diff options
Diffstat (limited to 'contrib/llvm-project/clang/lib/AST/ItaniumMangle.cpp')
-rw-r--r-- | contrib/llvm-project/clang/lib/AST/ItaniumMangle.cpp | 6212 |
1 files changed, 6212 insertions, 0 deletions
diff --git a/contrib/llvm-project/clang/lib/AST/ItaniumMangle.cpp b/contrib/llvm-project/clang/lib/AST/ItaniumMangle.cpp new file mode 100644 index 000000000000..5cad84a96845 --- /dev/null +++ b/contrib/llvm-project/clang/lib/AST/ItaniumMangle.cpp @@ -0,0 +1,6212 @@ +//===--- ItaniumMangle.cpp - Itanium C++ Name Mangling ----------*- C++ -*-===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// Implements C++ name mangling according to the Itanium C++ ABI, +// which is used in GCC 3.2 and newer (and many compilers that are +// ABI-compatible with GCC): +// +// http://itanium-cxx-abi.github.io/cxx-abi/abi.html#mangling +// +//===----------------------------------------------------------------------===// + +#include "clang/AST/Mangle.h" +#include "clang/AST/ASTContext.h" +#include "clang/AST/Attr.h" +#include "clang/AST/Decl.h" +#include "clang/AST/DeclCXX.h" +#include "clang/AST/DeclObjC.h" +#include "clang/AST/DeclOpenMP.h" +#include "clang/AST/DeclTemplate.h" +#include "clang/AST/Expr.h" +#include "clang/AST/ExprConcepts.h" +#include "clang/AST/ExprCXX.h" +#include "clang/AST/ExprObjC.h" +#include "clang/AST/TypeLoc.h" +#include "clang/Basic/ABI.h" +#include "clang/Basic/Module.h" +#include "clang/Basic/SourceManager.h" +#include "clang/Basic/TargetInfo.h" +#include "llvm/ADT/StringExtras.h" +#include "llvm/Support/ErrorHandling.h" +#include "llvm/Support/raw_ostream.h" + +using namespace clang; + +namespace { + +/// Retrieve the declaration context that should be used when mangling the given +/// declaration. +static const DeclContext *getEffectiveDeclContext(const Decl *D) { + // The ABI assumes that lambda closure types that occur within + // default arguments live in the context of the function. However, due to + // the way in which Clang parses and creates function declarations, this is + // not the case: the lambda closure type ends up living in the context + // where the function itself resides, because the function declaration itself + // had not yet been created. Fix the context here. + if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D)) { + if (RD->isLambda()) + if (ParmVarDecl *ContextParam + = dyn_cast_or_null<ParmVarDecl>(RD->getLambdaContextDecl())) + return ContextParam->getDeclContext(); + } + + // Perform the same check for block literals. + if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) { + if (ParmVarDecl *ContextParam + = dyn_cast_or_null<ParmVarDecl>(BD->getBlockManglingContextDecl())) + return ContextParam->getDeclContext(); + } + + const DeclContext *DC = D->getDeclContext(); + if (isa<CapturedDecl>(DC) || isa<OMPDeclareReductionDecl>(DC) || + isa<OMPDeclareMapperDecl>(DC)) { + return getEffectiveDeclContext(cast<Decl>(DC)); + } + + if (const auto *VD = dyn_cast<VarDecl>(D)) + if (VD->isExternC()) + return VD->getASTContext().getTranslationUnitDecl(); + + if (const auto *FD = dyn_cast<FunctionDecl>(D)) + if (FD->isExternC()) + return FD->getASTContext().getTranslationUnitDecl(); + + return DC->getRedeclContext(); +} + +static const DeclContext *getEffectiveParentContext(const DeclContext *DC) { + return getEffectiveDeclContext(cast<Decl>(DC)); +} + +static bool isLocalContainerContext(const DeclContext *DC) { + return isa<FunctionDecl>(DC) || isa<ObjCMethodDecl>(DC) || isa<BlockDecl>(DC); +} + +static const RecordDecl *GetLocalClassDecl(const Decl *D) { + const DeclContext *DC = getEffectiveDeclContext(D); + while (!DC->isNamespace() && !DC->isTranslationUnit()) { + if (isLocalContainerContext(DC)) + return dyn_cast<RecordDecl>(D); + D = cast<Decl>(DC); + DC = getEffectiveDeclContext(D); + } + return nullptr; +} + +static const FunctionDecl *getStructor(const FunctionDecl *fn) { + if (const FunctionTemplateDecl *ftd = fn->getPrimaryTemplate()) + return ftd->getTemplatedDecl(); + + return fn; +} + +static const NamedDecl *getStructor(const NamedDecl *decl) { + const FunctionDecl *fn = dyn_cast_or_null<FunctionDecl>(decl); + return (fn ? getStructor(fn) : decl); +} + +static bool isLambda(const NamedDecl *ND) { + const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(ND); + if (!Record) + return false; + + return Record->isLambda(); +} + +static const unsigned UnknownArity = ~0U; + +class ItaniumMangleContextImpl : public ItaniumMangleContext { + typedef std::pair<const DeclContext*, IdentifierInfo*> DiscriminatorKeyTy; + llvm::DenseMap<DiscriminatorKeyTy, unsigned> Discriminator; + llvm::DenseMap<const NamedDecl*, unsigned> Uniquifier; + + bool IsDevCtx = false; + +public: + explicit ItaniumMangleContextImpl(ASTContext &Context, + DiagnosticsEngine &Diags) + : ItaniumMangleContext(Context, Diags) {} + + /// @name Mangler Entry Points + /// @{ + + bool shouldMangleCXXName(const NamedDecl *D) override; + bool shouldMangleStringLiteral(const StringLiteral *) override { + return false; + } + + bool isDeviceMangleContext() const override { return IsDevCtx; } + void setDeviceMangleContext(bool IsDev) override { IsDevCtx = IsDev; } + + void mangleCXXName(GlobalDecl GD, raw_ostream &) override; + void mangleThunk(const CXXMethodDecl *MD, const ThunkInfo &Thunk, + raw_ostream &) override; + void mangleCXXDtorThunk(const CXXDestructorDecl *DD, CXXDtorType Type, + const ThisAdjustment &ThisAdjustment, + raw_ostream &) override; + void mangleReferenceTemporary(const VarDecl *D, unsigned ManglingNumber, + raw_ostream &) override; + void mangleCXXVTable(const CXXRecordDecl *RD, raw_ostream &) override; + void mangleCXXVTT(const CXXRecordDecl *RD, raw_ostream &) override; + void mangleCXXCtorVTable(const CXXRecordDecl *RD, int64_t Offset, + const CXXRecordDecl *Type, raw_ostream &) override; + void mangleCXXRTTI(QualType T, raw_ostream &) override; + void mangleCXXRTTIName(QualType T, raw_ostream &) override; + void mangleTypeName(QualType T, raw_ostream &) override; + + void mangleCXXCtorComdat(const CXXConstructorDecl *D, raw_ostream &) override; + void mangleCXXDtorComdat(const CXXDestructorDecl *D, raw_ostream &) override; + void mangleStaticGuardVariable(const VarDecl *D, raw_ostream &) override; + void mangleDynamicInitializer(const VarDecl *D, raw_ostream &Out) override; + void mangleDynamicAtExitDestructor(const VarDecl *D, + raw_ostream &Out) override; + void mangleDynamicStermFinalizer(const VarDecl *D, raw_ostream &Out) override; + void mangleSEHFilterExpression(const NamedDecl *EnclosingDecl, + raw_ostream &Out) override; + void mangleSEHFinallyBlock(const NamedDecl *EnclosingDecl, + raw_ostream &Out) override; + void mangleItaniumThreadLocalInit(const VarDecl *D, raw_ostream &) override; + void mangleItaniumThreadLocalWrapper(const VarDecl *D, + raw_ostream &) override; + + void mangleStringLiteral(const StringLiteral *, raw_ostream &) override; + + void mangleLambdaSig(const CXXRecordDecl *Lambda, raw_ostream &) override; + + bool getNextDiscriminator(const NamedDecl *ND, unsigned &disc) { + // Lambda closure types are already numbered. + if (isLambda(ND)) + return false; + + // Anonymous tags are already numbered. + if (const TagDecl *Tag = dyn_cast<TagDecl>(ND)) { + if (Tag->getName().empty() && !Tag->getTypedefNameForAnonDecl()) + return false; + } + + // Use the canonical number for externally visible decls. + if (ND->isExternallyVisible()) { + unsigned discriminator = getASTContext().getManglingNumber(ND); + if (discriminator == 1) + return false; + disc = discriminator - 2; + return true; + } + + // Make up a reasonable number for internal decls. + unsigned &discriminator = Uniquifier[ND]; + if (!discriminator) { + const DeclContext *DC = getEffectiveDeclContext(ND); + discriminator = ++Discriminator[std::make_pair(DC, ND->getIdentifier())]; + } + if (discriminator == 1) + return false; + disc = discriminator-2; + return true; + } + /// @} +}; + +/// Manage the mangling of a single name. +class CXXNameMangler { + ItaniumMangleContextImpl &Context; + raw_ostream &Out; + bool NullOut = false; + /// In the "DisableDerivedAbiTags" mode derived ABI tags are not calculated. + /// This mode is used when mangler creates another mangler recursively to + /// calculate ABI tags for the function return value or the variable type. + /// Also it is required to avoid infinite recursion in some cases. + bool DisableDerivedAbiTags = false; + + /// The "structor" is the top-level declaration being mangled, if + /// that's not a template specialization; otherwise it's the pattern + /// for that specialization. + const NamedDecl *Structor; + unsigned StructorType; + + /// The next substitution sequence number. + unsigned SeqID; + + class FunctionTypeDepthState { + unsigned Bits; + + enum { InResultTypeMask = 1 }; + + public: + FunctionTypeDepthState() : Bits(0) {} + + /// The number of function types we're inside. + unsigned getDepth() const { + return Bits >> 1; + } + + /// True if we're in the return type of the innermost function type. + bool isInResultType() const { + return Bits & InResultTypeMask; + } + + FunctionTypeDepthState push() { + FunctionTypeDepthState tmp = *this; + Bits = (Bits & ~InResultTypeMask) + 2; + return tmp; + } + + void enterResultType() { + Bits |= InResultTypeMask; + } + + void leaveResultType() { + Bits &= ~InResultTypeMask; + } + + void pop(FunctionTypeDepthState saved) { + assert(getDepth() == saved.getDepth() + 1); + Bits = saved.Bits; + } + + } FunctionTypeDepth; + + // abi_tag is a gcc attribute, taking one or more strings called "tags". + // The goal is to annotate against which version of a library an object was + // built and to be able to provide backwards compatibility ("dual abi"). + // For more information see docs/ItaniumMangleAbiTags.rst. + typedef SmallVector<StringRef, 4> AbiTagList; + + // State to gather all implicit and explicit tags used in a mangled name. + // Must always have an instance of this while emitting any name to keep + // track. + class AbiTagState final { + public: + explicit AbiTagState(AbiTagState *&Head) : LinkHead(Head) { + Parent = LinkHead; + LinkHead = this; + } + + // No copy, no move. + AbiTagState(const AbiTagState &) = delete; + AbiTagState &operator=(const AbiTagState &) = delete; + + ~AbiTagState() { pop(); } + + void write(raw_ostream &Out, const NamedDecl *ND, + const AbiTagList *AdditionalAbiTags) { + ND = cast<NamedDecl>(ND->getCanonicalDecl()); + if (!isa<FunctionDecl>(ND) && !isa<VarDecl>(ND)) { + assert( + !AdditionalAbiTags && + "only function and variables need a list of additional abi tags"); + if (const auto *NS = dyn_cast<NamespaceDecl>(ND)) { + if (const auto *AbiTag = NS->getAttr<AbiTagAttr>()) { + UsedAbiTags.insert(UsedAbiTags.end(), AbiTag->tags().begin(), + AbiTag->tags().end()); + } + // Don't emit abi tags for namespaces. + return; + } + } + + AbiTagList TagList; + if (const auto *AbiTag = ND->getAttr<AbiTagAttr>()) { + UsedAbiTags.insert(UsedAbiTags.end(), AbiTag->tags().begin(), + AbiTag->tags().end()); + TagList.insert(TagList.end(), AbiTag->tags().begin(), + AbiTag->tags().end()); + } + + if (AdditionalAbiTags) { + UsedAbiTags.insert(UsedAbiTags.end(), AdditionalAbiTags->begin(), + AdditionalAbiTags->end()); + TagList.insert(TagList.end(), AdditionalAbiTags->begin(), + AdditionalAbiTags->end()); + } + + llvm::sort(TagList); + TagList.erase(std::unique(TagList.begin(), TagList.end()), TagList.end()); + + writeSortedUniqueAbiTags(Out, TagList); + } + + const AbiTagList &getUsedAbiTags() const { return UsedAbiTags; } + void setUsedAbiTags(const AbiTagList &AbiTags) { + UsedAbiTags = AbiTags; + } + + const AbiTagList &getEmittedAbiTags() const { + return EmittedAbiTags; + } + + const AbiTagList &getSortedUniqueUsedAbiTags() { + llvm::sort(UsedAbiTags); + UsedAbiTags.erase(std::unique(UsedAbiTags.begin(), UsedAbiTags.end()), + UsedAbiTags.end()); + return UsedAbiTags; + } + + private: + //! All abi tags used implicitly or explicitly. + AbiTagList UsedAbiTags; + //! All explicit abi tags (i.e. not from namespace). + AbiTagList EmittedAbiTags; + + AbiTagState *&LinkHead; + AbiTagState *Parent = nullptr; + + void pop() { + assert(LinkHead == this && + "abi tag link head must point to us on destruction"); + if (Parent) { + Parent->UsedAbiTags.insert(Parent->UsedAbiTags.end(), + UsedAbiTags.begin(), UsedAbiTags.end()); + Parent->EmittedAbiTags.insert(Parent->EmittedAbiTags.end(), + EmittedAbiTags.begin(), + EmittedAbiTags.end()); + } + LinkHead = Parent; + } + + void writeSortedUniqueAbiTags(raw_ostream &Out, const AbiTagList &AbiTags) { + for (const auto &Tag : AbiTags) { + EmittedAbiTags.push_back(Tag); + Out << "B"; + Out << Tag.size(); + Out << Tag; + } + } + }; + + AbiTagState *AbiTags = nullptr; + AbiTagState AbiTagsRoot; + + llvm::DenseMap<uintptr_t, unsigned> Substitutions; + llvm::DenseMap<StringRef, unsigned> ModuleSubstitutions; + + ASTContext &getASTContext() const { return Context.getASTContext(); } + +public: + CXXNameMangler(ItaniumMangleContextImpl &C, raw_ostream &Out_, + const NamedDecl *D = nullptr, bool NullOut_ = false) + : Context(C), Out(Out_), NullOut(NullOut_), Structor(getStructor(D)), + StructorType(0), SeqID(0), AbiTagsRoot(AbiTags) { + // These can't be mangled without a ctor type or dtor type. + assert(!D || (!isa<CXXDestructorDecl>(D) && + !isa<CXXConstructorDecl>(D))); + } + CXXNameMangler(ItaniumMangleContextImpl &C, raw_ostream &Out_, + const CXXConstructorDecl *D, CXXCtorType Type) + : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(Type), + SeqID(0), AbiTagsRoot(AbiTags) { } + CXXNameMangler(ItaniumMangleContextImpl &C, raw_ostream &Out_, + const CXXDestructorDecl *D, CXXDtorType Type) + : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(Type), + SeqID(0), AbiTagsRoot(AbiTags) { } + + CXXNameMangler(CXXNameMangler &Outer, raw_ostream &Out_) + : Context(Outer.Context), Out(Out_), NullOut(false), + Structor(Outer.Structor), StructorType(Outer.StructorType), + SeqID(Outer.SeqID), FunctionTypeDepth(Outer.FunctionTypeDepth), + AbiTagsRoot(AbiTags), Substitutions(Outer.Substitutions) {} + + CXXNameMangler(CXXNameMangler &Outer, llvm::raw_null_ostream &Out_) + : Context(Outer.Context), Out(Out_), NullOut(true), + Structor(Outer.Structor), StructorType(Outer.StructorType), + SeqID(Outer.SeqID), FunctionTypeDepth(Outer.FunctionTypeDepth), + AbiTagsRoot(AbiTags), Substitutions(Outer.Substitutions) {} + + raw_ostream &getStream() { return Out; } + + void disableDerivedAbiTags() { DisableDerivedAbiTags = true; } + static bool shouldHaveAbiTags(ItaniumMangleContextImpl &C, const VarDecl *VD); + + void mangle(GlobalDecl GD); + void mangleCallOffset(int64_t NonVirtual, int64_t Virtual); + void mangleNumber(const llvm::APSInt &I); + void mangleNumber(int64_t Number); + void mangleFloat(const llvm::APFloat &F); + void mangleFunctionEncoding(GlobalDecl GD); + void mangleSeqID(unsigned SeqID); + void mangleName(GlobalDecl GD); + void mangleType(QualType T); + void mangleNameOrStandardSubstitution(const NamedDecl *ND); + void mangleLambdaSig(const CXXRecordDecl *Lambda); + +private: + + bool mangleSubstitution(const NamedDecl *ND); + bool mangleSubstitution(QualType T); + bool mangleSubstitution(TemplateName Template); + bool mangleSubstitution(uintptr_t Ptr); + + void mangleExistingSubstitution(TemplateName name); + + bool mangleStandardSubstitution(const NamedDecl *ND); + + void addSubstitution(const NamedDecl *ND) { + ND = cast<NamedDecl>(ND->getCanonicalDecl()); + + addSubstitution(reinterpret_cast<uintptr_t>(ND)); + } + void addSubstitution(QualType T); + void addSubstitution(TemplateName Template); + void addSubstitution(uintptr_t Ptr); + // Destructive copy substitutions from other mangler. + void extendSubstitutions(CXXNameMangler* Other); + + void mangleUnresolvedPrefix(NestedNameSpecifier *qualifier, + bool recursive = false); + void mangleUnresolvedName(NestedNameSpecifier *qualifier, + DeclarationName name, + const TemplateArgumentLoc *TemplateArgs, + unsigned NumTemplateArgs, + unsigned KnownArity = UnknownArity); + + void mangleFunctionEncodingBareType(const FunctionDecl *FD); + + void mangleNameWithAbiTags(GlobalDecl GD, + const AbiTagList *AdditionalAbiTags); + void mangleModuleName(const Module *M); + void mangleModuleNamePrefix(StringRef Name); + void mangleTemplateName(const TemplateDecl *TD, + const TemplateArgument *TemplateArgs, + unsigned NumTemplateArgs); + void mangleUnqualifiedName(GlobalDecl GD, + const AbiTagList *AdditionalAbiTags) { + mangleUnqualifiedName(GD, cast<NamedDecl>(GD.getDecl())->getDeclName(), UnknownArity, + AdditionalAbiTags); + } + void mangleUnqualifiedName(GlobalDecl GD, DeclarationName Name, + unsigned KnownArity, + const AbiTagList *AdditionalAbiTags); + void mangleUnscopedName(GlobalDecl GD, + const AbiTagList *AdditionalAbiTags); + void mangleUnscopedTemplateName(GlobalDecl GD, + const AbiTagList *AdditionalAbiTags); + void mangleSourceName(const IdentifierInfo *II); + void mangleRegCallName(const IdentifierInfo *II); + void mangleDeviceStubName(const IdentifierInfo *II); + void mangleSourceNameWithAbiTags( + const NamedDecl *ND, const AbiTagList *AdditionalAbiTags = nullptr); + void mangleLocalName(GlobalDecl GD, + const AbiTagList *AdditionalAbiTags); + void mangleBlockForPrefix(const BlockDecl *Block); + void mangleUnqualifiedBlock(const BlockDecl *Block); + void mangleTemplateParamDecl(const NamedDecl *Decl); + void mangleLambda(const CXXRecordDecl *Lambda); + void mangleNestedName(GlobalDecl GD, const DeclContext *DC, + const AbiTagList *AdditionalAbiTags, + bool NoFunction=false); + void mangleNestedName(const TemplateDecl *TD, + const TemplateArgument *TemplateArgs, + unsigned NumTemplateArgs); + void manglePrefix(NestedNameSpecifier *qualifier); + void manglePrefix(const DeclContext *DC, bool NoFunction=false); + void manglePrefix(QualType type); + void mangleTemplatePrefix(GlobalDecl GD, bool NoFunction=false); + void mangleTemplatePrefix(TemplateName Template); + bool mangleUnresolvedTypeOrSimpleId(QualType DestroyedType, + StringRef Prefix = ""); + void mangleOperatorName(DeclarationName Name, unsigned Arity); + void mangleOperatorName(OverloadedOperatorKind OO, unsigned Arity); + void mangleVendorQualifier(StringRef qualifier); + void mangleQualifiers(Qualifiers Quals, const DependentAddressSpaceType *DAST = nullptr); + void mangleRefQualifier(RefQualifierKind RefQualifier); + + void mangleObjCMethodName(const ObjCMethodDecl *MD); + + // Declare manglers for every type class. +#define ABSTRACT_TYPE(CLASS, PARENT) +#define NON_CANONICAL_TYPE(CLASS, PARENT) +#define TYPE(CLASS, PARENT) void mangleType(const CLASS##Type *T); +#include "clang/AST/TypeNodes.inc" + + void mangleType(const TagType*); + void mangleType(TemplateName); + static StringRef getCallingConvQualifierName(CallingConv CC); + void mangleExtParameterInfo(FunctionProtoType::ExtParameterInfo info); + void mangleExtFunctionInfo(const FunctionType *T); + void mangleBareFunctionType(const FunctionProtoType *T, bool MangleReturnType, + const FunctionDecl *FD = nullptr); + void mangleNeonVectorType(const VectorType *T); + void mangleNeonVectorType(const DependentVectorType *T); + void mangleAArch64NeonVectorType(const VectorType *T); + void mangleAArch64NeonVectorType(const DependentVectorType *T); + void mangleAArch64FixedSveVectorType(const VectorType *T); + void mangleAArch64FixedSveVectorType(const DependentVectorType *T); + + void mangleIntegerLiteral(QualType T, const llvm::APSInt &Value); + void mangleFloatLiteral(QualType T, const llvm::APFloat &V); + void mangleFixedPointLiteral(); + void mangleNullPointer(QualType T); + + void mangleMemberExprBase(const Expr *base, bool isArrow); + void mangleMemberExpr(const Expr *base, bool isArrow, + NestedNameSpecifier *qualifier, + NamedDecl *firstQualifierLookup, + DeclarationName name, + const TemplateArgumentLoc *TemplateArgs, + unsigned NumTemplateArgs, + unsigned knownArity); + void mangleCastExpression(const Expr *E, StringRef CastEncoding); + void mangleInitListElements(const InitListExpr *InitList); + void mangleExpression(const Expr *E, unsigned Arity = UnknownArity, + bool AsTemplateArg = false); + void mangleCXXCtorType(CXXCtorType T, const CXXRecordDecl *InheritedFrom); + void mangleCXXDtorType(CXXDtorType T); + + void mangleTemplateArgs(TemplateName TN, + const TemplateArgumentLoc *TemplateArgs, + unsigned NumTemplateArgs); + void mangleTemplateArgs(TemplateName TN, const TemplateArgument *TemplateArgs, + unsigned NumTemplateArgs); + void mangleTemplateArgs(TemplateName TN, const TemplateArgumentList &AL); + void mangleTemplateArg(TemplateArgument A, bool NeedExactType); + void mangleTemplateArgExpr(const Expr *E); + void mangleValueInTemplateArg(QualType T, const APValue &V, bool TopLevel, + bool NeedExactType = false); + + void mangleTemplateParameter(unsigned Depth, unsigned Index); + + void mangleFunctionParam(const ParmVarDecl *parm); + + void writeAbiTags(const NamedDecl *ND, + const AbiTagList *AdditionalAbiTags); + + // Returns sorted unique list of ABI tags. + AbiTagList makeFunctionReturnTypeTags(const FunctionDecl *FD); + // Returns sorted unique list of ABI tags. + AbiTagList makeVariableTypeTags(const VarDecl *VD); +}; + +} + +bool ItaniumMangleContextImpl::shouldMangleCXXName(const NamedDecl *D) { + const FunctionDecl *FD = dyn_cast<FunctionDecl>(D); + if (FD) { + LanguageLinkage L = FD->getLanguageLinkage(); + // Overloadable functions need mangling. + if (FD->hasAttr<OverloadableAttr>()) + return true; + + // "main" is not mangled. + if (FD->isMain()) + return false; + + // The Windows ABI expects that we would never mangle "typical" + // user-defined entry points regardless of visibility or freestanding-ness. + // + // N.B. This is distinct from asking about "main". "main" has a lot of + // special rules associated with it in the standard while these + // user-defined entry points are outside of the purview of the standard. + // For example, there can be only one definition for "main" in a standards + // compliant program; however nothing forbids the existence of wmain and + // WinMain in the same translation unit. + if (FD->isMSVCRTEntryPoint()) + return false; + + // C++ functions and those whose names are not a simple identifier need + // mangling. + if (!FD->getDeclName().isIdentifier() || L == CXXLanguageLinkage) + return true; + + // C functions are not mangled. + if (L == CLanguageLinkage) + return false; + } + + // Otherwise, no mangling is done outside C++ mode. + if (!getASTContext().getLangOpts().CPlusPlus) + return false; + + const VarDecl *VD = dyn_cast<VarDecl>(D); + if (VD && !isa<DecompositionDecl>(D)) { + // C variables are not mangled. + if (VD->isExternC()) + return false; + + // Variables at global scope with non-internal linkage are not mangled + const DeclContext *DC = getEffectiveDeclContext(D); + // Check for extern variable declared locally. + if (DC->isFunctionOrMethod() && D->hasLinkage()) + while (!DC->isNamespace() && !DC->isTranslationUnit()) + DC = getEffectiveParentContext(DC); + if (DC->isTranslationUnit() && D->getFormalLinkage() != InternalLinkage && + !CXXNameMangler::shouldHaveAbiTags(*this, VD) && + !isa<VarTemplateSpecializationDecl>(D)) + return false; + } + + return true; +} + +void CXXNameMangler::writeAbiTags(const NamedDecl *ND, + const AbiTagList *AdditionalAbiTags) { + assert(AbiTags && "require AbiTagState"); + AbiTags->write(Out, ND, DisableDerivedAbiTags ? nullptr : AdditionalAbiTags); +} + +void CXXNameMangler::mangleSourceNameWithAbiTags( + const NamedDecl *ND, const AbiTagList *AdditionalAbiTags) { + mangleSourceName(ND->getIdentifier()); + writeAbiTags(ND, AdditionalAbiTags); +} + +void CXXNameMangler::mangle(GlobalDecl GD) { + // <mangled-name> ::= _Z <encoding> + // ::= <data name> + // ::= <special-name> + Out << "_Z"; + if (isa<FunctionDecl>(GD.getDecl())) + mangleFunctionEncoding(GD); + else if (isa<VarDecl, FieldDecl, MSGuidDecl, TemplateParamObjectDecl, + BindingDecl>(GD.getDecl())) + mangleName(GD); + else if (const IndirectFieldDecl *IFD = + dyn_cast<IndirectFieldDecl>(GD.getDecl())) + mangleName(IFD->getAnonField()); + else + llvm_unreachable("unexpected kind of global decl"); +} + +void CXXNameMangler::mangleFunctionEncoding(GlobalDecl GD) { + const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); + // <encoding> ::= <function name> <bare-function-type> + + // Don't mangle in the type if this isn't a decl we should typically mangle. + if (!Context.shouldMangleDeclName(FD)) { + mangleName(GD); + return; + } + + AbiTagList ReturnTypeAbiTags = makeFunctionReturnTypeTags(FD); + if (ReturnTypeAbiTags.empty()) { + // There are no tags for return type, the simplest case. + mangleName(GD); + mangleFunctionEncodingBareType(FD); + return; + } + + // Mangle function name and encoding to temporary buffer. + // We have to output name and encoding to the same mangler to get the same + // substitution as it will be in final mangling. + SmallString<256> FunctionEncodingBuf; + llvm::raw_svector_ostream FunctionEncodingStream(FunctionEncodingBuf); + CXXNameMangler FunctionEncodingMangler(*this, FunctionEncodingStream); + // Output name of the function. + FunctionEncodingMangler.disableDerivedAbiTags(); + FunctionEncodingMangler.mangleNameWithAbiTags(FD, nullptr); + + // Remember length of the function name in the buffer. + size_t EncodingPositionStart = FunctionEncodingStream.str().size(); + FunctionEncodingMangler.mangleFunctionEncodingBareType(FD); + + // Get tags from return type that are not present in function name or + // encoding. + const AbiTagList &UsedAbiTags = + FunctionEncodingMangler.AbiTagsRoot.getSortedUniqueUsedAbiTags(); + AbiTagList AdditionalAbiTags(ReturnTypeAbiTags.size()); + AdditionalAbiTags.erase( + std::set_difference(ReturnTypeAbiTags.begin(), ReturnTypeAbiTags.end(), + UsedAbiTags.begin(), UsedAbiTags.end(), + AdditionalAbiTags.begin()), + AdditionalAbiTags.end()); + + // Output name with implicit tags and function encoding from temporary buffer. + mangleNameWithAbiTags(FD, &AdditionalAbiTags); + Out << FunctionEncodingStream.str().substr(EncodingPositionStart); + + // Function encoding could create new substitutions so we have to add + // temp mangled substitutions to main mangler. + extendSubstitutions(&FunctionEncodingMangler); +} + +void CXXNameMangler::mangleFunctionEncodingBareType(const FunctionDecl *FD) { + if (FD->hasAttr<EnableIfAttr>()) { + FunctionTypeDepthState Saved = FunctionTypeDepth.push(); + Out << "Ua9enable_ifI"; + for (AttrVec::const_iterator I = FD->getAttrs().begin(), + E = FD->getAttrs().end(); + I != E; ++I) { + EnableIfAttr *EIA = dyn_cast<EnableIfAttr>(*I); + if (!EIA) + continue; + if (Context.getASTContext().getLangOpts().getClangABICompat() > + LangOptions::ClangABI::Ver11) { + mangleTemplateArgExpr(EIA->getCond()); + } else { + // Prior to Clang 12, we hardcoded the X/E around enable-if's argument, + // even though <template-arg> should not include an X/E around + // <expr-primary>. + Out << 'X'; + mangleExpression(EIA->getCond()); + Out << 'E'; + } + } + Out << 'E'; + FunctionTypeDepth.pop(Saved); + } + + // When mangling an inheriting constructor, the bare function type used is + // that of the inherited constructor. + if (auto *CD = dyn_cast<CXXConstructorDecl>(FD)) + if (auto Inherited = CD->getInheritedConstructor()) + FD = Inherited.getConstructor(); + + // Whether the mangling of a function type includes the return type depends on + // the context and the nature of the function. The rules for deciding whether + // the return type is included are: + // + // 1. Template functions (names or types) have return types encoded, with + // the exceptions listed below. + // 2. Function types not appearing as part of a function name mangling, + // e.g. parameters, pointer types, etc., have return type encoded, with the + // exceptions listed below. + // 3. Non-template function names do not have return types encoded. + // + // The exceptions mentioned in (1) and (2) above, for which the return type is + // never included, are + // 1. Constructors. + // 2. Destructors. + // 3. Conversion operator functions, e.g. operator int. + bool MangleReturnType = false; + if (FunctionTemplateDecl *PrimaryTemplate = FD->getPrimaryTemplate()) { + if (!(isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD) || + isa<CXXConversionDecl>(FD))) + MangleReturnType = true; + + // Mangle the type of the primary template. + FD = PrimaryTemplate->getTemplatedDecl(); + } + + mangleBareFunctionType(FD->getType()->castAs<FunctionProtoType>(), + MangleReturnType, FD); +} + +static const DeclContext *IgnoreLinkageSpecDecls(const DeclContext *DC) { + while (isa<LinkageSpecDecl>(DC)) { + DC = getEffectiveParentContext(DC); + } + + return DC; +} + +/// Return whether a given namespace is the 'std' namespace. +static bool isStd(const NamespaceDecl *NS) { + if (!IgnoreLinkageSpecDecls(getEffectiveParentContext(NS)) + ->isTranslationUnit()) + return false; + + const IdentifierInfo *II = NS->getOriginalNamespace()->getIdentifier(); + return II && II->isStr("std"); +} + +// isStdNamespace - Return whether a given decl context is a toplevel 'std' +// namespace. +static bool isStdNamespace(const DeclContext *DC) { + if (!DC->isNamespace()) + return false; + + return isStd(cast<NamespaceDecl>(DC)); +} + +static const GlobalDecl +isTemplate(GlobalDecl GD, const TemplateArgumentList *&TemplateArgs) { + const NamedDecl *ND = cast<NamedDecl>(GD.getDecl()); + // Check if we have a function template. + if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)) { + if (const TemplateDecl *TD = FD->getPrimaryTemplate()) { + TemplateArgs = FD->getTemplateSpecializationArgs(); + return GD.getWithDecl(TD); + } + } + + // Check if we have a class template. + if (const ClassTemplateSpecializationDecl *Spec = + dyn_cast<ClassTemplateSpecializationDecl>(ND)) { + TemplateArgs = &Spec->getTemplateArgs(); + return GD.getWithDecl(Spec->getSpecializedTemplate()); + } + + // Check if we have a variable template. + if (const VarTemplateSpecializationDecl *Spec = + dyn_cast<VarTemplateSpecializationDecl>(ND)) { + TemplateArgs = &Spec->getTemplateArgs(); + return GD.getWithDecl(Spec->getSpecializedTemplate()); + } + + return GlobalDecl(); +} + +static TemplateName asTemplateName(GlobalDecl GD) { + const TemplateDecl *TD = dyn_cast_or_null<TemplateDecl>(GD.getDecl()); + return TemplateName(const_cast<TemplateDecl*>(TD)); +} + +void CXXNameMangler::mangleName(GlobalDecl GD) { + const NamedDecl *ND = cast<NamedDecl>(GD.getDecl()); + if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) { + // Variables should have implicit tags from its type. + AbiTagList VariableTypeAbiTags = makeVariableTypeTags(VD); + if (VariableTypeAbiTags.empty()) { + // Simple case no variable type tags. + mangleNameWithAbiTags(VD, nullptr); + return; + } + + // Mangle variable name to null stream to collect tags. + llvm::raw_null_ostream NullOutStream; + CXXNameMangler VariableNameMangler(*this, NullOutStream); + VariableNameMangler.disableDerivedAbiTags(); + VariableNameMangler.mangleNameWithAbiTags(VD, nullptr); + + // Get tags from variable type that are not present in its name. + const AbiTagList &UsedAbiTags = + VariableNameMangler.AbiTagsRoot.getSortedUniqueUsedAbiTags(); + AbiTagList AdditionalAbiTags(VariableTypeAbiTags.size()); + AdditionalAbiTags.erase( + std::set_difference(VariableTypeAbiTags.begin(), + VariableTypeAbiTags.end(), UsedAbiTags.begin(), + UsedAbiTags.end(), AdditionalAbiTags.begin()), + AdditionalAbiTags.end()); + + // Output name with implicit tags. + mangleNameWithAbiTags(VD, &AdditionalAbiTags); + } else { + mangleNameWithAbiTags(GD, nullptr); + } +} + +void CXXNameMangler::mangleNameWithAbiTags(GlobalDecl GD, + const AbiTagList *AdditionalAbiTags) { + const NamedDecl *ND = cast<NamedDecl>(GD.getDecl()); + // <name> ::= [<module-name>] <nested-name> + // ::= [<module-name>] <unscoped-name> + // ::= [<module-name>] <unscoped-template-name> <template-args> + // ::= <local-name> + // + const DeclContext *DC = getEffectiveDeclContext(ND); + + // If this is an extern variable declared locally, the relevant DeclContext + // is that of the containing namespace, or the translation unit. + // FIXME: This is a hack; extern variables declared locally should have + // a proper semantic declaration context! + if (isLocalContainerContext(DC) && ND->hasLinkage() && !isLambda(ND)) + while (!DC->isNamespace() && !DC->isTranslationUnit()) + DC = getEffectiveParentContext(DC); + else if (GetLocalClassDecl(ND)) { + mangleLocalName(GD, AdditionalAbiTags); + return; + } + + DC = IgnoreLinkageSpecDecls(DC); + + if (isLocalContainerContext(DC)) { + mangleLocalName(GD, AdditionalAbiTags); + return; + } + + // Do not mangle the owning module for an external linkage declaration. + // This enables backwards-compatibility with non-modular code, and is + // a valid choice since conflicts are not permitted by C++ Modules TS + // [basic.def.odr]/6.2. + if (!ND->hasExternalFormalLinkage()) + if (Module *M = ND->getOwningModuleForLinkage()) + mangleModuleName(M); + + if (DC->isTranslationUnit() || isStdNamespace(DC)) { + // Check if we have a template. + const TemplateArgumentList *TemplateArgs = nullptr; + if (GlobalDecl TD = isTemplate(GD, TemplateArgs)) { + mangleUnscopedTemplateName(TD, AdditionalAbiTags); + mangleTemplateArgs(asTemplateName(TD), *TemplateArgs); + return; + } + + mangleUnscopedName(GD, AdditionalAbiTags); + return; + } + + mangleNestedName(GD, DC, AdditionalAbiTags); +} + +void CXXNameMangler::mangleModuleName(const Module *M) { + // Implement the C++ Modules TS name mangling proposal; see + // https://gcc.gnu.org/wiki/cxx-modules?action=AttachFile + // + // <module-name> ::= W <unscoped-name>+ E + // ::= W <module-subst> <unscoped-name>* E + Out << 'W'; + mangleModuleNamePrefix(M->Name); + Out << 'E'; +} + +void CXXNameMangler::mangleModuleNamePrefix(StringRef Name) { + // <module-subst> ::= _ <seq-id> # 0 < seq-id < 10 + // ::= W <seq-id - 10> _ # otherwise + auto It = ModuleSubstitutions.find(Name); + if (It != ModuleSubstitutions.end()) { + if (It->second < 10) + Out << '_' << static_cast<char>('0' + It->second); + else + Out << 'W' << (It->second - 10) << '_'; + return; + } + + // FIXME: Preserve hierarchy in module names rather than flattening + // them to strings; use Module*s as substitution keys. + auto Parts = Name.rsplit('.'); + if (Parts.second.empty()) + Parts.second = Parts.first; + else + mangleModuleNamePrefix(Parts.first); + + Out << Parts.second.size() << Parts.second; + ModuleSubstitutions.insert({Name, ModuleSubstitutions.size()}); +} + +void CXXNameMangler::mangleTemplateName(const TemplateDecl *TD, + const TemplateArgument *TemplateArgs, + unsigned NumTemplateArgs) { + const DeclContext *DC = IgnoreLinkageSpecDecls(getEffectiveDeclContext(TD)); + + if (DC->isTranslationUnit() || isStdNamespace(DC)) { + mangleUnscopedTemplateName(TD, nullptr); + mangleTemplateArgs(asTemplateName(TD), TemplateArgs, NumTemplateArgs); + } else { + mangleNestedName(TD, TemplateArgs, NumTemplateArgs); + } +} + +void CXXNameMangler::mangleUnscopedName(GlobalDecl GD, + const AbiTagList *AdditionalAbiTags) { + const NamedDecl *ND = cast<NamedDecl>(GD.getDecl()); + // <unscoped-name> ::= <unqualified-name> + // ::= St <unqualified-name> # ::std:: + + if (isStdNamespace(IgnoreLinkageSpecDecls(getEffectiveDeclContext(ND)))) + Out << "St"; + + mangleUnqualifiedName(GD, AdditionalAbiTags); +} + +void CXXNameMangler::mangleUnscopedTemplateName( + GlobalDecl GD, const AbiTagList *AdditionalAbiTags) { + const TemplateDecl *ND = cast<TemplateDecl>(GD.getDecl()); + // <unscoped-template-name> ::= <unscoped-name> + // ::= <substitution> + if (mangleSubstitution(ND)) + return; + + // <template-template-param> ::= <template-param> + if (const auto *TTP = dyn_cast<TemplateTemplateParmDecl>(ND)) { + assert(!AdditionalAbiTags && + "template template param cannot have abi tags"); + mangleTemplateParameter(TTP->getDepth(), TTP->getIndex()); + } else if (isa<BuiltinTemplateDecl>(ND) || isa<ConceptDecl>(ND)) { + mangleUnscopedName(GD, AdditionalAbiTags); + } else { + mangleUnscopedName(GD.getWithDecl(ND->getTemplatedDecl()), AdditionalAbiTags); + } + + addSubstitution(ND); +} + +void CXXNameMangler::mangleFloat(const llvm::APFloat &f) { + // ABI: + // Floating-point literals are encoded using a fixed-length + // lowercase hexadecimal string corresponding to the internal + // representation (IEEE on Itanium), high-order bytes first, + // without leading zeroes. For example: "Lf bf800000 E" is -1.0f + // on Itanium. + // The 'without leading zeroes' thing seems to be an editorial + // mistake; see the discussion on cxx-abi-dev beginning on + // 2012-01-16. + + // Our requirements here are just barely weird enough to justify + // using a custom algorithm instead of post-processing APInt::toString(). + + llvm::APInt valueBits = f.bitcastToAPInt(); + unsigned numCharacters = (valueBits.getBitWidth() + 3) / 4; + assert(numCharacters != 0); + + // Allocate a buffer of the right number of characters. + SmallVector<char, 20> buffer(numCharacters); + + // Fill the buffer left-to-right. + for (unsigned stringIndex = 0; stringIndex != numCharacters; ++stringIndex) { + // The bit-index of the next hex digit. + unsigned digitBitIndex = 4 * (numCharacters - stringIndex - 1); + + // Project out 4 bits starting at 'digitIndex'. + uint64_t hexDigit = valueBits.getRawData()[digitBitIndex / 64]; + hexDigit >>= (digitBitIndex % 64); + hexDigit &= 0xF; + + // Map that over to a lowercase hex digit. + static const char charForHex[16] = { + '0', '1', '2', '3', '4', '5', '6', '7', + '8', '9', 'a', 'b', 'c', 'd', 'e', 'f' + }; + buffer[stringIndex] = charForHex[hexDigit]; + } + + Out.write(buffer.data(), numCharacters); +} + +void CXXNameMangler::mangleFloatLiteral(QualType T, const llvm::APFloat &V) { + Out << 'L'; + mangleType(T); + mangleFloat(V); + Out << 'E'; +} + +void CXXNameMangler::mangleFixedPointLiteral() { + DiagnosticsEngine &Diags = Context.getDiags(); + unsigned DiagID = Diags.getCustomDiagID( + DiagnosticsEngine::Error, "cannot mangle fixed point literals yet"); + Diags.Report(DiagID); +} + +void CXXNameMangler::mangleNullPointer(QualType T) { + // <expr-primary> ::= L <type> 0 E + Out << 'L'; + mangleType(T); + Out << "0E"; +} + +void CXXNameMangler::mangleNumber(const llvm::APSInt &Value) { + if (Value.isSigned() && Value.isNegative()) { + Out << 'n'; + Value.abs().print(Out, /*signed*/ false); + } else { + Value.print(Out, /*signed*/ false); + } +} + +void CXXNameMangler::mangleNumber(int64_t Number) { + // <number> ::= [n] <non-negative decimal integer> + if (Number < 0) { + Out << 'n'; + Number = -Number; + } + + Out << Number; +} + +void CXXNameMangler::mangleCallOffset(int64_t NonVirtual, int64_t Virtual) { + // <call-offset> ::= h <nv-offset> _ + // ::= v <v-offset> _ + // <nv-offset> ::= <offset number> # non-virtual base override + // <v-offset> ::= <offset number> _ <virtual offset number> + // # virtual base override, with vcall offset + if (!Virtual) { + Out << 'h'; + mangleNumber(NonVirtual); + Out << '_'; + return; + } + + Out << 'v'; + mangleNumber(NonVirtual); + Out << '_'; + mangleNumber(Virtual); + Out << '_'; +} + +void CXXNameMangler::manglePrefix(QualType type) { + if (const auto *TST = type->getAs<TemplateSpecializationType>()) { + if (!mangleSubstitution(QualType(TST, 0))) { + mangleTemplatePrefix(TST->getTemplateName()); + + // FIXME: GCC does not appear to mangle the template arguments when + // the template in question is a dependent template name. Should we + // emulate that badness? + mangleTemplateArgs(TST->getTemplateName(), TST->getArgs(), + TST->getNumArgs()); + addSubstitution(QualType(TST, 0)); + } + } else if (const auto *DTST = + type->getAs<DependentTemplateSpecializationType>()) { + if (!mangleSubstitution(QualType(DTST, 0))) { + TemplateName Template = getASTContext().getDependentTemplateName( + DTST->getQualifier(), DTST->getIdentifier()); + mangleTemplatePrefix(Template); + + // FIXME: GCC does not appear to mangle the template arguments when + // the template in question is a dependent template name. Should we + // emulate that badness? + mangleTemplateArgs(Template, DTST->getArgs(), DTST->getNumArgs()); + addSubstitution(QualType(DTST, 0)); + } + } else { + // We use the QualType mangle type variant here because it handles + // substitutions. + mangleType(type); + } +} + +/// Mangle everything prior to the base-unresolved-name in an unresolved-name. +/// +/// \param recursive - true if this is being called recursively, +/// i.e. if there is more prefix "to the right". +void CXXNameMangler::mangleUnresolvedPrefix(NestedNameSpecifier *qualifier, + bool recursive) { + + // x, ::x + // <unresolved-name> ::= [gs] <base-unresolved-name> + + // T::x / decltype(p)::x + // <unresolved-name> ::= sr <unresolved-type> <base-unresolved-name> + + // T::N::x /decltype(p)::N::x + // <unresolved-name> ::= srN <unresolved-type> <unresolved-qualifier-level>+ E + // <base-unresolved-name> + + // A::x, N::y, A<T>::z; "gs" means leading "::" + // <unresolved-name> ::= [gs] sr <unresolved-qualifier-level>+ E + // <base-unresolved-name> + + switch (qualifier->getKind()) { + case NestedNameSpecifier::Global: + Out << "gs"; + + // We want an 'sr' unless this is the entire NNS. + if (recursive) + Out << "sr"; + + // We never want an 'E' here. + return; + + case NestedNameSpecifier::Super: + llvm_unreachable("Can't mangle __super specifier"); + + case NestedNameSpecifier::Namespace: + if (qualifier->getPrefix()) + mangleUnresolvedPrefix(qualifier->getPrefix(), + /*recursive*/ true); + else + Out << "sr"; + mangleSourceNameWithAbiTags(qualifier->getAsNamespace()); + break; + case NestedNameSpecifier::NamespaceAlias: + if (qualifier->getPrefix()) + mangleUnresolvedPrefix(qualifier->getPrefix(), + /*recursive*/ true); + else + Out << "sr"; + mangleSourceNameWithAbiTags(qualifier->getAsNamespaceAlias()); + break; + + case NestedNameSpecifier::TypeSpec: + case NestedNameSpecifier::TypeSpecWithTemplate: { + const Type *type = qualifier->getAsType(); + + // We only want to use an unresolved-type encoding if this is one of: + // - a decltype + // - a template type parameter + // - a template template parameter with arguments + // In all of these cases, we should have no prefix. + if (qualifier->getPrefix()) { + mangleUnresolvedPrefix(qualifier->getPrefix(), + /*recursive*/ true); + } else { + // Otherwise, all the cases want this. + Out << "sr"; + } + + if (mangleUnresolvedTypeOrSimpleId(QualType(type, 0), recursive ? "N" : "")) + return; + + break; + } + + case NestedNameSpecifier::Identifier: + // Member expressions can have these without prefixes. + if (qualifier->getPrefix()) + mangleUnresolvedPrefix(qualifier->getPrefix(), + /*recursive*/ true); + else + Out << "sr"; + + mangleSourceName(qualifier->getAsIdentifier()); + // An Identifier has no type information, so we can't emit abi tags for it. + break; + } + + // If this was the innermost part of the NNS, and we fell out to + // here, append an 'E'. + if (!recursive) + Out << 'E'; +} + +/// Mangle an unresolved-name, which is generally used for names which +/// weren't resolved to specific entities. +void CXXNameMangler::mangleUnresolvedName( + NestedNameSpecifier *qualifier, DeclarationName name, + const TemplateArgumentLoc *TemplateArgs, unsigned NumTemplateArgs, + unsigned knownArity) { + if (qualifier) mangleUnresolvedPrefix(qualifier); + switch (name.getNameKind()) { + // <base-unresolved-name> ::= <simple-id> + case DeclarationName::Identifier: + mangleSourceName(name.getAsIdentifierInfo()); + break; + // <base-unresolved-name> ::= dn <destructor-name> + case DeclarationName::CXXDestructorName: + Out << "dn"; + mangleUnresolvedTypeOrSimpleId(name.getCXXNameType()); + break; + // <base-unresolved-name> ::= on <operator-name> + case DeclarationName::CXXConversionFunctionName: + case DeclarationName::CXXLiteralOperatorName: + case DeclarationName::CXXOperatorName: + Out << "on"; + mangleOperatorName(name, knownArity); + break; + case DeclarationName::CXXConstructorName: + llvm_unreachable("Can't mangle a constructor name!"); + case DeclarationName::CXXUsingDirective: + llvm_unreachable("Can't mangle a using directive name!"); + case DeclarationName::CXXDeductionGuideName: + llvm_unreachable("Can't mangle a deduction guide name!"); + case DeclarationName::ObjCMultiArgSelector: + case DeclarationName::ObjCOneArgSelector: + case DeclarationName::ObjCZeroArgSelector: + llvm_unreachable("Can't mangle Objective-C selector names here!"); + } + + // The <simple-id> and on <operator-name> productions end in an optional + // <template-args>. + if (TemplateArgs) + mangleTemplateArgs(TemplateName(), TemplateArgs, NumTemplateArgs); +} + +void CXXNameMangler::mangleUnqualifiedName(GlobalDecl GD, + DeclarationName Name, + unsigned KnownArity, + const AbiTagList *AdditionalAbiTags) { + const NamedDecl *ND = cast_or_null<NamedDecl>(GD.getDecl()); + unsigned Arity = KnownArity; + // <unqualified-name> ::= <operator-name> + // ::= <ctor-dtor-name> + // ::= <source-name> + switch (Name.getNameKind()) { + case DeclarationName::Identifier: { + const IdentifierInfo *II = Name.getAsIdentifierInfo(); + + // We mangle decomposition declarations as the names of their bindings. + if (auto *DD = dyn_cast<DecompositionDecl>(ND)) { + // FIXME: Non-standard mangling for decomposition declarations: + // + // <unqualified-name> ::= DC <source-name>* E + // + // These can never be referenced across translation units, so we do + // not need a cross-vendor mangling for anything other than demanglers. + // Proposed on cxx-abi-dev on 2016-08-12 + Out << "DC"; + for (auto *BD : DD->bindings()) + mangleSourceName(BD->getDeclName().getAsIdentifierInfo()); + Out << 'E'; + writeAbiTags(ND, AdditionalAbiTags); + break; + } + + if (auto *GD = dyn_cast<MSGuidDecl>(ND)) { + // We follow MSVC in mangling GUID declarations as if they were variables + // with a particular reserved name. Continue the pretense here. + SmallString<sizeof("_GUID_12345678_1234_1234_1234_1234567890ab")> GUID; + llvm::raw_svector_ostream GUIDOS(GUID); + Context.mangleMSGuidDecl(GD, GUIDOS); + Out << GUID.size() << GUID; + break; + } + + if (auto *TPO = dyn_cast<TemplateParamObjectDecl>(ND)) { + // Proposed in https://github.com/itanium-cxx-abi/cxx-abi/issues/63. + Out << "TA"; + mangleValueInTemplateArg(TPO->getType().getUnqualifiedType(), + TPO->getValue(), /*TopLevel=*/true); + break; + } + + if (II) { + // Match GCC's naming convention for internal linkage symbols, for + // symbols that are not actually visible outside of this TU. GCC + // distinguishes between internal and external linkage symbols in + // its mangling, to support cases like this that were valid C++ prior + // to DR426: + // + // void test() { extern void foo(); } + // static void foo(); + // + // Don't bother with the L marker for names in anonymous namespaces; the + // 12_GLOBAL__N_1 mangling is quite sufficient there, and this better + // matches GCC anyway, because GCC does not treat anonymous namespaces as + // implying internal linkage. + if (ND && ND->getFormalLinkage() == InternalLinkage && + !ND->isExternallyVisible() && + getEffectiveDeclContext(ND)->isFileContext() && + !ND->isInAnonymousNamespace()) + Out << 'L'; + + auto *FD = dyn_cast<FunctionDecl>(ND); + bool IsRegCall = FD && + FD->getType()->castAs<FunctionType>()->getCallConv() == + clang::CC_X86RegCall; + bool IsDeviceStub = + FD && FD->hasAttr<CUDAGlobalAttr>() && + GD.getKernelReferenceKind() == KernelReferenceKind::Stub; + if (IsDeviceStub) + mangleDeviceStubName(II); + else if (IsRegCall) + mangleRegCallName(II); + else + mangleSourceName(II); + + writeAbiTags(ND, AdditionalAbiTags); + break; + } + + // Otherwise, an anonymous entity. We must have a declaration. + assert(ND && "mangling empty name without declaration"); + + if (const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ND)) { + if (NS->isAnonymousNamespace()) { + // This is how gcc mangles these names. + Out << "12_GLOBAL__N_1"; + break; + } + } + + if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) { + // We must have an anonymous union or struct declaration. + const RecordDecl *RD = VD->getType()->castAs<RecordType>()->getDecl(); + + // Itanium C++ ABI 5.1.2: + // + // For the purposes of mangling, the name of an anonymous union is + // considered to be the name of the first named data member found by a + // pre-order, depth-first, declaration-order walk of the data members of + // the anonymous union. If there is no such data member (i.e., if all of + // the data members in the union are unnamed), then there is no way for + // a program to refer to the anonymous union, and there is therefore no + // need to mangle its name. + assert(RD->isAnonymousStructOrUnion() + && "Expected anonymous struct or union!"); + const FieldDecl *FD = RD->findFirstNamedDataMember(); + + // It's actually possible for various reasons for us to get here + // with an empty anonymous struct / union. Fortunately, it + // doesn't really matter what name we generate. + if (!FD) break; + assert(FD->getIdentifier() && "Data member name isn't an identifier!"); + + mangleSourceName(FD->getIdentifier()); + // Not emitting abi tags: internal name anyway. + break; + } + + // Class extensions have no name as a category, and it's possible + // for them to be the semantic parent of certain declarations + // (primarily, tag decls defined within declarations). Such + // declarations will always have internal linkage, so the name + // doesn't really matter, but we shouldn't crash on them. For + // safety, just handle all ObjC containers here. + if (isa<ObjCContainerDecl>(ND)) + break; + + // We must have an anonymous struct. + const TagDecl *TD = cast<TagDecl>(ND); + if (const TypedefNameDecl *D = TD->getTypedefNameForAnonDecl()) { + assert(TD->getDeclContext() == D->getDeclContext() && + "Typedef should not be in another decl context!"); + assert(D->getDeclName().getAsIdentifierInfo() && + "Typedef was not named!"); + mangleSourceName(D->getDeclName().getAsIdentifierInfo()); + assert(!AdditionalAbiTags && "Type cannot have additional abi tags"); + // Explicit abi tags are still possible; take from underlying type, not + // from typedef. + writeAbiTags(TD, nullptr); + break; + } + + // <unnamed-type-name> ::= <closure-type-name> + // + // <closure-type-name> ::= Ul <lambda-sig> E [ <nonnegative number> ] _ + // <lambda-sig> ::= <template-param-decl>* <parameter-type>+ + // # Parameter types or 'v' for 'void'. + if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(TD)) { + if (Record->isLambda() && Record->getLambdaManglingNumber()) { + assert(!AdditionalAbiTags && + "Lambda type cannot have additional abi tags"); + mangleLambda(Record); + break; + } + } + + if (TD->isExternallyVisible()) { + unsigned UnnamedMangle = getASTContext().getManglingNumber(TD); + Out << "Ut"; + if (UnnamedMangle > 1) + Out << UnnamedMangle - 2; + Out << '_'; + writeAbiTags(TD, AdditionalAbiTags); + break; + } + + // Get a unique id for the anonymous struct. If it is not a real output + // ID doesn't matter so use fake one. + unsigned AnonStructId = NullOut ? 0 : Context.getAnonymousStructId(TD); + + // Mangle it as a source name in the form + // [n] $_<id> + // where n is the length of the string. + SmallString<8> Str; + Str += "$_"; + Str += llvm::utostr(AnonStructId); + + Out << Str.size(); + Out << Str; + break; + } + + case DeclarationName::ObjCZeroArgSelector: + case DeclarationName::ObjCOneArgSelector: + case DeclarationName::ObjCMultiArgSelector: + llvm_unreachable("Can't mangle Objective-C selector names here!"); + + case DeclarationName::CXXConstructorName: { + const CXXRecordDecl *InheritedFrom = nullptr; + TemplateName InheritedTemplateName; + const TemplateArgumentList *InheritedTemplateArgs = nullptr; + if (auto Inherited = + cast<CXXConstructorDecl>(ND)->getInheritedConstructor()) { + InheritedFrom = Inherited.getConstructor()->getParent(); + InheritedTemplateName = + TemplateName(Inherited.getConstructor()->getPrimaryTemplate()); + InheritedTemplateArgs = + Inherited.getConstructor()->getTemplateSpecializationArgs(); + } + + if (ND == Structor) + // If the named decl is the C++ constructor we're mangling, use the type + // we were given. + mangleCXXCtorType(static_cast<CXXCtorType>(StructorType), InheritedFrom); + else + // Otherwise, use the complete constructor name. This is relevant if a + // class with a constructor is declared within a constructor. + mangleCXXCtorType(Ctor_Complete, InheritedFrom); + + // FIXME: The template arguments are part of the enclosing prefix or + // nested-name, but it's more convenient to mangle them here. + if (InheritedTemplateArgs) + mangleTemplateArgs(InheritedTemplateName, *InheritedTemplateArgs); + + writeAbiTags(ND, AdditionalAbiTags); + break; + } + + case DeclarationName::CXXDestructorName: + if (ND == Structor) + // If the named decl is the C++ destructor we're mangling, use the type we + // were given. + mangleCXXDtorType(static_cast<CXXDtorType>(StructorType)); + else + // Otherwise, use the complete destructor name. This is relevant if a + // class with a destructor is declared within a destructor. + mangleCXXDtorType(Dtor_Complete); + writeAbiTags(ND, AdditionalAbiTags); + break; + + case DeclarationName::CXXOperatorName: + if (ND && Arity == UnknownArity) { + Arity = cast<FunctionDecl>(ND)->getNumParams(); + + // If we have a member function, we need to include the 'this' pointer. + if (const auto *MD = dyn_cast<CXXMethodDecl>(ND)) + if (!MD->isStatic()) + Arity++; + } + LLVM_FALLTHROUGH; + case DeclarationName::CXXConversionFunctionName: + case DeclarationName::CXXLiteralOperatorName: + mangleOperatorName(Name, Arity); + writeAbiTags(ND, AdditionalAbiTags); + break; + + case DeclarationName::CXXDeductionGuideName: + llvm_unreachable("Can't mangle a deduction guide name!"); + + case DeclarationName::CXXUsingDirective: + llvm_unreachable("Can't mangle a using directive name!"); + } +} + +void CXXNameMangler::mangleRegCallName(const IdentifierInfo *II) { + // <source-name> ::= <positive length number> __regcall3__ <identifier> + // <number> ::= [n] <non-negative decimal integer> + // <identifier> ::= <unqualified source code identifier> + Out << II->getLength() + sizeof("__regcall3__") - 1 << "__regcall3__" + << II->getName(); +} + +void CXXNameMangler::mangleDeviceStubName(const IdentifierInfo *II) { + // <source-name> ::= <positive length number> __device_stub__ <identifier> + // <number> ::= [n] <non-negative decimal integer> + // <identifier> ::= <unqualified source code identifier> + Out << II->getLength() + sizeof("__device_stub__") - 1 << "__device_stub__" + << II->getName(); +} + +void CXXNameMangler::mangleSourceName(const IdentifierInfo *II) { + // <source-name> ::= <positive length number> <identifier> + // <number> ::= [n] <non-negative decimal integer> + // <identifier> ::= <unqualified source code identifier> + Out << II->getLength() << II->getName(); +} + +void CXXNameMangler::mangleNestedName(GlobalDecl GD, + const DeclContext *DC, + const AbiTagList *AdditionalAbiTags, + bool NoFunction) { + const NamedDecl *ND = cast<NamedDecl>(GD.getDecl()); + // <nested-name> + // ::= N [<CV-qualifiers>] [<ref-qualifier>] <prefix> <unqualified-name> E + // ::= N [<CV-qualifiers>] [<ref-qualifier>] <template-prefix> + // <template-args> E + + Out << 'N'; + if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(ND)) { + Qualifiers MethodQuals = Method->getMethodQualifiers(); + // We do not consider restrict a distinguishing attribute for overloading + // purposes so we must not mangle it. + MethodQuals.removeRestrict(); + mangleQualifiers(MethodQuals); + mangleRefQualifier(Method->getRefQualifier()); + } + + // Check if we have a template. + const TemplateArgumentList *TemplateArgs = nullptr; + if (GlobalDecl TD = isTemplate(GD, TemplateArgs)) { + mangleTemplatePrefix(TD, NoFunction); + mangleTemplateArgs(asTemplateName(TD), *TemplateArgs); + } + else { + manglePrefix(DC, NoFunction); + mangleUnqualifiedName(GD, AdditionalAbiTags); + } + + Out << 'E'; +} +void CXXNameMangler::mangleNestedName(const TemplateDecl *TD, + const TemplateArgument *TemplateArgs, + unsigned NumTemplateArgs) { + // <nested-name> ::= N [<CV-qualifiers>] <template-prefix> <template-args> E + + Out << 'N'; + + mangleTemplatePrefix(TD); + mangleTemplateArgs(asTemplateName(TD), TemplateArgs, NumTemplateArgs); + + Out << 'E'; +} + +static GlobalDecl getParentOfLocalEntity(const DeclContext *DC) { + GlobalDecl GD; + // The Itanium spec says: + // For entities in constructors and destructors, the mangling of the + // complete object constructor or destructor is used as the base function + // name, i.e. the C1 or D1 version. + if (auto *CD = dyn_cast<CXXConstructorDecl>(DC)) + GD = GlobalDecl(CD, Ctor_Complete); + else if (auto *DD = dyn_cast<CXXDestructorDecl>(DC)) + GD = GlobalDecl(DD, Dtor_Complete); + else + GD = GlobalDecl(cast<FunctionDecl>(DC)); + return GD; +} + +void CXXNameMangler::mangleLocalName(GlobalDecl GD, + const AbiTagList *AdditionalAbiTags) { + const Decl *D = GD.getDecl(); + // <local-name> := Z <function encoding> E <entity name> [<discriminator>] + // := Z <function encoding> E s [<discriminator>] + // <local-name> := Z <function encoding> E d [ <parameter number> ] + // _ <entity name> + // <discriminator> := _ <non-negative number> + assert(isa<NamedDecl>(D) || isa<BlockDecl>(D)); + const RecordDecl *RD = GetLocalClassDecl(D); + const DeclContext *DC = getEffectiveDeclContext(RD ? RD : D); + + Out << 'Z'; + + { + AbiTagState LocalAbiTags(AbiTags); + + if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(DC)) + mangleObjCMethodName(MD); + else if (const BlockDecl *BD = dyn_cast<BlockDecl>(DC)) + mangleBlockForPrefix(BD); + else + mangleFunctionEncoding(getParentOfLocalEntity(DC)); + + // Implicit ABI tags (from namespace) are not available in the following + // entity; reset to actually emitted tags, which are available. + LocalAbiTags.setUsedAbiTags(LocalAbiTags.getEmittedAbiTags()); + } + + Out << 'E'; + + // GCC 5.3.0 doesn't emit derived ABI tags for local names but that seems to + // be a bug that is fixed in trunk. + + if (RD) { + // The parameter number is omitted for the last parameter, 0 for the + // second-to-last parameter, 1 for the third-to-last parameter, etc. The + // <entity name> will of course contain a <closure-type-name>: Its + // numbering will be local to the particular argument in which it appears + // -- other default arguments do not affect its encoding. + const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD); + if (CXXRD && CXXRD->isLambda()) { + if (const ParmVarDecl *Parm + = dyn_cast_or_null<ParmVarDecl>(CXXRD->getLambdaContextDecl())) { + if (const FunctionDecl *Func + = dyn_cast<FunctionDecl>(Parm->getDeclContext())) { + Out << 'd'; + unsigned Num = Func->getNumParams() - Parm->getFunctionScopeIndex(); + if (Num > 1) + mangleNumber(Num - 2); + Out << '_'; + } + } + } + + // Mangle the name relative to the closest enclosing function. + // equality ok because RD derived from ND above + if (D == RD) { + mangleUnqualifiedName(RD, AdditionalAbiTags); + } else if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) { + manglePrefix(getEffectiveDeclContext(BD), true /*NoFunction*/); + assert(!AdditionalAbiTags && "Block cannot have additional abi tags"); + mangleUnqualifiedBlock(BD); + } else { + const NamedDecl *ND = cast<NamedDecl>(D); + mangleNestedName(GD, getEffectiveDeclContext(ND), AdditionalAbiTags, + true /*NoFunction*/); + } + } else if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) { + // Mangle a block in a default parameter; see above explanation for + // lambdas. + if (const ParmVarDecl *Parm + = dyn_cast_or_null<ParmVarDecl>(BD->getBlockManglingContextDecl())) { + if (const FunctionDecl *Func + = dyn_cast<FunctionDecl>(Parm->getDeclContext())) { + Out << 'd'; + unsigned Num = Func->getNumParams() - Parm->getFunctionScopeIndex(); + if (Num > 1) + mangleNumber(Num - 2); + Out << '_'; + } + } + + assert(!AdditionalAbiTags && "Block cannot have additional abi tags"); + mangleUnqualifiedBlock(BD); + } else { + mangleUnqualifiedName(GD, AdditionalAbiTags); + } + + if (const NamedDecl *ND = dyn_cast<NamedDecl>(RD ? RD : D)) { + unsigned disc; + if (Context.getNextDiscriminator(ND, disc)) { + if (disc < 10) + Out << '_' << disc; + else + Out << "__" << disc << '_'; + } + } +} + +void CXXNameMangler::mangleBlockForPrefix(const BlockDecl *Block) { + if (GetLocalClassDecl(Block)) { + mangleLocalName(Block, /* AdditionalAbiTags */ nullptr); + return; + } + const DeclContext *DC = getEffectiveDeclContext(Block); + if (isLocalContainerContext(DC)) { + mangleLocalName(Block, /* AdditionalAbiTags */ nullptr); + return; + } + manglePrefix(getEffectiveDeclContext(Block)); + mangleUnqualifiedBlock(Block); +} + +void CXXNameMangler::mangleUnqualifiedBlock(const BlockDecl *Block) { + if (Decl *Context = Block->getBlockManglingContextDecl()) { + if ((isa<VarDecl>(Context) || isa<FieldDecl>(Context)) && + Context->getDeclContext()->isRecord()) { + const auto *ND = cast<NamedDecl>(Context); + if (ND->getIdentifier()) { + mangleSourceNameWithAbiTags(ND); + Out << 'M'; + } + } + } + + // If we have a block mangling number, use it. + unsigned Number = Block->getBlockManglingNumber(); + // Otherwise, just make up a number. It doesn't matter what it is because + // the symbol in question isn't externally visible. + if (!Number) + Number = Context.getBlockId(Block, false); + else { + // Stored mangling numbers are 1-based. + --Number; + } + Out << "Ub"; + if (Number > 0) + Out << Number - 1; + Out << '_'; +} + +// <template-param-decl> +// ::= Ty # template type parameter +// ::= Tn <type> # template non-type parameter +// ::= Tt <template-param-decl>* E # template template parameter +// ::= Tp <template-param-decl> # template parameter pack +void CXXNameMangler::mangleTemplateParamDecl(const NamedDecl *Decl) { + if (auto *Ty = dyn_cast<TemplateTypeParmDecl>(Decl)) { + if (Ty->isParameterPack()) + Out << "Tp"; + Out << "Ty"; + } else if (auto *Tn = dyn_cast<NonTypeTemplateParmDecl>(Decl)) { + if (Tn->isExpandedParameterPack()) { + for (unsigned I = 0, N = Tn->getNumExpansionTypes(); I != N; ++I) { + Out << "Tn"; + mangleType(Tn->getExpansionType(I)); + } + } else { + QualType T = Tn->getType(); + if (Tn->isParameterPack()) { + Out << "Tp"; + if (auto *PackExpansion = T->getAs<PackExpansionType>()) + T = PackExpansion->getPattern(); + } + Out << "Tn"; + mangleType(T); + } + } else if (auto *Tt = dyn_cast<TemplateTemplateParmDecl>(Decl)) { + if (Tt->isExpandedParameterPack()) { + for (unsigned I = 0, N = Tt->getNumExpansionTemplateParameters(); I != N; + ++I) { + Out << "Tt"; + for (auto *Param : *Tt->getExpansionTemplateParameters(I)) + mangleTemplateParamDecl(Param); + Out << "E"; + } + } else { + if (Tt->isParameterPack()) + Out << "Tp"; + Out << "Tt"; + for (auto *Param : *Tt->getTemplateParameters()) + mangleTemplateParamDecl(Param); + Out << "E"; + } + } +} + +void CXXNameMangler::mangleLambda(const CXXRecordDecl *Lambda) { + // If the context of a closure type is an initializer for a class member + // (static or nonstatic), it is encoded in a qualified name with a final + // <prefix> of the form: + // + // <data-member-prefix> := <member source-name> M + // + // Technically, the data-member-prefix is part of the <prefix>. However, + // since a closure type will always be mangled with a prefix, it's easier + // to emit that last part of the prefix here. + if (Decl *Context = Lambda->getLambdaContextDecl()) { + if ((isa<VarDecl>(Context) || isa<FieldDecl>(Context)) && + !isa<ParmVarDecl>(Context)) { + // FIXME: 'inline auto [a, b] = []{ return ... };' does not get a + // reasonable mangling here. + if (const IdentifierInfo *Name + = cast<NamedDecl>(Context)->getIdentifier()) { + mangleSourceName(Name); + const TemplateArgumentList *TemplateArgs = nullptr; + if (GlobalDecl TD = isTemplate(cast<NamedDecl>(Context), TemplateArgs)) + mangleTemplateArgs(asTemplateName(TD), *TemplateArgs); + Out << 'M'; + } + } + } + + Out << "Ul"; + mangleLambdaSig(Lambda); + Out << "E"; + + // The number is omitted for the first closure type with a given + // <lambda-sig> in a given context; it is n-2 for the nth closure type + // (in lexical order) with that same <lambda-sig> and context. + // + // The AST keeps track of the number for us. + // + // In CUDA/HIP, to ensure the consistent lamba numbering between the device- + // and host-side compilations, an extra device mangle context may be created + // if the host-side CXX ABI has different numbering for lambda. In such case, + // if the mangle context is that device-side one, use the device-side lambda + // mangling number for this lambda. + unsigned Number = Context.isDeviceMangleContext() + ? Lambda->getDeviceLambdaManglingNumber() + : Lambda->getLambdaManglingNumber(); + assert(Number > 0 && "Lambda should be mangled as an unnamed class"); + if (Number > 1) + mangleNumber(Number - 2); + Out << '_'; +} + +void CXXNameMangler::mangleLambdaSig(const CXXRecordDecl *Lambda) { + for (auto *D : Lambda->getLambdaExplicitTemplateParameters()) + mangleTemplateParamDecl(D); + auto *Proto = + Lambda->getLambdaTypeInfo()->getType()->castAs<FunctionProtoType>(); + mangleBareFunctionType(Proto, /*MangleReturnType=*/false, + Lambda->getLambdaStaticInvoker()); +} + +void CXXNameMangler::manglePrefix(NestedNameSpecifier *qualifier) { + switch (qualifier->getKind()) { + case NestedNameSpecifier::Global: + // nothing + return; + + case NestedNameSpecifier::Super: + llvm_unreachable("Can't mangle __super specifier"); + + case NestedNameSpecifier::Namespace: + mangleName(qualifier->getAsNamespace()); + return; + + case NestedNameSpecifier::NamespaceAlias: + mangleName(qualifier->getAsNamespaceAlias()->getNamespace()); + return; + + case NestedNameSpecifier::TypeSpec: + case NestedNameSpecifier::TypeSpecWithTemplate: + manglePrefix(QualType(qualifier->getAsType(), 0)); + return; + + case NestedNameSpecifier::Identifier: + // Member expressions can have these without prefixes, but that + // should end up in mangleUnresolvedPrefix instead. + assert(qualifier->getPrefix()); + manglePrefix(qualifier->getPrefix()); + + mangleSourceName(qualifier->getAsIdentifier()); + return; + } + + llvm_unreachable("unexpected nested name specifier"); +} + +void CXXNameMangler::manglePrefix(const DeclContext *DC, bool NoFunction) { + // <prefix> ::= <prefix> <unqualified-name> + // ::= <template-prefix> <template-args> + // ::= <template-param> + // ::= # empty + // ::= <substitution> + + DC = IgnoreLinkageSpecDecls(DC); + + if (DC->isTranslationUnit()) + return; + + if (NoFunction && isLocalContainerContext(DC)) + return; + + assert(!isLocalContainerContext(DC)); + + const NamedDecl *ND = cast<NamedDecl>(DC); + if (mangleSubstitution(ND)) + return; + + // Check if we have a template. + const TemplateArgumentList *TemplateArgs = nullptr; + if (GlobalDecl TD = isTemplate(ND, TemplateArgs)) { + mangleTemplatePrefix(TD); + mangleTemplateArgs(asTemplateName(TD), *TemplateArgs); + } else { + manglePrefix(getEffectiveDeclContext(ND), NoFunction); + mangleUnqualifiedName(ND, nullptr); + } + + addSubstitution(ND); +} + +void CXXNameMangler::mangleTemplatePrefix(TemplateName Template) { + // <template-prefix> ::= <prefix> <template unqualified-name> + // ::= <template-param> + // ::= <substitution> + if (TemplateDecl *TD = Template.getAsTemplateDecl()) + return mangleTemplatePrefix(TD); + + DependentTemplateName *Dependent = Template.getAsDependentTemplateName(); + assert(Dependent && "unexpected template name kind"); + + // Clang 11 and before mangled the substitution for a dependent template name + // after already having emitted (a substitution for) the prefix. + bool Clang11Compat = getASTContext().getLangOpts().getClangABICompat() <= + LangOptions::ClangABI::Ver11; + if (!Clang11Compat && mangleSubstitution(Template)) + return; + + if (NestedNameSpecifier *Qualifier = Dependent->getQualifier()) + manglePrefix(Qualifier); + + if (Clang11Compat && mangleSubstitution(Template)) + return; + + if (const IdentifierInfo *Id = Dependent->getIdentifier()) + mangleSourceName(Id); + else + mangleOperatorName(Dependent->getOperator(), UnknownArity); + + addSubstitution(Template); +} + +void CXXNameMangler::mangleTemplatePrefix(GlobalDecl GD, + bool NoFunction) { + const TemplateDecl *ND = cast<TemplateDecl>(GD.getDecl()); + // <template-prefix> ::= <prefix> <template unqualified-name> + // ::= <template-param> + // ::= <substitution> + // <template-template-param> ::= <template-param> + // <substitution> + + if (mangleSubstitution(ND)) + return; + + // <template-template-param> ::= <template-param> + if (const auto *TTP = dyn_cast<TemplateTemplateParmDecl>(ND)) { + mangleTemplateParameter(TTP->getDepth(), TTP->getIndex()); + } else { + manglePrefix(getEffectiveDeclContext(ND), NoFunction); + if (isa<BuiltinTemplateDecl>(ND) || isa<ConceptDecl>(ND)) + mangleUnqualifiedName(GD, nullptr); + else + mangleUnqualifiedName(GD.getWithDecl(ND->getTemplatedDecl()), nullptr); + } + + addSubstitution(ND); +} + +/// Mangles a template name under the production <type>. Required for +/// template template arguments. +/// <type> ::= <class-enum-type> +/// ::= <template-param> +/// ::= <substitution> +void CXXNameMangler::mangleType(TemplateName TN) { + if (mangleSubstitution(TN)) + return; + + TemplateDecl *TD = nullptr; + + switch (TN.getKind()) { + case TemplateName::QualifiedTemplate: + TD = TN.getAsQualifiedTemplateName()->getTemplateDecl(); + goto HaveDecl; + + case TemplateName::Template: + TD = TN.getAsTemplateDecl(); + goto HaveDecl; + + HaveDecl: + if (auto *TTP = dyn_cast<TemplateTemplateParmDecl>(TD)) + mangleTemplateParameter(TTP->getDepth(), TTP->getIndex()); + else + mangleName(TD); + break; + + case TemplateName::OverloadedTemplate: + case TemplateName::AssumedTemplate: + llvm_unreachable("can't mangle an overloaded template name as a <type>"); + + case TemplateName::DependentTemplate: { + const DependentTemplateName *Dependent = TN.getAsDependentTemplateName(); + assert(Dependent->isIdentifier()); + + // <class-enum-type> ::= <name> + // <name> ::= <nested-name> + mangleUnresolvedPrefix(Dependent->getQualifier()); + mangleSourceName(Dependent->getIdentifier()); + break; + } + + case TemplateName::SubstTemplateTemplateParm: { + // Substituted template parameters are mangled as the substituted + // template. This will check for the substitution twice, which is + // fine, but we have to return early so that we don't try to *add* + // the substitution twice. + SubstTemplateTemplateParmStorage *subst + = TN.getAsSubstTemplateTemplateParm(); + mangleType(subst->getReplacement()); + return; + } + + case TemplateName::SubstTemplateTemplateParmPack: { + // FIXME: not clear how to mangle this! + // template <template <class> class T...> class A { + // template <template <class> class U...> void foo(B<T,U> x...); + // }; + Out << "_SUBSTPACK_"; + break; + } + } + + addSubstitution(TN); +} + +bool CXXNameMangler::mangleUnresolvedTypeOrSimpleId(QualType Ty, + StringRef Prefix) { + // Only certain other types are valid as prefixes; enumerate them. + switch (Ty->getTypeClass()) { + case Type::Builtin: + case Type::Complex: + case Type::Adjusted: + case Type::Decayed: + case Type::Pointer: + case Type::BlockPointer: + case Type::LValueReference: + case Type::RValueReference: + case Type::MemberPointer: + case Type::ConstantArray: + case Type::IncompleteArray: + case Type::VariableArray: + case Type::DependentSizedArray: + case Type::DependentAddressSpace: + case Type::DependentVector: + case Type::DependentSizedExtVector: + case Type::Vector: + case Type::ExtVector: + case Type::ConstantMatrix: + case Type::DependentSizedMatrix: + case Type::FunctionProto: + case Type::FunctionNoProto: + case Type::Paren: + case Type::Attributed: + case Type::Auto: + case Type::DeducedTemplateSpecialization: + case Type::PackExpansion: + case Type::ObjCObject: + case Type::ObjCInterface: + case Type::ObjCObjectPointer: + case Type::ObjCTypeParam: + case Type::Atomic: + case Type::Pipe: + case Type::MacroQualified: + case Type::ExtInt: + case Type::DependentExtInt: + llvm_unreachable("type is illegal as a nested name specifier"); + + case Type::SubstTemplateTypeParmPack: + // FIXME: not clear how to mangle this! + // template <class T...> class A { + // template <class U...> void foo(decltype(T::foo(U())) x...); + // }; + Out << "_SUBSTPACK_"; + break; + + // <unresolved-type> ::= <template-param> + // ::= <decltype> + // ::= <template-template-param> <template-args> + // (this last is not official yet) + case Type::TypeOfExpr: + case Type::TypeOf: + case Type::Decltype: + case Type::TemplateTypeParm: + case Type::UnaryTransform: + case Type::SubstTemplateTypeParm: + unresolvedType: + // Some callers want a prefix before the mangled type. + Out << Prefix; + + // This seems to do everything we want. It's not really + // sanctioned for a substituted template parameter, though. + mangleType(Ty); + + // We never want to print 'E' directly after an unresolved-type, + // so we return directly. + return true; + + case Type::Typedef: + mangleSourceNameWithAbiTags(cast<TypedefType>(Ty)->getDecl()); + break; + + case Type::UnresolvedUsing: + mangleSourceNameWithAbiTags( + cast<UnresolvedUsingType>(Ty)->getDecl()); + break; + + case Type::Enum: + case Type::Record: + mangleSourceNameWithAbiTags(cast<TagType>(Ty)->getDecl()); + break; + + case Type::TemplateSpecialization: { + const TemplateSpecializationType *TST = + cast<TemplateSpecializationType>(Ty); + TemplateName TN = TST->getTemplateName(); + switch (TN.getKind()) { + case TemplateName::Template: + case TemplateName::QualifiedTemplate: { + TemplateDecl *TD = TN.getAsTemplateDecl(); + + // If the base is a template template parameter, this is an + // unresolved type. + assert(TD && "no template for template specialization type"); + if (isa<TemplateTemplateParmDecl>(TD)) + goto unresolvedType; + + mangleSourceNameWithAbiTags(TD); + break; + } + + case TemplateName::OverloadedTemplate: + case TemplateName::AssumedTemplate: + case TemplateName::DependentTemplate: + llvm_unreachable("invalid base for a template specialization type"); + + case TemplateName::SubstTemplateTemplateParm: { + SubstTemplateTemplateParmStorage *subst = + TN.getAsSubstTemplateTemplateParm(); + mangleExistingSubstitution(subst->getReplacement()); + break; + } + + case TemplateName::SubstTemplateTemplateParmPack: { + // FIXME: not clear how to mangle this! + // template <template <class U> class T...> class A { + // template <class U...> void foo(decltype(T<U>::foo) x...); + // }; + Out << "_SUBSTPACK_"; + break; + } + } + + // Note: we don't pass in the template name here. We are mangling the + // original source-level template arguments, so we shouldn't consider + // conversions to the corresponding template parameter. + // FIXME: Other compilers mangle partially-resolved template arguments in + // unresolved-qualifier-levels. + mangleTemplateArgs(TemplateName(), TST->getArgs(), TST->getNumArgs()); + break; + } + + case Type::InjectedClassName: + mangleSourceNameWithAbiTags( + cast<InjectedClassNameType>(Ty)->getDecl()); + break; + + case Type::DependentName: + mangleSourceName(cast<DependentNameType>(Ty)->getIdentifier()); + break; + + case Type::DependentTemplateSpecialization: { + const DependentTemplateSpecializationType *DTST = + cast<DependentTemplateSpecializationType>(Ty); + TemplateName Template = getASTContext().getDependentTemplateName( + DTST->getQualifier(), DTST->getIdentifier()); + mangleSourceName(DTST->getIdentifier()); + mangleTemplateArgs(Template, DTST->getArgs(), DTST->getNumArgs()); + break; + } + + case Type::Elaborated: + return mangleUnresolvedTypeOrSimpleId( + cast<ElaboratedType>(Ty)->getNamedType(), Prefix); + } + + return false; +} + +void CXXNameMangler::mangleOperatorName(DeclarationName Name, unsigned Arity) { + switch (Name.getNameKind()) { + case DeclarationName::CXXConstructorName: + case DeclarationName::CXXDestructorName: + case DeclarationName::CXXDeductionGuideName: + case DeclarationName::CXXUsingDirective: + case DeclarationName::Identifier: + case DeclarationName::ObjCMultiArgSelector: + case DeclarationName::ObjCOneArgSelector: + case DeclarationName::ObjCZeroArgSelector: + llvm_unreachable("Not an operator name"); + + case DeclarationName::CXXConversionFunctionName: + // <operator-name> ::= cv <type> # (cast) + Out << "cv"; + mangleType(Name.getCXXNameType()); + break; + + case DeclarationName::CXXLiteralOperatorName: + Out << "li"; + mangleSourceName(Name.getCXXLiteralIdentifier()); + return; + + case DeclarationName::CXXOperatorName: + mangleOperatorName(Name.getCXXOverloadedOperator(), Arity); + break; + } +} + +void +CXXNameMangler::mangleOperatorName(OverloadedOperatorKind OO, unsigned Arity) { + switch (OO) { + // <operator-name> ::= nw # new + case OO_New: Out << "nw"; break; + // ::= na # new[] + case OO_Array_New: Out << "na"; break; + // ::= dl # delete + case OO_Delete: Out << "dl"; break; + // ::= da # delete[] + case OO_Array_Delete: Out << "da"; break; + // ::= ps # + (unary) + // ::= pl # + (binary or unknown) + case OO_Plus: + Out << (Arity == 1? "ps" : "pl"); break; + // ::= ng # - (unary) + // ::= mi # - (binary or unknown) + case OO_Minus: + Out << (Arity == 1? "ng" : "mi"); break; + // ::= ad # & (unary) + // ::= an # & (binary or unknown) + case OO_Amp: + Out << (Arity == 1? "ad" : "an"); break; + // ::= de # * (unary) + // ::= ml # * (binary or unknown) + case OO_Star: + // Use binary when unknown. + Out << (Arity == 1? "de" : "ml"); break; + // ::= co # ~ + case OO_Tilde: Out << "co"; break; + // ::= dv # / + case OO_Slash: Out << "dv"; break; + // ::= rm # % + case OO_Percent: Out << "rm"; break; + // ::= or # | + case OO_Pipe: Out << "or"; break; + // ::= eo # ^ + case OO_Caret: Out << "eo"; break; + // ::= aS # = + case OO_Equal: Out << "aS"; break; + // ::= pL # += + case OO_PlusEqual: Out << "pL"; break; + // ::= mI # -= + case OO_MinusEqual: Out << "mI"; break; + // ::= mL # *= + case OO_StarEqual: Out << "mL"; break; + // ::= dV # /= + case OO_SlashEqual: Out << "dV"; break; + // ::= rM # %= + case OO_PercentEqual: Out << "rM"; break; + // ::= aN # &= + case OO_AmpEqual: Out << "aN"; break; + // ::= oR # |= + case OO_PipeEqual: Out << "oR"; break; + // ::= eO # ^= + case OO_CaretEqual: Out << "eO"; break; + // ::= ls # << + case OO_LessLess: Out << "ls"; break; + // ::= rs # >> + case OO_GreaterGreater: Out << "rs"; break; + // ::= lS # <<= + case OO_LessLessEqual: Out << "lS"; break; + // ::= rS # >>= + case OO_GreaterGreaterEqual: Out << "rS"; break; + // ::= eq # == + case OO_EqualEqual: Out << "eq"; break; + // ::= ne # != + case OO_ExclaimEqual: Out << "ne"; break; + // ::= lt # < + case OO_Less: Out << "lt"; break; + // ::= gt # > + case OO_Greater: Out << "gt"; break; + // ::= le # <= + case OO_LessEqual: Out << "le"; break; + // ::= ge # >= + case OO_GreaterEqual: Out << "ge"; break; + // ::= nt # ! + case OO_Exclaim: Out << "nt"; break; + // ::= aa # && + case OO_AmpAmp: Out << "aa"; break; + // ::= oo # || + case OO_PipePipe: Out << "oo"; break; + // ::= pp # ++ + case OO_PlusPlus: Out << "pp"; break; + // ::= mm # -- + case OO_MinusMinus: Out << "mm"; break; + // ::= cm # , + case OO_Comma: Out << "cm"; break; + // ::= pm # ->* + case OO_ArrowStar: Out << "pm"; break; + // ::= pt # -> + case OO_Arrow: Out << "pt"; break; + // ::= cl # () + case OO_Call: Out << "cl"; break; + // ::= ix # [] + case OO_Subscript: Out << "ix"; break; + + // ::= qu # ? + // The conditional operator can't be overloaded, but we still handle it when + // mangling expressions. + case OO_Conditional: Out << "qu"; break; + // Proposal on cxx-abi-dev, 2015-10-21. + // ::= aw # co_await + case OO_Coawait: Out << "aw"; break; + // Proposed in cxx-abi github issue 43. + // ::= ss # <=> + case OO_Spaceship: Out << "ss"; break; + + case OO_None: + case NUM_OVERLOADED_OPERATORS: + llvm_unreachable("Not an overloaded operator"); + } +} + +void CXXNameMangler::mangleQualifiers(Qualifiers Quals, const DependentAddressSpaceType *DAST) { + // Vendor qualifiers come first and if they are order-insensitive they must + // be emitted in reversed alphabetical order, see Itanium ABI 5.1.5. + + // <type> ::= U <addrspace-expr> + if (DAST) { + Out << "U2ASI"; + mangleExpression(DAST->getAddrSpaceExpr()); + Out << "E"; + } + + // Address space qualifiers start with an ordinary letter. + if (Quals.hasAddressSpace()) { + // Address space extension: + // + // <type> ::= U <target-addrspace> + // <type> ::= U <OpenCL-addrspace> + // <type> ::= U <CUDA-addrspace> + + SmallString<64> ASString; + LangAS AS = Quals.getAddressSpace(); + + if (Context.getASTContext().addressSpaceMapManglingFor(AS)) { + // <target-addrspace> ::= "AS" <address-space-number> + unsigned TargetAS = Context.getASTContext().getTargetAddressSpace(AS); + if (TargetAS != 0) + ASString = "AS" + llvm::utostr(TargetAS); + } else { + switch (AS) { + default: llvm_unreachable("Not a language specific address space"); + // <OpenCL-addrspace> ::= "CL" [ "global" | "local" | "constant" | + // "private"| "generic" | "device" | + // "host" ] + case LangAS::opencl_global: + ASString = "CLglobal"; + break; + case LangAS::opencl_global_device: + ASString = "CLdevice"; + break; + case LangAS::opencl_global_host: + ASString = "CLhost"; + break; + case LangAS::opencl_local: + ASString = "CLlocal"; + break; + case LangAS::opencl_constant: + ASString = "CLconstant"; + break; + case LangAS::opencl_private: + ASString = "CLprivate"; + break; + case LangAS::opencl_generic: + ASString = "CLgeneric"; + break; + // <CUDA-addrspace> ::= "CU" [ "device" | "constant" | "shared" ] + case LangAS::cuda_device: + ASString = "CUdevice"; + break; + case LangAS::cuda_constant: + ASString = "CUconstant"; + break; + case LangAS::cuda_shared: + ASString = "CUshared"; + break; + // <ptrsize-addrspace> ::= [ "ptr32_sptr" | "ptr32_uptr" | "ptr64" ] + case LangAS::ptr32_sptr: + ASString = "ptr32_sptr"; + break; + case LangAS::ptr32_uptr: + ASString = "ptr32_uptr"; + break; + case LangAS::ptr64: + ASString = "ptr64"; + break; + } + } + if (!ASString.empty()) + mangleVendorQualifier(ASString); + } + + // The ARC ownership qualifiers start with underscores. + // Objective-C ARC Extension: + // + // <type> ::= U "__strong" + // <type> ::= U "__weak" + // <type> ::= U "__autoreleasing" + // + // Note: we emit __weak first to preserve the order as + // required by the Itanium ABI. + if (Quals.getObjCLifetime() == Qualifiers::OCL_Weak) + mangleVendorQualifier("__weak"); + + // __unaligned (from -fms-extensions) + if (Quals.hasUnaligned()) + mangleVendorQualifier("__unaligned"); + + // Remaining ARC ownership qualifiers. + switch (Quals.getObjCLifetime()) { + case Qualifiers::OCL_None: + break; + + case Qualifiers::OCL_Weak: + // Do nothing as we already handled this case above. + break; + + case Qualifiers::OCL_Strong: + mangleVendorQualifier("__strong"); + break; + + case Qualifiers::OCL_Autoreleasing: + mangleVendorQualifier("__autoreleasing"); + break; + + case Qualifiers::OCL_ExplicitNone: + // The __unsafe_unretained qualifier is *not* mangled, so that + // __unsafe_unretained types in ARC produce the same manglings as the + // equivalent (but, naturally, unqualified) types in non-ARC, providing + // better ABI compatibility. + // + // It's safe to do this because unqualified 'id' won't show up + // in any type signatures that need to be mangled. + break; + } + + // <CV-qualifiers> ::= [r] [V] [K] # restrict (C99), volatile, const + if (Quals.hasRestrict()) + Out << 'r'; + if (Quals.hasVolatile()) + Out << 'V'; + if (Quals.hasConst()) + Out << 'K'; +} + +void CXXNameMangler::mangleVendorQualifier(StringRef name) { + Out << 'U' << name.size() << name; +} + +void CXXNameMangler::mangleRefQualifier(RefQualifierKind RefQualifier) { + // <ref-qualifier> ::= R # lvalue reference + // ::= O # rvalue-reference + switch (RefQualifier) { + case RQ_None: + break; + + case RQ_LValue: + Out << 'R'; + break; + + case RQ_RValue: + Out << 'O'; + break; + } +} + +void CXXNameMangler::mangleObjCMethodName(const ObjCMethodDecl *MD) { + Context.mangleObjCMethodNameAsSourceName(MD, Out); +} + +static bool isTypeSubstitutable(Qualifiers Quals, const Type *Ty, + ASTContext &Ctx) { + if (Quals) + return true; + if (Ty->isSpecificBuiltinType(BuiltinType::ObjCSel)) + return true; + if (Ty->isOpenCLSpecificType()) + return true; + if (Ty->isBuiltinType()) + return false; + // Through to Clang 6.0, we accidentally treated undeduced auto types as + // substitution candidates. + if (Ctx.getLangOpts().getClangABICompat() > LangOptions::ClangABI::Ver6 && + isa<AutoType>(Ty)) + return false; + // A placeholder type for class template deduction is substitutable with + // its corresponding template name; this is handled specially when mangling + // the type. + if (auto *DeducedTST = Ty->getAs<DeducedTemplateSpecializationType>()) + if (DeducedTST->getDeducedType().isNull()) + return false; + return true; +} + +void CXXNameMangler::mangleType(QualType T) { + // If our type is instantiation-dependent but not dependent, we mangle + // it as it was written in the source, removing any top-level sugar. + // Otherwise, use the canonical type. + // + // FIXME: This is an approximation of the instantiation-dependent name + // mangling rules, since we should really be using the type as written and + // augmented via semantic analysis (i.e., with implicit conversions and + // default template arguments) for any instantiation-dependent type. + // Unfortunately, that requires several changes to our AST: + // - Instantiation-dependent TemplateSpecializationTypes will need to be + // uniqued, so that we can handle substitutions properly + // - Default template arguments will need to be represented in the + // TemplateSpecializationType, since they need to be mangled even though + // they aren't written. + // - Conversions on non-type template arguments need to be expressed, since + // they can affect the mangling of sizeof/alignof. + // + // FIXME: This is wrong when mapping to the canonical type for a dependent + // type discards instantiation-dependent portions of the type, such as for: + // + // template<typename T, int N> void f(T (&)[sizeof(N)]); + // template<typename T> void f(T() throw(typename T::type)); (pre-C++17) + // + // It's also wrong in the opposite direction when instantiation-dependent, + // canonically-equivalent types differ in some irrelevant portion of inner + // type sugar. In such cases, we fail to form correct substitutions, eg: + // + // template<int N> void f(A<sizeof(N)> *, A<sizeof(N)> (*)); + // + // We should instead canonicalize the non-instantiation-dependent parts, + // regardless of whether the type as a whole is dependent or instantiation + // dependent. + if (!T->isInstantiationDependentType() || T->isDependentType()) + T = T.getCanonicalType(); + else { + // Desugar any types that are purely sugar. + do { + // Don't desugar through template specialization types that aren't + // type aliases. We need to mangle the template arguments as written. + if (const TemplateSpecializationType *TST + = dyn_cast<TemplateSpecializationType>(T)) + if (!TST->isTypeAlias()) + break; + + // FIXME: We presumably shouldn't strip off ElaboratedTypes with + // instantation-dependent qualifiers. See + // https://github.com/itanium-cxx-abi/cxx-abi/issues/114. + + QualType Desugared + = T.getSingleStepDesugaredType(Context.getASTContext()); + if (Desugared == T) + break; + + T = Desugared; + } while (true); + } + SplitQualType split = T.split(); + Qualifiers quals = split.Quals; + const Type *ty = split.Ty; + + bool isSubstitutable = + isTypeSubstitutable(quals, ty, Context.getASTContext()); + if (isSubstitutable && mangleSubstitution(T)) + return; + + // If we're mangling a qualified array type, push the qualifiers to + // the element type. + if (quals && isa<ArrayType>(T)) { + ty = Context.getASTContext().getAsArrayType(T); + quals = Qualifiers(); + + // Note that we don't update T: we want to add the + // substitution at the original type. + } + + if (quals || ty->isDependentAddressSpaceType()) { + if (const DependentAddressSpaceType *DAST = + dyn_cast<DependentAddressSpaceType>(ty)) { + SplitQualType splitDAST = DAST->getPointeeType().split(); + mangleQualifiers(splitDAST.Quals, DAST); + mangleType(QualType(splitDAST.Ty, 0)); + } else { + mangleQualifiers(quals); + + // Recurse: even if the qualified type isn't yet substitutable, + // the unqualified type might be. + mangleType(QualType(ty, 0)); + } + } else { + switch (ty->getTypeClass()) { +#define ABSTRACT_TYPE(CLASS, PARENT) +#define NON_CANONICAL_TYPE(CLASS, PARENT) \ + case Type::CLASS: \ + llvm_unreachable("can't mangle non-canonical type " #CLASS "Type"); \ + return; +#define TYPE(CLASS, PARENT) \ + case Type::CLASS: \ + mangleType(static_cast<const CLASS##Type*>(ty)); \ + break; +#include "clang/AST/TypeNodes.inc" + } + } + + // Add the substitution. + if (isSubstitutable) + addSubstitution(T); +} + +void CXXNameMangler::mangleNameOrStandardSubstitution(const NamedDecl *ND) { + if (!mangleStandardSubstitution(ND)) + mangleName(ND); +} + +void CXXNameMangler::mangleType(const BuiltinType *T) { + // <type> ::= <builtin-type> + // <builtin-type> ::= v # void + // ::= w # wchar_t + // ::= b # bool + // ::= c # char + // ::= a # signed char + // ::= h # unsigned char + // ::= s # short + // ::= t # unsigned short + // ::= i # int + // ::= j # unsigned int + // ::= l # long + // ::= m # unsigned long + // ::= x # long long, __int64 + // ::= y # unsigned long long, __int64 + // ::= n # __int128 + // ::= o # unsigned __int128 + // ::= f # float + // ::= d # double + // ::= e # long double, __float80 + // ::= g # __float128 + // UNSUPPORTED: ::= Dd # IEEE 754r decimal floating point (64 bits) + // UNSUPPORTED: ::= De # IEEE 754r decimal floating point (128 bits) + // UNSUPPORTED: ::= Df # IEEE 754r decimal floating point (32 bits) + // ::= Dh # IEEE 754r half-precision floating point (16 bits) + // ::= DF <number> _ # ISO/IEC TS 18661 binary floating point type _FloatN (N bits); + // ::= Di # char32_t + // ::= Ds # char16_t + // ::= Dn # std::nullptr_t (i.e., decltype(nullptr)) + // ::= u <source-name> # vendor extended type + std::string type_name; + switch (T->getKind()) { + case BuiltinType::Void: + Out << 'v'; + break; + case BuiltinType::Bool: + Out << 'b'; + break; + case BuiltinType::Char_U: + case BuiltinType::Char_S: + Out << 'c'; + break; + case BuiltinType::UChar: + Out << 'h'; + break; + case BuiltinType::UShort: + Out << 't'; + break; + case BuiltinType::UInt: + Out << 'j'; + break; + case BuiltinType::ULong: + Out << 'm'; + break; + case BuiltinType::ULongLong: + Out << 'y'; + break; + case BuiltinType::UInt128: + Out << 'o'; + break; + case BuiltinType::SChar: + Out << 'a'; + break; + case BuiltinType::WChar_S: + case BuiltinType::WChar_U: + Out << 'w'; + break; + case BuiltinType::Char8: + Out << "Du"; + break; + case BuiltinType::Char16: + Out << "Ds"; + break; + case BuiltinType::Char32: + Out << "Di"; + break; + case BuiltinType::Short: + Out << 's'; + break; + case BuiltinType::Int: + Out << 'i'; + break; + case BuiltinType::Long: + Out << 'l'; + break; + case BuiltinType::LongLong: + Out << 'x'; + break; + case BuiltinType::Int128: + Out << 'n'; + break; + case BuiltinType::Float16: + Out << "DF16_"; + break; + case BuiltinType::ShortAccum: + case BuiltinType::Accum: + case BuiltinType::LongAccum: + case BuiltinType::UShortAccum: + case BuiltinType::UAccum: + case BuiltinType::ULongAccum: + case BuiltinType::ShortFract: + case BuiltinType::Fract: + case BuiltinType::LongFract: + case BuiltinType::UShortFract: + case BuiltinType::UFract: + case BuiltinType::ULongFract: + case BuiltinType::SatShortAccum: + case BuiltinType::SatAccum: + case BuiltinType::SatLongAccum: + case BuiltinType::SatUShortAccum: + case BuiltinType::SatUAccum: + case BuiltinType::SatULongAccum: + case BuiltinType::SatShortFract: + case BuiltinType::SatFract: + case BuiltinType::SatLongFract: + case BuiltinType::SatUShortFract: + case BuiltinType::SatUFract: + case BuiltinType::SatULongFract: + llvm_unreachable("Fixed point types are disabled for c++"); + case BuiltinType::Half: + Out << "Dh"; + break; + case BuiltinType::Float: + Out << 'f'; + break; + case BuiltinType::Double: + Out << 'd'; + break; + case BuiltinType::LongDouble: { + const TargetInfo *TI = getASTContext().getLangOpts().OpenMP && + getASTContext().getLangOpts().OpenMPIsDevice + ? getASTContext().getAuxTargetInfo() + : &getASTContext().getTargetInfo(); + Out << TI->getLongDoubleMangling(); + break; + } + case BuiltinType::Float128: { + const TargetInfo *TI = getASTContext().getLangOpts().OpenMP && + getASTContext().getLangOpts().OpenMPIsDevice + ? getASTContext().getAuxTargetInfo() + : &getASTContext().getTargetInfo(); + Out << TI->getFloat128Mangling(); + break; + } + case BuiltinType::BFloat16: { + const TargetInfo *TI = &getASTContext().getTargetInfo(); + Out << TI->getBFloat16Mangling(); + break; + } + case BuiltinType::NullPtr: + Out << "Dn"; + break; + +#define BUILTIN_TYPE(Id, SingletonId) +#define PLACEHOLDER_TYPE(Id, SingletonId) \ + case BuiltinType::Id: +#include "clang/AST/BuiltinTypes.def" + case BuiltinType::Dependent: + if (!NullOut) + llvm_unreachable("mangling a placeholder type"); + break; + case BuiltinType::ObjCId: + Out << "11objc_object"; + break; + case BuiltinType::ObjCClass: + Out << "10objc_class"; + break; + case BuiltinType::ObjCSel: + Out << "13objc_selector"; + break; +#define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \ + case BuiltinType::Id: \ + type_name = "ocl_" #ImgType "_" #Suffix; \ + Out << type_name.size() << type_name; \ + break; +#include "clang/Basic/OpenCLImageTypes.def" + case BuiltinType::OCLSampler: + Out << "11ocl_sampler"; + break; + case BuiltinType::OCLEvent: + Out << "9ocl_event"; + break; + case BuiltinType::OCLClkEvent: + Out << "12ocl_clkevent"; + break; + case BuiltinType::OCLQueue: + Out << "9ocl_queue"; + break; + case BuiltinType::OCLReserveID: + Out << "13ocl_reserveid"; + break; +#define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \ + case BuiltinType::Id: \ + type_name = "ocl_" #ExtType; \ + Out << type_name.size() << type_name; \ + break; +#include "clang/Basic/OpenCLExtensionTypes.def" + // The SVE types are effectively target-specific. The mangling scheme + // is defined in the appendices to the Procedure Call Standard for the + // Arm Architecture. +#define SVE_VECTOR_TYPE(InternalName, MangledName, Id, SingletonId, NumEls, \ + ElBits, IsSigned, IsFP, IsBF) \ + case BuiltinType::Id: \ + type_name = MangledName; \ + Out << (type_name == InternalName ? "u" : "") << type_name.size() \ + << type_name; \ + break; +#define SVE_PREDICATE_TYPE(InternalName, MangledName, Id, SingletonId, NumEls) \ + case BuiltinType::Id: \ + type_name = MangledName; \ + Out << (type_name == InternalName ? "u" : "") << type_name.size() \ + << type_name; \ + break; +#include "clang/Basic/AArch64SVEACLETypes.def" +#define PPC_VECTOR_TYPE(Name, Id, Size) \ + case BuiltinType::Id: \ + type_name = #Name; \ + Out << 'u' << type_name.size() << type_name; \ + break; +#include "clang/Basic/PPCTypes.def" + } +} + +StringRef CXXNameMangler::getCallingConvQualifierName(CallingConv CC) { + switch (CC) { + case CC_C: + return ""; + + case CC_X86VectorCall: + case CC_X86Pascal: + case CC_X86RegCall: + case CC_AAPCS: + case CC_AAPCS_VFP: + case CC_AArch64VectorCall: + case CC_IntelOclBicc: + case CC_SpirFunction: + case CC_OpenCLKernel: + case CC_PreserveMost: + case CC_PreserveAll: + // FIXME: we should be mangling all of the above. + return ""; + + case CC_X86ThisCall: + // FIXME: To match mingw GCC, thiscall should only be mangled in when it is + // used explicitly. At this point, we don't have that much information in + // the AST, since clang tends to bake the convention into the canonical + // function type. thiscall only rarely used explicitly, so don't mangle it + // for now. + return ""; + + case CC_X86StdCall: + return "stdcall"; + case CC_X86FastCall: + return "fastcall"; + case CC_X86_64SysV: + return "sysv_abi"; + case CC_Win64: + return "ms_abi"; + case CC_Swift: + return "swiftcall"; + } + llvm_unreachable("bad calling convention"); +} + +void CXXNameMangler::mangleExtFunctionInfo(const FunctionType *T) { + // Fast path. + if (T->getExtInfo() == FunctionType::ExtInfo()) + return; + + // Vendor-specific qualifiers are emitted in reverse alphabetical order. + // This will get more complicated in the future if we mangle other + // things here; but for now, since we mangle ns_returns_retained as + // a qualifier on the result type, we can get away with this: + StringRef CCQualifier = getCallingConvQualifierName(T->getExtInfo().getCC()); + if (!CCQualifier.empty()) + mangleVendorQualifier(CCQualifier); + + // FIXME: regparm + // FIXME: noreturn +} + +void +CXXNameMangler::mangleExtParameterInfo(FunctionProtoType::ExtParameterInfo PI) { + // Vendor-specific qualifiers are emitted in reverse alphabetical order. + + // Note that these are *not* substitution candidates. Demanglers might + // have trouble with this if the parameter type is fully substituted. + + switch (PI.getABI()) { + case ParameterABI::Ordinary: + break; + + // All of these start with "swift", so they come before "ns_consumed". + case ParameterABI::SwiftContext: + case ParameterABI::SwiftErrorResult: + case ParameterABI::SwiftIndirectResult: + mangleVendorQualifier(getParameterABISpelling(PI.getABI())); + break; + } + + if (PI.isConsumed()) + mangleVendorQualifier("ns_consumed"); + + if (PI.isNoEscape()) + mangleVendorQualifier("noescape"); +} + +// <type> ::= <function-type> +// <function-type> ::= [<CV-qualifiers>] F [Y] +// <bare-function-type> [<ref-qualifier>] E +void CXXNameMangler::mangleType(const FunctionProtoType *T) { + mangleExtFunctionInfo(T); + + // Mangle CV-qualifiers, if present. These are 'this' qualifiers, + // e.g. "const" in "int (A::*)() const". + mangleQualifiers(T->getMethodQuals()); + + // Mangle instantiation-dependent exception-specification, if present, + // per cxx-abi-dev proposal on 2016-10-11. + if (T->hasInstantiationDependentExceptionSpec()) { + if (isComputedNoexcept(T->getExceptionSpecType())) { + Out << "DO"; + mangleExpression(T->getNoexceptExpr()); + Out << "E"; + } else { + assert(T->getExceptionSpecType() == EST_Dynamic); + Out << "Dw"; + for (auto ExceptTy : T->exceptions()) + mangleType(ExceptTy); + Out << "E"; + } + } else if (T->isNothrow()) { + Out << "Do"; + } + + Out << 'F'; + + // FIXME: We don't have enough information in the AST to produce the 'Y' + // encoding for extern "C" function types. + mangleBareFunctionType(T, /*MangleReturnType=*/true); + + // Mangle the ref-qualifier, if present. + mangleRefQualifier(T->getRefQualifier()); + + Out << 'E'; +} + +void CXXNameMangler::mangleType(const FunctionNoProtoType *T) { + // Function types without prototypes can arise when mangling a function type + // within an overloadable function in C. We mangle these as the absence of any + // parameter types (not even an empty parameter list). + Out << 'F'; + + FunctionTypeDepthState saved = FunctionTypeDepth.push(); + + FunctionTypeDepth.enterResultType(); + mangleType(T->getReturnType()); + FunctionTypeDepth.leaveResultType(); + + FunctionTypeDepth.pop(saved); + Out << 'E'; +} + +void CXXNameMangler::mangleBareFunctionType(const FunctionProtoType *Proto, + bool MangleReturnType, + const FunctionDecl *FD) { + // Record that we're in a function type. See mangleFunctionParam + // for details on what we're trying to achieve here. + FunctionTypeDepthState saved = FunctionTypeDepth.push(); + + // <bare-function-type> ::= <signature type>+ + if (MangleReturnType) { + FunctionTypeDepth.enterResultType(); + + // Mangle ns_returns_retained as an order-sensitive qualifier here. + if (Proto->getExtInfo().getProducesResult() && FD == nullptr) + mangleVendorQualifier("ns_returns_retained"); + + // Mangle the return type without any direct ARC ownership qualifiers. + QualType ReturnTy = Proto->getReturnType(); + if (ReturnTy.getObjCLifetime()) { + auto SplitReturnTy = ReturnTy.split(); + SplitReturnTy.Quals.removeObjCLifetime(); + ReturnTy = getASTContext().getQualifiedType(SplitReturnTy); + } + mangleType(ReturnTy); + + FunctionTypeDepth.leaveResultType(); + } + + if (Proto->getNumParams() == 0 && !Proto->isVariadic()) { + // <builtin-type> ::= v # void + Out << 'v'; + + FunctionTypeDepth.pop(saved); + return; + } + + assert(!FD || FD->getNumParams() == Proto->getNumParams()); + for (unsigned I = 0, E = Proto->getNumParams(); I != E; ++I) { + // Mangle extended parameter info as order-sensitive qualifiers here. + if (Proto->hasExtParameterInfos() && FD == nullptr) { + mangleExtParameterInfo(Proto->getExtParameterInfo(I)); + } + + // Mangle the type. + QualType ParamTy = Proto->getParamType(I); + mangleType(Context.getASTContext().getSignatureParameterType(ParamTy)); + + if (FD) { + if (auto *Attr = FD->getParamDecl(I)->getAttr<PassObjectSizeAttr>()) { + // Attr can only take 1 character, so we can hardcode the length below. + assert(Attr->getType() <= 9 && Attr->getType() >= 0); + if (Attr->isDynamic()) + Out << "U25pass_dynamic_object_size" << Attr->getType(); + else + Out << "U17pass_object_size" << Attr->getType(); + } + } + } + + FunctionTypeDepth.pop(saved); + + // <builtin-type> ::= z # ellipsis + if (Proto->isVariadic()) + Out << 'z'; +} + +// <type> ::= <class-enum-type> +// <class-enum-type> ::= <name> +void CXXNameMangler::mangleType(const UnresolvedUsingType *T) { + mangleName(T->getDecl()); +} + +// <type> ::= <class-enum-type> +// <class-enum-type> ::= <name> +void CXXNameMangler::mangleType(const EnumType *T) { + mangleType(static_cast<const TagType*>(T)); +} +void CXXNameMangler::mangleType(const RecordType *T) { + mangleType(static_cast<const TagType*>(T)); +} +void CXXNameMangler::mangleType(const TagType *T) { + mangleName(T->getDecl()); +} + +// <type> ::= <array-type> +// <array-type> ::= A <positive dimension number> _ <element type> +// ::= A [<dimension expression>] _ <element type> +void CXXNameMangler::mangleType(const ConstantArrayType *T) { + Out << 'A' << T->getSize() << '_'; + mangleType(T->getElementType()); +} +void CXXNameMangler::mangleType(const VariableArrayType *T) { + Out << 'A'; + // decayed vla types (size 0) will just be skipped. + if (T->getSizeExpr()) + mangleExpression(T->getSizeExpr()); + Out << '_'; + mangleType(T->getElementType()); +} +void CXXNameMangler::mangleType(const DependentSizedArrayType *T) { + Out << 'A'; + mangleExpression(T->getSizeExpr()); + Out << '_'; + mangleType(T->getElementType()); +} +void CXXNameMangler::mangleType(const IncompleteArrayType *T) { + Out << "A_"; + mangleType(T->getElementType()); +} + +// <type> ::= <pointer-to-member-type> +// <pointer-to-member-type> ::= M <class type> <member type> +void CXXNameMangler::mangleType(const MemberPointerType *T) { + Out << 'M'; + mangleType(QualType(T->getClass(), 0)); + QualType PointeeType = T->getPointeeType(); + if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(PointeeType)) { + mangleType(FPT); + + // Itanium C++ ABI 5.1.8: + // + // The type of a non-static member function is considered to be different, + // for the purposes of substitution, from the type of a namespace-scope or + // static member function whose type appears similar. The types of two + // non-static member functions are considered to be different, for the + // purposes of substitution, if the functions are members of different + // classes. In other words, for the purposes of substitution, the class of + // which the function is a member is considered part of the type of + // function. + + // Given that we already substitute member function pointers as a + // whole, the net effect of this rule is just to unconditionally + // suppress substitution on the function type in a member pointer. + // We increment the SeqID here to emulate adding an entry to the + // substitution table. + ++SeqID; + } else + mangleType(PointeeType); +} + +// <type> ::= <template-param> +void CXXNameMangler::mangleType(const TemplateTypeParmType *T) { + mangleTemplateParameter(T->getDepth(), T->getIndex()); +} + +// <type> ::= <template-param> +void CXXNameMangler::mangleType(const SubstTemplateTypeParmPackType *T) { + // FIXME: not clear how to mangle this! + // template <class T...> class A { + // template <class U...> void foo(T(*)(U) x...); + // }; + Out << "_SUBSTPACK_"; +} + +// <type> ::= P <type> # pointer-to +void CXXNameMangler::mangleType(const PointerType *T) { + Out << 'P'; + mangleType(T->getPointeeType()); +} +void CXXNameMangler::mangleType(const ObjCObjectPointerType *T) { + Out << 'P'; + mangleType(T->getPointeeType()); +} + +// <type> ::= R <type> # reference-to +void CXXNameMangler::mangleType(const LValueReferenceType *T) { + Out << 'R'; + mangleType(T->getPointeeType()); +} + +// <type> ::= O <type> # rvalue reference-to (C++0x) +void CXXNameMangler::mangleType(const RValueReferenceType *T) { + Out << 'O'; + mangleType(T->getPointeeType()); +} + +// <type> ::= C <type> # complex pair (C 2000) +void CXXNameMangler::mangleType(const ComplexType *T) { + Out << 'C'; + mangleType(T->getElementType()); +} + +// ARM's ABI for Neon vector types specifies that they should be mangled as +// if they are structs (to match ARM's initial implementation). The +// vector type must be one of the special types predefined by ARM. +void CXXNameMangler::mangleNeonVectorType(const VectorType *T) { + QualType EltType = T->getElementType(); + assert(EltType->isBuiltinType() && "Neon vector element not a BuiltinType"); + const char *EltName = nullptr; + if (T->getVectorKind() == VectorType::NeonPolyVector) { + switch (cast<BuiltinType>(EltType)->getKind()) { + case BuiltinType::SChar: + case BuiltinType::UChar: + EltName = "poly8_t"; + break; + case BuiltinType::Short: + case BuiltinType::UShort: + EltName = "poly16_t"; + break; + case BuiltinType::LongLong: + case BuiltinType::ULongLong: + EltName = "poly64_t"; + break; + default: llvm_unreachable("unexpected Neon polynomial vector element type"); + } + } else { + switch (cast<BuiltinType>(EltType)->getKind()) { + case BuiltinType::SChar: EltName = "int8_t"; break; + case BuiltinType::UChar: EltName = "uint8_t"; break; + case BuiltinType::Short: EltName = "int16_t"; break; + case BuiltinType::UShort: EltName = "uint16_t"; break; + case BuiltinType::Int: EltName = "int32_t"; break; + case BuiltinType::UInt: EltName = "uint32_t"; break; + case BuiltinType::LongLong: EltName = "int64_t"; break; + case BuiltinType::ULongLong: EltName = "uint64_t"; break; + case BuiltinType::Double: EltName = "float64_t"; break; + case BuiltinType::Float: EltName = "float32_t"; break; + case BuiltinType::Half: EltName = "float16_t"; break; + case BuiltinType::BFloat16: EltName = "bfloat16_t"; break; + default: + llvm_unreachable("unexpected Neon vector element type"); + } + } + const char *BaseName = nullptr; + unsigned BitSize = (T->getNumElements() * + getASTContext().getTypeSize(EltType)); + if (BitSize == 64) + BaseName = "__simd64_"; + else { + assert(BitSize == 128 && "Neon vector type not 64 or 128 bits"); + BaseName = "__simd128_"; + } + Out << strlen(BaseName) + strlen(EltName); + Out << BaseName << EltName; +} + +void CXXNameMangler::mangleNeonVectorType(const DependentVectorType *T) { + DiagnosticsEngine &Diags = Context.getDiags(); + unsigned DiagID = Diags.getCustomDiagID( + DiagnosticsEngine::Error, + "cannot mangle this dependent neon vector type yet"); + Diags.Report(T->getAttributeLoc(), DiagID); +} + +static StringRef mangleAArch64VectorBase(const BuiltinType *EltType) { + switch (EltType->getKind()) { + case BuiltinType::SChar: + return "Int8"; + case BuiltinType::Short: + return "Int16"; + case BuiltinType::Int: + return "Int32"; + case BuiltinType::Long: + case BuiltinType::LongLong: + return "Int64"; + case BuiltinType::UChar: + return "Uint8"; + case BuiltinType::UShort: + return "Uint16"; + case BuiltinType::UInt: + return "Uint32"; + case BuiltinType::ULong: + case BuiltinType::ULongLong: + return "Uint64"; + case BuiltinType::Half: + return "Float16"; + case BuiltinType::Float: + return "Float32"; + case BuiltinType::Double: + return "Float64"; + case BuiltinType::BFloat16: + return "Bfloat16"; + default: + llvm_unreachable("Unexpected vector element base type"); + } +} + +// AArch64's ABI for Neon vector types specifies that they should be mangled as +// the equivalent internal name. The vector type must be one of the special +// types predefined by ARM. +void CXXNameMangler::mangleAArch64NeonVectorType(const VectorType *T) { + QualType EltType = T->getElementType(); + assert(EltType->isBuiltinType() && "Neon vector element not a BuiltinType"); + unsigned BitSize = + (T->getNumElements() * getASTContext().getTypeSize(EltType)); + (void)BitSize; // Silence warning. + + assert((BitSize == 64 || BitSize == 128) && + "Neon vector type not 64 or 128 bits"); + + StringRef EltName; + if (T->getVectorKind() == VectorType::NeonPolyVector) { + switch (cast<BuiltinType>(EltType)->getKind()) { + case BuiltinType::UChar: + EltName = "Poly8"; + break; + case BuiltinType::UShort: + EltName = "Poly16"; + break; + case BuiltinType::ULong: + case BuiltinType::ULongLong: + EltName = "Poly64"; + break; + default: + llvm_unreachable("unexpected Neon polynomial vector element type"); + } + } else + EltName = mangleAArch64VectorBase(cast<BuiltinType>(EltType)); + + std::string TypeName = + ("__" + EltName + "x" + Twine(T->getNumElements()) + "_t").str(); + Out << TypeName.length() << TypeName; +} +void CXXNameMangler::mangleAArch64NeonVectorType(const DependentVectorType *T) { + DiagnosticsEngine &Diags = Context.getDiags(); + unsigned DiagID = Diags.getCustomDiagID( + DiagnosticsEngine::Error, + "cannot mangle this dependent neon vector type yet"); + Diags.Report(T->getAttributeLoc(), DiagID); +} + +// The AArch64 ACLE specifies that fixed-length SVE vector and predicate types +// defined with the 'arm_sve_vector_bits' attribute map to the same AAPCS64 +// type as the sizeless variants. +// +// The mangling scheme for VLS types is implemented as a "pseudo" template: +// +// '__SVE_VLS<<type>, <vector length>>' +// +// Combining the existing SVE type and a specific vector length (in bits). +// For example: +// +// typedef __SVInt32_t foo __attribute__((arm_sve_vector_bits(512))); +// +// is described as '__SVE_VLS<__SVInt32_t, 512u>' and mangled as: +// +// "9__SVE_VLSI" + base type mangling + "Lj" + __ARM_FEATURE_SVE_BITS + "EE" +// +// i.e. 9__SVE_VLSIu11__SVInt32_tLj512EE +// +// The latest ACLE specification (00bet5) does not contain details of this +// mangling scheme, it will be specified in the next revision. The mangling +// scheme is otherwise defined in the appendices to the Procedure Call Standard +// for the Arm Architecture, see +// https://github.com/ARM-software/abi-aa/blob/master/aapcs64/aapcs64.rst#appendix-c-mangling +void CXXNameMangler::mangleAArch64FixedSveVectorType(const VectorType *T) { + assert((T->getVectorKind() == VectorType::SveFixedLengthDataVector || + T->getVectorKind() == VectorType::SveFixedLengthPredicateVector) && + "expected fixed-length SVE vector!"); + + QualType EltType = T->getElementType(); + assert(EltType->isBuiltinType() && + "expected builtin type for fixed-length SVE vector!"); + + StringRef TypeName; + switch (cast<BuiltinType>(EltType)->getKind()) { + case BuiltinType::SChar: + TypeName = "__SVInt8_t"; + break; + case BuiltinType::UChar: { + if (T->getVectorKind() == VectorType::SveFixedLengthDataVector) + TypeName = "__SVUint8_t"; + else + TypeName = "__SVBool_t"; + break; + } + case BuiltinType::Short: + TypeName = "__SVInt16_t"; + break; + case BuiltinType::UShort: + TypeName = "__SVUint16_t"; + break; + case BuiltinType::Int: + TypeName = "__SVInt32_t"; + break; + case BuiltinType::UInt: + TypeName = "__SVUint32_t"; + break; + case BuiltinType::Long: + TypeName = "__SVInt64_t"; + break; + case BuiltinType::ULong: + TypeName = "__SVUint64_t"; + break; + case BuiltinType::Half: + TypeName = "__SVFloat16_t"; + break; + case BuiltinType::Float: + TypeName = "__SVFloat32_t"; + break; + case BuiltinType::Double: + TypeName = "__SVFloat64_t"; + break; + case BuiltinType::BFloat16: + TypeName = "__SVBfloat16_t"; + break; + default: + llvm_unreachable("unexpected element type for fixed-length SVE vector!"); + } + + unsigned VecSizeInBits = getASTContext().getTypeInfo(T).Width; + + if (T->getVectorKind() == VectorType::SveFixedLengthPredicateVector) + VecSizeInBits *= 8; + + Out << "9__SVE_VLSI" << 'u' << TypeName.size() << TypeName << "Lj" + << VecSizeInBits << "EE"; +} + +void CXXNameMangler::mangleAArch64FixedSveVectorType( + const DependentVectorType *T) { + DiagnosticsEngine &Diags = Context.getDiags(); + unsigned DiagID = Diags.getCustomDiagID( + DiagnosticsEngine::Error, + "cannot mangle this dependent fixed-length SVE vector type yet"); + Diags.Report(T->getAttributeLoc(), DiagID); +} + +// GNU extension: vector types +// <type> ::= <vector-type> +// <vector-type> ::= Dv <positive dimension number> _ +// <extended element type> +// ::= Dv [<dimension expression>] _ <element type> +// <extended element type> ::= <element type> +// ::= p # AltiVec vector pixel +// ::= b # Altivec vector bool +void CXXNameMangler::mangleType(const VectorType *T) { + if ((T->getVectorKind() == VectorType::NeonVector || + T->getVectorKind() == VectorType::NeonPolyVector)) { + llvm::Triple Target = getASTContext().getTargetInfo().getTriple(); + llvm::Triple::ArchType Arch = + getASTContext().getTargetInfo().getTriple().getArch(); + if ((Arch == llvm::Triple::aarch64 || + Arch == llvm::Triple::aarch64_be) && !Target.isOSDarwin()) + mangleAArch64NeonVectorType(T); + else + mangleNeonVectorType(T); + return; + } else if (T->getVectorKind() == VectorType::SveFixedLengthDataVector || + T->getVectorKind() == VectorType::SveFixedLengthPredicateVector) { + mangleAArch64FixedSveVectorType(T); + return; + } + Out << "Dv" << T->getNumElements() << '_'; + if (T->getVectorKind() == VectorType::AltiVecPixel) + Out << 'p'; + else if (T->getVectorKind() == VectorType::AltiVecBool) + Out << 'b'; + else + mangleType(T->getElementType()); +} + +void CXXNameMangler::mangleType(const DependentVectorType *T) { + if ((T->getVectorKind() == VectorType::NeonVector || + T->getVectorKind() == VectorType::NeonPolyVector)) { + llvm::Triple Target = getASTContext().getTargetInfo().getTriple(); + llvm::Triple::ArchType Arch = + getASTContext().getTargetInfo().getTriple().getArch(); + if ((Arch == llvm::Triple::aarch64 || Arch == llvm::Triple::aarch64_be) && + !Target.isOSDarwin()) + mangleAArch64NeonVectorType(T); + else + mangleNeonVectorType(T); + return; + } else if (T->getVectorKind() == VectorType::SveFixedLengthDataVector || + T->getVectorKind() == VectorType::SveFixedLengthPredicateVector) { + mangleAArch64FixedSveVectorType(T); + return; + } + + Out << "Dv"; + mangleExpression(T->getSizeExpr()); + Out << '_'; + if (T->getVectorKind() == VectorType::AltiVecPixel) + Out << 'p'; + else if (T->getVectorKind() == VectorType::AltiVecBool) + Out << 'b'; + else + mangleType(T->getElementType()); +} + +void CXXNameMangler::mangleType(const ExtVectorType *T) { + mangleType(static_cast<const VectorType*>(T)); +} +void CXXNameMangler::mangleType(const DependentSizedExtVectorType *T) { + Out << "Dv"; + mangleExpression(T->getSizeExpr()); + Out << '_'; + mangleType(T->getElementType()); +} + +void CXXNameMangler::mangleType(const ConstantMatrixType *T) { + // Mangle matrix types as a vendor extended type: + // u<Len>matrix_typeI<Rows><Columns><element type>E + + StringRef VendorQualifier = "matrix_type"; + Out << "u" << VendorQualifier.size() << VendorQualifier; + + Out << "I"; + auto &ASTCtx = getASTContext(); + unsigned BitWidth = ASTCtx.getTypeSize(ASTCtx.getSizeType()); + llvm::APSInt Rows(BitWidth); + Rows = T->getNumRows(); + mangleIntegerLiteral(ASTCtx.getSizeType(), Rows); + llvm::APSInt Columns(BitWidth); + Columns = T->getNumColumns(); + mangleIntegerLiteral(ASTCtx.getSizeType(), Columns); + mangleType(T->getElementType()); + Out << "E"; +} + +void CXXNameMangler::mangleType(const DependentSizedMatrixType *T) { + // Mangle matrix types as a vendor extended type: + // u<Len>matrix_typeI<row expr><column expr><element type>E + StringRef VendorQualifier = "matrix_type"; + Out << "u" << VendorQualifier.size() << VendorQualifier; + + Out << "I"; + mangleTemplateArgExpr(T->getRowExpr()); + mangleTemplateArgExpr(T->getColumnExpr()); + mangleType(T->getElementType()); + Out << "E"; +} + +void CXXNameMangler::mangleType(const DependentAddressSpaceType *T) { + SplitQualType split = T->getPointeeType().split(); + mangleQualifiers(split.Quals, T); + mangleType(QualType(split.Ty, 0)); +} + +void CXXNameMangler::mangleType(const PackExpansionType *T) { + // <type> ::= Dp <type> # pack expansion (C++0x) + Out << "Dp"; + mangleType(T->getPattern()); +} + +void CXXNameMangler::mangleType(const ObjCInterfaceType *T) { + mangleSourceName(T->getDecl()->getIdentifier()); +} + +void CXXNameMangler::mangleType(const ObjCObjectType *T) { + // Treat __kindof as a vendor extended type qualifier. + if (T->isKindOfType()) + Out << "U8__kindof"; + + if (!T->qual_empty()) { + // Mangle protocol qualifiers. + SmallString<64> QualStr; + llvm::raw_svector_ostream QualOS(QualStr); + QualOS << "objcproto"; + for (const auto *I : T->quals()) { + StringRef name = I->getName(); + QualOS << name.size() << name; + } + Out << 'U' << QualStr.size() << QualStr; + } + + mangleType(T->getBaseType()); + + if (T->isSpecialized()) { + // Mangle type arguments as I <type>+ E + Out << 'I'; + for (auto typeArg : T->getTypeArgs()) + mangleType(typeArg); + Out << 'E'; + } +} + +void CXXNameMangler::mangleType(const BlockPointerType *T) { + Out << "U13block_pointer"; + mangleType(T->getPointeeType()); +} + +void CXXNameMangler::mangleType(const InjectedClassNameType *T) { + // Mangle injected class name types as if the user had written the + // specialization out fully. It may not actually be possible to see + // this mangling, though. + mangleType(T->getInjectedSpecializationType()); +} + +void CXXNameMangler::mangleType(const TemplateSpecializationType *T) { + if (TemplateDecl *TD = T->getTemplateName().getAsTemplateDecl()) { + mangleTemplateName(TD, T->getArgs(), T->getNumArgs()); + } else { + if (mangleSubstitution(QualType(T, 0))) + return; + + mangleTemplatePrefix(T->getTemplateName()); + + // FIXME: GCC does not appear to mangle the template arguments when + // the template in question is a dependent template name. Should we + // emulate that badness? + mangleTemplateArgs(T->getTemplateName(), T->getArgs(), T->getNumArgs()); + addSubstitution(QualType(T, 0)); + } +} + +void CXXNameMangler::mangleType(const DependentNameType *T) { + // Proposal by cxx-abi-dev, 2014-03-26 + // <class-enum-type> ::= <name> # non-dependent or dependent type name or + // # dependent elaborated type specifier using + // # 'typename' + // ::= Ts <name> # dependent elaborated type specifier using + // # 'struct' or 'class' + // ::= Tu <name> # dependent elaborated type specifier using + // # 'union' + // ::= Te <name> # dependent elaborated type specifier using + // # 'enum' + switch (T->getKeyword()) { + case ETK_None: + case ETK_Typename: + break; + case ETK_Struct: + case ETK_Class: + case ETK_Interface: + Out << "Ts"; + break; + case ETK_Union: + Out << "Tu"; + break; + case ETK_Enum: + Out << "Te"; + break; + } + // Typename types are always nested + Out << 'N'; + manglePrefix(T->getQualifier()); + mangleSourceName(T->getIdentifier()); + Out << 'E'; +} + +void CXXNameMangler::mangleType(const DependentTemplateSpecializationType *T) { + // Dependently-scoped template types are nested if they have a prefix. + Out << 'N'; + + // TODO: avoid making this TemplateName. + TemplateName Prefix = + getASTContext().getDependentTemplateName(T->getQualifier(), + T->getIdentifier()); + mangleTemplatePrefix(Prefix); + + // FIXME: GCC does not appear to mangle the template arguments when + // the template in question is a dependent template name. Should we + // emulate that badness? + mangleTemplateArgs(Prefix, T->getArgs(), T->getNumArgs()); + Out << 'E'; +} + +void CXXNameMangler::mangleType(const TypeOfType *T) { + // FIXME: this is pretty unsatisfactory, but there isn't an obvious + // "extension with parameters" mangling. + Out << "u6typeof"; +} + +void CXXNameMangler::mangleType(const TypeOfExprType *T) { + // FIXME: this is pretty unsatisfactory, but there isn't an obvious + // "extension with parameters" mangling. + Out << "u6typeof"; +} + +void CXXNameMangler::mangleType(const DecltypeType *T) { + Expr *E = T->getUnderlyingExpr(); + + // type ::= Dt <expression> E # decltype of an id-expression + // # or class member access + // ::= DT <expression> E # decltype of an expression + + // This purports to be an exhaustive list of id-expressions and + // class member accesses. Note that we do not ignore parentheses; + // parentheses change the semantics of decltype for these + // expressions (and cause the mangler to use the other form). + if (isa<DeclRefExpr>(E) || + isa<MemberExpr>(E) || + isa<UnresolvedLookupExpr>(E) || + isa<DependentScopeDeclRefExpr>(E) || + isa<CXXDependentScopeMemberExpr>(E) || + isa<UnresolvedMemberExpr>(E)) + Out << "Dt"; + else + Out << "DT"; + mangleExpression(E); + Out << 'E'; +} + +void CXXNameMangler::mangleType(const UnaryTransformType *T) { + // If this is dependent, we need to record that. If not, we simply + // mangle it as the underlying type since they are equivalent. + if (T->isDependentType()) { + Out << 'U'; + + switch (T->getUTTKind()) { + case UnaryTransformType::EnumUnderlyingType: + Out << "3eut"; + break; + } + } + + mangleType(T->getBaseType()); +} + +void CXXNameMangler::mangleType(const AutoType *T) { + assert(T->getDeducedType().isNull() && + "Deduced AutoType shouldn't be handled here!"); + assert(T->getKeyword() != AutoTypeKeyword::GNUAutoType && + "shouldn't need to mangle __auto_type!"); + // <builtin-type> ::= Da # auto + // ::= Dc # decltype(auto) + Out << (T->isDecltypeAuto() ? "Dc" : "Da"); +} + +void CXXNameMangler::mangleType(const DeducedTemplateSpecializationType *T) { + QualType Deduced = T->getDeducedType(); + if (!Deduced.isNull()) + return mangleType(Deduced); + + TemplateDecl *TD = T->getTemplateName().getAsTemplateDecl(); + assert(TD && "shouldn't form deduced TST unless we know we have a template"); + + if (mangleSubstitution(TD)) + return; + + mangleName(GlobalDecl(TD)); + addSubstitution(TD); +} + +void CXXNameMangler::mangleType(const AtomicType *T) { + // <type> ::= U <source-name> <type> # vendor extended type qualifier + // (Until there's a standardized mangling...) + Out << "U7_Atomic"; + mangleType(T->getValueType()); +} + +void CXXNameMangler::mangleType(const PipeType *T) { + // Pipe type mangling rules are described in SPIR 2.0 specification + // A.1 Data types and A.3 Summary of changes + // <type> ::= 8ocl_pipe + Out << "8ocl_pipe"; +} + +void CXXNameMangler::mangleType(const ExtIntType *T) { + Out << "U7_ExtInt"; + llvm::APSInt BW(32, true); + BW = T->getNumBits(); + TemplateArgument TA(Context.getASTContext(), BW, getASTContext().IntTy); + mangleTemplateArgs(TemplateName(), &TA, 1); + if (T->isUnsigned()) + Out << "j"; + else + Out << "i"; +} + +void CXXNameMangler::mangleType(const DependentExtIntType *T) { + Out << "U7_ExtInt"; + TemplateArgument TA(T->getNumBitsExpr()); + mangleTemplateArgs(TemplateName(), &TA, 1); + if (T->isUnsigned()) + Out << "j"; + else + Out << "i"; +} + +void CXXNameMangler::mangleIntegerLiteral(QualType T, + const llvm::APSInt &Value) { + // <expr-primary> ::= L <type> <value number> E # integer literal + Out << 'L'; + + mangleType(T); + if (T->isBooleanType()) { + // Boolean values are encoded as 0/1. + Out << (Value.getBoolValue() ? '1' : '0'); + } else { + mangleNumber(Value); + } + Out << 'E'; + +} + +void CXXNameMangler::mangleMemberExprBase(const Expr *Base, bool IsArrow) { + // Ignore member expressions involving anonymous unions. + while (const auto *RT = Base->getType()->getAs<RecordType>()) { + if (!RT->getDecl()->isAnonymousStructOrUnion()) + break; + const auto *ME = dyn_cast<MemberExpr>(Base); + if (!ME) + break; + Base = ME->getBase(); + IsArrow = ME->isArrow(); + } + + if (Base->isImplicitCXXThis()) { + // Note: GCC mangles member expressions to the implicit 'this' as + // *this., whereas we represent them as this->. The Itanium C++ ABI + // does not specify anything here, so we follow GCC. + Out << "dtdefpT"; + } else { + Out << (IsArrow ? "pt" : "dt"); + mangleExpression(Base); + } +} + +/// Mangles a member expression. +void CXXNameMangler::mangleMemberExpr(const Expr *base, + bool isArrow, + NestedNameSpecifier *qualifier, + NamedDecl *firstQualifierLookup, + DeclarationName member, + const TemplateArgumentLoc *TemplateArgs, + unsigned NumTemplateArgs, + unsigned arity) { + // <expression> ::= dt <expression> <unresolved-name> + // ::= pt <expression> <unresolved-name> + if (base) + mangleMemberExprBase(base, isArrow); + mangleUnresolvedName(qualifier, member, TemplateArgs, NumTemplateArgs, arity); +} + +/// Look at the callee of the given call expression and determine if +/// it's a parenthesized id-expression which would have triggered ADL +/// otherwise. +static bool isParenthesizedADLCallee(const CallExpr *call) { + const Expr *callee = call->getCallee(); + const Expr *fn = callee->IgnoreParens(); + + // Must be parenthesized. IgnoreParens() skips __extension__ nodes, + // too, but for those to appear in the callee, it would have to be + // parenthesized. + if (callee == fn) return false; + + // Must be an unresolved lookup. + const UnresolvedLookupExpr *lookup = dyn_cast<UnresolvedLookupExpr>(fn); + if (!lookup) return false; + + assert(!lookup->requiresADL()); + + // Must be an unqualified lookup. + if (lookup->getQualifier()) return false; + + // Must not have found a class member. Note that if one is a class + // member, they're all class members. + if (lookup->getNumDecls() > 0 && + (*lookup->decls_begin())->isCXXClassMember()) + return false; + + // Otherwise, ADL would have been triggered. + return true; +} + +void CXXNameMangler::mangleCastExpression(const Expr *E, StringRef CastEncoding) { + const ExplicitCastExpr *ECE = cast<ExplicitCastExpr>(E); + Out << CastEncoding; + mangleType(ECE->getType()); + mangleExpression(ECE->getSubExpr()); +} + +void CXXNameMangler::mangleInitListElements(const InitListExpr *InitList) { + if (auto *Syntactic = InitList->getSyntacticForm()) + InitList = Syntactic; + for (unsigned i = 0, e = InitList->getNumInits(); i != e; ++i) + mangleExpression(InitList->getInit(i)); +} + +void CXXNameMangler::mangleExpression(const Expr *E, unsigned Arity, + bool AsTemplateArg) { + // <expression> ::= <unary operator-name> <expression> + // ::= <binary operator-name> <expression> <expression> + // ::= <trinary operator-name> <expression> <expression> <expression> + // ::= cv <type> expression # conversion with one argument + // ::= cv <type> _ <expression>* E # conversion with a different number of arguments + // ::= dc <type> <expression> # dynamic_cast<type> (expression) + // ::= sc <type> <expression> # static_cast<type> (expression) + // ::= cc <type> <expression> # const_cast<type> (expression) + // ::= rc <type> <expression> # reinterpret_cast<type> (expression) + // ::= st <type> # sizeof (a type) + // ::= at <type> # alignof (a type) + // ::= <template-param> + // ::= <function-param> + // ::= fpT # 'this' expression (part of <function-param>) + // ::= sr <type> <unqualified-name> # dependent name + // ::= sr <type> <unqualified-name> <template-args> # dependent template-id + // ::= ds <expression> <expression> # expr.*expr + // ::= sZ <template-param> # size of a parameter pack + // ::= sZ <function-param> # size of a function parameter pack + // ::= u <source-name> <template-arg>* E # vendor extended expression + // ::= <expr-primary> + // <expr-primary> ::= L <type> <value number> E # integer literal + // ::= L <type> <value float> E # floating literal + // ::= L <type> <string type> E # string literal + // ::= L <nullptr type> E # nullptr literal "LDnE" + // ::= L <pointer type> 0 E # null pointer template argument + // ::= L <type> <real-part float> _ <imag-part float> E # complex floating point literal (C99); not used by clang + // ::= L <mangled-name> E # external name + QualType ImplicitlyConvertedToType; + + // A top-level expression that's not <expr-primary> needs to be wrapped in + // X...E in a template arg. + bool IsPrimaryExpr = true; + auto NotPrimaryExpr = [&] { + if (AsTemplateArg && IsPrimaryExpr) + Out << 'X'; + IsPrimaryExpr = false; + }; + + auto MangleDeclRefExpr = [&](const NamedDecl *D) { + switch (D->getKind()) { + default: + // <expr-primary> ::= L <mangled-name> E # external name + Out << 'L'; + mangle(D); + Out << 'E'; + break; + + case Decl::ParmVar: + NotPrimaryExpr(); + mangleFunctionParam(cast<ParmVarDecl>(D)); + break; + + case Decl::EnumConstant: { + // <expr-primary> + const EnumConstantDecl *ED = cast<EnumConstantDecl>(D); + mangleIntegerLiteral(ED->getType(), ED->getInitVal()); + break; + } + + case Decl::NonTypeTemplateParm: + NotPrimaryExpr(); + const NonTypeTemplateParmDecl *PD = cast<NonTypeTemplateParmDecl>(D); + mangleTemplateParameter(PD->getDepth(), PD->getIndex()); + break; + } + }; + + // 'goto recurse' is used when handling a simple "unwrapping" node which + // produces no output, where ImplicitlyConvertedToType and AsTemplateArg need + // to be preserved. +recurse: + switch (E->getStmtClass()) { + case Expr::NoStmtClass: +#define ABSTRACT_STMT(Type) +#define EXPR(Type, Base) +#define STMT(Type, Base) \ + case Expr::Type##Class: +#include "clang/AST/StmtNodes.inc" + // fallthrough + + // These all can only appear in local or variable-initialization + // contexts and so should never appear in a mangling. + case Expr::AddrLabelExprClass: + case Expr::DesignatedInitUpdateExprClass: + case Expr::ImplicitValueInitExprClass: + case Expr::ArrayInitLoopExprClass: + case Expr::ArrayInitIndexExprClass: + case Expr::NoInitExprClass: + case Expr::ParenListExprClass: + case Expr::LambdaExprClass: + case Expr::MSPropertyRefExprClass: + case Expr::MSPropertySubscriptExprClass: + case Expr::TypoExprClass: // This should no longer exist in the AST by now. + case Expr::RecoveryExprClass: + case Expr::OMPArraySectionExprClass: + case Expr::OMPArrayShapingExprClass: + case Expr::OMPIteratorExprClass: + case Expr::CXXInheritedCtorInitExprClass: + llvm_unreachable("unexpected statement kind"); + + case Expr::ConstantExprClass: + E = cast<ConstantExpr>(E)->getSubExpr(); + goto recurse; + + // FIXME: invent manglings for all these. + case Expr::BlockExprClass: + case Expr::ChooseExprClass: + case Expr::CompoundLiteralExprClass: + case Expr::ExtVectorElementExprClass: + case Expr::GenericSelectionExprClass: + case Expr::ObjCEncodeExprClass: + case Expr::ObjCIsaExprClass: + case Expr::ObjCIvarRefExprClass: + case Expr::ObjCMessageExprClass: + case Expr::ObjCPropertyRefExprClass: + case Expr::ObjCProtocolExprClass: + case Expr::ObjCSelectorExprClass: + case Expr::ObjCStringLiteralClass: + case Expr::ObjCBoxedExprClass: + case Expr::ObjCArrayLiteralClass: + case Expr::ObjCDictionaryLiteralClass: + case Expr::ObjCSubscriptRefExprClass: + case Expr::ObjCIndirectCopyRestoreExprClass: + case Expr::ObjCAvailabilityCheckExprClass: + case Expr::OffsetOfExprClass: + case Expr::PredefinedExprClass: + case Expr::ShuffleVectorExprClass: + case Expr::ConvertVectorExprClass: + case Expr::StmtExprClass: + case Expr::TypeTraitExprClass: + case Expr::RequiresExprClass: + case Expr::ArrayTypeTraitExprClass: + case Expr::ExpressionTraitExprClass: + case Expr::VAArgExprClass: + case Expr::CUDAKernelCallExprClass: + case Expr::AsTypeExprClass: + case Expr::PseudoObjectExprClass: + case Expr::AtomicExprClass: + case Expr::SourceLocExprClass: + case Expr::BuiltinBitCastExprClass: + { + NotPrimaryExpr(); + if (!NullOut) { + // As bad as this diagnostic is, it's better than crashing. + DiagnosticsEngine &Diags = Context.getDiags(); + unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, + "cannot yet mangle expression type %0"); + Diags.Report(E->getExprLoc(), DiagID) + << E->getStmtClassName() << E->getSourceRange(); + return; + } + break; + } + + case Expr::CXXUuidofExprClass: { + NotPrimaryExpr(); + const CXXUuidofExpr *UE = cast<CXXUuidofExpr>(E); + // As of clang 12, uuidof uses the vendor extended expression + // mangling. Previously, it used a special-cased nonstandard extension. + if (Context.getASTContext().getLangOpts().getClangABICompat() > + LangOptions::ClangABI::Ver11) { + Out << "u8__uuidof"; + if (UE->isTypeOperand()) + mangleType(UE->getTypeOperand(Context.getASTContext())); + else + mangleTemplateArgExpr(UE->getExprOperand()); + Out << 'E'; + } else { + if (UE->isTypeOperand()) { + QualType UuidT = UE->getTypeOperand(Context.getASTContext()); + Out << "u8__uuidoft"; + mangleType(UuidT); + } else { + Expr *UuidExp = UE->getExprOperand(); + Out << "u8__uuidofz"; + mangleExpression(UuidExp); + } + } + break; + } + + // Even gcc-4.5 doesn't mangle this. + case Expr::BinaryConditionalOperatorClass: { + NotPrimaryExpr(); + DiagnosticsEngine &Diags = Context.getDiags(); + unsigned DiagID = + Diags.getCustomDiagID(DiagnosticsEngine::Error, + "?: operator with omitted middle operand cannot be mangled"); + Diags.Report(E->getExprLoc(), DiagID) + << E->getStmtClassName() << E->getSourceRange(); + return; + } + + // These are used for internal purposes and cannot be meaningfully mangled. + case Expr::OpaqueValueExprClass: + llvm_unreachable("cannot mangle opaque value; mangling wrong thing?"); + + case Expr::InitListExprClass: { + NotPrimaryExpr(); + Out << "il"; + mangleInitListElements(cast<InitListExpr>(E)); + Out << "E"; + break; + } + + case Expr::DesignatedInitExprClass: { + NotPrimaryExpr(); + auto *DIE = cast<DesignatedInitExpr>(E); + for (const auto &Designator : DIE->designators()) { + if (Designator.isFieldDesignator()) { + Out << "di"; + mangleSourceName(Designator.getFieldName()); + } else if (Designator.isArrayDesignator()) { + Out << "dx"; + mangleExpression(DIE->getArrayIndex(Designator)); + } else { + assert(Designator.isArrayRangeDesignator() && + "unknown designator kind"); + Out << "dX"; + mangleExpression(DIE->getArrayRangeStart(Designator)); + mangleExpression(DIE->getArrayRangeEnd(Designator)); + } + } + mangleExpression(DIE->getInit()); + break; + } + + case Expr::CXXDefaultArgExprClass: + E = cast<CXXDefaultArgExpr>(E)->getExpr(); + goto recurse; + + case Expr::CXXDefaultInitExprClass: + E = cast<CXXDefaultInitExpr>(E)->getExpr(); + goto recurse; + + case Expr::CXXStdInitializerListExprClass: + E = cast<CXXStdInitializerListExpr>(E)->getSubExpr(); + goto recurse; + + case Expr::SubstNonTypeTemplateParmExprClass: + E = cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement(); + goto recurse; + + case Expr::UserDefinedLiteralClass: + // We follow g++'s approach of mangling a UDL as a call to the literal + // operator. + case Expr::CXXMemberCallExprClass: // fallthrough + case Expr::CallExprClass: { + NotPrimaryExpr(); + const CallExpr *CE = cast<CallExpr>(E); + + // <expression> ::= cp <simple-id> <expression>* E + // We use this mangling only when the call would use ADL except + // for being parenthesized. Per discussion with David + // Vandervoorde, 2011.04.25. + if (isParenthesizedADLCallee(CE)) { + Out << "cp"; + // The callee here is a parenthesized UnresolvedLookupExpr with + // no qualifier and should always get mangled as a <simple-id> + // anyway. + + // <expression> ::= cl <expression>* E + } else { + Out << "cl"; + } + + unsigned CallArity = CE->getNumArgs(); + for (const Expr *Arg : CE->arguments()) + if (isa<PackExpansionExpr>(Arg)) + CallArity = UnknownArity; + + mangleExpression(CE->getCallee(), CallArity); + for (const Expr *Arg : CE->arguments()) + mangleExpression(Arg); + Out << 'E'; + break; + } + + case Expr::CXXNewExprClass: { + NotPrimaryExpr(); + const CXXNewExpr *New = cast<CXXNewExpr>(E); + if (New->isGlobalNew()) Out << "gs"; + Out << (New->isArray() ? "na" : "nw"); + for (CXXNewExpr::const_arg_iterator I = New->placement_arg_begin(), + E = New->placement_arg_end(); I != E; ++I) + mangleExpression(*I); + Out << '_'; + mangleType(New->getAllocatedType()); + if (New->hasInitializer()) { + if (New->getInitializationStyle() == CXXNewExpr::ListInit) + Out << "il"; + else + Out << "pi"; + const Expr *Init = New->getInitializer(); + if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init)) { + // Directly inline the initializers. + for (CXXConstructExpr::const_arg_iterator I = CCE->arg_begin(), + E = CCE->arg_end(); + I != E; ++I) + mangleExpression(*I); + } else if (const ParenListExpr *PLE = dyn_cast<ParenListExpr>(Init)) { + for (unsigned i = 0, e = PLE->getNumExprs(); i != e; ++i) + mangleExpression(PLE->getExpr(i)); + } else if (New->getInitializationStyle() == CXXNewExpr::ListInit && + isa<InitListExpr>(Init)) { + // Only take InitListExprs apart for list-initialization. + mangleInitListElements(cast<InitListExpr>(Init)); + } else + mangleExpression(Init); + } + Out << 'E'; + break; + } + + case Expr::CXXPseudoDestructorExprClass: { + NotPrimaryExpr(); + const auto *PDE = cast<CXXPseudoDestructorExpr>(E); + if (const Expr *Base = PDE->getBase()) + mangleMemberExprBase(Base, PDE->isArrow()); + NestedNameSpecifier *Qualifier = PDE->getQualifier(); + if (TypeSourceInfo *ScopeInfo = PDE->getScopeTypeInfo()) { + if (Qualifier) { + mangleUnresolvedPrefix(Qualifier, + /*recursive=*/true); + mangleUnresolvedTypeOrSimpleId(ScopeInfo->getType()); + Out << 'E'; + } else { + Out << "sr"; + if (!mangleUnresolvedTypeOrSimpleId(ScopeInfo->getType())) + Out << 'E'; + } + } else if (Qualifier) { + mangleUnresolvedPrefix(Qualifier); + } + // <base-unresolved-name> ::= dn <destructor-name> + Out << "dn"; + QualType DestroyedType = PDE->getDestroyedType(); + mangleUnresolvedTypeOrSimpleId(DestroyedType); + break; + } + + case Expr::MemberExprClass: { + NotPrimaryExpr(); + const MemberExpr *ME = cast<MemberExpr>(E); + mangleMemberExpr(ME->getBase(), ME->isArrow(), + ME->getQualifier(), nullptr, + ME->getMemberDecl()->getDeclName(), + ME->getTemplateArgs(), ME->getNumTemplateArgs(), + Arity); + break; + } + + case Expr::UnresolvedMemberExprClass: { + NotPrimaryExpr(); + const UnresolvedMemberExpr *ME = cast<UnresolvedMemberExpr>(E); + mangleMemberExpr(ME->isImplicitAccess() ? nullptr : ME->getBase(), + ME->isArrow(), ME->getQualifier(), nullptr, + ME->getMemberName(), + ME->getTemplateArgs(), ME->getNumTemplateArgs(), + Arity); + break; + } + + case Expr::CXXDependentScopeMemberExprClass: { + NotPrimaryExpr(); + const CXXDependentScopeMemberExpr *ME + = cast<CXXDependentScopeMemberExpr>(E); + mangleMemberExpr(ME->isImplicitAccess() ? nullptr : ME->getBase(), + ME->isArrow(), ME->getQualifier(), + ME->getFirstQualifierFoundInScope(), + ME->getMember(), + ME->getTemplateArgs(), ME->getNumTemplateArgs(), + Arity); + break; + } + + case Expr::UnresolvedLookupExprClass: { + NotPrimaryExpr(); + const UnresolvedLookupExpr *ULE = cast<UnresolvedLookupExpr>(E); + mangleUnresolvedName(ULE->getQualifier(), ULE->getName(), + ULE->getTemplateArgs(), ULE->getNumTemplateArgs(), + Arity); + break; + } + + case Expr::CXXUnresolvedConstructExprClass: { + NotPrimaryExpr(); + const CXXUnresolvedConstructExpr *CE = cast<CXXUnresolvedConstructExpr>(E); + unsigned N = CE->getNumArgs(); + + if (CE->isListInitialization()) { + assert(N == 1 && "unexpected form for list initialization"); + auto *IL = cast<InitListExpr>(CE->getArg(0)); + Out << "tl"; + mangleType(CE->getType()); + mangleInitListElements(IL); + Out << "E"; + break; + } + + Out << "cv"; + mangleType(CE->getType()); + if (N != 1) Out << '_'; + for (unsigned I = 0; I != N; ++I) mangleExpression(CE->getArg(I)); + if (N != 1) Out << 'E'; + break; + } + + case Expr::CXXConstructExprClass: { + // An implicit cast is silent, thus may contain <expr-primary>. + const auto *CE = cast<CXXConstructExpr>(E); + if (!CE->isListInitialization() || CE->isStdInitListInitialization()) { + assert( + CE->getNumArgs() >= 1 && + (CE->getNumArgs() == 1 || isa<CXXDefaultArgExpr>(CE->getArg(1))) && + "implicit CXXConstructExpr must have one argument"); + E = cast<CXXConstructExpr>(E)->getArg(0); + goto recurse; + } + NotPrimaryExpr(); + Out << "il"; + for (auto *E : CE->arguments()) + mangleExpression(E); + Out << "E"; + break; + } + + case Expr::CXXTemporaryObjectExprClass: { + NotPrimaryExpr(); + const auto *CE = cast<CXXTemporaryObjectExpr>(E); + unsigned N = CE->getNumArgs(); + bool List = CE->isListInitialization(); + + if (List) + Out << "tl"; + else + Out << "cv"; + mangleType(CE->getType()); + if (!List && N != 1) + Out << '_'; + if (CE->isStdInitListInitialization()) { + // We implicitly created a std::initializer_list<T> for the first argument + // of a constructor of type U in an expression of the form U{a, b, c}. + // Strip all the semantic gunk off the initializer list. + auto *SILE = + cast<CXXStdInitializerListExpr>(CE->getArg(0)->IgnoreImplicit()); + auto *ILE = cast<InitListExpr>(SILE->getSubExpr()->IgnoreImplicit()); + mangleInitListElements(ILE); + } else { + for (auto *E : CE->arguments()) + mangleExpression(E); + } + if (List || N != 1) + Out << 'E'; + break; + } + + case Expr::CXXScalarValueInitExprClass: + NotPrimaryExpr(); + Out << "cv"; + mangleType(E->getType()); + Out << "_E"; + break; + + case Expr::CXXNoexceptExprClass: + NotPrimaryExpr(); + Out << "nx"; + mangleExpression(cast<CXXNoexceptExpr>(E)->getOperand()); + break; + + case Expr::UnaryExprOrTypeTraitExprClass: { + // Non-instantiation-dependent traits are an <expr-primary> integer literal. + const UnaryExprOrTypeTraitExpr *SAE = cast<UnaryExprOrTypeTraitExpr>(E); + + if (!SAE->isInstantiationDependent()) { + // Itanium C++ ABI: + // If the operand of a sizeof or alignof operator is not + // instantiation-dependent it is encoded as an integer literal + // reflecting the result of the operator. + // + // If the result of the operator is implicitly converted to a known + // integer type, that type is used for the literal; otherwise, the type + // of std::size_t or std::ptrdiff_t is used. + QualType T = (ImplicitlyConvertedToType.isNull() || + !ImplicitlyConvertedToType->isIntegerType())? SAE->getType() + : ImplicitlyConvertedToType; + llvm::APSInt V = SAE->EvaluateKnownConstInt(Context.getASTContext()); + mangleIntegerLiteral(T, V); + break; + } + + NotPrimaryExpr(); // But otherwise, they are not. + + auto MangleAlignofSizeofArg = [&] { + if (SAE->isArgumentType()) { + Out << 't'; + mangleType(SAE->getArgumentType()); + } else { + Out << 'z'; + mangleExpression(SAE->getArgumentExpr()); + } + }; + + switch(SAE->getKind()) { + case UETT_SizeOf: + Out << 's'; + MangleAlignofSizeofArg(); + break; + case UETT_PreferredAlignOf: + // As of clang 12, we mangle __alignof__ differently than alignof. (They + // have acted differently since Clang 8, but were previously mangled the + // same.) + if (Context.getASTContext().getLangOpts().getClangABICompat() > + LangOptions::ClangABI::Ver11) { + Out << "u11__alignof__"; + if (SAE->isArgumentType()) + mangleType(SAE->getArgumentType()); + else + mangleTemplateArgExpr(SAE->getArgumentExpr()); + Out << 'E'; + break; + } + LLVM_FALLTHROUGH; + case UETT_AlignOf: + Out << 'a'; + MangleAlignofSizeofArg(); + break; + case UETT_VecStep: { + DiagnosticsEngine &Diags = Context.getDiags(); + unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, + "cannot yet mangle vec_step expression"); + Diags.Report(DiagID); + return; + } + case UETT_OpenMPRequiredSimdAlign: { + DiagnosticsEngine &Diags = Context.getDiags(); + unsigned DiagID = Diags.getCustomDiagID( + DiagnosticsEngine::Error, + "cannot yet mangle __builtin_omp_required_simd_align expression"); + Diags.Report(DiagID); + return; + } + } + break; + } + + case Expr::CXXThrowExprClass: { + NotPrimaryExpr(); + const CXXThrowExpr *TE = cast<CXXThrowExpr>(E); + // <expression> ::= tw <expression> # throw expression + // ::= tr # rethrow + if (TE->getSubExpr()) { + Out << "tw"; + mangleExpression(TE->getSubExpr()); + } else { + Out << "tr"; + } + break; + } + + case Expr::CXXTypeidExprClass: { + NotPrimaryExpr(); + const CXXTypeidExpr *TIE = cast<CXXTypeidExpr>(E); + // <expression> ::= ti <type> # typeid (type) + // ::= te <expression> # typeid (expression) + if (TIE->isTypeOperand()) { + Out << "ti"; + mangleType(TIE->getTypeOperand(Context.getASTContext())); + } else { + Out << "te"; + mangleExpression(TIE->getExprOperand()); + } + break; + } + + case Expr::CXXDeleteExprClass: { + NotPrimaryExpr(); + const CXXDeleteExpr *DE = cast<CXXDeleteExpr>(E); + // <expression> ::= [gs] dl <expression> # [::] delete expr + // ::= [gs] da <expression> # [::] delete [] expr + if (DE->isGlobalDelete()) Out << "gs"; + Out << (DE->isArrayForm() ? "da" : "dl"); + mangleExpression(DE->getArgument()); + break; + } + + case Expr::UnaryOperatorClass: { + NotPrimaryExpr(); + const UnaryOperator *UO = cast<UnaryOperator>(E); + mangleOperatorName(UnaryOperator::getOverloadedOperator(UO->getOpcode()), + /*Arity=*/1); + mangleExpression(UO->getSubExpr()); + break; + } + + case Expr::ArraySubscriptExprClass: { + NotPrimaryExpr(); + const ArraySubscriptExpr *AE = cast<ArraySubscriptExpr>(E); + + // Array subscript is treated as a syntactically weird form of + // binary operator. + Out << "ix"; + mangleExpression(AE->getLHS()); + mangleExpression(AE->getRHS()); + break; + } + + case Expr::MatrixSubscriptExprClass: { + NotPrimaryExpr(); + const MatrixSubscriptExpr *ME = cast<MatrixSubscriptExpr>(E); + Out << "ixix"; + mangleExpression(ME->getBase()); + mangleExpression(ME->getRowIdx()); + mangleExpression(ME->getColumnIdx()); + break; + } + + case Expr::CompoundAssignOperatorClass: // fallthrough + case Expr::BinaryOperatorClass: { + NotPrimaryExpr(); + const BinaryOperator *BO = cast<BinaryOperator>(E); + if (BO->getOpcode() == BO_PtrMemD) + Out << "ds"; + else + mangleOperatorName(BinaryOperator::getOverloadedOperator(BO->getOpcode()), + /*Arity=*/2); + mangleExpression(BO->getLHS()); + mangleExpression(BO->getRHS()); + break; + } + + case Expr::CXXRewrittenBinaryOperatorClass: { + NotPrimaryExpr(); + // The mangled form represents the original syntax. + CXXRewrittenBinaryOperator::DecomposedForm Decomposed = + cast<CXXRewrittenBinaryOperator>(E)->getDecomposedForm(); + mangleOperatorName(BinaryOperator::getOverloadedOperator(Decomposed.Opcode), + /*Arity=*/2); + mangleExpression(Decomposed.LHS); + mangleExpression(Decomposed.RHS); + break; + } + + case Expr::ConditionalOperatorClass: { + NotPrimaryExpr(); + const ConditionalOperator *CO = cast<ConditionalOperator>(E); + mangleOperatorName(OO_Conditional, /*Arity=*/3); + mangleExpression(CO->getCond()); + mangleExpression(CO->getLHS(), Arity); + mangleExpression(CO->getRHS(), Arity); + break; + } + + case Expr::ImplicitCastExprClass: { + ImplicitlyConvertedToType = E->getType(); + E = cast<ImplicitCastExpr>(E)->getSubExpr(); + goto recurse; + } + + case Expr::ObjCBridgedCastExprClass: { + NotPrimaryExpr(); + // Mangle ownership casts as a vendor extended operator __bridge, + // __bridge_transfer, or __bridge_retain. + StringRef Kind = cast<ObjCBridgedCastExpr>(E)->getBridgeKindName(); + Out << "v1U" << Kind.size() << Kind; + mangleCastExpression(E, "cv"); + break; + } + + case Expr::CStyleCastExprClass: + NotPrimaryExpr(); + mangleCastExpression(E, "cv"); + break; + + case Expr::CXXFunctionalCastExprClass: { + NotPrimaryExpr(); + auto *Sub = cast<ExplicitCastExpr>(E)->getSubExpr()->IgnoreImplicit(); + // FIXME: Add isImplicit to CXXConstructExpr. + if (auto *CCE = dyn_cast<CXXConstructExpr>(Sub)) + if (CCE->getParenOrBraceRange().isInvalid()) + Sub = CCE->getArg(0)->IgnoreImplicit(); + if (auto *StdInitList = dyn_cast<CXXStdInitializerListExpr>(Sub)) + Sub = StdInitList->getSubExpr()->IgnoreImplicit(); + if (auto *IL = dyn_cast<InitListExpr>(Sub)) { + Out << "tl"; + mangleType(E->getType()); + mangleInitListElements(IL); + Out << "E"; + } else { + mangleCastExpression(E, "cv"); + } + break; + } + + case Expr::CXXStaticCastExprClass: + NotPrimaryExpr(); + mangleCastExpression(E, "sc"); + break; + case Expr::CXXDynamicCastExprClass: + NotPrimaryExpr(); + mangleCastExpression(E, "dc"); + break; + case Expr::CXXReinterpretCastExprClass: + NotPrimaryExpr(); + mangleCastExpression(E, "rc"); + break; + case Expr::CXXConstCastExprClass: + NotPrimaryExpr(); + mangleCastExpression(E, "cc"); + break; + case Expr::CXXAddrspaceCastExprClass: + NotPrimaryExpr(); + mangleCastExpression(E, "ac"); + break; + + case Expr::CXXOperatorCallExprClass: { + NotPrimaryExpr(); + const CXXOperatorCallExpr *CE = cast<CXXOperatorCallExpr>(E); + unsigned NumArgs = CE->getNumArgs(); + // A CXXOperatorCallExpr for OO_Arrow models only semantics, not syntax + // (the enclosing MemberExpr covers the syntactic portion). + if (CE->getOperator() != OO_Arrow) + mangleOperatorName(CE->getOperator(), /*Arity=*/NumArgs); + // Mangle the arguments. + for (unsigned i = 0; i != NumArgs; ++i) + mangleExpression(CE->getArg(i)); + break; + } + + case Expr::ParenExprClass: + E = cast<ParenExpr>(E)->getSubExpr(); + goto recurse; + + case Expr::ConceptSpecializationExprClass: { + // <expr-primary> ::= L <mangled-name> E # external name + Out << "L_Z"; + auto *CSE = cast<ConceptSpecializationExpr>(E); + mangleTemplateName(CSE->getNamedConcept(), + CSE->getTemplateArguments().data(), + CSE->getTemplateArguments().size()); + Out << 'E'; + break; + } + + case Expr::DeclRefExprClass: + // MangleDeclRefExpr helper handles primary-vs-nonprimary + MangleDeclRefExpr(cast<DeclRefExpr>(E)->getDecl()); + break; + + case Expr::SubstNonTypeTemplateParmPackExprClass: + NotPrimaryExpr(); + // FIXME: not clear how to mangle this! + // template <unsigned N...> class A { + // template <class U...> void foo(U (&x)[N]...); + // }; + Out << "_SUBSTPACK_"; + break; + + case Expr::FunctionParmPackExprClass: { + NotPrimaryExpr(); + // FIXME: not clear how to mangle this! + const FunctionParmPackExpr *FPPE = cast<FunctionParmPackExpr>(E); + Out << "v110_SUBSTPACK"; + MangleDeclRefExpr(FPPE->getParameterPack()); + break; + } + + case Expr::DependentScopeDeclRefExprClass: { + NotPrimaryExpr(); + const DependentScopeDeclRefExpr *DRE = cast<DependentScopeDeclRefExpr>(E); + mangleUnresolvedName(DRE->getQualifier(), DRE->getDeclName(), + DRE->getTemplateArgs(), DRE->getNumTemplateArgs(), + Arity); + break; + } + + case Expr::CXXBindTemporaryExprClass: + E = cast<CXXBindTemporaryExpr>(E)->getSubExpr(); + goto recurse; + + case Expr::ExprWithCleanupsClass: + E = cast<ExprWithCleanups>(E)->getSubExpr(); + goto recurse; + + case Expr::FloatingLiteralClass: { + // <expr-primary> + const FloatingLiteral *FL = cast<FloatingLiteral>(E); + mangleFloatLiteral(FL->getType(), FL->getValue()); + break; + } + + case Expr::FixedPointLiteralClass: + // Currently unimplemented -- might be <expr-primary> in future? + mangleFixedPointLiteral(); + break; + + case Expr::CharacterLiteralClass: + // <expr-primary> + Out << 'L'; + mangleType(E->getType()); + Out << cast<CharacterLiteral>(E)->getValue(); + Out << 'E'; + break; + + // FIXME. __objc_yes/__objc_no are mangled same as true/false + case Expr::ObjCBoolLiteralExprClass: + // <expr-primary> + Out << "Lb"; + Out << (cast<ObjCBoolLiteralExpr>(E)->getValue() ? '1' : '0'); + Out << 'E'; + break; + + case Expr::CXXBoolLiteralExprClass: + // <expr-primary> + Out << "Lb"; + Out << (cast<CXXBoolLiteralExpr>(E)->getValue() ? '1' : '0'); + Out << 'E'; + break; + + case Expr::IntegerLiteralClass: { + // <expr-primary> + llvm::APSInt Value(cast<IntegerLiteral>(E)->getValue()); + if (E->getType()->isSignedIntegerType()) + Value.setIsSigned(true); + mangleIntegerLiteral(E->getType(), Value); + break; + } + + case Expr::ImaginaryLiteralClass: { + // <expr-primary> + const ImaginaryLiteral *IE = cast<ImaginaryLiteral>(E); + // Mangle as if a complex literal. + // Proposal from David Vandevoorde, 2010.06.30. + Out << 'L'; + mangleType(E->getType()); + if (const FloatingLiteral *Imag = + dyn_cast<FloatingLiteral>(IE->getSubExpr())) { + // Mangle a floating-point zero of the appropriate type. + mangleFloat(llvm::APFloat(Imag->getValue().getSemantics())); + Out << '_'; + mangleFloat(Imag->getValue()); + } else { + Out << "0_"; + llvm::APSInt Value(cast<IntegerLiteral>(IE->getSubExpr())->getValue()); + if (IE->getSubExpr()->getType()->isSignedIntegerType()) + Value.setIsSigned(true); + mangleNumber(Value); + } + Out << 'E'; + break; + } + + case Expr::StringLiteralClass: { + // <expr-primary> + // Revised proposal from David Vandervoorde, 2010.07.15. + Out << 'L'; + assert(isa<ConstantArrayType>(E->getType())); + mangleType(E->getType()); + Out << 'E'; + break; + } + + case Expr::GNUNullExprClass: + // <expr-primary> + // Mangle as if an integer literal 0. + mangleIntegerLiteral(E->getType(), llvm::APSInt(32)); + break; + + case Expr::CXXNullPtrLiteralExprClass: { + // <expr-primary> + Out << "LDnE"; + break; + } + + case Expr::PackExpansionExprClass: + NotPrimaryExpr(); + Out << "sp"; + mangleExpression(cast<PackExpansionExpr>(E)->getPattern()); + break; + + case Expr::SizeOfPackExprClass: { + NotPrimaryExpr(); + auto *SPE = cast<SizeOfPackExpr>(E); + if (SPE->isPartiallySubstituted()) { + Out << "sP"; + for (const auto &A : SPE->getPartialArguments()) + mangleTemplateArg(A, false); + Out << "E"; + break; + } + + Out << "sZ"; + const NamedDecl *Pack = SPE->getPack(); + if (const TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Pack)) + mangleTemplateParameter(TTP->getDepth(), TTP->getIndex()); + else if (const NonTypeTemplateParmDecl *NTTP + = dyn_cast<NonTypeTemplateParmDecl>(Pack)) + mangleTemplateParameter(NTTP->getDepth(), NTTP->getIndex()); + else if (const TemplateTemplateParmDecl *TempTP + = dyn_cast<TemplateTemplateParmDecl>(Pack)) + mangleTemplateParameter(TempTP->getDepth(), TempTP->getIndex()); + else + mangleFunctionParam(cast<ParmVarDecl>(Pack)); + break; + } + + case Expr::MaterializeTemporaryExprClass: + E = cast<MaterializeTemporaryExpr>(E)->getSubExpr(); + goto recurse; + + case Expr::CXXFoldExprClass: { + NotPrimaryExpr(); + auto *FE = cast<CXXFoldExpr>(E); + if (FE->isLeftFold()) + Out << (FE->getInit() ? "fL" : "fl"); + else + Out << (FE->getInit() ? "fR" : "fr"); + + if (FE->getOperator() == BO_PtrMemD) + Out << "ds"; + else + mangleOperatorName( + BinaryOperator::getOverloadedOperator(FE->getOperator()), + /*Arity=*/2); + + if (FE->getLHS()) + mangleExpression(FE->getLHS()); + if (FE->getRHS()) + mangleExpression(FE->getRHS()); + break; + } + + case Expr::CXXThisExprClass: + NotPrimaryExpr(); + Out << "fpT"; + break; + + case Expr::CoawaitExprClass: + // FIXME: Propose a non-vendor mangling. + NotPrimaryExpr(); + Out << "v18co_await"; + mangleExpression(cast<CoawaitExpr>(E)->getOperand()); + break; + + case Expr::DependentCoawaitExprClass: + // FIXME: Propose a non-vendor mangling. + NotPrimaryExpr(); + Out << "v18co_await"; + mangleExpression(cast<DependentCoawaitExpr>(E)->getOperand()); + break; + + case Expr::CoyieldExprClass: + // FIXME: Propose a non-vendor mangling. + NotPrimaryExpr(); + Out << "v18co_yield"; + mangleExpression(cast<CoawaitExpr>(E)->getOperand()); + break; + } + + if (AsTemplateArg && !IsPrimaryExpr) + Out << 'E'; +} + +/// Mangle an expression which refers to a parameter variable. +/// +/// <expression> ::= <function-param> +/// <function-param> ::= fp <top-level CV-qualifiers> _ # L == 0, I == 0 +/// <function-param> ::= fp <top-level CV-qualifiers> +/// <parameter-2 non-negative number> _ # L == 0, I > 0 +/// <function-param> ::= fL <L-1 non-negative number> +/// p <top-level CV-qualifiers> _ # L > 0, I == 0 +/// <function-param> ::= fL <L-1 non-negative number> +/// p <top-level CV-qualifiers> +/// <I-1 non-negative number> _ # L > 0, I > 0 +/// +/// L is the nesting depth of the parameter, defined as 1 if the +/// parameter comes from the innermost function prototype scope +/// enclosing the current context, 2 if from the next enclosing +/// function prototype scope, and so on, with one special case: if +/// we've processed the full parameter clause for the innermost +/// function type, then L is one less. This definition conveniently +/// makes it irrelevant whether a function's result type was written +/// trailing or leading, but is otherwise overly complicated; the +/// numbering was first designed without considering references to +/// parameter in locations other than return types, and then the +/// mangling had to be generalized without changing the existing +/// manglings. +/// +/// I is the zero-based index of the parameter within its parameter +/// declaration clause. Note that the original ABI document describes +/// this using 1-based ordinals. +void CXXNameMangler::mangleFunctionParam(const ParmVarDecl *parm) { + unsigned parmDepth = parm->getFunctionScopeDepth(); + unsigned parmIndex = parm->getFunctionScopeIndex(); + + // Compute 'L'. + // parmDepth does not include the declaring function prototype. + // FunctionTypeDepth does account for that. + assert(parmDepth < FunctionTypeDepth.getDepth()); + unsigned nestingDepth = FunctionTypeDepth.getDepth() - parmDepth; + if (FunctionTypeDepth.isInResultType()) + nestingDepth--; + + if (nestingDepth == 0) { + Out << "fp"; + } else { + Out << "fL" << (nestingDepth - 1) << 'p'; + } + + // Top-level qualifiers. We don't have to worry about arrays here, + // because parameters declared as arrays should already have been + // transformed to have pointer type. FIXME: apparently these don't + // get mangled if used as an rvalue of a known non-class type? + assert(!parm->getType()->isArrayType() + && "parameter's type is still an array type?"); + + if (const DependentAddressSpaceType *DAST = + dyn_cast<DependentAddressSpaceType>(parm->getType())) { + mangleQualifiers(DAST->getPointeeType().getQualifiers(), DAST); + } else { + mangleQualifiers(parm->getType().getQualifiers()); + } + + // Parameter index. + if (parmIndex != 0) { + Out << (parmIndex - 1); + } + Out << '_'; +} + +void CXXNameMangler::mangleCXXCtorType(CXXCtorType T, + const CXXRecordDecl *InheritedFrom) { + // <ctor-dtor-name> ::= C1 # complete object constructor + // ::= C2 # base object constructor + // ::= CI1 <type> # complete inheriting constructor + // ::= CI2 <type> # base inheriting constructor + // + // In addition, C5 is a comdat name with C1 and C2 in it. + Out << 'C'; + if (InheritedFrom) + Out << 'I'; + switch (T) { + case Ctor_Complete: + Out << '1'; + break; + case Ctor_Base: + Out << '2'; + break; + case Ctor_Comdat: + Out << '5'; + break; + case Ctor_DefaultClosure: + case Ctor_CopyingClosure: + llvm_unreachable("closure constructors don't exist for the Itanium ABI!"); + } + if (InheritedFrom) + mangleName(InheritedFrom); +} + +void CXXNameMangler::mangleCXXDtorType(CXXDtorType T) { + // <ctor-dtor-name> ::= D0 # deleting destructor + // ::= D1 # complete object destructor + // ::= D2 # base object destructor + // + // In addition, D5 is a comdat name with D1, D2 and, if virtual, D0 in it. + switch (T) { + case Dtor_Deleting: + Out << "D0"; + break; + case Dtor_Complete: + Out << "D1"; + break; + case Dtor_Base: + Out << "D2"; + break; + case Dtor_Comdat: + Out << "D5"; + break; + } +} + +namespace { +// Helper to provide ancillary information on a template used to mangle its +// arguments. +struct TemplateArgManglingInfo { + TemplateDecl *ResolvedTemplate = nullptr; + bool SeenPackExpansionIntoNonPack = false; + const NamedDecl *UnresolvedExpandedPack = nullptr; + + TemplateArgManglingInfo(TemplateName TN) { + if (TemplateDecl *TD = TN.getAsTemplateDecl()) + ResolvedTemplate = TD; + } + + /// Do we need to mangle template arguments with exactly correct types? + /// + /// This should be called exactly once for each parameter / argument pair, in + /// order. + bool needExactType(unsigned ParamIdx, const TemplateArgument &Arg) { + // We need correct types when the template-name is unresolved or when it + // names a template that is able to be overloaded. + if (!ResolvedTemplate || SeenPackExpansionIntoNonPack) + return true; + + // Move to the next parameter. + const NamedDecl *Param = UnresolvedExpandedPack; + if (!Param) { + assert(ParamIdx < ResolvedTemplate->getTemplateParameters()->size() && + "no parameter for argument"); + Param = ResolvedTemplate->getTemplateParameters()->getParam(ParamIdx); + + // If we reach an expanded parameter pack whose argument isn't in pack + // form, that means Sema couldn't figure out which arguments belonged to + // it, because it contains a pack expansion. Track the expanded pack for + // all further template arguments until we hit that pack expansion. + if (Param->isParameterPack() && Arg.getKind() != TemplateArgument::Pack) { + assert(getExpandedPackSize(Param) && + "failed to form pack argument for parameter pack"); + UnresolvedExpandedPack = Param; + } + } + + // If we encounter a pack argument that is expanded into a non-pack + // parameter, we can no longer track parameter / argument correspondence, + // and need to use exact types from this point onwards. + if (Arg.isPackExpansion() && + (!Param->isParameterPack() || UnresolvedExpandedPack)) { + SeenPackExpansionIntoNonPack = true; + return true; + } + + // We need exact types for function template arguments because they might be + // overloaded on template parameter type. As a special case, a member + // function template of a generic lambda is not overloadable. + if (auto *FTD = dyn_cast<FunctionTemplateDecl>(ResolvedTemplate)) { + auto *RD = dyn_cast<CXXRecordDecl>(FTD->getDeclContext()); + if (!RD || !RD->isGenericLambda()) + return true; + } + + // Otherwise, we only need a correct type if the parameter has a deduced + // type. + // + // Note: for an expanded parameter pack, getType() returns the type prior + // to expansion. We could ask for the expanded type with getExpansionType(), + // but it doesn't matter because substitution and expansion don't affect + // whether a deduced type appears in the type. + auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(Param); + return NTTP && NTTP->getType()->getContainedDeducedType(); + } +}; +} + +void CXXNameMangler::mangleTemplateArgs(TemplateName TN, + const TemplateArgumentLoc *TemplateArgs, + unsigned NumTemplateArgs) { + // <template-args> ::= I <template-arg>+ E + Out << 'I'; + TemplateArgManglingInfo Info(TN); + for (unsigned i = 0; i != NumTemplateArgs; ++i) + mangleTemplateArg(TemplateArgs[i].getArgument(), + Info.needExactType(i, TemplateArgs[i].getArgument())); + Out << 'E'; +} + +void CXXNameMangler::mangleTemplateArgs(TemplateName TN, + const TemplateArgumentList &AL) { + // <template-args> ::= I <template-arg>+ E + Out << 'I'; + TemplateArgManglingInfo Info(TN); + for (unsigned i = 0, e = AL.size(); i != e; ++i) + mangleTemplateArg(AL[i], Info.needExactType(i, AL[i])); + Out << 'E'; +} + +void CXXNameMangler::mangleTemplateArgs(TemplateName TN, + const TemplateArgument *TemplateArgs, + unsigned NumTemplateArgs) { + // <template-args> ::= I <template-arg>+ E + Out << 'I'; + TemplateArgManglingInfo Info(TN); + for (unsigned i = 0; i != NumTemplateArgs; ++i) + mangleTemplateArg(TemplateArgs[i], Info.needExactType(i, TemplateArgs[i])); + Out << 'E'; +} + +void CXXNameMangler::mangleTemplateArg(TemplateArgument A, bool NeedExactType) { + // <template-arg> ::= <type> # type or template + // ::= X <expression> E # expression + // ::= <expr-primary> # simple expressions + // ::= J <template-arg>* E # argument pack + if (!A.isInstantiationDependent() || A.isDependent()) + A = Context.getASTContext().getCanonicalTemplateArgument(A); + + switch (A.getKind()) { + case TemplateArgument::Null: + llvm_unreachable("Cannot mangle NULL template argument"); + + case TemplateArgument::Type: + mangleType(A.getAsType()); + break; + case TemplateArgument::Template: + // This is mangled as <type>. + mangleType(A.getAsTemplate()); + break; + case TemplateArgument::TemplateExpansion: + // <type> ::= Dp <type> # pack expansion (C++0x) + Out << "Dp"; + mangleType(A.getAsTemplateOrTemplatePattern()); + break; + case TemplateArgument::Expression: + mangleTemplateArgExpr(A.getAsExpr()); + break; + case TemplateArgument::Integral: + mangleIntegerLiteral(A.getIntegralType(), A.getAsIntegral()); + break; + case TemplateArgument::Declaration: { + // <expr-primary> ::= L <mangled-name> E # external name + ValueDecl *D = A.getAsDecl(); + + // Template parameter objects are modeled by reproducing a source form + // produced as if by aggregate initialization. + if (A.getParamTypeForDecl()->isRecordType()) { + auto *TPO = cast<TemplateParamObjectDecl>(D); + mangleValueInTemplateArg(TPO->getType().getUnqualifiedType(), + TPO->getValue(), /*TopLevel=*/true, + NeedExactType); + break; + } + + ASTContext &Ctx = Context.getASTContext(); + APValue Value; + if (D->isCXXInstanceMember()) + // Simple pointer-to-member with no conversion. + Value = APValue(D, /*IsDerivedMember=*/false, /*Path=*/{}); + else if (D->getType()->isArrayType() && + Ctx.hasSimilarType(Ctx.getDecayedType(D->getType()), + A.getParamTypeForDecl()) && + Ctx.getLangOpts().getClangABICompat() > + LangOptions::ClangABI::Ver11) + // Build a value corresponding to this implicit array-to-pointer decay. + Value = APValue(APValue::LValueBase(D), CharUnits::Zero(), + {APValue::LValuePathEntry::ArrayIndex(0)}, + /*OnePastTheEnd=*/false); + else + // Regular pointer or reference to a declaration. + Value = APValue(APValue::LValueBase(D), CharUnits::Zero(), + ArrayRef<APValue::LValuePathEntry>(), + /*OnePastTheEnd=*/false); + mangleValueInTemplateArg(A.getParamTypeForDecl(), Value, /*TopLevel=*/true, + NeedExactType); + break; + } + case TemplateArgument::NullPtr: { + mangleNullPointer(A.getNullPtrType()); + break; + } + case TemplateArgument::Pack: { + // <template-arg> ::= J <template-arg>* E + Out << 'J'; + for (const auto &P : A.pack_elements()) + mangleTemplateArg(P, NeedExactType); + Out << 'E'; + } + } +} + +void CXXNameMangler::mangleTemplateArgExpr(const Expr *E) { + ASTContext &Ctx = Context.getASTContext(); + if (Ctx.getLangOpts().getClangABICompat() > LangOptions::ClangABI::Ver11) { + mangleExpression(E, UnknownArity, /*AsTemplateArg=*/true); + return; + } + + // Prior to Clang 12, we didn't omit the X .. E around <expr-primary> + // correctly in cases where the template argument was + // constructed from an expression rather than an already-evaluated + // literal. In such a case, we would then e.g. emit 'XLi0EE' instead of + // 'Li0E'. + // + // We did special-case DeclRefExpr to attempt to DTRT for that one + // expression-kind, but while doing so, unfortunately handled ParmVarDecl + // (subtype of VarDecl) _incorrectly_, and emitted 'L_Z .. E' instead of + // the proper 'Xfp_E'. + E = E->IgnoreParenImpCasts(); + if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) { + const ValueDecl *D = DRE->getDecl(); + if (isa<VarDecl>(D) || isa<FunctionDecl>(D)) { + Out << 'L'; + mangle(D); + Out << 'E'; + return; + } + } + Out << 'X'; + mangleExpression(E); + Out << 'E'; +} + +/// Determine whether a given value is equivalent to zero-initialization for +/// the purpose of discarding a trailing portion of a 'tl' mangling. +/// +/// Note that this is not in general equivalent to determining whether the +/// value has an all-zeroes bit pattern. +static bool isZeroInitialized(QualType T, const APValue &V) { + // FIXME: mangleValueInTemplateArg has quadratic time complexity in + // pathological cases due to using this, but it's a little awkward + // to do this in linear time in general. + switch (V.getKind()) { + case APValue::None: + case APValue::Indeterminate: + case APValue::AddrLabelDiff: + return false; + + case APValue::Struct: { + const CXXRecordDecl *RD = T->getAsCXXRecordDecl(); + assert(RD && "unexpected type for record value"); + unsigned I = 0; + for (const CXXBaseSpecifier &BS : RD->bases()) { + if (!isZeroInitialized(BS.getType(), V.getStructBase(I))) + return false; + ++I; + } + I = 0; + for (const FieldDecl *FD : RD->fields()) { + if (!FD->isUnnamedBitfield() && + !isZeroInitialized(FD->getType(), V.getStructField(I))) + return false; + ++I; + } + return true; + } + + case APValue::Union: { + const CXXRecordDecl *RD = T->getAsCXXRecordDecl(); + assert(RD && "unexpected type for union value"); + // Zero-initialization zeroes the first non-unnamed-bitfield field, if any. + for (const FieldDecl *FD : RD->fields()) { + if (!FD->isUnnamedBitfield()) + return V.getUnionField() && declaresSameEntity(FD, V.getUnionField()) && + isZeroInitialized(FD->getType(), V.getUnionValue()); + } + // If there are no fields (other than unnamed bitfields), the value is + // necessarily zero-initialized. + return true; + } + + case APValue::Array: { + QualType ElemT(T->getArrayElementTypeNoTypeQual(), 0); + for (unsigned I = 0, N = V.getArrayInitializedElts(); I != N; ++I) + if (!isZeroInitialized(ElemT, V.getArrayInitializedElt(I))) + return false; + return !V.hasArrayFiller() || isZeroInitialized(ElemT, V.getArrayFiller()); + } + + case APValue::Vector: { + const VectorType *VT = T->castAs<VectorType>(); + for (unsigned I = 0, N = V.getVectorLength(); I != N; ++I) + if (!isZeroInitialized(VT->getElementType(), V.getVectorElt(I))) + return false; + return true; + } + + case APValue::Int: + return !V.getInt(); + + case APValue::Float: + return V.getFloat().isPosZero(); + + case APValue::FixedPoint: + return !V.getFixedPoint().getValue(); + + case APValue::ComplexFloat: + return V.getComplexFloatReal().isPosZero() && + V.getComplexFloatImag().isPosZero(); + + case APValue::ComplexInt: + return !V.getComplexIntReal() && !V.getComplexIntImag(); + + case APValue::LValue: + return V.isNullPointer(); + + case APValue::MemberPointer: + return !V.getMemberPointerDecl(); + } + + llvm_unreachable("Unhandled APValue::ValueKind enum"); +} + +static QualType getLValueType(ASTContext &Ctx, const APValue &LV) { + QualType T = LV.getLValueBase().getType(); + for (APValue::LValuePathEntry E : LV.getLValuePath()) { + if (const ArrayType *AT = Ctx.getAsArrayType(T)) + T = AT->getElementType(); + else if (const FieldDecl *FD = + dyn_cast<FieldDecl>(E.getAsBaseOrMember().getPointer())) + T = FD->getType(); + else + T = Ctx.getRecordType( + cast<CXXRecordDecl>(E.getAsBaseOrMember().getPointer())); + } + return T; +} + +void CXXNameMangler::mangleValueInTemplateArg(QualType T, const APValue &V, + bool TopLevel, + bool NeedExactType) { + // Ignore all top-level cv-qualifiers, to match GCC. + Qualifiers Quals; + T = getASTContext().getUnqualifiedArrayType(T, Quals); + + // A top-level expression that's not a primary expression is wrapped in X...E. + bool IsPrimaryExpr = true; + auto NotPrimaryExpr = [&] { + if (TopLevel && IsPrimaryExpr) + Out << 'X'; + IsPrimaryExpr = false; + }; + + // Proposed in https://github.com/itanium-cxx-abi/cxx-abi/issues/63. + switch (V.getKind()) { + case APValue::None: + case APValue::Indeterminate: + Out << 'L'; + mangleType(T); + Out << 'E'; + break; + + case APValue::AddrLabelDiff: + llvm_unreachable("unexpected value kind in template argument"); + + case APValue::Struct: { + const CXXRecordDecl *RD = T->getAsCXXRecordDecl(); + assert(RD && "unexpected type for record value"); + + // Drop trailing zero-initialized elements. + llvm::SmallVector<const FieldDecl *, 16> Fields(RD->field_begin(), + RD->field_end()); + while ( + !Fields.empty() && + (Fields.back()->isUnnamedBitfield() || + isZeroInitialized(Fields.back()->getType(), + V.getStructField(Fields.back()->getFieldIndex())))) { + Fields.pop_back(); + } + llvm::ArrayRef<CXXBaseSpecifier> Bases(RD->bases_begin(), RD->bases_end()); + if (Fields.empty()) { + while (!Bases.empty() && + isZeroInitialized(Bases.back().getType(), + V.getStructBase(Bases.size() - 1))) + Bases = Bases.drop_back(); + } + + // <expression> ::= tl <type> <braced-expression>* E + NotPrimaryExpr(); + Out << "tl"; + mangleType(T); + for (unsigned I = 0, N = Bases.size(); I != N; ++I) + mangleValueInTemplateArg(Bases[I].getType(), V.getStructBase(I), false); + for (unsigned I = 0, N = Fields.size(); I != N; ++I) { + if (Fields[I]->isUnnamedBitfield()) + continue; + mangleValueInTemplateArg(Fields[I]->getType(), + V.getStructField(Fields[I]->getFieldIndex()), + false); + } + Out << 'E'; + break; + } + + case APValue::Union: { + assert(T->getAsCXXRecordDecl() && "unexpected type for union value"); + const FieldDecl *FD = V.getUnionField(); + + if (!FD) { + Out << 'L'; + mangleType(T); + Out << 'E'; + break; + } + + // <braced-expression> ::= di <field source-name> <braced-expression> + NotPrimaryExpr(); + Out << "tl"; + mangleType(T); + if (!isZeroInitialized(T, V)) { + Out << "di"; + mangleSourceName(FD->getIdentifier()); + mangleValueInTemplateArg(FD->getType(), V.getUnionValue(), false); + } + Out << 'E'; + break; + } + + case APValue::Array: { + QualType ElemT(T->getArrayElementTypeNoTypeQual(), 0); + + NotPrimaryExpr(); + Out << "tl"; + mangleType(T); + + // Drop trailing zero-initialized elements. + unsigned N = V.getArraySize(); + if (!V.hasArrayFiller() || isZeroInitialized(ElemT, V.getArrayFiller())) { + N = V.getArrayInitializedElts(); + while (N && isZeroInitialized(ElemT, V.getArrayInitializedElt(N - 1))) + --N; + } + + for (unsigned I = 0; I != N; ++I) { + const APValue &Elem = I < V.getArrayInitializedElts() + ? V.getArrayInitializedElt(I) + : V.getArrayFiller(); + mangleValueInTemplateArg(ElemT, Elem, false); + } + Out << 'E'; + break; + } + + case APValue::Vector: { + const VectorType *VT = T->castAs<VectorType>(); + + NotPrimaryExpr(); + Out << "tl"; + mangleType(T); + unsigned N = V.getVectorLength(); + while (N && isZeroInitialized(VT->getElementType(), V.getVectorElt(N - 1))) + --N; + for (unsigned I = 0; I != N; ++I) + mangleValueInTemplateArg(VT->getElementType(), V.getVectorElt(I), false); + Out << 'E'; + break; + } + + case APValue::Int: + mangleIntegerLiteral(T, V.getInt()); + break; + + case APValue::Float: + mangleFloatLiteral(T, V.getFloat()); + break; + + case APValue::FixedPoint: + mangleFixedPointLiteral(); + break; + + case APValue::ComplexFloat: { + const ComplexType *CT = T->castAs<ComplexType>(); + NotPrimaryExpr(); + Out << "tl"; + mangleType(T); + if (!V.getComplexFloatReal().isPosZero() || + !V.getComplexFloatImag().isPosZero()) + mangleFloatLiteral(CT->getElementType(), V.getComplexFloatReal()); + if (!V.getComplexFloatImag().isPosZero()) + mangleFloatLiteral(CT->getElementType(), V.getComplexFloatImag()); + Out << 'E'; + break; + } + + case APValue::ComplexInt: { + const ComplexType *CT = T->castAs<ComplexType>(); + NotPrimaryExpr(); + Out << "tl"; + mangleType(T); + if (V.getComplexIntReal().getBoolValue() || + V.getComplexIntImag().getBoolValue()) + mangleIntegerLiteral(CT->getElementType(), V.getComplexIntReal()); + if (V.getComplexIntImag().getBoolValue()) + mangleIntegerLiteral(CT->getElementType(), V.getComplexIntImag()); + Out << 'E'; + break; + } + + case APValue::LValue: { + // Proposed in https://github.com/itanium-cxx-abi/cxx-abi/issues/47. + assert((T->isPointerType() || T->isReferenceType()) && + "unexpected type for LValue template arg"); + + if (V.isNullPointer()) { + mangleNullPointer(T); + break; + } + + APValue::LValueBase B = V.getLValueBase(); + if (!B) { + // Non-standard mangling for integer cast to a pointer; this can only + // occur as an extension. + CharUnits Offset = V.getLValueOffset(); + if (Offset.isZero()) { + // This is reinterpret_cast<T*>(0), not a null pointer. Mangle this as + // a cast, because L <type> 0 E means something else. + NotPrimaryExpr(); + Out << "rc"; + mangleType(T); + Out << "Li0E"; + if (TopLevel) + Out << 'E'; + } else { + Out << "L"; + mangleType(T); + Out << Offset.getQuantity() << 'E'; + } + break; + } + + ASTContext &Ctx = Context.getASTContext(); + + enum { Base, Offset, Path } Kind; + if (!V.hasLValuePath()) { + // Mangle as (T*)((char*)&base + N). + if (T->isReferenceType()) { + NotPrimaryExpr(); + Out << "decvP"; + mangleType(T->getPointeeType()); + } else { + NotPrimaryExpr(); + Out << "cv"; + mangleType(T); + } + Out << "plcvPcad"; + Kind = Offset; + } else { + if (!V.getLValuePath().empty() || V.isLValueOnePastTheEnd()) { + NotPrimaryExpr(); + // A final conversion to the template parameter's type is usually + // folded into the 'so' mangling, but we can't do that for 'void*' + // parameters without introducing collisions. + if (NeedExactType && T->isVoidPointerType()) { + Out << "cv"; + mangleType(T); + } + if (T->isPointerType()) + Out << "ad"; + Out << "so"; + mangleType(T->isVoidPointerType() + ? getLValueType(Ctx, V).getUnqualifiedType() + : T->getPointeeType()); + Kind = Path; + } else { + if (NeedExactType && + !Ctx.hasSameType(T->getPointeeType(), getLValueType(Ctx, V)) && + Ctx.getLangOpts().getClangABICompat() > + LangOptions::ClangABI::Ver11) { + NotPrimaryExpr(); + Out << "cv"; + mangleType(T); + } + if (T->isPointerType()) { + NotPrimaryExpr(); + Out << "ad"; + } + Kind = Base; + } + } + + QualType TypeSoFar = B.getType(); + if (auto *VD = B.dyn_cast<const ValueDecl*>()) { + Out << 'L'; + mangle(VD); + Out << 'E'; + } else if (auto *E = B.dyn_cast<const Expr*>()) { + NotPrimaryExpr(); + mangleExpression(E); + } else if (auto TI = B.dyn_cast<TypeInfoLValue>()) { + NotPrimaryExpr(); + Out << "ti"; + mangleType(QualType(TI.getType(), 0)); + } else { + // We should never see dynamic allocations here. + llvm_unreachable("unexpected lvalue base kind in template argument"); + } + + switch (Kind) { + case Base: + break; + + case Offset: + Out << 'L'; + mangleType(Ctx.getPointerDiffType()); + mangleNumber(V.getLValueOffset().getQuantity()); + Out << 'E'; + break; + + case Path: + // <expression> ::= so <referent type> <expr> [<offset number>] + // <union-selector>* [p] E + if (!V.getLValueOffset().isZero()) + mangleNumber(V.getLValueOffset().getQuantity()); + + // We model a past-the-end array pointer as array indexing with index N, + // not with the "past the end" flag. Compensate for that. + bool OnePastTheEnd = V.isLValueOnePastTheEnd(); + + for (APValue::LValuePathEntry E : V.getLValuePath()) { + if (auto *AT = TypeSoFar->getAsArrayTypeUnsafe()) { + if (auto *CAT = dyn_cast<ConstantArrayType>(AT)) + OnePastTheEnd |= CAT->getSize() == E.getAsArrayIndex(); + TypeSoFar = AT->getElementType(); + } else { + const Decl *D = E.getAsBaseOrMember().getPointer(); + if (auto *FD = dyn_cast<FieldDecl>(D)) { + // <union-selector> ::= _ <number> + if (FD->getParent()->isUnion()) { + Out << '_'; + if (FD->getFieldIndex()) + Out << (FD->getFieldIndex() - 1); + } + TypeSoFar = FD->getType(); + } else { + TypeSoFar = Ctx.getRecordType(cast<CXXRecordDecl>(D)); + } + } + } + + if (OnePastTheEnd) + Out << 'p'; + Out << 'E'; + break; + } + + break; + } + + case APValue::MemberPointer: + // Proposed in https://github.com/itanium-cxx-abi/cxx-abi/issues/47. + if (!V.getMemberPointerDecl()) { + mangleNullPointer(T); + break; + } + + ASTContext &Ctx = Context.getASTContext(); + + NotPrimaryExpr(); + if (!V.getMemberPointerPath().empty()) { + Out << "mc"; + mangleType(T); + } else if (NeedExactType && + !Ctx.hasSameType( + T->castAs<MemberPointerType>()->getPointeeType(), + V.getMemberPointerDecl()->getType()) && + Ctx.getLangOpts().getClangABICompat() > + LangOptions::ClangABI::Ver11) { + Out << "cv"; + mangleType(T); + } + Out << "adL"; + mangle(V.getMemberPointerDecl()); + Out << 'E'; + if (!V.getMemberPointerPath().empty()) { + CharUnits Offset = + Context.getASTContext().getMemberPointerPathAdjustment(V); + if (!Offset.isZero()) + mangleNumber(Offset.getQuantity()); + Out << 'E'; + } + break; + } + + if (TopLevel && !IsPrimaryExpr) + Out << 'E'; +} + +void CXXNameMangler::mangleTemplateParameter(unsigned Depth, unsigned Index) { + // <template-param> ::= T_ # first template parameter + // ::= T <parameter-2 non-negative number> _ + // ::= TL <L-1 non-negative number> __ + // ::= TL <L-1 non-negative number> _ + // <parameter-2 non-negative number> _ + // + // The latter two manglings are from a proposal here: + // https://github.com/itanium-cxx-abi/cxx-abi/issues/31#issuecomment-528122117 + Out << 'T'; + if (Depth != 0) + Out << 'L' << (Depth - 1) << '_'; + if (Index != 0) + Out << (Index - 1); + Out << '_'; +} + +void CXXNameMangler::mangleSeqID(unsigned SeqID) { + if (SeqID == 1) + Out << '0'; + else if (SeqID > 1) { + SeqID--; + + // <seq-id> is encoded in base-36, using digits and upper case letters. + char Buffer[7]; // log(2**32) / log(36) ~= 7 + MutableArrayRef<char> BufferRef(Buffer); + MutableArrayRef<char>::reverse_iterator I = BufferRef.rbegin(); + + for (; SeqID != 0; SeqID /= 36) { + unsigned C = SeqID % 36; + *I++ = (C < 10 ? '0' + C : 'A' + C - 10); + } + + Out.write(I.base(), I - BufferRef.rbegin()); + } + Out << '_'; +} + +void CXXNameMangler::mangleExistingSubstitution(TemplateName tname) { + bool result = mangleSubstitution(tname); + assert(result && "no existing substitution for template name"); + (void) result; +} + +// <substitution> ::= S <seq-id> _ +// ::= S_ +bool CXXNameMangler::mangleSubstitution(const NamedDecl *ND) { + // Try one of the standard substitutions first. + if (mangleStandardSubstitution(ND)) + return true; + + ND = cast<NamedDecl>(ND->getCanonicalDecl()); + return mangleSubstitution(reinterpret_cast<uintptr_t>(ND)); +} + +/// Determine whether the given type has any qualifiers that are relevant for +/// substitutions. +static bool hasMangledSubstitutionQualifiers(QualType T) { + Qualifiers Qs = T.getQualifiers(); + return Qs.getCVRQualifiers() || Qs.hasAddressSpace() || Qs.hasUnaligned(); +} + +bool CXXNameMangler::mangleSubstitution(QualType T) { + if (!hasMangledSubstitutionQualifiers(T)) { + if (const RecordType *RT = T->getAs<RecordType>()) + return mangleSubstitution(RT->getDecl()); + } + + uintptr_t TypePtr = reinterpret_cast<uintptr_t>(T.getAsOpaquePtr()); + + return mangleSubstitution(TypePtr); +} + +bool CXXNameMangler::mangleSubstitution(TemplateName Template) { + if (TemplateDecl *TD = Template.getAsTemplateDecl()) + return mangleSubstitution(TD); + + Template = Context.getASTContext().getCanonicalTemplateName(Template); + return mangleSubstitution( + reinterpret_cast<uintptr_t>(Template.getAsVoidPointer())); +} + +bool CXXNameMangler::mangleSubstitution(uintptr_t Ptr) { + llvm::DenseMap<uintptr_t, unsigned>::iterator I = Substitutions.find(Ptr); + if (I == Substitutions.end()) + return false; + + unsigned SeqID = I->second; + Out << 'S'; + mangleSeqID(SeqID); + + return true; +} + +static bool isCharType(QualType T) { + if (T.isNull()) + return false; + + return T->isSpecificBuiltinType(BuiltinType::Char_S) || + T->isSpecificBuiltinType(BuiltinType::Char_U); +} + +/// Returns whether a given type is a template specialization of a given name +/// with a single argument of type char. +static bool isCharSpecialization(QualType T, const char *Name) { + if (T.isNull()) + return false; + + const RecordType *RT = T->getAs<RecordType>(); + if (!RT) + return false; + + const ClassTemplateSpecializationDecl *SD = + dyn_cast<ClassTemplateSpecializationDecl>(RT->getDecl()); + if (!SD) + return false; + + if (!isStdNamespace(getEffectiveDeclContext(SD))) + return false; + + const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs(); + if (TemplateArgs.size() != 1) + return false; + + if (!isCharType(TemplateArgs[0].getAsType())) + return false; + + return SD->getIdentifier()->getName() == Name; +} + +template <std::size_t StrLen> +static bool isStreamCharSpecialization(const ClassTemplateSpecializationDecl*SD, + const char (&Str)[StrLen]) { + if (!SD->getIdentifier()->isStr(Str)) + return false; + + const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs(); + if (TemplateArgs.size() != 2) + return false; + + if (!isCharType(TemplateArgs[0].getAsType())) + return false; + + if (!isCharSpecialization(TemplateArgs[1].getAsType(), "char_traits")) + return false; + + return true; +} + +bool CXXNameMangler::mangleStandardSubstitution(const NamedDecl *ND) { + // <substitution> ::= St # ::std:: + if (const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ND)) { + if (isStd(NS)) { + Out << "St"; + return true; + } + } + + if (const ClassTemplateDecl *TD = dyn_cast<ClassTemplateDecl>(ND)) { + if (!isStdNamespace(getEffectiveDeclContext(TD))) + return false; + + // <substitution> ::= Sa # ::std::allocator + if (TD->getIdentifier()->isStr("allocator")) { + Out << "Sa"; + return true; + } + + // <<substitution> ::= Sb # ::std::basic_string + if (TD->getIdentifier()->isStr("basic_string")) { + Out << "Sb"; + return true; + } + } + + if (const ClassTemplateSpecializationDecl *SD = + dyn_cast<ClassTemplateSpecializationDecl>(ND)) { + if (!isStdNamespace(getEffectiveDeclContext(SD))) + return false; + + // <substitution> ::= Ss # ::std::basic_string<char, + // ::std::char_traits<char>, + // ::std::allocator<char> > + if (SD->getIdentifier()->isStr("basic_string")) { + const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs(); + + if (TemplateArgs.size() != 3) + return false; + + if (!isCharType(TemplateArgs[0].getAsType())) + return false; + + if (!isCharSpecialization(TemplateArgs[1].getAsType(), "char_traits")) + return false; + + if (!isCharSpecialization(TemplateArgs[2].getAsType(), "allocator")) + return false; + + Out << "Ss"; + return true; + } + + // <substitution> ::= Si # ::std::basic_istream<char, + // ::std::char_traits<char> > + if (isStreamCharSpecialization(SD, "basic_istream")) { + Out << "Si"; + return true; + } + + // <substitution> ::= So # ::std::basic_ostream<char, + // ::std::char_traits<char> > + if (isStreamCharSpecialization(SD, "basic_ostream")) { + Out << "So"; + return true; + } + + // <substitution> ::= Sd # ::std::basic_iostream<char, + // ::std::char_traits<char> > + if (isStreamCharSpecialization(SD, "basic_iostream")) { + Out << "Sd"; + return true; + } + } + return false; +} + +void CXXNameMangler::addSubstitution(QualType T) { + if (!hasMangledSubstitutionQualifiers(T)) { + if (const RecordType *RT = T->getAs<RecordType>()) { + addSubstitution(RT->getDecl()); + return; + } + } + + uintptr_t TypePtr = reinterpret_cast<uintptr_t>(T.getAsOpaquePtr()); + addSubstitution(TypePtr); +} + +void CXXNameMangler::addSubstitution(TemplateName Template) { + if (TemplateDecl *TD = Template.getAsTemplateDecl()) + return addSubstitution(TD); + + Template = Context.getASTContext().getCanonicalTemplateName(Template); + addSubstitution(reinterpret_cast<uintptr_t>(Template.getAsVoidPointer())); +} + +void CXXNameMangler::addSubstitution(uintptr_t Ptr) { + assert(!Substitutions.count(Ptr) && "Substitution already exists!"); + Substitutions[Ptr] = SeqID++; +} + +void CXXNameMangler::extendSubstitutions(CXXNameMangler* Other) { + assert(Other->SeqID >= SeqID && "Must be superset of substitutions!"); + if (Other->SeqID > SeqID) { + Substitutions.swap(Other->Substitutions); + SeqID = Other->SeqID; + } +} + +CXXNameMangler::AbiTagList +CXXNameMangler::makeFunctionReturnTypeTags(const FunctionDecl *FD) { + // When derived abi tags are disabled there is no need to make any list. + if (DisableDerivedAbiTags) + return AbiTagList(); + + llvm::raw_null_ostream NullOutStream; + CXXNameMangler TrackReturnTypeTags(*this, NullOutStream); + TrackReturnTypeTags.disableDerivedAbiTags(); + + const FunctionProtoType *Proto = + cast<FunctionProtoType>(FD->getType()->getAs<FunctionType>()); + FunctionTypeDepthState saved = TrackReturnTypeTags.FunctionTypeDepth.push(); + TrackReturnTypeTags.FunctionTypeDepth.enterResultType(); + TrackReturnTypeTags.mangleType(Proto->getReturnType()); + TrackReturnTypeTags.FunctionTypeDepth.leaveResultType(); + TrackReturnTypeTags.FunctionTypeDepth.pop(saved); + + return TrackReturnTypeTags.AbiTagsRoot.getSortedUniqueUsedAbiTags(); +} + +CXXNameMangler::AbiTagList +CXXNameMangler::makeVariableTypeTags(const VarDecl *VD) { + // When derived abi tags are disabled there is no need to make any list. + if (DisableDerivedAbiTags) + return AbiTagList(); + + llvm::raw_null_ostream NullOutStream; + CXXNameMangler TrackVariableType(*this, NullOutStream); + TrackVariableType.disableDerivedAbiTags(); + + TrackVariableType.mangleType(VD->getType()); + + return TrackVariableType.AbiTagsRoot.getSortedUniqueUsedAbiTags(); +} + +bool CXXNameMangler::shouldHaveAbiTags(ItaniumMangleContextImpl &C, + const VarDecl *VD) { + llvm::raw_null_ostream NullOutStream; + CXXNameMangler TrackAbiTags(C, NullOutStream, nullptr, true); + TrackAbiTags.mangle(VD); + return TrackAbiTags.AbiTagsRoot.getUsedAbiTags().size(); +} + +// + +/// Mangles the name of the declaration D and emits that name to the given +/// output stream. +/// +/// If the declaration D requires a mangled name, this routine will emit that +/// mangled name to \p os and return true. Otherwise, \p os will be unchanged +/// and this routine will return false. In this case, the caller should just +/// emit the identifier of the declaration (\c D->getIdentifier()) as its +/// name. +void ItaniumMangleContextImpl::mangleCXXName(GlobalDecl GD, + raw_ostream &Out) { + const NamedDecl *D = cast<NamedDecl>(GD.getDecl()); + assert((isa<FunctionDecl, VarDecl, TemplateParamObjectDecl>(D)) && + "Invalid mangleName() call, argument is not a variable or function!"); + + PrettyStackTraceDecl CrashInfo(D, SourceLocation(), + getASTContext().getSourceManager(), + "Mangling declaration"); + + if (auto *CD = dyn_cast<CXXConstructorDecl>(D)) { + auto Type = GD.getCtorType(); + CXXNameMangler Mangler(*this, Out, CD, Type); + return Mangler.mangle(GlobalDecl(CD, Type)); + } + + if (auto *DD = dyn_cast<CXXDestructorDecl>(D)) { + auto Type = GD.getDtorType(); + CXXNameMangler Mangler(*this, Out, DD, Type); + return Mangler.mangle(GlobalDecl(DD, Type)); + } + + CXXNameMangler Mangler(*this, Out, D); + Mangler.mangle(GD); +} + +void ItaniumMangleContextImpl::mangleCXXCtorComdat(const CXXConstructorDecl *D, + raw_ostream &Out) { + CXXNameMangler Mangler(*this, Out, D, Ctor_Comdat); + Mangler.mangle(GlobalDecl(D, Ctor_Comdat)); +} + +void ItaniumMangleContextImpl::mangleCXXDtorComdat(const CXXDestructorDecl *D, + raw_ostream &Out) { + CXXNameMangler Mangler(*this, Out, D, Dtor_Comdat); + Mangler.mangle(GlobalDecl(D, Dtor_Comdat)); +} + +void ItaniumMangleContextImpl::mangleThunk(const CXXMethodDecl *MD, + const ThunkInfo &Thunk, + raw_ostream &Out) { + // <special-name> ::= T <call-offset> <base encoding> + // # base is the nominal target function of thunk + // <special-name> ::= Tc <call-offset> <call-offset> <base encoding> + // # base is the nominal target function of thunk + // # first call-offset is 'this' adjustment + // # second call-offset is result adjustment + + assert(!isa<CXXDestructorDecl>(MD) && + "Use mangleCXXDtor for destructor decls!"); + CXXNameMangler Mangler(*this, Out); + Mangler.getStream() << "_ZT"; + if (!Thunk.Return.isEmpty()) + Mangler.getStream() << 'c'; + + // Mangle the 'this' pointer adjustment. + Mangler.mangleCallOffset(Thunk.This.NonVirtual, + Thunk.This.Virtual.Itanium.VCallOffsetOffset); + + // Mangle the return pointer adjustment if there is one. + if (!Thunk.Return.isEmpty()) + Mangler.mangleCallOffset(Thunk.Return.NonVirtual, + Thunk.Return.Virtual.Itanium.VBaseOffsetOffset); + + Mangler.mangleFunctionEncoding(MD); +} + +void ItaniumMangleContextImpl::mangleCXXDtorThunk( + const CXXDestructorDecl *DD, CXXDtorType Type, + const ThisAdjustment &ThisAdjustment, raw_ostream &Out) { + // <special-name> ::= T <call-offset> <base encoding> + // # base is the nominal target function of thunk + CXXNameMangler Mangler(*this, Out, DD, Type); + Mangler.getStream() << "_ZT"; + + // Mangle the 'this' pointer adjustment. + Mangler.mangleCallOffset(ThisAdjustment.NonVirtual, + ThisAdjustment.Virtual.Itanium.VCallOffsetOffset); + + Mangler.mangleFunctionEncoding(GlobalDecl(DD, Type)); +} + +/// Returns the mangled name for a guard variable for the passed in VarDecl. +void ItaniumMangleContextImpl::mangleStaticGuardVariable(const VarDecl *D, + raw_ostream &Out) { + // <special-name> ::= GV <object name> # Guard variable for one-time + // # initialization + CXXNameMangler Mangler(*this, Out); + // GCC 5.3.0 doesn't emit derived ABI tags for local names but that seems to + // be a bug that is fixed in trunk. + Mangler.getStream() << "_ZGV"; + Mangler.mangleName(D); +} + +void ItaniumMangleContextImpl::mangleDynamicInitializer(const VarDecl *MD, + raw_ostream &Out) { + // These symbols are internal in the Itanium ABI, so the names don't matter. + // Clang has traditionally used this symbol and allowed LLVM to adjust it to + // avoid duplicate symbols. + Out << "__cxx_global_var_init"; +} + +void ItaniumMangleContextImpl::mangleDynamicAtExitDestructor(const VarDecl *D, + raw_ostream &Out) { + // Prefix the mangling of D with __dtor_. + CXXNameMangler Mangler(*this, Out); + Mangler.getStream() << "__dtor_"; + if (shouldMangleDeclName(D)) + Mangler.mangle(D); + else + Mangler.getStream() << D->getName(); +} + +void ItaniumMangleContextImpl::mangleDynamicStermFinalizer(const VarDecl *D, + raw_ostream &Out) { + // Clang generates these internal-linkage functions as part of its + // implementation of the XL ABI. + CXXNameMangler Mangler(*this, Out); + Mangler.getStream() << "__finalize_"; + if (shouldMangleDeclName(D)) + Mangler.mangle(D); + else + Mangler.getStream() << D->getName(); +} + +void ItaniumMangleContextImpl::mangleSEHFilterExpression( + const NamedDecl *EnclosingDecl, raw_ostream &Out) { + CXXNameMangler Mangler(*this, Out); + Mangler.getStream() << "__filt_"; + if (shouldMangleDeclName(EnclosingDecl)) + Mangler.mangle(EnclosingDecl); + else + Mangler.getStream() << EnclosingDecl->getName(); +} + +void ItaniumMangleContextImpl::mangleSEHFinallyBlock( + const NamedDecl *EnclosingDecl, raw_ostream &Out) { + CXXNameMangler Mangler(*this, Out); + Mangler.getStream() << "__fin_"; + if (shouldMangleDeclName(EnclosingDecl)) + Mangler.mangle(EnclosingDecl); + else + Mangler.getStream() << EnclosingDecl->getName(); +} + +void ItaniumMangleContextImpl::mangleItaniumThreadLocalInit(const VarDecl *D, + raw_ostream &Out) { + // <special-name> ::= TH <object name> + CXXNameMangler Mangler(*this, Out); + Mangler.getStream() << "_ZTH"; + Mangler.mangleName(D); +} + +void +ItaniumMangleContextImpl::mangleItaniumThreadLocalWrapper(const VarDecl *D, + raw_ostream &Out) { + // <special-name> ::= TW <object name> + CXXNameMangler Mangler(*this, Out); + Mangler.getStream() << "_ZTW"; + Mangler.mangleName(D); +} + +void ItaniumMangleContextImpl::mangleReferenceTemporary(const VarDecl *D, + unsigned ManglingNumber, + raw_ostream &Out) { + // We match the GCC mangling here. + // <special-name> ::= GR <object name> + CXXNameMangler Mangler(*this, Out); + Mangler.getStream() << "_ZGR"; + Mangler.mangleName(D); + assert(ManglingNumber > 0 && "Reference temporary mangling number is zero!"); + Mangler.mangleSeqID(ManglingNumber - 1); +} + +void ItaniumMangleContextImpl::mangleCXXVTable(const CXXRecordDecl *RD, + raw_ostream &Out) { + // <special-name> ::= TV <type> # virtual table + CXXNameMangler Mangler(*this, Out); + Mangler.getStream() << "_ZTV"; + Mangler.mangleNameOrStandardSubstitution(RD); +} + +void ItaniumMangleContextImpl::mangleCXXVTT(const CXXRecordDecl *RD, + raw_ostream &Out) { + // <special-name> ::= TT <type> # VTT structure + CXXNameMangler Mangler(*this, Out); + Mangler.getStream() << "_ZTT"; + Mangler.mangleNameOrStandardSubstitution(RD); +} + +void ItaniumMangleContextImpl::mangleCXXCtorVTable(const CXXRecordDecl *RD, + int64_t Offset, + const CXXRecordDecl *Type, + raw_ostream &Out) { + // <special-name> ::= TC <type> <offset number> _ <base type> + CXXNameMangler Mangler(*this, Out); + Mangler.getStream() << "_ZTC"; + Mangler.mangleNameOrStandardSubstitution(RD); + Mangler.getStream() << Offset; + Mangler.getStream() << '_'; + Mangler.mangleNameOrStandardSubstitution(Type); +} + +void ItaniumMangleContextImpl::mangleCXXRTTI(QualType Ty, raw_ostream &Out) { + // <special-name> ::= TI <type> # typeinfo structure + assert(!Ty.hasQualifiers() && "RTTI info cannot have top-level qualifiers"); + CXXNameMangler Mangler(*this, Out); + Mangler.getStream() << "_ZTI"; + Mangler.mangleType(Ty); +} + +void ItaniumMangleContextImpl::mangleCXXRTTIName(QualType Ty, + raw_ostream &Out) { + // <special-name> ::= TS <type> # typeinfo name (null terminated byte string) + CXXNameMangler Mangler(*this, Out); + Mangler.getStream() << "_ZTS"; + Mangler.mangleType(Ty); +} + +void ItaniumMangleContextImpl::mangleTypeName(QualType Ty, raw_ostream &Out) { + mangleCXXRTTIName(Ty, Out); +} + +void ItaniumMangleContextImpl::mangleStringLiteral(const StringLiteral *, raw_ostream &) { + llvm_unreachable("Can't mangle string literals"); +} + +void ItaniumMangleContextImpl::mangleLambdaSig(const CXXRecordDecl *Lambda, + raw_ostream &Out) { + CXXNameMangler Mangler(*this, Out); + Mangler.mangleLambdaSig(Lambda); +} + +ItaniumMangleContext * +ItaniumMangleContext::create(ASTContext &Context, DiagnosticsEngine &Diags) { + return new ItaniumMangleContextImpl(Context, Diags); +} |