntImag; }
+
+ void moveInto(APValue &v) const {
+ if (isComplexFloat())
+ v = APValue(FloatReal, FloatImag);
+ else
+ v = APValue(IntReal, IntImag);
+ }
+ void setFrom(const APValue &v) {
+ assert(v.isComplexFloat() || v.isComplexInt());
+ if (v.isComplexFloat()) {
+ makeComplexFloat();
+ FloatReal = v.getComplexFloatReal();
+ FloatImag = v.getComplexFloatImag();
+ } else {
+ makeComplexInt();
+ IntReal = v.getComplexIntReal();
+ IntImag = v.getComplexIntImag();
+ }
+ }
+ };
+
+ struct LValue {
+ APValue::LValueBase Base;
+ CharUnits Offset;
+ SubobjectDesignator Designator;
+ bool IsNullPtr : 1;
+ bool InvalidBase : 1;
+
+ const APValue::LValueBase getLValueBase() const { return Base; }
+ CharUnits &getLValueOffset() { return Offset; }
+ const CharUnits &getLValueOffset() const { return Offset; }
+ SubobjectDesignator &getLValueDesignator() { return Designator; }
+ const SubobjectDesignator &getLValueDesignator() const { return Designator;}
+ bool isNullPointer() const { return IsNullPtr;}
+
+ unsigned getLValueCallIndex() const { return Base.getCallIndex(); }
+ unsigned getLValueVersion() const { return Base.getVersion(); }
+
+ void moveInto(APValue &V) const {
+ if (Designator.Invalid)
+ V = APValue(Base, Offset, APValue::NoLValuePath(), IsNullPtr);
+ else {
+ assert(!InvalidBase && "APValues can't handle invalid LValue bases");
+ V = APValue(Base, Offset, Designator.Entries,
+ Designator.IsOnePastTheEnd, IsNullPtr);
+ }
+ }
+ void setFrom(ASTContext &Ctx, const APValue &V) {
+ assert(V.isLValue() && "Setting LValue from a non-LValue?");
+ Base = V.getLValueBase();
+ Offset = V.getLValueOffset();
+ InvalidBase = false;
+ Designator = SubobjectDesignator(Ctx, V);
+ IsNullPtr = V.isNullPointer();
+ }
+
+ void set(APValue::LValueBase B, bool BInvalid = false) {
+#ifndef NDEBUG
+ // We only allow a few types of invalid bases. Enforce that here.
+ if (BInvalid) {
+ const auto *E = B.get<const Expr *>();
+ assert((isa<MemberExpr>(E) || tryUnwrapAllocSizeCall(E)) &&
+ "Unexpected type of invalid base");
+ }
+#endif
+
+ Base = B;
+ Offset = CharUnits::fromQuantity(0);
+ InvalidBase = BInvalid;
+ Designator = SubobjectDesignator(getType(B));
+ IsNullPtr = false;
+ }
+
+ void setNull(ASTContext &Ctx, QualType PointerTy) {
+ Base = (Expr *)nullptr;
+ Offset =
+ CharUnits::fromQuantity(Ctx.getTargetNullPointerValue(PointerTy));
+ InvalidBase = false;
+ Designator = SubobjectDesignator(PointerTy->getPointeeType());
+ IsNullPtr = true;
+ }
+
+ void setInvalid(APValue::LValueBase B, unsigned I = 0) {
+ set(B, true);
+ }
+
+ std::string toString(ASTContext &Ctx, QualType T) const {
+ APValue Printable;
+ moveInto(Printable);
+ return Printable.getAsString(Ctx, T);
+ }
+
+ private:
+ // Check that this LValue is not based on a null pointer. If it is, produce
+ // a diagnostic and mark the designator as invalid.
+ template <typename GenDiagType>
+ bool checkNullPointerDiagnosingWith(const GenDiagType &GenDiag) {
+ if (Designator.Invalid)
+ return false;
+ if (IsNullPtr) {
+ GenDiag();
+ Designator.setInvalid();
+ return false;
+ }
+ return true;
+ }
+
+ public:
+ bool checkNullPointer(EvalInfo &Info, const Expr *E,
+ CheckSubobjectKind CSK) {
+ return checkNullPointerDiagnosingWith([&Info, E, CSK] {
+ Info.CCEDiag(E, diag::note_constexpr_null_subobject) << CSK;
+ });
+ }
+
+ bool checkNullPointerForFoldAccess(EvalInfo &Info, const Expr *E,
+ AccessKinds AK) {
+ return checkNullPointerDiagnosingWith([&Info, E, AK] {
+ Info.FFDiag(E, diag::note_constexpr_access_null) << AK;
+ });
+ }
+
+ // Check this LValue refers to an object. If not, set the designator to be
+ // invalid and emit a diagnostic.
+ bool checkSubobject(EvalInfo &Info, const Expr *E, CheckSubobjectKind CSK) {
+ return (CSK == CSK_ArrayToPointer || checkNullPointer(Info, E, CSK)) &&
+ Designator.checkSubobject(Info, E, CSK);
+ }
+
+ void addDecl(EvalInfo &Info, const Expr *E,
+ const Decl *D, bool Virtual = false) {
+ if (checkSubobject(Info, E, isa<FieldDecl>(D) ? CSK_Field : CSK_Base))
+ Designator.addDeclUnchecked(D, Virtual);
+ }
+ void addUnsizedArray(EvalInfo &Info, const Expr *E, QualType ElemTy) {
+ if (!Designator.Entries.empty()) {
+ Info.CCEDiag(E, diag::note_constexpr_unsupported_unsized_array);
+ Designator.setInvalid();
+ return;
+ }
+ if (checkSubobject(Info, E, CSK_ArrayToPointer)) {
+ assert(getType(Base)->isPointerType() || getType(Base)->isArrayType());
+ Designator.FirstEntryIsAnUnsizedArray = true;
+ Designator.addUnsizedArrayUnchecked(ElemTy);
+ }
+ }
+ void addArray(EvalInfo &Info, const Expr *E, const ConstantArrayType *CAT) {
+ if (checkSubobject(Info, E, CSK_ArrayToPointer))
+ Designator.addArrayUnchecked(CAT);
+ }
+ void addComplex(EvalInfo &Info, const Expr *E, QualType EltTy, bool Imag) {
+ if (checkSubobject(Info, E, Imag ? CSK_Imag : CSK_Real))
+ Designator.addComplexUnchecked(EltTy, Imag);
+ }
+ void clearIsNullPointer() {
+ IsNullPtr = false;
+ }
+ void adjustOffsetAndIndex(EvalInfo &Info, const Expr *E,
+ const APSInt &Index, CharUnits ElementSize) {
+ // An index of 0 has no effect. (In C, adding 0 to a null pointer is UB,
+ // but we're not required to diagnose it and it's valid in C++.)
+ if (!Index)
+ return;
+
+ // Compute the new offset in the appropriate width, wrapping at 64 bits.
+ // FIXME: When compiling for a 32-bit target, we should use 32-bit
+ // offsets.
+ uint64_t Offset64 = Offset.getQuantity();
+ uint64_t ElemSize64 = ElementSize.getQuantity();
+ uint64_t Index64 = Index.extOrTrunc(64).getZExtValue();
+ Offset = CharUnits::fromQuantity(Offset64 + ElemSize64 * Index64);
+
+ if (checkNullPointer(Info, E, CSK_ArrayIndex))
+ Designator.adjustIndex(Info, E, Index);
+ clearIsNullPointer();
+ }
+ void adjustOffset(CharUnits N) {
+ Offset += N;
+ if (N.getQuantity())
+ clearIsNullPointer();
+ }
+ };
+
+ struct MemberPtr {
+ MemberPtr() {}
+ explicit MemberPtr(const ValueDecl *Decl) :
+ DeclAndIsDerivedMember(Decl, false), Path() {}
+
+ /// The member or (direct or indirect) field referred to by this member
+ /// pointer, or 0 if this is a null member pointer.
+ const ValueDecl *getDecl() const {
+ return DeclAndIsDerivedMember.getPointer();
+ }
+ /// Is this actually a member of some type derived from the relevant class?
+ bool isDerivedMember() const {
+ return DeclAndIsDerivedMember.getInt();
+ }
+ /// Get the class which the declaration actually lives in.
+ const CXXRecordDecl *getContainingRecord() const {
+ return cast<CXXRecordDecl>(
+ DeclAndIsDerivedMember.getPointer()->getDeclContext());
+ }
+
+ void moveInto(APValue &V) const {
+ V = APValue(getDecl(), isDerivedMember(), Path);
+ }
+ void setFrom(const APValue &V) {
+ assert(V.isMemberPointer());
+ DeclAndIsDerivedMember.setPointer(V.getMemberPointerDecl());
+ DeclAndIsDerivedMember.setInt(V.isMemberPointerToDerivedMember());
+ Path.clear();
+ ArrayRef<const CXXRecordDecl*> P = V.getMemberPointerPath();
+ Path.insert(Path.end(), P.begin(), P.end());
+ }
+
+ /// DeclAndIsDerivedMember - The member declaration, and a flag indicating
+ /// whether the member is a member of some class derived from the class type
+ /// of the member pointer.
+ llvm::PointerIntPair<const ValueDecl*, 1, bool> DeclAndIsDerivedMember;
+ /// Path - The path of base/derived classes from the member declaration's
+ /// class (exclusive) to the class type of the member pointer (inclusive).
+ SmallVector<const CXXRecordDecl*, 4> Path;
+
+ /// Perform a cast towards the class of the Decl (either up or down the
+ /// hierarchy).
+ bool castBack(const CXXRecordDecl *Class) {
+ assert(!Path.empty());
+ const CXXRecordDecl *Expected;
+ if (Path.size() >= 2)
+ Expected = Path[Path.size() - 2];
+ else
+ Expected = getContainingRecord();
+ if (Expected->getCanonicalDecl() != Class->getCanonicalDecl()) {
+ // C++11 [expr.static.cast]p12: In a conversion from (D::*) to (B::*),
+ // if B does not contain the original member and is not a base or
+ // derived class of the class containing the original member, the result
+ // of the cast is undefined.
+ // C++11 [conv.mem]p2 does not cover this case for a cast from (B::*) to
+ // (D::*). We consider that to be a language defect.
+ return false;
+ }
+ Path.pop_back();
+ return true;
+ }
+ /// Perform a base-to-derived member pointer cast.
+ bool castToDerived(const CXXRecordDecl *Derived) {
+ if (!getDecl())
+ return true;
+ if (!isDerivedMember()) {
+ Path.push_back(Derived);
+ return true;
+ }
+ if (!castBack(Derived))
+ return false;
+ if (Path.empty())
+ DeclAndIsDerivedMember.setInt(false);
+ return true;
+ }
+ /// Perform a derived-to-base member pointer cast.
+ bool castToBase(const CXXRecordDecl *Base) {
+ if (!getDecl())
+ return true;
+ if (Path.empty())
+ DeclAndIsDerivedMember.setInt(true);
+ if (isDerivedMember()) {
+ Path.push_back(Base);
+ return true;
+ }
+ return castBack(Base);
+ }
+ };
+
+ /// Compare two member pointers, which are assumed to be of the same type.
+ static bool operator==(const MemberPtr &LHS, const MemberPtr &RHS) {
+ if (!LHS.getDecl() || !RHS.getDecl())
+ return !LHS.getDecl() && !RHS.getDecl();
+ if (LHS.getDecl()->getCanonicalDecl() != RHS.getDecl()->getCanonicalDecl())
+ return false;
+ return LHS.Path == RHS.Path;
+ }
+}
+
+static bool Evaluate(APValue &Result, EvalInfo &Info, const Expr *E);
+static bool EvaluateInPlace(APValue &Result, EvalInfo &Info,
+ const LValue &This, const Expr *E,
+ bool AllowNonLiteralTypes = false);
+static bool EvaluateLValue(const Expr *E, LValue &Result, EvalInfo &Info,
+ bool InvalidBaseOK = false);
+static bool EvaluatePointer(const Expr *E, LValue &Result, EvalInfo &Info,
+ bool InvalidBaseOK = false);
+static bool EvaluateMemberPointer(const Expr *E, MemberPtr &Result,
+ EvalInfo &Info);
+static bool EvaluateTemporary(const Expr *E, LValue &Result, EvalInfo &Info);
+static bool EvaluateInteger(const Expr *E, APSInt &Result, EvalInfo &Info);
+static bool EvaluateIntegerOrLValue(const Expr *E, APValue &Result,
+ EvalInfo &Info);
+static bool EvaluateFloat(const Expr *E, APFloat &Result, EvalInfo &Info);
+static bool EvaluateComplex(const Expr *E, ComplexValue &Res, EvalInfo &Info);
+static bool EvaluateAtomic(const Expr *E, const LValue *This, APValue &Result,
+ EvalInfo &Info);
+static bool EvaluateAsRValue(EvalInfo &Info, const Expr *E, APValue &Result);
+
+/// Evaluate an integer or fixed point expression into an APResult.
+static bool EvaluateFixedPointOrInteger(const Expr *E, APFixedPoint &Result,
+ EvalInfo &Info);
+
+/// Evaluate only a fixed point expression into an APResult.
+static bool EvaluateFixedPoint(const Expr *E, APFixedPoint &Result,
+ EvalInfo &Info);
+
+//===----------------------------------------------------------------------===//
+// Misc utilities
+//===----------------------------------------------------------------------===//
+
+/// Negate an APSInt in place, converting it to a signed form if necessary, and
+/// preserving its value (by extending by up to one bit as needed).
+static void negateAsSigned(APSInt &Int) {
+ if (Int.isUnsigned() || Int.isMinSignedValue()) {
+ Int = Int.extend(Int.getBitWidth() + 1);
+ Int.setIsSigned(true);
+ }
+ Int = -Int;
+}
+
+template<typename KeyT>
+APValue &CallStackFrame::createTemporary(const KeyT *Key, QualType T,
+ bool IsLifetimeExtended, LValue &LV) {
+ unsigned Version = getTempVersion();
+ APValue::LValueBase Base(Key, Index, Version);
+ LV.set(Base);
+ APValue &Result = Temporaries[MapKeyTy(Key, Version)];
+ assert(Result.isAbsent() && "temporary created multiple times");
+
+ // If we're creating a temporary immediately in the operand of a speculative
+ // evaluation, don't register a cleanup to be run outside the speculative
+ // evaluation context, since we won't actually be able to initialize this
+ // object.
+ if (Index <= Info.SpeculativeEvaluationDepth) {
+ if (T.isDestructedType())
+ Info.noteSideEffect();
+ } else {
+ Info.CleanupStack.push_back(Cleanup(&Result, Base, T, IsLifetimeExtended));
+ }
+ return Result;
+}
+
+APValue *EvalInfo::createHeapAlloc(const Expr *E, QualType T, LValue &LV) {
+ if (NumHeapAllocs > DynamicAllocLValue::getMaxIndex()) {
+ FFDiag(E, diag::note_constexpr_heap_alloc_limit_exceeded);
+ return nullptr;
+ }
+
+ DynamicAllocLValue DA(NumHeapAllocs++);
+ LV.set(APValue::LValueBase::getDynamicAlloc(DA, T));
+ auto Result = HeapAllocs.emplace(std::piecewise_construct,
+ std::forward_as_tuple(DA), std::tuple<>());
+ assert(Result.second && "reused a heap alloc index?");
+ Result.first->second.AllocExpr = E;
+ return &Result.first->second.Value;
+}
+
+/// Produce a string describing the given constexpr call.
+void CallStackFrame::describe(raw_ostream &Out) {
+ unsigned ArgIndex = 0;
+ bool IsMemberCall = isa<CXXMethodDecl>(Callee) &&
+ !isa<CXXConstructorDecl>(Callee) &&
+ cast<CXXMethodDecl>(Callee)->isInstance();
+
+ if (!IsMemberCall)
+ Out << *Callee << '(';
+
+ if (This && IsMemberCall) {
+ APValue Val;
+ This->moveInto(Val);
+ Val.printPretty(Out, Info.Ctx,
+ This->Designator.MostDerivedType);
+ // FIXME: Add parens around Val if needed.
+ Out << "->" << *Callee << '(';
+ IsMemberCall = false;
+ }
+
+ for (FunctionDecl::param_const_iterator I = Callee->param_begin(),
+ E = Callee->param_end(); I != E; ++I, ++ArgIndex) {
+ if (ArgIndex > (unsigned)IsMemberCall)
+ Out << ", ";
+
+ const ParmVarDecl *Param = *I;
+ const APValue &Arg = Arguments[ArgIndex];
+ Arg.printPretty(Out, Info.Ctx, Param->getType());
+
+ if (ArgIndex == 0 && IsMemberCall)
+ Out << "->" << *Callee << '(';
+ }
+
+ Out << ')';
+}
+
+/// Evaluate an expression to see if it had side-effects, and discard its
+/// result.
+/// \return \c true if the caller should keep evaluating.
+static bool EvaluateIgnoredValue(EvalInfo &Info, const Expr *E) {
+ APValue Scratch;
+ if (!Evaluate(Scratch, Info, E))
+ // We don't need the value, but we might have skipped a side effect here.
+ return Info.noteSideEffect();
+ return true;
+}
+
+/// Should this call expression be treated as a string literal?
+static bool IsStringLiteralCall(const CallExpr *E) {
+ unsigned Builtin = E->getBuiltinCallee();
+ return (Builtin == Builtin::BI__builtin___CFStringMakeConstantString ||
+ Builtin == Builtin::BI__builtin___NSStringMakeConstantString);
+}
+
+static bool IsGlobalLValue(APValue::LValueBase B) {
+ // C++11 [expr.const]p3 An address constant expression is a prvalue core
+ // constant expression of pointer type that evaluates to...
+
+ // ... a null pointer value, or a prvalue core constant expression of type
+ // std::nullptr_t.
+ if (!B) return true;
+
+ if (const ValueDecl *D = B.dyn_cast<const ValueDecl*>()) {
+ // ... the address of an object with static storage duration,
+ if (const VarDecl *VD = dyn_cast<VarDecl>(D))
+ return VD->hasGlobalStorage();
+ // ... the address of a function,
+ return isa<FunctionDecl>(D);
+ }
+
+ if (B.is<TypeInfoLValue>() || B.is<DynamicAllocLValue>())
+ return true;
+
+ const Expr *E = B.get<const Expr*>();
+ switch (E->getStmtClass()) {
+ default:
+ return false;
+ case Expr::CompoundLiteralExprClass: {
+ const CompoundLiteralExpr *CLE = cast<CompoundLiteralExpr>(E);
+ return CLE->isFileScope() && CLE->isLValue();
+ }
+ case Expr::MaterializeTemporaryExprClass:
+ // A materialized temporary might have been lifetime-extended to static
+ // storage duration.
+ return cast<MaterializeTemporaryExpr>(E)->getStorageDuration() == SD_Static;
+ // A string literal has static storage duration.
+ case Expr::StringLiteralClass:
+ case Expr::PredefinedExprClass:
+ case Expr::ObjCStringLiteralClass:
+ case Expr::ObjCEncodeExprClass:
+ case Expr::CXXUuidofExprClass:
+ return true;
+ case Expr::ObjCBoxedExprClass:
+ return cast<ObjCBoxedExpr>(E)->isExpressibleAsConstantInitializer();
+ case Expr::CallExprClass:
+ return IsStringLiteralCall(cast<CallExpr>(E));
+ // For GCC compatibility, &&label has static storage duration.
+ case Expr::AddrLabelExprClass:
+ return true;
+ // A Block literal expression may be used as the initialization value for
+ // Block variables at global or local static scope.
+ case Expr::BlockExprClass:
+ return !cast<BlockExpr>(E)->getBlockDecl()->hasCaptures();
+ case Expr::ImplicitValueInitExprClass:
+ // FIXME:
+ // We can never form an lvalue with an implicit value initialization as its
+ // base through expression evaluation, so these only appear in one case: the
+ // implicit variable declaration we invent when checking whether a constexpr
+ // constructor can produce a constant expression. We must assume that such
+ // an expression might be a global lvalue.
+ return true;
+ }
+}
+
+static const ValueDecl *GetLValueBaseDecl(const LValue &LVal) {
+ return LVal.Base.dyn_cast<const ValueDecl*>();
+}
+
+static bool IsLiteralLValue(const LValue &Value) {
+ if (Value.getLValueCallIndex())
+ return false;
+ const Expr *E = Value.Base.dyn_cast<const Expr*>();
+ return E && !isa<MaterializeTemporaryExpr>(E);
+}
+
+static bool IsWeakLValue(const LValue &Value) {
+ const ValueDecl *Decl = GetLValueBaseDecl(Value);
+ return Decl && Decl->isWeak();
+}
+
+static bool isZeroSized(const LValue &Value) {
+ const ValueDecl *Decl = GetLValueBaseDecl(Value);
+ if (Decl && isa<VarDecl>(Decl)) {
+ QualType Ty = Decl->getType();
+ if (Ty->isArrayType())
+ return Ty->isIncompleteType() ||
+ Decl->getASTContext().getTypeSize(Ty) == 0;
+ }
+ return false;
+}
+
+static bool HasSameBase(const LValue &A, const LValue &B) {
+ if (!A.getLValueBase())
+ return !B.getLValueBase();
+ if (!B.getLValueBase())
+ return false;
+
+ if (A.getLValueBase().getOpaqueValue() !=
+ B.getLValueBase().getOpaqueValue()) {
+ const Decl *ADecl = GetLValueBaseDecl(A);
+ if (!ADecl)
+ return false;
+ const Decl *BDecl = GetLValueBaseDecl(B);
+ if (!BDecl || ADecl->getCanonicalDecl() != BDecl->getCanonicalDecl())
+ return false;
+ }
+
+ return IsGlobalLValue(A.getLValueBase()) ||
+ (A.getLValueCallIndex() == B.getLValueCallIndex() &&
+ A.getLValueVersion() == B.getLValueVersion());
+}
+
+static void NoteLValueLocation(EvalInfo &Info, APValue::LValueBase Base) {
+ assert(Base && "no location for a null lvalue");
+ const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>();
+ if (VD)
+ Info.Note(VD->getLocation(), diag::note_declared_at);
+ else if (const Expr *E = Base.dyn_cast<const Expr*>())
+ Info.Note(E->getExprLoc(), diag::note_constexpr_temporary_here);
+ else if (DynamicAllocLValue DA = Base.dyn_cast<DynamicAllocLValue>()) {
+ // FIXME: Produce a note for dangling pointers too.
+ if (Optional<DynAlloc*> Alloc = Info.lookupDynamicAlloc(DA))
+ Info.Note((*Alloc)->AllocExpr->getExprLoc(),
+ diag::note_constexpr_dynamic_alloc_here);
+ }
+ // We have no information to show for a typeid(T) object.
+}
+
+enum class CheckEvaluationResultKind {
+ ConstantExpression,
+ FullyInitialized,
+};
+
+/// Materialized temporaries that we've already checked to determine if they're
+/// initializsed by a constant expression.
+using CheckedTemporaries =
+ llvm::SmallPtrSet<const MaterializeTemporaryExpr *, 8>;
+
+static bool CheckEvaluationResult(CheckEvaluationResultKind CERK,
+ EvalInfo &Info, SourceLocation DiagLoc,
+ QualType Type, const APValue &Value,
+ Expr::ConstExprUsage Usage,
+ SourceLocation SubobjectLoc,
+ CheckedTemporaries &CheckedTemps);
+
+/// Check that this reference or pointer core constant expression is a valid
+/// value for an address or reference constant expression. Return true if we
+/// can fold this expression, whether or not it's a constant expression.
+static bool CheckLValueConstantExpression(EvalInfo &Info, SourceLocation Loc,
+ QualType Type, const LValue &LVal,
+ Expr::ConstExprUsage Usage,
+ CheckedTemporaries &CheckedTemps) {
+ bool IsReferenceType = Type->isReferenceType();
+
+ APValue::LValueBase Base = LVal.getLValueBase();
+ const SubobjectDesignator &Designator = LVal.getLValueDesignator();
+
+ // Check that the object is a global. Note that the fake 'this' object we
+ // manufacture when checking potential constant expressions is conservatively
+ // assumed to be global here.
+ if (!IsGlobalLValue(Base)) {
+ if (Info.getLangOpts().CPlusPlus11) {
+ const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>();
+ Info.FFDiag(Loc, diag::note_constexpr_non_global, 1)
+ << IsReferenceType << !Designator.Entries.empty()
+ << !!VD << VD;
+ NoteLValueLocation(Info, Base);
+ } else {
+ Info.FFDiag(Loc);
+ }
+ // Don't allow references to temporaries to escape.
+ return false;
+ }
+ assert((Info.checkingPotentialConstantExpression() ||
+ LVal.getLValueCallIndex() == 0) &&
+ "have call index for global lvalue");
+
+ if (Base.is<DynamicAllocLValue>()) {
+ Info.FFDiag(Loc, diag::note_constexpr_dynamic_alloc)
+ << IsReferenceType << !Designator.Entries.empty();
+ NoteLValueLocation(Info, Base);
+ return false;
+ }
+
+ if (const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>()) {
+ if (const VarDecl *Var = dyn_cast<const VarDecl>(VD)) {
+ // Check if this is a thread-local variable.
+ if (Var->getTLSKind())
+ // FIXME: Diagnostic!
+ return false;
+
+ // A dllimport variable never acts like a constant.
+ if (Usage == Expr::EvaluateForCodeGen && Var->hasAttr<DLLImportAttr>())
+ // FIXME: Diagnostic!
+ return false;
+ }
+ if (const auto *FD = dyn_cast<const FunctionDecl>(VD)) {
+ // __declspec(dllimport) must be handled very carefully:
+ // We must never initialize an expression with the thunk in C++.
+ // Doing otherwise would allow the same id-expression to yield
+ // different addresses for the same function in different translation
+ // units. However, this means that we must dynamically initialize the
+ // expression with the contents of the import address table at runtime.
+ //
+ // The C language has no notion of ODR; furthermore, it has no notion of
+ // dynamic initialization. This means that we are permitted to
+ // perform initialization with the address of the thunk.
+ if (Info.getLangOpts().CPlusPlus && Usage == Expr::EvaluateForCodeGen &&
+ FD->hasAttr<DLLImportAttr>())
+ // FIXME: Diagnostic!
+ return false;
+ }
+ } else if (const auto *MTE = dyn_cast_or_null<MaterializeTemporaryExpr>(
+ Base.dyn_cast<const Expr *>())) {
+ if (CheckedTemps.insert(MTE).second) {
+ QualType TempType = getType(Base);
+ if (TempType.isDestructedType()) {
+ Info.FFDiag(MTE->getExprLoc(),
+ diag::note_constexpr_unsupported_tempoarary_nontrivial_dtor)
+ << TempType;
+ return false;
+ }
+
+ APValue *V = Info.Ctx.getMaterializedTemporaryValue(MTE, false);
+ assert(V && "evasluation result refers to uninitialised temporary");
+ if (!CheckEvaluationResult(CheckEvaluationResultKind::ConstantExpression,
+ Info, MTE->getExprLoc(), TempType, *V,
+ Usage, SourceLocation(), CheckedTemps))
+ return false;
+ }
+ }
+
+ // Allow address constant expressions to be past-the-end pointers. This is
+ // an extension: the standard requires them to point to an object.
+ if (!IsReferenceType)
+ return true;
+
+ // A reference constant expression must refer to an object.
+ if (!Base) {
+ // FIXME: diagnostic
+ Info.CCEDiag(Loc);
+ return true;
+ }
+
+ // Does this refer one past the end of some object?
+ if (!Designator.Invalid && Designator.isOnePastTheEnd()) {
+ const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>();
+ Info.FFDiag(Loc, diag::note_constexpr_past_end, 1)
+ << !Designator.Entries.empty() << !!VD << VD;
+ NoteLValueLocation(Info, Base);
+ }
+
+ return true;
+}
+
+/// Member pointers are constant expressions unless they point to a
+/// non-virtual dllimport member function.
+static bool CheckMemberPointerConstantExpression(EvalInfo &Info,
+ SourceLocation Loc,
+ QualType Type,
+ const APValue &Value,
+ Expr::ConstExprUsage Usage) {
+ const ValueDecl *Member = Value.getMemberPointerDecl();
+ const auto *FD = dyn_cast_or_null<CXXMethodDecl>(Member);
+ if (!FD)
+ return true;
+ return Usage == Expr::EvaluateForMangling || FD->isVirtual() ||
+ !FD->hasAttr<DLLImportAttr>();
+}
+
+/// Check that this core constant expression is of literal type, and if not,
+/// produce an appropriate diagnostic.
+static bool CheckLiteralType(EvalInfo &Info, const Expr *E,
+ const LValue *This = nullptr) {
+ if (!E->isRValue() || E->getType()->isLiteralType(Info.Ctx))
+ return true;
+
+ // C++1y: A constant initializer for an object o [...] may also invoke
+ // constexpr constructors for o and its subobjects even if those objects
+ // are of non-literal class types.
+ //
+ // C++11 missed this detail for aggregates, so classes like this:
+ // struct foo_t { union { int i; volatile int j; } u; };
+ // are not (obviously) initializable like so:
+ // __attribute__((__require_constant_initialization__))
+ // static const foo_t x = {{0}};
+ // because "i" is a subobject with non-literal initialization (due to the
+ // volatile member of the union). See:
+ // http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#1677
+ // Therefore, we use the C++1y behavior.
+ if (This && Info.EvaluatingDecl == This->getLValueBase())
+ return true;
+
+ // Prvalue constant expressions must be of literal types.
+ if (Info.getLangOpts().CPlusPlus11)
+ Info.FFDiag(E, diag::note_constexpr_nonliteral)
+ << E->getType();
+ else
+ Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
+ return false;
+}
+
+static bool CheckEvaluationResult(CheckEvaluationResultKind CERK,
+ EvalInfo &Info, SourceLocation DiagLoc,
+ QualType Type, const APValue &Value,
+ Expr::ConstExprUsage Usage,
+ SourceLocation SubobjectLoc,
+ CheckedTemporaries &CheckedTemps) {
+ if (!Value.hasValue()) {
+ Info.FFDiag(DiagLoc, diag::note_constexpr_uninitialized)
+ << true << Type;
+ if (SubobjectLoc.isValid())
+ Info.Note(SubobjectLoc, diag::note_constexpr_subobject_declared_here);
+ return false;
+ }
+
+ // We allow _Atomic(T) to be initialized from anything that T can be
+ // initialized from.
+ if (const AtomicType *AT = Type->getAs<AtomicType>())
+ Type = AT->getValueType();
+
+ // Core issue 1454: For a literal constant expression of array or class type,
+ // each subobject of its value shall have been initialized by a constant
+ // expression.
+ if (Value.isArray()) {
+ QualType EltTy = Type->castAsArrayTypeUnsafe()->getElementType();
+ for (unsigned I = 0, N = Value.getArrayInitializedElts(); I != N; ++I) {
+ if (!CheckEvaluationResult(CERK, Info, DiagLoc, EltTy,
+ Value.getArrayInitializedElt(I), Usage,
+ SubobjectLoc, CheckedTemps))
+ return false;
+ }
+ if (!Value.hasArrayFiller())
+ return true;
+ return CheckEvaluationResult(CERK, Info, DiagLoc, EltTy,
+ Value.getArrayFiller(), Usage, SubobjectLoc,
+ CheckedTemps);
+ }
+ if (Value.isUnion() && Value.getUnionField()) {
+ return CheckEvaluationResult(
+ CERK, Info, DiagLoc, Value.getUnionField()->getType(),
+ Value.getUnionValue(), Usage, Value.getUnionField()->getLocation(),
+ CheckedTemps);
+ }
+ if (Value.isStruct()) {
+ RecordDecl *RD = Type->castAs<RecordType>()->getDecl();
+ if (const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(RD)) {
+ unsigned BaseIndex = 0;
+ for (const CXXBaseSpecifier &BS : CD->bases()) {
+ if (!CheckEvaluationResult(CERK, Info, DiagLoc, BS.getType(),
+ Value.getStructBase(BaseIndex), Usage,
+ BS.getBeginLoc(), CheckedTemps))
+ return false;
+ ++BaseIndex;
+ }
+ }
+ for (const auto *I : RD->fields()) {
+ if (I->isUnnamedBitfield())
+ continue;
+
+ if (!CheckEvaluationResult(CERK, Info, DiagLoc, I->getType(),
+ Value.getStructField(I->getFieldIndex()),
+ Usage, I->getLocation(), CheckedTemps))
+ return false;
+ }
+ }
+
+ if (Value.isLValue() &&
+ CERK == CheckEvaluationResultKind::ConstantExpression) {
+ LValue LVal;
+ LVal.setFrom(Info.Ctx, Value);
+ return CheckLValueConstantExpression(Info, DiagLoc, Type, LVal, Usage,
+ CheckedTemps);
+ }
+
+ if (Value.isMemberPointer() &&
+ CERK == CheckEvaluationResultKind::ConstantExpression)
+ return CheckMemberPointerConstantExpression(Info, DiagLoc, Type, Value, Usage);
+
+ // Everything else is fine.
+ return true;
+}
+
+/// Check that this core constant expression value is a valid value for a
+/// constant expression. If not, report an appropriate diagnostic. Does not
+/// check that the expression is of literal type.
+static bool
+CheckConstantExpression(EvalInfo &Info, SourceLocation DiagLoc, QualType Type,
+ const APValue &Value,
+ Expr::ConstExprUsage Usage = Expr::EvaluateForCodeGen) {
+ CheckedTemporaries CheckedTemps;
+ return CheckEvaluationResult(CheckEvaluationResultKind::ConstantExpression,
+ Info, DiagLoc, Type, Value, Usage,
+ SourceLocation(), CheckedTemps);
+}
+
+/// Check that this evaluated value is fully-initialized and can be loaded by
+/// an lvalue-to-rvalue conversion.
+static bool CheckFullyInitialized(EvalInfo &Info, SourceLocation DiagLoc,
+ QualType Type, const APValue &Value) {
+ CheckedTemporaries CheckedTemps;
+ return CheckEvaluationResult(
+ CheckEvaluationResultKind::FullyInitialized, Info, DiagLoc, Type, Value,
+ Expr::EvaluateForCodeGen, SourceLocation(), CheckedTemps);
+}
+
+/// Enforce C++2a [expr.const]/4.17, which disallows new-expressions unless
+/// "the allocated storage is deallocated within the evaluation".
+static bool CheckMemoryLeaks(EvalInfo &Info) {
+ if (!Info.HeapAllocs.empty()) {
+ // We can still fold to a constant despite a compile-time memory leak,
+ // so long as the heap allocation isn't referenced in the result (we check
+ // that in CheckConstantExpression).
+ Info.CCEDiag(Info.HeapAllocs.begin()->second.AllocExpr,
+ diag::note_constexpr_memory_leak)
+ << unsigned(Info.HeapAllocs.size() - 1);
+ }
+ return true;
+}
+
+static bool EvalPointerValueAsBool(const APValue &Value, bool &Result) {
+ // A null base expression indicates a null pointer. These are always
+ // evaluatable, and they are false unless the offset is zero.
+ if (!Value.getLValueBase()) {
+ Result = !Value.getLValueOffset().isZero();
+ return true;
+ }
+
+ // We have a non-null base. These are generally known to be true, but if it's
+ // a weak declaration it can be null at runtime.
+ Result = true;
+ const ValueDecl *Decl = Value.getLValueBase().dyn_cast<const ValueDecl*>();
+ return !Decl || !Decl->isWeak();
+}
+
+static bool HandleConversionToBool(const APValue &Val, bool &Result) {
+ switch (Val.getKind()) {
+ case APValue::None:
+ case APValue::Indeterminate:
+ return false;
+ case APValue::Int:
+ Result = Val.getInt().getBoolValue();
+ return true;
+ case APValue::FixedPoint:
+ Result = Val.getFixedPoint().getBoolValue();
+ return true;
+ case APValue::Float:
+ Result = !Val.getFloat().isZero();
+ return true;
+ case APValue::ComplexInt:
+ Result = Val.getComplexIntReal().getBoolValue() ||
+ Val.getComplexIntImag().getBoolValue();
+ return true;
+ case APValue::ComplexFloat:
+ Result = !Val.getComplexFloatReal().isZero() ||
+ !Val.getComplexFloatImag().isZero();
+ return true;
+ case APValue::LValue:
+ return EvalPointerValueAsBool(Val, Result);
+ case APValue::MemberPointer:
+ Result = Val.getMemberPointerDecl();
+ return true;
+ case APValue::Vector:
+ case APValue::Array:
+ case APValue::Struct:
+ case APValue::Union:
+ case APValue::AddrLabelDiff:
+ return false;
+ }
+
+ llvm_unreachable("unknown APValue kind");
+}
+
+static bool EvaluateAsBooleanCondition(const Expr *E, bool &Result,
+ EvalInfo &Info) {
+ assert(E->isRValue() && "missing lvalue-to-rvalue conv in bool condition");
+ APValue Val;
+ if (!Evaluate(Val, Info, E))
+ return false;
+ return HandleConversionToBool(Val, Result);
+}
+
+template<typename T>
+static bool HandleOverflow(EvalInfo &Info, const Expr *E,
+ const T &SrcValue, QualType DestType) {
+ Info.CCEDiag(E, diag::note_constexpr_overflow)
+ << SrcValue << DestType;
+ return Info.noteUndefinedBehavior();
+}
+
+static bool HandleFloatToIntCast(EvalInfo &Info, const Expr *E,
+ QualType SrcType, const APFloat &Value,
+ QualType DestType, APSInt &Result) {
+ unsigned DestWidth = Info.Ctx.getIntWidth(DestType);
+ // Determine whether we are converting to unsigned or signed.
+ bool DestSigned = DestType->isSignedIntegerOrEnumerationType();
+
+ Result = APSInt(DestWidth, !DestSigned);
+ bool ignored;
+ if (Value.convertToInteger(Result, llvm::APFloat::rmTowardZero, &ignored)
+ & APFloat::opInvalidOp)
+ return HandleOverflow(Info, E, Value, DestType);
+ return true;
+}
+
+static bool HandleFloatToFloatCast(EvalInfo &Info, const Expr *E,
+ QualType SrcType, QualType DestType,
+ APFloat &Result) {
+ APFloat Value = Result;
+ bool ignored;
+ Result.convert(Info.Ctx.getFloatTypeSemantics(DestType),
+ APFloat::rmNearestTiesToEven, &ignored);
+ return true;
+}
+
+static APSInt HandleIntToIntCast(EvalInfo &Info, const Expr *E,
+ QualType DestType, QualType SrcType,
+ const APSInt &Value) {
+ unsigned DestWidth = Info.Ctx.getIntWidth(DestType);
+ // Figure out if this is a truncate, extend or noop cast.
+ // If the input is signed, do a sign extend, noop, or truncate.
+ APSInt Result = Value.extOrTrunc(DestWidth);
+ Result.setIsUnsigned(DestType->isUnsignedIntegerOrEnumerationType());
+ if (DestType->isBooleanType())
+ Result = Value.getBoolValue();
+ return Result;
+}
+
+static bool HandleIntToFloatCast(EvalInfo &Info, const Expr *E,
+ QualType SrcType, const APSInt &Value,
+ QualType DestType, APFloat &Result) {
+ Result = APFloat(Info.Ctx.getFloatTypeSemantics(DestType), 1);
+ Result.convertFromAPInt(Value, Value.isSigned(),
+ APFloat::rmNearestTiesToEven);
+ return true;
+}
+
+static bool truncateBitfieldValue(EvalInfo &Info, const Expr *E,
+ APValue &Value, const FieldDecl *FD) {
+ assert(FD->isBitField() && "truncateBitfieldValue on non-bitfield");
+
+ if (!Value.isInt()) {
+ // Trying to store a pointer-cast-to-integer into a bitfield.
+ // FIXME: In this case, we should provide the diagnostic for casting
+ // a pointer to an integer.
+ assert(Value.isLValue() && "integral value neither int nor lvalue?");
+ Info.FFDiag(E);
+ return false;
+ }
+
+ APSInt &Int = Value.getInt();
+ unsigned OldBitWidth = Int.getBitWidth();
+ unsigned NewBitWidth = FD->getBitWidthValue(Info.Ctx);
+ if (NewBitWidth < OldBitWidth)
+ Int = Int.trunc(NewBitWidth).extend(OldBitWidth);
+ return true;
+}
+
+static bool EvalAndBitcastToAPInt(EvalInfo &Info, const Expr *E,
+ llvm::APInt &Res) {
+ APValue SVal;
+ if (!Evaluate(SVal, Info, E))
+ return false;
+ if (SVal.isInt()) {
+ Res = SVal.getInt();
+ return true;
+ }
+ if (SVal.isFloat()) {
+ Res = SVal.getFloat().bitcastToAPInt();
+ return true;
+ }
+ if (SVal.isVector()) {
+ QualType VecTy = E->getType();
+ unsigned VecSize = Info.Ctx.getTypeSize(VecTy);
+ QualType EltTy = VecTy->castAs<VectorType>()->getElementType();
+ unsigned EltSize = Info.Ctx.getTypeSize(EltTy);
+ bool BigEndian = Info.Ctx.getTargetInfo().isBigEndian();
+ Res = llvm::APInt::getNullValue(VecSize);
+ for (unsigned i = 0; i < SVal.getVectorLength(); i++) {
+ APValue &Elt = SVal.getVectorElt(i);
+ llvm::APInt EltAsInt;
+ if (Elt.isInt()) {
+ EltAsInt = Elt.getInt();
+ } else if (Elt.isFloat()) {
+ EltAsInt = Elt.getFloat().bitcastToAPInt();
+ } else {
+ // Don't try to handle vectors of anything other than int or float
+ // (not sure if it's possible to hit this case).
+ Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
+ return false;
+ }
+ unsigned BaseEltSize = EltAsInt.getBitWidth();
+ if (BigEndian)
+ Res |= EltAsInt.zextOrTrunc(VecSize).rotr(i*EltSize+BaseEltSize);
+ else
+ Res |= EltAsInt.zextOrTrunc(VecSize).rotl(i*EltSize);
+ }
+ return true;
+ }
+ // Give up if the input isn't an int, float, or vector. For example, we
+ // reject "(v4i16)(intptr_t)&a".
+ Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
+ return false;
+}
+
+/// Perform the given integer operation, which is known to need at most BitWidth
+/// bits, and check for overflow in the original type (if that type was not an
+/// unsigned type).
+template<typename Operation>
+static bool CheckedIntArithmetic(EvalInfo &Info, const Expr *E,
+ const APSInt &LHS, const APSInt &RHS,
+ unsigned BitWidth, Operation Op,
+ APSInt &Result) {
+ if (LHS.isUnsigned()) {
+ Result = Op(LHS, RHS);
+ return true;
+ }
+
+ APSInt Value(Op(LHS.extend(BitWidth), RHS.extend(BitWidth)), false);
+ Result = Value.trunc(LHS.getBitWidth());
+ if (Result.extend(BitWidth) != Value) {
+ if (Info.checkingForUndefinedBehavior())
+ Info.Ctx.getDiagnostics().Report(E->getExprLoc(),
+ diag::warn_integer_constant_overflow)
+ << Result.toString(10) << E->getType();
+ else
+ return HandleOverflow(Info, E, Value, E->getType());
+ }
+ return true;
+}
+
+/// Perform the given binary integer operation.
+static bool handleIntIntBinOp(EvalInfo &Info, const Expr *E, const APSInt &LHS,
+ BinaryOperatorKind Opcode, APSInt RHS,
+ APSInt &Result) {
+ switch (Opcode) {
+ default:
+ Info.FFDiag(E);
+ return false;
+ case BO_Mul:
+ return CheckedIntArithmetic(Info, E, LHS, RHS, LHS.getBitWidth() * 2,
+ std::multiplies<APSInt>(), Result);
+ case BO_Add:
+ return CheckedIntArithmetic(Info, E, LHS, RHS, LHS.getBitWidth() + 1,
+ std::plus<APSInt>(), Result);
+ case BO_Sub:
+ return CheckedIntArithmetic(Info, E, LHS, RHS, LHS.getBitWidth() + 1,
+ std::minus<APSInt>(), Result);
+ case BO_And: Result = LHS & RHS; return true;
+ case BO_Xor: Result = LHS ^ RHS; return true;
+ case BO_Or: Result = LHS | RHS; return true;
+ case BO_Div:
+ case BO_Rem:
+ if (RHS == 0) {
+ Info.FFDiag(E, diag::note_expr_divide_by_zero);
+ return false;
+ }
+ Result = (Opcode == BO_Rem ? LHS % RHS : LHS / RHS);
+ // Check for overflow case: INT_MIN / -1 or INT_MIN % -1. APSInt supports
+ // this operation and gives the two's complement result.
+ if (RHS.isNegative() && RHS.isAllOnesValue() &&
+ LHS.isSigned() && LHS.isMinSignedValue())
+ return HandleOverflow(Info, E, -LHS.extend(LHS.getBitWidth() + 1),
+ E->getType());
+ return true;
+ case BO_Shl: {
+ if (Info.getLangOpts().OpenCL)
+ // OpenCL 6.3j: shift values are effectively % word size of LHS.
+ RHS &= APSInt(llvm::APInt(RHS.getBitWidth(),
+ static_cast<uint64_t>(LHS.getBitWidth() - 1)),
+ RHS.isUnsigned());
+ else if (RHS.isSigned() && RHS.isNegative()) {
+ // During constant-folding, a negative shift is an opposite shift. Such
+ // a shift is not a constant expression.
+ Info.CCEDiag(E, diag::note_constexpr_negative_shift) << RHS;
+ RHS = -RHS;
+ goto shift_right;
+ }
+ shift_left:
+ // C++11 [expr.shift]p1: Shift width must be less than the bit width of
+ // the shifted type.
+ unsigned SA = (unsigned) RHS.getLimitedValue(LHS.getBitWidth()-1);
+ if (SA != RHS) {
+ Info.CCEDiag(E, diag::note_constexpr_large_shift)
+ << RHS << E->getType() << LHS.getBitWidth();
+ } else if (LHS.isSigned() && !Info.getLangOpts().CPlusPlus2a) {
+ // C++11 [expr.shift]p2: A signed left shift must have a non-negative
+ // operand, and must not overflow the corresponding unsigned type.
+ // C++2a [expr.shift]p2: E1 << E2 is the unique value congruent to
+ // E1 x 2^E2 module 2^N.
+ if (LHS.isNegative())
+ Info.CCEDiag(E, diag::note_constexpr_lshift_of_negative) << LHS;
+ else if (LHS.countLeadingZeros() < SA)
+ Info.CCEDiag(E, diag::note_constexpr_lshift_discards);
+ }
+ Result = LHS << SA;
+ return true;
+ }
+ case BO_Shr: {
+ if (Info.getLangOpts().OpenCL)
+ // OpenCL 6.3j: shift values are effectively % word size of LHS.
+ RHS &= APSInt(llvm::APInt(RHS.getBitWidth(),
+ static_cast<uint64_t>(LHS.getBitWidth() - 1)),
+ RHS.isUnsigned());
+ else if (RHS.isSigned() && RHS.isNegative()) {
+ // During constant-folding, a negative shift is an opposite shift. Such a
+ // shift is not a constant expression.
+ Info.CCEDiag(E, diag::note_constexpr_negative_shift) << RHS;
+ RHS = -RHS;
+ goto shift_left;
+ }
+ shift_right:
+ // C++11 [expr.shift]p1: Shift width must be less than the bit width of the
+ // shifted type.
+ unsigned SA = (unsigned) RHS.getLimitedValue(LHS.getBitWidth()-1);
+ if (SA != RHS)
+ Info.CCEDiag(E, diag::note_constexpr_large_shift)
+ << RHS << E->getType() << LHS.getBitWidth();
+ Result = LHS >> SA;
+ return true;
+ }
+
+ case BO_LT: Result = LHS < RHS; return true;
+ case BO_GT: Result = LHS > RHS; return true;
+ case BO_LE: Result = LHS <= RHS; return true;
+ case BO_GE: Result = LHS >= RHS; return true;
+ case BO_EQ: Result = LHS == RHS; return true;
+ case BO_NE: Result = LHS != RHS; return true;
+ case BO_Cmp:
+ llvm_unreachable("BO_Cmp should be handled elsewhere");
+ }
+}
+
+/// Perform the given binary floating-point operation, in-place, on LHS.
+static bool handleFloatFloatBinOp(EvalInfo &Info, const Expr *E,
+ APFloat &LHS, BinaryOperatorKind Opcode,
+ const APFloat &RHS) {
+ switch (Opcode) {
+ default:
+ Info.FFDiag(E);
+ return false;
+ case BO_Mul:
+ LHS.multiply(RHS, APFloat::rmNearestTiesToEven);
+ break;
+ case BO_Add:
+ LHS.add(RHS, APFloat::rmNearestTiesToEven);
+ break;
+ case BO_Sub:
+ LHS.subtract(RHS, APFloat::rmNearestTiesToEven);
+ break;
+ case BO_Div:
+ // [expr.mul]p4:
+ // If the second operand of / or % is zero the behavior is undefined.
+ if (RHS.isZero())
+ Info.CCEDiag(E, diag::note_expr_divide_by_zero);
+ LHS.divide(RHS, APFloat::rmNearestTiesToEven);
+ break;
+ }
+
+ // [expr.pre]p4:
+ // If during the evaluation of an expression, the result is not
+ // mathematically defined [...], the behavior is undefined.
+ // FIXME: C++ rules require us to not conform to IEEE 754 here.
+ if (LHS.isNaN()) {
+ Info.CCEDiag(E, diag::note_constexpr_float_arithmetic) << LHS.isNaN();
+ return Info.noteUndefinedBehavior();
+ }
+ return true;
+}
+
+/// Cast an lvalue referring to a base subobject to a derived class, by
+/// truncating the lvalue's path to the given length.
+static bool CastToDerivedClass(EvalInfo &Info, const Expr *E, LValue &Result,
+ const RecordDecl *TruncatedType,
+ unsigned TruncatedElements) {
+ SubobjectDesignator &D = Result.Designator;
+
+ // Check we actually point to a derived class object.
+ if (TruncatedElements == D.Entries.size())
+ return true;
+ assert(TruncatedElements >= D.MostDerivedPathLength &&
+ "not casting to a derived class");
+ if (!Result.checkSubobject(Info, E, CSK_Derived))
+ return false;
+
+ // Truncate the path to the subobject, and remove any derived-to-base offsets.
+ const RecordDecl *RD = TruncatedType;
+ for (unsigned I = TruncatedElements, N = D.Entries.size(); I != N; ++I) {
+ if (RD->isInvalidDecl()) return false;
+ const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
+ const CXXRecordDecl *Base = getAsBaseClass(D.Entries[I]);
+ if (isVirtualBaseClass(D.Entries[I]))
+ Result.Offset -= Layout.getVBaseClassOffset(Base);
+ else
+ Result.Offset -= Layout.getBaseClassOffset(Base);
+ RD = Base;
+ }
+ D.Entries.resize(TruncatedElements);
+ return true;
+}
+
+static bool HandleLValueDirectBase(EvalInfo &Info, const Expr *E, LValue &Obj,
+ const CXXRecordDecl *Derived,
+ const CXXRecordDecl *Base,
+ const ASTRecordLayout *RL = nullptr) {
+ if (!RL) {
+ if (Derived->isInvalidDecl()) return false;
+ RL = &Info.Ctx.getASTRecordLayout(Derived);
+ }
+
+ Obj.getLValueOffset() += RL->getBaseClassOffset(Base);
+ Obj.addDecl(Info, E, Base, /*Virtual*/ false);
+ return true;
+}
+
+static bool HandleLValueBase(EvalInfo &Info, const Expr *E, LValue &Obj,
+ const CXXRecordDecl *DerivedDecl,
+ const CXXBaseSpecifier *Base) {
+ const CXXRecordDecl *BaseDecl = Base->getType()->getAsCXXRecordDecl();
+
+ if (!Base->isVirtual())
+ return HandleLValueDirectBase(Info, E, Obj, DerivedDecl, BaseDecl);
+
+ SubobjectDesignator &D = Obj.Designator;
+ if (D.Invalid)
+ return false;
+
+ // Extract most-derived object and corresponding type.
+ DerivedDecl = D.MostDerivedType->getAsCXXRecordDecl();
+ if (!CastToDerivedClass(Info, E, Obj, DerivedDecl, D.MostDerivedPathLength))
+ return false;
+
+ // Find the virtual base class.
+ if (DerivedDecl->isInvalidDecl()) return false;
+ const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(DerivedDecl);
+ Obj.getLValueOffset() += Layout.getVBaseClassOffset(BaseDecl);
+ Obj.addDecl(Info, E, BaseDecl, /*Virtual*/ true);
+ return true;
+}
+
+static bool HandleLValueBasePath(EvalInfo &Info, const CastExpr *E,
+ QualType Type, LValue &Result) {
+ for (CastExpr::path_const_iterator PathI = E->path_begin(),
+ PathE = E->path_end();
+ PathI != PathE; ++PathI) {
+ if (!HandleLValueBase(Info, E, Result, Type->getAsCXXRecordDecl(),
+ *PathI))
+ return false;
+ Type = (*PathI)->getType();
+ }
+ return true;
+}
+
+/// Cast an lvalue referring to a derived class to a known base subobject.
+static bool CastToBaseClass(EvalInfo &Info, const Expr *E, LValue &Result,
+ const CXXRecordDecl *DerivedRD,
+ const CXXRecordDecl *BaseRD) {
+ CXXBasePaths Paths(/*FindAmbiguities=*/false,
+ /*RecordPaths=*/true, /*DetectVirtual=*/false);
+ if (!DerivedRD->isDerivedFrom(BaseRD, Paths))
+ llvm_unreachable("Class must be derived from the passed in base class!");
+
+ for (CXXBasePathElement &Elem : Paths.front())
+ if (!HandleLValueBase(Info, E, Result, Elem.Class, Elem.Base))
+ return false;
+ return true;
+}
+
+/// Update LVal to refer to the given field, which must be a member of the type
+/// currently described by LVal.
+static bool HandleLValueMember(EvalInfo &Info, const Expr *E, LValue &LVal,
+ const FieldDecl *FD,
+ const ASTRecordLayout *RL = nullptr) {
+ if (!RL) {
+ if (FD->getParent()->isInvalidDecl()) return false;
+ RL = &Info.Ctx.getASTRecordLayout(FD->getParent());
+ }
+
+ unsigned I = FD->getFieldIndex();
+ LVal.adjustOffset(Info.Ctx.toCharUnitsFromBits(RL->getFieldOffset(I)));
+ LVal.addDecl(Info, E, FD);
+ return true;
+}
+
+/// Update LVal to refer to the given indirect field.
+static bool HandleLValueIndirectMember(EvalInfo &Info, const Expr *E,
+ LValue &LVal,
+ const IndirectFieldDecl *IFD) {
+ for (const auto *C : IFD->chain())
+ if (!HandleLValueMember(Info, E, LVal, cast<FieldDecl>(C)))
+ return false;
+ return true;
+}
+
+/// Get the size of the given type in char units.
+static bool HandleSizeof(EvalInfo &Info, SourceLocation Loc,
+ QualType Type, CharUnits &Size) {
+ // sizeof(void), __alignof__(void), sizeof(function) = 1 as a gcc
+ // extension.
+ if (Type->isVoidType() || Type->isFunctionType()) {
+ Size = CharUnits::One();
+ return true;
+ }
+
+ if (Type->isDependentType()) {
+ Info.FFDiag(Loc);
+ return false;
+ }
+
+ if (!Type->isConstantSizeType()) {
+ // sizeof(vla) is not a constantexpr: C99 6.5.3.4p2.
+ // FIXME: Better diagnostic.
+ Info.FFDiag(Loc);
+ return false;
+ }
+
+ Size = Info.Ctx.getTypeSizeInChars(Type);
+ return true;
+}
+
+/// Update a pointer value to model pointer arithmetic.
+/// \param Info - Information about the ongoing evaluation.
+/// \param E - The expression being evaluated, for diagnostic purposes.
+/// \param LVal - The pointer value to be updated.
+/// \param EltTy - The pointee type represented by LVal.
+/// \param Adjustment - The adjustment, in objects of type EltTy, to add.
+static bool HandleLValueArrayAdjustment(EvalInfo &Info, const Expr *E,
+ LValue &LVal, QualType EltTy,
+ APSInt Adjustment) {
+ CharUnits SizeOfPointee;
+ if (!HandleSizeof(Info, E->getExprLoc(), EltTy, SizeOfPointee))
+ return false;
+
+ LVal.adjustOffsetAndIndex(Info, E, Adjustment, SizeOfPointee);
+ return true;
+}
+
+static bool HandleLValueArrayAdjustment(EvalInfo &Info, const Expr *E,
+ LValue &LVal, QualType EltTy,
+ int64_t Adjustment) {
+ return HandleLValueArrayAdjustment(Info, E, LVal, EltTy,
+ APSInt::get(Adjustment));
+}
+
+/// Update an lvalue to refer to a component of a complex number.
+/// \param Info - Information about the ongoing evaluation.
+/// \param LVal - The lvalue to be updated.
+/// \param EltTy - The complex number's component type.
+/// \param Imag - False for the real component, true for the imaginary.
+static bool HandleLValueComplexElement(EvalInfo &Info, const Expr *E,
+ LValue &LVal, QualType EltTy,
+ bool Imag) {
+ if (Imag) {
+ CharUnits SizeOfComponent;
+ if (!HandleSizeof(Info, E->getExprLoc(), EltTy, SizeOfComponent))
+ return false;
+ LVal.Offset += SizeOfComponent;
+ }
+ LVal.addComplex(Info, E, EltTy, Imag);
+ return true;
+}
+
+/// Try to evaluate the initializer for a variable declaration.
+///
+/// \param Info Information about the ongoing evaluation.
+/// \param E An expression to be used when printing diagnostics.
+/// \param VD The variable whose initializer should be obtained.
+/// \param Frame The frame in which the variable was created. Must be null
+/// if this variable is not local to the evaluation.
+/// \param Result Filled in with a pointer to the value of the variable.
+static bool evaluateVarDeclInit(EvalInfo &Info, const Expr *E,
+ const VarDecl *VD, CallStackFrame *Frame,
+ APValue *&Result, const LValue *LVal) {
+
+ // If this is a parameter to an active constexpr function call, perform
+ // argument substitution.
+ if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD)) {
+ // Assume arguments of a potential constant expression are unknown
+ // constant expressions.
+ if (Info.checkingPotentialConstantExpression())
+ return false;
+ if (!Frame || !Frame->Arguments) {
+ Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
+ return false;
+ }
+ Result = &Frame->Arguments[PVD->getFunctionScopeIndex()];
+ return true;
+ }
+
+ // If this is a local variable, dig out its value.
+ if (Frame) {
+ Result = LVal ? Frame->getTemporary(VD, LVal->getLValueVersion())
+ : Frame->getCurrentTemporary(VD);
+ if (!Result) {
+ // Assume variables referenced within a lambda's call operator that were
+ // not declared within the call operator are captures and during checking
+ // of a potential constant expression, assume they are unknown constant
+ // expressions.
+ assert(isLambdaCallOperator(Frame->Callee) &&
+ (VD->getDeclContext() != Frame->Callee || VD->isInitCapture()) &&
+ "missing value for local variable");
+ if (Info.checkingPotentialConstantExpression())
+ return false;
+ // FIXME: implement capture evaluation during constant expr evaluation.
+ Info.FFDiag(E->getBeginLoc(),
+ diag::note_unimplemented_constexpr_lambda_feature_ast)
+ << "captures not currently allowed";
+ return false;
+ }
+ return true;
+ }
+
+ // Dig out the initializer, and use the declaration which it's attached to.
+ const Expr *Init = VD->getAnyInitializer(VD);
+ if (!Init || Init->isValueDependent()) {
+ // If we're checking a potential constant expression, the variable could be
+ // initialized later.
+ if (!Info.checkingPotentialConstantExpression())
+ Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
+ return false;
+ }
+
+ // If we're currently evaluating the initializer of this declaration, use that
+ // in-flight value.
+ if (Info.EvaluatingDecl.dyn_cast<const ValueDecl*>() == VD) {
+ Result = Info.EvaluatingDeclValue;
+ return true;
+ }
+
+ // Never evaluate the initializer of a weak variable. We can't be sure that
+ // this is the definition which will be used.
+ if (VD->isWeak()) {
+ Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
+ return false;
+ }
+
+ // Check that we can fold the initializer. In C++, we will have already done
+ // this in the cases where it matters for conformance.
+ SmallVector<PartialDiagnosticAt, 8> Notes;
+ if (!VD->evaluateValue(Notes)) {
+ Info.FFDiag(E, diag::note_constexpr_var_init_non_constant,
+ Notes.size() + 1) << VD;
+ Info.Note(VD->getLocation(), diag::note_declared_at);
+ Info.addNotes(Notes);
+ return false;
+ } else if (!VD->checkInitIsICE()) {
+ Info.CCEDiag(E, diag::note_constexpr_var_init_non_constant,
+ Notes.size() + 1) << VD;
+ Info.Note(VD->getLocation(), diag::note_declared_at);
+ Info.addNotes(Notes);
+ }
+
+ Result = VD->getEvaluatedValue();
+ return true;
+}
+
+static bool IsConstNonVolatile(QualType T) {
+ Qualifiers Quals = T.getQualifiers();
+ return Quals.hasConst() && !Quals.hasVolatile();
+}
+
+/// Get the base index of the given base class within an APValue representing
+/// the given derived class.
+static unsigned getBaseIndex(const CXXRecordDecl *Derived,
+ const CXXRecordDecl *Base) {
+ Base = Base->getCanonicalDecl();
+ unsigned Index = 0;
+ for (CXXRecordDecl::base_class_const_iterator I = Derived->bases_begin(),
+ E = Derived->bases_end(); I != E; ++I, ++Index) {
+ if (I->getType()->getAsCXXRecordDecl()->getCanonicalDecl() == Base)
+ return Index;
+ }
+
+ llvm_unreachable("base class missing from derived class's bases list");
+}
+
+/// Extract the value of a character from a string literal.
+static APSInt extractStringLiteralCharacter(EvalInfo &Info, const Expr *Lit,
+ uint64_t Index) {
+ assert(!isa<SourceLocExpr>(Lit) &&
+ "SourceLocExpr should have already been converted to a StringLiteral");
+
+ // FIXME: Support MakeStringConstant
+ if (const auto *ObjCEnc = dyn_cast<ObjCEncodeExpr>(Lit)) {
+ std::string Str;
+ Info.Ctx.getObjCEncodingForType(ObjCEnc->getEncodedType(), Str);
+ assert(Index <= Str.size() && "Index too large");
+ return APSInt::getUnsigned(Str.c_str()[Index]);
+ }
+
+ if (auto PE = dyn_cast<PredefinedExpr>(Lit))
+ Lit = PE->getFunctionName();
+ const StringLiteral *S = cast<StringLiteral>(Lit);
+ const ConstantArrayType *CAT =
+ Info.Ctx.getAsConstantArrayType(S->getType());
+ assert(CAT && "string literal isn't an array");
+ QualType CharType = CAT->getElementType();
+ assert(CharType->isIntegerType() && "unexpected character type");
+
+ APSInt Value(S->getCharByteWidth() * Info.Ctx.getCharWidth(),
+ CharType->isUnsignedIntegerType());
+ if (Index < S->getLength())
+ Value = S->getCodeUnit(Index);
+ return Value;
+}
+
+// Expand a string literal into an array of characters.
+//
+// FIXME: This is inefficient; we should probably introduce something similar
+// to the LLVM ConstantDataArray to make this cheaper.
+static void expandStringLiteral(EvalInfo &Info, const StringLiteral *S,
+ APValue &Result,
+ QualType AllocType = QualType()) {
+ const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(
+ AllocType.isNull() ? S->getType() : AllocType);
+ assert(CAT && "string literal isn't an array");
+ QualType CharType = CAT->getElementType();
+ assert(CharType->isIntegerType() && "unexpected character type");
+
+ unsigned Elts = CAT->getSize().getZExtValue();
+ Result = APValue(APValue::UninitArray(),
+ std::min(S->getLength(), Elts), Elts);
+ APSInt Value(S->getCharByteWidth() * Info.Ctx.getCharWidth(),
+ CharType->isUnsignedIntegerType());
+ if (Result.hasArrayFiller())
+ Result.getArrayFiller() = APValue(Value);
+ for (unsigned I = 0, N = Result.getArrayInitializedElts(); I != N; ++I) {
+ Value = S->getCodeUnit(I);
+ Result.getArrayInitializedElt(I) = APValue(Value);
+ }
+}
+
+// Expand an array so that it has more than Index filled elements.
+static void expandArray(APValue &Array, unsigned Index) {
+ unsigned Size = Array.getArraySize();
+ assert(Index < Size);
+
+ // Always at least double the number of elements for which we store a value.
+ unsigned OldElts = Array.getArrayInitializedElts();
+ unsigned NewElts = std::max(Index+1, OldElts * 2);
+ NewElts = std::min(Size, std::max(NewElts, 8u));
+
+ // Copy the data across.
+ APValue NewValue(APValue::UninitArray(), NewElts, Size);
+ for (unsigned I = 0; I != OldElts; ++I)
+ NewValue.getArrayInitializedElt(I).swap(Array.getArrayInitializedElt(I));
+ for (unsigned I = OldElts; I != NewElts; ++I)
+ NewValue.getArrayInitializedElt(I) = Array.getArrayFiller();
+ if (NewValue.hasArrayFiller())
+ NewValue.getArrayFiller() = Array.getArrayFiller();
+ Array.swap(NewValue);
+}
+
+/// Determine whether a type would actually be read by an lvalue-to-rvalue
+/// conversion. If it's of class type, we may assume that the copy operation
+/// is trivial. Note that this is never true for a union type with fields
+/// (because the copy always "reads" the active member) and always true for
+/// a non-class type.
+static bool isReadByLvalueToRvalueConversion(QualType T) {
+ CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
+ if (!RD || (RD->isUnion() && !RD->field_empty()))
+ return true;
+ if (RD->isEmpty())
+ return false;
+
+ for (auto *Field : RD->fields())
+ if (isReadByLvalueToRvalueConversion(Field->getType()))
+ return true;
+
+ for (auto &BaseSpec : RD->bases())
+ if (isReadByLvalueToRvalueConversion(BaseSpec.getType()))
+ return true;
+
+ return false;
+}
+
+/// Diagnose an attempt to read from any unreadable field within the specified
+/// type, which might be a class type.
+static bool diagnoseMutableFields(EvalInfo &Info, const Expr *E, AccessKinds AK,
+ QualType T) {
+ CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
+ if (!RD)
+ return false;
+
+ if (!RD->hasMutableFields())
+ return false;
+
+ for (auto *Field : RD->fields()) {
+ // If we're actually going to read this field in some way, then it can't
+ // be mutable. If we're in a union, then assigning to a mutable field
+ // (even an empty one) can change the active member, so that's not OK.
+ // FIXME: Add core issue number for the union case.
+ if (Field->isMutable() &&
+ (RD->isUnion() || isReadByLvalueToRvalueConversion(Field->getType()))) {
+ Info.FFDiag(E, diag::note_constexpr_access_mutable, 1) << AK << Field;
+ Info.Note(Field->getLocation(), diag::note_declared_at);
+ return true;
+ }
+
+ if (diagnoseMutableFields(Info, E, AK, Field->getType()))
+ return true;
+ }
+
+ for (auto &BaseSpec : RD->bases())
+ if (diagnoseMutableFields(Info, E, AK, BaseSpec.getType()))
+ return true;
+
+ // All mutable fields were empty, and thus not actually read.
+ return false;
+}
+
+static bool lifetimeStartedInEvaluation(EvalInfo &Info,
+ APValue::LValueBase Base,
+ bool MutableSubobject = false) {
+ // A temporary we created.
+ if (Base.getCallIndex())
+ return true;
+
+ auto *Evaluating = Info.EvaluatingDecl.dyn_cast<const ValueDecl*>();
+ if (!Evaluating)
+ return false;
+
+ auto *BaseD = Base.dyn_cast<const ValueDecl*>();
+
+ switch (Info.IsEvaluatingDecl) {
+ case EvalInfo::EvaluatingDeclKind::None:
+ return false;
+
+ case EvalInfo::EvaluatingDeclKind::Ctor:
+ // The variable whose initializer we're evaluating.
+ if (BaseD)
+ return declaresSameEntity(Evaluating, BaseD);
+
+ // A temporary lifetime-extended by the variable whose initializer we're
+ // evaluating.
+ if (auto *BaseE = Base.dyn_cast<const Expr *>())
+ if (auto *BaseMTE = dyn_cast<MaterializeTemporaryExpr>(BaseE))
+ return declaresSameEntity(BaseMTE->getExtendingDecl(), Evaluating);
+ return false;
+
+ case EvalInfo::EvaluatingDeclKind::Dtor:
+ // C++2a [expr.const]p6:
+ // [during constant destruction] the lifetime of a and its non-mutable
+ // subobjects (but not its mutable subobjects) [are] considered to start
+ // within e.
+ //
+ // FIXME: We can meaningfully extend this to cover non-const objects, but
+ // we will need special handling: we should be able to access only
+ // subobjects of such objects that are themselves declared const.
+ if (!BaseD ||
+ !(BaseD->getType().isConstQualified() ||
+ BaseD->getType()->isReferenceType()) ||
+ MutableSubobject)
+ return false;
+ return declaresSameEntity(Evaluating, BaseD);
+ }
+
+ llvm_unreachable("unknown evaluating decl kind");
+}
+
+namespace {
+/// A handle to a complete object (an object that is not a subobject of
+/// another object).
+struct CompleteObject {
+ /// The identity of the object.
+ APValue::LValueBase Base;
+ /// The value of the complete object.
+ APValue *Value;
+ /// The type of the complete object.
+ QualType Type;
+
+ CompleteObject() : Value(nullptr) {}
+ CompleteObject(APValue::LValueBase Base, APValue *Value, QualType Type)
+ : Base(Base), Value(Value), Type(Type) {}
+
+ bool mayAccessMutableMembers(EvalInfo &Info, AccessKinds AK) const {
+ // In C++14 onwards, it is permitted to read a mutable member whose
+ // lifetime began within the evaluation.
+ // FIXME: Should we also allow this in C++11?
+ if (!Info.getLangOpts().CPlusPlus14)
+ return false;
+ return lifetimeStartedInEvaluation(Info, Base, /*MutableSubobject*/true);
+ }
+
+ explicit operator bool() const { return !Type.isNull(); }
+};
+} // end anonymous namespace
+
+static QualType getSubobjectType(QualType ObjType, QualType SubobjType,
+ bool IsMutable = false) {
+ // C++ [basic.type.qualifier]p1:
+ // - A const object is an object of type const T or a non-mutable subobject
+ // of a const object.
+ if (ObjType.isConstQualified() && !IsMutable)
+ SubobjType.addConst();
+ // - A volatile object is an object of type const T or a subobject of a
+ // volatile object.
+ if (ObjType.isVolatileQualified())
+ SubobjType.addVolatile();
+ return SubobjType;
+}
+
+/// Find the designated sub-object of an rvalue.
+template<typename SubobjectHandler>
+typename SubobjectHandler::result_type
+findSubobject(EvalInfo &Info, const Expr *E, const CompleteObject &Obj,
+ const SubobjectDesignator &Sub, SubobjectHandler &handler) {
+ if (Sub.Invalid)
+ // A diagnostic will have already been produced.
+ return handler.failed();
+ if (Sub.isOnePastTheEnd() || Sub.isMostDerivedAnUnsizedArray()) {
+ if (Info.getLangOpts().CPlusPlus11)
+ Info.FFDiag(E, Sub.isOnePastTheEnd()
+ ? diag::note_constexpr_access_past_end
+ : diag::note_constexpr_access_unsized_array)
+ << handler.AccessKind;
+ else
+ Info.FFDiag(E);
+ return handler.failed();
+ }
+
+ APValue *O = Obj.Value;
+ QualType ObjType = Obj.Type;
+ const FieldDecl *LastField = nullptr;
+ const FieldDecl *VolatileField = nullptr;
+
+ // Walk the designator's path to find the subobject.
+ for (unsigned I = 0, N = Sub.Entries.size(); /**/; ++I) {
+ // Reading an indeterminate value is undefined, but assigning over one is OK.
+ if ((O->isAbsent() && !(handler.AccessKind == AK_Construct && I == N)) ||
+ (O->isIndeterminate() && handler.AccessKind != AK_Construct &&
+ handler.AccessKind != AK_Assign &&
+ handler.AccessKind != AK_ReadObjectRepresentation)) {
+ if (!Info.checkingPotentialConstantExpression())
+ Info.FFDiag(E, diag::note_constexpr_access_uninit)
+ << handler.AccessKind << O->isIndeterminate();
+ return handler.failed();
+ }
+
+ // C++ [class.ctor]p5, C++ [class.dtor]p5:
+ // const and volatile semantics are not applied on an object under
+ // {con,de}struction.
+ if ((ObjType.isConstQualified() || ObjType.isVolatileQualified()) &&
+ ObjType->isRecordType() &&
+ Info.isEvaluatingCtorDtor(
+ Obj.Base, llvm::makeArrayRef(Sub.Entries.begin(),
+ Sub.Entries.begin() + I)) !=
+ ConstructionPhase::None) {
+ ObjType = Info.Ctx.getCanonicalType(ObjType);
+ ObjType.removeLocalConst();
+ ObjType.removeLocalVolatile();
+ }
+
+ // If this is our last pass, check that the final object type is OK.
+ if (I == N || (I == N - 1 && ObjType->isAnyComplexType())) {
+ // Accesses to volatile objects are prohibited.
+ if (ObjType.isVolatileQualified() && isFormalAccess(handler.AccessKind)) {
+ if (Info.getLangOpts().CPlusPlus) {
+ int DiagKind;
+ SourceLocation Loc;
+ const NamedDecl *Decl = nullptr;
+ if (VolatileField) {
+ DiagKind = 2;
+ Loc = VolatileField->getLocation();
+ Decl = VolatileField;
+ } else if (auto *VD = Obj.Base.dyn_cast<const ValueDecl*>()) {
+ DiagKind = 1;
+ Loc = VD->getLocation();
+ Decl = VD;
+ } else {
+ DiagKind = 0;
+ if (auto *E = Obj.Base.dyn_cast<const Expr *>())
+ Loc = E->getExprLoc();
+ }
+ Info.FFDiag(E, diag::note_constexpr_access_volatile_obj, 1)
+ << handler.AccessKind << DiagKind << Decl;
+ Info.Note(Loc, diag::note_constexpr_volatile_here) << DiagKind;
+ } else {
+ Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
+ }
+ return handler.failed();
+ }
+
+ // If we are reading an object of class type, there may still be more
+ // things we need to check: if there are any mutable subobjects, we
+ // cannot perform this read. (This only happens when performing a trivial
+ // copy or assignment.)
+ if (ObjType->isRecordType() &&
+ !Obj.mayAccessMutableMembers(Info, handler.AccessKind) &&
+ diagnoseMutableFields(Info, E, handler.AccessKind, ObjType))
+ return handler.failed();
+ }
+
+ if (I == N) {
+ if (!handler.found(*O, ObjType))
+ return false;
+
+ // If we modified a bit-field, truncate it to the right width.
+ if (isModification(handler.AccessKind) &&
+ LastField && LastField->isBitField() &&
+ !truncateBitfieldValue(Info, E, *O, LastField))
+ return false;
+
+ return true;
+ }
+
+ LastField = nullptr;
+ if (ObjType->isArrayType()) {
+ // Next subobject is an array element.
+ const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(ObjType);
+ assert(CAT && "vla in literal type?");
+ uint64_t Index = Sub.Entries[I].getAsArrayIndex();
+ if (CAT->getSize().ule(Index)) {
+ // Note, it should not be possible to form a pointer with a valid
+ // designator which points more than one past the end of the array.
+ if (Info.getLangOpts().CPlusPlus11)
+ Info.FFDiag(E, diag::note_constexpr_access_past_end)
+ << handler.AccessKind;
+ else
+ Info.FFDiag(E);
+ return handler.failed();
+ }
+
+ ObjType = CAT->getElementType();
+
+ if (O->getArrayInitializedElts() > Index)
+ O = &O->getArrayInitializedElt(Index);
+ else if (!isRead(handler.AccessKind)) {
+ expandArray(*O, Index);
+ O = &O->getArrayInitializedElt(Index);
+ } else
+ O = &O->getArrayFiller();
+ } else if (ObjType->isAnyComplexType()) {
+ // Next subobject is a complex number.
+ uint64_t Index = Sub.Entries[I].getAsArrayIndex();
+ if (Index > 1) {
+ if (Info.getLangOpts().CPlusPlus11)
+ Info.FFDiag(E, diag::note_constexpr_access_past_end)
+ << handler.AccessKind;
+ else
+ Info.FFDiag(E);
+ return handler.failed();
+ }
+
+ ObjType = getSubobjectType(
+ ObjType, ObjType->castAs<ComplexType>()->getElementType());
+
+ assert(I == N - 1 && "extracting subobject of scalar?");
+ if (O->isComplexInt()) {
+ return handler.found(Index ? O->getComplexIntImag()
+ : O->getComplexIntReal(), ObjType);
+ } else {
+ assert(O->isComplexFloat());
+ return handler.found(Index ? O->getComplexFloatImag()
+ : O->getComplexFloatReal(), ObjType);
+ }
+ } else if (const FieldDecl *Field = getAsField(Sub.Entries[I])) {
+ if (Field->isMutable() &&
+ !Obj.mayAccessMutableMembers(Info, handler.AccessKind)) {
+ Info.FFDiag(E, diag::note_constexpr_access_mutable, 1)
+ << handler.AccessKind << Field;
+ Info.Note(Field->getLocation(), diag::note_declared_at);
+ return handler.failed();
+ }
+
+ // Next subobject is a class, struct or union field.
+ RecordDecl *RD = ObjType->castAs<RecordType>()->getDecl();
+ if (RD->isUnion()) {
+ const FieldDecl *UnionField = O->getUnionField();
+ if (!UnionField ||
+ UnionField->getCanonicalDecl() != Field->getCanonicalDecl()) {
+ if (I == N - 1 && handler.AccessKind == AK_Construct) {
+ // Placement new onto an inactive union member makes it active.
+ O->setUnion(Field, APValue());
+ } else {
+ // FIXME: If O->getUnionValue() is absent, report that there's no
+ // active union member rather than reporting the prior active union
+ // member. We'll need to fix nullptr_t to not use APValue() as its
+ // representation first.
+ Info.FFDiag(E, diag::note_constexpr_access_inactive_union_member)
+ << handler.AccessKind << Field << !UnionField << UnionField;
+ return handler.failed();
+ }
+ }
+ O = &O->getUnionValue();
+ } else
+ O = &O->getStructField(Field->getFieldIndex());
+
+ ObjType = getSubobjectType(ObjType, Field->getType(), Field->isMutable());
+ LastField = Field;
+ if (Field->getType().isVolatileQualified())
+ VolatileField = Field;
+ } else {
+ // Next subobject is a base class.
+ const CXXRecordDecl *Derived = ObjType->getAsCXXRecordDecl();
+ const CXXRecordDecl *Base = getAsBaseClass(Sub.Entries[I]);
+ O = &O->getStructBase(getBaseIndex(Derived, Base));
+
+ ObjType = getSubobjectType(ObjType, Info.Ctx.getRecordType(Base));
+ }
+ }
+}
+
+namespace {
+struct ExtractSubobjectHandler {
+ EvalInfo &Info;
+ const Expr *E;
+ APValue &Result;
+ const AccessKinds AccessKind;
+
+ typedef bool result_type;
+ bool failed() { return false; }
+ bool found(APValue &Subobj, QualType SubobjType) {
+ Result = Subobj;
+ if (AccessKind == AK_ReadObjectRepresentation)
+ return true;
+ return CheckFullyInitialized(Info, E->getExprLoc(), SubobjType, Result);
+ }
+ bool found(APSInt &Value, QualType SubobjType) {
+ Result = APValue(Value);
+ return true;
+ }
+ bool found(APFloat &Value, QualType SubobjType) {
+ Result = APValue(Value);
+ return true;
+ }
+};
+} // end anonymous namespace
+
+/// Extract the designated sub-object of an rvalue.
+static bool extractSubobject(EvalInfo &Info, const Expr *E,
+ const CompleteObject &Obj,
+ const SubobjectDesignator &Sub, APValue &Result,
+ AccessKinds AK = AK_Read) {
+ assert(AK == AK_Read || AK == AK_ReadObjectRepresentation);
+ ExtractSubobjectHandler Handler = {Info, E, Result, AK};
+ return findSubobject(Info, E, Obj, Sub, Handler);
+}
+
+namespace {
+struct ModifySubobjectHandler {
+ EvalInfo &Info;
+ APValue &NewVal;
+ const Expr *E;
+
+ typedef bool result_type;
+ static const AccessKinds AccessKind = AK_Assign;
+
+ bool checkConst(QualType QT) {
+ // Assigning to a const object has undefined behavior.
+ if (QT.isConstQualified()) {
+ Info.FFDiag(E, diag::note_constexpr_modify_const_type) << QT;
+ return false;
+ }
+ return true;
+ }
+
+ bool failed() { return false; }
+ bool found(APValue &Subobj, QualType SubobjType) {
+ if (!checkConst(SubobjType))
+ return false;
+ // We've been given ownership of NewVal, so just swap it in.
+ Subobj.swap(NewVal);
+ return true;
+ }
+ bool found(APSInt &Value, QualType SubobjType) {
+ if (!checkConst(SubobjType))
+ return false;
+ if (!NewVal.isInt()) {
+ // Maybe trying to write a cast pointer value into a complex?
+ Info.FFDiag(E);
+ return false;
+ }
+ Value = NewVal.getInt();
+ return true;
+ }
+ bool found(APFloat &Value, QualType SubobjType) {
+ if (!checkConst(SubobjType))
+ return false;
+ Value = NewVal.getFloat();
+ return true;
+ }
+};
+} // end anonymous namespace
+
+const AccessKinds ModifySubobjectHandler::AccessKind;
+
+/// Update the designated sub-object of an rvalue to the given value.
+static bool modifySubobject(EvalInfo &Info, const Expr *E,
+ const CompleteObject &Obj,
+ const SubobjectDesignator &Sub,
+ APValue &NewVal) {
+ ModifySubobjectHandler Handler = { Info, NewVal, E };
+ return findSubobject(Info, E, Obj, Sub, Handler);
+}
+
+/// Find the position where two subobject designators diverge, or equivalently
+/// the length of the common initial subsequence.
+static unsigned FindDesignatorMismatch(QualType ObjType,
+ const SubobjectDesignator &A,
+ const SubobjectDesignator &B,
+ bool &WasArrayIndex) {
+ unsigned I = 0, N = std::min(A.Entries.size(), B.Entries.size());
+ for (/**/; I != N; ++I) {
+ if (!ObjType.isNull() &&
+ (ObjType->isArrayType() || ObjType->isAnyComplexType())) {
+ // Next subobject is an array element.
+ if (A.Entries[I].getAsArrayIndex() != B.Entries[I].getAsArrayIndex()) {
+ WasArrayIndex = true;
+ return I;
+ }
+ if (ObjType->isAnyComplexType())
+ ObjType = ObjType->castAs<ComplexType>()->getElementType();
+ else
+ ObjType = ObjType->castAsArrayTypeUnsafe()->getElementType();
+ } else {
+ if (A.Entries[I].getAsBaseOrMember() !=
+ B.Entries[I].getAsBaseOrMember()) {
+ WasArrayIndex = false;
+ return I;
+ }
+ if (const FieldDecl *FD = getAsField(A.Entries[I]))
+ // Next subobject is a field.
+ ObjType = FD->getType();
+ else
+ // Next subobject is a base class.
+ ObjType = QualType();
+ }
+ }
+ WasArrayIndex = false;
+ return I;
+}
+
+/// Determine whether the given subobject designators refer to elements of the
+/// same array object.
+static bool AreElementsOfSameArray(QualType ObjType,
+ const SubobjectDesignator &A,
+ const SubobjectDesignator &B) {
+ if (A.Entries.size() != B.Entries.size())
+ return false;
+
+ bool IsArray = A.MostDerivedIsArrayElement;
+ if (IsArray && A.MostDerivedPathLength != A.Entries.size())
+ // A is a subobject of the array element.
+ return false;
+
+ // If A (and B) designates an array element, the last entry will be the array
+ // index. That doesn't have to match. Otherwise, we're in the 'implicit array
+ // of length 1' case, and the entire path must match.
+ bool WasArrayIndex;
+ unsigned CommonLength = FindDesignatorMismatch(ObjType, A, B, WasArrayIndex);
+ return CommonLength >= A.Entries.size() - IsArray;
+}
+
+/// Find the complete object to which an LValue refers.
+static CompleteObject findCompleteObject(EvalInfo &Info, const Expr *E,
+ AccessKinds AK, const LValue &LVal,
+ QualType LValType) {
+ if (LVal.InvalidBase) {
+ Info.FFDiag(E);
+ return CompleteObject();
+ }
+
+ if (!LVal.Base) {
+ Info.FFDiag(E, diag::note_constexpr_access_null) << AK;
+ return CompleteObject();
+ }
+
+ CallStackFrame *Frame = nullptr;
+ unsigned Depth = 0;
+ if (LVal.getLValueCallIndex()) {
+ std::tie(Frame, Depth) =
+ Info.getCallFrameAndDepth(LVal.getLValueCallIndex());
+ if (!Frame) {
+ Info.FFDiag(E, diag::note_constexpr_lifetime_ended, 1)
+ << AK << LVal.Base.is<const ValueDecl*>();
+ NoteLValueLocation(Info, LVal.Base);
+ return CompleteObject();
+ }
+ }
+
+ bool IsAccess = isAnyAccess(AK);
+
+ // C++11 DR1311: An lvalue-to-rvalue conversion on a volatile-qualified type
+ // is not a constant expression (even if the object is non-volatile). We also
+ // apply this rule to C++98, in order to conform to the expected 'volatile'
+ // semantics.
+ if (isFormalAccess(AK) && LValType.isVolatileQualified()) {
+ if (Info.getLangOpts().CPlusPlus)
+ Info.FFDiag(E, diag::note_constexpr_access_volatile_type)
+ << AK << LValType;
+ else
+ Info.FFDiag(E);
+ return CompleteObject();
+ }
+
+ // Compute value storage location and type of base object.
+ APValue *BaseVal = nullptr;
+ QualType BaseType = getType(LVal.Base);
+
+ if (const ValueDecl *D = LVal.Base.dyn_cast<const ValueDecl*>()) {
+ // In C++98, const, non-volatile integers initialized with ICEs are ICEs.
+ // In C++11, constexpr, non-volatile variables initialized with constant
+ // expressions are constant expressions too. Inside constexpr functions,
+ // parameters are constant expressions even if they're non-const.
+ // In C++1y, objects local to a constant expression (those with a Frame) are
+ // both readable and writable inside constant expressions.
+ // In C, such things can also be folded, although they are not ICEs.
+ const VarDecl *VD = dyn_cast<VarDecl>(D);
+ if (VD) {
+ if (const VarDecl *VDef = VD->getDefinition(Info.Ctx))
+ VD = VDef;
+ }
+ if (!VD || VD->isInvalidDecl()) {
+ Info.FFDiag(E);
+ return CompleteObject();
+ }
+
+ // Unless we're looking at a local variable or argument in a constexpr call,
+ // the variable we're reading must be const.
+ if (!Frame) {
+ if (Info.getLangOpts().CPlusPlus14 &&
+ lifetimeStartedInEvaluation(Info, LVal.Base)) {
+ // OK, we can read and modify an object if we're in the process of
+ // evaluating its initializer, because its lifetime began in this
+ // evaluation.
+ } else if (isModification(AK)) {
+ // All the remaining cases do not permit modification of the object.
+ Info.FFDiag(E, diag::note_constexpr_modify_global);
+ return CompleteObject();
+ } else if (VD->isConstexpr()) {
+ // OK, we can read this variable.
+ } else if (BaseType->isIntegralOrEnumerationType()) {
+ // In OpenCL if a variable is in constant address space it is a const
+ // value.
+ if (!(BaseType.isConstQualified() ||
+ (Info.getLangOpts().OpenCL &&
+ BaseType.getAddressSpace() == LangAS::opencl_constant))) {
+ if (!IsAccess)
+ return CompleteObject(LVal.getLValueBase(), nullptr, BaseType);
+ if (Info.getLangOpts().CPlusPlus) {
+ Info.FFDiag(E, diag::note_constexpr_ltor_non_const_int, 1) << VD;
+ Info.Note(VD->getLocation(), diag::note_declared_at);
+ } else {
+ Info.FFDiag(E);
+ }
+ return CompleteObject();
+ }
+ } else if (!IsAccess) {
+ return CompleteObject(LVal.getLValueBase(), nullptr, BaseType);
+ } else if (BaseType->isFloatingType() && BaseType.isConstQualified()) {
+ // We support folding of const floating-point types, in order to make
+ // static const data members of such types (supported as an extension)
+ // more useful.
+ if (Info.getLangOpts().CPlusPlus11) {
+ Info.CCEDiag(E, diag::note_constexpr_ltor_non_constexpr, 1) << VD;
+ Info.Note(VD->getLocation(), diag::note_declared_at);
+ } else {
+ Info.CCEDiag(E);
+ }
+ } else if (BaseType.isConstQualified() && VD->hasDefinition(Info.Ctx)) {
+ Info.CCEDiag(E, diag::note_constexpr_ltor_non_constexpr) << VD;
+ // Keep evaluating to see what we can do.
+ } else {
+ // FIXME: Allow folding of values of any literal type in all languages.
+ if (Info.checkingPotentialConstantExpression() &&
+ VD->getType().isConstQualified() && !VD->hasDefinition(Info.Ctx)) {
+ // The definition of this variable could be constexpr. We can't
+ // access it right now, but may be able to in future.
+ } else if (Info.getLangOpts().CPlusPlus11) {
+ Info.FFDiag(E, diag::note_constexpr_ltor_non_constexpr, 1) << VD;
+ Info.Note(VD->getLocation(), diag::note_declared_at);
+ } else {
+ Info.FFDiag(E);
+ }
+ return CompleteObject();
+ }
+ }
+
+ if (!evaluateVarDeclInit(Info, E, VD, Frame, BaseVal, &LVal))
+ return CompleteObject();
+ } else if (DynamicAllocLValue DA = LVal.Base.dyn_cast<DynamicAllocLValue>()) {
+ Optional<DynAlloc*> Alloc = Info.lookupDynamicAlloc(DA);
+ if (!Alloc) {
+ Info.FFDiag(E, diag::note_constexpr_access_deleted_object) << AK;
+ return CompleteObject();
+ }
+ return CompleteObject(LVal.Base, &(*Alloc)->Value,
+ LVal.Base.getDynamicAllocType());
+ } else {
+ const Expr *Base = LVal.Base.dyn_cast<const Expr*>();
+
+ if (!Frame) {
+ if (const MaterializeTemporaryExpr *MTE =
+ dyn_cast_or_null<MaterializeTemporaryExpr>(Base)) {
+ assert(MTE->getStorageDuration() == SD_Static &&
+ "should have a frame for a non-global materialized temporary");
+
+ // Per C++1y [expr.const]p2:
+ // an lvalue-to-rvalue conversion [is not allowed unless it applies to]
+ // - a [...] glvalue of integral or enumeration type that refers to
+ // a non-volatile const object [...]
+ // [...]
+ // - a [...] glvalue of literal type that refers to a non-volatile
+ // object whose lifetime began within the evaluation of e.
+ //
+ // C++11 misses the 'began within the evaluation of e' check and
+ // instead allows all temporaries, including things like:
+ // int &&r = 1;
+ // int x = ++r;
+ // constexpr int k = r;
+ // Therefore we use the C++14 rules in C++11 too.
+ //
+ // Note that temporaries whose lifetimes began while evaluating a
+ // variable's constructor are not usable while evaluating the
+ // corresponding destructor, not even if they're of const-qualified
+ // types.
+ if (!(BaseType.isConstQualified() &&
+ BaseType->isIntegralOrEnumerationType()) &&
+ !lifetimeStartedInEvaluation(Info, LVal.Base)) {
+ if (!IsAccess)
+ return CompleteObject(LVal.getLValueBase(), nullptr, BaseType);
+ Info.FFDiag(E, diag::note_constexpr_access_static_temporary, 1) << AK;
+ Info.Note(MTE->getExprLoc(), diag::note_constexpr_temporary_here);
+ return CompleteObject();
+ }
+
+ BaseVal = Info.Ctx.getMaterializedTemporaryValue(MTE, false);
+ assert(BaseVal && "got reference to unevaluated temporary");
+ } else {
+ if (!IsAccess)
+ return CompleteObject(LVal.getLValueBase(), nullptr, BaseType);
+ APValue Val;
+ LVal.moveInto(Val);
+ Info.FFDiag(E, diag::note_constexpr_access_unreadable_object)
+ << AK
+ << Val.getAsString(Info.Ctx,
+ Info.Ctx.getLValueReferenceType(LValType));
+ NoteLValueLocation(Info, LVal.Base);
+ return CompleteObject();
+ }
+ } else {
+ BaseVal = Frame->getTemporary(Base, LVal.Base.getVersion());
+ assert(BaseVal && "missing value for temporary");
+ }
+ }
+
+ // In C++14, we can't safely access any mutable state when we might be
+ // evaluating after an unmodeled side effect.
+ //
+ // FIXME: Not all local state is mutable. Allow local constant subobjects
+ // to be read here (but take care with 'mutable' fields).
+ if ((Frame && Info.getLangOpts().CPlusPlus14 &&
+ Info.EvalStatus.HasSideEffects) ||
+ (isModification(AK) && Depth < Info.SpeculativeEvaluationDepth))
+ return CompleteObject();
+
+ return CompleteObject(LVal.getLValueBase(), BaseVal, BaseType);
+}
+
+/// Perform an lvalue-to-rvalue conversion on the given glvalue. This
+/// can also be used for 'lvalue-to-lvalue' conversions for looking up the
+/// glvalue referred to by an entity of reference type.
+///
+/// \param Info - Information about the ongoing evaluation.
+/// \param Conv - The expression for which we are performing the conversion.
+/// Used for diagnostics.
+/// \param Type - The type of the glvalue (before stripping cv-qualifiers in the
+/// case of a non-class type).
+/// \param LVal - The glvalue on which we are attempting to perform this action.
+/// \param RVal - The produced value will be placed here.
+/// \param WantObjectRepresentation - If true, we're looking for the object
+/// representation rather than the value, and in particular,
+/// there is no requirement that the result be fully initialized.
+static bool
+handleLValueToRValueConversion(EvalInfo &Info, const Expr *Conv, QualType Type,
+ const LValue &LVal, APValue &RVal,
+ bool WantObjectRepresentation = false) {
+ if (LVal.Designator.Invalid)
+ return false;
+
+ // Check for special cases where there is no existing APValue to look at.
+ const Expr *Base = LVal.Base.dyn_cast<const Expr*>();
+
+ AccessKinds AK =
+ WantObjectRepresentation ? AK_ReadObjectRepresentation : AK_Read;
+
+ if (Base && !LVal.getLValueCallIndex() && !Type.isVolatileQualified()) {
+ if (const CompoundLiteralExpr *CLE = dyn_cast<CompoundLiteralExpr>(Base)) {
+ // In C99, a CompoundLiteralExpr is an lvalue, and we defer evaluating the
+ // initializer until now for such expressions. Such an expression can't be
+ // an ICE in C, so this only matters for fold.
+ if (Type.isVolatileQualified()) {
+ Info.FFDiag(Conv);
+ return false;
+ }
+ APValue Lit;
+ if (!Evaluate(Lit, Info, CLE->getInitializer()))
+ return false;
+ CompleteObject LitObj(LVal.Base, &Lit, Base->getType());
+ return extractSubobject(Info, Conv, LitObj, LVal.Designator, RVal, AK);
+ } else if (isa<StringLiteral>(Base) || isa<PredefinedExpr>(Base)) {
+ // Special-case character extraction so we don't have to construct an
+ // APValue for the whole string.
+ assert(LVal.Designator.Entries.size() <= 1 &&
+ "Can only read characters from string literals");
+ if (LVal.Designator.Entries.empty()) {
+ // Fail for now for LValue to RValue conversion of an array.
+ // (This shouldn't show up in C/C++, but it could be triggered by a
+ // weird EvaluateAsRValue call from a tool.)
+ Info.FFDiag(Conv);
+ return false;
+ }
+ if (LVal.Designator.isOnePastTheEnd()) {
+ if (Info.getLangOpts().CPlusPlus11)
+ Info.FFDiag(Conv, diag::note_constexpr_access_past_end) << AK;
+ else
+ Info.FFDiag(Conv);
+ return false;
+ }
+ uint64_t CharIndex = LVal.Designator.Entries[0].getAsArrayIndex();
+ RVal = APValue(extractStringLiteralCharacter(Info, Base, CharIndex));
+ return true;
+ }
+ }
+
+ CompleteObject Obj = findCompleteObject(Info, Conv, AK, LVal, Type);
+ return Obj && extractSubobject(Info, Conv, Obj, LVal.Designator, RVal, AK);
+}
+
+/// Perform an assignment of Val to LVal. Takes ownership of Val.
+static bool handleAssignment(EvalInfo &Info, const Expr *E, const LValue &LVal,
+ QualType LValType, APValue &Val) {
+ if (LVal.Designator.Invalid)
+ return false;
+
+ if (!Info.getLangOpts().CPlusPlus14) {
+ Info.FFDiag(E);
+ return false;
+ }
+
+ CompleteObject Obj = findCompleteObject(Info, E, AK_Assign, LVal, LValType);
+ return Obj && modifySubobject(Info, E, Obj, LVal.Designator, Val);
+}
+
+namespace {
+struct CompoundAssignSubobjectHandler {
+ EvalInfo &Info;
+ const Expr *E;
+ QualType PromotedLHSType;
+ BinaryOperatorKind Opcode;
+ const APValue &RHS;
+
+ static const AccessKinds AccessKind = AK_Assign;
+
+ typedef bool result_type;
+
+ bool checkConst(QualType QT) {
+ // Assigning to a const object has undefined behavior.
+ if (QT.isConstQualified()) {
+ Info.FFDiag(E, diag::note_constexpr_modify_const_type) << QT;
+ return false;
+ }
+ return true;
+ }
+
+ bool failed() { return false; }
+ bool found(APValue &Subobj, QualType SubobjType) {
+ switch (Subobj.getKind()) {
+ case APValue::Int:
+ return found(Subobj.getInt(), SubobjType);
+ case APValue::Float:
+ return found(Subobj.getFloat(), SubobjType);
+ case APValue::ComplexInt:
+ case APValue::ComplexFloat:
+ // FIXME: Implement complex compound assignment.
+ Info.FFDiag(E);
+ return false;
+ case APValue::LValue:
+ return foundPointer(Subobj, SubobjType);
+ default:
+ // FIXME: can this happen?
+ Info.FFDiag(E);
+ return false;
+ }
+ }
+ bool found(APSInt &Value, QualType SubobjType) {
+ if (!checkConst(SubobjType))
+ return false;
+
+ if (!SubobjType->isIntegerType()) {
+ // We don't support compound assignment on integer-cast-to-pointer
+ // values.
+ Info.FFDiag(E);
+ return false;
+ }
+
+ if (RHS.isInt()) {
+ APSInt LHS =
+ HandleIntToIntCast(Info, E, PromotedLHSType, SubobjType, Value);
+ if (!handleIntIntBinOp(Info, E, LHS, Opcode, RHS.getInt(), LHS))
+ return false;
+ Value = HandleIntToIntCast(Info, E, SubobjType, PromotedLHSType, LHS);
+ return true;
+ } else if (RHS.isFloat()) {
+ APFloat FValue(0.0);
+ return HandleIntToFloatCast(Info, E, SubobjType, Value, PromotedLHSType,
+ FValue) &&
+ handleFloatFloatBinOp(Info, E, FValue, Opcode, RHS.getFloat()) &&
+ HandleFloatToIntCast(Info, E, PromotedLHSType, FValue, SubobjType,
+ Value);
+ }
+
+ Info.FFDiag(E);
+ return false;
+ }
+ bool found(APFloat &Value, QualType SubobjType) {
+ return checkConst(SubobjType) &&
+ HandleFloatToFloatCast(Info, E, SubobjType, PromotedLHSType,
+ Value) &&
+ handleFloatFloatBinOp(Info, E, Value, Opcode, RHS.getFloat()) &&
+ HandleFloatToFloatCast(Info, E, PromotedLHSType, SubobjType, Value);
+ }
+ bool foundPointer(APValue &Subobj, QualType SubobjType) {
+ if (!checkConst(SubobjType))
+ return false;
+
+ QualType PointeeType;
+ if (const PointerType *PT = SubobjType->getAs<PointerType>())
+ PointeeType = PT->getPointeeType();
+
+ if (PointeeType.isNull() || !RHS.isInt() ||
+ (Opcode != BO_Add && Opcode != BO_Sub)) {
+ Info.FFDiag(E);
+ return false;
+ }
+
+ APSInt Offset = RHS.getInt();
+ if (Opcode == BO_Sub)
+ negateAsSigned(Offset);
+
+ LValue LVal;
+ LVal.setFrom(Info.Ctx, Subobj);
+ if (!HandleLValueArrayAdjustment(Info, E, LVal, PointeeType, Offset))
+ return false;
+ LVal.moveInto(Subobj);
+ return true;
+ }
+};
+} // end anonymous namespace
+
+const AccessKinds CompoundAssignSubobjectHandler::AccessKind;
+
+/// Perform a compound assignment of LVal <op>= RVal.
+static bool handleCompoundAssignment(
+ EvalInfo &Info, const Expr *E,
+ const LValue &LVal, QualType LValType, QualType PromotedLValType,
+ BinaryOperatorKind Opcode, const APValue &RVal) {
+ if (LVal.Designator.Invalid)
+ return false;
+
+ if (!Info.getLangOpts().CPlusPlus14) {
+ Info.FFDiag(E);
+ return false;
+ }
+
+ CompleteObject Obj = findCompleteObject(Info, E, AK_Assign, LVal, LValType);
+ CompoundAssignSubobjectHandler Handler = { Info, E, PromotedLValType, Opcode,
+ RVal };
+ return Obj && findSubobject(Info, E, Obj, LVal.Designator, Handler);
+}
+
+namespace {
+struct IncDecSubobjectHandler {
+ EvalInfo &Info;
+ const UnaryOperator *E;
+ AccessKinds AccessKind;
+ APValue *Old;
+
+ typedef bool result_type;
+
+ bool checkConst(QualType QT) {
+ // Assigning to a const object has undefined behavior.
+ if (QT.isConstQualified()) {
+ Info.FFDiag(E, diag::note_constexpr_modify_const_type) << QT;
+ return false;
+ }
+ return true;
+ }
+
+ bool failed() { return false; }
+ bool found(APValue &Subobj, QualType SubobjType) {
+ // Stash the old value. Also clear Old, so we don't clobber it later
+ // if we're post-incrementing a complex.
+ if (Old) {
+ *Old = Subobj;
+ Old = nullptr;
+ }
+
+ switch (Subobj.getKind()) {
+ case APValue::Int:
+ return found(Subobj.getInt(), SubobjType);
+ case APValue::Float:
+ return found(Subobj.getFloat(), SubobjType);
+ case APValue::ComplexInt:
+ return found(Subobj.getComplexIntReal(),
+ SubobjType->castAs<ComplexType>()->getElementType()
+ .withCVRQualifiers(SubobjType.getCVRQualifiers()));
+ case APValue::ComplexFloat:
+ return found(Subobj.getComplexFloatReal(),
+ SubobjType->castAs<ComplexType>()->getElementType()
+ .withCVRQualifiers(SubobjType.getCVRQualifiers()));
+ case APValue::LValue:
+ return foundPointer(Subobj, SubobjType);
+ default:
+ // FIXME: can this happen?
+ Info.FFDiag(E);
+ return false;
+ }
+ }
+ bool found(APSInt &Value, QualType SubobjType) {
+ if (!checkConst(SubobjType))
+ return false;
+
+ if (!SubobjType->isIntegerType()) {
+ // We don't support increment / decrement on integer-cast-to-pointer
+ // values.
+ Info.FFDiag(E);
+ return false;
+ }
+
+ if (Old) *Old = APValue(Value);
+
+ // bool arithmetic promotes to int, and the conversion back to bool
+ // doesn't reduce mod 2^n, so special-case it.
+ if (SubobjType->isBooleanType()) {
+ if (AccessKind == AK_Increment)
+ Value = 1;
+ else
+ Value = !Value;
+ return true;
+ }
+
+ bool WasNegative = Value.isNegative();
+ if (AccessKind == AK_Increment) {
+ ++Value;
+
+ if (!WasNegative && Value.isNegative() && E->canOverflow()) {
+ APSInt ActualValue(Value, /*IsUnsigned*/true);
+ return HandleOverflow(Info, E, ActualValue, SubobjType);
+ }
+ } else {
+ --Value;
+
+ if (WasNegative && !Value.isNegative() && E->canOverflow()) {
+ unsigned BitWidth = Value.getBitWidth();
+ APSInt ActualValue(Value.sext(BitWidth + 1), /*IsUnsigned*/false);
+ ActualValue.setBit(BitWidth);
+ return HandleOverflow(Info, E, ActualValue, SubobjType);
+ }
+ }
+ return true;
+ }
+ bool found(APFloat &Value, QualType SubobjType) {
+ if (!checkConst(SubobjType))
+ return false;
+
+ if (Old) *Old = APValue(Value);
+
+ APFloat One(Value.getSemantics(), 1);
+ if (AccessKind == AK_Increment)
+ Value.add(One, APFloat::rmNearestTiesToEven);
+ else
+ Value.subtract(One, APFloat::rmNearestTiesToEven);
+ return true;
+ }
+ bool foundPointer(APValue &Subobj, QualType SubobjType) {
+ if (!checkConst(SubobjType))
+ return false;
+
+ QualType PointeeType;
+ if (const PointerType *PT = SubobjType->getAs<PointerType>())
+ PointeeType = PT->getPointeeType();
+ else {
+ Info.FFDiag(E);
+ return false;
+ }
+
+ LValue LVal;
+ LVal.setFrom(Info.Ctx, Subobj);
+ if (!HandleLValueArrayAdjustment(Info, E, LVal, PointeeType,
+ AccessKind == AK_Increment ? 1 : -1))
+ return false;
+ LVal.moveInto(Subobj);
+ return true;
+ }
+};
+} // end anonymous namespace
+
+/// Perform an increment or decrement on LVal.
+static bool handleIncDec(EvalInfo &Info, const Expr *E, const LValue &LVal,
+ QualType LValType, bool IsIncrement, APValue *Old) {
+ if (LVal.Designator.Invalid)
+ return false;
+
+ if (!Info.getLangOpts().CPlusPlus14) {
+ Info.FFDiag(E);
+ return false;
+ }
+
+ AccessKinds AK = IsIncrement ? AK_Increment : AK_Decrement;
+ CompleteObject Obj = findCompleteObject(Info, E, AK, LVal, LValType);
+ IncDecSubobjectHandler Handler = {Info, cast<UnaryOperator>(E), AK, Old};
+ return Obj && findSubobject(Info, E, Obj, LVal.Designator, Handler);
+}
+
+/// Build an lvalue for the object argument of a member function call.
+static bool EvaluateObjectArgument(EvalInfo &Info, const Expr *Object,
+ LValue &This) {
+ if (Object->getType()->isPointerType() && Object->isRValue())
+ return EvaluatePointer(Object, This, Info);
+
+ if (Object->isGLValue())
+ return EvaluateLValue(Object, This, Info);
+
+ if (Object->getType()->isLiteralType(Info.Ctx))
+ return EvaluateTemporary(Object, This, Info);
+
+ Info.FFDiag(Object, diag::note_constexpr_nonliteral) << Object->getType();
+ return false;
+}
+
+/// HandleMemberPointerAccess - Evaluate a member access operation and build an
+/// lvalue referring to the result.
+///
+/// \param Info - Information about the ongoing evaluation.
+/// \param LV - An lvalue referring to the base of the member pointer.
+/// \param RHS - The member pointer expression.
+/// \param IncludeMember - Specifies whether the member itself is included in
+/// the resulting LValue subobject designator. This is not possible when
+/// creating a bound member function.
+/// \return The field or method declaration to which the member pointer refers,
+/// or 0 if evaluation fails.
+static const ValueDecl *HandleMemberPointerAccess(EvalInfo &Info,
+ QualType LVType,
+ LValue &LV,
+ const Expr *RHS,
+ bool IncludeMember = true) {
+ MemberPtr MemPtr;
+ if (!EvaluateMemberPointer(RHS, MemPtr, Info))
+ return nullptr;
+
+ // C++11 [expr.mptr.oper]p6: If the second operand is the null pointer to
+ // member value, the behavior is undefined.
+ if (!MemPtr.getDecl()) {
+ // FIXME: Specific diagnostic.
+ Info.FFDiag(RHS);
+ return nullptr;
+ }
+
+ if (MemPtr.isDerivedMember()) {
+ // This is a member of some derived class. Truncate LV appropriately.
+ // The end of the derived-to-base path for the base object must match the
+ // derived-to-base path for the member pointer.
+ if (LV.Designator.MostDerivedPathLength + MemPtr.Path.size() >
+ LV.Designator.Entries.size()) {
+ Info.FFDiag(RHS);
+ return nullptr;
+ }
+ unsigned PathLengthToMember =
+ LV.Designator.Entries.size() - MemPtr.Path.size();
+ for (unsigned I = 0, N = MemPtr.Path.size(); I != N; ++I) {
+ const CXXRecordDecl *LVDecl = getAsBaseClass(
+ LV.Designator.Entries[PathLengthToMember + I]);
+ const CXXRecordDecl *MPDecl = MemPtr.Path[I];
+ if (LVDecl->getCanonicalDecl() != MPDecl->getCanonicalDecl()) {
+ Info.FFDiag(RHS);
+ return nullptr;
+ }
+ }
+
+ // Truncate the lvalue to the appropriate derived class.
+ if (!CastToDerivedClass(Info, RHS, LV, MemPtr.getContainingRecord(),
+ PathLengthToMember))
+ return nullptr;
+ } else if (!MemPtr.Path.empty()) {
+ // Extend the LValue path with the member pointer's path.
+ LV.Designator.Entries.reserve(LV.Designator.Entries.size() +
+ MemPtr.Path.size() + IncludeMember);
+
+ // Walk down to the appropriate base class.
+ if (const PointerType *PT = LVType->getAs<PointerType>())
+ LVType = PT->getPointeeType();
+ const CXXRecordDecl *RD = LVType->getAsCXXRecordDecl();
+ assert(RD && "member pointer access on non-class-type expression");
+ // The first class in the path is that of the lvalue.
+ for (unsigned I = 1, N = MemPtr.Path.size(); I != N; ++I) {
+ const CXXRecordDecl *Base = MemPtr.Path[N - I - 1];
+ if (!HandleLValueDirectBase(Info, RHS, LV, RD, Base))
+ return nullptr;
+ RD = Base;
+ }
+ // Finally cast to the class containing the member.
+ if (!HandleLValueDirectBase(Info, RHS, LV, RD,
+ MemPtr.getContainingRecord()))
+ return nullptr;
+ }
+
+ // Add the member. Note that we cannot build bound member functions here.
+ if (IncludeMember) {
+ if (const FieldDecl *FD = dyn_cast<FieldDecl>(MemPtr.getDecl())) {
+ if (!HandleLValueMember(Info, RHS, LV, FD))
+ return nullptr;
+ } else if (const IndirectFieldDecl *IFD =
+ dyn_cast<IndirectFieldDecl>(MemPtr.getDecl())) {
+ if (!HandleLValueIndirectMember(Info, RHS, LV, IFD))
+ return nullptr;
+ } else {
+ llvm_unreachable("can't construct reference to bound member function");
+ }
+ }
+
+ return MemPtr.getDecl();
+}
+
+static const ValueDecl *HandleMemberPointerAccess(EvalInfo &Info,
+ const BinaryOperator *BO,
+ LValue &LV,
+ bool IncludeMember = true) {
+ assert(BO->getOpcode() == BO_PtrMemD || BO->getOpcode() == BO_PtrMemI);
+
+ if (!EvaluateObjectArgument(Info, BO->getLHS(), LV)) {
+ if (Info.noteFailure()) {
+ MemberPtr MemPtr;
+ EvaluateMemberPointer(BO->getRHS(), MemPtr, Info);
+ }
+ return nullptr;
+ }
+
+ return HandleMemberPointerAccess(Info, BO->getLHS()->getType(), LV,
+ BO->getRHS(), IncludeMember);
+}
+
+/// HandleBaseToDerivedCast - Apply the given base-to-derived cast operation on
+/// the provided lvalue, which currently refers to the base object.
+static bool HandleBaseToDerivedCast(EvalInfo &Info, const CastExpr *E,
+ LValue &Result) {
+ SubobjectDesignator &D = Result.Designator;
+ if (D.Invalid || !Result.checkNullPointer(Info, E, CSK_Derived))
+ return false;
+
+ QualType TargetQT = E->getType();
+ if (const PointerType *PT = TargetQT->getAs<PointerType>())
+ TargetQT = PT->getPointeeType();
+
+ // Check this cast lands within the final derived-to-base subobject path.
+ if (D.MostDerivedPathLength + E->path_size() > D.Entries.size()) {
+ Info.CCEDiag(E, diag::note_constexpr_invalid_downcast)
+ << D.MostDerivedType << TargetQT;
+ return false;
+ }
+
+ // Check the type of the final cast. We don't need to check the path,
+ // since a cast can only be formed if the path is unique.
+ unsigned NewEntriesSize = D.Entries.size() - E->path_size();
+ const CXXRecordDecl *TargetType = TargetQT->getAsCXXRecordDecl();
+ const CXXRecordDecl *FinalType;
+ if (NewEntriesSize == D.MostDerivedPathLength)
+ FinalType = D.MostDerivedType->getAsCXXRecordDecl();
+ else
+ FinalType = getAsBaseClass(D.Entries[NewEntriesSize - 1]);
+ if (FinalType->getCanonicalDecl() != TargetType->getCanonicalDecl()) {
+ Info.CCEDiag(E, diag::note_constexpr_invalid_downcast)
+ << D.MostDerivedType << TargetQT;
+ return false;
+ }
+
+ // Truncate the lvalue to the appropriate derived class.
+ return CastToDerivedClass(Info, E, Result, TargetType, NewEntriesSize);
+}
+
+/// Get the value to use for a default-initialized object of type T.
+static APValue getDefaultInitValue(QualType T) {
+ if (auto *RD = T->getAsCXXRecordDecl()) {
+ if (RD->isUnion())
+ return APValue((const FieldDecl*)nullptr);
+
+ APValue Struct(APValue::UninitStruct(), RD->getNumBases(),
+ std::distance(RD->field_begin(), RD->field_end()));
+
+ unsigned Index = 0;
+ for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(),
+ End = RD->bases_end(); I != End; ++I, ++Index)
+ Struct.getStructBase(Index) = getDefaultInitValue(I->getType());
+
+ for (const auto *I : RD->fields()) {
+ if (I->isUnnamedBitfield())
+ continue;
+ Struct.getStructField(I->getFieldIndex()) =
+ getDefaultInitValue(I->getType());
+ }
+ return Struct;
+ }
+
+ if (auto *AT =
+ dyn_cast_or_null<ConstantArrayType>(T->getAsArrayTypeUnsafe())) {
+ APValue Array(APValue::UninitArray(), 0, AT->getSize().getZExtValue());
+ if (Array.hasArrayFiller())
+ Array.getArrayFiller() = getDefaultInitValue(AT->getElementType());
+ return Array;
+ }
+
+ return APValue::IndeterminateValue();
+}
+
+namespace {
+enum EvalStmtResult {
+ /// Evaluation failed.
+ ESR_Failed,
+ /// Hit a 'return' statement.
+ ESR_Returned,
+ /// Evaluation succeeded.
+ ESR_Succeeded,
+ /// Hit a 'continue' statement.
+ ESR_Continue,
+ /// Hit a 'break' statement.
+ ESR_Break,
+ /// Still scanning for 'case' or 'default' statement.
+ ESR_CaseNotFound
+};
+}
+
+static bool EvaluateVarDecl(EvalInfo &Info, const VarDecl *VD) {
+ // We don't need to evaluate the initializer for a static local.
+ if (!VD->hasLocalStorage())
+ return true;
+
+ LValue Result;
+ APValue &Val =
+ Info.CurrentCall->createTemporary(VD, VD->getType(), true, Result);
+
+ const Expr *InitE = VD->getInit();
+ if (!InitE) {
+ Val = getDefaultInitValue(VD->getType());
+ return true;
+ }
+
+ if (InitE->isValueDependent())
+ return false;
+
+ if (!EvaluateInPlace(Val, Info, Result, InitE)) {
+ // Wipe out any partially-computed value, to allow tracking that this
+ // evaluation failed.
+ Val = APValue();
+ return false;
+ }
+
+ return true;
+}
+
+static bool EvaluateDecl(EvalInfo &Info, const Decl *D) {
+ bool OK = true;
+
+ if (const VarDecl *VD = dyn_cast<VarDecl>(D))
+ OK &= EvaluateVarDecl(Info, VD);
+
+ if (const DecompositionDecl *DD = dyn_cast<DecompositionDecl>(D))
+ for (auto *BD : DD->bindings())
+ if (auto *VD = BD->getHoldingVar())
+ OK &= EvaluateDecl(Info, VD);
+
+ return OK;
+}
+
+
+/// Evaluate a condition (either a variable declaration or an expression).
+static bool EvaluateCond(EvalInfo &Info, const VarDecl *CondDecl,
+ const Expr *Cond, bool &Result) {
+ FullExpressionRAII Scope(Info);
+ if (CondDecl && !EvaluateDecl(Info, CondDecl))
+ return false;
+ if (!EvaluateAsBooleanCondition(Cond, Result, Info))
+ return false;
+ return Scope.destroy();
+}
+
+namespace {
+/// A location where the result (returned value) of evaluating a
+/// statement should be stored.
+struct StmtResult {
+ /// The APValue that should be filled in with the returned value.
+ APValue &Value;
+ /// The location containing the result, if any (used to support RVO).
+ const LValue *Slot;
+};
+
+struct TempVersionRAII {
+ CallStackFrame &Frame;
+
+ TempVersionRAII(CallStackFrame &Frame) : Frame(Frame) {
+ Frame.pushTempVersion();
+ }
+
+ ~TempVersionRAII() {
+ Frame.popTempVersion();
+ }
+};
+
+}
+
+static EvalStmtResult EvaluateStmt(StmtResult &Result, EvalInfo &Info,
+ const Stmt *S,
+ const SwitchCase *SC = nullptr);
+
+/// Evaluate the body of a loop, and translate the result as appropriate.
+static EvalStmtResult EvaluateLoopBody(StmtResult &Result, EvalInfo &Info,
+ const Stmt *Body,
+ const SwitchCase *Case = nullptr) {
+ BlockScopeRAII Scope(Info);
+
+ EvalStmtResult ESR = EvaluateStmt(Result, Info, Body, Case);
+ if (ESR != ESR_Failed && ESR != ESR_CaseNotFound && !Scope.destroy())
+ ESR = ESR_Failed;
+
+ switch (ESR) {
+ case ESR_Break:
+ return ESR_Succeeded;
+ case ESR_Succeeded:
+ case ESR_Continue:
+ return ESR_Continue;
+ case ESR_Failed:
+ case ESR_Returned:
+ case ESR_CaseNotFound:
+ return ESR;
+ }
+ llvm_unreachable("Invalid EvalStmtResult!");
+}
+
+/// Evaluate a switch statement.
+static EvalStmtResult EvaluateSwitch(StmtResult &Result, EvalInfo &Info,
+ const SwitchStmt *SS) {
+ BlockScopeRAII Scope(Info);
+
+ // Evaluate the switch condition.
+ APSInt Value;
+ {
+ if (const Stmt *Init = SS->getInit()) {
+ EvalStmtResult ESR = EvaluateStmt(Result, Info, Init);
+ if (ESR != ESR_Succeeded) {
+ if (ESR != ESR_Failed && !Scope.destroy())
+ ESR = ESR_Failed;
+ return ESR;
+ }
+ }
+
+ FullExpressionRAII CondScope(Info);
+ if (SS->getConditionVariable() &&
+ !EvaluateDecl(Info, SS->getConditionVariable()))
+ return ESR_Failed;
+ if (!EvaluateInteger(SS->getCond(), Value, Info))
+ return ESR_Failed;
+ if (!CondScope.destroy())
+ return ESR_Failed;
+ }
+
+ // Find the switch case corresponding to the value of the condition.
+ // FIXME: Cache this lookup.
+ const SwitchCase *Found = nullptr;
+ for (const SwitchCase *SC = SS->getSwitchCaseList(); SC;
+ SC = SC->getNextSwitchCase()) {
+ if (isa<DefaultStmt>(SC)) {
+ Found = SC;
+ continue;
+ }
+
+ const CaseStmt *CS = cast<CaseStmt>(SC);
+ APSInt LHS = CS->getLHS()->EvaluateKnownConstInt(Info.Ctx);
+ APSInt RHS = CS->getRHS() ? CS->getRHS()->EvaluateKnownConstInt(Info.Ctx)
+ : LHS;
+ if (LHS <= Value && Value <= RHS) {
+ Found = SC;
+ break;
+ }
+ }
+
+ if (!Found)
+ return Scope.destroy() ? ESR_Succeeded : ESR_Failed;
+
+ // Search the switch body for the switch case and evaluate it from there.
+ EvalStmtResult ESR = EvaluateStmt(Result, Info, SS->getBody(), Found);
+ if (ESR != ESR_Failed && ESR != ESR_CaseNotFound && !Scope.destroy())
+ return ESR_Failed;
+
+ switch (ESR) {
+ case ESR_Break:
+ return ESR_Succeeded;
+ case ESR_Succeeded:
+ case ESR_Continue:
+ case ESR_Failed:
+ case ESR_Returned:
+ return ESR;
+ case ESR_CaseNotFound:
+ // This can only happen if the switch case is nested within a statement
+ // expression. We have no intention of supporting that.
+ Info.FFDiag(Found->getBeginLoc(),
+ diag::note_constexpr_stmt_expr_unsupported);
+ return ESR_Failed;
+ }
+ llvm_unreachable("Invalid EvalStmtResult!");
+}
+
+// Evaluate a statement.
+static EvalStmtResult EvaluateStmt(StmtResult &Result, EvalInfo &Info,
+ const Stmt *S, const SwitchCase *Case) {
+ if (!Info.nextStep(S))
+ return ESR_Failed;
+
+ // If we're hunting down a 'case' or 'default' label, recurse through
+ // substatements until we hit the label.
+ if (Case) {
+ switch (S->getStmtClass()) {
+ case Stmt::CompoundStmtClass:
+ // FIXME: Precompute which substatement of a compound statement we
+ // would jump to, and go straight there rather than performing a
+ // linear scan each time.
+ case Stmt::LabelStmtClass:
+ case Stmt::AttributedStmtClass:
+ case Stmt::DoStmtClass:
+ break;
+
+ case Stmt::CaseStmtClass:
+ case Stmt::DefaultStmtClass:
+ if (Case == S)
+ Case = nullptr;
+ break;
+
+ case Stmt::IfStmtClass: {
+ // FIXME: Precompute which side of an 'if' we would jump to, and go
+ // straight there rather than scanning both sides.
+ const IfStmt *IS = cast<IfStmt>(S);
+
+ // Wrap the evaluation in a block scope, in case it's a DeclStmt
+ // preceded by our switch label.
+ BlockScopeRAII Scope(Info);
+
+ // Step into the init statement in case it brings an (uninitialized)
+ // variable into scope.
+ if (const Stmt *Init = IS->getInit()) {
+ EvalStmtResult ESR = EvaluateStmt(Result, Info, Init, Case);
+ if (ESR != ESR_CaseNotFound) {
+ assert(ESR != ESR_Succeeded);
+ return ESR;
+ }
+ }
+
+ // Condition variable must be initialized if it exists.
+ // FIXME: We can skip evaluating the body if there's a condition
+ // variable, as there can't be any case labels within it.
+ // (The same is true for 'for' statements.)
+
+ EvalStmtResult ESR = EvaluateStmt(Result, Info, IS->getThen(), Case);
+ if (ESR == ESR_Failed)
+ return ESR;
+ if (ESR != ESR_CaseNotFound)
+ return Scope.destroy() ? ESR : ESR_Failed;
+ if (!IS->getElse())
+ return ESR_CaseNotFound;
+
+ ESR = EvaluateStmt(Result, Info, IS->getElse(), Case);
+ if (ESR == ESR_Failed)
+ return ESR;
+ if (ESR != ESR_CaseNotFound)
+ return Scope.destroy() ? ESR : ESR_Failed;
+ return ESR_CaseNotFound;
+ }
+
+ case Stmt::WhileStmtClass: {
+ EvalStmtResult ESR =
+ EvaluateLoopBody(Result, Info, cast<WhileStmt>(S)->getBody(), Case);
+ if (ESR != ESR_Continue)
+ return ESR;
+ break;
+ }
+
+ case Stmt::ForStmtClass: {
+ const ForStmt *FS = cast<ForStmt>(S);
+ BlockScopeRAII Scope(Info);
+
+ // Step into the init statement in case it brings an (uninitialized)
+ // variable into scope.
+ if (const Stmt *Init = FS->getInit()) {
+ EvalStmtResult ESR = EvaluateStmt(Result, Info, Init, Case);
+ if (ESR != ESR_CaseNotFound) {
+ assert(ESR != ESR_Succeeded);
+ return ESR;
+ }
+ }
+
+ EvalStmtResult ESR =
+ EvaluateLoopBody(Result, Info, FS->getBody(), Case);
+ if (ESR != ESR_Continue)
+ return ESR;
+ if (FS->getInc()) {
+ FullExpressionRAII IncScope(Info);
+ if (!EvaluateIgnoredValue(Info, FS->getInc()) || !IncScope.destroy())
+ return ESR_Failed;
+ }
+ break;
+ }
+
+ case Stmt::DeclStmtClass: {
+ // Start the lifetime of any uninitialized variables we encounter. They
+ // might be used by the selected branch of the switch.
+ const DeclStmt *DS = cast<DeclStmt>(S);
+ for (const auto *D : DS->decls()) {
+ if (const auto *VD = dyn_cast<VarDecl>(D)) {
+ if (VD->hasLocalStorage() && !VD->getInit())
+ if (!EvaluateVarDecl(Info, VD))
+ return ESR_Failed;
+ // FIXME: If the variable has initialization that can't be jumped
+ // over, bail out of any immediately-surrounding compound-statement
+ // too. There can't be any case labels here.
+ }
+ }
+ return ESR_CaseNotFound;
+ }
+
+ default:
+ return ESR_CaseNotFound;
+ }
+ }
+
+ switch (S->getStmtClass()) {
+ default:
+ if (const Expr *E = dyn_cast<Expr>(S)) {
+ // Don't bother evaluating beyond an expression-statement which couldn't
+ // be evaluated.
+ // FIXME: Do we need the FullExpressionRAII object here?
+ // VisitExprWithCleanups should create one when necessary.
+ FullExpressionRAII Scope(Info);
+ if (!EvaluateIgnoredValue(Info, E) || !Scope.destroy())
+ return ESR_Failed;
+ return ESR_Succeeded;
+ }
+
+ Info.FFDiag(S->getBeginLoc());
+ return ESR_Failed;
+
+ case Stmt::NullStmtClass:
+ return ESR_Succeeded;
+
+ case Stmt::DeclStmtClass: {
+ const DeclStmt *DS = cast<DeclStmt>(S);
+ for (const auto *D : DS->decls()) {
+ // Each declaration initialization is its own full-expression.
+ FullExpressionRAII Scope(Info);
+ if (!EvaluateDecl(Info, D) && !Info.noteFailure())
+ return ESR_Failed;
+ if (!Scope.destroy())
+ return ESR_Failed;
+ }
+ return ESR_Succeeded;
+ }
+
+ case Stmt::ReturnStmtClass: {
+ const Expr *RetExpr = cast<ReturnStmt>(S)->getRetValue();
+ FullExpressionRAII Scope(Info);
+ if (RetExpr &&
+ !(Result.Slot
+ ? EvaluateInPlace(Result.Value, Info, *Result.Slot, RetExpr)
+ : Evaluate(Result.Value, Info, RetExpr)))
+ return ESR_Failed;
+ return Scope.destroy() ? ESR_Returned : ESR_Failed;
+ }
+
+ case Stmt::CompoundStmtClass: {
+ BlockScopeRAII Scope(Info);
+
+ const CompoundStmt *CS = cast<CompoundStmt>(S);
+ for (const auto *BI : CS->body()) {
+ EvalStmtResult ESR = EvaluateStmt(Result, Info, BI, Case);
+ if (ESR == ESR_Succeeded)
+ Case = nullptr;
+ else if (ESR != ESR_CaseNotFound) {
+ if (ESR != ESR_Failed && !Scope.destroy())
+ return ESR_Failed;
+ return ESR;
+ }
+ }
+ if (Case)
+ return ESR_CaseNotFound;
+ return Scope.destroy() ? ESR_Succeeded : ESR_Failed;
+ }
+
+ case Stmt::IfStmtClass: {
+ const IfStmt *IS = cast<IfStmt>(S);
+
+ // Evaluate the condition, as either a var decl or as an expression.
+ BlockScopeRAII Scope(Info);
+ if (const Stmt *Init = IS->getInit()) {
+ EvalStmtResult ESR = EvaluateStmt(Result, Info, Init);
+ if (ESR != ESR_Succeeded) {
+ if (ESR != ESR_Failed && !Scope.destroy())
+ return ESR_Failed;
+ return ESR;
+ }
+ }
+ bool Cond;
+ if (!EvaluateCond(Info, IS->getConditionVariable(), IS->getCond(), Cond))
+ return ESR_Failed;
+
+ if (const Stmt *SubStmt = Cond ? IS->getThen() : IS->getElse()) {
+ EvalStmtResult ESR = EvaluateStmt(Result, Info, SubStmt);
+ if (ESR != ESR_Succeeded) {
+ if (ESR != ESR_Failed && !Scope.destroy())
+ return ESR_Failed;
+ return ESR;
+ }
+ }
+ return Scope.destroy() ? ESR_Succeeded : ESR_Failed;
+ }
+
+ case Stmt::WhileStmtClass: {
+ const WhileStmt *WS = cast<WhileStmt>(S);
+ while (true) {
+ BlockScopeRAII Scope(Info);
+ bool Continue;
+ if (!EvaluateCond(Info, WS->getConditionVariable(), WS->getCond(),
+ Continue))
+ return ESR_Failed;
+ if (!Continue)
+ break;
+
+ EvalStmtResult ESR = EvaluateLoopBody(Result, Info, WS->getBody());
+ if (ESR != ESR_Continue) {
+ if (ESR != ESR_Failed && !Scope.destroy())
+ return ESR_Failed;
+ return ESR;
+ }
+ if (!Scope.destroy())
+ return ESR_Failed;
+ }
+ return ESR_Succeeded;
+ }
+
+ case Stmt::DoStmtClass: {
+ const DoStmt *DS = cast<DoStmt>(S);
+ bool Continue;
+ do {
+ EvalStmtResult ESR = EvaluateLoopBody(Result, Info, DS->getBody(), Case);
+ if (ESR != ESR_Continue)
+ return ESR;
+ Case = nullptr;
+
+ FullExpressionRAII CondScope(Info);
+ if (!EvaluateAsBooleanCondition(DS->getCond(), Continue, Info) ||
+ !CondScope.destroy())
+ return ESR_Failed;
+ } while (Continue);
+ return ESR_Succeeded;
+ }
+
+ case Stmt::ForStmtClass: {
+ const ForStmt *FS = cast<ForStmt>(S);
+ BlockScopeRAII ForScope(Info);
+ if (FS->getInit()) {
+ EvalStmtResult ESR = EvaluateStmt(Result, Info, FS->getInit());
+ if (ESR != ESR_Succeeded) {
+ if (ESR != ESR_Failed && !ForScope.destroy())
+ return ESR_Failed;
+ return ESR;
+ }
+ }
+ while (true) {
+ BlockScopeRAII IterScope(Info);
+ bool Continue = true;
+ if (FS->getCond() && !EvaluateCond(Info, FS->getConditionVariable(),
+ FS->getCond(), Continue))
+ return ESR_Failed;
+ if (!Continue)
+ break;
+
+ EvalStmtResult ESR = EvaluateLoopBody(Result, Info, FS->getBody());
+ if (ESR != ESR_Continue) {
+ if (ESR != ESR_Failed && (!IterScope.destroy() || !ForScope.destroy()))
+ return ESR_Failed;
+ return ESR;
+ }
+
+ if (FS->getInc()) {
+ FullExpressionRAII IncScope(Info);
+ if (!EvaluateIgnoredValue(Info, FS->getInc()) || !IncScope.destroy())
+ return ESR_Failed;
+ }
+
+ if (!IterScope.destroy())
+ return ESR_Failed;
+ }
+ return ForScope.destroy() ? ESR_Succeeded : ESR_Failed;
+ }
+
+ case Stmt::CXXForRangeStmtClass: {
+ const CXXForRangeStmt *FS = cast<CXXForRangeStmt>(S);
+ BlockScopeRAII Scope(Info);
+
+ // Evaluate the init-statement if present.
+ if (FS->getInit()) {
+ EvalStmtResult ESR = EvaluateStmt(Result, Info, FS->getInit());
+ if (ESR != ESR_Succeeded) {
+ if (ESR != ESR_Failed && !Scope.destroy())
+ return ESR_Failed;
+ return ESR;
+ }
+ }
+
+ // Initialize the __range variable.
+ EvalStmtResult ESR = EvaluateStmt(Result, Info, FS->getRangeStmt());
+ if (ESR != ESR_Succeeded) {
+ if (ESR != ESR_Failed && !Scope.destroy())
+ return ESR_Failed;
+ return ESR;
+ }
+
+ // Create the __begin and __end iterators.
+ ESR = EvaluateStmt(Result, Info, FS->getBeginStmt());
+ if (ESR != ESR_Succeeded) {
+ if (ESR != ESR_Failed && !Scope.destroy())
+ return ESR_Failed;
+ return ESR;
+ }
+ ESR = EvaluateStmt(Result, Info, FS->getEndStmt());
+ if (ESR != ESR_Succeeded) {
+ if (ESR != ESR_Failed && !Scope.destroy())
+ return ESR_Failed;
+ return ESR;
+ }
+
+ while (true) {
+ // Condition: __begin != __end.
+ {
+ bool Continue = true;
+ FullExpressionRAII CondExpr(Info);
+ if (!EvaluateAsBooleanCondition(FS->getCond(), Continue, Info))
+ return ESR_Failed;
+ if (!Continue)
+ break;
+ }
+
+ // User's variable declaration, initialized by *__begin.
+ BlockScopeRAII InnerScope(Info);
+ ESR = EvaluateStmt(Result, Info, FS->getLoopVarStmt());
+ if (ESR != ESR_Succeeded) {
+ if (ESR != ESR_Failed && (!InnerScope.destroy() || !Scope.destroy()))
+ return ESR_Failed;
+ return ESR;
+ }
+
+ // Loop body.
+ ESR = EvaluateLoopBody(Result, Info, FS->getBody());
+ if (ESR != ESR_Continue) {
+ if (ESR != ESR_Failed && (!InnerScope.destroy() || !Scope.destroy()))
+ return ESR_Failed;
+ return ESR;
+ }
+
+ // Increment: ++__begin
+ if (!EvaluateIgnoredValue(Info, FS->getInc()))
+ return ESR_Failed;
+
+ if (!InnerScope.destroy())
+ return ESR_Failed;
+ }
+
+ return Scope.destroy() ? ESR_Succeeded : ESR_Failed;
+ }
+
+ case Stmt::SwitchStmtClass:
+ return EvaluateSwitch(Result, Info, cast<SwitchStmt>(S));
+
+ case Stmt::ContinueStmtClass:
+ return ESR_Continue;
+
+ case Stmt::BreakStmtClass:
+ return ESR_Break;
+
+ case Stmt::LabelStmtClass:
+ return EvaluateStmt(Result, Info, cast<LabelStmt>(S)->getSubStmt(), Case);
+
+ case Stmt::AttributedStmtClass:
+ // As a general principle, C++11 attributes can be ignored without
+ // any semantic impact.
+ return EvaluateStmt(Result, Info, cast<AttributedStmt>(S)->getSubStmt(),
+ Case);
+
+ case Stmt::CaseStmtClass:
+ case Stmt::DefaultStmtClass:
+ return EvaluateStmt(Result, Info, cast<SwitchCase>(S)->getSubStmt(), Case);
+ case Stmt::CXXTryStmtClass:
+ // Evaluate try blocks by evaluating all sub statements.
+ return EvaluateStmt(Result, Info, cast<CXXTryStmt>(S)->getTryBlock(), Case);
+ }
+}
+
+/// CheckTrivialDefaultConstructor - Check whether a constructor is a trivial
+/// default constructor. If so, we'll fold it whether or not it's marked as
+/// constexpr. If it is marked as constexpr, we will never implicitly define it,
+/// so we need special handling.
+static bool CheckTrivialDefaultConstructor(EvalInfo &Info, SourceLocation Loc,
+ const CXXConstructorDecl *CD,
+ bool IsValueInitialization) {
+ if (!CD->isTrivial() || !CD->isDefaultConstructor())
+ return false;
+
+ // Value-initialization does not call a trivial default constructor, so such a
+ // call is a core constant expression whether or not the constructor is
+ // constexpr.
+ if (!CD->isConstexpr() && !IsValueInitialization) {
+ if (Info.getLangOpts().CPlusPlus11) {
+ // FIXME: If DiagDecl is an implicitly-declared special member function,
+ // we should be much more explicit about why it's not constexpr.
+ Info.CCEDiag(Loc, diag::note_constexpr_invalid_function, 1)
+ << /*IsConstexpr*/0 << /*IsConstructor*/1 << CD;
+ Info.Note(CD->getLocation(), diag::note_declared_at);
+ } else {
+ Info.CCEDiag(Loc, diag::note_invalid_subexpr_in_const_expr);
+ }
+ }
+ return true;
+}
+
+/// CheckConstexprFunction - Check that a function can be called in a constant
+/// expression.
+static bool CheckConstexprFunction(EvalInfo &Info, SourceLocation CallLoc,
+ const FunctionDecl *Declaration,
+ const FunctionDecl *Definition,
+ const Stmt *Body) {
+ // Potential constant expressions can contain calls to declared, but not yet
+ // defined, constexpr functions.
+ if (Info.checkingPotentialConstantExpression() && !Definition &&
+ Declaration->isConstexpr())
+ return false;
+
+ // Bail out if the function declaration itself is invalid. We will
+ // have produced a relevant diagnostic while parsing it, so just
+ // note the problematic sub-expression.
+ if (Declaration->isInvalidDecl()) {
+ Info.FFDiag(CallLoc, diag::note_invalid_subexpr_in_const_expr);
+ return false;
+ }
+
+ // DR1872: An instantiated virtual constexpr function can't be called in a
+ // constant expression (prior to C++20). We can still constant-fold such a
+ // call.
+ if (!Info.Ctx.getLangOpts().CPlusPlus2a && isa<CXXMethodDecl>(Declaration) &&
+ cast<CXXMethodDecl>(Declaration)->isVirtual())
+ Info.CCEDiag(CallLoc, diag::note_constexpr_virtual_call);
+
+ if (Definition && Definition->isInvalidDecl()) {
+ Info.FFDiag(CallLoc, diag::note_invalid_subexpr_in_const_expr);
+ return false;
+ }
+
+ // Can we evaluate this function call?
+ if (Definition && Definition->isConstexpr() && Body)
+ return true;
+
+ if (Info.getLangOpts().CPlusPlus11) {
+ const FunctionDecl *DiagDecl = Definition ? Definition : Declaration;
+
+ // If this function is not constexpr because it is an inherited
+ // non-constexpr constructor, diagnose that directly.
+ auto *CD = dyn_cast<CXXConstructorDecl>(DiagDecl);
+ if (CD && CD->isInheritingConstructor()) {
+ auto *Inherited = CD->getInheritedConstructor().getConstructor();
+ if (!Inherited->isConstexpr())
+ DiagDecl = CD = Inherited;
+ }
+
+ // FIXME: If DiagDecl is an implicitly-declared special member function
+ // or an inheriting constructor, we should be much more explicit about why
+ // it's not constexpr.
+ if (CD && CD->isInheritingConstructor())
+ Info.FFDiag(CallLoc, diag::note_constexpr_invalid_inhctor, 1)
+ << CD->getInheritedConstructor().getConstructor()->getParent();
+ else
+ Info.FFDiag(CallLoc, diag::note_constexpr_invalid_function, 1)
+ << DiagDecl->isConstexpr() << (bool)CD << DiagDecl;
+ Info.Note(DiagDecl->getLocation(), diag::note_declared_at);
+ } else {
+ Info.FFDiag(CallLoc, diag::note_invalid_subexpr_in_const_expr);
+ }
+ return false;
+}
+
+namespace {
+struct CheckDynamicTypeHandler {
+ AccessKinds AccessKind;
+ typedef bool result_type;
+ bool failed() { return false; }
+ bool found(APValue &Subobj, QualType SubobjType) { return true; }
+ bool found(APSInt &Value, QualType SubobjType) { return true; }
+ bool found(APFloat &Value, QualType SubobjType) { return true; }
+};
+} // end anonymous namespace
+
+/// Check that we can access the notional vptr of an object / determine its
+/// dynamic type.
+static bool checkDynamicType(EvalInfo &Info, const Expr *E, const LValue &This,
+ AccessKinds AK, bool Polymorphic) {
+ if (This.Designator.Invalid)
+ return false;
+
+ CompleteObject Obj = findCompleteObject(Info, E, AK, This, QualType());
+
+ if (!Obj)
+ return false;
+
+ if (!Obj.Value) {
+ // The object is not usable in constant expressions, so we can't inspect
+ // its value to see if it's in-lifetime or what the active union members
+ // are. We can still check for a one-past-the-end lvalue.
+ if (This.Designator.isOnePastTheEnd() ||
+ This.Designator.isMostDerivedAnUnsizedArray()) {
+ Info.FFDiag(E, This.Designator.isOnePastTheEnd()
+ ? diag::note_constexpr_access_past_end
+ : diag::note_constexpr_access_unsized_array)
+ << AK;
+ return false;
+ } else if (Polymorphic) {
+ // Conservatively refuse to perform a polymorphic operation if we would
+ // not be able to read a notional 'vptr' value.
+ APValue Val;
+ This.moveInto(Val);
+ QualType StarThisType =
+ Info.Ctx.getLValueReferenceType(This.Designator.getType(Info.Ctx));
+ Info.FFDiag(E, diag::note_constexpr_polymorphic_unknown_dynamic_type)
+ << AK << Val.getAsString(Info.Ctx, StarThisType);
+ return false;
+ }
+ return true;
+ }
+
+ CheckDynamicTypeHandler Handler{AK};
+ return Obj && findSubobject(Info, E, Obj, This.Designator, Handler);
+}
+
+/// Check that the pointee of the 'this' pointer in a member function call is
+/// either within its lifetime or in its period of construction or destruction.
+static bool
+checkNonVirtualMemberCallThisPointer(EvalInfo &Info, const Expr *E,
+ const LValue &This,
+ const CXXMethodDecl *NamedMember) {
+ return checkDynamicType(
+ Info, E, This,
+ isa<CXXDestructorDecl>(NamedMember) ? AK_Destroy : AK_MemberCall, false);
+}
+
+struct DynamicType {
+ /// The dynamic class type of the object.
+ const CXXRecordDecl *Type;
+ /// The corresponding path length in the lvalue.
+ unsigned PathLength;
+};
+
+static const CXXRecordDecl *getBaseClassType(SubobjectDesignator &Designator,
+ unsigned PathLength) {
+ assert(PathLength >= Designator.MostDerivedPathLength && PathLength <=
+ Designator.Entries.size() && "invalid path length");
+ return (PathLength == Designator.MostDerivedPathLength)
+ ? Designator.MostDerivedType->getAsCXXRecordDecl()
+ : getAsBaseClass(Designator.Entries[PathLength - 1]);
+}
+
+/// Determine the dynamic type of an object.
+static Optional<DynamicType> ComputeDynamicType(EvalInfo &Info, const Expr *E,
+ LValue &This, AccessKinds AK) {
+ // If we don't have an lvalue denoting an object of class type, there is no
+ // meaningful dynamic type. (We consider objects of non-class type to have no
+ // dynamic type.)
+ if (!checkDynamicType(Info, E, This, AK, true))
+ return None;
+
+ // Refuse to compute a dynamic type in the presence of virtual bases. This
+ // shouldn't happen other than in constant-folding situations, since literal
+ // types can't have virtual bases.
+ //
+ // Note that consumers of DynamicType assume that the type has no virtual
+ // bases, and will need modifications if this restriction is relaxed.
+ const CXXRecordDecl *Class =
+ This.Designator.MostDerivedType->getAsCXXRecordDecl();
+ if (!Class || Class->getNumVBases()) {
+ Info.FFDiag(E);
+ return None;
+ }
+
+ // FIXME: For very deep class hierarchies, it might be beneficial to use a
+ // binary search here instead. But the overwhelmingly common case is that
+ // we're not in the middle of a constructor, so it probably doesn't matter
+ // in practice.
+ ArrayRef<APValue::LValuePathEntry> Path = This.Designator.Entries;
+ for (unsigned PathLength = This.Designator.MostDerivedPathLength;
+ PathLength <= Path.size(); ++PathLength) {
+ switch (Info.isEvaluatingCtorDtor(This.getLValueBase(),
+ Path.slice(0, PathLength))) {
+ case ConstructionPhase::Bases:
+ case ConstructionPhase::DestroyingBases:
+ // We're constructing or destroying a base class. This is not the dynamic
+ // type.
+ break;
+
+ case ConstructionPhase::None:
+ case ConstructionPhase::AfterBases:
+ case ConstructionPhase::Destroying:
+ // We've finished constructing the base classes and not yet started
+ // destroying them again, so this is the dynamic type.
+ return DynamicType{getBaseClassType(This.Designator, PathLength),
+ PathLength};
+ }
+ }
+
+ // CWG issue 1517: we're constructing a base class of the object described by
+ // 'This', so that object has not yet begun its period of construction and
+ // any polymorphic operation on it results in undefined behavior.
+ Info.FFDiag(E);
+ return None;
+}
+
+/// Perform virtual dispatch.
+static const CXXMethodDecl *HandleVirtualDispatch(
+ EvalInfo &Info, const Expr *E, LValue &This, const CXXMethodDecl *Found,
+ llvm::SmallVectorImpl<QualType> &CovariantAdjustmentPath) {
+ Optional<DynamicType> DynType = ComputeDynamicType(
+ Info, E, This,
+ isa<CXXDestructorDecl>(Found) ? AK_Destroy : AK_MemberCall);
+ if (!DynType)
+ return nullptr;
+
+ // Find the final overrider. It must be declared in one of the classes on the
+ // path from the dynamic type to the static type.
+ // FIXME: If we ever allow literal types to have virtual base classes, that
+ // won't be true.
+ const CXXMethodDecl *Callee = Found;
+ unsigned PathLength = DynType->PathLength;
+ for (/**/; PathLength <= This.Designator.Entries.size(); ++PathLength) {
+ const CXXRecordDecl *Class = getBaseClassType(This.Designator, PathLength);
+ const CXXMethodDecl *Overrider =
+ Found->getCorrespondingMethodDeclaredInClass(Class, false);
+ if (Overrider) {
+ Callee = Overrider;
+ break;
+ }
+ }
+
+ // C++2a [class.abstract]p6:
+ // the effect of making a virtual call to a pure virtual function [...] is
+ // undefined
+ if (Callee->isPure()) {
+ Info.FFDiag(E, diag::note_constexpr_pure_virtual_call, 1) << Callee;
+ Info.Note(Callee->getLocation(), diag::note_declared_at);
+ return nullptr;
+ }
+
+ // If necessary, walk the rest of the path to determine the sequence of
+ // covariant adjustment steps to apply.
+ if (!Info.Ctx.hasSameUnqualifiedType(Callee->getReturnType(),
+ Found->getReturnType())) {
+ CovariantAdjustmentPath.push_back(Callee->getReturnType());
+ for (unsigned CovariantPathLength = PathLength + 1;
+ CovariantPathLength != This.Designator.Entries.size();
+ ++CovariantPathLength) {
+ const CXXRecordDecl *NextClass =
+ getBaseClassType(This.Designator, CovariantPathLength);
+ const CXXMethodDecl *Next =
+ Found->getCorrespondingMethodDeclaredInClass(NextClass, false);
+ if (Next && !Info.Ctx.hasSameUnqualifiedType(
+ Next->getReturnType(), CovariantAdjustmentPath.back()))
+ CovariantAdjustmentPath.push_back(Next->getReturnType());
+ }
+ if (!Info.Ctx.hasSameUnqualifiedType(Found->getReturnType(),
+ CovariantAdjustmentPath.back()))
+ CovariantAdjustmentPath.push_back(Found->getReturnType());
+ }
+
+ // Perform 'this' adjustment.
+ if (!CastToDerivedClass(Info, E, This, Callee->getParent(), PathLength))
+ return nullptr;
+
+ return Callee;
+}
+
+/// Perform the adjustment from a value returned by a virtual function to
+/// a value of the statically expected type, which may be a pointer or
+/// reference to a base class of the returned type.
+static bool HandleCovariantReturnAdjustment(EvalInfo &Info, const Expr *E,
+ APValue &Result,
+ ArrayRef<QualType> Path) {
+ assert(Result.isLValue() &&
+ "unexpected kind of APValue for covariant return");
+ if (Result.isNullPointer())
+ return true;
+
+ LValue LVal;
+ LVal.setFrom(Info.Ctx, Result);
+
+ const CXXRecordDecl *OldClass = Path[0]->getPointeeCXXRecordDecl();
+ for (unsigned I = 1; I != Path.size(); ++I) {
+ const CXXRecordDecl *NewClass = Path[I]->getPointeeCXXRecordDecl();
+ assert(OldClass && NewClass && "unexpected kind of covariant return");
+ if (OldClass != NewClass &&
+ !CastToBaseClass(Info, E, LVal, OldClass, NewClass))
+ return false;
+ OldClass = NewClass;
+ }
+
+ LVal.moveInto(Result);
+ return true;
+}
+
+/// Determine whether \p Base, which is known to be a direct base class of
+/// \p Derived, is a public base class.
+static bool isBaseClassPublic(const CXXRecordDecl *Derived,
+ const CXXRecordDecl *Base) {
+ for (const CXXBaseSpecifier &BaseSpec : Derived->bases()) {
+ auto *BaseClass = BaseSpec.getType()->getAsCXXRecordDecl();
+ if (BaseClass && declaresSameEntity(BaseClass, Base))
+ return BaseSpec.getAccessSpecifier() == AS_public;
+ }
+ llvm_unreachable("Base is not a direct base of Derived");
+}
+
+/// Apply the given dynamic cast operation on the provided lvalue.
+///
+/// This implements the hard case of dynamic_cast, requiring a "runtime check"
+/// to find a suitable target subobject.
+static bool HandleDynamicCast(EvalInfo &Info, const ExplicitCastExpr *E,
+ LValue &Ptr) {
+ // We can't do anything with a non-symbolic pointer value.
+ SubobjectDesignator &D = Ptr.Designator;
+ if (D.Invalid)
+ return false;
+
+ // C++ [expr.dynamic.cast]p6:
+ // If v is a null pointer value, the result is a null pointer value.
+ if (Ptr.isNullPointer() && !E->isGLValue())
+ return true;
+
+ // For all the other cases, we need the pointer to point to an object within
+ // its lifetime / period of construction / destruction, and we need to know
+ // its dynamic type.
+ Optional<DynamicType> DynType =
+ ComputeDynamicType(Info, E, Ptr, AK_DynamicCast);
+ if (!DynType)
+ return false;
+
+ // C++ [expr.dynamic.cast]p7:
+ // If T is "pointer to cv void", then the result is a pointer to the most
+ // derived object
+ if (E->getType()->isVoidPointerType())
+ return CastToDerivedClass(Info, E, Ptr, DynType->Type, DynType->PathLength);
+
+ const CXXRecordDecl *C = E->getTypeAsWritten()->getPointeeCXXRecordDecl();
+ assert(C && "dynamic_cast target is not void pointer nor class");
+ CanQualType CQT = Info.Ctx.getCanonicalType(Info.Ctx.getRecordType(C));
+
+ auto RuntimeCheckFailed = [&] (CXXBasePaths *Paths) {
+ // C++ [expr.dynamic.cast]p9:
+ if (!E->isGLValue()) {
+ // The value of a failed cast to pointer type is the null pointer value
+ // of the required result type.
+ Ptr.setNull(Info.Ctx, E->getType());
+ return true;
+ }
+
+ // A failed cast to reference type throws [...] std::bad_cast.
+ unsigned DiagKind;
+ if (!Paths && (declaresSameEntity(DynType->Type, C) ||
+ DynType->Type->isDerivedFrom(C)))
+ DiagKind = 0;
+ else if (!Paths || Paths->begin() == Paths->end())
+ DiagKind = 1;
+ else if (Paths->isAmbiguous(CQT))
+ DiagKind = 2;
+ else {
+ assert(Paths->front().Access != AS_public && "why did the cast fail?");
+ DiagKind = 3;
+ }
+ Info.FFDiag(E, diag::note_constexpr_dynamic_cast_to_reference_failed)
+ << DiagKind << Ptr.Designator.getType(Info.Ctx)
+ << Info.Ctx.getRecordType(DynType->Type)
+ << E->getType().getUnqualifiedType();
+ return false;
+ };
+
+ // Runtime check, phase 1:
+ // Walk from the base subobject towards the derived object looking for the
+ // target type.
+ for (int PathLength = Ptr.Designator.Entries.size();
+ PathLength >= (int)DynType->PathLength; --PathLength) {
+ const CXXRecordDecl *Class = getBaseClassType(Ptr.Designator, PathLength);
+ if (declaresSameEntity(Class, C))
+ return CastToDerivedClass(Info, E, Ptr, Class, PathLength);
+ // We can only walk across public inheritance edges.
+ if (PathLength > (int)DynType->PathLength &&
+ !isBaseClassPublic(getBaseClassType(Ptr.Designator, PathLength - 1),
+ Class))
+ return RuntimeCheckFailed(nullptr);
+ }
+
+ // Runtime check, phase 2:
+ // Search the dynamic type for an unambiguous public base of type C.
+ CXXBasePaths Paths(/*FindAmbiguities=*/true,
+ /*RecordPaths=*/true, /*DetectVirtual=*/false);
+ if (DynType->Type->isDerivedFrom(C, Paths) && !Paths.isAmbiguous(CQT) &&
+ Paths.front().Access == AS_public) {
+ // Downcast to the dynamic type...
+ if (!CastToDerivedClass(Info, E, Ptr, DynType->Type, DynType->PathLength))
+ return false;
+ // ... then upcast to the chosen base class subobject.
+ for (CXXBasePathElement &Elem : Paths.front())
+ if (!HandleLValueBase(Info, E, Ptr, Elem.Class, Elem.Base))
+ return false;
+ return true;
+ }
+
+ // Otherwise, the runtime check fails.
+ return RuntimeCheckFailed(&Paths);
+}
+
+namespace {
+struct StartLifetimeOfUnionMemberHandler {
+ const FieldDecl *Field;
+
+ static const AccessKinds AccessKind = AK_Assign;
+
+ typedef bool result_type;
+ bool failed() { return false; }
+ bool found(APValue &Subobj, QualType SubobjType) {
+ // We are supposed to perform no initialization but begin the lifetime of
+ // the object. We interpret that as meaning to do what default
+ // initialization of the object would do if all constructors involved were
+ // trivial:
+ // * All base, non-variant member, and array element subobjects' lifetimes
+ // begin
+ // * No variant members' lifetimes begin
+ // * All scalar subobjects whose lifetimes begin have indeterminate values
+ assert(SubobjType->isUnionType());
+ if (!declaresSameEntity(Subobj.getUnionField(), Field) ||
+ !Subobj.getUnionValue().hasValue())
+ Subobj.setUnion(Field, getDefaultInitValue(Field->getType()));
+ return true;
+ }
+ bool found(APSInt &Value, QualType SubobjType) {
+ llvm_unreachable("wrong value kind for union object");
+ }
+ bool found(APFloat &Value, QualType SubobjType) {
+ llvm_unreachable("wrong value kind for union object");
+ }
+};
+} // end anonymous namespace
+
+const AccessKinds StartLifetimeOfUnionMemberHandler::AccessKind;
+
+/// Handle a builtin simple-assignment or a call to a trivial assignment
+/// operator whose left-hand side might involve a union member access. If it
+/// does, implicitly start the lifetime of any accessed union elements per
+/// C++20 [class.union]5.
+static bool HandleUnionActiveMemberChange(EvalInfo &Info, const Expr *LHSExpr,
+ const LValue &LHS) {
+ if (LHS.InvalidBase || LHS.Designator.Invalid)
+ return false;
+
+ llvm::SmallVector<std::pair<unsigned, const FieldDecl*>, 4> UnionPathLengths;
+ // C++ [class.union]p5:
+ // define the set S(E) of subexpressions of E as follows:
+ unsigned PathLength = LHS.Designator.Entries.size();
+ for (const Expr *E = LHSExpr; E != nullptr;) {
+ // -- If E is of the form A.B, S(E) contains the elements of S(A)...
+ if (auto *ME = dyn_cast<MemberExpr>(E)) {
+ auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl());
+ // Note that we can't implicitly start the lifetime of a reference,
+ // so we don't need to proceed any further if we reach one.
+ if (!FD || FD->getType()->isReferenceType())
+ break;
+
+ // ... and also contains A.B if B names a union member
+ if (FD->getParent()->isUnion())
+ UnionPathLengths.push_back({PathLength - 1, FD});
+
+ E = ME->getBase();
+ --PathLength;
+ assert(declaresSameEntity(FD,
+ LHS.Designator.Entries[PathLength]
+ .getAsBaseOrMember().getPointer()));
+
+ // -- If E is of the form A[B] and is interpreted as a built-in array
+ // subscripting operator, S(E) is [S(the array operand, if any)].
+ } else if (auto *ASE = dyn_cast<ArraySubscriptExpr>(E)) {
+ // Step over an ArrayToPointerDecay implicit cast.
+ auto *Base = ASE->getBase()->IgnoreImplicit();
+ if (!Base->getType()->isArrayType())
+ break;
+
+ E = Base;
+ --PathLength;
+
+ } else if (auto *ICE = dyn_cast<ImplicitCastExpr>(E)) {
+ // Step over a derived-to-base conversion.
+ E = ICE->getSubExpr();
+ if (ICE->getCastKind() == CK_NoOp)
+ continue;
+ if (ICE->getCastKind() != CK_DerivedToBase &&
+ ICE->getCastKind() != CK_UncheckedDerivedToBase)
+ break;
+ // Walk path backwards as we walk up from the base to the derived class.
+ for (const CXXBaseSpecifier *Elt : llvm::reverse(ICE->path())) {
+ --PathLength;
+ (void)Elt;
+ assert(declaresSameEntity(Elt->getType()->getAsCXXRecordDecl(),
+ LHS.Designator.Entries[PathLength]
+ .getAsBaseOrMember().getPointer()));
+ }
+
+ // -- Otherwise, S(E) is empty.
+ } else {
+ break;
+ }
+ }
+
+ // Common case: no unions' lifetimes are started.
+ if (UnionPathLengths.empty())
+ return true;
+
+ // if modification of X [would access an inactive union member], an object
+ // of the type of X is implicitly created
+ CompleteObject Obj =
+ findCompleteObject(Info, LHSExpr, AK_Assign, LHS, LHSExpr->getType());
+ if (!Obj)
+ return false;
+ for (std::pair<unsigned, const FieldDecl *> LengthAndField :
+ llvm::reverse(UnionPathLengths)) {
+ // Form a designator for the union object.
+ SubobjectDesignator D = LHS.Designator;
+ D.truncate(Info.Ctx, LHS.Base, LengthAndField.first);
+
+ StartLifetimeOfUnionMemberHandler StartLifetime{LengthAndField.second};
+ if (!findSubobject(Info, LHSExpr, Obj, D, StartLifetime))
+ return false;
+ }
+
+ return true;
+}
+
+/// Determine if a class has any fields that might need to be copied by a
+/// trivial copy or move operation.
+static bool hasFields(const CXXRecordDecl *RD) {
+ if (!RD || RD->isEmpty())
+ return false;
+ for (auto *FD : RD->fields()) {
+ if (FD->isUnnamedBitfield())
+ continue;
+ return true;
+ }
+ for (auto &Base : RD->bases())
+ if (hasFields(Base.getType()->getAsCXXRecordDecl()))
+ return true;
+ return false;
+}
+
+namespace {
+typedef SmallVector<APValue, 8> ArgVector;
+}
+
+/// EvaluateArgs - Evaluate the arguments to a function call.
+static bool EvaluateArgs(ArrayRef<const Expr *> Args, ArgVector &ArgValues,
+ EvalInfo &Info, const FunctionDecl *Callee) {
+ bool Success = true;
+ llvm::SmallBitVector ForbiddenNullArgs;
+ if (Callee->hasAttr<NonNullAttr>()) {
+ ForbiddenNullArgs.resize(Args.size());
+ for (const auto *Attr : Callee->specific_attrs<NonNullAttr>()) {
+ if (!Attr->args_size()) {
+ ForbiddenNullArgs.set();
+ break;
+ } else
+ for (auto Idx : Attr->args()) {
+ unsigned ASTIdx = Idx.getASTIndex();
+ if (ASTIdx >= Args.size())
+ continue;
+ ForbiddenNullArgs[ASTIdx] = 1;
+ }
+ }
+ }
+ for (unsigned Idx = 0; Idx < Args.size(); Idx++) {
+ if (!Evaluate(ArgValues[Idx], Info, Args[Idx])) {
+ // If we're checking for a potential constant expression, evaluate all
+ // initializers even if some of them fail.
+ if (!Info.noteFailure())
+ return false;
+ Success = false;
+ } else if (!ForbiddenNullArgs.empty() &&
+ ForbiddenNullArgs[Idx] &&
+ ArgValues[Idx].isLValue() &&
+ ArgValues[Idx].isNullPointer()) {
+ Info.CCEDiag(Args[Idx], diag::note_non_null_attribute_failed);
+ if (!Info.noteFailure())
+ return false;
+ Success = false;
+ }
+ }
+ return Success;
+}
+
+/// Evaluate a function call.
+static bool HandleFunctionCall(SourceLocation CallLoc,
+ const FunctionDecl *Callee, const LValue *This,
+ ArrayRef<const Expr*> Args, const Stmt *Body,
+ EvalInfo &Info, APValue &Result,
+ const LValue *ResultSlot) {
+ ArgVector ArgValues(Args.size());
+ if (!EvaluateArgs(Args, ArgValues, Info, Callee))
+ return false;
+
+ if (!Info.CheckCallLimit(CallLoc))
+ return false;
+
+ CallStackFrame Frame(Info, CallLoc, Callee, This, ArgValues.data());
+
+ // For a trivial copy or move assignment, perform an APValue copy. This is
+ // essential for unions, where the operations performed by the assignment
+ // operator cannot be represented as statements.
+ //
+ // Skip this for non-union classes with no fields; in that case, the defaulted
+ // copy/move does not actually read the object.
+ const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Callee);
+ if (MD && MD->isDefaulted() &&
+ (MD->getParent()->isUnion() ||
+ (MD->isTrivial() && hasFields(MD->getParent())))) {
+ assert(This &&
+ (MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator()));
+ LValue RHS;
+ RHS.setFrom(Info.Ctx, ArgValues[0]);
+ APValue RHSValue;
+ if (!handleLValueToRValueConversion(Info, Args[0], Args[0]->getType(), RHS,
+ RHSValue, MD->getParent()->isUnion()))
+ return false;
+ if (Info.getLangOpts().CPlusPlus2a && MD->isTrivial() &&
+ !HandleUnionActiveMemberChange(Info, Args[0], *This))
+ return false;
+ if (!handleAssignment(Info, Args[0], *This, MD->getThisType(),
+ RHSValue))
+ return false;
+ This->moveInto(Result);
+ return true;
+ } else if (MD && isLambdaCallOperator(MD)) {
+ // We're in a lambda; determine the lambda capture field maps unless we're
+ // just constexpr checking a lambda's call operator. constexpr checking is
+ // done before the captures have been added to the closure object (unless
+ // we're inferring constexpr-ness), so we don't have access to them in this
+ // case. But since we don't need the captures to constexpr check, we can
+ // just ignore them.
+ if (!Info.checkingPotentialConstantExpression())
+ MD->getParent()->getCaptureFields(Frame.LambdaCaptureFields,
+ Frame.LambdaThisCaptureField);
+ }
+
+ StmtResult Ret = {Result, ResultSlot};
+ EvalStmtResult ESR = EvaluateStmt(Ret, Info, Body);
+ if (ESR == ESR_Succeeded) {
+ if (Callee->getReturnType()->isVoidType())
+ return true;
+ Info.FFDiag(Callee->getEndLoc(), diag::note_constexpr_no_return);
+ }
+ return ESR == ESR_Returned;
+}
+
+/// Evaluate a constructor call.
+static bool HandleConstructorCall(const Expr *E, const LValue &This,
+ APValue *ArgValues,
+ const CXXConstructorDecl *Definition,
+ EvalInfo &Info, APValue &Result) {
+ SourceLocation CallLoc = E->getExprLoc();
+ if (!Info.CheckCallLimit(CallLoc))
+ return false;
+
+ const CXXRecordDecl *RD = Definition->getParent();
+ if (RD->getNumVBases()) {
+ Info.FFDiag(CallLoc, diag::note_constexpr_virtual_base) << RD;
+ return false;
+ }
+
+ EvalInfo::EvaluatingConstructorRAII EvalObj(
+ Info,
+ ObjectUnderConstruction{This.getLValueBase(), This.Designator.Entries},
+ RD->getNumBases());
+ CallStackFrame Frame(Info, CallLoc, Definition, &This, ArgValues);
+
+ // FIXME: Creating an APValue just to hold a nonexistent return value is
+ // wasteful.
+ APValue RetVal;
+ StmtResult Ret = {RetVal, nullptr};
+
+ // If it's a delegating constructor, delegate.
+ if (Definition->isDelegatingConstructor()) {
+ CXXConstructorDecl::init_const_iterator I = Definition->init_begin();
+ {
+ FullExpressionRAII InitScope(Info);
+ if (!EvaluateInPlace(Result, Info, This, (*I)->getInit()) ||
+ !InitScope.destroy())
+ return false;
+ }
+ return EvaluateStmt(Ret, Info, Definition->getBody()) != ESR_Failed;
+ }
+
+ // For a trivial copy or move constructor, perform an APValue copy. This is
+ // essential for unions (or classes with anonymous union members), where the
+ // operations performed by the constructor cannot be represented by
+ // ctor-initializers.
+ //
+ // Skip this for empty non-union classes; we should not perform an
+ // lvalue-to-rvalue conversion on them because their copy constructor does not
+ // actually read them.
+ if (Definition->isDefaulted() && Definition->isCopyOrMoveConstructor() &&
+ (Definition->getParent()->isUnion() ||
+ (Definition->isTrivial() && hasFields(Definition->getParent())))) {
+ LValue RHS;
+ RHS.setFrom(Info.Ctx, ArgValues[0]);
+ return handleLValueToRValueConversion(
+ Info, E, Definition->getParamDecl(0)->getType().getNonReferenceType(),
+ RHS, Result, Definition->getParent()->isUnion());
+ }
+
+ // Reserve space for the struct members.
+ if (!RD->isUnion() && !Result.hasValue())
+ Result = APValue(APValue::UninitStruct(), RD->getNumBases(),
+ std::distance(RD->field_begin(), RD->field_end()));
+
+ if (RD->isInvalidDecl()) return false;
+ const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
+
+ // A scope for temporaries lifetime-extended by reference members.
+ BlockScopeRAII LifetimeExtendedScope(Info);
+
+ bool Success = true;
+ unsigned BasesSeen = 0;
+#ifndef NDEBUG
+ CXXRecordDecl::base_class_const_iterator BaseIt = RD->bases_begin();
+#endif
+ CXXRecordDecl::field_iterator FieldIt = RD->field_begin();
+ auto SkipToField = [&](FieldDecl *FD, bool Indirect) {
+ // We might be initializing the same field again if this is an indirect
+ // field initialization.
+ if (FieldIt == RD->field_end() ||
+ FieldIt->getFieldIndex() > FD->getFieldIndex()) {
+ assert(Indirect && "fields out of order?");
+ return;
+ }
+
+ // Default-initialize any fields with no explicit initializer.
+ for (; !declaresSameEntity(*FieldIt, FD); ++FieldIt) {
+ assert(FieldIt != RD->field_end() && "missing field?");
+ if (!FieldIt->isUnnamedBitfield())
+ Result.getStructField(FieldIt->getFieldIndex()) =
+ getDefaultInitValue(FieldIt->getType());
+ }
+ ++FieldIt;
+ };
+ for (const auto *I : Definition->inits()) {
+ LValue Subobject = This;
+ LValue SubobjectParent = This;
+ APValue *Value = &Result;
+
+ // Determine the subobject to initialize.
+ FieldDecl *FD = nullptr;
+ if (I->isBaseInitializer()) {
+ QualType BaseType(I->getBaseClass(), 0);
+#ifndef NDEBUG
+ // Non-virtual base classes are initialized in the order in the class
+ // definition. We have already checked for virtual base classes.
+ assert(!BaseIt->isVirtual() && "virtual base for literal type");
+ assert(Info.Ctx.hasSameType(BaseIt->getType(), BaseType) &&
+ "base class initializers not in expected order");
+ ++BaseIt;
+#endif
+ if (!HandleLValueDirectBase(Info, I->getInit(), Subobject, RD,
+ BaseType->getAsCXXRecordDecl(), &Layout))
+ return false;
+ Value = &Result.getStructBase(BasesSeen++);
+ } else if ((FD = I->getMember())) {
+ if (!HandleLValueMember(Info, I->getInit(), Subobject, FD, &Layout))
+ return false;
+ if (RD->isUnion()) {
+ Result = APValue(FD);
+ Value = &Result.getUnionValue();
+ } else {
+ SkipToField(FD, false);
+ Value = &Result.getStructField(FD->getFieldIndex());
+ }
+ } else if (IndirectFieldDecl *IFD = I->getIndirectMember()) {
+ // Walk the indirect field decl's chain to find the object to initialize,
+ // and make sure we've initialized every step along it.
+ auto IndirectFieldChain = IFD->chain();
+ for (auto *C : IndirectFieldChain) {
+ FD = cast<FieldDecl>(C);
+ CXXRecordDecl *CD = cast<CXXRecordDecl>(FD->getParent());
+ // Switch the union field if it differs. This happens if we had
+ // preceding zero-initialization, and we're now initializing a union
+ // subobject other than the first.
+ // FIXME: In this case, the values of the other subobjects are
+ // specified, since zero-initialization sets all padding bits to zero.
+ if (!Value->hasValue() ||
+ (Value->isUnion() && Value->getUnionField() != FD)) {
+ if (CD->isUnion())
+ *Value = APValue(FD);
+ else
+ // FIXME: This immediately starts the lifetime of all members of an
+ // anonymous struct. It would be preferable to strictly start member
+ // lifetime in initialization order.
+ *Value = getDefaultInitValue(Info.Ctx.getRecordType(CD));
+ }
+ // Store Subobject as its parent before updating it for the last element
+ // in the chain.
+ if (C == IndirectFieldChain.back())
+ SubobjectParent = Subobject;
+ if (!HandleLValueMember(Info, I->getInit(), Subobject, FD))
+ return false;
+ if (CD->isUnion())
+ Value = &Value->getUnionValue();
+ else {
+ if (C == IndirectFieldChain.front() && !RD->isUnion())
+ SkipToField(FD, true);
+ Value = &Value->getStructField(FD->getFieldIndex());
+ }
+ }
+ } else {
+ llvm_unreachable("unknown base initializer kind");
+ }
+
+ // Need to override This for implicit field initializers as in this case
+ // This refers to innermost anonymous struct/union containing initializer,
+ // not to currently constructed class.
+ const Expr *Init = I->getInit();
+ ThisOverrideRAII ThisOverride(*Info.CurrentCall, &SubobjectParent,
+ isa<CXXDefaultInitExpr>(Init));
+ FullExpressionRAII InitScope(Info);
+ if (!EvaluateInPlace(*Value, Info, Subobject, Init) ||
+ (FD && FD->isBitField() &&
+ !truncateBitfieldValue(Info, Init, *Value, FD))) {
+ // If we're checking for a potential constant expression, evaluate all
+ // initializers even if some of them fail.
+ if (!Info.noteFailure())
+ return false;
+ Success = false;
+ }
+
+ // This is the point at which the dynamic type of the object becomes this
+ // class type.
+ if (I->isBaseInitializer() && BasesSeen == RD->getNumBases())
+ EvalObj.finishedConstructingBases();
+ }
+
+ // Default-initialize any remaining fields.
+ if (!RD->isUnion()) {
+ for (; FieldIt != RD->field_end(); ++FieldIt) {
+ if (!FieldIt->isUnnamedBitfield())
+ Result.getStructField(FieldIt->getFieldIndex()) =
+ getDefaultInitValue(FieldIt->getType());
+ }
+ }
+
+ return Success &&
+ EvaluateStmt(Ret, Info, Definition->getBody()) != ESR_Failed &&
+ LifetimeExtendedScope.destroy();
+}
+
+static bool HandleConstructorCall(const Expr *E, const LValue &This,
+ ArrayRef<const Expr*> Args,
+ const CXXConstructorDecl *Definition,
+ EvalInfo &Info, APValue &Result) {
+ ArgVector ArgValues(Args.size());
+ if (!EvaluateArgs(Args, ArgValues, Info, Definition))
+ return false;
+
+ return HandleConstructorCall(E, This, ArgValues.data(), Definition,
+ Info, Result);
+}
+
+static bool HandleDestructionImpl(EvalInfo &Info, SourceLocation CallLoc,
+ const LValue &This, APValue &Value,
+ QualType T) {
+ // Objects can only be destroyed while they're within their lifetimes.
+ // FIXME: We have no representation for whether an object of type nullptr_t
+ // is in its lifetime; it usually doesn't matter. Perhaps we should model it
+ // as indeterminate instead?
+ if (Value.isAbsent() && !T->isNullPtrType()) {
+ APValue Printable;
+ This.moveInto(Printable);
+ Info.FFDiag(CallLoc, diag::note_constexpr_destroy_out_of_lifetime)
+ << Printable.getAsString(Info.Ctx, Info.Ctx.getLValueReferenceType(T));
+ return false;
+ }
+
+ // Invent an expression for location purposes.
+ // FIXME: We shouldn't need to do this.
+ OpaqueValueExpr LocE(CallLoc, Info.Ctx.IntTy, VK_RValue);
+
+ // For arrays, destroy elements right-to-left.
+ if (const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(T)) {
+ uint64_t Size = CAT->getSize().getZExtValue();
+ QualType ElemT = CAT->getElementType();
+
+ LValue ElemLV = This;
+ ElemLV.addArray(Info, &LocE, CAT);
+ if (!HandleLValueArrayAdjustment(Info, &LocE, ElemLV, ElemT, Size))
+ return false;
+
+ // Ensure that we have actual array elements available to destroy; the
+ // destructors might mutate the value, so we can't run them on the array
+ // filler.
+ if (Size && Size > Value.getArrayInitializedElts())
+ expandArray(Value, Value.getArraySize() - 1);
+
+ for (; Size != 0; --Size) {
+ APValue &Elem = Value.getArrayInitializedElt(Size - 1);
+ if (!HandleLValueArrayAdjustment(Info, &LocE, ElemLV, ElemT, -1) ||
+ !HandleDestructionImpl(Info, CallLoc, ElemLV, Elem, ElemT))
+ return false;
+ }
+
+ // End the lifetime of this array now.
+ Value = APValue();
+ return true;
+ }
+
+ const CXXRecordDecl *RD = T->getAsCXXRecordDecl();
+ if (!RD) {
+ if (T.isDestructedType()) {
+ Info.FFDiag(CallLoc, diag::note_constexpr_unsupported_destruction) << T;
+ return false;
+ }
+
+ Value = APValue();
+ return true;
+ }
+
+ if (RD->getNumVBases()) {
+ Info.FFDiag(CallLoc, diag::note_constexpr_virtual_base) << RD;
+ return false;
+ }
+
+ const CXXDestructorDecl *DD = RD->getDestructor();
+ if (!DD && !RD->hasTrivialDestructor()) {
+ Info.FFDiag(CallLoc);
+ return false;
+ }
+
+ if (!DD || DD->isTrivial() ||
+ (RD->isAnonymousStructOrUnion() && RD->isUnion())) {
+ // A trivial destructor just ends the lifetime of the object. Check for
+ // this case before checking for a body, because we might not bother
+ // building a body for a trivial destructor. Note that it doesn't matter
+ // whether the destructor is constexpr in this case; all trivial
+ // destructors are constexpr.
+ //
+ // If an anonymous union would be destroyed, some enclosing destructor must
+ // have been explicitly defined, and the anonymous union destruction should
+ // have no effect.
+ Value = APValue();
+ return true;
+ }
+
+ if (!Info.CheckCallLimit(CallLoc))
+ return false;
+
+ const FunctionDecl *Definition = nullptr;
+ const Stmt *Body = DD->getBody(Definition);
+
+ if (!CheckConstexprFunction(Info, CallLoc, DD, Definition, Body))
+ return false;
+
+ CallStackFrame Frame(Info, CallLoc, Definition, &This, nullptr);
+
+ // We're now in the period of destruction of this object.
+ unsigned BasesLeft = RD->getNumBases();
+ EvalInfo::EvaluatingDestructorRAII EvalObj(
+ Info,
+ ObjectUnderConstruction{This.getLValueBase(), This.Designator.Entries});
+ if (!EvalObj.DidInsert) {
+ // C++2a [class.dtor]p19:
+ // the behavior is undefined if the destructor is invoked for an object
+ // whose lifetime has ended
+ // (Note that formally the lifetime ends when the period of destruction
+ // begins, even though certain uses of the object remain valid until the
+ // period of destruction ends.)
+ Info.FFDiag(CallLoc, diag::note_constexpr_double_destroy);
+ return false;
+ }
+
+ // FIXME: Creating an APValue just to hold a nonexistent return value is
+ // wasteful.
+ APValue RetVal;
+ StmtResult Ret = {RetVal, nullptr};
+ if (EvaluateStmt(Ret, Info, Definition->getBody()) == ESR_Failed)
+ return false;
+
+ // A union destructor does not implicitly destroy its members.
+ if (RD->isUnion())
+ return true;
+
+ const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
+
+ // We don't have a good way to iterate fields in reverse, so collect all the
+ // fields first and then walk them backwards.
+ SmallVector<FieldDecl*, 16> Fields(RD->field_begin(), RD->field_end());
+ for (const FieldDecl *FD : llvm::reverse(Fields)) {
+ if (FD->isUnnamedBitfield())
+ continue;
+
+ LValue Subobject = This;
+ if (!HandleLValueMember(Info, &LocE, Subobject, FD, &Layout))
+ return false;
+
+ APValue *SubobjectValue = &Value.getStructField(FD->getFieldIndex());
+ if (!HandleDestructionImpl(Info, CallLoc, Subobject, *SubobjectValue,
+ FD->getType()))
+ return false;
+ }
+
+ if (BasesLeft != 0)
+ EvalObj.startedDestroyingBases();
+
+ // Destroy base classes in reverse order.
+ for (const CXXBaseSpecifier &Base : llvm::reverse(RD->bases())) {
+ --BasesLeft;
+
+ QualType BaseType = Base.getType();
+ LValue Subobject = This;
+ if (!HandleLValueDirectBase(Info, &LocE, Subobject, RD,
+ BaseType->getAsCXXRecordDecl(), &Layout))
+ return false;
+
+ APValue *SubobjectValue = &Value.getStructBase(BasesLeft);
+ if (!HandleDestructionImpl(Info, CallLoc, Subobject, *SubobjectValue,
+ BaseType))
+ return false;
+ }
+ assert(BasesLeft == 0 && "NumBases was wrong?");
+
+ // The period of destruction ends now. The object is gone.
+ Value = APValue();
+ return true;
+}
+
+namespace {
+struct DestroyObjectHandler {
+ EvalInfo &Info;
+ const Expr *E;
+ const LValue &This;
+ const AccessKinds AccessKind;
+
+ typedef bool result_type;
+ bool failed() { return false; }
+ bool found(APValue &Subobj, QualType SubobjType) {
+ return HandleDestructionImpl(Info, E->getExprLoc(), This, Subobj,
+ SubobjType);
+ }
+ bool found(APSInt &Value, QualType SubobjType) {
+ Info.FFDiag(E, diag::note_constexpr_destroy_complex_elem);
+ return false;
+ }
+ bool found(APFloat &Value, QualType SubobjType) {
+ Info.FFDiag(E, diag::note_constexpr_destroy_complex_elem);
+ return false;
+ }
+};
+}
+
+/// Perform a destructor or pseudo-destructor call on the given object, which
+/// might in general not be a complete object.
+static bool HandleDestruction(EvalInfo &Info, const Expr *E,
+ const LValue &This, QualType ThisType) {
+ CompleteObject Obj = findCompleteObject(Info, E, AK_Destroy, This, ThisType);
+ DestroyObjectHandler Handler = {Info, E, This, AK_Destroy};
+ return Obj && findSubobject(Info, E, Obj, This.Designator, Handler);
+}
+
+/// Destroy and end the lifetime of the given complete object.
+static bool HandleDestruction(EvalInfo &Info, SourceLocation Loc,
+ APValue::LValueBase LVBase, APValue &Value,
+ QualType T) {
+ // If we've had an unmodeled side-effect, we can't rely on mutable state
+ // (such as the object we're about to destroy) being correct.
+ if (Info.EvalStatus.HasSideEffects)
+ return false;
+
+ LValue LV;
+ LV.set({LVBase});
+ return HandleDestructionImpl(Info, Loc, LV, Value, T);
+}
+
+/// Perform a call to 'perator new' or to `__builtin_operator_new'.
+static bool HandleOperatorNewCall(EvalInfo &Info, const CallExpr *E,
+ LValue &Result) {
+ if (Info.checkingPotentialConstantExpression() ||
+ Info.SpeculativeEvaluationDepth)
+ return false;
+
+ // This is permitted only within a call to std::allocator<T>::allocate.
+ auto Caller = Info.getStdAllocatorCaller("allocate");
+ if (!Caller) {
+ Info.FFDiag(E->getExprLoc(), Info.getLangOpts().CPlusPlus2a
+ ? diag::note_constexpr_new_untyped
+ : diag::note_constexpr_new);
+ return false;
+ }
+
+ QualType ElemType = Caller.ElemType;
+ if (ElemType->isIncompleteType() || ElemType->isFunctionType()) {
+ Info.FFDiag(E->getExprLoc(),
+ diag::note_constexpr_new_not_complete_object_type)
+ << (ElemType->isIncompleteType() ? 0 : 1) << ElemType;
+ return false;
+ }
+
+ APSInt ByteSize;
+ if (!EvaluateInteger(E->getArg(0), ByteSize, Info))
+ return false;
+ bool IsNothrow = false;
+ for (unsigned I = 1, N = E->getNumArgs(); I != N; ++I) {
+ EvaluateIgnoredValue(Info, E->getArg(I));
+ IsNothrow |= E->getType()->isNothrowT();
+ }
+
+ CharUnits ElemSize;
+ if (!HandleSizeof(Info, E->getExprLoc(), ElemType, ElemSize))
+ return false;
+ APInt Size, Remainder;
+ APInt ElemSizeAP(ByteSize.getBitWidth(), ElemSize.getQuantity());
+ APInt::udivrem(ByteSize, ElemSizeAP, Size, Remainder);
+ if (Remainder != 0) {
+ // This likely indicates a bug in the implementation of 'std::allocator'.
+ Info.FFDiag(E->getExprLoc(), diag::note_constexpr_operator_new_bad_size)
+ << ByteSize << APSInt(ElemSizeAP, true) << ElemType;
+ return false;
+ }
+
+ if (ByteSize.getActiveBits() > ConstantArrayType::getMaxSizeBits(Info.Ctx)) {
+ if (IsNothrow) {
+ Result.setNull(Info.Ctx, E->getType());
+ return true;
+ }
+
+ Info.FFDiag(E, diag::note_constexpr_new_too_large) << APSInt(Size, true);
+ return false;
+ }
+
+ QualType AllocType = Info.Ctx.getConstantArrayType(ElemType, Size, nullptr,
+ ArrayType::Normal, 0);
+ APValue *Val = Info.createHeapAlloc(E, AllocType, Result);
+ *Val = APValue(APValue::UninitArray(), 0, Size.getZExtValue());
+ Result.addArray(Info, E, cast<ConstantArrayType>(AllocType));
+ return true;
+}
+
+static bool hasVirtualDestructor(QualType T) {
+ if (CXXRecordDecl *RD = T->getAsCXXRecordDecl())
+ if (CXXDestructorDecl *DD = RD->getDestructor())
+ return DD->isVirtual();
+ return false;
+}
+
+static const FunctionDecl *getVirtualOperatorDelete(QualType T) {
+ if (CXXRecordDecl *RD = T->getAsCXXRecordDecl())
+ if (CXXDestructorDecl *DD = RD->getDestructor())
+ return DD->isVirtual() ? DD->getOperatorDelete() : nullptr;
+ return nullptr;
+}
+
+/// Check that the given object is a suitable pointer to a heap allocation that
+/// still exists and is of the right kind for the purpose of a deletion.
+///
+/// On success, returns the heap allocation to deallocate. On failure, produces
+/// a diagnostic and returns None.
+static Optional<DynAlloc *> CheckDeleteKind(EvalInfo &Info, const Expr *E,
+ const LValue &Pointer,
+ DynAlloc::Kind DeallocKind) {
+ auto PointerAsString = [&] {
+ return Pointer.toString(Info.Ctx, Info.Ctx.VoidPtrTy);
+ };
+
+ DynamicAllocLValue DA = Pointer.Base.dyn_cast<DynamicAllocLValue>();
+ if (!DA) {
+ Info.FFDiag(E, diag::note_constexpr_delete_not_heap_alloc)
+ << PointerAsString();
+ if (Pointer.Base)
+ NoteLValueLocation(Info, Pointer.Base);
+ return None;
+ }
+
+ Optional<DynAlloc *> Alloc = Info.lookupDynamicAlloc(DA);
+ if (!Alloc) {
+ Info.FFDiag(E, diag::note_constexpr_double_delete);
+ return None;
+ }
+
+ QualType AllocType = Pointer.Base.getDynamicAllocType();
+ if (DeallocKind != (*Alloc)->getKind()) {
+ Info.FFDiag(E, diag::note_constexpr_new_delete_mismatch)
+ << DeallocKind << (*Alloc)->getKind() << AllocType;
+ NoteLValueLocation(Info, Pointer.Base);
+ return None;
+ }
+
+ bool Subobject = false;
+ if (DeallocKind == DynAlloc::New) {
+ Subobject = Pointer.Designator.MostDerivedPathLength != 0 ||
+ Pointer.Designator.isOnePastTheEnd();
+ } else {
+ Subobject = Pointer.Designator.Entries.size() != 1 ||
+ Pointer.Designator.Entries[0].getAsArrayIndex() != 0;
+ }
+ if (Subobject) {
+ Info.FFDiag(E, diag::note_constexpr_delete_subobject)
+ << PointerAsString() << Pointer.Designator.isOnePastTheEnd();
+ return None;
+ }
+
+ return Alloc;
+}
+
+// Perform a call to 'operator delete' or '__builtin_operator_delete'.
+bool HandleOperatorDeleteCall(EvalInfo &Info, const CallExpr *E) {
+ if (Info.checkingPotentialConstantExpression() ||
+ Info.SpeculativeEvaluationDepth)
+ return false;
+
+ // This is permitted only within a call to std::allocator<T>::deallocate.
+ if (!Info.getStdAllocatorCaller("deallocate")) {
+ Info.FFDiag(E->getExprLoc());
+ return true;
+ }
+
+ LValue Pointer;
+ if (!EvaluatePointer(E->getArg(0), Pointer, Info))
+ return false;
+ for (unsigned I = 1, N = E->getNumArgs(); I != N; ++I)
+ EvaluateIgnoredValue(Info, E->getArg(I));
+
+ if (Pointer.Designator.Invalid)
+ return false;
+
+ // Deleting a null pointer has no effect.
+ if (Pointer.isNullPointer())
+ return true;
+
+ if (!CheckDeleteKind(Info, E, Pointer, DynAlloc::StdAllocator))
+ return false;
+
+ Info.HeapAllocs.erase(Pointer.Base.get<DynamicAllocLValue>());
+ return true;
+}
+
+//===----------------------------------------------------------------------===//
+// Generic Evaluation
+//===----------------------------------------------------------------------===//
+namespace {
+
+class BitCastBuffer {
+ // FIXME: We're going to need bit-level granularity when we support
+ // bit-fields.
+ // FIXME: Its possible under the C++ standard for 'char' to not be 8 bits, but
+ // we don't support a host or target where that is the case. Still, we should
+ // use a more generic type in case we ever do.
+ SmallVector<Optional<unsigned char>, 32> Bytes;
+
+ static_assert(std::numeric_limits<unsigned char>::digits >= 8,
+ "Need at least 8 bit unsigned char");
+
+ bool TargetIsLittleEndian;
+
+public:
+ BitCastBuffer(CharUnits Width, bool TargetIsLittleEndian)
+ : Bytes(Width.getQuantity()),
+ TargetIsLittleEndian(TargetIsLittleEndian) {}
+
+ LLVM_NODISCARD
+ bool readObject(CharUnits Offset, CharUnits Width,
+ SmallVectorImpl<unsigned char> &Output) const {
+ for (CharUnits I = Offset, E = Offset + Width; I != E; ++I) {
+ // If a byte of an integer is uninitialized, then the whole integer is
+ // uninitalized.
+ if (!Bytes[I.getQuantity()])
+ return false;
+ Output.push_back(*Bytes[I.getQuantity()]);
+ }
+ if (llvm::sys::IsLittleEndianHost != TargetIsLittleEndian)
+ std::reverse(Output.begin(), Output.end());
+ return true;
+ }
+
+ void writeObject(CharUnits Offset, SmallVectorImpl<unsigned char> &Input) {
+ if (llvm::sys::IsLittleEndianHost != TargetIsLittleEndian)
+ std::reverse(Input.begin(), Input.end());
+
+ size_t Index = 0;
+ for (unsigned char Byte : Input) {
+ assert(!Bytes[Offset.getQuantity() + Index] && "overwriting a byte?");
+ Bytes[Offset.getQuantity() + Index] = Byte;
+ ++Index;
+ }
+ }
+
+ size_t size() { return Bytes.size(); }
+};
+
+/// Traverse an APValue to produce an BitCastBuffer, emulating how the current
+/// target would represent the value at runtime.
+class APValueToBufferConverter {
+ EvalInfo &Info;
+ BitCastBuffer Buffer;
+ const CastExpr *BCE;
+
+ APValueToBufferConverter(EvalInfo &Info, CharUnits ObjectWidth,
+ const CastExpr *BCE)
+ : Info(Info),
+ Buffer(ObjectWidth, Info.Ctx.getTargetInfo().isLittleEndian()),
+ BCE(BCE) {}
+
+ bool visit(const APValue &Val, QualType Ty) {
+ return visit(Val, Ty, CharUnits::fromQuantity(0));
+ }
+
+ // Write out Val with type Ty into Buffer starting at Offset.
+ bool visit(const APValue &Val, QualType Ty, CharUnits Offset) {
+ assert((size_t)Offset.getQuantity() <= Buffer.size());
+
+ // As a special case, nullptr_t has an indeterminate value.
+ if (Ty->isNullPtrType())
+ return true;
+
+ // Dig through Src to find the byte at SrcOffset.
+ switch (Val.getKind()) {
+ case APValue::Indeterminate:
+ case APValue::None:
+ return true;
+
+ case APValue::Int:
+ return visitInt(Val.getInt(), Ty, Offset);
+ case APValue::Float:
+ return visitFloat(Val.getFloat(), Ty, Offset);
+ case APValue::Array:
+ return visitArray(Val, Ty, Offset);
+ case APValue::Struct:
+ return visitRecord(Val, Ty, Offset);
+
+ case APValue::ComplexInt:
+ case APValue::ComplexFloat:
+ case APValue::Vector:
+ case APValue::FixedPoint:
+ // FIXME: We should support these.
+
+ case APValue::Union:
+ case APValue::MemberPointer:
+ case APValue::AddrLabelDiff: {
+ Info.FFDiag(BCE->getBeginLoc(),
+ diag::note_constexpr_bit_cast_unsupported_type)
+ << Ty;
+ return false;
+ }
+
+ case APValue::LValue:
+ llvm_unreachable("LValue subobject in bit_cast?");
+ }
+ llvm_unreachable("Unhandled APValue::ValueKind");
+ }
+
+ bool visitRecord(const APValue &Val, QualType Ty, CharUnits Offset) {
+ const RecordDecl *RD = Ty->getAsRecordDecl();
+ const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
+
+ // Visit the base classes.
+ if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
+ for (size_t I = 0, E = CXXRD->getNumBases(); I != E; ++I) {
+ const CXXBaseSpecifier &BS = CXXRD->bases_begin()[I];
+ CXXRecordDecl *BaseDecl = BS.getType()->getAsCXXRecordDecl();
+
+ if (!visitRecord(Val.getStructBase(I), BS.getType(),
+ Layout.getBaseClassOffset(BaseDecl) + Offset))
+ return false;
+ }
+ }
+
+ // Visit the fields.
+ unsigned FieldIdx = 0;
+ for (FieldDecl *FD : RD->fields()) {
+ if (FD->isBitField()) {
+ Info.FFDiag(BCE->getBeginLoc(),
+ diag::note_constexpr_bit_cast_unsupported_bitfield);
+ return false;
+ }
+
+ uint64_t FieldOffsetBits = Layout.getFieldOffset(FieldIdx);
+
+ assert(FieldOffsetBits % Info.Ctx.getCharWidth() == 0 &&
+ "only bit-fields can have sub-char alignment");
+ CharUnits FieldOffset =
+ Info.Ctx.toCharUnitsFromBits(FieldOffsetBits) + Offset;
+ QualType FieldTy = FD->getType();
+ if (!visit(Val.getStructField(FieldIdx), FieldTy, FieldOffset))
+ return false;
+ ++FieldIdx;
+ }
+
+ return true;
+ }
+
+ bool visitArray(const APValue &Val, QualType Ty, CharUnits Offset) {
+ const auto *CAT =
+ dyn_cast_or_null<ConstantArrayType>(Ty->getAsArrayTypeUnsafe());
+ if (!CAT)
+ return false;
+
+ CharUnits ElemWidth = Info.Ctx.getTypeSizeInChars(CAT->getElementType());
+ unsigned NumInitializedElts = Val.getArrayInitializedElts();
+ unsigned ArraySize = Val.getArraySize();
+ // First, initialize the initialized elements.
+ for (unsigned I = 0; I != NumInitializedElts; ++I) {
+ const APValue &SubObj = Val.getArrayInitializedElt(I);
+ if (!visit(SubObj, CAT->getElementType(), Offset + I * ElemWidth))
+ return false;
+ }
+
+ // Next, initialize the rest of the array using the filler.
+ if (Val.hasArrayFiller()) {
+ const APValue &Filler = Val.getArrayFiller();
+ for (unsigned I = NumInitializedElts; I != ArraySize; ++I) {
+ if (!visit(Filler, CAT->getElementType(), Offset + I * ElemWidth))
+ return false;
+ }
+ }
+
+ return true;
+ }
+
+ bool visitInt(const APSInt &Val, QualType Ty, CharUnits Offset) {
+ CharUnits Width = Info.Ctx.getTypeSizeInChars(Ty);
+ SmallVector<unsigned char, 8> Bytes(Width.getQuantity());
+ llvm::StoreIntToMemory(Val, &*Bytes.begin(), Width.getQuantity());
+ Buffer.writeObject(Offset, Bytes);
+ return true;
+ }
+
+ bool visitFloat(const APFloat &Val, QualType Ty, CharUnits Offset) {
+ APSInt AsInt(Val.bitcastToAPInt());
+ return visitInt(AsInt, Ty, Offset);
+ }
+
+public:
+ static Optional<BitCastBuffer> convert(EvalInfo &Info, const APValue &Src,
+ const CastExpr *BCE) {
+ CharUnits DstSize = Info.Ctx.getTypeSizeInChars(BCE->getType());
+ APValueToBufferConverter Converter(Info, DstSize, BCE);
+ if (!Converter.visit(Src, BCE->getSubExpr()->getType()))
+ return None;
+ return Converter.Buffer;
+ }
+};
+
+/// Write an BitCastBuffer into an APValue.
+class BufferToAPValueConverter {
+ EvalInfo &Info;
+ const BitCastBuffer &Buffer;
+ const CastExpr *BCE;
+
+ BufferToAPValueConverter(EvalInfo &Info, const BitCastBuffer &Buffer,
+ const CastExpr *BCE)
+ : Info(Info), Buffer(Buffer), BCE(BCE) {}
+
+ // Emit an unsupported bit_cast type error. Sema refuses to build a bit_cast
+ // with an invalid type, so anything left is a deficiency on our part (FIXME).
+ // Ideally this will be unreachable.
+ llvm::NoneType unsupportedType(QualType Ty) {
+ Info.FFDiag(BCE->getBeginLoc(),
+ diag::note_constexpr_bit_cast_unsupported_type)
+ << Ty;
+ return None;
+ }
+
+ Optional<APValue> visit(const BuiltinType *T, CharUnits Offset,
+ const EnumType *EnumSugar = nullptr) {
+ if (T->isNullPtrType()) {
+ uint64_t NullValue = Info.Ctx.getTargetNullPointerValue(QualType(T, 0));
+ return APValue((Expr *)nullptr,
+ /*Offset=*/CharUnits::fromQuantity(NullValue),
+ APValue::NoLValuePath{}, /*IsNullPtr=*/true);
+ }
+
+ CharUnits SizeOf = Info.Ctx.getTypeSizeInChars(T);
+ SmallVector<uint8_t, 8> Bytes;
+ if (!Buffer.readObject(Offset, SizeOf, Bytes)) {
+ // If this is std::byte or unsigned char, then its okay to store an
+ // indeterminate value.
+ bool IsStdByte = EnumSugar && EnumSugar->isStdByteType();
+ bool IsUChar =
+ !EnumSugar && (T->isSpecificBuiltinType(BuiltinType::UChar) ||
+ T->isSpecificBuiltinType(BuiltinType::Char_U));
+ if (!IsStdByte && !IsUChar) {
+ QualType DisplayType(EnumSugar ? (const Type *)EnumSugar : T, 0);
+ Info.FFDiag(BCE->getExprLoc(),
+ diag::note_constexpr_bit_cast_indet_dest)
+ << DisplayType << Info.Ctx.getLangOpts().CharIsSigned;
+ return None;
+ }
+
+ return APValue::IndeterminateValue();
+ }
+
+ APSInt Val(SizeOf.getQuantity() * Info.Ctx.getCharWidth(), true);
+ llvm::LoadIntFromMemory(Val, &*Bytes.begin(), Bytes.size());
+
+ if (T->isIntegralOrEnumerationType()) {
+ Val.setIsSigned(T->isSignedIntegerOrEnumerationType());
+ return APValue(Val);
+ }
+
+ if (T->isRealFloatingType()) {
+ const llvm::fltSemantics &Semantics =
+ Info.Ctx.getFloatTypeSemantics(QualType(T, 0));
+ return APValue(APFloat(Semantics, Val));
+ }
+
+ return unsupportedType(QualType(T, 0));
+ }
+
+ Optional<APValue> visit(const RecordType *RTy, CharUnits Offset) {
+ const RecordDecl *RD = RTy->getAsRecordDecl();
+ const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
+
+ unsigned NumBases = 0;
+ if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RD))
+ NumBases = CXXRD->getNumBases();
+
+ APValue ResultVal(APValue::UninitStruct(), NumBases,
+ std::distance(RD->field_begin(), RD->field_end()));
+
+ // Visit the base classes.
+ if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
+ for (size_t I = 0, E = CXXRD->getNumBases(); I != E; ++I) {
+ const CXXBaseSpecifier &BS = CXXRD->bases_begin()[I];
+ CXXRecordDecl *BaseDecl = BS.getType()->getAsCXXRecordDecl();
+ if (BaseDecl->isEmpty() ||
+ Info.Ctx.getASTRecordLayout(BaseDecl).getNonVirtualSize().isZero())
+ continue;
+
+ Optional<APValue> SubObj = visitType(
+ BS.getType(), Layout.getBaseClassOffset(BaseDecl) + Offset);
+ if (!SubObj)
+ return None;
+ ResultVal.getStructBase(I) = *SubObj;
+ }
+ }
+
+ // Visit the fields.
+ unsigned FieldIdx = 0;
+ for (FieldDecl *FD : RD->fields()) {
+ // FIXME: We don't currently support bit-fields. A lot of the logic for
+ // this is in CodeGen, so we need to factor it around.
+ if (FD->isBitField()) {
+ Info.FFDiag(BCE->getBeginLoc(),
+ diag::note_constexpr_bit_cast_unsupported_bitfield);
+ return None;
+ }
+
+ uint64_t FieldOffsetBits = Layout.getFieldOffset(FieldIdx);
+ assert(FieldOffsetBits % Info.Ctx.getCharWidth() == 0);
+
+ CharUnits FieldOffset =
+ CharUnits::fromQuantity(FieldOffsetBits / Info.Ctx.getCharWidth()) +
+ Offset;
+ QualType FieldTy = FD->getType();
+ Optional<APValue> SubObj = visitType(FieldTy, FieldOffset);
+ if (!SubObj)
+ return None;
+ ResultVal.getStructField(FieldIdx) = *SubObj;
+ ++FieldIdx;
+ }
+
+ return ResultVal;
+ }
+
+ Optional<APValue> visit(const EnumType *Ty, CharUnits Offset) {
+ QualType RepresentationType = Ty->getDecl()->getIntegerType();
+ assert(!RepresentationType.isNull() &&
+ "enum forward decl should be caught by Sema");
+ const auto *AsBuiltin =
+ RepresentationType.getCanonicalType()->castAs<BuiltinType>();
+ // Recurse into the underlying type. Treat std::byte transparently as
+ // unsigned char.
+ return visit(AsBuiltin, Offset, /*EnumTy=*/Ty);
+ }
+
+ Optional<APValue> visit(const ConstantArrayType *Ty, CharUnits Offset) {
+ size_t Size = Ty->getSize().getLimitedValue();
+ CharUnits ElementWidth = Info.Ctx.getTypeSizeInChars(Ty->getElementType());
+
+ APValue ArrayValue(APValue::UninitArray(), Size, Size);
+ for (size_t I = 0; I != Size; ++I) {
+ Optional<APValue> ElementValue =
+ visitType(Ty->getElementType(), Offset + I * ElementWidth);
+ if (!ElementValue)
+ return None;
+ ArrayValue.getArrayInitializedElt(I) = std::move(*ElementValue);
+ }
+
+ return ArrayValue;
+ }
+
+ Optional<APValue> visit(const Type *Ty, CharUnits Offset) {
+ return unsupportedType(QualType(Ty, 0));
+ }
+
+ Optional<APValue> visitType(QualType Ty, CharUnits Offset) {
+ QualType Can = Ty.getCanonicalType();
+
+ switch (Can->getTypeClass()) {
+#define TYPE(Class, Base) \
+ case Type::Class: \
+ return visit(cast<Class##Type>(Can.getTypePtr()), Offset);
+#define ABSTRACT_TYPE(Class, Base)
+#define NON_CANONICAL_TYPE(Class, Base) \
+ case Type::Class: \
+ llvm_unreachable("non-canonical type should be impossible!");
+#define DEPENDENT_TYPE(Class, Base) \
+ case Type::Class: \
+ llvm_unreachable( \
+ "dependent types aren't supported in the constant evaluator!");
+#define NON_CANONICAL_UNLESS_DEPENDENT(Class, Base) \
+ case Type::Class: \
+ llvm_unreachable("either dependent or not canonical!");
+#include "clang/AST/TypeNodes.inc"
+ }
+ llvm_unreachable("Unhandled Type::TypeClass");
+ }
+
+public:
+ // Pull out a full value of type DstType.
+ static Optional<APValue> convert(EvalInfo &Info, BitCastBuffer &Buffer,
+ const CastExpr *BCE) {
+ BufferToAPValueConverter Converter(Info, Buffer, BCE);
+ return Converter.visitType(BCE->getType(), CharUnits::fromQuantity(0));
+ }
+};
+
+static bool checkBitCastConstexprEligibilityType(SourceLocation Loc,
+ QualType Ty, EvalInfo *Info,
+ const ASTContext &Ctx,
+ bool CheckingDest) {
+ Ty = Ty.getCanonicalType();
+
+ auto diag = [&](int Reason) {
+ if (Info)
+ Info->FFDiag(Loc, diag::note_constexpr_bit_cast_invalid_type)
+ << CheckingDest << (Reason == 4) << Reason;
+ return false;
+ };
+ auto note = [&](int Construct, QualType NoteTy, SourceLocation NoteLoc) {
+ if (Info)
+ Info->Note(NoteLoc, diag::note_constexpr_bit_cast_invalid_subtype)
+ << NoteTy << Construct << Ty;
+ return false;
+ };
+
+ if (Ty->isUnionType())
+ return diag(0);
+ if (Ty->isPointerType())
+ return diag(1);
+ if (Ty->isMemberPointerType())
+ return diag(2);
+ if (Ty.isVolatileQualified())
+ return diag(3);
+
+ if (RecordDecl *Record = Ty->getAsRecordDecl()) {
+ if (auto *CXXRD = dyn_cast<CXXRecordDecl>(Record)) {
+ for (CXXBaseSpecifier &BS : CXXRD->bases())
+ if (!checkBitCastConstexprEligibilityType(Loc, BS.getType(), Info, Ctx,
+ CheckingDest))
+ return note(1, BS.getType(), BS.getBeginLoc());
+ }
+ for (FieldDecl *FD : Record->fields()) {
+ if (FD->getType()->isReferenceType())
+ return diag(4);
+ if (!checkBitCastConstexprEligibilityType(Loc, FD->getType(), Info, Ctx,
+ CheckingDest))
+ return note(0, FD->getType(), FD->getBeginLoc());
+ }
+ }
+
+ if (Ty->isArrayType() &&
+ !checkBitCastConstexprEligibilityType(Loc, Ctx.getBaseElementType(Ty),
+ Info, Ctx, CheckingDest))
+ return false;
+
+ return true;
+}
+
+static bool checkBitCastConstexprEligibility(EvalInfo *Info,
+ const ASTContext &Ctx,
+ const CastExpr *BCE) {
+ bool DestOK = checkBitCastConstexprEligibilityType(
+ BCE->getBeginLoc(), BCE->getType(), Info, Ctx, true);
+ bool SourceOK = DestOK && checkBitCastConstexprEligibilityType(
+ BCE->getBeginLoc(),
+ BCE->getSubExpr()->getType(), Info, Ctx, false);
+ return SourceOK;
+}
+
+static bool handleLValueToRValueBitCast(EvalInfo &Info, APValue &DestValue,
+ APValue &SourceValue,
+ const CastExpr *BCE) {
+ assert(CHAR_BIT == 8 && Info.Ctx.getTargetInfo().getCharWidth() == 8 &&
+ "no host or target supports non 8-bit chars");
+ assert(SourceValue.isLValue() &&
+ "LValueToRValueBitcast requires an lvalue operand!");
+
+ if (!checkBitCastConstexprEligibility(&Info, Info.Ctx, BCE))
+ return false;
+
+ LValue SourceLValue;
+ APValue SourceRValue;
+ SourceLValue.setFrom(Info.Ctx, SourceValue);
+ if (!handleLValueToRValueConversion(
+ Info, BCE, BCE->getSubExpr()->getType().withConst(), SourceLValue,
+ SourceRValue, /*WantObjectRepresentation=*/true))
+ return false;
+
+ // Read out SourceValue into a char buffer.
+ Optional<BitCastBuffer> Buffer =
+ APValueToBufferConverter::convert(Info, SourceRValue, BCE);
+ if (!Buffer)
+ return false;
+
+ // Write out the buffer into a new APValue.
+ Optional<APValue> MaybeDestValue =
+ BufferToAPValueConverter::convert(Info, *Buffer, BCE);
+ if (!MaybeDestValue)
+ return false;
+
+ DestValue = std::move(*MaybeDestValue);
+ return true;
+}
+
+template <class Derived>
+class ExprEvaluatorBase
+ : public ConstStmtVisitor<Derived, bool> {
+private:
+ Derived &getDerived() { return static_cast<Derived&>(*this); }
+ bool DerivedSuccess(const APValue &V, const Expr *E) {
+ return getDerived().Success(V, E);
+ }
+ bool DerivedZeroInitialization(const Expr *E) {
+ return getDerived().ZeroInitialization(E);
+ }
+
+ // Check whether a conditional operator with a non-constant condition is a
+ // potential constant expression. If neither arm is a potential constant
+ // expression, then the conditional operator is not either.
+ template<typename ConditionalOperator>
+ void CheckPotentialConstantConditional(const ConditionalOperator *E) {
+ assert(Info.checkingPotentialConstantExpression());
+
+ // Speculatively evaluate both arms.
+ SmallVector<PartialDiagnosticAt, 8> Diag;
+ {
+ SpeculativeEvaluationRAII Speculate(Info, &Diag);
+ StmtVisitorTy::Visit(E->getFalseExpr());
+ if (Diag.empty())
+ return;
+ }
+
+ {
+ SpeculativeEvaluationRAII Speculate(Info, &Diag);
+ Diag.clear();
+ StmtVisitorTy::Visit(E->getTrueExpr());
+ if (Diag.empty())
+ return;
+ }
+
+ Error(E, diag::note_constexpr_conditional_never_const);
+ }
+
+
+ template<typename ConditionalOperator>
+ bool HandleConditionalOperator(const ConditionalOperator *E) {
+ bool BoolResult;
+ if (!EvaluateAsBooleanCondition(E->getCond(), BoolResult, Info)) {
+ if (Info.checkingPotentialConstantExpression() && Info.noteFailure()) {
+ CheckPotentialConstantConditional(E);
+ return false;
+ }
+ if (Info.noteFailure()) {
+ StmtVisitorTy::Visit(E->getTrueExpr());
+ StmtVisitorTy::Visit(E->getFalseExpr());
+ }
+ return false;
+ }
+
+ Expr *EvalExpr = BoolResult ? E->getTrueExpr() : E->getFalseExpr();
+ return StmtVisitorTy::Visit(EvalExpr);
+ }
+
+protected:
+ EvalInfo &Info;
+ typedef ConstStmtVisitor<Derived, bool> StmtVisitorTy;
+ typedef ExprEvaluatorBase ExprEvaluatorBaseTy;
+
+ OptionalDiagnostic CCEDiag(const Expr *E, diag::kind D) {
+ return Info.CCEDiag(E, D);
+ }
+
+ bool ZeroInitialization(const Expr *E) { return Error(E); }
+
+public:
+ ExprEvaluatorBase(EvalInfo &Info) : Info(Info) {}
+
+ EvalInfo &getEvalInfo() { return Info; }
+
+ /// Report an evaluation error. This should only be called when an error is
+ /// first discovered. When propagating an error, just return false.
+ bool Error(const Expr *E, diag::kind D) {
+ Info.FFDiag(E, D);
+ return false;
+ }
+ bool Error(const Expr *E) {
+ return Error(E, diag::note_invalid_subexpr_in_const_expr);
+ }
+
+ bool VisitStmt(const Stmt *) {
+ llvm_unreachable("Expression evaluator should not be called on stmts");
+ }
+ bool VisitExpr(const Expr *E) {
+ return Error(E);
+ }
+
+ bool VisitConstantExpr(const ConstantExpr *E)
+ { return StmtVisitorTy::Visit(E->getSubExpr()); }
+ bool VisitParenExpr(const ParenExpr *E)
+ { return StmtVisitorTy::Visit(E->getSubExpr()); }
+ bool VisitUnaryExtension(const UnaryOperator *E)
+ { return StmtVisitorTy::Visit(E->getSubExpr()); }
+ bool VisitUnaryPlus(const UnaryOperator *E)
+ { return StmtVisitorTy::Visit(E->getSubExpr()); }
+ bool VisitChooseExpr(const ChooseExpr *E)
+ { return StmtVisitorTy::Visit(E->getChosenSubExpr()); }
+ bool VisitGenericSelectionExpr(const GenericSelectionExpr *E)
+ { return StmtVisitorTy::Visit(E->getResultExpr()); }
+ bool VisitSubstNonTypeTemplateParmExpr(const SubstNonTypeTemplateParmExpr *E)
+ { return StmtVisitorTy::Visit(E->getReplacement()); }
+ bool VisitCXXDefaultArgExpr(const CXXDefaultArgExpr *E) {
+ TempVersionRAII RAII(*Info.CurrentCall);
+ SourceLocExprScopeGuard Guard(E, Info.CurrentCall->CurSourceLocExprScope);
+ return StmtVisitorTy::Visit(E->getExpr());
+ }
+ bool VisitCXXDefaultInitExpr(const CXXDefaultInitExpr *E) {
+ TempVersionRAII RAII(*Info.CurrentCall);
+ // The initializer may not have been parsed yet, or might be erroneous.
+ if (!E->getExpr())
+ return Error(E);
+ SourceLocExprScopeGuard Guard(E, Info.CurrentCall->CurSourceLocExprScope);
+ return StmtVisitorTy::Visit(E->getExpr());
+ }
+
+ bool VisitExprWithCleanups(const ExprWithCleanups *E) {
+ FullExpressionRAII Scope(Info);
+ return StmtVisitorTy::Visit(E->getSubExpr()) && Scope.destroy();
+ }
+
+ // Temporaries are registered when created, so we don't care about
+ // CXXBindTemporaryExpr.
+ bool VisitCXXBindTemporaryExpr(const CXXBindTemporaryExpr *E) {
+ return StmtVisitorTy::Visit(E->getSubExpr());
+ }
+
+ bool VisitCXXReinterpretCastExpr(const CXXReinterpretCastExpr *E) {
+ CCEDiag(E, diag::note_constexpr_invalid_cast) << 0;
+ return static_cast<Derived*>(this)->VisitCastExpr(E);
+ }
+ bool VisitCXXDynamicCastExpr(const CXXDynamicCastExpr *E) {
+ if (!Info.Ctx.getLangOpts().CPlusPlus2a)
+ CCEDiag(E, diag::note_constexpr_invalid_cast) << 1;
+ return static_cast<Derived*>(this)->VisitCastExpr(E);
+ }
+ bool VisitBuiltinBitCastExpr(const BuiltinBitCastExpr *E) {
+ return static_cast<Derived*>(this)->VisitCastExpr(E);
+ }
+
+ bool VisitBinaryOperator(const BinaryOperator *E) {
+ switch (E->getOpcode()) {
+ default:
+ return Error(E);
+
+ case BO_Comma:
+ VisitIgnoredValue(E->getLHS());
+ return StmtVisitorTy::Visit(E->getRHS());
+
+ case BO_PtrMemD:
+ case BO_PtrMemI: {
+ LValue Obj;
+ if (!HandleMemberPointerAccess(Info, E, Obj))
+ return false;
+ APValue Result;
+ if (!handleLValueToRValueConversion(Info, E, E->getType(), Obj, Result))
+ return false;
+ return DerivedSuccess(Result, E);
+ }
+ }
+ }
+
+ bool VisitCXXRewrittenBinaryOperator(const CXXRewrittenBinaryOperator *E) {
+ return StmtVisitorTy::Visit(E->getSemanticForm());
+ }
+
+ bool VisitBinaryConditionalOperator(const BinaryConditionalOperator *E) {
+ // Evaluate and cache the common expression. We treat it as a temporary,
+ // even though it's not quite the same thing.
+ LValue CommonLV;
+ if (!Evaluate(Info.CurrentCall->createTemporary(
+ E->getOpaqueValue(),
+ getStorageType(Info.Ctx, E->getOpaqueValue()), false,
+ CommonLV),
+ Info, E->getCommon()))
+ return false;
+
+ return HandleConditionalOperator(E);
+ }
+
+ bool VisitConditionalOperator(const ConditionalOperator *E) {
+ bool IsBcpCall = false;
+ // If the condition (ignoring parens) is a __builtin_constant_p call,
+ // the result is a constant expression if it can be folded without
+ // side-effects. This is an important GNU extension. See GCC PR38377
+ // for discussion.
+ if (const CallExpr *CallCE =
+ dyn_cast<CallExpr>(E->getCond()->IgnoreParenCasts()))
+ if (CallCE->getBuiltinCallee() == Builtin::BI__builtin_constant_p)
+ IsBcpCall = true;
+
+ // Always assume __builtin_constant_p(...) ? ... : ... is a potential
+ // constant expression; we can't check whether it's potentially foldable.
+ // FIXME: We should instead treat __builtin_constant_p as non-constant if
+ // it would return 'false' in this mode.
+ if (Info.checkingPotentialConstantExpression() && IsBcpCall)
+ return false;
+
+ FoldConstant Fold(Info, IsBcpCall);
+ if (!HandleConditionalOperator(E)) {
+ Fold.keepDiagnostics();
+ return false;
+ }
+
+ return true;
+ }
+
+ bool VisitOpaqueValueExpr(const OpaqueValueExpr *E) {
+ if (APValue *Value = Info.CurrentCall->getCurrentTemporary(E))
+ return DerivedSuccess(*Value, E);
+
+ const Expr *Source = E->getSourceExpr();
+ if (!Source)
+ return Error(E);
+ if (Source == E) { // sanity checking.
+ assert(0 && "OpaqueValueExpr recursively refers to itself");
+ return Error(E);
+ }
+ return StmtVisitorTy::Visit(Source);
+ }
+
+ bool VisitCallExpr(const CallExpr *E) {
+ APValue Result;
+ if (!handleCallExpr(E, Result, nullptr))
+ return false;
+ return DerivedSuccess(Result, E);
+ }
+
+ bool handleCallExpr(const CallExpr *E, APValue &Result,
+ const LValue *ResultSlot) {
+ const Expr *Callee = E->getCallee()->IgnoreParens();
+ QualType CalleeType = Callee->getType();
+
+ const FunctionDecl *FD = nullptr;
+ LValue *This = nullptr, ThisVal;
+ auto Args = llvm::makeArrayRef(E->getArgs(), E->getNumArgs());
+ bool HasQualifier = false;
+
+ // Extract function decl and 'this' pointer from the callee.
+ if (CalleeType->isSpecificBuiltinType(BuiltinType::BoundMember)) {
+ const CXXMethodDecl *Member = nullptr;
+ if (const MemberExpr *ME = dyn_cast<MemberExpr>(Callee)) {
+ // Explicit bound member calls, such as x.f() or p->g();
+ if (!EvaluateObjectArgument(Info, ME->getBase(), ThisVal))
+ return false;
+ Member = dyn_cast<CXXMethodDecl>(ME->getMemberDecl());
+ if (!Member)
+ return Error(Callee);
+ This = &ThisVal;
+ HasQualifier = ME->hasQualifier();
+ } else if (const BinaryOperator *BE = dyn_cast<BinaryOperator>(Callee)) {
+ // Indirect bound member calls ('.*' or '->*').
+ const ValueDecl *D =
+ HandleMemberPointerAccess(Info, BE, ThisVal, false);
+ if (!D)
+ return false;
+ Member = dyn_cast<CXXMethodDecl>(D);
+ if (!Member)
+ return Error(Callee);
+ This = &ThisVal;
+ } else if (const auto *PDE = dyn_cast<CXXPseudoDestructorExpr>(Callee)) {
+ if (!Info.getLangOpts().CPlusPlus2a)
+ Info.CCEDiag(PDE, diag::note_constexpr_pseudo_destructor);
+ // FIXME: If pseudo-destructor calls ever start ending the lifetime of
+ // their callee, we should start calling HandleDestruction here.
+ // For now, we just evaluate the object argument and discard it.
+ return EvaluateObjectArgument(Info, PDE->getBase(), ThisVal);
+ } else
+ return Error(Callee);
+ FD = Member;
+ } else if (CalleeType->isFunctionPointerType()) {
+ LValue Call;
+ if (!EvaluatePointer(Callee, Call, Info))
+ return false;
+
+ if (!Call.getLValueOffset().isZero())
+ return Error(Callee);
+ FD = dyn_cast_or_null<FunctionDecl>(
+ Call.getLValueBase().dyn_cast<const ValueDecl*>());
+ if (!FD)
+ return Error(Callee);
+ // Don't call function pointers which have been cast to some other type.
+ // Per DR (no number yet), the caller and callee can differ in noexcept.
+ if (!Info.Ctx.hasSameFunctionTypeIgnoringExceptionSpec(
+ CalleeType->getPointeeType(), FD->getType())) {
+ return Error(E);
+ }
+
+ // Overloaded operator calls to member functions are represented as normal
+ // calls with '*this' as the first argument.
+ const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
+ if (MD && !MD->isStatic()) {
+ // FIXME: When selecting an implicit conversion for an overloaded
+ // operator delete, we sometimes try to evaluate calls to conversion
+ // operators without a 'this' parameter!
+ if (Args.empty())
+ return Error(E);
+
+ if (!EvaluateObjectArgument(Info, Args[0], ThisVal))
+ return false;
+ This = &ThisVal;
+ Args = Args.slice(1);
+ } else if (MD && MD->isLambdaStaticInvoker()) {
+ // Map the static invoker for the lambda back to the call operator.
+ // Conveniently, we don't have to slice out the 'this' argument (as is
+ // being done for the non-static case), since a static member function
+ // doesn't have an implicit argument passed in.
+ const CXXRecordDecl *ClosureClass = MD->getParent();
+ assert(
+ ClosureClass->captures_begin() == ClosureClass->captures_end() &&
+ "Number of captures must be zero for conversion to function-ptr");
+
+ const CXXMethodDecl *LambdaCallOp =
+ ClosureClass->getLambdaCallOperator();
+
+ // Set 'FD', the function that will be called below, to the call
+ // operator. If the closure object represents a generic lambda, find
+ // the corresponding specialization of the call operator.
+
+ if (ClosureClass->isGenericLambda()) {
+ assert(MD->isFunctionTemplateSpecialization() &&
+ "A generic lambda's static-invoker function must be a "
+ "template specialization");
+ const TemplateArgumentList *TAL = MD->getTemplateSpecializationArgs();
+ FunctionTemplateDecl *CallOpTemplate =
+ LambdaCallOp->getDescribedFunctionTemplate();
+ void *InsertPos = nullptr;
+ FunctionDecl *CorrespondingCallOpSpecialization =
+ CallOpTemplate->findSpecialization(TAL->asArray(), InsertPos);
+ assert(CorrespondingCallOpSpecialization &&
+ "We must always have a function call operator specialization "
+ "that corresponds to our static invoker specialization");
+ FD = cast<CXXMethodDecl>(CorrespondingCallOpSpecialization);
+ } else
+ FD = LambdaCallOp;
+ } else if (FD->isReplaceableGlobalAllocationFunction()) {
+ if (FD->getDeclName().getCXXOverloadedOperator() == OO_New ||
+ FD->getDeclName().getCXXOverloadedOperator() == OO_Array_New) {
+ LValue Ptr;
+ if (!HandleOperatorNewCall(Info, E, Ptr))
+ return false;
+ Ptr.moveInto(Result);
+ return true;
+ } else {
+ return HandleOperatorDeleteCall(Info, E);
+ }
+ }
+ } else
+ return Error(E);
+
+ SmallVector<QualType, 4> CovariantAdjustmentPath;
+ if (This) {
+ auto *NamedMember = dyn_cast<CXXMethodDecl>(FD);
+ if (NamedMember && NamedMember->isVirtual() && !HasQualifier) {
+ // Perform virtual dispatch, if necessary.
+ FD = HandleVirtualDispatch(Info, E, *This, NamedMember,
+ CovariantAdjustmentPath);
+ if (!FD)
+ return false;
+ } else {
+ // Check that the 'this' pointer points to an object of the right type.
+ // FIXME: If this is an assignment operator call, we may need to change
+ // the active union member before we check this.
+ if (!checkNonVirtualMemberCallThisPointer(Info, E, *This, NamedMember))
+ return false;
+ }
+ }
+
+ // Destructor calls are different enough that they have their own codepath.
+ if (auto *DD = dyn_cast<CXXDestructorDecl>(FD)) {
+ assert(This && "no 'this' pointer for destructor call");
+ return HandleDestruction(Info, E, *This,
+ Info.Ctx.getRecordType(DD->getParent()));
+ }
+
+ const FunctionDecl *Definition = nullptr;
+ Stmt *Body = FD->getBody(Definition);
+
+ if (!CheckConstexprFunction(Info, E->getExprLoc(), FD, Definition, Body) ||
+ !HandleFunctionCall(E->getExprLoc(), Definition, This, Args, Body, Info,
+ Result, ResultSlot))
+ return false;
+
+ if (!CovariantAdjustmentPath.empty() &&
+ !HandleCovariantReturnAdjustment(Info, E, Result,
+ CovariantAdjustmentPath))
+ return false;
+
+ return true;
+ }
+
+ bool VisitCompoundLiteralExpr(const CompoundLiteralExpr *E) {
+ return StmtVisitorTy::Visit(E->getInitializer());
+ }
+ bool VisitInitListExpr(const InitListExpr *E) {
+ if (E->getNumInits() == 0)
+ return DerivedZeroInitialization(E);
+ if (E->getNumInits() == 1)
+ return StmtVisitorTy::Visit(E->getInit(0));
+ return Error(E);
+ }
+ bool VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) {
+ return DerivedZeroInitialization(E);
+ }
+ bool VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) {
+ return DerivedZeroInitialization(E);
+ }
+ bool VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) {
+ return DerivedZeroInitialization(E);
+ }
+
+ /// A member expression where the object is a prvalue is itself a prvalue.
+ bool VisitMemberExpr(const MemberExpr *E) {
+ assert(!Info.Ctx.getLangOpts().CPlusPlus11 &&
+ "missing temporary materialization conversion");
+ assert(!E->isArrow() && "missing call to bound member function?");
+
+ APValue Val;
+ if (!Evaluate(Val, Info, E->getBase()))
+ return false;
+
+ QualType BaseTy = E->getBase()->getType();
+
+ const FieldDecl *FD = dyn_cast<FieldDecl>(E->getMemberDecl());
+ if (!FD) return Error(E);
+ assert(!FD->getType()->isReferenceType() && "prvalue reference?");
+ assert(BaseTy->castAs<RecordType>()->getDecl()->getCanonicalDecl() ==
+ FD->getParent()->getCanonicalDecl() && "record / field mismatch");
+
+ // Note: there is no lvalue base here. But this case should only ever
+ // happen in C or in C++98, where we cannot be evaluating a constexpr
+ // constructor, which is the only case the base matters.
+ CompleteObject Obj(APValue::LValueBase(), &Val, BaseTy);
+ SubobjectDesignator Designator(BaseTy);
+ Designator.addDeclUnchecked(FD);
+
+ APValue Result;
+ return extractSubobject(Info, E, Obj, Designator, Result) &&
+ DerivedSuccess(Result, E);
+ }
+
+ bool VisitCastExpr(const CastExpr *E) {
+ switch (E->getCastKind()) {
+ default:
+ break;
+
+ case CK_AtomicToNonAtomic: {
+ APValue AtomicVal;
+ // This does not need to be done in place even for class/array types:
+ // atomic-to-non-atomic conversion implies copying the object
+ // representation.
+ if (!Evaluate(AtomicVal, Info, E->getSubExpr()))
+ return false;
+ return DerivedSuccess(AtomicVal, E);
+ }
+
+ case CK_NoOp:
+ case CK_UserDefinedConversion:
+ return StmtVisitorTy::Visit(E->getSubExpr());
+
+ case CK_LValueToRValue: {
+ LValue LVal;
+ if (!EvaluateLValue(E->getSubExpr(), LVal, Info))
+ return false;
+ APValue RVal;
+ // Note, we use the subexpression's type in order to retain cv-qualifiers.
+ if (!handleLValueToRValueConversion(Info, E, E->getSubExpr()->getType(),
+ LVal, RVal))
+ return false;
+ return DerivedSuccess(RVal, E);
+ }
+ case CK_LValueToRValueBitCast: {
+ APValue DestValue, SourceValue;
+ if (!Evaluate(SourceValue, Info, E->getSubExpr()))
+ return false;
+ if (!handleLValueToRValueBitCast(Info, DestValue, SourceValue, E))
+ return false;
+ return DerivedSuccess(DestValue, E);
+ }
+ }
+
+ return Error(E);
+ }
+
+ bool VisitUnaryPostInc(const UnaryOperator *UO) {
+ return VisitUnaryPostIncDec(UO);
+ }
+ bool VisitUnaryPostDec(const UnaryOperator *UO) {
+ return VisitUnaryPostIncDec(UO);
+ }
+ bool VisitUnaryPostIncDec(const UnaryOperator *UO) {
+ if (!Info.getLangOpts().CPlusPlus14 && !Info.keepEvaluatingAfterFailure())
+ return Error(UO);
+
+ LValue LVal;
+ if (!EvaluateLValue(UO->getSubExpr(), LVal, Info))
+ return false;
+ APValue RVal;
+ if (!handleIncDec(this->Info, UO, LVal, UO->getSubExpr()->getType(),
+ UO->isIncrementOp(), &RVal))
+ return false;
+ return DerivedSuccess(RVal, UO);
+ }
+
+ bool VisitStmtExpr(const StmtExpr *E) {
+ // We will have checked the full-expressions inside the statement expression
+ // when they were completed, and don't need to check them again now.
+ if (Info.checkingForUndefinedBehavior())
+ return Error(E);
+
+ const CompoundStmt *CS = E->getSubStmt();
+ if (CS->body_empty())
+ return true;
+
+ BlockScopeRAII Scope(Info);
+ for (CompoundStmt::const_body_iterator BI = CS->body_begin(),
+ BE = CS->body_end();
+ /**/; ++BI) {
+ if (BI + 1 == BE) {
+ const Expr *FinalExpr = dyn_cast<Expr>(*BI);
+ if (!FinalExpr) {
+ Info.FFDiag((*BI)->getBeginLoc(),
+ diag::note_constexpr_stmt_expr_unsupported);
+ return false;
+ }
+ return this->Visit(FinalExpr) && Scope.destroy();
+ }
+
+ APValue ReturnValue;
+ StmtResult Result = { ReturnValue, nullptr };
+ EvalStmtResult ESR = EvaluateStmt(Result, Info, *BI);
+ if (ESR != ESR_Succeeded) {
+ // FIXME: If the statement-expression terminated due to 'return',
+ // 'break', or 'continue', it would be nice to propagate that to
+ // the outer statement evaluation rather than bailing out.
+ if (ESR != ESR_Failed)
+ Info.FFDiag((*BI)->getBeginLoc(),
+ diag::note_constexpr_stmt_expr_unsupported);
+ return false;
+ }
+ }
+
+ llvm_unreachable("Return from function from the loop above.");
+ }
+
+ /// Visit a value which is evaluated, but whose value is ignored.
+ void VisitIgnoredValue(const Expr *E) {
+ EvaluateIgnoredValue(Info, E);
+ }
+
+ /// Potentially visit a MemberExpr's base expression.
+ void VisitIgnoredBaseExpression(const Expr *E) {
+ // While MSVC doesn't evaluate the base expression, it does diagnose the
+ // presence of side-effecting behavior.
+ if (Info.getLangOpts().MSVCCompat && !E->HasSideEffects(Info.Ctx))
+ return;
+ VisitIgnoredValue(E);
+ }
+};
+
+} // namespace
+
+//===----------------------------------------------------------------------===//
+// Common base class for lvalue and temporary evaluation.
+//===----------------------------------------------------------------------===//
+namespace {
+template<class Derived>
+class LValueExprEvaluatorBase
+ : public ExprEvaluatorBase<Derived> {
+protected:
+ LValue &Result;
+ bool InvalidBaseOK;
+ typedef LValueExprEvaluatorBase LValueExprEvaluatorBaseTy;
+ typedef ExprEvaluatorBase<Derived> ExprEvaluatorBaseTy;
+
+ bool Success(APValue::LValueBase B) {
+ Result.set(B);
+ return true;
+ }
+
+ bool evaluatePointer(const Expr *E, LValue &Result) {
+ return EvaluatePointer(E, Result, this->Info, InvalidBaseOK);
+ }
+
+public:
+ LValueExprEvaluatorBase(EvalInfo &Info, LValue &Result, bool InvalidBaseOK)
+ : ExprEvaluatorBaseTy(Info), Result(Result),
+ InvalidBaseOK(InvalidBaseOK) {}
+
+ bool Success(const APValue &V, const Expr *E) {
+ Result.setFrom(this->Info.Ctx, V);
+ return true;
+ }
+
+ bool VisitMemberExpr(const MemberExpr *E) {
+ // Handle non-static data members.
+ QualType BaseTy;
+ bool EvalOK;
+ if (E->isArrow()) {
+ EvalOK = evaluatePointer(E->getBase(), Result);
+ BaseTy = E->getBase()->getType()->castAs<PointerType>()->getPointeeType();
+ } else if (E->getBase()->isRValue()) {
+ assert(E->getBase()->getType()->isRecordType());
+ EvalOK = EvaluateTemporary(E->getBase(), Result, this->Info);
+ BaseTy = E->getBase()->getType();
+ } else {
+ EvalOK = this->Visit(E->getBase());
+ BaseTy = E->getBase()->getType();
+ }
+ if (!EvalOK) {
+ if (!InvalidBaseOK)
+ return false;
+ Result.setInvalid(E);
+ return true;
+ }
+
+ const ValueDecl *MD = E->getMemberDecl();
+ if (const FieldDecl *FD = dyn_cast<FieldDecl>(E->getMemberDecl())) {
+ assert(BaseTy->castAs<RecordType>()->getDecl()->getCanonicalDecl() ==
+ FD->getParent()->getCanonicalDecl() && "record / field mismatch");
+ (void)BaseTy;
+ if (!HandleLValueMember(this->Info, E, Result, FD))
+ return false;
+ } else if (const IndirectFieldDecl *IFD = dyn_cast<IndirectFieldDecl>(MD)) {
+ if (!HandleLValueIndirectMember(this->Info, E, Result, IFD))
+ return false;
+ } else
+ return this->Error(E);
+
+ if (MD->getType()->isReferenceType()) {
+ APValue RefValue;
+ if (!handleLValueToRValueConversion(this->Info, E, MD->getType(), Result,
+ RefValue))
+ return false;
+ return Success(RefValue, E);
+ }
+ return true;
+ }
+
+ bool VisitBinaryOperator(const BinaryOperator *E) {
+ switch (E->getOpcode()) {
+ default:
+ return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
+
+ case BO_PtrMemD:
+ case BO_PtrMemI:
+ return HandleMemberPointerAccess(this->Info, E, Result);
+ }
+ }
+
+ bool VisitCastExpr(const CastExpr *E) {
+ switch (E->getCastKind()) {
+ default:
+ return ExprEvaluatorBaseTy::VisitCastExpr(E);
+
+ case CK_DerivedToBase:
+ case CK_UncheckedDerivedToBase:
+ if (!this->Visit(E->getSubExpr()))
+ return false;
+
+ // Now figure out the necessary offset to add to the base LV to get from
+ // the derived class to the base class.
+ return HandleLValueBasePath(this->Info, E, E->getSubExpr()->getType(),
+ Result);
+ }
+ }
+};
+}
+
+//===----------------------------------------------------------------------===//
+// LValue Evaluation
+//
+// This is used for evaluating lvalues (in C and C++), xvalues (in C++11),
+// function designators (in C), decl references to void objects (in C), and
+// temporaries (if building with -Wno-address-of-temporary).
+//
+// LValue evaluation produces values comprising a base expression of one of the
+// following types:
+// - Declarations
+// * VarDecl
+// * FunctionDecl
+// - Literals
+// * CompoundLiteralExpr in C (and in global scope in C++)
+// * StringLiteral
+// * PredefinedExpr
+// * ObjCStringLiteralExpr
+// * ObjCEncodeExpr
+// * AddrLabelExpr
+// * BlockExpr
+// * CallExpr for a MakeStringConstant builtin
+// - typeid(T) expressions, as TypeInfoLValues
+// - Locals and temporaries
+// * MaterializeTemporaryExpr
+// * Any Expr, with a CallIndex indicating the function in which the temporary
+// was evaluated, for cases where the MaterializeTemporaryExpr is missing
+// from the AST (FIXME).
+// * A MaterializeTemporaryExpr that has static storage duration, with no
+// CallIndex, for a lifetime-extended temporary.
+// plus an offset in bytes.
+//===----------------------------------------------------------------------===//
+namespace {
+class LValueExprEvaluator
+ : public LValueExprEvaluatorBase<LValueExprEvaluator> {
+public:
+ LValueExprEvaluator(EvalInfo &Info, LValue &Result, bool InvalidBaseOK) :
+ LValueExprEvaluatorBaseTy(Info, Result, InvalidBaseOK) {}
+
+ bool VisitVarDecl(const Expr *E, const VarDecl *VD);
+ bool VisitUnaryPreIncDec(const UnaryOperator *UO);
+
+ bool VisitDeclRefExpr(const DeclRefExpr *E);
+ bool VisitPredefinedExpr(const PredefinedExpr *E) { return Success(E); }
+ bool VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E);
+ bool VisitCompoundLiteralExpr(const CompoundLiteralExpr *E);
+ bool VisitMemberExpr(const MemberExpr *E);
+ bool VisitStringLiteral(const StringLiteral *E) { return Success(E); }
+ bool VisitObjCEncodeExpr(const ObjCEncodeExpr *E) { return Success(E); }
+ bool VisitCXXTypeidExpr(const CXXTypeidExpr *E);
+ bool VisitCXXUuidofExpr(const CXXUuidofExpr *E);
+ bool VisitArraySubscriptExpr(const ArraySubscriptExpr *E);
+ bool VisitUnaryDeref(const UnaryOperator *E);
+ bool VisitUnaryReal(const UnaryOperator *E);
+ bool VisitUnaryImag(const UnaryOperator *E);
+ bool VisitUnaryPreInc(const UnaryOperator *UO) {
+ return VisitUnaryPreIncDec(UO);
+ }
+ bool VisitUnaryPreDec(const UnaryOperator *UO) {
+ return VisitUnaryPreIncDec(UO);
+ }
+ bool VisitBinAssign(const BinaryOperator *BO);
+ bool VisitCompoundAssignOperator(const CompoundAssignOperator *CAO);
+
+ bool VisitCastExpr(const CastExpr *E) {
+ switch (E->getCastKind()) {
+ default:
+ return LValueExprEvaluatorBaseTy::VisitCastExpr(E);
+
+ case CK_LValueBitCast:
+ this->CCEDiag(E, diag::note_constexpr_invalid_cast) << 2;
+ if (!Visit(E->getSubExpr()))
+ return false;
+ Result.Designator.setInvalid();
+ return true;
+
+ case CK_BaseToDerived:
+ if (!Visit(E->getSubExpr()))
+ return false;
+ return HandleBaseToDerivedCast(Info, E, Result);
+
+ case CK_Dynamic:
+ if (!Visit(E->getSubExpr()))
+ return false;
+ return HandleDynamicCast(Info, cast<ExplicitCastExpr>(E), Result);
+ }
+ }
+};
+} // end anonymous namespace
+
+/// Evaluate an expression as an lvalue. This can be legitimately called on
+/// expressions which are not glvalues, in three cases:
+/// * function designators in C, and
+/// * "extern void" objects
+/// * @selector() expressions in Objective-C
+static bool EvaluateLValue(const Expr *E, LValue &Result, EvalInfo &Info,
+ bool InvalidBaseOK) {
+ assert(E->isGLValue() || E->getType()->isFunctionType() ||
+ E->getType()->isVoidType() || isa<ObjCSelectorExpr>(E));
+ return LValueExprEvaluator(Info, Result, InvalidBaseOK).Visit(E);
+}
+
+bool LValueExprEvaluator::VisitDeclRefExpr(const DeclRefExpr *E) {
+ if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(E->getDecl()))
+ return Success(FD);
+ if (const VarDecl *VD = dyn_cast<VarDecl>(E->getDecl()))
+ return VisitVarDecl(E, VD);
+ if (const BindingDecl *BD = dyn_cast<BindingDecl>(E->getDecl()))
+ return Visit(BD->getBinding());
+ return Error(E);
+}
+
+
+bool LValueExprEvaluator::VisitVarDecl(const Expr *E, const VarDecl *VD) {
+
+ // If we are within a lambda's call operator, check whether the 'VD' referred
+ // to within 'E' actually represents a lambda-capture that maps to a
+ // data-member/field within the closure object, and if so, evaluate to the
+ // field or what the field refers to.
+ if (Info.CurrentCall && isLambdaCallOperator(Info.CurrentCall->Callee) &&
+ isa<DeclRefExpr>(E) &&
+ cast<DeclRefExpr>(E)->refersToEnclosingVariableOrCapture()) {
+ // We don't always have a complete capture-map when checking or inferring if
+ // the function call operator meets the requirements of a constexpr function
+ // - but we don't need to evaluate the captures to determine constexprness
+ // (dcl.constexpr C++17).
+ if (Info.checkingPotentialConstantExpression())
+ return false;
+
+ if (auto *FD = Info.CurrentCall->LambdaCaptureFields.lookup(VD)) {
+ // Start with 'Result' referring to the complete closure object...
+ Result = *Info.CurrentCall->This;
+ // ... then update it to refer to the field of the closure object
+ // that represents the capture.
+ if (!HandleLValueMember(Info, E, Result, FD))
+ return false;
+ // And if the field is of reference type, update 'Result' to refer to what
+ // the field refers to.
+ if (FD->getType()->isReferenceType()) {
+ APValue RVal;
+ if (!handleLValueToRValueConversion(Info, E, FD->getType(), Result,
+ RVal))
+ return false;
+ Result.setFrom(Info.Ctx, RVal);
+ }
+ return true;
+ }
+ }
+ CallStackFrame *Frame = nullptr;
+ if (VD->hasLocalStorage() && Info.CurrentCall->Index > 1) {
+ // Only if a local variable was declared in the function currently being
+ // evaluated, do we expect to be able to find its value in the current
+ // frame. (Otherwise it was likely declared in an enclosing context and
+ // could either have a valid evaluatable value (for e.g. a constexpr
+ // variable) or be ill-formed (and trigger an appropriate evaluation
+ // diagnostic)).
+ if (Info.CurrentCall->Callee &&
+ Info.CurrentCall->Callee->Equals(VD->getDeclContext())) {
+ Frame = Info.CurrentCall;
+ }
+ }
+
+ if (!VD->getType()->isReferenceType()) {
+ if (Frame) {
+ Result.set({VD, Frame->Index,
+ Info.CurrentCall->getCurrentTemporaryVersion(VD)});
+ return true;
+ }
+ return Success(VD);
+ }
+
+ APValue *V;
+ if (!evaluateVarDeclInit(Info, E, VD, Frame, V, nullptr))
+ return false;
+ if (!V->hasValue()) {
+ // FIXME: Is it possible for V to be indeterminate here? If so, we should
+ // adjust the diagnostic to say that.
+ if (!Info.checkingPotentialConstantExpression())
+ Info.FFDiag(E, diag::note_constexpr_use_uninit_reference);
+ return false;
+ }
+ return Success(*V, E);
+}
+
+bool LValueExprEvaluator::VisitMaterializeTemporaryExpr(
+ const MaterializeTemporaryExpr *E) {
+ // Walk through the expression to find the materialized temporary itself.
+ SmallVector<const Expr *, 2> CommaLHSs;
+ SmallVector<SubobjectAdjustment, 2> Adjustments;
+ const Expr *Inner = E->GetTemporaryExpr()->
+ skipRValueSubobjectAdjustments(CommaLHSs, Adjustments);
+
+ // If we passed any comma operators, evaluate their LHSs.
+ for (unsigned I = 0, N = CommaLHSs.size(); I != N; ++I)
+ if (!EvaluateIgnoredValue(Info, CommaLHSs[I]))
+ return false;
+
+ // A materialized temporary with static storage duration can appear within the
+ // result of a constant expression evaluation, so we need to preserve its
+ // value for use outside this evaluation.
+ APValue *Value;
+ if (E->getStorageDuration() == SD_Static) {
+ Value = Info.Ctx.getMaterializedTemporaryValue(E, true);
+ *Value = APValue();
+ Result.set(E);
+ } else {
+ Value = &Info.CurrentCall->createTemporary(
+ E, E->getType(), E->getStorageDuration() == SD_Automatic, Result);
+ }
+
+ QualType Type = Inner->getType();
+
+ // Materialize the temporary itself.
+ if (!EvaluateInPlace(*Value, Info, Result, Inner)) {
+ *Value = APValue();
+ return false;
+ }
+
+ // Adjust our lvalue to refer to the desired subobject.
+ for (unsigned I = Adjustments.size(); I != 0; /**/) {
+ --I;
+ switch (Adjustments[I].Kind) {
+ case SubobjectAdjustment::DerivedToBaseAdjustment:
+ if (!HandleLValueBasePath(Info, Adjustments[I].DerivedToBase.BasePath,
+ Type, Result))
+ return false;
+ Type = Adjustments[I].DerivedToBase.BasePath->getType();
+ break;
+
+ case SubobjectAdjustment::FieldAdjustment:
+ if (!HandleLValueMember(Info, E, Result, Adjustments[I].Field))
+ return false;
+ Type = Adjustments[I].Field->getType();
+ break;
+
+ case SubobjectAdjustment::MemberPointerAdjustment:
+ if (!HandleMemberPointerAccess(this->Info, Type, Result,
+ Adjustments[I].Ptr.RHS))
+ return false;
+ Type = Adjustments[I].Ptr.MPT->getPointeeType();
+ break;
+ }
+ }
+
+ return true;
+}
+
+bool
+LValueExprEvaluator::VisitCompoundLiteralExpr(const CompoundLiteralExpr *E) {
+ assert((!Info.getLangOpts().CPlusPlus || E->isFileScope()) &&
+ "lvalue compound literal in c++?");
+ // Defer visiting the literal until the lvalue-to-rvalue conversion. We can
+ // only see this when folding in C, so there's no standard to follow here.
+ return Success(E);
+}
+
+bool LValueExprEvaluator::VisitCXXTypeidExpr(const CXXTypeidExpr *E) {
+ TypeInfoLValue TypeInfo;
+
+ if (!E->isPotentiallyEvaluated()) {
+ if (E->isTypeOperand())
+ TypeInfo = TypeInfoLValue(E->getTypeOperand(Info.Ctx).getTypePtr());
+ else
+ TypeInfo = TypeInfoLValue(E->getExprOperand()->getType().getTypePtr());
+ } else {
+ if (!Info.Ctx.getLangOpts().CPlusPlus2a) {
+ Info.CCEDiag(E, diag::note_constexpr_typeid_polymorphic)
+ << E->getExprOperand()->getType()
+ << E->getExprOperand()->getSourceRange();
+ }
+
+ if (!Visit(E->getExprOperand()))
+ return false;
+
+ Optional<DynamicType> DynType =
+ ComputeDynamicType(Info, E, Result, AK_TypeId);
+ if (!DynType)
+ return false;
+
+ TypeInfo =
+ TypeInfoLValue(Info.Ctx.getRecordType(DynType->Type).getTypePtr());
+ }
+
+ return Success(APValue::LValueBase::getTypeInfo(TypeInfo, E->getType()));
+}
+
+bool LValueExprEvaluator::VisitCXXUuidofExpr(const CXXUuidofExpr *E) {
+ return Success(E);
+}
+
+bool LValueExprEvaluator::VisitMemberExpr(const MemberExpr *E) {
+ // Handle static data members.
+ if (const VarDecl *VD = dyn_cast<VarDecl>(E->getMemberDecl())) {
+ VisitIgnoredBaseExpression(E->getBase());
+ return VisitVarDecl(E, VD);
+ }
+
+ // Handle static member functions.
+ if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(E->getMemberDecl())) {
+ if (MD->isStatic()) {
+ VisitIgnoredBaseExpression(E->getBase());
+ return Success(MD);
+ }
+ }
+
+ // Handle non-static data members.
+ return LValueExprEvaluatorBaseTy::VisitMemberExpr(E);
+}
+
+bool LValueExprEvaluator::VisitArraySubscriptExpr(const ArraySubscriptExpr *E) {
+ // FIXME: Deal with vectors as array subscript bases.
+ if (E->getBase()->getType()->isVectorType())
+ return Error(E);
+
+ bool Success = true;
+ if (!evaluatePointer(E->getBase(), Result)) {
+ if (!Info.noteFailure())
+ return false;
+ Success = false;
+ }
+
+ APSInt Index;
+ if (!EvaluateInteger(E->getIdx(), Index, Info))
+ return false;
+
+ return Success &&
+ HandleLValueArrayAdjustment(Info, E, Result, E->getType(), Index);
+}
+
+bool LValueExprEvaluator::VisitUnaryDeref(const UnaryOperator *E) {
+ return evaluatePointer(E->getSubExpr(), Result);
+}
+
+bool LValueExprEvaluator::VisitUnaryReal(const UnaryOperator *E) {
+ if (!Visit(E->getSubExpr()))
+ return false;
+ // __real is a no-op on scalar lvalues.
+ if (E->getSubExpr()->getType()->isAnyComplexType())
+ HandleLValueComplexElement(Info, E, Result, E->getType(), false);
+ return true;
+}
+
+bool LValueExprEvaluator::VisitUnaryImag(const UnaryOperator *E) {
+ assert(E->getSubExpr()->getType()->isAnyComplexType() &&
+ "lvalue __imag__ on scalar?");
+ if (!Visit(E->getSubExpr()))
+ return false;
+ HandleLValueComplexElement(Info, E, Result, E->getType(), true);
+ return true;
+}
+
+bool LValueExprEvaluator::VisitUnaryPreIncDec(const UnaryOperator *UO) {
+ if (!Info.getLangOpts().CPlusPlus14 && !Info.keepEvaluatingAfterFailure())
+ return Error(UO);
+
+ if (!this->Visit(UO->getSubExpr()))
+ return false;
+
+ return handleIncDec(
+ this->Info, UO, Result, UO->getSubExpr()->getType(),
+ UO->isIncrementOp(), nullptr);
+}
+
+bool LValueExprEvaluator::VisitCompoundAssignOperator(
+ const CompoundAssignOperator *CAO) {
+ if (!Info.getLangOpts().CPlusPlus14 && !Info.keepEvaluatingAfterFailure())
+ return Error(CAO);
+
+ APValue RHS;
+
+ // The overall lvalue result is the result of evaluating the LHS.
+ if (!this->Visit(CAO->getLHS())) {
+ if (Info.noteFailure())
+ Evaluate(RHS, this->Info, CAO->getRHS());
+ return false;
+ }
+
+ if (!Evaluate(RHS, this->Info, CAO->getRHS()))
+ return false;
+
+ return handleCompoundAssignment(
+ this->Info, CAO,
+ Result, CAO->getLHS()->getType(), CAO->getComputationLHSType(),
+ CAO->getOpForCompoundAssignment(CAO->getOpcode()), RHS);
+}
+
+bool LValueExprEvaluator::VisitBinAssign(const BinaryOperator *E) {
+ if (!Info.getLangOpts().CPlusPlus14 && !Info.keepEvaluatingAfterFailure())
+ return Error(E);
+
+ APValue NewVal;
+
+ if (!this->Visit(E->getLHS())) {
+ if (Info.noteFailure())
+ Evaluate(NewVal, this->Info, E->getRHS());
+ return false;
+ }
+
+ if (!Evaluate(NewVal, this->Info, E->getRHS()))
+ return false;
+
+ if (Info.getLangOpts().CPlusPlus2a &&
+ !HandleUnionActiveMemberChange(Info, E->getLHS(), Result))
+ return false;
+
+ return handleAssignment(this->Info, E, Result, E->getLHS()->getType(),
+ NewVal);
+}
+
+//===----------------------------------------------------------------------===//
+// Pointer Evaluation
+//===----------------------------------------------------------------------===//
+
+/// Attempts to compute the number of bytes available at the pointer
+/// returned by a function with the alloc_size attribute. Returns true if we
+/// were successful. Places an unsigned number into `Result`.
+///
+/// This expects the given CallExpr to be a call to a function with an
+/// alloc_size attribute.
+static bool getBytesReturnedByAllocSizeCall(const ASTContext &Ctx,
+ const CallExpr *Call,
+ llvm::APInt &Result) {
+ const AllocSizeAttr *AllocSize = getAllocSizeAttr(Call);
+
+ assert(AllocSize && AllocSize->getElemSizeParam().isValid());
+ unsigned SizeArgNo = AllocSize->getElemSizeParam().getASTIndex();
+ unsigned BitsInSizeT = Ctx.getTypeSize(Ctx.getSizeType());
+ if (Call->getNumArgs() <= SizeArgNo)
+ return false;
+
+ auto EvaluateAsSizeT = [&](const Expr *E, APSInt &Into) {
+ Expr::EvalResult ExprResult;
+ if (!E->EvaluateAsInt(ExprResult, Ctx, Expr::SE_AllowSideEffects))
+ return false;
+ Into = ExprResult.Val.getInt();
+ if (Into.isNegative() || !Into.isIntN(BitsInSizeT))
+ return false;
+ Into = Into.zextOrSelf(BitsInSizeT);
+ return true;
+ };
+
+ APSInt SizeOfElem;
+ if (!EvaluateAsSizeT(Call->getArg(SizeArgNo), SizeOfElem))
+ return false;
+
+ if (!AllocSize->getNumElemsParam().isValid()) {
+ Result = std::move(SizeOfElem);
+ return true;
+ }
+
+ APSInt NumberOfElems;
+ unsigned NumArgNo = AllocSize->getNumElemsParam().getASTIndex();
+ if (!EvaluateAsSizeT(Call->getArg(NumArgNo), NumberOfElems))
+ return false;
+
+ bool Overflow;
+ llvm::APInt BytesAvailable = SizeOfElem.umul_ov(NumberOfElems, Overflow);
+ if (Overflow)
+ return false;
+
+ Result = std::move(BytesAvailable);
+ return true;
+}
+
+/// Convenience function. LVal's base must be a call to an alloc_size
+/// function.
+static bool getBytesReturnedByAllocSizeCall(const ASTContext &Ctx,
+ const LValue &LVal,
+ llvm::APInt &Result) {
+ assert(isBaseAnAllocSizeCall(LVal.getLValueBase()) &&
+ "Can't get the size of a non alloc_size function");
+ const auto *Base = LVal.getLValueBase().get<const Expr *>();
+ const CallExpr *CE = tryUnwrapAllocSizeCall(Base);
+ return getBytesReturnedByAllocSizeCall(Ctx, CE, Result);
+}
+
+/// Attempts to evaluate the given LValueBase as the result of a call to
+/// a function with the alloc_size attribute. If it was possible to do so, this
+/// function will return true, make Result's Base point to said function call,
+/// and mark Result's Base as invalid.
+static bool evaluateLValueAsAllocSize(EvalInfo &Info, APValue::LValueBase Base,
+ LValue &Result) {
+ if (Base.isNull())
+ return false;
+
+ // Because we do no form of static analysis, we only support const variables.
+ //
+ // Additionally, we can't support parameters, nor can we support static
+ // variables (in the latter case, use-before-assign isn't UB; in the former,
+ // we have no clue what they'll be assigned to).
+ const auto *VD =
+ dyn_cast_or_null<VarDecl>(Base.dyn_cast<const ValueDecl *>());
+ if (!VD || !VD->isLocalVarDecl() || !VD->getType().isConstQualified())
+ return false;
+
+ const Expr *Init = VD->getAnyInitializer();
+ if (!Init)
+ return false;
+
+ const Expr *E = Init->IgnoreParens();
+ if (!tryUnwrapAllocSizeCall(E))
+ return false;
+
+ // Store E instead of E unwrapped so that the type of the LValue's base is
+ // what the user wanted.
+ Result.setInvalid(E);
+
+ QualType Pointee = E->getType()->castAs<PointerType>()->getPointeeType();
+ Result.addUnsizedArray(Info, E, Pointee);
+ return true;
+}
+
+namespace {
+class PointerExprEvaluator
+ : public ExprEvaluatorBase<PointerExprEvaluator> {
+ LValue &Result;
+ bool InvalidBaseOK;
+
+ bool Success(const Expr *E) {
+ Result.set(E);
+ return true;
+ }
+
+ bool evaluateLValue(const Expr *E, LValue &Result) {
+ return EvaluateLValue(E, Result, Info, InvalidBaseOK);
+ }
+
+ bool evaluatePointer(const Expr *E, LValue &Result) {
+ return EvaluatePointer(E, Result, Info, InvalidBaseOK);
+ }
+
+ bool visitNonBuiltinCallExpr(const CallExpr *E);
+public:
+
+ PointerExprEvaluator(EvalInfo &info, LValue &Result, bool InvalidBaseOK)
+ : ExprEvaluatorBaseTy(info), Result(Result),
+ InvalidBaseOK(InvalidBaseOK) {}
+
+ bool Success(const APValue &V, const Expr *E) {
+ Result.setFrom(Info.Ctx, V);
+ return true;
+ }
+ bool ZeroInitialization(const Expr *E) {
+ Result.setNull(Info.Ctx, E->getType());
+ return true;
+ }
+
+ bool VisitBinaryOperator(const BinaryOperator *E);
+ bool VisitCastExpr(const CastExpr* E);
+ bool VisitUnaryAddrOf(const UnaryOperator *E);
+ bool VisitObjCStringLiteral(const ObjCStringLiteral *E)
+ { return Success(E); }
+ bool VisitObjCBoxedExpr(const ObjCBoxedExpr *E) {
+ if (E->isExpressibleAsConstantInitializer())
+ return Success(E);
+ if (Info.noteFailure())
+ EvaluateIgnoredValue(Info, E->getSubExpr());
+ return Error(E);
+ }
+ bool VisitAddrLabelExpr(const AddrLabelExpr *E)
+ { return Success(E); }
+ bool VisitCallExpr(const CallExpr *E);
+ bool VisitBuiltinCallExpr(const CallExpr *E, unsigned BuiltinOp);
+ bool VisitBlockExpr(const BlockExpr *E) {
+ if (!E->getBlockDecl()->hasCaptures())
+ return Success(E);
+ return Error(E);
+ }
+ bool VisitCXXThisExpr(const CXXThisExpr *E) {
+ // Can't look at 'this' when checking a potential constant expression.
+ if (Info.checkingPotentialConstantExpression())
+ return false;
+ if (!Info.CurrentCall->This) {
+ if (Info.getLangOpts().CPlusPlus11)
+ Info.FFDiag(E, diag::note_constexpr_this) << E->isImplicit();
+ else
+ Info.FFDiag(E);
+ return false;
+ }
+ Result = *Info.CurrentCall->This;
+ // If we are inside a lambda's call operator, the 'this' expression refers
+ // to the enclosing '*this' object (either by value or reference) which is
+ // either copied into the closure object's field that represents the '*this'
+ // or refers to '*this'.
+ if (isLambdaCallOperator(Info.CurrentCall->Callee)) {
+ // Update 'Result' to refer to the data member/field of the closure object
+ // that represents the '*this' capture.
+ if (!HandleLValueMember(Info, E, Result,
+ Info.CurrentCall->LambdaThisCaptureField))
+ return false;
+ // If we captured '*this' by reference, replace the field with its referent.
+ if (Info.CurrentCall->LambdaThisCaptureField->getType()
+ ->isPointerType()) {
+ APValue RVal;
+ if (!handleLValueToRValueConversion(Info, E, E->getType(), Result,
+ RVal))
+ return false;
+
+ Result.setFrom(Info.Ctx, RVal);
+ }
+ }
+ return true;
+ }
+
+ bool VisitCXXNewExpr(const CXXNewExpr *E);
+
+ bool VisitSourceLocExpr(const SourceLocExpr *E) {
+ assert(E->isStringType() && "SourceLocExpr isn't a pointer type?");
+ APValue LValResult = E->EvaluateInContext(
+ Info.Ctx, Info.CurrentCall->CurSourceLocExprScope.getDefaultExpr());
+ Result.setFrom(Info.Ctx, LValResult);
+ return true;
+ }
+
+ // FIXME: Missing: @protocol, @selector
+};
+} // end anonymous namespace
+
+static bool EvaluatePointer(const Expr* E, LValue& Result, EvalInfo &Info,
+ bool InvalidBaseOK) {
+ assert(E->isRValue() && E->getType()->hasPointerRepresentation());
+ return PointerExprEvaluator(Info, Result, InvalidBaseOK).Visit(E);
+}
+
+bool PointerExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
+ if (E->getOpcode() != BO_Add &&
+ E->getOpcode() != BO_Sub)
+ return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
+
+ const Expr *PExp = E->getLHS();
+ const Expr *IExp = E->getRHS();
+ if (IExp->getType()->isPointerType())
+ std::swap(PExp, IExp);
+
+ bool EvalPtrOK = evaluatePointer(PExp, Result);
+ if (!EvalPtrOK && !Info.noteFailure())
+ return false;
+
+ llvm::APSInt Offset;
+ if (!EvaluateInteger(IExp, Offset, Info) || !EvalPtrOK)
+ return false;
+
+ if (E->getOpcode() == BO_Sub)
+ negateAsSigned(Offset);
+
+ QualType Pointee = PExp->getType()->castAs<PointerType>()->getPointeeType();
+ return HandleLValueArrayAdjustment(Info, E, Result, Pointee, Offset);
+}
+
+bool PointerExprEvaluator::VisitUnaryAddrOf(const UnaryOperator *E) {
+ return evaluateLValue(E->getSubExpr(), Result);
+}
+
+bool PointerExprEvaluator::VisitCastExpr(const CastExpr *E) {
+ const Expr *SubExpr = E->getSubExpr();
+
+ switch (E->getCastKind()) {
+ default:
+ break;
+ case CK_BitCast:
+ case CK_CPointerToObjCPointerCast:
+ case CK_BlockPointerToObjCPointerCast:
+ case CK_AnyPointerToBlockPointerCast:
+ case CK_AddressSpaceConversion:
+ if (!Visit(SubExpr))
+ return false;
+ // Bitcasts to cv void* are static_casts, not reinterpret_casts, so are
+ // permitted in constant expressions in C++11. Bitcasts from cv void* are
+ // also static_casts, but we disallow them as a resolution to DR1312.
+ if (!E->getType()->isVoidPointerType()) {
+ if (!Result.InvalidBase && !Result.Designator.Invalid &&
+ !Result.IsNullPtr &&
+ Info.Ctx.hasSameUnqualifiedType(Result.Designator.getType(Info.Ctx),
+ E->getType()->getPointeeType()) &&
+ Info.getStdAllocatorCaller("allocate")) {
+ // Inside a call to std::allocator::allocate and friends, we permit
+ // casting from void* back to cv1 T* for a pointer that points to a
+ // cv2 T.
+ } else {
+ Result.Designator.setInvalid();
+ if (SubExpr->getType()->isVoidPointerType())
+ CCEDiag(E, diag::note_constexpr_invalid_cast)
+ << 3 << SubExpr->getType();
+ else
+ CCEDiag(E, diag::note_constexpr_invalid_cast) << 2;
+ }
+ }
+ if (E->getCastKind() == CK_AddressSpaceConversion && Result.IsNullPtr)
+ ZeroInitialization(E);
+ return true;
+
+ case CK_DerivedToBase:
+ case CK_UncheckedDerivedToBase:
+ if (!evaluatePointer(E->getSubExpr(), Result))
+ return false;
+ if (!Result.Base && Result.Offset.isZero())
+ return true;
+
+ // Now figure out the necessary offset to add to the base LV to get from
+ // the derived class to the base class.
+ return HandleLValueBasePath(Info, E, E->getSubExpr()->getType()->
+ castAs<PointerType>()->getPointeeType(),
+ Result);
+
+ case CK_BaseToDerived:
+ if (!Visit(E->getSubExpr()))
+ return false;
+ if (!Result.Base && Result.Offset.isZero())
+ return true;
+ return HandleBaseToDerivedCast(Info, E, Result);
+
+ case CK_Dynamic:
+ if (!Visit(E->getSubExpr()))
+ return false;
+ return HandleDynamicCast(Info, cast<ExplicitCastExpr>(E), Result);
+
+ case CK_NullToPointer:
+ VisitIgnoredValue(E->getSubExpr());
+ return ZeroInitialization(E);
+
+ case CK_IntegralToPointer: {
+ CCEDiag(E, diag::note_constexpr_invalid_cast) << 2;
+
+ APValue Value;
+ if (!EvaluateIntegerOrLValue(SubExpr, Value, Info))
+ break;
+
+ if (Value.isInt()) {
+ unsigned Size = Info.Ctx.getTypeSize(E->getType());
+ uint64_t N = Value.getInt().extOrTrunc(Size).getZExtValue();
+ Result.Base = (Expr*)nullptr;
+ Result.InvalidBase = false;
+ Result.Offset = CharUnits::fromQuantity(N);
+ Result.Designator.setInvalid();
+ Result.IsNullPtr = false;
+ return true;
+ } else {
+ // Cast is of an lvalue, no need to change value.
+ Result.setFrom(Info.Ctx, Value);
+ return true;
+ }
+ }
+
+ case CK_ArrayToPointerDecay: {
+ if (SubExpr->isGLValue()) {
+ if (!evaluateLValue(SubExpr, Result))
+ return false;
+ } else {
+ APValue &Value = Info.CurrentCall->createTemporary(
+ SubExpr, SubExpr->getType(), false, Result);
+ if (!EvaluateInPlace(Value, Info, Result, SubExpr))
+ return false;
+ }
+ // The result is a pointer to the first element of the array.
+ auto *AT = Info.Ctx.getAsArrayType(SubExpr->getType());
+ if (auto *CAT = dyn_cast<ConstantArrayType>(AT))
+ Result.addArray(Info, E, CAT);
+ else
+ Result.addUnsizedArray(Info, E, AT->getElementType());
+ return true;
+ }
+
+ case CK_FunctionToPointerDecay:
+ return evaluateLValue(SubExpr, Result);
+
+ case CK_LValueToRValue: {
+ LValue LVal;
+ if (!evaluateLValue(E->getSubExpr(), LVal))
+ return false;
+
+ APValue RVal;
+ // Note, we use the subexpression's type in order to retain cv-qualifiers.
+ if (!handleLValueToRValueConversion(Info, E, E->getSubExpr()->getType(),
+ LVal, RVal))
+ return InvalidBaseOK &&
+ evaluateLValueAsAllocSize(Info, LVal.Base, Result);
+ return Success(RVal, E);
+ }
+ }
+
+ return ExprEvaluatorBaseTy::VisitCastExpr(E);
+}
+
+static CharUnits GetAlignOfType(EvalInfo &Info, QualType T,
+ UnaryExprOrTypeTrait ExprKind) {
+ // C++ [expr.alignof]p3:
+ // When alignof is applied to a reference type, the result is the
+ // alignment of the referenced type.
+ if (const ReferenceType *Ref = T->getAs<ReferenceType>())
+ T = Ref->getPointeeType();
+
+ if (T.getQualifiers().hasUnaligned())
+ return CharUnits::One();
+
+ const bool AlignOfReturnsPreferred =
+ Info.Ctx.getLangOpts().getClangABICompat() <= LangOptions::ClangABI::Ver7;
+
+ // __alignof is defined to return the preferred alignment.
+ // Before 8, clang returned the preferred alignment for alignof and _Alignof
+ // as well.
+ if (ExprKind == UETT_PreferredAlignOf || AlignOfReturnsPreferred)
+ return Info.Ctx.toCharUnitsFromBits(
+ Info.Ctx.getPreferredTypeAlign(T.getTypePtr()));
+ // alignof and _Alignof are defined to return the ABI alignment.
+ else if (ExprKind == UETT_AlignOf)
+ return Info.Ctx.getTypeAlignInChars(T.getTypePtr());
+ else
+ llvm_unreachable("GetAlignOfType on a non-alignment ExprKind");
+}
+
+static CharUnits GetAlignOfExpr(EvalInfo &Info, const Expr *E,
+ UnaryExprOrTypeTrait ExprKind) {
+ E = E->IgnoreParens();
+
+ // The kinds of expressions that we have special-case logic here for
+ // should be kept up to date with the special checks for those
+ // expressions in Sema.
+
+ // alignof decl is always accepted, even if it doesn't make sense: we default
+ // to 1 in those cases.
+ if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
+ return Info.Ctx.getDeclAlign(DRE->getDecl(),
+ /*RefAsPointee*/true);
+
+ if (const MemberExpr *ME = dyn_cast<MemberExpr>(E))
+ return Info.Ctx.getDeclAlign(ME->getMemberDecl(),
+ /*RefAsPointee*/true);
+
+ return GetAlignOfType(Info, E->getType(), ExprKind);
+}
+
+// To be clear: this happily visits unsupported builtins. Better name welcomed.
+bool PointerExprEvaluator::visitNonBuiltinCallExpr(const CallExpr *E) {
+ if (ExprEvaluatorBaseTy::VisitCallExpr(E))
+ return true;
+
+ if (!(InvalidBaseOK && getAllocSizeAttr(E)))
+ return false;
+
+ Result.setInvalid(E);
+ QualType PointeeTy = E->getType()->castAs<PointerType>()->getPointeeType();
+ Result.addUnsizedArray(Info, E, PointeeTy);
+ return true;
+}
+
+bool PointerExprEvaluator::VisitCallExpr(const CallExpr *E) {
+ if (IsStringLiteralCall(E))
+ return Success(E);
+
+ if (unsigned BuiltinOp = E->getBuiltinCallee())
+ return VisitBuiltinCallExpr(E, BuiltinOp);
+
+ return visitNonBuiltinCallExpr(E);
+}
+
+bool PointerExprEvaluator::VisitBuiltinCallExpr(const CallExpr *E,
+ unsigned BuiltinOp) {
+ switch (BuiltinOp) {
+ case Builtin::BI__builtin_addressof:
+ return evaluateLValue(E->getArg(0), Result);
+ case Builtin::BI__builtin_assume_aligned: {
+ // We need to be very careful here because: if the pointer does not have the
+ // asserted alignment, then the behavior is undefined, and undefined
+ // behavior is non-constant.
+ if (!evaluatePointer(E->getArg(0), Result))
+ return false;
+
+ LValue OffsetResult(Result);
+ APSInt Alignment;
+ if (!EvaluateInteger(E->getArg(1), Alignment, Info))
+ return false;
+ CharUnits Align = CharUnits::fromQuantity(Alignment.getZExtValue());
+
+ if (E->getNumArgs() > 2) {
+ APSInt Offset;
+ if (!EvaluateInteger(E->getArg(2), Offset, Info))
+ return false;
+
+ int64_t AdditionalOffset = -Offset.getZExtValue();
+ OffsetResult.Offset += CharUnits::fromQuantity(AdditionalOffset);
+ }
+
+ // If there is a base object, then it must have the correct alignment.
+ if (OffsetResult.Base) {
+ CharUnits BaseAlignment;
+ if (const ValueDecl *VD =
+ OffsetResult.Base.dyn_cast<const ValueDecl*>()) {
+ BaseAlignment = Info.Ctx.getDeclAlign(VD);
+ } else if (const Expr *E = OffsetResult.Base.dyn_cast<const Expr *>()) {
+ BaseAlignment = GetAlignOfExpr(Info, E, UETT_AlignOf);
+ } else {
+ BaseAlignment = GetAlignOfType(
+ Info, OffsetResult.Base.getTypeInfoType(), UETT_AlignOf);
+ }
+
+ if (BaseAlignment < Align) {
+ Result.Designator.setInvalid();
+ // FIXME: Add support to Diagnostic for long / long long.
+ CCEDiag(E->getArg(0),
+ diag::note_constexpr_baa_insufficient_alignment) << 0
+ << (unsigned)BaseAlignment.getQuantity()
+ << (unsigned)Align.getQuantity();
+ return false;
+ }
+ }
+
+ // The offset must also have the correct alignment.
+ if (OffsetResult.Offset.alignTo(Align) != OffsetResult.Offset) {
+ Result.Designator.setInvalid();
+
+ (OffsetResult.Base
+ ? CCEDiag(E->getArg(0),
+ diag::note_constexpr_baa_insufficient_alignment) << 1
+ : CCEDiag(E->getArg(0),
+ diag::note_constexpr_baa_value_insufficient_alignment))
+ << (int)OffsetResult.Offset.getQuantity()
+ << (unsigned)Align.getQuantity();
+ return false;
+ }
+
+ return true;
+ }
+ case Builtin::BI__builtin_operator_new:
+ return HandleOperatorNewCall(Info, E, Result);
+ case Builtin::BI__builtin_launder:
+ return evaluatePointer(E->getArg(0), Result);
+ case Builtin::BIstrchr:
+ case Builtin::BIwcschr:
+ case Builtin::BImemchr:
+ case Builtin::BIwmemchr:
+ if (Info.getLangOpts().CPlusPlus11)
+ Info.CCEDiag(E, diag::note_constexpr_invalid_function)
+ << /*isConstexpr*/0 << /*isConstructor*/0
+ << (std::string("'") + Info.Ctx.BuiltinInfo.getName(BuiltinOp) + "'");
+ else
+ Info.CCEDiag(E, diag::note_invalid_subexpr_in_const_expr);
+ LLVM_FALLTHROUGH;
+ case Builtin::BI__builtin_strchr:
+ case Builtin::BI__builtin_wcschr:
+ case Builtin::BI__builtin_memchr:
+ case Builtin::BI__builtin_char_memchr:
+ case Builtin::BI__builtin_wmemchr: {
+ if (!Visit(E->getArg(0)))
+ return false;
+ APSInt Desired;
+ if (!EvaluateInteger(E->getArg(1), Desired, Info))
+ return false;
+ uint64_t MaxLength = uint64_t(-1);
+ if (BuiltinOp != Builtin::BIstrchr &&
+ BuiltinOp != Builtin::BIwcschr &&
+ BuiltinOp != Builtin::BI__builtin_strchr &&
+ BuiltinOp != Builtin::BI__builtin_wcschr) {
+ APSInt N;
+ if (!EvaluateInteger(E->getArg(2), N, Info))
+ return false;
+ MaxLength = N.getExtValue();
+ }
+ // We cannot find the value if there are no candidates to match against.
+ if (MaxLength == 0u)
+ return ZeroInitialization(E);
+ if (!Result.checkNullPointerForFoldAccess(Info, E, AK_Read) ||
+ Result.Designator.Invalid)
+ return false;
+ QualType CharTy = Result.Designator.getType(Info.Ctx);
+ bool IsRawByte = BuiltinOp == Builtin::BImemchr ||
+ BuiltinOp == Builtin::BI__builtin_memchr;
+ assert(IsRawByte ||
+ Info.Ctx.hasSameUnqualifiedType(
+ CharTy, E->getArg(0)->getType()->getPointeeType()));
+ // Pointers to const void may point to objects of incomplete type.
+ if (IsRawByte && CharTy->isIncompleteType()) {
+ Info.FFDiag(E, diag::note_constexpr_ltor_incomplete_type) << CharTy;
+ return false;
+ }
+ // Give up on byte-oriented matching against multibyte elements.
+ // FIXME: We can compare the bytes in the correct order.
+ if (IsRawByte && Info.Ctx.getTypeSizeInChars(CharTy) != CharUnits::One())
+ return false;
+ // Figure out what value we're actually looking for (after converting to
+ // the corresponding unsigned type if necessary).
+ uint64_t DesiredVal;
+ bool StopAtNull = false;
+ switch (BuiltinOp) {
+ case Builtin::BIstrchr:
+ case Builtin::BI__builtin_strchr:
+ // strchr compares directly to the passed integer, and therefore
+ // always fails if given an int that is not a char.
+ if (!APSInt::isSameValue(HandleIntToIntCast(Info, E, CharTy,
+ E->getArg(1)->getType(),
+ Desired),
+ Desired))
+ return ZeroInitialization(E);
+ StopAtNull = true;
+ LLVM_FALLTHROUGH;
+ case Builtin::BImemchr:
+ case Builtin::BI__builtin_memchr:
+ case Builtin::BI__builtin_char_memchr:
+ // memchr compares by converting both sides to unsigned char. That's also
+ // correct for strchr if we get this far (to cope with plain char being
+ // unsigned in the strchr case).
+ DesiredVal = Desired.trunc(Info.Ctx.getCharWidth()).getZExtValue();
+ break;
+
+ case Builtin::BIwcschr:
+ case Builtin::BI__builtin_wcschr:
+ StopAtNull = true;
+ LLVM_FALLTHROUGH;
+ case Builtin::BIwmemchr:
+ case Builtin::BI__builtin_wmemchr:
+ // wcschr and wmemchr are given a wchar_t to look for. Just use it.
+ DesiredVal = Desired.getZExtValue();
+ break;
+ }
+
+ for (; MaxLength; --MaxLength) {
+ APValue Char;
+ if (!handleLValueToRValueConversion(Info, E, CharTy, Result, Char) ||
+ !Char.isInt())
+ return false;
+ if (Char.getInt().getZExtValue() == DesiredVal)
+ return true;
+ if (StopAtNull && !Char.getInt())
+ break;
+ if (!HandleLValueArrayAdjustment(Info, E, Result, CharTy, 1))
+ return false;
+ }
+ // Not found: return nullptr.
+ return ZeroInitialization(E);
+ }
+
+ case Builtin::BImemcpy:
+ case Builtin::BImemmove:
+ case Builtin::BIwmemcpy:
+ case Builtin::BIwmemmove:
+ if (Info.getLangOpts().CPlusPlus11)
+ Info.CCEDiag(E, diag::note_constexpr_invalid_function)
+ << /*isConstexpr*/0 << /*isConstructor*/0
+ << (std::string("'") + Info.Ctx.BuiltinInfo.getName(BuiltinOp) + "'");
+ else
+ Info.CCEDiag(E, diag::note_invalid_subexpr_in_const_expr);
+ LLVM_FALLTHROUGH;
+ case Builtin::BI__builtin_memcpy:
+ case Builtin::BI__builtin_memmove:
+ case Builtin::BI__builtin_wmemcpy:
+ case Builtin::BI__builtin_wmemmove: {
+ bool WChar = BuiltinOp == Builtin::BIwmemcpy ||
+ BuiltinOp == Builtin::BIwmemmove ||
+ BuiltinOp == Builtin::BI__builtin_wmemcpy ||
+ BuiltinOp == Builtin::BI__builtin_wmemmove;
+ bool Move = BuiltinOp == Builtin::BImemmove ||
+ BuiltinOp == Builtin::BIwmemmove ||
+ BuiltinOp == Builtin::BI__builtin_memmove ||
+ BuiltinOp == Builtin::BI__builtin_wmemmove;
+
+ // The result of mem* is the first argument.
+ if (!Visit(E->getArg(0)))
+ return false;
+ LValue Dest = Result;
+
+ LValue Src;
+ if (!EvaluatePointer(E->getArg(1), Src, Info))
+ return false;
+
+ APSInt N;
+ if (!EvaluateInteger(E->getArg(2), N, Info))
+ return false;
+ assert(!N.isSigned() && "memcpy and friends take an unsigned size");
+
+ // If the size is zero, we treat this as always being a valid no-op.
+ // (Even if one of the src and dest pointers is null.)
+ if (!N)
+ return true;
+
+ // Otherwise, if either of the operands is null, we can't proceed. Don't
+ // try to determine the type of the copied objects, because there aren't
+ // any.
+ if (!Src.Base || !Dest.Base) {
+ APValue Val;
+ (!Src.Base ? Src : Dest).moveInto(Val);
+ Info.FFDiag(E, diag::note_constexpr_memcpy_null)
+ << Move << WChar << !!Src.Base
+ << Val.getAsString(Info.Ctx, E->getArg(0)->getType());
+ return false;
+ }
+ if (Src.Designator.Invalid || Dest.Designator.Invalid)
+ return false;
+
+ // We require that Src and Dest are both pointers to arrays of
+ // trivially-copyable type. (For the wide version, the designator will be
+ // invalid if the designated object is not a wchar_t.)
+ QualType T = Dest.Designator.getType(Info.Ctx);
+ QualType SrcT = Src.Designator.getType(Info.Ctx);
+ if (!Info.Ctx.hasSameUnqualifiedType(T, SrcT)) {
+ Info.FFDiag(E, diag::note_constexpr_memcpy_type_pun) << Move << SrcT << T;
+ return false;
+ }
+ if (T->isIncompleteType()) {
+ Info.FFDiag(E, diag::note_constexpr_memcpy_incomplete_type) << Move << T;
+ return false;
+ }
+ if (!T.isTriviallyCopyableType(Info.Ctx)) {
+ Info.FFDiag(E, diag::note_constexpr_memcpy_nontrivial) << Move << T;
+ return false;
+ }
+
+ // Figure out how many T's we're copying.
+ uint64_t TSize = Info.Ctx.getTypeSizeInChars(T).getQuantity();
+ if (!WChar) {
+ uint64_t Remainder;
+ llvm::APInt OrigN = N;
+ llvm::APInt::udivrem(OrigN, TSize, N, Remainder);
+ if (Remainder) {
+ Info.FFDiag(E, diag::note_constexpr_memcpy_unsupported)
+ << Move << WChar << 0 << T << OrigN.toString(10, /*Signed*/false)
+ << (unsigned)TSize;
+ return false;
+ }
+ }
+
+ // Check that the copying will remain within the arrays, just so that we
+ // can give a more meaningful diagnostic. This implicitly also checks that
+ // N fits into 64 bits.
+ uint64_t RemainingSrcSize = Src.Designator.validIndexAdjustments().second;
+ uint64_t RemainingDestSize = Dest.Designator.validIndexAdjustments().second;
+ if (N.ugt(RemainingSrcSize) || N.ugt(RemainingDestSize)) {
+ Info.FFDiag(E, diag::note_constexpr_memcpy_unsupported)
+ << Move << WChar << (N.ugt(RemainingSrcSize) ? 1 : 2) << T
+ << N.toString(10, /*Signed*/false);
+ return false;
+ }
+ uint64_t NElems = N.getZExtValue();
+ uint64_t NBytes = NElems * TSize;
+
+ // Check for overlap.
+ int Direction = 1;
+ if (HasSameBase(Src, Dest)) {
+ uint64_t SrcOffset = Src.getLValueOffset().getQuantity();
+ uint64_t DestOffset = Dest.getLValueOffset().getQuantity();
+ if (DestOffset >= SrcOffset && DestOffset - SrcOffset < NBytes) {
+ // Dest is inside the source region.
+ if (!Move) {
+ Info.FFDiag(E, diag::note_constexpr_memcpy_overlap) << WChar;
+ return false;
+ }
+ // For memmove and friends, copy backwards.
+ if (!HandleLValueArrayAdjustment(Info, E, Src, T, NElems - 1) ||
+ !HandleLValueArrayAdjustment(Info, E, Dest, T, NElems - 1))
+ return false;
+ Direction = -1;
+ } else if (!Move && SrcOffset >= DestOffset &&
+ SrcOffset - DestOffset < NBytes) {
+ // Src is inside the destination region for memcpy: invalid.
+ Info.FFDiag(E, diag::note_constexpr_memcpy_overlap) << WChar;
+ return false;
+ }
+ }
+
+ while (true) {
+ APValue Val;
+ // FIXME: Set WantObjectRepresentation to true if we're copying a
+ // char-like type?
+ if (!handleLValueToRValueConversion(Info, E, T, Src, Val) ||
+ !handleAssignment(Info, E, Dest, T, Val))
+ return false;
+ // Do not iterate past the last element; if we're copying backwards, that
+ // might take us off the start of the array.
+ if (--NElems == 0)
+ return true;
+ if (!HandleLValueArrayAdjustment(Info, E, Src, T, Direction) ||
+ !HandleLValueArrayAdjustment(Info, E, Dest, T, Direction))
+ return false;
+ }
+ }
+
+ default:
+ break;
+ }
+
+ return visitNonBuiltinCallExpr(E);
+}
+
+static bool EvaluateArrayNewInitList(EvalInfo &Info, LValue &This,
+ APValue &Result, const InitListExpr *ILE,
+ QualType AllocType);
+
+bool PointerExprEvaluator::VisitCXXNewExpr(const CXXNewExpr *E) {
+ if (!Info.getLangOpts().CPlusPlus2a)
+ Info.CCEDiag(E, diag::note_constexpr_new);
+
+ // We cannot speculatively evaluate a delete expression.
+ if (Info.SpeculativeEvaluationDepth)
+ return false;
+
+ FunctionDecl *OperatorNew = E->getOperatorNew();
+
+ bool IsNothrow = false;
+ bool IsPlacement = false;
+ if (OperatorNew->isReservedGlobalPlacementOperator() &&
+ Info.CurrentCall->isStdFunction() && !E->isArray()) {
+ // FIXME Support array placement new.
+ assert(E->getNumPlacementArgs() == 1);
+ if (!EvaluatePointer(E->getPlacementArg(0), Result, Info))
+ return false;
+ if (Result.Designator.Invalid)
+ return false;
+ IsPlacement = true;
+ } else if (!OperatorNew->isReplaceableGlobalAllocationFunction()) {
+ Info.FFDiag(E, diag::note_constexpr_new_non_replaceable)
+ << isa<CXXMethodDecl>(OperatorNew) << OperatorNew;
+ return false;
+ } else if (E->getNumPlacementArgs()) {
+ // The only new-placement list we support is of the form (std::nothrow).
+ //
+ // FIXME: There is no restriction on this, but it's not clear that any
+ // other form makes any sense. We get here for cases such as:
+ //
+ // new (std::align_val_t{N}) X(int)
+ //
+ // (which should presumably be valid only if N is a multiple of
+ // alignof(int), and in any case can't be deallocated unless N is
+ // alignof(X) and X has new-extended alignment).
+ if (E->getNumPlacementArgs() != 1 ||
+ !E->getPlacementArg(0)->getType()->isNothrowT())
+ return Error(E, diag::note_constexpr_new_placement);
+
+ LValue Nothrow;
+ if (!EvaluateLValue(E->getPlacementArg(0), Nothrow, Info))
+ return false;
+ IsNothrow = true;
+ }
+
+ const Expr *Init = E->getInitializer();
+ const InitListExpr *ResizedArrayILE = nullptr;
+
+ QualType AllocType = E->getAllocatedType();
+ if (Optional<const Expr*> ArraySize = E->getArraySize()) {
+ const Expr *Stripped = *ArraySize;
+ for (; auto *ICE = dyn_cast<ImplicitCastExpr>(Stripped);
+ Stripped = ICE->getSubExpr())
+ if (ICE->getCastKind() != CK_NoOp &&
+ ICE->getCastKind() != CK_IntegralCast)
+ break;
+
+ llvm::APSInt ArrayBound;
+ if (!EvaluateInteger(Stripped, ArrayBound, Info))
+ return false;
+
+ // C++ [expr.new]p9:
+ // The expression is erroneous if:
+ // -- [...] its value before converting to size_t [or] applying the
+ // second standard conversion sequence is less than zero
+ if (ArrayBound.isSigned() && ArrayBound.isNegative()) {
+ if (IsNothrow)
+ return ZeroInitialization(E);
+
+ Info.FFDiag(*ArraySize, diag::note_constexpr_new_negative)
+ << ArrayBound << (*ArraySize)->getSourceRange();
+ return false;
+ }
+
+ // -- its value is such that the size of the allocated object would
+ // exceed the implementation-defined limit
+ if (ConstantArrayType::getNumAddressingBits(Info.Ctx, AllocType,
+ ArrayBound) >
+ ConstantArrayType::getMaxSizeBits(Info.Ctx)) {
+ if (IsNothrow)
+ return ZeroInitialization(E);
+
+ Info.FFDiag(*ArraySize, diag::note_constexpr_new_too_large)
+ << ArrayBound << (*ArraySize)->getSourceRange();
+ return false;
+ }
+
+ // -- the new-initializer is a braced-init-list and the number of
+ // array elements for which initializers are provided [...]
+ // exceeds the number of elements to initialize
+ if (Init) {
+ auto *CAT = Info.Ctx.getAsConstantArrayType(Init->getType());
+ assert(CAT && "unexpected type for array initializer");
+
+ unsigned Bits =
+ std::max(CAT->getSize().getBitWidth(), ArrayBound.getBitWidth());
+ llvm::APInt InitBound = CAT->getSize().zextOrSelf(Bits);
+ llvm::APInt AllocBound = ArrayBound.zextOrSelf(Bits);
+ if (InitBound.ugt(AllocBound)) {
+ if (IsNothrow)
+ return ZeroInitialization(E);
+
+ Info.FFDiag(*ArraySize, diag::note_constexpr_new_too_small)
+ << AllocBound.toString(10, /*Signed=*/false)
+ << InitBound.toString(10, /*Signed=*/false)
+ << (*ArraySize)->getSourceRange();
+ return false;
+ }
+
+ // If the sizes differ, we must have an initializer list, and we need
+ // special handling for this case when we initialize.
+ if (InitBound != AllocBound)
+ ResizedArrayILE = cast<InitListExpr>(Init);
+ }
+
+ AllocType = Info.Ctx.getConstantArrayType(AllocType, ArrayBound, nullptr,
+ ArrayType::Normal, 0);
+ } else {
+ assert(!AllocType->isArrayType() &&
+ "array allocation with non-array new");
+ }
+
+ APValue *Val;
+ if (IsPlacement) {
+ AccessKinds AK = AK_Construct;
+ struct FindObjectHandler {
+ EvalInfo &Info;
+ const Expr *E;
+ QualType AllocType;
+ const AccessKinds AccessKind;
+ APValue *Value;
+
+ typedef bool result_type;
+ bool failed() { return false; }
+ bool found(APValue &Subobj, QualType SubobjType) {
+ // FIXME: Reject the cases where [basic.life]p8 would not permit the
+ // old name of the object to be used to name the new object.
+ if (!Info.Ctx.hasSameUnqualifiedType(SubobjType, AllocType)) {
+ Info.FFDiag(E, diag::note_constexpr_placement_new_wrong_type) <<
+ SubobjType << AllocType;
+ return false;
+ }
+ Value = &Subobj;
+ return true;
+ }
+ bool found(APSInt &Value, QualType SubobjType) {
+ Info.FFDiag(E, diag::note_constexpr_construct_complex_elem);
+ return false;
+ }
+ bool found(APFloat &Value, QualType SubobjType) {
+ Info.FFDiag(E, diag::note_constexpr_construct_complex_elem);
+ return false;
+ }
+ } Handler = {Info, E, AllocType, AK, nullptr};
+
+ CompleteObject Obj = findCompleteObject(Info, E, AK, Result, AllocType);
+ if (!Obj || !findSubobject(Info, E, Obj, Result.Designator, Handler))
+ return false;
+
+ Val = Handler.Value;
+
+ // [basic.life]p1:
+ // The lifetime of an object o of type T ends when [...] the storage
+ // which the object occupies is [...] reused by an object that is not
+ // nested within o (6.6.2).
+ *Val = APValue();
+ } else {
+ // Perform the allocation and obtain a pointer to the resulting object.
+ Val = Info.createHeapAlloc(E, AllocType, Result);
+ if (!Val)
+ return false;
+ }
+
+ if (ResizedArrayILE) {
+ if (!EvaluateArrayNewInitList(Info, Result, *Val, ResizedArrayILE,
+ AllocType))
+ return false;
+ } else if (Init) {
+ if (!EvaluateInPlace(*Val, Info, Result, Init))
+ return false;
+ } else {
+ *Val = getDefaultInitValue(AllocType);
+ }
+
+ // Array new returns a pointer to the first element, not a pointer to the
+ // array.
+ if (auto *AT = AllocType->getAsArrayTypeUnsafe())
+ Result.addArray(Info, E, cast<ConstantArrayType>(AT));
+
+ return true;
+}
+//===----------------------------------------------------------------------===//
+// Member Pointer Evaluation
+//===----------------------------------------------------------------------===//
+
+namespace {
+class MemberPointerExprEvaluator
+ : public ExprEvaluatorBase<MemberPointerExprEvaluator> {
+ MemberPtr &Result;
+
+ bool Success(const ValueDecl *D) {
+ Result = MemberPtr(D);
+ return true;
+ }
+public:
+
+ MemberPointerExprEvaluator(EvalInfo &Info, MemberPtr &Result)
+ : ExprEvaluatorBaseTy(Info), Result(Result) {}
+
+ bool Success(const APValue &V, const Expr *E) {
+ Result.setFrom(V);
+ return true;
+ }
+ bool ZeroInitialization(const Expr *E) {
+ return Success((const ValueDecl*)nullptr);
+ }
+
+ bool VisitCastExpr(const CastExpr *E);
+ bool VisitUnaryAddrOf(const UnaryOperator *E);
+};
+} // end anonymous namespace
+
+static bool EvaluateMemberPointer(const Expr *E, MemberPtr &Result,
+ EvalInfo &Info) {
+ assert(E->isRValue() && E->getType()->isMemberPointerType());
+ return MemberPointerExprEvaluator(Info, Result).Visit(E);
+}
+
+bool MemberPointerExprEvaluator::VisitCastExpr(const CastExpr *E) {
+ switch (E->getCastKind()) {
+ default:
+ return ExprEvaluatorBaseTy::VisitCastExpr(E);
+
+ case CK_NullToMemberPointer:
+ VisitIgnoredValue(E->getSubExpr());
+ return ZeroInitialization(E);
+
+ case CK_BaseToDerivedMemberPointer: {
+ if (!Visit(E->getSubExpr()))
+ return false;
+ if (E->path_empty())
+ return true;
+ // Base-to-derived member pointer casts store the path in derived-to-base
+ // order, so iterate backwards. The CXXBaseSpecifier also provides us with
+ // the wrong end of the derived->base arc, so stagger the path by one class.
+ typedef std::reverse_iterator<CastExpr::path_const_iterator> ReverseIter;
+ for (ReverseIter PathI(E->path_end() - 1), PathE(E->path_begin());
+ PathI != PathE; ++PathI) {
+ assert(!(*PathI)->isVirtual() && "memptr cast through vbase");
+ const CXXRecordDecl *Derived = (*PathI)->getType()->getAsCXXRecordDecl();
+ if (!Result.castToDerived(Derived))
+ return Error(E);
+ }
+ const Type *FinalTy = E->getType()->castAs<MemberPointerType>()->getClass();
+ if (!Result.castToDerived(FinalTy->getAsCXXRecordDecl()))
+ return Error(E);
+ return true;
+ }
+
+ case CK_DerivedToBaseMemberPointer:
+ if (!Visit(E->getSubExpr()))
+ return false;
+ for (CastExpr::path_const_iterator PathI = E->path_begin(),
+ PathE = E->path_end(); PathI != PathE; ++PathI) {
+ assert(!(*PathI)->isVirtual() && "memptr cast through vbase");
+ const CXXRecordDecl *Base = (*PathI)->getType()->getAsCXXRecordDecl();
+ if (!Result.castToBase(Base))
+ return Error(E);
+ }
+ return true;
+ }
+}
+
+bool MemberPointerExprEvaluator::VisitUnaryAddrOf(const UnaryOperator *E) {
+ // C++11 [expr.unary.op]p3 has very strict rules on how the address of a
+ // member can be formed.
+ return Success(cast<DeclRefExpr>(E->getSubExpr())->getDecl());
+}
+
+//===----------------------------------------------------------------------===//
+// Record Evaluation
+//===----------------------------------------------------------------------===//
+
+namespace {
+ class RecordExprEvaluator
+ : public ExprEvaluatorBase<RecordExprEvaluator> {
+ const LValue &This;
+ APValue &Result;
+ public:
+
+ RecordExprEvaluator(EvalInfo &info, const LValue &This, APValue &Result)
+ : ExprEvaluatorBaseTy(info), This(This), Result(Result) {}
+
+ bool Success(const APValue &V, const Expr *E) {
+ Result = V;
+ return true;
+ }
+ bool ZeroInitialization(const Expr *E) {
+ return ZeroInitialization(E, E->getType());
+ }
+ bool ZeroInitialization(const Expr *E, QualType T);
+
+ bool VisitCallExpr(const CallExpr *E) {
+ return handleCallExpr(E, Result, &This);
+ }
+ bool VisitCastExpr(const CastExpr *E);
+ bool VisitInitListExpr(const InitListExpr *E);
+ bool VisitCXXConstructExpr(const CXXConstructExpr *E) {
+ return VisitCXXConstructExpr(E, E->getType());
+ }
+ bool VisitLambdaExpr(const LambdaExpr *E);
+ bool VisitCXXInheritedCtorInitExpr(const CXXInheritedCtorInitExpr *E);
+ bool VisitCXXConstructExpr(const CXXConstructExpr *E, QualType T);
+ bool VisitCXXStdInitializerListExpr(const CXXStdInitializerListExpr *E);
+ bool VisitBinCmp(const BinaryOperator *E);
+ };
+}
+
+/// Perform zero-initialization on an object of non-union class type.
+/// C++11 [dcl.init]p5:
+/// To zero-initialize an object or reference of type T means:
+/// [...]
+/// -- if T is a (possibly cv-qualified) non-union class type,
+/// each non-static data member and each base-class subobject is
+/// zero-initialized
+static bool HandleClassZeroInitialization(EvalInfo &Info, const Expr *E,
+ const RecordDecl *RD,
+ const LValue &This, APValue &Result) {
+ assert(!RD->isUnion() && "Expected non-union class type");
+ const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(RD);
+ Result = APValue(APValue::UninitStruct(), CD ? CD->getNumBases() : 0,
+ std::distance(RD->field_begin(), RD->field_end()));
+
+ if (RD->isInvalidDecl()) return false;
+ const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
+
+ if (CD) {
+ unsigned Index = 0;
+ for (CXXRecordDecl::base_class_const_iterator I = CD->bases_begin(),
+ End = CD->bases_end(); I != End; ++I, ++Index) {
+ const CXXRecordDecl *Base = I->getType()->getAsCXXRecordDecl();
+ LValue Subobject = This;
+ if (!HandleLValueDirectBase(Info, E, Subobject, CD, Base, &Layout))
+ return false;
+ if (!HandleClassZeroInitialization(Info, E, Base, Subobject,
+ Result.getStructBase(Index)))
+ return false;
+ }
+ }
+
+ for (const auto *I : RD->fields()) {
+ // -- if T is a reference type, no initialization is performed.
+ if (I->getType()->isReferenceType())
+ continue;
+
+ LValue Subobject = This;
+ if (!HandleLValueMember(Info, E, Subobject, I, &Layout))
+ return false;
+
+ ImplicitValueInitExpr VIE(I->getType());
+ if (!EvaluateInPlace(
+ Result.getStructField(I->getFieldIndex()), Info, Subobject, &VIE))
+ return false;
+ }
+
+ return true;
+}
+
+bool RecordExprEvaluator::ZeroInitialization(const Expr *E, QualType T) {
+ const RecordDecl *RD = T->castAs<RecordType>()->getDecl();
+ if (RD->isInvalidDecl()) return false;
+ if (RD->isUnion()) {
+ // C++11 [dcl.init]p5: If T is a (possibly cv-qualified) union type, the
+ // object's first non-static named data member is zero-initialized
+ RecordDecl::field_iterator I = RD->field_begin();
+ if (I == RD->field_end()) {
+ Result = APValue((const FieldDecl*)nullptr);
+ return true;
+ }
+
+ LValue Subobject = This;
+ if (!HandleLValueMember(Info, E, Subobject, *I))
+ return false;
+ Result = APValue(*I);
+ ImplicitValueInitExpr VIE(I->getType());
+ return EvaluateInPlace(Result.getUnionValue(), Info, Subobject, &VIE);
+ }
+
+ if (isa<CXXRecordDecl>(RD) && cast<CXXRecordDecl>(RD)->getNumVBases()) {
+ Info.FFDiag(E, diag::note_constexpr_virtual_base) << RD;
+ return false;
+ }
+
+ return HandleClassZeroInitialization(Info, E, RD, This, Result);
+}
+
+bool RecordExprEvaluator::VisitCastExpr(const CastExpr *E) {
+ switch (E->getCastKind()) {
+ default:
+ return ExprEvaluatorBaseTy::VisitCastExpr(E);
+
+ case CK_ConstructorConversion:
+ return Visit(E->getSubExpr());
+
+ case CK_DerivedToBase:
+ case CK_UncheckedDerivedToBase: {
+ APValue DerivedObject;
+ if (!Evaluate(DerivedObject, Info, E->getSubExpr()))
+ return false;
+ if (!DerivedObject.isStruct())
+ return Error(E->getSubExpr());
+
+ // Derived-to-base rvalue conversion: just slice off the derived part.
+ APValue *Value = &DerivedObject;
+ const CXXRecordDecl *RD = E->getSubExpr()->getType()->getAsCXXRecordDecl();
+ for (CastExpr::path_const_iterator PathI = E->path_begin(),
+ PathE = E->path_end(); PathI != PathE; ++PathI) {
+ assert(!(*PathI)->isVirtual() && "record rvalue with virtual base");
+ const CXXRecordDecl *Base = (*PathI)->getType()->getAsCXXRecordDecl();
+ Value = &Value->getStructBase(getBaseIndex(RD, Base));
+ RD = Base;
+ }
+ Result = *Value;
+ return true;
+ }
+ }
+}
+
+bool RecordExprEvaluator::VisitInitListExpr(const InitListExpr *E) {
+ if (E->isTransparent())
+ return Visit(E->getInit(0));
+
+ const RecordDecl *RD = E->getType()->castAs<RecordType>()->getDecl();
+ if (RD->isInvalidDecl()) return false;
+ const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
+ auto *CXXRD = dyn_cast<CXXRecordDecl>(RD);
+
+ EvalInfo::EvaluatingConstructorRAII EvalObj(
+ Info,
+ ObjectUnderConstruction{This.getLValueBase(), This.Designator.Entries},
+ CXXRD && CXXRD->getNumBases());
+
+ if (RD->isUnion()) {
+ const FieldDecl *Field = E->getInitializedFieldInUnion();
+ Result = APValue(Field);
+ if (!Field)
+ return true;
+
+ // If the initializer list for a union does not contain any elements, the
+ // first element of the union is value-initialized.
+ // FIXME: The element should be initialized from an initializer list.
+ // Is this difference ever observable for initializer lists which
+ // we don't build?
+ ImplicitValueInitExpr VIE(Field->getType());
+ const Expr *InitExpr = E->getNumInits() ? E->getInit(0) : &VIE;
+
+ LValue Subobject = This;
+ if (!HandleLValueMember(Info, InitExpr, Subobject, Field, &Layout))
+ return false;
+
+ // Temporarily override This, in case there's a CXXDefaultInitExpr in here.
+ ThisOverrideRAII ThisOverride(*Info.CurrentCall, &This,
+ isa<CXXDefaultInitExpr>(InitExpr));
+
+ return EvaluateInPlace(Result.getUnionValue(), Info, Subobject, InitExpr);
+ }
+
+ if (!Result.hasValue())
+ Result = APValue(APValue::UninitStruct(), CXXRD ? CXXRD->getNumBases() : 0,
+ std::distance(RD->field_begin(), RD->field_end()));
+ unsigned ElementNo = 0;
+ bool Success = true;
+
+ // Initialize base classes.
+ if (CXXRD && CXXRD->getNumBases()) {
+ for (const auto &Base : CXXRD->bases()) {
+ assert(ElementNo < E->getNumInits() && "missing init for base class");
+ const Expr *Init = E->getInit(ElementNo);
+
+ LValue Subobject = This;
+ if (!HandleLValueBase(Info, Init, Subobject, CXXRD, &Base))
+ return false;
+
+ APValue &FieldVal = Result.getStructBase(ElementNo);
+ if (!EvaluateInPlace(FieldVal, Info, Subobject, Init)) {
+ if (!Info.noteFailure())
+ return false;
+ Success = false;
+ }
+ ++ElementNo;
+ }
+
+ EvalObj.finishedConstructingBases();
+ }
+
+ // Initialize members.
+ for (const auto *Field : RD->fields()) {
+ // Anonymous bit-fields are not considered members of the class for
+ // purposes of aggregate initialization.
+ if (Field->isUnnamedBitfield())
+ continue;
+
+ LValue Subobject = This;
+
+ bool HaveInit = ElementNo < E->getNumInits();
+
+ // FIXME: Diagnostics here should point to the end of the initializer
+ // list, not the start.
+ if (!HandleLValueMember(Info, HaveInit ? E->getInit(ElementNo) : E,
+ Subobject, Field, &Layout))
+ return false;
+
+ // Perform an implicit value-initialization for members beyond the end of
+ // the initializer list.
+ ImplicitValueInitExpr VIE(HaveInit ? Info.Ctx.IntTy : Field->getType());
+ const Expr *Init = HaveInit ? E->getInit(ElementNo++) : &VIE;
+
+ // Temporarily override This, in case there's a CXXDefaultInitExpr in here.
+ ThisOverrideRAII ThisOverride(*Info.CurrentCall, &This,
+ isa<CXXDefaultInitExpr>(Init));
+
+ APValue &FieldVal = Result.getStructField(Field->getFieldIndex());
+ if (!EvaluateInPlace(FieldVal, Info, Subobject, Init) ||
+ (Field->isBitField() && !truncateBitfieldValue(Info, Init,
+ FieldVal, Field))) {
+ if (!Info.noteFailure())
+ return false;
+ Success = false;
+ }
+ }
+
+ return Success;
+}
+
+bool RecordExprEvaluator::VisitCXXConstructExpr(const CXXConstructExpr *E,
+ QualType T) {
+ // Note that E's type is not necessarily the type of our class here; we might
+ // be initializing an array element instead.
+ const CXXConstructorDecl *FD = E->getConstructor();
+ if (FD->isInvalidDecl() || FD->getParent()->isInvalidDecl()) return false;
+
+ bool ZeroInit = E->requiresZeroInitialization();
+ if (CheckTrivialDefaultConstructor(Info, E->getExprLoc(), FD, ZeroInit)) {
+ // If we've already performed zero-initialization, we're already done.
+ if (Result.hasValue())
+ return true;
+
+ if (ZeroInit)
+ return ZeroInitialization(E, T);
+
+ Result = getDefaultInitValue(T);
+ return true;
+ }
+
+ const FunctionDecl *Definition = nullptr;
+ auto Body = FD->getBody(Definition);
+
+ if (!CheckConstexprFunction(Info, E->getExprLoc(), FD, Definition, Body))
+ return false;
+
+ // Avoid materializing a temporary for an elidable copy/move constructor.
+ if (E->isElidable() && !ZeroInit)
+ if (const MaterializeTemporaryExpr *ME
+ = dyn_cast<MaterializeTemporaryExpr>(E->getArg(0)))
+ return Visit(ME->GetTemporaryExpr());
+
+ if (ZeroInit && !ZeroInitialization(E, T))
+ return false;
+
+ auto Args = llvm::makeArrayRef(E->getArgs(), E->getNumArgs());
+ return HandleConstructorCall(E, This, Args,
+ cast<CXXConstructorDecl>(Definition), Info,
+ Result);
+}
+
+bool RecordExprEvaluator::VisitCXXInheritedCtorInitExpr(
+ const CXXInheritedCtorInitExpr *E) {
+ if (!Info.CurrentCall) {
+ assert(Info.checkingPotentialConstantExpression());
+ return false;
+ }
+
+ const CXXConstructorDecl *FD = E->getConstructor();
+ if (FD->isInvalidDecl() || FD->getParent()->isInvalidDecl())
+ return false;
+
+ const FunctionDecl *Definition = nullptr;
+ auto Body = FD->getBody(Definition);
+
+ if (!CheckConstexprFunction(Info, E->getExprLoc(), FD, Definition, Body))
+ return false;
+
+ return HandleConstructorCall(E, This, Info.CurrentCall->Arguments,
+ cast<CXXConstructorDecl>(Definition), Info,
+ Result);
+}
+
+bool RecordExprEvaluator::VisitCXXStdInitializerListExpr(
+ const CXXStdInitializerListExpr *E) {
+ const ConstantArrayType *ArrayType =
+ Info.Ctx.getAsConstantArrayType(E->getSubExpr()->getType());
+
+ LValue Array;
+ if (!EvaluateLValue(E->getSubExpr(), Array, Info))
+ return false;
+
+ // Get a pointer to the first element of the array.
+ Array.addArray(Info, E, ArrayType);
+
+ // FIXME: Perform the checks on the field types in SemaInit.
+ RecordDecl *Record = E->getType()->castAs<RecordType>()->getDecl();
+ RecordDecl::field_iterator Field = Record->field_begin();
+ if (Field == Record->field_end())
+ return Error(E);
+
+ // Start pointer.
+ if (!Field->getType()->isPointerType() ||
+ !Info.Ctx.hasSameType(Field->getType()->getPointeeType(),
+ ArrayType->getElementType()))
+ return Error(E);
+
+ // FIXME: What if the initializer_list type has base classes, etc?
+ Result = APValue(APValue::UninitStruct(), 0, 2);
+ Array.moveInto(Result.getStructField(0));
+
+ if (++Field == Record->field_end())
+ return Error(E);
+
+ if (Field->getType()->isPointerType() &&
+ Info.Ctx.hasSameType(Field->getType()->getPointeeType(),
+ ArrayType->getElementType())) {
+ // End pointer.
+ if (!HandleLValueArrayAdjustment(Info, E, Array,
+ ArrayType->getElementType(),
+ ArrayType->getSize().getZExtValue()))
+ return false;
+ Array.moveInto(Result.getStructField(1));
+ } else if (Info.Ctx.hasSameType(Field->getType(), Info.Ctx.getSizeType()))
+ // Length.
+ Result.getStructField(1) = APValue(APSInt(ArrayType->getSize()));
+ else
+ return Error(E);
+
+ if (++Field != Record->field_end())
+ return Error(E);
+
+ return true;
+}
+
+bool RecordExprEvaluator::VisitLambdaExpr(const LambdaExpr *E) {
+ const CXXRecordDecl *ClosureClass = E->getLambdaClass();
+ if (ClosureClass->isInvalidDecl())
+ return false;
+
+ const size_t NumFields =
+ std::distance(ClosureClass->field_begin(), ClosureClass->field_end());
+
+ assert(NumFields == (size_t)std::distance(E->capture_init_begin(),
+ E->capture_init_end()) &&
+ "The number of lambda capture initializers should equal the number of "
+ "fields within the closure type");
+
+ Result = APValue(APValue::UninitStruct(), /*NumBases*/0, NumFields);
+ // Iterate through all the lambda's closure object's fields and initialize
+ // them.
+ auto *CaptureInitIt = E->capture_init_begin();
+ const LambdaCapture *CaptureIt = ClosureClass->captures_begin();
+ bool Success = true;
+ for (const auto *Field : ClosureClass->fields()) {
+ assert(CaptureInitIt != E->capture_init_end());
+ // Get the initializer for this field
+ Expr *const CurFieldInit = *CaptureInitIt++;
+
+ // If there is no initializer, either this is a VLA or an error has
+ // occurred.
+ if (!CurFieldInit)
+ return Error(E);
+
+ APValue &FieldVal = Result.getStructField(Field->getFieldIndex());
+ if (!EvaluateInPlace(FieldVal, Info, This, CurFieldInit)) {
+ if (!Info.keepEvaluatingAfterFailure())
+ return false;
+ Success = false;
+ }
+ ++CaptureIt;
+ }
+ return Success;
+}
+
+static bool EvaluateRecord(const Expr *E, const LValue &This,
+ APValue &Result, EvalInfo &Info) {
+ assert(E->isRValue() && E->getType()->isRecordType() &&
+ "can't evaluate expression as a record rvalue");
+ return RecordExprEvaluator(Info, This, Result).Visit(E);
+}
+
+//===----------------------------------------------------------------------===//
+// Temporary Evaluation
+//
+// Temporaries are represented in the AST as rvalues, but generally behave like
+// lvalues. The full-object of which the temporary is a subobject is implicitly
+// materialized so that a reference can bind to it.
+//===----------------------------------------------------------------------===//
+namespace {
+class TemporaryExprEvaluator
+ : public LValueExprEvaluatorBase<TemporaryExprEvaluator> {
+public:
+ TemporaryExprEvaluator(EvalInfo &Info, LValue &Result) :
+ LValueExprEvaluatorBaseTy(Info, Result, false) {}
+
+ /// Visit an expression which constructs the value of this temporary.
+ bool VisitConstructExpr(const Expr *E) {
+ APValue &Value =
+ Info.CurrentCall->createTemporary(E, E->getType(), false, Result);
+ return EvaluateInPlace(Value, Info, Result, E);
+ }
+
+ bool VisitCastExpr(const CastExpr *E) {
+ switch (E->getCastKind()) {
+ default:
+ return LValueExprEvaluatorBaseTy::VisitCastExpr(E);
+
+ case CK_ConstructorConversion:
+ return VisitConstructExpr(E->getSubExpr());
+ }
+ }
+ bool VisitInitListExpr(const InitListExpr *E) {
+ return VisitConstructExpr(E);
+ }
+ bool VisitCXXConstructExpr(const CXXConstructExpr *E) {
+ return VisitConstructExpr(E);
+ }
+ bool VisitCallExpr(const CallExpr *E) {
+ return VisitConstructExpr(E);
+ }
+ bool VisitCXXStdInitializerListExpr(const CXXStdInitializerListExpr *E) {
+ return VisitConstructExpr(E);
+ }
+ bool VisitLambdaExpr(const LambdaExpr *E) {
+ return VisitConstructExpr(E);
+ }
+};
+} // end anonymous namespace
+
+/// Evaluate an expression of record type as a temporary.
+static bool EvaluateTemporary(const Expr *E, LValue &Result, EvalInfo &Info) {
+ assert(E->isRValue() && E->getType()->isRecordType());
+ return TemporaryExprEvaluator(Info, Result).Visit(E);
+}
+
+//===----------------------------------------------------------------------===//
+// Vector Evaluation
+//===----------------------------------------------------------------------===//
+
+namespace {
+ class VectorExprEvaluator
+ : public ExprEvaluatorBase<VectorExprEvaluator> {
+ APValue &Result;
+ public:
+
+ VectorExprEvaluator(EvalInfo &info, APValue &Result)
+ : ExprEvaluatorBaseTy(info), Result(Result) {}
+
+ bool Success(ArrayRef<APValue> V, const Expr *E) {
+ assert(V.size() == E->getType()->castAs<VectorType>()->getNumElements());
+ // FIXME: remove this APValue copy.
+ Result = APValue(V.data(), V.size());
+ return true;
+ }
+ bool Success(const APValue &V, const Expr *E) {
+ assert(V.isVector());
+ Result = V;
+ return true;
+ }
+ bool ZeroInitialization(const Expr *E);
+
+ bool VisitUnaryReal(const UnaryOperator *E)
+ { return Visit(E->getSubExpr()); }
+ bool VisitCastExpr(const CastExpr* E);
+ bool VisitInitListExpr(const InitListExpr *E);
+ bool VisitUnaryImag(const UnaryOperator *E);
+ // FIXME: Missing: unary -, unary ~, binary add/sub/mul/div,
+ // binary comparisons, binary and/or/xor,
+ // shufflevector, ExtVectorElementExpr
+ };
+} // end anonymous namespace
+
+static bool EvaluateVector(const Expr* E, APValue& Result, EvalInfo &Info) {
+ assert(E->isRValue() && E->getType()->isVectorType() &&"not a vector rvalue");
+ return VectorExprEvaluator(Info, Result).Visit(E);
+}
+
+bool VectorExprEvaluator::VisitCastExpr(const CastExpr *E) {
+ const VectorType *VTy = E->getType()->castAs<VectorType>();
+ unsigned NElts = VTy->getNumElements();
+
+ const Expr *SE = E->getSubExpr();
+ QualType SETy = SE->getType();
+
+ switch (E->getCastKind()) {
+ case CK_VectorSplat: {
+ APValue Val = APValue();
+ if (SETy->isIntegerType()) {
+ APSInt IntResult;
+ if (!EvaluateInteger(SE, IntResult, Info))
+ return false;
+ Val = APValue(std::move(IntResult));
+ } else if (SETy->isRealFloatingType()) {
+ APFloat FloatResult(0.0);
+ if (!EvaluateFloat(SE, FloatResult, Info))
+ return false;
+ Val = APValue(std::move(FloatResult));
+ } else {
+ return Error(E);
+ }
+
+ // Splat and create vector APValue.
+ SmallVector<APValue, 4> Elts(NElts, Val);
+ return Success(Elts, E);
+ }
+ case CK_BitCast: {
+ // Evaluate the operand into an APInt we can extract from.
+ llvm::APInt SValInt;
+ if (!EvalAndBitcastToAPInt(Info, SE, SValInt))
+ return false;
+ // Extract the elements
+ QualType EltTy = VTy->getElementType();
+ unsigned EltSize = Info.Ctx.getTypeSize(EltTy);
+ bool BigEndian = Info.Ctx.getTargetInfo().isBigEndian();
+ SmallVector<APValue, 4> Elts;
+ if (EltTy->isRealFloatingType()) {
+ const llvm::fltSemantics &Sem = Info.Ctx.getFloatTypeSemantics(EltTy);
+ unsigned FloatEltSize = EltSize;
+ if (&Sem == &APFloat::x87DoubleExtended())
+ FloatEltSize = 80;
+ for (unsigned i = 0; i < NElts; i++) {
+ llvm::APInt Elt;
+ if (BigEndian)
+ Elt = SValInt.rotl(i*EltSize+FloatEltSize).trunc(FloatEltSize);
+ else
+ Elt = SValInt.rotr(i*EltSize).trunc(FloatEltSize);
+ Elts.push_back(APValue(APFloat(Sem, Elt)));
+ }
+ } else if (EltTy->isIntegerType()) {
+ for (unsigned i = 0; i < NElts; i++) {
+ llvm::APInt Elt;
+ if (BigEndian)
+ Elt = SValInt.rotl(i*EltSize+EltSize).zextOrTrunc(EltSize);
+ else
+ Elt = SValInt.rotr(i*EltSize).zextOrTrunc(EltSize);
+ Elts.push_back(APValue(APSInt(Elt, EltTy->isSignedIntegerType())));
+ }
+ } else {
+ return Error(E);
+ }
+ return Success(Elts, E);
+ }
+ default:
+ return ExprEvaluatorBaseTy::VisitCastExpr(E);
+ }
+}
+
+bool
+VectorExprEvaluator::VisitInitListExpr(const InitListExpr *E) {
+ const VectorType *VT = E->getType()->castAs<VectorType>();
+ unsigned NumInits = E->getNumInits();
+ unsigned NumElements = VT->getNumElements();
+
+ QualType EltTy = VT->getElementType();
+ SmallVector<APValue, 4> Elements;
+
+ // The number of initializers can be less than the number of
+ // vector elements. For OpenCL, this can be due to nested vector
+ // initialization. For GCC compatibility, missing trailing elements
+ // should be initialized with zeroes.
+ unsigned CountInits = 0, CountElts = 0;
+ while (CountElts < NumElements) {
+ // Handle nested vector initialization.
+ if (CountInits < NumInits
+ && E->getInit(CountInits)->getType()->isVectorType()) {
+ APValue v;
+ if (!EvaluateVector(E->getInit(CountInits), v, Info))
+ return Error(E);
+ unsigned vlen = v.getVectorLength();
+ for (unsigned j = 0; j < vlen; j++)
+ Elements.push_back(v.getVectorElt(j));
+ CountElts += vlen;
+ } else if (EltTy->isIntegerType()) {
+ llvm::APSInt sInt(32);
+ if (CountInits < NumInits) {
+ if (!EvaluateInteger(E->getInit(CountInits), sInt, Info))
+ return false;
+ } else // trailing integer zero.
+ sInt = Info.Ctx.MakeIntValue(0, EltTy);
+ Elements.push_back(APValue(sInt));
+ CountElts++;
+ } else {
+ llvm::APFloat f(0.0);
+ if (CountInits < NumInits) {
+ if (!EvaluateFloat(E->getInit(CountInits), f, Info))
+ return false;
+ } else // trailing float zero.
+ f = APFloat::getZero(Info.Ctx.getFloatTypeSemantics(EltTy));
+ Elements.push_back(APValue(f));
+ CountElts++;
+ }
+ CountInits++;
+ }
+ return Success(Elements, E);
+}
+
+bool
+VectorExprEvaluator::ZeroInitialization(const Expr *E) {
+ const auto *VT = E->getType()->castAs<VectorType>();
+ QualType EltTy = VT->getElementType();
+ APValue ZeroElement;
+ if (EltTy->isIntegerType())
+ ZeroElement = APValue(Info.Ctx.MakeIntValue(0, EltTy));
+ else
+ ZeroElement =
+ APValue(APFloat::getZero(Info.Ctx.getFloatTypeSemantics(EltTy)));
+
+ SmallVector<APValue, 4> Elements(VT->getNumElements(), ZeroElement);
+ return Success(Elements, E);
+}
+
+bool VectorExprEvaluator::VisitUnaryImag(const UnaryOperator *E) {
+ VisitIgnoredValue(E->getSubExpr());
+ return ZeroInitialization(E);
+}
+
+//===----------------------------------------------------------------------===//
+// Array Evaluation
+//===----------------------------------------------------------------------===//
+
+namespace {
+ class ArrayExprEvaluator
+ : public ExprEvaluatorBase<ArrayExprEvaluator> {
+ const LValue &This;
+ APValue &Result;
+ public:
+
+ ArrayExprEvaluator(EvalInfo &Info, const LValue &This, APValue &Result)
+ : ExprEvaluatorBaseTy(Info), This(This), Result(Result) {}
+
+ bool Success(const APValue &V, const Expr *E) {
+ assert(V.isArray() && "expected array");
+ Result = V;
+ return true;
+ }
+
+ bool ZeroInitialization(const Expr *E) {
+ const ConstantArrayType *CAT =
+ Info.Ctx.getAsConstantArrayType(E->getType());
+ if (!CAT)
+ return Error(E);
+
+ Result = APValue(APValue::UninitArray(), 0,
+ CAT->getSize().getZExtValue());
+ if (!Result.hasArrayFiller()) return true;
+
+ // Zero-initialize all elements.
+ LValue Subobject = This;
+ Subobject.addArray(Info, E, CAT);
+ ImplicitValueInitExpr VIE(CAT->getElementType());
+ return EvaluateInPlace(Result.getArrayFiller(), Info, Subobject, &VIE);
+ }
+
+ bool VisitCallExpr(const CallExpr *E) {
+ return handleCallExpr(E, Result, &This);
+ }
+ bool VisitInitListExpr(const InitListExpr *E,
+ QualType AllocType = QualType());
+ bool VisitArrayInitLoopExpr(const ArrayInitLoopExpr *E);
+ bool VisitCXXConstructExpr(const CXXConstructExpr *E);
+ bool VisitCXXConstructExpr(const CXXConstructExpr *E,
+ const LValue &Subobject,
+ APValue *Value, QualType Type);
+ bool VisitStringLiteral(const StringLiteral *E,
+ QualType AllocType = QualType()) {
+ expandStringLiteral(Info, E, Result, AllocType);
+ return true;
+ }
+ };
+} // end anonymous namespace
+
+static bool EvaluateArray(const Expr *E, const LValue &This,
+ APValue &Result, EvalInfo &Info) {
+ assert(E->isRValue() && E->getType()->isArrayType() && "not an array rvalue");
+ return ArrayExprEvaluator(Info, This, Result).Visit(E);
+}
+
+static bool EvaluateArrayNewInitList(EvalInfo &Info, LValue &This,
+ APValue &Result, const InitListExpr *ILE,
+ QualType AllocType) {
+ assert(ILE->isRValue() && ILE->getType()->isArrayType() &&
+ "not an array rvalue");
+ return ArrayExprEvaluator(Info, This, Result)
+ .VisitInitListExpr(ILE, AllocType);
+}
+
+// Return true iff the given array filler may depend on the element index.
+static bool MaybeElementDependentArrayFiller(const Expr *FillerExpr) {
+ // For now, just whitelist non-class value-initialization and initialization
+ // lists comprised of them.
+ if (isa<ImplicitValueInitExpr>(FillerExpr))
+ return false;
+ if (const InitListExpr *ILE = dyn_cast<InitListExpr>(FillerExpr)) {
+ for (unsigned I = 0, E = ILE->getNumInits(); I != E; ++I) {
+ if (MaybeElementDependentArrayFiller(ILE->getInit(I)))
+ return true;
+ }
+ return false;
+ }
+ return true;
+}
+
+bool ArrayExprEvaluator::VisitInitListExpr(const InitListExpr *E,
+ QualType AllocType) {
+ const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(
+ AllocType.isNull() ? E->getType() : AllocType);
+ if (!CAT)
+ return Error(E);
+
+ // C++11 [dcl.init.string]p1: A char array [...] can be initialized by [...]
+ // an appropriately-typed string literal enclosed in braces.
+ if (E->isStringLiteralInit()) {
+ auto *SL = dyn_cast<StringLiteral>(E->getInit(0)->IgnoreParens());
+ // FIXME: Support ObjCEncodeExpr here once we support it in
+ // ArrayExprEvaluator generally.
+ if (!SL)
+ return Error(E);
+ return VisitStringLiteral(SL, AllocType);
+ }
+
+ bool Success = true;
+
+ assert((!Result.isArray() || Result.getArrayInitializedElts() == 0) &&
+ "zero-initialized array shouldn't have any initialized elts");
+ APValue Filler;
+ if (Result.isArray() && Result.hasArrayFiller())
+ Filler = Result.getArrayFiller();
+
+ unsigned NumEltsToInit = E->getNumInits();
+ unsigned NumElts = CAT->getSize().getZExtValue();
+ const Expr *FillerExpr = E->hasArrayFiller() ? E->getArrayFiller() : nullptr;
+
+ // If the initializer might depend on the array index, run it for each
+ // array element.
+ if (NumEltsToInit != NumElts && MaybeElementDependentArrayFiller(FillerExpr))
+ NumEltsToInit = NumElts;
+
+ LLVM_DEBUG(llvm::dbgs() << "The number of elements to initialize: "
+ << NumEltsToInit << ".\n");
+
+ Result = APValue(APValue::UninitArray(), NumEltsToInit, NumElts);
+
+ // If the array was previously zero-initialized, preserve the
+ // zero-initialized values.
+ if (Filler.hasValue()) {
+ for (unsigned I = 0, E = Result.getArrayInitializedElts(); I != E; ++I)
+ Result.getArrayInitializedElt(I) = Filler;
+ if (Result.hasArrayFiller())
+ Result.getArrayFiller() = Filler;
+ }
+
+ LValue Subobject = This;
+ Subobject.addArray(Info, E, CAT);
+ for (unsigned Index = 0; Index != NumEltsToInit; ++Index) {
+ const Expr *Init =
+ Index < E->getNumInits() ? E->getInit(Index) : FillerExpr;
+ if (!EvaluateInPlace(Result.getArrayInitializedElt(Index),
+ Info, Subobject, Init) ||
+ !HandleLValueArrayAdjustment(Info, Init, Subobject,
+ CAT->getElementType(), 1)) {
+ if (!Info.noteFailure())
+ return false;
+ Success = false;
+ }
+ }
+
+ if (!Result.hasArrayFiller())
+ return Success;
+
+ // If we get here, we have a trivial filler, which we can just evaluate
+ // once and splat over the rest of the array elements.
+ assert(FillerExpr && "no array filler for incomplete init list");
+ return EvaluateInPlace(Result.getArrayFiller(), Info, Subobject,
+ FillerExpr) && Success;
+}
+
+bool ArrayExprEvaluator::VisitArrayInitLoopExpr(const ArrayInitLoopExpr *E) {
+ LValue CommonLV;
+ if (E->getCommonExpr() &&
+ !Evaluate(Info.CurrentCall->createTemporary(
+ E->getCommonExpr(),
+ getStorageType(Info.Ctx, E->getCommonExpr()), false,
+ CommonLV),
+ Info, E->getCommonExpr()->getSourceExpr()))
+ return false;
+
+ auto *CAT = cast<ConstantArrayType>(E->getType()->castAsArrayTypeUnsafe());
+
+ uint64_t Elements = CAT->getSize().getZExtValue();
+ Result = APValue(APValue::UninitArray(), Elements, Elements);
+
+ LValue Subobject = This;
+ Subobject.addArray(Info, E, CAT);
+
+ bool Success = true;
+ for (EvalInfo::ArrayInitLoopIndex Index(Info); Index != Elements; ++Index) {
+ if (!EvaluateInPlace(Result.getArrayInitializedElt(Index),
+ Info, Subobject, E->getSubExpr()) ||
+ !HandleLValueArrayAdjustment(Info, E, Subobject,
+ CAT->getElementType(), 1)) {
+ if (!Info.noteFailure())
+ return false;
+ Success = false;
+ }
+ }
+
+ return Success;
+}
+
+bool ArrayExprEvaluator::VisitCXXConstructExpr(const CXXConstructExpr *E) {
+ return VisitCXXConstructExpr(E, This, &Result, E->getType());
+}
+
+bool ArrayExprEvaluator::VisitCXXConstructExpr(const CXXConstructExpr *E,
+ const LValue &Subobject,
+ APValue *Value,
+ QualType Type) {
+ bool HadZeroInit = Value->hasValue();
+
+ if (const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(Type)) {
+ unsigned N = CAT->getSize().getZExtValue();
+
+ // Preserve the array filler if we had prior zero-initialization.
+ APValue Filler =
+ HadZeroInit && Value->hasArrayFiller() ? Value->getArrayFiller()
+ : APValue();
+
+ *Value = APValue(APValue::UninitArray(), N, N);
+
+ if (HadZeroInit)
+ for (unsigned I = 0; I != N; ++I)
+ Value->getArrayInitializedElt(I) = Filler;
+
+ // Initialize the elements.
+ LValue ArrayElt = Subobject;
+ ArrayElt.addArray(Info, E, CAT);
+ for (unsigned I = 0; I != N; ++I)
+ if (!VisitCXXConstructExpr(E, ArrayElt, &Value->getArrayInitializedElt(I),
+ CAT->getElementType()) ||
+ !HandleLValueArrayAdjustment(Info, E, ArrayElt,
+ CAT->getElementType(), 1))
+ return false;
+
+ return true;
+ }
+
+ if (!Type->isRecordType())
+ return Error(E);
+
+ return RecordExprEvaluator(Info, Subobject, *Value)
+ .VisitCXXConstructExpr(E, Type);
+}
+
+//===----------------------------------------------------------------------===//
+// Integer Evaluation
+//
+// As a GNU extension, we support casting pointers to sufficiently-wide integer
+// types and back in constant folding. Integer values are thus represented
+// either as an integer-valued APValue, or as an lvalue-valued APValue.
+//===----------------------------------------------------------------------===//
+
+namespace {
+class IntExprEvaluator
+ : public ExprEvaluatorBase<IntExprEvaluator> {
+ APValue &Result;
+public:
+ IntExprEvaluator(EvalInfo &info, APValue &result)
+ : ExprEvaluatorBaseTy(info), Result(result) {}
+
+ bool Success(const llvm::APSInt &SI, const Expr *E, APValue &Result) {
+ assert(E->getType()->isIntegralOrEnumerationType() &&
+ "Invalid evaluation result.");
+ assert(SI.isSigned() == E->getType()->isSignedIntegerOrEnumerationType() &&
+ "Invalid evaluation result.");
+ assert(SI.getBitWidth() == Info.Ctx.getIntWidth(E->getType()) &&
+ "Invalid evaluation result.");
+ Result = APValue(SI);
+ return true;
+ }
+ bool Success(const llvm::APSInt &SI, const Expr *E) {
+ return Success(SI, E, Result);
+ }
+
+ bool Success(const llvm::APInt &I, const Expr *E, APValue &Result) {
+ assert(E->getType()->isIntegralOrEnumerationType() &&
+ "Invalid evaluation result.");
+ assert(I.getBitWidth() == Info.Ctx.getIntWidth(E->getType()) &&
+ "Invalid evaluation result.");
+ Result = APValue(APSInt(I));
+ Result.getInt().setIsUnsigned(
+ E->getType()->isUnsignedIntegerOrEnumerationType());
+ return true;
+ }
+ bool Success(const llvm::APInt &I, const Expr *E) {
+ return Success(I, E, Result);
+ }
+
+ bool Success(uint64_t Value, const Expr *E, APValue &Result) {
+ assert(E->getType()->isIntegralOrEnumerationType() &&
+ "Invalid evaluation result.");
+ Result = APValue(Info.Ctx.MakeIntValue(Value, E->getType()));
+ return true;
+ }
+ bool Success(uint64_t Value, const Expr *E) {
+ return Success(Value, E, Result);
+ }
+
+ bool Success(CharUnits Size, const Expr *E) {
+ return Success(Size.getQuantity(), E);
+ }
+
+ bool Success(const APValue &V, const Expr *E) {
+ if (V.isLValue() || V.isAddrLabelDiff() || V.isIndeterminate()) {
+ Result = V;
+ return true;
+ }
+ return Success(V.getInt(), E);
+ }
+
+ bool ZeroInitialization(const Expr *E) { return Success(0, E); }
+
+ //===--------------------------------------------------------------------===//
+ // Visitor Methods
+ //===--------------------------------------------------------------------===//
+
+ bool VisitConstantExpr(const ConstantExpr *E);
+
+ bool VisitIntegerLiteral(const IntegerLiteral *E) {
+ return Success(E->getValue(), E);
+ }
+ bool VisitCharacterLiteral(const CharacterLiteral *E) {
+ return Success(E->getValue(), E);
+ }
+
+ bool CheckReferencedDecl(const Expr *E, const Decl *D);
+ bool VisitDeclRefExpr(const DeclRefExpr *E) {
+ if (CheckReferencedDecl(E, E->getDecl()))
+ return true;
+
+ return ExprEvaluatorBaseTy::VisitDeclRefExpr(E);
+ }
+ bool VisitMemberExpr(const MemberExpr *E) {
+ if (CheckReferencedDecl(E, E->getMemberDecl())) {
+ VisitIgnoredBaseExpression(E->getBase());
+ return true;
+ }
+
+ return ExprEvaluatorBaseTy::VisitMemberExpr(E);
+ }
+
+ bool VisitCallExpr(const CallExpr *E);
+ bool VisitBuiltinCallExpr(const CallExpr *E, unsigned BuiltinOp);
+ bool VisitBinaryOperator(const BinaryOperator *E);
+ bool VisitOffsetOfExpr(const OffsetOfExpr *E);
+ bool VisitUnaryOperator(const UnaryOperator *E);
+
+ bool VisitCastExpr(const CastExpr* E);
+ bool VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E);
+
+ bool VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
+ return Success(E->getValue(), E);
+ }
+
+ bool VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) {
+ return Success(E->getValue(), E);
+ }
+
+ bool VisitArrayInitIndexExpr(const ArrayInitIndexExpr *E) {
+ if (Info.ArrayInitIndex == uint64_t(-1)) {
+ // We were asked to evaluate this subexpression independent of the
+ // enclosing ArrayInitLoopExpr. We can't do that.
+ Info.FFDiag(E);
+ return false;
+ }
+ return Success(Info.ArrayInitIndex, E);
+ }
+
+ // Note, GNU defines __null as an integer, not a pointer.
+ bool VisitGNUNullExpr(const GNUNullExpr *E) {
+ return ZeroInitialization(E);
+ }
+
+ bool VisitTypeTraitExpr(const TypeTraitExpr *E) {
+ return Success(E->getValue(), E);
+ }
+
+ bool VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) {
+ return Success(E->getValue(), E);
+ }
+
+ bool VisitExpressionTraitExpr(const ExpressionTraitExpr *E) {
+ return Success(E->getValue(), E);
+ }
+
+ bool VisitUnaryReal(const UnaryOperator *E);
+ bool VisitUnaryImag(const UnaryOperator *E);
+
+ bool VisitCXXNoexceptExpr(const CXXNoexceptExpr *E);
+ bool VisitSizeOfPackExpr(const SizeOfPackExpr *E);
+ bool VisitSourceLocExpr(const SourceLocExpr *E);
+ bool VisitConceptSpecializationExpr(const ConceptSpecializationExpr *E);
+ // FIXME: Missing: array subscript of vector, member of vector
+};
+
+class FixedPointExprEvaluator
+ : public ExprEvaluatorBase<FixedPointExprEvaluator> {
+ APValue &Result;
+
+ public:
+ FixedPointExprEvaluator(EvalInfo &info, APValue &result)
+ : ExprEvaluatorBaseTy(info), Result(result) {}
+
+ bool Success(const llvm::APInt &I, const Expr *E) {
+ return Success(
+ APFixedPoint(I, Info.Ctx.getFixedPointSemantics(E->getType())), E);
+ }
+
+ bool Success(uint64_t Value, const Expr *E) {
+ return Success(
+ APFixedPoint(Value, Info.Ctx.getFixedPointSemantics(E->getType())), E);
+ }
+
+ bool Success(const APValue &V, const Expr *E) {
+ return Success(V.getFixedPoint(), E);
+ }
+
+ bool Success(const APFixedPoint &V, const Expr *E) {
+ assert(E->getType()->isFixedPointType() && "Invalid evaluation result.");
+ assert(V.getWidth() == Info.Ctx.getIntWidth(E->getType()) &&
+ "Invalid evaluation result.");
+ Result = APValue(V);
+ return true;
+ }
+
+ //===--------------------------------------------------------------------===//
+ // Visitor Methods
+ //===--------------------------------------------------------------------===//
+
+ bool VisitFixedPointLiteral(const FixedPointLiteral *E) {
+ return Success(E->getValue(), E);
+ }
+
+ bool VisitCastExpr(const CastExpr *E);
+ bool VisitUnaryOperator(const UnaryOperator *E);
+ bool VisitBinaryOperator(const BinaryOperator *E);
+};
+} // end anonymous namespace
+
+/// EvaluateIntegerOrLValue - Evaluate an rvalue integral-typed expression, and
+/// produce either the integer value or a pointer.
+///
+/// GCC has a heinous extension which folds casts between pointer types and
+/// pointer-sized integral types. We support this by allowing the evaluation of
+/// an integer rvalue to produce a pointer (represented as an lvalue) instead.
+/// Some simple arithmetic on such values is supported (they are treated much
+/// like char*).
+static bool EvaluateIntegerOrLValue(const Expr *E, APValue &Result,
+ EvalInfo &Info) {
+ assert(E->isRValue() && E->getType()->isIntegralOrEnumerationType());
+ return IntExprEvaluator(Info, Result).Visit(E);
+}
+
+static bool EvaluateInteger(const Expr *E, APSInt &Result, EvalInfo &Info) {
+ APValue Val;
+ if (!EvaluateIntegerOrLValue(E, Val, Info))
+ return false;
+ if (!Val.isInt()) {
+ // FIXME: It would be better to produce the diagnostic for casting
+ // a pointer to an integer.
+ Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
+ return false;
+ }
+ Result = Val.getInt();
+ return true;
+}
+
+bool IntExprEvaluator::VisitSourceLocExpr(const SourceLocExpr *E) {
+ APValue Evaluated = E->EvaluateInContext(
+ Info.Ctx, Info.CurrentCall->CurSourceLocExprScope.getDefaultExpr());
+ return Success(Evaluated, E);
+}
+
+static bool EvaluateFixedPoint(const Expr *E, APFixedPoint &Result,
+ EvalInfo &Info) {
+ if (E->getType()->isFixedPointType()) {
+ APValue Val;
+ if (!FixedPointExprEvaluator(Info, Val).Visit(E))
+ return false;
+ if (!Val.isFixedPoint())
+ return false;
+
+ Result = Val.getFixedPoint();
+ return true;
+ }
+ return false;
+}
+
+static bool EvaluateFixedPointOrInteger(const Expr *E, APFixedPoint &Result,
+ EvalInfo &Info) {
+ if (E->getType()->isIntegerType()) {
+ auto FXSema = Info.Ctx.getFixedPointSemantics(E->getType());
+ APSInt Val;
+ if (!EvaluateInteger(E, Val, Info))
+ return false;
+ Result = APFixedPoint(Val, FXSema);
+ return true;
+ } else if (E->getType()->isFixedPointType()) {
+ return EvaluateFixedPoint(E, Result, Info);
+ }
+ return false;
+}
+
+/// Check whether the given declaration can be directly converted to an integral
+/// rvalue. If not, no diagnostic is produced; there are other things we can
+/// try.
+bool IntExprEvaluator::CheckReferencedDecl(const Expr* E, const Decl* D) {
+ // Enums are integer constant exprs.
+ if (const EnumConstantDecl *ECD = dyn_cast<EnumConstantDecl>(D)) {
+ // Check for signedness/width mismatches between E type and ECD value.
+ bool SameSign = (ECD->getInitVal().isSigned()
+ == E->getType()->isSignedIntegerOrEnumerationType());
+ bool SameWidth = (ECD->getInitVal().getBitWidth()
+ == Info.Ctx.getIntWidth(E->getType()));
+ if (SameSign && SameWidth)
+ return Success(ECD->getInitVal(), E);
+ else {
+ // Get rid of mismatch (otherwise Success assertions will fail)
+ // by computing a new value matching the type of E.
+ llvm::APSInt Val = ECD->getInitVal();
+ if (!SameSign)
+ Val.setIsSigned(!ECD->getInitVal().isSigned());
+ if (!SameWidth)
+ Val = Val.extOrTrunc(Info.Ctx.getIntWidth(E->getType()));
+ return Success(Val, E);
+ }
+ }
+ return false;
+}
+
+/// Values returned by __builtin_classify_type, chosen to match the values
+/// produced by GCC's builtin.
+enum class GCCTypeClass {
+ None = -1,
+ Void = 0,
+ Integer = 1,
+ // GCC reserves 2 for character types, but instead classifies them as
+ // integers.
+ Enum = 3,
+ Bool = 4,
+ Pointer = 5,
+ // GCC reserves 6 for references, but appears to never use it (because
+ // expressions never have reference type, presumably).
+ PointerToDataMember = 7,
+ RealFloat = 8,
+ Complex = 9,
+ // GCC reserves 10 for functions, but does not use it since GCC version 6 due
+ // to decay to pointer. (Prior to version 6 it was only used in C++ mode).
+ // GCC claims to reserve 11 for pointers to member functions, but *actually*
+ // uses 12 for that purpose, same as for a class or struct. Maybe it
+ // internally implements a pointer to member as a struct? Who knows.
+ PointerToMemberFunction = 12, // Not a bug, see above.
+ ClassOrStruct = 12,
+ Union = 13,
+ // GCC reserves 14 for arrays, but does not use it since GCC version 6 due to
+ // decay to pointer. (Prior to version 6 it was only used in C++ mode).
+ // GCC reserves 15 for strings, but actually uses 5 (pointer) for string
+ // literals.
+};
+
+/// EvaluateBuiltinClassifyType - Evaluate __builtin_classify_type the same way
+/// as GCC.
+static GCCTypeClass
+EvaluateBuiltinClassifyType(QualType T, const LangOptions &LangOpts) {
+ assert(!T->isDependentType() && "unexpected dependent type");
+
+ QualType CanTy = T.getCanonicalType();
+ const BuiltinType *BT = dyn_cast<BuiltinType>(CanTy);
+
+ switch (CanTy->getTypeClass()) {
+#define TYPE(ID, BASE)
+#define DEPENDENT_TYPE(ID, BASE) case Type::ID:
+#define NON_CANONICAL_TYPE(ID, BASE) case Type::ID:
+#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(ID, BASE) case Type::ID:
+#include "clang/AST/TypeNodes.inc"
+ case Type::Auto:
+ case Type::DeducedTemplateSpecialization:
+ llvm_unreachable("unexpected non-canonical or dependent type");
+
+ case Type::Builtin:
+ switch (BT->getKind()) {
+#define BUILTIN_TYPE(ID, SINGLETON_ID)
+#define SIGNED_TYPE(ID, SINGLETON_ID) \
+ case BuiltinType::ID: return GCCTypeClass::Integer;
+#define FLOATING_TYPE(ID, SINGLETON_ID) \
+ case BuiltinType::ID: return GCCTypeClass::RealFloat;
+#define PLACEHOLDER_TYPE(ID, SINGLETON_ID) \
+ case BuiltinType::ID: break;
+#include "clang/AST/BuiltinTypes.def"
+ case BuiltinType::Void:
+ return GCCTypeClass::Void;
+
+ case BuiltinType::Bool:
+ return GCCTypeClass::Bool;
+
+ case BuiltinType::Char_U:
+ case BuiltinType::UChar:
+ case BuiltinType::WChar_U:
+ case BuiltinType::Char8:
+ case BuiltinType::Char16:
+ case BuiltinType::Char32:
+ case BuiltinType::UShort:
+ case BuiltinType::UInt:
+ case BuiltinType::ULong:
+ case BuiltinType::ULongLong:
+ case BuiltinType::UInt128:
+ return GCCTypeClass::Integer;
+
+ case BuiltinType::UShortAccum:
+ case BuiltinType::UAccum:
+ case BuiltinType::ULongAccum:
+ case BuiltinType::UShortFract:
+ case BuiltinType::UFract:
+ case BuiltinType::ULongFract:
+ case BuiltinType::SatUShortAccum:
+ case BuiltinType::SatUAccum:
+ case BuiltinType::SatULongAccum:
+ case BuiltinType::SatUShortFract:
+ case BuiltinType::SatUFract:
+ case BuiltinType::SatULongFract:
+ return GCCTypeClass::None;
+
+ case BuiltinType::NullPtr:
+
+ case BuiltinType::ObjCId:
+ case BuiltinType::ObjCClass:
+ case BuiltinType::ObjCSel:
+#define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
+ case BuiltinType::Id:
+#include "clang/Basic/OpenCLImageTypes.def"
+#define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
+ case BuiltinType::Id:
+#include "clang/Basic/OpenCLExtensionTypes.def"
+ case BuiltinType::OCLSampler:
+ case BuiltinType::OCLEvent:
+ case BuiltinType::OCLClkEvent:
+ case BuiltinType::OCLQueue:
+ case BuiltinType::OCLReserveID:
+#define SVE_TYPE(Name, Id, SingletonId) \
+ case BuiltinType::Id:
+#include "clang/Basic/AArch64SVEACLETypes.def"
+ return GCCTypeClass::None;
+
+ case BuiltinType::Dependent:
+ llvm_unreachable("unexpected dependent type");
+ };
+ llvm_unreachable("unexpected placeholder type");
+
+ case Type::Enum:
+ return LangOpts.CPlusPlus ? GCCTypeClass::Enum : GCCTypeClass::Integer;
+
+ case Type::Pointer:
+ case Type::ConstantArray:
+ case Type::VariableArray:
+ case Type::IncompleteArray:
+ case Type::FunctionNoProto:
+ case Type::FunctionProto:
+ return GCCTypeClass::Pointer;
+
+ case Type::MemberPointer:
+ return CanTy->isMemberDataPointerType()
+ ? GCCTypeClass::PointerToDataMember
+ : GCCTypeClass::PointerToMemberFunction;
+
+ case Type::Complex:
+ return GCCTypeClass::Complex;
+
+ case Type::Record:
+ return CanTy->isUnionType() ? GCCTypeClass::Union
+ : GCCTypeClass::ClassOrStruct;
+
+ case Type::Atomic:
+ // GCC classifies _Atomic T the same as T.
+ return EvaluateBuiltinClassifyType(
+ CanTy->castAs<AtomicType>()->getValueType(), LangOpts);
+
+ case Type::BlockPointer:
+ case Type::Vector:
+ case Type::ExtVector:
+ case Type::ObjCObject:
+ case Type::ObjCInterface:
+ case Type::ObjCObjectPointer:
+ case Type::Pipe:
+ // GCC classifies vectors as None. We follow its lead and classify all
+ // other types that don't fit into the regular classification the same way.
+ return GCCTypeClass::None;
+
+ case Type::LValueReference:
+ case Type::RValueReference:
+ llvm_unreachable("invalid type for expression");
+ }
+
+ llvm_unreachable("unexpected type class");
+}
+
+/// EvaluateBuiltinClassifyType - Evaluate __builtin_classify_type the same way
+/// as GCC.
+static GCCTypeClass
+EvaluateBuiltinClassifyType(const CallExpr *E, const LangOptions &LangOpts) {
+ // If no argument was supplied, default to None. This isn't
+ // ideal, however it is what gcc does.
+ if (E->getNumArgs() == 0)
+ return GCCTypeClass::None;
+
+ // FIXME: Bizarrely, GCC treats a call with more than one argument as not
+ // being an ICE, but still folds it to a constant using the type of the first
+ // argument.
+ return EvaluateBuiltinClassifyType(E->getArg(0)->getType(), LangOpts);
+}
+
+/// EvaluateBuiltinConstantPForLValue - Determine the result of
+/// __builtin_constant_p when applied to the given pointer.
+///
+/// A pointer is only "constant" if it is null (or a pointer cast to integer)
+/// or it points to the first character of a string literal.
+static bool EvaluateBuiltinConstantPForLValue(const APValue &LV) {
+ APValue::LValueBase Base = LV.getLValueBase();
+ if (Base.isNull()) {
+ // A null base is acceptable.
+ return true;
+ } else if (const Expr *E = Base.dyn_cast<const Expr *>()) {
+ if (!isa<StringLiteral>(E))
+ return false;
+ return LV.getLValueOffset().isZero();
+ } else if (Base.is<TypeInfoLValue>()) {
+ // Surprisingly, GCC considers __builtin_constant_p(&typeid(int)) to
+ // evaluate to true.
+ return true;
+ } else {
+ // Any other base is not constant enough for GCC.
+ return false;
+ }
+}
+
+/// EvaluateBuiltinConstantP - Evaluate __builtin_constant_p as similarly to
+/// GCC as we can manage.
+static bool EvaluateBuiltinConstantP(EvalInfo &Info, const Expr *Arg) {
+ // This evaluation is not permitted to have side-effects, so evaluate it in
+ // a speculative evaluation context.
+ SpeculativeEvaluationRAII SpeculativeEval(Info);
+
+ // Constant-folding is always enabled for the operand of __builtin_constant_p
+ // (even when the enclosing evaluation context otherwise requires a strict
+ // language-specific constant expression).
+ FoldConstant Fold(Info, true);
+
+ QualType ArgType = Arg->getType();
+
+ // __builtin_constant_p always has one operand. The rules which gcc follows
+ // are not precisely documented, but are as follows:
+ //
+ // - If the operand is of integral, floating, complex or enumeration type,
+ // and can be folded to a known value of that type, it returns 1.
+ // - If the operand can be folded to a pointer to the first character
+ // of a string literal (or such a pointer cast to an integral type)
+ // or to a null pointer or an integer cast to a pointer, it returns 1.
+ //
+ // Otherwise, it returns 0.
+ //
+ // FIXME: GCC also intends to return 1 for literals of aggregate types, but
+ // its support for this did not work prior to GCC 9 and is not yet well
+ // understood.
+ if (ArgType->isIntegralOrEnumerationType() || ArgType->isFloatingType() ||
+ ArgType->isAnyComplexType() || ArgType->isPointerType() ||
+ ArgType->isNullPtrType()) {
+ APValue V;
+ if (!::EvaluateAsRValue(Info, Arg, V)) {
+ Fold.keepDiagnostics();
+ return false;
+ }
+
+ // For a pointer (possibly cast to integer), there are special rules.
+ if (V.getKind() == APValue::LValue)
+ return EvaluateBuiltinConstantPForLValue(V);
+
+ // Otherwise, any constant value is good enough.
+ return V.hasValue();
+ }
+
+ // Anything else isn't considered to be sufficiently constant.
+ return false;
+}
+
+/// Retrieves the "underlying object type" of the given expression,
+/// as used by __builtin_object_size.
+static QualType getObjectType(APValue::LValueBase B) {
+ if (const ValueDecl *D = B.dyn_cast<const ValueDecl*>()) {
+ if (const VarDecl *VD = dyn_cast<VarDecl>(D))
+ return VD->getType();
+ } else if (const Expr *E = B.get<const Expr*>()) {
+ if (isa<CompoundLiteralExpr>(E))
+ return E->getType();
+ } else if (B.is<TypeInfoLValue>()) {
+ return B.getTypeInfoType();
+ } else if (B.is<DynamicAllocLValue>()) {
+ return B.getDynamicAllocType();
+ }
+
+ return QualType();
+}
+
+/// A more selective version of E->IgnoreParenCasts for
+/// tryEvaluateBuiltinObjectSize. This ignores some casts/parens that serve only
+/// to change the type of E.
+/// Ex. For E = `(short*)((char*)(&foo))`, returns `&foo`
+///
+/// Always returns an RValue with a pointer representation.
+static const Expr *ignorePointerCastsAndParens(const Expr *E) {
+ assert(E->isRValue() && E->getType()->hasPointerRepresentation());
+
+ auto *NoParens = E->IgnoreParens();
+ auto *Cast = dyn_cast<CastExpr>(NoParens);
+ if (Cast == nullptr)
+ return NoParens;
+
+ // We only conservatively allow a few kinds of casts, because this code is
+ // inherently a simple solution that seeks to support the common case.
+ auto CastKind = Cast->getCastKind();
+ if (CastKind != CK_NoOp && CastKind != CK_BitCast &&
+ CastKind != CK_AddressSpaceConversion)
+ return NoParens;
+
+ auto *SubExpr = Cast->getSubExpr();
+ if (!SubExpr->getType()->hasPointerRepresentation() || !SubExpr->isRValue())
+ return NoParens;
+ return ignorePointerCastsAndParens(SubExpr);
+}
+
+/// Checks to see if the given LValue's Designator is at the end of the LValue's
+/// record layout. e.g.
+/// struct { struct { int a, b; } fst, snd; } obj;
+/// obj.fst // no
+/// obj.snd // yes
+/// obj.fst.a // no
+/// obj.fst.b // no
+/// obj.snd.a // no
+/// obj.snd.b // yes
+///
+/// Please note: this function is specialized for how __builtin_object_size
+/// views "objects".
+///
+/// If this encounters an invalid RecordDecl or otherwise cannot determine the
+/// correct result, it will always return true.
+static bool isDesignatorAtObjectEnd(const ASTContext &Ctx, const LValue &LVal) {
+ assert(!LVal.Designator.Invalid);
+
+ auto IsLastOrInvalidFieldDecl = [&Ctx](const FieldDecl *FD, bool &Invalid) {
+ const RecordDecl *Parent = FD->getParent();
+ Invalid = Parent->isInvalidDecl();
+ if (Invalid || Parent->isUnion())
+ return true;
+ const ASTRecordLayout &Layout = Ctx.getASTRecordLayout(Parent);
+ return FD->getFieldIndex() + 1 == Layout.getFieldCount();
+ };
+
+ auto &Base = LVal.getLValueBase();
+ if (auto *ME = dyn_cast_or_null<MemberExpr>(Base.dyn_cast<const Expr *>())) {
+ if (auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) {
+ bool Invalid;
+ if (!IsLastOrInvalidFieldDecl(FD, Invalid))
+ return Invalid;
+ } else if (auto *IFD = dyn_cast<IndirectFieldDecl>(ME->getMemberDecl())) {
+ for (auto *FD : IFD->chain()) {
+ bool Invalid;
+ if (!IsLastOrInvalidFieldDecl(cast<FieldDecl>(FD), Invalid))
+ return Invalid;
+ }
+ }
+ }
+
+ unsigned I = 0;
+ QualType BaseType = getType(Base);
+ if (LVal.Designator.FirstEntryIsAnUnsizedArray) {
+ // If we don't know the array bound, conservatively assume we're looking at
+ // the final array element.
+ ++I;
+ if (BaseType->isIncompleteArrayType())
+ BaseType = Ctx.getAsArrayType(BaseType)->getElementType();
+ else
+ BaseType = BaseType->castAs<PointerType>()->getPointeeType();
+ }
+
+ for (unsigned E = LVal.Designator.Entries.size(); I != E; ++I) {
+ const auto &Entry = LVal.Designator.Entries[I];
+ if (BaseType->isArrayType()) {
+ // Because __builtin_object_size treats arrays as objects, we can ignore
+ // the index iff this is the last array in the Designator.
+ if (I + 1 == E)
+ return true;
+ const auto *CAT = cast<ConstantArrayType>(Ctx.getAsArrayType(BaseType));
+ uint64_t Index = Entry.getAsArrayIndex();
+ if (Index + 1 != CAT->getSize())
+ return false;
+ BaseType = CAT->getElementType();
+ } else if (BaseType->isAnyComplexType()) {
+ const auto *CT = BaseType->castAs<ComplexType>();
+ uint64_t Index = Entry.getAsArrayIndex();
+ if (Index != 1)
+ return false;
+ BaseType = CT->getElementType();
+ } else if (auto *FD = getAsField(Entry)) {
+ bool Invalid;
+ if (!IsLastOrInvalidFieldDecl(FD, Invalid))
+ return Invalid;
+ BaseType = FD->getType();
+ } else {
+ assert(getAsBaseClass(Entry) && "Expecting cast to a base class");
+ return false;
+ }
+ }
+ return true;
+}
+
+/// Tests to see if the LValue has a user-specified designator (that isn't
+/// necessarily valid). Note that this always returns 'true' if the LValue has
+/// an unsized array as its first designator entry, because there's currently no
+/// way to tell if the user typed *foo or foo[0].
+static bool refersToCompleteObject(const LValue &LVal) {
+ if (LVal.Designator.Invalid)
+ return false;
+
+ if (!LVal.Designator.Entries.empty())
+ return LVal.Designator.isMostDerivedAnUnsizedArray();
+
+ if (!LVal.InvalidBase)
+ return true;
+
+ // If `E` is a MemberExpr, then the first part of the designator is hiding in
+ // the LValueBase.
+ const auto *E = LVal.Base.dyn_cast<const Expr *>();
+ return !E || !isa<MemberExpr>(E);
+}
+
+/// Attempts to detect a user writing into a piece of memory that's impossible
+/// to figure out the size of by just using types.
+static bool isUserWritingOffTheEnd(const ASTContext &Ctx, const LValue &LVal) {
+ const SubobjectDesignator &Designator = LVal.Designator;
+ // Notes:
+ // - Users can only write off of the end when we have an invalid base. Invalid
+ // bases imply we don't know where the memory came from.
+ // - We used to be a bit more aggressive here; we'd only be conservative if
+ // the array at the end was flexible, or if it had 0 or 1 elements. This
+ // broke some common standard library extensions (PR30346), but was
+ // otherwise seemingly fine. It may be useful to reintroduce this behavior
+ // with some sort of whitelist. OTOH, it seems that GCC is always
+ // conservative with the last element in structs (if it's an array), so our
+ // current behavior is more compatible than a whitelisting approach would
+ // be.
+ return LVal.InvalidBase &&
+ Designator.Entries.size() == Designator.MostDerivedPathLength &&
+ Designator.MostDerivedIsArrayElement &&
+ isDesignatorAtObjectEnd(Ctx, LVal);
+}
+
+/// Converts the given APInt to CharUnits, assuming the APInt is unsigned.
+/// Fails if the conversion would cause loss of precision.
+static bool convertUnsignedAPIntToCharUnits(const llvm::APInt &Int,
+ CharUnits &Result) {
+ auto CharUnitsMax = std::numeric_limits<CharUnits::QuantityType>::max();
+ if (Int.ugt(CharUnitsMax))
+ return false;
+ Result = CharUnits::fromQuantity(Int.getZExtValue());
+ return true;
+}
+
+/// Helper for tryEvaluateBuiltinObjectSize -- Given an LValue, this will
+/// determine how many bytes exist from the beginning of the object to either
+/// the end of the current subobject, or the end of the object itself, depending
+/// on what the LValue looks like + the value of Type.
+///
+/// If this returns false, the value of Result is undefined.
+static bool determineEndOffset(EvalInfo &Info, SourceLocation ExprLoc,
+ unsigned Type, const LValue &LVal,
+ CharUnits &EndOffset) {
+ bool DetermineForCompleteObject = refersToCompleteObject(LVal);
+
+ auto CheckedHandleSizeof = [&](QualType Ty, CharUnits &Result) {
+ if (Ty.isNull() || Ty->isIncompleteType() || Ty->isFunctionType())
+ return false;
+ return HandleSizeof(Info, ExprLoc, Ty, Result);
+ };
+
+ // We want to evaluate the size of the entire object. This is a valid fallback
+ // for when Type=1 and the designator is invalid, because we're asked for an
+ // upper-bound.
+ if (!(Type & 1) || LVal.Designator.Invalid || DetermineForCompleteObject) {
+ // Type=3 wants a lower bound, so we can't fall back to this.
+ if (Type == 3 && !DetermineForCompleteObject)
+ return false;
+
+ llvm::APInt APEndOffset;
+ if (isBaseAnAllocSizeCall(LVal.getLValueBase()) &&
+ getBytesReturnedByAllocSizeCall(Info.Ctx, LVal, APEndOffset))
+ return convertUnsignedAPIntToCharUnits(APEndOffset, EndOffset);
+
+ if (LVal.InvalidBase)
+ return false;
+
+ QualType BaseTy = getObjectType(LVal.getLValueBase());
+ return CheckedHandleSizeof(BaseTy, EndOffset);
+ }
+
+ // We want to evaluate the size of a subobject.
+ const SubobjectDesignator &Designator = LVal.Designator;
+
+ // The following is a moderately common idiom in C:
+ //
+ // struct Foo { int a; char c[1]; };
+ // struct Foo *F = (struct Foo *)malloc(sizeof(struct Foo) + strlen(Bar));
+ // strcpy(&F->c[0], Bar);
+ //
+ // In order to not break too much legacy code, we need to support it.
+ if (isUserWritingOffTheEnd(Info.Ctx, LVal)) {
+ // If we can resolve this to an alloc_size call, we can hand that back,
+ // because we know for certain how many bytes there are to write to.
+ llvm::APInt APEndOffset;
+ if (isBaseAnAllocSizeCall(LVal.getLValueBase()) &&
+ getBytesReturnedByAllocSizeCall(Info.Ctx, LVal, APEndOffset))
+ return convertUnsignedAPIntToCharUnits(APEndOffset, EndOffset);
+
+ // If we cannot determine the size of the initial allocation, then we can't
+ // given an accurate upper-bound. However, we are still able to give
+ // conservative lower-bounds for Type=3.
+ if (Type == 1)
+ return false;
+ }
+
+ CharUnits BytesPerElem;
+ if (!CheckedHandleSizeof(Designator.MostDerivedType, BytesPerElem))
+ return false;
+
+ // According to the GCC documentation, we want the size of the subobject
+ // denoted by the pointer. But that's not quite right -- what we actually
+ // want is the size of the immediately-enclosing array, if there is one.
+ int64_t ElemsRemaining;
+ if (Designator.MostDerivedIsArrayElement &&
+ Designator.Entries.size() == Designator.MostDerivedPathLength) {
+ uint64_t ArraySize = Designator.getMostDerivedArraySize();
+ uint64_t ArrayIndex = Designator.Entries.back().getAsArrayIndex();
+ ElemsRemaining = ArraySize <= ArrayIndex ? 0 : ArraySize - ArrayIndex;
+ } else {
+ ElemsRemaining = Designator.isOnePastTheEnd() ? 0 : 1;
+ }
+
+ EndOffset = LVal.getLValueOffset() + BytesPerElem * ElemsRemaining;
+ return true;
+}
+
+/// Tries to evaluate the __builtin_object_size for @p E. If successful,
+/// returns true and stores the result in @p Size.
+///
+/// If @p WasError is non-null, this will report whether the failure to evaluate
+/// is to be treated as an Error in IntExprEvaluator.
+static bool tryEvaluateBuiltinObjectSize(const Expr *E, unsigned Type,
+ EvalInfo &Info, uint64_t &Size) {
+ // Determine the denoted object.
+ LValue LVal;
+ {
+ // The operand of __builtin_object_size is never evaluated for side-effects.
+ // If there are any, but we can determine the pointed-to object anyway, then
+ // ignore the side-effects.
+ SpeculativeEvaluationRAII SpeculativeEval(Info);
+ IgnoreSideEffectsRAII Fold(Info);
+
+ if (E->isGLValue()) {
+ // It's possible for us to be given GLValues if we're called via
+ // Expr::tryEvaluateObjectSize.
+ APValue RVal;
+ if (!EvaluateAsRValue(Info, E, RVal))
+ return false;
+ LVal.setFrom(Info.Ctx, RVal);
+ } else if (!EvaluatePointer(ignorePointerCastsAndParens(E), LVal, Info,
+ /*InvalidBaseOK=*/true))
+ return false;
+ }
+
+ // If we point to before the start of the object, there are no accessible
+ // bytes.
+ if (LVal.getLValueOffset().isNegative()) {
+ Size = 0;
+ return true;
+ }
+
+ CharUnits EndOffset;
+ if (!determineEndOffset(Info, E->getExprLoc(), Type, LVal, EndOffset))
+ return false;
+
+ // If we've fallen outside of the end offset, just pretend there's nothing to
+ // write to/read from.
+ if (EndOffset <= LVal.getLValueOffset())
+ Size = 0;
+ else
+ Size = (EndOffset - LVal.getLValueOffset()).getQuantity();
+ return true;
+}
+
+bool IntExprEvaluator::VisitConstantExpr(const ConstantExpr *E) {
+ llvm::SaveAndRestore<bool> InConstantContext(Info.InConstantContext, true);
+ if (E->getResultAPValueKind() != APValue::None)
+ return Success(E->getAPValueResult(), E);
+ return ExprEvaluatorBaseTy::VisitConstantExpr(E);
+}
+
+bool IntExprEvaluator::VisitCallExpr(const CallExpr *E) {
+ if (unsigned BuiltinOp = E->getBuiltinCallee())
+ return VisitBuiltinCallExpr(E, BuiltinOp);
+
+ return ExprEvaluatorBaseTy::VisitCallExpr(E);
+}
+
+bool IntExprEvaluator::VisitBuiltinCallExpr(const CallExpr *E,
+ unsigned BuiltinOp) {
+ switch (unsigned BuiltinOp = E->getBuiltinCallee()) {
+ default:
+ return ExprEvaluatorBaseTy::VisitCallExpr(E);
+
+ case Builtin::BI__builtin_dynamic_object_size:
+ case Builtin::BI__builtin_object_size: {
+ // The type was checked when we built the expression.
+ unsigned Type =
+ E->getArg(1)->EvaluateKnownConstInt(Info.Ctx).getZExtValue();
+ assert(Type <= 3 && "unexpected type");
+
+ uint64_t Size;
+ if (tryEvaluateBuiltinObjectSize(E->getArg(0), Type, Info, Size))
+ return Success(Size, E);
+
+ if (E->getArg(0)->HasSideEffects(Info.Ctx))
+ return Success((Type & 2) ? 0 : -1, E);
+
+ // Expression had no side effects, but we couldn't statically determine the
+ // size of the referenced object.
+ switch (Info.EvalMode) {
+ case EvalInfo::EM_ConstantExpression:
+ case EvalInfo::EM_ConstantFold:
+ case EvalInfo::EM_IgnoreSideEffects:
+ // Leave it to IR generation.
+ return Error(E);
+ case EvalInfo::EM_ConstantExpressionUnevaluated:
+ // Reduce it to a constant now.
+ return Success((Type & 2) ? 0 : -1, E);
+ }
+
+ llvm_unreachable("unexpected EvalMode");
+ }
+
+ case Builtin::BI__builtin_os_log_format_buffer_size: {
+ analyze_os_log::OSLogBufferLayout Layout;
+ analyze_os_log::computeOSLogBufferLayout(Info.Ctx, E, Layout);
+ return Success(Layout.size().getQuantity(), E);
+ }
+
+ case Builtin::BI__builtin_bswap16:
+ case Builtin::BI__builtin_bswap32:
+ case Builtin::BI__builtin_bswap64: {
+ APSInt Val;
+ if (!EvaluateInteger(E->getArg(0), Val, Info))
+ return false;
+
+ return Success(Val.byteSwap(), E);
+ }
+
+ case Builtin::BI__builtin_classify_type:
+ return Success((int)EvaluateBuiltinClassifyType(E, Info.getLangOpts()), E);
+
+ case Builtin::BI__builtin_clrsb:
+ case Builtin::BI__builtin_clrsbl:
+ case Builtin::BI__builtin_clrsbll: {
+ APSInt Val;
+ if (!EvaluateInteger(E->getArg(0), Val, Info))
+ return false;
+
+ return Success(Val.getBitWidth() - Val.getMinSignedBits(), E);
+ }
+
+ case Builtin::BI__builtin_clz:
+ case Builtin::BI__builtin_clzl:
+ case Builtin::BI__builtin_clzll:
+ case Builtin::BI__builtin_clzs: {
+ APSInt Val;
+ if (!EvaluateInteger(E->getArg(0), Val, Info))
+ return false;
+ if (!Val)
+ return Error(E);
+
+ return Success(Val.countLeadingZeros(), E);
+ }
+
+ case Builtin::BI__builtin_constant_p: {
+ const Expr *Arg = E->getArg(0);
+ if (EvaluateBuiltinConstantP(Info, Arg))
+ return Success(true, E);
+ if (Info.InConstantContext || Arg->HasSideEffects(Info.Ctx)) {
+ // Outside a constant context, eagerly evaluate to false in the presence
+ // of side-effects in order to avoid -Wunsequenced false-positives in
+ // a branch on __builtin_constant_p(expr).
+ return Success(false, E);
+ }
+ Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
+ return false;
+ }
+
+ case Builtin::BI__builtin_is_constant_evaluated:
+ return Success(Info.InConstantContext, E);
+
+ case Builtin::BI__builtin_ctz:
+ case Builtin::BI__builtin_ctzl:
+ case Builtin::BI__builtin_ctzll:
+ case Builtin::BI__builtin_ctzs: {
+ APSInt Val;
+ if (!EvaluateInteger(E->getArg(0), Val, Info))
+ return false;
+ if (!Val)
+ return Error(E);
+
+ return Success(Val.countTrailingZeros(), E);
+ }
+
+ case Builtin::BI__builtin_eh_return_data_regno: {
+ int Operand = E->getArg(0)->EvaluateKnownConstInt(Info.Ctx).getZExtValue();
+ Operand = Info.Ctx.getTargetInfo().getEHDataRegisterNumber(Operand);
+ return Success(Operand, E);
+ }
+
+ case Builtin::BI__builtin_expect:
+ return Visit(E->getArg(0));
+
+ case Builtin::BI__builtin_ffs:
+ case Builtin::BI__builtin_ffsl:
+ case Builtin::BI__builtin_ffsll: {
+ APSInt Val;
+ if (!EvaluateInteger(E->getArg(0), Val, Info))
+ return false;
+
+ unsigned N = Val.countTrailingZeros();
+ return Success(N == Val.getBitWidth() ? 0 : N + 1, E);
+ }
+
+ case Builtin::BI__builtin_fpclassify: {
+ APFloat Val(0.0);
+ if (!EvaluateFloat(E->getArg(5), Val, Info))
+ return false;
+ unsigned Arg;
+ switch (Val.getCategory()) {
+ case APFloat::fcNaN: Arg = 0; break;
+ case APFloat::fcInfinity: Arg = 1; break;
+ case APFloat::fcNormal: Arg = Val.isDenormal() ? 3 : 2; break;
+ case APFloat::fcZero: Arg = 4; break;
+ }
+ return Visit(E->getArg(Arg));
+ }
+
+ case Builtin::BI__builtin_isinf_sign: {
+ APFloat Val(0.0);
+ return EvaluateFloat(E->getArg(0), Val, Info) &&
+ Success(Val.isInfinity() ? (Val.isNegative() ? -1 : 1) : 0, E);
+ }
+
+ case Builtin::BI__builtin_isinf: {
+ APFloat Val(0.0);
+ return EvaluateFloat(E->getArg(0), Val, Info) &&
+ Success(Val.isInfinity() ? 1 : 0, E);
+ }
+
+ case Builtin::BI__builtin_isfinite: {
+ APFloat Val(0.0);
+ return EvaluateFloat(E->getArg(0), Val, Info) &&
+ Success(Val.isFinite() ? 1 : 0, E);
+ }
+
+ case Builtin::BI__builtin_isnan: {
+ APFloat Val(0.0);
+ return EvaluateFloat(E->getArg(0), Val, Info) &&
+ Success(Val.isNaN() ? 1 : 0, E);
+ }
+
+ case Builtin::BI__builtin_isnormal: {
+ APFloat Val(0.0);
+ return EvaluateFloat(E->getArg(0), Val, Info) &&
+ Success(Val.isNormal() ? 1 : 0, E);
+ }
+
+ case Builtin::BI__builtin_parity:
+ case Builtin::BI__builtin_parityl:
+ case Builtin::BI__builtin_parityll: {
+ APSInt Val;
+ if (!EvaluateInteger(E->getArg(0), Val, Info))
+ return false;
+
+ return Success(Val.countPopulation() % 2, E);
+ }
+
+ case Builtin::BI__builtin_popcount:
+ case Builtin::BI__builtin_popcountl:
+ case Builtin::BI__builtin_popcountll: {
+ APSInt Val;
+ if (!EvaluateInteger(E->getArg(0), Val, Info))
+ return false;
+
+ return Success(Val.countPopulation(), E);
+ }
+
+ case Builtin::BIstrlen:
+ case Builtin::BIwcslen:
+ // A call to strlen is not a constant expression.
+ if (Info.getLangOpts().CPlusPlus11)
+ Info.CCEDiag(E, diag::note_constexpr_invalid_function)
+ << /*isConstexpr*/0 << /*isConstructor*/0
+ << (std::string("'") + Info.Ctx.BuiltinInfo.getName(BuiltinOp) + "'");
+ else
+ Info.CCEDiag(E, diag::note_invalid_subexpr_in_const_expr);
+ LLVM_FALLTHROUGH;
+ case Builtin::BI__builtin_strlen:
+ case Builtin::BI__builtin_wcslen: {
+ // As an extension, we support __builtin_strlen() as a constant expression,
+ // and support folding strlen() to a constant.
+ LValue String;
+ if (!EvaluatePointer(E->getArg(0), String, Info))
+ return false;
+
+ QualType CharTy = E->getArg(0)->getType()->getPointeeType();
+
+ // Fast path: if it's a string literal, search the string value.
+ if (const StringLiteral *S = dyn_cast_or_null<StringLiteral>(
+ String.getLValueBase().dyn_cast<const Expr *>())) {
+ // The string literal may have embedded null characters. Find the first
+ // one and truncate there.
+ StringRef Str = S->getBytes();
+ int64_t Off = String.Offset.getQuantity();
+ if (Off >= 0 && (uint64_t)Off <= (uint64_t)Str.size() &&
+ S->getCharByteWidth() == 1 &&
+ // FIXME: Add fast-path for wchar_t too.
+ Info.Ctx.hasSameUnqualifiedType(CharTy, Info.Ctx.CharTy)) {
+ Str = Str.substr(Off);
+
+ StringRef::size_type Pos = Str.find(0);
+ if (Pos != StringRef::npos)
+ Str = Str.substr(0, Pos);
+
+ return Success(Str.size(), E);
+ }
+
+ // Fall through to slow path to issue appropriate diagnostic.
+ }
+
+ // Slow path: scan the bytes of the string looking for the terminating 0.
+ for (uint64_t Strlen = 0; /**/; ++Strlen) {
+ APValue Char;
+ if (!handleLValueToRValueConversion(Info, E, CharTy, String, Char) ||
+ !Char.isInt())
+ return false;
+ if (!Char.getInt())
+ return Success(Strlen, E);
+ if (!HandleLValueArrayAdjustment(Info, E, String, CharTy, 1))
+ return false;
+ }
+ }
+
+ case Builtin::BIstrcmp:
+ case Builtin::BIwcscmp:
+ case Builtin::BIstrncmp:
+ case Builtin::BIwcsncmp:
+ case Builtin::BImemcmp:
+ case Builtin::BIbcmp:
+ case Builtin::BIwmemcmp:
+ // A call to strlen is not a constant expression.
+ if (Info.getLangOpts().CPlusPlus11)
+ Info.CCEDiag(E, diag::note_constexpr_invalid_function)
+ << /*isConstexpr*/0 << /*isConstructor*/0
+ << (std::string("'") + Info.Ctx.BuiltinInfo.getName(BuiltinOp) + "'");
+ else
+ Info.CCEDiag(E, diag::note_invalid_subexpr_in_const_expr);
+ LLVM_FALLTHROUGH;
+ case Builtin::BI__builtin_strcmp:
+ case Builtin::BI__builtin_wcscmp:
+ case Builtin::BI__builtin_strncmp:
+ case Builtin::BI__builtin_wcsncmp:
+ case Builtin::BI__builtin_memcmp:
+ case Builtin::BI__builtin_bcmp:
+ case Builtin::BI__builtin_wmemcmp: {
+ LValue String1, String2;
+ if (!EvaluatePointer(E->getArg(0), String1, Info) ||
+ !EvaluatePointer(E->getArg(1), String2, Info))
+ return false;
+
+ uint64_t MaxLength = uint64_t(-1);
+ if (BuiltinOp != Builtin::BIstrcmp &&
+ BuiltinOp != Builtin::BIwcscmp &&
+ BuiltinOp != Builtin::BI__builtin_strcmp &&
+ BuiltinOp != Builtin::BI__builtin_wcscmp) {
+ APSInt N;
+ if (!EvaluateInteger(E->getArg(2), N, Info))
+ return false;
+ MaxLength = N.getExtValue();
+ }
+
+ // Empty substrings compare equal by definition.
+ if (MaxLength == 0u)
+ return Success(0, E);
+
+ if (!String1.checkNullPointerForFoldAccess(Info, E, AK_Read) ||
+ !String2.checkNullPointerForFoldAccess(Info, E, AK_Read) ||
+ String1.Designator.Invalid || String2.Designator.Invalid)
+ return false;
+
+ QualType CharTy1 = String1.Designator.getType(Info.Ctx);
+ QualType CharTy2 = String2.Designator.getType(Info.Ctx);
+
+ bool IsRawByte = BuiltinOp == Builtin::BImemcmp ||
+ BuiltinOp == Builtin::BIbcmp ||
+ BuiltinOp == Builtin::BI__builtin_memcmp ||
+ BuiltinOp == Builtin::BI__builtin_bcmp;
+
+ assert(IsRawByte ||
+ (Info.Ctx.hasSameUnqualifiedType(
+ CharTy1, E->getArg(0)->getType()->getPointeeType()) &&
+ Info.Ctx.hasSameUnqualifiedType(CharTy1, CharTy2)));
+
+ const auto &ReadCurElems = [&](APValue &Char1, APValue &Char2) {
+ return handleLValueToRValueConversion(Info, E, CharTy1, String1, Char1) &&
+ handleLValueToRValueConversion(Info, E, CharTy2, String2, Char2) &&
+ Char1.isInt() && Char2.isInt();
+ };
+ const auto &AdvanceElems = [&] {
+ return HandleLValueArrayAdjustment(Info, E, String1, CharTy1, 1) &&
+ HandleLValueArrayAdjustment(Info, E, String2, CharTy2, 1);
+ };
+
+ if (IsRawByte) {
+ uint64_t BytesRemaining = MaxLength;
+ // Pointers to const void may point to objects of incomplete type.
+ if (CharTy1->isIncompleteType()) {
+ Info.FFDiag(E, diag::note_constexpr_ltor_incomplete_type) << CharTy1;
+ return false;
+ }
+ if (CharTy2->isIncompleteType()) {
+ Info.FFDiag(E, diag::note_constexpr_ltor_incomplete_type) << CharTy2;
+ return false;
+ }
+ uint64_t CharTy1Width{Info.Ctx.getTypeSize(CharTy1)};
+ CharUnits CharTy1Size = Info.Ctx.toCharUnitsFromBits(CharTy1Width);
+ // Give up on comparing between elements with disparate widths.
+ if (CharTy1Size != Info.Ctx.getTypeSizeInChars(CharTy2))
+ return false;
+ uint64_t BytesPerElement = CharTy1Size.getQuantity();
+ assert(BytesRemaining && "BytesRemaining should not be zero: the "
+ "following loop considers at least one element");
+ while (true) {
+ APValue Char1, Char2;
+ if (!ReadCurElems(Char1, Char2))
+ return false;
+ // We have compatible in-memory widths, but a possible type and
+ // (for `bool`) internal representation mismatch.
+ // Assuming two's complement representation, including 0 for `false` and
+ // 1 for `true`, we can check an appropriate number of elements for
+ // equality even if they are not byte-sized.
+ APSInt Char1InMem = Char1.getInt().extOrTrunc(CharTy1Width);
+ APSInt Char2InMem = Char2.getInt().extOrTrunc(CharTy1Width);
+ if (Char1InMem.ne(Char2InMem)) {
+ // If the elements are byte-sized, then we can produce a three-way
+ // comparison result in a straightforward manner.
+ if (BytesPerElement == 1u) {
+ // memcmp always compares unsigned chars.
+ return Success(Char1InMem.ult(Char2InMem) ? -1 : 1, E);
+ }
+ // The result is byte-order sensitive, and we have multibyte elements.
+ // FIXME: We can compare the remaining bytes in the correct order.
+ return false;
+ }
+ if (!AdvanceElems())
+ return false;
+ if (BytesRemaining <= BytesPerElement)
+ break;
+ BytesRemaining -= BytesPerElement;
+ }
+ // Enough elements are equal to account for the memcmp limit.
+ return Success(0, E);
+ }
+
+ bool StopAtNull =
+ (BuiltinOp != Builtin::BImemcmp && BuiltinOp != Builtin::BIbcmp &&
+ BuiltinOp != Builtin::BIwmemcmp &&
+ BuiltinOp != Builtin::BI__builtin_memcmp &&
+ BuiltinOp != Builtin::BI__builtin_bcmp &&
+ BuiltinOp != Builtin::BI__builtin_wmemcmp);
+ bool IsWide = BuiltinOp == Builtin::BIwcscmp ||
+ BuiltinOp == Builtin::BIwcsncmp ||
+ BuiltinOp == Builtin::BIwmemcmp ||
+ BuiltinOp == Builtin::BI__builtin_wcscmp ||
+ BuiltinOp == Builtin::BI__builtin_wcsncmp ||
+ BuiltinOp == Builtin::BI__builtin_wmemcmp;
+
+ for (; MaxLength; --MaxLength) {
+ APValue Char1, Char2;
+ if (!ReadCurElems(Char1, Char2))
+ return false;
+ if (Char1.getInt() != Char2.getInt()) {
+ if (IsWide) // wmemcmp compares with wchar_t signedness.
+ return Success(Char1.getInt() < Char2.getInt() ? -1 : 1, E);
+ // memcmp always compares unsigned chars.
+ return Success(Char1.getInt().ult(Char2.getInt()) ? -1 : 1, E);
+ }
+ if (StopAtNull && !Char1.getInt())
+ return Success(0, E);
+ assert(!(StopAtNull && !Char2.getInt()));
+ if (!AdvanceElems())
+ return false;
+ }
+ // We hit the strncmp / memcmp limit.
+ return Success(0, E);
+ }
+
+ case Builtin::BI__atomic_always_lock_free:
+ case Builtin::BI__atomic_is_lock_free:
+ case Builtin::BI__c11_atomic_is_lock_free: {
+ APSInt SizeVal;
+ if (!EvaluateInteger(E->getArg(0), SizeVal, Info))
+ return false;
+
+ // For __atomic_is_lock_free(sizeof(_Atomic(T))), if the size is a power
+ // of two less than the maximum inline atomic width, we know it is
+ // lock-free. If the size isn't a power of two, or greater than the
+ // maximum alignment where we promote atomics, we know it is not lock-free
+ // (at least not in the sense of atomic_is_lock_free). Otherwise,
+ // the answer can only be determined at runtime; for example, 16-byte
+ // atomics have lock-free implementations on some, but not all,
+ // x86-64 processors.
+
+ // Check power-of-two.
+ CharUnits Size = CharUnits::fromQuantity(SizeVal.getZExtValue());
+ if (Size.isPowerOfTwo()) {
+ // Check against inlining width.
+ unsigned InlineWidthBits =
+ Info.Ctx.getTargetInfo().getMaxAtomicInlineWidth();
+ if (Size <= Info.Ctx.toCharUnitsFromBits(InlineWidthBits)) {
+ if (BuiltinOp == Builtin::BI__c11_atomic_is_lock_free ||
+ Size == CharUnits::One() ||
+ E->getArg(1)->isNullPointerConstant(Info.Ctx,
+ Expr::NPC_NeverValueDependent))
+ // OK, we will inline appropriately-aligned operations of this size,
+ // and _Atomic(T) is appropriately-aligned.
+ return Success(1, E);
+
+ QualType PointeeType = E->getArg(1)->IgnoreImpCasts()->getType()->
+ castAs<PointerType>()->getPointeeType();
+ if (!PointeeType->isIncompleteType() &&
+ Info.Ctx.getTypeAlignInChars(PointeeType) >= Size) {
+ // OK, we will inline operations on this object.
+ return Success(1, E);
+ }
+ }
+ }
+
+ // Avoid emiting call for runtime decision on PowerPC 32-bit
+ // The lock free possibilities on this platform are covered by the lines
+ // above and we know in advance other cases require lock
+ if (Info.Ctx.getTargetInfo().getTriple().getArch() == llvm::Triple::ppc) {
+ return Success(0, E);
+ }
+
+ return BuiltinOp == Builtin::BI__atomic_always_lock_free ?
+ Success(0, E) : Error(E);
+ }
+ case Builtin::BIomp_is_initial_device:
+ // We can decide statically which value the runtime would return if called.
+ return Success(Info.getLangOpts().OpenMPIsDevice ? 0 : 1, E);
+ case Builtin::BI__builtin_add_overflow:
+ case Builtin::BI__builtin_sub_overflow:
+ case Builtin::BI__builtin_mul_overflow:
+ case Builtin::BI__builtin_sadd_overflow:
+ case Builtin::BI__builtin_uadd_overflow:
+ case Builtin::BI__builtin_uaddl_overflow:
+ case Builtin::BI__builtin_uaddll_overflow:
+ case Builtin::BI__builtin_usub_overflow:
+ case Builtin::BI__builtin_usubl_overflow:
+ case Builtin::BI__builtin_usubll_overflow:
+ case Builtin::BI__builtin_umul_overflow:
+ case Builtin::BI__builtin_umull_overflow:
+ case Builtin::BI__builtin_umulll_overflow:
+ case Builtin::BI__builtin_saddl_overflow:
+ case Builtin::BI__builtin_saddll_overflow:
+ case Builtin::BI__builtin_ssub_overflow:
+ case Builtin::BI__builtin_ssubl_overflow:
+ case Builtin::BI__builtin_ssubll_overflow:
+ case Builtin::BI__builtin_smul_overflow:
+ case Builtin::BI__builtin_smull_overflow:
+ case Builtin::BI__builtin_smulll_overflow: {
+ LValue ResultLValue;
+ APSInt LHS, RHS;
+
+ QualType ResultType = E->getArg(2)->getType()->getPointeeType();
+ if (!EvaluateInteger(E->getArg(0), LHS, Info) ||
+ !EvaluateInteger(E->getArg(1), RHS, Info) ||
+ !EvaluatePointer(E->getArg(2), ResultLValue, Info))
+ return false;
+
+ APSInt Result;
+ bool DidOverflow = false;
+
+ // If the types don't have to match, enlarge all 3 to the largest of them.
+ if (BuiltinOp == Builtin::BI__builtin_add_overflow ||
+ BuiltinOp == Builtin::BI__builtin_sub_overflow ||
+ BuiltinOp == Builtin::BI__builtin_mul_overflow) {
+ bool IsSigned = LHS.isSigned() || RHS.isSigned() ||
+ ResultType->isSignedIntegerOrEnumerationType();
+ bool AllSigned = LHS.isSigned() && RHS.isSigned() &&
+ ResultType->isSignedIntegerOrEnumerationType();
+ uint64_t LHSSize = LHS.getBitWidth();
+ uint64_t RHSSize = RHS.getBitWidth();
+ uint64_t ResultSize = Info.Ctx.getTypeSize(ResultType);
+ uint64_t MaxBits = std::max(std::max(LHSSize, RHSSize), ResultSize);
+
+ // Add an additional bit if the signedness isn't uniformly agreed to. We
+ // could do this ONLY if there is a signed and an unsigned that both have
+ // MaxBits, but the code to check that is pretty nasty. The issue will be
+ // caught in the shrink-to-result later anyway.
+ if (IsSigned && !AllSigned)
+ ++MaxBits;
+
+ LHS = APSInt(LHS.extOrTrunc(MaxBits), !IsSigned);
+ RHS = APSInt(RHS.extOrTrunc(MaxBits), !IsSigned);
+ Result = APSInt(MaxBits, !IsSigned);
+ }
+
+ // Find largest int.
+ switch (BuiltinOp) {
+ default:
+ llvm_unreachable("Invalid value for BuiltinOp");
+ case Builtin::BI__builtin_add_overflow:
+ case Builtin::BI__builtin_sadd_overflow:
+ case Builtin::BI__builtin_saddl_overflow:
+ case Builtin::BI__builtin_saddll_overflow:
+ case Builtin::BI__builtin_uadd_overflow:
+ case Builtin::BI__builtin_uaddl_overflow:
+ case Builtin::BI__builtin_uaddll_overflow:
+ Result = LHS.isSigned() ? LHS.sadd_ov(RHS, DidOverflow)
+ : LHS.uadd_ov(RHS, DidOverflow);
+ break;
+ case Builtin::BI__builtin_sub_overflow:
+ case Builtin::BI__builtin_ssub_overflow:
+ case Builtin::BI__builtin_ssubl_overflow:
+ case Builtin::BI__builtin_ssubll_overflow:
+ case Builtin::BI__builtin_usub_overflow:
+ case Builtin::BI__builtin_usubl_overflow:
+ case Builtin::BI__builtin_usubll_overflow:
+ Result = LHS.isSigned() ? LHS.ssub_ov(RHS, DidOverflow)
+ : LHS.usub_ov(RHS, DidOverflow);
+ break;
+ case Builtin::BI__builtin_mul_overflow:
+ case Builtin::BI__builtin_smul_overflow:
+ case Builtin::BI__builtin_smull_overflow:
+ case Builtin::BI__builtin_smulll_overflow:
+ case Builtin::BI__builtin_umul_overflow:
+ case Builtin::BI__builtin_umull_overflow:
+ case Builtin::BI__builtin_umulll_overflow:
+ Result = LHS.isSigned() ? LHS.smul_ov(RHS, DidOverflow)
+ : LHS.umul_ov(RHS, DidOverflow);
+ break;
+ }
+
+ // In the case where multiple sizes are allowed, truncate and see if
+ // the values are the same.
+ if (BuiltinOp == Builtin::BI__builtin_add_overflow ||
+ BuiltinOp == Builtin::BI__builtin_sub_overflow ||
+ BuiltinOp == Builtin::BI__builtin_mul_overflow) {
+ // APSInt doesn't have a TruncOrSelf, so we use extOrTrunc instead,
+ // since it will give us the behavior of a TruncOrSelf in the case where
+ // its parameter <= its size. We previously set Result to be at least the
+ // type-size of the result, so getTypeSize(ResultType) <= Result.BitWidth
+ // will work exactly like TruncOrSelf.
+ APSInt Temp = Result.extOrTrunc(Info.Ctx.getTypeSize(ResultType));
+ Temp.setIsSigned(ResultType->isSignedIntegerOrEnumerationType());
+
+ if (!APSInt::isSameValue(Temp, Result))
+ DidOverflow = true;
+ Result = Temp;
+ }
+
+ APValue APV{Result};
+ if (!handleAssignment(Info, E, ResultLValue, ResultType, APV))
+ return false;
+ return Success(DidOverflow, E);
+ }
+ }
+}
+
+/// Determine whether this is a pointer past the end of the complete
+/// object referred to by the lvalue.
+static bool isOnePastTheEndOfCompleteObject(const ASTContext &Ctx,
+ const LValue &LV) {
+ // A null pointer can be viewed as being "past the end" but we don't
+ // choose to look at it that way here.
+ if (!LV.getLValueBase())
+ return false;
+
+ // If the designator is valid and refers to a subobject, we're not pointing
+ // past the end.
+ if (!LV.getLValueDesignator().Invalid &&
+ !LV.getLValueDesignator().isOnePastTheEnd())
+ return false;
+
+ // A pointer to an incomplete type might be past-the-end if the type's size is
+ // zero. We cannot tell because the type is incomplete.
+ QualType Ty = getType(LV.getLValueBase());
+ if (Ty->isIncompleteType())
+ return true;
+
+ // We're a past-the-end pointer if we point to the byte after the object,
+ // no matter what our type or path is.
+ auto Size = Ctx.getTypeSizeInChars(Ty);
+ return LV.getLValueOffset() == Size;
+}
+
+namespace {
+
+/// Data recursive integer evaluator of certain binary operators.
+///
+/// We use a data recursive algorithm for binary operators so that we are able
+/// to handle extreme cases of chained binary operators without causing stack
+/// overflow.
+class DataRecursiveIntBinOpEvaluator {
+ struct EvalResult {
+ APValue Val;
+ bool Failed;
+
+ EvalResult() : Failed(false) { }
+
+ void swap(EvalResult &RHS) {
+ Val.swap(RHS.Val);
+ Failed = RHS.Failed;
+ RHS.Failed = false;
+ }
+ };
+
+ struct Job {
+ const Expr *E;
+ EvalResult LHSResult; // meaningful only for binary operator expression.
+ enum { AnyExprKind, BinOpKind, BinOpVisitedLHSKind } Kind;
+
+ Job() = default;
+ Job(Job &&) = default;
+
+ void startSpeculativeEval(EvalInfo &Info) {
+ SpecEvalRAII = SpeculativeEvaluationRAII(Info);
+ }
+
+ private:
+ SpeculativeEvaluationRAII SpecEvalRAII;
+ };
+
+ SmallVector<Job, 16> Queue;
+
+ IntExprEvaluator &IntEval;
+ EvalInfo &Info;
+ APValue &FinalResult;
+
+public:
+ DataRecursiveIntBinOpEvaluator(IntExprEvaluator &IntEval, APValue &Result)
+ : IntEval(IntEval), Info(IntEval.getEvalInfo()), FinalResult(Result) { }
+
+ /// True if \param E is a binary operator that we are going to handle
+ /// data recursively.
+ /// We handle binary operators that are comma, logical, or that have operands
+ /// with integral or enumeration type.
+ static bool shouldEnqueue(const BinaryOperator *E) {
+ return E->getOpcode() == BO_Comma || E->isLogicalOp() ||
+ (E->isRValue() && E->getType()->isIntegralOrEnumerationType() &&
+ E->getLHS()->getType()->isIntegralOrEnumerationType() &&
+ E->getRHS()->getType()->isIntegralOrEnumerationType());
+ }
+
+ bool Traverse(const BinaryOperator *E) {
+ enqueue(E);
+ EvalResult PrevResult;
+ while (!Queue.empty())
+ process(PrevResult);
+
+ if (PrevResult.Failed) return false;
+
+ FinalResult.swap(PrevResult.Val);
+ return true;
+ }
+
+private:
+ bool Success(uint64_t Value, const Expr *E, APValue &Result) {
+ return IntEval.Success(Value, E, Result);
+ }
+ bool Success(const APSInt &Value, const Expr *E, APValue &Result) {
+ return IntEval.Success(Value, E, Result);
+ }
+ bool Error(const Expr *E) {
+ return IntEval.Error(E);
+ }
+ bool Error(const Expr *E, diag::kind D) {
+ return IntEval.Error(E, D);
+ }
+
+ OptionalDiagnostic CCEDiag(const Expr *E, diag::kind D) {
+ return Info.CCEDiag(E, D);
+ }
+
+ // Returns true if visiting the RHS is necessary, false otherwise.
+ bool VisitBinOpLHSOnly(EvalResult &LHSResult, const BinaryOperator *E,
+ bool &SuppressRHSDiags);
+
+ bool VisitBinOp(const EvalResult &LHSResult, const EvalResult &RHSResult,
+ const BinaryOperator *E, APValue &Result);
+
+ void EvaluateExpr(const Expr *E, EvalResult &Result) {
+ Result.Failed = !Evaluate(Result.Val, Info, E);
+ if (Result.Failed)
+ Result.Val = APValue();
+ }
+
+ void process(EvalResult &Result);
+
+ void enqueue(const Expr *E) {
+ E = E->IgnoreParens();
+ Queue.resize(Queue.size()+1);
+ Queue.back().E = E;
+ Queue.back().Kind = Job::AnyExprKind;
+ }
+};
+
+}
+
+bool DataRecursiveIntBinOpEvaluator::
+ VisitBinOpLHSOnly(EvalResult &LHSResult, const BinaryOperator *E,
+ bool &SuppressRHSDiags) {
+ if (E->getOpcode() == BO_Comma) {
+ // Ignore LHS but note if we could not evaluate it.
+ if (LHSResult.Failed)
+ return Info.noteSideEffect();
+ return true;
+ }
+
+ if (E->isLogicalOp()) {
+ bool LHSAsBool;
+ if (!LHSResult.Failed && HandleConversionToBool(LHSResult.Val, LHSAsBool)) {
+ // We were able to evaluate the LHS, see if we can get away with not
+ // evaluating the RHS: 0 && X -> 0, 1 || X -> 1
+ if (LHSAsBool == (E->getOpcode() == BO_LOr)) {
+ Success(LHSAsBool, E, LHSResult.Val);
+ return false; // Ignore RHS
+ }
+ } else {
+ LHSResult.Failed = true;
+
+ // Since we weren't able to evaluate the left hand side, it
+ // might have had side effects.
+ if (!Info.noteSideEffect())
+ return false;
+
+ // We can't evaluate the LHS; however, sometimes the result
+ // is determined by the RHS: X && 0 -> 0, X || 1 -> 1.
+ // Don't ignore RHS and suppress diagnostics from this arm.
+ SuppressRHSDiags = true;
+ }
+
+ return true;
+ }
+
+ assert(E->getLHS()->getType()->isIntegralOrEnumerationType() &&
+ E->getRHS()->getType()->isIntegralOrEnumerationType());
+
+ if (LHSResult.Failed && !Info.noteFailure())
+ return false; // Ignore RHS;
+
+ return true;
+}
+
+static void addOrSubLValueAsInteger(APValue &LVal, const APSInt &Index,
+ bool IsSub) {
+ // Compute the new offset in the appropriate width, wrapping at 64 bits.
+ // FIXME: When compiling for a 32-bit target, we should use 32-bit
+ // offsets.
+ assert(!LVal.hasLValuePath() && "have designator for integer lvalue");
+ CharUnits &Offset = LVal.getLValueOffset();
+ uint64_t Offset64 = Offset.getQuantity();
+ uint64_t Index64 = Index.extOrTrunc(64).getZExtValue();
+ Offset = CharUnits::fromQuantity(IsSub ? Offset64 - Index64
+ : Offset64 + Index64);
+}
+
+bool DataRecursiveIntBinOpEvaluator::
+ VisitBinOp(const EvalResult &LHSResult, const EvalResult &RHSResult,
+ const BinaryOperator *E, APValue &Result) {
+ if (E->getOpcode() == BO_Comma) {
+ if (RHSResult.Failed)
+ return false;
+ Result = RHSResult.Val;
+ return true;
+ }
+
+ if (E->isLogicalOp()) {
+ bool lhsResult, rhsResult;
+ bool LHSIsOK = HandleConversionToBool(LHSResult.Val, lhsResult);
+ bool RHSIsOK = HandleConversionToBool(RHSResult.Val, rhsResult);
+
+ if (LHSIsOK) {
+ if (RHSIsOK) {
+ if (E->getOpcode() == BO_LOr)
+ return Success(lhsResult || rhsResult, E, Result);
+ else
+ return Success(lhsResult && rhsResult, E, Result);
+ }
+ } else {
+ if (RHSIsOK) {
+ // We can't evaluate the LHS; however, sometimes the result
+ // is determined by the RHS: X && 0 -> 0, X || 1 -> 1.
+ if (rhsResult == (E->getOpcode() == BO_LOr))
+ return Success(rhsResult, E, Result);
+ }
+ }
+
+ return false;
+ }
+
+ assert(E->getLHS()->getType()->isIntegralOrEnumerationType() &&
+ E->getRHS()->getType()->isIntegralOrEnumerationType());
+
+ if (LHSResult.Failed || RHSResult.Failed)
+ return false;
+
+ const APValue &LHSVal = LHSResult.Val;
+ const APValue &RHSVal = RHSResult.Val;
+
+ // Handle cases like (unsigned long)&a + 4.
+ if (E->isAdditiveOp() && LHSVal.isLValue() && RHSVal.isInt()) {
+ Result = LHSVal;
+ addOrSubLValueAsInteger(Result, RHSVal.getInt(), E->getOpcode() == BO_Sub);
+ return true;
+ }
+
+ // Handle cases like 4 + (unsigned long)&a
+ if (E->getOpcode() == BO_Add &&
+ RHSVal.isLValue() && LHSVal.isInt()) {
+ Result = RHSVal;
+ addOrSubLValueAsInteger(Result, LHSVal.getInt(), /*IsSub*/false);
+ return true;
+ }
+
+ if (E->getOpcode() == BO_Sub && LHSVal.isLValue() && RHSVal.isLValue()) {
+ // Handle (intptr_t)&&A - (intptr_t)&&B.
+ if (!LHSVal.getLValueOffset().isZero() ||
+ !RHSVal.getLValueOffset().isZero())
+ return false;
+ const Expr *LHSExpr = LHSVal.getLValueBase().dyn_cast<const Expr*>();
+ const Expr *RHSExpr = RHSVal.getLValueBase().dyn_cast<const Expr*>();
+ if (!LHSExpr || !RHSExpr)
+ return false;
+ const AddrLabelExpr *LHSAddrExpr = dyn_cast<AddrLabelExpr>(LHSExpr);
+ const AddrLabelExpr *RHSAddrExpr = dyn_cast<AddrLabelExpr>(RHSExpr);
+ if (!LHSAddrExpr || !RHSAddrExpr)
+ return false;
+ // Make sure both labels come from the same function.
+ if (LHSAddrExpr->getLabel()->getDeclContext() !=
+ RHSAddrExpr->getLabel()->getDeclContext())
+ return false;
+ Result = APValue(LHSAddrExpr, RHSAddrExpr);
+ return true;
+ }
+
+ // All the remaining cases expect both operands to be an integer
+ if (!LHSVal.isInt() || !RHSVal.isInt())
+ return Error(E);
+
+ // Set up the width and signedness manually, in case it can't be deduced
+ // from the operation we're performing.
+ // FIXME: Don't do this in the cases where we can deduce it.
+ APSInt Value(Info.Ctx.getIntWidth(E->getType()),
+ E->getType()->isUnsignedIntegerOrEnumerationType());
+ if (!handleIntIntBinOp(Info, E, LHSVal.getInt(), E->getOpcode(),
+ RHSVal.getInt(), Value))
+ return false;
+ return Success(Value, E, Result);
+}
+
+void DataRecursiveIntBinOpEvaluator::process(EvalResult &Result) {
+ Job &job = Queue.back();
+
+ switch (job.Kind) {
+ case Job::AnyExprKind: {
+ if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(job.E)) {
+ if (shouldEnqueue(Bop)) {
+ job.Kind = Job::BinOpKind;
+ enqueue(Bop->getLHS());
+ return;
+ }
+ }
+
+ EvaluateExpr(job.E, Result);
+ Queue.pop_back();
+ return;
+ }
+
+ case Job::BinOpKind: {
+ const BinaryOperator *Bop = cast<BinaryOperator>(job.E);
+ bool SuppressRHSDiags = false;
+ if (!VisitBinOpLHSOnly(Result, Bop, SuppressRHSDiags)) {
+ Queue.pop_back();
+ return;
+ }
+ if (SuppressRHSDiags)
+ job.startSpeculativeEval(Info);
+ job.LHSResult.swap(Result);
+ job.Kind = Job::BinOpVisitedLHSKind;
+ enqueue(Bop->getRHS());
+ return;
+ }
+
+ case Job::BinOpVisitedLHSKind: {
+ const BinaryOperator *Bop = cast<BinaryOperator>(job.E);
+ EvalResult RHS;
+ RHS.swap(Result);
+ Result.Failed = !VisitBinOp(job.LHSResult, RHS, Bop, Result.Val);
+ Queue.pop_back();
+ return;
+ }
+ }
+
+ llvm_unreachable("Invalid Job::Kind!");
+}
+
+namespace {
+/// Used when we determine that we should fail, but can keep evaluating prior to
+/// noting that we had a failure.
+class DelayedNoteFailureRAII {
+ EvalInfo &Info;
+ bool NoteFailure;
+
+public:
+ DelayedNoteFailureRAII(EvalInfo &Info, bool NoteFailure = true)
+ : Info(Info), NoteFailure(NoteFailure) {}
+ ~DelayedNoteFailureRAII() {
+ if (NoteFailure) {
+ bool ContinueAfterFailure = Info.noteFailure();
+ (void)ContinueAfterFailure;
+ assert(ContinueAfterFailure &&
+ "Shouldn't have kept evaluating on failure.");
+ }
+ }
+};
+}
+
+template <class SuccessCB, class AfterCB>
+static bool
+EvaluateComparisonBinaryOperator(EvalInfo &Info, const BinaryOperator *E,
+ SuccessCB &&Success, AfterCB &&DoAfter) {
+ assert(E->isComparisonOp() && "expected comparison operator");
+ assert((E->getOpcode() == BO_Cmp ||
+ E->getType()->isIntegralOrEnumerationType()) &&
+ "unsupported binary expression evaluation");
+ auto Error = [&](const Expr *E) {
+ Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
+ return false;
+ };
+
+ using CCR = ComparisonCategoryResult;
+ bool IsRelational = E->isRelationalOp();
+ bool IsEquality = E->isEqualityOp();
+ if (E->getOpcode() == BO_Cmp) {
+ const ComparisonCategoryInfo &CmpInfo =
+ Info.Ctx.CompCategories.getInfoForType(E->getType());
+ IsRelational = CmpInfo.isOrdered();
+ IsEquality = CmpInfo.isEquality();
+ }
+
+ QualType LHSTy = E->getLHS()->getType();
+ QualType RHSTy = E->getRHS()->getType();
+
+ if (LHSTy->isIntegralOrEnumerationType() &&
+ RHSTy->isIntegralOrEnumerationType()) {
+ APSInt LHS, RHS;
+ bool LHSOK = EvaluateInteger(E->getLHS(), LHS, Info);
+ if (!LHSOK && !Info.noteFailure())
+ return false;
+ if (!EvaluateInteger(E->getRHS(), RHS, Info) || !LHSOK)
+ return false;
+ if (LHS < RHS)
+ return Success(CCR::Less, E);
+ if (LHS > RHS)
+ return Success(CCR::Greater, E);
+ return Success(CCR::Equal, E);
+ }
+
+ if (LHSTy->isFixedPointType() || RHSTy->isFixedPointType()) {
+ APFixedPoint LHSFX(Info.Ctx.getFixedPointSemantics(LHSTy));
+ APFixedPoint RHSFX(Info.Ctx.getFixedPointSemantics(RHSTy));
+
+ bool LHSOK = EvaluateFixedPointOrInteger(E->getLHS(), LHSFX, Info);
+ if (!LHSOK && !Info.noteFailure())
+ return false;
+ if (!EvaluateFixedPointOrInteger(E->getRHS(), RHSFX, Info) || !LHSOK)
+ return false;
+ if (LHSFX < RHSFX)
+ return Success(CCR::Less, E);
+ if (LHSFX > RHSFX)
+ return Success(CCR::Greater, E);
+ return Success(CCR::Equal, E);
+ }
+
+ if (LHSTy->isAnyComplexType() || RHSTy->isAnyComplexType()) {
+ ComplexValue LHS, RHS;
+ bool LHSOK;
+ if (E->isAssignmentOp()) {
+ LValue LV;
+ EvaluateLValue(E->getLHS(), LV, Info);
+ LHSOK = false;
+ } else if (LHSTy->isRealFloatingType()) {
+ LHSOK = EvaluateFloat(E->getLHS(), LHS.FloatReal, Info);
+ if (LHSOK) {
+ LHS.makeComplexFloat();
+ LHS.FloatImag = APFloat(LHS.FloatReal.getSemantics());
+ }
+ } else {
+ LHSOK = EvaluateComplex(E->getLHS(), LHS, Info);
+ }
+ if (!LHSOK && !Info.noteFailure())
+ return false;
+
+ if (E->getRHS()->getType()->isRealFloatingType()) {
+ if (!EvaluateFloat(E->getRHS(), RHS.FloatReal, Info) || !LHSOK)
+ return false;
+ RHS.makeComplexFloat();
+ RHS.FloatImag = APFloat(RHS.FloatReal.getSemantics());
+ } else if (!EvaluateComplex(E->getRHS(), RHS, Info) || !LHSOK)
+ return false;
+
+ if (LHS.isComplexFloat()) {
+ APFloat::cmpResult CR_r =
+ LHS.getComplexFloatReal().compare(RHS.getComplexFloatReal());
+ APFloat::cmpResult CR_i =
+ LHS.getComplexFloatImag().compare(RHS.getComplexFloatImag());
+ bool IsEqual = CR_r == APFloat::cmpEqual && CR_i == APFloat::cmpEqual;
+ return Success(IsEqual ? CCR::Equal : CCR::Nonequal, E);
+ } else {
+ assert(IsEquality && "invalid complex comparison");
+ bool IsEqual = LHS.getComplexIntReal() == RHS.getComplexIntReal() &&
+ LHS.getComplexIntImag() == RHS.getComplexIntImag();
+ return Success(IsEqual ? CCR::Equal : CCR::Nonequal, E);
+ }
+ }
+
+ if (LHSTy->isRealFloatingType() &&
+ RHSTy->isRealFloatingType()) {
+ APFloat RHS(0.0), LHS(0.0);
+
+ bool LHSOK = EvaluateFloat(E->getRHS(), RHS, Info);
+ if (!LHSOK && !Info.noteFailure())
+ return false;
+
+ if (!EvaluateFloat(E->getLHS(), LHS, Info) || !LHSOK)
+ return false;
+
+ assert(E->isComparisonOp() && "Invalid binary operator!");
+ auto GetCmpRes = [&]() {
+ switch (LHS.compare(RHS)) {
+ case APFloat::cmpEqual:
+ return CCR::Equal;
+ case APFloat::cmpLessThan:
+ return CCR::Less;
+ case APFloat::cmpGreaterThan:
+ return CCR::Greater;
+ case APFloat::cmpUnordered:
+ return CCR::Unordered;
+ }
+ llvm_unreachable("Unrecognised APFloat::cmpResult enum");
+ };
+ return Success(GetCmpRes(), E);
+ }
+
+ if (LHSTy->isPointerType() && RHSTy->isPointerType()) {
+ LValue LHSValue, RHSValue;
+
+ bool LHSOK = EvaluatePointer(E->getLHS(), LHSValue, Info);
+ if (!LHSOK && !Info.noteFailure())
+ return false;
+
+ if (!EvaluatePointer(E->getRHS(), RHSValue, Info) || !LHSOK)
+ return false;
+
+ // Reject differing bases from the normal codepath; we special-case
+ // comparisons to null.
+ if (!HasSameBase(LHSValue, RHSValue)) {
+ // Inequalities and subtractions between unrelated pointers have
+ // unspecified or undefined behavior.
+ if (!IsEquality)
+ return Error(E);
+ // A constant address may compare equal to the address of a symbol.
+ // The one exception is that address of an object cannot compare equal
+ // to a null pointer constant.
+ if ((!LHSValue.Base && !LHSValue.Offset.isZero()) ||
+ (!RHSValue.Base && !RHSValue.Offset.isZero()))
+ return Error(E);
+ // It's implementation-defined whether distinct literals will have
+ // distinct addresses. In clang, the result of such a comparison is
+ // unspecified, so it is not a constant expression. However, we do know
+ // that the address of a literal will be non-null.
+ if ((IsLiteralLValue(LHSValue) || IsLiteralLValue(RHSValue)) &&
+ LHSValue.Base && RHSValue.Base)
+ return Error(E);
+ // We can't tell whether weak symbols will end up pointing to the same
+ // object.
+ if (IsWeakLValue(LHSValue) || IsWeakLValue(RHSValue))
+ return Error(E);
+ // We can't compare the address of the start of one object with the
+ // past-the-end address of another object, per C++ DR1652.
+ if ((LHSValue.Base && LHSValue.Offset.isZero() &&
+ isOnePastTheEndOfCompleteObject(Info.Ctx, RHSValue)) ||
+ (RHSValue.Base && RHSValue.Offset.isZero() &&
+ isOnePastTheEndOfCompleteObject(Info.Ctx, LHSValue)))
+ return Error(E);
+ // We can't tell whether an object is at the same address as another
+ // zero sized object.
+ if ((RHSValue.Base && isZeroSized(LHSValue)) ||
+ (LHSValue.Base && isZeroSized(RHSValue)))
+ return Error(E);
+ return Success(CCR::Nonequal, E);
+ }
+
+ const CharUnits &LHSOffset = LHSValue.getLValueOffset();
+ const CharUnits &RHSOffset = RHSValue.getLValueOffset();
+
+ SubobjectDesignator &LHSDesignator = LHSValue.getLValueDesignator();
+ SubobjectDesignator &RHSDesignator = RHSValue.getLValueDesignator();
+
+ // C++11 [expr.rel]p3:
+ // Pointers to void (after pointer conversions) can be compared, with a
+ // result defined as follows: If both pointers represent the same
+ // address or are both the null pointer value, the result is true if the
+ // operator is <= or >= and false otherwise; otherwise the result is
+ // unspecified.
+ // We interpret this as applying to pointers to *cv* void.
+ if (LHSTy->isVoidPointerType() && LHSOffset != RHSOffset && IsRelational)
+ Info.CCEDiag(E, diag::note_constexpr_void_comparison);
+
+ // C++11 [expr.rel]p2:
+ // - If two pointers point to non-static data members of the same object,
+ // or to subobjects or array elements fo such members, recursively, the
+ // pointer to the later declared member compares greater provided the
+ // two members have the same access control and provided their class is
+ // not a union.
+ // [...]
+ // - Otherwise pointer comparisons are unspecified.
+ if (!LHSDesignator.Invalid && !RHSDesignator.Invalid && IsRelational) {
+ bool WasArrayIndex;
+ unsigned Mismatch = FindDesignatorMismatch(
+ getType(LHSValue.Base), LHSDesignator, RHSDesignator, WasArrayIndex);
+ // At the point where the designators diverge, the comparison has a
+ // specified value if:
+ // - we are comparing array indices
+ // - we are comparing fields of a union, or fields with the same access
+ // Otherwise, the result is unspecified and thus the comparison is not a
+ // constant expression.
+ if (!WasArrayIndex && Mismatch < LHSDesignator.Entries.size() &&
+ Mismatch < RHSDesignator.Entries.size()) {
+ const FieldDecl *LF = getAsField(LHSDesignator.Entries[Mismatch]);
+ const FieldDecl *RF = getAsField(RHSDesignator.Entries[Mismatch]);
+ if (!LF && !RF)
+ Info.CCEDiag(E, diag::note_constexpr_pointer_comparison_base_classes);
+ else if (!LF)
+ Info.CCEDiag(E, diag::note_constexpr_pointer_comparison_base_field)
+ << getAsBaseClass(LHSDesignator.Entries[Mismatch])
+ << RF->getParent() << RF;
+ else if (!RF)
+ Info.CCEDiag(E, diag::note_constexpr_pointer_comparison_base_field)
+ << getAsBaseClass(RHSDesignator.Entries[Mismatch])
+ << LF->getParent() << LF;
+ else if (!LF->getParent()->isUnion() &&
+ LF->getAccess() != RF->getAccess())
+ Info.CCEDiag(E,
+ diag::note_constexpr_pointer_comparison_differing_access)
+ << LF << LF->getAccess() << RF << RF->getAccess()
+ << LF->getParent();
+ }
+ }
+
+ // The comparison here must be unsigned, and performed with the same
+ // width as the pointer.
+ unsigned PtrSize = Info.Ctx.getTypeSize(LHSTy);
+ uint64_t CompareLHS = LHSOffset.getQuantity();
+ uint64_t CompareRHS = RHSOffset.getQuantity();
+ assert(PtrSize <= 64 && "Unexpected pointer width");
+ uint64_t Mask = ~0ULL >> (64 - PtrSize);
+ CompareLHS &= Mask;
+ CompareRHS &= Mask;
+
+ // If there is a base and this is a relational operator, we can only
+ // compare pointers within the object in question; otherwise, the result
+ // depends on where the object is located in memory.
+ if (!LHSValue.Base.isNull() && IsRelational) {
+ QualType BaseTy = getType(LHSValue.Base);
+ if (BaseTy->isIncompleteType())
+ return Error(E);
+ CharUnits Size = Info.Ctx.getTypeSizeInChars(BaseTy);
+ uint64_t OffsetLimit = Size.getQuantity();
+ if (CompareLHS > OffsetLimit || CompareRHS > OffsetLimit)
+ return Error(E);
+ }
+
+ if (CompareLHS < CompareRHS)
+ return Success(CCR::Less, E);
+ if (CompareLHS > CompareRHS)
+ return Success(CCR::Greater, E);
+ return Success(CCR::Equal, E);
+ }
+
+ if (LHSTy->isMemberPointerType()) {
+ assert(IsEquality && "unexpected member pointer operation");
+ assert(RHSTy->isMemberPointerType() && "invalid comparison");
+
+ MemberPtr LHSValue, RHSValue;
+
+ bool LHSOK = EvaluateMemberPointer(E->getLHS(), LHSValue, Info);
+ if (!LHSOK && !Info.noteFailure())
+ return false;
+
+ if (!EvaluateMemberPointer(E->getRHS(), RHSValue, Info) || !LHSOK)
+ return false;
+
+ // C++11 [expr.eq]p2:
+ // If both operands are null, they compare equal. Otherwise if only one is
+ // null, they compare unequal.
+ if (!LHSValue.getDecl() || !RHSValue.getDecl()) {
+ bool Equal = !LHSValue.getDecl() && !RHSValue.getDecl();
+ return Success(Equal ? CCR::Equal : CCR::Nonequal, E);
+ }
+
+ // Otherwise if either is a pointer to a virtual member function, the
+ // result is unspecified.
+ if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(LHSValue.getDecl()))
+ if (MD->isVirtual())
+ Info.CCEDiag(E, diag::note_constexpr_compare_virtual_mem_ptr) << MD;
+ if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(RHSValue.getDecl()))
+ if (MD->isVirtual())
+ Info.CCEDiag(E, diag::note_constexpr_compare_virtual_mem_ptr) << MD;
+
+ // Otherwise they compare equal if and only if they would refer to the
+ // same member of the same most derived object or the same subobject if
+ // they were dereferenced with a hypothetical object of the associated
+ // class type.
+ bool Equal = LHSValue == RHSValue;
+ return Success(Equal ? CCR::Equal : CCR::Nonequal, E);
+ }
+
+ if (LHSTy->isNullPtrType()) {
+ assert(E->isComparisonOp() && "unexpected nullptr operation");
+ assert(RHSTy->isNullPtrType() && "missing pointer conversion");
+ // C++11 [expr.rel]p4, [expr.eq]p3: If two operands of type std::nullptr_t
+ // are compared, the result is true of the operator is <=, >= or ==, and
+ // false otherwise.
+ return Success(CCR::Equal, E);
+ }
+
+ return DoAfter();
+}
+
+bool RecordExprEvaluator::VisitBinCmp(const BinaryOperator *E) {
+ if (!CheckLiteralType(Info, E))
+ return false;
+
+ auto OnSuccess = [&](ComparisonCategoryResult ResKind,
+ const BinaryOperator *E) {
+ // Evaluation succeeded. Lookup the information for the comparison category
+ // type and fetch the VarDecl for the result.
+ const ComparisonCategoryInfo &CmpInfo =
+ Info.Ctx.CompCategories.getInfoForType(E->getType());
+ const VarDecl *VD =
+ CmpInfo.getValueInfo(CmpInfo.makeWeakResult(ResKind))->VD;
+ // Check and evaluate the result as a constant expression.
+ LValue LV;
+ LV.set(VD);
+ if (!handleLValueToRValueConversion(Info, E, E->getType(), LV, Result))
+ return false;
+ return CheckConstantExpression(Info, E->getExprLoc(), E->getType(), Result);
+ };
+ return EvaluateComparisonBinaryOperator(Info, E, OnSuccess, [&]() {
+ return ExprEvaluatorBaseTy::VisitBinCmp(E);
+ });
+}
+
+bool IntExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
+ // We don't call noteFailure immediately because the assignment happens after
+ // we evaluate LHS and RHS.
+ if (!Info.keepEvaluatingAfterFailure() && E->isAssignmentOp())
+ return Error(E);
+
+ DelayedNoteFailureRAII MaybeNoteFailureLater(Info, E->isAssignmentOp());
+ if (DataRecursiveIntBinOpEvaluator::shouldEnqueue(E))
+ return DataRecursiveIntBinOpEvaluator(*this, Result).Traverse(E);
+
+ assert((!E->getLHS()->getType()->isIntegralOrEnumerationType() ||
+ !E->getRHS()->getType()->isIntegralOrEnumerationType()) &&
+ "DataRecursiveIntBinOpEvaluator should have handled integral types");
+
+ if (E->isComparisonOp()) {
+ // Evaluate builtin binary comparisons by evaluating them as C++2a three-way
+ // comparisons and then translating the result.
+ auto OnSuccess = [&](ComparisonCategoryResult ResKind,
+ const BinaryOperator *E) {
+ using CCR = ComparisonCategoryResult;
+ bool IsEqual = ResKind == CCR::Equal,
+ IsLess = ResKind == CCR::Less,
+ IsGreater = ResKind == CCR::Greater;
+ auto Op = E->getOpcode();
+ switch (Op) {
+ default:
+ llvm_unreachable("unsupported binary operator");
+ case BO_EQ:
+ case BO_NE:
+ return Success(IsEqual == (Op == BO_EQ), E);
+ case BO_LT: return Success(IsLess, E);
+ case BO_GT: return Success(IsGreater, E);
+ case BO_LE: return Success(IsEqual || IsLess, E);
+ case BO_GE: return Success(IsEqual || IsGreater, E);
+ }
+ };
+ return EvaluateComparisonBinaryOperator(Info, E, OnSuccess, [&]() {
+ return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
+ });
+ }
+
+ QualType LHSTy = E->getLHS()->getType();
+ QualType RHSTy = E->getRHS()->getType();
+
+ if (LHSTy->isPointerType() && RHSTy->isPointerType() &&
+ E->getOpcode() == BO_Sub) {
+ LValue LHSValue, RHSValue;
+
+ bool LHSOK = EvaluatePointer(E->getLHS(), LHSValue, Info);
+ if (!LHSOK && !Info.noteFailure())
+ return false;
+
+ if (!EvaluatePointer(E->getRHS(), RHSValue, Info) || !LHSOK)
+ return false;
+
+ // Reject differing bases from the normal codepath; we special-case
+ // comparisons to null.
+ if (!HasSameBase(LHSValue, RHSValue)) {
+ // Handle &&A - &&B.
+ if (!LHSValue.Offset.isZero() || !RHSValue.Offset.isZero())
+ return Error(E);
+ const Expr *LHSExpr = LHSValue.Base.dyn_cast<const Expr *>();
+ const Expr *RHSExpr = RHSValue.Base.dyn_cast<const Expr *>();
+ if (!LHSExpr || !RHSExpr)
+ return Error(E);
+ const AddrLabelExpr *LHSAddrExpr = dyn_cast<AddrLabelExpr>(LHSExpr);
+ const AddrLabelExpr *RHSAddrExpr = dyn_cast<AddrLabelExpr>(RHSExpr);
+ if (!LHSAddrExpr || !RHSAddrExpr)
+ return Error(E);
+ // Make sure both labels come from the same function.
+ if (LHSAddrExpr->getLabel()->getDeclContext() !=
+ RHSAddrExpr->getLabel()->getDeclContext())
+ return Error(E);
+ return Success(APValue(LHSAddrExpr, RHSAddrExpr), E);
+ }
+ const CharUnits &LHSOffset = LHSValue.getLValueOffset();
+ const CharUnits &RHSOffset = RHSValue.getLValueOffset();
+
+ SubobjectDesignator &LHSDesignator = LHSValue.getLValueDesignator();
+ SubobjectDesignator &RHSDesignator = RHSValue.getLValueDesignator();
+
+ // C++11 [expr.add]p6:
+ // Unless both pointers point to elements of the same array object, or
+ // one past the last element of the array object, the behavior is
+ // undefined.
+ if (!LHSDesignator.Invalid && !RHSDesignator.Invalid &&
+ !AreElementsOfSameArray(getType(LHSValue.Base), LHSDesignator,
+ RHSDesignator))
+ Info.CCEDiag(E, diag::note_constexpr_pointer_subtraction_not_same_array);
+
+ QualType Type = E->getLHS()->getType();
+ QualType ElementType = Type->castAs<PointerType>()->getPointeeType();
+
+ CharUnits ElementSize;
+ if (!HandleSizeof(Info, E->getExprLoc(), ElementType, ElementSize))
+ return false;
+
+ // As an extension, a type may have zero size (empty struct or union in
+ // C, array of zero length). Pointer subtraction in such cases has
+ // undefined behavior, so is not constant.
+ if (ElementSize.isZero()) {
+ Info.FFDiag(E, diag::note_constexpr_pointer_subtraction_zero_size)
+ << ElementType;
+ return false;
+ }
+
+ // FIXME: LLVM and GCC both compute LHSOffset - RHSOffset at runtime,
+ // and produce incorrect results when it overflows. Such behavior
+ // appears to be non-conforming, but is common, so perhaps we should
+ // assume the standard intended for such cases to be undefined behavior
+ // and check for them.
+
+ // Compute (LHSOffset - RHSOffset) / Size carefully, checking for
+ // overflow in the final conversion to ptrdiff_t.
+ APSInt LHS(llvm::APInt(65, (int64_t)LHSOffset.getQuantity(), true), false);
+ APSInt RHS(llvm::APInt(65, (int64_t)RHSOffset.getQuantity(), true), false);
+ APSInt ElemSize(llvm::APInt(65, (int64_t)ElementSize.getQuantity(), true),
+ false);
+ APSInt TrueResult = (LHS - RHS) / ElemSize;
+ APSInt Result = TrueResult.trunc(Info.Ctx.getIntWidth(E->getType()));
+
+ if (Result.extend(65) != TrueResult &&
+ !HandleOverflow(Info, E, TrueResult, E->getType()))
+ return false;
+ return Success(Result, E);
+ }
+
+ return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
+}
+
+/// VisitUnaryExprOrTypeTraitExpr - Evaluate a sizeof, alignof or vec_step with
+/// a result as the expression's type.
+bool IntExprEvaluator::VisitUnaryExprOrTypeTraitExpr(
+ const UnaryExprOrTypeTraitExpr *E) {
+ switch(E->getKind()) {
+ case UETT_PreferredAlignOf:
+ case UETT_AlignOf: {
+ if (E->isArgumentType())
+ return Success(GetAlignOfType(Info, E->getArgumentType(), E->getKind()),
+ E);
+ else
+ return Success(GetAlignOfExpr(Info, E->getArgumentExpr(), E->getKind()),
+ E);
+ }
+
+ case UETT_VecStep: {
+ QualType Ty = E->getTypeOfArgument();
+
+ if (Ty->isVectorType()) {
+ unsigned n = Ty->castAs<VectorType>()->getNumElements();
+
+ // The vec_step built-in functions that take a 3-component
+ // vector return 4. (OpenCL 1.1 spec 6.11.12)
+ if (n == 3)
+ n = 4;
+
+ return Success(n, E);
+ } else
+ return Success(1, E);
+ }
+
+ case UETT_SizeOf: {
+ QualType SrcTy = E->getTypeOfArgument();
+ // C++ [expr.sizeof]p2: "When applied to a reference or a reference type,
+ // the result is the size of the referenced type."
+ if (const ReferenceType *Ref = SrcTy->getAs<ReferenceType>())
+ SrcTy = Ref->getPointeeType();
+
+ CharUnits Sizeof;
+ if (!HandleSizeof(Info, E->getExprLoc(), SrcTy, Sizeof))
+ return false;
+ return Success(Sizeof, E);
+ }
+ case UETT_OpenMPRequiredSimdAlign:
+ assert(E->isArgumentType());
+ return Success(
+ Info.Ctx.toCharUnitsFromBits(
+ Info.Ctx.getOpenMPDefaultSimdAlign(E->getArgumentType()))
+ .getQuantity(),
+ E);
+ }
+
+ llvm_unreachable("unknown expr/type trait");
+}
+
+bool IntExprEvaluator::VisitOffsetOfExpr(const OffsetOfExpr *OOE) {
+ CharUnits Result;
+ unsigned n = OOE->getNumComponents();
+ if (n == 0)
+ return Error(OOE);
+ QualType CurrentType = OOE->getTypeSourceInfo()->getType();
+ for (unsigned i = 0; i != n; ++i) {
+ OffsetOfNode ON = OOE->getComponent(i);
+ switch (ON.getKind()) {
+ case OffsetOfNode::Array: {
+ const Expr *Idx = OOE->getIndexExpr(ON.getArrayExprIndex());
+ APSInt IdxResult;
+ if (!EvaluateInteger(Idx, IdxResult, Info))
+ return false;
+ const ArrayType *AT = Info.Ctx.getAsArrayType(CurrentType);
+ if (!AT)
+ return Error(OOE);
+ CurrentType = AT->getElementType();
+ CharUnits ElementSize = Info.Ctx.getTypeSizeInChars(CurrentType);
+ Result += IdxResult.getSExtValue() * ElementSize;
+ break;
+ }
+
+ case OffsetOfNode::Field: {
+ FieldDecl *MemberDecl = ON.getField();
+ const RecordType *RT = CurrentType->getAs<RecordType>();
+ if (!RT)
+ return Error(OOE);
+ RecordDecl *RD = RT->getDecl();
+ if (RD->isInvalidDecl()) return false;
+ const ASTRecordLayout &RL = Info.Ctx.getASTRecordLayout(RD);
+ unsigned i = MemberDecl->getFieldIndex();
+ assert(i < RL.getFieldCount() && "offsetof field in wrong type");
+ Result += Info.Ctx.toCharUnitsFromBits(RL.getFieldOffset(i));
+ CurrentType = MemberDecl->getType().getNonReferenceType();
+ break;
+ }
+
+ case OffsetOfNode::Identifier:
+ llvm_unreachable("dependent __builtin_offsetof");
+
+ case OffsetOfNode::Base: {
+ CXXBaseSpecifier *BaseSpec = ON.getBase();
+ if (BaseSpec->isVirtual())
+ return Error(OOE);
+
+ // Find the layout of the class whose base we are looking into.
+ const RecordType *RT = CurrentType->getAs<RecordType>();
+ if (!RT)
+ return Error(OOE);
+ RecordDecl *RD = RT->getDecl();
+ if (RD->isInvalidDecl()) return false;
+ const ASTRecordLayout &RL = Info.Ctx.getASTRecordLayout(RD);
+
+ // Find the base class itself.
+ CurrentType = BaseSpec->getType();
+ const RecordType *BaseRT = CurrentType->getAs<RecordType>();
+ if (!BaseRT)
+ return Error(OOE);
+
+ // Add the offset to the base.
+ Result += RL.getBaseClassOffset(cast<CXXRecordDecl>(BaseRT->getDecl()));
+ break;
+ }
+ }
+ }
+ return Success(Result, OOE);
+}
+
+bool IntExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) {
+ switch (E->getOpcode()) {
+ default:
+ // Address, indirect, pre/post inc/dec, etc are not valid constant exprs.
+ // See C99 6.6p3.
+ return Error(E);
+ case UO_Extension:
+ // FIXME: Should extension allow i-c-e extension expressions in its scope?
+ // If so, we could clear the diagnostic ID.
+ return Visit(E->getSubExpr());
+ case UO_Plus:
+ // The result is just the value.
+ return Visit(E->getSubExpr());
+ case UO_Minus: {
+ if (!Visit(E->getSubExpr()))
+ return false;
+ if (!Result.isInt()) return Error(E);
+ const APSInt &Value = Result.getInt();
+ if (Value.isSigned() && Value.isMinSignedValue() && E->canOverflow() &&
+ !HandleOverflow(Info, E, -Value.extend(Value.getBitWidth() + 1),
+ E->getType()))
+ return false;
+ return Success(-Value, E);
+ }
+ case UO_Not: {
+ if (!Visit(E->getSubExpr()))
+ return false;
+ if (!Result.isInt()) return Error(E);
+ return Success(~Result.getInt(), E);
+ }
+ case UO_LNot: {
+ bool bres;
+ if (!EvaluateAsBooleanCondition(E->getSubExpr(), bres, Info))
+ return false;
+ return Success(!bres, E);
+ }
+ }
+}
+
+/// HandleCast - This is used to evaluate implicit or explicit casts where the
+/// result type is integer.
+bool IntExprEvaluator::VisitCastExpr(const CastExpr *E) {
+ const Expr *SubExpr = E->getSubExpr();
+ QualType DestType = E->getType();
+ QualType SrcType = SubExpr->getType();
+
+ switch (E->getCastKind()) {
+ case CK_BaseToDerived:
+ case CK_DerivedToBase:
+ case CK_UncheckedDerivedToBase:
+ case CK_Dynamic:
+ case CK_ToUnion:
+ case CK_ArrayToPointerDecay:
+ case CK_FunctionToPointerDecay:
+ case CK_NullToPointer:
+ case CK_NullToMemberPointer:
+ case CK_BaseToDerivedMemberPointer:
+ case CK_DerivedToBaseMemberPointer:
+ case CK_ReinterpretMemberPointer:
+ case CK_ConstructorConversion:
+ case CK_IntegralToPointer:
+ case CK_ToVoid:
+ case CK_VectorSplat:
+ case CK_IntegralToFloating:
+ case CK_FloatingCast:
+ case CK_CPointerToObjCPointerCast:
+ case CK_BlockPointerToObjCPointerCast:
+ case CK_AnyPointerToBlockPointerCast:
+ case CK_ObjCObjectLValueCast:
+ case CK_FloatingRealToComplex:
+ case CK_FloatingComplexToReal:
+ case CK_FloatingComplexCast:
+ case CK_FloatingComplexToIntegralComplex:
+ case CK_IntegralRealToComplex:
+ case CK_IntegralComplexCast:
+ case CK_IntegralComplexToFloatingComplex:
+ case CK_BuiltinFnToFnPtr:
+ case CK_ZeroToOCLOpaqueType:
+ case CK_NonAtomicToAtomic:
+ case CK_AddressSpaceConversion:
+ case CK_IntToOCLSampler:
+ case CK_FixedPointCast:
+ case CK_IntegralToFixedPoint:
+ llvm_unreachable("invalid cast kind for integral value");
+
+ case CK_BitCast:
+ case CK_Dependent:
+ case CK_LValueBitCast:
+ case CK_ARCProduceObject:
+ case CK_ARCConsumeObject:
+ case CK_ARCReclaimReturnedObject:
+ case CK_ARCExtendBlockObject:
+ case CK_CopyAndAutoreleaseBlockObject:
+ return Error(E);
+
+ case CK_UserDefinedConversion:
+ case CK_LValueToRValue:
+ case CK_AtomicToNonAtomic:
+ case CK_NoOp:
+ case CK_LValueToRValueBitCast:
+ return ExprEvaluatorBaseTy::VisitCastExpr(E);
+
+ case CK_MemberPointerToBoolean:
+ case CK_PointerToBoolean:
+ case CK_IntegralToBoolean:
+ case CK_FloatingToBoolean:
+ case CK_BooleanToSignedIntegral:
+ case CK_FloatingComplexToBoolean:
+ case CK_IntegralComplexToBoolean: {
+ bool BoolResult;
+ if (!EvaluateAsBooleanCondition(SubExpr, BoolResult, Info))
+ return false;
+ uint64_t IntResult = BoolResult;
+ if (BoolResult && E->getCastKind() == CK_BooleanToSignedIntegral)
+ IntResult = (uint64_t)-1;
+ return Success(IntResult, E);
+ }
+
+ case CK_FixedPointToIntegral: {
+ APFixedPoint Src(Info.Ctx.getFixedPointSemantics(SrcType));
+ if (!EvaluateFixedPoint(SubExpr, Src, Info))
+ return false;
+ bool Overflowed;
+ llvm::APSInt Result = Src.convertToInt(
+ Info.Ctx.getIntWidth(DestType),
+ DestType->isSignedIntegerOrEnumerationType(), &Overflowed);
+ if (Overflowed && !HandleOverflow(Info, E, Result, DestType))
+ return false;
+ return Success(Result, E);
+ }
+
+ case CK_FixedPointToBoolean: {
+ // Unsigned padding does not affect this.
+ APValue Val;
+ if (!Evaluate(Val, Info, SubExpr))
+ return false;
+ return Success(Val.getFixedPoint().getBoolValue(), E);
+ }
+
+ case CK_IntegralCast: {
+ if (!Visit(SubExpr))
+ return false;
+
+ if (!Result.isInt()) {
+ // Allow casts of address-of-label differences if they are no-ops
+ // or narrowing. (The narrowing case isn't actually guaranteed to
+ // be constant-evaluatable except in some narrow cases which are hard
+ // to detect here. We let it through on the assumption the user knows
+ // what they are doing.)
+ if (Result.isAddrLabelDiff())
+ return Info.Ctx.getTypeSize(DestType) <= Info.Ctx.getTypeSize(SrcType);
+ // Only allow casts of lvalues if they are lossless.
+ return Info.Ctx.getTypeSize(DestType) == Info.Ctx.getTypeSize(SrcType);
+ }
+
+ return Success(HandleIntToIntCast(Info, E, DestType, SrcType,
+ Result.getInt()), E);
+ }
+
+ case CK_PointerToIntegral: {
+ CCEDiag(E, diag::note_constexpr_invalid_cast) << 2;
+
+ LValue LV;
+ if (!EvaluatePointer(SubExpr, LV, Info))
+ return false;
+
+ if (LV.getLValueBase()) {
+ // Only allow based lvalue casts if they are lossless.
+ // FIXME: Allow a larger integer size than the pointer size, and allow
+ // narrowing back down to pointer width in subsequent integral casts.
+ // FIXME: Check integer type's active bits, not its type size.
+ if (Info.Ctx.getTypeSize(DestType) != Info.Ctx.getTypeSize(SrcType))
+ return Error(E);
+
+ LV.Designator.setInvalid();
+ LV.moveInto(Result);
+ return true;
+ }
+
+ APSInt AsInt;
+ APValue V;
+ LV.moveInto(V);
+ if (!V.toIntegralConstant(AsInt, SrcType, Info.Ctx))
+ llvm_unreachable("Can't cast this!");
+
+ return Success(HandleIntToIntCast(Info, E, DestType, SrcType, AsInt), E);
+ }
+
+ case CK_IntegralComplexToReal: {
+ ComplexValue C;
+ if (!EvaluateComplex(SubExpr, C, Info))
+ return false;
+ return Success(C.getComplexIntReal(), E);
+ }
+
+ case CK_FloatingToIntegral: {
+ APFloat F(0.0);
+ if (!EvaluateFloat(SubExpr, F, Info))
+ return false;
+
+ APSInt Value;
+ if (!HandleFloatToIntCast(Info, E, SrcType, F, DestType, Value))
+ return false;
+ return Success(Value, E);
+ }
+ }
+
+ llvm_unreachable("unknown cast resulting in integral value");
+}
+
+bool IntExprEvaluator::VisitUnaryReal(const UnaryOperator *E) {
+ if (E->getSubExpr()->getType()->isAnyComplexType()) {
+ ComplexValue LV;
+ if (!EvaluateComplex(E->getSubExpr(), LV, Info))
+ return false;
+ if (!LV.isComplexInt())
+ return Error(E);
+ return Success(LV.getComplexIntReal(), E);
+ }
+
+ return Visit(E->getSubExpr());
+}
+
+bool IntExprEvaluator::VisitUnaryImag(const UnaryOperator *E) {
+ if (E->getSubExpr()->getType()->isComplexIntegerType()) {
+ ComplexValue LV;
+ if (!EvaluateComplex(E->getSubExpr(), LV, Info))
+ return false;
+ if (!LV.isComplexInt())
+ return Error(E);
+ return Success(LV.getComplexIntImag(), E);
+ }
+
+ VisitIgnoredValue(E->getSubExpr());
+ return Success(0, E);
+}
+
+bool IntExprEvaluator::VisitSizeOfPackExpr(const SizeOfPackExpr *E) {
+ return Success(E->getPackLength(), E);
+}
+
+bool IntExprEvaluator::VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) {
+ return Success(E->getValue(), E);
+}
+
+bool IntExprEvaluator::VisitConceptSpecializationExpr(
+ const ConceptSpecializationExpr *E) {
+ return Success(E->isSatisfied(), E);
+}
+
+
+bool FixedPointExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) {
+ switch (E->getOpcode()) {
+ default:
+ // Invalid unary operators
+ return Error(E);
+ case UO_Plus:
+ // The result is just the value.
+ return Visit(E->getSubExpr());
+ case UO_Minus: {
+ if (!Visit(E->getSubExpr())) return false;
+ if (!Result.isFixedPoint())
+ return Error(E);
+ bool Overflowed;
+ APFixedPoint Negated = Result.getFixedPoint().negate(&Overflowed);
+ if (Overflowed && !HandleOverflow(Info, E, Negated, E->getType()))
+ return false;
+ return Success(Negated, E);
+ }
+ case UO_LNot: {
+ bool bres;
+ if (!EvaluateAsBooleanCondition(E->getSubExpr(), bres, Info))
+ return false;
+ return Success(!bres, E);
+ }
+ }
+}
+
+bool FixedPointExprEvaluator::VisitCastExpr(const CastExpr *E) {
+ const Expr *SubExpr = E->getSubExpr();
+ QualType DestType = E->getType();
+ assert(DestType->isFixedPointType() &&
+ "Expected destination type to be a fixed point type");
+ auto DestFXSema = Info.Ctx.getFixedPointSemantics(DestType);
+
+ switch (E->getCastKind()) {
+ case CK_FixedPointCast: {
+ APFixedPoint Src(Info.Ctx.getFixedPointSemantics(SubExpr->getType()));
+ if (!EvaluateFixedPoint(SubExpr, Src, Info))
+ return false;
+ bool Overflowed;
+ APFixedPoint Result = Src.convert(DestFXSema, &Overflowed);
+ if (Overflowed && !HandleOverflow(Info, E, Result, DestType))
+ return false;
+ return Success(Result, E);
+ }
+ case CK_IntegralToFixedPoint: {
+ APSInt Src;
+ if (!EvaluateInteger(SubExpr, Src, Info))
+ return false;
+
+ bool Overflowed;
+ APFixedPoint IntResult = APFixedPoint::getFromIntValue(
+ Src, Info.Ctx.getFixedPointSemantics(DestType), &Overflowed);
+
+ if (Overflowed && !HandleOverflow(Info, E, IntResult, DestType))
+ return false;
+
+ return Success(IntResult, E);
+ }
+ case CK_NoOp:
+ case CK_LValueToRValue:
+ return ExprEvaluatorBaseTy::VisitCastExpr(E);
+ default:
+ return Error(E);
+ }
+}
+
+bool FixedPointExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
+ const Expr *LHS = E->getLHS();
+ const Expr *RHS = E->getRHS();
+ FixedPointSemantics ResultFXSema =
+ Info.Ctx.getFixedPointSemantics(E->getType());
+
+ APFixedPoint LHSFX(Info.Ctx.getFixedPointSemantics(LHS->getType()));
+ if (!EvaluateFixedPointOrInteger(LHS, LHSFX, Info))
+ return false;
+ APFixedPoint RHSFX(Info.Ctx.getFixedPointSemantics(RHS->getType()));
+ if (!EvaluateFixedPointOrInteger(RHS, RHSFX, Info))
+ return false;
+
+ switch (E->getOpcode()) {
+ case BO_Add: {
+ bool AddOverflow, ConversionOverflow;
+ APFixedPoint Result = LHSFX.add(RHSFX, &AddOverflow)
+ .convert(ResultFXSema, &ConversionOverflow);
+ if ((AddOverflow || ConversionOverflow) &&
+ !HandleOverflow(Info, E, Result, E->getType()))
+ return false;
+ return Success(Result, E);
+ }
+ default:
+ return false;
+ }
+ llvm_unreachable("Should've exited before this");
+}
+
+//===----------------------------------------------------------------------===//
+// Float Evaluation
+//===----------------------------------------------------------------------===//
+
+namespace {
+class FloatExprEvaluator
+ : public ExprEvaluatorBase<FloatExprEvaluator> {
+ APFloat &Result;
+public:
+ FloatExprEvaluator(EvalInfo &info, APFloat &result)
+ : ExprEvaluatorBaseTy(info), Result(result) {}
+
+ bool Success(const APValue &V, const Expr *e) {
+ Result = V.getFloat();
+ return true;
+ }
+
+ bool ZeroInitialization(const Expr *E) {
+ Result = APFloat::getZero(Info.Ctx.getFloatTypeSemantics(E->getType()));
+ return true;
+ }
+
+ bool VisitCallExpr(const CallExpr *E);
+
+ bool VisitUnaryOperator(const UnaryOperator *E);
+ bool VisitBinaryOperator(const BinaryOperator *E);
+ bool VisitFloatingLiteral(const FloatingLiteral *E);
+ bool VisitCastExpr(const CastExpr *E);
+
+ bool VisitUnaryReal(const UnaryOperator *E);
+ bool VisitUnaryImag(const UnaryOperator *E);
+
+ // FIXME: Missing: array subscript of vector, member of vector
+};
+} // end anonymous namespace
+
+static bool EvaluateFloat(const Expr* E, APFloat& Result, EvalInfo &Info) {
+ assert(E->isRValue() && E->getType()->isRealFloatingType());
+ return FloatExprEvaluator(Info, Result).Visit(E);
+}
+
+static bool TryEvaluateBuiltinNaN(const ASTContext &Context,
+ QualType ResultTy,
+ const Expr *Arg,
+ bool SNaN,
+ llvm::APFloat &Result) {
+ const StringLiteral *S = dyn_cast<StringLiteral>(Arg->IgnoreParenCasts());
+ if (!S) return false;
+
+ const llvm::fltSemantics &Sem = Context.getFloatTypeSemantics(ResultTy);
+
+ llvm::APInt fill;
+
+ // Treat empty strings as if they were zero.
+ if (S->getString().empty())
+ fill = llvm::APInt(32, 0);
+ else if (S->getString().getAsInteger(0, fill))
+ return false;
+
+ if (Context.getTargetInfo().isNan2008()) {
+ if (SNaN)
+ Result = llvm::APFloat::getSNaN(Sem, false, &fill);
+ else
+ Result = llvm::APFloat::getQNaN(Sem, false, &fill);
+ } else {
+ // Prior to IEEE 754-2008, architectures were allowed to choose whether
+ // the first bit of their significand was set for qNaN or sNaN. MIPS chose
+ // a different encoding to what became a standard in 2008, and for pre-
+ // 2008 revisions, MIPS interpreted sNaN-2008 as qNan and qNaN-2008 as
+ // sNaN. This is now known as "legacy NaN" encoding.
+ if (SNaN)
+ Result = llvm::APFloat::getQNaN(Sem, false, &fill);
+ else
+ Result = llvm::APFloat::getSNaN(Sem, false, &fill);
+ }
+
+ return true;
+}
+
+bool FloatExprEvaluator::VisitCallExpr(const CallExpr *E) {
+ switch (E->getBuiltinCallee()) {
+ default:
+ return ExprEvaluatorBaseTy::VisitCallExpr(E);
+
+ case Builtin::BI__builtin_huge_val:
+ case Builtin::BI__builtin_huge_valf:
+ case Builtin::BI__builtin_huge_vall:
+ case Builtin::BI__builtin_huge_valf128:
+ case Builtin::BI__builtin_inf:
+ case Builtin::BI__builtin_inff:
+ case Builtin::BI__builtin_infl:
+ case Builtin::BI__builtin_inff128: {
+ const llvm::fltSemantics &Sem =
+ Info.Ctx.getFloatTypeSemantics(E->getType());
+ Result = llvm::APFloat::getInf(Sem);
+ return true;
+ }
+
+ case Builtin::BI__builtin_nans:
+ case Builtin::BI__builtin_nansf:
+ case Builtin::BI__builtin_nansl:
+ case Builtin::BI__builtin_nansf128:
+ if (!TryEvaluateBuiltinNaN(Info.Ctx, E->getType(), E->getArg(0),
+ true, Result))
+ return Error(E);
+ return true;
+
+ case Builtin::BI__builtin_nan:
+ case Builtin::BI__builtin_nanf:
+ case Builtin::BI__builtin_nanl:
+ case Builtin::BI__builtin_nanf128:
+ // If this is __builtin_nan() turn this into a nan, otherwise we
+ // can't constant fold it.
+ if (!TryEvaluateBuiltinNaN(Info.Ctx, E->getType(), E->getArg(0),
+ false, Result))
+ return Error(E);
+ return true;
+
+ case Builtin::BI__builtin_fabs:
+ case Builtin::BI__builtin_fabsf:
+ case Builtin::BI__builtin_fabsl:
+ case Builtin::BI__builtin_fabsf128:
+ if (!EvaluateFloat(E->getArg(0), Result, Info))
+ return false;
+
+ if (Result.isNegative())
+ Result.changeSign();
+ return true;
+
+ // FIXME: Builtin::BI__builtin_powi
+ // FIXME: Builtin::BI__builtin_powif
+ // FIXME: Builtin::BI__builtin_powil
+
+ case Builtin::BI__builtin_copysign:
+ case Builtin::BI__builtin_copysignf:
+ case Builtin::BI__builtin_copysignl:
+ case Builtin::BI__builtin_copysignf128: {
+ APFloat RHS(0.);
+ if (!EvaluateFloat(E->getArg(0), Result, Info) ||
+ !EvaluateFloat(E->getArg(1), RHS, Info))
+ return false;
+ Result.copySign(RHS);
+ return true;
+ }
+ }
+}
+
+bool FloatExprEvaluator::VisitUnaryReal(const UnaryOperator *E) {
+ if (E->getSubExpr()->getType()->isAnyComplexType()) {
+ ComplexValue CV;
+ if (!EvaluateComplex(E->getSubExpr(), CV, Info))
+ return false;
+ Result = CV.FloatReal;
+ return true;
+ }
+
+ return Visit(E->getSubExpr());
+}
+
+bool FloatExprEvaluator::VisitUnaryImag(const UnaryOperator *E) {
+ if (E->getSubExpr()->getType()->isAnyComplexType()) {
+ ComplexValue CV;
+ if (!EvaluateComplex(E->getSubExpr(), CV, Info))
+ return false;
+ Result = CV.FloatImag;
+ return true;
+ }
+
+ VisitIgnoredValue(E->getSubExpr());
+ const llvm::fltSemantics &Sem = Info.Ctx.getFloatTypeSemantics(E->getType());
+ Result = llvm::APFloat::getZero(Sem);
+ return true;
+}
+
+bool FloatExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) {
+ switch (E->getOpcode()) {
+ default: return Error(E);
+ case UO_Plus:
+ return EvaluateFloat(E->getSubExpr(), Result, Info);
+ case UO_Minus:
+ if (!EvaluateFloat(E->getSubExpr(), Result, Info))
+ return false;
+ Result.changeSign();
+ return true;
+ }
+}
+
+bool FloatExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
+ if (E->isPtrMemOp() || E->isAssignmentOp() || E->getOpcode() == BO_Comma)
+ return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
+
+ APFloat RHS(0.0);
+ bool LHSOK = EvaluateFloat(E->getLHS(), Result, Info);
+ if (!LHSOK && !Info.noteFailure())
+ return false;
+ return EvaluateFloat(E->getRHS(), RHS, Info) && LHSOK &&
+ handleFloatFloatBinOp(Info, E, Result, E->getOpcode(), RHS);
+}
+
+bool FloatExprEvaluator::VisitFloatingLiteral(const FloatingLiteral *E) {
+ Result = E->getValue();
+ return true;
+}
+
+bool FloatExprEvaluator::VisitCastExpr(const CastExpr *E) {
+ const Expr* SubExpr = E->getSubExpr();
+
+ switch (E->getCastKind()) {
+ default:
+ return ExprEvaluatorBaseTy::VisitCastExpr(E);
+
+ case CK_IntegralToFloating: {
+ APSInt IntResult;
+ return EvaluateInteger(SubExpr, IntResult, Info) &&
+ HandleIntToFloatCast(Info, E, SubExpr->getType(), IntResult,
+ E->getType(), Result);
+ }
+
+ case CK_FloatingCast: {
+ if (!Visit(SubExpr))
+ return false;
+ return HandleFloatToFloatCast(Info, E, SubExpr->getType(), E->getType(),
+ Result);
+ }
+
+ case CK_FloatingComplexToReal: {
+ ComplexValue V;
+ if (!EvaluateComplex(SubExpr, V, Info))
+ return false;
+ Result = V.getComplexFloatReal();
+ return true;
+ }
+ }
+}
+
+//===----------------------------------------------------------------------===//
+// Complex Evaluation (for float and integer)
+//===----------------------------------------------------------------------===//
+
+namespace {
+class ComplexExprEvaluator
+ : public ExprEvaluatorBase<ComplexExprEvaluator> {
+ ComplexValue &Result;
+
+public:
+ ComplexExprEvaluator(EvalInfo &info, ComplexValue &Result)
+ : ExprEvaluatorBaseTy(info), Result(Result) {}
+
+ bool Success(const APValue &V, const Expr *e) {
+ Result.setFrom(V);
+ return true;
+ }
+
+ bool ZeroInitialization(const Expr *E);
+
+ //===--------------------------------------------------------------------===//
+ // Visitor Methods
+ //===--------------------------------------------------------------------===//
+
+ bool VisitImaginaryLiteral(const ImaginaryLiteral *E);
+ bool VisitCastExpr(const CastExpr *E);
+ bool VisitBinaryOperator(const BinaryOperator *E);
+ bool VisitUnaryOperator(const UnaryOperator *E);
+ bool VisitInitListExpr(const InitListExpr *E);
+};
+} // end anonymous namespace
+
+static bool EvaluateComplex(const Expr *E, ComplexValue &Result,
+ EvalInfo &Info) {
+ assert(E->isRValue() && E->getType()->isAnyComplexType());
+ return ComplexExprEvaluator(Info, Result).Visit(E);
+}
+
+bool ComplexExprEvaluator::ZeroInitialization(const Expr *E) {
+ QualType ElemTy = E->getType()->castAs<ComplexType>()->getElementType();
+ if (ElemTy->isRealFloatingType()) {
+ Result.makeComplexFloat();
+ APFloat Zero = APFloat::getZero(Info.Ctx.getFloatTypeSemantics(ElemTy));
+ Result.FloatReal = Zero;
+ Result.FloatImag = Zero;
+ } else {
+ Result.makeComplexInt();
+ APSInt Zero = Info.Ctx.MakeIntValue(0, ElemTy);
+ Result.IntReal = Zero;
+ Result.IntImag = Zero;
+ }
+ return true;
+}
+
+bool ComplexExprEvaluator::VisitImaginaryLiteral(const ImaginaryLiteral *E) {
+ const Expr* SubExpr = E->getSubExpr();
+
+ if (SubExpr->getType()->isRealFloatingType()) {
+ Result.makeComplexFloat();
+ APFloat &Imag = Result.FloatImag;
+ if (!EvaluateFloat(SubExpr, Imag, Info))
+ return false;
+
+ Result.FloatReal = APFloat(Imag.getSemantics());
+ return true;
+ } else {
+ assert(SubExpr->getType()->isIntegerType() &&
+ "Unexpected imaginary literal.");
+
+ Result.makeComplexInt();
+ APSInt &Imag = Result.IntImag;
+ if (!EvaluateInteger(SubExpr, Imag, Info))
+ return false;
+
+ Result.IntReal = APSInt(Imag.getBitWidth(), !Imag.isSigned());
+ return true;
+ }
+}
+
+bool ComplexExprEvaluator::VisitCastExpr(const CastExpr *E) {
+
+ switch (E->getCastKind()) {
+ case CK_BitCast:
+ case CK_BaseToDerived:
+ case CK_DerivedToBase:
+ case CK_UncheckedDerivedToBase:
+ case CK_Dynamic:
+ case CK_ToUnion:
+ case CK_ArrayToPointerDecay:
+ case CK_FunctionToPointerDecay:
+ case CK_NullToPointer:
+ case CK_NullToMemberPointer:
+ case CK_BaseToDerivedMemberPointer:
+ case CK_DerivedToBaseMemberPointer:
+ case CK_MemberPointerToBoolean:
+ case CK_ReinterpretMemberPointer:
+ case CK_ConstructorConversion:
+ case CK_IntegralToPointer:
+ case CK_PointerToIntegral:
+ case CK_PointerToBoolean:
+ case CK_ToVoid:
+ case CK_VectorSplat:
+ case CK_IntegralCast:
+ case CK_BooleanToSignedIntegral:
+ case CK_IntegralToBoolean:
+ case CK_IntegralToFloating:
+ case CK_FloatingToIntegral:
+ case CK_FloatingToBoolean:
+ case CK_FloatingCast:
+ case CK_CPointerToObjCPointerCast:
+ case CK_BlockPointerToObjCPointerCast:
+ case CK_AnyPointerToBlockPointerCast:
+ case CK_ObjCObjectLValueCast:
+ case CK_FloatingComplexToReal:
+ case CK_FloatingComplexToBoolean:
+ case CK_IntegralComplexToReal:
+ case CK_IntegralComplexToBoolean:
+ case CK_ARCProduceObject:
+ case CK_ARCConsumeObject:
+ case CK_ARCReclaimReturnedObject:
+ case CK_ARCExtendBlockObject:
+ case CK_CopyAndAutoreleaseBlockObject:
+ case CK_BuiltinFnToFnPtr:
+ case CK_ZeroToOCLOpaqueType:
+ case CK_NonAtomicToAtomic:
+ case CK_AddressSpaceConversion:
+ case CK_IntToOCLSampler:
+ case CK_FixedPointCast:
+ case CK_FixedPointToBoolean:
+ case CK_FixedPointToIntegral:
+ case CK_IntegralToFixedPoint:
+ llvm_unreachable("invalid cast kind for complex value");
+
+ case CK_LValueToRValue:
+ case CK_AtomicToNonAtomic:
+ case CK_NoOp:
+ case CK_LValueToRValueBitCast:
+ return ExprEvaluatorBaseTy::VisitCastExpr(E);
+
+ case CK_Dependent:
+ case CK_LValueBitCast:
+ case CK_UserDefinedConversion:
+ return Error(E);
+
+ case CK_FloatingRealToComplex: {
+ APFloat &Real = Result.FloatReal;
+ if (!EvaluateFloat(E->getSubExpr(), Real, Info))
+ return false;
+
+ Result.makeComplexFloat();
+ Result.FloatImag = APFloat(Real.getSemantics());
+ return true;
+ }
+
+ case CK_FloatingComplexCast: {
+ if (!Visit(E->getSubExpr()))
+ return false;
+
+ QualType To = E->getType()->castAs<ComplexType>()->getElementType();
+ QualType From
+ = E->getSubExpr()->getType()->castAs<ComplexType>()->getElementType();
+
+ return HandleFloatToFloatCast(Info, E, From, To, Result.FloatReal) &&
+ HandleFloatToFloatCast(Info, E, From, To, Result.FloatImag);
+ }
+
+ case CK_FloatingComplexToIntegralComplex: {
+ if (!Visit(E->getSubExpr()))
+ return false;
+
+ QualType To = E->getType()->castAs<ComplexType>()->getElementType();
+ QualType From
+ = E->getSubExpr()->getType()->castAs<ComplexType>()->getElementType();
+ Result.makeComplexInt();
+ return HandleFloatToIntCast(Info, E, From, Result.FloatReal,
+ To, Result.IntReal) &&
+ HandleFloatToIntCast(Info, E, From, Result.FloatImag,
+ To, Result.IntImag);
+ }
+
+ case CK_IntegralRealToComplex: {
+ APSInt &Real = Result.IntReal;
+ if (!EvaluateInteger(E->getSubExpr(), Real, Info))
+ return false;
+
+ Result.makeComplexInt();
+ Result.IntImag = APSInt(Real.getBitWidth(), !Real.isSigned());
+ return true;
+ }
+
+ case CK_IntegralComplexCast: {
+ if (!Visit(E->getSubExpr()))
+ return false;
+
+ QualType To = E->getType()->castAs<ComplexType>()->getElementType();
+ QualType From
+ = E->getSubExpr()->getType()->castAs<ComplexType>()->getElementType();
+
+ Result.IntReal = HandleIntToIntCast(Info, E, To, From, Result.IntReal);
+ Result.IntImag = HandleIntToIntCast(Info, E, To, From, Result.IntImag);
+ return true;
+ }
+
+ case CK_IntegralComplexToFloatingComplex: {
+ if (!Visit(E->getSubExpr()))
+ return false;
+
+ QualType To = E->getType()->castAs<ComplexType>()->getElementType();
+ QualType From
+ = E->getSubExpr()->getType()->castAs<ComplexType>()->getElementType();
+ Result.makeComplexFloat();
+ return HandleIntToFloatCast(Info, E, From, Result.IntReal,
+ To, Result.FloatReal) &&
+ HandleIntToFloatCast(Info, E, From, Result.IntImag,
+ To, Result.FloatImag);
+ }
+ }
+
+ llvm_unreachable("unknown cast resulting in complex value");
+}
+
+bool ComplexExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
+ if (E->isPtrMemOp() || E->isAssignmentOp() || E->getOpcode() == BO_Comma)
+ return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
+
+ // Track whether the LHS or RHS is real at the type system level. When this is
+ // the case we can simplify our evaluation strategy.
+ bool LHSReal = false, RHSReal = false;
+
+ bool LHSOK;
+ if (E->getLHS()->getType()->isRealFloatingType()) {
+ LHSReal = true;
+ APFloat &Real = Result.FloatReal;
+ LHSOK = EvaluateFloat(E->getLHS(), Real, Info);
+ if (LHSOK) {
+ Result.makeComplexFloat();
+ Result.FloatImag = APFloat(Real.getSemantics());
+ }
+ } else {
+ LHSOK = Visit(E->getLHS());
+ }
+ if (!LHSOK && !Info.noteFailure())
+ return false;
+
+ ComplexValue RHS;
+ if (E->getRHS()->getType()->isRealFloatingType()) {
+ RHSReal = true;
+ APFloat &Real = RHS.FloatReal;
+ if (!EvaluateFloat(E->getRHS(), Real, Info) || !LHSOK)
+ return false;
+ RHS.makeComplexFloat();
+ RHS.FloatImag = APFloat(Real.getSemantics());
+ } else if (!EvaluateComplex(E->getRHS(), RHS, Info) || !LHSOK)
+ return false;
+
+ assert(!(LHSReal && RHSReal) &&
+ "Cannot have both operands of a complex operation be real.");
+ switch (E->getOpcode()) {
+ default: return Error(E);
+ case BO_Add:
+ if (Result.isComplexFloat()) {
+ Result.getComplexFloatReal().add(RHS.getComplexFloatReal(),
+ APFloat::rmNearestTiesToEven);
+ if (LHSReal)
+ Result.getComplexFloatImag() = RHS.getComplexFloatImag();
+ else if (!RHSReal)
+ Result.getComplexFloatImag().add(RHS.getComplexFloatImag(),
+ APFloat::rmNearestTiesToEven);
+ } else {
+ Result.getComplexIntReal() += RHS.getComplexIntReal();
+ Result.getComplexIntImag() += RHS.getComplexIntImag();
+ }
+ break;
+ case BO_Sub:
+ if (Result.isComplexFloat()) {
+ Result.getComplexFloatReal().subtract(RHS.getComplexFloatReal(),
+ APFloat::rmNearestTiesToEven);
+ if (LHSReal) {
+ Result.getComplexFloatImag() = RHS.getComplexFloatImag();
+ Result.getComplexFloatImag().changeSign();
+ } else if (!RHSReal) {
+ Result.getComplexFloatImag().subtract(RHS.getComplexFloatImag(),
+ APFloat::rmNearestTiesToEven);
+ }
+ } else {
+ Result.getComplexIntReal() -= RHS.getComplexIntReal();
+ Result.getComplexIntImag() -= RHS.getComplexIntImag();
+ }
+ break;
+ case BO_Mul:
+ if (Result.isComplexFloat()) {
+ // This is an implementation of complex multiplication according to the
+ // constraints laid out in C11 Annex G. The implementation uses the
+ // following naming scheme:
+ // (a + ib) * (c + id)
+ ComplexValue LHS = Result;
+ APFloat &A = LHS.getComplexFloatReal();
+ APFloat &B = LHS.getComplexFloatImag();
+ APFloat &C = RHS.getComplexFloatReal();
+ APFloat &D = RHS.getComplexFloatImag();
+ APFloat &ResR = Result.getComplexFloatReal();
+ APFloat &ResI = Result.getComplexFloatImag();
+ if (LHSReal) {
+ assert(!RHSReal && "Cannot have two real operands for a complex op!");
+ ResR = A * C;
+ ResI = A * D;
+ } else if (RHSReal) {
+ ResR = C * A;
+ ResI = C * B;
+ } else {
+ // In the fully general case, we need to handle NaNs and infinities
+ // robustly.
+ APFloat AC = A * C;
+ APFloat BD = B * D;
+ APFloat AD = A * D;
+ APFloat BC = B * C;
+ ResR = AC - BD;
+ ResI = AD + BC;
+ if (ResR.isNaN() && ResI.isNaN()) {
+ bool Recalc = false;
+ if (A.isInfinity() || B.isInfinity()) {
+ A = APFloat::copySign(
+ APFloat(A.getSemantics(), A.isInfinity() ? 1 : 0), A);
+ B = APFloat::copySign(
+ APFloat(B.getSemantics(), B.isInfinity() ? 1 : 0), B);
+ if (C.isNaN())
+ C = APFloat::copySign(APFloat(C.getSemantics()), C);
+ if (D.isNaN())
+ D = APFloat::copySign(APFloat(D.getSemantics()), D);
+ Recalc = true;
+ }
+ if (C.isInfinity() || D.isInfinity()) {
+ C = APFloat::copySign(
+ APFloat(C.getSemantics(), C.isInfinity() ? 1 : 0), C);
+ D = APFloat::copySign(
+ APFloat(D.getSemantics(), D.isInfinity() ? 1 : 0), D);
+ if (A.isNaN())
+ A = APFloat::copySign(APFloat(A.getSemantics()), A);
+ if (B.isNaN())
+ B = APFloat::copySign(APFloat(B.getSemantics()), B);
+ Recalc = true;
+ }
+ if (!Recalc && (AC.isInfinity() || BD.isInfinity() ||
+ AD.isInfinity() || BC.isInfinity())) {
+ if (A.isNaN())
+ A = APFloat::copySign(APFloat(A.getSemantics()), A);
+ if (B.isNaN())
+ B = APFloat::copySign(APFloat(B.getSemantics()), B);
+ if (C.isNaN())
+ C = APFloat::copySign(APFloat(C.getSemantics()), C);
+ if (D.isNaN())
+ D = APFloat::copySign(APFloat(D.getSemantics()), D);
+ Recalc = true;
+ }
+ if (Recalc) {
+ ResR = APFloat::getInf(A.getSemantics()) * (A * C - B * D);
+ ResI = APFloat::getInf(A.getSemantics()) * (A * D + B * C);
+ }
+ }
+ }
+ } else {
+ ComplexValue LHS = Result;
+ Result.getComplexIntReal() =
+ (LHS.getComplexIntReal() * RHS.getComplexIntReal() -
+ LHS.getComplexIntImag() * RHS.getComplexIntImag());
+ Result.getComplexIntImag() =
+ (LHS.getComplexIntReal() * RHS.getComplexIntImag() +
+ LHS.getComplexIntImag() * RHS.getComplexIntReal());
+ }
+ break;
+ case BO_Div:
+ if (Result.isComplexFloat()) {
+ // This is an implementation of complex division according to the
+ // constraints laid out in C11 Annex G. The implementation uses the
+ // following naming scheme:
+ // (a + ib) / (c + id)
+ ComplexValue LHS = Result;
+ APFloat &A = LHS.getComplexFloatReal();
+ APFloat &B = LHS.getComplexFloatImag();
+ APFloat &C = RHS.getComplexFloatReal();
+ APFloat &D = RHS.getComplexFloatImag();
+ APFloat &ResR = Result.getComplexFloatReal();
+ APFloat &ResI = Result.getComplexFloatImag();
+ if (RHSReal) {
+ ResR = A / C;
+ ResI = B / C;
+ } else {
+ if (LHSReal) {
+ // No real optimizations we can do here, stub out with zero.
+ B = APFloat::getZero(A.getSemantics());
+ }
+ int DenomLogB = 0;
+ APFloat MaxCD = maxnum(abs(C), abs(D));
+ if (MaxCD.isFinite()) {
+ DenomLogB = ilogb(MaxCD);
+ C = scalbn(C, -DenomLogB, APFloat::rmNearestTiesToEven);
+ D = scalbn(D, -DenomLogB, APFloat::rmNearestTiesToEven);
+ }
+ APFloat Denom = C * C + D * D;
+ ResR = scalbn((A * C + B * D) / Denom, -DenomLogB,
+ APFloat::rmNearestTiesToEven);
+ ResI = scalbn((B * C - A * D) / Denom, -DenomLogB,
+ APFloat::rmNearestTiesToEven);
+ if (ResR.isNaN() && ResI.isNaN()) {
+ if (Denom.isPosZero() && (!A.isNaN() || !B.isNaN())) {
+ ResR = APFloat::getInf(ResR.getSemantics(), C.isNegative()) * A;
+ ResI = APFloat::getInf(ResR.getSemantics(), C.isNegative()) * B;
+ } else if ((A.isInfinity() || B.isInfinity()) && C.isFinite() &&
+ D.isFinite()) {
+ A = APFloat::copySign(
+ APFloat(A.getSemantics(), A.isInfinity() ? 1 : 0), A);
+ B = APFloat::copySign(
+ APFloat(B.getSemantics(), B.isInfinity() ? 1 : 0), B);
+ ResR = APFloat::getInf(ResR.getSemantics()) * (A * C + B * D);
+ ResI = APFloat::getInf(ResI.getSemantics()) * (B * C - A * D);
+ } else if (MaxCD.isInfinity() && A.isFinite() && B.isFinite()) {
+ C = APFloat::copySign(
+ APFloat(C.getSemantics(), C.isInfinity() ? 1 : 0), C);
+ D = APFloat::copySign(
+ APFloat(D.getSemantics(), D.isInfinity() ? 1 : 0), D);
+ ResR = APFloat::getZero(ResR.getSemantics()) * (A * C + B * D);
+ ResI = APFloat::getZero(ResI.getSemantics()) * (B * C - A * D);
+ }
+ }
+ }
+ } else {
+ if (RHS.getComplexIntReal() == 0 && RHS.getComplexIntImag() == 0)
+ return Error(E, diag::note_expr_divide_by_zero);
+
+ ComplexValue LHS = Result;
+ APSInt Den = RHS.getComplexIntReal() * RHS.getComplexIntReal() +
+ RHS.getComplexIntImag() * RHS.getComplexIntImag();
+ Result.getComplexIntReal() =
+ (LHS.getComplexIntReal() * RHS.getComplexIntReal() +
+ LHS.getComplexIntImag() * RHS.getComplexIntImag()) / Den;
+ Result.getComplexIntImag() =
+ (LHS.getComplexIntImag() * RHS.getComplexIntReal() -
+ LHS.getComplexIntReal() * RHS.getComplexIntImag()) / Den;
+ }
+ break;
+ }
+
+ return true;
+}
+
+bool ComplexExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) {
+ // Get the operand value into 'Result'.
+ if (!Visit(E->getSubExpr()))
+ return false;
+
+ switch (E->getOpcode()) {
+ default:
+ return Error(E);
+ case UO_Extension:
+ return true;
+ case UO_Plus:
+ // The result is always just the subexpr.
+ return true;
+ case UO_Minus:
+ if (Result.isComplexFloat()) {
+ Result.getComplexFloatReal().changeSign();
+ Result.getComplexFloatImag().changeSign();
+ }
+ else {
+ Result.getComplexIntReal() = -Result.getComplexIntReal();
+ Result.getComplexIntImag() = -Result.getComplexIntImag();
+ }
+ return true;
+ case UO_Not:
+ if (Result.isComplexFloat())
+ Result.getComplexFloatImag().changeSign();
+ else
+ Result.getComplexIntImag() = -Result.getComplexIntImag();
+ return true;
+ }
+}
+
+bool ComplexExprEvaluator::VisitInitListExpr(const InitListExpr *E) {
+ if (E->getNumInits() == 2) {
+ if (E->getType()->isComplexType()) {
+ Result.makeComplexFloat();
+ if (!EvaluateFloat(E->getInit(0), Result.FloatReal, Info))
+ return false;
+ if (!EvaluateFloat(E->getInit(1), Result.FloatImag, Info))
+ return false;
+ } else {
+ Result.makeComplexInt();
+ if (!EvaluateInteger(E->getInit(0), Result.IntReal, Info))
+ return false;
+ if (!EvaluateInteger(E->getInit(1), Result.IntImag, Info))
+ return false;
+ }
+ return true;
+ }
+ return ExprEvaluatorBaseTy::VisitInitListExpr(E);
+}
+
+//===----------------------------------------------------------------------===//
+// Atomic expression evaluation, essentially just handling the NonAtomicToAtomic
+// implicit conversion.
+//===----------------------------------------------------------------------===//
+
+namespace {
+class AtomicExprEvaluator :
+ public ExprEvaluatorBase<AtomicExprEvaluator> {
+ const LValue *This;
+ APValue &Result;
+public:
+ AtomicExprEvaluator(EvalInfo &Info, const LValue *This, APValue &Result)
+ : ExprEvaluatorBaseTy(Info), This(This), Result(Result) {}
+
+ bool Success(const APValue &V, const Expr *E) {
+ Result = V;
+ return true;
+ }
+
+ bool ZeroInitialization(const Expr *E) {
+ ImplicitValueInitExpr VIE(
+ E->getType()->castAs<AtomicType>()->getValueType());
+ // For atomic-qualified class (and array) types in C++, initialize the
+ // _Atomic-wrapped subobject directly, in-place.
+ return This ? EvaluateInPlace(Result, Info, *This, &VIE)
+ : Evaluate(Result, Info, &VIE);
+ }
+
+ bool VisitCastExpr(const CastExpr *E) {
+ switch (E->getCastKind()) {
+ default:
+ return ExprEvaluatorBaseTy::VisitCastExpr(E);
+ case CK_NonAtomicToAtomic:
+ return This ? EvaluateInPlace(Result, Info, *This, E->getSubExpr())
+ : Evaluate(Result, Info, E->getSubExpr());
+ }
+ }
+};
+} // end anonymous namespace
+
+static bool EvaluateAtomic(const Expr *E, const LValue *This, APValue &Result,
+ EvalInfo &Info) {
+ assert(E->isRValue() && E->getType()->isAtomicType());
+ return AtomicExprEvaluator(Info, This, Result).Visit(E);
+}
+
+//===----------------------------------------------------------------------===//
+// Void expression evaluation, primarily for a cast to void on the LHS of a
+// comma operator
+//===----------------------------------------------------------------------===//
+
+namespace {
+class VoidExprEvaluator
+ : public ExprEvaluatorBase<VoidExprEvaluator> {
+public:
+ VoidExprEvaluator(EvalInfo &Info) : ExprEvaluatorBaseTy(Info) {}
+
+ bool Success(const APValue &V, const Expr *e) { return true; }
+
+ bool ZeroInitialization(const Expr *E) { return true; }
+
+ bool VisitCastExpr(const CastExpr *E) {
+ switch (E->getCastKind()) {
+ default:
+ return ExprEvaluatorBaseTy::VisitCastExpr(E);
+ case CK_ToVoid:
+ VisitIgnoredValue(E->getSubExpr());
+ return true;
+ }
+ }
+
+ bool VisitCallExpr(const CallExpr *E) {
+ switch (E->getBuiltinCallee()) {
+ case Builtin::BI__assume:
+ case Builtin::BI__builtin_assume:
+ // The argument is not evaluated!
+ return true;
+
+ case Builtin::BI__builtin_operator_delete:
+ return HandleOperatorDeleteCall(Info, E);
+
+ default:
+ break;
+ }
+
+ return ExprEvaluatorBaseTy::VisitCallExpr(E);
+ }
+
+ bool VisitCXXDeleteExpr(const CXXDeleteExpr *E);
+};
+} // end anonymous namespace
+
+bool VoidExprEvaluator::VisitCXXDeleteExpr(const CXXDeleteExpr *E) {
+ // We cannot speculatively evaluate a delete expression.
+ if (Info.SpeculativeEvaluationDepth)
+ return false;
+
+ FunctionDecl *OperatorDelete = E->getOperatorDelete();
+ if (!OperatorDelete->isReplaceableGlobalAllocationFunction()) {
+ Info.FFDiag(E, diag::note_constexpr_new_non_replaceable)
+ << isa<CXXMethodDecl>(OperatorDelete) << OperatorDelete;
+ return false;
+ }
+
+ const Expr *Arg = E->getArgument();
+
+ LValue Pointer;
+ if (!EvaluatePointer(Arg, Pointer, Info))
+ return false;
+ if (Pointer.Designator.Invalid)
+ return false;
+
+ // Deleting a null pointer has no effect.
+ if (Pointer.isNullPointer()) {
+ // This is the only case where we need to produce an extension warning:
+ // the only other way we can succeed is if we find a dynamic allocation,
+ // and we will have warned when we allocated it in that case.
+ if (!Info.getLangOpts().CPlusPlus2a)
+ Info.CCEDiag(E, diag::note_constexpr_new);
+ return true;
+ }
+
+ Optional<DynAlloc *> Alloc = CheckDeleteKind(
+ Info, E, Pointer, E->isArrayForm() ? DynAlloc::ArrayNew : DynAlloc::New);
+ if (!Alloc)
+ return false;
+ QualType AllocType = Pointer.Base.getDynamicAllocType();
+
+ // For the non-array case, the designator must be empty if the static type
+ // does not have a virtual destructor.
+ if (!E->isArrayForm() && Pointer.Designator.Entries.size() != 0 &&
+ !hasVirtualDestructor(Arg->getType()->getPointeeType())) {
+ Info.FFDiag(E, diag::note_constexpr_delete_base_nonvirt_dtor)
+ << Arg->getType()->getPointeeType() << AllocType;
+ return false;
+ }
+
+ // For a class type with a virtual destructor, the selected operator delete
+ // is the one looked up when building the destructor.
+ if (!E->isArrayForm() && !E->isGlobalDelete()) {
+ const FunctionDecl *VirtualDelete = getVirtualOperatorDelete(AllocType);
+ if (VirtualDelete &&
+ !VirtualDelete->isReplaceableGlobalAllocationFunction()) {
+ Info.FFDiag(E, diag::note_constexpr_new_non_replaceable)
+ << isa<CXXMethodDecl>(VirtualDelete) << VirtualDelete;
+ return false;
+ }
+ }
+
+ if (!HandleDestruction(Info, E->getExprLoc(), Pointer.getLValueBase(),
+ (*Alloc)->Value, AllocType))
+ return false;
+
+ if (!Info.HeapAllocs.erase(Pointer.Base.dyn_cast<DynamicAllocLValue>())) {
+ // The element was already erased. This means the destructor call also
+ // deleted the object.
+ // FIXME: This probably results in undefined behavior before we get this
+ // far, and should be diagnosed elsewhere first.
+ Info.FFDiag(E, diag::note_constexpr_double_delete);
+ return false;
+ }
+
+ return true;
+}
+
+static bool EvaluateVoid(const Expr *E, EvalInfo &Info) {
+ assert(E->isRValue() && E->getType()->isVoidType());
+ return VoidExprEvaluator(Info).Visit(E);
+}
+
+//===----------------------------------------------------------------------===//
+// Top level Expr::EvaluateAsRValue method.
+//===----------------------------------------------------------------------===//
+
+static bool Evaluate(APValue &Result, EvalInfo &Info, const Expr *E) {
+ // In C, function designators are not lvalues, but we evaluate them as if they
+ // are.
+ QualType T = E->getType();
+ if (E->isGLValue() || T->isFunctionType()) {
+ LValue LV;
+ if (!EvaluateLValue(E, LV, Info))
+ return false;
+ LV.moveInto(Result);
+ } else if (T->isVectorType()) {
+ if (!EvaluateVector(E, Result, Info))
+ return false;
+ } else if (T->isIntegralOrEnumerationType()) {
+ if (!IntExprEvaluator(Info, Result).Visit(E))
+ return false;
+ } else if (T->hasPointerRepresentation()) {
+ LValue LV;
+ if (!EvaluatePointer(E, LV, Info))
+ return false;
+ LV.moveInto(Result);
+ } else if (T->isRealFloatingType()) {
+ llvm::APFloat F(0.0);
+ if (!EvaluateFloat(E, F, Info))
+ return false;
+ Result = APValue(F);
+ } else if (T->isAnyComplexType()) {
+ ComplexValue C;
+ if (!EvaluateComplex(E, C, Info))
+ return false;
+ C.moveInto(Result);
+ } else if (T->isFixedPointType()) {
+ if (!FixedPointExprEvaluator(Info, Result).Visit(E)) return false;
+ } else if (T->isMemberPointerType()) {
+ MemberPtr P;
+ if (!EvaluateMemberPointer(E, P, Info))
+ return false;
+ P.moveInto(Result);
+ return true;
+ } else if (T->isArrayType()) {
+ LValue LV;
+ APValue &Value =
+ Info.CurrentCall->createTemporary(E, T, false, LV);
+ if (!EvaluateArray(E, LV, Value, Info))
+ return false;
+ Result = Value;
+ } else if (T->isRecordType()) {
+ LValue LV;
+ APValue &Value = Info.CurrentCall->createTemporary(E, T, false, LV);
+ if (!EvaluateRecord(E, LV, Value, Info))
+ return false;
+ Result = Value;
+ } else if (T->isVoidType()) {
+ if (!Info.getLangOpts().CPlusPlus11)
+ Info.CCEDiag(E, diag::note_constexpr_nonliteral)
+ << E->getType();
+ if (!EvaluateVoid(E, Info))
+ return false;
+ } else if (T->isAtomicType()) {
+ QualType Unqual = T.getAtomicUnqualifiedType();
+ if (Unqual->isArrayType() || Unqual->isRecordType()) {
+ LValue LV;
+ APValue &Value = Info.CurrentCall->createTemporary(E, Unqual, false, LV);
+ if (!EvaluateAtomic(E, &LV, Value, Info))
+ return false;
+ } else {
+ if (!EvaluateAtomic(E, nullptr, Result, Info))
+ return false;
+ }
+ } else if (Info.getLangOpts().CPlusPlus11) {
+ Info.FFDiag(E, diag::note_constexpr_nonliteral) << E->getType();
+ return false;
+ } else {
+ Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
+ return false;
+ }
+
+ return true;
+}
+
+/// EvaluateInPlace - Evaluate an expression in-place in an APValue. In some
+/// cases, the in-place evaluation is essential, since later initializers for
+/// an object can indirectly refer to subobjects which were initialized earlier.
+static bool EvaluateInPlace(APValue &Result, EvalInfo &Info, const LValue &This,
+ const Expr *E, bool AllowNonLiteralTypes) {
+ assert(!E->isValueDependent());
+
+ if (!AllowNonLiteralTypes && !CheckLiteralType(Info, E, &This))
+ return false;
+
+ if (E->isRValue()) {
+ // Evaluate arrays and record types in-place, so that later initializers can
+ // refer to earlier-initialized members of the object.
+ QualType T = E->getType();
+ if (T->isArrayType())
+ return EvaluateArray(E, This, Result, Info);
+ else if (T->isRecordType())
+ return EvaluateRecord(E, This, Result, Info);
+ else if (T->isAtomicType()) {
+ QualType Unqual = T.getAtomicUnqualifiedType();
+ if (Unqual->isArrayType() || Unqual->isRecordType())
+ return EvaluateAtomic(E, &This, Result, Info);
+ }
+ }
+
+ // For any other type, in-place evaluation is unimportant.
+ return Evaluate(Result, Info, E);
+}
+
+/// EvaluateAsRValue - Try to evaluate this expression, performing an implicit
+/// lvalue-to-rvalue cast if it is an lvalue.
+static bool EvaluateAsRValue(EvalInfo &Info, const Expr *E, APValue &Result) {
+ if (Info.EnableNewConstInterp) {
+ auto &InterpCtx = Info.Ctx.getInterpContext();
+ switch (InterpCtx.evaluateAsRValue(Info, E, Result)) {
+ case interp::InterpResult::Success:
+ return true;
+ case interp::InterpResult::Fail:
+ return false;
+ case interp::InterpResult::Bail:
+ break;
+ }
+ }
+
+ if (E->getType().isNull())
+ return false;
+
+ if (!CheckLiteralType(Info, E))
+ return false;
+
+ if (!::Evaluate(Result, Info, E))
+ return false;
+
+ if (E->isGLValue()) {
+ LValue LV;
+ LV.setFrom(Info.Ctx, Result);
+ if (!handleLValueToRValueConversion(Info, E, E->getType(), LV, Result))
+ return false;
+ }
+
+ // Check this core constant expression is a constant expression.
+ return CheckConstantExpression(Info, E->getExprLoc(), E->getType(), Result) &&
+ CheckMemoryLeaks(Info);
+}
+
+static bool FastEvaluateAsRValue(const Expr *Exp, Expr::EvalResult &Result,
+ const ASTContext &Ctx, bool &IsConst) {
+ // Fast-path evaluations of integer literals, since we sometimes see files
+ // containing vast quantities of these.
+ if (const IntegerLiteral *L = dyn_cast<IntegerLiteral>(Exp)) {
+ Result.Val = APValue(APSInt(L->getValue(),
+ L->getType()->isUnsignedIntegerType()));
+ IsConst = true;
+ return true;
+ }
+
+ // This case should be rare, but we need to check it before we check on
+ // the type below.
+ if (Exp->getType().isNull()) {
+ IsConst = false;
+ return true;
+ }
+
+ // FIXME: Evaluating values of large array and record types can cause
+ // performance problems. Only do so in C++11 for now.
+ if (Exp->isRValue() && (Exp->getType()->isArrayType() ||
+ Exp->getType()->isRecordType()) &&
+ !Ctx.getLangOpts().CPlusPlus11) {
+ IsConst = false;
+ return true;
+ }
+ return false;
+}
+
+static bool hasUnacceptableSideEffect(Expr::EvalStatus &Result,
+ Expr::SideEffectsKind SEK) {
+ return (SEK < Expr::SE_AllowSideEffects && Result.HasSideEffects) ||
+ (SEK < Expr::SE_AllowUndefinedBehavior && Result.HasUndefinedBehavior);
+}
+
+static bool EvaluateAsRValue(const Expr *E, Expr::EvalResult &Result,
+ const ASTContext &Ctx, EvalInfo &Info) {
+ bool IsConst;
+ if (FastEvaluateAsRValue(E, Result, Ctx, IsConst))
+ return IsConst;
+
+ return EvaluateAsRValue(Info, E, Result.Val);
+}
+
+static bool EvaluateAsInt(const Expr *E, Expr::EvalResult &ExprResult,
+ const ASTContext &Ctx,
+ Expr::SideEffectsKind AllowSideEffects,
+ EvalInfo &Info) {
+ if (!E->getType()->isIntegralOrEnumerationType())
+ return false;
+
+ if (!::EvaluateAsRValue(E, ExprResult, Ctx, Info) ||
+ !ExprResult.Val.isInt() ||
+ hasUnacceptableSideEffect(ExprResult, AllowSideEffects))
+ return false;
+
+ return true;
+}
+
+static bool EvaluateAsFixedPoint(const Expr *E, Expr::EvalResult &ExprResult,
+ const ASTContext &Ctx,
+ Expr::SideEffectsKind AllowSideEffects,
+ EvalInfo &Info) {
+ if (!E->getType()->isFixedPointType())
+ return false;
+
+ if (!::EvaluateAsRValue(E, ExprResult, Ctx, Info))
+ return false;
+
+ if (!ExprResult.Val.isFixedPoint() ||
+ hasUnacceptableSideEffect(ExprResult, AllowSideEffects))
+ return false;
+
+ return true;
+}
+
+/// EvaluateAsRValue - Return true if this is a constant which we can fold using
+/// any crazy technique (that has nothing to do with language standards) that
+/// we want to. If this function returns true, it returns the folded constant
+/// in Result. If this expression is a glvalue, an lvalue-to-rvalue conversion
+/// will be applied to the result.
+bool Expr::EvaluateAsRValue(EvalResult &Result, const ASTContext &Ctx,
+ bool InConstantContext) const {
+ assert(!isValueDependent() &&
+ "Expression evaluator can't be called on a dependent expression.");
+ EvalInfo Info(Ctx, Result, EvalInfo::EM_IgnoreSideEffects);
+ Info.InConstantContext = InConstantContext;
+ return ::EvaluateAsRValue(this, Result, Ctx, Info);
+}
+
+bool Expr::EvaluateAsBooleanCondition(bool &Result, const ASTContext &Ctx,
+ bool InConstantContext) const {
+ assert(!isValueDependent() &&
+ "Expression evaluator can't be called on a dependent expression.");
+ EvalResult Scratch;
+ return EvaluateAsRValue(Scratch, Ctx, InConstantContext) &&
+ HandleConversionToBool(Scratch.Val, Result);
+}
+
+bool Expr::EvaluateAsInt(EvalResult &Result, const ASTContext &Ctx,
+ SideEffectsKind AllowSideEffects,
+ bool InConstantContext) const {
+ assert(!isValueDependent() &&
+ "Expression evaluator can't be called on a dependent expression.");
+ EvalInfo Info(Ctx, Result, EvalInfo::EM_IgnoreSideEffects);
+ Info.InConstantContext = InConstantContext;
+ return ::EvaluateAsInt(this, Result, Ctx, AllowSideEffects, Info);
+}
+
+bool Expr::EvaluateAsFixedPoint(EvalResult &Result, const ASTContext &Ctx,
+ SideEffectsKind AllowSideEffects,
+ bool InConstantContext) const {
+ assert(!isValueDependent() &&
+ "Expression evaluator can't be called on a dependent expression.");
+ EvalInfo Info(Ctx, Result, EvalInfo::EM_IgnoreSideEffects);
+ Info.InConstantContext = InConstantContext;
+ return ::EvaluateAsFixedPoint(this, Result, Ctx, AllowSideEffects, Info);
+}
+
+bool Expr::EvaluateAsFloat(APFloat &Result, const ASTContext &Ctx,
+ SideEffectsKind AllowSideEffects,
+ bool InConstantContext) const {
+ assert(!isValueDependent() &&
+ "Expression evaluator can't be called on a dependent expression.");
+
+ if (!getType()->isRealFloatingType())
+ return false;
+
+ EvalResult ExprResult;
+ if (!EvaluateAsRValue(ExprResult, Ctx, InConstantContext) ||
+ !ExprResult.Val.isFloat() ||
+ hasUnacceptableSideEffect(ExprResult, AllowSideEffects))
+ return false;
+
+ Result = ExprResult.Val.getFloat();
+ return true;
+}
+
+bool Expr::EvaluateAsLValue(EvalResult &Result, const ASTContext &Ctx,
+ bool InConstantContext) const {
+ assert(!isValueDependent() &&
+ "Expression evaluator can't be called on a dependent expression.");
+
+ EvalInfo Info(Ctx, Result, EvalInfo::EM_ConstantFold);
+ Info.InConstantContext = InConstantContext;
+ LValue LV;
+ CheckedTemporaries CheckedTemps;
+ if (!EvaluateLValue(this, LV, Info) || !Info.discardCleanups() ||
+ Result.HasSideEffects ||
+ !CheckLValueConstantExpression(Info, getExprLoc(),
+ Ctx.getLValueReferenceType(getType()), LV,
+ Expr::EvaluateForCodeGen, CheckedTemps))
+ return false;
+
+ LV.moveInto(Result.Val);
+ return true;
+}
+
+bool Expr::EvaluateAsConstantExpr(EvalResult &Result, ConstExprUsage Usage,
+ const ASTContext &Ctx) const {
+ assert(!isValueDependent() &&
+ "Expression evaluator can't be called on a dependent expression.");
+
+ EvalInfo::EvaluationMode EM = EvalInfo::EM_ConstantExpression;
+ EvalInfo Info(Ctx, Result, EM);
+ Info.InConstantContext = true;
+
+ if (!::Evaluate(Result.Val, Info, this) || Result.HasSideEffects)
+ return false;
+
+ if (!Info.discardCleanups())
+ llvm_unreachable("Unhandled cleanup; missing full expression marker?");
+
+ return CheckConstantExpression(Info, getExprLoc(), getStorageType(Ctx, this),
+ Result.Val, Usage) &&
+ CheckMemoryLeaks(Info);
+}
+
+bool Expr::EvaluateAsInitializer(APValue &Value, const ASTContext &Ctx,
+ const VarDecl *VD,
+ SmallVectorImpl<PartialDiagnosticAt> &Notes) const {
+ assert(!isValueDependent() &&
+ "Expression evaluator can't be called on a dependent expression.");
+
+ // FIXME: Evaluating initializers for large array and record types can cause
+ // performance problems. Only do so in C++11 for now.
+ if (isRValue() && (getType()->isArrayType() || getType()->isRecordType()) &&
+ !Ctx.getLangOpts().CPlusPlus11)
+ return false;
+
+ Expr::EvalStatus EStatus;
+ EStatus.Diag = &Notes;
+
+ EvalInfo Info(Ctx, EStatus, VD->isConstexpr()
+ ? EvalInfo::EM_ConstantExpression
+ : EvalInfo::EM_ConstantFold);
+ Info.setEvaluatingDecl(VD, Value);
+ Info.InConstantContext = true;
+
+ SourceLocation DeclLoc = VD->getLocation();
+ QualType DeclTy = VD->getType();
+
+ if (Info.EnableNewConstInterp) {
+ auto &InterpCtx = const_cast<ASTContext &>(Ctx).getInterpContext();
+ switch (InterpCtx.evaluateAsInitializer(Info, VD, Value)) {
+ case interp::InterpResult::Fail:
+ // Bail out if an error was encountered.
+ return false;
+ case interp::InterpResult::Success:
+ // Evaluation succeeded and value was set.
+ return CheckConstantExpression(Info, DeclLoc, DeclTy, Value);
+ case interp::InterpResult::Bail:
+ // Evaluate the value again for the tree evaluator to use.
+ break;
+ }
+ }
+
+ LValue LVal;
+ LVal.set(VD);
+
+ // C++11 [basic.start.init]p2:
+ // Variables with static storage duration or thread storage duration shall be
+ // zero-initialized before any other initialization takes place.
+ // This behavior is not present in C.
+ if (Ctx.getLangOpts().CPlusPlus && !VD->hasLocalStorage() &&
+ !DeclTy->isReferenceType()) {
+ ImplicitValueInitExpr VIE(DeclTy);
+ if (!EvaluateInPlace(Value, Info, LVal, &VIE,
+ /*AllowNonLiteralTypes=*/true))
+ return false;
+ }
+
+ if (!EvaluateInPlace(Value, Info, LVal, this,
+ /*AllowNonLiteralTypes=*/true) ||
+ EStatus.HasSideEffects)
+ return false;
+
+ // At this point, any lifetime-extended temporaries are completely
+ // initialized.
+ Info.performLifetimeExtension();
+
+ if (!Info.discardCleanups())
+ llvm_unreachable("Unhandled cleanup; missing full expression marker?");
+
+ return CheckConstantExpression(Info, DeclLoc, DeclTy, Value) &&
+ CheckMemoryLeaks(Info);
+}
+
+bool VarDecl::evaluateDestruction(
+ SmallVectorImpl<PartialDiagnosticAt> &Notes) const {
+ assert(getEvaluatedValue() && !getEvaluatedValue()->isAbsent() &&
+ "cannot evaluate destruction of non-constant-initialized variable");
+
+ Expr::EvalStatus EStatus;
+ EStatus.Diag = &Notes;
+
+ // Make a copy of the value for the destructor to mutate.
+ APValue DestroyedValue = *getEvaluatedValue();
+
+ EvalInfo Info(getASTContext(), EStatus, EvalInfo::EM_ConstantExpression);
+ Info.setEvaluatingDecl(this, DestroyedValue,
+ EvalInfo::EvaluatingDeclKind::Dtor);
+ Info.InConstantContext = true;
+
+ SourceLocation DeclLoc = getLocation();
+ QualType DeclTy = getType();
+
+ LValue LVal;
+ LVal.set(this);
+
+ // FIXME: Consider storing whether this variable has constant destruction in
+ // the EvaluatedStmt so that CodeGen can query it.
+ if (!HandleDestruction(Info, DeclLoc, LVal.Base, DestroyedValue, DeclTy) ||
+ EStatus.HasSideEffects)
+ return false;
+
+ if (!Info.discardCleanups())
+ llvm_unreachable("Unhandled cleanup; missing full expression marker?");
+
+ ensureEvaluatedStmt()->HasConstantDestruction = true;
+ return true;
+}
+
+/// isEvaluatable - Call EvaluateAsRValue to see if this expression can be
+/// constant folded, but discard the result.
+bool Expr::isEvaluatable(const ASTContext &Ctx, SideEffectsKind SEK) const {
+ assert(!isValueDependent() &&
+ "Expression evaluator can't be called on a dependent expression.");
+
+ EvalResult Result;
+ return EvaluateAsRValue(Result, Ctx, /* in constant context */ true) &&
+ !hasUnacceptableSideEffect(Result, SEK);
+}
+
+APSInt Expr::EvaluateKnownConstInt(const ASTContext &Ctx,
+ SmallVectorImpl<PartialDiagnosticAt> *Diag) const {
+ assert(!isValueDependent() &&
+ "Expression evaluator can't be called on a dependent expression.");
+
+ EvalResult EVResult;
+ EVResult.Diag = Diag;
+ EvalInfo Info(Ctx, EVResult, EvalInfo::EM_IgnoreSideEffects);
+ Info.InConstantContext = true;
+
+ bool Result = ::EvaluateAsRValue(this, EVResult, Ctx, Info);
+ (void)Result;
+ assert(Result && "Could not evaluate expression");
+ assert(EVResult.Val.isInt() && "Expression did not evaluate to integer");
+
+ return EVResult.Val.getInt();
+}
+
+APSInt Expr::EvaluateKnownConstIntCheckOverflow(
+ const ASTContext &Ctx, SmallVectorImpl<PartialDiagnosticAt> *Diag) const {
+ assert(!isValueDependent() &&
+ "Expression evaluator can't be called on a dependent expression.");
+
+ EvalResult EVResult;
+ EVResult.Diag = Diag;
+ EvalInfo Info(Ctx, EVResult, EvalInfo::EM_IgnoreSideEffects);
+ Info.InConstantContext = true;
+ Info.CheckingForUndefinedBehavior = true;
+
+ bool Result = ::EvaluateAsRValue(Info, this, EVResult.Val);
+ (void)Result;
+ assert(Result && "Could not evaluate expression");
+ assert(EVResult.Val.isInt() && "Expression did not evaluate to integer");
+
+ return EVResult.Val.getInt();
+}
+
+void Expr::EvaluateForOverflow(const ASTContext &Ctx) const {
+ assert(!isValueDependent() &&
+ "Expression evaluator can't be called on a dependent expression.");
+
+ bool IsConst;
+ EvalResult EVResult;
+ if (!FastEvaluateAsRValue(this, EVResult, Ctx, IsConst)) {
+ EvalInfo Info(Ctx, EVResult, EvalInfo::EM_IgnoreSideEffects);
+ Info.CheckingForUndefinedBehavior = true;
+ (void)::EvaluateAsRValue(Info, this, EVResult.Val);
+ }
+}
+
+bool Expr::EvalResult::isGlobalLValue() const {
+ assert(Val.isLValue());
+ return IsGlobalLValue(Val.getLValueBase());
+}
+
+
+/// isIntegerConstantExpr - this recursive routine will test if an expression is
+/// an integer constant expression.
+
+/// FIXME: Pass up a reason why! Invalid operation in i-c-e, division by zero,
+/// comma, etc
+
+// CheckICE - This function does the fundamental ICE checking: the returned
+// ICEDiag contains an ICEKind indicating whether the expression is an ICE,
+// and a (possibly null) SourceLocation indicating the location of the problem.
+//
+// Note that to reduce code duplication, this helper does no evaluation
+// itself; the caller checks whether the expression is evaluatable, and
+// in the rare cases where CheckICE actually cares about the evaluated
+// value, it calls into Evaluate.
+
+namespace {
+
+enum ICEKind {
+ /// This expression is an ICE.
+ IK_ICE,
+ /// This expression is not an ICE, but if it isn't evaluated, it's
+ /// a legal subexpression for an ICE. This return value is used to handle
+ /// the comma operator in C99 mode, and non-constant subexpressions.
+ IK_ICEIfUnevaluated,
+ /// This expression is not an ICE, and is not a legal subexpression for one.
+ IK_NotICE
+};
+
+struct ICEDiag {
+ ICEKind Kind;
+ SourceLocation Loc;
+
+ ICEDiag(ICEKind IK, SourceLocation l) : Kind(IK), Loc(l) {}
+};
+
+}
+
+static ICEDiag NoDiag() { return ICEDiag(IK_ICE, SourceLocation()); }
+
+static ICEDiag Worst(ICEDiag A, ICEDiag B) { return A.Kind >= B.Kind ? A : B; }
+
+static ICEDiag CheckEvalInICE(const Expr* E, const ASTContext &Ctx) {
+ Expr::EvalResult EVResult;
+ Expr::EvalStatus Status;
+ EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantExpression);
+
+ Info.InConstantContext = true;
+ if (!::EvaluateAsRValue(E, EVResult, Ctx, Info) || EVResult.HasSideEffects ||
+ !EVResult.Val.isInt())
+ return ICEDiag(IK_NotICE, E->getBeginLoc());
+
+ return NoDiag();
+}
+
+static ICEDiag CheckICE(const Expr* E, const ASTContext &Ctx) {
+ assert(!E->isValueDependent() && "Should not see value dependent exprs!");
+ if (!E->getType()->isIntegralOrEnumerationType())
+ return ICEDiag(IK_NotICE, E->getBeginLoc());
+
+ switch (E->getStmtClass()) {
+#define ABSTRACT_STMT(Node)
+#define STMT(Node, Base) case Expr::Node##Class:
+#define EXPR(Node, Base)
+#include "clang/AST/StmtNodes.inc"
+ case Expr::PredefinedExprClass:
+ case Expr::FloatingLiteralClass:
+ case Expr::ImaginaryLiteralClass:
+ case Expr::StringLiteralClass:
+ case Expr::ArraySubscriptExprClass:
+ case Expr::OMPArraySectionExprClass:
+ case Expr::MemberExprClass:
+ case Expr::CompoundAssignOperatorClass:
+ case Expr::CompoundLiteralExprClass:
+ case Expr::ExtVectorElementExprClass:
+ case Expr::DesignatedInitExprClass:
+ case Expr::ArrayInitLoopExprClass:
+ case Expr::ArrayInitIndexExprClass:
+ case Expr::NoInitExprClass:
+ case Expr::DesignatedInitUpdateExprClass:
+ case Expr::ImplicitValueInitExprClass:
+ case Expr::ParenListExprClass:
+ case Expr::VAArgExprClass:
+ case Expr::AddrLabelExprClass:
+ case Expr::StmtExprClass:
+ case Expr::CXXMemberCallExprClass:
+ case Expr::CUDAKernelCallExprClass:
+ case Expr::CXXDynamicCastExprClass:
+ case Expr::CXXTypeidExprClass:
+ case Expr::CXXUuidofExprClass:
+ case Expr::MSPropertyRefExprClass:
+ case Expr::MSPropertySubscriptExprClass:
+ case Expr::CXXNullPtrLiteralExprClass:
+ case Expr::UserDefinedLiteralClass:
+ case Expr::CXXThisExprClass:
+ case Expr::CXXThrowExprClass:
+ case Expr::CXXNewExprClass:
+ case Expr::CXXDeleteExprClass:
+ case Expr::CXXPseudoDestructorExprClass:
+ case Expr::UnresolvedLookupExprClass:
+ case Expr::TypoExprClass:
+ case Expr::DependentScopeDeclRefExprClass:
+ case Expr::CXXConstructExprClass:
+ case Expr::CXXInheritedCtorInitExprClass:
+ case Expr::CXXStdInitializerListExprClass:
+ case Expr::CXXBindTemporaryExprClass:
+ case Expr::ExprWithCleanupsClass:
+ case Expr::CXXTemporaryObjectExprClass:
+ case Expr::CXXUnresolvedConstructExprClass:
+ case Expr::CXXDependentScopeMemberExprClass:
+ case Expr::UnresolvedMemberExprClass:
+ case Expr::ObjCStringLiteralClass:
+ case Expr::ObjCBoxedExprClass:
+ case Expr::ObjCArrayLiteralClass:
+ case Expr::ObjCDictionaryLiteralClass:
+ case Expr::ObjCEncodeExprClass:
+ case Expr::ObjCMessageExprClass:
+ case Expr::ObjCSelectorExprClass:
+ case Expr::ObjCProtocolExprClass:
+ case Expr::ObjCIvarRefExprClass:
+ case Expr::ObjCPropertyRefExprClass:
+ case Expr::ObjCSubscriptRefExprClass:
+ case Expr::ObjCIsaExprClass:
+ case Expr::ObjCAvailabilityCheckExprClass:
+ case Expr::ShuffleVectorExprClass:
+ case Expr::ConvertVectorExprClass:
+ case Expr::BlockExprClass:
+ case Expr::NoStmtClass:
+ case Expr::OpaqueValueExprClass:
+ case Expr::PackExpansionExprClass:
+ case Expr::SubstNonTypeTemplateParmPackExprClass:
+ case Expr::FunctionParmPackExprClass:
+ case Expr::AsTypeExprClass:
+ case Expr::ObjCIndirectCopyRestoreExprClass:
+ case Expr::MaterializeTemporaryExprClass:
+ case Expr::PseudoObjectExprClass:
+ case Expr::AtomicExprClass:
+ case Expr::LambdaExprClass:
+ case Expr::CXXFoldExprClass:
+ case Expr::CoawaitExprClass:
+ case Expr::DependentCoawaitExprClass:
+ case Expr::CoyieldExprClass:
+ return ICEDiag(IK_NotICE, E->getBeginLoc());
+
+ case Expr::InitListExprClass: {
+ // C++03 [dcl.init]p13: If T is a scalar type, then a declaration of the
+ // form "T x = { a };" is equivalent to "T x = a;".
+ // Unless we're initializing a reference, T is a scalar as it is known to be
+ // of integral or enumeration type.
+ if (E->isRValue())
+ if (cast<InitListExpr>(E)->getNumInits() == 1)
+ return CheckICE(cast<InitListExpr>(E)->getInit(0), Ctx);
+ return ICEDiag(IK_NotICE, E->getBeginLoc());
+ }
+
+ case Expr::SizeOfPackExprClass:
+ case Expr::GNUNullExprClass:
+ case Expr::SourceLocExprClass:
+ return NoDiag();
+
+ case Expr::SubstNonTypeTemplateParmExprClass:
+ return
+ CheckICE(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement(), Ctx);
+
+ case Expr::ConstantExprClass:
+ return CheckICE(cast<ConstantExpr>(E)->getSubExpr(), Ctx);
+
+ case Expr::ParenExprClass:
+ return CheckICE(cast<ParenExpr>(E)->getSubExpr(), Ctx);
+ case Expr::GenericSelectionExprClass:
+ return CheckICE(cast<GenericSelectionExpr>(E)->getResultExpr(), Ctx);
+ case Expr::IntegerLiteralClass:
+ case Expr::FixedPointLiteralClass:
+ case Expr::CharacterLiteralClass:
+ case Expr::ObjCBoolLiteralExprClass:
+ case Expr::CXXBoolLiteralExprClass:
+ case Expr::CXXScalarValueInitExprClass:
+ case Expr::TypeTraitExprClass:
+ case Expr::ConceptSpecializationExprClass:
+ case Expr::ArrayTypeTraitExprClass:
+ case Expr::ExpressionTraitExprClass:
+ case Expr::CXXNoexceptExprClass:
+ return NoDiag();
+ case Expr::CallExprClass:
+ case Expr::CXXOperatorCallExprClass: {
+ // C99 6.6/3 allows function calls within unevaluated subexpressions of
+ // constant expressions, but they can never be ICEs because an ICE cannot
+ // contain an operand of (pointer to) function type.
+ const CallExpr *CE = cast<CallExpr>(E);
+ if (CE->getBuiltinCallee())
+ return CheckEvalInICE(E, Ctx);
+ return ICEDiag(IK_NotICE, E->getBeginLoc());
+ }
+ case Expr::CXXRewrittenBinaryOperatorClass:
+ return CheckICE(cast<CXXRewrittenBinaryOperator>(E)->getSemanticForm(),
+ Ctx);
+ case Expr::DeclRefExprClass: {
+ if (isa<EnumConstantDecl>(cast<DeclRefExpr>(E)->getDecl()))
+ return NoDiag();
+ const ValueDecl *D = cast<DeclRefExpr>(E)->getDecl();
+ if (Ctx.getLangOpts().CPlusPlus &&
+ D && IsConstNonVolatile(D->getType())) {
+ // Parameter variables are never constants. Without this check,
+ // getAnyInitializer() can find a default argument, which leads
+ // to chaos.
+ if (isa<ParmVarDecl>(D))
+ return ICEDiag(IK_NotICE, cast<DeclRefExpr>(E)->getLocation());
+
+ // C++ 7.1.5.1p2
+ // A variable of non-volatile const-qualified integral or enumeration
+ // type initialized by an ICE can be used in ICEs.
+ if (const VarDecl *Dcl = dyn_cast<VarDecl>(D)) {
+ if (!Dcl->getType()->isIntegralOrEnumerationType())
+ return ICEDiag(IK_NotICE, cast<DeclRefExpr>(E)->getLocation());
+
+ const VarDecl *VD;
+ // Look for a declaration of this variable that has an initializer, and
+ // check whether it is an ICE.
+ if (Dcl->getAnyInitializer(VD) && VD->checkInitIsICE())
+ return NoDiag();
+ else
+ return ICEDiag(IK_NotICE, cast<DeclRefExpr>(E)->getLocation());
+ }
+ }
+ return ICEDiag(IK_NotICE, E->getBeginLoc());
+ }
+ case Expr::UnaryOperatorClass: {
+ const UnaryOperator *Exp = cast<UnaryOperator>(E);
+ switch (Exp->getOpcode()) {
+ case UO_PostInc:
+ case UO_PostDec:
+ case UO_PreInc:
+ case UO_PreDec:
+ case UO_AddrOf:
+ case UO_Deref:
+ case UO_Coawait:
+ // C99 6.6/3 allows increment and decrement within unevaluated
+ // subexpressions of constant expressions, but they can never be ICEs
+ // because an ICE cannot contain an lvalue operand.
+ return ICEDiag(IK_NotICE, E->getBeginLoc());
+ case UO_Extension:
+ case UO_LNot:
+ case UO_Plus:
+ case UO_Minus:
+ case UO_Not:
+ case UO_Real:
+ case UO_Imag:
+ return CheckICE(Exp->getSubExpr(), Ctx);
+ }
+ llvm_unreachable("invalid unary operator class");
+ }
+ case Expr::OffsetOfExprClass: {
+ // Note that per C99, offsetof must be an ICE. And AFAIK, using
+ // EvaluateAsRValue matches the proposed gcc behavior for cases like
+ // "offsetof(struct s{int x[4];}, x[1.0])". This doesn't affect
+ // compliance: we should warn earlier for offsetof expressions with
+ // array subscripts that aren't ICEs, and if the array subscripts
+ // are ICEs, the value of the offsetof must be an integer constant.
+ return CheckEvalInICE(E, Ctx);
+ }
+ case Expr::UnaryExprOrTypeTraitExprClass: {
+ const UnaryExprOrTypeTraitExpr *Exp = cast<UnaryExprOrTypeTraitExpr>(E);
+ if ((Exp->getKind() == UETT_SizeOf) &&
+ Exp->getTypeOfArgument()->isVariableArrayType())
+ return ICEDiag(IK_NotICE, E->getBeginLoc());
+ return NoDiag();
+ }
+ case Expr::BinaryOperatorClass: {
+ const BinaryOperator *Exp = cast<BinaryOperator>(E);
+ switch (Exp->getOpcode()) {
+ case BO_PtrMemD:
+ case BO_PtrMemI:
+ case BO_Assign:
+ case BO_MulAssign:
+ case BO_DivAssign:
+ case BO_RemAssign:
+ case BO_AddAssign:
+ case BO_SubAssign:
+ case BO_ShlAssign:
+ case BO_ShrAssign:
+ case BO_AndAssign:
+ case BO_XorAssign:
+ case BO_OrAssign:
+ // C99 6.6/3 allows assignments within unevaluated subexpressions of
+ // constant expressions, but they can never be ICEs because an ICE cannot
+ // contain an lvalue operand.
+ return ICEDiag(IK_NotICE, E->getBeginLoc());
+
+ case BO_Mul:
+ case BO_Div:
+ case BO_Rem:
+ case BO_Add:
+ case BO_Sub:
+ case BO_Shl:
+ case BO_Shr:
+ case BO_LT:
+ case BO_GT:
+ case BO_LE:
+ case BO_GE:
+ case BO_EQ:
+ case BO_NE:
+ case BO_And:
+ case BO_Xor:
+ case BO_Or:
+ case BO_Comma:
+ case BO_Cmp: {
+ ICEDiag LHSResult = CheckICE(Exp->getLHS(), Ctx);
+ ICEDiag RHSResult = CheckICE(Exp->getRHS(), Ctx);
+ if (Exp->getOpcode() == BO_Div ||
+ Exp->getOpcode() == BO_Rem) {
+ // EvaluateAsRValue gives an error for undefined Div/Rem, so make sure
+ // we don't evaluate one.
+ if (LHSResult.Kind == IK_ICE && RHSResult.Kind == IK_ICE) {
+ llvm::APSInt REval = Exp->getRHS()->EvaluateKnownConstInt(Ctx);
+ if (REval == 0)
+ return ICEDiag(IK_ICEIfUnevaluated, E->getBeginLoc());
+ if (REval.isSigned() && REval.isAllOnesValue()) {
+ llvm::APSInt LEval = Exp->getLHS()->EvaluateKnownConstInt(Ctx);
+ if (LEval.isMinSignedValue())
+ return ICEDiag(IK_ICEIfUnevaluated, E->getBeginLoc());
+ }
+ }
+ }
+ if (Exp->getOpcode() == BO_Comma) {
+ if (Ctx.getLangOpts().C99) {
+ // C99 6.6p3 introduces a strange edge case: comma can be in an ICE
+ // if it isn't evaluated.
+ if (LHSResult.Kind == IK_ICE && RHSResult.Kind == IK_ICE)
+ return ICEDiag(IK_ICEIfUnevaluated, E->getBeginLoc());
+ } else {
+ // In both C89 and C++, commas in ICEs are illegal.
+ return ICEDiag(IK_NotICE, E->getBeginLoc());
+ }
+ }
+ return Worst(LHSResult, RHSResult);
+ }
+ case BO_LAnd:
+ case BO_LOr: {
+ ICEDiag LHSResult = CheckICE(Exp->getLHS(), Ctx);
+ ICEDiag RHSResult = CheckICE(Exp->getRHS(), Ctx);
+ if (LHSResult.Kind == IK_ICE && RHSResult.Kind == IK_ICEIfUnevaluated) {
+ // Rare case where the RHS has a comma "side-effect"; we need
+ // to actually check the condition to see whether the side
+ // with the comma is evaluated.
+ if ((Exp->getOpcode() == BO_LAnd) !=
+ (Exp->getLHS()->EvaluateKnownConstInt(Ctx) == 0))
+ return RHSResult;
+ return NoDiag();
+ }
+
+ return Worst(LHSResult, RHSResult);
+ }
+ }
+ llvm_unreachable("invalid binary operator kind");
+ }
+ case Expr::ImplicitCastExprClass:
+ case Expr::CStyleCastExprClass:
+ case Expr::CXXFunctionalCastExprClass:
+ case Expr::CXXStaticCastExprClass:
+ case Expr::CXXReinterpretCastExprClass:
+ case Expr::CXXConstCastExprClass:
+ case Expr::ObjCBridgedCastExprClass: {
+ const Expr *SubExpr = cast<CastExpr>(E)->getSubExpr();
+ if (isa<ExplicitCastExpr>(E)) {
+ if (const FloatingLiteral *FL
+ = dyn_cast<FloatingLiteral>(SubExpr->IgnoreParenImpCasts())) {
+ unsigned DestWidth = Ctx.getIntWidth(E->getType());
+ bool DestSigned = E->getType()->isSignedIntegerOrEnumerationType();
+ APSInt IgnoredVal(DestWidth, !DestSigned);
+ bool Ignored;
+ // If the value does not fit in the destination type, the behavior is
+ // undefined, so we are not required to treat it as a constant
+ // expression.
+ if (FL->getValue().convertToInteger(IgnoredVal,
+ llvm::APFloat::rmTowardZero,
+ &Ignored) & APFloat::opInvalidOp)
+ return ICEDiag(IK_NotICE, E->getBeginLoc());
+ return NoDiag();
+ }
+ }
+ switch (cast<CastExpr>(E)->getCastKind()) {
+ case CK_LValueToRValue:
+ case CK_AtomicToNonAtomic:
+ case CK_NonAtomicToAtomic:
+ case CK_NoOp:
+ case CK_IntegralToBoolean:
+ case CK_IntegralCast:
+ return CheckICE(SubExpr, Ctx);
+ default:
+ return ICEDiag(IK_NotICE, E->getBeginLoc());
+ }
+ }
+ case Expr::BinaryConditionalOperatorClass: {
+ const BinaryConditionalOperator *Exp = cast<BinaryConditionalOperator>(E);
+ ICEDiag CommonResult = CheckICE(Exp->getCommon(), Ctx);
+ if (CommonResult.Kind == IK_NotICE) return CommonResult;
+ ICEDiag FalseResult = CheckICE(Exp->getFalseExpr(), Ctx);
+ if (FalseResult.Kind == IK_NotICE) return FalseResult;
+ if (CommonResult.Kind == IK_ICEIfUnevaluated) return CommonResult;
+ if (FalseResult.Kind == IK_ICEIfUnevaluated &&
+ Exp->getCommon()->EvaluateKnownConstInt(Ctx) != 0) return NoDiag();
+ return FalseResult;
+ }
+ case Expr::ConditionalOperatorClass: {
+ const ConditionalOperator *Exp = cast<ConditionalOperator>(E);
+ // If the condition (ignoring parens) is a __builtin_constant_p call,
+ // then only the true side is actually considered in an integer constant
+ // expression, and it is fully evaluated. This is an important GNU
+ // extension. See GCC PR38377 for discussion.
+ if (const CallExpr *CallCE
+ = dyn_cast<CallExpr>(Exp->getCond()->IgnoreParenCasts()))
+ if (CallCE->getBuiltinCallee() == Builtin::BI__builtin_constant_p)
+ return CheckEvalInICE(E, Ctx);
+ ICEDiag CondResult = CheckICE(Exp->getCond(), Ctx);
+ if (CondResult.Kind == IK_NotICE)
+ return CondResult;
+
+ ICEDiag TrueResult = CheckICE(Exp->getTrueExpr(), Ctx);
+ ICEDiag FalseResult = CheckICE(Exp->getFalseExpr(), Ctx);
+
+ if (TrueResult.Kind == IK_NotICE)
+ return TrueResult;
+ if (FalseResult.Kind == IK_NotICE)
+ return FalseResult;
+ if (CondResult.Kind == IK_ICEIfUnevaluated)
+ return CondResult;
+ if (TrueResult.Kind == IK_ICE && FalseResult.Kind == IK_ICE)
+ return NoDiag();
+ // Rare case where the diagnostics depend on which side is evaluated
+ // Note that if we get here, CondResult is 0, and at least one of
+ // TrueResult and FalseResult is non-zero.
+ if (Exp->getCond()->EvaluateKnownConstInt(Ctx) == 0)
+ return FalseResult;
+ return TrueResult;
+ }
+ case Expr::CXXDefaultArgExprClass:
+ return CheckICE(cast<CXXDefaultArgExpr>(E)->getExpr(), Ctx);
+ case Expr::CXXDefaultInitExprClass:
+ return CheckICE(cast<CXXDefaultInitExpr>(E)->getExpr(), Ctx);
+ case Expr::ChooseExprClass: {
+ return CheckICE(cast<ChooseExpr>(E)->getChosenSubExpr(), Ctx);
+ }
+ case Expr::BuiltinBitCastExprClass: {
+ if (!checkBitCastConstexprEligibility(nullptr, Ctx, cast<CastExpr>(E)))
+ return ICEDiag(IK_NotICE, E->getBeginLoc());
+ return CheckICE(cast<CastExpr>(E)->getSubExpr(), Ctx);
+ }
+ }
+
+ llvm_unreachable("Invalid StmtClass!");
+}
+
+/// Evaluate an expression as a C++11 integral constant expression.
+static bool EvaluateCPlusPlus11IntegralConstantExpr(const ASTContext &Ctx,
+ const Expr *E,
+ llvm::APSInt *Value,
+ SourceLocation *Loc) {
+ if (!E->getType()->isIntegralOrUnscopedEnumerationType()) {
+ if (Loc) *Loc = E->getExprLoc();
+ return false;
+ }
+
+ APValue Result;
+ if (!E->isCXX11ConstantExpr(Ctx, &Result, Loc))
+ return false;
+
+ if (!Result.isInt()) {
+ if (Loc) *Loc = E->getExprLoc();
+ return false;
+ }
+
+ if (Value) *Value = Result.getInt();
+ return true;
+}
+
+bool Expr::isIntegerConstantExpr(const ASTContext &Ctx,
+ SourceLocation *Loc) const {
+ assert(!isValueDependent() &&
+ "Expression evaluator can't be called on a dependent expression.");
+
+ if (Ctx.getLangOpts().CPlusPlus11)
+ return EvaluateCPlusPlus11IntegralConstantExpr(Ctx, this, nullptr, Loc);
+
+ ICEDiag D = CheckICE(this, Ctx);
+ if (D.Kind != IK_ICE) {
+ if (Loc) *Loc = D.Loc;
+ return false;
+ }
+ return true;
+}
+
+bool Expr::isIntegerConstantExpr(llvm::APSInt &Value, const ASTContext &Ctx,
+ SourceLocation *Loc, bool isEvaluated) const {
+ assert(!isValueDependent() &&
+ "Expression evaluator can't be called on a dependent expression.");
+
+ if (Ctx.getLangOpts().CPlusPlus11)
+ return EvaluateCPlusPlus11IntegralConstantExpr(Ctx, this, &Value, Loc);
+
+ if (!isIntegerConstantExpr(Ctx, Loc))
+ return false;
+
+ // The only possible side-effects here are due to UB discovered in the
+ // evaluation (for instance, INT_MAX + 1). In such a case, we are still
+ // required to treat the expression as an ICE, so we produce the folded
+ // value.
+ EvalResult ExprResult;
+ Expr::EvalStatus Status;
+ EvalInfo Info(Ctx, Status, EvalInfo::EM_IgnoreSideEffects);
+ Info.InConstantContext = true;
+
+ if (!::EvaluateAsInt(this, ExprResult, Ctx, SE_AllowSideEffects, Info))
+ llvm_unreachable("ICE cannot be evaluated!");
+
+ Value = ExprResult.Val.getInt();
+ return true;
+}
+
+bool Expr::isCXX98IntegralConstantExpr(const ASTContext &Ctx) const {
+ assert(!isValueDependent() &&
+ "Expression evaluator can't be called on a dependent expression.");
+
+ return CheckICE(this, Ctx).Kind == IK_ICE;
+}
+
+bool Expr::isCXX11ConstantExpr(const ASTContext &Ctx, APValue *Result,
+ SourceLocation *Loc) const {
+ assert(!isValueDependent() &&
+ "Expression evaluator can't be called on a dependent expression.");
+
+ // We support this checking in C++98 mode in order to diagnose compatibility
+ // issues.
+ assert(Ctx.getLangOpts().CPlusPlus);
+
+ // Build evaluation settings.
+ Expr::EvalStatus Status;
+ SmallVector<PartialDiagnosticAt, 8> Diags;
+ Status.Diag = &Diags;
+ EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantExpression);
+
+ APValue Scratch;
+ bool IsConstExpr =
+ ::EvaluateAsRValue(Info, this, Result ? *Result : Scratch) &&
+ // FIXME: We don't produce a diagnostic for this, but the callers that
+ // call us on arbitrary full-expressions should generally not care.
+ Info.discardCleanups() && !Status.HasSideEffects;
+
+ if (!Diags.empty()) {
+ IsConstExpr = false;
+ if (Loc) *Loc = Diags[0].first;
+ } else if (!IsConstExpr) {
+ // FIXME: This shouldn't happen.
+ if (Loc) *Loc = getExprLoc();
+ }
+
+ return IsConstExpr;
+}
+
+bool Expr::EvaluateWithSubstitution(APValue &Value, ASTContext &Ctx,
+ const FunctionDecl *Callee,
+ ArrayRef<const Expr*> Args,
+ const Expr *This) const {
+ assert(!isValueDependent() &&
+ "Expression evaluator can't be called on a dependent expression.");
+
+ Expr::EvalStatus Status;
+ EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantExpressionUnevaluated);
+ Info.InConstantContext = true;
+
+ LValue ThisVal;
+ const LValue *ThisPtr = nullptr;
+ if (This) {
+#ifndef NDEBUG
+ auto *MD = dyn_cast<CXXMethodDecl>(Callee);
+ assert(MD && "Don't provide `this` for non-methods.");
+ assert(!MD->isStatic() && "Don't provide `this` for static methods.");
+#endif
+ if (EvaluateObjectArgument(Info, This, ThisVal))
+ ThisPtr = &ThisVal;
+ if (Info.EvalStatus.HasSideEffects)
+ return false;
+ }
+
+ ArgVector ArgValues(Args.size());
+ for (ArrayRef<const Expr*>::iterator I = Args.begin(), E = Args.end();
+ I != E; ++I) {
+ if ((*I)->isValueDependent() ||
+ !Evaluate(ArgValues[I - Args.begin()], Info, *I))
+ // If evaluation fails, throw away the argument entirely.
+ ArgValues[I - Args.begin()] = APValue();
+ if (Info.EvalStatus.HasSideEffects)
+ return false;
+ }
+
+ // Build fake call to Callee.
+ CallStackFrame Frame(Info, Callee->getLocation(), Callee, ThisPtr,
+ ArgValues.data());
+ return Evaluate(Value, Info, this) && Info.discardCleanups() &&
+ !Info.EvalStatus.HasSideEffects;
+}
+
+bool Expr::isPotentialConstantExpr(const FunctionDecl *FD,
+ SmallVectorImpl<
+ PartialDiagnosticAt> &Diags) {
+ // FIXME: It would be useful to check constexpr function templates, but at the
+ // moment the constant expression evaluator cannot cope with the non-rigorous
+ // ASTs which we build for dependent expressions.
+ if (FD->isDependentContext())
+ return true;
+
+ Expr::EvalStatus Status;
+ Status.Diag = &Diags;
+
+ EvalInfo Info(FD->getASTContext(), Status, EvalInfo::EM_ConstantExpression);
+ Info.InConstantContext = true;
+ Info.CheckingPotentialConstantExpression = true;
+
+ // The constexpr VM attempts to compile all methods to bytecode here.
+ if (Info.EnableNewConstInterp) {
+ auto &InterpCtx = Info.Ctx.getInterpContext();
+ switch (InterpCtx.isPotentialConstantExpr(Info, FD)) {
+ case interp::InterpResult::Success:
+ case interp::InterpResult::Fail:
+ return Diags.empty();
+ case interp::InterpResult::Bail:
+ break;
+ }
+ }
+
+ const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
+ const CXXRecordDecl *RD = MD ? MD->getParent()->getCanonicalDecl() : nullptr;
+
+ // Fabricate an arbitrary expression on the stack and pretend that it
+ // is a temporary being used as the 'this' pointer.
+ LValue This;
+ ImplicitValueInitExpr VIE(RD ? Info.Ctx.getRecordType(RD) : Info.Ctx.IntTy);
+ This.set({&VIE, Info.CurrentCall->Index});
+
+ ArrayRef<const Expr*> Args;
+
+ APValue Scratch;
+ if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) {
+ // Evaluate the call as a constant initializer, to allow the construction
+ // of objects of non-literal types.
+ Info.setEvaluatingDecl(This.getLValueBase(), Scratch);
+ HandleConstructorCall(&VIE, This, Args, CD, Info, Scratch);
+ } else {
+ SourceLocation Loc = FD->getLocation();
+ HandleFunctionCall(Loc, FD, (MD && MD->isInstance()) ? &This : nullptr,
+ Args, FD->getBody(), Info, Scratch, nullptr);
+ }
+
+ return Diags.empty();
+}
+
+bool Expr::isPotentialConstantExprUnevaluated(Expr *E,
+ const FunctionDecl *FD,
+ SmallVectorImpl<
+ PartialDiagnosticAt> &Diags) {
+ assert(!E->isValueDependent() &&
+ "Expression evaluator can't be called on a dependent expression.");
+
+ Expr::EvalStatus Status;
+ Status.Diag = &Diags;
+
+ EvalInfo Info(FD->getASTContext(), Status,
+ EvalInfo::EM_ConstantExpressionUnevaluated);
+ Info.InConstantContext = true;
+ Info.CheckingPotentialConstantExpression = true;
+
+ // Fabricate a call stack frame to give the arguments a plausible cover story.
+ ArrayRef<const Expr*> Args;
+ ArgVector ArgValues(0);
+ bool Success = EvaluateArgs(Args, ArgValues, Info, FD);
+ (void)Success;
+ assert(Success &&
+ "Failed to set up arguments for potential constant evaluation");
+ CallStackFrame Frame(Info, SourceLocation(), FD, nullptr, ArgValues.data());
+
+ APValue ResultScratch;
+ Evaluate(ResultScratch, Info, E);
+ return Diags.empty();
+}
+
+bool Expr::tryEvaluateObjectSize(uint64_t &Result, ASTContext &Ctx,
+ unsigned Type) const {
+ if (!getType()->isPointerType())
+ return false;
+
+ Expr::EvalStatus Status;
+ EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantFold);
+ return tryEvaluateBuiltinObjectSize(this, Type, Info, Result);
+}