diff options
Diffstat (limited to 'contrib/llvm-project/llvm/lib/Analysis/BasicAliasAnalysis.cpp')
-rw-r--r-- | contrib/llvm-project/llvm/lib/Analysis/BasicAliasAnalysis.cpp | 1982 |
1 files changed, 1982 insertions, 0 deletions
diff --git a/contrib/llvm-project/llvm/lib/Analysis/BasicAliasAnalysis.cpp b/contrib/llvm-project/llvm/lib/Analysis/BasicAliasAnalysis.cpp new file mode 100644 index 000000000000..e474899fb548 --- /dev/null +++ b/contrib/llvm-project/llvm/lib/Analysis/BasicAliasAnalysis.cpp @@ -0,0 +1,1982 @@ +//===- BasicAliasAnalysis.cpp - Stateless Alias Analysis Impl -------------===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// This file defines the primary stateless implementation of the +// Alias Analysis interface that implements identities (two different +// globals cannot alias, etc), but does no stateful analysis. +// +//===----------------------------------------------------------------------===// + +#include "llvm/Analysis/BasicAliasAnalysis.h" +#include "llvm/ADT/APInt.h" +#include "llvm/ADT/ScopeExit.h" +#include "llvm/ADT/SmallPtrSet.h" +#include "llvm/ADT/SmallVector.h" +#include "llvm/ADT/Statistic.h" +#include "llvm/Analysis/AliasAnalysis.h" +#include "llvm/Analysis/AssumptionCache.h" +#include "llvm/Analysis/CFG.h" +#include "llvm/Analysis/CaptureTracking.h" +#include "llvm/Analysis/MemoryBuiltins.h" +#include "llvm/Analysis/MemoryLocation.h" +#include "llvm/Analysis/TargetLibraryInfo.h" +#include "llvm/Analysis/ValueTracking.h" +#include "llvm/IR/Argument.h" +#include "llvm/IR/Attributes.h" +#include "llvm/IR/Constant.h" +#include "llvm/IR/ConstantRange.h" +#include "llvm/IR/Constants.h" +#include "llvm/IR/DataLayout.h" +#include "llvm/IR/DerivedTypes.h" +#include "llvm/IR/Dominators.h" +#include "llvm/IR/Function.h" +#include "llvm/IR/GetElementPtrTypeIterator.h" +#include "llvm/IR/GlobalAlias.h" +#include "llvm/IR/GlobalVariable.h" +#include "llvm/IR/InstrTypes.h" +#include "llvm/IR/Instruction.h" +#include "llvm/IR/Instructions.h" +#include "llvm/IR/IntrinsicInst.h" +#include "llvm/IR/Intrinsics.h" +#include "llvm/IR/Operator.h" +#include "llvm/IR/PatternMatch.h" +#include "llvm/IR/Type.h" +#include "llvm/IR/User.h" +#include "llvm/IR/Value.h" +#include "llvm/InitializePasses.h" +#include "llvm/Pass.h" +#include "llvm/Support/Casting.h" +#include "llvm/Support/CommandLine.h" +#include "llvm/Support/Compiler.h" +#include "llvm/Support/KnownBits.h" +#include "llvm/Support/SaveAndRestore.h" +#include <cassert> +#include <cstdint> +#include <cstdlib> +#include <optional> +#include <utility> + +#define DEBUG_TYPE "basicaa" + +using namespace llvm; + +/// Enable analysis of recursive PHI nodes. +static cl::opt<bool> EnableRecPhiAnalysis("basic-aa-recphi", cl::Hidden, + cl::init(true)); + +static cl::opt<bool> EnableSeparateStorageAnalysis("basic-aa-separate-storage", + cl::Hidden, cl::init(true)); + +/// SearchLimitReached / SearchTimes shows how often the limit of +/// to decompose GEPs is reached. It will affect the precision +/// of basic alias analysis. +STATISTIC(SearchLimitReached, "Number of times the limit to " + "decompose GEPs is reached"); +STATISTIC(SearchTimes, "Number of times a GEP is decomposed"); + +// The max limit of the search depth in DecomposeGEPExpression() and +// getUnderlyingObject(). +static const unsigned MaxLookupSearchDepth = 6; + +bool BasicAAResult::invalidate(Function &Fn, const PreservedAnalyses &PA, + FunctionAnalysisManager::Invalidator &Inv) { + // We don't care if this analysis itself is preserved, it has no state. But + // we need to check that the analyses it depends on have been. Note that we + // may be created without handles to some analyses and in that case don't + // depend on them. + if (Inv.invalidate<AssumptionAnalysis>(Fn, PA) || + (DT_ && Inv.invalidate<DominatorTreeAnalysis>(Fn, PA))) + return true; + + // Otherwise this analysis result remains valid. + return false; +} + +//===----------------------------------------------------------------------===// +// Useful predicates +//===----------------------------------------------------------------------===// + +/// Returns the size of the object specified by V or UnknownSize if unknown. +static std::optional<TypeSize> getObjectSize(const Value *V, + const DataLayout &DL, + const TargetLibraryInfo &TLI, + bool NullIsValidLoc, + bool RoundToAlign = false) { + uint64_t Size; + ObjectSizeOpts Opts; + Opts.RoundToAlign = RoundToAlign; + Opts.NullIsUnknownSize = NullIsValidLoc; + if (getObjectSize(V, Size, DL, &TLI, Opts)) + return TypeSize::getFixed(Size); + return std::nullopt; +} + +/// Returns true if we can prove that the object specified by V is smaller than +/// Size. +static bool isObjectSmallerThan(const Value *V, TypeSize Size, + const DataLayout &DL, + const TargetLibraryInfo &TLI, + bool NullIsValidLoc) { + // Note that the meanings of the "object" are slightly different in the + // following contexts: + // c1: llvm::getObjectSize() + // c2: llvm.objectsize() intrinsic + // c3: isObjectSmallerThan() + // c1 and c2 share the same meaning; however, the meaning of "object" in c3 + // refers to the "entire object". + // + // Consider this example: + // char *p = (char*)malloc(100) + // char *q = p+80; + // + // In the context of c1 and c2, the "object" pointed by q refers to the + // stretch of memory of q[0:19]. So, getObjectSize(q) should return 20. + // + // However, in the context of c3, the "object" refers to the chunk of memory + // being allocated. So, the "object" has 100 bytes, and q points to the middle + // the "object". In case q is passed to isObjectSmallerThan() as the 1st + // parameter, before the llvm::getObjectSize() is called to get the size of + // entire object, we should: + // - either rewind the pointer q to the base-address of the object in + // question (in this case rewind to p), or + // - just give up. It is up to caller to make sure the pointer is pointing + // to the base address the object. + // + // We go for 2nd option for simplicity. + if (!isIdentifiedObject(V)) + return false; + + // This function needs to use the aligned object size because we allow + // reads a bit past the end given sufficient alignment. + std::optional<TypeSize> ObjectSize = getObjectSize(V, DL, TLI, NullIsValidLoc, + /*RoundToAlign*/ true); + + return ObjectSize && TypeSize::isKnownLT(*ObjectSize, Size); +} + +/// Return the minimal extent from \p V to the end of the underlying object, +/// assuming the result is used in an aliasing query. E.g., we do use the query +/// location size and the fact that null pointers cannot alias here. +static TypeSize getMinimalExtentFrom(const Value &V, + const LocationSize &LocSize, + const DataLayout &DL, + bool NullIsValidLoc) { + // If we have dereferenceability information we know a lower bound for the + // extent as accesses for a lower offset would be valid. We need to exclude + // the "or null" part if null is a valid pointer. We can ignore frees, as an + // access after free would be undefined behavior. + bool CanBeNull, CanBeFreed; + uint64_t DerefBytes = + V.getPointerDereferenceableBytes(DL, CanBeNull, CanBeFreed); + DerefBytes = (CanBeNull && NullIsValidLoc) ? 0 : DerefBytes; + // If queried with a precise location size, we assume that location size to be + // accessed, thus valid. + if (LocSize.isPrecise()) + DerefBytes = std::max(DerefBytes, LocSize.getValue().getKnownMinValue()); + return TypeSize::getFixed(DerefBytes); +} + +/// Returns true if we can prove that the object specified by V has size Size. +static bool isObjectSize(const Value *V, TypeSize Size, const DataLayout &DL, + const TargetLibraryInfo &TLI, bool NullIsValidLoc) { + std::optional<TypeSize> ObjectSize = + getObjectSize(V, DL, TLI, NullIsValidLoc); + return ObjectSize && *ObjectSize == Size; +} + +/// Return true if both V1 and V2 are VScale +static bool areBothVScale(const Value *V1, const Value *V2) { + return PatternMatch::match(V1, PatternMatch::m_VScale()) && + PatternMatch::match(V2, PatternMatch::m_VScale()); +} + +//===----------------------------------------------------------------------===// +// CaptureInfo implementations +//===----------------------------------------------------------------------===// + +CaptureInfo::~CaptureInfo() = default; + +bool SimpleCaptureInfo::isNotCapturedBefore(const Value *Object, + const Instruction *I, bool OrAt) { + return isNonEscapingLocalObject(Object, &IsCapturedCache); +} + +static bool isNotInCycle(const Instruction *I, const DominatorTree *DT, + const LoopInfo *LI) { + BasicBlock *BB = const_cast<BasicBlock *>(I->getParent()); + SmallVector<BasicBlock *> Succs(successors(BB)); + return Succs.empty() || + !isPotentiallyReachableFromMany(Succs, BB, nullptr, DT, LI); +} + +bool EarliestEscapeInfo::isNotCapturedBefore(const Value *Object, + const Instruction *I, bool OrAt) { + if (!isIdentifiedFunctionLocal(Object)) + return false; + + auto Iter = EarliestEscapes.insert({Object, nullptr}); + if (Iter.second) { + Instruction *EarliestCapture = FindEarliestCapture( + Object, *const_cast<Function *>(DT.getRoot()->getParent()), + /*ReturnCaptures=*/false, /*StoreCaptures=*/true, DT); + if (EarliestCapture) { + auto Ins = Inst2Obj.insert({EarliestCapture, {}}); + Ins.first->second.push_back(Object); + } + Iter.first->second = EarliestCapture; + } + + // No capturing instruction. + if (!Iter.first->second) + return true; + + // No context instruction means any use is capturing. + if (!I) + return false; + + if (I == Iter.first->second) { + if (OrAt) + return false; + return isNotInCycle(I, &DT, LI); + } + + return !isPotentiallyReachable(Iter.first->second, I, nullptr, &DT, LI); +} + +void EarliestEscapeInfo::removeInstruction(Instruction *I) { + auto Iter = Inst2Obj.find(I); + if (Iter != Inst2Obj.end()) { + for (const Value *Obj : Iter->second) + EarliestEscapes.erase(Obj); + Inst2Obj.erase(I); + } +} + +//===----------------------------------------------------------------------===// +// GetElementPtr Instruction Decomposition and Analysis +//===----------------------------------------------------------------------===// + +namespace { +/// Represents zext(sext(trunc(V))). +struct CastedValue { + const Value *V; + unsigned ZExtBits = 0; + unsigned SExtBits = 0; + unsigned TruncBits = 0; + /// Whether trunc(V) is non-negative. + bool IsNonNegative = false; + + explicit CastedValue(const Value *V) : V(V) {} + explicit CastedValue(const Value *V, unsigned ZExtBits, unsigned SExtBits, + unsigned TruncBits, bool IsNonNegative) + : V(V), ZExtBits(ZExtBits), SExtBits(SExtBits), TruncBits(TruncBits), + IsNonNegative(IsNonNegative) {} + + unsigned getBitWidth() const { + return V->getType()->getPrimitiveSizeInBits() - TruncBits + ZExtBits + + SExtBits; + } + + CastedValue withValue(const Value *NewV, bool PreserveNonNeg) const { + return CastedValue(NewV, ZExtBits, SExtBits, TruncBits, + IsNonNegative && PreserveNonNeg); + } + + /// Replace V with zext(NewV) + CastedValue withZExtOfValue(const Value *NewV, bool ZExtNonNegative) const { + unsigned ExtendBy = V->getType()->getPrimitiveSizeInBits() - + NewV->getType()->getPrimitiveSizeInBits(); + if (ExtendBy <= TruncBits) + // zext<nneg>(trunc(zext(NewV))) == zext<nneg>(trunc(NewV)) + // The nneg can be preserved on the outer zext here. + return CastedValue(NewV, ZExtBits, SExtBits, TruncBits - ExtendBy, + IsNonNegative); + + // zext(sext(zext(NewV))) == zext(zext(zext(NewV))) + ExtendBy -= TruncBits; + // zext<nneg>(zext(NewV)) == zext(NewV) + // zext(zext<nneg>(NewV)) == zext<nneg>(NewV) + // The nneg can be preserved from the inner zext here but must be dropped + // from the outer. + return CastedValue(NewV, ZExtBits + SExtBits + ExtendBy, 0, 0, + ZExtNonNegative); + } + + /// Replace V with sext(NewV) + CastedValue withSExtOfValue(const Value *NewV) const { + unsigned ExtendBy = V->getType()->getPrimitiveSizeInBits() - + NewV->getType()->getPrimitiveSizeInBits(); + if (ExtendBy <= TruncBits) + // zext<nneg>(trunc(sext(NewV))) == zext<nneg>(trunc(NewV)) + // The nneg can be preserved on the outer zext here + return CastedValue(NewV, ZExtBits, SExtBits, TruncBits - ExtendBy, + IsNonNegative); + + // zext(sext(sext(NewV))) + ExtendBy -= TruncBits; + // zext<nneg>(sext(sext(NewV))) = zext<nneg>(sext(NewV)) + // The nneg can be preserved on the outer zext here + return CastedValue(NewV, ZExtBits, SExtBits + ExtendBy, 0, IsNonNegative); + } + + APInt evaluateWith(APInt N) const { + assert(N.getBitWidth() == V->getType()->getPrimitiveSizeInBits() && + "Incompatible bit width"); + if (TruncBits) N = N.trunc(N.getBitWidth() - TruncBits); + if (SExtBits) N = N.sext(N.getBitWidth() + SExtBits); + if (ZExtBits) N = N.zext(N.getBitWidth() + ZExtBits); + return N; + } + + ConstantRange evaluateWith(ConstantRange N) const { + assert(N.getBitWidth() == V->getType()->getPrimitiveSizeInBits() && + "Incompatible bit width"); + if (TruncBits) N = N.truncate(N.getBitWidth() - TruncBits); + if (SExtBits) N = N.signExtend(N.getBitWidth() + SExtBits); + if (ZExtBits) N = N.zeroExtend(N.getBitWidth() + ZExtBits); + return N; + } + + bool canDistributeOver(bool NUW, bool NSW) const { + // zext(x op<nuw> y) == zext(x) op<nuw> zext(y) + // sext(x op<nsw> y) == sext(x) op<nsw> sext(y) + // trunc(x op y) == trunc(x) op trunc(y) + return (!ZExtBits || NUW) && (!SExtBits || NSW); + } + + bool hasSameCastsAs(const CastedValue &Other) const { + if (ZExtBits == Other.ZExtBits && SExtBits == Other.SExtBits && + TruncBits == Other.TruncBits) + return true; + // If either CastedValue has a nneg zext then the sext/zext bits are + // interchangable for that value. + if (IsNonNegative || Other.IsNonNegative) + return (ZExtBits + SExtBits == Other.ZExtBits + Other.SExtBits && + TruncBits == Other.TruncBits); + return false; + } +}; + +/// Represents zext(sext(trunc(V))) * Scale + Offset. +struct LinearExpression { + CastedValue Val; + APInt Scale; + APInt Offset; + + /// True if all operations in this expression are NSW. + bool IsNSW; + + LinearExpression(const CastedValue &Val, const APInt &Scale, + const APInt &Offset, bool IsNSW) + : Val(Val), Scale(Scale), Offset(Offset), IsNSW(IsNSW) {} + + LinearExpression(const CastedValue &Val) : Val(Val), IsNSW(true) { + unsigned BitWidth = Val.getBitWidth(); + Scale = APInt(BitWidth, 1); + Offset = APInt(BitWidth, 0); + } + + LinearExpression mul(const APInt &Other, bool MulIsNSW) const { + // The check for zero offset is necessary, because generally + // (X +nsw Y) *nsw Z does not imply (X *nsw Z) +nsw (Y *nsw Z). + bool NSW = IsNSW && (Other.isOne() || (MulIsNSW && Offset.isZero())); + return LinearExpression(Val, Scale * Other, Offset * Other, NSW); + } +}; +} + +/// Analyzes the specified value as a linear expression: "A*V + B", where A and +/// B are constant integers. +static LinearExpression GetLinearExpression( + const CastedValue &Val, const DataLayout &DL, unsigned Depth, + AssumptionCache *AC, DominatorTree *DT) { + // Limit our recursion depth. + if (Depth == 6) + return Val; + + if (const ConstantInt *Const = dyn_cast<ConstantInt>(Val.V)) + return LinearExpression(Val, APInt(Val.getBitWidth(), 0), + Val.evaluateWith(Const->getValue()), true); + + if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(Val.V)) { + if (ConstantInt *RHSC = dyn_cast<ConstantInt>(BOp->getOperand(1))) { + APInt RHS = Val.evaluateWith(RHSC->getValue()); + // The only non-OBO case we deal with is or, and only limited to the + // case where it is both nuw and nsw. + bool NUW = true, NSW = true; + if (isa<OverflowingBinaryOperator>(BOp)) { + NUW &= BOp->hasNoUnsignedWrap(); + NSW &= BOp->hasNoSignedWrap(); + } + if (!Val.canDistributeOver(NUW, NSW)) + return Val; + + // While we can distribute over trunc, we cannot preserve nowrap flags + // in that case. + if (Val.TruncBits) + NUW = NSW = false; + + LinearExpression E(Val); + switch (BOp->getOpcode()) { + default: + // We don't understand this instruction, so we can't decompose it any + // further. + return Val; + case Instruction::Or: + // X|C == X+C if it is disjoint. Otherwise we can't analyze it. + if (!cast<PossiblyDisjointInst>(BOp)->isDisjoint()) + return Val; + + [[fallthrough]]; + case Instruction::Add: { + E = GetLinearExpression(Val.withValue(BOp->getOperand(0), false), DL, + Depth + 1, AC, DT); + E.Offset += RHS; + E.IsNSW &= NSW; + break; + } + case Instruction::Sub: { + E = GetLinearExpression(Val.withValue(BOp->getOperand(0), false), DL, + Depth + 1, AC, DT); + E.Offset -= RHS; + E.IsNSW &= NSW; + break; + } + case Instruction::Mul: + E = GetLinearExpression(Val.withValue(BOp->getOperand(0), false), DL, + Depth + 1, AC, DT) + .mul(RHS, NSW); + break; + case Instruction::Shl: + // We're trying to linearize an expression of the kind: + // shl i8 -128, 36 + // where the shift count exceeds the bitwidth of the type. + // We can't decompose this further (the expression would return + // a poison value). + if (RHS.getLimitedValue() > Val.getBitWidth()) + return Val; + + E = GetLinearExpression(Val.withValue(BOp->getOperand(0), NSW), DL, + Depth + 1, AC, DT); + E.Offset <<= RHS.getLimitedValue(); + E.Scale <<= RHS.getLimitedValue(); + E.IsNSW &= NSW; + break; + } + return E; + } + } + + if (const auto *ZExt = dyn_cast<ZExtInst>(Val.V)) + return GetLinearExpression( + Val.withZExtOfValue(ZExt->getOperand(0), ZExt->hasNonNeg()), DL, + Depth + 1, AC, DT); + + if (isa<SExtInst>(Val.V)) + return GetLinearExpression( + Val.withSExtOfValue(cast<CastInst>(Val.V)->getOperand(0)), + DL, Depth + 1, AC, DT); + + return Val; +} + +/// To ensure a pointer offset fits in an integer of size IndexSize +/// (in bits) when that size is smaller than the maximum index size. This is +/// an issue, for example, in particular for 32b pointers with negative indices +/// that rely on two's complement wrap-arounds for precise alias information +/// where the maximum index size is 64b. +static void adjustToIndexSize(APInt &Offset, unsigned IndexSize) { + assert(IndexSize <= Offset.getBitWidth() && "Invalid IndexSize!"); + unsigned ShiftBits = Offset.getBitWidth() - IndexSize; + if (ShiftBits != 0) { + Offset <<= ShiftBits; + Offset.ashrInPlace(ShiftBits); + } +} + +namespace { +// A linear transformation of a Value; this class represents +// ZExt(SExt(Trunc(V, TruncBits), SExtBits), ZExtBits) * Scale. +struct VariableGEPIndex { + CastedValue Val; + APInt Scale; + + // Context instruction to use when querying information about this index. + const Instruction *CxtI; + + /// True if all operations in this expression are NSW. + bool IsNSW; + + /// True if the index should be subtracted rather than added. We don't simply + /// negate the Scale, to avoid losing the NSW flag: X - INT_MIN*1 may be + /// non-wrapping, while X + INT_MIN*(-1) wraps. + bool IsNegated; + + bool hasNegatedScaleOf(const VariableGEPIndex &Other) const { + if (IsNegated == Other.IsNegated) + return Scale == -Other.Scale; + return Scale == Other.Scale; + } + + void dump() const { + print(dbgs()); + dbgs() << "\n"; + } + void print(raw_ostream &OS) const { + OS << "(V=" << Val.V->getName() + << ", zextbits=" << Val.ZExtBits + << ", sextbits=" << Val.SExtBits + << ", truncbits=" << Val.TruncBits + << ", scale=" << Scale + << ", nsw=" << IsNSW + << ", negated=" << IsNegated << ")"; + } +}; +} + +// Represents the internal structure of a GEP, decomposed into a base pointer, +// constant offsets, and variable scaled indices. +struct BasicAAResult::DecomposedGEP { + // Base pointer of the GEP + const Value *Base; + // Total constant offset from base. + APInt Offset; + // Scaled variable (non-constant) indices. + SmallVector<VariableGEPIndex, 4> VarIndices; + // Are all operations inbounds GEPs or non-indexing operations? + // (std::nullopt iff expression doesn't involve any geps) + std::optional<bool> InBounds; + + void dump() const { + print(dbgs()); + dbgs() << "\n"; + } + void print(raw_ostream &OS) const { + OS << "(DecomposedGEP Base=" << Base->getName() + << ", Offset=" << Offset + << ", VarIndices=["; + for (size_t i = 0; i < VarIndices.size(); i++) { + if (i != 0) + OS << ", "; + VarIndices[i].print(OS); + } + OS << "])"; + } +}; + + +/// If V is a symbolic pointer expression, decompose it into a base pointer +/// with a constant offset and a number of scaled symbolic offsets. +/// +/// The scaled symbolic offsets (represented by pairs of a Value* and a scale +/// in the VarIndices vector) are Value*'s that are known to be scaled by the +/// specified amount, but which may have other unrepresented high bits. As +/// such, the gep cannot necessarily be reconstructed from its decomposed form. +BasicAAResult::DecomposedGEP +BasicAAResult::DecomposeGEPExpression(const Value *V, const DataLayout &DL, + AssumptionCache *AC, DominatorTree *DT) { + // Limit recursion depth to limit compile time in crazy cases. + unsigned MaxLookup = MaxLookupSearchDepth; + SearchTimes++; + const Instruction *CxtI = dyn_cast<Instruction>(V); + + unsigned MaxIndexSize = DL.getMaxIndexSizeInBits(); + DecomposedGEP Decomposed; + Decomposed.Offset = APInt(MaxIndexSize, 0); + do { + // See if this is a bitcast or GEP. + const Operator *Op = dyn_cast<Operator>(V); + if (!Op) { + // The only non-operator case we can handle are GlobalAliases. + if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { + if (!GA->isInterposable()) { + V = GA->getAliasee(); + continue; + } + } + Decomposed.Base = V; + return Decomposed; + } + + if (Op->getOpcode() == Instruction::BitCast || + Op->getOpcode() == Instruction::AddrSpaceCast) { + V = Op->getOperand(0); + continue; + } + + const GEPOperator *GEPOp = dyn_cast<GEPOperator>(Op); + if (!GEPOp) { + if (const auto *PHI = dyn_cast<PHINode>(V)) { + // Look through single-arg phi nodes created by LCSSA. + if (PHI->getNumIncomingValues() == 1) { + V = PHI->getIncomingValue(0); + continue; + } + } else if (const auto *Call = dyn_cast<CallBase>(V)) { + // CaptureTracking can know about special capturing properties of some + // intrinsics like launder.invariant.group, that can't be expressed with + // the attributes, but have properties like returning aliasing pointer. + // Because some analysis may assume that nocaptured pointer is not + // returned from some special intrinsic (because function would have to + // be marked with returns attribute), it is crucial to use this function + // because it should be in sync with CaptureTracking. Not using it may + // cause weird miscompilations where 2 aliasing pointers are assumed to + // noalias. + if (auto *RP = getArgumentAliasingToReturnedPointer(Call, false)) { + V = RP; + continue; + } + } + + Decomposed.Base = V; + return Decomposed; + } + + // Track whether we've seen at least one in bounds gep, and if so, whether + // all geps parsed were in bounds. + if (Decomposed.InBounds == std::nullopt) + Decomposed.InBounds = GEPOp->isInBounds(); + else if (!GEPOp->isInBounds()) + Decomposed.InBounds = false; + + assert(GEPOp->getSourceElementType()->isSized() && "GEP must be sized"); + + unsigned AS = GEPOp->getPointerAddressSpace(); + // Walk the indices of the GEP, accumulating them into BaseOff/VarIndices. + gep_type_iterator GTI = gep_type_begin(GEPOp); + unsigned IndexSize = DL.getIndexSizeInBits(AS); + // Assume all GEP operands are constants until proven otherwise. + bool GepHasConstantOffset = true; + for (User::const_op_iterator I = GEPOp->op_begin() + 1, E = GEPOp->op_end(); + I != E; ++I, ++GTI) { + const Value *Index = *I; + // Compute the (potentially symbolic) offset in bytes for this index. + if (StructType *STy = GTI.getStructTypeOrNull()) { + // For a struct, add the member offset. + unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue(); + if (FieldNo == 0) + continue; + + Decomposed.Offset += DL.getStructLayout(STy)->getElementOffset(FieldNo); + continue; + } + + // For an array/pointer, add the element offset, explicitly scaled. + if (const ConstantInt *CIdx = dyn_cast<ConstantInt>(Index)) { + if (CIdx->isZero()) + continue; + + // Don't attempt to analyze GEPs if the scalable index is not zero. + TypeSize AllocTypeSize = GTI.getSequentialElementStride(DL); + if (AllocTypeSize.isScalable()) { + Decomposed.Base = V; + return Decomposed; + } + + Decomposed.Offset += AllocTypeSize.getFixedValue() * + CIdx->getValue().sextOrTrunc(MaxIndexSize); + continue; + } + + TypeSize AllocTypeSize = GTI.getSequentialElementStride(DL); + if (AllocTypeSize.isScalable()) { + Decomposed.Base = V; + return Decomposed; + } + + GepHasConstantOffset = false; + + // If the integer type is smaller than the index size, it is implicitly + // sign extended or truncated to index size. + unsigned Width = Index->getType()->getIntegerBitWidth(); + unsigned SExtBits = IndexSize > Width ? IndexSize - Width : 0; + unsigned TruncBits = IndexSize < Width ? Width - IndexSize : 0; + LinearExpression LE = GetLinearExpression( + CastedValue(Index, 0, SExtBits, TruncBits, false), DL, 0, AC, DT); + + // Scale by the type size. + unsigned TypeSize = AllocTypeSize.getFixedValue(); + LE = LE.mul(APInt(IndexSize, TypeSize), GEPOp->isInBounds()); + Decomposed.Offset += LE.Offset.sext(MaxIndexSize); + APInt Scale = LE.Scale.sext(MaxIndexSize); + + // If we already had an occurrence of this index variable, merge this + // scale into it. For example, we want to handle: + // A[x][x] -> x*16 + x*4 -> x*20 + // This also ensures that 'x' only appears in the index list once. + for (unsigned i = 0, e = Decomposed.VarIndices.size(); i != e; ++i) { + if ((Decomposed.VarIndices[i].Val.V == LE.Val.V || + areBothVScale(Decomposed.VarIndices[i].Val.V, LE.Val.V)) && + Decomposed.VarIndices[i].Val.hasSameCastsAs(LE.Val)) { + Scale += Decomposed.VarIndices[i].Scale; + LE.IsNSW = false; // We cannot guarantee nsw for the merge. + Decomposed.VarIndices.erase(Decomposed.VarIndices.begin() + i); + break; + } + } + + // Make sure that we have a scale that makes sense for this target's + // index size. + adjustToIndexSize(Scale, IndexSize); + + if (!!Scale) { + VariableGEPIndex Entry = {LE.Val, Scale, CxtI, LE.IsNSW, + /* IsNegated */ false}; + Decomposed.VarIndices.push_back(Entry); + } + } + + // Take care of wrap-arounds + if (GepHasConstantOffset) + adjustToIndexSize(Decomposed.Offset, IndexSize); + + // Analyze the base pointer next. + V = GEPOp->getOperand(0); + } while (--MaxLookup); + + // If the chain of expressions is too deep, just return early. + Decomposed.Base = V; + SearchLimitReached++; + return Decomposed; +} + +ModRefInfo BasicAAResult::getModRefInfoMask(const MemoryLocation &Loc, + AAQueryInfo &AAQI, + bool IgnoreLocals) { + assert(Visited.empty() && "Visited must be cleared after use!"); + auto _ = make_scope_exit([&] { Visited.clear(); }); + + unsigned MaxLookup = 8; + SmallVector<const Value *, 16> Worklist; + Worklist.push_back(Loc.Ptr); + ModRefInfo Result = ModRefInfo::NoModRef; + + do { + const Value *V = getUnderlyingObject(Worklist.pop_back_val()); + if (!Visited.insert(V).second) + continue; + + // Ignore allocas if we were instructed to do so. + if (IgnoreLocals && isa<AllocaInst>(V)) + continue; + + // If the location points to memory that is known to be invariant for + // the life of the underlying SSA value, then we can exclude Mod from + // the set of valid memory effects. + // + // An argument that is marked readonly and noalias is known to be + // invariant while that function is executing. + if (const Argument *Arg = dyn_cast<Argument>(V)) { + if (Arg->hasNoAliasAttr() && Arg->onlyReadsMemory()) { + Result |= ModRefInfo::Ref; + continue; + } + } + + // A global constant can't be mutated. + if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) { + // Note: this doesn't require GV to be "ODR" because it isn't legal for a + // global to be marked constant in some modules and non-constant in + // others. GV may even be a declaration, not a definition. + if (!GV->isConstant()) + return ModRefInfo::ModRef; + continue; + } + + // If both select values point to local memory, then so does the select. + if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { + Worklist.push_back(SI->getTrueValue()); + Worklist.push_back(SI->getFalseValue()); + continue; + } + + // If all values incoming to a phi node point to local memory, then so does + // the phi. + if (const PHINode *PN = dyn_cast<PHINode>(V)) { + // Don't bother inspecting phi nodes with many operands. + if (PN->getNumIncomingValues() > MaxLookup) + return ModRefInfo::ModRef; + append_range(Worklist, PN->incoming_values()); + continue; + } + + // Otherwise be conservative. + return ModRefInfo::ModRef; + } while (!Worklist.empty() && --MaxLookup); + + // If we hit the maximum number of instructions to examine, be conservative. + if (!Worklist.empty()) + return ModRefInfo::ModRef; + + return Result; +} + +static bool isIntrinsicCall(const CallBase *Call, Intrinsic::ID IID) { + const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Call); + return II && II->getIntrinsicID() == IID; +} + +/// Returns the behavior when calling the given call site. +MemoryEffects BasicAAResult::getMemoryEffects(const CallBase *Call, + AAQueryInfo &AAQI) { + MemoryEffects Min = Call->getAttributes().getMemoryEffects(); + + if (const Function *F = dyn_cast<Function>(Call->getCalledOperand())) { + MemoryEffects FuncME = AAQI.AAR.getMemoryEffects(F); + // Operand bundles on the call may also read or write memory, in addition + // to the behavior of the called function. + if (Call->hasReadingOperandBundles()) + FuncME |= MemoryEffects::readOnly(); + if (Call->hasClobberingOperandBundles()) + FuncME |= MemoryEffects::writeOnly(); + Min &= FuncME; + } + + return Min; +} + +/// Returns the behavior when calling the given function. For use when the call +/// site is not known. +MemoryEffects BasicAAResult::getMemoryEffects(const Function *F) { + switch (F->getIntrinsicID()) { + case Intrinsic::experimental_guard: + case Intrinsic::experimental_deoptimize: + // These intrinsics can read arbitrary memory, and additionally modref + // inaccessible memory to model control dependence. + return MemoryEffects::readOnly() | + MemoryEffects::inaccessibleMemOnly(ModRefInfo::ModRef); + } + + return F->getMemoryEffects(); +} + +ModRefInfo BasicAAResult::getArgModRefInfo(const CallBase *Call, + unsigned ArgIdx) { + if (Call->paramHasAttr(ArgIdx, Attribute::WriteOnly)) + return ModRefInfo::Mod; + + if (Call->paramHasAttr(ArgIdx, Attribute::ReadOnly)) + return ModRefInfo::Ref; + + if (Call->paramHasAttr(ArgIdx, Attribute::ReadNone)) + return ModRefInfo::NoModRef; + + return ModRefInfo::ModRef; +} + +#ifndef NDEBUG +static const Function *getParent(const Value *V) { + if (const Instruction *inst = dyn_cast<Instruction>(V)) { + if (!inst->getParent()) + return nullptr; + return inst->getParent()->getParent(); + } + + if (const Argument *arg = dyn_cast<Argument>(V)) + return arg->getParent(); + + return nullptr; +} + +static bool notDifferentParent(const Value *O1, const Value *O2) { + + const Function *F1 = getParent(O1); + const Function *F2 = getParent(O2); + + return !F1 || !F2 || F1 == F2; +} +#endif + +AliasResult BasicAAResult::alias(const MemoryLocation &LocA, + const MemoryLocation &LocB, AAQueryInfo &AAQI, + const Instruction *CtxI) { + assert(notDifferentParent(LocA.Ptr, LocB.Ptr) && + "BasicAliasAnalysis doesn't support interprocedural queries."); + return aliasCheck(LocA.Ptr, LocA.Size, LocB.Ptr, LocB.Size, AAQI, CtxI); +} + +/// Checks to see if the specified callsite can clobber the specified memory +/// object. +/// +/// Since we only look at local properties of this function, we really can't +/// say much about this query. We do, however, use simple "address taken" +/// analysis on local objects. +ModRefInfo BasicAAResult::getModRefInfo(const CallBase *Call, + const MemoryLocation &Loc, + AAQueryInfo &AAQI) { + assert(notDifferentParent(Call, Loc.Ptr) && + "AliasAnalysis query involving multiple functions!"); + + const Value *Object = getUnderlyingObject(Loc.Ptr); + + // Calls marked 'tail' cannot read or write allocas from the current frame + // because the current frame might be destroyed by the time they run. However, + // a tail call may use an alloca with byval. Calling with byval copies the + // contents of the alloca into argument registers or stack slots, so there is + // no lifetime issue. + if (isa<AllocaInst>(Object)) + if (const CallInst *CI = dyn_cast<CallInst>(Call)) + if (CI->isTailCall() && + !CI->getAttributes().hasAttrSomewhere(Attribute::ByVal)) + return ModRefInfo::NoModRef; + + // Stack restore is able to modify unescaped dynamic allocas. Assume it may + // modify them even though the alloca is not escaped. + if (auto *AI = dyn_cast<AllocaInst>(Object)) + if (!AI->isStaticAlloca() && isIntrinsicCall(Call, Intrinsic::stackrestore)) + return ModRefInfo::Mod; + + // A call can access a locally allocated object either because it is passed as + // an argument to the call, or because it has escaped prior to the call. + // + // Make sure the object has not escaped here, and then check that none of the + // call arguments alias the object below. + if (!isa<Constant>(Object) && Call != Object && + AAQI.CI->isNotCapturedBefore(Object, Call, /*OrAt*/ false)) { + + // Optimistically assume that call doesn't touch Object and check this + // assumption in the following loop. + ModRefInfo Result = ModRefInfo::NoModRef; + + unsigned OperandNo = 0; + for (auto CI = Call->data_operands_begin(), CE = Call->data_operands_end(); + CI != CE; ++CI, ++OperandNo) { + if (!(*CI)->getType()->isPointerTy()) + continue; + + // Call doesn't access memory through this operand, so we don't care + // if it aliases with Object. + if (Call->doesNotAccessMemory(OperandNo)) + continue; + + // If this is a no-capture pointer argument, see if we can tell that it + // is impossible to alias the pointer we're checking. + AliasResult AR = + AAQI.AAR.alias(MemoryLocation::getBeforeOrAfter(*CI), + MemoryLocation::getBeforeOrAfter(Object), AAQI); + // Operand doesn't alias 'Object', continue looking for other aliases + if (AR == AliasResult::NoAlias) + continue; + // Operand aliases 'Object', but call doesn't modify it. Strengthen + // initial assumption and keep looking in case if there are more aliases. + if (Call->onlyReadsMemory(OperandNo)) { + Result |= ModRefInfo::Ref; + continue; + } + // Operand aliases 'Object' but call only writes into it. + if (Call->onlyWritesMemory(OperandNo)) { + Result |= ModRefInfo::Mod; + continue; + } + // This operand aliases 'Object' and call reads and writes into it. + // Setting ModRef will not yield an early return below, MustAlias is not + // used further. + Result = ModRefInfo::ModRef; + break; + } + + // Early return if we improved mod ref information + if (!isModAndRefSet(Result)) + return Result; + } + + // If the call is malloc/calloc like, we can assume that it doesn't + // modify any IR visible value. This is only valid because we assume these + // routines do not read values visible in the IR. TODO: Consider special + // casing realloc and strdup routines which access only their arguments as + // well. Or alternatively, replace all of this with inaccessiblememonly once + // that's implemented fully. + if (isMallocOrCallocLikeFn(Call, &TLI)) { + // Be conservative if the accessed pointer may alias the allocation - + // fallback to the generic handling below. + if (AAQI.AAR.alias(MemoryLocation::getBeforeOrAfter(Call), Loc, AAQI) == + AliasResult::NoAlias) + return ModRefInfo::NoModRef; + } + + // Like assumes, invariant.start intrinsics were also marked as arbitrarily + // writing so that proper control dependencies are maintained but they never + // mod any particular memory location visible to the IR. + // *Unlike* assumes (which are now modeled as NoModRef), invariant.start + // intrinsic is now modeled as reading memory. This prevents hoisting the + // invariant.start intrinsic over stores. Consider: + // *ptr = 40; + // *ptr = 50; + // invariant_start(ptr) + // int val = *ptr; + // print(val); + // + // This cannot be transformed to: + // + // *ptr = 40; + // invariant_start(ptr) + // *ptr = 50; + // int val = *ptr; + // print(val); + // + // The transformation will cause the second store to be ignored (based on + // rules of invariant.start) and print 40, while the first program always + // prints 50. + if (isIntrinsicCall(Call, Intrinsic::invariant_start)) + return ModRefInfo::Ref; + + // Be conservative. + return ModRefInfo::ModRef; +} + +ModRefInfo BasicAAResult::getModRefInfo(const CallBase *Call1, + const CallBase *Call2, + AAQueryInfo &AAQI) { + // Guard intrinsics are marked as arbitrarily writing so that proper control + // dependencies are maintained but they never mods any particular memory + // location. + // + // *Unlike* assumes, guard intrinsics are modeled as reading memory since the + // heap state at the point the guard is issued needs to be consistent in case + // the guard invokes the "deopt" continuation. + + // NB! This function is *not* commutative, so we special case two + // possibilities for guard intrinsics. + + if (isIntrinsicCall(Call1, Intrinsic::experimental_guard)) + return isModSet(getMemoryEffects(Call2, AAQI).getModRef()) + ? ModRefInfo::Ref + : ModRefInfo::NoModRef; + + if (isIntrinsicCall(Call2, Intrinsic::experimental_guard)) + return isModSet(getMemoryEffects(Call1, AAQI).getModRef()) + ? ModRefInfo::Mod + : ModRefInfo::NoModRef; + + // Be conservative. + return ModRefInfo::ModRef; +} + +/// Return true if we know V to the base address of the corresponding memory +/// object. This implies that any address less than V must be out of bounds +/// for the underlying object. Note that just being isIdentifiedObject() is +/// not enough - For example, a negative offset from a noalias argument or call +/// can be inbounds w.r.t the actual underlying object. +static bool isBaseOfObject(const Value *V) { + // TODO: We can handle other cases here + // 1) For GC languages, arguments to functions are often required to be + // base pointers. + // 2) Result of allocation routines are often base pointers. Leverage TLI. + return (isa<AllocaInst>(V) || isa<GlobalVariable>(V)); +} + +/// Provides a bunch of ad-hoc rules to disambiguate a GEP instruction against +/// another pointer. +/// +/// We know that V1 is a GEP, but we don't know anything about V2. +/// UnderlyingV1 is getUnderlyingObject(GEP1), UnderlyingV2 is the same for +/// V2. +AliasResult BasicAAResult::aliasGEP( + const GEPOperator *GEP1, LocationSize V1Size, + const Value *V2, LocationSize V2Size, + const Value *UnderlyingV1, const Value *UnderlyingV2, AAQueryInfo &AAQI) { + if (!V1Size.hasValue() && !V2Size.hasValue()) { + // TODO: This limitation exists for compile-time reasons. Relax it if we + // can avoid exponential pathological cases. + if (!isa<GEPOperator>(V2)) + return AliasResult::MayAlias; + + // If both accesses have unknown size, we can only check whether the base + // objects don't alias. + AliasResult BaseAlias = + AAQI.AAR.alias(MemoryLocation::getBeforeOrAfter(UnderlyingV1), + MemoryLocation::getBeforeOrAfter(UnderlyingV2), AAQI); + return BaseAlias == AliasResult::NoAlias ? AliasResult::NoAlias + : AliasResult::MayAlias; + } + + DominatorTree *DT = getDT(AAQI); + DecomposedGEP DecompGEP1 = DecomposeGEPExpression(GEP1, DL, &AC, DT); + DecomposedGEP DecompGEP2 = DecomposeGEPExpression(V2, DL, &AC, DT); + + // Bail if we were not able to decompose anything. + if (DecompGEP1.Base == GEP1 && DecompGEP2.Base == V2) + return AliasResult::MayAlias; + + // Subtract the GEP2 pointer from the GEP1 pointer to find out their + // symbolic difference. + subtractDecomposedGEPs(DecompGEP1, DecompGEP2, AAQI); + + // If an inbounds GEP would have to start from an out of bounds address + // for the two to alias, then we can assume noalias. + // TODO: Remove !isScalable() once BasicAA fully support scalable location + // size + if (*DecompGEP1.InBounds && DecompGEP1.VarIndices.empty() && + V2Size.hasValue() && !V2Size.isScalable() && + DecompGEP1.Offset.sge(V2Size.getValue()) && + isBaseOfObject(DecompGEP2.Base)) + return AliasResult::NoAlias; + + if (isa<GEPOperator>(V2)) { + // Symmetric case to above. + if (*DecompGEP2.InBounds && DecompGEP1.VarIndices.empty() && + V1Size.hasValue() && !V1Size.isScalable() && + DecompGEP1.Offset.sle(-V1Size.getValue()) && + isBaseOfObject(DecompGEP1.Base)) + return AliasResult::NoAlias; + } + + // For GEPs with identical offsets, we can preserve the size and AAInfo + // when performing the alias check on the underlying objects. + if (DecompGEP1.Offset == 0 && DecompGEP1.VarIndices.empty()) + return AAQI.AAR.alias(MemoryLocation(DecompGEP1.Base, V1Size), + MemoryLocation(DecompGEP2.Base, V2Size), AAQI); + + // Do the base pointers alias? + AliasResult BaseAlias = + AAQI.AAR.alias(MemoryLocation::getBeforeOrAfter(DecompGEP1.Base), + MemoryLocation::getBeforeOrAfter(DecompGEP2.Base), AAQI); + + // If we get a No or May, then return it immediately, no amount of analysis + // will improve this situation. + if (BaseAlias != AliasResult::MustAlias) { + assert(BaseAlias == AliasResult::NoAlias || + BaseAlias == AliasResult::MayAlias); + return BaseAlias; + } + + // If there is a constant difference between the pointers, but the difference + // is less than the size of the associated memory object, then we know + // that the objects are partially overlapping. If the difference is + // greater, we know they do not overlap. + if (DecompGEP1.VarIndices.empty()) { + APInt &Off = DecompGEP1.Offset; + + // Initialize for Off >= 0 (V2 <= GEP1) case. + const Value *LeftPtr = V2; + const Value *RightPtr = GEP1; + LocationSize VLeftSize = V2Size; + LocationSize VRightSize = V1Size; + const bool Swapped = Off.isNegative(); + + if (Swapped) { + // Swap if we have the situation where: + // + + + // | BaseOffset | + // ---------------->| + // |-->V1Size |-------> V2Size + // GEP1 V2 + std::swap(LeftPtr, RightPtr); + std::swap(VLeftSize, VRightSize); + Off = -Off; + } + + if (!VLeftSize.hasValue()) + return AliasResult::MayAlias; + + const TypeSize LSize = VLeftSize.getValue(); + if (!LSize.isScalable()) { + if (Off.ult(LSize)) { + // Conservatively drop processing if a phi was visited and/or offset is + // too big. + AliasResult AR = AliasResult::PartialAlias; + if (VRightSize.hasValue() && !VRightSize.isScalable() && + Off.ule(INT32_MAX) && (Off + VRightSize.getValue()).ule(LSize)) { + // Memory referenced by right pointer is nested. Save the offset in + // cache. Note that originally offset estimated as GEP1-V2, but + // AliasResult contains the shift that represents GEP1+Offset=V2. + AR.setOffset(-Off.getSExtValue()); + AR.swap(Swapped); + } + return AR; + } + return AliasResult::NoAlias; + } else { + // We can use the getVScaleRange to prove that Off >= (CR.upper * LSize). + ConstantRange CR = getVScaleRange(&F, Off.getBitWidth()); + bool Overflow; + APInt UpperRange = CR.getUnsignedMax().umul_ov( + APInt(Off.getBitWidth(), LSize.getKnownMinValue()), Overflow); + if (!Overflow && Off.uge(UpperRange)) + return AliasResult::NoAlias; + } + } + + // VScale Alias Analysis - Given one scalable offset between accesses and a + // scalable typesize, we can divide each side by vscale, treating both values + // as a constant. We prove that Offset/vscale >= TypeSize/vscale. + if (DecompGEP1.VarIndices.size() == 1 && + DecompGEP1.VarIndices[0].Val.TruncBits == 0 && + DecompGEP1.Offset.isZero() && + PatternMatch::match(DecompGEP1.VarIndices[0].Val.V, + PatternMatch::m_VScale())) { + const VariableGEPIndex &ScalableVar = DecompGEP1.VarIndices[0]; + APInt Scale = + ScalableVar.IsNegated ? -ScalableVar.Scale : ScalableVar.Scale; + LocationSize VLeftSize = Scale.isNegative() ? V1Size : V2Size; + + // Check if the offset is known to not overflow, if it does then attempt to + // prove it with the known values of vscale_range. + bool Overflows = !DecompGEP1.VarIndices[0].IsNSW; + if (Overflows) { + ConstantRange CR = getVScaleRange(&F, Scale.getBitWidth()); + (void)CR.getSignedMax().smul_ov(Scale, Overflows); + } + + if (!Overflows) { + // Note that we do not check that the typesize is scalable, as vscale >= 1 + // so noalias still holds so long as the dependency distance is at least + // as big as the typesize. + if (VLeftSize.hasValue() && + Scale.abs().uge(VLeftSize.getValue().getKnownMinValue())) + return AliasResult::NoAlias; + } + } + + // Bail on analysing scalable LocationSize + if (V1Size.isScalable() || V2Size.isScalable()) + return AliasResult::MayAlias; + + // We need to know both acess sizes for all the following heuristics. + if (!V1Size.hasValue() || !V2Size.hasValue()) + return AliasResult::MayAlias; + + APInt GCD; + ConstantRange OffsetRange = ConstantRange(DecompGEP1.Offset); + for (unsigned i = 0, e = DecompGEP1.VarIndices.size(); i != e; ++i) { + const VariableGEPIndex &Index = DecompGEP1.VarIndices[i]; + const APInt &Scale = Index.Scale; + APInt ScaleForGCD = Scale; + if (!Index.IsNSW) + ScaleForGCD = + APInt::getOneBitSet(Scale.getBitWidth(), Scale.countr_zero()); + + if (i == 0) + GCD = ScaleForGCD.abs(); + else + GCD = APIntOps::GreatestCommonDivisor(GCD, ScaleForGCD.abs()); + + ConstantRange CR = computeConstantRange(Index.Val.V, /* ForSigned */ false, + true, &AC, Index.CxtI); + KnownBits Known = + computeKnownBits(Index.Val.V, DL, 0, &AC, Index.CxtI, DT); + CR = CR.intersectWith( + ConstantRange::fromKnownBits(Known, /* Signed */ true), + ConstantRange::Signed); + CR = Index.Val.evaluateWith(CR).sextOrTrunc(OffsetRange.getBitWidth()); + + assert(OffsetRange.getBitWidth() == Scale.getBitWidth() && + "Bit widths are normalized to MaxIndexSize"); + if (Index.IsNSW) + CR = CR.smul_sat(ConstantRange(Scale)); + else + CR = CR.smul_fast(ConstantRange(Scale)); + + if (Index.IsNegated) + OffsetRange = OffsetRange.sub(CR); + else + OffsetRange = OffsetRange.add(CR); + } + + // We now have accesses at two offsets from the same base: + // 1. (...)*GCD + DecompGEP1.Offset with size V1Size + // 2. 0 with size V2Size + // Using arithmetic modulo GCD, the accesses are at + // [ModOffset..ModOffset+V1Size) and [0..V2Size). If the first access fits + // into the range [V2Size..GCD), then we know they cannot overlap. + APInt ModOffset = DecompGEP1.Offset.srem(GCD); + if (ModOffset.isNegative()) + ModOffset += GCD; // We want mod, not rem. + if (ModOffset.uge(V2Size.getValue()) && + (GCD - ModOffset).uge(V1Size.getValue())) + return AliasResult::NoAlias; + + // Compute ranges of potentially accessed bytes for both accesses. If the + // interseciton is empty, there can be no overlap. + unsigned BW = OffsetRange.getBitWidth(); + ConstantRange Range1 = OffsetRange.add( + ConstantRange(APInt(BW, 0), APInt(BW, V1Size.getValue()))); + ConstantRange Range2 = + ConstantRange(APInt(BW, 0), APInt(BW, V2Size.getValue())); + if (Range1.intersectWith(Range2).isEmptySet()) + return AliasResult::NoAlias; + + // Try to determine the range of values for VarIndex such that + // VarIndex <= -MinAbsVarIndex || MinAbsVarIndex <= VarIndex. + std::optional<APInt> MinAbsVarIndex; + if (DecompGEP1.VarIndices.size() == 1) { + // VarIndex = Scale*V. + const VariableGEPIndex &Var = DecompGEP1.VarIndices[0]; + if (Var.Val.TruncBits == 0 && + isKnownNonZero(Var.Val.V, SimplifyQuery(DL, DT, &AC, Var.CxtI))) { + // Check if abs(V*Scale) >= abs(Scale) holds in the presence of + // potentially wrapping math. + auto MultiplyByScaleNoWrap = [](const VariableGEPIndex &Var) { + if (Var.IsNSW) + return true; + + int ValOrigBW = Var.Val.V->getType()->getPrimitiveSizeInBits(); + // If Scale is small enough so that abs(V*Scale) >= abs(Scale) holds. + // The max value of abs(V) is 2^ValOrigBW - 1. Multiplying with a + // constant smaller than 2^(bitwidth(Val) - ValOrigBW) won't wrap. + int MaxScaleValueBW = Var.Val.getBitWidth() - ValOrigBW; + if (MaxScaleValueBW <= 0) + return false; + return Var.Scale.ule( + APInt::getMaxValue(MaxScaleValueBW).zext(Var.Scale.getBitWidth())); + }; + // Refine MinAbsVarIndex, if abs(Scale*V) >= abs(Scale) holds in the + // presence of potentially wrapping math. + if (MultiplyByScaleNoWrap(Var)) { + // If V != 0 then abs(VarIndex) >= abs(Scale). + MinAbsVarIndex = Var.Scale.abs(); + } + } + } else if (DecompGEP1.VarIndices.size() == 2) { + // VarIndex = Scale*V0 + (-Scale)*V1. + // If V0 != V1 then abs(VarIndex) >= abs(Scale). + // Check that MayBeCrossIteration is false, to avoid reasoning about + // inequality of values across loop iterations. + const VariableGEPIndex &Var0 = DecompGEP1.VarIndices[0]; + const VariableGEPIndex &Var1 = DecompGEP1.VarIndices[1]; + if (Var0.hasNegatedScaleOf(Var1) && Var0.Val.TruncBits == 0 && + Var0.Val.hasSameCastsAs(Var1.Val) && !AAQI.MayBeCrossIteration && + isKnownNonEqual(Var0.Val.V, Var1.Val.V, DL, &AC, /* CxtI */ nullptr, + DT)) + MinAbsVarIndex = Var0.Scale.abs(); + } + + if (MinAbsVarIndex) { + // The constant offset will have added at least +/-MinAbsVarIndex to it. + APInt OffsetLo = DecompGEP1.Offset - *MinAbsVarIndex; + APInt OffsetHi = DecompGEP1.Offset + *MinAbsVarIndex; + // We know that Offset <= OffsetLo || Offset >= OffsetHi + if (OffsetLo.isNegative() && (-OffsetLo).uge(V1Size.getValue()) && + OffsetHi.isNonNegative() && OffsetHi.uge(V2Size.getValue())) + return AliasResult::NoAlias; + } + + if (constantOffsetHeuristic(DecompGEP1, V1Size, V2Size, &AC, DT, AAQI)) + return AliasResult::NoAlias; + + // Statically, we can see that the base objects are the same, but the + // pointers have dynamic offsets which we can't resolve. And none of our + // little tricks above worked. + return AliasResult::MayAlias; +} + +static AliasResult MergeAliasResults(AliasResult A, AliasResult B) { + // If the results agree, take it. + if (A == B) + return A; + // A mix of PartialAlias and MustAlias is PartialAlias. + if ((A == AliasResult::PartialAlias && B == AliasResult::MustAlias) || + (B == AliasResult::PartialAlias && A == AliasResult::MustAlias)) + return AliasResult::PartialAlias; + // Otherwise, we don't know anything. + return AliasResult::MayAlias; +} + +/// Provides a bunch of ad-hoc rules to disambiguate a Select instruction +/// against another. +AliasResult +BasicAAResult::aliasSelect(const SelectInst *SI, LocationSize SISize, + const Value *V2, LocationSize V2Size, + AAQueryInfo &AAQI) { + // If the values are Selects with the same condition, we can do a more precise + // check: just check for aliases between the values on corresponding arms. + if (const SelectInst *SI2 = dyn_cast<SelectInst>(V2)) + if (isValueEqualInPotentialCycles(SI->getCondition(), SI2->getCondition(), + AAQI)) { + AliasResult Alias = + AAQI.AAR.alias(MemoryLocation(SI->getTrueValue(), SISize), + MemoryLocation(SI2->getTrueValue(), V2Size), AAQI); + if (Alias == AliasResult::MayAlias) + return AliasResult::MayAlias; + AliasResult ThisAlias = + AAQI.AAR.alias(MemoryLocation(SI->getFalseValue(), SISize), + MemoryLocation(SI2->getFalseValue(), V2Size), AAQI); + return MergeAliasResults(ThisAlias, Alias); + } + + // If both arms of the Select node NoAlias or MustAlias V2, then returns + // NoAlias / MustAlias. Otherwise, returns MayAlias. + AliasResult Alias = AAQI.AAR.alias(MemoryLocation(SI->getTrueValue(), SISize), + MemoryLocation(V2, V2Size), AAQI); + if (Alias == AliasResult::MayAlias) + return AliasResult::MayAlias; + + AliasResult ThisAlias = + AAQI.AAR.alias(MemoryLocation(SI->getFalseValue(), SISize), + MemoryLocation(V2, V2Size), AAQI); + return MergeAliasResults(ThisAlias, Alias); +} + +/// Provide a bunch of ad-hoc rules to disambiguate a PHI instruction against +/// another. +AliasResult BasicAAResult::aliasPHI(const PHINode *PN, LocationSize PNSize, + const Value *V2, LocationSize V2Size, + AAQueryInfo &AAQI) { + if (!PN->getNumIncomingValues()) + return AliasResult::NoAlias; + // If the values are PHIs in the same block, we can do a more precise + // as well as efficient check: just check for aliases between the values + // on corresponding edges. + if (const PHINode *PN2 = dyn_cast<PHINode>(V2)) + if (PN2->getParent() == PN->getParent()) { + std::optional<AliasResult> Alias; + for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { + AliasResult ThisAlias = AAQI.AAR.alias( + MemoryLocation(PN->getIncomingValue(i), PNSize), + MemoryLocation( + PN2->getIncomingValueForBlock(PN->getIncomingBlock(i)), V2Size), + AAQI); + if (Alias) + *Alias = MergeAliasResults(*Alias, ThisAlias); + else + Alias = ThisAlias; + if (*Alias == AliasResult::MayAlias) + break; + } + return *Alias; + } + + SmallVector<Value *, 4> V1Srcs; + // If a phi operand recurses back to the phi, we can still determine NoAlias + // if we don't alias the underlying objects of the other phi operands, as we + // know that the recursive phi needs to be based on them in some way. + bool isRecursive = false; + auto CheckForRecPhi = [&](Value *PV) { + if (!EnableRecPhiAnalysis) + return false; + if (getUnderlyingObject(PV) == PN) { + isRecursive = true; + return true; + } + return false; + }; + + SmallPtrSet<Value *, 4> UniqueSrc; + Value *OnePhi = nullptr; + for (Value *PV1 : PN->incoming_values()) { + // Skip the phi itself being the incoming value. + if (PV1 == PN) + continue; + + if (isa<PHINode>(PV1)) { + if (OnePhi && OnePhi != PV1) { + // To control potential compile time explosion, we choose to be + // conserviate when we have more than one Phi input. It is important + // that we handle the single phi case as that lets us handle LCSSA + // phi nodes and (combined with the recursive phi handling) simple + // pointer induction variable patterns. + return AliasResult::MayAlias; + } + OnePhi = PV1; + } + + if (CheckForRecPhi(PV1)) + continue; + + if (UniqueSrc.insert(PV1).second) + V1Srcs.push_back(PV1); + } + + if (OnePhi && UniqueSrc.size() > 1) + // Out of an abundance of caution, allow only the trivial lcssa and + // recursive phi cases. + return AliasResult::MayAlias; + + // If V1Srcs is empty then that means that the phi has no underlying non-phi + // value. This should only be possible in blocks unreachable from the entry + // block, but return MayAlias just in case. + if (V1Srcs.empty()) + return AliasResult::MayAlias; + + // If this PHI node is recursive, indicate that the pointer may be moved + // across iterations. We can only prove NoAlias if different underlying + // objects are involved. + if (isRecursive) + PNSize = LocationSize::beforeOrAfterPointer(); + + // In the recursive alias queries below, we may compare values from two + // different loop iterations. + SaveAndRestore SavedMayBeCrossIteration(AAQI.MayBeCrossIteration, true); + + AliasResult Alias = AAQI.AAR.alias(MemoryLocation(V1Srcs[0], PNSize), + MemoryLocation(V2, V2Size), AAQI); + + // Early exit if the check of the first PHI source against V2 is MayAlias. + // Other results are not possible. + if (Alias == AliasResult::MayAlias) + return AliasResult::MayAlias; + // With recursive phis we cannot guarantee that MustAlias/PartialAlias will + // remain valid to all elements and needs to conservatively return MayAlias. + if (isRecursive && Alias != AliasResult::NoAlias) + return AliasResult::MayAlias; + + // If all sources of the PHI node NoAlias or MustAlias V2, then returns + // NoAlias / MustAlias. Otherwise, returns MayAlias. + for (unsigned i = 1, e = V1Srcs.size(); i != e; ++i) { + Value *V = V1Srcs[i]; + + AliasResult ThisAlias = AAQI.AAR.alias( + MemoryLocation(V, PNSize), MemoryLocation(V2, V2Size), AAQI); + Alias = MergeAliasResults(ThisAlias, Alias); + if (Alias == AliasResult::MayAlias) + break; + } + + return Alias; +} + +/// Provides a bunch of ad-hoc rules to disambiguate in common cases, such as +/// array references. +AliasResult BasicAAResult::aliasCheck(const Value *V1, LocationSize V1Size, + const Value *V2, LocationSize V2Size, + AAQueryInfo &AAQI, + const Instruction *CtxI) { + // If either of the memory references is empty, it doesn't matter what the + // pointer values are. + if (V1Size.isZero() || V2Size.isZero()) + return AliasResult::NoAlias; + + // Strip off any casts if they exist. + V1 = V1->stripPointerCastsForAliasAnalysis(); + V2 = V2->stripPointerCastsForAliasAnalysis(); + + // If V1 or V2 is undef, the result is NoAlias because we can always pick a + // value for undef that aliases nothing in the program. + if (isa<UndefValue>(V1) || isa<UndefValue>(V2)) + return AliasResult::NoAlias; + + // Are we checking for alias of the same value? + // Because we look 'through' phi nodes, we could look at "Value" pointers from + // different iterations. We must therefore make sure that this is not the + // case. The function isValueEqualInPotentialCycles ensures that this cannot + // happen by looking at the visited phi nodes and making sure they cannot + // reach the value. + if (isValueEqualInPotentialCycles(V1, V2, AAQI)) + return AliasResult::MustAlias; + + if (!V1->getType()->isPointerTy() || !V2->getType()->isPointerTy()) + return AliasResult::NoAlias; // Scalars cannot alias each other + + // Figure out what objects these things are pointing to if we can. + const Value *O1 = getUnderlyingObject(V1, MaxLookupSearchDepth); + const Value *O2 = getUnderlyingObject(V2, MaxLookupSearchDepth); + + // Null values in the default address space don't point to any object, so they + // don't alias any other pointer. + if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O1)) + if (!NullPointerIsDefined(&F, CPN->getType()->getAddressSpace())) + return AliasResult::NoAlias; + if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O2)) + if (!NullPointerIsDefined(&F, CPN->getType()->getAddressSpace())) + return AliasResult::NoAlias; + + if (O1 != O2) { + // If V1/V2 point to two different objects, we know that we have no alias. + if (isIdentifiedObject(O1) && isIdentifiedObject(O2)) + return AliasResult::NoAlias; + + // Function arguments can't alias with things that are known to be + // unambigously identified at the function level. + if ((isa<Argument>(O1) && isIdentifiedFunctionLocal(O2)) || + (isa<Argument>(O2) && isIdentifiedFunctionLocal(O1))) + return AliasResult::NoAlias; + + // If one pointer is the result of a call/invoke or load and the other is a + // non-escaping local object within the same function, then we know the + // object couldn't escape to a point where the call could return it. + // + // Note that if the pointers are in different functions, there are a + // variety of complications. A call with a nocapture argument may still + // temporary store the nocapture argument's value in a temporary memory + // location if that memory location doesn't escape. Or it may pass a + // nocapture value to other functions as long as they don't capture it. + if (isEscapeSource(O1) && AAQI.CI->isNotCapturedBefore( + O2, dyn_cast<Instruction>(O1), /*OrAt*/ true)) + return AliasResult::NoAlias; + if (isEscapeSource(O2) && AAQI.CI->isNotCapturedBefore( + O1, dyn_cast<Instruction>(O2), /*OrAt*/ true)) + return AliasResult::NoAlias; + } + + // If the size of one access is larger than the entire object on the other + // side, then we know such behavior is undefined and can assume no alias. + bool NullIsValidLocation = NullPointerIsDefined(&F); + if ((isObjectSmallerThan( + O2, getMinimalExtentFrom(*V1, V1Size, DL, NullIsValidLocation), DL, + TLI, NullIsValidLocation)) || + (isObjectSmallerThan( + O1, getMinimalExtentFrom(*V2, V2Size, DL, NullIsValidLocation), DL, + TLI, NullIsValidLocation))) + return AliasResult::NoAlias; + + if (EnableSeparateStorageAnalysis) { + for (AssumptionCache::ResultElem &Elem : AC.assumptionsFor(O1)) { + if (!Elem || Elem.Index == AssumptionCache::ExprResultIdx) + continue; + + AssumeInst *Assume = cast<AssumeInst>(Elem); + OperandBundleUse OBU = Assume->getOperandBundleAt(Elem.Index); + if (OBU.getTagName() == "separate_storage") { + assert(OBU.Inputs.size() == 2); + const Value *Hint1 = OBU.Inputs[0].get(); + const Value *Hint2 = OBU.Inputs[1].get(); + // This is often a no-op; instcombine rewrites this for us. No-op + // getUnderlyingObject calls are fast, though. + const Value *HintO1 = getUnderlyingObject(Hint1); + const Value *HintO2 = getUnderlyingObject(Hint2); + + DominatorTree *DT = getDT(AAQI); + auto ValidAssumeForPtrContext = [&](const Value *Ptr) { + if (const Instruction *PtrI = dyn_cast<Instruction>(Ptr)) { + return isValidAssumeForContext(Assume, PtrI, DT, + /* AllowEphemerals */ true); + } + if (const Argument *PtrA = dyn_cast<Argument>(Ptr)) { + const Instruction *FirstI = + &*PtrA->getParent()->getEntryBlock().begin(); + return isValidAssumeForContext(Assume, FirstI, DT, + /* AllowEphemerals */ true); + } + return false; + }; + + if ((O1 == HintO1 && O2 == HintO2) || (O1 == HintO2 && O2 == HintO1)) { + // Note that we go back to V1 and V2 for the + // ValidAssumeForPtrContext checks; they're dominated by O1 and O2, + // so strictly more assumptions are valid for them. + if ((CtxI && isValidAssumeForContext(Assume, CtxI, DT, + /* AllowEphemerals */ true)) || + ValidAssumeForPtrContext(V1) || ValidAssumeForPtrContext(V2)) { + return AliasResult::NoAlias; + } + } + } + } + } + + // If one the accesses may be before the accessed pointer, canonicalize this + // by using unknown after-pointer sizes for both accesses. This is + // equivalent, because regardless of which pointer is lower, one of them + // will always came after the other, as long as the underlying objects aren't + // disjoint. We do this so that the rest of BasicAA does not have to deal + // with accesses before the base pointer, and to improve cache utilization by + // merging equivalent states. + if (V1Size.mayBeBeforePointer() || V2Size.mayBeBeforePointer()) { + V1Size = LocationSize::afterPointer(); + V2Size = LocationSize::afterPointer(); + } + + // FIXME: If this depth limit is hit, then we may cache sub-optimal results + // for recursive queries. For this reason, this limit is chosen to be large + // enough to be very rarely hit, while still being small enough to avoid + // stack overflows. + if (AAQI.Depth >= 512) + return AliasResult::MayAlias; + + // Check the cache before climbing up use-def chains. This also terminates + // otherwise infinitely recursive queries. Include MayBeCrossIteration in the + // cache key, because some cases where MayBeCrossIteration==false returns + // MustAlias or NoAlias may become MayAlias under MayBeCrossIteration==true. + AAQueryInfo::LocPair Locs({V1, V1Size, AAQI.MayBeCrossIteration}, + {V2, V2Size, AAQI.MayBeCrossIteration}); + const bool Swapped = V1 > V2; + if (Swapped) + std::swap(Locs.first, Locs.second); + const auto &Pair = AAQI.AliasCache.try_emplace( + Locs, AAQueryInfo::CacheEntry{AliasResult::NoAlias, 0}); + if (!Pair.second) { + auto &Entry = Pair.first->second; + if (!Entry.isDefinitive()) { + // Remember that we used an assumption. This may either be a direct use + // of an assumption, or a use of an entry that may itself be based on an + // assumption. + ++AAQI.NumAssumptionUses; + if (Entry.isAssumption()) + ++Entry.NumAssumptionUses; + } + // Cache contains sorted {V1,V2} pairs but we should return original order. + auto Result = Entry.Result; + Result.swap(Swapped); + return Result; + } + + int OrigNumAssumptionUses = AAQI.NumAssumptionUses; + unsigned OrigNumAssumptionBasedResults = AAQI.AssumptionBasedResults.size(); + AliasResult Result = + aliasCheckRecursive(V1, V1Size, V2, V2Size, AAQI, O1, O2); + + auto It = AAQI.AliasCache.find(Locs); + assert(It != AAQI.AliasCache.end() && "Must be in cache"); + auto &Entry = It->second; + + // Check whether a NoAlias assumption has been used, but disproven. + bool AssumptionDisproven = + Entry.NumAssumptionUses > 0 && Result != AliasResult::NoAlias; + if (AssumptionDisproven) + Result = AliasResult::MayAlias; + + // This is a definitive result now, when considered as a root query. + AAQI.NumAssumptionUses -= Entry.NumAssumptionUses; + Entry.Result = Result; + // Cache contains sorted {V1,V2} pairs. + Entry.Result.swap(Swapped); + + // If the assumption has been disproven, remove any results that may have + // been based on this assumption. Do this after the Entry updates above to + // avoid iterator invalidation. + if (AssumptionDisproven) + while (AAQI.AssumptionBasedResults.size() > OrigNumAssumptionBasedResults) + AAQI.AliasCache.erase(AAQI.AssumptionBasedResults.pop_back_val()); + + // The result may still be based on assumptions higher up in the chain. + // Remember it, so it can be purged from the cache later. + if (OrigNumAssumptionUses != AAQI.NumAssumptionUses && + Result != AliasResult::MayAlias) { + AAQI.AssumptionBasedResults.push_back(Locs); + Entry.NumAssumptionUses = AAQueryInfo::CacheEntry::AssumptionBased; + } else { + Entry.NumAssumptionUses = AAQueryInfo::CacheEntry::Definitive; + } + + // Depth is incremented before this function is called, so Depth==1 indicates + // a root query. + if (AAQI.Depth == 1) { + // Any remaining assumption based results must be based on proven + // assumptions, so convert them to definitive results. + for (const auto &Loc : AAQI.AssumptionBasedResults) { + auto It = AAQI.AliasCache.find(Loc); + if (It != AAQI.AliasCache.end()) + It->second.NumAssumptionUses = AAQueryInfo::CacheEntry::Definitive; + } + AAQI.AssumptionBasedResults.clear(); + AAQI.NumAssumptionUses = 0; + } + return Result; +} + +AliasResult BasicAAResult::aliasCheckRecursive( + const Value *V1, LocationSize V1Size, + const Value *V2, LocationSize V2Size, + AAQueryInfo &AAQI, const Value *O1, const Value *O2) { + if (const GEPOperator *GV1 = dyn_cast<GEPOperator>(V1)) { + AliasResult Result = aliasGEP(GV1, V1Size, V2, V2Size, O1, O2, AAQI); + if (Result != AliasResult::MayAlias) + return Result; + } else if (const GEPOperator *GV2 = dyn_cast<GEPOperator>(V2)) { + AliasResult Result = aliasGEP(GV2, V2Size, V1, V1Size, O2, O1, AAQI); + Result.swap(); + if (Result != AliasResult::MayAlias) + return Result; + } + + if (const PHINode *PN = dyn_cast<PHINode>(V1)) { + AliasResult Result = aliasPHI(PN, V1Size, V2, V2Size, AAQI); + if (Result != AliasResult::MayAlias) + return Result; + } else if (const PHINode *PN = dyn_cast<PHINode>(V2)) { + AliasResult Result = aliasPHI(PN, V2Size, V1, V1Size, AAQI); + Result.swap(); + if (Result != AliasResult::MayAlias) + return Result; + } + + if (const SelectInst *S1 = dyn_cast<SelectInst>(V1)) { + AliasResult Result = aliasSelect(S1, V1Size, V2, V2Size, AAQI); + if (Result != AliasResult::MayAlias) + return Result; + } else if (const SelectInst *S2 = dyn_cast<SelectInst>(V2)) { + AliasResult Result = aliasSelect(S2, V2Size, V1, V1Size, AAQI); + Result.swap(); + if (Result != AliasResult::MayAlias) + return Result; + } + + // If both pointers are pointing into the same object and one of them + // accesses the entire object, then the accesses must overlap in some way. + if (O1 == O2) { + bool NullIsValidLocation = NullPointerIsDefined(&F); + if (V1Size.isPrecise() && V2Size.isPrecise() && + (isObjectSize(O1, V1Size.getValue(), DL, TLI, NullIsValidLocation) || + isObjectSize(O2, V2Size.getValue(), DL, TLI, NullIsValidLocation))) + return AliasResult::PartialAlias; + } + + return AliasResult::MayAlias; +} + +/// Check whether two Values can be considered equivalent. +/// +/// If the values may come from different cycle iterations, this will also +/// check that the values are not part of cycle. We have to do this because we +/// are looking through phi nodes, that is we say +/// noalias(V, phi(VA, VB)) if noalias(V, VA) and noalias(V, VB). +bool BasicAAResult::isValueEqualInPotentialCycles(const Value *V, + const Value *V2, + const AAQueryInfo &AAQI) { + if (V != V2) + return false; + + if (!AAQI.MayBeCrossIteration) + return true; + + // Non-instructions and instructions in the entry block cannot be part of + // a loop. + const Instruction *Inst = dyn_cast<Instruction>(V); + if (!Inst || Inst->getParent()->isEntryBlock()) + return true; + + return isNotInCycle(Inst, getDT(AAQI), /*LI*/ nullptr); +} + +/// Computes the symbolic difference between two de-composed GEPs. +void BasicAAResult::subtractDecomposedGEPs(DecomposedGEP &DestGEP, + const DecomposedGEP &SrcGEP, + const AAQueryInfo &AAQI) { + DestGEP.Offset -= SrcGEP.Offset; + for (const VariableGEPIndex &Src : SrcGEP.VarIndices) { + // Find V in Dest. This is N^2, but pointer indices almost never have more + // than a few variable indexes. + bool Found = false; + for (auto I : enumerate(DestGEP.VarIndices)) { + VariableGEPIndex &Dest = I.value(); + if ((!isValueEqualInPotentialCycles(Dest.Val.V, Src.Val.V, AAQI) && + !areBothVScale(Dest.Val.V, Src.Val.V)) || + !Dest.Val.hasSameCastsAs(Src.Val)) + continue; + + // Normalize IsNegated if we're going to lose the NSW flag anyway. + if (Dest.IsNegated) { + Dest.Scale = -Dest.Scale; + Dest.IsNegated = false; + Dest.IsNSW = false; + } + + // If we found it, subtract off Scale V's from the entry in Dest. If it + // goes to zero, remove the entry. + if (Dest.Scale != Src.Scale) { + Dest.Scale -= Src.Scale; + Dest.IsNSW = false; + } else { + DestGEP.VarIndices.erase(DestGEP.VarIndices.begin() + I.index()); + } + Found = true; + break; + } + + // If we didn't consume this entry, add it to the end of the Dest list. + if (!Found) { + VariableGEPIndex Entry = {Src.Val, Src.Scale, Src.CxtI, Src.IsNSW, + /* IsNegated */ true}; + DestGEP.VarIndices.push_back(Entry); + } + } +} + +bool BasicAAResult::constantOffsetHeuristic(const DecomposedGEP &GEP, + LocationSize MaybeV1Size, + LocationSize MaybeV2Size, + AssumptionCache *AC, + DominatorTree *DT, + const AAQueryInfo &AAQI) { + if (GEP.VarIndices.size() != 2 || !MaybeV1Size.hasValue() || + !MaybeV2Size.hasValue()) + return false; + + const uint64_t V1Size = MaybeV1Size.getValue(); + const uint64_t V2Size = MaybeV2Size.getValue(); + + const VariableGEPIndex &Var0 = GEP.VarIndices[0], &Var1 = GEP.VarIndices[1]; + + if (Var0.Val.TruncBits != 0 || !Var0.Val.hasSameCastsAs(Var1.Val) || + !Var0.hasNegatedScaleOf(Var1) || + Var0.Val.V->getType() != Var1.Val.V->getType()) + return false; + + // We'll strip off the Extensions of Var0 and Var1 and do another round + // of GetLinearExpression decomposition. In the example above, if Var0 + // is zext(%x + 1) we should get V1 == %x and V1Offset == 1. + + LinearExpression E0 = + GetLinearExpression(CastedValue(Var0.Val.V), DL, 0, AC, DT); + LinearExpression E1 = + GetLinearExpression(CastedValue(Var1.Val.V), DL, 0, AC, DT); + if (E0.Scale != E1.Scale || !E0.Val.hasSameCastsAs(E1.Val) || + !isValueEqualInPotentialCycles(E0.Val.V, E1.Val.V, AAQI)) + return false; + + // We have a hit - Var0 and Var1 only differ by a constant offset! + + // If we've been sext'ed then zext'd the maximum difference between Var0 and + // Var1 is possible to calculate, but we're just interested in the absolute + // minimum difference between the two. The minimum distance may occur due to + // wrapping; consider "add i3 %i, 5": if %i == 7 then 7 + 5 mod 8 == 4, and so + // the minimum distance between %i and %i + 5 is 3. + APInt MinDiff = E0.Offset - E1.Offset, Wrapped = -MinDiff; + MinDiff = APIntOps::umin(MinDiff, Wrapped); + APInt MinDiffBytes = + MinDiff.zextOrTrunc(Var0.Scale.getBitWidth()) * Var0.Scale.abs(); + + // We can't definitely say whether GEP1 is before or after V2 due to wrapping + // arithmetic (i.e. for some values of GEP1 and V2 GEP1 < V2, and for other + // values GEP1 > V2). We'll therefore only declare NoAlias if both V1Size and + // V2Size can fit in the MinDiffBytes gap. + return MinDiffBytes.uge(V1Size + GEP.Offset.abs()) && + MinDiffBytes.uge(V2Size + GEP.Offset.abs()); +} + +//===----------------------------------------------------------------------===// +// BasicAliasAnalysis Pass +//===----------------------------------------------------------------------===// + +AnalysisKey BasicAA::Key; + +BasicAAResult BasicAA::run(Function &F, FunctionAnalysisManager &AM) { + auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); + auto &AC = AM.getResult<AssumptionAnalysis>(F); + auto *DT = &AM.getResult<DominatorTreeAnalysis>(F); + return BasicAAResult(F.getDataLayout(), F, TLI, AC, DT); +} + +BasicAAWrapperPass::BasicAAWrapperPass() : FunctionPass(ID) { + initializeBasicAAWrapperPassPass(*PassRegistry::getPassRegistry()); +} + +char BasicAAWrapperPass::ID = 0; + +void BasicAAWrapperPass::anchor() {} + +INITIALIZE_PASS_BEGIN(BasicAAWrapperPass, "basic-aa", + "Basic Alias Analysis (stateless AA impl)", true, true) +INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) +INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) +INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) +INITIALIZE_PASS_END(BasicAAWrapperPass, "basic-aa", + "Basic Alias Analysis (stateless AA impl)", true, true) + +FunctionPass *llvm::createBasicAAWrapperPass() { + return new BasicAAWrapperPass(); +} + +bool BasicAAWrapperPass::runOnFunction(Function &F) { + auto &ACT = getAnalysis<AssumptionCacheTracker>(); + auto &TLIWP = getAnalysis<TargetLibraryInfoWrapperPass>(); + auto &DTWP = getAnalysis<DominatorTreeWrapperPass>(); + + Result.reset(new BasicAAResult(F.getDataLayout(), F, + TLIWP.getTLI(F), ACT.getAssumptionCache(F), + &DTWP.getDomTree())); + + return false; +} + +void BasicAAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { + AU.setPreservesAll(); + AU.addRequiredTransitive<AssumptionCacheTracker>(); + AU.addRequiredTransitive<DominatorTreeWrapperPass>(); + AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>(); +} |