diff options
Diffstat (limited to 'contrib/llvm-project/clang/lib/StaticAnalyzer/Checkers/IteratorModeling.cpp')
-rw-r--r-- | contrib/llvm-project/clang/lib/StaticAnalyzer/Checkers/IteratorModeling.cpp | 856 |
1 files changed, 856 insertions, 0 deletions
diff --git a/contrib/llvm-project/clang/lib/StaticAnalyzer/Checkers/IteratorModeling.cpp b/contrib/llvm-project/clang/lib/StaticAnalyzer/Checkers/IteratorModeling.cpp new file mode 100644 index 000000000000..ab5e6a1c9991 --- /dev/null +++ b/contrib/llvm-project/clang/lib/StaticAnalyzer/Checkers/IteratorModeling.cpp @@ -0,0 +1,856 @@ +//===-- IteratorModeling.cpp --------------------------------------*- C++ -*--// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// Defines a modeling-checker for modeling STL iterator-like iterators. +// +//===----------------------------------------------------------------------===// +// +// In the code, iterator can be represented as a: +// * type-I: typedef-ed pointer. Operations over such iterator, such as +// comparisons or increments, are modeled straightforwardly by the +// analyzer. +// * type-II: structure with its method bodies available. Operations over such +// iterator are inlined by the analyzer, and results of modeling +// these operations are exposing implementation details of the +// iterators, which is not necessarily helping. +// * type-III: completely opaque structure. Operations over such iterator are +// modeled conservatively, producing conjured symbols everywhere. +// +// To handle all these types in a common way we introduce a structure called +// IteratorPosition which is an abstraction of the position the iterator +// represents using symbolic expressions. The checker handles all the +// operations on this structure. +// +// Additionally, depending on the circumstances, operators of types II and III +// can be represented as: +// * type-IIa, type-IIIa: conjured structure symbols - when returned by value +// from conservatively evaluated methods such as +// `.begin()`. +// * type-IIb, type-IIIb: memory regions of iterator-typed objects, such as +// variables or temporaries, when the iterator object is +// currently treated as an lvalue. +// * type-IIc, type-IIIc: compound values of iterator-typed objects, when the +// iterator object is treated as an rvalue taken of a +// particular lvalue, eg. a copy of "type-a" iterator +// object, or an iterator that existed before the +// analysis has started. +// +// To handle any of these three different representations stored in an SVal we +// use setter and getters functions which separate the three cases. To store +// them we use a pointer union of symbol and memory region. +// +// The checker works the following way: We record the begin and the +// past-end iterator for all containers whenever their `.begin()` and `.end()` +// are called. Since the Constraint Manager cannot handle such SVals we need +// to take over its role. We post-check equality and non-equality comparisons +// and record that the two sides are equal if we are in the 'equal' branch +// (true-branch for `==` and false-branch for `!=`). +// +// In case of type-I or type-II iterators we get a concrete integer as a result +// of the comparison (1 or 0) but in case of type-III we only get a Symbol. In +// this latter case we record the symbol and reload it in evalAssume() and do +// the propagation there. We also handle (maybe double) negated comparisons +// which are represented in the form of (x == 0 or x != 0) where x is the +// comparison itself. +// +// Since `SimpleConstraintManager` cannot handle complex symbolic expressions +// we only use expressions of the format S, S+n or S-n for iterator positions +// where S is a conjured symbol and n is an unsigned concrete integer. When +// making an assumption e.g. `S1 + n == S2 + m` we store `S1 - S2 == m - n` as +// a constraint which we later retrieve when doing an actual comparison. + +#include "clang/StaticAnalyzer/Checkers/BuiltinCheckerRegistration.h" +#include "clang/AST/DeclTemplate.h" +#include "clang/StaticAnalyzer/Core/BugReporter/BugType.h" +#include "clang/StaticAnalyzer/Core/Checker.h" +#include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h" +#include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h" +#include "clang/StaticAnalyzer/Core/PathSensitive/DynamicType.h" + +#include "Iterator.h" + +#include <utility> + +using namespace clang; +using namespace ento; +using namespace iterator; + +namespace { + +class IteratorModeling + : public Checker<check::PostCall, check::PostStmt<UnaryOperator>, + check::PostStmt<BinaryOperator>, + check::PostStmt<MaterializeTemporaryExpr>, + check::Bind, check::LiveSymbols, check::DeadSymbols> { + + using AdvanceFn = void (IteratorModeling::*)(CheckerContext &, const Expr *, + SVal, SVal, SVal) const; + + void handleOverloadedOperator(CheckerContext &C, const CallEvent &Call, + OverloadedOperatorKind Op) const; + void handleAdvanceLikeFunction(CheckerContext &C, const CallEvent &Call, + const Expr *OrigExpr, + const AdvanceFn *Handler) const; + + void handleComparison(CheckerContext &C, const Expr *CE, SVal RetVal, + const SVal &LVal, const SVal &RVal, + OverloadedOperatorKind Op) const; + void processComparison(CheckerContext &C, ProgramStateRef State, + SymbolRef Sym1, SymbolRef Sym2, const SVal &RetVal, + OverloadedOperatorKind Op) const; + void handleIncrement(CheckerContext &C, const SVal &RetVal, const SVal &Iter, + bool Postfix) const; + void handleDecrement(CheckerContext &C, const SVal &RetVal, const SVal &Iter, + bool Postfix) const; + void handleRandomIncrOrDecr(CheckerContext &C, const Expr *CE, + OverloadedOperatorKind Op, const SVal &RetVal, + const SVal &Iterator, const SVal &Amount) const; + void handlePtrIncrOrDecr(CheckerContext &C, const Expr *Iterator, + OverloadedOperatorKind OK, SVal Offset) const; + void handleAdvance(CheckerContext &C, const Expr *CE, SVal RetVal, SVal Iter, + SVal Amount) const; + void handlePrev(CheckerContext &C, const Expr *CE, SVal RetVal, SVal Iter, + SVal Amount) const; + void handleNext(CheckerContext &C, const Expr *CE, SVal RetVal, SVal Iter, + SVal Amount) const; + void assignToContainer(CheckerContext &C, const Expr *CE, const SVal &RetVal, + const MemRegion *Cont) const; + bool noChangeInAdvance(CheckerContext &C, SVal Iter, const Expr *CE) const; + void printState(raw_ostream &Out, ProgramStateRef State, const char *NL, + const char *Sep) const override; + + // std::advance, std::prev & std::next + CallDescriptionMap<AdvanceFn> AdvanceLikeFunctions = { + // template<class InputIt, class Distance> + // void advance(InputIt& it, Distance n); + {{{"std", "advance"}, 2}, &IteratorModeling::handleAdvance}, + + // template<class BidirIt> + // BidirIt prev( + // BidirIt it, + // typename std::iterator_traits<BidirIt>::difference_type n = 1); + {{{"std", "prev"}, 2}, &IteratorModeling::handlePrev}, + + // template<class ForwardIt> + // ForwardIt next( + // ForwardIt it, + // typename std::iterator_traits<ForwardIt>::difference_type n = 1); + {{{"std", "next"}, 2}, &IteratorModeling::handleNext}, + }; + +public: + IteratorModeling() = default; + + void checkPostCall(const CallEvent &Call, CheckerContext &C) const; + void checkBind(SVal Loc, SVal Val, const Stmt *S, CheckerContext &C) const; + void checkPostStmt(const UnaryOperator *UO, CheckerContext &C) const; + void checkPostStmt(const BinaryOperator *BO, CheckerContext &C) const; + void checkPostStmt(const CXXConstructExpr *CCE, CheckerContext &C) const; + void checkPostStmt(const DeclStmt *DS, CheckerContext &C) const; + void checkPostStmt(const MaterializeTemporaryExpr *MTE, + CheckerContext &C) const; + void checkLiveSymbols(ProgramStateRef State, SymbolReaper &SR) const; + void checkDeadSymbols(SymbolReaper &SR, CheckerContext &C) const; +}; + +bool isSimpleComparisonOperator(OverloadedOperatorKind OK); +bool isSimpleComparisonOperator(BinaryOperatorKind OK); +ProgramStateRef removeIteratorPosition(ProgramStateRef State, const SVal &Val); +ProgramStateRef relateSymbols(ProgramStateRef State, SymbolRef Sym1, + SymbolRef Sym2, bool Equal); +bool isBoundThroughLazyCompoundVal(const Environment &Env, + const MemRegion *Reg); +const ExplodedNode *findCallEnter(const ExplodedNode *Node, const Expr *Call); + +} // namespace + +void IteratorModeling::checkPostCall(const CallEvent &Call, + CheckerContext &C) const { + // Record new iterator positions and iterator position changes + const auto *Func = dyn_cast_or_null<FunctionDecl>(Call.getDecl()); + if (!Func) + return; + + if (Func->isOverloadedOperator()) { + const auto Op = Func->getOverloadedOperator(); + handleOverloadedOperator(C, Call, Op); + return; + } + + const auto *OrigExpr = Call.getOriginExpr(); + if (!OrigExpr) + return; + + const AdvanceFn *Handler = AdvanceLikeFunctions.lookup(Call); + if (Handler) { + handleAdvanceLikeFunction(C, Call, OrigExpr, Handler); + return; + } + + if (!isIteratorType(Call.getResultType())) + return; + + auto State = C.getState(); + + // Already bound to container? + if (getIteratorPosition(State, Call.getReturnValue())) + return; + + // Copy-like and move constructors + if (isa<CXXConstructorCall>(&Call) && Call.getNumArgs() == 1) { + if (const auto *Pos = getIteratorPosition(State, Call.getArgSVal(0))) { + State = setIteratorPosition(State, Call.getReturnValue(), *Pos); + if (cast<CXXConstructorDecl>(Func)->isMoveConstructor()) { + State = removeIteratorPosition(State, Call.getArgSVal(0)); + } + C.addTransition(State); + return; + } + } + + // Assumption: if return value is an iterator which is not yet bound to a + // container, then look for the first iterator argument of the + // same type as the return value and bind the return value to + // the same container. This approach works for STL algorithms. + // FIXME: Add a more conservative mode + for (unsigned i = 0; i < Call.getNumArgs(); ++i) { + if (isIteratorType(Call.getArgExpr(i)->getType()) && + Call.getArgExpr(i)->getType().getNonReferenceType().getDesugaredType( + C.getASTContext()).getTypePtr() == + Call.getResultType().getDesugaredType(C.getASTContext()).getTypePtr()) { + if (const auto *Pos = getIteratorPosition(State, Call.getArgSVal(i))) { + assignToContainer(C, OrigExpr, Call.getReturnValue(), + Pos->getContainer()); + return; + } + } + } +} + +void IteratorModeling::checkBind(SVal Loc, SVal Val, const Stmt *S, + CheckerContext &C) const { + auto State = C.getState(); + const auto *Pos = getIteratorPosition(State, Val); + if (Pos) { + State = setIteratorPosition(State, Loc, *Pos); + C.addTransition(State); + } else { + const auto *OldPos = getIteratorPosition(State, Loc); + if (OldPos) { + State = removeIteratorPosition(State, Loc); + C.addTransition(State); + } + } +} + +void IteratorModeling::checkPostStmt(const UnaryOperator *UO, + CheckerContext &C) const { + UnaryOperatorKind OK = UO->getOpcode(); + if (!isIncrementOperator(OK) && !isDecrementOperator(OK)) + return; + + auto &SVB = C.getSValBuilder(); + handlePtrIncrOrDecr(C, UO->getSubExpr(), + isIncrementOperator(OK) ? OO_Plus : OO_Minus, + SVB.makeArrayIndex(1)); +} + +void IteratorModeling::checkPostStmt(const BinaryOperator *BO, + CheckerContext &C) const { + const ProgramStateRef State = C.getState(); + const BinaryOperatorKind OK = BO->getOpcode(); + const Expr *const LHS = BO->getLHS(); + const Expr *const RHS = BO->getRHS(); + const SVal LVal = State->getSVal(LHS, C.getLocationContext()); + const SVal RVal = State->getSVal(RHS, C.getLocationContext()); + + if (isSimpleComparisonOperator(BO->getOpcode())) { + SVal Result = State->getSVal(BO, C.getLocationContext()); + handleComparison(C, BO, Result, LVal, RVal, + BinaryOperator::getOverloadedOperator(OK)); + } else if (isRandomIncrOrDecrOperator(OK)) { + // In case of operator+ the iterator can be either on the LHS (eg.: it + 1), + // or on the RHS (eg.: 1 + it). Both cases are modeled. + const bool IsIterOnLHS = BO->getLHS()->getType()->isPointerType(); + const Expr *const &IterExpr = IsIterOnLHS ? LHS : RHS; + const Expr *const &AmountExpr = IsIterOnLHS ? RHS : LHS; + + // The non-iterator side must have an integral or enumeration type. + if (!AmountExpr->getType()->isIntegralOrEnumerationType()) + return; + const SVal &AmountVal = IsIterOnLHS ? RVal : LVal; + handlePtrIncrOrDecr(C, IterExpr, BinaryOperator::getOverloadedOperator(OK), + AmountVal); + } +} + +void IteratorModeling::checkPostStmt(const MaterializeTemporaryExpr *MTE, + CheckerContext &C) const { + /* Transfer iterator state to temporary objects */ + auto State = C.getState(); + const auto *Pos = getIteratorPosition(State, C.getSVal(MTE->getSubExpr())); + if (!Pos) + return; + State = setIteratorPosition(State, C.getSVal(MTE), *Pos); + C.addTransition(State); +} + +void IteratorModeling::checkLiveSymbols(ProgramStateRef State, + SymbolReaper &SR) const { + // Keep symbolic expressions of iterator positions alive + auto RegionMap = State->get<IteratorRegionMap>(); + for (const auto &Reg : RegionMap) { + const auto Offset = Reg.second.getOffset(); + for (auto i = Offset->symbol_begin(); i != Offset->symbol_end(); ++i) + if (isa<SymbolData>(*i)) + SR.markLive(*i); + } + + auto SymbolMap = State->get<IteratorSymbolMap>(); + for (const auto &Sym : SymbolMap) { + const auto Offset = Sym.second.getOffset(); + for (auto i = Offset->symbol_begin(); i != Offset->symbol_end(); ++i) + if (isa<SymbolData>(*i)) + SR.markLive(*i); + } + +} + +void IteratorModeling::checkDeadSymbols(SymbolReaper &SR, + CheckerContext &C) const { + // Cleanup + auto State = C.getState(); + + auto RegionMap = State->get<IteratorRegionMap>(); + for (const auto &Reg : RegionMap) { + if (!SR.isLiveRegion(Reg.first)) { + // The region behind the `LazyCompoundVal` is often cleaned up before + // the `LazyCompoundVal` itself. If there are iterator positions keyed + // by these regions their cleanup must be deferred. + if (!isBoundThroughLazyCompoundVal(State->getEnvironment(), Reg.first)) { + State = State->remove<IteratorRegionMap>(Reg.first); + } + } + } + + auto SymbolMap = State->get<IteratorSymbolMap>(); + for (const auto &Sym : SymbolMap) { + if (!SR.isLive(Sym.first)) { + State = State->remove<IteratorSymbolMap>(Sym.first); + } + } + + C.addTransition(State); +} + +void +IteratorModeling::handleOverloadedOperator(CheckerContext &C, + const CallEvent &Call, + OverloadedOperatorKind Op) const { + if (isSimpleComparisonOperator(Op)) { + const auto *OrigExpr = Call.getOriginExpr(); + if (!OrigExpr) + return; + + if (const auto *InstCall = dyn_cast<CXXInstanceCall>(&Call)) { + handleComparison(C, OrigExpr, Call.getReturnValue(), + InstCall->getCXXThisVal(), Call.getArgSVal(0), Op); + return; + } + + handleComparison(C, OrigExpr, Call.getReturnValue(), Call.getArgSVal(0), + Call.getArgSVal(1), Op); + return; + } else if (isRandomIncrOrDecrOperator(Op)) { + const auto *OrigExpr = Call.getOriginExpr(); + if (!OrigExpr) + return; + + if (const auto *InstCall = dyn_cast<CXXInstanceCall>(&Call)) { + if (Call.getNumArgs() >= 1 && + Call.getArgExpr(0)->getType()->isIntegralOrEnumerationType()) { + handleRandomIncrOrDecr(C, OrigExpr, Op, Call.getReturnValue(), + InstCall->getCXXThisVal(), Call.getArgSVal(0)); + return; + } + } else if (Call.getNumArgs() >= 2) { + const Expr *FirstArg = Call.getArgExpr(0); + const Expr *SecondArg = Call.getArgExpr(1); + const QualType FirstType = FirstArg->getType(); + const QualType SecondType = SecondArg->getType(); + + if (FirstType->isIntegralOrEnumerationType() || + SecondType->isIntegralOrEnumerationType()) { + // In case of operator+ the iterator can be either on the LHS (eg.: + // it + 1), or on the RHS (eg.: 1 + it). Both cases are modeled. + const bool IsIterFirst = FirstType->isStructureOrClassType(); + const SVal FirstArg = Call.getArgSVal(0); + const SVal SecondArg = Call.getArgSVal(1); + const SVal &Iterator = IsIterFirst ? FirstArg : SecondArg; + const SVal &Amount = IsIterFirst ? SecondArg : FirstArg; + + handleRandomIncrOrDecr(C, OrigExpr, Op, Call.getReturnValue(), + Iterator, Amount); + return; + } + } + } else if (isIncrementOperator(Op)) { + if (const auto *InstCall = dyn_cast<CXXInstanceCall>(&Call)) { + handleIncrement(C, Call.getReturnValue(), InstCall->getCXXThisVal(), + Call.getNumArgs()); + return; + } + + handleIncrement(C, Call.getReturnValue(), Call.getArgSVal(0), + Call.getNumArgs()); + return; + } else if (isDecrementOperator(Op)) { + if (const auto *InstCall = dyn_cast<CXXInstanceCall>(&Call)) { + handleDecrement(C, Call.getReturnValue(), InstCall->getCXXThisVal(), + Call.getNumArgs()); + return; + } + + handleDecrement(C, Call.getReturnValue(), Call.getArgSVal(0), + Call.getNumArgs()); + return; + } +} + +void +IteratorModeling::handleAdvanceLikeFunction(CheckerContext &C, + const CallEvent &Call, + const Expr *OrigExpr, + const AdvanceFn *Handler) const { + if (!C.wasInlined) { + (this->**Handler)(C, OrigExpr, Call.getReturnValue(), + Call.getArgSVal(0), Call.getArgSVal(1)); + return; + } + + // If std::advance() was inlined, but a non-standard function it calls inside + // was not, then we have to model it explicitly + const auto *IdInfo = cast<FunctionDecl>(Call.getDecl())->getIdentifier(); + if (IdInfo) { + if (IdInfo->getName() == "advance") { + if (noChangeInAdvance(C, Call.getArgSVal(0), OrigExpr)) { + (this->**Handler)(C, OrigExpr, Call.getReturnValue(), + Call.getArgSVal(0), Call.getArgSVal(1)); + } + } + } +} + +void IteratorModeling::handleComparison(CheckerContext &C, const Expr *CE, + SVal RetVal, const SVal &LVal, + const SVal &RVal, + OverloadedOperatorKind Op) const { + // Record the operands and the operator of the comparison for the next + // evalAssume, if the result is a symbolic expression. If it is a concrete + // value (only one branch is possible), then transfer the state between + // the operands according to the operator and the result + auto State = C.getState(); + const auto *LPos = getIteratorPosition(State, LVal); + const auto *RPos = getIteratorPosition(State, RVal); + const MemRegion *Cont = nullptr; + if (LPos) { + Cont = LPos->getContainer(); + } else if (RPos) { + Cont = RPos->getContainer(); + } + if (!Cont) + return; + + // At least one of the iterators has recorded positions. If one of them does + // not then create a new symbol for the offset. + SymbolRef Sym; + if (!LPos || !RPos) { + auto &SymMgr = C.getSymbolManager(); + Sym = SymMgr.conjureSymbol(CE, C.getLocationContext(), + C.getASTContext().LongTy, C.blockCount()); + State = assumeNoOverflow(State, Sym, 4); + } + + if (!LPos) { + State = setIteratorPosition(State, LVal, + IteratorPosition::getPosition(Cont, Sym)); + LPos = getIteratorPosition(State, LVal); + } else if (!RPos) { + State = setIteratorPosition(State, RVal, + IteratorPosition::getPosition(Cont, Sym)); + RPos = getIteratorPosition(State, RVal); + } + + // If the value for which we just tried to set a new iterator position is + // an `SVal`for which no iterator position can be set then the setting was + // unsuccessful. We cannot handle the comparison in this case. + if (!LPos || !RPos) + return; + + // We cannot make assumptions on `UnknownVal`. Let us conjure a symbol + // instead. + if (RetVal.isUnknown()) { + auto &SymMgr = C.getSymbolManager(); + auto *LCtx = C.getLocationContext(); + RetVal = nonloc::SymbolVal(SymMgr.conjureSymbol( + CE, LCtx, C.getASTContext().BoolTy, C.blockCount())); + State = State->BindExpr(CE, LCtx, RetVal); + } + + processComparison(C, State, LPos->getOffset(), RPos->getOffset(), RetVal, Op); +} + +void IteratorModeling::processComparison(CheckerContext &C, + ProgramStateRef State, SymbolRef Sym1, + SymbolRef Sym2, const SVal &RetVal, + OverloadedOperatorKind Op) const { + if (const auto TruthVal = RetVal.getAs<nonloc::ConcreteInt>()) { + if ((State = relateSymbols(State, Sym1, Sym2, + (Op == OO_EqualEqual) == + (TruthVal->getValue() != 0)))) { + C.addTransition(State); + } else { + C.generateSink(State, C.getPredecessor()); + } + return; + } + + const auto ConditionVal = RetVal.getAs<DefinedSVal>(); + if (!ConditionVal) + return; + + if (auto StateTrue = relateSymbols(State, Sym1, Sym2, Op == OO_EqualEqual)) { + StateTrue = StateTrue->assume(*ConditionVal, true); + C.addTransition(StateTrue); + } + + if (auto StateFalse = relateSymbols(State, Sym1, Sym2, Op != OO_EqualEqual)) { + StateFalse = StateFalse->assume(*ConditionVal, false); + C.addTransition(StateFalse); + } +} + +void IteratorModeling::handleIncrement(CheckerContext &C, const SVal &RetVal, + const SVal &Iter, bool Postfix) const { + // Increment the symbolic expressions which represents the position of the + // iterator + auto State = C.getState(); + auto &BVF = C.getSymbolManager().getBasicVals(); + + const auto *Pos = getIteratorPosition(State, Iter); + if (!Pos) + return; + + auto NewState = + advancePosition(State, Iter, OO_Plus, + nonloc::ConcreteInt(BVF.getValue(llvm::APSInt::get(1)))); + assert(NewState && + "Advancing position by concrete int should always be successful"); + + const auto *NewPos = getIteratorPosition(NewState, Iter); + assert(NewPos && + "Iterator should have position after successful advancement"); + + State = setIteratorPosition(State, Iter, *NewPos); + State = setIteratorPosition(State, RetVal, Postfix ? *Pos : *NewPos); + C.addTransition(State); +} + +void IteratorModeling::handleDecrement(CheckerContext &C, const SVal &RetVal, + const SVal &Iter, bool Postfix) const { + // Decrement the symbolic expressions which represents the position of the + // iterator + auto State = C.getState(); + auto &BVF = C.getSymbolManager().getBasicVals(); + + const auto *Pos = getIteratorPosition(State, Iter); + if (!Pos) + return; + + auto NewState = + advancePosition(State, Iter, OO_Minus, + nonloc::ConcreteInt(BVF.getValue(llvm::APSInt::get(1)))); + assert(NewState && + "Advancing position by concrete int should always be successful"); + + const auto *NewPos = getIteratorPosition(NewState, Iter); + assert(NewPos && + "Iterator should have position after successful advancement"); + + State = setIteratorPosition(State, Iter, *NewPos); + State = setIteratorPosition(State, RetVal, Postfix ? *Pos : *NewPos); + C.addTransition(State); +} + +void IteratorModeling::handleRandomIncrOrDecr(CheckerContext &C, const Expr *CE, + OverloadedOperatorKind Op, + const SVal &RetVal, + const SVal &Iterator, + const SVal &Amount) const { + // Increment or decrement the symbolic expressions which represents the + // position of the iterator + auto State = C.getState(); + + const auto *Pos = getIteratorPosition(State, Iterator); + if (!Pos) + return; + + const auto *Value = &Amount; + SVal Val; + if (auto LocAmount = Amount.getAs<Loc>()) { + Val = State->getRawSVal(*LocAmount); + Value = &Val; + } + + const auto &TgtVal = + (Op == OO_PlusEqual || Op == OO_MinusEqual) ? Iterator : RetVal; + + // `AdvancedState` is a state where the position of `LHS` is advanced. We + // only need this state to retrieve the new position, but we do not want + // to change the position of `LHS` (in every case). + auto AdvancedState = advancePosition(State, Iterator, Op, *Value); + if (AdvancedState) { + const auto *NewPos = getIteratorPosition(AdvancedState, Iterator); + assert(NewPos && + "Iterator should have position after successful advancement"); + + State = setIteratorPosition(State, TgtVal, *NewPos); + C.addTransition(State); + } else { + assignToContainer(C, CE, TgtVal, Pos->getContainer()); + } +} + +void IteratorModeling::handlePtrIncrOrDecr(CheckerContext &C, + const Expr *Iterator, + OverloadedOperatorKind OK, + SVal Offset) const { + if (!Offset.getAs<DefinedSVal>()) + return; + + QualType PtrType = Iterator->getType(); + if (!PtrType->isPointerType()) + return; + QualType ElementType = PtrType->getPointeeType(); + + ProgramStateRef State = C.getState(); + SVal OldVal = State->getSVal(Iterator, C.getLocationContext()); + + const IteratorPosition *OldPos = getIteratorPosition(State, OldVal); + if (!OldPos) + return; + + SVal NewVal; + if (OK == OO_Plus || OK == OO_PlusEqual) { + NewVal = State->getLValue(ElementType, Offset, OldVal); + } else { + auto &SVB = C.getSValBuilder(); + SVal NegatedOffset = SVB.evalMinus(Offset.castAs<NonLoc>()); + NewVal = State->getLValue(ElementType, NegatedOffset, OldVal); + } + + // `AdvancedState` is a state where the position of `Old` is advanced. We + // only need this state to retrieve the new position, but we do not want + // ever to change the position of `OldVal`. + auto AdvancedState = advancePosition(State, OldVal, OK, Offset); + if (AdvancedState) { + const IteratorPosition *NewPos = getIteratorPosition(AdvancedState, OldVal); + assert(NewPos && + "Iterator should have position after successful advancement"); + + ProgramStateRef NewState = setIteratorPosition(State, NewVal, *NewPos); + C.addTransition(NewState); + } else { + assignToContainer(C, Iterator, NewVal, OldPos->getContainer()); + } +} + +void IteratorModeling::handleAdvance(CheckerContext &C, const Expr *CE, + SVal RetVal, SVal Iter, + SVal Amount) const { + handleRandomIncrOrDecr(C, CE, OO_PlusEqual, RetVal, Iter, Amount); +} + +void IteratorModeling::handlePrev(CheckerContext &C, const Expr *CE, + SVal RetVal, SVal Iter, SVal Amount) const { + handleRandomIncrOrDecr(C, CE, OO_Minus, RetVal, Iter, Amount); +} + +void IteratorModeling::handleNext(CheckerContext &C, const Expr *CE, + SVal RetVal, SVal Iter, SVal Amount) const { + handleRandomIncrOrDecr(C, CE, OO_Plus, RetVal, Iter, Amount); +} + +void IteratorModeling::assignToContainer(CheckerContext &C, const Expr *CE, + const SVal &RetVal, + const MemRegion *Cont) const { + Cont = Cont->getMostDerivedObjectRegion(); + + auto State = C.getState(); + const auto *LCtx = C.getLocationContext(); + State = createIteratorPosition(State, RetVal, Cont, CE, LCtx, C.blockCount()); + + C.addTransition(State); +} + +bool IteratorModeling::noChangeInAdvance(CheckerContext &C, SVal Iter, + const Expr *CE) const { + // Compare the iterator position before and after the call. (To be called + // from `checkPostCall()`.) + const auto StateAfter = C.getState(); + + const auto *PosAfter = getIteratorPosition(StateAfter, Iter); + // If we have no position after the call of `std::advance`, then we are not + // interested. (Modeling of an inlined `std::advance()` should not remove the + // position in any case.) + if (!PosAfter) + return false; + + const ExplodedNode *N = findCallEnter(C.getPredecessor(), CE); + assert(N && "Any call should have a `CallEnter` node."); + + const auto StateBefore = N->getState(); + const auto *PosBefore = getIteratorPosition(StateBefore, Iter); + // FIXME: `std::advance()` should not create a new iterator position but + // change existing ones. However, in case of iterators implemented as + // pointers the handling of parameters in `std::advance()`-like + // functions is still incomplete which may result in cases where + // the new position is assigned to the wrong pointer. This causes + // crash if we use an assertion here. + if (!PosBefore) + return false; + + return PosBefore->getOffset() == PosAfter->getOffset(); +} + +void IteratorModeling::printState(raw_ostream &Out, ProgramStateRef State, + const char *NL, const char *Sep) const { + auto SymbolMap = State->get<IteratorSymbolMap>(); + auto RegionMap = State->get<IteratorRegionMap>(); + // Use a counter to add newlines before every line except the first one. + unsigned Count = 0; + + if (!SymbolMap.isEmpty() || !RegionMap.isEmpty()) { + Out << Sep << "Iterator Positions :" << NL; + for (const auto &Sym : SymbolMap) { + if (Count++) + Out << NL; + + Sym.first->dumpToStream(Out); + Out << " : "; + const auto Pos = Sym.second; + Out << (Pos.isValid() ? "Valid" : "Invalid") << " ; Container == "; + Pos.getContainer()->dumpToStream(Out); + Out<<" ; Offset == "; + Pos.getOffset()->dumpToStream(Out); + } + + for (const auto &Reg : RegionMap) { + if (Count++) + Out << NL; + + Reg.first->dumpToStream(Out); + Out << " : "; + const auto Pos = Reg.second; + Out << (Pos.isValid() ? "Valid" : "Invalid") << " ; Container == "; + Pos.getContainer()->dumpToStream(Out); + Out<<" ; Offset == "; + Pos.getOffset()->dumpToStream(Out); + } + } +} + +namespace { + +bool isSimpleComparisonOperator(OverloadedOperatorKind OK) { + return OK == OO_EqualEqual || OK == OO_ExclaimEqual; +} + +bool isSimpleComparisonOperator(BinaryOperatorKind OK) { + return OK == BO_EQ || OK == BO_NE; +} + +ProgramStateRef removeIteratorPosition(ProgramStateRef State, const SVal &Val) { + if (auto Reg = Val.getAsRegion()) { + Reg = Reg->getMostDerivedObjectRegion(); + return State->remove<IteratorRegionMap>(Reg); + } else if (const auto Sym = Val.getAsSymbol()) { + return State->remove<IteratorSymbolMap>(Sym); + } else if (const auto LCVal = Val.getAs<nonloc::LazyCompoundVal>()) { + return State->remove<IteratorRegionMap>(LCVal->getRegion()); + } + return nullptr; +} + +ProgramStateRef relateSymbols(ProgramStateRef State, SymbolRef Sym1, + SymbolRef Sym2, bool Equal) { + auto &SVB = State->getStateManager().getSValBuilder(); + + // FIXME: This code should be reworked as follows: + // 1. Subtract the operands using evalBinOp(). + // 2. Assume that the result doesn't overflow. + // 3. Compare the result to 0. + // 4. Assume the result of the comparison. + const auto comparison = + SVB.evalBinOp(State, BO_EQ, nonloc::SymbolVal(Sym1), + nonloc::SymbolVal(Sym2), SVB.getConditionType()); + + assert(comparison.getAs<DefinedSVal>() && + "Symbol comparison must be a `DefinedSVal`"); + + auto NewState = State->assume(comparison.castAs<DefinedSVal>(), Equal); + if (!NewState) + return nullptr; + + if (const auto CompSym = comparison.getAsSymbol()) { + assert(isa<SymIntExpr>(CompSym) && + "Symbol comparison must be a `SymIntExpr`"); + assert(BinaryOperator::isComparisonOp( + cast<SymIntExpr>(CompSym)->getOpcode()) && + "Symbol comparison must be a comparison"); + return assumeNoOverflow(NewState, cast<SymIntExpr>(CompSym)->getLHS(), 2); + } + + return NewState; +} + +bool isBoundThroughLazyCompoundVal(const Environment &Env, + const MemRegion *Reg) { + for (const auto &Binding : Env) { + if (const auto LCVal = Binding.second.getAs<nonloc::LazyCompoundVal>()) { + if (LCVal->getRegion() == Reg) + return true; + } + } + + return false; +} + +const ExplodedNode *findCallEnter(const ExplodedNode *Node, const Expr *Call) { + while (Node) { + ProgramPoint PP = Node->getLocation(); + if (auto Enter = PP.getAs<CallEnter>()) { + if (Enter->getCallExpr() == Call) + break; + } + + Node = Node->getFirstPred(); + } + + return Node; +} + +} // namespace + +void ento::registerIteratorModeling(CheckerManager &mgr) { + mgr.registerChecker<IteratorModeling>(); +} + +bool ento::shouldRegisterIteratorModeling(const CheckerManager &mgr) { + return true; +} |