aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm-project/clang/lib/Sema/SemaLambda.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm-project/clang/lib/Sema/SemaLambda.cpp')
-rw-r--r--contrib/llvm-project/clang/lib/Sema/SemaLambda.cpp2031
1 files changed, 2031 insertions, 0 deletions
diff --git a/contrib/llvm-project/clang/lib/Sema/SemaLambda.cpp b/contrib/llvm-project/clang/lib/Sema/SemaLambda.cpp
new file mode 100644
index 000000000000..c1c6a4bf5c68
--- /dev/null
+++ b/contrib/llvm-project/clang/lib/Sema/SemaLambda.cpp
@@ -0,0 +1,2031 @@
+//===--- SemaLambda.cpp - Semantic Analysis for C++11 Lambdas -------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements semantic analysis for C++ lambda expressions.
+//
+//===----------------------------------------------------------------------===//
+#include "clang/Sema/DeclSpec.h"
+#include "TypeLocBuilder.h"
+#include "clang/AST/ASTLambda.h"
+#include "clang/AST/ExprCXX.h"
+#include "clang/Basic/TargetInfo.h"
+#include "clang/Sema/Initialization.h"
+#include "clang/Sema/Lookup.h"
+#include "clang/Sema/Scope.h"
+#include "clang/Sema/ScopeInfo.h"
+#include "clang/Sema/SemaInternal.h"
+#include "clang/Sema/SemaLambda.h"
+#include "llvm/ADT/STLExtras.h"
+using namespace clang;
+using namespace sema;
+
+/// Examines the FunctionScopeInfo stack to determine the nearest
+/// enclosing lambda (to the current lambda) that is 'capture-ready' for
+/// the variable referenced in the current lambda (i.e. \p VarToCapture).
+/// If successful, returns the index into Sema's FunctionScopeInfo stack
+/// of the capture-ready lambda's LambdaScopeInfo.
+///
+/// Climbs down the stack of lambdas (deepest nested lambda - i.e. current
+/// lambda - is on top) to determine the index of the nearest enclosing/outer
+/// lambda that is ready to capture the \p VarToCapture being referenced in
+/// the current lambda.
+/// As we climb down the stack, we want the index of the first such lambda -
+/// that is the lambda with the highest index that is 'capture-ready'.
+///
+/// A lambda 'L' is capture-ready for 'V' (var or this) if:
+/// - its enclosing context is non-dependent
+/// - and if the chain of lambdas between L and the lambda in which
+/// V is potentially used (i.e. the lambda at the top of the scope info
+/// stack), can all capture or have already captured V.
+/// If \p VarToCapture is 'null' then we are trying to capture 'this'.
+///
+/// Note that a lambda that is deemed 'capture-ready' still needs to be checked
+/// for whether it is 'capture-capable' (see
+/// getStackIndexOfNearestEnclosingCaptureCapableLambda), before it can truly
+/// capture.
+///
+/// \param FunctionScopes - Sema's stack of nested FunctionScopeInfo's (which a
+/// LambdaScopeInfo inherits from). The current/deepest/innermost lambda
+/// is at the top of the stack and has the highest index.
+/// \param VarToCapture - the variable to capture. If NULL, capture 'this'.
+///
+/// \returns An Optional<unsigned> Index that if evaluates to 'true' contains
+/// the index (into Sema's FunctionScopeInfo stack) of the innermost lambda
+/// which is capture-ready. If the return value evaluates to 'false' then
+/// no lambda is capture-ready for \p VarToCapture.
+
+static inline Optional<unsigned>
+getStackIndexOfNearestEnclosingCaptureReadyLambda(
+ ArrayRef<const clang::sema::FunctionScopeInfo *> FunctionScopes,
+ VarDecl *VarToCapture) {
+ // Label failure to capture.
+ const Optional<unsigned> NoLambdaIsCaptureReady;
+
+ // Ignore all inner captured regions.
+ unsigned CurScopeIndex = FunctionScopes.size() - 1;
+ while (CurScopeIndex > 0 && isa<clang::sema::CapturedRegionScopeInfo>(
+ FunctionScopes[CurScopeIndex]))
+ --CurScopeIndex;
+ assert(
+ isa<clang::sema::LambdaScopeInfo>(FunctionScopes[CurScopeIndex]) &&
+ "The function on the top of sema's function-info stack must be a lambda");
+
+ // If VarToCapture is null, we are attempting to capture 'this'.
+ const bool IsCapturingThis = !VarToCapture;
+ const bool IsCapturingVariable = !IsCapturingThis;
+
+ // Start with the current lambda at the top of the stack (highest index).
+ DeclContext *EnclosingDC =
+ cast<sema::LambdaScopeInfo>(FunctionScopes[CurScopeIndex])->CallOperator;
+
+ do {
+ const clang::sema::LambdaScopeInfo *LSI =
+ cast<sema::LambdaScopeInfo>(FunctionScopes[CurScopeIndex]);
+ // IF we have climbed down to an intervening enclosing lambda that contains
+ // the variable declaration - it obviously can/must not capture the
+ // variable.
+ // Since its enclosing DC is dependent, all the lambdas between it and the
+ // innermost nested lambda are dependent (otherwise we wouldn't have
+ // arrived here) - so we don't yet have a lambda that can capture the
+ // variable.
+ if (IsCapturingVariable &&
+ VarToCapture->getDeclContext()->Equals(EnclosingDC))
+ return NoLambdaIsCaptureReady;
+
+ // For an enclosing lambda to be capture ready for an entity, all
+ // intervening lambda's have to be able to capture that entity. If even
+ // one of the intervening lambda's is not capable of capturing the entity
+ // then no enclosing lambda can ever capture that entity.
+ // For e.g.
+ // const int x = 10;
+ // [=](auto a) { #1
+ // [](auto b) { #2 <-- an intervening lambda that can never capture 'x'
+ // [=](auto c) { #3
+ // f(x, c); <-- can not lead to x's speculative capture by #1 or #2
+ // }; }; };
+ // If they do not have a default implicit capture, check to see
+ // if the entity has already been explicitly captured.
+ // If even a single dependent enclosing lambda lacks the capability
+ // to ever capture this variable, there is no further enclosing
+ // non-dependent lambda that can capture this variable.
+ if (LSI->ImpCaptureStyle == sema::LambdaScopeInfo::ImpCap_None) {
+ if (IsCapturingVariable && !LSI->isCaptured(VarToCapture))
+ return NoLambdaIsCaptureReady;
+ if (IsCapturingThis && !LSI->isCXXThisCaptured())
+ return NoLambdaIsCaptureReady;
+ }
+ EnclosingDC = getLambdaAwareParentOfDeclContext(EnclosingDC);
+
+ assert(CurScopeIndex);
+ --CurScopeIndex;
+ } while (!EnclosingDC->isTranslationUnit() &&
+ EnclosingDC->isDependentContext() &&
+ isLambdaCallOperator(EnclosingDC));
+
+ assert(CurScopeIndex < (FunctionScopes.size() - 1));
+ // If the enclosingDC is not dependent, then the immediately nested lambda
+ // (one index above) is capture-ready.
+ if (!EnclosingDC->isDependentContext())
+ return CurScopeIndex + 1;
+ return NoLambdaIsCaptureReady;
+}
+
+/// Examines the FunctionScopeInfo stack to determine the nearest
+/// enclosing lambda (to the current lambda) that is 'capture-capable' for
+/// the variable referenced in the current lambda (i.e. \p VarToCapture).
+/// If successful, returns the index into Sema's FunctionScopeInfo stack
+/// of the capture-capable lambda's LambdaScopeInfo.
+///
+/// Given the current stack of lambdas being processed by Sema and
+/// the variable of interest, to identify the nearest enclosing lambda (to the
+/// current lambda at the top of the stack) that can truly capture
+/// a variable, it has to have the following two properties:
+/// a) 'capture-ready' - be the innermost lambda that is 'capture-ready':
+/// - climb down the stack (i.e. starting from the innermost and examining
+/// each outer lambda step by step) checking if each enclosing
+/// lambda can either implicitly or explicitly capture the variable.
+/// Record the first such lambda that is enclosed in a non-dependent
+/// context. If no such lambda currently exists return failure.
+/// b) 'capture-capable' - make sure the 'capture-ready' lambda can truly
+/// capture the variable by checking all its enclosing lambdas:
+/// - check if all outer lambdas enclosing the 'capture-ready' lambda
+/// identified above in 'a' can also capture the variable (this is done
+/// via tryCaptureVariable for variables and CheckCXXThisCapture for
+/// 'this' by passing in the index of the Lambda identified in step 'a')
+///
+/// \param FunctionScopes - Sema's stack of nested FunctionScopeInfo's (which a
+/// LambdaScopeInfo inherits from). The current/deepest/innermost lambda
+/// is at the top of the stack.
+///
+/// \param VarToCapture - the variable to capture. If NULL, capture 'this'.
+///
+///
+/// \returns An Optional<unsigned> Index that if evaluates to 'true' contains
+/// the index (into Sema's FunctionScopeInfo stack) of the innermost lambda
+/// which is capture-capable. If the return value evaluates to 'false' then
+/// no lambda is capture-capable for \p VarToCapture.
+
+Optional<unsigned> clang::getStackIndexOfNearestEnclosingCaptureCapableLambda(
+ ArrayRef<const sema::FunctionScopeInfo *> FunctionScopes,
+ VarDecl *VarToCapture, Sema &S) {
+
+ const Optional<unsigned> NoLambdaIsCaptureCapable;
+
+ const Optional<unsigned> OptionalStackIndex =
+ getStackIndexOfNearestEnclosingCaptureReadyLambda(FunctionScopes,
+ VarToCapture);
+ if (!OptionalStackIndex)
+ return NoLambdaIsCaptureCapable;
+
+ const unsigned IndexOfCaptureReadyLambda = OptionalStackIndex.getValue();
+ assert(((IndexOfCaptureReadyLambda != (FunctionScopes.size() - 1)) ||
+ S.getCurGenericLambda()) &&
+ "The capture ready lambda for a potential capture can only be the "
+ "current lambda if it is a generic lambda");
+
+ const sema::LambdaScopeInfo *const CaptureReadyLambdaLSI =
+ cast<sema::LambdaScopeInfo>(FunctionScopes[IndexOfCaptureReadyLambda]);
+
+ // If VarToCapture is null, we are attempting to capture 'this'
+ const bool IsCapturingThis = !VarToCapture;
+ const bool IsCapturingVariable = !IsCapturingThis;
+
+ if (IsCapturingVariable) {
+ // Check if the capture-ready lambda can truly capture the variable, by
+ // checking whether all enclosing lambdas of the capture-ready lambda allow
+ // the capture - i.e. make sure it is capture-capable.
+ QualType CaptureType, DeclRefType;
+ const bool CanCaptureVariable =
+ !S.tryCaptureVariable(VarToCapture,
+ /*ExprVarIsUsedInLoc*/ SourceLocation(),
+ clang::Sema::TryCapture_Implicit,
+ /*EllipsisLoc*/ SourceLocation(),
+ /*BuildAndDiagnose*/ false, CaptureType,
+ DeclRefType, &IndexOfCaptureReadyLambda);
+ if (!CanCaptureVariable)
+ return NoLambdaIsCaptureCapable;
+ } else {
+ // Check if the capture-ready lambda can truly capture 'this' by checking
+ // whether all enclosing lambdas of the capture-ready lambda can capture
+ // 'this'.
+ const bool CanCaptureThis =
+ !S.CheckCXXThisCapture(
+ CaptureReadyLambdaLSI->PotentialThisCaptureLocation,
+ /*Explicit*/ false, /*BuildAndDiagnose*/ false,
+ &IndexOfCaptureReadyLambda);
+ if (!CanCaptureThis)
+ return NoLambdaIsCaptureCapable;
+ }
+ return IndexOfCaptureReadyLambda;
+}
+
+static inline TemplateParameterList *
+getGenericLambdaTemplateParameterList(LambdaScopeInfo *LSI, Sema &SemaRef) {
+ if (!LSI->GLTemplateParameterList && !LSI->TemplateParams.empty()) {
+ LSI->GLTemplateParameterList = TemplateParameterList::Create(
+ SemaRef.Context,
+ /*Template kw loc*/ SourceLocation(),
+ /*L angle loc*/ LSI->ExplicitTemplateParamsRange.getBegin(),
+ LSI->TemplateParams,
+ /*R angle loc*/LSI->ExplicitTemplateParamsRange.getEnd(),
+ LSI->RequiresClause.get());
+ }
+ return LSI->GLTemplateParameterList;
+}
+
+CXXRecordDecl *Sema::createLambdaClosureType(SourceRange IntroducerRange,
+ TypeSourceInfo *Info,
+ bool KnownDependent,
+ LambdaCaptureDefault CaptureDefault) {
+ DeclContext *DC = CurContext;
+ while (!(DC->isFunctionOrMethod() || DC->isRecord() || DC->isFileContext()))
+ DC = DC->getParent();
+ bool IsGenericLambda = getGenericLambdaTemplateParameterList(getCurLambda(),
+ *this);
+ // Start constructing the lambda class.
+ CXXRecordDecl *Class = CXXRecordDecl::CreateLambda(Context, DC, Info,
+ IntroducerRange.getBegin(),
+ KnownDependent,
+ IsGenericLambda,
+ CaptureDefault);
+ DC->addDecl(Class);
+
+ return Class;
+}
+
+/// Determine whether the given context is or is enclosed in an inline
+/// function.
+static bool isInInlineFunction(const DeclContext *DC) {
+ while (!DC->isFileContext()) {
+ if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(DC))
+ if (FD->isInlined())
+ return true;
+
+ DC = DC->getLexicalParent();
+ }
+
+ return false;
+}
+
+std::tuple<MangleNumberingContext *, Decl *>
+Sema::getCurrentMangleNumberContext(const DeclContext *DC) {
+ // Compute the context for allocating mangling numbers in the current
+ // expression, if the ABI requires them.
+ Decl *ManglingContextDecl = ExprEvalContexts.back().ManglingContextDecl;
+
+ enum ContextKind {
+ Normal,
+ DefaultArgument,
+ DataMember,
+ StaticDataMember,
+ InlineVariable,
+ VariableTemplate
+ } Kind = Normal;
+
+ // Default arguments of member function parameters that appear in a class
+ // definition, as well as the initializers of data members, receive special
+ // treatment. Identify them.
+ if (ManglingContextDecl) {
+ if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(ManglingContextDecl)) {
+ if (const DeclContext *LexicalDC
+ = Param->getDeclContext()->getLexicalParent())
+ if (LexicalDC->isRecord())
+ Kind = DefaultArgument;
+ } else if (VarDecl *Var = dyn_cast<VarDecl>(ManglingContextDecl)) {
+ if (Var->getDeclContext()->isRecord())
+ Kind = StaticDataMember;
+ else if (Var->getMostRecentDecl()->isInline())
+ Kind = InlineVariable;
+ else if (Var->getDescribedVarTemplate())
+ Kind = VariableTemplate;
+ else if (auto *VTS = dyn_cast<VarTemplateSpecializationDecl>(Var)) {
+ if (!VTS->isExplicitSpecialization())
+ Kind = VariableTemplate;
+ }
+ } else if (isa<FieldDecl>(ManglingContextDecl)) {
+ Kind = DataMember;
+ }
+ }
+
+ // Itanium ABI [5.1.7]:
+ // In the following contexts [...] the one-definition rule requires closure
+ // types in different translation units to "correspond":
+ bool IsInNonspecializedTemplate =
+ inTemplateInstantiation() || CurContext->isDependentContext();
+ switch (Kind) {
+ case Normal: {
+ // -- the bodies of non-exported nonspecialized template functions
+ // -- the bodies of inline functions
+ if ((IsInNonspecializedTemplate &&
+ !(ManglingContextDecl && isa<ParmVarDecl>(ManglingContextDecl))) ||
+ isInInlineFunction(CurContext)) {
+ while (auto *CD = dyn_cast<CapturedDecl>(DC))
+ DC = CD->getParent();
+ return std::make_tuple(&Context.getManglingNumberContext(DC), nullptr);
+ }
+
+ return std::make_tuple(nullptr, nullptr);
+ }
+
+ case StaticDataMember:
+ // -- the initializers of nonspecialized static members of template classes
+ if (!IsInNonspecializedTemplate)
+ return std::make_tuple(nullptr, ManglingContextDecl);
+ // Fall through to get the current context.
+ LLVM_FALLTHROUGH;
+
+ case DataMember:
+ // -- the in-class initializers of class members
+ case DefaultArgument:
+ // -- default arguments appearing in class definitions
+ case InlineVariable:
+ // -- the initializers of inline variables
+ case VariableTemplate:
+ // -- the initializers of templated variables
+ return std::make_tuple(
+ &Context.getManglingNumberContext(ASTContext::NeedExtraManglingDecl,
+ ManglingContextDecl),
+ ManglingContextDecl);
+ }
+
+ llvm_unreachable("unexpected context");
+}
+
+CXXMethodDecl *Sema::startLambdaDefinition(CXXRecordDecl *Class,
+ SourceRange IntroducerRange,
+ TypeSourceInfo *MethodTypeInfo,
+ SourceLocation EndLoc,
+ ArrayRef<ParmVarDecl *> Params,
+ ConstexprSpecKind ConstexprKind,
+ Expr *TrailingRequiresClause) {
+ QualType MethodType = MethodTypeInfo->getType();
+ TemplateParameterList *TemplateParams =
+ getGenericLambdaTemplateParameterList(getCurLambda(), *this);
+ // If a lambda appears in a dependent context or is a generic lambda (has
+ // template parameters) and has an 'auto' return type, deduce it to a
+ // dependent type.
+ if (Class->isDependentContext() || TemplateParams) {
+ const FunctionProtoType *FPT = MethodType->castAs<FunctionProtoType>();
+ QualType Result = FPT->getReturnType();
+ if (Result->isUndeducedType()) {
+ Result = SubstAutoType(Result, Context.DependentTy);
+ MethodType = Context.getFunctionType(Result, FPT->getParamTypes(),
+ FPT->getExtProtoInfo());
+ }
+ }
+
+ // C++11 [expr.prim.lambda]p5:
+ // The closure type for a lambda-expression has a public inline function
+ // call operator (13.5.4) whose parameters and return type are described by
+ // the lambda-expression's parameter-declaration-clause and
+ // trailing-return-type respectively.
+ DeclarationName MethodName
+ = Context.DeclarationNames.getCXXOperatorName(OO_Call);
+ DeclarationNameLoc MethodNameLoc;
+ MethodNameLoc.CXXOperatorName.BeginOpNameLoc
+ = IntroducerRange.getBegin().getRawEncoding();
+ MethodNameLoc.CXXOperatorName.EndOpNameLoc
+ = IntroducerRange.getEnd().getRawEncoding();
+ CXXMethodDecl *Method = CXXMethodDecl::Create(
+ Context, Class, EndLoc,
+ DeclarationNameInfo(MethodName, IntroducerRange.getBegin(),
+ MethodNameLoc),
+ MethodType, MethodTypeInfo, SC_None,
+ /*isInline=*/true, ConstexprKind, EndLoc, TrailingRequiresClause);
+ Method->setAccess(AS_public);
+ if (!TemplateParams)
+ Class->addDecl(Method);
+
+ // Temporarily set the lexical declaration context to the current
+ // context, so that the Scope stack matches the lexical nesting.
+ Method->setLexicalDeclContext(CurContext);
+ // Create a function template if we have a template parameter list
+ FunctionTemplateDecl *const TemplateMethod = TemplateParams ?
+ FunctionTemplateDecl::Create(Context, Class,
+ Method->getLocation(), MethodName,
+ TemplateParams,
+ Method) : nullptr;
+ if (TemplateMethod) {
+ TemplateMethod->setAccess(AS_public);
+ Method->setDescribedFunctionTemplate(TemplateMethod);
+ Class->addDecl(TemplateMethod);
+ TemplateMethod->setLexicalDeclContext(CurContext);
+ }
+
+ // Add parameters.
+ if (!Params.empty()) {
+ Method->setParams(Params);
+ CheckParmsForFunctionDef(Params,
+ /*CheckParameterNames=*/false);
+
+ for (auto P : Method->parameters())
+ P->setOwningFunction(Method);
+ }
+
+ return Method;
+}
+
+void Sema::handleLambdaNumbering(
+ CXXRecordDecl *Class, CXXMethodDecl *Method,
+ Optional<std::tuple<bool, unsigned, unsigned, Decl *>> Mangling) {
+ if (Mangling) {
+ bool HasKnownInternalLinkage;
+ unsigned ManglingNumber, DeviceManglingNumber;
+ Decl *ManglingContextDecl;
+ std::tie(HasKnownInternalLinkage, ManglingNumber, DeviceManglingNumber,
+ ManglingContextDecl) = Mangling.getValue();
+ Class->setLambdaMangling(ManglingNumber, ManglingContextDecl,
+ HasKnownInternalLinkage);
+ Class->setDeviceLambdaManglingNumber(DeviceManglingNumber);
+ return;
+ }
+
+ auto getMangleNumberingContext =
+ [this](CXXRecordDecl *Class,
+ Decl *ManglingContextDecl) -> MangleNumberingContext * {
+ // Get mangle numbering context if there's any extra decl context.
+ if (ManglingContextDecl)
+ return &Context.getManglingNumberContext(
+ ASTContext::NeedExtraManglingDecl, ManglingContextDecl);
+ // Otherwise, from that lambda's decl context.
+ auto DC = Class->getDeclContext();
+ while (auto *CD = dyn_cast<CapturedDecl>(DC))
+ DC = CD->getParent();
+ return &Context.getManglingNumberContext(DC);
+ };
+
+ MangleNumberingContext *MCtx;
+ Decl *ManglingContextDecl;
+ std::tie(MCtx, ManglingContextDecl) =
+ getCurrentMangleNumberContext(Class->getDeclContext());
+ bool HasKnownInternalLinkage = false;
+ if (!MCtx && getLangOpts().CUDA) {
+ // Force lambda numbering in CUDA/HIP as we need to name lambdas following
+ // ODR. Both device- and host-compilation need to have a consistent naming
+ // on kernel functions. As lambdas are potential part of these `__global__`
+ // function names, they needs numbering following ODR.
+ MCtx = getMangleNumberingContext(Class, ManglingContextDecl);
+ assert(MCtx && "Retrieving mangle numbering context failed!");
+ HasKnownInternalLinkage = true;
+ }
+ if (MCtx) {
+ unsigned ManglingNumber = MCtx->getManglingNumber(Method);
+ Class->setLambdaMangling(ManglingNumber, ManglingContextDecl,
+ HasKnownInternalLinkage);
+ Class->setDeviceLambdaManglingNumber(MCtx->getDeviceManglingNumber(Method));
+ }
+}
+
+void Sema::buildLambdaScope(LambdaScopeInfo *LSI,
+ CXXMethodDecl *CallOperator,
+ SourceRange IntroducerRange,
+ LambdaCaptureDefault CaptureDefault,
+ SourceLocation CaptureDefaultLoc,
+ bool ExplicitParams,
+ bool ExplicitResultType,
+ bool Mutable) {
+ LSI->CallOperator = CallOperator;
+ CXXRecordDecl *LambdaClass = CallOperator->getParent();
+ LSI->Lambda = LambdaClass;
+ if (CaptureDefault == LCD_ByCopy)
+ LSI->ImpCaptureStyle = LambdaScopeInfo::ImpCap_LambdaByval;
+ else if (CaptureDefault == LCD_ByRef)
+ LSI->ImpCaptureStyle = LambdaScopeInfo::ImpCap_LambdaByref;
+ LSI->CaptureDefaultLoc = CaptureDefaultLoc;
+ LSI->IntroducerRange = IntroducerRange;
+ LSI->ExplicitParams = ExplicitParams;
+ LSI->Mutable = Mutable;
+
+ if (ExplicitResultType) {
+ LSI->ReturnType = CallOperator->getReturnType();
+
+ if (!LSI->ReturnType->isDependentType() &&
+ !LSI->ReturnType->isVoidType()) {
+ if (RequireCompleteType(CallOperator->getBeginLoc(), LSI->ReturnType,
+ diag::err_lambda_incomplete_result)) {
+ // Do nothing.
+ }
+ }
+ } else {
+ LSI->HasImplicitReturnType = true;
+ }
+}
+
+void Sema::finishLambdaExplicitCaptures(LambdaScopeInfo *LSI) {
+ LSI->finishedExplicitCaptures();
+}
+
+void Sema::ActOnLambdaExplicitTemplateParameterList(SourceLocation LAngleLoc,
+ ArrayRef<NamedDecl *> TParams,
+ SourceLocation RAngleLoc,
+ ExprResult RequiresClause) {
+ LambdaScopeInfo *LSI = getCurLambda();
+ assert(LSI && "Expected a lambda scope");
+ assert(LSI->NumExplicitTemplateParams == 0 &&
+ "Already acted on explicit template parameters");
+ assert(LSI->TemplateParams.empty() &&
+ "Explicit template parameters should come "
+ "before invented (auto) ones");
+ assert(!TParams.empty() &&
+ "No template parameters to act on");
+ LSI->TemplateParams.append(TParams.begin(), TParams.end());
+ LSI->NumExplicitTemplateParams = TParams.size();
+ LSI->ExplicitTemplateParamsRange = {LAngleLoc, RAngleLoc};
+ LSI->RequiresClause = RequiresClause;
+}
+
+void Sema::addLambdaParameters(
+ ArrayRef<LambdaIntroducer::LambdaCapture> Captures,
+ CXXMethodDecl *CallOperator, Scope *CurScope) {
+ // Introduce our parameters into the function scope
+ for (unsigned p = 0, NumParams = CallOperator->getNumParams();
+ p < NumParams; ++p) {
+ ParmVarDecl *Param = CallOperator->getParamDecl(p);
+
+ // If this has an identifier, add it to the scope stack.
+ if (CurScope && Param->getIdentifier()) {
+ bool Error = false;
+ // Resolution of CWG 2211 in C++17 renders shadowing ill-formed, but we
+ // retroactively apply it.
+ for (const auto &Capture : Captures) {
+ if (Capture.Id == Param->getIdentifier()) {
+ Error = true;
+ Diag(Param->getLocation(), diag::err_parameter_shadow_capture);
+ Diag(Capture.Loc, diag::note_var_explicitly_captured_here)
+ << Capture.Id << true;
+ }
+ }
+ if (!Error)
+ CheckShadow(CurScope, Param);
+
+ PushOnScopeChains(Param, CurScope);
+ }
+ }
+}
+
+/// If this expression is an enumerator-like expression of some type
+/// T, return the type T; otherwise, return null.
+///
+/// Pointer comparisons on the result here should always work because
+/// it's derived from either the parent of an EnumConstantDecl
+/// (i.e. the definition) or the declaration returned by
+/// EnumType::getDecl() (i.e. the definition).
+static EnumDecl *findEnumForBlockReturn(Expr *E) {
+ // An expression is an enumerator-like expression of type T if,
+ // ignoring parens and parens-like expressions:
+ E = E->IgnoreParens();
+
+ // - it is an enumerator whose enum type is T or
+ if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
+ if (EnumConstantDecl *D
+ = dyn_cast<EnumConstantDecl>(DRE->getDecl())) {
+ return cast<EnumDecl>(D->getDeclContext());
+ }
+ return nullptr;
+ }
+
+ // - it is a comma expression whose RHS is an enumerator-like
+ // expression of type T or
+ if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
+ if (BO->getOpcode() == BO_Comma)
+ return findEnumForBlockReturn(BO->getRHS());
+ return nullptr;
+ }
+
+ // - it is a statement-expression whose value expression is an
+ // enumerator-like expression of type T or
+ if (StmtExpr *SE = dyn_cast<StmtExpr>(E)) {
+ if (Expr *last = dyn_cast_or_null<Expr>(SE->getSubStmt()->body_back()))
+ return findEnumForBlockReturn(last);
+ return nullptr;
+ }
+
+ // - it is a ternary conditional operator (not the GNU ?:
+ // extension) whose second and third operands are
+ // enumerator-like expressions of type T or
+ if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
+ if (EnumDecl *ED = findEnumForBlockReturn(CO->getTrueExpr()))
+ if (ED == findEnumForBlockReturn(CO->getFalseExpr()))
+ return ED;
+ return nullptr;
+ }
+
+ // (implicitly:)
+ // - it is an implicit integral conversion applied to an
+ // enumerator-like expression of type T or
+ if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
+ // We can sometimes see integral conversions in valid
+ // enumerator-like expressions.
+ if (ICE->getCastKind() == CK_IntegralCast)
+ return findEnumForBlockReturn(ICE->getSubExpr());
+
+ // Otherwise, just rely on the type.
+ }
+
+ // - it is an expression of that formal enum type.
+ if (const EnumType *ET = E->getType()->getAs<EnumType>()) {
+ return ET->getDecl();
+ }
+
+ // Otherwise, nope.
+ return nullptr;
+}
+
+/// Attempt to find a type T for which the returned expression of the
+/// given statement is an enumerator-like expression of that type.
+static EnumDecl *findEnumForBlockReturn(ReturnStmt *ret) {
+ if (Expr *retValue = ret->getRetValue())
+ return findEnumForBlockReturn(retValue);
+ return nullptr;
+}
+
+/// Attempt to find a common type T for which all of the returned
+/// expressions in a block are enumerator-like expressions of that
+/// type.
+static EnumDecl *findCommonEnumForBlockReturns(ArrayRef<ReturnStmt*> returns) {
+ ArrayRef<ReturnStmt*>::iterator i = returns.begin(), e = returns.end();
+
+ // Try to find one for the first return.
+ EnumDecl *ED = findEnumForBlockReturn(*i);
+ if (!ED) return nullptr;
+
+ // Check that the rest of the returns have the same enum.
+ for (++i; i != e; ++i) {
+ if (findEnumForBlockReturn(*i) != ED)
+ return nullptr;
+ }
+
+ // Never infer an anonymous enum type.
+ if (!ED->hasNameForLinkage()) return nullptr;
+
+ return ED;
+}
+
+/// Adjust the given return statements so that they formally return
+/// the given type. It should require, at most, an IntegralCast.
+static void adjustBlockReturnsToEnum(Sema &S, ArrayRef<ReturnStmt*> returns,
+ QualType returnType) {
+ for (ArrayRef<ReturnStmt*>::iterator
+ i = returns.begin(), e = returns.end(); i != e; ++i) {
+ ReturnStmt *ret = *i;
+ Expr *retValue = ret->getRetValue();
+ if (S.Context.hasSameType(retValue->getType(), returnType))
+ continue;
+
+ // Right now we only support integral fixup casts.
+ assert(returnType->isIntegralOrUnscopedEnumerationType());
+ assert(retValue->getType()->isIntegralOrUnscopedEnumerationType());
+
+ ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(retValue);
+
+ Expr *E = (cleanups ? cleanups->getSubExpr() : retValue);
+ E = ImplicitCastExpr::Create(S.Context, returnType, CK_IntegralCast, E,
+ /*base path*/ nullptr, VK_RValue,
+ FPOptionsOverride());
+ if (cleanups) {
+ cleanups->setSubExpr(E);
+ } else {
+ ret->setRetValue(E);
+ }
+ }
+}
+
+void Sema::deduceClosureReturnType(CapturingScopeInfo &CSI) {
+ assert(CSI.HasImplicitReturnType);
+ // If it was ever a placeholder, it had to been deduced to DependentTy.
+ assert(CSI.ReturnType.isNull() || !CSI.ReturnType->isUndeducedType());
+ assert((!isa<LambdaScopeInfo>(CSI) || !getLangOpts().CPlusPlus14) &&
+ "lambda expressions use auto deduction in C++14 onwards");
+
+ // C++ core issue 975:
+ // If a lambda-expression does not include a trailing-return-type,
+ // it is as if the trailing-return-type denotes the following type:
+ // - if there are no return statements in the compound-statement,
+ // or all return statements return either an expression of type
+ // void or no expression or braced-init-list, the type void;
+ // - otherwise, if all return statements return an expression
+ // and the types of the returned expressions after
+ // lvalue-to-rvalue conversion (4.1 [conv.lval]),
+ // array-to-pointer conversion (4.2 [conv.array]), and
+ // function-to-pointer conversion (4.3 [conv.func]) are the
+ // same, that common type;
+ // - otherwise, the program is ill-formed.
+ //
+ // C++ core issue 1048 additionally removes top-level cv-qualifiers
+ // from the types of returned expressions to match the C++14 auto
+ // deduction rules.
+ //
+ // In addition, in blocks in non-C++ modes, if all of the return
+ // statements are enumerator-like expressions of some type T, where
+ // T has a name for linkage, then we infer the return type of the
+ // block to be that type.
+
+ // First case: no return statements, implicit void return type.
+ ASTContext &Ctx = getASTContext();
+ if (CSI.Returns.empty()) {
+ // It's possible there were simply no /valid/ return statements.
+ // In this case, the first one we found may have at least given us a type.
+ if (CSI.ReturnType.isNull())
+ CSI.ReturnType = Ctx.VoidTy;
+ return;
+ }
+
+ // Second case: at least one return statement has dependent type.
+ // Delay type checking until instantiation.
+ assert(!CSI.ReturnType.isNull() && "We should have a tentative return type.");
+ if (CSI.ReturnType->isDependentType())
+ return;
+
+ // Try to apply the enum-fuzz rule.
+ if (!getLangOpts().CPlusPlus) {
+ assert(isa<BlockScopeInfo>(CSI));
+ const EnumDecl *ED = findCommonEnumForBlockReturns(CSI.Returns);
+ if (ED) {
+ CSI.ReturnType = Context.getTypeDeclType(ED);
+ adjustBlockReturnsToEnum(*this, CSI.Returns, CSI.ReturnType);
+ return;
+ }
+ }
+
+ // Third case: only one return statement. Don't bother doing extra work!
+ if (CSI.Returns.size() == 1)
+ return;
+
+ // General case: many return statements.
+ // Check that they all have compatible return types.
+
+ // We require the return types to strictly match here.
+ // Note that we've already done the required promotions as part of
+ // processing the return statement.
+ for (const ReturnStmt *RS : CSI.Returns) {
+ const Expr *RetE = RS->getRetValue();
+
+ QualType ReturnType =
+ (RetE ? RetE->getType() : Context.VoidTy).getUnqualifiedType();
+ if (Context.getCanonicalFunctionResultType(ReturnType) ==
+ Context.getCanonicalFunctionResultType(CSI.ReturnType)) {
+ // Use the return type with the strictest possible nullability annotation.
+ auto RetTyNullability = ReturnType->getNullability(Ctx);
+ auto BlockNullability = CSI.ReturnType->getNullability(Ctx);
+ if (BlockNullability &&
+ (!RetTyNullability ||
+ hasWeakerNullability(*RetTyNullability, *BlockNullability)))
+ CSI.ReturnType = ReturnType;
+ continue;
+ }
+
+ // FIXME: This is a poor diagnostic for ReturnStmts without expressions.
+ // TODO: It's possible that the *first* return is the divergent one.
+ Diag(RS->getBeginLoc(),
+ diag::err_typecheck_missing_return_type_incompatible)
+ << ReturnType << CSI.ReturnType << isa<LambdaScopeInfo>(CSI);
+ // Continue iterating so that we keep emitting diagnostics.
+ }
+}
+
+QualType Sema::buildLambdaInitCaptureInitialization(
+ SourceLocation Loc, bool ByRef, SourceLocation EllipsisLoc,
+ Optional<unsigned> NumExpansions, IdentifierInfo *Id, bool IsDirectInit,
+ Expr *&Init) {
+ // Create an 'auto' or 'auto&' TypeSourceInfo that we can use to
+ // deduce against.
+ QualType DeductType = Context.getAutoDeductType();
+ TypeLocBuilder TLB;
+ AutoTypeLoc TL = TLB.push<AutoTypeLoc>(DeductType);
+ TL.setNameLoc(Loc);
+ if (ByRef) {
+ DeductType = BuildReferenceType(DeductType, true, Loc, Id);
+ assert(!DeductType.isNull() && "can't build reference to auto");
+ TLB.push<ReferenceTypeLoc>(DeductType).setSigilLoc(Loc);
+ }
+ if (EllipsisLoc.isValid()) {
+ if (Init->containsUnexpandedParameterPack()) {
+ Diag(EllipsisLoc, getLangOpts().CPlusPlus20
+ ? diag::warn_cxx17_compat_init_capture_pack
+ : diag::ext_init_capture_pack);
+ DeductType = Context.getPackExpansionType(DeductType, NumExpansions,
+ /*ExpectPackInType=*/false);
+ TLB.push<PackExpansionTypeLoc>(DeductType).setEllipsisLoc(EllipsisLoc);
+ } else {
+ // Just ignore the ellipsis for now and form a non-pack variable. We'll
+ // diagnose this later when we try to capture it.
+ }
+ }
+ TypeSourceInfo *TSI = TLB.getTypeSourceInfo(Context, DeductType);
+
+ // Deduce the type of the init capture.
+ QualType DeducedType = deduceVarTypeFromInitializer(
+ /*VarDecl*/nullptr, DeclarationName(Id), DeductType, TSI,
+ SourceRange(Loc, Loc), IsDirectInit, Init);
+ if (DeducedType.isNull())
+ return QualType();
+
+ // Are we a non-list direct initialization?
+ ParenListExpr *CXXDirectInit = dyn_cast<ParenListExpr>(Init);
+
+ // Perform initialization analysis and ensure any implicit conversions
+ // (such as lvalue-to-rvalue) are enforced.
+ InitializedEntity Entity =
+ InitializedEntity::InitializeLambdaCapture(Id, DeducedType, Loc);
+ InitializationKind Kind =
+ IsDirectInit
+ ? (CXXDirectInit ? InitializationKind::CreateDirect(
+ Loc, Init->getBeginLoc(), Init->getEndLoc())
+ : InitializationKind::CreateDirectList(Loc))
+ : InitializationKind::CreateCopy(Loc, Init->getBeginLoc());
+
+ MultiExprArg Args = Init;
+ if (CXXDirectInit)
+ Args =
+ MultiExprArg(CXXDirectInit->getExprs(), CXXDirectInit->getNumExprs());
+ QualType DclT;
+ InitializationSequence InitSeq(*this, Entity, Kind, Args);
+ ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Args, &DclT);
+
+ if (Result.isInvalid())
+ return QualType();
+
+ Init = Result.getAs<Expr>();
+ return DeducedType;
+}
+
+VarDecl *Sema::createLambdaInitCaptureVarDecl(SourceLocation Loc,
+ QualType InitCaptureType,
+ SourceLocation EllipsisLoc,
+ IdentifierInfo *Id,
+ unsigned InitStyle, Expr *Init) {
+ // FIXME: Retain the TypeSourceInfo from buildLambdaInitCaptureInitialization
+ // rather than reconstructing it here.
+ TypeSourceInfo *TSI = Context.getTrivialTypeSourceInfo(InitCaptureType, Loc);
+ if (auto PETL = TSI->getTypeLoc().getAs<PackExpansionTypeLoc>())
+ PETL.setEllipsisLoc(EllipsisLoc);
+
+ // Create a dummy variable representing the init-capture. This is not actually
+ // used as a variable, and only exists as a way to name and refer to the
+ // init-capture.
+ // FIXME: Pass in separate source locations for '&' and identifier.
+ VarDecl *NewVD = VarDecl::Create(Context, CurContext, Loc,
+ Loc, Id, InitCaptureType, TSI, SC_Auto);
+ NewVD->setInitCapture(true);
+ NewVD->setReferenced(true);
+ // FIXME: Pass in a VarDecl::InitializationStyle.
+ NewVD->setInitStyle(static_cast<VarDecl::InitializationStyle>(InitStyle));
+ NewVD->markUsed(Context);
+ NewVD->setInit(Init);
+ if (NewVD->isParameterPack())
+ getCurLambda()->LocalPacks.push_back(NewVD);
+ return NewVD;
+}
+
+void Sema::addInitCapture(LambdaScopeInfo *LSI, VarDecl *Var) {
+ assert(Var->isInitCapture() && "init capture flag should be set");
+ LSI->addCapture(Var, /*isBlock*/false, Var->getType()->isReferenceType(),
+ /*isNested*/false, Var->getLocation(), SourceLocation(),
+ Var->getType(), /*Invalid*/false);
+}
+
+void Sema::ActOnStartOfLambdaDefinition(LambdaIntroducer &Intro,
+ Declarator &ParamInfo,
+ Scope *CurScope) {
+ LambdaScopeInfo *const LSI = getCurLambda();
+ assert(LSI && "LambdaScopeInfo should be on stack!");
+
+ // Determine if we're within a context where we know that the lambda will
+ // be dependent, because there are template parameters in scope.
+ bool KnownDependent;
+ if (LSI->NumExplicitTemplateParams > 0) {
+ auto *TemplateParamScope = CurScope->getTemplateParamParent();
+ assert(TemplateParamScope &&
+ "Lambda with explicit template param list should establish a "
+ "template param scope");
+ assert(TemplateParamScope->getParent());
+ KnownDependent = TemplateParamScope->getParent()
+ ->getTemplateParamParent() != nullptr;
+ } else {
+ KnownDependent = CurScope->getTemplateParamParent() != nullptr;
+ }
+
+ // Determine the signature of the call operator.
+ TypeSourceInfo *MethodTyInfo;
+ bool ExplicitParams = true;
+ bool ExplicitResultType = true;
+ bool ContainsUnexpandedParameterPack = false;
+ SourceLocation EndLoc;
+ SmallVector<ParmVarDecl *, 8> Params;
+ if (ParamInfo.getNumTypeObjects() == 0) {
+ // C++11 [expr.prim.lambda]p4:
+ // If a lambda-expression does not include a lambda-declarator, it is as
+ // if the lambda-declarator were ().
+ FunctionProtoType::ExtProtoInfo EPI(Context.getDefaultCallingConvention(
+ /*IsVariadic=*/false, /*IsCXXMethod=*/true));
+ EPI.HasTrailingReturn = true;
+ EPI.TypeQuals.addConst();
+ LangAS AS = getDefaultCXXMethodAddrSpace();
+ if (AS != LangAS::Default)
+ EPI.TypeQuals.addAddressSpace(AS);
+
+ // C++1y [expr.prim.lambda]:
+ // The lambda return type is 'auto', which is replaced by the
+ // trailing-return type if provided and/or deduced from 'return'
+ // statements
+ // We don't do this before C++1y, because we don't support deduced return
+ // types there.
+ QualType DefaultTypeForNoTrailingReturn =
+ getLangOpts().CPlusPlus14 ? Context.getAutoDeductType()
+ : Context.DependentTy;
+ QualType MethodTy =
+ Context.getFunctionType(DefaultTypeForNoTrailingReturn, None, EPI);
+ MethodTyInfo = Context.getTrivialTypeSourceInfo(MethodTy);
+ ExplicitParams = false;
+ ExplicitResultType = false;
+ EndLoc = Intro.Range.getEnd();
+ } else {
+ assert(ParamInfo.isFunctionDeclarator() &&
+ "lambda-declarator is a function");
+ DeclaratorChunk::FunctionTypeInfo &FTI = ParamInfo.getFunctionTypeInfo();
+
+ // C++11 [expr.prim.lambda]p5:
+ // This function call operator is declared const (9.3.1) if and only if
+ // the lambda-expression's parameter-declaration-clause is not followed
+ // by mutable. It is neither virtual nor declared volatile. [...]
+ if (!FTI.hasMutableQualifier()) {
+ FTI.getOrCreateMethodQualifiers().SetTypeQual(DeclSpec::TQ_const,
+ SourceLocation());
+ }
+
+ MethodTyInfo = GetTypeForDeclarator(ParamInfo, CurScope);
+ assert(MethodTyInfo && "no type from lambda-declarator");
+ EndLoc = ParamInfo.getSourceRange().getEnd();
+
+ ExplicitResultType = FTI.hasTrailingReturnType();
+
+ if (FTIHasNonVoidParameters(FTI)) {
+ Params.reserve(FTI.NumParams);
+ for (unsigned i = 0, e = FTI.NumParams; i != e; ++i)
+ Params.push_back(cast<ParmVarDecl>(FTI.Params[i].Param));
+ }
+
+ // Check for unexpanded parameter packs in the method type.
+ if (MethodTyInfo->getType()->containsUnexpandedParameterPack())
+ DiagnoseUnexpandedParameterPack(Intro.Range.getBegin(), MethodTyInfo,
+ UPPC_DeclarationType);
+ }
+
+ CXXRecordDecl *Class = createLambdaClosureType(Intro.Range, MethodTyInfo,
+ KnownDependent, Intro.Default);
+ CXXMethodDecl *Method =
+ startLambdaDefinition(Class, Intro.Range, MethodTyInfo, EndLoc, Params,
+ ParamInfo.getDeclSpec().getConstexprSpecifier(),
+ ParamInfo.getTrailingRequiresClause());
+ if (ExplicitParams)
+ CheckCXXDefaultArguments(Method);
+
+ // This represents the function body for the lambda function, check if we
+ // have to apply optnone due to a pragma.
+ AddRangeBasedOptnone(Method);
+
+ // code_seg attribute on lambda apply to the method.
+ if (Attr *A = getImplicitCodeSegOrSectionAttrForFunction(Method, /*IsDefinition=*/true))
+ Method->addAttr(A);
+
+ // Attributes on the lambda apply to the method.
+ ProcessDeclAttributes(CurScope, Method, ParamInfo);
+
+ // CUDA lambdas get implicit host and device attributes.
+ if (getLangOpts().CUDA)
+ CUDASetLambdaAttrs(Method);
+
+ // OpenMP lambdas might get assumumption attributes.
+ if (LangOpts.OpenMP)
+ ActOnFinishedFunctionDefinitionInOpenMPAssumeScope(Method);
+
+ // Number the lambda for linkage purposes if necessary.
+ handleLambdaNumbering(Class, Method);
+
+ // Introduce the function call operator as the current declaration context.
+ PushDeclContext(CurScope, Method);
+
+ // Build the lambda scope.
+ buildLambdaScope(LSI, Method, Intro.Range, Intro.Default, Intro.DefaultLoc,
+ ExplicitParams, ExplicitResultType, !Method->isConst());
+
+ // C++11 [expr.prim.lambda]p9:
+ // A lambda-expression whose smallest enclosing scope is a block scope is a
+ // local lambda expression; any other lambda expression shall not have a
+ // capture-default or simple-capture in its lambda-introducer.
+ //
+ // For simple-captures, this is covered by the check below that any named
+ // entity is a variable that can be captured.
+ //
+ // For DR1632, we also allow a capture-default in any context where we can
+ // odr-use 'this' (in particular, in a default initializer for a non-static
+ // data member).
+ if (Intro.Default != LCD_None && !Class->getParent()->isFunctionOrMethod() &&
+ (getCurrentThisType().isNull() ||
+ CheckCXXThisCapture(SourceLocation(), /*Explicit*/true,
+ /*BuildAndDiagnose*/false)))
+ Diag(Intro.DefaultLoc, diag::err_capture_default_non_local);
+
+ // Distinct capture names, for diagnostics.
+ llvm::SmallSet<IdentifierInfo*, 8> CaptureNames;
+
+ // Handle explicit captures.
+ SourceLocation PrevCaptureLoc
+ = Intro.Default == LCD_None? Intro.Range.getBegin() : Intro.DefaultLoc;
+ for (auto C = Intro.Captures.begin(), E = Intro.Captures.end(); C != E;
+ PrevCaptureLoc = C->Loc, ++C) {
+ if (C->Kind == LCK_This || C->Kind == LCK_StarThis) {
+ if (C->Kind == LCK_StarThis)
+ Diag(C->Loc, !getLangOpts().CPlusPlus17
+ ? diag::ext_star_this_lambda_capture_cxx17
+ : diag::warn_cxx14_compat_star_this_lambda_capture);
+
+ // C++11 [expr.prim.lambda]p8:
+ // An identifier or this shall not appear more than once in a
+ // lambda-capture.
+ if (LSI->isCXXThisCaptured()) {
+ Diag(C->Loc, diag::err_capture_more_than_once)
+ << "'this'" << SourceRange(LSI->getCXXThisCapture().getLocation())
+ << FixItHint::CreateRemoval(
+ SourceRange(getLocForEndOfToken(PrevCaptureLoc), C->Loc));
+ continue;
+ }
+
+ // C++2a [expr.prim.lambda]p8:
+ // If a lambda-capture includes a capture-default that is =,
+ // each simple-capture of that lambda-capture shall be of the form
+ // "&identifier", "this", or "* this". [ Note: The form [&,this] is
+ // redundant but accepted for compatibility with ISO C++14. --end note ]
+ if (Intro.Default == LCD_ByCopy && C->Kind != LCK_StarThis)
+ Diag(C->Loc, !getLangOpts().CPlusPlus20
+ ? diag::ext_equals_this_lambda_capture_cxx20
+ : diag::warn_cxx17_compat_equals_this_lambda_capture);
+
+ // C++11 [expr.prim.lambda]p12:
+ // If this is captured by a local lambda expression, its nearest
+ // enclosing function shall be a non-static member function.
+ QualType ThisCaptureType = getCurrentThisType();
+ if (ThisCaptureType.isNull()) {
+ Diag(C->Loc, diag::err_this_capture) << true;
+ continue;
+ }
+
+ CheckCXXThisCapture(C->Loc, /*Explicit=*/true, /*BuildAndDiagnose*/ true,
+ /*FunctionScopeIndexToStopAtPtr*/ nullptr,
+ C->Kind == LCK_StarThis);
+ if (!LSI->Captures.empty())
+ LSI->ExplicitCaptureRanges[LSI->Captures.size() - 1] = C->ExplicitRange;
+ continue;
+ }
+
+ assert(C->Id && "missing identifier for capture");
+
+ if (C->Init.isInvalid())
+ continue;
+
+ VarDecl *Var = nullptr;
+ if (C->Init.isUsable()) {
+ Diag(C->Loc, getLangOpts().CPlusPlus14
+ ? diag::warn_cxx11_compat_init_capture
+ : diag::ext_init_capture);
+
+ // If the initializer expression is usable, but the InitCaptureType
+ // is not, then an error has occurred - so ignore the capture for now.
+ // for e.g., [n{0}] { }; <-- if no <initializer_list> is included.
+ // FIXME: we should create the init capture variable and mark it invalid
+ // in this case.
+ if (C->InitCaptureType.get().isNull())
+ continue;
+
+ if (C->Init.get()->containsUnexpandedParameterPack() &&
+ !C->InitCaptureType.get()->getAs<PackExpansionType>())
+ DiagnoseUnexpandedParameterPack(C->Init.get(), UPPC_Initializer);
+
+ unsigned InitStyle;
+ switch (C->InitKind) {
+ case LambdaCaptureInitKind::NoInit:
+ llvm_unreachable("not an init-capture?");
+ case LambdaCaptureInitKind::CopyInit:
+ InitStyle = VarDecl::CInit;
+ break;
+ case LambdaCaptureInitKind::DirectInit:
+ InitStyle = VarDecl::CallInit;
+ break;
+ case LambdaCaptureInitKind::ListInit:
+ InitStyle = VarDecl::ListInit;
+ break;
+ }
+ Var = createLambdaInitCaptureVarDecl(C->Loc, C->InitCaptureType.get(),
+ C->EllipsisLoc, C->Id, InitStyle,
+ C->Init.get());
+ // C++1y [expr.prim.lambda]p11:
+ // An init-capture behaves as if it declares and explicitly
+ // captures a variable [...] whose declarative region is the
+ // lambda-expression's compound-statement
+ if (Var)
+ PushOnScopeChains(Var, CurScope, false);
+ } else {
+ assert(C->InitKind == LambdaCaptureInitKind::NoInit &&
+ "init capture has valid but null init?");
+
+ // C++11 [expr.prim.lambda]p8:
+ // If a lambda-capture includes a capture-default that is &, the
+ // identifiers in the lambda-capture shall not be preceded by &.
+ // If a lambda-capture includes a capture-default that is =, [...]
+ // each identifier it contains shall be preceded by &.
+ if (C->Kind == LCK_ByRef && Intro.Default == LCD_ByRef) {
+ Diag(C->Loc, diag::err_reference_capture_with_reference_default)
+ << FixItHint::CreateRemoval(
+ SourceRange(getLocForEndOfToken(PrevCaptureLoc), C->Loc));
+ continue;
+ } else if (C->Kind == LCK_ByCopy && Intro.Default == LCD_ByCopy) {
+ Diag(C->Loc, diag::err_copy_capture_with_copy_default)
+ << FixItHint::CreateRemoval(
+ SourceRange(getLocForEndOfToken(PrevCaptureLoc), C->Loc));
+ continue;
+ }
+
+ // C++11 [expr.prim.lambda]p10:
+ // The identifiers in a capture-list are looked up using the usual
+ // rules for unqualified name lookup (3.4.1)
+ DeclarationNameInfo Name(C->Id, C->Loc);
+ LookupResult R(*this, Name, LookupOrdinaryName);
+ LookupName(R, CurScope);
+ if (R.isAmbiguous())
+ continue;
+ if (R.empty()) {
+ // FIXME: Disable corrections that would add qualification?
+ CXXScopeSpec ScopeSpec;
+ DeclFilterCCC<VarDecl> Validator{};
+ if (DiagnoseEmptyLookup(CurScope, ScopeSpec, R, Validator))
+ continue;
+ }
+
+ Var = R.getAsSingle<VarDecl>();
+ if (Var && DiagnoseUseOfDecl(Var, C->Loc))
+ continue;
+ }
+
+ // C++11 [expr.prim.lambda]p8:
+ // An identifier or this shall not appear more than once in a
+ // lambda-capture.
+ if (!CaptureNames.insert(C->Id).second) {
+ if (Var && LSI->isCaptured(Var)) {
+ Diag(C->Loc, diag::err_capture_more_than_once)
+ << C->Id << SourceRange(LSI->getCapture(Var).getLocation())
+ << FixItHint::CreateRemoval(
+ SourceRange(getLocForEndOfToken(PrevCaptureLoc), C->Loc));
+ } else
+ // Previous capture captured something different (one or both was
+ // an init-cpature): no fixit.
+ Diag(C->Loc, diag::err_capture_more_than_once) << C->Id;
+ continue;
+ }
+
+ // C++11 [expr.prim.lambda]p10:
+ // [...] each such lookup shall find a variable with automatic storage
+ // duration declared in the reaching scope of the local lambda expression.
+ // Note that the 'reaching scope' check happens in tryCaptureVariable().
+ if (!Var) {
+ Diag(C->Loc, diag::err_capture_does_not_name_variable) << C->Id;
+ continue;
+ }
+
+ // Ignore invalid decls; they'll just confuse the code later.
+ if (Var->isInvalidDecl())
+ continue;
+
+ if (!Var->hasLocalStorage()) {
+ Diag(C->Loc, diag::err_capture_non_automatic_variable) << C->Id;
+ Diag(Var->getLocation(), diag::note_previous_decl) << C->Id;
+ continue;
+ }
+
+ // C++11 [expr.prim.lambda]p23:
+ // A capture followed by an ellipsis is a pack expansion (14.5.3).
+ SourceLocation EllipsisLoc;
+ if (C->EllipsisLoc.isValid()) {
+ if (Var->isParameterPack()) {
+ EllipsisLoc = C->EllipsisLoc;
+ } else {
+ Diag(C->EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
+ << (C->Init.isUsable() ? C->Init.get()->getSourceRange()
+ : SourceRange(C->Loc));
+
+ // Just ignore the ellipsis.
+ }
+ } else if (Var->isParameterPack()) {
+ ContainsUnexpandedParameterPack = true;
+ }
+
+ if (C->Init.isUsable()) {
+ addInitCapture(LSI, Var);
+ } else {
+ TryCaptureKind Kind = C->Kind == LCK_ByRef ? TryCapture_ExplicitByRef :
+ TryCapture_ExplicitByVal;
+ tryCaptureVariable(Var, C->Loc, Kind, EllipsisLoc);
+ }
+ if (!LSI->Captures.empty())
+ LSI->ExplicitCaptureRanges[LSI->Captures.size() - 1] = C->ExplicitRange;
+ }
+ finishLambdaExplicitCaptures(LSI);
+
+ LSI->ContainsUnexpandedParameterPack |= ContainsUnexpandedParameterPack;
+
+ // Add lambda parameters into scope.
+ addLambdaParameters(Intro.Captures, Method, CurScope);
+
+ // Enter a new evaluation context to insulate the lambda from any
+ // cleanups from the enclosing full-expression.
+ PushExpressionEvaluationContext(
+ LSI->CallOperator->isConsteval()
+ ? ExpressionEvaluationContext::ConstantEvaluated
+ : ExpressionEvaluationContext::PotentiallyEvaluated);
+}
+
+void Sema::ActOnLambdaError(SourceLocation StartLoc, Scope *CurScope,
+ bool IsInstantiation) {
+ LambdaScopeInfo *LSI = cast<LambdaScopeInfo>(FunctionScopes.back());
+
+ // Leave the expression-evaluation context.
+ DiscardCleanupsInEvaluationContext();
+ PopExpressionEvaluationContext();
+
+ // Leave the context of the lambda.
+ if (!IsInstantiation)
+ PopDeclContext();
+
+ // Finalize the lambda.
+ CXXRecordDecl *Class = LSI->Lambda;
+ Class->setInvalidDecl();
+ SmallVector<Decl*, 4> Fields(Class->fields());
+ ActOnFields(nullptr, Class->getLocation(), Class, Fields, SourceLocation(),
+ SourceLocation(), ParsedAttributesView());
+ CheckCompletedCXXClass(nullptr, Class);
+
+ PopFunctionScopeInfo();
+}
+
+template <typename Func>
+static void repeatForLambdaConversionFunctionCallingConvs(
+ Sema &S, const FunctionProtoType &CallOpProto, Func F) {
+ CallingConv DefaultFree = S.Context.getDefaultCallingConvention(
+ CallOpProto.isVariadic(), /*IsCXXMethod=*/false);
+ CallingConv DefaultMember = S.Context.getDefaultCallingConvention(
+ CallOpProto.isVariadic(), /*IsCXXMethod=*/true);
+ CallingConv CallOpCC = CallOpProto.getCallConv();
+
+ /// Implement emitting a version of the operator for many of the calling
+ /// conventions for MSVC, as described here:
+ /// https://devblogs.microsoft.com/oldnewthing/20150220-00/?p=44623.
+ /// Experimentally, we determined that cdecl, stdcall, fastcall, and
+ /// vectorcall are generated by MSVC when it is supported by the target.
+ /// Additionally, we are ensuring that the default-free/default-member and
+ /// call-operator calling convention are generated as well.
+ /// NOTE: We intentionally generate a 'thiscall' on Win32 implicitly from the
+ /// 'member default', despite MSVC not doing so. We do this in order to ensure
+ /// that someone who intentionally places 'thiscall' on the lambda call
+ /// operator will still get that overload, since we don't have the a way of
+ /// detecting the attribute by the time we get here.
+ if (S.getLangOpts().MSVCCompat) {
+ CallingConv Convs[] = {
+ CC_C, CC_X86StdCall, CC_X86FastCall, CC_X86VectorCall,
+ DefaultFree, DefaultMember, CallOpCC};
+ llvm::sort(Convs);
+ llvm::iterator_range<CallingConv *> Range(
+ std::begin(Convs), std::unique(std::begin(Convs), std::end(Convs)));
+ const TargetInfo &TI = S.getASTContext().getTargetInfo();
+
+ for (CallingConv C : Range) {
+ if (TI.checkCallingConvention(C) == TargetInfo::CCCR_OK)
+ F(C);
+ }
+ return;
+ }
+
+ if (CallOpCC == DefaultMember && DefaultMember != DefaultFree) {
+ F(DefaultFree);
+ F(DefaultMember);
+ } else {
+ F(CallOpCC);
+ }
+}
+
+// Returns the 'standard' calling convention to be used for the lambda
+// conversion function, that is, the 'free' function calling convention unless
+// it is overridden by a non-default calling convention attribute.
+static CallingConv
+getLambdaConversionFunctionCallConv(Sema &S,
+ const FunctionProtoType *CallOpProto) {
+ CallingConv DefaultFree = S.Context.getDefaultCallingConvention(
+ CallOpProto->isVariadic(), /*IsCXXMethod=*/false);
+ CallingConv DefaultMember = S.Context.getDefaultCallingConvention(
+ CallOpProto->isVariadic(), /*IsCXXMethod=*/true);
+ CallingConv CallOpCC = CallOpProto->getCallConv();
+
+ // If the call-operator hasn't been changed, return both the 'free' and
+ // 'member' function calling convention.
+ if (CallOpCC == DefaultMember && DefaultMember != DefaultFree)
+ return DefaultFree;
+ return CallOpCC;
+}
+
+QualType Sema::getLambdaConversionFunctionResultType(
+ const FunctionProtoType *CallOpProto, CallingConv CC) {
+ const FunctionProtoType::ExtProtoInfo CallOpExtInfo =
+ CallOpProto->getExtProtoInfo();
+ FunctionProtoType::ExtProtoInfo InvokerExtInfo = CallOpExtInfo;
+ InvokerExtInfo.ExtInfo = InvokerExtInfo.ExtInfo.withCallingConv(CC);
+ InvokerExtInfo.TypeQuals = Qualifiers();
+ assert(InvokerExtInfo.RefQualifier == RQ_None &&
+ "Lambda's call operator should not have a reference qualifier");
+ return Context.getFunctionType(CallOpProto->getReturnType(),
+ CallOpProto->getParamTypes(), InvokerExtInfo);
+}
+
+/// Add a lambda's conversion to function pointer, as described in
+/// C++11 [expr.prim.lambda]p6.
+static void addFunctionPointerConversion(Sema &S, SourceRange IntroducerRange,
+ CXXRecordDecl *Class,
+ CXXMethodDecl *CallOperator,
+ QualType InvokerFunctionTy) {
+ // This conversion is explicitly disabled if the lambda's function has
+ // pass_object_size attributes on any of its parameters.
+ auto HasPassObjectSizeAttr = [](const ParmVarDecl *P) {
+ return P->hasAttr<PassObjectSizeAttr>();
+ };
+ if (llvm::any_of(CallOperator->parameters(), HasPassObjectSizeAttr))
+ return;
+
+ // Add the conversion to function pointer.
+ QualType PtrToFunctionTy = S.Context.getPointerType(InvokerFunctionTy);
+
+ // Create the type of the conversion function.
+ FunctionProtoType::ExtProtoInfo ConvExtInfo(
+ S.Context.getDefaultCallingConvention(
+ /*IsVariadic=*/false, /*IsCXXMethod=*/true));
+ // The conversion function is always const and noexcept.
+ ConvExtInfo.TypeQuals = Qualifiers();
+ ConvExtInfo.TypeQuals.addConst();
+ ConvExtInfo.ExceptionSpec.Type = EST_BasicNoexcept;
+ QualType ConvTy =
+ S.Context.getFunctionType(PtrToFunctionTy, None, ConvExtInfo);
+
+ SourceLocation Loc = IntroducerRange.getBegin();
+ DeclarationName ConversionName
+ = S.Context.DeclarationNames.getCXXConversionFunctionName(
+ S.Context.getCanonicalType(PtrToFunctionTy));
+ DeclarationNameLoc ConvNameLoc;
+ // Construct a TypeSourceInfo for the conversion function, and wire
+ // all the parameters appropriately for the FunctionProtoTypeLoc
+ // so that everything works during transformation/instantiation of
+ // generic lambdas.
+ // The main reason for wiring up the parameters of the conversion
+ // function with that of the call operator is so that constructs
+ // like the following work:
+ // auto L = [](auto b) { <-- 1
+ // return [](auto a) -> decltype(a) { <-- 2
+ // return a;
+ // };
+ // };
+ // int (*fp)(int) = L(5);
+ // Because the trailing return type can contain DeclRefExprs that refer
+ // to the original call operator's variables, we hijack the call
+ // operators ParmVarDecls below.
+ TypeSourceInfo *ConvNamePtrToFunctionTSI =
+ S.Context.getTrivialTypeSourceInfo(PtrToFunctionTy, Loc);
+ ConvNameLoc.NamedType.TInfo = ConvNamePtrToFunctionTSI;
+
+ // The conversion function is a conversion to a pointer-to-function.
+ TypeSourceInfo *ConvTSI = S.Context.getTrivialTypeSourceInfo(ConvTy, Loc);
+ FunctionProtoTypeLoc ConvTL =
+ ConvTSI->getTypeLoc().getAs<FunctionProtoTypeLoc>();
+ // Get the result of the conversion function which is a pointer-to-function.
+ PointerTypeLoc PtrToFunctionTL =
+ ConvTL.getReturnLoc().getAs<PointerTypeLoc>();
+ // Do the same for the TypeSourceInfo that is used to name the conversion
+ // operator.
+ PointerTypeLoc ConvNamePtrToFunctionTL =
+ ConvNamePtrToFunctionTSI->getTypeLoc().getAs<PointerTypeLoc>();
+
+ // Get the underlying function types that the conversion function will
+ // be converting to (should match the type of the call operator).
+ FunctionProtoTypeLoc CallOpConvTL =
+ PtrToFunctionTL.getPointeeLoc().getAs<FunctionProtoTypeLoc>();
+ FunctionProtoTypeLoc CallOpConvNameTL =
+ ConvNamePtrToFunctionTL.getPointeeLoc().getAs<FunctionProtoTypeLoc>();
+
+ // Wire up the FunctionProtoTypeLocs with the call operator's parameters.
+ // These parameter's are essentially used to transform the name and
+ // the type of the conversion operator. By using the same parameters
+ // as the call operator's we don't have to fix any back references that
+ // the trailing return type of the call operator's uses (such as
+ // decltype(some_type<decltype(a)>::type{} + decltype(a){}) etc.)
+ // - we can simply use the return type of the call operator, and
+ // everything should work.
+ SmallVector<ParmVarDecl *, 4> InvokerParams;
+ for (unsigned I = 0, N = CallOperator->getNumParams(); I != N; ++I) {
+ ParmVarDecl *From = CallOperator->getParamDecl(I);
+
+ InvokerParams.push_back(ParmVarDecl::Create(
+ S.Context,
+ // Temporarily add to the TU. This is set to the invoker below.
+ S.Context.getTranslationUnitDecl(), From->getBeginLoc(),
+ From->getLocation(), From->getIdentifier(), From->getType(),
+ From->getTypeSourceInfo(), From->getStorageClass(),
+ /*DefArg=*/nullptr));
+ CallOpConvTL.setParam(I, From);
+ CallOpConvNameTL.setParam(I, From);
+ }
+
+ CXXConversionDecl *Conversion = CXXConversionDecl::Create(
+ S.Context, Class, Loc,
+ DeclarationNameInfo(ConversionName, Loc, ConvNameLoc), ConvTy, ConvTSI,
+ /*isInline=*/true, ExplicitSpecifier(),
+ S.getLangOpts().CPlusPlus17 ? ConstexprSpecKind::Constexpr
+ : ConstexprSpecKind::Unspecified,
+ CallOperator->getBody()->getEndLoc());
+ Conversion->setAccess(AS_public);
+ Conversion->setImplicit(true);
+
+ if (Class->isGenericLambda()) {
+ // Create a template version of the conversion operator, using the template
+ // parameter list of the function call operator.
+ FunctionTemplateDecl *TemplateCallOperator =
+ CallOperator->getDescribedFunctionTemplate();
+ FunctionTemplateDecl *ConversionTemplate =
+ FunctionTemplateDecl::Create(S.Context, Class,
+ Loc, ConversionName,
+ TemplateCallOperator->getTemplateParameters(),
+ Conversion);
+ ConversionTemplate->setAccess(AS_public);
+ ConversionTemplate->setImplicit(true);
+ Conversion->setDescribedFunctionTemplate(ConversionTemplate);
+ Class->addDecl(ConversionTemplate);
+ } else
+ Class->addDecl(Conversion);
+ // Add a non-static member function that will be the result of
+ // the conversion with a certain unique ID.
+ DeclarationName InvokerName = &S.Context.Idents.get(
+ getLambdaStaticInvokerName());
+ // FIXME: Instead of passing in the CallOperator->getTypeSourceInfo()
+ // we should get a prebuilt TrivialTypeSourceInfo from Context
+ // using FunctionTy & Loc and get its TypeLoc as a FunctionProtoTypeLoc
+ // then rewire the parameters accordingly, by hoisting up the InvokeParams
+ // loop below and then use its Params to set Invoke->setParams(...) below.
+ // This would avoid the 'const' qualifier of the calloperator from
+ // contaminating the type of the invoker, which is currently adjusted
+ // in SemaTemplateDeduction.cpp:DeduceTemplateArguments. Fixing the
+ // trailing return type of the invoker would require a visitor to rebuild
+ // the trailing return type and adjusting all back DeclRefExpr's to refer
+ // to the new static invoker parameters - not the call operator's.
+ CXXMethodDecl *Invoke = CXXMethodDecl::Create(
+ S.Context, Class, Loc, DeclarationNameInfo(InvokerName, Loc),
+ InvokerFunctionTy, CallOperator->getTypeSourceInfo(), SC_Static,
+ /*isInline=*/true, ConstexprSpecKind::Unspecified,
+ CallOperator->getBody()->getEndLoc());
+ for (unsigned I = 0, N = CallOperator->getNumParams(); I != N; ++I)
+ InvokerParams[I]->setOwningFunction(Invoke);
+ Invoke->setParams(InvokerParams);
+ Invoke->setAccess(AS_private);
+ Invoke->setImplicit(true);
+ if (Class->isGenericLambda()) {
+ FunctionTemplateDecl *TemplateCallOperator =
+ CallOperator->getDescribedFunctionTemplate();
+ FunctionTemplateDecl *StaticInvokerTemplate = FunctionTemplateDecl::Create(
+ S.Context, Class, Loc, InvokerName,
+ TemplateCallOperator->getTemplateParameters(),
+ Invoke);
+ StaticInvokerTemplate->setAccess(AS_private);
+ StaticInvokerTemplate->setImplicit(true);
+ Invoke->setDescribedFunctionTemplate(StaticInvokerTemplate);
+ Class->addDecl(StaticInvokerTemplate);
+ } else
+ Class->addDecl(Invoke);
+}
+
+/// Add a lambda's conversion to function pointers, as described in
+/// C++11 [expr.prim.lambda]p6. Note that in most cases, this should emit only a
+/// single pointer conversion. In the event that the default calling convention
+/// for free and member functions is different, it will emit both conventions.
+static void addFunctionPointerConversions(Sema &S, SourceRange IntroducerRange,
+ CXXRecordDecl *Class,
+ CXXMethodDecl *CallOperator) {
+ const FunctionProtoType *CallOpProto =
+ CallOperator->getType()->castAs<FunctionProtoType>();
+
+ repeatForLambdaConversionFunctionCallingConvs(
+ S, *CallOpProto, [&](CallingConv CC) {
+ QualType InvokerFunctionTy =
+ S.getLambdaConversionFunctionResultType(CallOpProto, CC);
+ addFunctionPointerConversion(S, IntroducerRange, Class, CallOperator,
+ InvokerFunctionTy);
+ });
+}
+
+/// Add a lambda's conversion to block pointer.
+static void addBlockPointerConversion(Sema &S,
+ SourceRange IntroducerRange,
+ CXXRecordDecl *Class,
+ CXXMethodDecl *CallOperator) {
+ const FunctionProtoType *CallOpProto =
+ CallOperator->getType()->castAs<FunctionProtoType>();
+ QualType FunctionTy = S.getLambdaConversionFunctionResultType(
+ CallOpProto, getLambdaConversionFunctionCallConv(S, CallOpProto));
+ QualType BlockPtrTy = S.Context.getBlockPointerType(FunctionTy);
+
+ FunctionProtoType::ExtProtoInfo ConversionEPI(
+ S.Context.getDefaultCallingConvention(
+ /*IsVariadic=*/false, /*IsCXXMethod=*/true));
+ ConversionEPI.TypeQuals = Qualifiers();
+ ConversionEPI.TypeQuals.addConst();
+ QualType ConvTy = S.Context.getFunctionType(BlockPtrTy, None, ConversionEPI);
+
+ SourceLocation Loc = IntroducerRange.getBegin();
+ DeclarationName Name
+ = S.Context.DeclarationNames.getCXXConversionFunctionName(
+ S.Context.getCanonicalType(BlockPtrTy));
+ DeclarationNameLoc NameLoc;
+ NameLoc.NamedType.TInfo = S.Context.getTrivialTypeSourceInfo(BlockPtrTy, Loc);
+ CXXConversionDecl *Conversion = CXXConversionDecl::Create(
+ S.Context, Class, Loc, DeclarationNameInfo(Name, Loc, NameLoc), ConvTy,
+ S.Context.getTrivialTypeSourceInfo(ConvTy, Loc),
+ /*isInline=*/true, ExplicitSpecifier(), ConstexprSpecKind::Unspecified,
+ CallOperator->getBody()->getEndLoc());
+ Conversion->setAccess(AS_public);
+ Conversion->setImplicit(true);
+ Class->addDecl(Conversion);
+}
+
+ExprResult Sema::BuildCaptureInit(const Capture &Cap,
+ SourceLocation ImplicitCaptureLoc,
+ bool IsOpenMPMapping) {
+ // VLA captures don't have a stored initialization expression.
+ if (Cap.isVLATypeCapture())
+ return ExprResult();
+
+ // An init-capture is initialized directly from its stored initializer.
+ if (Cap.isInitCapture())
+ return Cap.getVariable()->getInit();
+
+ // For anything else, build an initialization expression. For an implicit
+ // capture, the capture notionally happens at the capture-default, so use
+ // that location here.
+ SourceLocation Loc =
+ ImplicitCaptureLoc.isValid() ? ImplicitCaptureLoc : Cap.getLocation();
+
+ // C++11 [expr.prim.lambda]p21:
+ // When the lambda-expression is evaluated, the entities that
+ // are captured by copy are used to direct-initialize each
+ // corresponding non-static data member of the resulting closure
+ // object. (For array members, the array elements are
+ // direct-initialized in increasing subscript order.) These
+ // initializations are performed in the (unspecified) order in
+ // which the non-static data members are declared.
+
+ // C++ [expr.prim.lambda]p12:
+ // An entity captured by a lambda-expression is odr-used (3.2) in
+ // the scope containing the lambda-expression.
+ ExprResult Init;
+ IdentifierInfo *Name = nullptr;
+ if (Cap.isThisCapture()) {
+ QualType ThisTy = getCurrentThisType();
+ Expr *This = BuildCXXThisExpr(Loc, ThisTy, ImplicitCaptureLoc.isValid());
+ if (Cap.isCopyCapture())
+ Init = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
+ else
+ Init = This;
+ } else {
+ assert(Cap.isVariableCapture() && "unknown kind of capture");
+ VarDecl *Var = Cap.getVariable();
+ Name = Var->getIdentifier();
+ Init = BuildDeclarationNameExpr(
+ CXXScopeSpec(), DeclarationNameInfo(Var->getDeclName(), Loc), Var);
+ }
+
+ // In OpenMP, the capture kind doesn't actually describe how to capture:
+ // variables are "mapped" onto the device in a process that does not formally
+ // make a copy, even for a "copy capture".
+ if (IsOpenMPMapping)
+ return Init;
+
+ if (Init.isInvalid())
+ return ExprError();
+
+ Expr *InitExpr = Init.get();
+ InitializedEntity Entity = InitializedEntity::InitializeLambdaCapture(
+ Name, Cap.getCaptureType(), Loc);
+ InitializationKind InitKind =
+ InitializationKind::CreateDirect(Loc, Loc, Loc);
+ InitializationSequence InitSeq(*this, Entity, InitKind, InitExpr);
+ return InitSeq.Perform(*this, Entity, InitKind, InitExpr);
+}
+
+ExprResult Sema::ActOnLambdaExpr(SourceLocation StartLoc, Stmt *Body,
+ Scope *CurScope) {
+ LambdaScopeInfo LSI = *cast<LambdaScopeInfo>(FunctionScopes.back());
+ ActOnFinishFunctionBody(LSI.CallOperator, Body);
+ return BuildLambdaExpr(StartLoc, Body->getEndLoc(), &LSI);
+}
+
+static LambdaCaptureDefault
+mapImplicitCaptureStyle(CapturingScopeInfo::ImplicitCaptureStyle ICS) {
+ switch (ICS) {
+ case CapturingScopeInfo::ImpCap_None:
+ return LCD_None;
+ case CapturingScopeInfo::ImpCap_LambdaByval:
+ return LCD_ByCopy;
+ case CapturingScopeInfo::ImpCap_CapturedRegion:
+ case CapturingScopeInfo::ImpCap_LambdaByref:
+ return LCD_ByRef;
+ case CapturingScopeInfo::ImpCap_Block:
+ llvm_unreachable("block capture in lambda");
+ }
+ llvm_unreachable("Unknown implicit capture style");
+}
+
+bool Sema::CaptureHasSideEffects(const Capture &From) {
+ if (From.isInitCapture()) {
+ Expr *Init = From.getVariable()->getInit();
+ if (Init && Init->HasSideEffects(Context))
+ return true;
+ }
+
+ if (!From.isCopyCapture())
+ return false;
+
+ const QualType T = From.isThisCapture()
+ ? getCurrentThisType()->getPointeeType()
+ : From.getCaptureType();
+
+ if (T.isVolatileQualified())
+ return true;
+
+ const Type *BaseT = T->getBaseElementTypeUnsafe();
+ if (const CXXRecordDecl *RD = BaseT->getAsCXXRecordDecl())
+ return !RD->isCompleteDefinition() || !RD->hasTrivialCopyConstructor() ||
+ !RD->hasTrivialDestructor();
+
+ return false;
+}
+
+bool Sema::DiagnoseUnusedLambdaCapture(SourceRange CaptureRange,
+ const Capture &From) {
+ if (CaptureHasSideEffects(From))
+ return false;
+
+ if (From.isVLATypeCapture())
+ return false;
+
+ auto diag = Diag(From.getLocation(), diag::warn_unused_lambda_capture);
+ if (From.isThisCapture())
+ diag << "'this'";
+ else
+ diag << From.getVariable();
+ diag << From.isNonODRUsed();
+ diag << FixItHint::CreateRemoval(CaptureRange);
+ return true;
+}
+
+/// Create a field within the lambda class or captured statement record for the
+/// given capture.
+FieldDecl *Sema::BuildCaptureField(RecordDecl *RD,
+ const sema::Capture &Capture) {
+ SourceLocation Loc = Capture.getLocation();
+ QualType FieldType = Capture.getCaptureType();
+
+ TypeSourceInfo *TSI = nullptr;
+ if (Capture.isVariableCapture()) {
+ auto *Var = Capture.getVariable();
+ if (Var->isInitCapture())
+ TSI = Capture.getVariable()->getTypeSourceInfo();
+ }
+
+ // FIXME: Should we really be doing this? A null TypeSourceInfo seems more
+ // appropriate, at least for an implicit capture.
+ if (!TSI)
+ TSI = Context.getTrivialTypeSourceInfo(FieldType, Loc);
+
+ // Build the non-static data member.
+ FieldDecl *Field =
+ FieldDecl::Create(Context, RD, /*StartLoc=*/Loc, /*IdLoc=*/Loc,
+ /*Id=*/nullptr, FieldType, TSI, /*BW=*/nullptr,
+ /*Mutable=*/false, ICIS_NoInit);
+ // If the variable being captured has an invalid type, mark the class as
+ // invalid as well.
+ if (!FieldType->isDependentType()) {
+ if (RequireCompleteSizedType(Loc, FieldType,
+ diag::err_field_incomplete_or_sizeless)) {
+ RD->setInvalidDecl();
+ Field->setInvalidDecl();
+ } else {
+ NamedDecl *Def;
+ FieldType->isIncompleteType(&Def);
+ if (Def && Def->isInvalidDecl()) {
+ RD->setInvalidDecl();
+ Field->setInvalidDecl();
+ }
+ }
+ }
+ Field->setImplicit(true);
+ Field->setAccess(AS_private);
+ RD->addDecl(Field);
+
+ if (Capture.isVLATypeCapture())
+ Field->setCapturedVLAType(Capture.getCapturedVLAType());
+
+ return Field;
+}
+
+ExprResult Sema::BuildLambdaExpr(SourceLocation StartLoc, SourceLocation EndLoc,
+ LambdaScopeInfo *LSI) {
+ // Collect information from the lambda scope.
+ SmallVector<LambdaCapture, 4> Captures;
+ SmallVector<Expr *, 4> CaptureInits;
+ SourceLocation CaptureDefaultLoc = LSI->CaptureDefaultLoc;
+ LambdaCaptureDefault CaptureDefault =
+ mapImplicitCaptureStyle(LSI->ImpCaptureStyle);
+ CXXRecordDecl *Class;
+ CXXMethodDecl *CallOperator;
+ SourceRange IntroducerRange;
+ bool ExplicitParams;
+ bool ExplicitResultType;
+ CleanupInfo LambdaCleanup;
+ bool ContainsUnexpandedParameterPack;
+ bool IsGenericLambda;
+ {
+ CallOperator = LSI->CallOperator;
+ Class = LSI->Lambda;
+ IntroducerRange = LSI->IntroducerRange;
+ ExplicitParams = LSI->ExplicitParams;
+ ExplicitResultType = !LSI->HasImplicitReturnType;
+ LambdaCleanup = LSI->Cleanup;
+ ContainsUnexpandedParameterPack = LSI->ContainsUnexpandedParameterPack;
+ IsGenericLambda = Class->isGenericLambda();
+
+ CallOperator->setLexicalDeclContext(Class);
+ Decl *TemplateOrNonTemplateCallOperatorDecl =
+ CallOperator->getDescribedFunctionTemplate()
+ ? CallOperator->getDescribedFunctionTemplate()
+ : cast<Decl>(CallOperator);
+
+ // FIXME: Is this really the best choice? Keeping the lexical decl context
+ // set as CurContext seems more faithful to the source.
+ TemplateOrNonTemplateCallOperatorDecl->setLexicalDeclContext(Class);
+
+ PopExpressionEvaluationContext();
+
+ // True if the current capture has a used capture or default before it.
+ bool CurHasPreviousCapture = CaptureDefault != LCD_None;
+ SourceLocation PrevCaptureLoc = CurHasPreviousCapture ?
+ CaptureDefaultLoc : IntroducerRange.getBegin();
+
+ for (unsigned I = 0, N = LSI->Captures.size(); I != N; ++I) {
+ const Capture &From = LSI->Captures[I];
+
+ if (From.isInvalid())
+ return ExprError();
+
+ assert(!From.isBlockCapture() && "Cannot capture __block variables");
+ bool IsImplicit = I >= LSI->NumExplicitCaptures;
+ SourceLocation ImplicitCaptureLoc =
+ IsImplicit ? CaptureDefaultLoc : SourceLocation();
+
+ // Use source ranges of explicit captures for fixits where available.
+ SourceRange CaptureRange = LSI->ExplicitCaptureRanges[I];
+
+ // Warn about unused explicit captures.
+ bool IsCaptureUsed = true;
+ if (!CurContext->isDependentContext() && !IsImplicit &&
+ !From.isODRUsed()) {
+ // Initialized captures that are non-ODR used may not be eliminated.
+ // FIXME: Where did the IsGenericLambda here come from?
+ bool NonODRUsedInitCapture =
+ IsGenericLambda && From.isNonODRUsed() && From.isInitCapture();
+ if (!NonODRUsedInitCapture) {
+ bool IsLast = (I + 1) == LSI->NumExplicitCaptures;
+ SourceRange FixItRange;
+ if (CaptureRange.isValid()) {
+ if (!CurHasPreviousCapture && !IsLast) {
+ // If there are no captures preceding this capture, remove the
+ // following comma.
+ FixItRange = SourceRange(CaptureRange.getBegin(),
+ getLocForEndOfToken(CaptureRange.getEnd()));
+ } else {
+ // Otherwise, remove the comma since the last used capture.
+ FixItRange = SourceRange(getLocForEndOfToken(PrevCaptureLoc),
+ CaptureRange.getEnd());
+ }
+ }
+
+ IsCaptureUsed = !DiagnoseUnusedLambdaCapture(FixItRange, From);
+ }
+ }
+
+ if (CaptureRange.isValid()) {
+ CurHasPreviousCapture |= IsCaptureUsed;
+ PrevCaptureLoc = CaptureRange.getEnd();
+ }
+
+ // Map the capture to our AST representation.
+ LambdaCapture Capture = [&] {
+ if (From.isThisCapture()) {
+ // Capturing 'this' implicitly with a default of '[=]' is deprecated,
+ // because it results in a reference capture. Don't warn prior to
+ // C++2a; there's nothing that can be done about it before then.
+ if (getLangOpts().CPlusPlus20 && IsImplicit &&
+ CaptureDefault == LCD_ByCopy) {
+ Diag(From.getLocation(), diag::warn_deprecated_this_capture);
+ Diag(CaptureDefaultLoc, diag::note_deprecated_this_capture)
+ << FixItHint::CreateInsertion(
+ getLocForEndOfToken(CaptureDefaultLoc), ", this");
+ }
+ return LambdaCapture(From.getLocation(), IsImplicit,
+ From.isCopyCapture() ? LCK_StarThis : LCK_This);
+ } else if (From.isVLATypeCapture()) {
+ return LambdaCapture(From.getLocation(), IsImplicit, LCK_VLAType);
+ } else {
+ assert(From.isVariableCapture() && "unknown kind of capture");
+ VarDecl *Var = From.getVariable();
+ LambdaCaptureKind Kind =
+ From.isCopyCapture() ? LCK_ByCopy : LCK_ByRef;
+ return LambdaCapture(From.getLocation(), IsImplicit, Kind, Var,
+ From.getEllipsisLoc());
+ }
+ }();
+
+ // Form the initializer for the capture field.
+ ExprResult Init = BuildCaptureInit(From, ImplicitCaptureLoc);
+
+ // FIXME: Skip this capture if the capture is not used, the initializer
+ // has no side-effects, the type of the capture is trivial, and the
+ // lambda is not externally visible.
+
+ // Add a FieldDecl for the capture and form its initializer.
+ BuildCaptureField(Class, From);
+ Captures.push_back(Capture);
+ CaptureInits.push_back(Init.get());
+
+ if (LangOpts.CUDA)
+ CUDACheckLambdaCapture(CallOperator, From);
+ }
+
+ Class->setCaptures(Context, Captures);
+
+ // C++11 [expr.prim.lambda]p6:
+ // The closure type for a lambda-expression with no lambda-capture
+ // has a public non-virtual non-explicit const conversion function
+ // to pointer to function having the same parameter and return
+ // types as the closure type's function call operator.
+ if (Captures.empty() && CaptureDefault == LCD_None)
+ addFunctionPointerConversions(*this, IntroducerRange, Class,
+ CallOperator);
+
+ // Objective-C++:
+ // The closure type for a lambda-expression has a public non-virtual
+ // non-explicit const conversion function to a block pointer having the
+ // same parameter and return types as the closure type's function call
+ // operator.
+ // FIXME: Fix generic lambda to block conversions.
+ if (getLangOpts().Blocks && getLangOpts().ObjC && !IsGenericLambda)
+ addBlockPointerConversion(*this, IntroducerRange, Class, CallOperator);
+
+ // Finalize the lambda class.
+ SmallVector<Decl*, 4> Fields(Class->fields());
+ ActOnFields(nullptr, Class->getLocation(), Class, Fields, SourceLocation(),
+ SourceLocation(), ParsedAttributesView());
+ CheckCompletedCXXClass(nullptr, Class);
+ }
+
+ Cleanup.mergeFrom(LambdaCleanup);
+
+ LambdaExpr *Lambda = LambdaExpr::Create(Context, Class, IntroducerRange,
+ CaptureDefault, CaptureDefaultLoc,
+ ExplicitParams, ExplicitResultType,
+ CaptureInits, EndLoc,
+ ContainsUnexpandedParameterPack);
+ // If the lambda expression's call operator is not explicitly marked constexpr
+ // and we are not in a dependent context, analyze the call operator to infer
+ // its constexpr-ness, suppressing diagnostics while doing so.
+ if (getLangOpts().CPlusPlus17 && !CallOperator->isInvalidDecl() &&
+ !CallOperator->isConstexpr() &&
+ !isa<CoroutineBodyStmt>(CallOperator->getBody()) &&
+ !Class->getDeclContext()->isDependentContext()) {
+ CallOperator->setConstexprKind(
+ CheckConstexprFunctionDefinition(CallOperator,
+ CheckConstexprKind::CheckValid)
+ ? ConstexprSpecKind::Constexpr
+ : ConstexprSpecKind::Unspecified);
+ }
+
+ // Emit delayed shadowing warnings now that the full capture list is known.
+ DiagnoseShadowingLambdaDecls(LSI);
+
+ if (!CurContext->isDependentContext()) {
+ switch (ExprEvalContexts.back().Context) {
+ // C++11 [expr.prim.lambda]p2:
+ // A lambda-expression shall not appear in an unevaluated operand
+ // (Clause 5).
+ case ExpressionEvaluationContext::Unevaluated:
+ case ExpressionEvaluationContext::UnevaluatedList:
+ case ExpressionEvaluationContext::UnevaluatedAbstract:
+ // C++1y [expr.const]p2:
+ // A conditional-expression e is a core constant expression unless the
+ // evaluation of e, following the rules of the abstract machine, would
+ // evaluate [...] a lambda-expression.
+ //
+ // This is technically incorrect, there are some constant evaluated contexts
+ // where this should be allowed. We should probably fix this when DR1607 is
+ // ratified, it lays out the exact set of conditions where we shouldn't
+ // allow a lambda-expression.
+ case ExpressionEvaluationContext::ConstantEvaluated:
+ // We don't actually diagnose this case immediately, because we
+ // could be within a context where we might find out later that
+ // the expression is potentially evaluated (e.g., for typeid).
+ ExprEvalContexts.back().Lambdas.push_back(Lambda);
+ break;
+
+ case ExpressionEvaluationContext::DiscardedStatement:
+ case ExpressionEvaluationContext::PotentiallyEvaluated:
+ case ExpressionEvaluationContext::PotentiallyEvaluatedIfUsed:
+ break;
+ }
+ }
+
+ return MaybeBindToTemporary(Lambda);
+}
+
+ExprResult Sema::BuildBlockForLambdaConversion(SourceLocation CurrentLocation,
+ SourceLocation ConvLocation,
+ CXXConversionDecl *Conv,
+ Expr *Src) {
+ // Make sure that the lambda call operator is marked used.
+ CXXRecordDecl *Lambda = Conv->getParent();
+ CXXMethodDecl *CallOperator
+ = cast<CXXMethodDecl>(
+ Lambda->lookup(
+ Context.DeclarationNames.getCXXOperatorName(OO_Call)).front());
+ CallOperator->setReferenced();
+ CallOperator->markUsed(Context);
+
+ ExprResult Init = PerformCopyInitialization(
+ InitializedEntity::InitializeLambdaToBlock(ConvLocation, Src->getType(),
+ /*NRVO=*/false),
+ CurrentLocation, Src);
+ if (!Init.isInvalid())
+ Init = ActOnFinishFullExpr(Init.get(), /*DiscardedValue*/ false);
+
+ if (Init.isInvalid())
+ return ExprError();
+
+ // Create the new block to be returned.
+ BlockDecl *Block = BlockDecl::Create(Context, CurContext, ConvLocation);
+
+ // Set the type information.
+ Block->setSignatureAsWritten(CallOperator->getTypeSourceInfo());
+ Block->setIsVariadic(CallOperator->isVariadic());
+ Block->setBlockMissingReturnType(false);
+
+ // Add parameters.
+ SmallVector<ParmVarDecl *, 4> BlockParams;
+ for (unsigned I = 0, N = CallOperator->getNumParams(); I != N; ++I) {
+ ParmVarDecl *From = CallOperator->getParamDecl(I);
+ BlockParams.push_back(ParmVarDecl::Create(
+ Context, Block, From->getBeginLoc(), From->getLocation(),
+ From->getIdentifier(), From->getType(), From->getTypeSourceInfo(),
+ From->getStorageClass(),
+ /*DefArg=*/nullptr));
+ }
+ Block->setParams(BlockParams);
+
+ Block->setIsConversionFromLambda(true);
+
+ // Add capture. The capture uses a fake variable, which doesn't correspond
+ // to any actual memory location. However, the initializer copy-initializes
+ // the lambda object.
+ TypeSourceInfo *CapVarTSI =
+ Context.getTrivialTypeSourceInfo(Src->getType());
+ VarDecl *CapVar = VarDecl::Create(Context, Block, ConvLocation,
+ ConvLocation, nullptr,
+ Src->getType(), CapVarTSI,
+ SC_None);
+ BlockDecl::Capture Capture(/*variable=*/CapVar, /*byRef=*/false,
+ /*nested=*/false, /*copy=*/Init.get());
+ Block->setCaptures(Context, Capture, /*CapturesCXXThis=*/false);
+
+ // Add a fake function body to the block. IR generation is responsible
+ // for filling in the actual body, which cannot be expressed as an AST.
+ Block->setBody(new (Context) CompoundStmt(ConvLocation));
+
+ // Create the block literal expression.
+ Expr *BuildBlock = new (Context) BlockExpr(Block, Conv->getConversionType());
+ ExprCleanupObjects.push_back(Block);
+ Cleanup.setExprNeedsCleanups(true);
+
+ return BuildBlock;
+}