aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm-project/clang/lib/CodeGen/CGVTables.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm-project/clang/lib/CodeGen/CGVTables.cpp')
-rw-r--r--contrib/llvm-project/clang/lib/CodeGen/CGVTables.cpp1355
1 files changed, 1355 insertions, 0 deletions
diff --git a/contrib/llvm-project/clang/lib/CodeGen/CGVTables.cpp b/contrib/llvm-project/clang/lib/CodeGen/CGVTables.cpp
new file mode 100644
index 000000000000..a0b5d9e4b096
--- /dev/null
+++ b/contrib/llvm-project/clang/lib/CodeGen/CGVTables.cpp
@@ -0,0 +1,1355 @@
+//===--- CGVTables.cpp - Emit LLVM Code for C++ vtables -------------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This contains code dealing with C++ code generation of virtual tables.
+//
+//===----------------------------------------------------------------------===//
+
+#include "CGCXXABI.h"
+#include "CodeGenFunction.h"
+#include "CodeGenModule.h"
+#include "clang/AST/Attr.h"
+#include "clang/AST/CXXInheritance.h"
+#include "clang/AST/RecordLayout.h"
+#include "clang/Basic/CodeGenOptions.h"
+#include "clang/CodeGen/CGFunctionInfo.h"
+#include "clang/CodeGen/ConstantInitBuilder.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/Support/Format.h"
+#include "llvm/Transforms/Utils/Cloning.h"
+#include <algorithm>
+#include <cstdio>
+
+using namespace clang;
+using namespace CodeGen;
+
+CodeGenVTables::CodeGenVTables(CodeGenModule &CGM)
+ : CGM(CGM), VTContext(CGM.getContext().getVTableContext()) {}
+
+llvm::Constant *CodeGenModule::GetAddrOfThunk(StringRef Name, llvm::Type *FnTy,
+ GlobalDecl GD) {
+ return GetOrCreateLLVMFunction(Name, FnTy, GD, /*ForVTable=*/true,
+ /*DontDefer=*/true, /*IsThunk=*/true);
+}
+
+static void setThunkProperties(CodeGenModule &CGM, const ThunkInfo &Thunk,
+ llvm::Function *ThunkFn, bool ForVTable,
+ GlobalDecl GD) {
+ CGM.setFunctionLinkage(GD, ThunkFn);
+ CGM.getCXXABI().setThunkLinkage(ThunkFn, ForVTable, GD,
+ !Thunk.Return.isEmpty());
+
+ // Set the right visibility.
+ CGM.setGVProperties(ThunkFn, GD);
+
+ if (!CGM.getCXXABI().exportThunk()) {
+ ThunkFn->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
+ ThunkFn->setDSOLocal(true);
+ }
+
+ if (CGM.supportsCOMDAT() && ThunkFn->isWeakForLinker())
+ ThunkFn->setComdat(CGM.getModule().getOrInsertComdat(ThunkFn->getName()));
+}
+
+#ifndef NDEBUG
+static bool similar(const ABIArgInfo &infoL, CanQualType typeL,
+ const ABIArgInfo &infoR, CanQualType typeR) {
+ return (infoL.getKind() == infoR.getKind() &&
+ (typeL == typeR ||
+ (isa<PointerType>(typeL) && isa<PointerType>(typeR)) ||
+ (isa<ReferenceType>(typeL) && isa<ReferenceType>(typeR))));
+}
+#endif
+
+static RValue PerformReturnAdjustment(CodeGenFunction &CGF,
+ QualType ResultType, RValue RV,
+ const ThunkInfo &Thunk) {
+ // Emit the return adjustment.
+ bool NullCheckValue = !ResultType->isReferenceType();
+
+ llvm::BasicBlock *AdjustNull = nullptr;
+ llvm::BasicBlock *AdjustNotNull = nullptr;
+ llvm::BasicBlock *AdjustEnd = nullptr;
+
+ llvm::Value *ReturnValue = RV.getScalarVal();
+
+ if (NullCheckValue) {
+ AdjustNull = CGF.createBasicBlock("adjust.null");
+ AdjustNotNull = CGF.createBasicBlock("adjust.notnull");
+ AdjustEnd = CGF.createBasicBlock("adjust.end");
+
+ llvm::Value *IsNull = CGF.Builder.CreateIsNull(ReturnValue);
+ CGF.Builder.CreateCondBr(IsNull, AdjustNull, AdjustNotNull);
+ CGF.EmitBlock(AdjustNotNull);
+ }
+
+ auto ClassDecl = ResultType->getPointeeType()->getAsCXXRecordDecl();
+ auto ClassAlign = CGF.CGM.getClassPointerAlignment(ClassDecl);
+ ReturnValue = CGF.CGM.getCXXABI().performReturnAdjustment(
+ CGF,
+ Address(ReturnValue, CGF.ConvertTypeForMem(ResultType->getPointeeType()),
+ ClassAlign),
+ Thunk.Return);
+
+ if (NullCheckValue) {
+ CGF.Builder.CreateBr(AdjustEnd);
+ CGF.EmitBlock(AdjustNull);
+ CGF.Builder.CreateBr(AdjustEnd);
+ CGF.EmitBlock(AdjustEnd);
+
+ llvm::PHINode *PHI = CGF.Builder.CreatePHI(ReturnValue->getType(), 2);
+ PHI->addIncoming(ReturnValue, AdjustNotNull);
+ PHI->addIncoming(llvm::Constant::getNullValue(ReturnValue->getType()),
+ AdjustNull);
+ ReturnValue = PHI;
+ }
+
+ return RValue::get(ReturnValue);
+}
+
+/// This function clones a function's DISubprogram node and enters it into
+/// a value map with the intent that the map can be utilized by the cloner
+/// to short-circuit Metadata node mapping.
+/// Furthermore, the function resolves any DILocalVariable nodes referenced
+/// by dbg.value intrinsics so they can be properly mapped during cloning.
+static void resolveTopLevelMetadata(llvm::Function *Fn,
+ llvm::ValueToValueMapTy &VMap) {
+ // Clone the DISubprogram node and put it into the Value map.
+ auto *DIS = Fn->getSubprogram();
+ if (!DIS)
+ return;
+ auto *NewDIS = DIS->replaceWithDistinct(DIS->clone());
+ VMap.MD()[DIS].reset(NewDIS);
+
+ // Find all llvm.dbg.declare intrinsics and resolve the DILocalVariable nodes
+ // they are referencing.
+ for (auto &BB : *Fn) {
+ for (auto &I : BB) {
+ if (auto *DII = dyn_cast<llvm::DbgVariableIntrinsic>(&I)) {
+ auto *DILocal = DII->getVariable();
+ if (!DILocal->isResolved())
+ DILocal->resolve();
+ }
+ }
+ }
+}
+
+// This function does roughly the same thing as GenerateThunk, but in a
+// very different way, so that va_start and va_end work correctly.
+// FIXME: This function assumes "this" is the first non-sret LLVM argument of
+// a function, and that there is an alloca built in the entry block
+// for all accesses to "this".
+// FIXME: This function assumes there is only one "ret" statement per function.
+// FIXME: Cloning isn't correct in the presence of indirect goto!
+// FIXME: This implementation of thunks bloats codesize by duplicating the
+// function definition. There are alternatives:
+// 1. Add some sort of stub support to LLVM for cases where we can
+// do a this adjustment, then a sibcall.
+// 2. We could transform the definition to take a va_list instead of an
+// actual variable argument list, then have the thunks (including a
+// no-op thunk for the regular definition) call va_start/va_end.
+// There's a bit of per-call overhead for this solution, but it's
+// better for codesize if the definition is long.
+llvm::Function *
+CodeGenFunction::GenerateVarArgsThunk(llvm::Function *Fn,
+ const CGFunctionInfo &FnInfo,
+ GlobalDecl GD, const ThunkInfo &Thunk) {
+ const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
+ const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
+ QualType ResultType = FPT->getReturnType();
+
+ // Get the original function
+ assert(FnInfo.isVariadic());
+ llvm::Type *Ty = CGM.getTypes().GetFunctionType(FnInfo);
+ llvm::Value *Callee = CGM.GetAddrOfFunction(GD, Ty, /*ForVTable=*/true);
+ llvm::Function *BaseFn = cast<llvm::Function>(Callee);
+
+ // Cloning can't work if we don't have a definition. The Microsoft ABI may
+ // require thunks when a definition is not available. Emit an error in these
+ // cases.
+ if (!MD->isDefined()) {
+ CGM.ErrorUnsupported(MD, "return-adjusting thunk with variadic arguments");
+ return Fn;
+ }
+ assert(!BaseFn->isDeclaration() && "cannot clone undefined variadic method");
+
+ // Clone to thunk.
+ llvm::ValueToValueMapTy VMap;
+
+ // We are cloning a function while some Metadata nodes are still unresolved.
+ // Ensure that the value mapper does not encounter any of them.
+ resolveTopLevelMetadata(BaseFn, VMap);
+ llvm::Function *NewFn = llvm::CloneFunction(BaseFn, VMap);
+ Fn->replaceAllUsesWith(NewFn);
+ NewFn->takeName(Fn);
+ Fn->eraseFromParent();
+ Fn = NewFn;
+
+ // "Initialize" CGF (minimally).
+ CurFn = Fn;
+
+ // Get the "this" value
+ llvm::Function::arg_iterator AI = Fn->arg_begin();
+ if (CGM.ReturnTypeUsesSRet(FnInfo))
+ ++AI;
+
+ // Find the first store of "this", which will be to the alloca associated
+ // with "this".
+ Address ThisPtr =
+ Address(&*AI, ConvertTypeForMem(MD->getThisType()->getPointeeType()),
+ CGM.getClassPointerAlignment(MD->getParent()));
+ llvm::BasicBlock *EntryBB = &Fn->front();
+ llvm::BasicBlock::iterator ThisStore =
+ llvm::find_if(*EntryBB, [&](llvm::Instruction &I) {
+ return isa<llvm::StoreInst>(I) &&
+ I.getOperand(0) == ThisPtr.getPointer();
+ });
+ assert(ThisStore != EntryBB->end() &&
+ "Store of this should be in entry block?");
+ // Adjust "this", if necessary.
+ Builder.SetInsertPoint(&*ThisStore);
+ llvm::Value *AdjustedThisPtr =
+ CGM.getCXXABI().performThisAdjustment(*this, ThisPtr, Thunk.This);
+ AdjustedThisPtr = Builder.CreateBitCast(AdjustedThisPtr,
+ ThisStore->getOperand(0)->getType());
+ ThisStore->setOperand(0, AdjustedThisPtr);
+
+ if (!Thunk.Return.isEmpty()) {
+ // Fix up the returned value, if necessary.
+ for (llvm::BasicBlock &BB : *Fn) {
+ llvm::Instruction *T = BB.getTerminator();
+ if (isa<llvm::ReturnInst>(T)) {
+ RValue RV = RValue::get(T->getOperand(0));
+ T->eraseFromParent();
+ Builder.SetInsertPoint(&BB);
+ RV = PerformReturnAdjustment(*this, ResultType, RV, Thunk);
+ Builder.CreateRet(RV.getScalarVal());
+ break;
+ }
+ }
+ }
+
+ return Fn;
+}
+
+void CodeGenFunction::StartThunk(llvm::Function *Fn, GlobalDecl GD,
+ const CGFunctionInfo &FnInfo,
+ bool IsUnprototyped) {
+ assert(!CurGD.getDecl() && "CurGD was already set!");
+ CurGD = GD;
+ CurFuncIsThunk = true;
+
+ // Build FunctionArgs.
+ const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
+ QualType ThisType = MD->getThisType();
+ QualType ResultType;
+ if (IsUnprototyped)
+ ResultType = CGM.getContext().VoidTy;
+ else if (CGM.getCXXABI().HasThisReturn(GD))
+ ResultType = ThisType;
+ else if (CGM.getCXXABI().hasMostDerivedReturn(GD))
+ ResultType = CGM.getContext().VoidPtrTy;
+ else
+ ResultType = MD->getType()->castAs<FunctionProtoType>()->getReturnType();
+ FunctionArgList FunctionArgs;
+
+ // Create the implicit 'this' parameter declaration.
+ CGM.getCXXABI().buildThisParam(*this, FunctionArgs);
+
+ // Add the rest of the parameters, if we have a prototype to work with.
+ if (!IsUnprototyped) {
+ FunctionArgs.append(MD->param_begin(), MD->param_end());
+
+ if (isa<CXXDestructorDecl>(MD))
+ CGM.getCXXABI().addImplicitStructorParams(*this, ResultType,
+ FunctionArgs);
+ }
+
+ // Start defining the function.
+ auto NL = ApplyDebugLocation::CreateEmpty(*this);
+ StartFunction(GlobalDecl(), ResultType, Fn, FnInfo, FunctionArgs,
+ MD->getLocation());
+ // Create a scope with an artificial location for the body of this function.
+ auto AL = ApplyDebugLocation::CreateArtificial(*this);
+
+ // Since we didn't pass a GlobalDecl to StartFunction, do this ourselves.
+ CGM.getCXXABI().EmitInstanceFunctionProlog(*this);
+ CXXThisValue = CXXABIThisValue;
+ CurCodeDecl = MD;
+ CurFuncDecl = MD;
+}
+
+void CodeGenFunction::FinishThunk() {
+ // Clear these to restore the invariants expected by
+ // StartFunction/FinishFunction.
+ CurCodeDecl = nullptr;
+ CurFuncDecl = nullptr;
+
+ FinishFunction();
+}
+
+void CodeGenFunction::EmitCallAndReturnForThunk(llvm::FunctionCallee Callee,
+ const ThunkInfo *Thunk,
+ bool IsUnprototyped) {
+ assert(isa<CXXMethodDecl>(CurGD.getDecl()) &&
+ "Please use a new CGF for this thunk");
+ const CXXMethodDecl *MD = cast<CXXMethodDecl>(CurGD.getDecl());
+
+ // Adjust the 'this' pointer if necessary
+ llvm::Value *AdjustedThisPtr =
+ Thunk ? CGM.getCXXABI().performThisAdjustment(
+ *this, LoadCXXThisAddress(), Thunk->This)
+ : LoadCXXThis();
+
+ // If perfect forwarding is required a variadic method, a method using
+ // inalloca, or an unprototyped thunk, use musttail. Emit an error if this
+ // thunk requires a return adjustment, since that is impossible with musttail.
+ if (CurFnInfo->usesInAlloca() || CurFnInfo->isVariadic() || IsUnprototyped) {
+ if (Thunk && !Thunk->Return.isEmpty()) {
+ if (IsUnprototyped)
+ CGM.ErrorUnsupported(
+ MD, "return-adjusting thunk with incomplete parameter type");
+ else if (CurFnInfo->isVariadic())
+ llvm_unreachable("shouldn't try to emit musttail return-adjusting "
+ "thunks for variadic functions");
+ else
+ CGM.ErrorUnsupported(
+ MD, "non-trivial argument copy for return-adjusting thunk");
+ }
+ EmitMustTailThunk(CurGD, AdjustedThisPtr, Callee);
+ return;
+ }
+
+ // Start building CallArgs.
+ CallArgList CallArgs;
+ QualType ThisType = MD->getThisType();
+ CallArgs.add(RValue::get(AdjustedThisPtr), ThisType);
+
+ if (isa<CXXDestructorDecl>(MD))
+ CGM.getCXXABI().adjustCallArgsForDestructorThunk(*this, CurGD, CallArgs);
+
+#ifndef NDEBUG
+ unsigned PrefixArgs = CallArgs.size() - 1;
+#endif
+ // Add the rest of the arguments.
+ for (const ParmVarDecl *PD : MD->parameters())
+ EmitDelegateCallArg(CallArgs, PD, SourceLocation());
+
+ const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
+
+#ifndef NDEBUG
+ const CGFunctionInfo &CallFnInfo = CGM.getTypes().arrangeCXXMethodCall(
+ CallArgs, FPT, RequiredArgs::forPrototypePlus(FPT, 1), PrefixArgs);
+ assert(CallFnInfo.getRegParm() == CurFnInfo->getRegParm() &&
+ CallFnInfo.isNoReturn() == CurFnInfo->isNoReturn() &&
+ CallFnInfo.getCallingConvention() == CurFnInfo->getCallingConvention());
+ assert(isa<CXXDestructorDecl>(MD) || // ignore dtor return types
+ similar(CallFnInfo.getReturnInfo(), CallFnInfo.getReturnType(),
+ CurFnInfo->getReturnInfo(), CurFnInfo->getReturnType()));
+ assert(CallFnInfo.arg_size() == CurFnInfo->arg_size());
+ for (unsigned i = 0, e = CurFnInfo->arg_size(); i != e; ++i)
+ assert(similar(CallFnInfo.arg_begin()[i].info,
+ CallFnInfo.arg_begin()[i].type,
+ CurFnInfo->arg_begin()[i].info,
+ CurFnInfo->arg_begin()[i].type));
+#endif
+
+ // Determine whether we have a return value slot to use.
+ QualType ResultType = CGM.getCXXABI().HasThisReturn(CurGD)
+ ? ThisType
+ : CGM.getCXXABI().hasMostDerivedReturn(CurGD)
+ ? CGM.getContext().VoidPtrTy
+ : FPT->getReturnType();
+ ReturnValueSlot Slot;
+ if (!ResultType->isVoidType() &&
+ (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect ||
+ hasAggregateEvaluationKind(ResultType)))
+ Slot = ReturnValueSlot(ReturnValue, ResultType.isVolatileQualified(),
+ /*IsUnused=*/false, /*IsExternallyDestructed=*/true);
+
+ // Now emit our call.
+ llvm::CallBase *CallOrInvoke;
+ RValue RV = EmitCall(*CurFnInfo, CGCallee::forDirect(Callee, CurGD), Slot,
+ CallArgs, &CallOrInvoke);
+
+ // Consider return adjustment if we have ThunkInfo.
+ if (Thunk && !Thunk->Return.isEmpty())
+ RV = PerformReturnAdjustment(*this, ResultType, RV, *Thunk);
+ else if (llvm::CallInst* Call = dyn_cast<llvm::CallInst>(CallOrInvoke))
+ Call->setTailCallKind(llvm::CallInst::TCK_Tail);
+
+ // Emit return.
+ if (!ResultType->isVoidType() && Slot.isNull())
+ CGM.getCXXABI().EmitReturnFromThunk(*this, RV, ResultType);
+
+ // Disable the final ARC autorelease.
+ AutoreleaseResult = false;
+
+ FinishThunk();
+}
+
+void CodeGenFunction::EmitMustTailThunk(GlobalDecl GD,
+ llvm::Value *AdjustedThisPtr,
+ llvm::FunctionCallee Callee) {
+ // Emitting a musttail call thunk doesn't use any of the CGCall.cpp machinery
+ // to translate AST arguments into LLVM IR arguments. For thunks, we know
+ // that the caller prototype more or less matches the callee prototype with
+ // the exception of 'this'.
+ SmallVector<llvm::Value *, 8> Args(llvm::make_pointer_range(CurFn->args()));
+
+ // Set the adjusted 'this' pointer.
+ const ABIArgInfo &ThisAI = CurFnInfo->arg_begin()->info;
+ if (ThisAI.isDirect()) {
+ const ABIArgInfo &RetAI = CurFnInfo->getReturnInfo();
+ int ThisArgNo = RetAI.isIndirect() && !RetAI.isSRetAfterThis() ? 1 : 0;
+ llvm::Type *ThisType = Args[ThisArgNo]->getType();
+ if (ThisType != AdjustedThisPtr->getType())
+ AdjustedThisPtr = Builder.CreateBitCast(AdjustedThisPtr, ThisType);
+ Args[ThisArgNo] = AdjustedThisPtr;
+ } else {
+ assert(ThisAI.isInAlloca() && "this is passed directly or inalloca");
+ Address ThisAddr = GetAddrOfLocalVar(CXXABIThisDecl);
+ llvm::Type *ThisType = ThisAddr.getElementType();
+ if (ThisType != AdjustedThisPtr->getType())
+ AdjustedThisPtr = Builder.CreateBitCast(AdjustedThisPtr, ThisType);
+ Builder.CreateStore(AdjustedThisPtr, ThisAddr);
+ }
+
+ // Emit the musttail call manually. Even if the prologue pushed cleanups, we
+ // don't actually want to run them.
+ llvm::CallInst *Call = Builder.CreateCall(Callee, Args);
+ Call->setTailCallKind(llvm::CallInst::TCK_MustTail);
+
+ // Apply the standard set of call attributes.
+ unsigned CallingConv;
+ llvm::AttributeList Attrs;
+ CGM.ConstructAttributeList(Callee.getCallee()->getName(), *CurFnInfo, GD,
+ Attrs, CallingConv, /*AttrOnCallSite=*/true,
+ /*IsThunk=*/false);
+ Call->setAttributes(Attrs);
+ Call->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
+
+ if (Call->getType()->isVoidTy())
+ Builder.CreateRetVoid();
+ else
+ Builder.CreateRet(Call);
+
+ // Finish the function to maintain CodeGenFunction invariants.
+ // FIXME: Don't emit unreachable code.
+ EmitBlock(createBasicBlock());
+
+ FinishThunk();
+}
+
+void CodeGenFunction::generateThunk(llvm::Function *Fn,
+ const CGFunctionInfo &FnInfo, GlobalDecl GD,
+ const ThunkInfo &Thunk,
+ bool IsUnprototyped) {
+ StartThunk(Fn, GD, FnInfo, IsUnprototyped);
+ // Create a scope with an artificial location for the body of this function.
+ auto AL = ApplyDebugLocation::CreateArtificial(*this);
+
+ // Get our callee. Use a placeholder type if this method is unprototyped so
+ // that CodeGenModule doesn't try to set attributes.
+ llvm::Type *Ty;
+ if (IsUnprototyped)
+ Ty = llvm::StructType::get(getLLVMContext());
+ else
+ Ty = CGM.getTypes().GetFunctionType(FnInfo);
+
+ llvm::Constant *Callee = CGM.GetAddrOfFunction(GD, Ty, /*ForVTable=*/true);
+
+ // Fix up the function type for an unprototyped musttail call.
+ if (IsUnprototyped)
+ Callee = llvm::ConstantExpr::getBitCast(Callee, Fn->getType());
+
+ // Make the call and return the result.
+ EmitCallAndReturnForThunk(llvm::FunctionCallee(Fn->getFunctionType(), Callee),
+ &Thunk, IsUnprototyped);
+}
+
+static bool shouldEmitVTableThunk(CodeGenModule &CGM, const CXXMethodDecl *MD,
+ bool IsUnprototyped, bool ForVTable) {
+ // Always emit thunks in the MS C++ ABI. We cannot rely on other TUs to
+ // provide thunks for us.
+ if (CGM.getTarget().getCXXABI().isMicrosoft())
+ return true;
+
+ // In the Itanium C++ ABI, vtable thunks are provided by TUs that provide
+ // definitions of the main method. Therefore, emitting thunks with the vtable
+ // is purely an optimization. Emit the thunk if optimizations are enabled and
+ // all of the parameter types are complete.
+ if (ForVTable)
+ return CGM.getCodeGenOpts().OptimizationLevel && !IsUnprototyped;
+
+ // Always emit thunks along with the method definition.
+ return true;
+}
+
+llvm::Constant *CodeGenVTables::maybeEmitThunk(GlobalDecl GD,
+ const ThunkInfo &TI,
+ bool ForVTable) {
+ const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
+
+ // First, get a declaration. Compute the mangled name. Don't worry about
+ // getting the function prototype right, since we may only need this
+ // declaration to fill in a vtable slot.
+ SmallString<256> Name;
+ MangleContext &MCtx = CGM.getCXXABI().getMangleContext();
+ llvm::raw_svector_ostream Out(Name);
+ if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD))
+ MCtx.mangleCXXDtorThunk(DD, GD.getDtorType(), TI.This, Out);
+ else
+ MCtx.mangleThunk(MD, TI, Out);
+ llvm::Type *ThunkVTableTy = CGM.getTypes().GetFunctionTypeForVTable(GD);
+ llvm::Constant *Thunk = CGM.GetAddrOfThunk(Name, ThunkVTableTy, GD);
+
+ // If we don't need to emit a definition, return this declaration as is.
+ bool IsUnprototyped = !CGM.getTypes().isFuncTypeConvertible(
+ MD->getType()->castAs<FunctionType>());
+ if (!shouldEmitVTableThunk(CGM, MD, IsUnprototyped, ForVTable))
+ return Thunk;
+
+ // Arrange a function prototype appropriate for a function definition. In some
+ // cases in the MS ABI, we may need to build an unprototyped musttail thunk.
+ const CGFunctionInfo &FnInfo =
+ IsUnprototyped ? CGM.getTypes().arrangeUnprototypedMustTailThunk(MD)
+ : CGM.getTypes().arrangeGlobalDeclaration(GD);
+ llvm::FunctionType *ThunkFnTy = CGM.getTypes().GetFunctionType(FnInfo);
+
+ // If the type of the underlying GlobalValue is wrong, we'll have to replace
+ // it. It should be a declaration.
+ llvm::Function *ThunkFn = cast<llvm::Function>(Thunk->stripPointerCasts());
+ if (ThunkFn->getFunctionType() != ThunkFnTy) {
+ llvm::GlobalValue *OldThunkFn = ThunkFn;
+
+ assert(OldThunkFn->isDeclaration() && "Shouldn't replace non-declaration");
+
+ // Remove the name from the old thunk function and get a new thunk.
+ OldThunkFn->setName(StringRef());
+ ThunkFn = llvm::Function::Create(ThunkFnTy, llvm::Function::ExternalLinkage,
+ Name.str(), &CGM.getModule());
+ CGM.SetLLVMFunctionAttributes(MD, FnInfo, ThunkFn, /*IsThunk=*/false);
+
+ // If needed, replace the old thunk with a bitcast.
+ if (!OldThunkFn->use_empty()) {
+ llvm::Constant *NewPtrForOldDecl =
+ llvm::ConstantExpr::getBitCast(ThunkFn, OldThunkFn->getType());
+ OldThunkFn->replaceAllUsesWith(NewPtrForOldDecl);
+ }
+
+ // Remove the old thunk.
+ OldThunkFn->eraseFromParent();
+ }
+
+ bool ABIHasKeyFunctions = CGM.getTarget().getCXXABI().hasKeyFunctions();
+ bool UseAvailableExternallyLinkage = ForVTable && ABIHasKeyFunctions;
+
+ if (!ThunkFn->isDeclaration()) {
+ if (!ABIHasKeyFunctions || UseAvailableExternallyLinkage) {
+ // There is already a thunk emitted for this function, do nothing.
+ return ThunkFn;
+ }
+
+ setThunkProperties(CGM, TI, ThunkFn, ForVTable, GD);
+ return ThunkFn;
+ }
+
+ // If this will be unprototyped, add the "thunk" attribute so that LLVM knows
+ // that the return type is meaningless. These thunks can be used to call
+ // functions with differing return types, and the caller is required to cast
+ // the prototype appropriately to extract the correct value.
+ if (IsUnprototyped)
+ ThunkFn->addFnAttr("thunk");
+
+ CGM.SetLLVMFunctionAttributesForDefinition(GD.getDecl(), ThunkFn);
+
+ // Thunks for variadic methods are special because in general variadic
+ // arguments cannot be perfectly forwarded. In the general case, clang
+ // implements such thunks by cloning the original function body. However, for
+ // thunks with no return adjustment on targets that support musttail, we can
+ // use musttail to perfectly forward the variadic arguments.
+ bool ShouldCloneVarArgs = false;
+ if (!IsUnprototyped && ThunkFn->isVarArg()) {
+ ShouldCloneVarArgs = true;
+ if (TI.Return.isEmpty()) {
+ switch (CGM.getTriple().getArch()) {
+ case llvm::Triple::x86_64:
+ case llvm::Triple::x86:
+ case llvm::Triple::aarch64:
+ ShouldCloneVarArgs = false;
+ break;
+ default:
+ break;
+ }
+ }
+ }
+
+ if (ShouldCloneVarArgs) {
+ if (UseAvailableExternallyLinkage)
+ return ThunkFn;
+ ThunkFn =
+ CodeGenFunction(CGM).GenerateVarArgsThunk(ThunkFn, FnInfo, GD, TI);
+ } else {
+ // Normal thunk body generation.
+ CodeGenFunction(CGM).generateThunk(ThunkFn, FnInfo, GD, TI, IsUnprototyped);
+ }
+
+ setThunkProperties(CGM, TI, ThunkFn, ForVTable, GD);
+ return ThunkFn;
+}
+
+void CodeGenVTables::EmitThunks(GlobalDecl GD) {
+ const CXXMethodDecl *MD =
+ cast<CXXMethodDecl>(GD.getDecl())->getCanonicalDecl();
+
+ // We don't need to generate thunks for the base destructor.
+ if (isa<CXXDestructorDecl>(MD) && GD.getDtorType() == Dtor_Base)
+ return;
+
+ const VTableContextBase::ThunkInfoVectorTy *ThunkInfoVector =
+ VTContext->getThunkInfo(GD);
+
+ if (!ThunkInfoVector)
+ return;
+
+ for (const ThunkInfo& Thunk : *ThunkInfoVector)
+ maybeEmitThunk(GD, Thunk, /*ForVTable=*/false);
+}
+
+void CodeGenVTables::addRelativeComponent(ConstantArrayBuilder &builder,
+ llvm::Constant *component,
+ unsigned vtableAddressPoint,
+ bool vtableHasLocalLinkage,
+ bool isCompleteDtor) const {
+ // No need to get the offset of a nullptr.
+ if (component->isNullValue())
+ return builder.add(llvm::ConstantInt::get(CGM.Int32Ty, 0));
+
+ auto *globalVal =
+ cast<llvm::GlobalValue>(component->stripPointerCastsAndAliases());
+ llvm::Module &module = CGM.getModule();
+
+ // We don't want to copy the linkage of the vtable exactly because we still
+ // want the stub/proxy to be emitted for properly calculating the offset.
+ // Examples where there would be no symbol emitted are available_externally
+ // and private linkages.
+ auto stubLinkage = vtableHasLocalLinkage ? llvm::GlobalValue::InternalLinkage
+ : llvm::GlobalValue::ExternalLinkage;
+
+ llvm::Constant *target;
+ if (auto *func = dyn_cast<llvm::Function>(globalVal)) {
+ target = llvm::DSOLocalEquivalent::get(func);
+ } else {
+ llvm::SmallString<16> rttiProxyName(globalVal->getName());
+ rttiProxyName.append(".rtti_proxy");
+
+ // The RTTI component may not always be emitted in the same linkage unit as
+ // the vtable. As a general case, we can make a dso_local proxy to the RTTI
+ // that points to the actual RTTI struct somewhere. This will result in a
+ // GOTPCREL relocation when taking the relative offset to the proxy.
+ llvm::GlobalVariable *proxy = module.getNamedGlobal(rttiProxyName);
+ if (!proxy) {
+ proxy = new llvm::GlobalVariable(module, globalVal->getType(),
+ /*isConstant=*/true, stubLinkage,
+ globalVal, rttiProxyName);
+ proxy->setDSOLocal(true);
+ proxy->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
+ if (!proxy->hasLocalLinkage()) {
+ proxy->setVisibility(llvm::GlobalValue::HiddenVisibility);
+ proxy->setComdat(module.getOrInsertComdat(rttiProxyName));
+ }
+ // Do not instrument the rtti proxies with hwasan to avoid a duplicate
+ // symbol error. Aliases generated by hwasan will retain the same namebut
+ // the addresses they are set to may have different tags from different
+ // compilation units. We don't run into this without hwasan because the
+ // proxies are in comdat groups, but those aren't propagated to the alias.
+ RemoveHwasanMetadata(proxy);
+ }
+ target = proxy;
+ }
+
+ builder.addRelativeOffsetToPosition(CGM.Int32Ty, target,
+ /*position=*/vtableAddressPoint);
+}
+
+static bool UseRelativeLayout(const CodeGenModule &CGM) {
+ return CGM.getTarget().getCXXABI().isItaniumFamily() &&
+ CGM.getItaniumVTableContext().isRelativeLayout();
+}
+
+bool CodeGenVTables::useRelativeLayout() const {
+ return UseRelativeLayout(CGM);
+}
+
+llvm::Type *CodeGenModule::getVTableComponentType() const {
+ if (UseRelativeLayout(*this))
+ return Int32Ty;
+ return Int8PtrTy;
+}
+
+llvm::Type *CodeGenVTables::getVTableComponentType() const {
+ return CGM.getVTableComponentType();
+}
+
+static void AddPointerLayoutOffset(const CodeGenModule &CGM,
+ ConstantArrayBuilder &builder,
+ CharUnits offset) {
+ builder.add(llvm::ConstantExpr::getIntToPtr(
+ llvm::ConstantInt::get(CGM.PtrDiffTy, offset.getQuantity()),
+ CGM.Int8PtrTy));
+}
+
+static void AddRelativeLayoutOffset(const CodeGenModule &CGM,
+ ConstantArrayBuilder &builder,
+ CharUnits offset) {
+ builder.add(llvm::ConstantInt::get(CGM.Int32Ty, offset.getQuantity()));
+}
+
+void CodeGenVTables::addVTableComponent(ConstantArrayBuilder &builder,
+ const VTableLayout &layout,
+ unsigned componentIndex,
+ llvm::Constant *rtti,
+ unsigned &nextVTableThunkIndex,
+ unsigned vtableAddressPoint,
+ bool vtableHasLocalLinkage) {
+ auto &component = layout.vtable_components()[componentIndex];
+
+ auto addOffsetConstant =
+ useRelativeLayout() ? AddRelativeLayoutOffset : AddPointerLayoutOffset;
+
+ switch (component.getKind()) {
+ case VTableComponent::CK_VCallOffset:
+ return addOffsetConstant(CGM, builder, component.getVCallOffset());
+
+ case VTableComponent::CK_VBaseOffset:
+ return addOffsetConstant(CGM, builder, component.getVBaseOffset());
+
+ case VTableComponent::CK_OffsetToTop:
+ return addOffsetConstant(CGM, builder, component.getOffsetToTop());
+
+ case VTableComponent::CK_RTTI:
+ if (useRelativeLayout())
+ return addRelativeComponent(builder, rtti, vtableAddressPoint,
+ vtableHasLocalLinkage,
+ /*isCompleteDtor=*/false);
+ else
+ return builder.add(llvm::ConstantExpr::getBitCast(rtti, CGM.Int8PtrTy));
+
+ case VTableComponent::CK_FunctionPointer:
+ case VTableComponent::CK_CompleteDtorPointer:
+ case VTableComponent::CK_DeletingDtorPointer: {
+ GlobalDecl GD = component.getGlobalDecl();
+
+ if (CGM.getLangOpts().CUDA) {
+ // Emit NULL for methods we can't codegen on this
+ // side. Otherwise we'd end up with vtable with unresolved
+ // references.
+ const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
+ // OK on device side: functions w/ __device__ attribute
+ // OK on host side: anything except __device__-only functions.
+ bool CanEmitMethod =
+ CGM.getLangOpts().CUDAIsDevice
+ ? MD->hasAttr<CUDADeviceAttr>()
+ : (MD->hasAttr<CUDAHostAttr>() || !MD->hasAttr<CUDADeviceAttr>());
+ if (!CanEmitMethod)
+ return builder.add(llvm::ConstantExpr::getNullValue(CGM.Int8PtrTy));
+ // Method is acceptable, continue processing as usual.
+ }
+
+ auto getSpecialVirtualFn = [&](StringRef name) -> llvm::Constant * {
+ // FIXME(PR43094): When merging comdat groups, lld can select a local
+ // symbol as the signature symbol even though it cannot be accessed
+ // outside that symbol's TU. The relative vtables ABI would make
+ // __cxa_pure_virtual and __cxa_deleted_virtual local symbols, and
+ // depending on link order, the comdat groups could resolve to the one
+ // with the local symbol. As a temporary solution, fill these components
+ // with zero. We shouldn't be calling these in the first place anyway.
+ if (useRelativeLayout())
+ return llvm::ConstantPointerNull::get(CGM.Int8PtrTy);
+
+ // For NVPTX devices in OpenMP emit special functon as null pointers,
+ // otherwise linking ends up with unresolved references.
+ if (CGM.getLangOpts().OpenMP && CGM.getLangOpts().OpenMPIsDevice &&
+ CGM.getTriple().isNVPTX())
+ return llvm::ConstantPointerNull::get(CGM.Int8PtrTy);
+ llvm::FunctionType *fnTy =
+ llvm::FunctionType::get(CGM.VoidTy, /*isVarArg=*/false);
+ llvm::Constant *fn = cast<llvm::Constant>(
+ CGM.CreateRuntimeFunction(fnTy, name).getCallee());
+ if (auto f = dyn_cast<llvm::Function>(fn))
+ f->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
+ return llvm::ConstantExpr::getBitCast(fn, CGM.Int8PtrTy);
+ };
+
+ llvm::Constant *fnPtr;
+
+ // Pure virtual member functions.
+ if (cast<CXXMethodDecl>(GD.getDecl())->isPure()) {
+ if (!PureVirtualFn)
+ PureVirtualFn =
+ getSpecialVirtualFn(CGM.getCXXABI().GetPureVirtualCallName());
+ fnPtr = PureVirtualFn;
+
+ // Deleted virtual member functions.
+ } else if (cast<CXXMethodDecl>(GD.getDecl())->isDeleted()) {
+ if (!DeletedVirtualFn)
+ DeletedVirtualFn =
+ getSpecialVirtualFn(CGM.getCXXABI().GetDeletedVirtualCallName());
+ fnPtr = DeletedVirtualFn;
+
+ // Thunks.
+ } else if (nextVTableThunkIndex < layout.vtable_thunks().size() &&
+ layout.vtable_thunks()[nextVTableThunkIndex].first ==
+ componentIndex) {
+ auto &thunkInfo = layout.vtable_thunks()[nextVTableThunkIndex].second;
+
+ nextVTableThunkIndex++;
+ fnPtr = maybeEmitThunk(GD, thunkInfo, /*ForVTable=*/true);
+
+ // Otherwise we can use the method definition directly.
+ } else {
+ llvm::Type *fnTy = CGM.getTypes().GetFunctionTypeForVTable(GD);
+ fnPtr = CGM.GetAddrOfFunction(GD, fnTy, /*ForVTable=*/true);
+ }
+
+ if (useRelativeLayout()) {
+ return addRelativeComponent(
+ builder, fnPtr, vtableAddressPoint, vtableHasLocalLinkage,
+ component.getKind() == VTableComponent::CK_CompleteDtorPointer);
+ } else
+ return builder.add(llvm::ConstantExpr::getBitCast(fnPtr, CGM.Int8PtrTy));
+ }
+
+ case VTableComponent::CK_UnusedFunctionPointer:
+ if (useRelativeLayout())
+ return builder.add(llvm::ConstantExpr::getNullValue(CGM.Int32Ty));
+ else
+ return builder.addNullPointer(CGM.Int8PtrTy);
+ }
+
+ llvm_unreachable("Unexpected vtable component kind");
+}
+
+llvm::Type *CodeGenVTables::getVTableType(const VTableLayout &layout) {
+ SmallVector<llvm::Type *, 4> tys;
+ llvm::Type *componentType = getVTableComponentType();
+ for (unsigned i = 0, e = layout.getNumVTables(); i != e; ++i)
+ tys.push_back(llvm::ArrayType::get(componentType, layout.getVTableSize(i)));
+
+ return llvm::StructType::get(CGM.getLLVMContext(), tys);
+}
+
+void CodeGenVTables::createVTableInitializer(ConstantStructBuilder &builder,
+ const VTableLayout &layout,
+ llvm::Constant *rtti,
+ bool vtableHasLocalLinkage) {
+ llvm::Type *componentType = getVTableComponentType();
+
+ const auto &addressPoints = layout.getAddressPointIndices();
+ unsigned nextVTableThunkIndex = 0;
+ for (unsigned vtableIndex = 0, endIndex = layout.getNumVTables();
+ vtableIndex != endIndex; ++vtableIndex) {
+ auto vtableElem = builder.beginArray(componentType);
+
+ size_t vtableStart = layout.getVTableOffset(vtableIndex);
+ size_t vtableEnd = vtableStart + layout.getVTableSize(vtableIndex);
+ for (size_t componentIndex = vtableStart; componentIndex < vtableEnd;
+ ++componentIndex) {
+ addVTableComponent(vtableElem, layout, componentIndex, rtti,
+ nextVTableThunkIndex, addressPoints[vtableIndex],
+ vtableHasLocalLinkage);
+ }
+ vtableElem.finishAndAddTo(builder);
+ }
+}
+
+llvm::GlobalVariable *CodeGenVTables::GenerateConstructionVTable(
+ const CXXRecordDecl *RD, const BaseSubobject &Base, bool BaseIsVirtual,
+ llvm::GlobalVariable::LinkageTypes Linkage,
+ VTableAddressPointsMapTy &AddressPoints) {
+ if (CGDebugInfo *DI = CGM.getModuleDebugInfo())
+ DI->completeClassData(Base.getBase());
+
+ std::unique_ptr<VTableLayout> VTLayout(
+ getItaniumVTableContext().createConstructionVTableLayout(
+ Base.getBase(), Base.getBaseOffset(), BaseIsVirtual, RD));
+
+ // Add the address points.
+ AddressPoints = VTLayout->getAddressPoints();
+
+ // Get the mangled construction vtable name.
+ SmallString<256> OutName;
+ llvm::raw_svector_ostream Out(OutName);
+ cast<ItaniumMangleContext>(CGM.getCXXABI().getMangleContext())
+ .mangleCXXCtorVTable(RD, Base.getBaseOffset().getQuantity(),
+ Base.getBase(), Out);
+ SmallString<256> Name(OutName);
+
+ bool UsingRelativeLayout = getItaniumVTableContext().isRelativeLayout();
+ bool VTableAliasExists =
+ UsingRelativeLayout && CGM.getModule().getNamedAlias(Name);
+ if (VTableAliasExists) {
+ // We previously made the vtable hidden and changed its name.
+ Name.append(".local");
+ }
+
+ llvm::Type *VTType = getVTableType(*VTLayout);
+
+ // Construction vtable symbols are not part of the Itanium ABI, so we cannot
+ // guarantee that they actually will be available externally. Instead, when
+ // emitting an available_externally VTT, we provide references to an internal
+ // linkage construction vtable. The ABI only requires complete-object vtables
+ // to be the same for all instances of a type, not construction vtables.
+ if (Linkage == llvm::GlobalVariable::AvailableExternallyLinkage)
+ Linkage = llvm::GlobalVariable::InternalLinkage;
+
+ llvm::Align Align = CGM.getDataLayout().getABITypeAlign(VTType);
+
+ // Create the variable that will hold the construction vtable.
+ llvm::GlobalVariable *VTable =
+ CGM.CreateOrReplaceCXXRuntimeVariable(Name, VTType, Linkage, Align);
+
+ // V-tables are always unnamed_addr.
+ VTable->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
+
+ llvm::Constant *RTTI = CGM.GetAddrOfRTTIDescriptor(
+ CGM.getContext().getTagDeclType(Base.getBase()));
+
+ // Create and set the initializer.
+ ConstantInitBuilder builder(CGM);
+ auto components = builder.beginStruct();
+ createVTableInitializer(components, *VTLayout, RTTI,
+ VTable->hasLocalLinkage());
+ components.finishAndSetAsInitializer(VTable);
+
+ // Set properties only after the initializer has been set to ensure that the
+ // GV is treated as definition and not declaration.
+ assert(!VTable->isDeclaration() && "Shouldn't set properties on declaration");
+ CGM.setGVProperties(VTable, RD);
+
+ CGM.EmitVTableTypeMetadata(RD, VTable, *VTLayout.get());
+
+ if (UsingRelativeLayout) {
+ RemoveHwasanMetadata(VTable);
+ if (!VTable->isDSOLocal())
+ GenerateRelativeVTableAlias(VTable, OutName);
+ }
+
+ return VTable;
+}
+
+// Ensure this vtable is not instrumented by hwasan. That is, a global alias is
+// not generated for it. This is mainly used by the relative-vtables ABI where
+// vtables instead contain 32-bit offsets between the vtable and function
+// pointers. Hwasan is disabled for these vtables for now because the tag in a
+// vtable pointer may fail the overflow check when resolving 32-bit PLT
+// relocations. A future alternative for this would be finding which usages of
+// the vtable can continue to use the untagged hwasan value without any loss of
+// value in hwasan.
+void CodeGenVTables::RemoveHwasanMetadata(llvm::GlobalValue *GV) const {
+ if (CGM.getLangOpts().Sanitize.has(SanitizerKind::HWAddress)) {
+ llvm::GlobalValue::SanitizerMetadata Meta;
+ if (GV->hasSanitizerMetadata())
+ Meta = GV->getSanitizerMetadata();
+ Meta.NoHWAddress = true;
+ GV->setSanitizerMetadata(Meta);
+ }
+}
+
+// If the VTable is not dso_local, then we will not be able to indicate that
+// the VTable does not need a relocation and move into rodata. A frequent
+// time this can occur is for classes that should be made public from a DSO
+// (like in libc++). For cases like these, we can make the vtable hidden or
+// private and create a public alias with the same visibility and linkage as
+// the original vtable type.
+void CodeGenVTables::GenerateRelativeVTableAlias(llvm::GlobalVariable *VTable,
+ llvm::StringRef AliasNameRef) {
+ assert(getItaniumVTableContext().isRelativeLayout() &&
+ "Can only use this if the relative vtable ABI is used");
+ assert(!VTable->isDSOLocal() && "This should be called only if the vtable is "
+ "not guaranteed to be dso_local");
+
+ // If the vtable is available_externally, we shouldn't (or need to) generate
+ // an alias for it in the first place since the vtable won't actually by
+ // emitted in this compilation unit.
+ if (VTable->hasAvailableExternallyLinkage())
+ return;
+
+ // Create a new string in the event the alias is already the name of the
+ // vtable. Using the reference directly could lead to use of an inititialized
+ // value in the module's StringMap.
+ llvm::SmallString<256> AliasName(AliasNameRef);
+ VTable->setName(AliasName + ".local");
+
+ auto Linkage = VTable->getLinkage();
+ assert(llvm::GlobalAlias::isValidLinkage(Linkage) &&
+ "Invalid vtable alias linkage");
+
+ llvm::GlobalAlias *VTableAlias = CGM.getModule().getNamedAlias(AliasName);
+ if (!VTableAlias) {
+ VTableAlias = llvm::GlobalAlias::create(VTable->getValueType(),
+ VTable->getAddressSpace(), Linkage,
+ AliasName, &CGM.getModule());
+ } else {
+ assert(VTableAlias->getValueType() == VTable->getValueType());
+ assert(VTableAlias->getLinkage() == Linkage);
+ }
+ VTableAlias->setVisibility(VTable->getVisibility());
+ VTableAlias->setUnnamedAddr(VTable->getUnnamedAddr());
+
+ // Both of these imply dso_local for the vtable.
+ if (!VTable->hasComdat()) {
+ // If this is in a comdat, then we shouldn't make the linkage private due to
+ // an issue in lld where private symbols can be used as the key symbol when
+ // choosing the prevelant group. This leads to "relocation refers to a
+ // symbol in a discarded section".
+ VTable->setLinkage(llvm::GlobalValue::PrivateLinkage);
+ } else {
+ // We should at least make this hidden since we don't want to expose it.
+ VTable->setVisibility(llvm::GlobalValue::HiddenVisibility);
+ }
+
+ VTableAlias->setAliasee(VTable);
+}
+
+static bool shouldEmitAvailableExternallyVTable(const CodeGenModule &CGM,
+ const CXXRecordDecl *RD) {
+ return CGM.getCodeGenOpts().OptimizationLevel > 0 &&
+ CGM.getCXXABI().canSpeculativelyEmitVTable(RD);
+}
+
+/// Compute the required linkage of the vtable for the given class.
+///
+/// Note that we only call this at the end of the translation unit.
+llvm::GlobalVariable::LinkageTypes
+CodeGenModule::getVTableLinkage(const CXXRecordDecl *RD) {
+ if (!RD->isExternallyVisible())
+ return llvm::GlobalVariable::InternalLinkage;
+
+ // We're at the end of the translation unit, so the current key
+ // function is fully correct.
+ const CXXMethodDecl *keyFunction = Context.getCurrentKeyFunction(RD);
+ if (keyFunction && !RD->hasAttr<DLLImportAttr>()) {
+ // If this class has a key function, use that to determine the
+ // linkage of the vtable.
+ const FunctionDecl *def = nullptr;
+ if (keyFunction->hasBody(def))
+ keyFunction = cast<CXXMethodDecl>(def);
+
+ switch (keyFunction->getTemplateSpecializationKind()) {
+ case TSK_Undeclared:
+ case TSK_ExplicitSpecialization:
+ assert((def || CodeGenOpts.OptimizationLevel > 0 ||
+ CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo) &&
+ "Shouldn't query vtable linkage without key function, "
+ "optimizations, or debug info");
+ if (!def && CodeGenOpts.OptimizationLevel > 0)
+ return llvm::GlobalVariable::AvailableExternallyLinkage;
+
+ if (keyFunction->isInlined())
+ return !Context.getLangOpts().AppleKext ?
+ llvm::GlobalVariable::LinkOnceODRLinkage :
+ llvm::Function::InternalLinkage;
+
+ return llvm::GlobalVariable::ExternalLinkage;
+
+ case TSK_ImplicitInstantiation:
+ return !Context.getLangOpts().AppleKext ?
+ llvm::GlobalVariable::LinkOnceODRLinkage :
+ llvm::Function::InternalLinkage;
+
+ case TSK_ExplicitInstantiationDefinition:
+ return !Context.getLangOpts().AppleKext ?
+ llvm::GlobalVariable::WeakODRLinkage :
+ llvm::Function::InternalLinkage;
+
+ case TSK_ExplicitInstantiationDeclaration:
+ llvm_unreachable("Should not have been asked to emit this");
+ }
+ }
+
+ // -fapple-kext mode does not support weak linkage, so we must use
+ // internal linkage.
+ if (Context.getLangOpts().AppleKext)
+ return llvm::Function::InternalLinkage;
+
+ llvm::GlobalVariable::LinkageTypes DiscardableODRLinkage =
+ llvm::GlobalValue::LinkOnceODRLinkage;
+ llvm::GlobalVariable::LinkageTypes NonDiscardableODRLinkage =
+ llvm::GlobalValue::WeakODRLinkage;
+ if (RD->hasAttr<DLLExportAttr>()) {
+ // Cannot discard exported vtables.
+ DiscardableODRLinkage = NonDiscardableODRLinkage;
+ } else if (RD->hasAttr<DLLImportAttr>()) {
+ // Imported vtables are available externally.
+ DiscardableODRLinkage = llvm::GlobalVariable::AvailableExternallyLinkage;
+ NonDiscardableODRLinkage = llvm::GlobalVariable::AvailableExternallyLinkage;
+ }
+
+ switch (RD->getTemplateSpecializationKind()) {
+ case TSK_Undeclared:
+ case TSK_ExplicitSpecialization:
+ case TSK_ImplicitInstantiation:
+ return DiscardableODRLinkage;
+
+ case TSK_ExplicitInstantiationDeclaration:
+ // Explicit instantiations in MSVC do not provide vtables, so we must emit
+ // our own.
+ if (getTarget().getCXXABI().isMicrosoft())
+ return DiscardableODRLinkage;
+ return shouldEmitAvailableExternallyVTable(*this, RD)
+ ? llvm::GlobalVariable::AvailableExternallyLinkage
+ : llvm::GlobalVariable::ExternalLinkage;
+
+ case TSK_ExplicitInstantiationDefinition:
+ return NonDiscardableODRLinkage;
+ }
+
+ llvm_unreachable("Invalid TemplateSpecializationKind!");
+}
+
+/// This is a callback from Sema to tell us that a particular vtable is
+/// required to be emitted in this translation unit.
+///
+/// This is only called for vtables that _must_ be emitted (mainly due to key
+/// functions). For weak vtables, CodeGen tracks when they are needed and
+/// emits them as-needed.
+void CodeGenModule::EmitVTable(CXXRecordDecl *theClass) {
+ VTables.GenerateClassData(theClass);
+}
+
+void
+CodeGenVTables::GenerateClassData(const CXXRecordDecl *RD) {
+ if (CGDebugInfo *DI = CGM.getModuleDebugInfo())
+ DI->completeClassData(RD);
+
+ if (RD->getNumVBases())
+ CGM.getCXXABI().emitVirtualInheritanceTables(RD);
+
+ CGM.getCXXABI().emitVTableDefinitions(*this, RD);
+}
+
+/// At this point in the translation unit, does it appear that can we
+/// rely on the vtable being defined elsewhere in the program?
+///
+/// The response is really only definitive when called at the end of
+/// the translation unit.
+///
+/// The only semantic restriction here is that the object file should
+/// not contain a vtable definition when that vtable is defined
+/// strongly elsewhere. Otherwise, we'd just like to avoid emitting
+/// vtables when unnecessary.
+bool CodeGenVTables::isVTableExternal(const CXXRecordDecl *RD) {
+ assert(RD->isDynamicClass() && "Non-dynamic classes have no VTable.");
+
+ // We always synthesize vtables if they are needed in the MS ABI. MSVC doesn't
+ // emit them even if there is an explicit template instantiation.
+ if (CGM.getTarget().getCXXABI().isMicrosoft())
+ return false;
+
+ // If we have an explicit instantiation declaration (and not a
+ // definition), the vtable is defined elsewhere.
+ TemplateSpecializationKind TSK = RD->getTemplateSpecializationKind();
+ if (TSK == TSK_ExplicitInstantiationDeclaration)
+ return true;
+
+ // Otherwise, if the class is an instantiated template, the
+ // vtable must be defined here.
+ if (TSK == TSK_ImplicitInstantiation ||
+ TSK == TSK_ExplicitInstantiationDefinition)
+ return false;
+
+ // Otherwise, if the class doesn't have a key function (possibly
+ // anymore), the vtable must be defined here.
+ const CXXMethodDecl *keyFunction = CGM.getContext().getCurrentKeyFunction(RD);
+ if (!keyFunction)
+ return false;
+
+ // Otherwise, if we don't have a definition of the key function, the
+ // vtable must be defined somewhere else.
+ return !keyFunction->hasBody();
+}
+
+/// Given that we're currently at the end of the translation unit, and
+/// we've emitted a reference to the vtable for this class, should
+/// we define that vtable?
+static bool shouldEmitVTableAtEndOfTranslationUnit(CodeGenModule &CGM,
+ const CXXRecordDecl *RD) {
+ // If vtable is internal then it has to be done.
+ if (!CGM.getVTables().isVTableExternal(RD))
+ return true;
+
+ // If it's external then maybe we will need it as available_externally.
+ return shouldEmitAvailableExternallyVTable(CGM, RD);
+}
+
+/// Given that at some point we emitted a reference to one or more
+/// vtables, and that we are now at the end of the translation unit,
+/// decide whether we should emit them.
+void CodeGenModule::EmitDeferredVTables() {
+#ifndef NDEBUG
+ // Remember the size of DeferredVTables, because we're going to assume
+ // that this entire operation doesn't modify it.
+ size_t savedSize = DeferredVTables.size();
+#endif
+
+ for (const CXXRecordDecl *RD : DeferredVTables)
+ if (shouldEmitVTableAtEndOfTranslationUnit(*this, RD))
+ VTables.GenerateClassData(RD);
+ else if (shouldOpportunisticallyEmitVTables())
+ OpportunisticVTables.push_back(RD);
+
+ assert(savedSize == DeferredVTables.size() &&
+ "deferred extra vtables during vtable emission?");
+ DeferredVTables.clear();
+}
+
+bool CodeGenModule::AlwaysHasLTOVisibilityPublic(const CXXRecordDecl *RD) {
+ if (RD->hasAttr<LTOVisibilityPublicAttr>() || RD->hasAttr<UuidAttr>())
+ return true;
+
+ if (!getCodeGenOpts().LTOVisibilityPublicStd)
+ return false;
+
+ const DeclContext *DC = RD;
+ while (true) {
+ auto *D = cast<Decl>(DC);
+ DC = DC->getParent();
+ if (isa<TranslationUnitDecl>(DC->getRedeclContext())) {
+ if (auto *ND = dyn_cast<NamespaceDecl>(D))
+ if (const IdentifierInfo *II = ND->getIdentifier())
+ if (II->isStr("std") || II->isStr("stdext"))
+ return true;
+ break;
+ }
+ }
+
+ return false;
+}
+
+bool CodeGenModule::HasHiddenLTOVisibility(const CXXRecordDecl *RD) {
+ LinkageInfo LV = RD->getLinkageAndVisibility();
+ if (!isExternallyVisible(LV.getLinkage()))
+ return true;
+
+ if (getTriple().isOSBinFormatCOFF()) {
+ if (RD->hasAttr<DLLExportAttr>() || RD->hasAttr<DLLImportAttr>())
+ return false;
+ } else {
+ if (LV.getVisibility() != HiddenVisibility)
+ return false;
+ }
+
+ return !AlwaysHasLTOVisibilityPublic(RD);
+}
+
+llvm::GlobalObject::VCallVisibility CodeGenModule::GetVCallVisibilityLevel(
+ const CXXRecordDecl *RD, llvm::DenseSet<const CXXRecordDecl *> &Visited) {
+ // If we have already visited this RD (which means this is a recursive call
+ // since the initial call should have an empty Visited set), return the max
+ // visibility. The recursive calls below compute the min between the result
+ // of the recursive call and the current TypeVis, so returning the max here
+ // ensures that it will have no effect on the current TypeVis.
+ if (!Visited.insert(RD).second)
+ return llvm::GlobalObject::VCallVisibilityTranslationUnit;
+
+ LinkageInfo LV = RD->getLinkageAndVisibility();
+ llvm::GlobalObject::VCallVisibility TypeVis;
+ if (!isExternallyVisible(LV.getLinkage()))
+ TypeVis = llvm::GlobalObject::VCallVisibilityTranslationUnit;
+ else if (HasHiddenLTOVisibility(RD))
+ TypeVis = llvm::GlobalObject::VCallVisibilityLinkageUnit;
+ else
+ TypeVis = llvm::GlobalObject::VCallVisibilityPublic;
+
+ for (auto B : RD->bases())
+ if (B.getType()->getAsCXXRecordDecl()->isDynamicClass())
+ TypeVis = std::min(
+ TypeVis,
+ GetVCallVisibilityLevel(B.getType()->getAsCXXRecordDecl(), Visited));
+
+ for (auto B : RD->vbases())
+ if (B.getType()->getAsCXXRecordDecl()->isDynamicClass())
+ TypeVis = std::min(
+ TypeVis,
+ GetVCallVisibilityLevel(B.getType()->getAsCXXRecordDecl(), Visited));
+
+ return TypeVis;
+}
+
+void CodeGenModule::EmitVTableTypeMetadata(const CXXRecordDecl *RD,
+ llvm::GlobalVariable *VTable,
+ const VTableLayout &VTLayout) {
+ if (!getCodeGenOpts().LTOUnit)
+ return;
+
+ CharUnits ComponentWidth = GetTargetTypeStoreSize(getVTableComponentType());
+
+ typedef std::pair<const CXXRecordDecl *, unsigned> AddressPoint;
+ std::vector<AddressPoint> AddressPoints;
+ for (auto &&AP : VTLayout.getAddressPoints())
+ AddressPoints.push_back(std::make_pair(
+ AP.first.getBase(), VTLayout.getVTableOffset(AP.second.VTableIndex) +
+ AP.second.AddressPointIndex));
+
+ // Sort the address points for determinism.
+ llvm::sort(AddressPoints, [this](const AddressPoint &AP1,
+ const AddressPoint &AP2) {
+ if (&AP1 == &AP2)
+ return false;
+
+ std::string S1;
+ llvm::raw_string_ostream O1(S1);
+ getCXXABI().getMangleContext().mangleTypeName(
+ QualType(AP1.first->getTypeForDecl(), 0), O1);
+ O1.flush();
+
+ std::string S2;
+ llvm::raw_string_ostream O2(S2);
+ getCXXABI().getMangleContext().mangleTypeName(
+ QualType(AP2.first->getTypeForDecl(), 0), O2);
+ O2.flush();
+
+ if (S1 < S2)
+ return true;
+ if (S1 != S2)
+ return false;
+
+ return AP1.second < AP2.second;
+ });
+
+ ArrayRef<VTableComponent> Comps = VTLayout.vtable_components();
+ for (auto AP : AddressPoints) {
+ // Create type metadata for the address point.
+ AddVTableTypeMetadata(VTable, ComponentWidth * AP.second, AP.first);
+
+ // The class associated with each address point could also potentially be
+ // used for indirect calls via a member function pointer, so we need to
+ // annotate the address of each function pointer with the appropriate member
+ // function pointer type.
+ for (unsigned I = 0; I != Comps.size(); ++I) {
+ if (Comps[I].getKind() != VTableComponent::CK_FunctionPointer)
+ continue;
+ llvm::Metadata *MD = CreateMetadataIdentifierForVirtualMemPtrType(
+ Context.getMemberPointerType(
+ Comps[I].getFunctionDecl()->getType(),
+ Context.getRecordType(AP.first).getTypePtr()));
+ VTable->addTypeMetadata((ComponentWidth * I).getQuantity(), MD);
+ }
+ }
+
+ if (getCodeGenOpts().VirtualFunctionElimination ||
+ getCodeGenOpts().WholeProgramVTables) {
+ llvm::DenseSet<const CXXRecordDecl *> Visited;
+ llvm::GlobalObject::VCallVisibility TypeVis =
+ GetVCallVisibilityLevel(RD, Visited);
+ if (TypeVis != llvm::GlobalObject::VCallVisibilityPublic)
+ VTable->setVCallVisibilityMetadata(TypeVis);
+ }
+}