aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm-project/clang/lib/Tooling/Syntax/BuildTree.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm-project/clang/lib/Tooling/Syntax/BuildTree.cpp')
-rw-r--r--contrib/llvm-project/clang/lib/Tooling/Syntax/BuildTree.cpp1719
1 files changed, 1719 insertions, 0 deletions
diff --git a/contrib/llvm-project/clang/lib/Tooling/Syntax/BuildTree.cpp b/contrib/llvm-project/clang/lib/Tooling/Syntax/BuildTree.cpp
new file mode 100644
index 000000000000..7654e3dfaa01
--- /dev/null
+++ b/contrib/llvm-project/clang/lib/Tooling/Syntax/BuildTree.cpp
@@ -0,0 +1,1719 @@
+//===- BuildTree.cpp ------------------------------------------*- C++ -*-=====//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+#include "clang/Tooling/Syntax/BuildTree.h"
+#include "clang/AST/ASTFwd.h"
+#include "clang/AST/Decl.h"
+#include "clang/AST/DeclBase.h"
+#include "clang/AST/DeclCXX.h"
+#include "clang/AST/DeclarationName.h"
+#include "clang/AST/Expr.h"
+#include "clang/AST/ExprCXX.h"
+#include "clang/AST/IgnoreExpr.h"
+#include "clang/AST/OperationKinds.h"
+#include "clang/AST/RecursiveASTVisitor.h"
+#include "clang/AST/Stmt.h"
+#include "clang/AST/TypeLoc.h"
+#include "clang/AST/TypeLocVisitor.h"
+#include "clang/Basic/LLVM.h"
+#include "clang/Basic/SourceLocation.h"
+#include "clang/Basic/SourceManager.h"
+#include "clang/Basic/Specifiers.h"
+#include "clang/Basic/TokenKinds.h"
+#include "clang/Lex/Lexer.h"
+#include "clang/Lex/LiteralSupport.h"
+#include "clang/Tooling/Syntax/Nodes.h"
+#include "clang/Tooling/Syntax/Tokens.h"
+#include "clang/Tooling/Syntax/Tree.h"
+#include "llvm/ADT/ArrayRef.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/PointerUnion.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/ScopeExit.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/Support/Allocator.h"
+#include "llvm/Support/Casting.h"
+#include "llvm/Support/Compiler.h"
+#include "llvm/Support/FormatVariadic.h"
+#include "llvm/Support/MemoryBuffer.h"
+#include "llvm/Support/raw_ostream.h"
+#include <cstddef>
+#include <map>
+
+using namespace clang;
+
+// Ignores the implicit `CXXConstructExpr` for copy/move constructor calls
+// generated by the compiler, as well as in implicit conversions like the one
+// wrapping `1` in `X x = 1;`.
+static Expr *IgnoreImplicitConstructorSingleStep(Expr *E) {
+ if (auto *C = dyn_cast<CXXConstructExpr>(E)) {
+ auto NumArgs = C->getNumArgs();
+ if (NumArgs == 1 || (NumArgs > 1 && isa<CXXDefaultArgExpr>(C->getArg(1)))) {
+ Expr *A = C->getArg(0);
+ if (C->getParenOrBraceRange().isInvalid())
+ return A;
+ }
+ }
+ return E;
+}
+
+// In:
+// struct X {
+// X(int)
+// };
+// X x = X(1);
+// Ignores the implicit `CXXFunctionalCastExpr` that wraps
+// `CXXConstructExpr X(1)`.
+static Expr *IgnoreCXXFunctionalCastExprWrappingConstructor(Expr *E) {
+ if (auto *F = dyn_cast<CXXFunctionalCastExpr>(E)) {
+ if (F->getCastKind() == CK_ConstructorConversion)
+ return F->getSubExpr();
+ }
+ return E;
+}
+
+static Expr *IgnoreImplicit(Expr *E) {
+ return IgnoreExprNodes(E, IgnoreImplicitSingleStep,
+ IgnoreImplicitConstructorSingleStep,
+ IgnoreCXXFunctionalCastExprWrappingConstructor);
+}
+
+LLVM_ATTRIBUTE_UNUSED
+static bool isImplicitExpr(Expr *E) { return IgnoreImplicit(E) != E; }
+
+namespace {
+/// Get start location of the Declarator from the TypeLoc.
+/// E.g.:
+/// loc of `(` in `int (a)`
+/// loc of `*` in `int *(a)`
+/// loc of the first `(` in `int (*a)(int)`
+/// loc of the `*` in `int *(a)(int)`
+/// loc of the first `*` in `const int *const *volatile a;`
+///
+/// It is non-trivial to get the start location because TypeLocs are stored
+/// inside out. In the example above `*volatile` is the TypeLoc returned
+/// by `Decl.getTypeSourceInfo()`, and `*const` is what `.getPointeeLoc()`
+/// returns.
+struct GetStartLoc : TypeLocVisitor<GetStartLoc, SourceLocation> {
+ SourceLocation VisitParenTypeLoc(ParenTypeLoc T) {
+ auto L = Visit(T.getInnerLoc());
+ if (L.isValid())
+ return L;
+ return T.getLParenLoc();
+ }
+
+ // Types spelled in the prefix part of the declarator.
+ SourceLocation VisitPointerTypeLoc(PointerTypeLoc T) {
+ return HandlePointer(T);
+ }
+
+ SourceLocation VisitMemberPointerTypeLoc(MemberPointerTypeLoc T) {
+ return HandlePointer(T);
+ }
+
+ SourceLocation VisitBlockPointerTypeLoc(BlockPointerTypeLoc T) {
+ return HandlePointer(T);
+ }
+
+ SourceLocation VisitReferenceTypeLoc(ReferenceTypeLoc T) {
+ return HandlePointer(T);
+ }
+
+ SourceLocation VisitObjCObjectPointerTypeLoc(ObjCObjectPointerTypeLoc T) {
+ return HandlePointer(T);
+ }
+
+ // All other cases are not important, as they are either part of declaration
+ // specifiers (e.g. inheritors of TypeSpecTypeLoc) or introduce modifiers on
+ // existing declarators (e.g. QualifiedTypeLoc). They cannot start the
+ // declarator themselves, but their underlying type can.
+ SourceLocation VisitTypeLoc(TypeLoc T) {
+ auto N = T.getNextTypeLoc();
+ if (!N)
+ return SourceLocation();
+ return Visit(N);
+ }
+
+ SourceLocation VisitFunctionProtoTypeLoc(FunctionProtoTypeLoc T) {
+ if (T.getTypePtr()->hasTrailingReturn())
+ return SourceLocation(); // avoid recursing into the suffix of declarator.
+ return VisitTypeLoc(T);
+ }
+
+private:
+ template <class PtrLoc> SourceLocation HandlePointer(PtrLoc T) {
+ auto L = Visit(T.getPointeeLoc());
+ if (L.isValid())
+ return L;
+ return T.getLocalSourceRange().getBegin();
+ }
+};
+} // namespace
+
+static CallExpr::arg_range dropDefaultArgs(CallExpr::arg_range Args) {
+ auto FirstDefaultArg = std::find_if(Args.begin(), Args.end(), [](auto It) {
+ return isa<CXXDefaultArgExpr>(It);
+ });
+ return llvm::make_range(Args.begin(), FirstDefaultArg);
+}
+
+static syntax::NodeKind getOperatorNodeKind(const CXXOperatorCallExpr &E) {
+ switch (E.getOperator()) {
+ // Comparison
+ case OO_EqualEqual:
+ case OO_ExclaimEqual:
+ case OO_Greater:
+ case OO_GreaterEqual:
+ case OO_Less:
+ case OO_LessEqual:
+ case OO_Spaceship:
+ // Assignment
+ case OO_Equal:
+ case OO_SlashEqual:
+ case OO_PercentEqual:
+ case OO_CaretEqual:
+ case OO_PipeEqual:
+ case OO_LessLessEqual:
+ case OO_GreaterGreaterEqual:
+ case OO_PlusEqual:
+ case OO_MinusEqual:
+ case OO_StarEqual:
+ case OO_AmpEqual:
+ // Binary computation
+ case OO_Slash:
+ case OO_Percent:
+ case OO_Caret:
+ case OO_Pipe:
+ case OO_LessLess:
+ case OO_GreaterGreater:
+ case OO_AmpAmp:
+ case OO_PipePipe:
+ case OO_ArrowStar:
+ case OO_Comma:
+ return syntax::NodeKind::BinaryOperatorExpression;
+ case OO_Tilde:
+ case OO_Exclaim:
+ return syntax::NodeKind::PrefixUnaryOperatorExpression;
+ // Prefix/Postfix increment/decrement
+ case OO_PlusPlus:
+ case OO_MinusMinus:
+ switch (E.getNumArgs()) {
+ case 1:
+ return syntax::NodeKind::PrefixUnaryOperatorExpression;
+ case 2:
+ return syntax::NodeKind::PostfixUnaryOperatorExpression;
+ default:
+ llvm_unreachable("Invalid number of arguments for operator");
+ }
+ // Operators that can be unary or binary
+ case OO_Plus:
+ case OO_Minus:
+ case OO_Star:
+ case OO_Amp:
+ switch (E.getNumArgs()) {
+ case 1:
+ return syntax::NodeKind::PrefixUnaryOperatorExpression;
+ case 2:
+ return syntax::NodeKind::BinaryOperatorExpression;
+ default:
+ llvm_unreachable("Invalid number of arguments for operator");
+ }
+ return syntax::NodeKind::BinaryOperatorExpression;
+ // Not yet supported by SyntaxTree
+ case OO_New:
+ case OO_Delete:
+ case OO_Array_New:
+ case OO_Array_Delete:
+ case OO_Coawait:
+ case OO_Subscript:
+ case OO_Arrow:
+ return syntax::NodeKind::UnknownExpression;
+ case OO_Call:
+ return syntax::NodeKind::CallExpression;
+ case OO_Conditional: // not overloadable
+ case NUM_OVERLOADED_OPERATORS:
+ case OO_None:
+ llvm_unreachable("Not an overloadable operator");
+ }
+ llvm_unreachable("Unknown OverloadedOperatorKind enum");
+}
+
+/// Get the start of the qualified name. In the examples below it gives the
+/// location of the `^`:
+/// `int ^a;`
+/// `int *^a;`
+/// `int ^a::S::f(){}`
+static SourceLocation getQualifiedNameStart(NamedDecl *D) {
+ assert((isa<DeclaratorDecl, TypedefNameDecl>(D)) &&
+ "only DeclaratorDecl and TypedefNameDecl are supported.");
+
+ auto DN = D->getDeclName();
+ bool IsAnonymous = DN.isIdentifier() && !DN.getAsIdentifierInfo();
+ if (IsAnonymous)
+ return SourceLocation();
+
+ if (const auto *DD = dyn_cast<DeclaratorDecl>(D)) {
+ if (DD->getQualifierLoc()) {
+ return DD->getQualifierLoc().getBeginLoc();
+ }
+ }
+
+ return D->getLocation();
+}
+
+/// Gets the range of the initializer inside an init-declarator C++ [dcl.decl].
+/// `int a;` -> range of ``,
+/// `int *a = nullptr` -> range of `= nullptr`.
+/// `int a{}` -> range of `{}`.
+/// `int a()` -> range of `()`.
+static SourceRange getInitializerRange(Decl *D) {
+ if (auto *V = dyn_cast<VarDecl>(D)) {
+ auto *I = V->getInit();
+ // Initializers in range-based-for are not part of the declarator
+ if (I && !V->isCXXForRangeDecl())
+ return I->getSourceRange();
+ }
+
+ return SourceRange();
+}
+
+/// Gets the range of declarator as defined by the C++ grammar. E.g.
+/// `int a;` -> range of `a`,
+/// `int *a;` -> range of `*a`,
+/// `int a[10];` -> range of `a[10]`,
+/// `int a[1][2][3];` -> range of `a[1][2][3]`,
+/// `int *a = nullptr` -> range of `*a = nullptr`.
+/// `int S::f(){}` -> range of `S::f()`.
+/// FIXME: \p Name must be a source range.
+static SourceRange getDeclaratorRange(const SourceManager &SM, TypeLoc T,
+ SourceLocation Name,
+ SourceRange Initializer) {
+ SourceLocation Start = GetStartLoc().Visit(T);
+ SourceLocation End = T.getEndLoc();
+ assert(End.isValid());
+ if (Name.isValid()) {
+ if (Start.isInvalid())
+ Start = Name;
+ if (SM.isBeforeInTranslationUnit(End, Name))
+ End = Name;
+ }
+ if (Initializer.isValid()) {
+ auto InitializerEnd = Initializer.getEnd();
+ assert(SM.isBeforeInTranslationUnit(End, InitializerEnd) ||
+ End == InitializerEnd);
+ End = InitializerEnd;
+ }
+ return SourceRange(Start, End);
+}
+
+namespace {
+/// All AST hierarchy roots that can be represented as pointers.
+using ASTPtr = llvm::PointerUnion<Stmt *, Decl *>;
+/// Maintains a mapping from AST to syntax tree nodes. This class will get more
+/// complicated as we support more kinds of AST nodes, e.g. TypeLocs.
+/// FIXME: expose this as public API.
+class ASTToSyntaxMapping {
+public:
+ void add(ASTPtr From, syntax::Tree *To) {
+ assert(To != nullptr);
+ assert(!From.isNull());
+
+ bool Added = Nodes.insert({From, To}).second;
+ (void)Added;
+ assert(Added && "mapping added twice");
+ }
+
+ void add(NestedNameSpecifierLoc From, syntax::Tree *To) {
+ assert(To != nullptr);
+ assert(From.hasQualifier());
+
+ bool Added = NNSNodes.insert({From, To}).second;
+ (void)Added;
+ assert(Added && "mapping added twice");
+ }
+
+ syntax::Tree *find(ASTPtr P) const { return Nodes.lookup(P); }
+
+ syntax::Tree *find(NestedNameSpecifierLoc P) const {
+ return NNSNodes.lookup(P);
+ }
+
+private:
+ llvm::DenseMap<ASTPtr, syntax::Tree *> Nodes;
+ llvm::DenseMap<NestedNameSpecifierLoc, syntax::Tree *> NNSNodes;
+};
+} // namespace
+
+/// A helper class for constructing the syntax tree while traversing a clang
+/// AST.
+///
+/// At each point of the traversal we maintain a list of pending nodes.
+/// Initially all tokens are added as pending nodes. When processing a clang AST
+/// node, the clients need to:
+/// - create a corresponding syntax node,
+/// - assign roles to all pending child nodes with 'markChild' and
+/// 'markChildToken',
+/// - replace the child nodes with the new syntax node in the pending list
+/// with 'foldNode'.
+///
+/// Note that all children are expected to be processed when building a node.
+///
+/// Call finalize() to finish building the tree and consume the root node.
+class syntax::TreeBuilder {
+public:
+ TreeBuilder(syntax::Arena &Arena) : Arena(Arena), Pending(Arena) {
+ for (const auto &T : Arena.getTokenBuffer().expandedTokens())
+ LocationToToken.insert({T.location(), &T});
+ }
+
+ llvm::BumpPtrAllocator &allocator() { return Arena.getAllocator(); }
+ const SourceManager &sourceManager() const {
+ return Arena.getSourceManager();
+ }
+
+ /// Populate children for \p New node, assuming it covers tokens from \p
+ /// Range.
+ void foldNode(ArrayRef<syntax::Token> Range, syntax::Tree *New, ASTPtr From) {
+ assert(New);
+ Pending.foldChildren(Arena, Range, New);
+ if (From)
+ Mapping.add(From, New);
+ }
+
+ void foldNode(ArrayRef<syntax::Token> Range, syntax::Tree *New, TypeLoc L) {
+ // FIXME: add mapping for TypeLocs
+ foldNode(Range, New, nullptr);
+ }
+
+ void foldNode(llvm::ArrayRef<syntax::Token> Range, syntax::Tree *New,
+ NestedNameSpecifierLoc From) {
+ assert(New);
+ Pending.foldChildren(Arena, Range, New);
+ if (From)
+ Mapping.add(From, New);
+ }
+
+ /// Populate children for \p New list, assuming it covers tokens from a
+ /// subrange of \p SuperRange.
+ void foldList(ArrayRef<syntax::Token> SuperRange, syntax::List *New,
+ ASTPtr From) {
+ assert(New);
+ auto ListRange = Pending.shrinkToFitList(SuperRange);
+ Pending.foldChildren(Arena, ListRange, New);
+ if (From)
+ Mapping.add(From, New);
+ }
+
+ /// Notifies that we should not consume trailing semicolon when computing
+ /// token range of \p D.
+ void noticeDeclWithoutSemicolon(Decl *D);
+
+ /// Mark the \p Child node with a corresponding \p Role. All marked children
+ /// should be consumed by foldNode.
+ /// When called on expressions (clang::Expr is derived from clang::Stmt),
+ /// wraps expressions into expression statement.
+ void markStmtChild(Stmt *Child, NodeRole Role);
+ /// Should be called for expressions in non-statement position to avoid
+ /// wrapping into expression statement.
+ void markExprChild(Expr *Child, NodeRole Role);
+ /// Set role for a token starting at \p Loc.
+ void markChildToken(SourceLocation Loc, NodeRole R);
+ /// Set role for \p T.
+ void markChildToken(const syntax::Token *T, NodeRole R);
+
+ /// Set role for \p N.
+ void markChild(syntax::Node *N, NodeRole R);
+ /// Set role for the syntax node matching \p N.
+ void markChild(ASTPtr N, NodeRole R);
+ /// Set role for the syntax node matching \p N.
+ void markChild(NestedNameSpecifierLoc N, NodeRole R);
+
+ /// Finish building the tree and consume the root node.
+ syntax::TranslationUnit *finalize() && {
+ auto Tokens = Arena.getTokenBuffer().expandedTokens();
+ assert(!Tokens.empty());
+ assert(Tokens.back().kind() == tok::eof);
+
+ // Build the root of the tree, consuming all the children.
+ Pending.foldChildren(Arena, Tokens.drop_back(),
+ new (Arena.getAllocator()) syntax::TranslationUnit);
+
+ auto *TU = cast<syntax::TranslationUnit>(std::move(Pending).finalize());
+ TU->assertInvariantsRecursive();
+ return TU;
+ }
+
+ /// Finds a token starting at \p L. The token must exist if \p L is valid.
+ const syntax::Token *findToken(SourceLocation L) const;
+
+ /// Finds the syntax tokens corresponding to the \p SourceRange.
+ ArrayRef<syntax::Token> getRange(SourceRange Range) const {
+ assert(Range.isValid());
+ return getRange(Range.getBegin(), Range.getEnd());
+ }
+
+ /// Finds the syntax tokens corresponding to the passed source locations.
+ /// \p First is the start position of the first token and \p Last is the start
+ /// position of the last token.
+ ArrayRef<syntax::Token> getRange(SourceLocation First,
+ SourceLocation Last) const {
+ assert(First.isValid());
+ assert(Last.isValid());
+ assert(First == Last ||
+ Arena.getSourceManager().isBeforeInTranslationUnit(First, Last));
+ return llvm::makeArrayRef(findToken(First), std::next(findToken(Last)));
+ }
+
+ ArrayRef<syntax::Token>
+ getTemplateRange(const ClassTemplateSpecializationDecl *D) const {
+ auto Tokens = getRange(D->getSourceRange());
+ return maybeAppendSemicolon(Tokens, D);
+ }
+
+ /// Returns true if \p D is the last declarator in a chain and is thus
+ /// reponsible for creating SimpleDeclaration for the whole chain.
+ bool isResponsibleForCreatingDeclaration(const Decl *D) const {
+ assert((isa<DeclaratorDecl, TypedefNameDecl>(D)) &&
+ "only DeclaratorDecl and TypedefNameDecl are supported.");
+
+ const Decl *Next = D->getNextDeclInContext();
+
+ // There's no next sibling, this one is responsible.
+ if (Next == nullptr) {
+ return true;
+ }
+
+ // Next sibling is not the same type, this one is responsible.
+ if (D->getKind() != Next->getKind()) {
+ return true;
+ }
+ // Next sibling doesn't begin at the same loc, it must be a different
+ // declaration, so this declarator is responsible.
+ if (Next->getBeginLoc() != D->getBeginLoc()) {
+ return true;
+ }
+
+ // NextT is a member of the same declaration, and we need the last member to
+ // create declaration. This one is not responsible.
+ return false;
+ }
+
+ ArrayRef<syntax::Token> getDeclarationRange(Decl *D) {
+ ArrayRef<syntax::Token> Tokens;
+ // We want to drop the template parameters for specializations.
+ if (const auto *S = dyn_cast<TagDecl>(D))
+ Tokens = getRange(S->TypeDecl::getBeginLoc(), S->getEndLoc());
+ else
+ Tokens = getRange(D->getSourceRange());
+ return maybeAppendSemicolon(Tokens, D);
+ }
+
+ ArrayRef<syntax::Token> getExprRange(const Expr *E) const {
+ return getRange(E->getSourceRange());
+ }
+
+ /// Find the adjusted range for the statement, consuming the trailing
+ /// semicolon when needed.
+ ArrayRef<syntax::Token> getStmtRange(const Stmt *S) const {
+ auto Tokens = getRange(S->getSourceRange());
+ if (isa<CompoundStmt>(S))
+ return Tokens;
+
+ // Some statements miss a trailing semicolon, e.g. 'return', 'continue' and
+ // all statements that end with those. Consume this semicolon here.
+ if (Tokens.back().kind() == tok::semi)
+ return Tokens;
+ return withTrailingSemicolon(Tokens);
+ }
+
+private:
+ ArrayRef<syntax::Token> maybeAppendSemicolon(ArrayRef<syntax::Token> Tokens,
+ const Decl *D) const {
+ if (isa<NamespaceDecl>(D))
+ return Tokens;
+ if (DeclsWithoutSemicolons.count(D))
+ return Tokens;
+ // FIXME: do not consume trailing semicolon on function definitions.
+ // Most declarations own a semicolon in syntax trees, but not in clang AST.
+ return withTrailingSemicolon(Tokens);
+ }
+
+ ArrayRef<syntax::Token>
+ withTrailingSemicolon(ArrayRef<syntax::Token> Tokens) const {
+ assert(!Tokens.empty());
+ assert(Tokens.back().kind() != tok::eof);
+ // We never consume 'eof', so looking at the next token is ok.
+ if (Tokens.back().kind() != tok::semi && Tokens.end()->kind() == tok::semi)
+ return llvm::makeArrayRef(Tokens.begin(), Tokens.end() + 1);
+ return Tokens;
+ }
+
+ void setRole(syntax::Node *N, NodeRole R) {
+ assert(N->getRole() == NodeRole::Detached);
+ N->setRole(R);
+ }
+
+ /// A collection of trees covering the input tokens.
+ /// When created, each tree corresponds to a single token in the file.
+ /// Clients call 'foldChildren' to attach one or more subtrees to a parent
+ /// node and update the list of trees accordingly.
+ ///
+ /// Ensures that added nodes properly nest and cover the whole token stream.
+ struct Forest {
+ Forest(syntax::Arena &A) {
+ assert(!A.getTokenBuffer().expandedTokens().empty());
+ assert(A.getTokenBuffer().expandedTokens().back().kind() == tok::eof);
+ // Create all leaf nodes.
+ // Note that we do not have 'eof' in the tree.
+ for (const auto &T : A.getTokenBuffer().expandedTokens().drop_back()) {
+ auto *L = new (A.getAllocator()) syntax::Leaf(&T);
+ L->Original = true;
+ L->CanModify = A.getTokenBuffer().spelledForExpanded(T).hasValue();
+ Trees.insert(Trees.end(), {&T, L});
+ }
+ }
+
+ void assignRole(ArrayRef<syntax::Token> Range, syntax::NodeRole Role) {
+ assert(!Range.empty());
+ auto It = Trees.lower_bound(Range.begin());
+ assert(It != Trees.end() && "no node found");
+ assert(It->first == Range.begin() && "no child with the specified range");
+ assert((std::next(It) == Trees.end() ||
+ std::next(It)->first == Range.end()) &&
+ "no child with the specified range");
+ assert(It->second->getRole() == NodeRole::Detached &&
+ "re-assigning role for a child");
+ It->second->setRole(Role);
+ }
+
+ /// Shrink \p Range to a subrange that only contains tokens of a list.
+ /// List elements and delimiters should already have correct roles.
+ ArrayRef<syntax::Token> shrinkToFitList(ArrayRef<syntax::Token> Range) {
+ auto BeginChildren = Trees.lower_bound(Range.begin());
+ assert((BeginChildren == Trees.end() ||
+ BeginChildren->first == Range.begin()) &&
+ "Range crosses boundaries of existing subtrees");
+
+ auto EndChildren = Trees.lower_bound(Range.end());
+ assert(
+ (EndChildren == Trees.end() || EndChildren->first == Range.end()) &&
+ "Range crosses boundaries of existing subtrees");
+
+ auto BelongsToList = [](decltype(Trees)::value_type KV) {
+ auto Role = KV.second->getRole();
+ return Role == syntax::NodeRole::ListElement ||
+ Role == syntax::NodeRole::ListDelimiter;
+ };
+
+ auto BeginListChildren =
+ std::find_if(BeginChildren, EndChildren, BelongsToList);
+
+ auto EndListChildren =
+ std::find_if_not(BeginListChildren, EndChildren, BelongsToList);
+
+ return ArrayRef<syntax::Token>(BeginListChildren->first,
+ EndListChildren->first);
+ }
+
+ /// Add \p Node to the forest and attach child nodes based on \p Tokens.
+ void foldChildren(const syntax::Arena &A, ArrayRef<syntax::Token> Tokens,
+ syntax::Tree *Node) {
+ // Attach children to `Node`.
+ assert(Node->getFirstChild() == nullptr && "node already has children");
+
+ auto *FirstToken = Tokens.begin();
+ auto BeginChildren = Trees.lower_bound(FirstToken);
+
+ assert((BeginChildren == Trees.end() ||
+ BeginChildren->first == FirstToken) &&
+ "fold crosses boundaries of existing subtrees");
+ auto EndChildren = Trees.lower_bound(Tokens.end());
+ assert(
+ (EndChildren == Trees.end() || EndChildren->first == Tokens.end()) &&
+ "fold crosses boundaries of existing subtrees");
+
+ for (auto It = BeginChildren; It != EndChildren; ++It) {
+ auto *C = It->second;
+ if (C->getRole() == NodeRole::Detached)
+ C->setRole(NodeRole::Unknown);
+ Node->appendChildLowLevel(C);
+ }
+
+ // Mark that this node came from the AST and is backed by the source code.
+ Node->Original = true;
+ Node->CanModify =
+ A.getTokenBuffer().spelledForExpanded(Tokens).hasValue();
+
+ Trees.erase(BeginChildren, EndChildren);
+ Trees.insert({FirstToken, Node});
+ }
+
+ // EXPECTS: all tokens were consumed and are owned by a single root node.
+ syntax::Node *finalize() && {
+ assert(Trees.size() == 1);
+ auto *Root = Trees.begin()->second;
+ Trees = {};
+ return Root;
+ }
+
+ std::string str(const syntax::Arena &A) const {
+ std::string R;
+ for (auto It = Trees.begin(); It != Trees.end(); ++It) {
+ unsigned CoveredTokens =
+ It != Trees.end()
+ ? (std::next(It)->first - It->first)
+ : A.getTokenBuffer().expandedTokens().end() - It->first;
+
+ R += std::string(
+ formatv("- '{0}' covers '{1}'+{2} tokens\n", It->second->getKind(),
+ It->first->text(A.getSourceManager()), CoveredTokens));
+ R += It->second->dump(A.getSourceManager());
+ }
+ return R;
+ }
+
+ private:
+ /// Maps from the start token to a subtree starting at that token.
+ /// Keys in the map are pointers into the array of expanded tokens, so
+ /// pointer order corresponds to the order of preprocessor tokens.
+ std::map<const syntax::Token *, syntax::Node *> Trees;
+ };
+
+ /// For debugging purposes.
+ std::string str() { return Pending.str(Arena); }
+
+ syntax::Arena &Arena;
+ /// To quickly find tokens by their start location.
+ llvm::DenseMap<SourceLocation, const syntax::Token *> LocationToToken;
+ Forest Pending;
+ llvm::DenseSet<Decl *> DeclsWithoutSemicolons;
+ ASTToSyntaxMapping Mapping;
+};
+
+namespace {
+class BuildTreeVisitor : public RecursiveASTVisitor<BuildTreeVisitor> {
+public:
+ explicit BuildTreeVisitor(ASTContext &Context, syntax::TreeBuilder &Builder)
+ : Builder(Builder), Context(Context) {}
+
+ bool shouldTraversePostOrder() const { return true; }
+
+ bool WalkUpFromDeclaratorDecl(DeclaratorDecl *DD) {
+ return processDeclaratorAndDeclaration(DD);
+ }
+
+ bool WalkUpFromTypedefNameDecl(TypedefNameDecl *TD) {
+ return processDeclaratorAndDeclaration(TD);
+ }
+
+ bool VisitDecl(Decl *D) {
+ assert(!D->isImplicit());
+ Builder.foldNode(Builder.getDeclarationRange(D),
+ new (allocator()) syntax::UnknownDeclaration(), D);
+ return true;
+ }
+
+ // RAV does not call WalkUpFrom* on explicit instantiations, so we have to
+ // override Traverse.
+ // FIXME: make RAV call WalkUpFrom* instead.
+ bool
+ TraverseClassTemplateSpecializationDecl(ClassTemplateSpecializationDecl *C) {
+ if (!RecursiveASTVisitor::TraverseClassTemplateSpecializationDecl(C))
+ return false;
+ if (C->isExplicitSpecialization())
+ return true; // we are only interested in explicit instantiations.
+ auto *Declaration =
+ cast<syntax::SimpleDeclaration>(handleFreeStandingTagDecl(C));
+ foldExplicitTemplateInstantiation(
+ Builder.getTemplateRange(C), Builder.findToken(C->getExternLoc()),
+ Builder.findToken(C->getTemplateKeywordLoc()), Declaration, C);
+ return true;
+ }
+
+ bool WalkUpFromTemplateDecl(TemplateDecl *S) {
+ foldTemplateDeclaration(
+ Builder.getDeclarationRange(S),
+ Builder.findToken(S->getTemplateParameters()->getTemplateLoc()),
+ Builder.getDeclarationRange(S->getTemplatedDecl()), S);
+ return true;
+ }
+
+ bool WalkUpFromTagDecl(TagDecl *C) {
+ // FIXME: build the ClassSpecifier node.
+ if (!C->isFreeStanding()) {
+ assert(C->getNumTemplateParameterLists() == 0);
+ return true;
+ }
+ handleFreeStandingTagDecl(C);
+ return true;
+ }
+
+ syntax::Declaration *handleFreeStandingTagDecl(TagDecl *C) {
+ assert(C->isFreeStanding());
+ // Class is a declaration specifier and needs a spanning declaration node.
+ auto DeclarationRange = Builder.getDeclarationRange(C);
+ syntax::Declaration *Result = new (allocator()) syntax::SimpleDeclaration;
+ Builder.foldNode(DeclarationRange, Result, nullptr);
+
+ // Build TemplateDeclaration nodes if we had template parameters.
+ auto ConsumeTemplateParameters = [&](const TemplateParameterList &L) {
+ const auto *TemplateKW = Builder.findToken(L.getTemplateLoc());
+ auto R = llvm::makeArrayRef(TemplateKW, DeclarationRange.end());
+ Result =
+ foldTemplateDeclaration(R, TemplateKW, DeclarationRange, nullptr);
+ DeclarationRange = R;
+ };
+ if (auto *S = dyn_cast<ClassTemplatePartialSpecializationDecl>(C))
+ ConsumeTemplateParameters(*S->getTemplateParameters());
+ for (unsigned I = C->getNumTemplateParameterLists(); 0 < I; --I)
+ ConsumeTemplateParameters(*C->getTemplateParameterList(I - 1));
+ return Result;
+ }
+
+ bool WalkUpFromTranslationUnitDecl(TranslationUnitDecl *TU) {
+ // We do not want to call VisitDecl(), the declaration for translation
+ // unit is built by finalize().
+ return true;
+ }
+
+ bool WalkUpFromCompoundStmt(CompoundStmt *S) {
+ using NodeRole = syntax::NodeRole;
+
+ Builder.markChildToken(S->getLBracLoc(), NodeRole::OpenParen);
+ for (auto *Child : S->body())
+ Builder.markStmtChild(Child, NodeRole::Statement);
+ Builder.markChildToken(S->getRBracLoc(), NodeRole::CloseParen);
+
+ Builder.foldNode(Builder.getStmtRange(S),
+ new (allocator()) syntax::CompoundStatement, S);
+ return true;
+ }
+
+ // Some statements are not yet handled by syntax trees.
+ bool WalkUpFromStmt(Stmt *S) {
+ Builder.foldNode(Builder.getStmtRange(S),
+ new (allocator()) syntax::UnknownStatement, S);
+ return true;
+ }
+
+ bool TraverseCXXForRangeStmt(CXXForRangeStmt *S) {
+ // We override to traverse range initializer as VarDecl.
+ // RAV traverses it as a statement, we produce invalid node kinds in that
+ // case.
+ // FIXME: should do this in RAV instead?
+ bool Result = [&, this]() {
+ if (S->getInit() && !TraverseStmt(S->getInit()))
+ return false;
+ if (S->getLoopVariable() && !TraverseDecl(S->getLoopVariable()))
+ return false;
+ if (S->getRangeInit() && !TraverseStmt(S->getRangeInit()))
+ return false;
+ if (S->getBody() && !TraverseStmt(S->getBody()))
+ return false;
+ return true;
+ }();
+ WalkUpFromCXXForRangeStmt(S);
+ return Result;
+ }
+
+ bool TraverseStmt(Stmt *S) {
+ if (auto *DS = dyn_cast_or_null<DeclStmt>(S)) {
+ // We want to consume the semicolon, make sure SimpleDeclaration does not.
+ for (auto *D : DS->decls())
+ Builder.noticeDeclWithoutSemicolon(D);
+ } else if (auto *E = dyn_cast_or_null<Expr>(S)) {
+ return RecursiveASTVisitor::TraverseStmt(IgnoreImplicit(E));
+ }
+ return RecursiveASTVisitor::TraverseStmt(S);
+ }
+
+ // Some expressions are not yet handled by syntax trees.
+ bool WalkUpFromExpr(Expr *E) {
+ assert(!isImplicitExpr(E) && "should be handled by TraverseStmt");
+ Builder.foldNode(Builder.getExprRange(E),
+ new (allocator()) syntax::UnknownExpression, E);
+ return true;
+ }
+
+ bool TraverseUserDefinedLiteral(UserDefinedLiteral *S) {
+ // The semantic AST node `UserDefinedLiteral` (UDL) may have one child node
+ // referencing the location of the UDL suffix (`_w` in `1.2_w`). The
+ // UDL suffix location does not point to the beginning of a token, so we
+ // can't represent the UDL suffix as a separate syntax tree node.
+
+ return WalkUpFromUserDefinedLiteral(S);
+ }
+
+ syntax::UserDefinedLiteralExpression *
+ buildUserDefinedLiteral(UserDefinedLiteral *S) {
+ switch (S->getLiteralOperatorKind()) {
+ case UserDefinedLiteral::LOK_Integer:
+ return new (allocator()) syntax::IntegerUserDefinedLiteralExpression;
+ case UserDefinedLiteral::LOK_Floating:
+ return new (allocator()) syntax::FloatUserDefinedLiteralExpression;
+ case UserDefinedLiteral::LOK_Character:
+ return new (allocator()) syntax::CharUserDefinedLiteralExpression;
+ case UserDefinedLiteral::LOK_String:
+ return new (allocator()) syntax::StringUserDefinedLiteralExpression;
+ case UserDefinedLiteral::LOK_Raw:
+ case UserDefinedLiteral::LOK_Template:
+ // For raw literal operator and numeric literal operator template we
+ // cannot get the type of the operand in the semantic AST. We get this
+ // information from the token. As integer and floating point have the same
+ // token kind, we run `NumericLiteralParser` again to distinguish them.
+ auto TokLoc = S->getBeginLoc();
+ auto TokSpelling =
+ Builder.findToken(TokLoc)->text(Context.getSourceManager());
+ auto Literal =
+ NumericLiteralParser(TokSpelling, TokLoc, Context.getSourceManager(),
+ Context.getLangOpts(), Context.getTargetInfo(),
+ Context.getDiagnostics());
+ if (Literal.isIntegerLiteral())
+ return new (allocator()) syntax::IntegerUserDefinedLiteralExpression;
+ else {
+ assert(Literal.isFloatingLiteral());
+ return new (allocator()) syntax::FloatUserDefinedLiteralExpression;
+ }
+ }
+ llvm_unreachable("Unknown literal operator kind.");
+ }
+
+ bool WalkUpFromUserDefinedLiteral(UserDefinedLiteral *S) {
+ Builder.markChildToken(S->getBeginLoc(), syntax::NodeRole::LiteralToken);
+ Builder.foldNode(Builder.getExprRange(S), buildUserDefinedLiteral(S), S);
+ return true;
+ }
+
+ // FIXME: Fix `NestedNameSpecifierLoc::getLocalSourceRange` for the
+ // `DependentTemplateSpecializationType` case.
+ /// Given a nested-name-specifier return the range for the last name
+ /// specifier.
+ ///
+ /// e.g. `std::T::template X<U>::` => `template X<U>::`
+ SourceRange getLocalSourceRange(const NestedNameSpecifierLoc &NNSLoc) {
+ auto SR = NNSLoc.getLocalSourceRange();
+
+ // The method `NestedNameSpecifierLoc::getLocalSourceRange` *should*
+ // return the desired `SourceRange`, but there is a corner case. For a
+ // `DependentTemplateSpecializationType` this method returns its
+ // qualifiers as well, in other words in the example above this method
+ // returns `T::template X<U>::` instead of only `template X<U>::`
+ if (auto TL = NNSLoc.getTypeLoc()) {
+ if (auto DependentTL =
+ TL.getAs<DependentTemplateSpecializationTypeLoc>()) {
+ // The 'template' keyword is always present in dependent template
+ // specializations. Except in the case of incorrect code
+ // TODO: Treat the case of incorrect code.
+ SR.setBegin(DependentTL.getTemplateKeywordLoc());
+ }
+ }
+
+ return SR;
+ }
+
+ syntax::NodeKind getNameSpecifierKind(const NestedNameSpecifier &NNS) {
+ switch (NNS.getKind()) {
+ case NestedNameSpecifier::Global:
+ return syntax::NodeKind::GlobalNameSpecifier;
+ case NestedNameSpecifier::Namespace:
+ case NestedNameSpecifier::NamespaceAlias:
+ case NestedNameSpecifier::Identifier:
+ return syntax::NodeKind::IdentifierNameSpecifier;
+ case NestedNameSpecifier::TypeSpecWithTemplate:
+ return syntax::NodeKind::SimpleTemplateNameSpecifier;
+ case NestedNameSpecifier::TypeSpec: {
+ const auto *NNSType = NNS.getAsType();
+ assert(NNSType);
+ if (isa<DecltypeType>(NNSType))
+ return syntax::NodeKind::DecltypeNameSpecifier;
+ if (isa<TemplateSpecializationType, DependentTemplateSpecializationType>(
+ NNSType))
+ return syntax::NodeKind::SimpleTemplateNameSpecifier;
+ return syntax::NodeKind::IdentifierNameSpecifier;
+ }
+ default:
+ // FIXME: Support Microsoft's __super
+ llvm::report_fatal_error("We don't yet support the __super specifier",
+ true);
+ }
+ }
+
+ syntax::NameSpecifier *
+ buildNameSpecifier(const NestedNameSpecifierLoc &NNSLoc) {
+ assert(NNSLoc.hasQualifier());
+ auto NameSpecifierTokens =
+ Builder.getRange(getLocalSourceRange(NNSLoc)).drop_back();
+ switch (getNameSpecifierKind(*NNSLoc.getNestedNameSpecifier())) {
+ case syntax::NodeKind::GlobalNameSpecifier:
+ return new (allocator()) syntax::GlobalNameSpecifier;
+ case syntax::NodeKind::IdentifierNameSpecifier: {
+ assert(NameSpecifierTokens.size() == 1);
+ Builder.markChildToken(NameSpecifierTokens.begin(),
+ syntax::NodeRole::Unknown);
+ auto *NS = new (allocator()) syntax::IdentifierNameSpecifier;
+ Builder.foldNode(NameSpecifierTokens, NS, nullptr);
+ return NS;
+ }
+ case syntax::NodeKind::SimpleTemplateNameSpecifier: {
+ // TODO: Build `SimpleTemplateNameSpecifier` children and implement
+ // accessors to them.
+ // Be aware, we cannot do that simply by calling `TraverseTypeLoc`,
+ // some `TypeLoc`s have inside them the previous name specifier and
+ // we want to treat them independently.
+ auto *NS = new (allocator()) syntax::SimpleTemplateNameSpecifier;
+ Builder.foldNode(NameSpecifierTokens, NS, nullptr);
+ return NS;
+ }
+ case syntax::NodeKind::DecltypeNameSpecifier: {
+ const auto TL = NNSLoc.getTypeLoc().castAs<DecltypeTypeLoc>();
+ if (!RecursiveASTVisitor::TraverseDecltypeTypeLoc(TL))
+ return nullptr;
+ auto *NS = new (allocator()) syntax::DecltypeNameSpecifier;
+ // TODO: Implement accessor to `DecltypeNameSpecifier` inner
+ // `DecltypeTypeLoc`.
+ // For that add mapping from `TypeLoc` to `syntax::Node*` then:
+ // Builder.markChild(TypeLoc, syntax::NodeRole);
+ Builder.foldNode(NameSpecifierTokens, NS, nullptr);
+ return NS;
+ }
+ default:
+ llvm_unreachable("getChildKind() does not return this value");
+ }
+ }
+
+ // To build syntax tree nodes for NestedNameSpecifierLoc we override
+ // Traverse instead of WalkUpFrom because we want to traverse the children
+ // ourselves and build a list instead of a nested tree of name specifier
+ // prefixes.
+ bool TraverseNestedNameSpecifierLoc(NestedNameSpecifierLoc QualifierLoc) {
+ if (!QualifierLoc)
+ return true;
+ for (auto It = QualifierLoc; It; It = It.getPrefix()) {
+ auto *NS = buildNameSpecifier(It);
+ if (!NS)
+ return false;
+ Builder.markChild(NS, syntax::NodeRole::ListElement);
+ Builder.markChildToken(It.getEndLoc(), syntax::NodeRole::ListDelimiter);
+ }
+ Builder.foldNode(Builder.getRange(QualifierLoc.getSourceRange()),
+ new (allocator()) syntax::NestedNameSpecifier,
+ QualifierLoc);
+ return true;
+ }
+
+ syntax::IdExpression *buildIdExpression(NestedNameSpecifierLoc QualifierLoc,
+ SourceLocation TemplateKeywordLoc,
+ SourceRange UnqualifiedIdLoc,
+ ASTPtr From) {
+ if (QualifierLoc) {
+ Builder.markChild(QualifierLoc, syntax::NodeRole::Qualifier);
+ if (TemplateKeywordLoc.isValid())
+ Builder.markChildToken(TemplateKeywordLoc,
+ syntax::NodeRole::TemplateKeyword);
+ }
+
+ auto *TheUnqualifiedId = new (allocator()) syntax::UnqualifiedId;
+ Builder.foldNode(Builder.getRange(UnqualifiedIdLoc), TheUnqualifiedId,
+ nullptr);
+ Builder.markChild(TheUnqualifiedId, syntax::NodeRole::UnqualifiedId);
+
+ auto IdExpressionBeginLoc =
+ QualifierLoc ? QualifierLoc.getBeginLoc() : UnqualifiedIdLoc.getBegin();
+
+ auto *TheIdExpression = new (allocator()) syntax::IdExpression;
+ Builder.foldNode(
+ Builder.getRange(IdExpressionBeginLoc, UnqualifiedIdLoc.getEnd()),
+ TheIdExpression, From);
+
+ return TheIdExpression;
+ }
+
+ bool WalkUpFromMemberExpr(MemberExpr *S) {
+ // For `MemberExpr` with implicit `this->` we generate a simple
+ // `id-expression` syntax node, beacuse an implicit `member-expression` is
+ // syntactically undistinguishable from an `id-expression`
+ if (S->isImplicitAccess()) {
+ buildIdExpression(S->getQualifierLoc(), S->getTemplateKeywordLoc(),
+ SourceRange(S->getMemberLoc(), S->getEndLoc()), S);
+ return true;
+ }
+
+ auto *TheIdExpression = buildIdExpression(
+ S->getQualifierLoc(), S->getTemplateKeywordLoc(),
+ SourceRange(S->getMemberLoc(), S->getEndLoc()), nullptr);
+
+ Builder.markChild(TheIdExpression, syntax::NodeRole::Member);
+
+ Builder.markExprChild(S->getBase(), syntax::NodeRole::Object);
+ Builder.markChildToken(S->getOperatorLoc(), syntax::NodeRole::AccessToken);
+
+ Builder.foldNode(Builder.getExprRange(S),
+ new (allocator()) syntax::MemberExpression, S);
+ return true;
+ }
+
+ bool WalkUpFromDeclRefExpr(DeclRefExpr *S) {
+ buildIdExpression(S->getQualifierLoc(), S->getTemplateKeywordLoc(),
+ SourceRange(S->getLocation(), S->getEndLoc()), S);
+
+ return true;
+ }
+
+ // Same logic as DeclRefExpr.
+ bool WalkUpFromDependentScopeDeclRefExpr(DependentScopeDeclRefExpr *S) {
+ buildIdExpression(S->getQualifierLoc(), S->getTemplateKeywordLoc(),
+ SourceRange(S->getLocation(), S->getEndLoc()), S);
+
+ return true;
+ }
+
+ bool WalkUpFromCXXThisExpr(CXXThisExpr *S) {
+ if (!S->isImplicit()) {
+ Builder.markChildToken(S->getLocation(),
+ syntax::NodeRole::IntroducerKeyword);
+ Builder.foldNode(Builder.getExprRange(S),
+ new (allocator()) syntax::ThisExpression, S);
+ }
+ return true;
+ }
+
+ bool WalkUpFromParenExpr(ParenExpr *S) {
+ Builder.markChildToken(S->getLParen(), syntax::NodeRole::OpenParen);
+ Builder.markExprChild(S->getSubExpr(), syntax::NodeRole::SubExpression);
+ Builder.markChildToken(S->getRParen(), syntax::NodeRole::CloseParen);
+ Builder.foldNode(Builder.getExprRange(S),
+ new (allocator()) syntax::ParenExpression, S);
+ return true;
+ }
+
+ bool WalkUpFromIntegerLiteral(IntegerLiteral *S) {
+ Builder.markChildToken(S->getLocation(), syntax::NodeRole::LiteralToken);
+ Builder.foldNode(Builder.getExprRange(S),
+ new (allocator()) syntax::IntegerLiteralExpression, S);
+ return true;
+ }
+
+ bool WalkUpFromCharacterLiteral(CharacterLiteral *S) {
+ Builder.markChildToken(S->getLocation(), syntax::NodeRole::LiteralToken);
+ Builder.foldNode(Builder.getExprRange(S),
+ new (allocator()) syntax::CharacterLiteralExpression, S);
+ return true;
+ }
+
+ bool WalkUpFromFloatingLiteral(FloatingLiteral *S) {
+ Builder.markChildToken(S->getLocation(), syntax::NodeRole::LiteralToken);
+ Builder.foldNode(Builder.getExprRange(S),
+ new (allocator()) syntax::FloatingLiteralExpression, S);
+ return true;
+ }
+
+ bool WalkUpFromStringLiteral(StringLiteral *S) {
+ Builder.markChildToken(S->getBeginLoc(), syntax::NodeRole::LiteralToken);
+ Builder.foldNode(Builder.getExprRange(S),
+ new (allocator()) syntax::StringLiteralExpression, S);
+ return true;
+ }
+
+ bool WalkUpFromCXXBoolLiteralExpr(CXXBoolLiteralExpr *S) {
+ Builder.markChildToken(S->getLocation(), syntax::NodeRole::LiteralToken);
+ Builder.foldNode(Builder.getExprRange(S),
+ new (allocator()) syntax::BoolLiteralExpression, S);
+ return true;
+ }
+
+ bool WalkUpFromCXXNullPtrLiteralExpr(CXXNullPtrLiteralExpr *S) {
+ Builder.markChildToken(S->getLocation(), syntax::NodeRole::LiteralToken);
+ Builder.foldNode(Builder.getExprRange(S),
+ new (allocator()) syntax::CxxNullPtrExpression, S);
+ return true;
+ }
+
+ bool WalkUpFromUnaryOperator(UnaryOperator *S) {
+ Builder.markChildToken(S->getOperatorLoc(),
+ syntax::NodeRole::OperatorToken);
+ Builder.markExprChild(S->getSubExpr(), syntax::NodeRole::Operand);
+
+ if (S->isPostfix())
+ Builder.foldNode(Builder.getExprRange(S),
+ new (allocator()) syntax::PostfixUnaryOperatorExpression,
+ S);
+ else
+ Builder.foldNode(Builder.getExprRange(S),
+ new (allocator()) syntax::PrefixUnaryOperatorExpression,
+ S);
+
+ return true;
+ }
+
+ bool WalkUpFromBinaryOperator(BinaryOperator *S) {
+ Builder.markExprChild(S->getLHS(), syntax::NodeRole::LeftHandSide);
+ Builder.markChildToken(S->getOperatorLoc(),
+ syntax::NodeRole::OperatorToken);
+ Builder.markExprChild(S->getRHS(), syntax::NodeRole::RightHandSide);
+ Builder.foldNode(Builder.getExprRange(S),
+ new (allocator()) syntax::BinaryOperatorExpression, S);
+ return true;
+ }
+
+ /// Builds `CallArguments` syntax node from arguments that appear in source
+ /// code, i.e. not default arguments.
+ syntax::CallArguments *
+ buildCallArguments(CallExpr::arg_range ArgsAndDefaultArgs) {
+ auto Args = dropDefaultArgs(ArgsAndDefaultArgs);
+ for (auto *Arg : Args) {
+ Builder.markExprChild(Arg, syntax::NodeRole::ListElement);
+ const auto *DelimiterToken =
+ std::next(Builder.findToken(Arg->getEndLoc()));
+ if (DelimiterToken->kind() == clang::tok::TokenKind::comma)
+ Builder.markChildToken(DelimiterToken, syntax::NodeRole::ListDelimiter);
+ }
+
+ auto *Arguments = new (allocator()) syntax::CallArguments;
+ if (!Args.empty())
+ Builder.foldNode(Builder.getRange((*Args.begin())->getBeginLoc(),
+ (*(Args.end() - 1))->getEndLoc()),
+ Arguments, nullptr);
+
+ return Arguments;
+ }
+
+ bool WalkUpFromCallExpr(CallExpr *S) {
+ Builder.markExprChild(S->getCallee(), syntax::NodeRole::Callee);
+
+ const auto *LParenToken =
+ std::next(Builder.findToken(S->getCallee()->getEndLoc()));
+ // FIXME: Assert that `LParenToken` is indeed a `l_paren` once we have fixed
+ // the test on decltype desctructors.
+ if (LParenToken->kind() == clang::tok::l_paren)
+ Builder.markChildToken(LParenToken, syntax::NodeRole::OpenParen);
+
+ Builder.markChild(buildCallArguments(S->arguments()),
+ syntax::NodeRole::Arguments);
+
+ Builder.markChildToken(S->getRParenLoc(), syntax::NodeRole::CloseParen);
+
+ Builder.foldNode(Builder.getRange(S->getSourceRange()),
+ new (allocator()) syntax::CallExpression, S);
+ return true;
+ }
+
+ bool WalkUpFromCXXConstructExpr(CXXConstructExpr *S) {
+ // Ignore the implicit calls to default constructors.
+ if ((S->getNumArgs() == 0 || isa<CXXDefaultArgExpr>(S->getArg(0))) &&
+ S->getParenOrBraceRange().isInvalid())
+ return true;
+ return RecursiveASTVisitor::WalkUpFromCXXConstructExpr(S);
+ }
+
+ bool TraverseCXXOperatorCallExpr(CXXOperatorCallExpr *S) {
+ // To construct a syntax tree of the same shape for calls to built-in and
+ // user-defined operators, ignore the `DeclRefExpr` that refers to the
+ // operator and treat it as a simple token. Do that by traversing
+ // arguments instead of children.
+ for (auto *child : S->arguments()) {
+ // A postfix unary operator is declared as taking two operands. The
+ // second operand is used to distinguish from its prefix counterpart. In
+ // the semantic AST this "phantom" operand is represented as a
+ // `IntegerLiteral` with invalid `SourceLocation`. We skip visiting this
+ // operand because it does not correspond to anything written in source
+ // code.
+ if (child->getSourceRange().isInvalid()) {
+ assert(getOperatorNodeKind(*S) ==
+ syntax::NodeKind::PostfixUnaryOperatorExpression);
+ continue;
+ }
+ if (!TraverseStmt(child))
+ return false;
+ }
+ return WalkUpFromCXXOperatorCallExpr(S);
+ }
+
+ bool WalkUpFromCXXOperatorCallExpr(CXXOperatorCallExpr *S) {
+ switch (getOperatorNodeKind(*S)) {
+ case syntax::NodeKind::BinaryOperatorExpression:
+ Builder.markExprChild(S->getArg(0), syntax::NodeRole::LeftHandSide);
+ Builder.markChildToken(S->getOperatorLoc(),
+ syntax::NodeRole::OperatorToken);
+ Builder.markExprChild(S->getArg(1), syntax::NodeRole::RightHandSide);
+ Builder.foldNode(Builder.getExprRange(S),
+ new (allocator()) syntax::BinaryOperatorExpression, S);
+ return true;
+ case syntax::NodeKind::PrefixUnaryOperatorExpression:
+ Builder.markChildToken(S->getOperatorLoc(),
+ syntax::NodeRole::OperatorToken);
+ Builder.markExprChild(S->getArg(0), syntax::NodeRole::Operand);
+ Builder.foldNode(Builder.getExprRange(S),
+ new (allocator()) syntax::PrefixUnaryOperatorExpression,
+ S);
+ return true;
+ case syntax::NodeKind::PostfixUnaryOperatorExpression:
+ Builder.markChildToken(S->getOperatorLoc(),
+ syntax::NodeRole::OperatorToken);
+ Builder.markExprChild(S->getArg(0), syntax::NodeRole::Operand);
+ Builder.foldNode(Builder.getExprRange(S),
+ new (allocator()) syntax::PostfixUnaryOperatorExpression,
+ S);
+ return true;
+ case syntax::NodeKind::CallExpression: {
+ Builder.markExprChild(S->getArg(0), syntax::NodeRole::Callee);
+
+ const auto *LParenToken =
+ std::next(Builder.findToken(S->getArg(0)->getEndLoc()));
+ // FIXME: Assert that `LParenToken` is indeed a `l_paren` once we have
+ // fixed the test on decltype desctructors.
+ if (LParenToken->kind() == clang::tok::l_paren)
+ Builder.markChildToken(LParenToken, syntax::NodeRole::OpenParen);
+
+ Builder.markChild(buildCallArguments(CallExpr::arg_range(
+ S->arg_begin() + 1, S->arg_end())),
+ syntax::NodeRole::Arguments);
+
+ Builder.markChildToken(S->getRParenLoc(), syntax::NodeRole::CloseParen);
+
+ Builder.foldNode(Builder.getRange(S->getSourceRange()),
+ new (allocator()) syntax::CallExpression, S);
+ return true;
+ }
+ case syntax::NodeKind::UnknownExpression:
+ return WalkUpFromExpr(S);
+ default:
+ llvm_unreachable("getOperatorNodeKind() does not return this value");
+ }
+ }
+
+ bool WalkUpFromCXXDefaultArgExpr(CXXDefaultArgExpr *S) { return true; }
+
+ bool WalkUpFromNamespaceDecl(NamespaceDecl *S) {
+ auto Tokens = Builder.getDeclarationRange(S);
+ if (Tokens.front().kind() == tok::coloncolon) {
+ // Handle nested namespace definitions. Those start at '::' token, e.g.
+ // namespace a^::b {}
+ // FIXME: build corresponding nodes for the name of this namespace.
+ return true;
+ }
+ Builder.foldNode(Tokens, new (allocator()) syntax::NamespaceDefinition, S);
+ return true;
+ }
+
+ // FIXME: Deleting the `TraverseParenTypeLoc` override doesn't change test
+ // results. Find test coverage or remove it.
+ bool TraverseParenTypeLoc(ParenTypeLoc L) {
+ // We reverse order of traversal to get the proper syntax structure.
+ if (!WalkUpFromParenTypeLoc(L))
+ return false;
+ return TraverseTypeLoc(L.getInnerLoc());
+ }
+
+ bool WalkUpFromParenTypeLoc(ParenTypeLoc L) {
+ Builder.markChildToken(L.getLParenLoc(), syntax::NodeRole::OpenParen);
+ Builder.markChildToken(L.getRParenLoc(), syntax::NodeRole::CloseParen);
+ Builder.foldNode(Builder.getRange(L.getLParenLoc(), L.getRParenLoc()),
+ new (allocator()) syntax::ParenDeclarator, L);
+ return true;
+ }
+
+ // Declarator chunks, they are produced by type locs and some clang::Decls.
+ bool WalkUpFromArrayTypeLoc(ArrayTypeLoc L) {
+ Builder.markChildToken(L.getLBracketLoc(), syntax::NodeRole::OpenParen);
+ Builder.markExprChild(L.getSizeExpr(), syntax::NodeRole::Size);
+ Builder.markChildToken(L.getRBracketLoc(), syntax::NodeRole::CloseParen);
+ Builder.foldNode(Builder.getRange(L.getLBracketLoc(), L.getRBracketLoc()),
+ new (allocator()) syntax::ArraySubscript, L);
+ return true;
+ }
+
+ syntax::ParameterDeclarationList *
+ buildParameterDeclarationList(ArrayRef<ParmVarDecl *> Params) {
+ for (auto *P : Params) {
+ Builder.markChild(P, syntax::NodeRole::ListElement);
+ const auto *DelimiterToken = std::next(Builder.findToken(P->getEndLoc()));
+ if (DelimiterToken->kind() == clang::tok::TokenKind::comma)
+ Builder.markChildToken(DelimiterToken, syntax::NodeRole::ListDelimiter);
+ }
+ auto *Parameters = new (allocator()) syntax::ParameterDeclarationList;
+ if (!Params.empty())
+ Builder.foldNode(Builder.getRange(Params.front()->getBeginLoc(),
+ Params.back()->getEndLoc()),
+ Parameters, nullptr);
+ return Parameters;
+ }
+
+ bool WalkUpFromFunctionTypeLoc(FunctionTypeLoc L) {
+ Builder.markChildToken(L.getLParenLoc(), syntax::NodeRole::OpenParen);
+
+ Builder.markChild(buildParameterDeclarationList(L.getParams()),
+ syntax::NodeRole::Parameters);
+
+ Builder.markChildToken(L.getRParenLoc(), syntax::NodeRole::CloseParen);
+ Builder.foldNode(Builder.getRange(L.getLParenLoc(), L.getEndLoc()),
+ new (allocator()) syntax::ParametersAndQualifiers, L);
+ return true;
+ }
+
+ bool WalkUpFromFunctionProtoTypeLoc(FunctionProtoTypeLoc L) {
+ if (!L.getTypePtr()->hasTrailingReturn())
+ return WalkUpFromFunctionTypeLoc(L);
+
+ auto *TrailingReturnTokens = buildTrailingReturn(L);
+ // Finish building the node for parameters.
+ Builder.markChild(TrailingReturnTokens, syntax::NodeRole::TrailingReturn);
+ return WalkUpFromFunctionTypeLoc(L);
+ }
+
+ bool TraverseMemberPointerTypeLoc(MemberPointerTypeLoc L) {
+ // In the source code "void (Y::*mp)()" `MemberPointerTypeLoc` corresponds
+ // to "Y::*" but it points to a `ParenTypeLoc` that corresponds to
+ // "(Y::*mp)" We thus reverse the order of traversal to get the proper
+ // syntax structure.
+ if (!WalkUpFromMemberPointerTypeLoc(L))
+ return false;
+ return TraverseTypeLoc(L.getPointeeLoc());
+ }
+
+ bool WalkUpFromMemberPointerTypeLoc(MemberPointerTypeLoc L) {
+ auto SR = L.getLocalSourceRange();
+ Builder.foldNode(Builder.getRange(SR),
+ new (allocator()) syntax::MemberPointer, L);
+ return true;
+ }
+
+ // The code below is very regular, it could even be generated with some
+ // preprocessor magic. We merely assign roles to the corresponding children
+ // and fold resulting nodes.
+ bool WalkUpFromDeclStmt(DeclStmt *S) {
+ Builder.foldNode(Builder.getStmtRange(S),
+ new (allocator()) syntax::DeclarationStatement, S);
+ return true;
+ }
+
+ bool WalkUpFromNullStmt(NullStmt *S) {
+ Builder.foldNode(Builder.getStmtRange(S),
+ new (allocator()) syntax::EmptyStatement, S);
+ return true;
+ }
+
+ bool WalkUpFromSwitchStmt(SwitchStmt *S) {
+ Builder.markChildToken(S->getSwitchLoc(),
+ syntax::NodeRole::IntroducerKeyword);
+ Builder.markStmtChild(S->getBody(), syntax::NodeRole::BodyStatement);
+ Builder.foldNode(Builder.getStmtRange(S),
+ new (allocator()) syntax::SwitchStatement, S);
+ return true;
+ }
+
+ bool WalkUpFromCaseStmt(CaseStmt *S) {
+ Builder.markChildToken(S->getKeywordLoc(),
+ syntax::NodeRole::IntroducerKeyword);
+ Builder.markExprChild(S->getLHS(), syntax::NodeRole::CaseValue);
+ Builder.markStmtChild(S->getSubStmt(), syntax::NodeRole::BodyStatement);
+ Builder.foldNode(Builder.getStmtRange(S),
+ new (allocator()) syntax::CaseStatement, S);
+ return true;
+ }
+
+ bool WalkUpFromDefaultStmt(DefaultStmt *S) {
+ Builder.markChildToken(S->getKeywordLoc(),
+ syntax::NodeRole::IntroducerKeyword);
+ Builder.markStmtChild(S->getSubStmt(), syntax::NodeRole::BodyStatement);
+ Builder.foldNode(Builder.getStmtRange(S),
+ new (allocator()) syntax::DefaultStatement, S);
+ return true;
+ }
+
+ bool WalkUpFromIfStmt(IfStmt *S) {
+ Builder.markChildToken(S->getIfLoc(), syntax::NodeRole::IntroducerKeyword);
+ Builder.markStmtChild(S->getThen(), syntax::NodeRole::ThenStatement);
+ Builder.markChildToken(S->getElseLoc(), syntax::NodeRole::ElseKeyword);
+ Builder.markStmtChild(S->getElse(), syntax::NodeRole::ElseStatement);
+ Builder.foldNode(Builder.getStmtRange(S),
+ new (allocator()) syntax::IfStatement, S);
+ return true;
+ }
+
+ bool WalkUpFromForStmt(ForStmt *S) {
+ Builder.markChildToken(S->getForLoc(), syntax::NodeRole::IntroducerKeyword);
+ Builder.markStmtChild(S->getBody(), syntax::NodeRole::BodyStatement);
+ Builder.foldNode(Builder.getStmtRange(S),
+ new (allocator()) syntax::ForStatement, S);
+ return true;
+ }
+
+ bool WalkUpFromWhileStmt(WhileStmt *S) {
+ Builder.markChildToken(S->getWhileLoc(),
+ syntax::NodeRole::IntroducerKeyword);
+ Builder.markStmtChild(S->getBody(), syntax::NodeRole::BodyStatement);
+ Builder.foldNode(Builder.getStmtRange(S),
+ new (allocator()) syntax::WhileStatement, S);
+ return true;
+ }
+
+ bool WalkUpFromContinueStmt(ContinueStmt *S) {
+ Builder.markChildToken(S->getContinueLoc(),
+ syntax::NodeRole::IntroducerKeyword);
+ Builder.foldNode(Builder.getStmtRange(S),
+ new (allocator()) syntax::ContinueStatement, S);
+ return true;
+ }
+
+ bool WalkUpFromBreakStmt(BreakStmt *S) {
+ Builder.markChildToken(S->getBreakLoc(),
+ syntax::NodeRole::IntroducerKeyword);
+ Builder.foldNode(Builder.getStmtRange(S),
+ new (allocator()) syntax::BreakStatement, S);
+ return true;
+ }
+
+ bool WalkUpFromReturnStmt(ReturnStmt *S) {
+ Builder.markChildToken(S->getReturnLoc(),
+ syntax::NodeRole::IntroducerKeyword);
+ Builder.markExprChild(S->getRetValue(), syntax::NodeRole::ReturnValue);
+ Builder.foldNode(Builder.getStmtRange(S),
+ new (allocator()) syntax::ReturnStatement, S);
+ return true;
+ }
+
+ bool WalkUpFromCXXForRangeStmt(CXXForRangeStmt *S) {
+ Builder.markChildToken(S->getForLoc(), syntax::NodeRole::IntroducerKeyword);
+ Builder.markStmtChild(S->getBody(), syntax::NodeRole::BodyStatement);
+ Builder.foldNode(Builder.getStmtRange(S),
+ new (allocator()) syntax::RangeBasedForStatement, S);
+ return true;
+ }
+
+ bool WalkUpFromEmptyDecl(EmptyDecl *S) {
+ Builder.foldNode(Builder.getDeclarationRange(S),
+ new (allocator()) syntax::EmptyDeclaration, S);
+ return true;
+ }
+
+ bool WalkUpFromStaticAssertDecl(StaticAssertDecl *S) {
+ Builder.markExprChild(S->getAssertExpr(), syntax::NodeRole::Condition);
+ Builder.markExprChild(S->getMessage(), syntax::NodeRole::Message);
+ Builder.foldNode(Builder.getDeclarationRange(S),
+ new (allocator()) syntax::StaticAssertDeclaration, S);
+ return true;
+ }
+
+ bool WalkUpFromLinkageSpecDecl(LinkageSpecDecl *S) {
+ Builder.foldNode(Builder.getDeclarationRange(S),
+ new (allocator()) syntax::LinkageSpecificationDeclaration,
+ S);
+ return true;
+ }
+
+ bool WalkUpFromNamespaceAliasDecl(NamespaceAliasDecl *S) {
+ Builder.foldNode(Builder.getDeclarationRange(S),
+ new (allocator()) syntax::NamespaceAliasDefinition, S);
+ return true;
+ }
+
+ bool WalkUpFromUsingDirectiveDecl(UsingDirectiveDecl *S) {
+ Builder.foldNode(Builder.getDeclarationRange(S),
+ new (allocator()) syntax::UsingNamespaceDirective, S);
+ return true;
+ }
+
+ bool WalkUpFromUsingDecl(UsingDecl *S) {
+ Builder.foldNode(Builder.getDeclarationRange(S),
+ new (allocator()) syntax::UsingDeclaration, S);
+ return true;
+ }
+
+ bool WalkUpFromUnresolvedUsingValueDecl(UnresolvedUsingValueDecl *S) {
+ Builder.foldNode(Builder.getDeclarationRange(S),
+ new (allocator()) syntax::UsingDeclaration, S);
+ return true;
+ }
+
+ bool WalkUpFromUnresolvedUsingTypenameDecl(UnresolvedUsingTypenameDecl *S) {
+ Builder.foldNode(Builder.getDeclarationRange(S),
+ new (allocator()) syntax::UsingDeclaration, S);
+ return true;
+ }
+
+ bool WalkUpFromTypeAliasDecl(TypeAliasDecl *S) {
+ Builder.foldNode(Builder.getDeclarationRange(S),
+ new (allocator()) syntax::TypeAliasDeclaration, S);
+ return true;
+ }
+
+private:
+ /// Folds SimpleDeclarator node (if present) and in case this is the last
+ /// declarator in the chain it also folds SimpleDeclaration node.
+ template <class T> bool processDeclaratorAndDeclaration(T *D) {
+ auto Range = getDeclaratorRange(
+ Builder.sourceManager(), D->getTypeSourceInfo()->getTypeLoc(),
+ getQualifiedNameStart(D), getInitializerRange(D));
+
+ // There doesn't have to be a declarator (e.g. `void foo(int)` only has
+ // declaration, but no declarator).
+ if (!Range.getBegin().isValid()) {
+ Builder.markChild(new (allocator()) syntax::DeclaratorList,
+ syntax::NodeRole::Declarators);
+ Builder.foldNode(Builder.getDeclarationRange(D),
+ new (allocator()) syntax::SimpleDeclaration, D);
+ return true;
+ }
+
+ auto *N = new (allocator()) syntax::SimpleDeclarator;
+ Builder.foldNode(Builder.getRange(Range), N, nullptr);
+ Builder.markChild(N, syntax::NodeRole::ListElement);
+
+ if (!Builder.isResponsibleForCreatingDeclaration(D)) {
+ // If this is not the last declarator in the declaration we expect a
+ // delimiter after it.
+ const auto *DelimiterToken = std::next(Builder.findToken(Range.getEnd()));
+ if (DelimiterToken->kind() == clang::tok::TokenKind::comma)
+ Builder.markChildToken(DelimiterToken, syntax::NodeRole::ListDelimiter);
+ } else {
+ auto *DL = new (allocator()) syntax::DeclaratorList;
+ auto DeclarationRange = Builder.getDeclarationRange(D);
+ Builder.foldList(DeclarationRange, DL, nullptr);
+
+ Builder.markChild(DL, syntax::NodeRole::Declarators);
+ Builder.foldNode(DeclarationRange,
+ new (allocator()) syntax::SimpleDeclaration, D);
+ }
+ return true;
+ }
+
+ /// Returns the range of the built node.
+ syntax::TrailingReturnType *buildTrailingReturn(FunctionProtoTypeLoc L) {
+ assert(L.getTypePtr()->hasTrailingReturn());
+
+ auto ReturnedType = L.getReturnLoc();
+ // Build node for the declarator, if any.
+ auto ReturnDeclaratorRange = SourceRange(GetStartLoc().Visit(ReturnedType),
+ ReturnedType.getEndLoc());
+ syntax::SimpleDeclarator *ReturnDeclarator = nullptr;
+ if (ReturnDeclaratorRange.isValid()) {
+ ReturnDeclarator = new (allocator()) syntax::SimpleDeclarator;
+ Builder.foldNode(Builder.getRange(ReturnDeclaratorRange),
+ ReturnDeclarator, nullptr);
+ }
+
+ // Build node for trailing return type.
+ auto Return = Builder.getRange(ReturnedType.getSourceRange());
+ const auto *Arrow = Return.begin() - 1;
+ assert(Arrow->kind() == tok::arrow);
+ auto Tokens = llvm::makeArrayRef(Arrow, Return.end());
+ Builder.markChildToken(Arrow, syntax::NodeRole::ArrowToken);
+ if (ReturnDeclarator)
+ Builder.markChild(ReturnDeclarator, syntax::NodeRole::Declarator);
+ auto *R = new (allocator()) syntax::TrailingReturnType;
+ Builder.foldNode(Tokens, R, L);
+ return R;
+ }
+
+ void foldExplicitTemplateInstantiation(
+ ArrayRef<syntax::Token> Range, const syntax::Token *ExternKW,
+ const syntax::Token *TemplateKW,
+ syntax::SimpleDeclaration *InnerDeclaration, Decl *From) {
+ assert(!ExternKW || ExternKW->kind() == tok::kw_extern);
+ assert(TemplateKW && TemplateKW->kind() == tok::kw_template);
+ Builder.markChildToken(ExternKW, syntax::NodeRole::ExternKeyword);
+ Builder.markChildToken(TemplateKW, syntax::NodeRole::IntroducerKeyword);
+ Builder.markChild(InnerDeclaration, syntax::NodeRole::Declaration);
+ Builder.foldNode(
+ Range, new (allocator()) syntax::ExplicitTemplateInstantiation, From);
+ }
+
+ syntax::TemplateDeclaration *foldTemplateDeclaration(
+ ArrayRef<syntax::Token> Range, const syntax::Token *TemplateKW,
+ ArrayRef<syntax::Token> TemplatedDeclaration, Decl *From) {
+ assert(TemplateKW && TemplateKW->kind() == tok::kw_template);
+ Builder.markChildToken(TemplateKW, syntax::NodeRole::IntroducerKeyword);
+
+ auto *N = new (allocator()) syntax::TemplateDeclaration;
+ Builder.foldNode(Range, N, From);
+ Builder.markChild(N, syntax::NodeRole::Declaration);
+ return N;
+ }
+
+ /// A small helper to save some typing.
+ llvm::BumpPtrAllocator &allocator() { return Builder.allocator(); }
+
+ syntax::TreeBuilder &Builder;
+ const ASTContext &Context;
+};
+} // namespace
+
+void syntax::TreeBuilder::noticeDeclWithoutSemicolon(Decl *D) {
+ DeclsWithoutSemicolons.insert(D);
+}
+
+void syntax::TreeBuilder::markChildToken(SourceLocation Loc, NodeRole Role) {
+ if (Loc.isInvalid())
+ return;
+ Pending.assignRole(*findToken(Loc), Role);
+}
+
+void syntax::TreeBuilder::markChildToken(const syntax::Token *T, NodeRole R) {
+ if (!T)
+ return;
+ Pending.assignRole(*T, R);
+}
+
+void syntax::TreeBuilder::markChild(syntax::Node *N, NodeRole R) {
+ assert(N);
+ setRole(N, R);
+}
+
+void syntax::TreeBuilder::markChild(ASTPtr N, NodeRole R) {
+ auto *SN = Mapping.find(N);
+ assert(SN != nullptr);
+ setRole(SN, R);
+}
+void syntax::TreeBuilder::markChild(NestedNameSpecifierLoc NNSLoc, NodeRole R) {
+ auto *SN = Mapping.find(NNSLoc);
+ assert(SN != nullptr);
+ setRole(SN, R);
+}
+
+void syntax::TreeBuilder::markStmtChild(Stmt *Child, NodeRole Role) {
+ if (!Child)
+ return;
+
+ syntax::Tree *ChildNode;
+ if (Expr *ChildExpr = dyn_cast<Expr>(Child)) {
+ // This is an expression in a statement position, consume the trailing
+ // semicolon and form an 'ExpressionStatement' node.
+ markExprChild(ChildExpr, NodeRole::Expression);
+ ChildNode = new (allocator()) syntax::ExpressionStatement;
+ // (!) 'getStmtRange()' ensures this covers a trailing semicolon.
+ Pending.foldChildren(Arena, getStmtRange(Child), ChildNode);
+ } else {
+ ChildNode = Mapping.find(Child);
+ }
+ assert(ChildNode != nullptr);
+ setRole(ChildNode, Role);
+}
+
+void syntax::TreeBuilder::markExprChild(Expr *Child, NodeRole Role) {
+ if (!Child)
+ return;
+ Child = IgnoreImplicit(Child);
+
+ syntax::Tree *ChildNode = Mapping.find(Child);
+ assert(ChildNode != nullptr);
+ setRole(ChildNode, Role);
+}
+
+const syntax::Token *syntax::TreeBuilder::findToken(SourceLocation L) const {
+ if (L.isInvalid())
+ return nullptr;
+ auto It = LocationToToken.find(L);
+ assert(It != LocationToToken.end());
+ return It->second;
+}
+
+syntax::TranslationUnit *syntax::buildSyntaxTree(Arena &A,
+ ASTContext &Context) {
+ TreeBuilder Builder(A);
+ BuildTreeVisitor(Context, Builder).TraverseAST(Context);
+ return std::move(Builder).finalize();
+}