aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm-project/clang/lib/AST/ItaniumMangle.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm-project/clang/lib/AST/ItaniumMangle.cpp')
-rw-r--r--contrib/llvm-project/clang/lib/AST/ItaniumMangle.cpp6212
1 files changed, 6212 insertions, 0 deletions
diff --git a/contrib/llvm-project/clang/lib/AST/ItaniumMangle.cpp b/contrib/llvm-project/clang/lib/AST/ItaniumMangle.cpp
new file mode 100644
index 000000000000..5cad84a96845
--- /dev/null
+++ b/contrib/llvm-project/clang/lib/AST/ItaniumMangle.cpp
@@ -0,0 +1,6212 @@
+//===--- ItaniumMangle.cpp - Itanium C++ Name Mangling ----------*- C++ -*-===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// Implements C++ name mangling according to the Itanium C++ ABI,
+// which is used in GCC 3.2 and newer (and many compilers that are
+// ABI-compatible with GCC):
+//
+// http://itanium-cxx-abi.github.io/cxx-abi/abi.html#mangling
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/AST/Mangle.h"
+#include "clang/AST/ASTContext.h"
+#include "clang/AST/Attr.h"
+#include "clang/AST/Decl.h"
+#include "clang/AST/DeclCXX.h"
+#include "clang/AST/DeclObjC.h"
+#include "clang/AST/DeclOpenMP.h"
+#include "clang/AST/DeclTemplate.h"
+#include "clang/AST/Expr.h"
+#include "clang/AST/ExprConcepts.h"
+#include "clang/AST/ExprCXX.h"
+#include "clang/AST/ExprObjC.h"
+#include "clang/AST/TypeLoc.h"
+#include "clang/Basic/ABI.h"
+#include "clang/Basic/Module.h"
+#include "clang/Basic/SourceManager.h"
+#include "clang/Basic/TargetInfo.h"
+#include "llvm/ADT/StringExtras.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/raw_ostream.h"
+
+using namespace clang;
+
+namespace {
+
+/// Retrieve the declaration context that should be used when mangling the given
+/// declaration.
+static const DeclContext *getEffectiveDeclContext(const Decl *D) {
+ // The ABI assumes that lambda closure types that occur within
+ // default arguments live in the context of the function. However, due to
+ // the way in which Clang parses and creates function declarations, this is
+ // not the case: the lambda closure type ends up living in the context
+ // where the function itself resides, because the function declaration itself
+ // had not yet been created. Fix the context here.
+ if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D)) {
+ if (RD->isLambda())
+ if (ParmVarDecl *ContextParam
+ = dyn_cast_or_null<ParmVarDecl>(RD->getLambdaContextDecl()))
+ return ContextParam->getDeclContext();
+ }
+
+ // Perform the same check for block literals.
+ if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) {
+ if (ParmVarDecl *ContextParam
+ = dyn_cast_or_null<ParmVarDecl>(BD->getBlockManglingContextDecl()))
+ return ContextParam->getDeclContext();
+ }
+
+ const DeclContext *DC = D->getDeclContext();
+ if (isa<CapturedDecl>(DC) || isa<OMPDeclareReductionDecl>(DC) ||
+ isa<OMPDeclareMapperDecl>(DC)) {
+ return getEffectiveDeclContext(cast<Decl>(DC));
+ }
+
+ if (const auto *VD = dyn_cast<VarDecl>(D))
+ if (VD->isExternC())
+ return VD->getASTContext().getTranslationUnitDecl();
+
+ if (const auto *FD = dyn_cast<FunctionDecl>(D))
+ if (FD->isExternC())
+ return FD->getASTContext().getTranslationUnitDecl();
+
+ return DC->getRedeclContext();
+}
+
+static const DeclContext *getEffectiveParentContext(const DeclContext *DC) {
+ return getEffectiveDeclContext(cast<Decl>(DC));
+}
+
+static bool isLocalContainerContext(const DeclContext *DC) {
+ return isa<FunctionDecl>(DC) || isa<ObjCMethodDecl>(DC) || isa<BlockDecl>(DC);
+}
+
+static const RecordDecl *GetLocalClassDecl(const Decl *D) {
+ const DeclContext *DC = getEffectiveDeclContext(D);
+ while (!DC->isNamespace() && !DC->isTranslationUnit()) {
+ if (isLocalContainerContext(DC))
+ return dyn_cast<RecordDecl>(D);
+ D = cast<Decl>(DC);
+ DC = getEffectiveDeclContext(D);
+ }
+ return nullptr;
+}
+
+static const FunctionDecl *getStructor(const FunctionDecl *fn) {
+ if (const FunctionTemplateDecl *ftd = fn->getPrimaryTemplate())
+ return ftd->getTemplatedDecl();
+
+ return fn;
+}
+
+static const NamedDecl *getStructor(const NamedDecl *decl) {
+ const FunctionDecl *fn = dyn_cast_or_null<FunctionDecl>(decl);
+ return (fn ? getStructor(fn) : decl);
+}
+
+static bool isLambda(const NamedDecl *ND) {
+ const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(ND);
+ if (!Record)
+ return false;
+
+ return Record->isLambda();
+}
+
+static const unsigned UnknownArity = ~0U;
+
+class ItaniumMangleContextImpl : public ItaniumMangleContext {
+ typedef std::pair<const DeclContext*, IdentifierInfo*> DiscriminatorKeyTy;
+ llvm::DenseMap<DiscriminatorKeyTy, unsigned> Discriminator;
+ llvm::DenseMap<const NamedDecl*, unsigned> Uniquifier;
+
+ bool IsDevCtx = false;
+
+public:
+ explicit ItaniumMangleContextImpl(ASTContext &Context,
+ DiagnosticsEngine &Diags)
+ : ItaniumMangleContext(Context, Diags) {}
+
+ /// @name Mangler Entry Points
+ /// @{
+
+ bool shouldMangleCXXName(const NamedDecl *D) override;
+ bool shouldMangleStringLiteral(const StringLiteral *) override {
+ return false;
+ }
+
+ bool isDeviceMangleContext() const override { return IsDevCtx; }
+ void setDeviceMangleContext(bool IsDev) override { IsDevCtx = IsDev; }
+
+ void mangleCXXName(GlobalDecl GD, raw_ostream &) override;
+ void mangleThunk(const CXXMethodDecl *MD, const ThunkInfo &Thunk,
+ raw_ostream &) override;
+ void mangleCXXDtorThunk(const CXXDestructorDecl *DD, CXXDtorType Type,
+ const ThisAdjustment &ThisAdjustment,
+ raw_ostream &) override;
+ void mangleReferenceTemporary(const VarDecl *D, unsigned ManglingNumber,
+ raw_ostream &) override;
+ void mangleCXXVTable(const CXXRecordDecl *RD, raw_ostream &) override;
+ void mangleCXXVTT(const CXXRecordDecl *RD, raw_ostream &) override;
+ void mangleCXXCtorVTable(const CXXRecordDecl *RD, int64_t Offset,
+ const CXXRecordDecl *Type, raw_ostream &) override;
+ void mangleCXXRTTI(QualType T, raw_ostream &) override;
+ void mangleCXXRTTIName(QualType T, raw_ostream &) override;
+ void mangleTypeName(QualType T, raw_ostream &) override;
+
+ void mangleCXXCtorComdat(const CXXConstructorDecl *D, raw_ostream &) override;
+ void mangleCXXDtorComdat(const CXXDestructorDecl *D, raw_ostream &) override;
+ void mangleStaticGuardVariable(const VarDecl *D, raw_ostream &) override;
+ void mangleDynamicInitializer(const VarDecl *D, raw_ostream &Out) override;
+ void mangleDynamicAtExitDestructor(const VarDecl *D,
+ raw_ostream &Out) override;
+ void mangleDynamicStermFinalizer(const VarDecl *D, raw_ostream &Out) override;
+ void mangleSEHFilterExpression(const NamedDecl *EnclosingDecl,
+ raw_ostream &Out) override;
+ void mangleSEHFinallyBlock(const NamedDecl *EnclosingDecl,
+ raw_ostream &Out) override;
+ void mangleItaniumThreadLocalInit(const VarDecl *D, raw_ostream &) override;
+ void mangleItaniumThreadLocalWrapper(const VarDecl *D,
+ raw_ostream &) override;
+
+ void mangleStringLiteral(const StringLiteral *, raw_ostream &) override;
+
+ void mangleLambdaSig(const CXXRecordDecl *Lambda, raw_ostream &) override;
+
+ bool getNextDiscriminator(const NamedDecl *ND, unsigned &disc) {
+ // Lambda closure types are already numbered.
+ if (isLambda(ND))
+ return false;
+
+ // Anonymous tags are already numbered.
+ if (const TagDecl *Tag = dyn_cast<TagDecl>(ND)) {
+ if (Tag->getName().empty() && !Tag->getTypedefNameForAnonDecl())
+ return false;
+ }
+
+ // Use the canonical number for externally visible decls.
+ if (ND->isExternallyVisible()) {
+ unsigned discriminator = getASTContext().getManglingNumber(ND);
+ if (discriminator == 1)
+ return false;
+ disc = discriminator - 2;
+ return true;
+ }
+
+ // Make up a reasonable number for internal decls.
+ unsigned &discriminator = Uniquifier[ND];
+ if (!discriminator) {
+ const DeclContext *DC = getEffectiveDeclContext(ND);
+ discriminator = ++Discriminator[std::make_pair(DC, ND->getIdentifier())];
+ }
+ if (discriminator == 1)
+ return false;
+ disc = discriminator-2;
+ return true;
+ }
+ /// @}
+};
+
+/// Manage the mangling of a single name.
+class CXXNameMangler {
+ ItaniumMangleContextImpl &Context;
+ raw_ostream &Out;
+ bool NullOut = false;
+ /// In the "DisableDerivedAbiTags" mode derived ABI tags are not calculated.
+ /// This mode is used when mangler creates another mangler recursively to
+ /// calculate ABI tags for the function return value or the variable type.
+ /// Also it is required to avoid infinite recursion in some cases.
+ bool DisableDerivedAbiTags = false;
+
+ /// The "structor" is the top-level declaration being mangled, if
+ /// that's not a template specialization; otherwise it's the pattern
+ /// for that specialization.
+ const NamedDecl *Structor;
+ unsigned StructorType;
+
+ /// The next substitution sequence number.
+ unsigned SeqID;
+
+ class FunctionTypeDepthState {
+ unsigned Bits;
+
+ enum { InResultTypeMask = 1 };
+
+ public:
+ FunctionTypeDepthState() : Bits(0) {}
+
+ /// The number of function types we're inside.
+ unsigned getDepth() const {
+ return Bits >> 1;
+ }
+
+ /// True if we're in the return type of the innermost function type.
+ bool isInResultType() const {
+ return Bits & InResultTypeMask;
+ }
+
+ FunctionTypeDepthState push() {
+ FunctionTypeDepthState tmp = *this;
+ Bits = (Bits & ~InResultTypeMask) + 2;
+ return tmp;
+ }
+
+ void enterResultType() {
+ Bits |= InResultTypeMask;
+ }
+
+ void leaveResultType() {
+ Bits &= ~InResultTypeMask;
+ }
+
+ void pop(FunctionTypeDepthState saved) {
+ assert(getDepth() == saved.getDepth() + 1);
+ Bits = saved.Bits;
+ }
+
+ } FunctionTypeDepth;
+
+ // abi_tag is a gcc attribute, taking one or more strings called "tags".
+ // The goal is to annotate against which version of a library an object was
+ // built and to be able to provide backwards compatibility ("dual abi").
+ // For more information see docs/ItaniumMangleAbiTags.rst.
+ typedef SmallVector<StringRef, 4> AbiTagList;
+
+ // State to gather all implicit and explicit tags used in a mangled name.
+ // Must always have an instance of this while emitting any name to keep
+ // track.
+ class AbiTagState final {
+ public:
+ explicit AbiTagState(AbiTagState *&Head) : LinkHead(Head) {
+ Parent = LinkHead;
+ LinkHead = this;
+ }
+
+ // No copy, no move.
+ AbiTagState(const AbiTagState &) = delete;
+ AbiTagState &operator=(const AbiTagState &) = delete;
+
+ ~AbiTagState() { pop(); }
+
+ void write(raw_ostream &Out, const NamedDecl *ND,
+ const AbiTagList *AdditionalAbiTags) {
+ ND = cast<NamedDecl>(ND->getCanonicalDecl());
+ if (!isa<FunctionDecl>(ND) && !isa<VarDecl>(ND)) {
+ assert(
+ !AdditionalAbiTags &&
+ "only function and variables need a list of additional abi tags");
+ if (const auto *NS = dyn_cast<NamespaceDecl>(ND)) {
+ if (const auto *AbiTag = NS->getAttr<AbiTagAttr>()) {
+ UsedAbiTags.insert(UsedAbiTags.end(), AbiTag->tags().begin(),
+ AbiTag->tags().end());
+ }
+ // Don't emit abi tags for namespaces.
+ return;
+ }
+ }
+
+ AbiTagList TagList;
+ if (const auto *AbiTag = ND->getAttr<AbiTagAttr>()) {
+ UsedAbiTags.insert(UsedAbiTags.end(), AbiTag->tags().begin(),
+ AbiTag->tags().end());
+ TagList.insert(TagList.end(), AbiTag->tags().begin(),
+ AbiTag->tags().end());
+ }
+
+ if (AdditionalAbiTags) {
+ UsedAbiTags.insert(UsedAbiTags.end(), AdditionalAbiTags->begin(),
+ AdditionalAbiTags->end());
+ TagList.insert(TagList.end(), AdditionalAbiTags->begin(),
+ AdditionalAbiTags->end());
+ }
+
+ llvm::sort(TagList);
+ TagList.erase(std::unique(TagList.begin(), TagList.end()), TagList.end());
+
+ writeSortedUniqueAbiTags(Out, TagList);
+ }
+
+ const AbiTagList &getUsedAbiTags() const { return UsedAbiTags; }
+ void setUsedAbiTags(const AbiTagList &AbiTags) {
+ UsedAbiTags = AbiTags;
+ }
+
+ const AbiTagList &getEmittedAbiTags() const {
+ return EmittedAbiTags;
+ }
+
+ const AbiTagList &getSortedUniqueUsedAbiTags() {
+ llvm::sort(UsedAbiTags);
+ UsedAbiTags.erase(std::unique(UsedAbiTags.begin(), UsedAbiTags.end()),
+ UsedAbiTags.end());
+ return UsedAbiTags;
+ }
+
+ private:
+ //! All abi tags used implicitly or explicitly.
+ AbiTagList UsedAbiTags;
+ //! All explicit abi tags (i.e. not from namespace).
+ AbiTagList EmittedAbiTags;
+
+ AbiTagState *&LinkHead;
+ AbiTagState *Parent = nullptr;
+
+ void pop() {
+ assert(LinkHead == this &&
+ "abi tag link head must point to us on destruction");
+ if (Parent) {
+ Parent->UsedAbiTags.insert(Parent->UsedAbiTags.end(),
+ UsedAbiTags.begin(), UsedAbiTags.end());
+ Parent->EmittedAbiTags.insert(Parent->EmittedAbiTags.end(),
+ EmittedAbiTags.begin(),
+ EmittedAbiTags.end());
+ }
+ LinkHead = Parent;
+ }
+
+ void writeSortedUniqueAbiTags(raw_ostream &Out, const AbiTagList &AbiTags) {
+ for (const auto &Tag : AbiTags) {
+ EmittedAbiTags.push_back(Tag);
+ Out << "B";
+ Out << Tag.size();
+ Out << Tag;
+ }
+ }
+ };
+
+ AbiTagState *AbiTags = nullptr;
+ AbiTagState AbiTagsRoot;
+
+ llvm::DenseMap<uintptr_t, unsigned> Substitutions;
+ llvm::DenseMap<StringRef, unsigned> ModuleSubstitutions;
+
+ ASTContext &getASTContext() const { return Context.getASTContext(); }
+
+public:
+ CXXNameMangler(ItaniumMangleContextImpl &C, raw_ostream &Out_,
+ const NamedDecl *D = nullptr, bool NullOut_ = false)
+ : Context(C), Out(Out_), NullOut(NullOut_), Structor(getStructor(D)),
+ StructorType(0), SeqID(0), AbiTagsRoot(AbiTags) {
+ // These can't be mangled without a ctor type or dtor type.
+ assert(!D || (!isa<CXXDestructorDecl>(D) &&
+ !isa<CXXConstructorDecl>(D)));
+ }
+ CXXNameMangler(ItaniumMangleContextImpl &C, raw_ostream &Out_,
+ const CXXConstructorDecl *D, CXXCtorType Type)
+ : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(Type),
+ SeqID(0), AbiTagsRoot(AbiTags) { }
+ CXXNameMangler(ItaniumMangleContextImpl &C, raw_ostream &Out_,
+ const CXXDestructorDecl *D, CXXDtorType Type)
+ : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(Type),
+ SeqID(0), AbiTagsRoot(AbiTags) { }
+
+ CXXNameMangler(CXXNameMangler &Outer, raw_ostream &Out_)
+ : Context(Outer.Context), Out(Out_), NullOut(false),
+ Structor(Outer.Structor), StructorType(Outer.StructorType),
+ SeqID(Outer.SeqID), FunctionTypeDepth(Outer.FunctionTypeDepth),
+ AbiTagsRoot(AbiTags), Substitutions(Outer.Substitutions) {}
+
+ CXXNameMangler(CXXNameMangler &Outer, llvm::raw_null_ostream &Out_)
+ : Context(Outer.Context), Out(Out_), NullOut(true),
+ Structor(Outer.Structor), StructorType(Outer.StructorType),
+ SeqID(Outer.SeqID), FunctionTypeDepth(Outer.FunctionTypeDepth),
+ AbiTagsRoot(AbiTags), Substitutions(Outer.Substitutions) {}
+
+ raw_ostream &getStream() { return Out; }
+
+ void disableDerivedAbiTags() { DisableDerivedAbiTags = true; }
+ static bool shouldHaveAbiTags(ItaniumMangleContextImpl &C, const VarDecl *VD);
+
+ void mangle(GlobalDecl GD);
+ void mangleCallOffset(int64_t NonVirtual, int64_t Virtual);
+ void mangleNumber(const llvm::APSInt &I);
+ void mangleNumber(int64_t Number);
+ void mangleFloat(const llvm::APFloat &F);
+ void mangleFunctionEncoding(GlobalDecl GD);
+ void mangleSeqID(unsigned SeqID);
+ void mangleName(GlobalDecl GD);
+ void mangleType(QualType T);
+ void mangleNameOrStandardSubstitution(const NamedDecl *ND);
+ void mangleLambdaSig(const CXXRecordDecl *Lambda);
+
+private:
+
+ bool mangleSubstitution(const NamedDecl *ND);
+ bool mangleSubstitution(QualType T);
+ bool mangleSubstitution(TemplateName Template);
+ bool mangleSubstitution(uintptr_t Ptr);
+
+ void mangleExistingSubstitution(TemplateName name);
+
+ bool mangleStandardSubstitution(const NamedDecl *ND);
+
+ void addSubstitution(const NamedDecl *ND) {
+ ND = cast<NamedDecl>(ND->getCanonicalDecl());
+
+ addSubstitution(reinterpret_cast<uintptr_t>(ND));
+ }
+ void addSubstitution(QualType T);
+ void addSubstitution(TemplateName Template);
+ void addSubstitution(uintptr_t Ptr);
+ // Destructive copy substitutions from other mangler.
+ void extendSubstitutions(CXXNameMangler* Other);
+
+ void mangleUnresolvedPrefix(NestedNameSpecifier *qualifier,
+ bool recursive = false);
+ void mangleUnresolvedName(NestedNameSpecifier *qualifier,
+ DeclarationName name,
+ const TemplateArgumentLoc *TemplateArgs,
+ unsigned NumTemplateArgs,
+ unsigned KnownArity = UnknownArity);
+
+ void mangleFunctionEncodingBareType(const FunctionDecl *FD);
+
+ void mangleNameWithAbiTags(GlobalDecl GD,
+ const AbiTagList *AdditionalAbiTags);
+ void mangleModuleName(const Module *M);
+ void mangleModuleNamePrefix(StringRef Name);
+ void mangleTemplateName(const TemplateDecl *TD,
+ const TemplateArgument *TemplateArgs,
+ unsigned NumTemplateArgs);
+ void mangleUnqualifiedName(GlobalDecl GD,
+ const AbiTagList *AdditionalAbiTags) {
+ mangleUnqualifiedName(GD, cast<NamedDecl>(GD.getDecl())->getDeclName(), UnknownArity,
+ AdditionalAbiTags);
+ }
+ void mangleUnqualifiedName(GlobalDecl GD, DeclarationName Name,
+ unsigned KnownArity,
+ const AbiTagList *AdditionalAbiTags);
+ void mangleUnscopedName(GlobalDecl GD,
+ const AbiTagList *AdditionalAbiTags);
+ void mangleUnscopedTemplateName(GlobalDecl GD,
+ const AbiTagList *AdditionalAbiTags);
+ void mangleSourceName(const IdentifierInfo *II);
+ void mangleRegCallName(const IdentifierInfo *II);
+ void mangleDeviceStubName(const IdentifierInfo *II);
+ void mangleSourceNameWithAbiTags(
+ const NamedDecl *ND, const AbiTagList *AdditionalAbiTags = nullptr);
+ void mangleLocalName(GlobalDecl GD,
+ const AbiTagList *AdditionalAbiTags);
+ void mangleBlockForPrefix(const BlockDecl *Block);
+ void mangleUnqualifiedBlock(const BlockDecl *Block);
+ void mangleTemplateParamDecl(const NamedDecl *Decl);
+ void mangleLambda(const CXXRecordDecl *Lambda);
+ void mangleNestedName(GlobalDecl GD, const DeclContext *DC,
+ const AbiTagList *AdditionalAbiTags,
+ bool NoFunction=false);
+ void mangleNestedName(const TemplateDecl *TD,
+ const TemplateArgument *TemplateArgs,
+ unsigned NumTemplateArgs);
+ void manglePrefix(NestedNameSpecifier *qualifier);
+ void manglePrefix(const DeclContext *DC, bool NoFunction=false);
+ void manglePrefix(QualType type);
+ void mangleTemplatePrefix(GlobalDecl GD, bool NoFunction=false);
+ void mangleTemplatePrefix(TemplateName Template);
+ bool mangleUnresolvedTypeOrSimpleId(QualType DestroyedType,
+ StringRef Prefix = "");
+ void mangleOperatorName(DeclarationName Name, unsigned Arity);
+ void mangleOperatorName(OverloadedOperatorKind OO, unsigned Arity);
+ void mangleVendorQualifier(StringRef qualifier);
+ void mangleQualifiers(Qualifiers Quals, const DependentAddressSpaceType *DAST = nullptr);
+ void mangleRefQualifier(RefQualifierKind RefQualifier);
+
+ void mangleObjCMethodName(const ObjCMethodDecl *MD);
+
+ // Declare manglers for every type class.
+#define ABSTRACT_TYPE(CLASS, PARENT)
+#define NON_CANONICAL_TYPE(CLASS, PARENT)
+#define TYPE(CLASS, PARENT) void mangleType(const CLASS##Type *T);
+#include "clang/AST/TypeNodes.inc"
+
+ void mangleType(const TagType*);
+ void mangleType(TemplateName);
+ static StringRef getCallingConvQualifierName(CallingConv CC);
+ void mangleExtParameterInfo(FunctionProtoType::ExtParameterInfo info);
+ void mangleExtFunctionInfo(const FunctionType *T);
+ void mangleBareFunctionType(const FunctionProtoType *T, bool MangleReturnType,
+ const FunctionDecl *FD = nullptr);
+ void mangleNeonVectorType(const VectorType *T);
+ void mangleNeonVectorType(const DependentVectorType *T);
+ void mangleAArch64NeonVectorType(const VectorType *T);
+ void mangleAArch64NeonVectorType(const DependentVectorType *T);
+ void mangleAArch64FixedSveVectorType(const VectorType *T);
+ void mangleAArch64FixedSveVectorType(const DependentVectorType *T);
+
+ void mangleIntegerLiteral(QualType T, const llvm::APSInt &Value);
+ void mangleFloatLiteral(QualType T, const llvm::APFloat &V);
+ void mangleFixedPointLiteral();
+ void mangleNullPointer(QualType T);
+
+ void mangleMemberExprBase(const Expr *base, bool isArrow);
+ void mangleMemberExpr(const Expr *base, bool isArrow,
+ NestedNameSpecifier *qualifier,
+ NamedDecl *firstQualifierLookup,
+ DeclarationName name,
+ const TemplateArgumentLoc *TemplateArgs,
+ unsigned NumTemplateArgs,
+ unsigned knownArity);
+ void mangleCastExpression(const Expr *E, StringRef CastEncoding);
+ void mangleInitListElements(const InitListExpr *InitList);
+ void mangleExpression(const Expr *E, unsigned Arity = UnknownArity,
+ bool AsTemplateArg = false);
+ void mangleCXXCtorType(CXXCtorType T, const CXXRecordDecl *InheritedFrom);
+ void mangleCXXDtorType(CXXDtorType T);
+
+ void mangleTemplateArgs(TemplateName TN,
+ const TemplateArgumentLoc *TemplateArgs,
+ unsigned NumTemplateArgs);
+ void mangleTemplateArgs(TemplateName TN, const TemplateArgument *TemplateArgs,
+ unsigned NumTemplateArgs);
+ void mangleTemplateArgs(TemplateName TN, const TemplateArgumentList &AL);
+ void mangleTemplateArg(TemplateArgument A, bool NeedExactType);
+ void mangleTemplateArgExpr(const Expr *E);
+ void mangleValueInTemplateArg(QualType T, const APValue &V, bool TopLevel,
+ bool NeedExactType = false);
+
+ void mangleTemplateParameter(unsigned Depth, unsigned Index);
+
+ void mangleFunctionParam(const ParmVarDecl *parm);
+
+ void writeAbiTags(const NamedDecl *ND,
+ const AbiTagList *AdditionalAbiTags);
+
+ // Returns sorted unique list of ABI tags.
+ AbiTagList makeFunctionReturnTypeTags(const FunctionDecl *FD);
+ // Returns sorted unique list of ABI tags.
+ AbiTagList makeVariableTypeTags(const VarDecl *VD);
+};
+
+}
+
+bool ItaniumMangleContextImpl::shouldMangleCXXName(const NamedDecl *D) {
+ const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
+ if (FD) {
+ LanguageLinkage L = FD->getLanguageLinkage();
+ // Overloadable functions need mangling.
+ if (FD->hasAttr<OverloadableAttr>())
+ return true;
+
+ // "main" is not mangled.
+ if (FD->isMain())
+ return false;
+
+ // The Windows ABI expects that we would never mangle "typical"
+ // user-defined entry points regardless of visibility or freestanding-ness.
+ //
+ // N.B. This is distinct from asking about "main". "main" has a lot of
+ // special rules associated with it in the standard while these
+ // user-defined entry points are outside of the purview of the standard.
+ // For example, there can be only one definition for "main" in a standards
+ // compliant program; however nothing forbids the existence of wmain and
+ // WinMain in the same translation unit.
+ if (FD->isMSVCRTEntryPoint())
+ return false;
+
+ // C++ functions and those whose names are not a simple identifier need
+ // mangling.
+ if (!FD->getDeclName().isIdentifier() || L == CXXLanguageLinkage)
+ return true;
+
+ // C functions are not mangled.
+ if (L == CLanguageLinkage)
+ return false;
+ }
+
+ // Otherwise, no mangling is done outside C++ mode.
+ if (!getASTContext().getLangOpts().CPlusPlus)
+ return false;
+
+ const VarDecl *VD = dyn_cast<VarDecl>(D);
+ if (VD && !isa<DecompositionDecl>(D)) {
+ // C variables are not mangled.
+ if (VD->isExternC())
+ return false;
+
+ // Variables at global scope with non-internal linkage are not mangled
+ const DeclContext *DC = getEffectiveDeclContext(D);
+ // Check for extern variable declared locally.
+ if (DC->isFunctionOrMethod() && D->hasLinkage())
+ while (!DC->isNamespace() && !DC->isTranslationUnit())
+ DC = getEffectiveParentContext(DC);
+ if (DC->isTranslationUnit() && D->getFormalLinkage() != InternalLinkage &&
+ !CXXNameMangler::shouldHaveAbiTags(*this, VD) &&
+ !isa<VarTemplateSpecializationDecl>(D))
+ return false;
+ }
+
+ return true;
+}
+
+void CXXNameMangler::writeAbiTags(const NamedDecl *ND,
+ const AbiTagList *AdditionalAbiTags) {
+ assert(AbiTags && "require AbiTagState");
+ AbiTags->write(Out, ND, DisableDerivedAbiTags ? nullptr : AdditionalAbiTags);
+}
+
+void CXXNameMangler::mangleSourceNameWithAbiTags(
+ const NamedDecl *ND, const AbiTagList *AdditionalAbiTags) {
+ mangleSourceName(ND->getIdentifier());
+ writeAbiTags(ND, AdditionalAbiTags);
+}
+
+void CXXNameMangler::mangle(GlobalDecl GD) {
+ // <mangled-name> ::= _Z <encoding>
+ // ::= <data name>
+ // ::= <special-name>
+ Out << "_Z";
+ if (isa<FunctionDecl>(GD.getDecl()))
+ mangleFunctionEncoding(GD);
+ else if (isa<VarDecl, FieldDecl, MSGuidDecl, TemplateParamObjectDecl,
+ BindingDecl>(GD.getDecl()))
+ mangleName(GD);
+ else if (const IndirectFieldDecl *IFD =
+ dyn_cast<IndirectFieldDecl>(GD.getDecl()))
+ mangleName(IFD->getAnonField());
+ else
+ llvm_unreachable("unexpected kind of global decl");
+}
+
+void CXXNameMangler::mangleFunctionEncoding(GlobalDecl GD) {
+ const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
+ // <encoding> ::= <function name> <bare-function-type>
+
+ // Don't mangle in the type if this isn't a decl we should typically mangle.
+ if (!Context.shouldMangleDeclName(FD)) {
+ mangleName(GD);
+ return;
+ }
+
+ AbiTagList ReturnTypeAbiTags = makeFunctionReturnTypeTags(FD);
+ if (ReturnTypeAbiTags.empty()) {
+ // There are no tags for return type, the simplest case.
+ mangleName(GD);
+ mangleFunctionEncodingBareType(FD);
+ return;
+ }
+
+ // Mangle function name and encoding to temporary buffer.
+ // We have to output name and encoding to the same mangler to get the same
+ // substitution as it will be in final mangling.
+ SmallString<256> FunctionEncodingBuf;
+ llvm::raw_svector_ostream FunctionEncodingStream(FunctionEncodingBuf);
+ CXXNameMangler FunctionEncodingMangler(*this, FunctionEncodingStream);
+ // Output name of the function.
+ FunctionEncodingMangler.disableDerivedAbiTags();
+ FunctionEncodingMangler.mangleNameWithAbiTags(FD, nullptr);
+
+ // Remember length of the function name in the buffer.
+ size_t EncodingPositionStart = FunctionEncodingStream.str().size();
+ FunctionEncodingMangler.mangleFunctionEncodingBareType(FD);
+
+ // Get tags from return type that are not present in function name or
+ // encoding.
+ const AbiTagList &UsedAbiTags =
+ FunctionEncodingMangler.AbiTagsRoot.getSortedUniqueUsedAbiTags();
+ AbiTagList AdditionalAbiTags(ReturnTypeAbiTags.size());
+ AdditionalAbiTags.erase(
+ std::set_difference(ReturnTypeAbiTags.begin(), ReturnTypeAbiTags.end(),
+ UsedAbiTags.begin(), UsedAbiTags.end(),
+ AdditionalAbiTags.begin()),
+ AdditionalAbiTags.end());
+
+ // Output name with implicit tags and function encoding from temporary buffer.
+ mangleNameWithAbiTags(FD, &AdditionalAbiTags);
+ Out << FunctionEncodingStream.str().substr(EncodingPositionStart);
+
+ // Function encoding could create new substitutions so we have to add
+ // temp mangled substitutions to main mangler.
+ extendSubstitutions(&FunctionEncodingMangler);
+}
+
+void CXXNameMangler::mangleFunctionEncodingBareType(const FunctionDecl *FD) {
+ if (FD->hasAttr<EnableIfAttr>()) {
+ FunctionTypeDepthState Saved = FunctionTypeDepth.push();
+ Out << "Ua9enable_ifI";
+ for (AttrVec::const_iterator I = FD->getAttrs().begin(),
+ E = FD->getAttrs().end();
+ I != E; ++I) {
+ EnableIfAttr *EIA = dyn_cast<EnableIfAttr>(*I);
+ if (!EIA)
+ continue;
+ if (Context.getASTContext().getLangOpts().getClangABICompat() >
+ LangOptions::ClangABI::Ver11) {
+ mangleTemplateArgExpr(EIA->getCond());
+ } else {
+ // Prior to Clang 12, we hardcoded the X/E around enable-if's argument,
+ // even though <template-arg> should not include an X/E around
+ // <expr-primary>.
+ Out << 'X';
+ mangleExpression(EIA->getCond());
+ Out << 'E';
+ }
+ }
+ Out << 'E';
+ FunctionTypeDepth.pop(Saved);
+ }
+
+ // When mangling an inheriting constructor, the bare function type used is
+ // that of the inherited constructor.
+ if (auto *CD = dyn_cast<CXXConstructorDecl>(FD))
+ if (auto Inherited = CD->getInheritedConstructor())
+ FD = Inherited.getConstructor();
+
+ // Whether the mangling of a function type includes the return type depends on
+ // the context and the nature of the function. The rules for deciding whether
+ // the return type is included are:
+ //
+ // 1. Template functions (names or types) have return types encoded, with
+ // the exceptions listed below.
+ // 2. Function types not appearing as part of a function name mangling,
+ // e.g. parameters, pointer types, etc., have return type encoded, with the
+ // exceptions listed below.
+ // 3. Non-template function names do not have return types encoded.
+ //
+ // The exceptions mentioned in (1) and (2) above, for which the return type is
+ // never included, are
+ // 1. Constructors.
+ // 2. Destructors.
+ // 3. Conversion operator functions, e.g. operator int.
+ bool MangleReturnType = false;
+ if (FunctionTemplateDecl *PrimaryTemplate = FD->getPrimaryTemplate()) {
+ if (!(isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD) ||
+ isa<CXXConversionDecl>(FD)))
+ MangleReturnType = true;
+
+ // Mangle the type of the primary template.
+ FD = PrimaryTemplate->getTemplatedDecl();
+ }
+
+ mangleBareFunctionType(FD->getType()->castAs<FunctionProtoType>(),
+ MangleReturnType, FD);
+}
+
+static const DeclContext *IgnoreLinkageSpecDecls(const DeclContext *DC) {
+ while (isa<LinkageSpecDecl>(DC)) {
+ DC = getEffectiveParentContext(DC);
+ }
+
+ return DC;
+}
+
+/// Return whether a given namespace is the 'std' namespace.
+static bool isStd(const NamespaceDecl *NS) {
+ if (!IgnoreLinkageSpecDecls(getEffectiveParentContext(NS))
+ ->isTranslationUnit())
+ return false;
+
+ const IdentifierInfo *II = NS->getOriginalNamespace()->getIdentifier();
+ return II && II->isStr("std");
+}
+
+// isStdNamespace - Return whether a given decl context is a toplevel 'std'
+// namespace.
+static bool isStdNamespace(const DeclContext *DC) {
+ if (!DC->isNamespace())
+ return false;
+
+ return isStd(cast<NamespaceDecl>(DC));
+}
+
+static const GlobalDecl
+isTemplate(GlobalDecl GD, const TemplateArgumentList *&TemplateArgs) {
+ const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
+ // Check if we have a function template.
+ if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)) {
+ if (const TemplateDecl *TD = FD->getPrimaryTemplate()) {
+ TemplateArgs = FD->getTemplateSpecializationArgs();
+ return GD.getWithDecl(TD);
+ }
+ }
+
+ // Check if we have a class template.
+ if (const ClassTemplateSpecializationDecl *Spec =
+ dyn_cast<ClassTemplateSpecializationDecl>(ND)) {
+ TemplateArgs = &Spec->getTemplateArgs();
+ return GD.getWithDecl(Spec->getSpecializedTemplate());
+ }
+
+ // Check if we have a variable template.
+ if (const VarTemplateSpecializationDecl *Spec =
+ dyn_cast<VarTemplateSpecializationDecl>(ND)) {
+ TemplateArgs = &Spec->getTemplateArgs();
+ return GD.getWithDecl(Spec->getSpecializedTemplate());
+ }
+
+ return GlobalDecl();
+}
+
+static TemplateName asTemplateName(GlobalDecl GD) {
+ const TemplateDecl *TD = dyn_cast_or_null<TemplateDecl>(GD.getDecl());
+ return TemplateName(const_cast<TemplateDecl*>(TD));
+}
+
+void CXXNameMangler::mangleName(GlobalDecl GD) {
+ const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
+ if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) {
+ // Variables should have implicit tags from its type.
+ AbiTagList VariableTypeAbiTags = makeVariableTypeTags(VD);
+ if (VariableTypeAbiTags.empty()) {
+ // Simple case no variable type tags.
+ mangleNameWithAbiTags(VD, nullptr);
+ return;
+ }
+
+ // Mangle variable name to null stream to collect tags.
+ llvm::raw_null_ostream NullOutStream;
+ CXXNameMangler VariableNameMangler(*this, NullOutStream);
+ VariableNameMangler.disableDerivedAbiTags();
+ VariableNameMangler.mangleNameWithAbiTags(VD, nullptr);
+
+ // Get tags from variable type that are not present in its name.
+ const AbiTagList &UsedAbiTags =
+ VariableNameMangler.AbiTagsRoot.getSortedUniqueUsedAbiTags();
+ AbiTagList AdditionalAbiTags(VariableTypeAbiTags.size());
+ AdditionalAbiTags.erase(
+ std::set_difference(VariableTypeAbiTags.begin(),
+ VariableTypeAbiTags.end(), UsedAbiTags.begin(),
+ UsedAbiTags.end(), AdditionalAbiTags.begin()),
+ AdditionalAbiTags.end());
+
+ // Output name with implicit tags.
+ mangleNameWithAbiTags(VD, &AdditionalAbiTags);
+ } else {
+ mangleNameWithAbiTags(GD, nullptr);
+ }
+}
+
+void CXXNameMangler::mangleNameWithAbiTags(GlobalDecl GD,
+ const AbiTagList *AdditionalAbiTags) {
+ const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
+ // <name> ::= [<module-name>] <nested-name>
+ // ::= [<module-name>] <unscoped-name>
+ // ::= [<module-name>] <unscoped-template-name> <template-args>
+ // ::= <local-name>
+ //
+ const DeclContext *DC = getEffectiveDeclContext(ND);
+
+ // If this is an extern variable declared locally, the relevant DeclContext
+ // is that of the containing namespace, or the translation unit.
+ // FIXME: This is a hack; extern variables declared locally should have
+ // a proper semantic declaration context!
+ if (isLocalContainerContext(DC) && ND->hasLinkage() && !isLambda(ND))
+ while (!DC->isNamespace() && !DC->isTranslationUnit())
+ DC = getEffectiveParentContext(DC);
+ else if (GetLocalClassDecl(ND)) {
+ mangleLocalName(GD, AdditionalAbiTags);
+ return;
+ }
+
+ DC = IgnoreLinkageSpecDecls(DC);
+
+ if (isLocalContainerContext(DC)) {
+ mangleLocalName(GD, AdditionalAbiTags);
+ return;
+ }
+
+ // Do not mangle the owning module for an external linkage declaration.
+ // This enables backwards-compatibility with non-modular code, and is
+ // a valid choice since conflicts are not permitted by C++ Modules TS
+ // [basic.def.odr]/6.2.
+ if (!ND->hasExternalFormalLinkage())
+ if (Module *M = ND->getOwningModuleForLinkage())
+ mangleModuleName(M);
+
+ if (DC->isTranslationUnit() || isStdNamespace(DC)) {
+ // Check if we have a template.
+ const TemplateArgumentList *TemplateArgs = nullptr;
+ if (GlobalDecl TD = isTemplate(GD, TemplateArgs)) {
+ mangleUnscopedTemplateName(TD, AdditionalAbiTags);
+ mangleTemplateArgs(asTemplateName(TD), *TemplateArgs);
+ return;
+ }
+
+ mangleUnscopedName(GD, AdditionalAbiTags);
+ return;
+ }
+
+ mangleNestedName(GD, DC, AdditionalAbiTags);
+}
+
+void CXXNameMangler::mangleModuleName(const Module *M) {
+ // Implement the C++ Modules TS name mangling proposal; see
+ // https://gcc.gnu.org/wiki/cxx-modules?action=AttachFile
+ //
+ // <module-name> ::= W <unscoped-name>+ E
+ // ::= W <module-subst> <unscoped-name>* E
+ Out << 'W';
+ mangleModuleNamePrefix(M->Name);
+ Out << 'E';
+}
+
+void CXXNameMangler::mangleModuleNamePrefix(StringRef Name) {
+ // <module-subst> ::= _ <seq-id> # 0 < seq-id < 10
+ // ::= W <seq-id - 10> _ # otherwise
+ auto It = ModuleSubstitutions.find(Name);
+ if (It != ModuleSubstitutions.end()) {
+ if (It->second < 10)
+ Out << '_' << static_cast<char>('0' + It->second);
+ else
+ Out << 'W' << (It->second - 10) << '_';
+ return;
+ }
+
+ // FIXME: Preserve hierarchy in module names rather than flattening
+ // them to strings; use Module*s as substitution keys.
+ auto Parts = Name.rsplit('.');
+ if (Parts.second.empty())
+ Parts.second = Parts.first;
+ else
+ mangleModuleNamePrefix(Parts.first);
+
+ Out << Parts.second.size() << Parts.second;
+ ModuleSubstitutions.insert({Name, ModuleSubstitutions.size()});
+}
+
+void CXXNameMangler::mangleTemplateName(const TemplateDecl *TD,
+ const TemplateArgument *TemplateArgs,
+ unsigned NumTemplateArgs) {
+ const DeclContext *DC = IgnoreLinkageSpecDecls(getEffectiveDeclContext(TD));
+
+ if (DC->isTranslationUnit() || isStdNamespace(DC)) {
+ mangleUnscopedTemplateName(TD, nullptr);
+ mangleTemplateArgs(asTemplateName(TD), TemplateArgs, NumTemplateArgs);
+ } else {
+ mangleNestedName(TD, TemplateArgs, NumTemplateArgs);
+ }
+}
+
+void CXXNameMangler::mangleUnscopedName(GlobalDecl GD,
+ const AbiTagList *AdditionalAbiTags) {
+ const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
+ // <unscoped-name> ::= <unqualified-name>
+ // ::= St <unqualified-name> # ::std::
+
+ if (isStdNamespace(IgnoreLinkageSpecDecls(getEffectiveDeclContext(ND))))
+ Out << "St";
+
+ mangleUnqualifiedName(GD, AdditionalAbiTags);
+}
+
+void CXXNameMangler::mangleUnscopedTemplateName(
+ GlobalDecl GD, const AbiTagList *AdditionalAbiTags) {
+ const TemplateDecl *ND = cast<TemplateDecl>(GD.getDecl());
+ // <unscoped-template-name> ::= <unscoped-name>
+ // ::= <substitution>
+ if (mangleSubstitution(ND))
+ return;
+
+ // <template-template-param> ::= <template-param>
+ if (const auto *TTP = dyn_cast<TemplateTemplateParmDecl>(ND)) {
+ assert(!AdditionalAbiTags &&
+ "template template param cannot have abi tags");
+ mangleTemplateParameter(TTP->getDepth(), TTP->getIndex());
+ } else if (isa<BuiltinTemplateDecl>(ND) || isa<ConceptDecl>(ND)) {
+ mangleUnscopedName(GD, AdditionalAbiTags);
+ } else {
+ mangleUnscopedName(GD.getWithDecl(ND->getTemplatedDecl()), AdditionalAbiTags);
+ }
+
+ addSubstitution(ND);
+}
+
+void CXXNameMangler::mangleFloat(const llvm::APFloat &f) {
+ // ABI:
+ // Floating-point literals are encoded using a fixed-length
+ // lowercase hexadecimal string corresponding to the internal
+ // representation (IEEE on Itanium), high-order bytes first,
+ // without leading zeroes. For example: "Lf bf800000 E" is -1.0f
+ // on Itanium.
+ // The 'without leading zeroes' thing seems to be an editorial
+ // mistake; see the discussion on cxx-abi-dev beginning on
+ // 2012-01-16.
+
+ // Our requirements here are just barely weird enough to justify
+ // using a custom algorithm instead of post-processing APInt::toString().
+
+ llvm::APInt valueBits = f.bitcastToAPInt();
+ unsigned numCharacters = (valueBits.getBitWidth() + 3) / 4;
+ assert(numCharacters != 0);
+
+ // Allocate a buffer of the right number of characters.
+ SmallVector<char, 20> buffer(numCharacters);
+
+ // Fill the buffer left-to-right.
+ for (unsigned stringIndex = 0; stringIndex != numCharacters; ++stringIndex) {
+ // The bit-index of the next hex digit.
+ unsigned digitBitIndex = 4 * (numCharacters - stringIndex - 1);
+
+ // Project out 4 bits starting at 'digitIndex'.
+ uint64_t hexDigit = valueBits.getRawData()[digitBitIndex / 64];
+ hexDigit >>= (digitBitIndex % 64);
+ hexDigit &= 0xF;
+
+ // Map that over to a lowercase hex digit.
+ static const char charForHex[16] = {
+ '0', '1', '2', '3', '4', '5', '6', '7',
+ '8', '9', 'a', 'b', 'c', 'd', 'e', 'f'
+ };
+ buffer[stringIndex] = charForHex[hexDigit];
+ }
+
+ Out.write(buffer.data(), numCharacters);
+}
+
+void CXXNameMangler::mangleFloatLiteral(QualType T, const llvm::APFloat &V) {
+ Out << 'L';
+ mangleType(T);
+ mangleFloat(V);
+ Out << 'E';
+}
+
+void CXXNameMangler::mangleFixedPointLiteral() {
+ DiagnosticsEngine &Diags = Context.getDiags();
+ unsigned DiagID = Diags.getCustomDiagID(
+ DiagnosticsEngine::Error, "cannot mangle fixed point literals yet");
+ Diags.Report(DiagID);
+}
+
+void CXXNameMangler::mangleNullPointer(QualType T) {
+ // <expr-primary> ::= L <type> 0 E
+ Out << 'L';
+ mangleType(T);
+ Out << "0E";
+}
+
+void CXXNameMangler::mangleNumber(const llvm::APSInt &Value) {
+ if (Value.isSigned() && Value.isNegative()) {
+ Out << 'n';
+ Value.abs().print(Out, /*signed*/ false);
+ } else {
+ Value.print(Out, /*signed*/ false);
+ }
+}
+
+void CXXNameMangler::mangleNumber(int64_t Number) {
+ // <number> ::= [n] <non-negative decimal integer>
+ if (Number < 0) {
+ Out << 'n';
+ Number = -Number;
+ }
+
+ Out << Number;
+}
+
+void CXXNameMangler::mangleCallOffset(int64_t NonVirtual, int64_t Virtual) {
+ // <call-offset> ::= h <nv-offset> _
+ // ::= v <v-offset> _
+ // <nv-offset> ::= <offset number> # non-virtual base override
+ // <v-offset> ::= <offset number> _ <virtual offset number>
+ // # virtual base override, with vcall offset
+ if (!Virtual) {
+ Out << 'h';
+ mangleNumber(NonVirtual);
+ Out << '_';
+ return;
+ }
+
+ Out << 'v';
+ mangleNumber(NonVirtual);
+ Out << '_';
+ mangleNumber(Virtual);
+ Out << '_';
+}
+
+void CXXNameMangler::manglePrefix(QualType type) {
+ if (const auto *TST = type->getAs<TemplateSpecializationType>()) {
+ if (!mangleSubstitution(QualType(TST, 0))) {
+ mangleTemplatePrefix(TST->getTemplateName());
+
+ // FIXME: GCC does not appear to mangle the template arguments when
+ // the template in question is a dependent template name. Should we
+ // emulate that badness?
+ mangleTemplateArgs(TST->getTemplateName(), TST->getArgs(),
+ TST->getNumArgs());
+ addSubstitution(QualType(TST, 0));
+ }
+ } else if (const auto *DTST =
+ type->getAs<DependentTemplateSpecializationType>()) {
+ if (!mangleSubstitution(QualType(DTST, 0))) {
+ TemplateName Template = getASTContext().getDependentTemplateName(
+ DTST->getQualifier(), DTST->getIdentifier());
+ mangleTemplatePrefix(Template);
+
+ // FIXME: GCC does not appear to mangle the template arguments when
+ // the template in question is a dependent template name. Should we
+ // emulate that badness?
+ mangleTemplateArgs(Template, DTST->getArgs(), DTST->getNumArgs());
+ addSubstitution(QualType(DTST, 0));
+ }
+ } else {
+ // We use the QualType mangle type variant here because it handles
+ // substitutions.
+ mangleType(type);
+ }
+}
+
+/// Mangle everything prior to the base-unresolved-name in an unresolved-name.
+///
+/// \param recursive - true if this is being called recursively,
+/// i.e. if there is more prefix "to the right".
+void CXXNameMangler::mangleUnresolvedPrefix(NestedNameSpecifier *qualifier,
+ bool recursive) {
+
+ // x, ::x
+ // <unresolved-name> ::= [gs] <base-unresolved-name>
+
+ // T::x / decltype(p)::x
+ // <unresolved-name> ::= sr <unresolved-type> <base-unresolved-name>
+
+ // T::N::x /decltype(p)::N::x
+ // <unresolved-name> ::= srN <unresolved-type> <unresolved-qualifier-level>+ E
+ // <base-unresolved-name>
+
+ // A::x, N::y, A<T>::z; "gs" means leading "::"
+ // <unresolved-name> ::= [gs] sr <unresolved-qualifier-level>+ E
+ // <base-unresolved-name>
+
+ switch (qualifier->getKind()) {
+ case NestedNameSpecifier::Global:
+ Out << "gs";
+
+ // We want an 'sr' unless this is the entire NNS.
+ if (recursive)
+ Out << "sr";
+
+ // We never want an 'E' here.
+ return;
+
+ case NestedNameSpecifier::Super:
+ llvm_unreachable("Can't mangle __super specifier");
+
+ case NestedNameSpecifier::Namespace:
+ if (qualifier->getPrefix())
+ mangleUnresolvedPrefix(qualifier->getPrefix(),
+ /*recursive*/ true);
+ else
+ Out << "sr";
+ mangleSourceNameWithAbiTags(qualifier->getAsNamespace());
+ break;
+ case NestedNameSpecifier::NamespaceAlias:
+ if (qualifier->getPrefix())
+ mangleUnresolvedPrefix(qualifier->getPrefix(),
+ /*recursive*/ true);
+ else
+ Out << "sr";
+ mangleSourceNameWithAbiTags(qualifier->getAsNamespaceAlias());
+ break;
+
+ case NestedNameSpecifier::TypeSpec:
+ case NestedNameSpecifier::TypeSpecWithTemplate: {
+ const Type *type = qualifier->getAsType();
+
+ // We only want to use an unresolved-type encoding if this is one of:
+ // - a decltype
+ // - a template type parameter
+ // - a template template parameter with arguments
+ // In all of these cases, we should have no prefix.
+ if (qualifier->getPrefix()) {
+ mangleUnresolvedPrefix(qualifier->getPrefix(),
+ /*recursive*/ true);
+ } else {
+ // Otherwise, all the cases want this.
+ Out << "sr";
+ }
+
+ if (mangleUnresolvedTypeOrSimpleId(QualType(type, 0), recursive ? "N" : ""))
+ return;
+
+ break;
+ }
+
+ case NestedNameSpecifier::Identifier:
+ // Member expressions can have these without prefixes.
+ if (qualifier->getPrefix())
+ mangleUnresolvedPrefix(qualifier->getPrefix(),
+ /*recursive*/ true);
+ else
+ Out << "sr";
+
+ mangleSourceName(qualifier->getAsIdentifier());
+ // An Identifier has no type information, so we can't emit abi tags for it.
+ break;
+ }
+
+ // If this was the innermost part of the NNS, and we fell out to
+ // here, append an 'E'.
+ if (!recursive)
+ Out << 'E';
+}
+
+/// Mangle an unresolved-name, which is generally used for names which
+/// weren't resolved to specific entities.
+void CXXNameMangler::mangleUnresolvedName(
+ NestedNameSpecifier *qualifier, DeclarationName name,
+ const TemplateArgumentLoc *TemplateArgs, unsigned NumTemplateArgs,
+ unsigned knownArity) {
+ if (qualifier) mangleUnresolvedPrefix(qualifier);
+ switch (name.getNameKind()) {
+ // <base-unresolved-name> ::= <simple-id>
+ case DeclarationName::Identifier:
+ mangleSourceName(name.getAsIdentifierInfo());
+ break;
+ // <base-unresolved-name> ::= dn <destructor-name>
+ case DeclarationName::CXXDestructorName:
+ Out << "dn";
+ mangleUnresolvedTypeOrSimpleId(name.getCXXNameType());
+ break;
+ // <base-unresolved-name> ::= on <operator-name>
+ case DeclarationName::CXXConversionFunctionName:
+ case DeclarationName::CXXLiteralOperatorName:
+ case DeclarationName::CXXOperatorName:
+ Out << "on";
+ mangleOperatorName(name, knownArity);
+ break;
+ case DeclarationName::CXXConstructorName:
+ llvm_unreachable("Can't mangle a constructor name!");
+ case DeclarationName::CXXUsingDirective:
+ llvm_unreachable("Can't mangle a using directive name!");
+ case DeclarationName::CXXDeductionGuideName:
+ llvm_unreachable("Can't mangle a deduction guide name!");
+ case DeclarationName::ObjCMultiArgSelector:
+ case DeclarationName::ObjCOneArgSelector:
+ case DeclarationName::ObjCZeroArgSelector:
+ llvm_unreachable("Can't mangle Objective-C selector names here!");
+ }
+
+ // The <simple-id> and on <operator-name> productions end in an optional
+ // <template-args>.
+ if (TemplateArgs)
+ mangleTemplateArgs(TemplateName(), TemplateArgs, NumTemplateArgs);
+}
+
+void CXXNameMangler::mangleUnqualifiedName(GlobalDecl GD,
+ DeclarationName Name,
+ unsigned KnownArity,
+ const AbiTagList *AdditionalAbiTags) {
+ const NamedDecl *ND = cast_or_null<NamedDecl>(GD.getDecl());
+ unsigned Arity = KnownArity;
+ // <unqualified-name> ::= <operator-name>
+ // ::= <ctor-dtor-name>
+ // ::= <source-name>
+ switch (Name.getNameKind()) {
+ case DeclarationName::Identifier: {
+ const IdentifierInfo *II = Name.getAsIdentifierInfo();
+
+ // We mangle decomposition declarations as the names of their bindings.
+ if (auto *DD = dyn_cast<DecompositionDecl>(ND)) {
+ // FIXME: Non-standard mangling for decomposition declarations:
+ //
+ // <unqualified-name> ::= DC <source-name>* E
+ //
+ // These can never be referenced across translation units, so we do
+ // not need a cross-vendor mangling for anything other than demanglers.
+ // Proposed on cxx-abi-dev on 2016-08-12
+ Out << "DC";
+ for (auto *BD : DD->bindings())
+ mangleSourceName(BD->getDeclName().getAsIdentifierInfo());
+ Out << 'E';
+ writeAbiTags(ND, AdditionalAbiTags);
+ break;
+ }
+
+ if (auto *GD = dyn_cast<MSGuidDecl>(ND)) {
+ // We follow MSVC in mangling GUID declarations as if they were variables
+ // with a particular reserved name. Continue the pretense here.
+ SmallString<sizeof("_GUID_12345678_1234_1234_1234_1234567890ab")> GUID;
+ llvm::raw_svector_ostream GUIDOS(GUID);
+ Context.mangleMSGuidDecl(GD, GUIDOS);
+ Out << GUID.size() << GUID;
+ break;
+ }
+
+ if (auto *TPO = dyn_cast<TemplateParamObjectDecl>(ND)) {
+ // Proposed in https://github.com/itanium-cxx-abi/cxx-abi/issues/63.
+ Out << "TA";
+ mangleValueInTemplateArg(TPO->getType().getUnqualifiedType(),
+ TPO->getValue(), /*TopLevel=*/true);
+ break;
+ }
+
+ if (II) {
+ // Match GCC's naming convention for internal linkage symbols, for
+ // symbols that are not actually visible outside of this TU. GCC
+ // distinguishes between internal and external linkage symbols in
+ // its mangling, to support cases like this that were valid C++ prior
+ // to DR426:
+ //
+ // void test() { extern void foo(); }
+ // static void foo();
+ //
+ // Don't bother with the L marker for names in anonymous namespaces; the
+ // 12_GLOBAL__N_1 mangling is quite sufficient there, and this better
+ // matches GCC anyway, because GCC does not treat anonymous namespaces as
+ // implying internal linkage.
+ if (ND && ND->getFormalLinkage() == InternalLinkage &&
+ !ND->isExternallyVisible() &&
+ getEffectiveDeclContext(ND)->isFileContext() &&
+ !ND->isInAnonymousNamespace())
+ Out << 'L';
+
+ auto *FD = dyn_cast<FunctionDecl>(ND);
+ bool IsRegCall = FD &&
+ FD->getType()->castAs<FunctionType>()->getCallConv() ==
+ clang::CC_X86RegCall;
+ bool IsDeviceStub =
+ FD && FD->hasAttr<CUDAGlobalAttr>() &&
+ GD.getKernelReferenceKind() == KernelReferenceKind::Stub;
+ if (IsDeviceStub)
+ mangleDeviceStubName(II);
+ else if (IsRegCall)
+ mangleRegCallName(II);
+ else
+ mangleSourceName(II);
+
+ writeAbiTags(ND, AdditionalAbiTags);
+ break;
+ }
+
+ // Otherwise, an anonymous entity. We must have a declaration.
+ assert(ND && "mangling empty name without declaration");
+
+ if (const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ND)) {
+ if (NS->isAnonymousNamespace()) {
+ // This is how gcc mangles these names.
+ Out << "12_GLOBAL__N_1";
+ break;
+ }
+ }
+
+ if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) {
+ // We must have an anonymous union or struct declaration.
+ const RecordDecl *RD = VD->getType()->castAs<RecordType>()->getDecl();
+
+ // Itanium C++ ABI 5.1.2:
+ //
+ // For the purposes of mangling, the name of an anonymous union is
+ // considered to be the name of the first named data member found by a
+ // pre-order, depth-first, declaration-order walk of the data members of
+ // the anonymous union. If there is no such data member (i.e., if all of
+ // the data members in the union are unnamed), then there is no way for
+ // a program to refer to the anonymous union, and there is therefore no
+ // need to mangle its name.
+ assert(RD->isAnonymousStructOrUnion()
+ && "Expected anonymous struct or union!");
+ const FieldDecl *FD = RD->findFirstNamedDataMember();
+
+ // It's actually possible for various reasons for us to get here
+ // with an empty anonymous struct / union. Fortunately, it
+ // doesn't really matter what name we generate.
+ if (!FD) break;
+ assert(FD->getIdentifier() && "Data member name isn't an identifier!");
+
+ mangleSourceName(FD->getIdentifier());
+ // Not emitting abi tags: internal name anyway.
+ break;
+ }
+
+ // Class extensions have no name as a category, and it's possible
+ // for them to be the semantic parent of certain declarations
+ // (primarily, tag decls defined within declarations). Such
+ // declarations will always have internal linkage, so the name
+ // doesn't really matter, but we shouldn't crash on them. For
+ // safety, just handle all ObjC containers here.
+ if (isa<ObjCContainerDecl>(ND))
+ break;
+
+ // We must have an anonymous struct.
+ const TagDecl *TD = cast<TagDecl>(ND);
+ if (const TypedefNameDecl *D = TD->getTypedefNameForAnonDecl()) {
+ assert(TD->getDeclContext() == D->getDeclContext() &&
+ "Typedef should not be in another decl context!");
+ assert(D->getDeclName().getAsIdentifierInfo() &&
+ "Typedef was not named!");
+ mangleSourceName(D->getDeclName().getAsIdentifierInfo());
+ assert(!AdditionalAbiTags && "Type cannot have additional abi tags");
+ // Explicit abi tags are still possible; take from underlying type, not
+ // from typedef.
+ writeAbiTags(TD, nullptr);
+ break;
+ }
+
+ // <unnamed-type-name> ::= <closure-type-name>
+ //
+ // <closure-type-name> ::= Ul <lambda-sig> E [ <nonnegative number> ] _
+ // <lambda-sig> ::= <template-param-decl>* <parameter-type>+
+ // # Parameter types or 'v' for 'void'.
+ if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(TD)) {
+ if (Record->isLambda() && Record->getLambdaManglingNumber()) {
+ assert(!AdditionalAbiTags &&
+ "Lambda type cannot have additional abi tags");
+ mangleLambda(Record);
+ break;
+ }
+ }
+
+ if (TD->isExternallyVisible()) {
+ unsigned UnnamedMangle = getASTContext().getManglingNumber(TD);
+ Out << "Ut";
+ if (UnnamedMangle > 1)
+ Out << UnnamedMangle - 2;
+ Out << '_';
+ writeAbiTags(TD, AdditionalAbiTags);
+ break;
+ }
+
+ // Get a unique id for the anonymous struct. If it is not a real output
+ // ID doesn't matter so use fake one.
+ unsigned AnonStructId = NullOut ? 0 : Context.getAnonymousStructId(TD);
+
+ // Mangle it as a source name in the form
+ // [n] $_<id>
+ // where n is the length of the string.
+ SmallString<8> Str;
+ Str += "$_";
+ Str += llvm::utostr(AnonStructId);
+
+ Out << Str.size();
+ Out << Str;
+ break;
+ }
+
+ case DeclarationName::ObjCZeroArgSelector:
+ case DeclarationName::ObjCOneArgSelector:
+ case DeclarationName::ObjCMultiArgSelector:
+ llvm_unreachable("Can't mangle Objective-C selector names here!");
+
+ case DeclarationName::CXXConstructorName: {
+ const CXXRecordDecl *InheritedFrom = nullptr;
+ TemplateName InheritedTemplateName;
+ const TemplateArgumentList *InheritedTemplateArgs = nullptr;
+ if (auto Inherited =
+ cast<CXXConstructorDecl>(ND)->getInheritedConstructor()) {
+ InheritedFrom = Inherited.getConstructor()->getParent();
+ InheritedTemplateName =
+ TemplateName(Inherited.getConstructor()->getPrimaryTemplate());
+ InheritedTemplateArgs =
+ Inherited.getConstructor()->getTemplateSpecializationArgs();
+ }
+
+ if (ND == Structor)
+ // If the named decl is the C++ constructor we're mangling, use the type
+ // we were given.
+ mangleCXXCtorType(static_cast<CXXCtorType>(StructorType), InheritedFrom);
+ else
+ // Otherwise, use the complete constructor name. This is relevant if a
+ // class with a constructor is declared within a constructor.
+ mangleCXXCtorType(Ctor_Complete, InheritedFrom);
+
+ // FIXME: The template arguments are part of the enclosing prefix or
+ // nested-name, but it's more convenient to mangle them here.
+ if (InheritedTemplateArgs)
+ mangleTemplateArgs(InheritedTemplateName, *InheritedTemplateArgs);
+
+ writeAbiTags(ND, AdditionalAbiTags);
+ break;
+ }
+
+ case DeclarationName::CXXDestructorName:
+ if (ND == Structor)
+ // If the named decl is the C++ destructor we're mangling, use the type we
+ // were given.
+ mangleCXXDtorType(static_cast<CXXDtorType>(StructorType));
+ else
+ // Otherwise, use the complete destructor name. This is relevant if a
+ // class with a destructor is declared within a destructor.
+ mangleCXXDtorType(Dtor_Complete);
+ writeAbiTags(ND, AdditionalAbiTags);
+ break;
+
+ case DeclarationName::CXXOperatorName:
+ if (ND && Arity == UnknownArity) {
+ Arity = cast<FunctionDecl>(ND)->getNumParams();
+
+ // If we have a member function, we need to include the 'this' pointer.
+ if (const auto *MD = dyn_cast<CXXMethodDecl>(ND))
+ if (!MD->isStatic())
+ Arity++;
+ }
+ LLVM_FALLTHROUGH;
+ case DeclarationName::CXXConversionFunctionName:
+ case DeclarationName::CXXLiteralOperatorName:
+ mangleOperatorName(Name, Arity);
+ writeAbiTags(ND, AdditionalAbiTags);
+ break;
+
+ case DeclarationName::CXXDeductionGuideName:
+ llvm_unreachable("Can't mangle a deduction guide name!");
+
+ case DeclarationName::CXXUsingDirective:
+ llvm_unreachable("Can't mangle a using directive name!");
+ }
+}
+
+void CXXNameMangler::mangleRegCallName(const IdentifierInfo *II) {
+ // <source-name> ::= <positive length number> __regcall3__ <identifier>
+ // <number> ::= [n] <non-negative decimal integer>
+ // <identifier> ::= <unqualified source code identifier>
+ Out << II->getLength() + sizeof("__regcall3__") - 1 << "__regcall3__"
+ << II->getName();
+}
+
+void CXXNameMangler::mangleDeviceStubName(const IdentifierInfo *II) {
+ // <source-name> ::= <positive length number> __device_stub__ <identifier>
+ // <number> ::= [n] <non-negative decimal integer>
+ // <identifier> ::= <unqualified source code identifier>
+ Out << II->getLength() + sizeof("__device_stub__") - 1 << "__device_stub__"
+ << II->getName();
+}
+
+void CXXNameMangler::mangleSourceName(const IdentifierInfo *II) {
+ // <source-name> ::= <positive length number> <identifier>
+ // <number> ::= [n] <non-negative decimal integer>
+ // <identifier> ::= <unqualified source code identifier>
+ Out << II->getLength() << II->getName();
+}
+
+void CXXNameMangler::mangleNestedName(GlobalDecl GD,
+ const DeclContext *DC,
+ const AbiTagList *AdditionalAbiTags,
+ bool NoFunction) {
+ const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
+ // <nested-name>
+ // ::= N [<CV-qualifiers>] [<ref-qualifier>] <prefix> <unqualified-name> E
+ // ::= N [<CV-qualifiers>] [<ref-qualifier>] <template-prefix>
+ // <template-args> E
+
+ Out << 'N';
+ if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(ND)) {
+ Qualifiers MethodQuals = Method->getMethodQualifiers();
+ // We do not consider restrict a distinguishing attribute for overloading
+ // purposes so we must not mangle it.
+ MethodQuals.removeRestrict();
+ mangleQualifiers(MethodQuals);
+ mangleRefQualifier(Method->getRefQualifier());
+ }
+
+ // Check if we have a template.
+ const TemplateArgumentList *TemplateArgs = nullptr;
+ if (GlobalDecl TD = isTemplate(GD, TemplateArgs)) {
+ mangleTemplatePrefix(TD, NoFunction);
+ mangleTemplateArgs(asTemplateName(TD), *TemplateArgs);
+ }
+ else {
+ manglePrefix(DC, NoFunction);
+ mangleUnqualifiedName(GD, AdditionalAbiTags);
+ }
+
+ Out << 'E';
+}
+void CXXNameMangler::mangleNestedName(const TemplateDecl *TD,
+ const TemplateArgument *TemplateArgs,
+ unsigned NumTemplateArgs) {
+ // <nested-name> ::= N [<CV-qualifiers>] <template-prefix> <template-args> E
+
+ Out << 'N';
+
+ mangleTemplatePrefix(TD);
+ mangleTemplateArgs(asTemplateName(TD), TemplateArgs, NumTemplateArgs);
+
+ Out << 'E';
+}
+
+static GlobalDecl getParentOfLocalEntity(const DeclContext *DC) {
+ GlobalDecl GD;
+ // The Itanium spec says:
+ // For entities in constructors and destructors, the mangling of the
+ // complete object constructor or destructor is used as the base function
+ // name, i.e. the C1 or D1 version.
+ if (auto *CD = dyn_cast<CXXConstructorDecl>(DC))
+ GD = GlobalDecl(CD, Ctor_Complete);
+ else if (auto *DD = dyn_cast<CXXDestructorDecl>(DC))
+ GD = GlobalDecl(DD, Dtor_Complete);
+ else
+ GD = GlobalDecl(cast<FunctionDecl>(DC));
+ return GD;
+}
+
+void CXXNameMangler::mangleLocalName(GlobalDecl GD,
+ const AbiTagList *AdditionalAbiTags) {
+ const Decl *D = GD.getDecl();
+ // <local-name> := Z <function encoding> E <entity name> [<discriminator>]
+ // := Z <function encoding> E s [<discriminator>]
+ // <local-name> := Z <function encoding> E d [ <parameter number> ]
+ // _ <entity name>
+ // <discriminator> := _ <non-negative number>
+ assert(isa<NamedDecl>(D) || isa<BlockDecl>(D));
+ const RecordDecl *RD = GetLocalClassDecl(D);
+ const DeclContext *DC = getEffectiveDeclContext(RD ? RD : D);
+
+ Out << 'Z';
+
+ {
+ AbiTagState LocalAbiTags(AbiTags);
+
+ if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(DC))
+ mangleObjCMethodName(MD);
+ else if (const BlockDecl *BD = dyn_cast<BlockDecl>(DC))
+ mangleBlockForPrefix(BD);
+ else
+ mangleFunctionEncoding(getParentOfLocalEntity(DC));
+
+ // Implicit ABI tags (from namespace) are not available in the following
+ // entity; reset to actually emitted tags, which are available.
+ LocalAbiTags.setUsedAbiTags(LocalAbiTags.getEmittedAbiTags());
+ }
+
+ Out << 'E';
+
+ // GCC 5.3.0 doesn't emit derived ABI tags for local names but that seems to
+ // be a bug that is fixed in trunk.
+
+ if (RD) {
+ // The parameter number is omitted for the last parameter, 0 for the
+ // second-to-last parameter, 1 for the third-to-last parameter, etc. The
+ // <entity name> will of course contain a <closure-type-name>: Its
+ // numbering will be local to the particular argument in which it appears
+ // -- other default arguments do not affect its encoding.
+ const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD);
+ if (CXXRD && CXXRD->isLambda()) {
+ if (const ParmVarDecl *Parm
+ = dyn_cast_or_null<ParmVarDecl>(CXXRD->getLambdaContextDecl())) {
+ if (const FunctionDecl *Func
+ = dyn_cast<FunctionDecl>(Parm->getDeclContext())) {
+ Out << 'd';
+ unsigned Num = Func->getNumParams() - Parm->getFunctionScopeIndex();
+ if (Num > 1)
+ mangleNumber(Num - 2);
+ Out << '_';
+ }
+ }
+ }
+
+ // Mangle the name relative to the closest enclosing function.
+ // equality ok because RD derived from ND above
+ if (D == RD) {
+ mangleUnqualifiedName(RD, AdditionalAbiTags);
+ } else if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) {
+ manglePrefix(getEffectiveDeclContext(BD), true /*NoFunction*/);
+ assert(!AdditionalAbiTags && "Block cannot have additional abi tags");
+ mangleUnqualifiedBlock(BD);
+ } else {
+ const NamedDecl *ND = cast<NamedDecl>(D);
+ mangleNestedName(GD, getEffectiveDeclContext(ND), AdditionalAbiTags,
+ true /*NoFunction*/);
+ }
+ } else if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) {
+ // Mangle a block in a default parameter; see above explanation for
+ // lambdas.
+ if (const ParmVarDecl *Parm
+ = dyn_cast_or_null<ParmVarDecl>(BD->getBlockManglingContextDecl())) {
+ if (const FunctionDecl *Func
+ = dyn_cast<FunctionDecl>(Parm->getDeclContext())) {
+ Out << 'd';
+ unsigned Num = Func->getNumParams() - Parm->getFunctionScopeIndex();
+ if (Num > 1)
+ mangleNumber(Num - 2);
+ Out << '_';
+ }
+ }
+
+ assert(!AdditionalAbiTags && "Block cannot have additional abi tags");
+ mangleUnqualifiedBlock(BD);
+ } else {
+ mangleUnqualifiedName(GD, AdditionalAbiTags);
+ }
+
+ if (const NamedDecl *ND = dyn_cast<NamedDecl>(RD ? RD : D)) {
+ unsigned disc;
+ if (Context.getNextDiscriminator(ND, disc)) {
+ if (disc < 10)
+ Out << '_' << disc;
+ else
+ Out << "__" << disc << '_';
+ }
+ }
+}
+
+void CXXNameMangler::mangleBlockForPrefix(const BlockDecl *Block) {
+ if (GetLocalClassDecl(Block)) {
+ mangleLocalName(Block, /* AdditionalAbiTags */ nullptr);
+ return;
+ }
+ const DeclContext *DC = getEffectiveDeclContext(Block);
+ if (isLocalContainerContext(DC)) {
+ mangleLocalName(Block, /* AdditionalAbiTags */ nullptr);
+ return;
+ }
+ manglePrefix(getEffectiveDeclContext(Block));
+ mangleUnqualifiedBlock(Block);
+}
+
+void CXXNameMangler::mangleUnqualifiedBlock(const BlockDecl *Block) {
+ if (Decl *Context = Block->getBlockManglingContextDecl()) {
+ if ((isa<VarDecl>(Context) || isa<FieldDecl>(Context)) &&
+ Context->getDeclContext()->isRecord()) {
+ const auto *ND = cast<NamedDecl>(Context);
+ if (ND->getIdentifier()) {
+ mangleSourceNameWithAbiTags(ND);
+ Out << 'M';
+ }
+ }
+ }
+
+ // If we have a block mangling number, use it.
+ unsigned Number = Block->getBlockManglingNumber();
+ // Otherwise, just make up a number. It doesn't matter what it is because
+ // the symbol in question isn't externally visible.
+ if (!Number)
+ Number = Context.getBlockId(Block, false);
+ else {
+ // Stored mangling numbers are 1-based.
+ --Number;
+ }
+ Out << "Ub";
+ if (Number > 0)
+ Out << Number - 1;
+ Out << '_';
+}
+
+// <template-param-decl>
+// ::= Ty # template type parameter
+// ::= Tn <type> # template non-type parameter
+// ::= Tt <template-param-decl>* E # template template parameter
+// ::= Tp <template-param-decl> # template parameter pack
+void CXXNameMangler::mangleTemplateParamDecl(const NamedDecl *Decl) {
+ if (auto *Ty = dyn_cast<TemplateTypeParmDecl>(Decl)) {
+ if (Ty->isParameterPack())
+ Out << "Tp";
+ Out << "Ty";
+ } else if (auto *Tn = dyn_cast<NonTypeTemplateParmDecl>(Decl)) {
+ if (Tn->isExpandedParameterPack()) {
+ for (unsigned I = 0, N = Tn->getNumExpansionTypes(); I != N; ++I) {
+ Out << "Tn";
+ mangleType(Tn->getExpansionType(I));
+ }
+ } else {
+ QualType T = Tn->getType();
+ if (Tn->isParameterPack()) {
+ Out << "Tp";
+ if (auto *PackExpansion = T->getAs<PackExpansionType>())
+ T = PackExpansion->getPattern();
+ }
+ Out << "Tn";
+ mangleType(T);
+ }
+ } else if (auto *Tt = dyn_cast<TemplateTemplateParmDecl>(Decl)) {
+ if (Tt->isExpandedParameterPack()) {
+ for (unsigned I = 0, N = Tt->getNumExpansionTemplateParameters(); I != N;
+ ++I) {
+ Out << "Tt";
+ for (auto *Param : *Tt->getExpansionTemplateParameters(I))
+ mangleTemplateParamDecl(Param);
+ Out << "E";
+ }
+ } else {
+ if (Tt->isParameterPack())
+ Out << "Tp";
+ Out << "Tt";
+ for (auto *Param : *Tt->getTemplateParameters())
+ mangleTemplateParamDecl(Param);
+ Out << "E";
+ }
+ }
+}
+
+void CXXNameMangler::mangleLambda(const CXXRecordDecl *Lambda) {
+ // If the context of a closure type is an initializer for a class member
+ // (static or nonstatic), it is encoded in a qualified name with a final
+ // <prefix> of the form:
+ //
+ // <data-member-prefix> := <member source-name> M
+ //
+ // Technically, the data-member-prefix is part of the <prefix>. However,
+ // since a closure type will always be mangled with a prefix, it's easier
+ // to emit that last part of the prefix here.
+ if (Decl *Context = Lambda->getLambdaContextDecl()) {
+ if ((isa<VarDecl>(Context) || isa<FieldDecl>(Context)) &&
+ !isa<ParmVarDecl>(Context)) {
+ // FIXME: 'inline auto [a, b] = []{ return ... };' does not get a
+ // reasonable mangling here.
+ if (const IdentifierInfo *Name
+ = cast<NamedDecl>(Context)->getIdentifier()) {
+ mangleSourceName(Name);
+ const TemplateArgumentList *TemplateArgs = nullptr;
+ if (GlobalDecl TD = isTemplate(cast<NamedDecl>(Context), TemplateArgs))
+ mangleTemplateArgs(asTemplateName(TD), *TemplateArgs);
+ Out << 'M';
+ }
+ }
+ }
+
+ Out << "Ul";
+ mangleLambdaSig(Lambda);
+ Out << "E";
+
+ // The number is omitted for the first closure type with a given
+ // <lambda-sig> in a given context; it is n-2 for the nth closure type
+ // (in lexical order) with that same <lambda-sig> and context.
+ //
+ // The AST keeps track of the number for us.
+ //
+ // In CUDA/HIP, to ensure the consistent lamba numbering between the device-
+ // and host-side compilations, an extra device mangle context may be created
+ // if the host-side CXX ABI has different numbering for lambda. In such case,
+ // if the mangle context is that device-side one, use the device-side lambda
+ // mangling number for this lambda.
+ unsigned Number = Context.isDeviceMangleContext()
+ ? Lambda->getDeviceLambdaManglingNumber()
+ : Lambda->getLambdaManglingNumber();
+ assert(Number > 0 && "Lambda should be mangled as an unnamed class");
+ if (Number > 1)
+ mangleNumber(Number - 2);
+ Out << '_';
+}
+
+void CXXNameMangler::mangleLambdaSig(const CXXRecordDecl *Lambda) {
+ for (auto *D : Lambda->getLambdaExplicitTemplateParameters())
+ mangleTemplateParamDecl(D);
+ auto *Proto =
+ Lambda->getLambdaTypeInfo()->getType()->castAs<FunctionProtoType>();
+ mangleBareFunctionType(Proto, /*MangleReturnType=*/false,
+ Lambda->getLambdaStaticInvoker());
+}
+
+void CXXNameMangler::manglePrefix(NestedNameSpecifier *qualifier) {
+ switch (qualifier->getKind()) {
+ case NestedNameSpecifier::Global:
+ // nothing
+ return;
+
+ case NestedNameSpecifier::Super:
+ llvm_unreachable("Can't mangle __super specifier");
+
+ case NestedNameSpecifier::Namespace:
+ mangleName(qualifier->getAsNamespace());
+ return;
+
+ case NestedNameSpecifier::NamespaceAlias:
+ mangleName(qualifier->getAsNamespaceAlias()->getNamespace());
+ return;
+
+ case NestedNameSpecifier::TypeSpec:
+ case NestedNameSpecifier::TypeSpecWithTemplate:
+ manglePrefix(QualType(qualifier->getAsType(), 0));
+ return;
+
+ case NestedNameSpecifier::Identifier:
+ // Member expressions can have these without prefixes, but that
+ // should end up in mangleUnresolvedPrefix instead.
+ assert(qualifier->getPrefix());
+ manglePrefix(qualifier->getPrefix());
+
+ mangleSourceName(qualifier->getAsIdentifier());
+ return;
+ }
+
+ llvm_unreachable("unexpected nested name specifier");
+}
+
+void CXXNameMangler::manglePrefix(const DeclContext *DC, bool NoFunction) {
+ // <prefix> ::= <prefix> <unqualified-name>
+ // ::= <template-prefix> <template-args>
+ // ::= <template-param>
+ // ::= # empty
+ // ::= <substitution>
+
+ DC = IgnoreLinkageSpecDecls(DC);
+
+ if (DC->isTranslationUnit())
+ return;
+
+ if (NoFunction && isLocalContainerContext(DC))
+ return;
+
+ assert(!isLocalContainerContext(DC));
+
+ const NamedDecl *ND = cast<NamedDecl>(DC);
+ if (mangleSubstitution(ND))
+ return;
+
+ // Check if we have a template.
+ const TemplateArgumentList *TemplateArgs = nullptr;
+ if (GlobalDecl TD = isTemplate(ND, TemplateArgs)) {
+ mangleTemplatePrefix(TD);
+ mangleTemplateArgs(asTemplateName(TD), *TemplateArgs);
+ } else {
+ manglePrefix(getEffectiveDeclContext(ND), NoFunction);
+ mangleUnqualifiedName(ND, nullptr);
+ }
+
+ addSubstitution(ND);
+}
+
+void CXXNameMangler::mangleTemplatePrefix(TemplateName Template) {
+ // <template-prefix> ::= <prefix> <template unqualified-name>
+ // ::= <template-param>
+ // ::= <substitution>
+ if (TemplateDecl *TD = Template.getAsTemplateDecl())
+ return mangleTemplatePrefix(TD);
+
+ DependentTemplateName *Dependent = Template.getAsDependentTemplateName();
+ assert(Dependent && "unexpected template name kind");
+
+ // Clang 11 and before mangled the substitution for a dependent template name
+ // after already having emitted (a substitution for) the prefix.
+ bool Clang11Compat = getASTContext().getLangOpts().getClangABICompat() <=
+ LangOptions::ClangABI::Ver11;
+ if (!Clang11Compat && mangleSubstitution(Template))
+ return;
+
+ if (NestedNameSpecifier *Qualifier = Dependent->getQualifier())
+ manglePrefix(Qualifier);
+
+ if (Clang11Compat && mangleSubstitution(Template))
+ return;
+
+ if (const IdentifierInfo *Id = Dependent->getIdentifier())
+ mangleSourceName(Id);
+ else
+ mangleOperatorName(Dependent->getOperator(), UnknownArity);
+
+ addSubstitution(Template);
+}
+
+void CXXNameMangler::mangleTemplatePrefix(GlobalDecl GD,
+ bool NoFunction) {
+ const TemplateDecl *ND = cast<TemplateDecl>(GD.getDecl());
+ // <template-prefix> ::= <prefix> <template unqualified-name>
+ // ::= <template-param>
+ // ::= <substitution>
+ // <template-template-param> ::= <template-param>
+ // <substitution>
+
+ if (mangleSubstitution(ND))
+ return;
+
+ // <template-template-param> ::= <template-param>
+ if (const auto *TTP = dyn_cast<TemplateTemplateParmDecl>(ND)) {
+ mangleTemplateParameter(TTP->getDepth(), TTP->getIndex());
+ } else {
+ manglePrefix(getEffectiveDeclContext(ND), NoFunction);
+ if (isa<BuiltinTemplateDecl>(ND) || isa<ConceptDecl>(ND))
+ mangleUnqualifiedName(GD, nullptr);
+ else
+ mangleUnqualifiedName(GD.getWithDecl(ND->getTemplatedDecl()), nullptr);
+ }
+
+ addSubstitution(ND);
+}
+
+/// Mangles a template name under the production <type>. Required for
+/// template template arguments.
+/// <type> ::= <class-enum-type>
+/// ::= <template-param>
+/// ::= <substitution>
+void CXXNameMangler::mangleType(TemplateName TN) {
+ if (mangleSubstitution(TN))
+ return;
+
+ TemplateDecl *TD = nullptr;
+
+ switch (TN.getKind()) {
+ case TemplateName::QualifiedTemplate:
+ TD = TN.getAsQualifiedTemplateName()->getTemplateDecl();
+ goto HaveDecl;
+
+ case TemplateName::Template:
+ TD = TN.getAsTemplateDecl();
+ goto HaveDecl;
+
+ HaveDecl:
+ if (auto *TTP = dyn_cast<TemplateTemplateParmDecl>(TD))
+ mangleTemplateParameter(TTP->getDepth(), TTP->getIndex());
+ else
+ mangleName(TD);
+ break;
+
+ case TemplateName::OverloadedTemplate:
+ case TemplateName::AssumedTemplate:
+ llvm_unreachable("can't mangle an overloaded template name as a <type>");
+
+ case TemplateName::DependentTemplate: {
+ const DependentTemplateName *Dependent = TN.getAsDependentTemplateName();
+ assert(Dependent->isIdentifier());
+
+ // <class-enum-type> ::= <name>
+ // <name> ::= <nested-name>
+ mangleUnresolvedPrefix(Dependent->getQualifier());
+ mangleSourceName(Dependent->getIdentifier());
+ break;
+ }
+
+ case TemplateName::SubstTemplateTemplateParm: {
+ // Substituted template parameters are mangled as the substituted
+ // template. This will check for the substitution twice, which is
+ // fine, but we have to return early so that we don't try to *add*
+ // the substitution twice.
+ SubstTemplateTemplateParmStorage *subst
+ = TN.getAsSubstTemplateTemplateParm();
+ mangleType(subst->getReplacement());
+ return;
+ }
+
+ case TemplateName::SubstTemplateTemplateParmPack: {
+ // FIXME: not clear how to mangle this!
+ // template <template <class> class T...> class A {
+ // template <template <class> class U...> void foo(B<T,U> x...);
+ // };
+ Out << "_SUBSTPACK_";
+ break;
+ }
+ }
+
+ addSubstitution(TN);
+}
+
+bool CXXNameMangler::mangleUnresolvedTypeOrSimpleId(QualType Ty,
+ StringRef Prefix) {
+ // Only certain other types are valid as prefixes; enumerate them.
+ switch (Ty->getTypeClass()) {
+ case Type::Builtin:
+ case Type::Complex:
+ case Type::Adjusted:
+ case Type::Decayed:
+ case Type::Pointer:
+ case Type::BlockPointer:
+ case Type::LValueReference:
+ case Type::RValueReference:
+ case Type::MemberPointer:
+ case Type::ConstantArray:
+ case Type::IncompleteArray:
+ case Type::VariableArray:
+ case Type::DependentSizedArray:
+ case Type::DependentAddressSpace:
+ case Type::DependentVector:
+ case Type::DependentSizedExtVector:
+ case Type::Vector:
+ case Type::ExtVector:
+ case Type::ConstantMatrix:
+ case Type::DependentSizedMatrix:
+ case Type::FunctionProto:
+ case Type::FunctionNoProto:
+ case Type::Paren:
+ case Type::Attributed:
+ case Type::Auto:
+ case Type::DeducedTemplateSpecialization:
+ case Type::PackExpansion:
+ case Type::ObjCObject:
+ case Type::ObjCInterface:
+ case Type::ObjCObjectPointer:
+ case Type::ObjCTypeParam:
+ case Type::Atomic:
+ case Type::Pipe:
+ case Type::MacroQualified:
+ case Type::ExtInt:
+ case Type::DependentExtInt:
+ llvm_unreachable("type is illegal as a nested name specifier");
+
+ case Type::SubstTemplateTypeParmPack:
+ // FIXME: not clear how to mangle this!
+ // template <class T...> class A {
+ // template <class U...> void foo(decltype(T::foo(U())) x...);
+ // };
+ Out << "_SUBSTPACK_";
+ break;
+
+ // <unresolved-type> ::= <template-param>
+ // ::= <decltype>
+ // ::= <template-template-param> <template-args>
+ // (this last is not official yet)
+ case Type::TypeOfExpr:
+ case Type::TypeOf:
+ case Type::Decltype:
+ case Type::TemplateTypeParm:
+ case Type::UnaryTransform:
+ case Type::SubstTemplateTypeParm:
+ unresolvedType:
+ // Some callers want a prefix before the mangled type.
+ Out << Prefix;
+
+ // This seems to do everything we want. It's not really
+ // sanctioned for a substituted template parameter, though.
+ mangleType(Ty);
+
+ // We never want to print 'E' directly after an unresolved-type,
+ // so we return directly.
+ return true;
+
+ case Type::Typedef:
+ mangleSourceNameWithAbiTags(cast<TypedefType>(Ty)->getDecl());
+ break;
+
+ case Type::UnresolvedUsing:
+ mangleSourceNameWithAbiTags(
+ cast<UnresolvedUsingType>(Ty)->getDecl());
+ break;
+
+ case Type::Enum:
+ case Type::Record:
+ mangleSourceNameWithAbiTags(cast<TagType>(Ty)->getDecl());
+ break;
+
+ case Type::TemplateSpecialization: {
+ const TemplateSpecializationType *TST =
+ cast<TemplateSpecializationType>(Ty);
+ TemplateName TN = TST->getTemplateName();
+ switch (TN.getKind()) {
+ case TemplateName::Template:
+ case TemplateName::QualifiedTemplate: {
+ TemplateDecl *TD = TN.getAsTemplateDecl();
+
+ // If the base is a template template parameter, this is an
+ // unresolved type.
+ assert(TD && "no template for template specialization type");
+ if (isa<TemplateTemplateParmDecl>(TD))
+ goto unresolvedType;
+
+ mangleSourceNameWithAbiTags(TD);
+ break;
+ }
+
+ case TemplateName::OverloadedTemplate:
+ case TemplateName::AssumedTemplate:
+ case TemplateName::DependentTemplate:
+ llvm_unreachable("invalid base for a template specialization type");
+
+ case TemplateName::SubstTemplateTemplateParm: {
+ SubstTemplateTemplateParmStorage *subst =
+ TN.getAsSubstTemplateTemplateParm();
+ mangleExistingSubstitution(subst->getReplacement());
+ break;
+ }
+
+ case TemplateName::SubstTemplateTemplateParmPack: {
+ // FIXME: not clear how to mangle this!
+ // template <template <class U> class T...> class A {
+ // template <class U...> void foo(decltype(T<U>::foo) x...);
+ // };
+ Out << "_SUBSTPACK_";
+ break;
+ }
+ }
+
+ // Note: we don't pass in the template name here. We are mangling the
+ // original source-level template arguments, so we shouldn't consider
+ // conversions to the corresponding template parameter.
+ // FIXME: Other compilers mangle partially-resolved template arguments in
+ // unresolved-qualifier-levels.
+ mangleTemplateArgs(TemplateName(), TST->getArgs(), TST->getNumArgs());
+ break;
+ }
+
+ case Type::InjectedClassName:
+ mangleSourceNameWithAbiTags(
+ cast<InjectedClassNameType>(Ty)->getDecl());
+ break;
+
+ case Type::DependentName:
+ mangleSourceName(cast<DependentNameType>(Ty)->getIdentifier());
+ break;
+
+ case Type::DependentTemplateSpecialization: {
+ const DependentTemplateSpecializationType *DTST =
+ cast<DependentTemplateSpecializationType>(Ty);
+ TemplateName Template = getASTContext().getDependentTemplateName(
+ DTST->getQualifier(), DTST->getIdentifier());
+ mangleSourceName(DTST->getIdentifier());
+ mangleTemplateArgs(Template, DTST->getArgs(), DTST->getNumArgs());
+ break;
+ }
+
+ case Type::Elaborated:
+ return mangleUnresolvedTypeOrSimpleId(
+ cast<ElaboratedType>(Ty)->getNamedType(), Prefix);
+ }
+
+ return false;
+}
+
+void CXXNameMangler::mangleOperatorName(DeclarationName Name, unsigned Arity) {
+ switch (Name.getNameKind()) {
+ case DeclarationName::CXXConstructorName:
+ case DeclarationName::CXXDestructorName:
+ case DeclarationName::CXXDeductionGuideName:
+ case DeclarationName::CXXUsingDirective:
+ case DeclarationName::Identifier:
+ case DeclarationName::ObjCMultiArgSelector:
+ case DeclarationName::ObjCOneArgSelector:
+ case DeclarationName::ObjCZeroArgSelector:
+ llvm_unreachable("Not an operator name");
+
+ case DeclarationName::CXXConversionFunctionName:
+ // <operator-name> ::= cv <type> # (cast)
+ Out << "cv";
+ mangleType(Name.getCXXNameType());
+ break;
+
+ case DeclarationName::CXXLiteralOperatorName:
+ Out << "li";
+ mangleSourceName(Name.getCXXLiteralIdentifier());
+ return;
+
+ case DeclarationName::CXXOperatorName:
+ mangleOperatorName(Name.getCXXOverloadedOperator(), Arity);
+ break;
+ }
+}
+
+void
+CXXNameMangler::mangleOperatorName(OverloadedOperatorKind OO, unsigned Arity) {
+ switch (OO) {
+ // <operator-name> ::= nw # new
+ case OO_New: Out << "nw"; break;
+ // ::= na # new[]
+ case OO_Array_New: Out << "na"; break;
+ // ::= dl # delete
+ case OO_Delete: Out << "dl"; break;
+ // ::= da # delete[]
+ case OO_Array_Delete: Out << "da"; break;
+ // ::= ps # + (unary)
+ // ::= pl # + (binary or unknown)
+ case OO_Plus:
+ Out << (Arity == 1? "ps" : "pl"); break;
+ // ::= ng # - (unary)
+ // ::= mi # - (binary or unknown)
+ case OO_Minus:
+ Out << (Arity == 1? "ng" : "mi"); break;
+ // ::= ad # & (unary)
+ // ::= an # & (binary or unknown)
+ case OO_Amp:
+ Out << (Arity == 1? "ad" : "an"); break;
+ // ::= de # * (unary)
+ // ::= ml # * (binary or unknown)
+ case OO_Star:
+ // Use binary when unknown.
+ Out << (Arity == 1? "de" : "ml"); break;
+ // ::= co # ~
+ case OO_Tilde: Out << "co"; break;
+ // ::= dv # /
+ case OO_Slash: Out << "dv"; break;
+ // ::= rm # %
+ case OO_Percent: Out << "rm"; break;
+ // ::= or # |
+ case OO_Pipe: Out << "or"; break;
+ // ::= eo # ^
+ case OO_Caret: Out << "eo"; break;
+ // ::= aS # =
+ case OO_Equal: Out << "aS"; break;
+ // ::= pL # +=
+ case OO_PlusEqual: Out << "pL"; break;
+ // ::= mI # -=
+ case OO_MinusEqual: Out << "mI"; break;
+ // ::= mL # *=
+ case OO_StarEqual: Out << "mL"; break;
+ // ::= dV # /=
+ case OO_SlashEqual: Out << "dV"; break;
+ // ::= rM # %=
+ case OO_PercentEqual: Out << "rM"; break;
+ // ::= aN # &=
+ case OO_AmpEqual: Out << "aN"; break;
+ // ::= oR # |=
+ case OO_PipeEqual: Out << "oR"; break;
+ // ::= eO # ^=
+ case OO_CaretEqual: Out << "eO"; break;
+ // ::= ls # <<
+ case OO_LessLess: Out << "ls"; break;
+ // ::= rs # >>
+ case OO_GreaterGreater: Out << "rs"; break;
+ // ::= lS # <<=
+ case OO_LessLessEqual: Out << "lS"; break;
+ // ::= rS # >>=
+ case OO_GreaterGreaterEqual: Out << "rS"; break;
+ // ::= eq # ==
+ case OO_EqualEqual: Out << "eq"; break;
+ // ::= ne # !=
+ case OO_ExclaimEqual: Out << "ne"; break;
+ // ::= lt # <
+ case OO_Less: Out << "lt"; break;
+ // ::= gt # >
+ case OO_Greater: Out << "gt"; break;
+ // ::= le # <=
+ case OO_LessEqual: Out << "le"; break;
+ // ::= ge # >=
+ case OO_GreaterEqual: Out << "ge"; break;
+ // ::= nt # !
+ case OO_Exclaim: Out << "nt"; break;
+ // ::= aa # &&
+ case OO_AmpAmp: Out << "aa"; break;
+ // ::= oo # ||
+ case OO_PipePipe: Out << "oo"; break;
+ // ::= pp # ++
+ case OO_PlusPlus: Out << "pp"; break;
+ // ::= mm # --
+ case OO_MinusMinus: Out << "mm"; break;
+ // ::= cm # ,
+ case OO_Comma: Out << "cm"; break;
+ // ::= pm # ->*
+ case OO_ArrowStar: Out << "pm"; break;
+ // ::= pt # ->
+ case OO_Arrow: Out << "pt"; break;
+ // ::= cl # ()
+ case OO_Call: Out << "cl"; break;
+ // ::= ix # []
+ case OO_Subscript: Out << "ix"; break;
+
+ // ::= qu # ?
+ // The conditional operator can't be overloaded, but we still handle it when
+ // mangling expressions.
+ case OO_Conditional: Out << "qu"; break;
+ // Proposal on cxx-abi-dev, 2015-10-21.
+ // ::= aw # co_await
+ case OO_Coawait: Out << "aw"; break;
+ // Proposed in cxx-abi github issue 43.
+ // ::= ss # <=>
+ case OO_Spaceship: Out << "ss"; break;
+
+ case OO_None:
+ case NUM_OVERLOADED_OPERATORS:
+ llvm_unreachable("Not an overloaded operator");
+ }
+}
+
+void CXXNameMangler::mangleQualifiers(Qualifiers Quals, const DependentAddressSpaceType *DAST) {
+ // Vendor qualifiers come first and if they are order-insensitive they must
+ // be emitted in reversed alphabetical order, see Itanium ABI 5.1.5.
+
+ // <type> ::= U <addrspace-expr>
+ if (DAST) {
+ Out << "U2ASI";
+ mangleExpression(DAST->getAddrSpaceExpr());
+ Out << "E";
+ }
+
+ // Address space qualifiers start with an ordinary letter.
+ if (Quals.hasAddressSpace()) {
+ // Address space extension:
+ //
+ // <type> ::= U <target-addrspace>
+ // <type> ::= U <OpenCL-addrspace>
+ // <type> ::= U <CUDA-addrspace>
+
+ SmallString<64> ASString;
+ LangAS AS = Quals.getAddressSpace();
+
+ if (Context.getASTContext().addressSpaceMapManglingFor(AS)) {
+ // <target-addrspace> ::= "AS" <address-space-number>
+ unsigned TargetAS = Context.getASTContext().getTargetAddressSpace(AS);
+ if (TargetAS != 0)
+ ASString = "AS" + llvm::utostr(TargetAS);
+ } else {
+ switch (AS) {
+ default: llvm_unreachable("Not a language specific address space");
+ // <OpenCL-addrspace> ::= "CL" [ "global" | "local" | "constant" |
+ // "private"| "generic" | "device" |
+ // "host" ]
+ case LangAS::opencl_global:
+ ASString = "CLglobal";
+ break;
+ case LangAS::opencl_global_device:
+ ASString = "CLdevice";
+ break;
+ case LangAS::opencl_global_host:
+ ASString = "CLhost";
+ break;
+ case LangAS::opencl_local:
+ ASString = "CLlocal";
+ break;
+ case LangAS::opencl_constant:
+ ASString = "CLconstant";
+ break;
+ case LangAS::opencl_private:
+ ASString = "CLprivate";
+ break;
+ case LangAS::opencl_generic:
+ ASString = "CLgeneric";
+ break;
+ // <CUDA-addrspace> ::= "CU" [ "device" | "constant" | "shared" ]
+ case LangAS::cuda_device:
+ ASString = "CUdevice";
+ break;
+ case LangAS::cuda_constant:
+ ASString = "CUconstant";
+ break;
+ case LangAS::cuda_shared:
+ ASString = "CUshared";
+ break;
+ // <ptrsize-addrspace> ::= [ "ptr32_sptr" | "ptr32_uptr" | "ptr64" ]
+ case LangAS::ptr32_sptr:
+ ASString = "ptr32_sptr";
+ break;
+ case LangAS::ptr32_uptr:
+ ASString = "ptr32_uptr";
+ break;
+ case LangAS::ptr64:
+ ASString = "ptr64";
+ break;
+ }
+ }
+ if (!ASString.empty())
+ mangleVendorQualifier(ASString);
+ }
+
+ // The ARC ownership qualifiers start with underscores.
+ // Objective-C ARC Extension:
+ //
+ // <type> ::= U "__strong"
+ // <type> ::= U "__weak"
+ // <type> ::= U "__autoreleasing"
+ //
+ // Note: we emit __weak first to preserve the order as
+ // required by the Itanium ABI.
+ if (Quals.getObjCLifetime() == Qualifiers::OCL_Weak)
+ mangleVendorQualifier("__weak");
+
+ // __unaligned (from -fms-extensions)
+ if (Quals.hasUnaligned())
+ mangleVendorQualifier("__unaligned");
+
+ // Remaining ARC ownership qualifiers.
+ switch (Quals.getObjCLifetime()) {
+ case Qualifiers::OCL_None:
+ break;
+
+ case Qualifiers::OCL_Weak:
+ // Do nothing as we already handled this case above.
+ break;
+
+ case Qualifiers::OCL_Strong:
+ mangleVendorQualifier("__strong");
+ break;
+
+ case Qualifiers::OCL_Autoreleasing:
+ mangleVendorQualifier("__autoreleasing");
+ break;
+
+ case Qualifiers::OCL_ExplicitNone:
+ // The __unsafe_unretained qualifier is *not* mangled, so that
+ // __unsafe_unretained types in ARC produce the same manglings as the
+ // equivalent (but, naturally, unqualified) types in non-ARC, providing
+ // better ABI compatibility.
+ //
+ // It's safe to do this because unqualified 'id' won't show up
+ // in any type signatures that need to be mangled.
+ break;
+ }
+
+ // <CV-qualifiers> ::= [r] [V] [K] # restrict (C99), volatile, const
+ if (Quals.hasRestrict())
+ Out << 'r';
+ if (Quals.hasVolatile())
+ Out << 'V';
+ if (Quals.hasConst())
+ Out << 'K';
+}
+
+void CXXNameMangler::mangleVendorQualifier(StringRef name) {
+ Out << 'U' << name.size() << name;
+}
+
+void CXXNameMangler::mangleRefQualifier(RefQualifierKind RefQualifier) {
+ // <ref-qualifier> ::= R # lvalue reference
+ // ::= O # rvalue-reference
+ switch (RefQualifier) {
+ case RQ_None:
+ break;
+
+ case RQ_LValue:
+ Out << 'R';
+ break;
+
+ case RQ_RValue:
+ Out << 'O';
+ break;
+ }
+}
+
+void CXXNameMangler::mangleObjCMethodName(const ObjCMethodDecl *MD) {
+ Context.mangleObjCMethodNameAsSourceName(MD, Out);
+}
+
+static bool isTypeSubstitutable(Qualifiers Quals, const Type *Ty,
+ ASTContext &Ctx) {
+ if (Quals)
+ return true;
+ if (Ty->isSpecificBuiltinType(BuiltinType::ObjCSel))
+ return true;
+ if (Ty->isOpenCLSpecificType())
+ return true;
+ if (Ty->isBuiltinType())
+ return false;
+ // Through to Clang 6.0, we accidentally treated undeduced auto types as
+ // substitution candidates.
+ if (Ctx.getLangOpts().getClangABICompat() > LangOptions::ClangABI::Ver6 &&
+ isa<AutoType>(Ty))
+ return false;
+ // A placeholder type for class template deduction is substitutable with
+ // its corresponding template name; this is handled specially when mangling
+ // the type.
+ if (auto *DeducedTST = Ty->getAs<DeducedTemplateSpecializationType>())
+ if (DeducedTST->getDeducedType().isNull())
+ return false;
+ return true;
+}
+
+void CXXNameMangler::mangleType(QualType T) {
+ // If our type is instantiation-dependent but not dependent, we mangle
+ // it as it was written in the source, removing any top-level sugar.
+ // Otherwise, use the canonical type.
+ //
+ // FIXME: This is an approximation of the instantiation-dependent name
+ // mangling rules, since we should really be using the type as written and
+ // augmented via semantic analysis (i.e., with implicit conversions and
+ // default template arguments) for any instantiation-dependent type.
+ // Unfortunately, that requires several changes to our AST:
+ // - Instantiation-dependent TemplateSpecializationTypes will need to be
+ // uniqued, so that we can handle substitutions properly
+ // - Default template arguments will need to be represented in the
+ // TemplateSpecializationType, since they need to be mangled even though
+ // they aren't written.
+ // - Conversions on non-type template arguments need to be expressed, since
+ // they can affect the mangling of sizeof/alignof.
+ //
+ // FIXME: This is wrong when mapping to the canonical type for a dependent
+ // type discards instantiation-dependent portions of the type, such as for:
+ //
+ // template<typename T, int N> void f(T (&)[sizeof(N)]);
+ // template<typename T> void f(T() throw(typename T::type)); (pre-C++17)
+ //
+ // It's also wrong in the opposite direction when instantiation-dependent,
+ // canonically-equivalent types differ in some irrelevant portion of inner
+ // type sugar. In such cases, we fail to form correct substitutions, eg:
+ //
+ // template<int N> void f(A<sizeof(N)> *, A<sizeof(N)> (*));
+ //
+ // We should instead canonicalize the non-instantiation-dependent parts,
+ // regardless of whether the type as a whole is dependent or instantiation
+ // dependent.
+ if (!T->isInstantiationDependentType() || T->isDependentType())
+ T = T.getCanonicalType();
+ else {
+ // Desugar any types that are purely sugar.
+ do {
+ // Don't desugar through template specialization types that aren't
+ // type aliases. We need to mangle the template arguments as written.
+ if (const TemplateSpecializationType *TST
+ = dyn_cast<TemplateSpecializationType>(T))
+ if (!TST->isTypeAlias())
+ break;
+
+ // FIXME: We presumably shouldn't strip off ElaboratedTypes with
+ // instantation-dependent qualifiers. See
+ // https://github.com/itanium-cxx-abi/cxx-abi/issues/114.
+
+ QualType Desugared
+ = T.getSingleStepDesugaredType(Context.getASTContext());
+ if (Desugared == T)
+ break;
+
+ T = Desugared;
+ } while (true);
+ }
+ SplitQualType split = T.split();
+ Qualifiers quals = split.Quals;
+ const Type *ty = split.Ty;
+
+ bool isSubstitutable =
+ isTypeSubstitutable(quals, ty, Context.getASTContext());
+ if (isSubstitutable && mangleSubstitution(T))
+ return;
+
+ // If we're mangling a qualified array type, push the qualifiers to
+ // the element type.
+ if (quals && isa<ArrayType>(T)) {
+ ty = Context.getASTContext().getAsArrayType(T);
+ quals = Qualifiers();
+
+ // Note that we don't update T: we want to add the
+ // substitution at the original type.
+ }
+
+ if (quals || ty->isDependentAddressSpaceType()) {
+ if (const DependentAddressSpaceType *DAST =
+ dyn_cast<DependentAddressSpaceType>(ty)) {
+ SplitQualType splitDAST = DAST->getPointeeType().split();
+ mangleQualifiers(splitDAST.Quals, DAST);
+ mangleType(QualType(splitDAST.Ty, 0));
+ } else {
+ mangleQualifiers(quals);
+
+ // Recurse: even if the qualified type isn't yet substitutable,
+ // the unqualified type might be.
+ mangleType(QualType(ty, 0));
+ }
+ } else {
+ switch (ty->getTypeClass()) {
+#define ABSTRACT_TYPE(CLASS, PARENT)
+#define NON_CANONICAL_TYPE(CLASS, PARENT) \
+ case Type::CLASS: \
+ llvm_unreachable("can't mangle non-canonical type " #CLASS "Type"); \
+ return;
+#define TYPE(CLASS, PARENT) \
+ case Type::CLASS: \
+ mangleType(static_cast<const CLASS##Type*>(ty)); \
+ break;
+#include "clang/AST/TypeNodes.inc"
+ }
+ }
+
+ // Add the substitution.
+ if (isSubstitutable)
+ addSubstitution(T);
+}
+
+void CXXNameMangler::mangleNameOrStandardSubstitution(const NamedDecl *ND) {
+ if (!mangleStandardSubstitution(ND))
+ mangleName(ND);
+}
+
+void CXXNameMangler::mangleType(const BuiltinType *T) {
+ // <type> ::= <builtin-type>
+ // <builtin-type> ::= v # void
+ // ::= w # wchar_t
+ // ::= b # bool
+ // ::= c # char
+ // ::= a # signed char
+ // ::= h # unsigned char
+ // ::= s # short
+ // ::= t # unsigned short
+ // ::= i # int
+ // ::= j # unsigned int
+ // ::= l # long
+ // ::= m # unsigned long
+ // ::= x # long long, __int64
+ // ::= y # unsigned long long, __int64
+ // ::= n # __int128
+ // ::= o # unsigned __int128
+ // ::= f # float
+ // ::= d # double
+ // ::= e # long double, __float80
+ // ::= g # __float128
+ // UNSUPPORTED: ::= Dd # IEEE 754r decimal floating point (64 bits)
+ // UNSUPPORTED: ::= De # IEEE 754r decimal floating point (128 bits)
+ // UNSUPPORTED: ::= Df # IEEE 754r decimal floating point (32 bits)
+ // ::= Dh # IEEE 754r half-precision floating point (16 bits)
+ // ::= DF <number> _ # ISO/IEC TS 18661 binary floating point type _FloatN (N bits);
+ // ::= Di # char32_t
+ // ::= Ds # char16_t
+ // ::= Dn # std::nullptr_t (i.e., decltype(nullptr))
+ // ::= u <source-name> # vendor extended type
+ std::string type_name;
+ switch (T->getKind()) {
+ case BuiltinType::Void:
+ Out << 'v';
+ break;
+ case BuiltinType::Bool:
+ Out << 'b';
+ break;
+ case BuiltinType::Char_U:
+ case BuiltinType::Char_S:
+ Out << 'c';
+ break;
+ case BuiltinType::UChar:
+ Out << 'h';
+ break;
+ case BuiltinType::UShort:
+ Out << 't';
+ break;
+ case BuiltinType::UInt:
+ Out << 'j';
+ break;
+ case BuiltinType::ULong:
+ Out << 'm';
+ break;
+ case BuiltinType::ULongLong:
+ Out << 'y';
+ break;
+ case BuiltinType::UInt128:
+ Out << 'o';
+ break;
+ case BuiltinType::SChar:
+ Out << 'a';
+ break;
+ case BuiltinType::WChar_S:
+ case BuiltinType::WChar_U:
+ Out << 'w';
+ break;
+ case BuiltinType::Char8:
+ Out << "Du";
+ break;
+ case BuiltinType::Char16:
+ Out << "Ds";
+ break;
+ case BuiltinType::Char32:
+ Out << "Di";
+ break;
+ case BuiltinType::Short:
+ Out << 's';
+ break;
+ case BuiltinType::Int:
+ Out << 'i';
+ break;
+ case BuiltinType::Long:
+ Out << 'l';
+ break;
+ case BuiltinType::LongLong:
+ Out << 'x';
+ break;
+ case BuiltinType::Int128:
+ Out << 'n';
+ break;
+ case BuiltinType::Float16:
+ Out << "DF16_";
+ break;
+ case BuiltinType::ShortAccum:
+ case BuiltinType::Accum:
+ case BuiltinType::LongAccum:
+ case BuiltinType::UShortAccum:
+ case BuiltinType::UAccum:
+ case BuiltinType::ULongAccum:
+ case BuiltinType::ShortFract:
+ case BuiltinType::Fract:
+ case BuiltinType::LongFract:
+ case BuiltinType::UShortFract:
+ case BuiltinType::UFract:
+ case BuiltinType::ULongFract:
+ case BuiltinType::SatShortAccum:
+ case BuiltinType::SatAccum:
+ case BuiltinType::SatLongAccum:
+ case BuiltinType::SatUShortAccum:
+ case BuiltinType::SatUAccum:
+ case BuiltinType::SatULongAccum:
+ case BuiltinType::SatShortFract:
+ case BuiltinType::SatFract:
+ case BuiltinType::SatLongFract:
+ case BuiltinType::SatUShortFract:
+ case BuiltinType::SatUFract:
+ case BuiltinType::SatULongFract:
+ llvm_unreachable("Fixed point types are disabled for c++");
+ case BuiltinType::Half:
+ Out << "Dh";
+ break;
+ case BuiltinType::Float:
+ Out << 'f';
+ break;
+ case BuiltinType::Double:
+ Out << 'd';
+ break;
+ case BuiltinType::LongDouble: {
+ const TargetInfo *TI = getASTContext().getLangOpts().OpenMP &&
+ getASTContext().getLangOpts().OpenMPIsDevice
+ ? getASTContext().getAuxTargetInfo()
+ : &getASTContext().getTargetInfo();
+ Out << TI->getLongDoubleMangling();
+ break;
+ }
+ case BuiltinType::Float128: {
+ const TargetInfo *TI = getASTContext().getLangOpts().OpenMP &&
+ getASTContext().getLangOpts().OpenMPIsDevice
+ ? getASTContext().getAuxTargetInfo()
+ : &getASTContext().getTargetInfo();
+ Out << TI->getFloat128Mangling();
+ break;
+ }
+ case BuiltinType::BFloat16: {
+ const TargetInfo *TI = &getASTContext().getTargetInfo();
+ Out << TI->getBFloat16Mangling();
+ break;
+ }
+ case BuiltinType::NullPtr:
+ Out << "Dn";
+ break;
+
+#define BUILTIN_TYPE(Id, SingletonId)
+#define PLACEHOLDER_TYPE(Id, SingletonId) \
+ case BuiltinType::Id:
+#include "clang/AST/BuiltinTypes.def"
+ case BuiltinType::Dependent:
+ if (!NullOut)
+ llvm_unreachable("mangling a placeholder type");
+ break;
+ case BuiltinType::ObjCId:
+ Out << "11objc_object";
+ break;
+ case BuiltinType::ObjCClass:
+ Out << "10objc_class";
+ break;
+ case BuiltinType::ObjCSel:
+ Out << "13objc_selector";
+ break;
+#define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
+ case BuiltinType::Id: \
+ type_name = "ocl_" #ImgType "_" #Suffix; \
+ Out << type_name.size() << type_name; \
+ break;
+#include "clang/Basic/OpenCLImageTypes.def"
+ case BuiltinType::OCLSampler:
+ Out << "11ocl_sampler";
+ break;
+ case BuiltinType::OCLEvent:
+ Out << "9ocl_event";
+ break;
+ case BuiltinType::OCLClkEvent:
+ Out << "12ocl_clkevent";
+ break;
+ case BuiltinType::OCLQueue:
+ Out << "9ocl_queue";
+ break;
+ case BuiltinType::OCLReserveID:
+ Out << "13ocl_reserveid";
+ break;
+#define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
+ case BuiltinType::Id: \
+ type_name = "ocl_" #ExtType; \
+ Out << type_name.size() << type_name; \
+ break;
+#include "clang/Basic/OpenCLExtensionTypes.def"
+ // The SVE types are effectively target-specific. The mangling scheme
+ // is defined in the appendices to the Procedure Call Standard for the
+ // Arm Architecture.
+#define SVE_VECTOR_TYPE(InternalName, MangledName, Id, SingletonId, NumEls, \
+ ElBits, IsSigned, IsFP, IsBF) \
+ case BuiltinType::Id: \
+ type_name = MangledName; \
+ Out << (type_name == InternalName ? "u" : "") << type_name.size() \
+ << type_name; \
+ break;
+#define SVE_PREDICATE_TYPE(InternalName, MangledName, Id, SingletonId, NumEls) \
+ case BuiltinType::Id: \
+ type_name = MangledName; \
+ Out << (type_name == InternalName ? "u" : "") << type_name.size() \
+ << type_name; \
+ break;
+#include "clang/Basic/AArch64SVEACLETypes.def"
+#define PPC_VECTOR_TYPE(Name, Id, Size) \
+ case BuiltinType::Id: \
+ type_name = #Name; \
+ Out << 'u' << type_name.size() << type_name; \
+ break;
+#include "clang/Basic/PPCTypes.def"
+ }
+}
+
+StringRef CXXNameMangler::getCallingConvQualifierName(CallingConv CC) {
+ switch (CC) {
+ case CC_C:
+ return "";
+
+ case CC_X86VectorCall:
+ case CC_X86Pascal:
+ case CC_X86RegCall:
+ case CC_AAPCS:
+ case CC_AAPCS_VFP:
+ case CC_AArch64VectorCall:
+ case CC_IntelOclBicc:
+ case CC_SpirFunction:
+ case CC_OpenCLKernel:
+ case CC_PreserveMost:
+ case CC_PreserveAll:
+ // FIXME: we should be mangling all of the above.
+ return "";
+
+ case CC_X86ThisCall:
+ // FIXME: To match mingw GCC, thiscall should only be mangled in when it is
+ // used explicitly. At this point, we don't have that much information in
+ // the AST, since clang tends to bake the convention into the canonical
+ // function type. thiscall only rarely used explicitly, so don't mangle it
+ // for now.
+ return "";
+
+ case CC_X86StdCall:
+ return "stdcall";
+ case CC_X86FastCall:
+ return "fastcall";
+ case CC_X86_64SysV:
+ return "sysv_abi";
+ case CC_Win64:
+ return "ms_abi";
+ case CC_Swift:
+ return "swiftcall";
+ }
+ llvm_unreachable("bad calling convention");
+}
+
+void CXXNameMangler::mangleExtFunctionInfo(const FunctionType *T) {
+ // Fast path.
+ if (T->getExtInfo() == FunctionType::ExtInfo())
+ return;
+
+ // Vendor-specific qualifiers are emitted in reverse alphabetical order.
+ // This will get more complicated in the future if we mangle other
+ // things here; but for now, since we mangle ns_returns_retained as
+ // a qualifier on the result type, we can get away with this:
+ StringRef CCQualifier = getCallingConvQualifierName(T->getExtInfo().getCC());
+ if (!CCQualifier.empty())
+ mangleVendorQualifier(CCQualifier);
+
+ // FIXME: regparm
+ // FIXME: noreturn
+}
+
+void
+CXXNameMangler::mangleExtParameterInfo(FunctionProtoType::ExtParameterInfo PI) {
+ // Vendor-specific qualifiers are emitted in reverse alphabetical order.
+
+ // Note that these are *not* substitution candidates. Demanglers might
+ // have trouble with this if the parameter type is fully substituted.
+
+ switch (PI.getABI()) {
+ case ParameterABI::Ordinary:
+ break;
+
+ // All of these start with "swift", so they come before "ns_consumed".
+ case ParameterABI::SwiftContext:
+ case ParameterABI::SwiftErrorResult:
+ case ParameterABI::SwiftIndirectResult:
+ mangleVendorQualifier(getParameterABISpelling(PI.getABI()));
+ break;
+ }
+
+ if (PI.isConsumed())
+ mangleVendorQualifier("ns_consumed");
+
+ if (PI.isNoEscape())
+ mangleVendorQualifier("noescape");
+}
+
+// <type> ::= <function-type>
+// <function-type> ::= [<CV-qualifiers>] F [Y]
+// <bare-function-type> [<ref-qualifier>] E
+void CXXNameMangler::mangleType(const FunctionProtoType *T) {
+ mangleExtFunctionInfo(T);
+
+ // Mangle CV-qualifiers, if present. These are 'this' qualifiers,
+ // e.g. "const" in "int (A::*)() const".
+ mangleQualifiers(T->getMethodQuals());
+
+ // Mangle instantiation-dependent exception-specification, if present,
+ // per cxx-abi-dev proposal on 2016-10-11.
+ if (T->hasInstantiationDependentExceptionSpec()) {
+ if (isComputedNoexcept(T->getExceptionSpecType())) {
+ Out << "DO";
+ mangleExpression(T->getNoexceptExpr());
+ Out << "E";
+ } else {
+ assert(T->getExceptionSpecType() == EST_Dynamic);
+ Out << "Dw";
+ for (auto ExceptTy : T->exceptions())
+ mangleType(ExceptTy);
+ Out << "E";
+ }
+ } else if (T->isNothrow()) {
+ Out << "Do";
+ }
+
+ Out << 'F';
+
+ // FIXME: We don't have enough information in the AST to produce the 'Y'
+ // encoding for extern "C" function types.
+ mangleBareFunctionType(T, /*MangleReturnType=*/true);
+
+ // Mangle the ref-qualifier, if present.
+ mangleRefQualifier(T->getRefQualifier());
+
+ Out << 'E';
+}
+
+void CXXNameMangler::mangleType(const FunctionNoProtoType *T) {
+ // Function types without prototypes can arise when mangling a function type
+ // within an overloadable function in C. We mangle these as the absence of any
+ // parameter types (not even an empty parameter list).
+ Out << 'F';
+
+ FunctionTypeDepthState saved = FunctionTypeDepth.push();
+
+ FunctionTypeDepth.enterResultType();
+ mangleType(T->getReturnType());
+ FunctionTypeDepth.leaveResultType();
+
+ FunctionTypeDepth.pop(saved);
+ Out << 'E';
+}
+
+void CXXNameMangler::mangleBareFunctionType(const FunctionProtoType *Proto,
+ bool MangleReturnType,
+ const FunctionDecl *FD) {
+ // Record that we're in a function type. See mangleFunctionParam
+ // for details on what we're trying to achieve here.
+ FunctionTypeDepthState saved = FunctionTypeDepth.push();
+
+ // <bare-function-type> ::= <signature type>+
+ if (MangleReturnType) {
+ FunctionTypeDepth.enterResultType();
+
+ // Mangle ns_returns_retained as an order-sensitive qualifier here.
+ if (Proto->getExtInfo().getProducesResult() && FD == nullptr)
+ mangleVendorQualifier("ns_returns_retained");
+
+ // Mangle the return type without any direct ARC ownership qualifiers.
+ QualType ReturnTy = Proto->getReturnType();
+ if (ReturnTy.getObjCLifetime()) {
+ auto SplitReturnTy = ReturnTy.split();
+ SplitReturnTy.Quals.removeObjCLifetime();
+ ReturnTy = getASTContext().getQualifiedType(SplitReturnTy);
+ }
+ mangleType(ReturnTy);
+
+ FunctionTypeDepth.leaveResultType();
+ }
+
+ if (Proto->getNumParams() == 0 && !Proto->isVariadic()) {
+ // <builtin-type> ::= v # void
+ Out << 'v';
+
+ FunctionTypeDepth.pop(saved);
+ return;
+ }
+
+ assert(!FD || FD->getNumParams() == Proto->getNumParams());
+ for (unsigned I = 0, E = Proto->getNumParams(); I != E; ++I) {
+ // Mangle extended parameter info as order-sensitive qualifiers here.
+ if (Proto->hasExtParameterInfos() && FD == nullptr) {
+ mangleExtParameterInfo(Proto->getExtParameterInfo(I));
+ }
+
+ // Mangle the type.
+ QualType ParamTy = Proto->getParamType(I);
+ mangleType(Context.getASTContext().getSignatureParameterType(ParamTy));
+
+ if (FD) {
+ if (auto *Attr = FD->getParamDecl(I)->getAttr<PassObjectSizeAttr>()) {
+ // Attr can only take 1 character, so we can hardcode the length below.
+ assert(Attr->getType() <= 9 && Attr->getType() >= 0);
+ if (Attr->isDynamic())
+ Out << "U25pass_dynamic_object_size" << Attr->getType();
+ else
+ Out << "U17pass_object_size" << Attr->getType();
+ }
+ }
+ }
+
+ FunctionTypeDepth.pop(saved);
+
+ // <builtin-type> ::= z # ellipsis
+ if (Proto->isVariadic())
+ Out << 'z';
+}
+
+// <type> ::= <class-enum-type>
+// <class-enum-type> ::= <name>
+void CXXNameMangler::mangleType(const UnresolvedUsingType *T) {
+ mangleName(T->getDecl());
+}
+
+// <type> ::= <class-enum-type>
+// <class-enum-type> ::= <name>
+void CXXNameMangler::mangleType(const EnumType *T) {
+ mangleType(static_cast<const TagType*>(T));
+}
+void CXXNameMangler::mangleType(const RecordType *T) {
+ mangleType(static_cast<const TagType*>(T));
+}
+void CXXNameMangler::mangleType(const TagType *T) {
+ mangleName(T->getDecl());
+}
+
+// <type> ::= <array-type>
+// <array-type> ::= A <positive dimension number> _ <element type>
+// ::= A [<dimension expression>] _ <element type>
+void CXXNameMangler::mangleType(const ConstantArrayType *T) {
+ Out << 'A' << T->getSize() << '_';
+ mangleType(T->getElementType());
+}
+void CXXNameMangler::mangleType(const VariableArrayType *T) {
+ Out << 'A';
+ // decayed vla types (size 0) will just be skipped.
+ if (T->getSizeExpr())
+ mangleExpression(T->getSizeExpr());
+ Out << '_';
+ mangleType(T->getElementType());
+}
+void CXXNameMangler::mangleType(const DependentSizedArrayType *T) {
+ Out << 'A';
+ mangleExpression(T->getSizeExpr());
+ Out << '_';
+ mangleType(T->getElementType());
+}
+void CXXNameMangler::mangleType(const IncompleteArrayType *T) {
+ Out << "A_";
+ mangleType(T->getElementType());
+}
+
+// <type> ::= <pointer-to-member-type>
+// <pointer-to-member-type> ::= M <class type> <member type>
+void CXXNameMangler::mangleType(const MemberPointerType *T) {
+ Out << 'M';
+ mangleType(QualType(T->getClass(), 0));
+ QualType PointeeType = T->getPointeeType();
+ if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(PointeeType)) {
+ mangleType(FPT);
+
+ // Itanium C++ ABI 5.1.8:
+ //
+ // The type of a non-static member function is considered to be different,
+ // for the purposes of substitution, from the type of a namespace-scope or
+ // static member function whose type appears similar. The types of two
+ // non-static member functions are considered to be different, for the
+ // purposes of substitution, if the functions are members of different
+ // classes. In other words, for the purposes of substitution, the class of
+ // which the function is a member is considered part of the type of
+ // function.
+
+ // Given that we already substitute member function pointers as a
+ // whole, the net effect of this rule is just to unconditionally
+ // suppress substitution on the function type in a member pointer.
+ // We increment the SeqID here to emulate adding an entry to the
+ // substitution table.
+ ++SeqID;
+ } else
+ mangleType(PointeeType);
+}
+
+// <type> ::= <template-param>
+void CXXNameMangler::mangleType(const TemplateTypeParmType *T) {
+ mangleTemplateParameter(T->getDepth(), T->getIndex());
+}
+
+// <type> ::= <template-param>
+void CXXNameMangler::mangleType(const SubstTemplateTypeParmPackType *T) {
+ // FIXME: not clear how to mangle this!
+ // template <class T...> class A {
+ // template <class U...> void foo(T(*)(U) x...);
+ // };
+ Out << "_SUBSTPACK_";
+}
+
+// <type> ::= P <type> # pointer-to
+void CXXNameMangler::mangleType(const PointerType *T) {
+ Out << 'P';
+ mangleType(T->getPointeeType());
+}
+void CXXNameMangler::mangleType(const ObjCObjectPointerType *T) {
+ Out << 'P';
+ mangleType(T->getPointeeType());
+}
+
+// <type> ::= R <type> # reference-to
+void CXXNameMangler::mangleType(const LValueReferenceType *T) {
+ Out << 'R';
+ mangleType(T->getPointeeType());
+}
+
+// <type> ::= O <type> # rvalue reference-to (C++0x)
+void CXXNameMangler::mangleType(const RValueReferenceType *T) {
+ Out << 'O';
+ mangleType(T->getPointeeType());
+}
+
+// <type> ::= C <type> # complex pair (C 2000)
+void CXXNameMangler::mangleType(const ComplexType *T) {
+ Out << 'C';
+ mangleType(T->getElementType());
+}
+
+// ARM's ABI for Neon vector types specifies that they should be mangled as
+// if they are structs (to match ARM's initial implementation). The
+// vector type must be one of the special types predefined by ARM.
+void CXXNameMangler::mangleNeonVectorType(const VectorType *T) {
+ QualType EltType = T->getElementType();
+ assert(EltType->isBuiltinType() && "Neon vector element not a BuiltinType");
+ const char *EltName = nullptr;
+ if (T->getVectorKind() == VectorType::NeonPolyVector) {
+ switch (cast<BuiltinType>(EltType)->getKind()) {
+ case BuiltinType::SChar:
+ case BuiltinType::UChar:
+ EltName = "poly8_t";
+ break;
+ case BuiltinType::Short:
+ case BuiltinType::UShort:
+ EltName = "poly16_t";
+ break;
+ case BuiltinType::LongLong:
+ case BuiltinType::ULongLong:
+ EltName = "poly64_t";
+ break;
+ default: llvm_unreachable("unexpected Neon polynomial vector element type");
+ }
+ } else {
+ switch (cast<BuiltinType>(EltType)->getKind()) {
+ case BuiltinType::SChar: EltName = "int8_t"; break;
+ case BuiltinType::UChar: EltName = "uint8_t"; break;
+ case BuiltinType::Short: EltName = "int16_t"; break;
+ case BuiltinType::UShort: EltName = "uint16_t"; break;
+ case BuiltinType::Int: EltName = "int32_t"; break;
+ case BuiltinType::UInt: EltName = "uint32_t"; break;
+ case BuiltinType::LongLong: EltName = "int64_t"; break;
+ case BuiltinType::ULongLong: EltName = "uint64_t"; break;
+ case BuiltinType::Double: EltName = "float64_t"; break;
+ case BuiltinType::Float: EltName = "float32_t"; break;
+ case BuiltinType::Half: EltName = "float16_t"; break;
+ case BuiltinType::BFloat16: EltName = "bfloat16_t"; break;
+ default:
+ llvm_unreachable("unexpected Neon vector element type");
+ }
+ }
+ const char *BaseName = nullptr;
+ unsigned BitSize = (T->getNumElements() *
+ getASTContext().getTypeSize(EltType));
+ if (BitSize == 64)
+ BaseName = "__simd64_";
+ else {
+ assert(BitSize == 128 && "Neon vector type not 64 or 128 bits");
+ BaseName = "__simd128_";
+ }
+ Out << strlen(BaseName) + strlen(EltName);
+ Out << BaseName << EltName;
+}
+
+void CXXNameMangler::mangleNeonVectorType(const DependentVectorType *T) {
+ DiagnosticsEngine &Diags = Context.getDiags();
+ unsigned DiagID = Diags.getCustomDiagID(
+ DiagnosticsEngine::Error,
+ "cannot mangle this dependent neon vector type yet");
+ Diags.Report(T->getAttributeLoc(), DiagID);
+}
+
+static StringRef mangleAArch64VectorBase(const BuiltinType *EltType) {
+ switch (EltType->getKind()) {
+ case BuiltinType::SChar:
+ return "Int8";
+ case BuiltinType::Short:
+ return "Int16";
+ case BuiltinType::Int:
+ return "Int32";
+ case BuiltinType::Long:
+ case BuiltinType::LongLong:
+ return "Int64";
+ case BuiltinType::UChar:
+ return "Uint8";
+ case BuiltinType::UShort:
+ return "Uint16";
+ case BuiltinType::UInt:
+ return "Uint32";
+ case BuiltinType::ULong:
+ case BuiltinType::ULongLong:
+ return "Uint64";
+ case BuiltinType::Half:
+ return "Float16";
+ case BuiltinType::Float:
+ return "Float32";
+ case BuiltinType::Double:
+ return "Float64";
+ case BuiltinType::BFloat16:
+ return "Bfloat16";
+ default:
+ llvm_unreachable("Unexpected vector element base type");
+ }
+}
+
+// AArch64's ABI for Neon vector types specifies that they should be mangled as
+// the equivalent internal name. The vector type must be one of the special
+// types predefined by ARM.
+void CXXNameMangler::mangleAArch64NeonVectorType(const VectorType *T) {
+ QualType EltType = T->getElementType();
+ assert(EltType->isBuiltinType() && "Neon vector element not a BuiltinType");
+ unsigned BitSize =
+ (T->getNumElements() * getASTContext().getTypeSize(EltType));
+ (void)BitSize; // Silence warning.
+
+ assert((BitSize == 64 || BitSize == 128) &&
+ "Neon vector type not 64 or 128 bits");
+
+ StringRef EltName;
+ if (T->getVectorKind() == VectorType::NeonPolyVector) {
+ switch (cast<BuiltinType>(EltType)->getKind()) {
+ case BuiltinType::UChar:
+ EltName = "Poly8";
+ break;
+ case BuiltinType::UShort:
+ EltName = "Poly16";
+ break;
+ case BuiltinType::ULong:
+ case BuiltinType::ULongLong:
+ EltName = "Poly64";
+ break;
+ default:
+ llvm_unreachable("unexpected Neon polynomial vector element type");
+ }
+ } else
+ EltName = mangleAArch64VectorBase(cast<BuiltinType>(EltType));
+
+ std::string TypeName =
+ ("__" + EltName + "x" + Twine(T->getNumElements()) + "_t").str();
+ Out << TypeName.length() << TypeName;
+}
+void CXXNameMangler::mangleAArch64NeonVectorType(const DependentVectorType *T) {
+ DiagnosticsEngine &Diags = Context.getDiags();
+ unsigned DiagID = Diags.getCustomDiagID(
+ DiagnosticsEngine::Error,
+ "cannot mangle this dependent neon vector type yet");
+ Diags.Report(T->getAttributeLoc(), DiagID);
+}
+
+// The AArch64 ACLE specifies that fixed-length SVE vector and predicate types
+// defined with the 'arm_sve_vector_bits' attribute map to the same AAPCS64
+// type as the sizeless variants.
+//
+// The mangling scheme for VLS types is implemented as a "pseudo" template:
+//
+// '__SVE_VLS<<type>, <vector length>>'
+//
+// Combining the existing SVE type and a specific vector length (in bits).
+// For example:
+//
+// typedef __SVInt32_t foo __attribute__((arm_sve_vector_bits(512)));
+//
+// is described as '__SVE_VLS<__SVInt32_t, 512u>' and mangled as:
+//
+// "9__SVE_VLSI" + base type mangling + "Lj" + __ARM_FEATURE_SVE_BITS + "EE"
+//
+// i.e. 9__SVE_VLSIu11__SVInt32_tLj512EE
+//
+// The latest ACLE specification (00bet5) does not contain details of this
+// mangling scheme, it will be specified in the next revision. The mangling
+// scheme is otherwise defined in the appendices to the Procedure Call Standard
+// for the Arm Architecture, see
+// https://github.com/ARM-software/abi-aa/blob/master/aapcs64/aapcs64.rst#appendix-c-mangling
+void CXXNameMangler::mangleAArch64FixedSveVectorType(const VectorType *T) {
+ assert((T->getVectorKind() == VectorType::SveFixedLengthDataVector ||
+ T->getVectorKind() == VectorType::SveFixedLengthPredicateVector) &&
+ "expected fixed-length SVE vector!");
+
+ QualType EltType = T->getElementType();
+ assert(EltType->isBuiltinType() &&
+ "expected builtin type for fixed-length SVE vector!");
+
+ StringRef TypeName;
+ switch (cast<BuiltinType>(EltType)->getKind()) {
+ case BuiltinType::SChar:
+ TypeName = "__SVInt8_t";
+ break;
+ case BuiltinType::UChar: {
+ if (T->getVectorKind() == VectorType::SveFixedLengthDataVector)
+ TypeName = "__SVUint8_t";
+ else
+ TypeName = "__SVBool_t";
+ break;
+ }
+ case BuiltinType::Short:
+ TypeName = "__SVInt16_t";
+ break;
+ case BuiltinType::UShort:
+ TypeName = "__SVUint16_t";
+ break;
+ case BuiltinType::Int:
+ TypeName = "__SVInt32_t";
+ break;
+ case BuiltinType::UInt:
+ TypeName = "__SVUint32_t";
+ break;
+ case BuiltinType::Long:
+ TypeName = "__SVInt64_t";
+ break;
+ case BuiltinType::ULong:
+ TypeName = "__SVUint64_t";
+ break;
+ case BuiltinType::Half:
+ TypeName = "__SVFloat16_t";
+ break;
+ case BuiltinType::Float:
+ TypeName = "__SVFloat32_t";
+ break;
+ case BuiltinType::Double:
+ TypeName = "__SVFloat64_t";
+ break;
+ case BuiltinType::BFloat16:
+ TypeName = "__SVBfloat16_t";
+ break;
+ default:
+ llvm_unreachable("unexpected element type for fixed-length SVE vector!");
+ }
+
+ unsigned VecSizeInBits = getASTContext().getTypeInfo(T).Width;
+
+ if (T->getVectorKind() == VectorType::SveFixedLengthPredicateVector)
+ VecSizeInBits *= 8;
+
+ Out << "9__SVE_VLSI" << 'u' << TypeName.size() << TypeName << "Lj"
+ << VecSizeInBits << "EE";
+}
+
+void CXXNameMangler::mangleAArch64FixedSveVectorType(
+ const DependentVectorType *T) {
+ DiagnosticsEngine &Diags = Context.getDiags();
+ unsigned DiagID = Diags.getCustomDiagID(
+ DiagnosticsEngine::Error,
+ "cannot mangle this dependent fixed-length SVE vector type yet");
+ Diags.Report(T->getAttributeLoc(), DiagID);
+}
+
+// GNU extension: vector types
+// <type> ::= <vector-type>
+// <vector-type> ::= Dv <positive dimension number> _
+// <extended element type>
+// ::= Dv [<dimension expression>] _ <element type>
+// <extended element type> ::= <element type>
+// ::= p # AltiVec vector pixel
+// ::= b # Altivec vector bool
+void CXXNameMangler::mangleType(const VectorType *T) {
+ if ((T->getVectorKind() == VectorType::NeonVector ||
+ T->getVectorKind() == VectorType::NeonPolyVector)) {
+ llvm::Triple Target = getASTContext().getTargetInfo().getTriple();
+ llvm::Triple::ArchType Arch =
+ getASTContext().getTargetInfo().getTriple().getArch();
+ if ((Arch == llvm::Triple::aarch64 ||
+ Arch == llvm::Triple::aarch64_be) && !Target.isOSDarwin())
+ mangleAArch64NeonVectorType(T);
+ else
+ mangleNeonVectorType(T);
+ return;
+ } else if (T->getVectorKind() == VectorType::SveFixedLengthDataVector ||
+ T->getVectorKind() == VectorType::SveFixedLengthPredicateVector) {
+ mangleAArch64FixedSveVectorType(T);
+ return;
+ }
+ Out << "Dv" << T->getNumElements() << '_';
+ if (T->getVectorKind() == VectorType::AltiVecPixel)
+ Out << 'p';
+ else if (T->getVectorKind() == VectorType::AltiVecBool)
+ Out << 'b';
+ else
+ mangleType(T->getElementType());
+}
+
+void CXXNameMangler::mangleType(const DependentVectorType *T) {
+ if ((T->getVectorKind() == VectorType::NeonVector ||
+ T->getVectorKind() == VectorType::NeonPolyVector)) {
+ llvm::Triple Target = getASTContext().getTargetInfo().getTriple();
+ llvm::Triple::ArchType Arch =
+ getASTContext().getTargetInfo().getTriple().getArch();
+ if ((Arch == llvm::Triple::aarch64 || Arch == llvm::Triple::aarch64_be) &&
+ !Target.isOSDarwin())
+ mangleAArch64NeonVectorType(T);
+ else
+ mangleNeonVectorType(T);
+ return;
+ } else if (T->getVectorKind() == VectorType::SveFixedLengthDataVector ||
+ T->getVectorKind() == VectorType::SveFixedLengthPredicateVector) {
+ mangleAArch64FixedSveVectorType(T);
+ return;
+ }
+
+ Out << "Dv";
+ mangleExpression(T->getSizeExpr());
+ Out << '_';
+ if (T->getVectorKind() == VectorType::AltiVecPixel)
+ Out << 'p';
+ else if (T->getVectorKind() == VectorType::AltiVecBool)
+ Out << 'b';
+ else
+ mangleType(T->getElementType());
+}
+
+void CXXNameMangler::mangleType(const ExtVectorType *T) {
+ mangleType(static_cast<const VectorType*>(T));
+}
+void CXXNameMangler::mangleType(const DependentSizedExtVectorType *T) {
+ Out << "Dv";
+ mangleExpression(T->getSizeExpr());
+ Out << '_';
+ mangleType(T->getElementType());
+}
+
+void CXXNameMangler::mangleType(const ConstantMatrixType *T) {
+ // Mangle matrix types as a vendor extended type:
+ // u<Len>matrix_typeI<Rows><Columns><element type>E
+
+ StringRef VendorQualifier = "matrix_type";
+ Out << "u" << VendorQualifier.size() << VendorQualifier;
+
+ Out << "I";
+ auto &ASTCtx = getASTContext();
+ unsigned BitWidth = ASTCtx.getTypeSize(ASTCtx.getSizeType());
+ llvm::APSInt Rows(BitWidth);
+ Rows = T->getNumRows();
+ mangleIntegerLiteral(ASTCtx.getSizeType(), Rows);
+ llvm::APSInt Columns(BitWidth);
+ Columns = T->getNumColumns();
+ mangleIntegerLiteral(ASTCtx.getSizeType(), Columns);
+ mangleType(T->getElementType());
+ Out << "E";
+}
+
+void CXXNameMangler::mangleType(const DependentSizedMatrixType *T) {
+ // Mangle matrix types as a vendor extended type:
+ // u<Len>matrix_typeI<row expr><column expr><element type>E
+ StringRef VendorQualifier = "matrix_type";
+ Out << "u" << VendorQualifier.size() << VendorQualifier;
+
+ Out << "I";
+ mangleTemplateArgExpr(T->getRowExpr());
+ mangleTemplateArgExpr(T->getColumnExpr());
+ mangleType(T->getElementType());
+ Out << "E";
+}
+
+void CXXNameMangler::mangleType(const DependentAddressSpaceType *T) {
+ SplitQualType split = T->getPointeeType().split();
+ mangleQualifiers(split.Quals, T);
+ mangleType(QualType(split.Ty, 0));
+}
+
+void CXXNameMangler::mangleType(const PackExpansionType *T) {
+ // <type> ::= Dp <type> # pack expansion (C++0x)
+ Out << "Dp";
+ mangleType(T->getPattern());
+}
+
+void CXXNameMangler::mangleType(const ObjCInterfaceType *T) {
+ mangleSourceName(T->getDecl()->getIdentifier());
+}
+
+void CXXNameMangler::mangleType(const ObjCObjectType *T) {
+ // Treat __kindof as a vendor extended type qualifier.
+ if (T->isKindOfType())
+ Out << "U8__kindof";
+
+ if (!T->qual_empty()) {
+ // Mangle protocol qualifiers.
+ SmallString<64> QualStr;
+ llvm::raw_svector_ostream QualOS(QualStr);
+ QualOS << "objcproto";
+ for (const auto *I : T->quals()) {
+ StringRef name = I->getName();
+ QualOS << name.size() << name;
+ }
+ Out << 'U' << QualStr.size() << QualStr;
+ }
+
+ mangleType(T->getBaseType());
+
+ if (T->isSpecialized()) {
+ // Mangle type arguments as I <type>+ E
+ Out << 'I';
+ for (auto typeArg : T->getTypeArgs())
+ mangleType(typeArg);
+ Out << 'E';
+ }
+}
+
+void CXXNameMangler::mangleType(const BlockPointerType *T) {
+ Out << "U13block_pointer";
+ mangleType(T->getPointeeType());
+}
+
+void CXXNameMangler::mangleType(const InjectedClassNameType *T) {
+ // Mangle injected class name types as if the user had written the
+ // specialization out fully. It may not actually be possible to see
+ // this mangling, though.
+ mangleType(T->getInjectedSpecializationType());
+}
+
+void CXXNameMangler::mangleType(const TemplateSpecializationType *T) {
+ if (TemplateDecl *TD = T->getTemplateName().getAsTemplateDecl()) {
+ mangleTemplateName(TD, T->getArgs(), T->getNumArgs());
+ } else {
+ if (mangleSubstitution(QualType(T, 0)))
+ return;
+
+ mangleTemplatePrefix(T->getTemplateName());
+
+ // FIXME: GCC does not appear to mangle the template arguments when
+ // the template in question is a dependent template name. Should we
+ // emulate that badness?
+ mangleTemplateArgs(T->getTemplateName(), T->getArgs(), T->getNumArgs());
+ addSubstitution(QualType(T, 0));
+ }
+}
+
+void CXXNameMangler::mangleType(const DependentNameType *T) {
+ // Proposal by cxx-abi-dev, 2014-03-26
+ // <class-enum-type> ::= <name> # non-dependent or dependent type name or
+ // # dependent elaborated type specifier using
+ // # 'typename'
+ // ::= Ts <name> # dependent elaborated type specifier using
+ // # 'struct' or 'class'
+ // ::= Tu <name> # dependent elaborated type specifier using
+ // # 'union'
+ // ::= Te <name> # dependent elaborated type specifier using
+ // # 'enum'
+ switch (T->getKeyword()) {
+ case ETK_None:
+ case ETK_Typename:
+ break;
+ case ETK_Struct:
+ case ETK_Class:
+ case ETK_Interface:
+ Out << "Ts";
+ break;
+ case ETK_Union:
+ Out << "Tu";
+ break;
+ case ETK_Enum:
+ Out << "Te";
+ break;
+ }
+ // Typename types are always nested
+ Out << 'N';
+ manglePrefix(T->getQualifier());
+ mangleSourceName(T->getIdentifier());
+ Out << 'E';
+}
+
+void CXXNameMangler::mangleType(const DependentTemplateSpecializationType *T) {
+ // Dependently-scoped template types are nested if they have a prefix.
+ Out << 'N';
+
+ // TODO: avoid making this TemplateName.
+ TemplateName Prefix =
+ getASTContext().getDependentTemplateName(T->getQualifier(),
+ T->getIdentifier());
+ mangleTemplatePrefix(Prefix);
+
+ // FIXME: GCC does not appear to mangle the template arguments when
+ // the template in question is a dependent template name. Should we
+ // emulate that badness?
+ mangleTemplateArgs(Prefix, T->getArgs(), T->getNumArgs());
+ Out << 'E';
+}
+
+void CXXNameMangler::mangleType(const TypeOfType *T) {
+ // FIXME: this is pretty unsatisfactory, but there isn't an obvious
+ // "extension with parameters" mangling.
+ Out << "u6typeof";
+}
+
+void CXXNameMangler::mangleType(const TypeOfExprType *T) {
+ // FIXME: this is pretty unsatisfactory, but there isn't an obvious
+ // "extension with parameters" mangling.
+ Out << "u6typeof";
+}
+
+void CXXNameMangler::mangleType(const DecltypeType *T) {
+ Expr *E = T->getUnderlyingExpr();
+
+ // type ::= Dt <expression> E # decltype of an id-expression
+ // # or class member access
+ // ::= DT <expression> E # decltype of an expression
+
+ // This purports to be an exhaustive list of id-expressions and
+ // class member accesses. Note that we do not ignore parentheses;
+ // parentheses change the semantics of decltype for these
+ // expressions (and cause the mangler to use the other form).
+ if (isa<DeclRefExpr>(E) ||
+ isa<MemberExpr>(E) ||
+ isa<UnresolvedLookupExpr>(E) ||
+ isa<DependentScopeDeclRefExpr>(E) ||
+ isa<CXXDependentScopeMemberExpr>(E) ||
+ isa<UnresolvedMemberExpr>(E))
+ Out << "Dt";
+ else
+ Out << "DT";
+ mangleExpression(E);
+ Out << 'E';
+}
+
+void CXXNameMangler::mangleType(const UnaryTransformType *T) {
+ // If this is dependent, we need to record that. If not, we simply
+ // mangle it as the underlying type since they are equivalent.
+ if (T->isDependentType()) {
+ Out << 'U';
+
+ switch (T->getUTTKind()) {
+ case UnaryTransformType::EnumUnderlyingType:
+ Out << "3eut";
+ break;
+ }
+ }
+
+ mangleType(T->getBaseType());
+}
+
+void CXXNameMangler::mangleType(const AutoType *T) {
+ assert(T->getDeducedType().isNull() &&
+ "Deduced AutoType shouldn't be handled here!");
+ assert(T->getKeyword() != AutoTypeKeyword::GNUAutoType &&
+ "shouldn't need to mangle __auto_type!");
+ // <builtin-type> ::= Da # auto
+ // ::= Dc # decltype(auto)
+ Out << (T->isDecltypeAuto() ? "Dc" : "Da");
+}
+
+void CXXNameMangler::mangleType(const DeducedTemplateSpecializationType *T) {
+ QualType Deduced = T->getDeducedType();
+ if (!Deduced.isNull())
+ return mangleType(Deduced);
+
+ TemplateDecl *TD = T->getTemplateName().getAsTemplateDecl();
+ assert(TD && "shouldn't form deduced TST unless we know we have a template");
+
+ if (mangleSubstitution(TD))
+ return;
+
+ mangleName(GlobalDecl(TD));
+ addSubstitution(TD);
+}
+
+void CXXNameMangler::mangleType(const AtomicType *T) {
+ // <type> ::= U <source-name> <type> # vendor extended type qualifier
+ // (Until there's a standardized mangling...)
+ Out << "U7_Atomic";
+ mangleType(T->getValueType());
+}
+
+void CXXNameMangler::mangleType(const PipeType *T) {
+ // Pipe type mangling rules are described in SPIR 2.0 specification
+ // A.1 Data types and A.3 Summary of changes
+ // <type> ::= 8ocl_pipe
+ Out << "8ocl_pipe";
+}
+
+void CXXNameMangler::mangleType(const ExtIntType *T) {
+ Out << "U7_ExtInt";
+ llvm::APSInt BW(32, true);
+ BW = T->getNumBits();
+ TemplateArgument TA(Context.getASTContext(), BW, getASTContext().IntTy);
+ mangleTemplateArgs(TemplateName(), &TA, 1);
+ if (T->isUnsigned())
+ Out << "j";
+ else
+ Out << "i";
+}
+
+void CXXNameMangler::mangleType(const DependentExtIntType *T) {
+ Out << "U7_ExtInt";
+ TemplateArgument TA(T->getNumBitsExpr());
+ mangleTemplateArgs(TemplateName(), &TA, 1);
+ if (T->isUnsigned())
+ Out << "j";
+ else
+ Out << "i";
+}
+
+void CXXNameMangler::mangleIntegerLiteral(QualType T,
+ const llvm::APSInt &Value) {
+ // <expr-primary> ::= L <type> <value number> E # integer literal
+ Out << 'L';
+
+ mangleType(T);
+ if (T->isBooleanType()) {
+ // Boolean values are encoded as 0/1.
+ Out << (Value.getBoolValue() ? '1' : '0');
+ } else {
+ mangleNumber(Value);
+ }
+ Out << 'E';
+
+}
+
+void CXXNameMangler::mangleMemberExprBase(const Expr *Base, bool IsArrow) {
+ // Ignore member expressions involving anonymous unions.
+ while (const auto *RT = Base->getType()->getAs<RecordType>()) {
+ if (!RT->getDecl()->isAnonymousStructOrUnion())
+ break;
+ const auto *ME = dyn_cast<MemberExpr>(Base);
+ if (!ME)
+ break;
+ Base = ME->getBase();
+ IsArrow = ME->isArrow();
+ }
+
+ if (Base->isImplicitCXXThis()) {
+ // Note: GCC mangles member expressions to the implicit 'this' as
+ // *this., whereas we represent them as this->. The Itanium C++ ABI
+ // does not specify anything here, so we follow GCC.
+ Out << "dtdefpT";
+ } else {
+ Out << (IsArrow ? "pt" : "dt");
+ mangleExpression(Base);
+ }
+}
+
+/// Mangles a member expression.
+void CXXNameMangler::mangleMemberExpr(const Expr *base,
+ bool isArrow,
+ NestedNameSpecifier *qualifier,
+ NamedDecl *firstQualifierLookup,
+ DeclarationName member,
+ const TemplateArgumentLoc *TemplateArgs,
+ unsigned NumTemplateArgs,
+ unsigned arity) {
+ // <expression> ::= dt <expression> <unresolved-name>
+ // ::= pt <expression> <unresolved-name>
+ if (base)
+ mangleMemberExprBase(base, isArrow);
+ mangleUnresolvedName(qualifier, member, TemplateArgs, NumTemplateArgs, arity);
+}
+
+/// Look at the callee of the given call expression and determine if
+/// it's a parenthesized id-expression which would have triggered ADL
+/// otherwise.
+static bool isParenthesizedADLCallee(const CallExpr *call) {
+ const Expr *callee = call->getCallee();
+ const Expr *fn = callee->IgnoreParens();
+
+ // Must be parenthesized. IgnoreParens() skips __extension__ nodes,
+ // too, but for those to appear in the callee, it would have to be
+ // parenthesized.
+ if (callee == fn) return false;
+
+ // Must be an unresolved lookup.
+ const UnresolvedLookupExpr *lookup = dyn_cast<UnresolvedLookupExpr>(fn);
+ if (!lookup) return false;
+
+ assert(!lookup->requiresADL());
+
+ // Must be an unqualified lookup.
+ if (lookup->getQualifier()) return false;
+
+ // Must not have found a class member. Note that if one is a class
+ // member, they're all class members.
+ if (lookup->getNumDecls() > 0 &&
+ (*lookup->decls_begin())->isCXXClassMember())
+ return false;
+
+ // Otherwise, ADL would have been triggered.
+ return true;
+}
+
+void CXXNameMangler::mangleCastExpression(const Expr *E, StringRef CastEncoding) {
+ const ExplicitCastExpr *ECE = cast<ExplicitCastExpr>(E);
+ Out << CastEncoding;
+ mangleType(ECE->getType());
+ mangleExpression(ECE->getSubExpr());
+}
+
+void CXXNameMangler::mangleInitListElements(const InitListExpr *InitList) {
+ if (auto *Syntactic = InitList->getSyntacticForm())
+ InitList = Syntactic;
+ for (unsigned i = 0, e = InitList->getNumInits(); i != e; ++i)
+ mangleExpression(InitList->getInit(i));
+}
+
+void CXXNameMangler::mangleExpression(const Expr *E, unsigned Arity,
+ bool AsTemplateArg) {
+ // <expression> ::= <unary operator-name> <expression>
+ // ::= <binary operator-name> <expression> <expression>
+ // ::= <trinary operator-name> <expression> <expression> <expression>
+ // ::= cv <type> expression # conversion with one argument
+ // ::= cv <type> _ <expression>* E # conversion with a different number of arguments
+ // ::= dc <type> <expression> # dynamic_cast<type> (expression)
+ // ::= sc <type> <expression> # static_cast<type> (expression)
+ // ::= cc <type> <expression> # const_cast<type> (expression)
+ // ::= rc <type> <expression> # reinterpret_cast<type> (expression)
+ // ::= st <type> # sizeof (a type)
+ // ::= at <type> # alignof (a type)
+ // ::= <template-param>
+ // ::= <function-param>
+ // ::= fpT # 'this' expression (part of <function-param>)
+ // ::= sr <type> <unqualified-name> # dependent name
+ // ::= sr <type> <unqualified-name> <template-args> # dependent template-id
+ // ::= ds <expression> <expression> # expr.*expr
+ // ::= sZ <template-param> # size of a parameter pack
+ // ::= sZ <function-param> # size of a function parameter pack
+ // ::= u <source-name> <template-arg>* E # vendor extended expression
+ // ::= <expr-primary>
+ // <expr-primary> ::= L <type> <value number> E # integer literal
+ // ::= L <type> <value float> E # floating literal
+ // ::= L <type> <string type> E # string literal
+ // ::= L <nullptr type> E # nullptr literal "LDnE"
+ // ::= L <pointer type> 0 E # null pointer template argument
+ // ::= L <type> <real-part float> _ <imag-part float> E # complex floating point literal (C99); not used by clang
+ // ::= L <mangled-name> E # external name
+ QualType ImplicitlyConvertedToType;
+
+ // A top-level expression that's not <expr-primary> needs to be wrapped in
+ // X...E in a template arg.
+ bool IsPrimaryExpr = true;
+ auto NotPrimaryExpr = [&] {
+ if (AsTemplateArg && IsPrimaryExpr)
+ Out << 'X';
+ IsPrimaryExpr = false;
+ };
+
+ auto MangleDeclRefExpr = [&](const NamedDecl *D) {
+ switch (D->getKind()) {
+ default:
+ // <expr-primary> ::= L <mangled-name> E # external name
+ Out << 'L';
+ mangle(D);
+ Out << 'E';
+ break;
+
+ case Decl::ParmVar:
+ NotPrimaryExpr();
+ mangleFunctionParam(cast<ParmVarDecl>(D));
+ break;
+
+ case Decl::EnumConstant: {
+ // <expr-primary>
+ const EnumConstantDecl *ED = cast<EnumConstantDecl>(D);
+ mangleIntegerLiteral(ED->getType(), ED->getInitVal());
+ break;
+ }
+
+ case Decl::NonTypeTemplateParm:
+ NotPrimaryExpr();
+ const NonTypeTemplateParmDecl *PD = cast<NonTypeTemplateParmDecl>(D);
+ mangleTemplateParameter(PD->getDepth(), PD->getIndex());
+ break;
+ }
+ };
+
+ // 'goto recurse' is used when handling a simple "unwrapping" node which
+ // produces no output, where ImplicitlyConvertedToType and AsTemplateArg need
+ // to be preserved.
+recurse:
+ switch (E->getStmtClass()) {
+ case Expr::NoStmtClass:
+#define ABSTRACT_STMT(Type)
+#define EXPR(Type, Base)
+#define STMT(Type, Base) \
+ case Expr::Type##Class:
+#include "clang/AST/StmtNodes.inc"
+ // fallthrough
+
+ // These all can only appear in local or variable-initialization
+ // contexts and so should never appear in a mangling.
+ case Expr::AddrLabelExprClass:
+ case Expr::DesignatedInitUpdateExprClass:
+ case Expr::ImplicitValueInitExprClass:
+ case Expr::ArrayInitLoopExprClass:
+ case Expr::ArrayInitIndexExprClass:
+ case Expr::NoInitExprClass:
+ case Expr::ParenListExprClass:
+ case Expr::LambdaExprClass:
+ case Expr::MSPropertyRefExprClass:
+ case Expr::MSPropertySubscriptExprClass:
+ case Expr::TypoExprClass: // This should no longer exist in the AST by now.
+ case Expr::RecoveryExprClass:
+ case Expr::OMPArraySectionExprClass:
+ case Expr::OMPArrayShapingExprClass:
+ case Expr::OMPIteratorExprClass:
+ case Expr::CXXInheritedCtorInitExprClass:
+ llvm_unreachable("unexpected statement kind");
+
+ case Expr::ConstantExprClass:
+ E = cast<ConstantExpr>(E)->getSubExpr();
+ goto recurse;
+
+ // FIXME: invent manglings for all these.
+ case Expr::BlockExprClass:
+ case Expr::ChooseExprClass:
+ case Expr::CompoundLiteralExprClass:
+ case Expr::ExtVectorElementExprClass:
+ case Expr::GenericSelectionExprClass:
+ case Expr::ObjCEncodeExprClass:
+ case Expr::ObjCIsaExprClass:
+ case Expr::ObjCIvarRefExprClass:
+ case Expr::ObjCMessageExprClass:
+ case Expr::ObjCPropertyRefExprClass:
+ case Expr::ObjCProtocolExprClass:
+ case Expr::ObjCSelectorExprClass:
+ case Expr::ObjCStringLiteralClass:
+ case Expr::ObjCBoxedExprClass:
+ case Expr::ObjCArrayLiteralClass:
+ case Expr::ObjCDictionaryLiteralClass:
+ case Expr::ObjCSubscriptRefExprClass:
+ case Expr::ObjCIndirectCopyRestoreExprClass:
+ case Expr::ObjCAvailabilityCheckExprClass:
+ case Expr::OffsetOfExprClass:
+ case Expr::PredefinedExprClass:
+ case Expr::ShuffleVectorExprClass:
+ case Expr::ConvertVectorExprClass:
+ case Expr::StmtExprClass:
+ case Expr::TypeTraitExprClass:
+ case Expr::RequiresExprClass:
+ case Expr::ArrayTypeTraitExprClass:
+ case Expr::ExpressionTraitExprClass:
+ case Expr::VAArgExprClass:
+ case Expr::CUDAKernelCallExprClass:
+ case Expr::AsTypeExprClass:
+ case Expr::PseudoObjectExprClass:
+ case Expr::AtomicExprClass:
+ case Expr::SourceLocExprClass:
+ case Expr::BuiltinBitCastExprClass:
+ {
+ NotPrimaryExpr();
+ if (!NullOut) {
+ // As bad as this diagnostic is, it's better than crashing.
+ DiagnosticsEngine &Diags = Context.getDiags();
+ unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
+ "cannot yet mangle expression type %0");
+ Diags.Report(E->getExprLoc(), DiagID)
+ << E->getStmtClassName() << E->getSourceRange();
+ return;
+ }
+ break;
+ }
+
+ case Expr::CXXUuidofExprClass: {
+ NotPrimaryExpr();
+ const CXXUuidofExpr *UE = cast<CXXUuidofExpr>(E);
+ // As of clang 12, uuidof uses the vendor extended expression
+ // mangling. Previously, it used a special-cased nonstandard extension.
+ if (Context.getASTContext().getLangOpts().getClangABICompat() >
+ LangOptions::ClangABI::Ver11) {
+ Out << "u8__uuidof";
+ if (UE->isTypeOperand())
+ mangleType(UE->getTypeOperand(Context.getASTContext()));
+ else
+ mangleTemplateArgExpr(UE->getExprOperand());
+ Out << 'E';
+ } else {
+ if (UE->isTypeOperand()) {
+ QualType UuidT = UE->getTypeOperand(Context.getASTContext());
+ Out << "u8__uuidoft";
+ mangleType(UuidT);
+ } else {
+ Expr *UuidExp = UE->getExprOperand();
+ Out << "u8__uuidofz";
+ mangleExpression(UuidExp);
+ }
+ }
+ break;
+ }
+
+ // Even gcc-4.5 doesn't mangle this.
+ case Expr::BinaryConditionalOperatorClass: {
+ NotPrimaryExpr();
+ DiagnosticsEngine &Diags = Context.getDiags();
+ unsigned DiagID =
+ Diags.getCustomDiagID(DiagnosticsEngine::Error,
+ "?: operator with omitted middle operand cannot be mangled");
+ Diags.Report(E->getExprLoc(), DiagID)
+ << E->getStmtClassName() << E->getSourceRange();
+ return;
+ }
+
+ // These are used for internal purposes and cannot be meaningfully mangled.
+ case Expr::OpaqueValueExprClass:
+ llvm_unreachable("cannot mangle opaque value; mangling wrong thing?");
+
+ case Expr::InitListExprClass: {
+ NotPrimaryExpr();
+ Out << "il";
+ mangleInitListElements(cast<InitListExpr>(E));
+ Out << "E";
+ break;
+ }
+
+ case Expr::DesignatedInitExprClass: {
+ NotPrimaryExpr();
+ auto *DIE = cast<DesignatedInitExpr>(E);
+ for (const auto &Designator : DIE->designators()) {
+ if (Designator.isFieldDesignator()) {
+ Out << "di";
+ mangleSourceName(Designator.getFieldName());
+ } else if (Designator.isArrayDesignator()) {
+ Out << "dx";
+ mangleExpression(DIE->getArrayIndex(Designator));
+ } else {
+ assert(Designator.isArrayRangeDesignator() &&
+ "unknown designator kind");
+ Out << "dX";
+ mangleExpression(DIE->getArrayRangeStart(Designator));
+ mangleExpression(DIE->getArrayRangeEnd(Designator));
+ }
+ }
+ mangleExpression(DIE->getInit());
+ break;
+ }
+
+ case Expr::CXXDefaultArgExprClass:
+ E = cast<CXXDefaultArgExpr>(E)->getExpr();
+ goto recurse;
+
+ case Expr::CXXDefaultInitExprClass:
+ E = cast<CXXDefaultInitExpr>(E)->getExpr();
+ goto recurse;
+
+ case Expr::CXXStdInitializerListExprClass:
+ E = cast<CXXStdInitializerListExpr>(E)->getSubExpr();
+ goto recurse;
+
+ case Expr::SubstNonTypeTemplateParmExprClass:
+ E = cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement();
+ goto recurse;
+
+ case Expr::UserDefinedLiteralClass:
+ // We follow g++'s approach of mangling a UDL as a call to the literal
+ // operator.
+ case Expr::CXXMemberCallExprClass: // fallthrough
+ case Expr::CallExprClass: {
+ NotPrimaryExpr();
+ const CallExpr *CE = cast<CallExpr>(E);
+
+ // <expression> ::= cp <simple-id> <expression>* E
+ // We use this mangling only when the call would use ADL except
+ // for being parenthesized. Per discussion with David
+ // Vandervoorde, 2011.04.25.
+ if (isParenthesizedADLCallee(CE)) {
+ Out << "cp";
+ // The callee here is a parenthesized UnresolvedLookupExpr with
+ // no qualifier and should always get mangled as a <simple-id>
+ // anyway.
+
+ // <expression> ::= cl <expression>* E
+ } else {
+ Out << "cl";
+ }
+
+ unsigned CallArity = CE->getNumArgs();
+ for (const Expr *Arg : CE->arguments())
+ if (isa<PackExpansionExpr>(Arg))
+ CallArity = UnknownArity;
+
+ mangleExpression(CE->getCallee(), CallArity);
+ for (const Expr *Arg : CE->arguments())
+ mangleExpression(Arg);
+ Out << 'E';
+ break;
+ }
+
+ case Expr::CXXNewExprClass: {
+ NotPrimaryExpr();
+ const CXXNewExpr *New = cast<CXXNewExpr>(E);
+ if (New->isGlobalNew()) Out << "gs";
+ Out << (New->isArray() ? "na" : "nw");
+ for (CXXNewExpr::const_arg_iterator I = New->placement_arg_begin(),
+ E = New->placement_arg_end(); I != E; ++I)
+ mangleExpression(*I);
+ Out << '_';
+ mangleType(New->getAllocatedType());
+ if (New->hasInitializer()) {
+ if (New->getInitializationStyle() == CXXNewExpr::ListInit)
+ Out << "il";
+ else
+ Out << "pi";
+ const Expr *Init = New->getInitializer();
+ if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init)) {
+ // Directly inline the initializers.
+ for (CXXConstructExpr::const_arg_iterator I = CCE->arg_begin(),
+ E = CCE->arg_end();
+ I != E; ++I)
+ mangleExpression(*I);
+ } else if (const ParenListExpr *PLE = dyn_cast<ParenListExpr>(Init)) {
+ for (unsigned i = 0, e = PLE->getNumExprs(); i != e; ++i)
+ mangleExpression(PLE->getExpr(i));
+ } else if (New->getInitializationStyle() == CXXNewExpr::ListInit &&
+ isa<InitListExpr>(Init)) {
+ // Only take InitListExprs apart for list-initialization.
+ mangleInitListElements(cast<InitListExpr>(Init));
+ } else
+ mangleExpression(Init);
+ }
+ Out << 'E';
+ break;
+ }
+
+ case Expr::CXXPseudoDestructorExprClass: {
+ NotPrimaryExpr();
+ const auto *PDE = cast<CXXPseudoDestructorExpr>(E);
+ if (const Expr *Base = PDE->getBase())
+ mangleMemberExprBase(Base, PDE->isArrow());
+ NestedNameSpecifier *Qualifier = PDE->getQualifier();
+ if (TypeSourceInfo *ScopeInfo = PDE->getScopeTypeInfo()) {
+ if (Qualifier) {
+ mangleUnresolvedPrefix(Qualifier,
+ /*recursive=*/true);
+ mangleUnresolvedTypeOrSimpleId(ScopeInfo->getType());
+ Out << 'E';
+ } else {
+ Out << "sr";
+ if (!mangleUnresolvedTypeOrSimpleId(ScopeInfo->getType()))
+ Out << 'E';
+ }
+ } else if (Qualifier) {
+ mangleUnresolvedPrefix(Qualifier);
+ }
+ // <base-unresolved-name> ::= dn <destructor-name>
+ Out << "dn";
+ QualType DestroyedType = PDE->getDestroyedType();
+ mangleUnresolvedTypeOrSimpleId(DestroyedType);
+ break;
+ }
+
+ case Expr::MemberExprClass: {
+ NotPrimaryExpr();
+ const MemberExpr *ME = cast<MemberExpr>(E);
+ mangleMemberExpr(ME->getBase(), ME->isArrow(),
+ ME->getQualifier(), nullptr,
+ ME->getMemberDecl()->getDeclName(),
+ ME->getTemplateArgs(), ME->getNumTemplateArgs(),
+ Arity);
+ break;
+ }
+
+ case Expr::UnresolvedMemberExprClass: {
+ NotPrimaryExpr();
+ const UnresolvedMemberExpr *ME = cast<UnresolvedMemberExpr>(E);
+ mangleMemberExpr(ME->isImplicitAccess() ? nullptr : ME->getBase(),
+ ME->isArrow(), ME->getQualifier(), nullptr,
+ ME->getMemberName(),
+ ME->getTemplateArgs(), ME->getNumTemplateArgs(),
+ Arity);
+ break;
+ }
+
+ case Expr::CXXDependentScopeMemberExprClass: {
+ NotPrimaryExpr();
+ const CXXDependentScopeMemberExpr *ME
+ = cast<CXXDependentScopeMemberExpr>(E);
+ mangleMemberExpr(ME->isImplicitAccess() ? nullptr : ME->getBase(),
+ ME->isArrow(), ME->getQualifier(),
+ ME->getFirstQualifierFoundInScope(),
+ ME->getMember(),
+ ME->getTemplateArgs(), ME->getNumTemplateArgs(),
+ Arity);
+ break;
+ }
+
+ case Expr::UnresolvedLookupExprClass: {
+ NotPrimaryExpr();
+ const UnresolvedLookupExpr *ULE = cast<UnresolvedLookupExpr>(E);
+ mangleUnresolvedName(ULE->getQualifier(), ULE->getName(),
+ ULE->getTemplateArgs(), ULE->getNumTemplateArgs(),
+ Arity);
+ break;
+ }
+
+ case Expr::CXXUnresolvedConstructExprClass: {
+ NotPrimaryExpr();
+ const CXXUnresolvedConstructExpr *CE = cast<CXXUnresolvedConstructExpr>(E);
+ unsigned N = CE->getNumArgs();
+
+ if (CE->isListInitialization()) {
+ assert(N == 1 && "unexpected form for list initialization");
+ auto *IL = cast<InitListExpr>(CE->getArg(0));
+ Out << "tl";
+ mangleType(CE->getType());
+ mangleInitListElements(IL);
+ Out << "E";
+ break;
+ }
+
+ Out << "cv";
+ mangleType(CE->getType());
+ if (N != 1) Out << '_';
+ for (unsigned I = 0; I != N; ++I) mangleExpression(CE->getArg(I));
+ if (N != 1) Out << 'E';
+ break;
+ }
+
+ case Expr::CXXConstructExprClass: {
+ // An implicit cast is silent, thus may contain <expr-primary>.
+ const auto *CE = cast<CXXConstructExpr>(E);
+ if (!CE->isListInitialization() || CE->isStdInitListInitialization()) {
+ assert(
+ CE->getNumArgs() >= 1 &&
+ (CE->getNumArgs() == 1 || isa<CXXDefaultArgExpr>(CE->getArg(1))) &&
+ "implicit CXXConstructExpr must have one argument");
+ E = cast<CXXConstructExpr>(E)->getArg(0);
+ goto recurse;
+ }
+ NotPrimaryExpr();
+ Out << "il";
+ for (auto *E : CE->arguments())
+ mangleExpression(E);
+ Out << "E";
+ break;
+ }
+
+ case Expr::CXXTemporaryObjectExprClass: {
+ NotPrimaryExpr();
+ const auto *CE = cast<CXXTemporaryObjectExpr>(E);
+ unsigned N = CE->getNumArgs();
+ bool List = CE->isListInitialization();
+
+ if (List)
+ Out << "tl";
+ else
+ Out << "cv";
+ mangleType(CE->getType());
+ if (!List && N != 1)
+ Out << '_';
+ if (CE->isStdInitListInitialization()) {
+ // We implicitly created a std::initializer_list<T> for the first argument
+ // of a constructor of type U in an expression of the form U{a, b, c}.
+ // Strip all the semantic gunk off the initializer list.
+ auto *SILE =
+ cast<CXXStdInitializerListExpr>(CE->getArg(0)->IgnoreImplicit());
+ auto *ILE = cast<InitListExpr>(SILE->getSubExpr()->IgnoreImplicit());
+ mangleInitListElements(ILE);
+ } else {
+ for (auto *E : CE->arguments())
+ mangleExpression(E);
+ }
+ if (List || N != 1)
+ Out << 'E';
+ break;
+ }
+
+ case Expr::CXXScalarValueInitExprClass:
+ NotPrimaryExpr();
+ Out << "cv";
+ mangleType(E->getType());
+ Out << "_E";
+ break;
+
+ case Expr::CXXNoexceptExprClass:
+ NotPrimaryExpr();
+ Out << "nx";
+ mangleExpression(cast<CXXNoexceptExpr>(E)->getOperand());
+ break;
+
+ case Expr::UnaryExprOrTypeTraitExprClass: {
+ // Non-instantiation-dependent traits are an <expr-primary> integer literal.
+ const UnaryExprOrTypeTraitExpr *SAE = cast<UnaryExprOrTypeTraitExpr>(E);
+
+ if (!SAE->isInstantiationDependent()) {
+ // Itanium C++ ABI:
+ // If the operand of a sizeof or alignof operator is not
+ // instantiation-dependent it is encoded as an integer literal
+ // reflecting the result of the operator.
+ //
+ // If the result of the operator is implicitly converted to a known
+ // integer type, that type is used for the literal; otherwise, the type
+ // of std::size_t or std::ptrdiff_t is used.
+ QualType T = (ImplicitlyConvertedToType.isNull() ||
+ !ImplicitlyConvertedToType->isIntegerType())? SAE->getType()
+ : ImplicitlyConvertedToType;
+ llvm::APSInt V = SAE->EvaluateKnownConstInt(Context.getASTContext());
+ mangleIntegerLiteral(T, V);
+ break;
+ }
+
+ NotPrimaryExpr(); // But otherwise, they are not.
+
+ auto MangleAlignofSizeofArg = [&] {
+ if (SAE->isArgumentType()) {
+ Out << 't';
+ mangleType(SAE->getArgumentType());
+ } else {
+ Out << 'z';
+ mangleExpression(SAE->getArgumentExpr());
+ }
+ };
+
+ switch(SAE->getKind()) {
+ case UETT_SizeOf:
+ Out << 's';
+ MangleAlignofSizeofArg();
+ break;
+ case UETT_PreferredAlignOf:
+ // As of clang 12, we mangle __alignof__ differently than alignof. (They
+ // have acted differently since Clang 8, but were previously mangled the
+ // same.)
+ if (Context.getASTContext().getLangOpts().getClangABICompat() >
+ LangOptions::ClangABI::Ver11) {
+ Out << "u11__alignof__";
+ if (SAE->isArgumentType())
+ mangleType(SAE->getArgumentType());
+ else
+ mangleTemplateArgExpr(SAE->getArgumentExpr());
+ Out << 'E';
+ break;
+ }
+ LLVM_FALLTHROUGH;
+ case UETT_AlignOf:
+ Out << 'a';
+ MangleAlignofSizeofArg();
+ break;
+ case UETT_VecStep: {
+ DiagnosticsEngine &Diags = Context.getDiags();
+ unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
+ "cannot yet mangle vec_step expression");
+ Diags.Report(DiagID);
+ return;
+ }
+ case UETT_OpenMPRequiredSimdAlign: {
+ DiagnosticsEngine &Diags = Context.getDiags();
+ unsigned DiagID = Diags.getCustomDiagID(
+ DiagnosticsEngine::Error,
+ "cannot yet mangle __builtin_omp_required_simd_align expression");
+ Diags.Report(DiagID);
+ return;
+ }
+ }
+ break;
+ }
+
+ case Expr::CXXThrowExprClass: {
+ NotPrimaryExpr();
+ const CXXThrowExpr *TE = cast<CXXThrowExpr>(E);
+ // <expression> ::= tw <expression> # throw expression
+ // ::= tr # rethrow
+ if (TE->getSubExpr()) {
+ Out << "tw";
+ mangleExpression(TE->getSubExpr());
+ } else {
+ Out << "tr";
+ }
+ break;
+ }
+
+ case Expr::CXXTypeidExprClass: {
+ NotPrimaryExpr();
+ const CXXTypeidExpr *TIE = cast<CXXTypeidExpr>(E);
+ // <expression> ::= ti <type> # typeid (type)
+ // ::= te <expression> # typeid (expression)
+ if (TIE->isTypeOperand()) {
+ Out << "ti";
+ mangleType(TIE->getTypeOperand(Context.getASTContext()));
+ } else {
+ Out << "te";
+ mangleExpression(TIE->getExprOperand());
+ }
+ break;
+ }
+
+ case Expr::CXXDeleteExprClass: {
+ NotPrimaryExpr();
+ const CXXDeleteExpr *DE = cast<CXXDeleteExpr>(E);
+ // <expression> ::= [gs] dl <expression> # [::] delete expr
+ // ::= [gs] da <expression> # [::] delete [] expr
+ if (DE->isGlobalDelete()) Out << "gs";
+ Out << (DE->isArrayForm() ? "da" : "dl");
+ mangleExpression(DE->getArgument());
+ break;
+ }
+
+ case Expr::UnaryOperatorClass: {
+ NotPrimaryExpr();
+ const UnaryOperator *UO = cast<UnaryOperator>(E);
+ mangleOperatorName(UnaryOperator::getOverloadedOperator(UO->getOpcode()),
+ /*Arity=*/1);
+ mangleExpression(UO->getSubExpr());
+ break;
+ }
+
+ case Expr::ArraySubscriptExprClass: {
+ NotPrimaryExpr();
+ const ArraySubscriptExpr *AE = cast<ArraySubscriptExpr>(E);
+
+ // Array subscript is treated as a syntactically weird form of
+ // binary operator.
+ Out << "ix";
+ mangleExpression(AE->getLHS());
+ mangleExpression(AE->getRHS());
+ break;
+ }
+
+ case Expr::MatrixSubscriptExprClass: {
+ NotPrimaryExpr();
+ const MatrixSubscriptExpr *ME = cast<MatrixSubscriptExpr>(E);
+ Out << "ixix";
+ mangleExpression(ME->getBase());
+ mangleExpression(ME->getRowIdx());
+ mangleExpression(ME->getColumnIdx());
+ break;
+ }
+
+ case Expr::CompoundAssignOperatorClass: // fallthrough
+ case Expr::BinaryOperatorClass: {
+ NotPrimaryExpr();
+ const BinaryOperator *BO = cast<BinaryOperator>(E);
+ if (BO->getOpcode() == BO_PtrMemD)
+ Out << "ds";
+ else
+ mangleOperatorName(BinaryOperator::getOverloadedOperator(BO->getOpcode()),
+ /*Arity=*/2);
+ mangleExpression(BO->getLHS());
+ mangleExpression(BO->getRHS());
+ break;
+ }
+
+ case Expr::CXXRewrittenBinaryOperatorClass: {
+ NotPrimaryExpr();
+ // The mangled form represents the original syntax.
+ CXXRewrittenBinaryOperator::DecomposedForm Decomposed =
+ cast<CXXRewrittenBinaryOperator>(E)->getDecomposedForm();
+ mangleOperatorName(BinaryOperator::getOverloadedOperator(Decomposed.Opcode),
+ /*Arity=*/2);
+ mangleExpression(Decomposed.LHS);
+ mangleExpression(Decomposed.RHS);
+ break;
+ }
+
+ case Expr::ConditionalOperatorClass: {
+ NotPrimaryExpr();
+ const ConditionalOperator *CO = cast<ConditionalOperator>(E);
+ mangleOperatorName(OO_Conditional, /*Arity=*/3);
+ mangleExpression(CO->getCond());
+ mangleExpression(CO->getLHS(), Arity);
+ mangleExpression(CO->getRHS(), Arity);
+ break;
+ }
+
+ case Expr::ImplicitCastExprClass: {
+ ImplicitlyConvertedToType = E->getType();
+ E = cast<ImplicitCastExpr>(E)->getSubExpr();
+ goto recurse;
+ }
+
+ case Expr::ObjCBridgedCastExprClass: {
+ NotPrimaryExpr();
+ // Mangle ownership casts as a vendor extended operator __bridge,
+ // __bridge_transfer, or __bridge_retain.
+ StringRef Kind = cast<ObjCBridgedCastExpr>(E)->getBridgeKindName();
+ Out << "v1U" << Kind.size() << Kind;
+ mangleCastExpression(E, "cv");
+ break;
+ }
+
+ case Expr::CStyleCastExprClass:
+ NotPrimaryExpr();
+ mangleCastExpression(E, "cv");
+ break;
+
+ case Expr::CXXFunctionalCastExprClass: {
+ NotPrimaryExpr();
+ auto *Sub = cast<ExplicitCastExpr>(E)->getSubExpr()->IgnoreImplicit();
+ // FIXME: Add isImplicit to CXXConstructExpr.
+ if (auto *CCE = dyn_cast<CXXConstructExpr>(Sub))
+ if (CCE->getParenOrBraceRange().isInvalid())
+ Sub = CCE->getArg(0)->IgnoreImplicit();
+ if (auto *StdInitList = dyn_cast<CXXStdInitializerListExpr>(Sub))
+ Sub = StdInitList->getSubExpr()->IgnoreImplicit();
+ if (auto *IL = dyn_cast<InitListExpr>(Sub)) {
+ Out << "tl";
+ mangleType(E->getType());
+ mangleInitListElements(IL);
+ Out << "E";
+ } else {
+ mangleCastExpression(E, "cv");
+ }
+ break;
+ }
+
+ case Expr::CXXStaticCastExprClass:
+ NotPrimaryExpr();
+ mangleCastExpression(E, "sc");
+ break;
+ case Expr::CXXDynamicCastExprClass:
+ NotPrimaryExpr();
+ mangleCastExpression(E, "dc");
+ break;
+ case Expr::CXXReinterpretCastExprClass:
+ NotPrimaryExpr();
+ mangleCastExpression(E, "rc");
+ break;
+ case Expr::CXXConstCastExprClass:
+ NotPrimaryExpr();
+ mangleCastExpression(E, "cc");
+ break;
+ case Expr::CXXAddrspaceCastExprClass:
+ NotPrimaryExpr();
+ mangleCastExpression(E, "ac");
+ break;
+
+ case Expr::CXXOperatorCallExprClass: {
+ NotPrimaryExpr();
+ const CXXOperatorCallExpr *CE = cast<CXXOperatorCallExpr>(E);
+ unsigned NumArgs = CE->getNumArgs();
+ // A CXXOperatorCallExpr for OO_Arrow models only semantics, not syntax
+ // (the enclosing MemberExpr covers the syntactic portion).
+ if (CE->getOperator() != OO_Arrow)
+ mangleOperatorName(CE->getOperator(), /*Arity=*/NumArgs);
+ // Mangle the arguments.
+ for (unsigned i = 0; i != NumArgs; ++i)
+ mangleExpression(CE->getArg(i));
+ break;
+ }
+
+ case Expr::ParenExprClass:
+ E = cast<ParenExpr>(E)->getSubExpr();
+ goto recurse;
+
+ case Expr::ConceptSpecializationExprClass: {
+ // <expr-primary> ::= L <mangled-name> E # external name
+ Out << "L_Z";
+ auto *CSE = cast<ConceptSpecializationExpr>(E);
+ mangleTemplateName(CSE->getNamedConcept(),
+ CSE->getTemplateArguments().data(),
+ CSE->getTemplateArguments().size());
+ Out << 'E';
+ break;
+ }
+
+ case Expr::DeclRefExprClass:
+ // MangleDeclRefExpr helper handles primary-vs-nonprimary
+ MangleDeclRefExpr(cast<DeclRefExpr>(E)->getDecl());
+ break;
+
+ case Expr::SubstNonTypeTemplateParmPackExprClass:
+ NotPrimaryExpr();
+ // FIXME: not clear how to mangle this!
+ // template <unsigned N...> class A {
+ // template <class U...> void foo(U (&x)[N]...);
+ // };
+ Out << "_SUBSTPACK_";
+ break;
+
+ case Expr::FunctionParmPackExprClass: {
+ NotPrimaryExpr();
+ // FIXME: not clear how to mangle this!
+ const FunctionParmPackExpr *FPPE = cast<FunctionParmPackExpr>(E);
+ Out << "v110_SUBSTPACK";
+ MangleDeclRefExpr(FPPE->getParameterPack());
+ break;
+ }
+
+ case Expr::DependentScopeDeclRefExprClass: {
+ NotPrimaryExpr();
+ const DependentScopeDeclRefExpr *DRE = cast<DependentScopeDeclRefExpr>(E);
+ mangleUnresolvedName(DRE->getQualifier(), DRE->getDeclName(),
+ DRE->getTemplateArgs(), DRE->getNumTemplateArgs(),
+ Arity);
+ break;
+ }
+
+ case Expr::CXXBindTemporaryExprClass:
+ E = cast<CXXBindTemporaryExpr>(E)->getSubExpr();
+ goto recurse;
+
+ case Expr::ExprWithCleanupsClass:
+ E = cast<ExprWithCleanups>(E)->getSubExpr();
+ goto recurse;
+
+ case Expr::FloatingLiteralClass: {
+ // <expr-primary>
+ const FloatingLiteral *FL = cast<FloatingLiteral>(E);
+ mangleFloatLiteral(FL->getType(), FL->getValue());
+ break;
+ }
+
+ case Expr::FixedPointLiteralClass:
+ // Currently unimplemented -- might be <expr-primary> in future?
+ mangleFixedPointLiteral();
+ break;
+
+ case Expr::CharacterLiteralClass:
+ // <expr-primary>
+ Out << 'L';
+ mangleType(E->getType());
+ Out << cast<CharacterLiteral>(E)->getValue();
+ Out << 'E';
+ break;
+
+ // FIXME. __objc_yes/__objc_no are mangled same as true/false
+ case Expr::ObjCBoolLiteralExprClass:
+ // <expr-primary>
+ Out << "Lb";
+ Out << (cast<ObjCBoolLiteralExpr>(E)->getValue() ? '1' : '0');
+ Out << 'E';
+ break;
+
+ case Expr::CXXBoolLiteralExprClass:
+ // <expr-primary>
+ Out << "Lb";
+ Out << (cast<CXXBoolLiteralExpr>(E)->getValue() ? '1' : '0');
+ Out << 'E';
+ break;
+
+ case Expr::IntegerLiteralClass: {
+ // <expr-primary>
+ llvm::APSInt Value(cast<IntegerLiteral>(E)->getValue());
+ if (E->getType()->isSignedIntegerType())
+ Value.setIsSigned(true);
+ mangleIntegerLiteral(E->getType(), Value);
+ break;
+ }
+
+ case Expr::ImaginaryLiteralClass: {
+ // <expr-primary>
+ const ImaginaryLiteral *IE = cast<ImaginaryLiteral>(E);
+ // Mangle as if a complex literal.
+ // Proposal from David Vandevoorde, 2010.06.30.
+ Out << 'L';
+ mangleType(E->getType());
+ if (const FloatingLiteral *Imag =
+ dyn_cast<FloatingLiteral>(IE->getSubExpr())) {
+ // Mangle a floating-point zero of the appropriate type.
+ mangleFloat(llvm::APFloat(Imag->getValue().getSemantics()));
+ Out << '_';
+ mangleFloat(Imag->getValue());
+ } else {
+ Out << "0_";
+ llvm::APSInt Value(cast<IntegerLiteral>(IE->getSubExpr())->getValue());
+ if (IE->getSubExpr()->getType()->isSignedIntegerType())
+ Value.setIsSigned(true);
+ mangleNumber(Value);
+ }
+ Out << 'E';
+ break;
+ }
+
+ case Expr::StringLiteralClass: {
+ // <expr-primary>
+ // Revised proposal from David Vandervoorde, 2010.07.15.
+ Out << 'L';
+ assert(isa<ConstantArrayType>(E->getType()));
+ mangleType(E->getType());
+ Out << 'E';
+ break;
+ }
+
+ case Expr::GNUNullExprClass:
+ // <expr-primary>
+ // Mangle as if an integer literal 0.
+ mangleIntegerLiteral(E->getType(), llvm::APSInt(32));
+ break;
+
+ case Expr::CXXNullPtrLiteralExprClass: {
+ // <expr-primary>
+ Out << "LDnE";
+ break;
+ }
+
+ case Expr::PackExpansionExprClass:
+ NotPrimaryExpr();
+ Out << "sp";
+ mangleExpression(cast<PackExpansionExpr>(E)->getPattern());
+ break;
+
+ case Expr::SizeOfPackExprClass: {
+ NotPrimaryExpr();
+ auto *SPE = cast<SizeOfPackExpr>(E);
+ if (SPE->isPartiallySubstituted()) {
+ Out << "sP";
+ for (const auto &A : SPE->getPartialArguments())
+ mangleTemplateArg(A, false);
+ Out << "E";
+ break;
+ }
+
+ Out << "sZ";
+ const NamedDecl *Pack = SPE->getPack();
+ if (const TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Pack))
+ mangleTemplateParameter(TTP->getDepth(), TTP->getIndex());
+ else if (const NonTypeTemplateParmDecl *NTTP
+ = dyn_cast<NonTypeTemplateParmDecl>(Pack))
+ mangleTemplateParameter(NTTP->getDepth(), NTTP->getIndex());
+ else if (const TemplateTemplateParmDecl *TempTP
+ = dyn_cast<TemplateTemplateParmDecl>(Pack))
+ mangleTemplateParameter(TempTP->getDepth(), TempTP->getIndex());
+ else
+ mangleFunctionParam(cast<ParmVarDecl>(Pack));
+ break;
+ }
+
+ case Expr::MaterializeTemporaryExprClass:
+ E = cast<MaterializeTemporaryExpr>(E)->getSubExpr();
+ goto recurse;
+
+ case Expr::CXXFoldExprClass: {
+ NotPrimaryExpr();
+ auto *FE = cast<CXXFoldExpr>(E);
+ if (FE->isLeftFold())
+ Out << (FE->getInit() ? "fL" : "fl");
+ else
+ Out << (FE->getInit() ? "fR" : "fr");
+
+ if (FE->getOperator() == BO_PtrMemD)
+ Out << "ds";
+ else
+ mangleOperatorName(
+ BinaryOperator::getOverloadedOperator(FE->getOperator()),
+ /*Arity=*/2);
+
+ if (FE->getLHS())
+ mangleExpression(FE->getLHS());
+ if (FE->getRHS())
+ mangleExpression(FE->getRHS());
+ break;
+ }
+
+ case Expr::CXXThisExprClass:
+ NotPrimaryExpr();
+ Out << "fpT";
+ break;
+
+ case Expr::CoawaitExprClass:
+ // FIXME: Propose a non-vendor mangling.
+ NotPrimaryExpr();
+ Out << "v18co_await";
+ mangleExpression(cast<CoawaitExpr>(E)->getOperand());
+ break;
+
+ case Expr::DependentCoawaitExprClass:
+ // FIXME: Propose a non-vendor mangling.
+ NotPrimaryExpr();
+ Out << "v18co_await";
+ mangleExpression(cast<DependentCoawaitExpr>(E)->getOperand());
+ break;
+
+ case Expr::CoyieldExprClass:
+ // FIXME: Propose a non-vendor mangling.
+ NotPrimaryExpr();
+ Out << "v18co_yield";
+ mangleExpression(cast<CoawaitExpr>(E)->getOperand());
+ break;
+ }
+
+ if (AsTemplateArg && !IsPrimaryExpr)
+ Out << 'E';
+}
+
+/// Mangle an expression which refers to a parameter variable.
+///
+/// <expression> ::= <function-param>
+/// <function-param> ::= fp <top-level CV-qualifiers> _ # L == 0, I == 0
+/// <function-param> ::= fp <top-level CV-qualifiers>
+/// <parameter-2 non-negative number> _ # L == 0, I > 0
+/// <function-param> ::= fL <L-1 non-negative number>
+/// p <top-level CV-qualifiers> _ # L > 0, I == 0
+/// <function-param> ::= fL <L-1 non-negative number>
+/// p <top-level CV-qualifiers>
+/// <I-1 non-negative number> _ # L > 0, I > 0
+///
+/// L is the nesting depth of the parameter, defined as 1 if the
+/// parameter comes from the innermost function prototype scope
+/// enclosing the current context, 2 if from the next enclosing
+/// function prototype scope, and so on, with one special case: if
+/// we've processed the full parameter clause for the innermost
+/// function type, then L is one less. This definition conveniently
+/// makes it irrelevant whether a function's result type was written
+/// trailing or leading, but is otherwise overly complicated; the
+/// numbering was first designed without considering references to
+/// parameter in locations other than return types, and then the
+/// mangling had to be generalized without changing the existing
+/// manglings.
+///
+/// I is the zero-based index of the parameter within its parameter
+/// declaration clause. Note that the original ABI document describes
+/// this using 1-based ordinals.
+void CXXNameMangler::mangleFunctionParam(const ParmVarDecl *parm) {
+ unsigned parmDepth = parm->getFunctionScopeDepth();
+ unsigned parmIndex = parm->getFunctionScopeIndex();
+
+ // Compute 'L'.
+ // parmDepth does not include the declaring function prototype.
+ // FunctionTypeDepth does account for that.
+ assert(parmDepth < FunctionTypeDepth.getDepth());
+ unsigned nestingDepth = FunctionTypeDepth.getDepth() - parmDepth;
+ if (FunctionTypeDepth.isInResultType())
+ nestingDepth--;
+
+ if (nestingDepth == 0) {
+ Out << "fp";
+ } else {
+ Out << "fL" << (nestingDepth - 1) << 'p';
+ }
+
+ // Top-level qualifiers. We don't have to worry about arrays here,
+ // because parameters declared as arrays should already have been
+ // transformed to have pointer type. FIXME: apparently these don't
+ // get mangled if used as an rvalue of a known non-class type?
+ assert(!parm->getType()->isArrayType()
+ && "parameter's type is still an array type?");
+
+ if (const DependentAddressSpaceType *DAST =
+ dyn_cast<DependentAddressSpaceType>(parm->getType())) {
+ mangleQualifiers(DAST->getPointeeType().getQualifiers(), DAST);
+ } else {
+ mangleQualifiers(parm->getType().getQualifiers());
+ }
+
+ // Parameter index.
+ if (parmIndex != 0) {
+ Out << (parmIndex - 1);
+ }
+ Out << '_';
+}
+
+void CXXNameMangler::mangleCXXCtorType(CXXCtorType T,
+ const CXXRecordDecl *InheritedFrom) {
+ // <ctor-dtor-name> ::= C1 # complete object constructor
+ // ::= C2 # base object constructor
+ // ::= CI1 <type> # complete inheriting constructor
+ // ::= CI2 <type> # base inheriting constructor
+ //
+ // In addition, C5 is a comdat name with C1 and C2 in it.
+ Out << 'C';
+ if (InheritedFrom)
+ Out << 'I';
+ switch (T) {
+ case Ctor_Complete:
+ Out << '1';
+ break;
+ case Ctor_Base:
+ Out << '2';
+ break;
+ case Ctor_Comdat:
+ Out << '5';
+ break;
+ case Ctor_DefaultClosure:
+ case Ctor_CopyingClosure:
+ llvm_unreachable("closure constructors don't exist for the Itanium ABI!");
+ }
+ if (InheritedFrom)
+ mangleName(InheritedFrom);
+}
+
+void CXXNameMangler::mangleCXXDtorType(CXXDtorType T) {
+ // <ctor-dtor-name> ::= D0 # deleting destructor
+ // ::= D1 # complete object destructor
+ // ::= D2 # base object destructor
+ //
+ // In addition, D5 is a comdat name with D1, D2 and, if virtual, D0 in it.
+ switch (T) {
+ case Dtor_Deleting:
+ Out << "D0";
+ break;
+ case Dtor_Complete:
+ Out << "D1";
+ break;
+ case Dtor_Base:
+ Out << "D2";
+ break;
+ case Dtor_Comdat:
+ Out << "D5";
+ break;
+ }
+}
+
+namespace {
+// Helper to provide ancillary information on a template used to mangle its
+// arguments.
+struct TemplateArgManglingInfo {
+ TemplateDecl *ResolvedTemplate = nullptr;
+ bool SeenPackExpansionIntoNonPack = false;
+ const NamedDecl *UnresolvedExpandedPack = nullptr;
+
+ TemplateArgManglingInfo(TemplateName TN) {
+ if (TemplateDecl *TD = TN.getAsTemplateDecl())
+ ResolvedTemplate = TD;
+ }
+
+ /// Do we need to mangle template arguments with exactly correct types?
+ ///
+ /// This should be called exactly once for each parameter / argument pair, in
+ /// order.
+ bool needExactType(unsigned ParamIdx, const TemplateArgument &Arg) {
+ // We need correct types when the template-name is unresolved or when it
+ // names a template that is able to be overloaded.
+ if (!ResolvedTemplate || SeenPackExpansionIntoNonPack)
+ return true;
+
+ // Move to the next parameter.
+ const NamedDecl *Param = UnresolvedExpandedPack;
+ if (!Param) {
+ assert(ParamIdx < ResolvedTemplate->getTemplateParameters()->size() &&
+ "no parameter for argument");
+ Param = ResolvedTemplate->getTemplateParameters()->getParam(ParamIdx);
+
+ // If we reach an expanded parameter pack whose argument isn't in pack
+ // form, that means Sema couldn't figure out which arguments belonged to
+ // it, because it contains a pack expansion. Track the expanded pack for
+ // all further template arguments until we hit that pack expansion.
+ if (Param->isParameterPack() && Arg.getKind() != TemplateArgument::Pack) {
+ assert(getExpandedPackSize(Param) &&
+ "failed to form pack argument for parameter pack");
+ UnresolvedExpandedPack = Param;
+ }
+ }
+
+ // If we encounter a pack argument that is expanded into a non-pack
+ // parameter, we can no longer track parameter / argument correspondence,
+ // and need to use exact types from this point onwards.
+ if (Arg.isPackExpansion() &&
+ (!Param->isParameterPack() || UnresolvedExpandedPack)) {
+ SeenPackExpansionIntoNonPack = true;
+ return true;
+ }
+
+ // We need exact types for function template arguments because they might be
+ // overloaded on template parameter type. As a special case, a member
+ // function template of a generic lambda is not overloadable.
+ if (auto *FTD = dyn_cast<FunctionTemplateDecl>(ResolvedTemplate)) {
+ auto *RD = dyn_cast<CXXRecordDecl>(FTD->getDeclContext());
+ if (!RD || !RD->isGenericLambda())
+ return true;
+ }
+
+ // Otherwise, we only need a correct type if the parameter has a deduced
+ // type.
+ //
+ // Note: for an expanded parameter pack, getType() returns the type prior
+ // to expansion. We could ask for the expanded type with getExpansionType(),
+ // but it doesn't matter because substitution and expansion don't affect
+ // whether a deduced type appears in the type.
+ auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(Param);
+ return NTTP && NTTP->getType()->getContainedDeducedType();
+ }
+};
+}
+
+void CXXNameMangler::mangleTemplateArgs(TemplateName TN,
+ const TemplateArgumentLoc *TemplateArgs,
+ unsigned NumTemplateArgs) {
+ // <template-args> ::= I <template-arg>+ E
+ Out << 'I';
+ TemplateArgManglingInfo Info(TN);
+ for (unsigned i = 0; i != NumTemplateArgs; ++i)
+ mangleTemplateArg(TemplateArgs[i].getArgument(),
+ Info.needExactType(i, TemplateArgs[i].getArgument()));
+ Out << 'E';
+}
+
+void CXXNameMangler::mangleTemplateArgs(TemplateName TN,
+ const TemplateArgumentList &AL) {
+ // <template-args> ::= I <template-arg>+ E
+ Out << 'I';
+ TemplateArgManglingInfo Info(TN);
+ for (unsigned i = 0, e = AL.size(); i != e; ++i)
+ mangleTemplateArg(AL[i], Info.needExactType(i, AL[i]));
+ Out << 'E';
+}
+
+void CXXNameMangler::mangleTemplateArgs(TemplateName TN,
+ const TemplateArgument *TemplateArgs,
+ unsigned NumTemplateArgs) {
+ // <template-args> ::= I <template-arg>+ E
+ Out << 'I';
+ TemplateArgManglingInfo Info(TN);
+ for (unsigned i = 0; i != NumTemplateArgs; ++i)
+ mangleTemplateArg(TemplateArgs[i], Info.needExactType(i, TemplateArgs[i]));
+ Out << 'E';
+}
+
+void CXXNameMangler::mangleTemplateArg(TemplateArgument A, bool NeedExactType) {
+ // <template-arg> ::= <type> # type or template
+ // ::= X <expression> E # expression
+ // ::= <expr-primary> # simple expressions
+ // ::= J <template-arg>* E # argument pack
+ if (!A.isInstantiationDependent() || A.isDependent())
+ A = Context.getASTContext().getCanonicalTemplateArgument(A);
+
+ switch (A.getKind()) {
+ case TemplateArgument::Null:
+ llvm_unreachable("Cannot mangle NULL template argument");
+
+ case TemplateArgument::Type:
+ mangleType(A.getAsType());
+ break;
+ case TemplateArgument::Template:
+ // This is mangled as <type>.
+ mangleType(A.getAsTemplate());
+ break;
+ case TemplateArgument::TemplateExpansion:
+ // <type> ::= Dp <type> # pack expansion (C++0x)
+ Out << "Dp";
+ mangleType(A.getAsTemplateOrTemplatePattern());
+ break;
+ case TemplateArgument::Expression:
+ mangleTemplateArgExpr(A.getAsExpr());
+ break;
+ case TemplateArgument::Integral:
+ mangleIntegerLiteral(A.getIntegralType(), A.getAsIntegral());
+ break;
+ case TemplateArgument::Declaration: {
+ // <expr-primary> ::= L <mangled-name> E # external name
+ ValueDecl *D = A.getAsDecl();
+
+ // Template parameter objects are modeled by reproducing a source form
+ // produced as if by aggregate initialization.
+ if (A.getParamTypeForDecl()->isRecordType()) {
+ auto *TPO = cast<TemplateParamObjectDecl>(D);
+ mangleValueInTemplateArg(TPO->getType().getUnqualifiedType(),
+ TPO->getValue(), /*TopLevel=*/true,
+ NeedExactType);
+ break;
+ }
+
+ ASTContext &Ctx = Context.getASTContext();
+ APValue Value;
+ if (D->isCXXInstanceMember())
+ // Simple pointer-to-member with no conversion.
+ Value = APValue(D, /*IsDerivedMember=*/false, /*Path=*/{});
+ else if (D->getType()->isArrayType() &&
+ Ctx.hasSimilarType(Ctx.getDecayedType(D->getType()),
+ A.getParamTypeForDecl()) &&
+ Ctx.getLangOpts().getClangABICompat() >
+ LangOptions::ClangABI::Ver11)
+ // Build a value corresponding to this implicit array-to-pointer decay.
+ Value = APValue(APValue::LValueBase(D), CharUnits::Zero(),
+ {APValue::LValuePathEntry::ArrayIndex(0)},
+ /*OnePastTheEnd=*/false);
+ else
+ // Regular pointer or reference to a declaration.
+ Value = APValue(APValue::LValueBase(D), CharUnits::Zero(),
+ ArrayRef<APValue::LValuePathEntry>(),
+ /*OnePastTheEnd=*/false);
+ mangleValueInTemplateArg(A.getParamTypeForDecl(), Value, /*TopLevel=*/true,
+ NeedExactType);
+ break;
+ }
+ case TemplateArgument::NullPtr: {
+ mangleNullPointer(A.getNullPtrType());
+ break;
+ }
+ case TemplateArgument::Pack: {
+ // <template-arg> ::= J <template-arg>* E
+ Out << 'J';
+ for (const auto &P : A.pack_elements())
+ mangleTemplateArg(P, NeedExactType);
+ Out << 'E';
+ }
+ }
+}
+
+void CXXNameMangler::mangleTemplateArgExpr(const Expr *E) {
+ ASTContext &Ctx = Context.getASTContext();
+ if (Ctx.getLangOpts().getClangABICompat() > LangOptions::ClangABI::Ver11) {
+ mangleExpression(E, UnknownArity, /*AsTemplateArg=*/true);
+ return;
+ }
+
+ // Prior to Clang 12, we didn't omit the X .. E around <expr-primary>
+ // correctly in cases where the template argument was
+ // constructed from an expression rather than an already-evaluated
+ // literal. In such a case, we would then e.g. emit 'XLi0EE' instead of
+ // 'Li0E'.
+ //
+ // We did special-case DeclRefExpr to attempt to DTRT for that one
+ // expression-kind, but while doing so, unfortunately handled ParmVarDecl
+ // (subtype of VarDecl) _incorrectly_, and emitted 'L_Z .. E' instead of
+ // the proper 'Xfp_E'.
+ E = E->IgnoreParenImpCasts();
+ if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
+ const ValueDecl *D = DRE->getDecl();
+ if (isa<VarDecl>(D) || isa<FunctionDecl>(D)) {
+ Out << 'L';
+ mangle(D);
+ Out << 'E';
+ return;
+ }
+ }
+ Out << 'X';
+ mangleExpression(E);
+ Out << 'E';
+}
+
+/// Determine whether a given value is equivalent to zero-initialization for
+/// the purpose of discarding a trailing portion of a 'tl' mangling.
+///
+/// Note that this is not in general equivalent to determining whether the
+/// value has an all-zeroes bit pattern.
+static bool isZeroInitialized(QualType T, const APValue &V) {
+ // FIXME: mangleValueInTemplateArg has quadratic time complexity in
+ // pathological cases due to using this, but it's a little awkward
+ // to do this in linear time in general.
+ switch (V.getKind()) {
+ case APValue::None:
+ case APValue::Indeterminate:
+ case APValue::AddrLabelDiff:
+ return false;
+
+ case APValue::Struct: {
+ const CXXRecordDecl *RD = T->getAsCXXRecordDecl();
+ assert(RD && "unexpected type for record value");
+ unsigned I = 0;
+ for (const CXXBaseSpecifier &BS : RD->bases()) {
+ if (!isZeroInitialized(BS.getType(), V.getStructBase(I)))
+ return false;
+ ++I;
+ }
+ I = 0;
+ for (const FieldDecl *FD : RD->fields()) {
+ if (!FD->isUnnamedBitfield() &&
+ !isZeroInitialized(FD->getType(), V.getStructField(I)))
+ return false;
+ ++I;
+ }
+ return true;
+ }
+
+ case APValue::Union: {
+ const CXXRecordDecl *RD = T->getAsCXXRecordDecl();
+ assert(RD && "unexpected type for union value");
+ // Zero-initialization zeroes the first non-unnamed-bitfield field, if any.
+ for (const FieldDecl *FD : RD->fields()) {
+ if (!FD->isUnnamedBitfield())
+ return V.getUnionField() && declaresSameEntity(FD, V.getUnionField()) &&
+ isZeroInitialized(FD->getType(), V.getUnionValue());
+ }
+ // If there are no fields (other than unnamed bitfields), the value is
+ // necessarily zero-initialized.
+ return true;
+ }
+
+ case APValue::Array: {
+ QualType ElemT(T->getArrayElementTypeNoTypeQual(), 0);
+ for (unsigned I = 0, N = V.getArrayInitializedElts(); I != N; ++I)
+ if (!isZeroInitialized(ElemT, V.getArrayInitializedElt(I)))
+ return false;
+ return !V.hasArrayFiller() || isZeroInitialized(ElemT, V.getArrayFiller());
+ }
+
+ case APValue::Vector: {
+ const VectorType *VT = T->castAs<VectorType>();
+ for (unsigned I = 0, N = V.getVectorLength(); I != N; ++I)
+ if (!isZeroInitialized(VT->getElementType(), V.getVectorElt(I)))
+ return false;
+ return true;
+ }
+
+ case APValue::Int:
+ return !V.getInt();
+
+ case APValue::Float:
+ return V.getFloat().isPosZero();
+
+ case APValue::FixedPoint:
+ return !V.getFixedPoint().getValue();
+
+ case APValue::ComplexFloat:
+ return V.getComplexFloatReal().isPosZero() &&
+ V.getComplexFloatImag().isPosZero();
+
+ case APValue::ComplexInt:
+ return !V.getComplexIntReal() && !V.getComplexIntImag();
+
+ case APValue::LValue:
+ return V.isNullPointer();
+
+ case APValue::MemberPointer:
+ return !V.getMemberPointerDecl();
+ }
+
+ llvm_unreachable("Unhandled APValue::ValueKind enum");
+}
+
+static QualType getLValueType(ASTContext &Ctx, const APValue &LV) {
+ QualType T = LV.getLValueBase().getType();
+ for (APValue::LValuePathEntry E : LV.getLValuePath()) {
+ if (const ArrayType *AT = Ctx.getAsArrayType(T))
+ T = AT->getElementType();
+ else if (const FieldDecl *FD =
+ dyn_cast<FieldDecl>(E.getAsBaseOrMember().getPointer()))
+ T = FD->getType();
+ else
+ T = Ctx.getRecordType(
+ cast<CXXRecordDecl>(E.getAsBaseOrMember().getPointer()));
+ }
+ return T;
+}
+
+void CXXNameMangler::mangleValueInTemplateArg(QualType T, const APValue &V,
+ bool TopLevel,
+ bool NeedExactType) {
+ // Ignore all top-level cv-qualifiers, to match GCC.
+ Qualifiers Quals;
+ T = getASTContext().getUnqualifiedArrayType(T, Quals);
+
+ // A top-level expression that's not a primary expression is wrapped in X...E.
+ bool IsPrimaryExpr = true;
+ auto NotPrimaryExpr = [&] {
+ if (TopLevel && IsPrimaryExpr)
+ Out << 'X';
+ IsPrimaryExpr = false;
+ };
+
+ // Proposed in https://github.com/itanium-cxx-abi/cxx-abi/issues/63.
+ switch (V.getKind()) {
+ case APValue::None:
+ case APValue::Indeterminate:
+ Out << 'L';
+ mangleType(T);
+ Out << 'E';
+ break;
+
+ case APValue::AddrLabelDiff:
+ llvm_unreachable("unexpected value kind in template argument");
+
+ case APValue::Struct: {
+ const CXXRecordDecl *RD = T->getAsCXXRecordDecl();
+ assert(RD && "unexpected type for record value");
+
+ // Drop trailing zero-initialized elements.
+ llvm::SmallVector<const FieldDecl *, 16> Fields(RD->field_begin(),
+ RD->field_end());
+ while (
+ !Fields.empty() &&
+ (Fields.back()->isUnnamedBitfield() ||
+ isZeroInitialized(Fields.back()->getType(),
+ V.getStructField(Fields.back()->getFieldIndex())))) {
+ Fields.pop_back();
+ }
+ llvm::ArrayRef<CXXBaseSpecifier> Bases(RD->bases_begin(), RD->bases_end());
+ if (Fields.empty()) {
+ while (!Bases.empty() &&
+ isZeroInitialized(Bases.back().getType(),
+ V.getStructBase(Bases.size() - 1)))
+ Bases = Bases.drop_back();
+ }
+
+ // <expression> ::= tl <type> <braced-expression>* E
+ NotPrimaryExpr();
+ Out << "tl";
+ mangleType(T);
+ for (unsigned I = 0, N = Bases.size(); I != N; ++I)
+ mangleValueInTemplateArg(Bases[I].getType(), V.getStructBase(I), false);
+ for (unsigned I = 0, N = Fields.size(); I != N; ++I) {
+ if (Fields[I]->isUnnamedBitfield())
+ continue;
+ mangleValueInTemplateArg(Fields[I]->getType(),
+ V.getStructField(Fields[I]->getFieldIndex()),
+ false);
+ }
+ Out << 'E';
+ break;
+ }
+
+ case APValue::Union: {
+ assert(T->getAsCXXRecordDecl() && "unexpected type for union value");
+ const FieldDecl *FD = V.getUnionField();
+
+ if (!FD) {
+ Out << 'L';
+ mangleType(T);
+ Out << 'E';
+ break;
+ }
+
+ // <braced-expression> ::= di <field source-name> <braced-expression>
+ NotPrimaryExpr();
+ Out << "tl";
+ mangleType(T);
+ if (!isZeroInitialized(T, V)) {
+ Out << "di";
+ mangleSourceName(FD->getIdentifier());
+ mangleValueInTemplateArg(FD->getType(), V.getUnionValue(), false);
+ }
+ Out << 'E';
+ break;
+ }
+
+ case APValue::Array: {
+ QualType ElemT(T->getArrayElementTypeNoTypeQual(), 0);
+
+ NotPrimaryExpr();
+ Out << "tl";
+ mangleType(T);
+
+ // Drop trailing zero-initialized elements.
+ unsigned N = V.getArraySize();
+ if (!V.hasArrayFiller() || isZeroInitialized(ElemT, V.getArrayFiller())) {
+ N = V.getArrayInitializedElts();
+ while (N && isZeroInitialized(ElemT, V.getArrayInitializedElt(N - 1)))
+ --N;
+ }
+
+ for (unsigned I = 0; I != N; ++I) {
+ const APValue &Elem = I < V.getArrayInitializedElts()
+ ? V.getArrayInitializedElt(I)
+ : V.getArrayFiller();
+ mangleValueInTemplateArg(ElemT, Elem, false);
+ }
+ Out << 'E';
+ break;
+ }
+
+ case APValue::Vector: {
+ const VectorType *VT = T->castAs<VectorType>();
+
+ NotPrimaryExpr();
+ Out << "tl";
+ mangleType(T);
+ unsigned N = V.getVectorLength();
+ while (N && isZeroInitialized(VT->getElementType(), V.getVectorElt(N - 1)))
+ --N;
+ for (unsigned I = 0; I != N; ++I)
+ mangleValueInTemplateArg(VT->getElementType(), V.getVectorElt(I), false);
+ Out << 'E';
+ break;
+ }
+
+ case APValue::Int:
+ mangleIntegerLiteral(T, V.getInt());
+ break;
+
+ case APValue::Float:
+ mangleFloatLiteral(T, V.getFloat());
+ break;
+
+ case APValue::FixedPoint:
+ mangleFixedPointLiteral();
+ break;
+
+ case APValue::ComplexFloat: {
+ const ComplexType *CT = T->castAs<ComplexType>();
+ NotPrimaryExpr();
+ Out << "tl";
+ mangleType(T);
+ if (!V.getComplexFloatReal().isPosZero() ||
+ !V.getComplexFloatImag().isPosZero())
+ mangleFloatLiteral(CT->getElementType(), V.getComplexFloatReal());
+ if (!V.getComplexFloatImag().isPosZero())
+ mangleFloatLiteral(CT->getElementType(), V.getComplexFloatImag());
+ Out << 'E';
+ break;
+ }
+
+ case APValue::ComplexInt: {
+ const ComplexType *CT = T->castAs<ComplexType>();
+ NotPrimaryExpr();
+ Out << "tl";
+ mangleType(T);
+ if (V.getComplexIntReal().getBoolValue() ||
+ V.getComplexIntImag().getBoolValue())
+ mangleIntegerLiteral(CT->getElementType(), V.getComplexIntReal());
+ if (V.getComplexIntImag().getBoolValue())
+ mangleIntegerLiteral(CT->getElementType(), V.getComplexIntImag());
+ Out << 'E';
+ break;
+ }
+
+ case APValue::LValue: {
+ // Proposed in https://github.com/itanium-cxx-abi/cxx-abi/issues/47.
+ assert((T->isPointerType() || T->isReferenceType()) &&
+ "unexpected type for LValue template arg");
+
+ if (V.isNullPointer()) {
+ mangleNullPointer(T);
+ break;
+ }
+
+ APValue::LValueBase B = V.getLValueBase();
+ if (!B) {
+ // Non-standard mangling for integer cast to a pointer; this can only
+ // occur as an extension.
+ CharUnits Offset = V.getLValueOffset();
+ if (Offset.isZero()) {
+ // This is reinterpret_cast<T*>(0), not a null pointer. Mangle this as
+ // a cast, because L <type> 0 E means something else.
+ NotPrimaryExpr();
+ Out << "rc";
+ mangleType(T);
+ Out << "Li0E";
+ if (TopLevel)
+ Out << 'E';
+ } else {
+ Out << "L";
+ mangleType(T);
+ Out << Offset.getQuantity() << 'E';
+ }
+ break;
+ }
+
+ ASTContext &Ctx = Context.getASTContext();
+
+ enum { Base, Offset, Path } Kind;
+ if (!V.hasLValuePath()) {
+ // Mangle as (T*)((char*)&base + N).
+ if (T->isReferenceType()) {
+ NotPrimaryExpr();
+ Out << "decvP";
+ mangleType(T->getPointeeType());
+ } else {
+ NotPrimaryExpr();
+ Out << "cv";
+ mangleType(T);
+ }
+ Out << "plcvPcad";
+ Kind = Offset;
+ } else {
+ if (!V.getLValuePath().empty() || V.isLValueOnePastTheEnd()) {
+ NotPrimaryExpr();
+ // A final conversion to the template parameter's type is usually
+ // folded into the 'so' mangling, but we can't do that for 'void*'
+ // parameters without introducing collisions.
+ if (NeedExactType && T->isVoidPointerType()) {
+ Out << "cv";
+ mangleType(T);
+ }
+ if (T->isPointerType())
+ Out << "ad";
+ Out << "so";
+ mangleType(T->isVoidPointerType()
+ ? getLValueType(Ctx, V).getUnqualifiedType()
+ : T->getPointeeType());
+ Kind = Path;
+ } else {
+ if (NeedExactType &&
+ !Ctx.hasSameType(T->getPointeeType(), getLValueType(Ctx, V)) &&
+ Ctx.getLangOpts().getClangABICompat() >
+ LangOptions::ClangABI::Ver11) {
+ NotPrimaryExpr();
+ Out << "cv";
+ mangleType(T);
+ }
+ if (T->isPointerType()) {
+ NotPrimaryExpr();
+ Out << "ad";
+ }
+ Kind = Base;
+ }
+ }
+
+ QualType TypeSoFar = B.getType();
+ if (auto *VD = B.dyn_cast<const ValueDecl*>()) {
+ Out << 'L';
+ mangle(VD);
+ Out << 'E';
+ } else if (auto *E = B.dyn_cast<const Expr*>()) {
+ NotPrimaryExpr();
+ mangleExpression(E);
+ } else if (auto TI = B.dyn_cast<TypeInfoLValue>()) {
+ NotPrimaryExpr();
+ Out << "ti";
+ mangleType(QualType(TI.getType(), 0));
+ } else {
+ // We should never see dynamic allocations here.
+ llvm_unreachable("unexpected lvalue base kind in template argument");
+ }
+
+ switch (Kind) {
+ case Base:
+ break;
+
+ case Offset:
+ Out << 'L';
+ mangleType(Ctx.getPointerDiffType());
+ mangleNumber(V.getLValueOffset().getQuantity());
+ Out << 'E';
+ break;
+
+ case Path:
+ // <expression> ::= so <referent type> <expr> [<offset number>]
+ // <union-selector>* [p] E
+ if (!V.getLValueOffset().isZero())
+ mangleNumber(V.getLValueOffset().getQuantity());
+
+ // We model a past-the-end array pointer as array indexing with index N,
+ // not with the "past the end" flag. Compensate for that.
+ bool OnePastTheEnd = V.isLValueOnePastTheEnd();
+
+ for (APValue::LValuePathEntry E : V.getLValuePath()) {
+ if (auto *AT = TypeSoFar->getAsArrayTypeUnsafe()) {
+ if (auto *CAT = dyn_cast<ConstantArrayType>(AT))
+ OnePastTheEnd |= CAT->getSize() == E.getAsArrayIndex();
+ TypeSoFar = AT->getElementType();
+ } else {
+ const Decl *D = E.getAsBaseOrMember().getPointer();
+ if (auto *FD = dyn_cast<FieldDecl>(D)) {
+ // <union-selector> ::= _ <number>
+ if (FD->getParent()->isUnion()) {
+ Out << '_';
+ if (FD->getFieldIndex())
+ Out << (FD->getFieldIndex() - 1);
+ }
+ TypeSoFar = FD->getType();
+ } else {
+ TypeSoFar = Ctx.getRecordType(cast<CXXRecordDecl>(D));
+ }
+ }
+ }
+
+ if (OnePastTheEnd)
+ Out << 'p';
+ Out << 'E';
+ break;
+ }
+
+ break;
+ }
+
+ case APValue::MemberPointer:
+ // Proposed in https://github.com/itanium-cxx-abi/cxx-abi/issues/47.
+ if (!V.getMemberPointerDecl()) {
+ mangleNullPointer(T);
+ break;
+ }
+
+ ASTContext &Ctx = Context.getASTContext();
+
+ NotPrimaryExpr();
+ if (!V.getMemberPointerPath().empty()) {
+ Out << "mc";
+ mangleType(T);
+ } else if (NeedExactType &&
+ !Ctx.hasSameType(
+ T->castAs<MemberPointerType>()->getPointeeType(),
+ V.getMemberPointerDecl()->getType()) &&
+ Ctx.getLangOpts().getClangABICompat() >
+ LangOptions::ClangABI::Ver11) {
+ Out << "cv";
+ mangleType(T);
+ }
+ Out << "adL";
+ mangle(V.getMemberPointerDecl());
+ Out << 'E';
+ if (!V.getMemberPointerPath().empty()) {
+ CharUnits Offset =
+ Context.getASTContext().getMemberPointerPathAdjustment(V);
+ if (!Offset.isZero())
+ mangleNumber(Offset.getQuantity());
+ Out << 'E';
+ }
+ break;
+ }
+
+ if (TopLevel && !IsPrimaryExpr)
+ Out << 'E';
+}
+
+void CXXNameMangler::mangleTemplateParameter(unsigned Depth, unsigned Index) {
+ // <template-param> ::= T_ # first template parameter
+ // ::= T <parameter-2 non-negative number> _
+ // ::= TL <L-1 non-negative number> __
+ // ::= TL <L-1 non-negative number> _
+ // <parameter-2 non-negative number> _
+ //
+ // The latter two manglings are from a proposal here:
+ // https://github.com/itanium-cxx-abi/cxx-abi/issues/31#issuecomment-528122117
+ Out << 'T';
+ if (Depth != 0)
+ Out << 'L' << (Depth - 1) << '_';
+ if (Index != 0)
+ Out << (Index - 1);
+ Out << '_';
+}
+
+void CXXNameMangler::mangleSeqID(unsigned SeqID) {
+ if (SeqID == 1)
+ Out << '0';
+ else if (SeqID > 1) {
+ SeqID--;
+
+ // <seq-id> is encoded in base-36, using digits and upper case letters.
+ char Buffer[7]; // log(2**32) / log(36) ~= 7
+ MutableArrayRef<char> BufferRef(Buffer);
+ MutableArrayRef<char>::reverse_iterator I = BufferRef.rbegin();
+
+ for (; SeqID != 0; SeqID /= 36) {
+ unsigned C = SeqID % 36;
+ *I++ = (C < 10 ? '0' + C : 'A' + C - 10);
+ }
+
+ Out.write(I.base(), I - BufferRef.rbegin());
+ }
+ Out << '_';
+}
+
+void CXXNameMangler::mangleExistingSubstitution(TemplateName tname) {
+ bool result = mangleSubstitution(tname);
+ assert(result && "no existing substitution for template name");
+ (void) result;
+}
+
+// <substitution> ::= S <seq-id> _
+// ::= S_
+bool CXXNameMangler::mangleSubstitution(const NamedDecl *ND) {
+ // Try one of the standard substitutions first.
+ if (mangleStandardSubstitution(ND))
+ return true;
+
+ ND = cast<NamedDecl>(ND->getCanonicalDecl());
+ return mangleSubstitution(reinterpret_cast<uintptr_t>(ND));
+}
+
+/// Determine whether the given type has any qualifiers that are relevant for
+/// substitutions.
+static bool hasMangledSubstitutionQualifiers(QualType T) {
+ Qualifiers Qs = T.getQualifiers();
+ return Qs.getCVRQualifiers() || Qs.hasAddressSpace() || Qs.hasUnaligned();
+}
+
+bool CXXNameMangler::mangleSubstitution(QualType T) {
+ if (!hasMangledSubstitutionQualifiers(T)) {
+ if (const RecordType *RT = T->getAs<RecordType>())
+ return mangleSubstitution(RT->getDecl());
+ }
+
+ uintptr_t TypePtr = reinterpret_cast<uintptr_t>(T.getAsOpaquePtr());
+
+ return mangleSubstitution(TypePtr);
+}
+
+bool CXXNameMangler::mangleSubstitution(TemplateName Template) {
+ if (TemplateDecl *TD = Template.getAsTemplateDecl())
+ return mangleSubstitution(TD);
+
+ Template = Context.getASTContext().getCanonicalTemplateName(Template);
+ return mangleSubstitution(
+ reinterpret_cast<uintptr_t>(Template.getAsVoidPointer()));
+}
+
+bool CXXNameMangler::mangleSubstitution(uintptr_t Ptr) {
+ llvm::DenseMap<uintptr_t, unsigned>::iterator I = Substitutions.find(Ptr);
+ if (I == Substitutions.end())
+ return false;
+
+ unsigned SeqID = I->second;
+ Out << 'S';
+ mangleSeqID(SeqID);
+
+ return true;
+}
+
+static bool isCharType(QualType T) {
+ if (T.isNull())
+ return false;
+
+ return T->isSpecificBuiltinType(BuiltinType::Char_S) ||
+ T->isSpecificBuiltinType(BuiltinType::Char_U);
+}
+
+/// Returns whether a given type is a template specialization of a given name
+/// with a single argument of type char.
+static bool isCharSpecialization(QualType T, const char *Name) {
+ if (T.isNull())
+ return false;
+
+ const RecordType *RT = T->getAs<RecordType>();
+ if (!RT)
+ return false;
+
+ const ClassTemplateSpecializationDecl *SD =
+ dyn_cast<ClassTemplateSpecializationDecl>(RT->getDecl());
+ if (!SD)
+ return false;
+
+ if (!isStdNamespace(getEffectiveDeclContext(SD)))
+ return false;
+
+ const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs();
+ if (TemplateArgs.size() != 1)
+ return false;
+
+ if (!isCharType(TemplateArgs[0].getAsType()))
+ return false;
+
+ return SD->getIdentifier()->getName() == Name;
+}
+
+template <std::size_t StrLen>
+static bool isStreamCharSpecialization(const ClassTemplateSpecializationDecl*SD,
+ const char (&Str)[StrLen]) {
+ if (!SD->getIdentifier()->isStr(Str))
+ return false;
+
+ const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs();
+ if (TemplateArgs.size() != 2)
+ return false;
+
+ if (!isCharType(TemplateArgs[0].getAsType()))
+ return false;
+
+ if (!isCharSpecialization(TemplateArgs[1].getAsType(), "char_traits"))
+ return false;
+
+ return true;
+}
+
+bool CXXNameMangler::mangleStandardSubstitution(const NamedDecl *ND) {
+ // <substitution> ::= St # ::std::
+ if (const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ND)) {
+ if (isStd(NS)) {
+ Out << "St";
+ return true;
+ }
+ }
+
+ if (const ClassTemplateDecl *TD = dyn_cast<ClassTemplateDecl>(ND)) {
+ if (!isStdNamespace(getEffectiveDeclContext(TD)))
+ return false;
+
+ // <substitution> ::= Sa # ::std::allocator
+ if (TD->getIdentifier()->isStr("allocator")) {
+ Out << "Sa";
+ return true;
+ }
+
+ // <<substitution> ::= Sb # ::std::basic_string
+ if (TD->getIdentifier()->isStr("basic_string")) {
+ Out << "Sb";
+ return true;
+ }
+ }
+
+ if (const ClassTemplateSpecializationDecl *SD =
+ dyn_cast<ClassTemplateSpecializationDecl>(ND)) {
+ if (!isStdNamespace(getEffectiveDeclContext(SD)))
+ return false;
+
+ // <substitution> ::= Ss # ::std::basic_string<char,
+ // ::std::char_traits<char>,
+ // ::std::allocator<char> >
+ if (SD->getIdentifier()->isStr("basic_string")) {
+ const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs();
+
+ if (TemplateArgs.size() != 3)
+ return false;
+
+ if (!isCharType(TemplateArgs[0].getAsType()))
+ return false;
+
+ if (!isCharSpecialization(TemplateArgs[1].getAsType(), "char_traits"))
+ return false;
+
+ if (!isCharSpecialization(TemplateArgs[2].getAsType(), "allocator"))
+ return false;
+
+ Out << "Ss";
+ return true;
+ }
+
+ // <substitution> ::= Si # ::std::basic_istream<char,
+ // ::std::char_traits<char> >
+ if (isStreamCharSpecialization(SD, "basic_istream")) {
+ Out << "Si";
+ return true;
+ }
+
+ // <substitution> ::= So # ::std::basic_ostream<char,
+ // ::std::char_traits<char> >
+ if (isStreamCharSpecialization(SD, "basic_ostream")) {
+ Out << "So";
+ return true;
+ }
+
+ // <substitution> ::= Sd # ::std::basic_iostream<char,
+ // ::std::char_traits<char> >
+ if (isStreamCharSpecialization(SD, "basic_iostream")) {
+ Out << "Sd";
+ return true;
+ }
+ }
+ return false;
+}
+
+void CXXNameMangler::addSubstitution(QualType T) {
+ if (!hasMangledSubstitutionQualifiers(T)) {
+ if (const RecordType *RT = T->getAs<RecordType>()) {
+ addSubstitution(RT->getDecl());
+ return;
+ }
+ }
+
+ uintptr_t TypePtr = reinterpret_cast<uintptr_t>(T.getAsOpaquePtr());
+ addSubstitution(TypePtr);
+}
+
+void CXXNameMangler::addSubstitution(TemplateName Template) {
+ if (TemplateDecl *TD = Template.getAsTemplateDecl())
+ return addSubstitution(TD);
+
+ Template = Context.getASTContext().getCanonicalTemplateName(Template);
+ addSubstitution(reinterpret_cast<uintptr_t>(Template.getAsVoidPointer()));
+}
+
+void CXXNameMangler::addSubstitution(uintptr_t Ptr) {
+ assert(!Substitutions.count(Ptr) && "Substitution already exists!");
+ Substitutions[Ptr] = SeqID++;
+}
+
+void CXXNameMangler::extendSubstitutions(CXXNameMangler* Other) {
+ assert(Other->SeqID >= SeqID && "Must be superset of substitutions!");
+ if (Other->SeqID > SeqID) {
+ Substitutions.swap(Other->Substitutions);
+ SeqID = Other->SeqID;
+ }
+}
+
+CXXNameMangler::AbiTagList
+CXXNameMangler::makeFunctionReturnTypeTags(const FunctionDecl *FD) {
+ // When derived abi tags are disabled there is no need to make any list.
+ if (DisableDerivedAbiTags)
+ return AbiTagList();
+
+ llvm::raw_null_ostream NullOutStream;
+ CXXNameMangler TrackReturnTypeTags(*this, NullOutStream);
+ TrackReturnTypeTags.disableDerivedAbiTags();
+
+ const FunctionProtoType *Proto =
+ cast<FunctionProtoType>(FD->getType()->getAs<FunctionType>());
+ FunctionTypeDepthState saved = TrackReturnTypeTags.FunctionTypeDepth.push();
+ TrackReturnTypeTags.FunctionTypeDepth.enterResultType();
+ TrackReturnTypeTags.mangleType(Proto->getReturnType());
+ TrackReturnTypeTags.FunctionTypeDepth.leaveResultType();
+ TrackReturnTypeTags.FunctionTypeDepth.pop(saved);
+
+ return TrackReturnTypeTags.AbiTagsRoot.getSortedUniqueUsedAbiTags();
+}
+
+CXXNameMangler::AbiTagList
+CXXNameMangler::makeVariableTypeTags(const VarDecl *VD) {
+ // When derived abi tags are disabled there is no need to make any list.
+ if (DisableDerivedAbiTags)
+ return AbiTagList();
+
+ llvm::raw_null_ostream NullOutStream;
+ CXXNameMangler TrackVariableType(*this, NullOutStream);
+ TrackVariableType.disableDerivedAbiTags();
+
+ TrackVariableType.mangleType(VD->getType());
+
+ return TrackVariableType.AbiTagsRoot.getSortedUniqueUsedAbiTags();
+}
+
+bool CXXNameMangler::shouldHaveAbiTags(ItaniumMangleContextImpl &C,
+ const VarDecl *VD) {
+ llvm::raw_null_ostream NullOutStream;
+ CXXNameMangler TrackAbiTags(C, NullOutStream, nullptr, true);
+ TrackAbiTags.mangle(VD);
+ return TrackAbiTags.AbiTagsRoot.getUsedAbiTags().size();
+}
+
+//
+
+/// Mangles the name of the declaration D and emits that name to the given
+/// output stream.
+///
+/// If the declaration D requires a mangled name, this routine will emit that
+/// mangled name to \p os and return true. Otherwise, \p os will be unchanged
+/// and this routine will return false. In this case, the caller should just
+/// emit the identifier of the declaration (\c D->getIdentifier()) as its
+/// name.
+void ItaniumMangleContextImpl::mangleCXXName(GlobalDecl GD,
+ raw_ostream &Out) {
+ const NamedDecl *D = cast<NamedDecl>(GD.getDecl());
+ assert((isa<FunctionDecl, VarDecl, TemplateParamObjectDecl>(D)) &&
+ "Invalid mangleName() call, argument is not a variable or function!");
+
+ PrettyStackTraceDecl CrashInfo(D, SourceLocation(),
+ getASTContext().getSourceManager(),
+ "Mangling declaration");
+
+ if (auto *CD = dyn_cast<CXXConstructorDecl>(D)) {
+ auto Type = GD.getCtorType();
+ CXXNameMangler Mangler(*this, Out, CD, Type);
+ return Mangler.mangle(GlobalDecl(CD, Type));
+ }
+
+ if (auto *DD = dyn_cast<CXXDestructorDecl>(D)) {
+ auto Type = GD.getDtorType();
+ CXXNameMangler Mangler(*this, Out, DD, Type);
+ return Mangler.mangle(GlobalDecl(DD, Type));
+ }
+
+ CXXNameMangler Mangler(*this, Out, D);
+ Mangler.mangle(GD);
+}
+
+void ItaniumMangleContextImpl::mangleCXXCtorComdat(const CXXConstructorDecl *D,
+ raw_ostream &Out) {
+ CXXNameMangler Mangler(*this, Out, D, Ctor_Comdat);
+ Mangler.mangle(GlobalDecl(D, Ctor_Comdat));
+}
+
+void ItaniumMangleContextImpl::mangleCXXDtorComdat(const CXXDestructorDecl *D,
+ raw_ostream &Out) {
+ CXXNameMangler Mangler(*this, Out, D, Dtor_Comdat);
+ Mangler.mangle(GlobalDecl(D, Dtor_Comdat));
+}
+
+void ItaniumMangleContextImpl::mangleThunk(const CXXMethodDecl *MD,
+ const ThunkInfo &Thunk,
+ raw_ostream &Out) {
+ // <special-name> ::= T <call-offset> <base encoding>
+ // # base is the nominal target function of thunk
+ // <special-name> ::= Tc <call-offset> <call-offset> <base encoding>
+ // # base is the nominal target function of thunk
+ // # first call-offset is 'this' adjustment
+ // # second call-offset is result adjustment
+
+ assert(!isa<CXXDestructorDecl>(MD) &&
+ "Use mangleCXXDtor for destructor decls!");
+ CXXNameMangler Mangler(*this, Out);
+ Mangler.getStream() << "_ZT";
+ if (!Thunk.Return.isEmpty())
+ Mangler.getStream() << 'c';
+
+ // Mangle the 'this' pointer adjustment.
+ Mangler.mangleCallOffset(Thunk.This.NonVirtual,
+ Thunk.This.Virtual.Itanium.VCallOffsetOffset);
+
+ // Mangle the return pointer adjustment if there is one.
+ if (!Thunk.Return.isEmpty())
+ Mangler.mangleCallOffset(Thunk.Return.NonVirtual,
+ Thunk.Return.Virtual.Itanium.VBaseOffsetOffset);
+
+ Mangler.mangleFunctionEncoding(MD);
+}
+
+void ItaniumMangleContextImpl::mangleCXXDtorThunk(
+ const CXXDestructorDecl *DD, CXXDtorType Type,
+ const ThisAdjustment &ThisAdjustment, raw_ostream &Out) {
+ // <special-name> ::= T <call-offset> <base encoding>
+ // # base is the nominal target function of thunk
+ CXXNameMangler Mangler(*this, Out, DD, Type);
+ Mangler.getStream() << "_ZT";
+
+ // Mangle the 'this' pointer adjustment.
+ Mangler.mangleCallOffset(ThisAdjustment.NonVirtual,
+ ThisAdjustment.Virtual.Itanium.VCallOffsetOffset);
+
+ Mangler.mangleFunctionEncoding(GlobalDecl(DD, Type));
+}
+
+/// Returns the mangled name for a guard variable for the passed in VarDecl.
+void ItaniumMangleContextImpl::mangleStaticGuardVariable(const VarDecl *D,
+ raw_ostream &Out) {
+ // <special-name> ::= GV <object name> # Guard variable for one-time
+ // # initialization
+ CXXNameMangler Mangler(*this, Out);
+ // GCC 5.3.0 doesn't emit derived ABI tags for local names but that seems to
+ // be a bug that is fixed in trunk.
+ Mangler.getStream() << "_ZGV";
+ Mangler.mangleName(D);
+}
+
+void ItaniumMangleContextImpl::mangleDynamicInitializer(const VarDecl *MD,
+ raw_ostream &Out) {
+ // These symbols are internal in the Itanium ABI, so the names don't matter.
+ // Clang has traditionally used this symbol and allowed LLVM to adjust it to
+ // avoid duplicate symbols.
+ Out << "__cxx_global_var_init";
+}
+
+void ItaniumMangleContextImpl::mangleDynamicAtExitDestructor(const VarDecl *D,
+ raw_ostream &Out) {
+ // Prefix the mangling of D with __dtor_.
+ CXXNameMangler Mangler(*this, Out);
+ Mangler.getStream() << "__dtor_";
+ if (shouldMangleDeclName(D))
+ Mangler.mangle(D);
+ else
+ Mangler.getStream() << D->getName();
+}
+
+void ItaniumMangleContextImpl::mangleDynamicStermFinalizer(const VarDecl *D,
+ raw_ostream &Out) {
+ // Clang generates these internal-linkage functions as part of its
+ // implementation of the XL ABI.
+ CXXNameMangler Mangler(*this, Out);
+ Mangler.getStream() << "__finalize_";
+ if (shouldMangleDeclName(D))
+ Mangler.mangle(D);
+ else
+ Mangler.getStream() << D->getName();
+}
+
+void ItaniumMangleContextImpl::mangleSEHFilterExpression(
+ const NamedDecl *EnclosingDecl, raw_ostream &Out) {
+ CXXNameMangler Mangler(*this, Out);
+ Mangler.getStream() << "__filt_";
+ if (shouldMangleDeclName(EnclosingDecl))
+ Mangler.mangle(EnclosingDecl);
+ else
+ Mangler.getStream() << EnclosingDecl->getName();
+}
+
+void ItaniumMangleContextImpl::mangleSEHFinallyBlock(
+ const NamedDecl *EnclosingDecl, raw_ostream &Out) {
+ CXXNameMangler Mangler(*this, Out);
+ Mangler.getStream() << "__fin_";
+ if (shouldMangleDeclName(EnclosingDecl))
+ Mangler.mangle(EnclosingDecl);
+ else
+ Mangler.getStream() << EnclosingDecl->getName();
+}
+
+void ItaniumMangleContextImpl::mangleItaniumThreadLocalInit(const VarDecl *D,
+ raw_ostream &Out) {
+ // <special-name> ::= TH <object name>
+ CXXNameMangler Mangler(*this, Out);
+ Mangler.getStream() << "_ZTH";
+ Mangler.mangleName(D);
+}
+
+void
+ItaniumMangleContextImpl::mangleItaniumThreadLocalWrapper(const VarDecl *D,
+ raw_ostream &Out) {
+ // <special-name> ::= TW <object name>
+ CXXNameMangler Mangler(*this, Out);
+ Mangler.getStream() << "_ZTW";
+ Mangler.mangleName(D);
+}
+
+void ItaniumMangleContextImpl::mangleReferenceTemporary(const VarDecl *D,
+ unsigned ManglingNumber,
+ raw_ostream &Out) {
+ // We match the GCC mangling here.
+ // <special-name> ::= GR <object name>
+ CXXNameMangler Mangler(*this, Out);
+ Mangler.getStream() << "_ZGR";
+ Mangler.mangleName(D);
+ assert(ManglingNumber > 0 && "Reference temporary mangling number is zero!");
+ Mangler.mangleSeqID(ManglingNumber - 1);
+}
+
+void ItaniumMangleContextImpl::mangleCXXVTable(const CXXRecordDecl *RD,
+ raw_ostream &Out) {
+ // <special-name> ::= TV <type> # virtual table
+ CXXNameMangler Mangler(*this, Out);
+ Mangler.getStream() << "_ZTV";
+ Mangler.mangleNameOrStandardSubstitution(RD);
+}
+
+void ItaniumMangleContextImpl::mangleCXXVTT(const CXXRecordDecl *RD,
+ raw_ostream &Out) {
+ // <special-name> ::= TT <type> # VTT structure
+ CXXNameMangler Mangler(*this, Out);
+ Mangler.getStream() << "_ZTT";
+ Mangler.mangleNameOrStandardSubstitution(RD);
+}
+
+void ItaniumMangleContextImpl::mangleCXXCtorVTable(const CXXRecordDecl *RD,
+ int64_t Offset,
+ const CXXRecordDecl *Type,
+ raw_ostream &Out) {
+ // <special-name> ::= TC <type> <offset number> _ <base type>
+ CXXNameMangler Mangler(*this, Out);
+ Mangler.getStream() << "_ZTC";
+ Mangler.mangleNameOrStandardSubstitution(RD);
+ Mangler.getStream() << Offset;
+ Mangler.getStream() << '_';
+ Mangler.mangleNameOrStandardSubstitution(Type);
+}
+
+void ItaniumMangleContextImpl::mangleCXXRTTI(QualType Ty, raw_ostream &Out) {
+ // <special-name> ::= TI <type> # typeinfo structure
+ assert(!Ty.hasQualifiers() && "RTTI info cannot have top-level qualifiers");
+ CXXNameMangler Mangler(*this, Out);
+ Mangler.getStream() << "_ZTI";
+ Mangler.mangleType(Ty);
+}
+
+void ItaniumMangleContextImpl::mangleCXXRTTIName(QualType Ty,
+ raw_ostream &Out) {
+ // <special-name> ::= TS <type> # typeinfo name (null terminated byte string)
+ CXXNameMangler Mangler(*this, Out);
+ Mangler.getStream() << "_ZTS";
+ Mangler.mangleType(Ty);
+}
+
+void ItaniumMangleContextImpl::mangleTypeName(QualType Ty, raw_ostream &Out) {
+ mangleCXXRTTIName(Ty, Out);
+}
+
+void ItaniumMangleContextImpl::mangleStringLiteral(const StringLiteral *, raw_ostream &) {
+ llvm_unreachable("Can't mangle string literals");
+}
+
+void ItaniumMangleContextImpl::mangleLambdaSig(const CXXRecordDecl *Lambda,
+ raw_ostream &Out) {
+ CXXNameMangler Mangler(*this, Out);
+ Mangler.mangleLambdaSig(Lambda);
+}
+
+ItaniumMangleContext *
+ItaniumMangleContext::create(ASTContext &Context, DiagnosticsEngine &Diags) {
+ return new ItaniumMangleContextImpl(Context, Diags);
+}