diff options
Diffstat (limited to 'contrib/llvm-project/clang/lib/StaticAnalyzer/Checkers/IteratorModeling.cpp')
| -rw-r--r-- | contrib/llvm-project/clang/lib/StaticAnalyzer/Checkers/IteratorModeling.cpp | 855 | 
1 files changed, 855 insertions, 0 deletions
diff --git a/contrib/llvm-project/clang/lib/StaticAnalyzer/Checkers/IteratorModeling.cpp b/contrib/llvm-project/clang/lib/StaticAnalyzer/Checkers/IteratorModeling.cpp new file mode 100644 index 000000000000..80431e65519e --- /dev/null +++ b/contrib/llvm-project/clang/lib/StaticAnalyzer/Checkers/IteratorModeling.cpp @@ -0,0 +1,855 @@ +//===-- IteratorModeling.cpp --------------------------------------*- C++ -*--// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// Defines a modeling-checker for modeling STL iterator-like iterators. +// +//===----------------------------------------------------------------------===// +// +// In the code, iterator can be represented as a: +// * type-I: typedef-ed pointer. Operations over such iterator, such as +//           comparisons or increments, are modeled straightforwardly by the +//           analyzer. +// * type-II: structure with its method bodies available.  Operations over such +//            iterator are inlined by the analyzer, and results of modeling +//            these operations are exposing implementation details of the +//            iterators, which is not necessarily helping. +// * type-III: completely opaque structure. Operations over such iterator are +//             modeled conservatively, producing conjured symbols everywhere. +// +// To handle all these types in a common way we introduce a structure called +// IteratorPosition which is an abstraction of the position the iterator +// represents using symbolic expressions. The checker handles all the +// operations on this structure. +// +// Additionally, depending on the circumstances, operators of types II and III +// can be represented as: +// * type-IIa, type-IIIa: conjured structure symbols - when returned by value +//                        from conservatively evaluated methods such as +//                        `.begin()`. +// * type-IIb, type-IIIb: memory regions of iterator-typed objects, such as +//                        variables or temporaries, when the iterator object is +//                        currently treated as an lvalue. +// * type-IIc, type-IIIc: compound values of iterator-typed objects, when the +//                        iterator object is treated as an rvalue taken of a +//                        particular lvalue, eg. a copy of "type-a" iterator +//                        object, or an iterator that existed before the +//                        analysis has started. +// +// To handle any of these three different representations stored in an SVal we +// use setter and getters functions which separate the three cases. To store +// them we use a pointer union of symbol and memory region. +// +// The checker works the following way: We record the begin and the +// past-end iterator for all containers whenever their `.begin()` and `.end()` +// are called. Since the Constraint Manager cannot handle such SVals we need +// to take over its role. We post-check equality and non-equality comparisons +// and record that the two sides are equal if we are in the 'equal' branch +// (true-branch for `==` and false-branch for `!=`). +// +// In case of type-I or type-II iterators we get a concrete integer as a result +// of the comparison (1 or 0) but in case of type-III we only get a Symbol. In +// this latter case we record the symbol and reload it in evalAssume() and do +// the propagation there. We also handle (maybe double) negated comparisons +// which are represented in the form of (x == 0 or x != 0) where x is the +// comparison itself. +// +// Since `SimpleConstraintManager` cannot handle complex symbolic expressions +// we only use expressions of the format S, S+n or S-n for iterator positions +// where S is a conjured symbol and n is an unsigned concrete integer. When +// making an assumption e.g. `S1 + n == S2 + m` we store `S1 - S2 == m - n` as +// a constraint which we later retrieve when doing an actual comparison. + +#include "clang/AST/DeclTemplate.h" +#include "clang/StaticAnalyzer/Checkers/BuiltinCheckerRegistration.h" +#include "clang/StaticAnalyzer/Core/BugReporter/BugType.h" +#include "clang/StaticAnalyzer/Core/Checker.h" +#include "clang/StaticAnalyzer/Core/PathSensitive/CallDescription.h" +#include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h" +#include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h" +#include "clang/StaticAnalyzer/Core/PathSensitive/DynamicType.h" + +#include "Iterator.h" + +#include <utility> + +using namespace clang; +using namespace ento; +using namespace iterator; + +namespace { + +class IteratorModeling +    : public Checker<check::PostCall, check::PostStmt<UnaryOperator>, +                     check::PostStmt<BinaryOperator>, +                     check::PostStmt<MaterializeTemporaryExpr>, +                     check::Bind, check::LiveSymbols, check::DeadSymbols> { + +  using AdvanceFn = void (IteratorModeling::*)(CheckerContext &, const Expr *, +                                               SVal, SVal, SVal) const; + +  void handleOverloadedOperator(CheckerContext &C, const CallEvent &Call, +                                OverloadedOperatorKind Op) const; +  void handleAdvanceLikeFunction(CheckerContext &C, const CallEvent &Call, +                                 const Expr *OrigExpr, +                                 const AdvanceFn *Handler) const; + +  void handleComparison(CheckerContext &C, const Expr *CE, SVal RetVal, +                        const SVal &LVal, const SVal &RVal, +                        OverloadedOperatorKind Op) const; +  void processComparison(CheckerContext &C, ProgramStateRef State, +                         SymbolRef Sym1, SymbolRef Sym2, const SVal &RetVal, +                         OverloadedOperatorKind Op) const; +  void handleIncrement(CheckerContext &C, const SVal &RetVal, const SVal &Iter, +                       bool Postfix) const; +  void handleDecrement(CheckerContext &C, const SVal &RetVal, const SVal &Iter, +                       bool Postfix) const; +  void handleRandomIncrOrDecr(CheckerContext &C, const Expr *CE, +                              OverloadedOperatorKind Op, const SVal &RetVal, +                              const SVal &Iterator, const SVal &Amount) const; +  void handlePtrIncrOrDecr(CheckerContext &C, const Expr *Iterator, +                           OverloadedOperatorKind OK, SVal Offset) const; +  void handleAdvance(CheckerContext &C, const Expr *CE, SVal RetVal, SVal Iter, +                     SVal Amount) const; +  void handlePrev(CheckerContext &C, const Expr *CE, SVal RetVal, SVal Iter, +                  SVal Amount) const; +  void handleNext(CheckerContext &C, const Expr *CE, SVal RetVal, SVal Iter, +                  SVal Amount) const; +  void assignToContainer(CheckerContext &C, const Expr *CE, const SVal &RetVal, +                         const MemRegion *Cont) const; +  bool noChangeInAdvance(CheckerContext &C, SVal Iter, const Expr *CE) const; +  void printState(raw_ostream &Out, ProgramStateRef State, const char *NL, +                  const char *Sep) const override; + +  // std::advance, std::prev & std::next +  CallDescriptionMap<AdvanceFn> AdvanceLikeFunctions = { +      // template<class InputIt, class Distance> +      // void advance(InputIt& it, Distance n); +      {{{"std", "advance"}, 2}, &IteratorModeling::handleAdvance}, + +      // template<class BidirIt> +      // BidirIt prev( +      //   BidirIt it, +      //   typename std::iterator_traits<BidirIt>::difference_type n = 1); +      {{{"std", "prev"}, 2}, &IteratorModeling::handlePrev}, + +      // template<class ForwardIt> +      // ForwardIt next( +      //   ForwardIt it, +      //   typename std::iterator_traits<ForwardIt>::difference_type n = 1); +      {{{"std", "next"}, 2}, &IteratorModeling::handleNext}, +  }; + +public: +  IteratorModeling() = default; + +  void checkPostCall(const CallEvent &Call, CheckerContext &C) const; +  void checkBind(SVal Loc, SVal Val, const Stmt *S, CheckerContext &C) const; +  void checkPostStmt(const UnaryOperator *UO, CheckerContext &C) const; +  void checkPostStmt(const BinaryOperator *BO, CheckerContext &C) const; +  void checkPostStmt(const MaterializeTemporaryExpr *MTE, +                     CheckerContext &C) const; +  void checkLiveSymbols(ProgramStateRef State, SymbolReaper &SR) const; +  void checkDeadSymbols(SymbolReaper &SR, CheckerContext &C) const; +}; + +bool isSimpleComparisonOperator(OverloadedOperatorKind OK); +bool isSimpleComparisonOperator(BinaryOperatorKind OK); +ProgramStateRef removeIteratorPosition(ProgramStateRef State, const SVal &Val); +ProgramStateRef relateSymbols(ProgramStateRef State, SymbolRef Sym1, +                              SymbolRef Sym2, bool Equal); +bool isBoundThroughLazyCompoundVal(const Environment &Env, +                                   const MemRegion *Reg); +const ExplodedNode *findCallEnter(const ExplodedNode *Node, const Expr *Call); + +} // namespace + +void IteratorModeling::checkPostCall(const CallEvent &Call, +                                     CheckerContext &C) const { +  // Record new iterator positions and iterator position changes +  const auto *Func = dyn_cast_or_null<FunctionDecl>(Call.getDecl()); +  if (!Func) +    return; + +  if (Func->isOverloadedOperator()) { +    const auto Op = Func->getOverloadedOperator(); +    handleOverloadedOperator(C, Call, Op); +    return; +  } + +  const auto *OrigExpr = Call.getOriginExpr(); +  if (!OrigExpr) +    return; + +  const AdvanceFn *Handler = AdvanceLikeFunctions.lookup(Call); +  if (Handler) { +    handleAdvanceLikeFunction(C, Call, OrigExpr, Handler); +    return; +  } + +  if (!isIteratorType(Call.getResultType())) +    return; + +  auto State = C.getState(); + +  // Already bound to container? +  if (getIteratorPosition(State, Call.getReturnValue())) +    return; + +  // Copy-like and move constructors +  if (isa<CXXConstructorCall>(&Call) && Call.getNumArgs() == 1) { +    if (const auto *Pos = getIteratorPosition(State, Call.getArgSVal(0))) { +      State = setIteratorPosition(State, Call.getReturnValue(), *Pos); +      if (cast<CXXConstructorDecl>(Func)->isMoveConstructor()) { +        State = removeIteratorPosition(State, Call.getArgSVal(0)); +      } +      C.addTransition(State); +      return; +    } +  } + +  // Assumption: if return value is an iterator which is not yet bound to a +  //             container, then look for the first iterator argument of the +  //             same type as the return value and bind the return value to +  //             the same container. This approach works for STL algorithms. +  // FIXME: Add a more conservative mode +  for (unsigned i = 0; i < Call.getNumArgs(); ++i) { +    if (isIteratorType(Call.getArgExpr(i)->getType()) && +        Call.getArgExpr(i)->getType().getNonReferenceType().getDesugaredType( +            C.getASTContext()).getTypePtr() == +        Call.getResultType().getDesugaredType(C.getASTContext()).getTypePtr()) { +      if (const auto *Pos = getIteratorPosition(State, Call.getArgSVal(i))) { +        assignToContainer(C, OrigExpr, Call.getReturnValue(), +                          Pos->getContainer()); +        return; +      } +    } +  } +} + +void IteratorModeling::checkBind(SVal Loc, SVal Val, const Stmt *S, +                                 CheckerContext &C) const { +  auto State = C.getState(); +  const auto *Pos = getIteratorPosition(State, Val); +  if (Pos) { +    State = setIteratorPosition(State, Loc, *Pos); +    C.addTransition(State); +  } else { +    const auto *OldPos = getIteratorPosition(State, Loc); +    if (OldPos) { +      State = removeIteratorPosition(State, Loc); +      C.addTransition(State); +    } +  } +} + +void IteratorModeling::checkPostStmt(const UnaryOperator *UO, +                                     CheckerContext &C) const { +  UnaryOperatorKind OK = UO->getOpcode(); +  if (!isIncrementOperator(OK) && !isDecrementOperator(OK)) +    return; + +  auto &SVB = C.getSValBuilder(); +  handlePtrIncrOrDecr(C, UO->getSubExpr(), +                      isIncrementOperator(OK) ? OO_Plus : OO_Minus, +                      SVB.makeArrayIndex(1)); +} + +void IteratorModeling::checkPostStmt(const BinaryOperator *BO, +                                     CheckerContext &C) const { +  const ProgramStateRef State = C.getState(); +  const BinaryOperatorKind OK = BO->getOpcode(); +  const Expr *const LHS = BO->getLHS(); +  const Expr *const RHS = BO->getRHS(); +  const SVal LVal = State->getSVal(LHS, C.getLocationContext()); +  const SVal RVal = State->getSVal(RHS, C.getLocationContext()); + +  if (isSimpleComparisonOperator(BO->getOpcode())) { +    SVal Result = State->getSVal(BO, C.getLocationContext()); +    handleComparison(C, BO, Result, LVal, RVal, +                     BinaryOperator::getOverloadedOperator(OK)); +  } else if (isRandomIncrOrDecrOperator(OK)) { +    // In case of operator+ the iterator can be either on the LHS (eg.: it + 1), +    // or on the RHS (eg.: 1 + it). Both cases are modeled. +    const bool IsIterOnLHS = BO->getLHS()->getType()->isPointerType(); +    const Expr *const &IterExpr = IsIterOnLHS ? LHS : RHS; +    const Expr *const &AmountExpr = IsIterOnLHS ? RHS : LHS; + +    // The non-iterator side must have an integral or enumeration type. +    if (!AmountExpr->getType()->isIntegralOrEnumerationType()) +      return; +    const SVal &AmountVal = IsIterOnLHS ? RVal : LVal; +    handlePtrIncrOrDecr(C, IterExpr, BinaryOperator::getOverloadedOperator(OK), +                        AmountVal); +  } +} + +void IteratorModeling::checkPostStmt(const MaterializeTemporaryExpr *MTE, +                                     CheckerContext &C) const { +  /* Transfer iterator state to temporary objects */ +  auto State = C.getState(); +  const auto *Pos = getIteratorPosition(State, C.getSVal(MTE->getSubExpr())); +  if (!Pos) +    return; +  State = setIteratorPosition(State, C.getSVal(MTE), *Pos); +  C.addTransition(State); +} + +void IteratorModeling::checkLiveSymbols(ProgramStateRef State, +                                        SymbolReaper &SR) const { +  // Keep symbolic expressions of iterator positions alive +  auto RegionMap = State->get<IteratorRegionMap>(); +  for (const auto &Reg : RegionMap) { +    const auto Offset = Reg.second.getOffset(); +    for (auto i = Offset->symbol_begin(); i != Offset->symbol_end(); ++i) +      if (isa<SymbolData>(*i)) +        SR.markLive(*i); +  } + +  auto SymbolMap = State->get<IteratorSymbolMap>(); +  for (const auto &Sym : SymbolMap) { +    const auto Offset = Sym.second.getOffset(); +    for (auto i = Offset->symbol_begin(); i != Offset->symbol_end(); ++i) +      if (isa<SymbolData>(*i)) +        SR.markLive(*i); +  } + +} + +void IteratorModeling::checkDeadSymbols(SymbolReaper &SR, +                                        CheckerContext &C) const { +  // Cleanup +  auto State = C.getState(); + +  auto RegionMap = State->get<IteratorRegionMap>(); +  for (const auto &Reg : RegionMap) { +    if (!SR.isLiveRegion(Reg.first)) { +      // The region behind the `LazyCompoundVal` is often cleaned up before +      // the `LazyCompoundVal` itself. If there are iterator positions keyed +      // by these regions their cleanup must be deferred. +      if (!isBoundThroughLazyCompoundVal(State->getEnvironment(), Reg.first)) { +        State = State->remove<IteratorRegionMap>(Reg.first); +      } +    } +  } + +  auto SymbolMap = State->get<IteratorSymbolMap>(); +  for (const auto &Sym : SymbolMap) { +    if (!SR.isLive(Sym.first)) { +      State = State->remove<IteratorSymbolMap>(Sym.first); +    } +  } + +  C.addTransition(State); +} + +void +IteratorModeling::handleOverloadedOperator(CheckerContext &C, +                                           const CallEvent &Call, +                                           OverloadedOperatorKind Op) const { +    if (isSimpleComparisonOperator(Op)) { +      const auto *OrigExpr = Call.getOriginExpr(); +      if (!OrigExpr) +        return; + +      if (const auto *InstCall = dyn_cast<CXXInstanceCall>(&Call)) { +        handleComparison(C, OrigExpr, Call.getReturnValue(), +                         InstCall->getCXXThisVal(), Call.getArgSVal(0), Op); +        return; +      } + +      handleComparison(C, OrigExpr, Call.getReturnValue(), Call.getArgSVal(0), +                         Call.getArgSVal(1), Op); +      return; +    } else if (isRandomIncrOrDecrOperator(Op)) { +      const auto *OrigExpr = Call.getOriginExpr(); +      if (!OrigExpr) +        return; + +      if (const auto *InstCall = dyn_cast<CXXInstanceCall>(&Call)) { +        if (Call.getNumArgs() >= 1 && +              Call.getArgExpr(0)->getType()->isIntegralOrEnumerationType()) { +          handleRandomIncrOrDecr(C, OrigExpr, Op, Call.getReturnValue(), +                                 InstCall->getCXXThisVal(), Call.getArgSVal(0)); +          return; +        } +      } else if (Call.getNumArgs() >= 2) { +        const Expr *FirstArg = Call.getArgExpr(0); +        const Expr *SecondArg = Call.getArgExpr(1); +        const QualType FirstType = FirstArg->getType(); +        const QualType SecondType = SecondArg->getType(); + +        if (FirstType->isIntegralOrEnumerationType() || +            SecondType->isIntegralOrEnumerationType()) { +          // In case of operator+ the iterator can be either on the LHS (eg.: +          // it + 1), or on the RHS (eg.: 1 + it). Both cases are modeled. +          const bool IsIterFirst = FirstType->isStructureOrClassType(); +          const SVal FirstArg = Call.getArgSVal(0); +          const SVal SecondArg = Call.getArgSVal(1); +          const SVal &Iterator = IsIterFirst ? FirstArg : SecondArg; +          const SVal &Amount = IsIterFirst ? SecondArg : FirstArg; + +          handleRandomIncrOrDecr(C, OrigExpr, Op, Call.getReturnValue(), +                                 Iterator, Amount); +          return; +        } +      } +    } else if (isIncrementOperator(Op)) { +      if (const auto *InstCall = dyn_cast<CXXInstanceCall>(&Call)) { +        handleIncrement(C, Call.getReturnValue(), InstCall->getCXXThisVal(), +                        Call.getNumArgs()); +        return; +      } + +      handleIncrement(C, Call.getReturnValue(), Call.getArgSVal(0), +                      Call.getNumArgs()); +      return; +    } else if (isDecrementOperator(Op)) { +      if (const auto *InstCall = dyn_cast<CXXInstanceCall>(&Call)) { +        handleDecrement(C, Call.getReturnValue(), InstCall->getCXXThisVal(), +                        Call.getNumArgs()); +        return; +      } + +      handleDecrement(C, Call.getReturnValue(), Call.getArgSVal(0), +                        Call.getNumArgs()); +      return; +    } +} + +void +IteratorModeling::handleAdvanceLikeFunction(CheckerContext &C, +                                            const CallEvent &Call, +                                            const Expr *OrigExpr, +                                            const AdvanceFn *Handler) const { +  if (!C.wasInlined) { +    (this->**Handler)(C, OrigExpr, Call.getReturnValue(), +                      Call.getArgSVal(0), Call.getArgSVal(1)); +    return; +  } + +  // If std::advance() was inlined, but a non-standard function it calls inside +  // was not, then we have to model it explicitly +  const auto *IdInfo = cast<FunctionDecl>(Call.getDecl())->getIdentifier(); +  if (IdInfo) { +    if (IdInfo->getName() == "advance") { +      if (noChangeInAdvance(C, Call.getArgSVal(0), OrigExpr)) { +        (this->**Handler)(C, OrigExpr, Call.getReturnValue(), +                          Call.getArgSVal(0), Call.getArgSVal(1)); +      } +    } +  } +} + +void IteratorModeling::handleComparison(CheckerContext &C, const Expr *CE, +                                       SVal RetVal, const SVal &LVal, +                                       const SVal &RVal, +                                       OverloadedOperatorKind Op) const { +  // Record the operands and the operator of the comparison for the next +  // evalAssume, if the result is a symbolic expression. If it is a concrete +  // value (only one branch is possible), then transfer the state between +  // the operands according to the operator and the result +   auto State = C.getState(); +  const auto *LPos = getIteratorPosition(State, LVal); +  const auto *RPos = getIteratorPosition(State, RVal); +  const MemRegion *Cont = nullptr; +  if (LPos) { +    Cont = LPos->getContainer(); +  } else if (RPos) { +    Cont = RPos->getContainer(); +  } +  if (!Cont) +    return; + +  // At least one of the iterators has recorded positions. If one of them does +  // not then create a new symbol for the offset. +  SymbolRef Sym; +  if (!LPos || !RPos) { +    auto &SymMgr = C.getSymbolManager(); +    Sym = SymMgr.conjureSymbol(CE, C.getLocationContext(), +                               C.getASTContext().LongTy, C.blockCount()); +    State = assumeNoOverflow(State, Sym, 4); +  } + +  if (!LPos) { +    State = setIteratorPosition(State, LVal, +                                IteratorPosition::getPosition(Cont, Sym)); +    LPos = getIteratorPosition(State, LVal); +  } else if (!RPos) { +    State = setIteratorPosition(State, RVal, +                                IteratorPosition::getPosition(Cont, Sym)); +    RPos = getIteratorPosition(State, RVal); +  } + +  // If the value for which we just tried to set a new iterator position is +  // an `SVal`for which no iterator position can be set then the setting was +  // unsuccessful. We cannot handle the comparison in this case. +  if (!LPos || !RPos) +    return; + +  // We cannot make assumptions on `UnknownVal`. Let us conjure a symbol +  // instead. +  if (RetVal.isUnknown()) { +    auto &SymMgr = C.getSymbolManager(); +    auto *LCtx = C.getLocationContext(); +    RetVal = nonloc::SymbolVal(SymMgr.conjureSymbol( +        CE, LCtx, C.getASTContext().BoolTy, C.blockCount())); +    State = State->BindExpr(CE, LCtx, RetVal); +  } + +  processComparison(C, State, LPos->getOffset(), RPos->getOffset(), RetVal, Op); +} + +void IteratorModeling::processComparison(CheckerContext &C, +                                         ProgramStateRef State, SymbolRef Sym1, +                                         SymbolRef Sym2, const SVal &RetVal, +                                         OverloadedOperatorKind Op) const { +  if (const auto TruthVal = RetVal.getAs<nonloc::ConcreteInt>()) { +    if ((State = relateSymbols(State, Sym1, Sym2, +                              (Op == OO_EqualEqual) == +                               (TruthVal->getValue() != 0)))) { +      C.addTransition(State); +    } else { +      C.generateSink(State, C.getPredecessor()); +    } +    return; +  } + +  const auto ConditionVal = RetVal.getAs<DefinedSVal>(); +  if (!ConditionVal) +    return; + +  if (auto StateTrue = relateSymbols(State, Sym1, Sym2, Op == OO_EqualEqual)) { +    StateTrue = StateTrue->assume(*ConditionVal, true); +    C.addTransition(StateTrue); +  } + +  if (auto StateFalse = relateSymbols(State, Sym1, Sym2, Op != OO_EqualEqual)) { +    StateFalse = StateFalse->assume(*ConditionVal, false); +    C.addTransition(StateFalse); +  } +} + +void IteratorModeling::handleIncrement(CheckerContext &C, const SVal &RetVal, +                                       const SVal &Iter, bool Postfix) const { +  // Increment the symbolic expressions which represents the position of the +  // iterator +  auto State = C.getState(); +  auto &BVF = C.getSymbolManager().getBasicVals(); + +  const auto *Pos = getIteratorPosition(State, Iter); +  if (!Pos) +    return; + +  auto NewState = +    advancePosition(State, Iter, OO_Plus, +                    nonloc::ConcreteInt(BVF.getValue(llvm::APSInt::get(1)))); +  assert(NewState && +         "Advancing position by concrete int should always be successful"); + +  const auto *NewPos = getIteratorPosition(NewState, Iter); +  assert(NewPos && +         "Iterator should have position after successful advancement"); + +  State = setIteratorPosition(State, Iter, *NewPos); +  State = setIteratorPosition(State, RetVal, Postfix ? *Pos : *NewPos); +  C.addTransition(State); +} + +void IteratorModeling::handleDecrement(CheckerContext &C, const SVal &RetVal, +                                       const SVal &Iter, bool Postfix) const { +  // Decrement the symbolic expressions which represents the position of the +  // iterator +  auto State = C.getState(); +  auto &BVF = C.getSymbolManager().getBasicVals(); + +  const auto *Pos = getIteratorPosition(State, Iter); +  if (!Pos) +    return; + +  auto NewState = +    advancePosition(State, Iter, OO_Minus, +                    nonloc::ConcreteInt(BVF.getValue(llvm::APSInt::get(1)))); +  assert(NewState && +         "Advancing position by concrete int should always be successful"); + +  const auto *NewPos = getIteratorPosition(NewState, Iter); +  assert(NewPos && +         "Iterator should have position after successful advancement"); + +  State = setIteratorPosition(State, Iter, *NewPos); +  State = setIteratorPosition(State, RetVal, Postfix ? *Pos : *NewPos); +  C.addTransition(State); +} + +void IteratorModeling::handleRandomIncrOrDecr(CheckerContext &C, const Expr *CE, +                                              OverloadedOperatorKind Op, +                                              const SVal &RetVal, +                                              const SVal &Iterator, +                                              const SVal &Amount) const { +  // Increment or decrement the symbolic expressions which represents the +  // position of the iterator +  auto State = C.getState(); + +  const auto *Pos = getIteratorPosition(State, Iterator); +  if (!Pos) +    return; + +  const auto *Value = &Amount; +  SVal Val; +  if (auto LocAmount = Amount.getAs<Loc>()) { +    Val = State->getRawSVal(*LocAmount); +    Value = &Val; +  } + +  const auto &TgtVal = +      (Op == OO_PlusEqual || Op == OO_MinusEqual) ? Iterator : RetVal; + +  // `AdvancedState` is a state where the position of `LHS` is advanced. We +  // only need this state to retrieve the new position, but we do not want +  // to change the position of `LHS` (in every case). +  auto AdvancedState = advancePosition(State, Iterator, Op, *Value); +  if (AdvancedState) { +    const auto *NewPos = getIteratorPosition(AdvancedState, Iterator); +    assert(NewPos && +           "Iterator should have position after successful advancement"); + +    State = setIteratorPosition(State, TgtVal, *NewPos); +    C.addTransition(State); +  } else { +    assignToContainer(C, CE, TgtVal, Pos->getContainer()); +  } +} + +void IteratorModeling::handlePtrIncrOrDecr(CheckerContext &C, +                                           const Expr *Iterator, +                                           OverloadedOperatorKind OK, +                                           SVal Offset) const { +  if (!isa<DefinedSVal>(Offset)) +    return; + +  QualType PtrType = Iterator->getType(); +  if (!PtrType->isPointerType()) +    return; +  QualType ElementType = PtrType->getPointeeType(); + +  ProgramStateRef State = C.getState(); +  SVal OldVal = State->getSVal(Iterator, C.getLocationContext()); + +  const IteratorPosition *OldPos = getIteratorPosition(State, OldVal); +  if (!OldPos) +    return; + +  SVal NewVal; +  if (OK == OO_Plus || OK == OO_PlusEqual) { +    NewVal = State->getLValue(ElementType, Offset, OldVal); +  } else { +    auto &SVB = C.getSValBuilder(); +    SVal NegatedOffset = SVB.evalMinus(Offset.castAs<NonLoc>()); +    NewVal = State->getLValue(ElementType, NegatedOffset, OldVal); +  } + +  // `AdvancedState` is a state where the position of `Old` is advanced. We +  // only need this state to retrieve the new position, but we do not want +  // ever to change the position of `OldVal`. +  auto AdvancedState = advancePosition(State, OldVal, OK, Offset); +  if (AdvancedState) { +    const IteratorPosition *NewPos = getIteratorPosition(AdvancedState, OldVal); +    assert(NewPos && +           "Iterator should have position after successful advancement"); + +    ProgramStateRef NewState = setIteratorPosition(State, NewVal, *NewPos); +    C.addTransition(NewState); +  } else { +    assignToContainer(C, Iterator, NewVal, OldPos->getContainer()); +  } +} + +void IteratorModeling::handleAdvance(CheckerContext &C, const Expr *CE, +                                     SVal RetVal, SVal Iter, +                                     SVal Amount) const { +  handleRandomIncrOrDecr(C, CE, OO_PlusEqual, RetVal, Iter, Amount); +} + +void IteratorModeling::handlePrev(CheckerContext &C, const Expr *CE, +                                  SVal RetVal, SVal Iter, SVal Amount) const { +  handleRandomIncrOrDecr(C, CE, OO_Minus, RetVal, Iter, Amount); +} + +void IteratorModeling::handleNext(CheckerContext &C, const Expr *CE, +                                  SVal RetVal, SVal Iter, SVal Amount) const { +  handleRandomIncrOrDecr(C, CE, OO_Plus, RetVal, Iter, Amount); +} + +void IteratorModeling::assignToContainer(CheckerContext &C, const Expr *CE, +                                         const SVal &RetVal, +                                         const MemRegion *Cont) const { +  Cont = Cont->getMostDerivedObjectRegion(); + +  auto State = C.getState(); +  const auto *LCtx = C.getLocationContext(); +  State = createIteratorPosition(State, RetVal, Cont, CE, LCtx, C.blockCount()); + +  C.addTransition(State); +} + +bool IteratorModeling::noChangeInAdvance(CheckerContext &C, SVal Iter, +                                         const Expr *CE) const { +  // Compare the iterator position before and after the call. (To be called +  // from `checkPostCall()`.) +  const auto StateAfter = C.getState(); + +  const auto *PosAfter = getIteratorPosition(StateAfter, Iter); +  // If we have no position after the call of `std::advance`, then we are not +  // interested. (Modeling of an inlined `std::advance()` should not remove the +  // position in any case.) +  if (!PosAfter) +    return false; + +  const ExplodedNode *N = findCallEnter(C.getPredecessor(), CE); +  assert(N && "Any call should have a `CallEnter` node."); + +  const auto StateBefore = N->getState(); +  const auto *PosBefore = getIteratorPosition(StateBefore, Iter); +  // FIXME: `std::advance()` should not create a new iterator position but +  //        change existing ones. However, in case of iterators implemented as +  //        pointers the handling of parameters in `std::advance()`-like +  //        functions is still incomplete which may result in cases where +  //        the new position is assigned to the wrong pointer. This causes +  //        crash if we use an assertion here. +  if (!PosBefore) +    return false; + +  return PosBefore->getOffset() == PosAfter->getOffset(); +} + +void IteratorModeling::printState(raw_ostream &Out, ProgramStateRef State, +                                  const char *NL, const char *Sep) const { +  auto SymbolMap = State->get<IteratorSymbolMap>(); +  auto RegionMap = State->get<IteratorRegionMap>(); +  // Use a counter to add newlines before every line except the first one. +  unsigned Count = 0; + +  if (!SymbolMap.isEmpty() || !RegionMap.isEmpty()) { +    Out << Sep << "Iterator Positions :" << NL; +    for (const auto &Sym : SymbolMap) { +      if (Count++) +        Out << NL; + +      Sym.first->dumpToStream(Out); +      Out << " : "; +      const auto Pos = Sym.second; +      Out << (Pos.isValid() ? "Valid" : "Invalid") << " ; Container == "; +      Pos.getContainer()->dumpToStream(Out); +      Out<<" ; Offset == "; +      Pos.getOffset()->dumpToStream(Out); +    } + +    for (const auto &Reg : RegionMap) { +      if (Count++) +        Out << NL; + +      Reg.first->dumpToStream(Out); +      Out << " : "; +      const auto Pos = Reg.second; +      Out << (Pos.isValid() ? "Valid" : "Invalid") << " ; Container == "; +      Pos.getContainer()->dumpToStream(Out); +      Out<<" ; Offset == "; +      Pos.getOffset()->dumpToStream(Out); +    } +  } +} + +namespace { + +bool isSimpleComparisonOperator(OverloadedOperatorKind OK) { +  return OK == OO_EqualEqual || OK == OO_ExclaimEqual; +} + +bool isSimpleComparisonOperator(BinaryOperatorKind OK) { +  return OK == BO_EQ || OK == BO_NE; +} + +ProgramStateRef removeIteratorPosition(ProgramStateRef State, const SVal &Val) { +  if (auto Reg = Val.getAsRegion()) { +    Reg = Reg->getMostDerivedObjectRegion(); +    return State->remove<IteratorRegionMap>(Reg); +  } else if (const auto Sym = Val.getAsSymbol()) { +    return State->remove<IteratorSymbolMap>(Sym); +  } else if (const auto LCVal = Val.getAs<nonloc::LazyCompoundVal>()) { +    return State->remove<IteratorRegionMap>(LCVal->getRegion()); +  } +  return nullptr; +} + +ProgramStateRef relateSymbols(ProgramStateRef State, SymbolRef Sym1, +                              SymbolRef Sym2, bool Equal) { +  auto &SVB = State->getStateManager().getSValBuilder(); + +  // FIXME: This code should be reworked as follows: +  // 1. Subtract the operands using evalBinOp(). +  // 2. Assume that the result doesn't overflow. +  // 3. Compare the result to 0. +  // 4. Assume the result of the comparison. +  const auto comparison = +    SVB.evalBinOp(State, BO_EQ, nonloc::SymbolVal(Sym1), +                  nonloc::SymbolVal(Sym2), SVB.getConditionType()); + +  assert(isa<DefinedSVal>(comparison) && +         "Symbol comparison must be a `DefinedSVal`"); + +  auto NewState = State->assume(comparison.castAs<DefinedSVal>(), Equal); +  if (!NewState) +    return nullptr; + +  if (const auto CompSym = comparison.getAsSymbol()) { +    assert(isa<SymIntExpr>(CompSym) && +           "Symbol comparison must be a `SymIntExpr`"); +    assert(BinaryOperator::isComparisonOp( +               cast<SymIntExpr>(CompSym)->getOpcode()) && +           "Symbol comparison must be a comparison"); +    return assumeNoOverflow(NewState, cast<SymIntExpr>(CompSym)->getLHS(), 2); +  } + +  return NewState; +} + +bool isBoundThroughLazyCompoundVal(const Environment &Env, +                                   const MemRegion *Reg) { +  for (const auto &Binding : Env) { +    if (const auto LCVal = Binding.second.getAs<nonloc::LazyCompoundVal>()) { +      if (LCVal->getRegion() == Reg) +        return true; +    } +  } + +  return false; +} + +const ExplodedNode *findCallEnter(const ExplodedNode *Node, const Expr *Call) { +  while (Node) { +    ProgramPoint PP = Node->getLocation(); +    if (auto Enter = PP.getAs<CallEnter>()) { +      if (Enter->getCallExpr() == Call) +        break; +    } + +    Node = Node->getFirstPred(); +  } + +  return Node; +} + +} // namespace + +void ento::registerIteratorModeling(CheckerManager &mgr) { +  mgr.registerChecker<IteratorModeling>(); +} + +bool ento::shouldRegisterIteratorModeling(const CheckerManager &mgr) { +  return true; +}  | 
