aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm-project/clang/lib/StaticAnalyzer/Checkers/IteratorModeling.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm-project/clang/lib/StaticAnalyzer/Checkers/IteratorModeling.cpp')
-rw-r--r--contrib/llvm-project/clang/lib/StaticAnalyzer/Checkers/IteratorModeling.cpp856
1 files changed, 856 insertions, 0 deletions
diff --git a/contrib/llvm-project/clang/lib/StaticAnalyzer/Checkers/IteratorModeling.cpp b/contrib/llvm-project/clang/lib/StaticAnalyzer/Checkers/IteratorModeling.cpp
new file mode 100644
index 000000000000..ab5e6a1c9991
--- /dev/null
+++ b/contrib/llvm-project/clang/lib/StaticAnalyzer/Checkers/IteratorModeling.cpp
@@ -0,0 +1,856 @@
+//===-- IteratorModeling.cpp --------------------------------------*- C++ -*--//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// Defines a modeling-checker for modeling STL iterator-like iterators.
+//
+//===----------------------------------------------------------------------===//
+//
+// In the code, iterator can be represented as a:
+// * type-I: typedef-ed pointer. Operations over such iterator, such as
+// comparisons or increments, are modeled straightforwardly by the
+// analyzer.
+// * type-II: structure with its method bodies available. Operations over such
+// iterator are inlined by the analyzer, and results of modeling
+// these operations are exposing implementation details of the
+// iterators, which is not necessarily helping.
+// * type-III: completely opaque structure. Operations over such iterator are
+// modeled conservatively, producing conjured symbols everywhere.
+//
+// To handle all these types in a common way we introduce a structure called
+// IteratorPosition which is an abstraction of the position the iterator
+// represents using symbolic expressions. The checker handles all the
+// operations on this structure.
+//
+// Additionally, depending on the circumstances, operators of types II and III
+// can be represented as:
+// * type-IIa, type-IIIa: conjured structure symbols - when returned by value
+// from conservatively evaluated methods such as
+// `.begin()`.
+// * type-IIb, type-IIIb: memory regions of iterator-typed objects, such as
+// variables or temporaries, when the iterator object is
+// currently treated as an lvalue.
+// * type-IIc, type-IIIc: compound values of iterator-typed objects, when the
+// iterator object is treated as an rvalue taken of a
+// particular lvalue, eg. a copy of "type-a" iterator
+// object, or an iterator that existed before the
+// analysis has started.
+//
+// To handle any of these three different representations stored in an SVal we
+// use setter and getters functions which separate the three cases. To store
+// them we use a pointer union of symbol and memory region.
+//
+// The checker works the following way: We record the begin and the
+// past-end iterator for all containers whenever their `.begin()` and `.end()`
+// are called. Since the Constraint Manager cannot handle such SVals we need
+// to take over its role. We post-check equality and non-equality comparisons
+// and record that the two sides are equal if we are in the 'equal' branch
+// (true-branch for `==` and false-branch for `!=`).
+//
+// In case of type-I or type-II iterators we get a concrete integer as a result
+// of the comparison (1 or 0) but in case of type-III we only get a Symbol. In
+// this latter case we record the symbol and reload it in evalAssume() and do
+// the propagation there. We also handle (maybe double) negated comparisons
+// which are represented in the form of (x == 0 or x != 0) where x is the
+// comparison itself.
+//
+// Since `SimpleConstraintManager` cannot handle complex symbolic expressions
+// we only use expressions of the format S, S+n or S-n for iterator positions
+// where S is a conjured symbol and n is an unsigned concrete integer. When
+// making an assumption e.g. `S1 + n == S2 + m` we store `S1 - S2 == m - n` as
+// a constraint which we later retrieve when doing an actual comparison.
+
+#include "clang/StaticAnalyzer/Checkers/BuiltinCheckerRegistration.h"
+#include "clang/AST/DeclTemplate.h"
+#include "clang/StaticAnalyzer/Core/BugReporter/BugType.h"
+#include "clang/StaticAnalyzer/Core/Checker.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/DynamicType.h"
+
+#include "Iterator.h"
+
+#include <utility>
+
+using namespace clang;
+using namespace ento;
+using namespace iterator;
+
+namespace {
+
+class IteratorModeling
+ : public Checker<check::PostCall, check::PostStmt<UnaryOperator>,
+ check::PostStmt<BinaryOperator>,
+ check::PostStmt<MaterializeTemporaryExpr>,
+ check::Bind, check::LiveSymbols, check::DeadSymbols> {
+
+ using AdvanceFn = void (IteratorModeling::*)(CheckerContext &, const Expr *,
+ SVal, SVal, SVal) const;
+
+ void handleOverloadedOperator(CheckerContext &C, const CallEvent &Call,
+ OverloadedOperatorKind Op) const;
+ void handleAdvanceLikeFunction(CheckerContext &C, const CallEvent &Call,
+ const Expr *OrigExpr,
+ const AdvanceFn *Handler) const;
+
+ void handleComparison(CheckerContext &C, const Expr *CE, SVal RetVal,
+ const SVal &LVal, const SVal &RVal,
+ OverloadedOperatorKind Op) const;
+ void processComparison(CheckerContext &C, ProgramStateRef State,
+ SymbolRef Sym1, SymbolRef Sym2, const SVal &RetVal,
+ OverloadedOperatorKind Op) const;
+ void handleIncrement(CheckerContext &C, const SVal &RetVal, const SVal &Iter,
+ bool Postfix) const;
+ void handleDecrement(CheckerContext &C, const SVal &RetVal, const SVal &Iter,
+ bool Postfix) const;
+ void handleRandomIncrOrDecr(CheckerContext &C, const Expr *CE,
+ OverloadedOperatorKind Op, const SVal &RetVal,
+ const SVal &Iterator, const SVal &Amount) const;
+ void handlePtrIncrOrDecr(CheckerContext &C, const Expr *Iterator,
+ OverloadedOperatorKind OK, SVal Offset) const;
+ void handleAdvance(CheckerContext &C, const Expr *CE, SVal RetVal, SVal Iter,
+ SVal Amount) const;
+ void handlePrev(CheckerContext &C, const Expr *CE, SVal RetVal, SVal Iter,
+ SVal Amount) const;
+ void handleNext(CheckerContext &C, const Expr *CE, SVal RetVal, SVal Iter,
+ SVal Amount) const;
+ void assignToContainer(CheckerContext &C, const Expr *CE, const SVal &RetVal,
+ const MemRegion *Cont) const;
+ bool noChangeInAdvance(CheckerContext &C, SVal Iter, const Expr *CE) const;
+ void printState(raw_ostream &Out, ProgramStateRef State, const char *NL,
+ const char *Sep) const override;
+
+ // std::advance, std::prev & std::next
+ CallDescriptionMap<AdvanceFn> AdvanceLikeFunctions = {
+ // template<class InputIt, class Distance>
+ // void advance(InputIt& it, Distance n);
+ {{{"std", "advance"}, 2}, &IteratorModeling::handleAdvance},
+
+ // template<class BidirIt>
+ // BidirIt prev(
+ // BidirIt it,
+ // typename std::iterator_traits<BidirIt>::difference_type n = 1);
+ {{{"std", "prev"}, 2}, &IteratorModeling::handlePrev},
+
+ // template<class ForwardIt>
+ // ForwardIt next(
+ // ForwardIt it,
+ // typename std::iterator_traits<ForwardIt>::difference_type n = 1);
+ {{{"std", "next"}, 2}, &IteratorModeling::handleNext},
+ };
+
+public:
+ IteratorModeling() = default;
+
+ void checkPostCall(const CallEvent &Call, CheckerContext &C) const;
+ void checkBind(SVal Loc, SVal Val, const Stmt *S, CheckerContext &C) const;
+ void checkPostStmt(const UnaryOperator *UO, CheckerContext &C) const;
+ void checkPostStmt(const BinaryOperator *BO, CheckerContext &C) const;
+ void checkPostStmt(const CXXConstructExpr *CCE, CheckerContext &C) const;
+ void checkPostStmt(const DeclStmt *DS, CheckerContext &C) const;
+ void checkPostStmt(const MaterializeTemporaryExpr *MTE,
+ CheckerContext &C) const;
+ void checkLiveSymbols(ProgramStateRef State, SymbolReaper &SR) const;
+ void checkDeadSymbols(SymbolReaper &SR, CheckerContext &C) const;
+};
+
+bool isSimpleComparisonOperator(OverloadedOperatorKind OK);
+bool isSimpleComparisonOperator(BinaryOperatorKind OK);
+ProgramStateRef removeIteratorPosition(ProgramStateRef State, const SVal &Val);
+ProgramStateRef relateSymbols(ProgramStateRef State, SymbolRef Sym1,
+ SymbolRef Sym2, bool Equal);
+bool isBoundThroughLazyCompoundVal(const Environment &Env,
+ const MemRegion *Reg);
+const ExplodedNode *findCallEnter(const ExplodedNode *Node, const Expr *Call);
+
+} // namespace
+
+void IteratorModeling::checkPostCall(const CallEvent &Call,
+ CheckerContext &C) const {
+ // Record new iterator positions and iterator position changes
+ const auto *Func = dyn_cast_or_null<FunctionDecl>(Call.getDecl());
+ if (!Func)
+ return;
+
+ if (Func->isOverloadedOperator()) {
+ const auto Op = Func->getOverloadedOperator();
+ handleOverloadedOperator(C, Call, Op);
+ return;
+ }
+
+ const auto *OrigExpr = Call.getOriginExpr();
+ if (!OrigExpr)
+ return;
+
+ const AdvanceFn *Handler = AdvanceLikeFunctions.lookup(Call);
+ if (Handler) {
+ handleAdvanceLikeFunction(C, Call, OrigExpr, Handler);
+ return;
+ }
+
+ if (!isIteratorType(Call.getResultType()))
+ return;
+
+ auto State = C.getState();
+
+ // Already bound to container?
+ if (getIteratorPosition(State, Call.getReturnValue()))
+ return;
+
+ // Copy-like and move constructors
+ if (isa<CXXConstructorCall>(&Call) && Call.getNumArgs() == 1) {
+ if (const auto *Pos = getIteratorPosition(State, Call.getArgSVal(0))) {
+ State = setIteratorPosition(State, Call.getReturnValue(), *Pos);
+ if (cast<CXXConstructorDecl>(Func)->isMoveConstructor()) {
+ State = removeIteratorPosition(State, Call.getArgSVal(0));
+ }
+ C.addTransition(State);
+ return;
+ }
+ }
+
+ // Assumption: if return value is an iterator which is not yet bound to a
+ // container, then look for the first iterator argument of the
+ // same type as the return value and bind the return value to
+ // the same container. This approach works for STL algorithms.
+ // FIXME: Add a more conservative mode
+ for (unsigned i = 0; i < Call.getNumArgs(); ++i) {
+ if (isIteratorType(Call.getArgExpr(i)->getType()) &&
+ Call.getArgExpr(i)->getType().getNonReferenceType().getDesugaredType(
+ C.getASTContext()).getTypePtr() ==
+ Call.getResultType().getDesugaredType(C.getASTContext()).getTypePtr()) {
+ if (const auto *Pos = getIteratorPosition(State, Call.getArgSVal(i))) {
+ assignToContainer(C, OrigExpr, Call.getReturnValue(),
+ Pos->getContainer());
+ return;
+ }
+ }
+ }
+}
+
+void IteratorModeling::checkBind(SVal Loc, SVal Val, const Stmt *S,
+ CheckerContext &C) const {
+ auto State = C.getState();
+ const auto *Pos = getIteratorPosition(State, Val);
+ if (Pos) {
+ State = setIteratorPosition(State, Loc, *Pos);
+ C.addTransition(State);
+ } else {
+ const auto *OldPos = getIteratorPosition(State, Loc);
+ if (OldPos) {
+ State = removeIteratorPosition(State, Loc);
+ C.addTransition(State);
+ }
+ }
+}
+
+void IteratorModeling::checkPostStmt(const UnaryOperator *UO,
+ CheckerContext &C) const {
+ UnaryOperatorKind OK = UO->getOpcode();
+ if (!isIncrementOperator(OK) && !isDecrementOperator(OK))
+ return;
+
+ auto &SVB = C.getSValBuilder();
+ handlePtrIncrOrDecr(C, UO->getSubExpr(),
+ isIncrementOperator(OK) ? OO_Plus : OO_Minus,
+ SVB.makeArrayIndex(1));
+}
+
+void IteratorModeling::checkPostStmt(const BinaryOperator *BO,
+ CheckerContext &C) const {
+ const ProgramStateRef State = C.getState();
+ const BinaryOperatorKind OK = BO->getOpcode();
+ const Expr *const LHS = BO->getLHS();
+ const Expr *const RHS = BO->getRHS();
+ const SVal LVal = State->getSVal(LHS, C.getLocationContext());
+ const SVal RVal = State->getSVal(RHS, C.getLocationContext());
+
+ if (isSimpleComparisonOperator(BO->getOpcode())) {
+ SVal Result = State->getSVal(BO, C.getLocationContext());
+ handleComparison(C, BO, Result, LVal, RVal,
+ BinaryOperator::getOverloadedOperator(OK));
+ } else if (isRandomIncrOrDecrOperator(OK)) {
+ // In case of operator+ the iterator can be either on the LHS (eg.: it + 1),
+ // or on the RHS (eg.: 1 + it). Both cases are modeled.
+ const bool IsIterOnLHS = BO->getLHS()->getType()->isPointerType();
+ const Expr *const &IterExpr = IsIterOnLHS ? LHS : RHS;
+ const Expr *const &AmountExpr = IsIterOnLHS ? RHS : LHS;
+
+ // The non-iterator side must have an integral or enumeration type.
+ if (!AmountExpr->getType()->isIntegralOrEnumerationType())
+ return;
+ const SVal &AmountVal = IsIterOnLHS ? RVal : LVal;
+ handlePtrIncrOrDecr(C, IterExpr, BinaryOperator::getOverloadedOperator(OK),
+ AmountVal);
+ }
+}
+
+void IteratorModeling::checkPostStmt(const MaterializeTemporaryExpr *MTE,
+ CheckerContext &C) const {
+ /* Transfer iterator state to temporary objects */
+ auto State = C.getState();
+ const auto *Pos = getIteratorPosition(State, C.getSVal(MTE->getSubExpr()));
+ if (!Pos)
+ return;
+ State = setIteratorPosition(State, C.getSVal(MTE), *Pos);
+ C.addTransition(State);
+}
+
+void IteratorModeling::checkLiveSymbols(ProgramStateRef State,
+ SymbolReaper &SR) const {
+ // Keep symbolic expressions of iterator positions alive
+ auto RegionMap = State->get<IteratorRegionMap>();
+ for (const auto &Reg : RegionMap) {
+ const auto Offset = Reg.second.getOffset();
+ for (auto i = Offset->symbol_begin(); i != Offset->symbol_end(); ++i)
+ if (isa<SymbolData>(*i))
+ SR.markLive(*i);
+ }
+
+ auto SymbolMap = State->get<IteratorSymbolMap>();
+ for (const auto &Sym : SymbolMap) {
+ const auto Offset = Sym.second.getOffset();
+ for (auto i = Offset->symbol_begin(); i != Offset->symbol_end(); ++i)
+ if (isa<SymbolData>(*i))
+ SR.markLive(*i);
+ }
+
+}
+
+void IteratorModeling::checkDeadSymbols(SymbolReaper &SR,
+ CheckerContext &C) const {
+ // Cleanup
+ auto State = C.getState();
+
+ auto RegionMap = State->get<IteratorRegionMap>();
+ for (const auto &Reg : RegionMap) {
+ if (!SR.isLiveRegion(Reg.first)) {
+ // The region behind the `LazyCompoundVal` is often cleaned up before
+ // the `LazyCompoundVal` itself. If there are iterator positions keyed
+ // by these regions their cleanup must be deferred.
+ if (!isBoundThroughLazyCompoundVal(State->getEnvironment(), Reg.first)) {
+ State = State->remove<IteratorRegionMap>(Reg.first);
+ }
+ }
+ }
+
+ auto SymbolMap = State->get<IteratorSymbolMap>();
+ for (const auto &Sym : SymbolMap) {
+ if (!SR.isLive(Sym.first)) {
+ State = State->remove<IteratorSymbolMap>(Sym.first);
+ }
+ }
+
+ C.addTransition(State);
+}
+
+void
+IteratorModeling::handleOverloadedOperator(CheckerContext &C,
+ const CallEvent &Call,
+ OverloadedOperatorKind Op) const {
+ if (isSimpleComparisonOperator(Op)) {
+ const auto *OrigExpr = Call.getOriginExpr();
+ if (!OrigExpr)
+ return;
+
+ if (const auto *InstCall = dyn_cast<CXXInstanceCall>(&Call)) {
+ handleComparison(C, OrigExpr, Call.getReturnValue(),
+ InstCall->getCXXThisVal(), Call.getArgSVal(0), Op);
+ return;
+ }
+
+ handleComparison(C, OrigExpr, Call.getReturnValue(), Call.getArgSVal(0),
+ Call.getArgSVal(1), Op);
+ return;
+ } else if (isRandomIncrOrDecrOperator(Op)) {
+ const auto *OrigExpr = Call.getOriginExpr();
+ if (!OrigExpr)
+ return;
+
+ if (const auto *InstCall = dyn_cast<CXXInstanceCall>(&Call)) {
+ if (Call.getNumArgs() >= 1 &&
+ Call.getArgExpr(0)->getType()->isIntegralOrEnumerationType()) {
+ handleRandomIncrOrDecr(C, OrigExpr, Op, Call.getReturnValue(),
+ InstCall->getCXXThisVal(), Call.getArgSVal(0));
+ return;
+ }
+ } else if (Call.getNumArgs() >= 2) {
+ const Expr *FirstArg = Call.getArgExpr(0);
+ const Expr *SecondArg = Call.getArgExpr(1);
+ const QualType FirstType = FirstArg->getType();
+ const QualType SecondType = SecondArg->getType();
+
+ if (FirstType->isIntegralOrEnumerationType() ||
+ SecondType->isIntegralOrEnumerationType()) {
+ // In case of operator+ the iterator can be either on the LHS (eg.:
+ // it + 1), or on the RHS (eg.: 1 + it). Both cases are modeled.
+ const bool IsIterFirst = FirstType->isStructureOrClassType();
+ const SVal FirstArg = Call.getArgSVal(0);
+ const SVal SecondArg = Call.getArgSVal(1);
+ const SVal &Iterator = IsIterFirst ? FirstArg : SecondArg;
+ const SVal &Amount = IsIterFirst ? SecondArg : FirstArg;
+
+ handleRandomIncrOrDecr(C, OrigExpr, Op, Call.getReturnValue(),
+ Iterator, Amount);
+ return;
+ }
+ }
+ } else if (isIncrementOperator(Op)) {
+ if (const auto *InstCall = dyn_cast<CXXInstanceCall>(&Call)) {
+ handleIncrement(C, Call.getReturnValue(), InstCall->getCXXThisVal(),
+ Call.getNumArgs());
+ return;
+ }
+
+ handleIncrement(C, Call.getReturnValue(), Call.getArgSVal(0),
+ Call.getNumArgs());
+ return;
+ } else if (isDecrementOperator(Op)) {
+ if (const auto *InstCall = dyn_cast<CXXInstanceCall>(&Call)) {
+ handleDecrement(C, Call.getReturnValue(), InstCall->getCXXThisVal(),
+ Call.getNumArgs());
+ return;
+ }
+
+ handleDecrement(C, Call.getReturnValue(), Call.getArgSVal(0),
+ Call.getNumArgs());
+ return;
+ }
+}
+
+void
+IteratorModeling::handleAdvanceLikeFunction(CheckerContext &C,
+ const CallEvent &Call,
+ const Expr *OrigExpr,
+ const AdvanceFn *Handler) const {
+ if (!C.wasInlined) {
+ (this->**Handler)(C, OrigExpr, Call.getReturnValue(),
+ Call.getArgSVal(0), Call.getArgSVal(1));
+ return;
+ }
+
+ // If std::advance() was inlined, but a non-standard function it calls inside
+ // was not, then we have to model it explicitly
+ const auto *IdInfo = cast<FunctionDecl>(Call.getDecl())->getIdentifier();
+ if (IdInfo) {
+ if (IdInfo->getName() == "advance") {
+ if (noChangeInAdvance(C, Call.getArgSVal(0), OrigExpr)) {
+ (this->**Handler)(C, OrigExpr, Call.getReturnValue(),
+ Call.getArgSVal(0), Call.getArgSVal(1));
+ }
+ }
+ }
+}
+
+void IteratorModeling::handleComparison(CheckerContext &C, const Expr *CE,
+ SVal RetVal, const SVal &LVal,
+ const SVal &RVal,
+ OverloadedOperatorKind Op) const {
+ // Record the operands and the operator of the comparison for the next
+ // evalAssume, if the result is a symbolic expression. If it is a concrete
+ // value (only one branch is possible), then transfer the state between
+ // the operands according to the operator and the result
+ auto State = C.getState();
+ const auto *LPos = getIteratorPosition(State, LVal);
+ const auto *RPos = getIteratorPosition(State, RVal);
+ const MemRegion *Cont = nullptr;
+ if (LPos) {
+ Cont = LPos->getContainer();
+ } else if (RPos) {
+ Cont = RPos->getContainer();
+ }
+ if (!Cont)
+ return;
+
+ // At least one of the iterators has recorded positions. If one of them does
+ // not then create a new symbol for the offset.
+ SymbolRef Sym;
+ if (!LPos || !RPos) {
+ auto &SymMgr = C.getSymbolManager();
+ Sym = SymMgr.conjureSymbol(CE, C.getLocationContext(),
+ C.getASTContext().LongTy, C.blockCount());
+ State = assumeNoOverflow(State, Sym, 4);
+ }
+
+ if (!LPos) {
+ State = setIteratorPosition(State, LVal,
+ IteratorPosition::getPosition(Cont, Sym));
+ LPos = getIteratorPosition(State, LVal);
+ } else if (!RPos) {
+ State = setIteratorPosition(State, RVal,
+ IteratorPosition::getPosition(Cont, Sym));
+ RPos = getIteratorPosition(State, RVal);
+ }
+
+ // If the value for which we just tried to set a new iterator position is
+ // an `SVal`for which no iterator position can be set then the setting was
+ // unsuccessful. We cannot handle the comparison in this case.
+ if (!LPos || !RPos)
+ return;
+
+ // We cannot make assumptions on `UnknownVal`. Let us conjure a symbol
+ // instead.
+ if (RetVal.isUnknown()) {
+ auto &SymMgr = C.getSymbolManager();
+ auto *LCtx = C.getLocationContext();
+ RetVal = nonloc::SymbolVal(SymMgr.conjureSymbol(
+ CE, LCtx, C.getASTContext().BoolTy, C.blockCount()));
+ State = State->BindExpr(CE, LCtx, RetVal);
+ }
+
+ processComparison(C, State, LPos->getOffset(), RPos->getOffset(), RetVal, Op);
+}
+
+void IteratorModeling::processComparison(CheckerContext &C,
+ ProgramStateRef State, SymbolRef Sym1,
+ SymbolRef Sym2, const SVal &RetVal,
+ OverloadedOperatorKind Op) const {
+ if (const auto TruthVal = RetVal.getAs<nonloc::ConcreteInt>()) {
+ if ((State = relateSymbols(State, Sym1, Sym2,
+ (Op == OO_EqualEqual) ==
+ (TruthVal->getValue() != 0)))) {
+ C.addTransition(State);
+ } else {
+ C.generateSink(State, C.getPredecessor());
+ }
+ return;
+ }
+
+ const auto ConditionVal = RetVal.getAs<DefinedSVal>();
+ if (!ConditionVal)
+ return;
+
+ if (auto StateTrue = relateSymbols(State, Sym1, Sym2, Op == OO_EqualEqual)) {
+ StateTrue = StateTrue->assume(*ConditionVal, true);
+ C.addTransition(StateTrue);
+ }
+
+ if (auto StateFalse = relateSymbols(State, Sym1, Sym2, Op != OO_EqualEqual)) {
+ StateFalse = StateFalse->assume(*ConditionVal, false);
+ C.addTransition(StateFalse);
+ }
+}
+
+void IteratorModeling::handleIncrement(CheckerContext &C, const SVal &RetVal,
+ const SVal &Iter, bool Postfix) const {
+ // Increment the symbolic expressions which represents the position of the
+ // iterator
+ auto State = C.getState();
+ auto &BVF = C.getSymbolManager().getBasicVals();
+
+ const auto *Pos = getIteratorPosition(State, Iter);
+ if (!Pos)
+ return;
+
+ auto NewState =
+ advancePosition(State, Iter, OO_Plus,
+ nonloc::ConcreteInt(BVF.getValue(llvm::APSInt::get(1))));
+ assert(NewState &&
+ "Advancing position by concrete int should always be successful");
+
+ const auto *NewPos = getIteratorPosition(NewState, Iter);
+ assert(NewPos &&
+ "Iterator should have position after successful advancement");
+
+ State = setIteratorPosition(State, Iter, *NewPos);
+ State = setIteratorPosition(State, RetVal, Postfix ? *Pos : *NewPos);
+ C.addTransition(State);
+}
+
+void IteratorModeling::handleDecrement(CheckerContext &C, const SVal &RetVal,
+ const SVal &Iter, bool Postfix) const {
+ // Decrement the symbolic expressions which represents the position of the
+ // iterator
+ auto State = C.getState();
+ auto &BVF = C.getSymbolManager().getBasicVals();
+
+ const auto *Pos = getIteratorPosition(State, Iter);
+ if (!Pos)
+ return;
+
+ auto NewState =
+ advancePosition(State, Iter, OO_Minus,
+ nonloc::ConcreteInt(BVF.getValue(llvm::APSInt::get(1))));
+ assert(NewState &&
+ "Advancing position by concrete int should always be successful");
+
+ const auto *NewPos = getIteratorPosition(NewState, Iter);
+ assert(NewPos &&
+ "Iterator should have position after successful advancement");
+
+ State = setIteratorPosition(State, Iter, *NewPos);
+ State = setIteratorPosition(State, RetVal, Postfix ? *Pos : *NewPos);
+ C.addTransition(State);
+}
+
+void IteratorModeling::handleRandomIncrOrDecr(CheckerContext &C, const Expr *CE,
+ OverloadedOperatorKind Op,
+ const SVal &RetVal,
+ const SVal &Iterator,
+ const SVal &Amount) const {
+ // Increment or decrement the symbolic expressions which represents the
+ // position of the iterator
+ auto State = C.getState();
+
+ const auto *Pos = getIteratorPosition(State, Iterator);
+ if (!Pos)
+ return;
+
+ const auto *Value = &Amount;
+ SVal Val;
+ if (auto LocAmount = Amount.getAs<Loc>()) {
+ Val = State->getRawSVal(*LocAmount);
+ Value = &Val;
+ }
+
+ const auto &TgtVal =
+ (Op == OO_PlusEqual || Op == OO_MinusEqual) ? Iterator : RetVal;
+
+ // `AdvancedState` is a state where the position of `LHS` is advanced. We
+ // only need this state to retrieve the new position, but we do not want
+ // to change the position of `LHS` (in every case).
+ auto AdvancedState = advancePosition(State, Iterator, Op, *Value);
+ if (AdvancedState) {
+ const auto *NewPos = getIteratorPosition(AdvancedState, Iterator);
+ assert(NewPos &&
+ "Iterator should have position after successful advancement");
+
+ State = setIteratorPosition(State, TgtVal, *NewPos);
+ C.addTransition(State);
+ } else {
+ assignToContainer(C, CE, TgtVal, Pos->getContainer());
+ }
+}
+
+void IteratorModeling::handlePtrIncrOrDecr(CheckerContext &C,
+ const Expr *Iterator,
+ OverloadedOperatorKind OK,
+ SVal Offset) const {
+ if (!Offset.getAs<DefinedSVal>())
+ return;
+
+ QualType PtrType = Iterator->getType();
+ if (!PtrType->isPointerType())
+ return;
+ QualType ElementType = PtrType->getPointeeType();
+
+ ProgramStateRef State = C.getState();
+ SVal OldVal = State->getSVal(Iterator, C.getLocationContext());
+
+ const IteratorPosition *OldPos = getIteratorPosition(State, OldVal);
+ if (!OldPos)
+ return;
+
+ SVal NewVal;
+ if (OK == OO_Plus || OK == OO_PlusEqual) {
+ NewVal = State->getLValue(ElementType, Offset, OldVal);
+ } else {
+ auto &SVB = C.getSValBuilder();
+ SVal NegatedOffset = SVB.evalMinus(Offset.castAs<NonLoc>());
+ NewVal = State->getLValue(ElementType, NegatedOffset, OldVal);
+ }
+
+ // `AdvancedState` is a state where the position of `Old` is advanced. We
+ // only need this state to retrieve the new position, but we do not want
+ // ever to change the position of `OldVal`.
+ auto AdvancedState = advancePosition(State, OldVal, OK, Offset);
+ if (AdvancedState) {
+ const IteratorPosition *NewPos = getIteratorPosition(AdvancedState, OldVal);
+ assert(NewPos &&
+ "Iterator should have position after successful advancement");
+
+ ProgramStateRef NewState = setIteratorPosition(State, NewVal, *NewPos);
+ C.addTransition(NewState);
+ } else {
+ assignToContainer(C, Iterator, NewVal, OldPos->getContainer());
+ }
+}
+
+void IteratorModeling::handleAdvance(CheckerContext &C, const Expr *CE,
+ SVal RetVal, SVal Iter,
+ SVal Amount) const {
+ handleRandomIncrOrDecr(C, CE, OO_PlusEqual, RetVal, Iter, Amount);
+}
+
+void IteratorModeling::handlePrev(CheckerContext &C, const Expr *CE,
+ SVal RetVal, SVal Iter, SVal Amount) const {
+ handleRandomIncrOrDecr(C, CE, OO_Minus, RetVal, Iter, Amount);
+}
+
+void IteratorModeling::handleNext(CheckerContext &C, const Expr *CE,
+ SVal RetVal, SVal Iter, SVal Amount) const {
+ handleRandomIncrOrDecr(C, CE, OO_Plus, RetVal, Iter, Amount);
+}
+
+void IteratorModeling::assignToContainer(CheckerContext &C, const Expr *CE,
+ const SVal &RetVal,
+ const MemRegion *Cont) const {
+ Cont = Cont->getMostDerivedObjectRegion();
+
+ auto State = C.getState();
+ const auto *LCtx = C.getLocationContext();
+ State = createIteratorPosition(State, RetVal, Cont, CE, LCtx, C.blockCount());
+
+ C.addTransition(State);
+}
+
+bool IteratorModeling::noChangeInAdvance(CheckerContext &C, SVal Iter,
+ const Expr *CE) const {
+ // Compare the iterator position before and after the call. (To be called
+ // from `checkPostCall()`.)
+ const auto StateAfter = C.getState();
+
+ const auto *PosAfter = getIteratorPosition(StateAfter, Iter);
+ // If we have no position after the call of `std::advance`, then we are not
+ // interested. (Modeling of an inlined `std::advance()` should not remove the
+ // position in any case.)
+ if (!PosAfter)
+ return false;
+
+ const ExplodedNode *N = findCallEnter(C.getPredecessor(), CE);
+ assert(N && "Any call should have a `CallEnter` node.");
+
+ const auto StateBefore = N->getState();
+ const auto *PosBefore = getIteratorPosition(StateBefore, Iter);
+ // FIXME: `std::advance()` should not create a new iterator position but
+ // change existing ones. However, in case of iterators implemented as
+ // pointers the handling of parameters in `std::advance()`-like
+ // functions is still incomplete which may result in cases where
+ // the new position is assigned to the wrong pointer. This causes
+ // crash if we use an assertion here.
+ if (!PosBefore)
+ return false;
+
+ return PosBefore->getOffset() == PosAfter->getOffset();
+}
+
+void IteratorModeling::printState(raw_ostream &Out, ProgramStateRef State,
+ const char *NL, const char *Sep) const {
+ auto SymbolMap = State->get<IteratorSymbolMap>();
+ auto RegionMap = State->get<IteratorRegionMap>();
+ // Use a counter to add newlines before every line except the first one.
+ unsigned Count = 0;
+
+ if (!SymbolMap.isEmpty() || !RegionMap.isEmpty()) {
+ Out << Sep << "Iterator Positions :" << NL;
+ for (const auto &Sym : SymbolMap) {
+ if (Count++)
+ Out << NL;
+
+ Sym.first->dumpToStream(Out);
+ Out << " : ";
+ const auto Pos = Sym.second;
+ Out << (Pos.isValid() ? "Valid" : "Invalid") << " ; Container == ";
+ Pos.getContainer()->dumpToStream(Out);
+ Out<<" ; Offset == ";
+ Pos.getOffset()->dumpToStream(Out);
+ }
+
+ for (const auto &Reg : RegionMap) {
+ if (Count++)
+ Out << NL;
+
+ Reg.first->dumpToStream(Out);
+ Out << " : ";
+ const auto Pos = Reg.second;
+ Out << (Pos.isValid() ? "Valid" : "Invalid") << " ; Container == ";
+ Pos.getContainer()->dumpToStream(Out);
+ Out<<" ; Offset == ";
+ Pos.getOffset()->dumpToStream(Out);
+ }
+ }
+}
+
+namespace {
+
+bool isSimpleComparisonOperator(OverloadedOperatorKind OK) {
+ return OK == OO_EqualEqual || OK == OO_ExclaimEqual;
+}
+
+bool isSimpleComparisonOperator(BinaryOperatorKind OK) {
+ return OK == BO_EQ || OK == BO_NE;
+}
+
+ProgramStateRef removeIteratorPosition(ProgramStateRef State, const SVal &Val) {
+ if (auto Reg = Val.getAsRegion()) {
+ Reg = Reg->getMostDerivedObjectRegion();
+ return State->remove<IteratorRegionMap>(Reg);
+ } else if (const auto Sym = Val.getAsSymbol()) {
+ return State->remove<IteratorSymbolMap>(Sym);
+ } else if (const auto LCVal = Val.getAs<nonloc::LazyCompoundVal>()) {
+ return State->remove<IteratorRegionMap>(LCVal->getRegion());
+ }
+ return nullptr;
+}
+
+ProgramStateRef relateSymbols(ProgramStateRef State, SymbolRef Sym1,
+ SymbolRef Sym2, bool Equal) {
+ auto &SVB = State->getStateManager().getSValBuilder();
+
+ // FIXME: This code should be reworked as follows:
+ // 1. Subtract the operands using evalBinOp().
+ // 2. Assume that the result doesn't overflow.
+ // 3. Compare the result to 0.
+ // 4. Assume the result of the comparison.
+ const auto comparison =
+ SVB.evalBinOp(State, BO_EQ, nonloc::SymbolVal(Sym1),
+ nonloc::SymbolVal(Sym2), SVB.getConditionType());
+
+ assert(comparison.getAs<DefinedSVal>() &&
+ "Symbol comparison must be a `DefinedSVal`");
+
+ auto NewState = State->assume(comparison.castAs<DefinedSVal>(), Equal);
+ if (!NewState)
+ return nullptr;
+
+ if (const auto CompSym = comparison.getAsSymbol()) {
+ assert(isa<SymIntExpr>(CompSym) &&
+ "Symbol comparison must be a `SymIntExpr`");
+ assert(BinaryOperator::isComparisonOp(
+ cast<SymIntExpr>(CompSym)->getOpcode()) &&
+ "Symbol comparison must be a comparison");
+ return assumeNoOverflow(NewState, cast<SymIntExpr>(CompSym)->getLHS(), 2);
+ }
+
+ return NewState;
+}
+
+bool isBoundThroughLazyCompoundVal(const Environment &Env,
+ const MemRegion *Reg) {
+ for (const auto &Binding : Env) {
+ if (const auto LCVal = Binding.second.getAs<nonloc::LazyCompoundVal>()) {
+ if (LCVal->getRegion() == Reg)
+ return true;
+ }
+ }
+
+ return false;
+}
+
+const ExplodedNode *findCallEnter(const ExplodedNode *Node, const Expr *Call) {
+ while (Node) {
+ ProgramPoint PP = Node->getLocation();
+ if (auto Enter = PP.getAs<CallEnter>()) {
+ if (Enter->getCallExpr() == Call)
+ break;
+ }
+
+ Node = Node->getFirstPred();
+ }
+
+ return Node;
+}
+
+} // namespace
+
+void ento::registerIteratorModeling(CheckerManager &mgr) {
+ mgr.registerChecker<IteratorModeling>();
+}
+
+bool ento::shouldRegisterIteratorModeling(const CheckerManager &mgr) {
+ return true;
+}