diff options
Diffstat (limited to 'contrib/llvm-project/clang/lib/CodeGen/CodeGenFunction.cpp')
| -rw-r--r-- | contrib/llvm-project/clang/lib/CodeGen/CodeGenFunction.cpp | 2497 | 
1 files changed, 2497 insertions, 0 deletions
| diff --git a/contrib/llvm-project/clang/lib/CodeGen/CodeGenFunction.cpp b/contrib/llvm-project/clang/lib/CodeGen/CodeGenFunction.cpp new file mode 100644 index 000000000000..8ce488f35dd3 --- /dev/null +++ b/contrib/llvm-project/clang/lib/CodeGen/CodeGenFunction.cpp @@ -0,0 +1,2497 @@ +//===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// This coordinates the per-function state used while generating code. +// +//===----------------------------------------------------------------------===// + +#include "CodeGenFunction.h" +#include "CGBlocks.h" +#include "CGCUDARuntime.h" +#include "CGCXXABI.h" +#include "CGCleanup.h" +#include "CGDebugInfo.h" +#include "CGOpenMPRuntime.h" +#include "CodeGenModule.h" +#include "CodeGenPGO.h" +#include "TargetInfo.h" +#include "clang/AST/ASTContext.h" +#include "clang/AST/ASTLambda.h" +#include "clang/AST/Attr.h" +#include "clang/AST/Decl.h" +#include "clang/AST/DeclCXX.h" +#include "clang/AST/StmtCXX.h" +#include "clang/AST/StmtObjC.h" +#include "clang/Basic/Builtins.h" +#include "clang/Basic/CodeGenOptions.h" +#include "clang/Basic/TargetInfo.h" +#include "clang/CodeGen/CGFunctionInfo.h" +#include "clang/Frontend/FrontendDiagnostic.h" +#include "llvm/Frontend/OpenMP/OMPIRBuilder.h" +#include "llvm/IR/DataLayout.h" +#include "llvm/IR/Dominators.h" +#include "llvm/IR/FPEnv.h" +#include "llvm/IR/IntrinsicInst.h" +#include "llvm/IR/Intrinsics.h" +#include "llvm/IR/MDBuilder.h" +#include "llvm/IR/Operator.h" +#include "llvm/Transforms/Utils/PromoteMemToReg.h" +using namespace clang; +using namespace CodeGen; + +/// shouldEmitLifetimeMarkers - Decide whether we need emit the life-time +/// markers. +static bool shouldEmitLifetimeMarkers(const CodeGenOptions &CGOpts, +                                      const LangOptions &LangOpts) { +  if (CGOpts.DisableLifetimeMarkers) +    return false; + +  // Sanitizers may use markers. +  if (CGOpts.SanitizeAddressUseAfterScope || +      LangOpts.Sanitize.has(SanitizerKind::HWAddress) || +      LangOpts.Sanitize.has(SanitizerKind::Memory)) +    return true; + +  // For now, only in optimized builds. +  return CGOpts.OptimizationLevel != 0; +} + +CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext) +    : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()), +      Builder(cgm, cgm.getModule().getContext(), llvm::ConstantFolder(), +              CGBuilderInserterTy(this)), +      SanOpts(CGM.getLangOpts().Sanitize), CurFPFeatures(CGM.getLangOpts()), +      DebugInfo(CGM.getModuleDebugInfo()), PGO(cgm), +      ShouldEmitLifetimeMarkers( +          shouldEmitLifetimeMarkers(CGM.getCodeGenOpts(), CGM.getLangOpts())) { +  if (!suppressNewContext) +    CGM.getCXXABI().getMangleContext().startNewFunction(); + +  SetFastMathFlags(CurFPFeatures); +  SetFPModel(); +} + +CodeGenFunction::~CodeGenFunction() { +  assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup"); + +  if (getLangOpts().OpenMP && CurFn) +    CGM.getOpenMPRuntime().functionFinished(*this); + +  // If we have an OpenMPIRBuilder we want to finalize functions (incl. +  // outlining etc) at some point. Doing it once the function codegen is done +  // seems to be a reasonable spot. We do it here, as opposed to the deletion +  // time of the CodeGenModule, because we have to ensure the IR has not yet +  // been "emitted" to the outside, thus, modifications are still sensible. +  if (CGM.getLangOpts().OpenMPIRBuilder) +    CGM.getOpenMPRuntime().getOMPBuilder().finalize(); +} + +// Map the LangOption for exception behavior into +// the corresponding enum in the IR. +llvm::fp::ExceptionBehavior +clang::ToConstrainedExceptMD(LangOptions::FPExceptionModeKind Kind) { + +  switch (Kind) { +  case LangOptions::FPE_Ignore:  return llvm::fp::ebIgnore; +  case LangOptions::FPE_MayTrap: return llvm::fp::ebMayTrap; +  case LangOptions::FPE_Strict:  return llvm::fp::ebStrict; +  } +  llvm_unreachable("Unsupported FP Exception Behavior"); +} + +void CodeGenFunction::SetFPModel() { +  llvm::RoundingMode RM = getLangOpts().getFPRoundingMode(); +  auto fpExceptionBehavior = ToConstrainedExceptMD( +                               getLangOpts().getFPExceptionMode()); + +  Builder.setDefaultConstrainedRounding(RM); +  Builder.setDefaultConstrainedExcept(fpExceptionBehavior); +  Builder.setIsFPConstrained(fpExceptionBehavior != llvm::fp::ebIgnore || +                             RM != llvm::RoundingMode::NearestTiesToEven); +} + +void CodeGenFunction::SetFastMathFlags(FPOptions FPFeatures) { +  llvm::FastMathFlags FMF; +  FMF.setAllowReassoc(FPFeatures.getAllowFPReassociate()); +  FMF.setNoNaNs(FPFeatures.getNoHonorNaNs()); +  FMF.setNoInfs(FPFeatures.getNoHonorInfs()); +  FMF.setNoSignedZeros(FPFeatures.getNoSignedZero()); +  FMF.setAllowReciprocal(FPFeatures.getAllowReciprocal()); +  FMF.setApproxFunc(FPFeatures.getAllowApproxFunc()); +  FMF.setAllowContract(FPFeatures.allowFPContractAcrossStatement()); +  Builder.setFastMathFlags(FMF); +} + +CodeGenFunction::CGFPOptionsRAII::CGFPOptionsRAII(CodeGenFunction &CGF, +                                                  FPOptions FPFeatures) +    : CGF(CGF), OldFPFeatures(CGF.CurFPFeatures) { +  CGF.CurFPFeatures = FPFeatures; + +  if (OldFPFeatures == FPFeatures) +    return; + +  FMFGuard.emplace(CGF.Builder); + +  llvm::RoundingMode NewRoundingBehavior = +      static_cast<llvm::RoundingMode>(FPFeatures.getRoundingMode()); +  CGF.Builder.setDefaultConstrainedRounding(NewRoundingBehavior); +  auto NewExceptionBehavior = +      ToConstrainedExceptMD(static_cast<LangOptions::FPExceptionModeKind>( +          FPFeatures.getFPExceptionMode())); +  CGF.Builder.setDefaultConstrainedExcept(NewExceptionBehavior); + +  CGF.SetFastMathFlags(FPFeatures); + +  assert((CGF.CurFuncDecl == nullptr || CGF.Builder.getIsFPConstrained() || +          isa<CXXConstructorDecl>(CGF.CurFuncDecl) || +          isa<CXXDestructorDecl>(CGF.CurFuncDecl) || +          (NewExceptionBehavior == llvm::fp::ebIgnore && +           NewRoundingBehavior == llvm::RoundingMode::NearestTiesToEven)) && +         "FPConstrained should be enabled on entire function"); + +  auto mergeFnAttrValue = [&](StringRef Name, bool Value) { +    auto OldValue = +        CGF.CurFn->getFnAttribute(Name).getValueAsString() == "true"; +    auto NewValue = OldValue & Value; +    if (OldValue != NewValue) +      CGF.CurFn->addFnAttr(Name, llvm::toStringRef(NewValue)); +  }; +  mergeFnAttrValue("no-infs-fp-math", FPFeatures.getNoHonorInfs()); +  mergeFnAttrValue("no-nans-fp-math", FPFeatures.getNoHonorNaNs()); +  mergeFnAttrValue("no-signed-zeros-fp-math", FPFeatures.getNoSignedZero()); +  mergeFnAttrValue("unsafe-fp-math", FPFeatures.getAllowFPReassociate() && +                                         FPFeatures.getAllowReciprocal() && +                                         FPFeatures.getAllowApproxFunc() && +                                         FPFeatures.getNoSignedZero()); +} + +CodeGenFunction::CGFPOptionsRAII::~CGFPOptionsRAII() { +  CGF.CurFPFeatures = OldFPFeatures; +} + +LValue CodeGenFunction::MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) { +  LValueBaseInfo BaseInfo; +  TBAAAccessInfo TBAAInfo; +  CharUnits Alignment = CGM.getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo); +  return LValue::MakeAddr(Address(V, Alignment), T, getContext(), BaseInfo, +                          TBAAInfo); +} + +/// Given a value of type T* that may not be to a complete object, +/// construct an l-value with the natural pointee alignment of T. +LValue +CodeGenFunction::MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T) { +  LValueBaseInfo BaseInfo; +  TBAAAccessInfo TBAAInfo; +  CharUnits Align = CGM.getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo, +                                                /* forPointeeType= */ true); +  return MakeAddrLValue(Address(V, Align), T, BaseInfo, TBAAInfo); +} + + +llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) { +  return CGM.getTypes().ConvertTypeForMem(T); +} + +llvm::Type *CodeGenFunction::ConvertType(QualType T) { +  return CGM.getTypes().ConvertType(T); +} + +TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) { +  type = type.getCanonicalType(); +  while (true) { +    switch (type->getTypeClass()) { +#define TYPE(name, parent) +#define ABSTRACT_TYPE(name, parent) +#define NON_CANONICAL_TYPE(name, parent) case Type::name: +#define DEPENDENT_TYPE(name, parent) case Type::name: +#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name: +#include "clang/AST/TypeNodes.inc" +      llvm_unreachable("non-canonical or dependent type in IR-generation"); + +    case Type::Auto: +    case Type::DeducedTemplateSpecialization: +      llvm_unreachable("undeduced type in IR-generation"); + +    // Various scalar types. +    case Type::Builtin: +    case Type::Pointer: +    case Type::BlockPointer: +    case Type::LValueReference: +    case Type::RValueReference: +    case Type::MemberPointer: +    case Type::Vector: +    case Type::ExtVector: +    case Type::ConstantMatrix: +    case Type::FunctionProto: +    case Type::FunctionNoProto: +    case Type::Enum: +    case Type::ObjCObjectPointer: +    case Type::Pipe: +    case Type::ExtInt: +      return TEK_Scalar; + +    // Complexes. +    case Type::Complex: +      return TEK_Complex; + +    // Arrays, records, and Objective-C objects. +    case Type::ConstantArray: +    case Type::IncompleteArray: +    case Type::VariableArray: +    case Type::Record: +    case Type::ObjCObject: +    case Type::ObjCInterface: +      return TEK_Aggregate; + +    // We operate on atomic values according to their underlying type. +    case Type::Atomic: +      type = cast<AtomicType>(type)->getValueType(); +      continue; +    } +    llvm_unreachable("unknown type kind!"); +  } +} + +llvm::DebugLoc CodeGenFunction::EmitReturnBlock() { +  // For cleanliness, we try to avoid emitting the return block for +  // simple cases. +  llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); + +  if (CurBB) { +    assert(!CurBB->getTerminator() && "Unexpected terminated block."); + +    // We have a valid insert point, reuse it if it is empty or there are no +    // explicit jumps to the return block. +    if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) { +      ReturnBlock.getBlock()->replaceAllUsesWith(CurBB); +      delete ReturnBlock.getBlock(); +      ReturnBlock = JumpDest(); +    } else +      EmitBlock(ReturnBlock.getBlock()); +    return llvm::DebugLoc(); +  } + +  // Otherwise, if the return block is the target of a single direct +  // branch then we can just put the code in that block instead. This +  // cleans up functions which started with a unified return block. +  if (ReturnBlock.getBlock()->hasOneUse()) { +    llvm::BranchInst *BI = +      dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->user_begin()); +    if (BI && BI->isUnconditional() && +        BI->getSuccessor(0) == ReturnBlock.getBlock()) { +      // Record/return the DebugLoc of the simple 'return' expression to be used +      // later by the actual 'ret' instruction. +      llvm::DebugLoc Loc = BI->getDebugLoc(); +      Builder.SetInsertPoint(BI->getParent()); +      BI->eraseFromParent(); +      delete ReturnBlock.getBlock(); +      ReturnBlock = JumpDest(); +      return Loc; +    } +  } + +  // FIXME: We are at an unreachable point, there is no reason to emit the block +  // unless it has uses. However, we still need a place to put the debug +  // region.end for now. + +  EmitBlock(ReturnBlock.getBlock()); +  return llvm::DebugLoc(); +} + +static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) { +  if (!BB) return; +  if (!BB->use_empty()) +    return CGF.CurFn->getBasicBlockList().push_back(BB); +  delete BB; +} + +void CodeGenFunction::FinishFunction(SourceLocation EndLoc) { +  assert(BreakContinueStack.empty() && +         "mismatched push/pop in break/continue stack!"); + +  bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0 +    && NumSimpleReturnExprs == NumReturnExprs +    && ReturnBlock.getBlock()->use_empty(); +  // Usually the return expression is evaluated before the cleanup +  // code.  If the function contains only a simple return statement, +  // such as a constant, the location before the cleanup code becomes +  // the last useful breakpoint in the function, because the simple +  // return expression will be evaluated after the cleanup code. To be +  // safe, set the debug location for cleanup code to the location of +  // the return statement.  Otherwise the cleanup code should be at the +  // end of the function's lexical scope. +  // +  // If there are multiple branches to the return block, the branch +  // instructions will get the location of the return statements and +  // all will be fine. +  if (CGDebugInfo *DI = getDebugInfo()) { +    if (OnlySimpleReturnStmts) +      DI->EmitLocation(Builder, LastStopPoint); +    else +      DI->EmitLocation(Builder, EndLoc); +  } + +  // Pop any cleanups that might have been associated with the +  // parameters.  Do this in whatever block we're currently in; it's +  // important to do this before we enter the return block or return +  // edges will be *really* confused. +  bool HasCleanups = EHStack.stable_begin() != PrologueCleanupDepth; +  bool HasOnlyLifetimeMarkers = +      HasCleanups && EHStack.containsOnlyLifetimeMarkers(PrologueCleanupDepth); +  bool EmitRetDbgLoc = !HasCleanups || HasOnlyLifetimeMarkers; +  if (HasCleanups) { +    // Make sure the line table doesn't jump back into the body for +    // the ret after it's been at EndLoc. +    Optional<ApplyDebugLocation> AL; +    if (CGDebugInfo *DI = getDebugInfo()) { +      if (OnlySimpleReturnStmts) +        DI->EmitLocation(Builder, EndLoc); +      else +        // We may not have a valid end location. Try to apply it anyway, and +        // fall back to an artificial location if needed. +        AL = ApplyDebugLocation::CreateDefaultArtificial(*this, EndLoc); +    } + +    PopCleanupBlocks(PrologueCleanupDepth); +  } + +  // Emit function epilog (to return). +  llvm::DebugLoc Loc = EmitReturnBlock(); + +  if (ShouldInstrumentFunction()) { +    if (CGM.getCodeGenOpts().InstrumentFunctions) +      CurFn->addFnAttr("instrument-function-exit", "__cyg_profile_func_exit"); +    if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining) +      CurFn->addFnAttr("instrument-function-exit-inlined", +                       "__cyg_profile_func_exit"); +  } + +  // Emit debug descriptor for function end. +  if (CGDebugInfo *DI = getDebugInfo()) +    DI->EmitFunctionEnd(Builder, CurFn); + +  // Reset the debug location to that of the simple 'return' expression, if any +  // rather than that of the end of the function's scope '}'. +  ApplyDebugLocation AL(*this, Loc); +  EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc); +  EmitEndEHSpec(CurCodeDecl); + +  assert(EHStack.empty() && +         "did not remove all scopes from cleanup stack!"); + +  // If someone did an indirect goto, emit the indirect goto block at the end of +  // the function. +  if (IndirectBranch) { +    EmitBlock(IndirectBranch->getParent()); +    Builder.ClearInsertionPoint(); +  } + +  // If some of our locals escaped, insert a call to llvm.localescape in the +  // entry block. +  if (!EscapedLocals.empty()) { +    // Invert the map from local to index into a simple vector. There should be +    // no holes. +    SmallVector<llvm::Value *, 4> EscapeArgs; +    EscapeArgs.resize(EscapedLocals.size()); +    for (auto &Pair : EscapedLocals) +      EscapeArgs[Pair.second] = Pair.first; +    llvm::Function *FrameEscapeFn = llvm::Intrinsic::getDeclaration( +        &CGM.getModule(), llvm::Intrinsic::localescape); +    CGBuilderTy(*this, AllocaInsertPt).CreateCall(FrameEscapeFn, EscapeArgs); +  } + +  // Remove the AllocaInsertPt instruction, which is just a convenience for us. +  llvm::Instruction *Ptr = AllocaInsertPt; +  AllocaInsertPt = nullptr; +  Ptr->eraseFromParent(); + +  // If someone took the address of a label but never did an indirect goto, we +  // made a zero entry PHI node, which is illegal, zap it now. +  if (IndirectBranch) { +    llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress()); +    if (PN->getNumIncomingValues() == 0) { +      PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType())); +      PN->eraseFromParent(); +    } +  } + +  EmitIfUsed(*this, EHResumeBlock); +  EmitIfUsed(*this, TerminateLandingPad); +  EmitIfUsed(*this, TerminateHandler); +  EmitIfUsed(*this, UnreachableBlock); + +  for (const auto &FuncletAndParent : TerminateFunclets) +    EmitIfUsed(*this, FuncletAndParent.second); + +  if (CGM.getCodeGenOpts().EmitDeclMetadata) +    EmitDeclMetadata(); + +  for (SmallVectorImpl<std::pair<llvm::Instruction *, llvm::Value *> >::iterator +           I = DeferredReplacements.begin(), +           E = DeferredReplacements.end(); +       I != E; ++I) { +    I->first->replaceAllUsesWith(I->second); +    I->first->eraseFromParent(); +  } + +  // Eliminate CleanupDestSlot alloca by replacing it with SSA values and +  // PHIs if the current function is a coroutine. We don't do it for all +  // functions as it may result in slight increase in numbers of instructions +  // if compiled with no optimizations. We do it for coroutine as the lifetime +  // of CleanupDestSlot alloca make correct coroutine frame building very +  // difficult. +  if (NormalCleanupDest.isValid() && isCoroutine()) { +    llvm::DominatorTree DT(*CurFn); +    llvm::PromoteMemToReg( +        cast<llvm::AllocaInst>(NormalCleanupDest.getPointer()), DT); +    NormalCleanupDest = Address::invalid(); +  } + +  // Scan function arguments for vector width. +  for (llvm::Argument &A : CurFn->args()) +    if (auto *VT = dyn_cast<llvm::VectorType>(A.getType())) +      LargestVectorWidth = +          std::max((uint64_t)LargestVectorWidth, +                   VT->getPrimitiveSizeInBits().getKnownMinSize()); + +  // Update vector width based on return type. +  if (auto *VT = dyn_cast<llvm::VectorType>(CurFn->getReturnType())) +    LargestVectorWidth = +        std::max((uint64_t)LargestVectorWidth, +                 VT->getPrimitiveSizeInBits().getKnownMinSize()); + +  // Add the required-vector-width attribute. This contains the max width from: +  // 1. min-vector-width attribute used in the source program. +  // 2. Any builtins used that have a vector width specified. +  // 3. Values passed in and out of inline assembly. +  // 4. Width of vector arguments and return types for this function. +  // 5. Width of vector aguments and return types for functions called by this +  //    function. +  CurFn->addFnAttr("min-legal-vector-width", llvm::utostr(LargestVectorWidth)); + +  // If we generated an unreachable return block, delete it now. +  if (ReturnBlock.isValid() && ReturnBlock.getBlock()->use_empty()) { +    Builder.ClearInsertionPoint(); +    ReturnBlock.getBlock()->eraseFromParent(); +  } +  if (ReturnValue.isValid()) { +    auto *RetAlloca = dyn_cast<llvm::AllocaInst>(ReturnValue.getPointer()); +    if (RetAlloca && RetAlloca->use_empty()) { +      RetAlloca->eraseFromParent(); +      ReturnValue = Address::invalid(); +    } +  } +} + +/// ShouldInstrumentFunction - Return true if the current function should be +/// instrumented with __cyg_profile_func_* calls +bool CodeGenFunction::ShouldInstrumentFunction() { +  if (!CGM.getCodeGenOpts().InstrumentFunctions && +      !CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining && +      !CGM.getCodeGenOpts().InstrumentFunctionEntryBare) +    return false; +  if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) +    return false; +  return true; +} + +/// ShouldXRayInstrument - Return true if the current function should be +/// instrumented with XRay nop sleds. +bool CodeGenFunction::ShouldXRayInstrumentFunction() const { +  return CGM.getCodeGenOpts().XRayInstrumentFunctions; +} + +/// AlwaysEmitXRayCustomEvents - Return true if we should emit IR for calls to +/// the __xray_customevent(...) builtin calls, when doing XRay instrumentation. +bool CodeGenFunction::AlwaysEmitXRayCustomEvents() const { +  return CGM.getCodeGenOpts().XRayInstrumentFunctions && +         (CGM.getCodeGenOpts().XRayAlwaysEmitCustomEvents || +          CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask == +              XRayInstrKind::Custom); +} + +bool CodeGenFunction::AlwaysEmitXRayTypedEvents() const { +  return CGM.getCodeGenOpts().XRayInstrumentFunctions && +         (CGM.getCodeGenOpts().XRayAlwaysEmitTypedEvents || +          CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask == +              XRayInstrKind::Typed); +} + +llvm::Constant * +CodeGenFunction::EncodeAddrForUseInPrologue(llvm::Function *F, +                                            llvm::Constant *Addr) { +  // Addresses stored in prologue data can't require run-time fixups and must +  // be PC-relative. Run-time fixups are undesirable because they necessitate +  // writable text segments, which are unsafe. And absolute addresses are +  // undesirable because they break PIE mode. + +  // Add a layer of indirection through a private global. Taking its address +  // won't result in a run-time fixup, even if Addr has linkonce_odr linkage. +  auto *GV = new llvm::GlobalVariable(CGM.getModule(), Addr->getType(), +                                      /*isConstant=*/true, +                                      llvm::GlobalValue::PrivateLinkage, Addr); + +  // Create a PC-relative address. +  auto *GOTAsInt = llvm::ConstantExpr::getPtrToInt(GV, IntPtrTy); +  auto *FuncAsInt = llvm::ConstantExpr::getPtrToInt(F, IntPtrTy); +  auto *PCRelAsInt = llvm::ConstantExpr::getSub(GOTAsInt, FuncAsInt); +  return (IntPtrTy == Int32Ty) +             ? PCRelAsInt +             : llvm::ConstantExpr::getTrunc(PCRelAsInt, Int32Ty); +} + +llvm::Value * +CodeGenFunction::DecodeAddrUsedInPrologue(llvm::Value *F, +                                          llvm::Value *EncodedAddr) { +  // Reconstruct the address of the global. +  auto *PCRelAsInt = Builder.CreateSExt(EncodedAddr, IntPtrTy); +  auto *FuncAsInt = Builder.CreatePtrToInt(F, IntPtrTy, "func_addr.int"); +  auto *GOTAsInt = Builder.CreateAdd(PCRelAsInt, FuncAsInt, "global_addr.int"); +  auto *GOTAddr = Builder.CreateIntToPtr(GOTAsInt, Int8PtrPtrTy, "global_addr"); + +  // Load the original pointer through the global. +  return Builder.CreateLoad(Address(GOTAddr, getPointerAlign()), +                            "decoded_addr"); +} + +void CodeGenFunction::EmitOpenCLKernelMetadata(const FunctionDecl *FD, +                                               llvm::Function *Fn) +{ +  if (!FD->hasAttr<OpenCLKernelAttr>()) +    return; + +  llvm::LLVMContext &Context = getLLVMContext(); + +  CGM.GenOpenCLArgMetadata(Fn, FD, this); + +  if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) { +    QualType HintQTy = A->getTypeHint(); +    const ExtVectorType *HintEltQTy = HintQTy->getAs<ExtVectorType>(); +    bool IsSignedInteger = +        HintQTy->isSignedIntegerType() || +        (HintEltQTy && HintEltQTy->getElementType()->isSignedIntegerType()); +    llvm::Metadata *AttrMDArgs[] = { +        llvm::ConstantAsMetadata::get(llvm::UndefValue::get( +            CGM.getTypes().ConvertType(A->getTypeHint()))), +        llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( +            llvm::IntegerType::get(Context, 32), +            llvm::APInt(32, (uint64_t)(IsSignedInteger ? 1 : 0))))}; +    Fn->setMetadata("vec_type_hint", llvm::MDNode::get(Context, AttrMDArgs)); +  } + +  if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) { +    llvm::Metadata *AttrMDArgs[] = { +        llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())), +        llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())), +        llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))}; +    Fn->setMetadata("work_group_size_hint", llvm::MDNode::get(Context, AttrMDArgs)); +  } + +  if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) { +    llvm::Metadata *AttrMDArgs[] = { +        llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())), +        llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())), +        llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))}; +    Fn->setMetadata("reqd_work_group_size", llvm::MDNode::get(Context, AttrMDArgs)); +  } + +  if (const OpenCLIntelReqdSubGroupSizeAttr *A = +          FD->getAttr<OpenCLIntelReqdSubGroupSizeAttr>()) { +    llvm::Metadata *AttrMDArgs[] = { +        llvm::ConstantAsMetadata::get(Builder.getInt32(A->getSubGroupSize()))}; +    Fn->setMetadata("intel_reqd_sub_group_size", +                    llvm::MDNode::get(Context, AttrMDArgs)); +  } +} + +/// Determine whether the function F ends with a return stmt. +static bool endsWithReturn(const Decl* F) { +  const Stmt *Body = nullptr; +  if (auto *FD = dyn_cast_or_null<FunctionDecl>(F)) +    Body = FD->getBody(); +  else if (auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(F)) +    Body = OMD->getBody(); + +  if (auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) { +    auto LastStmt = CS->body_rbegin(); +    if (LastStmt != CS->body_rend()) +      return isa<ReturnStmt>(*LastStmt); +  } +  return false; +} + +void CodeGenFunction::markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn) { +  if (SanOpts.has(SanitizerKind::Thread)) { +    Fn->addFnAttr("sanitize_thread_no_checking_at_run_time"); +    Fn->removeFnAttr(llvm::Attribute::SanitizeThread); +  } +} + +/// Check if the return value of this function requires sanitization. +bool CodeGenFunction::requiresReturnValueCheck() const { +  return requiresReturnValueNullabilityCheck() || +         (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) && CurCodeDecl && +          CurCodeDecl->getAttr<ReturnsNonNullAttr>()); +} + +static bool matchesStlAllocatorFn(const Decl *D, const ASTContext &Ctx) { +  auto *MD = dyn_cast_or_null<CXXMethodDecl>(D); +  if (!MD || !MD->getDeclName().getAsIdentifierInfo() || +      !MD->getDeclName().getAsIdentifierInfo()->isStr("allocate") || +      (MD->getNumParams() != 1 && MD->getNumParams() != 2)) +    return false; + +  if (MD->parameters()[0]->getType().getCanonicalType() != Ctx.getSizeType()) +    return false; + +  if (MD->getNumParams() == 2) { +    auto *PT = MD->parameters()[1]->getType()->getAs<PointerType>(); +    if (!PT || !PT->isVoidPointerType() || +        !PT->getPointeeType().isConstQualified()) +      return false; +  } + +  return true; +} + +/// Return the UBSan prologue signature for \p FD if one is available. +static llvm::Constant *getPrologueSignature(CodeGenModule &CGM, +                                            const FunctionDecl *FD) { +  if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) +    if (!MD->isStatic()) +      return nullptr; +  return CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM); +} + +void CodeGenFunction::StartFunction(GlobalDecl GD, QualType RetTy, +                                    llvm::Function *Fn, +                                    const CGFunctionInfo &FnInfo, +                                    const FunctionArgList &Args, +                                    SourceLocation Loc, +                                    SourceLocation StartLoc) { +  assert(!CurFn && +         "Do not use a CodeGenFunction object for more than one function"); + +  const Decl *D = GD.getDecl(); + +  DidCallStackSave = false; +  CurCodeDecl = D; +  if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D)) +    if (FD->usesSEHTry()) +      CurSEHParent = FD; +  CurFuncDecl = (D ? D->getNonClosureContext() : nullptr); +  FnRetTy = RetTy; +  CurFn = Fn; +  CurFnInfo = &FnInfo; +  assert(CurFn->isDeclaration() && "Function already has body?"); + +  // If this function has been blacklisted for any of the enabled sanitizers, +  // disable the sanitizer for the function. +  do { +#define SANITIZER(NAME, ID)                                                    \ +  if (SanOpts.empty())                                                         \ +    break;                                                                     \ +  if (SanOpts.has(SanitizerKind::ID))                                          \ +    if (CGM.isInSanitizerBlacklist(SanitizerKind::ID, Fn, Loc))                \ +      SanOpts.set(SanitizerKind::ID, false); + +#include "clang/Basic/Sanitizers.def" +#undef SANITIZER +  } while (0); + +  if (D) { +    // Apply the no_sanitize* attributes to SanOpts. +    for (auto Attr : D->specific_attrs<NoSanitizeAttr>()) { +      SanitizerMask mask = Attr->getMask(); +      SanOpts.Mask &= ~mask; +      if (mask & SanitizerKind::Address) +        SanOpts.set(SanitizerKind::KernelAddress, false); +      if (mask & SanitizerKind::KernelAddress) +        SanOpts.set(SanitizerKind::Address, false); +      if (mask & SanitizerKind::HWAddress) +        SanOpts.set(SanitizerKind::KernelHWAddress, false); +      if (mask & SanitizerKind::KernelHWAddress) +        SanOpts.set(SanitizerKind::HWAddress, false); +    } +  } + +  // Apply sanitizer attributes to the function. +  if (SanOpts.hasOneOf(SanitizerKind::Address | SanitizerKind::KernelAddress)) +    Fn->addFnAttr(llvm::Attribute::SanitizeAddress); +  if (SanOpts.hasOneOf(SanitizerKind::HWAddress | SanitizerKind::KernelHWAddress)) +    Fn->addFnAttr(llvm::Attribute::SanitizeHWAddress); +  if (SanOpts.has(SanitizerKind::MemTag)) +    Fn->addFnAttr(llvm::Attribute::SanitizeMemTag); +  if (SanOpts.has(SanitizerKind::Thread)) +    Fn->addFnAttr(llvm::Attribute::SanitizeThread); +  if (SanOpts.hasOneOf(SanitizerKind::Memory | SanitizerKind::KernelMemory)) +    Fn->addFnAttr(llvm::Attribute::SanitizeMemory); +  if (SanOpts.has(SanitizerKind::SafeStack)) +    Fn->addFnAttr(llvm::Attribute::SafeStack); +  if (SanOpts.has(SanitizerKind::ShadowCallStack)) +    Fn->addFnAttr(llvm::Attribute::ShadowCallStack); + +  // Apply fuzzing attribute to the function. +  if (SanOpts.hasOneOf(SanitizerKind::Fuzzer | SanitizerKind::FuzzerNoLink)) +    Fn->addFnAttr(llvm::Attribute::OptForFuzzing); + +  // Ignore TSan memory acesses from within ObjC/ObjC++ dealloc, initialize, +  // .cxx_destruct, __destroy_helper_block_ and all of their calees at run time. +  if (SanOpts.has(SanitizerKind::Thread)) { +    if (const auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(D)) { +      IdentifierInfo *II = OMD->getSelector().getIdentifierInfoForSlot(0); +      if (OMD->getMethodFamily() == OMF_dealloc || +          OMD->getMethodFamily() == OMF_initialize || +          (OMD->getSelector().isUnarySelector() && II->isStr(".cxx_destruct"))) { +        markAsIgnoreThreadCheckingAtRuntime(Fn); +      } +    } +  } + +  // Ignore unrelated casts in STL allocate() since the allocator must cast +  // from void* to T* before object initialization completes. Don't match on the +  // namespace because not all allocators are in std:: +  if (D && SanOpts.has(SanitizerKind::CFIUnrelatedCast)) { +    if (matchesStlAllocatorFn(D, getContext())) +      SanOpts.Mask &= ~SanitizerKind::CFIUnrelatedCast; +  } + +  // Ignore null checks in coroutine functions since the coroutines passes +  // are not aware of how to move the extra UBSan instructions across the split +  // coroutine boundaries. +  if (D && SanOpts.has(SanitizerKind::Null)) +    if (const auto *FD = dyn_cast<FunctionDecl>(D)) +      if (FD->getBody() && +          FD->getBody()->getStmtClass() == Stmt::CoroutineBodyStmtClass) +        SanOpts.Mask &= ~SanitizerKind::Null; + +  // Apply xray attributes to the function (as a string, for now) +  if (const auto *XRayAttr = D ? D->getAttr<XRayInstrumentAttr>() : nullptr) { +    if (CGM.getCodeGenOpts().XRayInstrumentationBundle.has( +            XRayInstrKind::FunctionEntry) || +        CGM.getCodeGenOpts().XRayInstrumentationBundle.has( +            XRayInstrKind::FunctionExit)) { +      if (XRayAttr->alwaysXRayInstrument() && ShouldXRayInstrumentFunction()) +        Fn->addFnAttr("function-instrument", "xray-always"); +      if (XRayAttr->neverXRayInstrument()) +        Fn->addFnAttr("function-instrument", "xray-never"); +      if (const auto *LogArgs = D->getAttr<XRayLogArgsAttr>()) +        if (ShouldXRayInstrumentFunction()) +          Fn->addFnAttr("xray-log-args", +                        llvm::utostr(LogArgs->getArgumentCount())); +    } +  } else { +    if (ShouldXRayInstrumentFunction() && !CGM.imbueXRayAttrs(Fn, Loc)) +      Fn->addFnAttr( +          "xray-instruction-threshold", +          llvm::itostr(CGM.getCodeGenOpts().XRayInstructionThreshold)); +  } + +  if (ShouldXRayInstrumentFunction()) { +    if (CGM.getCodeGenOpts().XRayIgnoreLoops) +      Fn->addFnAttr("xray-ignore-loops"); + +    if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has( +            XRayInstrKind::FunctionExit)) +      Fn->addFnAttr("xray-skip-exit"); + +    if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has( +            XRayInstrKind::FunctionEntry)) +      Fn->addFnAttr("xray-skip-entry"); +  } + +  unsigned Count, Offset; +  if (const auto *Attr = +          D ? D->getAttr<PatchableFunctionEntryAttr>() : nullptr) { +    Count = Attr->getCount(); +    Offset = Attr->getOffset(); +  } else { +    Count = CGM.getCodeGenOpts().PatchableFunctionEntryCount; +    Offset = CGM.getCodeGenOpts().PatchableFunctionEntryOffset; +  } +  if (Count && Offset <= Count) { +    Fn->addFnAttr("patchable-function-entry", std::to_string(Count - Offset)); +    if (Offset) +      Fn->addFnAttr("patchable-function-prefix", std::to_string(Offset)); +  } + +  // Add no-jump-tables value. +  Fn->addFnAttr("no-jump-tables", +                llvm::toStringRef(CGM.getCodeGenOpts().NoUseJumpTables)); + +  // Add no-inline-line-tables value. +  if (CGM.getCodeGenOpts().NoInlineLineTables) +    Fn->addFnAttr("no-inline-line-tables"); + +  // Add profile-sample-accurate value. +  if (CGM.getCodeGenOpts().ProfileSampleAccurate) +    Fn->addFnAttr("profile-sample-accurate"); + +  if (!CGM.getCodeGenOpts().SampleProfileFile.empty()) +    Fn->addFnAttr("use-sample-profile"); + +  if (D && D->hasAttr<CFICanonicalJumpTableAttr>()) +    Fn->addFnAttr("cfi-canonical-jump-table"); + +  if (getLangOpts().OpenCL) { +    // Add metadata for a kernel function. +    if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) +      EmitOpenCLKernelMetadata(FD, Fn); +  } + +  // If we are checking function types, emit a function type signature as +  // prologue data. +  if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function)) { +    if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { +      if (llvm::Constant *PrologueSig = getPrologueSignature(CGM, FD)) { +        // Remove any (C++17) exception specifications, to allow calling e.g. a +        // noexcept function through a non-noexcept pointer. +        auto ProtoTy = +          getContext().getFunctionTypeWithExceptionSpec(FD->getType(), +                                                        EST_None); +        llvm::Constant *FTRTTIConst = +            CGM.GetAddrOfRTTIDescriptor(ProtoTy, /*ForEH=*/true); +        llvm::Constant *FTRTTIConstEncoded = +            EncodeAddrForUseInPrologue(Fn, FTRTTIConst); +        llvm::Constant *PrologueStructElems[] = {PrologueSig, +                                                 FTRTTIConstEncoded}; +        llvm::Constant *PrologueStructConst = +            llvm::ConstantStruct::getAnon(PrologueStructElems, /*Packed=*/true); +        Fn->setPrologueData(PrologueStructConst); +      } +    } +  } + +  // If we're checking nullability, we need to know whether we can check the +  // return value. Initialize the flag to 'true' and refine it in EmitParmDecl. +  if (SanOpts.has(SanitizerKind::NullabilityReturn)) { +    auto Nullability = FnRetTy->getNullability(getContext()); +    if (Nullability && *Nullability == NullabilityKind::NonNull) { +      if (!(SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) && +            CurCodeDecl && CurCodeDecl->getAttr<ReturnsNonNullAttr>())) +        RetValNullabilityPrecondition = +            llvm::ConstantInt::getTrue(getLLVMContext()); +    } +  } + +  // If we're in C++ mode and the function name is "main", it is guaranteed +  // to be norecurse by the standard (3.6.1.3 "The function main shall not be +  // used within a program"). +  // +  // OpenCL C 2.0 v2.2-11 s6.9.i: +  //     Recursion is not supported. +  // +  // SYCL v1.2.1 s3.10: +  //     kernels cannot include RTTI information, exception classes, +  //     recursive code, virtual functions or make use of C++ libraries that +  //     are not compiled for the device. +  if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { +    if ((getLangOpts().CPlusPlus && FD->isMain()) || getLangOpts().OpenCL || +        getLangOpts().SYCLIsDevice || +        (getLangOpts().CUDA && FD->hasAttr<CUDAGlobalAttr>())) +      Fn->addFnAttr(llvm::Attribute::NoRecurse); +  } + +  if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { +    Builder.setIsFPConstrained(FD->usesFPIntrin()); +    if (FD->usesFPIntrin()) +      Fn->addFnAttr(llvm::Attribute::StrictFP); +  } + +  // If a custom alignment is used, force realigning to this alignment on +  // any main function which certainly will need it. +  if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) +    if ((FD->isMain() || FD->isMSVCRTEntryPoint()) && +        CGM.getCodeGenOpts().StackAlignment) +      Fn->addFnAttr("stackrealign"); + +  llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn); + +  // Create a marker to make it easy to insert allocas into the entryblock +  // later.  Don't create this with the builder, because we don't want it +  // folded. +  llvm::Value *Undef = llvm::UndefValue::get(Int32Ty); +  AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "allocapt", EntryBB); + +  ReturnBlock = getJumpDestInCurrentScope("return"); + +  Builder.SetInsertPoint(EntryBB); + +  // If we're checking the return value, allocate space for a pointer to a +  // precise source location of the checked return statement. +  if (requiresReturnValueCheck()) { +    ReturnLocation = CreateDefaultAlignTempAlloca(Int8PtrTy, "return.sloc.ptr"); +    InitTempAlloca(ReturnLocation, llvm::ConstantPointerNull::get(Int8PtrTy)); +  } + +  // Emit subprogram debug descriptor. +  if (CGDebugInfo *DI = getDebugInfo()) { +    // Reconstruct the type from the argument list so that implicit parameters, +    // such as 'this' and 'vtt', show up in the debug info. Preserve the calling +    // convention. +    CallingConv CC = CallingConv::CC_C; +    if (auto *FD = dyn_cast_or_null<FunctionDecl>(D)) +      if (const auto *SrcFnTy = FD->getType()->getAs<FunctionType>()) +        CC = SrcFnTy->getCallConv(); +    SmallVector<QualType, 16> ArgTypes; +    for (const VarDecl *VD : Args) +      ArgTypes.push_back(VD->getType()); +    QualType FnType = getContext().getFunctionType( +        RetTy, ArgTypes, FunctionProtoType::ExtProtoInfo(CC)); +    DI->EmitFunctionStart(GD, Loc, StartLoc, FnType, CurFn, CurFuncIsThunk, +                          Builder); +  } + +  if (ShouldInstrumentFunction()) { +    if (CGM.getCodeGenOpts().InstrumentFunctions) +      CurFn->addFnAttr("instrument-function-entry", "__cyg_profile_func_enter"); +    if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining) +      CurFn->addFnAttr("instrument-function-entry-inlined", +                       "__cyg_profile_func_enter"); +    if (CGM.getCodeGenOpts().InstrumentFunctionEntryBare) +      CurFn->addFnAttr("instrument-function-entry-inlined", +                       "__cyg_profile_func_enter_bare"); +  } + +  // Since emitting the mcount call here impacts optimizations such as function +  // inlining, we just add an attribute to insert a mcount call in backend. +  // The attribute "counting-function" is set to mcount function name which is +  // architecture dependent. +  if (CGM.getCodeGenOpts().InstrumentForProfiling) { +    // Calls to fentry/mcount should not be generated if function has +    // the no_instrument_function attribute. +    if (!CurFuncDecl || !CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) { +      if (CGM.getCodeGenOpts().CallFEntry) +        Fn->addFnAttr("fentry-call", "true"); +      else { +        Fn->addFnAttr("instrument-function-entry-inlined", +                      getTarget().getMCountName()); +      } +      if (CGM.getCodeGenOpts().MNopMCount) { +        if (!CGM.getCodeGenOpts().CallFEntry) +          CGM.getDiags().Report(diag::err_opt_not_valid_without_opt) +            << "-mnop-mcount" << "-mfentry"; +        Fn->addFnAttr("mnop-mcount"); +      } + +      if (CGM.getCodeGenOpts().RecordMCount) { +        if (!CGM.getCodeGenOpts().CallFEntry) +          CGM.getDiags().Report(diag::err_opt_not_valid_without_opt) +            << "-mrecord-mcount" << "-mfentry"; +        Fn->addFnAttr("mrecord-mcount"); +      } +    } +  } + +  if (CGM.getCodeGenOpts().PackedStack) { +    if (getContext().getTargetInfo().getTriple().getArch() != +        llvm::Triple::systemz) +      CGM.getDiags().Report(diag::err_opt_not_valid_on_target) +        << "-mpacked-stack"; +    Fn->addFnAttr("packed-stack"); +  } + +  if (RetTy->isVoidType()) { +    // Void type; nothing to return. +    ReturnValue = Address::invalid(); + +    // Count the implicit return. +    if (!endsWithReturn(D)) +      ++NumReturnExprs; +  } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect) { +    // Indirect return; emit returned value directly into sret slot. +    // This reduces code size, and affects correctness in C++. +    auto AI = CurFn->arg_begin(); +    if (CurFnInfo->getReturnInfo().isSRetAfterThis()) +      ++AI; +    ReturnValue = Address(&*AI, CurFnInfo->getReturnInfo().getIndirectAlign()); +    if (!CurFnInfo->getReturnInfo().getIndirectByVal()) { +      ReturnValuePointer = +          CreateDefaultAlignTempAlloca(Int8PtrTy, "result.ptr"); +      Builder.CreateStore(Builder.CreatePointerBitCastOrAddrSpaceCast( +                              ReturnValue.getPointer(), Int8PtrTy), +                          ReturnValuePointer); +    } +  } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::InAlloca && +             !hasScalarEvaluationKind(CurFnInfo->getReturnType())) { +    // Load the sret pointer from the argument struct and return into that. +    unsigned Idx = CurFnInfo->getReturnInfo().getInAllocaFieldIndex(); +    llvm::Function::arg_iterator EI = CurFn->arg_end(); +    --EI; +    llvm::Value *Addr = Builder.CreateStructGEP(nullptr, &*EI, Idx); +    ReturnValuePointer = Address(Addr, getPointerAlign()); +    Addr = Builder.CreateAlignedLoad(Addr, getPointerAlign(), "agg.result"); +    ReturnValue = Address(Addr, CGM.getNaturalTypeAlignment(RetTy)); +  } else { +    ReturnValue = CreateIRTemp(RetTy, "retval"); + +    // Tell the epilog emitter to autorelease the result.  We do this +    // now so that various specialized functions can suppress it +    // during their IR-generation. +    if (getLangOpts().ObjCAutoRefCount && +        !CurFnInfo->isReturnsRetained() && +        RetTy->isObjCRetainableType()) +      AutoreleaseResult = true; +  } + +  EmitStartEHSpec(CurCodeDecl); + +  PrologueCleanupDepth = EHStack.stable_begin(); + +  // Emit OpenMP specific initialization of the device functions. +  if (getLangOpts().OpenMP && CurCodeDecl) +    CGM.getOpenMPRuntime().emitFunctionProlog(*this, CurCodeDecl); + +  EmitFunctionProlog(*CurFnInfo, CurFn, Args); + +  if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) { +    CGM.getCXXABI().EmitInstanceFunctionProlog(*this); +    const CXXMethodDecl *MD = cast<CXXMethodDecl>(D); +    if (MD->getParent()->isLambda() && +        MD->getOverloadedOperator() == OO_Call) { +      // We're in a lambda; figure out the captures. +      MD->getParent()->getCaptureFields(LambdaCaptureFields, +                                        LambdaThisCaptureField); +      if (LambdaThisCaptureField) { +        // If the lambda captures the object referred to by '*this' - either by +        // value or by reference, make sure CXXThisValue points to the correct +        // object. + +        // Get the lvalue for the field (which is a copy of the enclosing object +        // or contains the address of the enclosing object). +        LValue ThisFieldLValue = EmitLValueForLambdaField(LambdaThisCaptureField); +        if (!LambdaThisCaptureField->getType()->isPointerType()) { +          // If the enclosing object was captured by value, just use its address. +          CXXThisValue = ThisFieldLValue.getAddress(*this).getPointer(); +        } else { +          // Load the lvalue pointed to by the field, since '*this' was captured +          // by reference. +          CXXThisValue = +              EmitLoadOfLValue(ThisFieldLValue, SourceLocation()).getScalarVal(); +        } +      } +      for (auto *FD : MD->getParent()->fields()) { +        if (FD->hasCapturedVLAType()) { +          auto *ExprArg = EmitLoadOfLValue(EmitLValueForLambdaField(FD), +                                           SourceLocation()).getScalarVal(); +          auto VAT = FD->getCapturedVLAType(); +          VLASizeMap[VAT->getSizeExpr()] = ExprArg; +        } +      } +    } else { +      // Not in a lambda; just use 'this' from the method. +      // FIXME: Should we generate a new load for each use of 'this'?  The +      // fast register allocator would be happier... +      CXXThisValue = CXXABIThisValue; +    } + +    // Check the 'this' pointer once per function, if it's available. +    if (CXXABIThisValue) { +      SanitizerSet SkippedChecks; +      SkippedChecks.set(SanitizerKind::ObjectSize, true); +      QualType ThisTy = MD->getThisType(); + +      // If this is the call operator of a lambda with no capture-default, it +      // may have a static invoker function, which may call this operator with +      // a null 'this' pointer. +      if (isLambdaCallOperator(MD) && +          MD->getParent()->getLambdaCaptureDefault() == LCD_None) +        SkippedChecks.set(SanitizerKind::Null, true); + +      EmitTypeCheck(isa<CXXConstructorDecl>(MD) ? TCK_ConstructorCall +                                                : TCK_MemberCall, +                    Loc, CXXABIThisValue, ThisTy, +                    getContext().getTypeAlignInChars(ThisTy->getPointeeType()), +                    SkippedChecks); +    } +  } + +  // If any of the arguments have a variably modified type, make sure to +  // emit the type size. +  for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); +       i != e; ++i) { +    const VarDecl *VD = *i; + +    // Dig out the type as written from ParmVarDecls; it's unclear whether +    // the standard (C99 6.9.1p10) requires this, but we're following the +    // precedent set by gcc. +    QualType Ty; +    if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD)) +      Ty = PVD->getOriginalType(); +    else +      Ty = VD->getType(); + +    if (Ty->isVariablyModifiedType()) +      EmitVariablyModifiedType(Ty); +  } +  // Emit a location at the end of the prologue. +  if (CGDebugInfo *DI = getDebugInfo()) +    DI->EmitLocation(Builder, StartLoc); + +  // TODO: Do we need to handle this in two places like we do with +  // target-features/target-cpu? +  if (CurFuncDecl) +    if (const auto *VecWidth = CurFuncDecl->getAttr<MinVectorWidthAttr>()) +      LargestVectorWidth = VecWidth->getVectorWidth(); +} + +void CodeGenFunction::EmitFunctionBody(const Stmt *Body) { +  incrementProfileCounter(Body); +  if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body)) +    EmitCompoundStmtWithoutScope(*S); +  else +    EmitStmt(Body); +} + +/// When instrumenting to collect profile data, the counts for some blocks +/// such as switch cases need to not include the fall-through counts, so +/// emit a branch around the instrumentation code. When not instrumenting, +/// this just calls EmitBlock(). +void CodeGenFunction::EmitBlockWithFallThrough(llvm::BasicBlock *BB, +                                               const Stmt *S) { +  llvm::BasicBlock *SkipCountBB = nullptr; +  if (HaveInsertPoint() && CGM.getCodeGenOpts().hasProfileClangInstr()) { +    // When instrumenting for profiling, the fallthrough to certain +    // statements needs to skip over the instrumentation code so that we +    // get an accurate count. +    SkipCountBB = createBasicBlock("skipcount"); +    EmitBranch(SkipCountBB); +  } +  EmitBlock(BB); +  uint64_t CurrentCount = getCurrentProfileCount(); +  incrementProfileCounter(S); +  setCurrentProfileCount(getCurrentProfileCount() + CurrentCount); +  if (SkipCountBB) +    EmitBlock(SkipCountBB); +} + +/// Tries to mark the given function nounwind based on the +/// non-existence of any throwing calls within it.  We believe this is +/// lightweight enough to do at -O0. +static void TryMarkNoThrow(llvm::Function *F) { +  // LLVM treats 'nounwind' on a function as part of the type, so we +  // can't do this on functions that can be overwritten. +  if (F->isInterposable()) return; + +  for (llvm::BasicBlock &BB : *F) +    for (llvm::Instruction &I : BB) +      if (I.mayThrow()) +        return; + +  F->setDoesNotThrow(); +} + +QualType CodeGenFunction::BuildFunctionArgList(GlobalDecl GD, +                                               FunctionArgList &Args) { +  const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); +  QualType ResTy = FD->getReturnType(); + +  const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD); +  if (MD && MD->isInstance()) { +    if (CGM.getCXXABI().HasThisReturn(GD)) +      ResTy = MD->getThisType(); +    else if (CGM.getCXXABI().hasMostDerivedReturn(GD)) +      ResTy = CGM.getContext().VoidPtrTy; +    CGM.getCXXABI().buildThisParam(*this, Args); +  } + +  // The base version of an inheriting constructor whose constructed base is a +  // virtual base is not passed any arguments (because it doesn't actually call +  // the inherited constructor). +  bool PassedParams = true; +  if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) +    if (auto Inherited = CD->getInheritedConstructor()) +      PassedParams = +          getTypes().inheritingCtorHasParams(Inherited, GD.getCtorType()); + +  if (PassedParams) { +    for (auto *Param : FD->parameters()) { +      Args.push_back(Param); +      if (!Param->hasAttr<PassObjectSizeAttr>()) +        continue; + +      auto *Implicit = ImplicitParamDecl::Create( +          getContext(), Param->getDeclContext(), Param->getLocation(), +          /*Id=*/nullptr, getContext().getSizeType(), ImplicitParamDecl::Other); +      SizeArguments[Param] = Implicit; +      Args.push_back(Implicit); +    } +  } + +  if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD))) +    CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args); + +  return ResTy; +} + +static bool +shouldUseUndefinedBehaviorReturnOptimization(const FunctionDecl *FD, +                                             const ASTContext &Context) { +  QualType T = FD->getReturnType(); +  // Avoid the optimization for functions that return a record type with a +  // trivial destructor or another trivially copyable type. +  if (const RecordType *RT = T.getCanonicalType()->getAs<RecordType>()) { +    if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl())) +      return !ClassDecl->hasTrivialDestructor(); +  } +  return !T.isTriviallyCopyableType(Context); +} + +void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn, +                                   const CGFunctionInfo &FnInfo) { +  const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); +  CurGD = GD; + +  FunctionArgList Args; +  QualType ResTy = BuildFunctionArgList(GD, Args); + +  // Check if we should generate debug info for this function. +  if (FD->hasAttr<NoDebugAttr>()) +    DebugInfo = nullptr; // disable debug info indefinitely for this function + +  // The function might not have a body if we're generating thunks for a +  // function declaration. +  SourceRange BodyRange; +  if (Stmt *Body = FD->getBody()) +    BodyRange = Body->getSourceRange(); +  else +    BodyRange = FD->getLocation(); +  CurEHLocation = BodyRange.getEnd(); + +  // Use the location of the start of the function to determine where +  // the function definition is located. By default use the location +  // of the declaration as the location for the subprogram. A function +  // may lack a declaration in the source code if it is created by code +  // gen. (examples: _GLOBAL__I_a, __cxx_global_array_dtor, thunk). +  SourceLocation Loc = FD->getLocation(); + +  // If this is a function specialization then use the pattern body +  // as the location for the function. +  if (const FunctionDecl *SpecDecl = FD->getTemplateInstantiationPattern()) +    if (SpecDecl->hasBody(SpecDecl)) +      Loc = SpecDecl->getLocation(); + +  Stmt *Body = FD->getBody(); + +  // Initialize helper which will detect jumps which can cause invalid lifetime +  // markers. +  if (Body && ShouldEmitLifetimeMarkers) +    Bypasses.Init(Body); + +  // Emit the standard function prologue. +  StartFunction(GD, ResTy, Fn, FnInfo, Args, Loc, BodyRange.getBegin()); + +  // Generate the body of the function. +  PGO.assignRegionCounters(GD, CurFn); +  if (isa<CXXDestructorDecl>(FD)) +    EmitDestructorBody(Args); +  else if (isa<CXXConstructorDecl>(FD)) +    EmitConstructorBody(Args); +  else if (getLangOpts().CUDA && +           !getLangOpts().CUDAIsDevice && +           FD->hasAttr<CUDAGlobalAttr>()) +    CGM.getCUDARuntime().emitDeviceStub(*this, Args); +  else if (isa<CXXMethodDecl>(FD) && +           cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) { +    // The lambda static invoker function is special, because it forwards or +    // clones the body of the function call operator (but is actually static). +    EmitLambdaStaticInvokeBody(cast<CXXMethodDecl>(FD)); +  } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) && +             (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() || +              cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) { +    // Implicit copy-assignment gets the same special treatment as implicit +    // copy-constructors. +    emitImplicitAssignmentOperatorBody(Args); +  } else if (Body) { +    EmitFunctionBody(Body); +  } else +    llvm_unreachable("no definition for emitted function"); + +  // C++11 [stmt.return]p2: +  //   Flowing off the end of a function [...] results in undefined behavior in +  //   a value-returning function. +  // C11 6.9.1p12: +  //   If the '}' that terminates a function is reached, and the value of the +  //   function call is used by the caller, the behavior is undefined. +  if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && !SawAsmBlock && +      !FD->getReturnType()->isVoidType() && Builder.GetInsertBlock()) { +    bool ShouldEmitUnreachable = +        CGM.getCodeGenOpts().StrictReturn || +        shouldUseUndefinedBehaviorReturnOptimization(FD, getContext()); +    if (SanOpts.has(SanitizerKind::Return)) { +      SanitizerScope SanScope(this); +      llvm::Value *IsFalse = Builder.getFalse(); +      EmitCheck(std::make_pair(IsFalse, SanitizerKind::Return), +                SanitizerHandler::MissingReturn, +                EmitCheckSourceLocation(FD->getLocation()), None); +    } else if (ShouldEmitUnreachable) { +      if (CGM.getCodeGenOpts().OptimizationLevel == 0) +        EmitTrapCall(llvm::Intrinsic::trap); +    } +    if (SanOpts.has(SanitizerKind::Return) || ShouldEmitUnreachable) { +      Builder.CreateUnreachable(); +      Builder.ClearInsertionPoint(); +    } +  } + +  // Emit the standard function epilogue. +  FinishFunction(BodyRange.getEnd()); + +  // If we haven't marked the function nothrow through other means, do +  // a quick pass now to see if we can. +  if (!CurFn->doesNotThrow()) +    TryMarkNoThrow(CurFn); +} + +/// ContainsLabel - Return true if the statement contains a label in it.  If +/// this statement is not executed normally, it not containing a label means +/// that we can just remove the code. +bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) { +  // Null statement, not a label! +  if (!S) return false; + +  // If this is a label, we have to emit the code, consider something like: +  // if (0) {  ...  foo:  bar(); }  goto foo; +  // +  // TODO: If anyone cared, we could track __label__'s, since we know that you +  // can't jump to one from outside their declared region. +  if (isa<LabelStmt>(S)) +    return true; + +  // If this is a case/default statement, and we haven't seen a switch, we have +  // to emit the code. +  if (isa<SwitchCase>(S) && !IgnoreCaseStmts) +    return true; + +  // If this is a switch statement, we want to ignore cases below it. +  if (isa<SwitchStmt>(S)) +    IgnoreCaseStmts = true; + +  // Scan subexpressions for verboten labels. +  for (const Stmt *SubStmt : S->children()) +    if (ContainsLabel(SubStmt, IgnoreCaseStmts)) +      return true; + +  return false; +} + +/// containsBreak - Return true if the statement contains a break out of it. +/// If the statement (recursively) contains a switch or loop with a break +/// inside of it, this is fine. +bool CodeGenFunction::containsBreak(const Stmt *S) { +  // Null statement, not a label! +  if (!S) return false; + +  // If this is a switch or loop that defines its own break scope, then we can +  // include it and anything inside of it. +  if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) || +      isa<ForStmt>(S)) +    return false; + +  if (isa<BreakStmt>(S)) +    return true; + +  // Scan subexpressions for verboten breaks. +  for (const Stmt *SubStmt : S->children()) +    if (containsBreak(SubStmt)) +      return true; + +  return false; +} + +bool CodeGenFunction::mightAddDeclToScope(const Stmt *S) { +  if (!S) return false; + +  // Some statement kinds add a scope and thus never add a decl to the current +  // scope. Note, this list is longer than the list of statements that might +  // have an unscoped decl nested within them, but this way is conservatively +  // correct even if more statement kinds are added. +  if (isa<IfStmt>(S) || isa<SwitchStmt>(S) || isa<WhileStmt>(S) || +      isa<DoStmt>(S) || isa<ForStmt>(S) || isa<CompoundStmt>(S) || +      isa<CXXForRangeStmt>(S) || isa<CXXTryStmt>(S) || +      isa<ObjCForCollectionStmt>(S) || isa<ObjCAtTryStmt>(S)) +    return false; + +  if (isa<DeclStmt>(S)) +    return true; + +  for (const Stmt *SubStmt : S->children()) +    if (mightAddDeclToScope(SubStmt)) +      return true; + +  return false; +} + +/// ConstantFoldsToSimpleInteger - If the specified expression does not fold +/// to a constant, or if it does but contains a label, return false.  If it +/// constant folds return true and set the boolean result in Result. +bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, +                                                   bool &ResultBool, +                                                   bool AllowLabels) { +  llvm::APSInt ResultInt; +  if (!ConstantFoldsToSimpleInteger(Cond, ResultInt, AllowLabels)) +    return false; + +  ResultBool = ResultInt.getBoolValue(); +  return true; +} + +/// ConstantFoldsToSimpleInteger - If the specified expression does not fold +/// to a constant, or if it does but contains a label, return false.  If it +/// constant folds return true and set the folded value. +bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, +                                                   llvm::APSInt &ResultInt, +                                                   bool AllowLabels) { +  // FIXME: Rename and handle conversion of other evaluatable things +  // to bool. +  Expr::EvalResult Result; +  if (!Cond->EvaluateAsInt(Result, getContext())) +    return false;  // Not foldable, not integer or not fully evaluatable. + +  llvm::APSInt Int = Result.Val.getInt(); +  if (!AllowLabels && CodeGenFunction::ContainsLabel(Cond)) +    return false;  // Contains a label. + +  ResultInt = Int; +  return true; +} + + + +/// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if +/// statement) to the specified blocks.  Based on the condition, this might try +/// to simplify the codegen of the conditional based on the branch. +/// +void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond, +                                           llvm::BasicBlock *TrueBlock, +                                           llvm::BasicBlock *FalseBlock, +                                           uint64_t TrueCount) { +  Cond = Cond->IgnoreParens(); + +  if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) { + +    // Handle X && Y in a condition. +    if (CondBOp->getOpcode() == BO_LAnd) { +      // If we have "1 && X", simplify the code.  "0 && X" would have constant +      // folded if the case was simple enough. +      bool ConstantBool = false; +      if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && +          ConstantBool) { +        // br(1 && X) -> br(X). +        incrementProfileCounter(CondBOp); +        return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, +                                    TrueCount); +      } + +      // If we have "X && 1", simplify the code to use an uncond branch. +      // "X && 0" would have been constant folded to 0. +      if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && +          ConstantBool) { +        // br(X && 1) -> br(X). +        return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock, +                                    TrueCount); +      } + +      // Emit the LHS as a conditional.  If the LHS conditional is false, we +      // want to jump to the FalseBlock. +      llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true"); +      // The counter tells us how often we evaluate RHS, and all of TrueCount +      // can be propagated to that branch. +      uint64_t RHSCount = getProfileCount(CondBOp->getRHS()); + +      ConditionalEvaluation eval(*this); +      { +        ApplyDebugLocation DL(*this, Cond); +        EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock, RHSCount); +        EmitBlock(LHSTrue); +      } + +      incrementProfileCounter(CondBOp); +      setCurrentProfileCount(getProfileCount(CondBOp->getRHS())); + +      // Any temporaries created here are conditional. +      eval.begin(*this); +      EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, TrueCount); +      eval.end(*this); + +      return; +    } + +    if (CondBOp->getOpcode() == BO_LOr) { +      // If we have "0 || X", simplify the code.  "1 || X" would have constant +      // folded if the case was simple enough. +      bool ConstantBool = false; +      if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && +          !ConstantBool) { +        // br(0 || X) -> br(X). +        incrementProfileCounter(CondBOp); +        return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, +                                    TrueCount); +      } + +      // If we have "X || 0", simplify the code to use an uncond branch. +      // "X || 1" would have been constant folded to 1. +      if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && +          !ConstantBool) { +        // br(X || 0) -> br(X). +        return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock, +                                    TrueCount); +      } + +      // Emit the LHS as a conditional.  If the LHS conditional is true, we +      // want to jump to the TrueBlock. +      llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false"); +      // We have the count for entry to the RHS and for the whole expression +      // being true, so we can divy up True count between the short circuit and +      // the RHS. +      uint64_t LHSCount = +          getCurrentProfileCount() - getProfileCount(CondBOp->getRHS()); +      uint64_t RHSCount = TrueCount - LHSCount; + +      ConditionalEvaluation eval(*this); +      { +        ApplyDebugLocation DL(*this, Cond); +        EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse, LHSCount); +        EmitBlock(LHSFalse); +      } + +      incrementProfileCounter(CondBOp); +      setCurrentProfileCount(getProfileCount(CondBOp->getRHS())); + +      // Any temporaries created here are conditional. +      eval.begin(*this); +      EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, RHSCount); + +      eval.end(*this); + +      return; +    } +  } + +  if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) { +    // br(!x, t, f) -> br(x, f, t) +    if (CondUOp->getOpcode() == UO_LNot) { +      // Negate the count. +      uint64_t FalseCount = getCurrentProfileCount() - TrueCount; +      // Negate the condition and swap the destination blocks. +      return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock, +                                  FalseCount); +    } +  } + +  if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) { +    // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f)) +    llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true"); +    llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false"); + +    ConditionalEvaluation cond(*this); +    EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock, +                         getProfileCount(CondOp)); + +    // When computing PGO branch weights, we only know the overall count for +    // the true block. This code is essentially doing tail duplication of the +    // naive code-gen, introducing new edges for which counts are not +    // available. Divide the counts proportionally between the LHS and RHS of +    // the conditional operator. +    uint64_t LHSScaledTrueCount = 0; +    if (TrueCount) { +      double LHSRatio = +          getProfileCount(CondOp) / (double)getCurrentProfileCount(); +      LHSScaledTrueCount = TrueCount * LHSRatio; +    } + +    cond.begin(*this); +    EmitBlock(LHSBlock); +    incrementProfileCounter(CondOp); +    { +      ApplyDebugLocation DL(*this, Cond); +      EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock, +                           LHSScaledTrueCount); +    } +    cond.end(*this); + +    cond.begin(*this); +    EmitBlock(RHSBlock); +    EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock, +                         TrueCount - LHSScaledTrueCount); +    cond.end(*this); + +    return; +  } + +  if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) { +    // Conditional operator handling can give us a throw expression as a +    // condition for a case like: +    //   br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f) +    // Fold this to: +    //   br(c, throw x, br(y, t, f)) +    EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false); +    return; +  } + +  // If the branch has a condition wrapped by __builtin_unpredictable, +  // create metadata that specifies that the branch is unpredictable. +  // Don't bother if not optimizing because that metadata would not be used. +  llvm::MDNode *Unpredictable = nullptr; +  auto *Call = dyn_cast<CallExpr>(Cond->IgnoreImpCasts()); +  if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) { +    auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl()); +    if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) { +      llvm::MDBuilder MDHelper(getLLVMContext()); +      Unpredictable = MDHelper.createUnpredictable(); +    } +  } + +  // Create branch weights based on the number of times we get here and the +  // number of times the condition should be true. +  uint64_t CurrentCount = std::max(getCurrentProfileCount(), TrueCount); +  llvm::MDNode *Weights = +      createProfileWeights(TrueCount, CurrentCount - TrueCount); + +  // Emit the code with the fully general case. +  llvm::Value *CondV; +  { +    ApplyDebugLocation DL(*this, Cond); +    CondV = EvaluateExprAsBool(Cond); +  } +  Builder.CreateCondBr(CondV, TrueBlock, FalseBlock, Weights, Unpredictable); +} + +/// ErrorUnsupported - Print out an error that codegen doesn't support the +/// specified stmt yet. +void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) { +  CGM.ErrorUnsupported(S, Type); +} + +/// emitNonZeroVLAInit - Emit the "zero" initialization of a +/// variable-length array whose elements have a non-zero bit-pattern. +/// +/// \param baseType the inner-most element type of the array +/// \param src - a char* pointing to the bit-pattern for a single +/// base element of the array +/// \param sizeInChars - the total size of the VLA, in chars +static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType, +                               Address dest, Address src, +                               llvm::Value *sizeInChars) { +  CGBuilderTy &Builder = CGF.Builder; + +  CharUnits baseSize = CGF.getContext().getTypeSizeInChars(baseType); +  llvm::Value *baseSizeInChars +    = llvm::ConstantInt::get(CGF.IntPtrTy, baseSize.getQuantity()); + +  Address begin = +    Builder.CreateElementBitCast(dest, CGF.Int8Ty, "vla.begin"); +  llvm::Value *end = +    Builder.CreateInBoundsGEP(begin.getPointer(), sizeInChars, "vla.end"); + +  llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock(); +  llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop"); +  llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont"); + +  // Make a loop over the VLA.  C99 guarantees that the VLA element +  // count must be nonzero. +  CGF.EmitBlock(loopBB); + +  llvm::PHINode *cur = Builder.CreatePHI(begin.getType(), 2, "vla.cur"); +  cur->addIncoming(begin.getPointer(), originBB); + +  CharUnits curAlign = +    dest.getAlignment().alignmentOfArrayElement(baseSize); + +  // memcpy the individual element bit-pattern. +  Builder.CreateMemCpy(Address(cur, curAlign), src, baseSizeInChars, +                       /*volatile*/ false); + +  // Go to the next element. +  llvm::Value *next = +    Builder.CreateInBoundsGEP(CGF.Int8Ty, cur, baseSizeInChars, "vla.next"); + +  // Leave if that's the end of the VLA. +  llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone"); +  Builder.CreateCondBr(done, contBB, loopBB); +  cur->addIncoming(next, loopBB); + +  CGF.EmitBlock(contBB); +} + +void +CodeGenFunction::EmitNullInitialization(Address DestPtr, QualType Ty) { +  // Ignore empty classes in C++. +  if (getLangOpts().CPlusPlus) { +    if (const RecordType *RT = Ty->getAs<RecordType>()) { +      if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty()) +        return; +    } +  } + +  // Cast the dest ptr to the appropriate i8 pointer type. +  if (DestPtr.getElementType() != Int8Ty) +    DestPtr = Builder.CreateElementBitCast(DestPtr, Int8Ty); + +  // Get size and alignment info for this aggregate. +  CharUnits size = getContext().getTypeSizeInChars(Ty); + +  llvm::Value *SizeVal; +  const VariableArrayType *vla; + +  // Don't bother emitting a zero-byte memset. +  if (size.isZero()) { +    // But note that getTypeInfo returns 0 for a VLA. +    if (const VariableArrayType *vlaType = +          dyn_cast_or_null<VariableArrayType>( +                                          getContext().getAsArrayType(Ty))) { +      auto VlaSize = getVLASize(vlaType); +      SizeVal = VlaSize.NumElts; +      CharUnits eltSize = getContext().getTypeSizeInChars(VlaSize.Type); +      if (!eltSize.isOne()) +        SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize)); +      vla = vlaType; +    } else { +      return; +    } +  } else { +    SizeVal = CGM.getSize(size); +    vla = nullptr; +  } + +  // If the type contains a pointer to data member we can't memset it to zero. +  // Instead, create a null constant and copy it to the destination. +  // TODO: there are other patterns besides zero that we can usefully memset, +  // like -1, which happens to be the pattern used by member-pointers. +  if (!CGM.getTypes().isZeroInitializable(Ty)) { +    // For a VLA, emit a single element, then splat that over the VLA. +    if (vla) Ty = getContext().getBaseElementType(vla); + +    llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty); + +    llvm::GlobalVariable *NullVariable = +      new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(), +                               /*isConstant=*/true, +                               llvm::GlobalVariable::PrivateLinkage, +                               NullConstant, Twine()); +    CharUnits NullAlign = DestPtr.getAlignment(); +    NullVariable->setAlignment(NullAlign.getAsAlign()); +    Address SrcPtr(Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy()), +                   NullAlign); + +    if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal); + +    // Get and call the appropriate llvm.memcpy overload. +    Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, false); +    return; +  } + +  // Otherwise, just memset the whole thing to zero.  This is legal +  // because in LLVM, all default initializers (other than the ones we just +  // handled above) are guaranteed to have a bit pattern of all zeros. +  Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, false); +} + +llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) { +  // Make sure that there is a block for the indirect goto. +  if (!IndirectBranch) +    GetIndirectGotoBlock(); + +  llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock(); + +  // Make sure the indirect branch includes all of the address-taken blocks. +  IndirectBranch->addDestination(BB); +  return llvm::BlockAddress::get(CurFn, BB); +} + +llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() { +  // If we already made the indirect branch for indirect goto, return its block. +  if (IndirectBranch) return IndirectBranch->getParent(); + +  CGBuilderTy TmpBuilder(*this, createBasicBlock("indirectgoto")); + +  // Create the PHI node that indirect gotos will add entries to. +  llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0, +                                              "indirect.goto.dest"); + +  // Create the indirect branch instruction. +  IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal); +  return IndirectBranch->getParent(); +} + +/// Computes the length of an array in elements, as well as the base +/// element type and a properly-typed first element pointer. +llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType, +                                              QualType &baseType, +                                              Address &addr) { +  const ArrayType *arrayType = origArrayType; + +  // If it's a VLA, we have to load the stored size.  Note that +  // this is the size of the VLA in bytes, not its size in elements. +  llvm::Value *numVLAElements = nullptr; +  if (isa<VariableArrayType>(arrayType)) { +    numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).NumElts; + +    // Walk into all VLAs.  This doesn't require changes to addr, +    // which has type T* where T is the first non-VLA element type. +    do { +      QualType elementType = arrayType->getElementType(); +      arrayType = getContext().getAsArrayType(elementType); + +      // If we only have VLA components, 'addr' requires no adjustment. +      if (!arrayType) { +        baseType = elementType; +        return numVLAElements; +      } +    } while (isa<VariableArrayType>(arrayType)); + +    // We get out here only if we find a constant array type +    // inside the VLA. +  } + +  // We have some number of constant-length arrays, so addr should +  // have LLVM type [M x [N x [...]]]*.  Build a GEP that walks +  // down to the first element of addr. +  SmallVector<llvm::Value*, 8> gepIndices; + +  // GEP down to the array type. +  llvm::ConstantInt *zero = Builder.getInt32(0); +  gepIndices.push_back(zero); + +  uint64_t countFromCLAs = 1; +  QualType eltType; + +  llvm::ArrayType *llvmArrayType = +    dyn_cast<llvm::ArrayType>(addr.getElementType()); +  while (llvmArrayType) { +    assert(isa<ConstantArrayType>(arrayType)); +    assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue() +             == llvmArrayType->getNumElements()); + +    gepIndices.push_back(zero); +    countFromCLAs *= llvmArrayType->getNumElements(); +    eltType = arrayType->getElementType(); + +    llvmArrayType = +      dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType()); +    arrayType = getContext().getAsArrayType(arrayType->getElementType()); +    assert((!llvmArrayType || arrayType) && +           "LLVM and Clang types are out-of-synch"); +  } + +  if (arrayType) { +    // From this point onwards, the Clang array type has been emitted +    // as some other type (probably a packed struct). Compute the array +    // size, and just emit the 'begin' expression as a bitcast. +    while (arrayType) { +      countFromCLAs *= +          cast<ConstantArrayType>(arrayType)->getSize().getZExtValue(); +      eltType = arrayType->getElementType(); +      arrayType = getContext().getAsArrayType(eltType); +    } + +    llvm::Type *baseType = ConvertType(eltType); +    addr = Builder.CreateElementBitCast(addr, baseType, "array.begin"); +  } else { +    // Create the actual GEP. +    addr = Address(Builder.CreateInBoundsGEP(addr.getPointer(), +                                             gepIndices, "array.begin"), +                   addr.getAlignment()); +  } + +  baseType = eltType; + +  llvm::Value *numElements +    = llvm::ConstantInt::get(SizeTy, countFromCLAs); + +  // If we had any VLA dimensions, factor them in. +  if (numVLAElements) +    numElements = Builder.CreateNUWMul(numVLAElements, numElements); + +  return numElements; +} + +CodeGenFunction::VlaSizePair CodeGenFunction::getVLASize(QualType type) { +  const VariableArrayType *vla = getContext().getAsVariableArrayType(type); +  assert(vla && "type was not a variable array type!"); +  return getVLASize(vla); +} + +CodeGenFunction::VlaSizePair +CodeGenFunction::getVLASize(const VariableArrayType *type) { +  // The number of elements so far; always size_t. +  llvm::Value *numElements = nullptr; + +  QualType elementType; +  do { +    elementType = type->getElementType(); +    llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()]; +    assert(vlaSize && "no size for VLA!"); +    assert(vlaSize->getType() == SizeTy); + +    if (!numElements) { +      numElements = vlaSize; +    } else { +      // It's undefined behavior if this wraps around, so mark it that way. +      // FIXME: Teach -fsanitize=undefined to trap this. +      numElements = Builder.CreateNUWMul(numElements, vlaSize); +    } +  } while ((type = getContext().getAsVariableArrayType(elementType))); + +  return { numElements, elementType }; +} + +CodeGenFunction::VlaSizePair +CodeGenFunction::getVLAElements1D(QualType type) { +  const VariableArrayType *vla = getContext().getAsVariableArrayType(type); +  assert(vla && "type was not a variable array type!"); +  return getVLAElements1D(vla); +} + +CodeGenFunction::VlaSizePair +CodeGenFunction::getVLAElements1D(const VariableArrayType *Vla) { +  llvm::Value *VlaSize = VLASizeMap[Vla->getSizeExpr()]; +  assert(VlaSize && "no size for VLA!"); +  assert(VlaSize->getType() == SizeTy); +  return { VlaSize, Vla->getElementType() }; +} + +void CodeGenFunction::EmitVariablyModifiedType(QualType type) { +  assert(type->isVariablyModifiedType() && +         "Must pass variably modified type to EmitVLASizes!"); + +  EnsureInsertPoint(); + +  // We're going to walk down into the type and look for VLA +  // expressions. +  do { +    assert(type->isVariablyModifiedType()); + +    const Type *ty = type.getTypePtr(); +    switch (ty->getTypeClass()) { + +#define TYPE(Class, Base) +#define ABSTRACT_TYPE(Class, Base) +#define NON_CANONICAL_TYPE(Class, Base) +#define DEPENDENT_TYPE(Class, Base) case Type::Class: +#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) +#include "clang/AST/TypeNodes.inc" +      llvm_unreachable("unexpected dependent type!"); + +    // These types are never variably-modified. +    case Type::Builtin: +    case Type::Complex: +    case Type::Vector: +    case Type::ExtVector: +    case Type::ConstantMatrix: +    case Type::Record: +    case Type::Enum: +    case Type::Elaborated: +    case Type::TemplateSpecialization: +    case Type::ObjCTypeParam: +    case Type::ObjCObject: +    case Type::ObjCInterface: +    case Type::ObjCObjectPointer: +    case Type::ExtInt: +      llvm_unreachable("type class is never variably-modified!"); + +    case Type::Adjusted: +      type = cast<AdjustedType>(ty)->getAdjustedType(); +      break; + +    case Type::Decayed: +      type = cast<DecayedType>(ty)->getPointeeType(); +      break; + +    case Type::Pointer: +      type = cast<PointerType>(ty)->getPointeeType(); +      break; + +    case Type::BlockPointer: +      type = cast<BlockPointerType>(ty)->getPointeeType(); +      break; + +    case Type::LValueReference: +    case Type::RValueReference: +      type = cast<ReferenceType>(ty)->getPointeeType(); +      break; + +    case Type::MemberPointer: +      type = cast<MemberPointerType>(ty)->getPointeeType(); +      break; + +    case Type::ConstantArray: +    case Type::IncompleteArray: +      // Losing element qualification here is fine. +      type = cast<ArrayType>(ty)->getElementType(); +      break; + +    case Type::VariableArray: { +      // Losing element qualification here is fine. +      const VariableArrayType *vat = cast<VariableArrayType>(ty); + +      // Unknown size indication requires no size computation. +      // Otherwise, evaluate and record it. +      if (const Expr *size = vat->getSizeExpr()) { +        // It's possible that we might have emitted this already, +        // e.g. with a typedef and a pointer to it. +        llvm::Value *&entry = VLASizeMap[size]; +        if (!entry) { +          llvm::Value *Size = EmitScalarExpr(size); + +          // C11 6.7.6.2p5: +          //   If the size is an expression that is not an integer constant +          //   expression [...] each time it is evaluated it shall have a value +          //   greater than zero. +          if (SanOpts.has(SanitizerKind::VLABound) && +              size->getType()->isSignedIntegerType()) { +            SanitizerScope SanScope(this); +            llvm::Value *Zero = llvm::Constant::getNullValue(Size->getType()); +            llvm::Constant *StaticArgs[] = { +                EmitCheckSourceLocation(size->getBeginLoc()), +                EmitCheckTypeDescriptor(size->getType())}; +            EmitCheck(std::make_pair(Builder.CreateICmpSGT(Size, Zero), +                                     SanitizerKind::VLABound), +                      SanitizerHandler::VLABoundNotPositive, StaticArgs, Size); +          } + +          // Always zexting here would be wrong if it weren't +          // undefined behavior to have a negative bound. +          entry = Builder.CreateIntCast(Size, SizeTy, /*signed*/ false); +        } +      } +      type = vat->getElementType(); +      break; +    } + +    case Type::FunctionProto: +    case Type::FunctionNoProto: +      type = cast<FunctionType>(ty)->getReturnType(); +      break; + +    case Type::Paren: +    case Type::TypeOf: +    case Type::UnaryTransform: +    case Type::Attributed: +    case Type::SubstTemplateTypeParm: +    case Type::PackExpansion: +    case Type::MacroQualified: +      // Keep walking after single level desugaring. +      type = type.getSingleStepDesugaredType(getContext()); +      break; + +    case Type::Typedef: +    case Type::Decltype: +    case Type::Auto: +    case Type::DeducedTemplateSpecialization: +      // Stop walking: nothing to do. +      return; + +    case Type::TypeOfExpr: +      // Stop walking: emit typeof expression. +      EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr()); +      return; + +    case Type::Atomic: +      type = cast<AtomicType>(ty)->getValueType(); +      break; + +    case Type::Pipe: +      type = cast<PipeType>(ty)->getElementType(); +      break; +    } +  } while (type->isVariablyModifiedType()); +} + +Address CodeGenFunction::EmitVAListRef(const Expr* E) { +  if (getContext().getBuiltinVaListType()->isArrayType()) +    return EmitPointerWithAlignment(E); +  return EmitLValue(E).getAddress(*this); +} + +Address CodeGenFunction::EmitMSVAListRef(const Expr *E) { +  return EmitLValue(E).getAddress(*this); +} + +void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E, +                                              const APValue &Init) { +  assert(Init.hasValue() && "Invalid DeclRefExpr initializer!"); +  if (CGDebugInfo *Dbg = getDebugInfo()) +    if (CGM.getCodeGenOpts().hasReducedDebugInfo()) +      Dbg->EmitGlobalVariable(E->getDecl(), Init); +} + +CodeGenFunction::PeepholeProtection +CodeGenFunction::protectFromPeepholes(RValue rvalue) { +  // At the moment, the only aggressive peephole we do in IR gen +  // is trunc(zext) folding, but if we add more, we can easily +  // extend this protection. + +  if (!rvalue.isScalar()) return PeepholeProtection(); +  llvm::Value *value = rvalue.getScalarVal(); +  if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection(); + +  // Just make an extra bitcast. +  assert(HaveInsertPoint()); +  llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "", +                                                  Builder.GetInsertBlock()); + +  PeepholeProtection protection; +  protection.Inst = inst; +  return protection; +} + +void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) { +  if (!protection.Inst) return; + +  // In theory, we could try to duplicate the peepholes now, but whatever. +  protection.Inst->eraseFromParent(); +} + +void CodeGenFunction::emitAlignmentAssumption(llvm::Value *PtrValue, +                                              QualType Ty, SourceLocation Loc, +                                              SourceLocation AssumptionLoc, +                                              llvm::Value *Alignment, +                                              llvm::Value *OffsetValue) { +  llvm::Value *TheCheck; +  llvm::Instruction *Assumption = Builder.CreateAlignmentAssumption( +      CGM.getDataLayout(), PtrValue, Alignment, OffsetValue, &TheCheck); +  if (SanOpts.has(SanitizerKind::Alignment)) { +    emitAlignmentAssumptionCheck(PtrValue, Ty, Loc, AssumptionLoc, Alignment, +                                 OffsetValue, TheCheck, Assumption); +  } +} + +void CodeGenFunction::emitAlignmentAssumption(llvm::Value *PtrValue, +                                              const Expr *E, +                                              SourceLocation AssumptionLoc, +                                              llvm::Value *Alignment, +                                              llvm::Value *OffsetValue) { +  if (auto *CE = dyn_cast<CastExpr>(E)) +    E = CE->getSubExprAsWritten(); +  QualType Ty = E->getType(); +  SourceLocation Loc = E->getExprLoc(); + +  emitAlignmentAssumption(PtrValue, Ty, Loc, AssumptionLoc, Alignment, +                          OffsetValue); +} + +llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Function *AnnotationFn, +                                                 llvm::Value *AnnotatedVal, +                                                 StringRef AnnotationStr, +                                                 SourceLocation Location) { +  llvm::Value *Args[4] = { +    AnnotatedVal, +    Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy), +    Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy), +    CGM.EmitAnnotationLineNo(Location) +  }; +  return Builder.CreateCall(AnnotationFn, Args); +} + +void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) { +  assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); +  // FIXME We create a new bitcast for every annotation because that's what +  // llvm-gcc was doing. +  for (const auto *I : D->specific_attrs<AnnotateAttr>()) +    EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation), +                       Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()), +                       I->getAnnotation(), D->getLocation()); +} + +Address CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D, +                                              Address Addr) { +  assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); +  llvm::Value *V = Addr.getPointer(); +  llvm::Type *VTy = V->getType(); +  llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation, +                                    CGM.Int8PtrTy); + +  for (const auto *I : D->specific_attrs<AnnotateAttr>()) { +    // FIXME Always emit the cast inst so we can differentiate between +    // annotation on the first field of a struct and annotation on the struct +    // itself. +    if (VTy != CGM.Int8PtrTy) +      V = Builder.CreateBitCast(V, CGM.Int8PtrTy); +    V = EmitAnnotationCall(F, V, I->getAnnotation(), D->getLocation()); +    V = Builder.CreateBitCast(V, VTy); +  } + +  return Address(V, Addr.getAlignment()); +} + +CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { } + +CodeGenFunction::SanitizerScope::SanitizerScope(CodeGenFunction *CGF) +    : CGF(CGF) { +  assert(!CGF->IsSanitizerScope); +  CGF->IsSanitizerScope = true; +} + +CodeGenFunction::SanitizerScope::~SanitizerScope() { +  CGF->IsSanitizerScope = false; +} + +void CodeGenFunction::InsertHelper(llvm::Instruction *I, +                                   const llvm::Twine &Name, +                                   llvm::BasicBlock *BB, +                                   llvm::BasicBlock::iterator InsertPt) const { +  LoopStack.InsertHelper(I); +  if (IsSanitizerScope) +    CGM.getSanitizerMetadata()->disableSanitizerForInstruction(I); +} + +void CGBuilderInserter::InsertHelper( +    llvm::Instruction *I, const llvm::Twine &Name, llvm::BasicBlock *BB, +    llvm::BasicBlock::iterator InsertPt) const { +  llvm::IRBuilderDefaultInserter::InsertHelper(I, Name, BB, InsertPt); +  if (CGF) +    CGF->InsertHelper(I, Name, BB, InsertPt); +} + +static bool hasRequiredFeatures(const SmallVectorImpl<StringRef> &ReqFeatures, +                                CodeGenModule &CGM, const FunctionDecl *FD, +                                std::string &FirstMissing) { +  // If there aren't any required features listed then go ahead and return. +  if (ReqFeatures.empty()) +    return false; + +  // Now build up the set of caller features and verify that all the required +  // features are there. +  llvm::StringMap<bool> CallerFeatureMap; +  CGM.getContext().getFunctionFeatureMap(CallerFeatureMap, FD); + +  // If we have at least one of the features in the feature list return +  // true, otherwise return false. +  return std::all_of( +      ReqFeatures.begin(), ReqFeatures.end(), [&](StringRef Feature) { +        SmallVector<StringRef, 1> OrFeatures; +        Feature.split(OrFeatures, '|'); +        return llvm::any_of(OrFeatures, [&](StringRef Feature) { +          if (!CallerFeatureMap.lookup(Feature)) { +            FirstMissing = Feature.str(); +            return false; +          } +          return true; +        }); +      }); +} + +// Emits an error if we don't have a valid set of target features for the +// called function. +void CodeGenFunction::checkTargetFeatures(const CallExpr *E, +                                          const FunctionDecl *TargetDecl) { +  return checkTargetFeatures(E->getBeginLoc(), TargetDecl); +} + +// Emits an error if we don't have a valid set of target features for the +// called function. +void CodeGenFunction::checkTargetFeatures(SourceLocation Loc, +                                          const FunctionDecl *TargetDecl) { +  // Early exit if this is an indirect call. +  if (!TargetDecl) +    return; + +  // Get the current enclosing function if it exists. If it doesn't +  // we can't check the target features anyhow. +  const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl); +  if (!FD) +    return; + +  // Grab the required features for the call. For a builtin this is listed in +  // the td file with the default cpu, for an always_inline function this is any +  // listed cpu and any listed features. +  unsigned BuiltinID = TargetDecl->getBuiltinID(); +  std::string MissingFeature; +  if (BuiltinID) { +    SmallVector<StringRef, 1> ReqFeatures; +    const char *FeatureList = +        CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID); +    // Return if the builtin doesn't have any required features. +    if (!FeatureList || StringRef(FeatureList) == "") +      return; +    StringRef(FeatureList).split(ReqFeatures, ','); +    if (!hasRequiredFeatures(ReqFeatures, CGM, FD, MissingFeature)) +      CGM.getDiags().Report(Loc, diag::err_builtin_needs_feature) +          << TargetDecl->getDeclName() +          << CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID); + +  } else if (!TargetDecl->isMultiVersion() && +             TargetDecl->hasAttr<TargetAttr>()) { +    // Get the required features for the callee. + +    const TargetAttr *TD = TargetDecl->getAttr<TargetAttr>(); +    ParsedTargetAttr ParsedAttr = +        CGM.getContext().filterFunctionTargetAttrs(TD); + +    SmallVector<StringRef, 1> ReqFeatures; +    llvm::StringMap<bool> CalleeFeatureMap; +    CGM.getContext().getFunctionFeatureMap(CalleeFeatureMap, TargetDecl); + +    for (const auto &F : ParsedAttr.Features) { +      if (F[0] == '+' && CalleeFeatureMap.lookup(F.substr(1))) +        ReqFeatures.push_back(StringRef(F).substr(1)); +    } + +    for (const auto &F : CalleeFeatureMap) { +      // Only positive features are "required". +      if (F.getValue()) +        ReqFeatures.push_back(F.getKey()); +    } +    if (!hasRequiredFeatures(ReqFeatures, CGM, FD, MissingFeature)) +      CGM.getDiags().Report(Loc, diag::err_function_needs_feature) +          << FD->getDeclName() << TargetDecl->getDeclName() << MissingFeature; +  } +} + +void CodeGenFunction::EmitSanitizerStatReport(llvm::SanitizerStatKind SSK) { +  if (!CGM.getCodeGenOpts().SanitizeStats) +    return; + +  llvm::IRBuilder<> IRB(Builder.GetInsertBlock(), Builder.GetInsertPoint()); +  IRB.SetCurrentDebugLocation(Builder.getCurrentDebugLocation()); +  CGM.getSanStats().create(IRB, SSK); +} + +llvm::Value * +CodeGenFunction::FormResolverCondition(const MultiVersionResolverOption &RO) { +  llvm::Value *Condition = nullptr; + +  if (!RO.Conditions.Architecture.empty()) +    Condition = EmitX86CpuIs(RO.Conditions.Architecture); + +  if (!RO.Conditions.Features.empty()) { +    llvm::Value *FeatureCond = EmitX86CpuSupports(RO.Conditions.Features); +    Condition = +        Condition ? Builder.CreateAnd(Condition, FeatureCond) : FeatureCond; +  } +  return Condition; +} + +static void CreateMultiVersionResolverReturn(CodeGenModule &CGM, +                                             llvm::Function *Resolver, +                                             CGBuilderTy &Builder, +                                             llvm::Function *FuncToReturn, +                                             bool SupportsIFunc) { +  if (SupportsIFunc) { +    Builder.CreateRet(FuncToReturn); +    return; +  } + +  llvm::SmallVector<llvm::Value *, 10> Args; +  llvm::for_each(Resolver->args(), +                 [&](llvm::Argument &Arg) { Args.push_back(&Arg); }); + +  llvm::CallInst *Result = Builder.CreateCall(FuncToReturn, Args); +  Result->setTailCallKind(llvm::CallInst::TCK_MustTail); + +  if (Resolver->getReturnType()->isVoidTy()) +    Builder.CreateRetVoid(); +  else +    Builder.CreateRet(Result); +} + +void CodeGenFunction::EmitMultiVersionResolver( +    llvm::Function *Resolver, ArrayRef<MultiVersionResolverOption> Options) { +  assert(getContext().getTargetInfo().getTriple().isX86() && +         "Only implemented for x86 targets"); + +  bool SupportsIFunc = getContext().getTargetInfo().supportsIFunc(); + +  // Main function's basic block. +  llvm::BasicBlock *CurBlock = createBasicBlock("resolver_entry", Resolver); +  Builder.SetInsertPoint(CurBlock); +  EmitX86CpuInit(); + +  for (const MultiVersionResolverOption &RO : Options) { +    Builder.SetInsertPoint(CurBlock); +    llvm::Value *Condition = FormResolverCondition(RO); + +    // The 'default' or 'generic' case. +    if (!Condition) { +      assert(&RO == Options.end() - 1 && +             "Default or Generic case must be last"); +      CreateMultiVersionResolverReturn(CGM, Resolver, Builder, RO.Function, +                                       SupportsIFunc); +      return; +    } + +    llvm::BasicBlock *RetBlock = createBasicBlock("resolver_return", Resolver); +    CGBuilderTy RetBuilder(*this, RetBlock); +    CreateMultiVersionResolverReturn(CGM, Resolver, RetBuilder, RO.Function, +                                     SupportsIFunc); +    CurBlock = createBasicBlock("resolver_else", Resolver); +    Builder.CreateCondBr(Condition, RetBlock, CurBlock); +  } + +  // If no generic/default, emit an unreachable. +  Builder.SetInsertPoint(CurBlock); +  llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap); +  TrapCall->setDoesNotReturn(); +  TrapCall->setDoesNotThrow(); +  Builder.CreateUnreachable(); +  Builder.ClearInsertionPoint(); +} + +// Loc - where the diagnostic will point, where in the source code this +//  alignment has failed. +// SecondaryLoc - if present (will be present if sufficiently different from +//  Loc), the diagnostic will additionally point a "Note:" to this location. +//  It should be the location where the __attribute__((assume_aligned)) +//  was written e.g. +void CodeGenFunction::emitAlignmentAssumptionCheck( +    llvm::Value *Ptr, QualType Ty, SourceLocation Loc, +    SourceLocation SecondaryLoc, llvm::Value *Alignment, +    llvm::Value *OffsetValue, llvm::Value *TheCheck, +    llvm::Instruction *Assumption) { +  assert(Assumption && isa<llvm::CallInst>(Assumption) && +         cast<llvm::CallInst>(Assumption)->getCalledOperand() == +             llvm::Intrinsic::getDeclaration( +                 Builder.GetInsertBlock()->getParent()->getParent(), +                 llvm::Intrinsic::assume) && +         "Assumption should be a call to llvm.assume()."); +  assert(&(Builder.GetInsertBlock()->back()) == Assumption && +         "Assumption should be the last instruction of the basic block, " +         "since the basic block is still being generated."); + +  if (!SanOpts.has(SanitizerKind::Alignment)) +    return; + +  // Don't check pointers to volatile data. The behavior here is implementation- +  // defined. +  if (Ty->getPointeeType().isVolatileQualified()) +    return; + +  // We need to temorairly remove the assumption so we can insert the +  // sanitizer check before it, else the check will be dropped by optimizations. +  Assumption->removeFromParent(); + +  { +    SanitizerScope SanScope(this); + +    if (!OffsetValue) +      OffsetValue = Builder.getInt1(0); // no offset. + +    llvm::Constant *StaticData[] = {EmitCheckSourceLocation(Loc), +                                    EmitCheckSourceLocation(SecondaryLoc), +                                    EmitCheckTypeDescriptor(Ty)}; +    llvm::Value *DynamicData[] = {EmitCheckValue(Ptr), +                                  EmitCheckValue(Alignment), +                                  EmitCheckValue(OffsetValue)}; +    EmitCheck({std::make_pair(TheCheck, SanitizerKind::Alignment)}, +              SanitizerHandler::AlignmentAssumption, StaticData, DynamicData); +  } + +  // We are now in the (new, empty) "cont" basic block. +  // Reintroduce the assumption. +  Builder.Insert(Assumption); +  // FIXME: Assumption still has it's original basic block as it's Parent. +} + +llvm::DebugLoc CodeGenFunction::SourceLocToDebugLoc(SourceLocation Location) { +  if (CGDebugInfo *DI = getDebugInfo()) +    return DI->SourceLocToDebugLoc(Location); + +  return llvm::DebugLoc(); +} | 
