diff options
Diffstat (limited to 'contrib/llvm-project/llvm/lib/Analysis/ConstantFolding.cpp')
| -rw-r--r-- | contrib/llvm-project/llvm/lib/Analysis/ConstantFolding.cpp | 2546 | 
1 files changed, 2546 insertions, 0 deletions
diff --git a/contrib/llvm-project/llvm/lib/Analysis/ConstantFolding.cpp b/contrib/llvm-project/llvm/lib/Analysis/ConstantFolding.cpp new file mode 100644 index 000000000000..20231ca78b45 --- /dev/null +++ b/contrib/llvm-project/llvm/lib/Analysis/ConstantFolding.cpp @@ -0,0 +1,2546 @@ +//===-- ConstantFolding.cpp - Fold instructions into constants ------------===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// This file defines routines for folding instructions into constants. +// +// Also, to supplement the basic IR ConstantExpr simplifications, +// this file defines some additional folding routines that can make use of +// DataLayout information. These functions cannot go in IR due to library +// dependency issues. +// +//===----------------------------------------------------------------------===// + +#include "llvm/Analysis/ConstantFolding.h" +#include "llvm/ADT/APFloat.h" +#include "llvm/ADT/APInt.h" +#include "llvm/ADT/ArrayRef.h" +#include "llvm/ADT/DenseMap.h" +#include "llvm/ADT/STLExtras.h" +#include "llvm/ADT/SmallVector.h" +#include "llvm/ADT/StringRef.h" +#include "llvm/Analysis/TargetLibraryInfo.h" +#include "llvm/Analysis/ValueTracking.h" +#include "llvm/Analysis/VectorUtils.h" +#include "llvm/Config/config.h" +#include "llvm/IR/Constant.h" +#include "llvm/IR/Constants.h" +#include "llvm/IR/DataLayout.h" +#include "llvm/IR/DerivedTypes.h" +#include "llvm/IR/Function.h" +#include "llvm/IR/GlobalValue.h" +#include "llvm/IR/GlobalVariable.h" +#include "llvm/IR/InstrTypes.h" +#include "llvm/IR/Instruction.h" +#include "llvm/IR/Instructions.h" +#include "llvm/IR/Operator.h" +#include "llvm/IR/Type.h" +#include "llvm/IR/Value.h" +#include "llvm/Support/Casting.h" +#include "llvm/Support/ErrorHandling.h" +#include "llvm/Support/KnownBits.h" +#include "llvm/Support/MathExtras.h" +#include <cassert> +#include <cerrno> +#include <cfenv> +#include <cmath> +#include <cstddef> +#include <cstdint> + +using namespace llvm; + +namespace { + +//===----------------------------------------------------------------------===// +// Constant Folding internal helper functions +//===----------------------------------------------------------------------===// + +static Constant *foldConstVectorToAPInt(APInt &Result, Type *DestTy, +                                        Constant *C, Type *SrcEltTy, +                                        unsigned NumSrcElts, +                                        const DataLayout &DL) { +  // Now that we know that the input value is a vector of integers, just shift +  // and insert them into our result. +  unsigned BitShift = DL.getTypeSizeInBits(SrcEltTy); +  for (unsigned i = 0; i != NumSrcElts; ++i) { +    Constant *Element; +    if (DL.isLittleEndian()) +      Element = C->getAggregateElement(NumSrcElts - i - 1); +    else +      Element = C->getAggregateElement(i); + +    if (Element && isa<UndefValue>(Element)) { +      Result <<= BitShift; +      continue; +    } + +    auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element); +    if (!ElementCI) +      return ConstantExpr::getBitCast(C, DestTy); + +    Result <<= BitShift; +    Result |= ElementCI->getValue().zextOrSelf(Result.getBitWidth()); +  } + +  return nullptr; +} + +/// Constant fold bitcast, symbolically evaluating it with DataLayout. +/// This always returns a non-null constant, but it may be a +/// ConstantExpr if unfoldable. +Constant *FoldBitCast(Constant *C, Type *DestTy, const DataLayout &DL) { +  // Catch the obvious splat cases. +  if (C->isNullValue() && !DestTy->isX86_MMXTy()) +    return Constant::getNullValue(DestTy); +  if (C->isAllOnesValue() && !DestTy->isX86_MMXTy() && +      !DestTy->isPtrOrPtrVectorTy()) // Don't get ones for ptr types! +    return Constant::getAllOnesValue(DestTy); + +  if (auto *VTy = dyn_cast<VectorType>(C->getType())) { +    // Handle a vector->scalar integer/fp cast. +    if (isa<IntegerType>(DestTy) || DestTy->isFloatingPointTy()) { +      unsigned NumSrcElts = VTy->getNumElements(); +      Type *SrcEltTy = VTy->getElementType(); + +      // If the vector is a vector of floating point, convert it to vector of int +      // to simplify things. +      if (SrcEltTy->isFloatingPointTy()) { +        unsigned FPWidth = SrcEltTy->getPrimitiveSizeInBits(); +        Type *SrcIVTy = +          VectorType::get(IntegerType::get(C->getContext(), FPWidth), NumSrcElts); +        // Ask IR to do the conversion now that #elts line up. +        C = ConstantExpr::getBitCast(C, SrcIVTy); +      } + +      APInt Result(DL.getTypeSizeInBits(DestTy), 0); +      if (Constant *CE = foldConstVectorToAPInt(Result, DestTy, C, +                                                SrcEltTy, NumSrcElts, DL)) +        return CE; + +      if (isa<IntegerType>(DestTy)) +        return ConstantInt::get(DestTy, Result); + +      APFloat FP(DestTy->getFltSemantics(), Result); +      return ConstantFP::get(DestTy->getContext(), FP); +    } +  } + +  // The code below only handles casts to vectors currently. +  auto *DestVTy = dyn_cast<VectorType>(DestTy); +  if (!DestVTy) +    return ConstantExpr::getBitCast(C, DestTy); + +  // If this is a scalar -> vector cast, convert the input into a <1 x scalar> +  // vector so the code below can handle it uniformly. +  if (isa<ConstantFP>(C) || isa<ConstantInt>(C)) { +    Constant *Ops = C; // don't take the address of C! +    return FoldBitCast(ConstantVector::get(Ops), DestTy, DL); +  } + +  // If this is a bitcast from constant vector -> vector, fold it. +  if (!isa<ConstantDataVector>(C) && !isa<ConstantVector>(C)) +    return ConstantExpr::getBitCast(C, DestTy); + +  // If the element types match, IR can fold it. +  unsigned NumDstElt = DestVTy->getNumElements(); +  unsigned NumSrcElt = C->getType()->getVectorNumElements(); +  if (NumDstElt == NumSrcElt) +    return ConstantExpr::getBitCast(C, DestTy); + +  Type *SrcEltTy = C->getType()->getVectorElementType(); +  Type *DstEltTy = DestVTy->getElementType(); + +  // Otherwise, we're changing the number of elements in a vector, which +  // requires endianness information to do the right thing.  For example, +  //    bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>) +  // folds to (little endian): +  //    <4 x i32> <i32 0, i32 0, i32 1, i32 0> +  // and to (big endian): +  //    <4 x i32> <i32 0, i32 0, i32 0, i32 1> + +  // First thing is first.  We only want to think about integer here, so if +  // we have something in FP form, recast it as integer. +  if (DstEltTy->isFloatingPointTy()) { +    // Fold to an vector of integers with same size as our FP type. +    unsigned FPWidth = DstEltTy->getPrimitiveSizeInBits(); +    Type *DestIVTy = +      VectorType::get(IntegerType::get(C->getContext(), FPWidth), NumDstElt); +    // Recursively handle this integer conversion, if possible. +    C = FoldBitCast(C, DestIVTy, DL); + +    // Finally, IR can handle this now that #elts line up. +    return ConstantExpr::getBitCast(C, DestTy); +  } + +  // Okay, we know the destination is integer, if the input is FP, convert +  // it to integer first. +  if (SrcEltTy->isFloatingPointTy()) { +    unsigned FPWidth = SrcEltTy->getPrimitiveSizeInBits(); +    Type *SrcIVTy = +      VectorType::get(IntegerType::get(C->getContext(), FPWidth), NumSrcElt); +    // Ask IR to do the conversion now that #elts line up. +    C = ConstantExpr::getBitCast(C, SrcIVTy); +    // If IR wasn't able to fold it, bail out. +    if (!isa<ConstantVector>(C) &&  // FIXME: Remove ConstantVector. +        !isa<ConstantDataVector>(C)) +      return C; +  } + +  // Now we know that the input and output vectors are both integer vectors +  // of the same size, and that their #elements is not the same.  Do the +  // conversion here, which depends on whether the input or output has +  // more elements. +  bool isLittleEndian = DL.isLittleEndian(); + +  SmallVector<Constant*, 32> Result; +  if (NumDstElt < NumSrcElt) { +    // Handle: bitcast (<4 x i32> <i32 0, i32 1, i32 2, i32 3> to <2 x i64>) +    Constant *Zero = Constant::getNullValue(DstEltTy); +    unsigned Ratio = NumSrcElt/NumDstElt; +    unsigned SrcBitSize = SrcEltTy->getPrimitiveSizeInBits(); +    unsigned SrcElt = 0; +    for (unsigned i = 0; i != NumDstElt; ++i) { +      // Build each element of the result. +      Constant *Elt = Zero; +      unsigned ShiftAmt = isLittleEndian ? 0 : SrcBitSize*(Ratio-1); +      for (unsigned j = 0; j != Ratio; ++j) { +        Constant *Src = C->getAggregateElement(SrcElt++); +        if (Src && isa<UndefValue>(Src)) +          Src = Constant::getNullValue(C->getType()->getVectorElementType()); +        else +          Src = dyn_cast_or_null<ConstantInt>(Src); +        if (!Src)  // Reject constantexpr elements. +          return ConstantExpr::getBitCast(C, DestTy); + +        // Zero extend the element to the right size. +        Src = ConstantExpr::getZExt(Src, Elt->getType()); + +        // Shift it to the right place, depending on endianness. +        Src = ConstantExpr::getShl(Src, +                                   ConstantInt::get(Src->getType(), ShiftAmt)); +        ShiftAmt += isLittleEndian ? SrcBitSize : -SrcBitSize; + +        // Mix it in. +        Elt = ConstantExpr::getOr(Elt, Src); +      } +      Result.push_back(Elt); +    } +    return ConstantVector::get(Result); +  } + +  // Handle: bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>) +  unsigned Ratio = NumDstElt/NumSrcElt; +  unsigned DstBitSize = DL.getTypeSizeInBits(DstEltTy); + +  // Loop over each source value, expanding into multiple results. +  for (unsigned i = 0; i != NumSrcElt; ++i) { +    auto *Element = C->getAggregateElement(i); + +    if (!Element) // Reject constantexpr elements. +      return ConstantExpr::getBitCast(C, DestTy); + +    if (isa<UndefValue>(Element)) { +      // Correctly Propagate undef values. +      Result.append(Ratio, UndefValue::get(DstEltTy)); +      continue; +    } + +    auto *Src = dyn_cast<ConstantInt>(Element); +    if (!Src) +      return ConstantExpr::getBitCast(C, DestTy); + +    unsigned ShiftAmt = isLittleEndian ? 0 : DstBitSize*(Ratio-1); +    for (unsigned j = 0; j != Ratio; ++j) { +      // Shift the piece of the value into the right place, depending on +      // endianness. +      Constant *Elt = ConstantExpr::getLShr(Src, +                                  ConstantInt::get(Src->getType(), ShiftAmt)); +      ShiftAmt += isLittleEndian ? DstBitSize : -DstBitSize; + +      // Truncate the element to an integer with the same pointer size and +      // convert the element back to a pointer using a inttoptr. +      if (DstEltTy->isPointerTy()) { +        IntegerType *DstIntTy = Type::getIntNTy(C->getContext(), DstBitSize); +        Constant *CE = ConstantExpr::getTrunc(Elt, DstIntTy); +        Result.push_back(ConstantExpr::getIntToPtr(CE, DstEltTy)); +        continue; +      } + +      // Truncate and remember this piece. +      Result.push_back(ConstantExpr::getTrunc(Elt, DstEltTy)); +    } +  } + +  return ConstantVector::get(Result); +} + +} // end anonymous namespace + +/// If this constant is a constant offset from a global, return the global and +/// the constant. Because of constantexprs, this function is recursive. +bool llvm::IsConstantOffsetFromGlobal(Constant *C, GlobalValue *&GV, +                                      APInt &Offset, const DataLayout &DL) { +  // Trivial case, constant is the global. +  if ((GV = dyn_cast<GlobalValue>(C))) { +    unsigned BitWidth = DL.getIndexTypeSizeInBits(GV->getType()); +    Offset = APInt(BitWidth, 0); +    return true; +  } + +  // Otherwise, if this isn't a constant expr, bail out. +  auto *CE = dyn_cast<ConstantExpr>(C); +  if (!CE) return false; + +  // Look through ptr->int and ptr->ptr casts. +  if (CE->getOpcode() == Instruction::PtrToInt || +      CE->getOpcode() == Instruction::BitCast) +    return IsConstantOffsetFromGlobal(CE->getOperand(0), GV, Offset, DL); + +  // i32* getelementptr ([5 x i32]* @a, i32 0, i32 5) +  auto *GEP = dyn_cast<GEPOperator>(CE); +  if (!GEP) +    return false; + +  unsigned BitWidth = DL.getIndexTypeSizeInBits(GEP->getType()); +  APInt TmpOffset(BitWidth, 0); + +  // If the base isn't a global+constant, we aren't either. +  if (!IsConstantOffsetFromGlobal(CE->getOperand(0), GV, TmpOffset, DL)) +    return false; + +  // Otherwise, add any offset that our operands provide. +  if (!GEP->accumulateConstantOffset(DL, TmpOffset)) +    return false; + +  Offset = TmpOffset; +  return true; +} + +Constant *llvm::ConstantFoldLoadThroughBitcast(Constant *C, Type *DestTy, +                                         const DataLayout &DL) { +  do { +    Type *SrcTy = C->getType(); + +    // If the type sizes are the same and a cast is legal, just directly +    // cast the constant. +    if (DL.getTypeSizeInBits(DestTy) == DL.getTypeSizeInBits(SrcTy)) { +      Instruction::CastOps Cast = Instruction::BitCast; +      // If we are going from a pointer to int or vice versa, we spell the cast +      // differently. +      if (SrcTy->isIntegerTy() && DestTy->isPointerTy()) +        Cast = Instruction::IntToPtr; +      else if (SrcTy->isPointerTy() && DestTy->isIntegerTy()) +        Cast = Instruction::PtrToInt; + +      if (CastInst::castIsValid(Cast, C, DestTy)) +        return ConstantExpr::getCast(Cast, C, DestTy); +    } + +    // If this isn't an aggregate type, there is nothing we can do to drill down +    // and find a bitcastable constant. +    if (!SrcTy->isAggregateType()) +      return nullptr; + +    // We're simulating a load through a pointer that was bitcast to point to +    // a different type, so we can try to walk down through the initial +    // elements of an aggregate to see if some part of the aggregate is +    // castable to implement the "load" semantic model. +    if (SrcTy->isStructTy()) { +      // Struct types might have leading zero-length elements like [0 x i32], +      // which are certainly not what we are looking for, so skip them. +      unsigned Elem = 0; +      Constant *ElemC; +      do { +        ElemC = C->getAggregateElement(Elem++); +      } while (ElemC && DL.getTypeSizeInBits(ElemC->getType()) == 0); +      C = ElemC; +    } else { +      C = C->getAggregateElement(0u); +    } +  } while (C); + +  return nullptr; +} + +namespace { + +/// Recursive helper to read bits out of global. C is the constant being copied +/// out of. ByteOffset is an offset into C. CurPtr is the pointer to copy +/// results into and BytesLeft is the number of bytes left in +/// the CurPtr buffer. DL is the DataLayout. +bool ReadDataFromGlobal(Constant *C, uint64_t ByteOffset, unsigned char *CurPtr, +                        unsigned BytesLeft, const DataLayout &DL) { +  assert(ByteOffset <= DL.getTypeAllocSize(C->getType()) && +         "Out of range access"); + +  // If this element is zero or undefined, we can just return since *CurPtr is +  // zero initialized. +  if (isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) +    return true; + +  if (auto *CI = dyn_cast<ConstantInt>(C)) { +    if (CI->getBitWidth() > 64 || +        (CI->getBitWidth() & 7) != 0) +      return false; + +    uint64_t Val = CI->getZExtValue(); +    unsigned IntBytes = unsigned(CI->getBitWidth()/8); + +    for (unsigned i = 0; i != BytesLeft && ByteOffset != IntBytes; ++i) { +      int n = ByteOffset; +      if (!DL.isLittleEndian()) +        n = IntBytes - n - 1; +      CurPtr[i] = (unsigned char)(Val >> (n * 8)); +      ++ByteOffset; +    } +    return true; +  } + +  if (auto *CFP = dyn_cast<ConstantFP>(C)) { +    if (CFP->getType()->isDoubleTy()) { +      C = FoldBitCast(C, Type::getInt64Ty(C->getContext()), DL); +      return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, DL); +    } +    if (CFP->getType()->isFloatTy()){ +      C = FoldBitCast(C, Type::getInt32Ty(C->getContext()), DL); +      return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, DL); +    } +    if (CFP->getType()->isHalfTy()){ +      C = FoldBitCast(C, Type::getInt16Ty(C->getContext()), DL); +      return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, DL); +    } +    return false; +  } + +  if (auto *CS = dyn_cast<ConstantStruct>(C)) { +    const StructLayout *SL = DL.getStructLayout(CS->getType()); +    unsigned Index = SL->getElementContainingOffset(ByteOffset); +    uint64_t CurEltOffset = SL->getElementOffset(Index); +    ByteOffset -= CurEltOffset; + +    while (true) { +      // If the element access is to the element itself and not to tail padding, +      // read the bytes from the element. +      uint64_t EltSize = DL.getTypeAllocSize(CS->getOperand(Index)->getType()); + +      if (ByteOffset < EltSize && +          !ReadDataFromGlobal(CS->getOperand(Index), ByteOffset, CurPtr, +                              BytesLeft, DL)) +        return false; + +      ++Index; + +      // Check to see if we read from the last struct element, if so we're done. +      if (Index == CS->getType()->getNumElements()) +        return true; + +      // If we read all of the bytes we needed from this element we're done. +      uint64_t NextEltOffset = SL->getElementOffset(Index); + +      if (BytesLeft <= NextEltOffset - CurEltOffset - ByteOffset) +        return true; + +      // Move to the next element of the struct. +      CurPtr += NextEltOffset - CurEltOffset - ByteOffset; +      BytesLeft -= NextEltOffset - CurEltOffset - ByteOffset; +      ByteOffset = 0; +      CurEltOffset = NextEltOffset; +    } +    // not reached. +  } + +  if (isa<ConstantArray>(C) || isa<ConstantVector>(C) || +      isa<ConstantDataSequential>(C)) { +    Type *EltTy = C->getType()->getSequentialElementType(); +    uint64_t EltSize = DL.getTypeAllocSize(EltTy); +    uint64_t Index = ByteOffset / EltSize; +    uint64_t Offset = ByteOffset - Index * EltSize; +    uint64_t NumElts; +    if (auto *AT = dyn_cast<ArrayType>(C->getType())) +      NumElts = AT->getNumElements(); +    else +      NumElts = C->getType()->getVectorNumElements(); + +    for (; Index != NumElts; ++Index) { +      if (!ReadDataFromGlobal(C->getAggregateElement(Index), Offset, CurPtr, +                              BytesLeft, DL)) +        return false; + +      uint64_t BytesWritten = EltSize - Offset; +      assert(BytesWritten <= EltSize && "Not indexing into this element?"); +      if (BytesWritten >= BytesLeft) +        return true; + +      Offset = 0; +      BytesLeft -= BytesWritten; +      CurPtr += BytesWritten; +    } +    return true; +  } + +  if (auto *CE = dyn_cast<ConstantExpr>(C)) { +    if (CE->getOpcode() == Instruction::IntToPtr && +        CE->getOperand(0)->getType() == DL.getIntPtrType(CE->getType())) { +      return ReadDataFromGlobal(CE->getOperand(0), ByteOffset, CurPtr, +                                BytesLeft, DL); +    } +  } + +  // Otherwise, unknown initializer type. +  return false; +} + +Constant *FoldReinterpretLoadFromConstPtr(Constant *C, Type *LoadTy, +                                          const DataLayout &DL) { +  auto *PTy = cast<PointerType>(C->getType()); +  auto *IntType = dyn_cast<IntegerType>(LoadTy); + +  // If this isn't an integer load we can't fold it directly. +  if (!IntType) { +    unsigned AS = PTy->getAddressSpace(); + +    // If this is a float/double load, we can try folding it as an int32/64 load +    // and then bitcast the result.  This can be useful for union cases.  Note +    // that address spaces don't matter here since we're not going to result in +    // an actual new load. +    Type *MapTy; +    if (LoadTy->isHalfTy()) +      MapTy = Type::getInt16Ty(C->getContext()); +    else if (LoadTy->isFloatTy()) +      MapTy = Type::getInt32Ty(C->getContext()); +    else if (LoadTy->isDoubleTy()) +      MapTy = Type::getInt64Ty(C->getContext()); +    else if (LoadTy->isVectorTy()) { +      MapTy = PointerType::getIntNTy(C->getContext(), +                                     DL.getTypeSizeInBits(LoadTy)); +    } else +      return nullptr; + +    C = FoldBitCast(C, MapTy->getPointerTo(AS), DL); +    if (Constant *Res = FoldReinterpretLoadFromConstPtr(C, MapTy, DL)) +      return FoldBitCast(Res, LoadTy, DL); +    return nullptr; +  } + +  unsigned BytesLoaded = (IntType->getBitWidth() + 7) / 8; +  if (BytesLoaded > 32 || BytesLoaded == 0) +    return nullptr; + +  GlobalValue *GVal; +  APInt OffsetAI; +  if (!IsConstantOffsetFromGlobal(C, GVal, OffsetAI, DL)) +    return nullptr; + +  auto *GV = dyn_cast<GlobalVariable>(GVal); +  if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() || +      !GV->getInitializer()->getType()->isSized()) +    return nullptr; + +  int64_t Offset = OffsetAI.getSExtValue(); +  int64_t InitializerSize = DL.getTypeAllocSize(GV->getInitializer()->getType()); + +  // If we're not accessing anything in this constant, the result is undefined. +  if (Offset + BytesLoaded <= 0) +    return UndefValue::get(IntType); + +  // If we're not accessing anything in this constant, the result is undefined. +  if (Offset >= InitializerSize) +    return UndefValue::get(IntType); + +  unsigned char RawBytes[32] = {0}; +  unsigned char *CurPtr = RawBytes; +  unsigned BytesLeft = BytesLoaded; + +  // If we're loading off the beginning of the global, some bytes may be valid. +  if (Offset < 0) { +    CurPtr += -Offset; +    BytesLeft += Offset; +    Offset = 0; +  } + +  if (!ReadDataFromGlobal(GV->getInitializer(), Offset, CurPtr, BytesLeft, DL)) +    return nullptr; + +  APInt ResultVal = APInt(IntType->getBitWidth(), 0); +  if (DL.isLittleEndian()) { +    ResultVal = RawBytes[BytesLoaded - 1]; +    for (unsigned i = 1; i != BytesLoaded; ++i) { +      ResultVal <<= 8; +      ResultVal |= RawBytes[BytesLoaded - 1 - i]; +    } +  } else { +    ResultVal = RawBytes[0]; +    for (unsigned i = 1; i != BytesLoaded; ++i) { +      ResultVal <<= 8; +      ResultVal |= RawBytes[i]; +    } +  } + +  return ConstantInt::get(IntType->getContext(), ResultVal); +} + +Constant *ConstantFoldLoadThroughBitcastExpr(ConstantExpr *CE, Type *DestTy, +                                             const DataLayout &DL) { +  auto *SrcPtr = CE->getOperand(0); +  auto *SrcPtrTy = dyn_cast<PointerType>(SrcPtr->getType()); +  if (!SrcPtrTy) +    return nullptr; +  Type *SrcTy = SrcPtrTy->getPointerElementType(); + +  Constant *C = ConstantFoldLoadFromConstPtr(SrcPtr, SrcTy, DL); +  if (!C) +    return nullptr; + +  return llvm::ConstantFoldLoadThroughBitcast(C, DestTy, DL); +} + +} // end anonymous namespace + +Constant *llvm::ConstantFoldLoadFromConstPtr(Constant *C, Type *Ty, +                                             const DataLayout &DL) { +  // First, try the easy cases: +  if (auto *GV = dyn_cast<GlobalVariable>(C)) +    if (GV->isConstant() && GV->hasDefinitiveInitializer()) +      return GV->getInitializer(); + +  if (auto *GA = dyn_cast<GlobalAlias>(C)) +    if (GA->getAliasee() && !GA->isInterposable()) +      return ConstantFoldLoadFromConstPtr(GA->getAliasee(), Ty, DL); + +  // If the loaded value isn't a constant expr, we can't handle it. +  auto *CE = dyn_cast<ConstantExpr>(C); +  if (!CE) +    return nullptr; + +  if (CE->getOpcode() == Instruction::GetElementPtr) { +    if (auto *GV = dyn_cast<GlobalVariable>(CE->getOperand(0))) { +      if (GV->isConstant() && GV->hasDefinitiveInitializer()) { +        if (Constant *V = +             ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE)) +          return V; +      } +    } +  } + +  if (CE->getOpcode() == Instruction::BitCast) +    if (Constant *LoadedC = ConstantFoldLoadThroughBitcastExpr(CE, Ty, DL)) +      return LoadedC; + +  // Instead of loading constant c string, use corresponding integer value +  // directly if string length is small enough. +  StringRef Str; +  if (getConstantStringInfo(CE, Str) && !Str.empty()) { +    size_t StrLen = Str.size(); +    unsigned NumBits = Ty->getPrimitiveSizeInBits(); +    // Replace load with immediate integer if the result is an integer or fp +    // value. +    if ((NumBits >> 3) == StrLen + 1 && (NumBits & 7) == 0 && +        (isa<IntegerType>(Ty) || Ty->isFloatingPointTy())) { +      APInt StrVal(NumBits, 0); +      APInt SingleChar(NumBits, 0); +      if (DL.isLittleEndian()) { +        for (unsigned char C : reverse(Str.bytes())) { +          SingleChar = static_cast<uint64_t>(C); +          StrVal = (StrVal << 8) | SingleChar; +        } +      } else { +        for (unsigned char C : Str.bytes()) { +          SingleChar = static_cast<uint64_t>(C); +          StrVal = (StrVal << 8) | SingleChar; +        } +        // Append NULL at the end. +        SingleChar = 0; +        StrVal = (StrVal << 8) | SingleChar; +      } + +      Constant *Res = ConstantInt::get(CE->getContext(), StrVal); +      if (Ty->isFloatingPointTy()) +        Res = ConstantExpr::getBitCast(Res, Ty); +      return Res; +    } +  } + +  // If this load comes from anywhere in a constant global, and if the global +  // is all undef or zero, we know what it loads. +  if (auto *GV = dyn_cast<GlobalVariable>(GetUnderlyingObject(CE, DL))) { +    if (GV->isConstant() && GV->hasDefinitiveInitializer()) { +      if (GV->getInitializer()->isNullValue()) +        return Constant::getNullValue(Ty); +      if (isa<UndefValue>(GV->getInitializer())) +        return UndefValue::get(Ty); +    } +  } + +  // Try hard to fold loads from bitcasted strange and non-type-safe things. +  return FoldReinterpretLoadFromConstPtr(CE, Ty, DL); +} + +namespace { + +Constant *ConstantFoldLoadInst(const LoadInst *LI, const DataLayout &DL) { +  if (LI->isVolatile()) return nullptr; + +  if (auto *C = dyn_cast<Constant>(LI->getOperand(0))) +    return ConstantFoldLoadFromConstPtr(C, LI->getType(), DL); + +  return nullptr; +} + +/// One of Op0/Op1 is a constant expression. +/// Attempt to symbolically evaluate the result of a binary operator merging +/// these together.  If target data info is available, it is provided as DL, +/// otherwise DL is null. +Constant *SymbolicallyEvaluateBinop(unsigned Opc, Constant *Op0, Constant *Op1, +                                    const DataLayout &DL) { +  // SROA + +  // Fold (and 0xffffffff00000000, (shl x, 32)) -> shl. +  // Fold (lshr (or X, Y), 32) -> (lshr [X/Y], 32) if one doesn't contribute +  // bits. + +  if (Opc == Instruction::And) { +    KnownBits Known0 = computeKnownBits(Op0, DL); +    KnownBits Known1 = computeKnownBits(Op1, DL); +    if ((Known1.One | Known0.Zero).isAllOnesValue()) { +      // All the bits of Op0 that the 'and' could be masking are already zero. +      return Op0; +    } +    if ((Known0.One | Known1.Zero).isAllOnesValue()) { +      // All the bits of Op1 that the 'and' could be masking are already zero. +      return Op1; +    } + +    Known0.Zero |= Known1.Zero; +    Known0.One &= Known1.One; +    if (Known0.isConstant()) +      return ConstantInt::get(Op0->getType(), Known0.getConstant()); +  } + +  // If the constant expr is something like &A[123] - &A[4].f, fold this into a +  // constant.  This happens frequently when iterating over a global array. +  if (Opc == Instruction::Sub) { +    GlobalValue *GV1, *GV2; +    APInt Offs1, Offs2; + +    if (IsConstantOffsetFromGlobal(Op0, GV1, Offs1, DL)) +      if (IsConstantOffsetFromGlobal(Op1, GV2, Offs2, DL) && GV1 == GV2) { +        unsigned OpSize = DL.getTypeSizeInBits(Op0->getType()); + +        // (&GV+C1) - (&GV+C2) -> C1-C2, pointer arithmetic cannot overflow. +        // PtrToInt may change the bitwidth so we have convert to the right size +        // first. +        return ConstantInt::get(Op0->getType(), Offs1.zextOrTrunc(OpSize) - +                                                Offs2.zextOrTrunc(OpSize)); +      } +  } + +  return nullptr; +} + +/// If array indices are not pointer-sized integers, explicitly cast them so +/// that they aren't implicitly casted by the getelementptr. +Constant *CastGEPIndices(Type *SrcElemTy, ArrayRef<Constant *> Ops, +                         Type *ResultTy, Optional<unsigned> InRangeIndex, +                         const DataLayout &DL, const TargetLibraryInfo *TLI) { +  Type *IntPtrTy = DL.getIntPtrType(ResultTy); +  Type *IntPtrScalarTy = IntPtrTy->getScalarType(); + +  bool Any = false; +  SmallVector<Constant*, 32> NewIdxs; +  for (unsigned i = 1, e = Ops.size(); i != e; ++i) { +    if ((i == 1 || +         !isa<StructType>(GetElementPtrInst::getIndexedType( +             SrcElemTy, Ops.slice(1, i - 1)))) && +        Ops[i]->getType()->getScalarType() != IntPtrScalarTy) { +      Any = true; +      Type *NewType = Ops[i]->getType()->isVectorTy() +                          ? IntPtrTy +                          : IntPtrTy->getScalarType(); +      NewIdxs.push_back(ConstantExpr::getCast(CastInst::getCastOpcode(Ops[i], +                                                                      true, +                                                                      NewType, +                                                                      true), +                                              Ops[i], NewType)); +    } else +      NewIdxs.push_back(Ops[i]); +  } + +  if (!Any) +    return nullptr; + +  Constant *C = ConstantExpr::getGetElementPtr( +      SrcElemTy, Ops[0], NewIdxs, /*InBounds=*/false, InRangeIndex); +  if (Constant *Folded = ConstantFoldConstant(C, DL, TLI)) +    C = Folded; + +  return C; +} + +/// Strip the pointer casts, but preserve the address space information. +Constant* StripPtrCastKeepAS(Constant* Ptr, Type *&ElemTy) { +  assert(Ptr->getType()->isPointerTy() && "Not a pointer type"); +  auto *OldPtrTy = cast<PointerType>(Ptr->getType()); +  Ptr = Ptr->stripPointerCasts(); +  auto *NewPtrTy = cast<PointerType>(Ptr->getType()); + +  ElemTy = NewPtrTy->getPointerElementType(); + +  // Preserve the address space number of the pointer. +  if (NewPtrTy->getAddressSpace() != OldPtrTy->getAddressSpace()) { +    NewPtrTy = ElemTy->getPointerTo(OldPtrTy->getAddressSpace()); +    Ptr = ConstantExpr::getPointerCast(Ptr, NewPtrTy); +  } +  return Ptr; +} + +/// If we can symbolically evaluate the GEP constant expression, do so. +Constant *SymbolicallyEvaluateGEP(const GEPOperator *GEP, +                                  ArrayRef<Constant *> Ops, +                                  const DataLayout &DL, +                                  const TargetLibraryInfo *TLI) { +  const GEPOperator *InnermostGEP = GEP; +  bool InBounds = GEP->isInBounds(); + +  Type *SrcElemTy = GEP->getSourceElementType(); +  Type *ResElemTy = GEP->getResultElementType(); +  Type *ResTy = GEP->getType(); +  if (!SrcElemTy->isSized()) +    return nullptr; + +  if (Constant *C = CastGEPIndices(SrcElemTy, Ops, ResTy, +                                   GEP->getInRangeIndex(), DL, TLI)) +    return C; + +  Constant *Ptr = Ops[0]; +  if (!Ptr->getType()->isPointerTy()) +    return nullptr; + +  Type *IntPtrTy = DL.getIntPtrType(Ptr->getType()); + +  // If this is a constant expr gep that is effectively computing an +  // "offsetof", fold it into 'cast int Size to T*' instead of 'gep 0, 0, 12' +  for (unsigned i = 1, e = Ops.size(); i != e; ++i) +      if (!isa<ConstantInt>(Ops[i])) { + +        // If this is "gep i8* Ptr, (sub 0, V)", fold this as: +        // "inttoptr (sub (ptrtoint Ptr), V)" +        if (Ops.size() == 2 && ResElemTy->isIntegerTy(8)) { +          auto *CE = dyn_cast<ConstantExpr>(Ops[1]); +          assert((!CE || CE->getType() == IntPtrTy) && +                 "CastGEPIndices didn't canonicalize index types!"); +          if (CE && CE->getOpcode() == Instruction::Sub && +              CE->getOperand(0)->isNullValue()) { +            Constant *Res = ConstantExpr::getPtrToInt(Ptr, CE->getType()); +            Res = ConstantExpr::getSub(Res, CE->getOperand(1)); +            Res = ConstantExpr::getIntToPtr(Res, ResTy); +            if (auto *FoldedRes = ConstantFoldConstant(Res, DL, TLI)) +              Res = FoldedRes; +            return Res; +          } +        } +        return nullptr; +      } + +  unsigned BitWidth = DL.getTypeSizeInBits(IntPtrTy); +  APInt Offset = +      APInt(BitWidth, +            DL.getIndexedOffsetInType( +                SrcElemTy, +                makeArrayRef((Value * const *)Ops.data() + 1, Ops.size() - 1))); +  Ptr = StripPtrCastKeepAS(Ptr, SrcElemTy); + +  // If this is a GEP of a GEP, fold it all into a single GEP. +  while (auto *GEP = dyn_cast<GEPOperator>(Ptr)) { +    InnermostGEP = GEP; +    InBounds &= GEP->isInBounds(); + +    SmallVector<Value *, 4> NestedOps(GEP->op_begin() + 1, GEP->op_end()); + +    // Do not try the incorporate the sub-GEP if some index is not a number. +    bool AllConstantInt = true; +    for (Value *NestedOp : NestedOps) +      if (!isa<ConstantInt>(NestedOp)) { +        AllConstantInt = false; +        break; +      } +    if (!AllConstantInt) +      break; + +    Ptr = cast<Constant>(GEP->getOperand(0)); +    SrcElemTy = GEP->getSourceElementType(); +    Offset += APInt(BitWidth, DL.getIndexedOffsetInType(SrcElemTy, NestedOps)); +    Ptr = StripPtrCastKeepAS(Ptr, SrcElemTy); +  } + +  // If the base value for this address is a literal integer value, fold the +  // getelementptr to the resulting integer value casted to the pointer type. +  APInt BasePtr(BitWidth, 0); +  if (auto *CE = dyn_cast<ConstantExpr>(Ptr)) { +    if (CE->getOpcode() == Instruction::IntToPtr) { +      if (auto *Base = dyn_cast<ConstantInt>(CE->getOperand(0))) +        BasePtr = Base->getValue().zextOrTrunc(BitWidth); +    } +  } + +  auto *PTy = cast<PointerType>(Ptr->getType()); +  if ((Ptr->isNullValue() || BasePtr != 0) && +      !DL.isNonIntegralPointerType(PTy)) { +    Constant *C = ConstantInt::get(Ptr->getContext(), Offset + BasePtr); +    return ConstantExpr::getIntToPtr(C, ResTy); +  } + +  // Otherwise form a regular getelementptr. Recompute the indices so that +  // we eliminate over-indexing of the notional static type array bounds. +  // This makes it easy to determine if the getelementptr is "inbounds". +  // Also, this helps GlobalOpt do SROA on GlobalVariables. +  Type *Ty = PTy; +  SmallVector<Constant *, 32> NewIdxs; + +  do { +    if (!Ty->isStructTy()) { +      if (Ty->isPointerTy()) { +        // The only pointer indexing we'll do is on the first index of the GEP. +        if (!NewIdxs.empty()) +          break; + +        Ty = SrcElemTy; + +        // Only handle pointers to sized types, not pointers to functions. +        if (!Ty->isSized()) +          return nullptr; +      } else if (auto *ATy = dyn_cast<SequentialType>(Ty)) { +        Ty = ATy->getElementType(); +      } else { +        // We've reached some non-indexable type. +        break; +      } + +      // Determine which element of the array the offset points into. +      APInt ElemSize(BitWidth, DL.getTypeAllocSize(Ty)); +      if (ElemSize == 0) { +        // The element size is 0. This may be [0 x Ty]*, so just use a zero +        // index for this level and proceed to the next level to see if it can +        // accommodate the offset. +        NewIdxs.push_back(ConstantInt::get(IntPtrTy, 0)); +      } else { +        // The element size is non-zero divide the offset by the element +        // size (rounding down), to compute the index at this level. +        bool Overflow; +        APInt NewIdx = Offset.sdiv_ov(ElemSize, Overflow); +        if (Overflow) +          break; +        Offset -= NewIdx * ElemSize; +        NewIdxs.push_back(ConstantInt::get(IntPtrTy, NewIdx)); +      } +    } else { +      auto *STy = cast<StructType>(Ty); +      // If we end up with an offset that isn't valid for this struct type, we +      // can't re-form this GEP in a regular form, so bail out. The pointer +      // operand likely went through casts that are necessary to make the GEP +      // sensible. +      const StructLayout &SL = *DL.getStructLayout(STy); +      if (Offset.isNegative() || Offset.uge(SL.getSizeInBytes())) +        break; + +      // Determine which field of the struct the offset points into. The +      // getZExtValue is fine as we've already ensured that the offset is +      // within the range representable by the StructLayout API. +      unsigned ElIdx = SL.getElementContainingOffset(Offset.getZExtValue()); +      NewIdxs.push_back(ConstantInt::get(Type::getInt32Ty(Ty->getContext()), +                                         ElIdx)); +      Offset -= APInt(BitWidth, SL.getElementOffset(ElIdx)); +      Ty = STy->getTypeAtIndex(ElIdx); +    } +  } while (Ty != ResElemTy); + +  // If we haven't used up the entire offset by descending the static +  // type, then the offset is pointing into the middle of an indivisible +  // member, so we can't simplify it. +  if (Offset != 0) +    return nullptr; + +  // Preserve the inrange index from the innermost GEP if possible. We must +  // have calculated the same indices up to and including the inrange index. +  Optional<unsigned> InRangeIndex; +  if (Optional<unsigned> LastIRIndex = InnermostGEP->getInRangeIndex()) +    if (SrcElemTy == InnermostGEP->getSourceElementType() && +        NewIdxs.size() > *LastIRIndex) { +      InRangeIndex = LastIRIndex; +      for (unsigned I = 0; I <= *LastIRIndex; ++I) +        if (NewIdxs[I] != InnermostGEP->getOperand(I + 1)) +          return nullptr; +    } + +  // Create a GEP. +  Constant *C = ConstantExpr::getGetElementPtr(SrcElemTy, Ptr, NewIdxs, +                                               InBounds, InRangeIndex); +  assert(C->getType()->getPointerElementType() == Ty && +         "Computed GetElementPtr has unexpected type!"); + +  // If we ended up indexing a member with a type that doesn't match +  // the type of what the original indices indexed, add a cast. +  if (Ty != ResElemTy) +    C = FoldBitCast(C, ResTy, DL); + +  return C; +} + +/// Attempt to constant fold an instruction with the +/// specified opcode and operands.  If successful, the constant result is +/// returned, if not, null is returned.  Note that this function can fail when +/// attempting to fold instructions like loads and stores, which have no +/// constant expression form. +Constant *ConstantFoldInstOperandsImpl(const Value *InstOrCE, unsigned Opcode, +                                       ArrayRef<Constant *> Ops, +                                       const DataLayout &DL, +                                       const TargetLibraryInfo *TLI) { +  Type *DestTy = InstOrCE->getType(); + +  if (Instruction::isUnaryOp(Opcode)) +    return ConstantFoldUnaryOpOperand(Opcode, Ops[0], DL); + +  if (Instruction::isBinaryOp(Opcode)) +    return ConstantFoldBinaryOpOperands(Opcode, Ops[0], Ops[1], DL); + +  if (Instruction::isCast(Opcode)) +    return ConstantFoldCastOperand(Opcode, Ops[0], DestTy, DL); + +  if (auto *GEP = dyn_cast<GEPOperator>(InstOrCE)) { +    if (Constant *C = SymbolicallyEvaluateGEP(GEP, Ops, DL, TLI)) +      return C; + +    return ConstantExpr::getGetElementPtr(GEP->getSourceElementType(), Ops[0], +                                          Ops.slice(1), GEP->isInBounds(), +                                          GEP->getInRangeIndex()); +  } + +  if (auto *CE = dyn_cast<ConstantExpr>(InstOrCE)) +    return CE->getWithOperands(Ops); + +  switch (Opcode) { +  default: return nullptr; +  case Instruction::ICmp: +  case Instruction::FCmp: llvm_unreachable("Invalid for compares"); +  case Instruction::Call: +    if (auto *F = dyn_cast<Function>(Ops.back())) { +      const auto *Call = cast<CallBase>(InstOrCE); +      if (canConstantFoldCallTo(Call, F)) +        return ConstantFoldCall(Call, F, Ops.slice(0, Ops.size() - 1), TLI); +    } +    return nullptr; +  case Instruction::Select: +    return ConstantExpr::getSelect(Ops[0], Ops[1], Ops[2]); +  case Instruction::ExtractElement: +    return ConstantExpr::getExtractElement(Ops[0], Ops[1]); +  case Instruction::ExtractValue: +    return ConstantExpr::getExtractValue( +        Ops[0], dyn_cast<ExtractValueInst>(InstOrCE)->getIndices()); +  case Instruction::InsertElement: +    return ConstantExpr::getInsertElement(Ops[0], Ops[1], Ops[2]); +  case Instruction::ShuffleVector: +    return ConstantExpr::getShuffleVector(Ops[0], Ops[1], Ops[2]); +  } +} + +} // end anonymous namespace + +//===----------------------------------------------------------------------===// +// Constant Folding public APIs +//===----------------------------------------------------------------------===// + +namespace { + +Constant * +ConstantFoldConstantImpl(const Constant *C, const DataLayout &DL, +                         const TargetLibraryInfo *TLI, +                         SmallDenseMap<Constant *, Constant *> &FoldedOps) { +  if (!isa<ConstantVector>(C) && !isa<ConstantExpr>(C)) +    return nullptr; + +  SmallVector<Constant *, 8> Ops; +  for (const Use &NewU : C->operands()) { +    auto *NewC = cast<Constant>(&NewU); +    // Recursively fold the ConstantExpr's operands. If we have already folded +    // a ConstantExpr, we don't have to process it again. +    if (isa<ConstantVector>(NewC) || isa<ConstantExpr>(NewC)) { +      auto It = FoldedOps.find(NewC); +      if (It == FoldedOps.end()) { +        if (auto *FoldedC = +                ConstantFoldConstantImpl(NewC, DL, TLI, FoldedOps)) { +          FoldedOps.insert({NewC, FoldedC}); +          NewC = FoldedC; +        } else { +          FoldedOps.insert({NewC, NewC}); +        } +      } else { +        NewC = It->second; +      } +    } +    Ops.push_back(NewC); +  } + +  if (auto *CE = dyn_cast<ConstantExpr>(C)) { +    if (CE->isCompare()) +      return ConstantFoldCompareInstOperands(CE->getPredicate(), Ops[0], Ops[1], +                                             DL, TLI); + +    return ConstantFoldInstOperandsImpl(CE, CE->getOpcode(), Ops, DL, TLI); +  } + +  assert(isa<ConstantVector>(C)); +  return ConstantVector::get(Ops); +} + +} // end anonymous namespace + +Constant *llvm::ConstantFoldInstruction(Instruction *I, const DataLayout &DL, +                                        const TargetLibraryInfo *TLI) { +  // Handle PHI nodes quickly here... +  if (auto *PN = dyn_cast<PHINode>(I)) { +    Constant *CommonValue = nullptr; + +    SmallDenseMap<Constant *, Constant *> FoldedOps; +    for (Value *Incoming : PN->incoming_values()) { +      // If the incoming value is undef then skip it.  Note that while we could +      // skip the value if it is equal to the phi node itself we choose not to +      // because that would break the rule that constant folding only applies if +      // all operands are constants. +      if (isa<UndefValue>(Incoming)) +        continue; +      // If the incoming value is not a constant, then give up. +      auto *C = dyn_cast<Constant>(Incoming); +      if (!C) +        return nullptr; +      // Fold the PHI's operands. +      if (auto *FoldedC = ConstantFoldConstantImpl(C, DL, TLI, FoldedOps)) +        C = FoldedC; +      // If the incoming value is a different constant to +      // the one we saw previously, then give up. +      if (CommonValue && C != CommonValue) +        return nullptr; +      CommonValue = C; +    } + +    // If we reach here, all incoming values are the same constant or undef. +    return CommonValue ? CommonValue : UndefValue::get(PN->getType()); +  } + +  // Scan the operand list, checking to see if they are all constants, if so, +  // hand off to ConstantFoldInstOperandsImpl. +  if (!all_of(I->operands(), [](Use &U) { return isa<Constant>(U); })) +    return nullptr; + +  SmallDenseMap<Constant *, Constant *> FoldedOps; +  SmallVector<Constant *, 8> Ops; +  for (const Use &OpU : I->operands()) { +    auto *Op = cast<Constant>(&OpU); +    // Fold the Instruction's operands. +    if (auto *FoldedOp = ConstantFoldConstantImpl(Op, DL, TLI, FoldedOps)) +      Op = FoldedOp; + +    Ops.push_back(Op); +  } + +  if (const auto *CI = dyn_cast<CmpInst>(I)) +    return ConstantFoldCompareInstOperands(CI->getPredicate(), Ops[0], Ops[1], +                                           DL, TLI); + +  if (const auto *LI = dyn_cast<LoadInst>(I)) +    return ConstantFoldLoadInst(LI, DL); + +  if (auto *IVI = dyn_cast<InsertValueInst>(I)) { +    return ConstantExpr::getInsertValue( +                                cast<Constant>(IVI->getAggregateOperand()), +                                cast<Constant>(IVI->getInsertedValueOperand()), +                                IVI->getIndices()); +  } + +  if (auto *EVI = dyn_cast<ExtractValueInst>(I)) { +    return ConstantExpr::getExtractValue( +                                    cast<Constant>(EVI->getAggregateOperand()), +                                    EVI->getIndices()); +  } + +  return ConstantFoldInstOperands(I, Ops, DL, TLI); +} + +Constant *llvm::ConstantFoldConstant(const Constant *C, const DataLayout &DL, +                                     const TargetLibraryInfo *TLI) { +  SmallDenseMap<Constant *, Constant *> FoldedOps; +  return ConstantFoldConstantImpl(C, DL, TLI, FoldedOps); +} + +Constant *llvm::ConstantFoldInstOperands(Instruction *I, +                                         ArrayRef<Constant *> Ops, +                                         const DataLayout &DL, +                                         const TargetLibraryInfo *TLI) { +  return ConstantFoldInstOperandsImpl(I, I->getOpcode(), Ops, DL, TLI); +} + +Constant *llvm::ConstantFoldCompareInstOperands(unsigned Predicate, +                                                Constant *Ops0, Constant *Ops1, +                                                const DataLayout &DL, +                                                const TargetLibraryInfo *TLI) { +  // fold: icmp (inttoptr x), null         -> icmp x, 0 +  // fold: icmp null, (inttoptr x)         -> icmp 0, x +  // fold: icmp (ptrtoint x), 0            -> icmp x, null +  // fold: icmp 0, (ptrtoint x)            -> icmp null, x +  // fold: icmp (inttoptr x), (inttoptr y) -> icmp trunc/zext x, trunc/zext y +  // fold: icmp (ptrtoint x), (ptrtoint y) -> icmp x, y +  // +  // FIXME: The following comment is out of data and the DataLayout is here now. +  // ConstantExpr::getCompare cannot do this, because it doesn't have DL +  // around to know if bit truncation is happening. +  if (auto *CE0 = dyn_cast<ConstantExpr>(Ops0)) { +    if (Ops1->isNullValue()) { +      if (CE0->getOpcode() == Instruction::IntToPtr) { +        Type *IntPtrTy = DL.getIntPtrType(CE0->getType()); +        // Convert the integer value to the right size to ensure we get the +        // proper extension or truncation. +        Constant *C = ConstantExpr::getIntegerCast(CE0->getOperand(0), +                                                   IntPtrTy, false); +        Constant *Null = Constant::getNullValue(C->getType()); +        return ConstantFoldCompareInstOperands(Predicate, C, Null, DL, TLI); +      } + +      // Only do this transformation if the int is intptrty in size, otherwise +      // there is a truncation or extension that we aren't modeling. +      if (CE0->getOpcode() == Instruction::PtrToInt) { +        Type *IntPtrTy = DL.getIntPtrType(CE0->getOperand(0)->getType()); +        if (CE0->getType() == IntPtrTy) { +          Constant *C = CE0->getOperand(0); +          Constant *Null = Constant::getNullValue(C->getType()); +          return ConstantFoldCompareInstOperands(Predicate, C, Null, DL, TLI); +        } +      } +    } + +    if (auto *CE1 = dyn_cast<ConstantExpr>(Ops1)) { +      if (CE0->getOpcode() == CE1->getOpcode()) { +        if (CE0->getOpcode() == Instruction::IntToPtr) { +          Type *IntPtrTy = DL.getIntPtrType(CE0->getType()); + +          // Convert the integer value to the right size to ensure we get the +          // proper extension or truncation. +          Constant *C0 = ConstantExpr::getIntegerCast(CE0->getOperand(0), +                                                      IntPtrTy, false); +          Constant *C1 = ConstantExpr::getIntegerCast(CE1->getOperand(0), +                                                      IntPtrTy, false); +          return ConstantFoldCompareInstOperands(Predicate, C0, C1, DL, TLI); +        } + +        // Only do this transformation if the int is intptrty in size, otherwise +        // there is a truncation or extension that we aren't modeling. +        if (CE0->getOpcode() == Instruction::PtrToInt) { +          Type *IntPtrTy = DL.getIntPtrType(CE0->getOperand(0)->getType()); +          if (CE0->getType() == IntPtrTy && +              CE0->getOperand(0)->getType() == CE1->getOperand(0)->getType()) { +            return ConstantFoldCompareInstOperands( +                Predicate, CE0->getOperand(0), CE1->getOperand(0), DL, TLI); +          } +        } +      } +    } + +    // icmp eq (or x, y), 0 -> (icmp eq x, 0) & (icmp eq y, 0) +    // icmp ne (or x, y), 0 -> (icmp ne x, 0) | (icmp ne y, 0) +    if ((Predicate == ICmpInst::ICMP_EQ || Predicate == ICmpInst::ICMP_NE) && +        CE0->getOpcode() == Instruction::Or && Ops1->isNullValue()) { +      Constant *LHS = ConstantFoldCompareInstOperands( +          Predicate, CE0->getOperand(0), Ops1, DL, TLI); +      Constant *RHS = ConstantFoldCompareInstOperands( +          Predicate, CE0->getOperand(1), Ops1, DL, TLI); +      unsigned OpC = +        Predicate == ICmpInst::ICMP_EQ ? Instruction::And : Instruction::Or; +      return ConstantFoldBinaryOpOperands(OpC, LHS, RHS, DL); +    } +  } else if (isa<ConstantExpr>(Ops1)) { +    // If RHS is a constant expression, but the left side isn't, swap the +    // operands and try again. +    Predicate = ICmpInst::getSwappedPredicate((ICmpInst::Predicate)Predicate); +    return ConstantFoldCompareInstOperands(Predicate, Ops1, Ops0, DL, TLI); +  } + +  return ConstantExpr::getCompare(Predicate, Ops0, Ops1); +} + +Constant *llvm::ConstantFoldUnaryOpOperand(unsigned Opcode, Constant *Op, +                                           const DataLayout &DL) { +  assert(Instruction::isUnaryOp(Opcode)); + +  return ConstantExpr::get(Opcode, Op); +} + +Constant *llvm::ConstantFoldBinaryOpOperands(unsigned Opcode, Constant *LHS, +                                             Constant *RHS, +                                             const DataLayout &DL) { +  assert(Instruction::isBinaryOp(Opcode)); +  if (isa<ConstantExpr>(LHS) || isa<ConstantExpr>(RHS)) +    if (Constant *C = SymbolicallyEvaluateBinop(Opcode, LHS, RHS, DL)) +      return C; + +  return ConstantExpr::get(Opcode, LHS, RHS); +} + +Constant *llvm::ConstantFoldCastOperand(unsigned Opcode, Constant *C, +                                        Type *DestTy, const DataLayout &DL) { +  assert(Instruction::isCast(Opcode)); +  switch (Opcode) { +  default: +    llvm_unreachable("Missing case"); +  case Instruction::PtrToInt: +    // If the input is a inttoptr, eliminate the pair.  This requires knowing +    // the width of a pointer, so it can't be done in ConstantExpr::getCast. +    if (auto *CE = dyn_cast<ConstantExpr>(C)) { +      if (CE->getOpcode() == Instruction::IntToPtr) { +        Constant *Input = CE->getOperand(0); +        unsigned InWidth = Input->getType()->getScalarSizeInBits(); +        unsigned PtrWidth = DL.getPointerTypeSizeInBits(CE->getType()); +        if (PtrWidth < InWidth) { +          Constant *Mask = +            ConstantInt::get(CE->getContext(), +                             APInt::getLowBitsSet(InWidth, PtrWidth)); +          Input = ConstantExpr::getAnd(Input, Mask); +        } +        // Do a zext or trunc to get to the dest size. +        return ConstantExpr::getIntegerCast(Input, DestTy, false); +      } +    } +    return ConstantExpr::getCast(Opcode, C, DestTy); +  case Instruction::IntToPtr: +    // If the input is a ptrtoint, turn the pair into a ptr to ptr bitcast if +    // the int size is >= the ptr size and the address spaces are the same. +    // This requires knowing the width of a pointer, so it can't be done in +    // ConstantExpr::getCast. +    if (auto *CE = dyn_cast<ConstantExpr>(C)) { +      if (CE->getOpcode() == Instruction::PtrToInt) { +        Constant *SrcPtr = CE->getOperand(0); +        unsigned SrcPtrSize = DL.getPointerTypeSizeInBits(SrcPtr->getType()); +        unsigned MidIntSize = CE->getType()->getScalarSizeInBits(); + +        if (MidIntSize >= SrcPtrSize) { +          unsigned SrcAS = SrcPtr->getType()->getPointerAddressSpace(); +          if (SrcAS == DestTy->getPointerAddressSpace()) +            return FoldBitCast(CE->getOperand(0), DestTy, DL); +        } +      } +    } + +    return ConstantExpr::getCast(Opcode, C, DestTy); +  case Instruction::Trunc: +  case Instruction::ZExt: +  case Instruction::SExt: +  case Instruction::FPTrunc: +  case Instruction::FPExt: +  case Instruction::UIToFP: +  case Instruction::SIToFP: +  case Instruction::FPToUI: +  case Instruction::FPToSI: +  case Instruction::AddrSpaceCast: +      return ConstantExpr::getCast(Opcode, C, DestTy); +  case Instruction::BitCast: +    return FoldBitCast(C, DestTy, DL); +  } +} + +Constant *llvm::ConstantFoldLoadThroughGEPConstantExpr(Constant *C, +                                                       ConstantExpr *CE) { +  if (!CE->getOperand(1)->isNullValue()) +    return nullptr;  // Do not allow stepping over the value! + +  // Loop over all of the operands, tracking down which value we are +  // addressing. +  for (unsigned i = 2, e = CE->getNumOperands(); i != e; ++i) { +    C = C->getAggregateElement(CE->getOperand(i)); +    if (!C) +      return nullptr; +  } +  return C; +} + +Constant * +llvm::ConstantFoldLoadThroughGEPIndices(Constant *C, +                                        ArrayRef<Constant *> Indices) { +  // Loop over all of the operands, tracking down which value we are +  // addressing. +  for (Constant *Index : Indices) { +    C = C->getAggregateElement(Index); +    if (!C) +      return nullptr; +  } +  return C; +} + +//===----------------------------------------------------------------------===// +//  Constant Folding for Calls +// + +bool llvm::canConstantFoldCallTo(const CallBase *Call, const Function *F) { +  if (Call->isNoBuiltin() || Call->isStrictFP()) +    return false; +  switch (F->getIntrinsicID()) { +  case Intrinsic::fabs: +  case Intrinsic::minnum: +  case Intrinsic::maxnum: +  case Intrinsic::minimum: +  case Intrinsic::maximum: +  case Intrinsic::log: +  case Intrinsic::log2: +  case Intrinsic::log10: +  case Intrinsic::exp: +  case Intrinsic::exp2: +  case Intrinsic::floor: +  case Intrinsic::ceil: +  case Intrinsic::sqrt: +  case Intrinsic::sin: +  case Intrinsic::cos: +  case Intrinsic::trunc: +  case Intrinsic::rint: +  case Intrinsic::nearbyint: +  case Intrinsic::pow: +  case Intrinsic::powi: +  case Intrinsic::bswap: +  case Intrinsic::ctpop: +  case Intrinsic::ctlz: +  case Intrinsic::cttz: +  case Intrinsic::fshl: +  case Intrinsic::fshr: +  case Intrinsic::fma: +  case Intrinsic::fmuladd: +  case Intrinsic::copysign: +  case Intrinsic::launder_invariant_group: +  case Intrinsic::strip_invariant_group: +  case Intrinsic::round: +  case Intrinsic::masked_load: +  case Intrinsic::sadd_with_overflow: +  case Intrinsic::uadd_with_overflow: +  case Intrinsic::ssub_with_overflow: +  case Intrinsic::usub_with_overflow: +  case Intrinsic::smul_with_overflow: +  case Intrinsic::umul_with_overflow: +  case Intrinsic::sadd_sat: +  case Intrinsic::uadd_sat: +  case Intrinsic::ssub_sat: +  case Intrinsic::usub_sat: +  case Intrinsic::smul_fix: +  case Intrinsic::smul_fix_sat: +  case Intrinsic::convert_from_fp16: +  case Intrinsic::convert_to_fp16: +  case Intrinsic::bitreverse: +  case Intrinsic::x86_sse_cvtss2si: +  case Intrinsic::x86_sse_cvtss2si64: +  case Intrinsic::x86_sse_cvttss2si: +  case Intrinsic::x86_sse_cvttss2si64: +  case Intrinsic::x86_sse2_cvtsd2si: +  case Intrinsic::x86_sse2_cvtsd2si64: +  case Intrinsic::x86_sse2_cvttsd2si: +  case Intrinsic::x86_sse2_cvttsd2si64: +  case Intrinsic::x86_avx512_vcvtss2si32: +  case Intrinsic::x86_avx512_vcvtss2si64: +  case Intrinsic::x86_avx512_cvttss2si: +  case Intrinsic::x86_avx512_cvttss2si64: +  case Intrinsic::x86_avx512_vcvtsd2si32: +  case Intrinsic::x86_avx512_vcvtsd2si64: +  case Intrinsic::x86_avx512_cvttsd2si: +  case Intrinsic::x86_avx512_cvttsd2si64: +  case Intrinsic::x86_avx512_vcvtss2usi32: +  case Intrinsic::x86_avx512_vcvtss2usi64: +  case Intrinsic::x86_avx512_cvttss2usi: +  case Intrinsic::x86_avx512_cvttss2usi64: +  case Intrinsic::x86_avx512_vcvtsd2usi32: +  case Intrinsic::x86_avx512_vcvtsd2usi64: +  case Intrinsic::x86_avx512_cvttsd2usi: +  case Intrinsic::x86_avx512_cvttsd2usi64: +  case Intrinsic::is_constant: +    return true; +  default: +    return false; +  case Intrinsic::not_intrinsic: break; +  } + +  if (!F->hasName()) +    return false; +  StringRef Name = F->getName(); + +  // In these cases, the check of the length is required.  We don't want to +  // return true for a name like "cos\0blah" which strcmp would return equal to +  // "cos", but has length 8. +  switch (Name[0]) { +  default: +    return false; +  case 'a': +    return Name == "acos" || Name == "asin" || Name == "atan" || +           Name == "atan2" || Name == "acosf" || Name == "asinf" || +           Name == "atanf" || Name == "atan2f"; +  case 'c': +    return Name == "ceil" || Name == "cos" || Name == "cosh" || +           Name == "ceilf" || Name == "cosf" || Name == "coshf"; +  case 'e': +    return Name == "exp" || Name == "exp2" || Name == "expf" || Name == "exp2f"; +  case 'f': +    return Name == "fabs" || Name == "floor" || Name == "fmod" || +           Name == "fabsf" || Name == "floorf" || Name == "fmodf"; +  case 'l': +    return Name == "log" || Name == "log10" || Name == "logf" || +           Name == "log10f"; +  case 'p': +    return Name == "pow" || Name == "powf"; +  case 'r': +    return Name == "round" || Name == "roundf"; +  case 's': +    return Name == "sin" || Name == "sinh" || Name == "sqrt" || +           Name == "sinf" || Name == "sinhf" || Name == "sqrtf"; +  case 't': +    return Name == "tan" || Name == "tanh" || Name == "tanf" || Name == "tanhf"; +  case '_': + +    // Check for various function names that get used for the math functions +    // when the header files are preprocessed with the macro +    // __FINITE_MATH_ONLY__ enabled. +    // The '12' here is the length of the shortest name that can match. +    // We need to check the size before looking at Name[1] and Name[2] +    // so we may as well check a limit that will eliminate mismatches. +    if (Name.size() < 12 || Name[1] != '_') +      return false; +    switch (Name[2]) { +    default: +      return false; +    case 'a': +      return Name == "__acos_finite" || Name == "__acosf_finite" || +             Name == "__asin_finite" || Name == "__asinf_finite" || +             Name == "__atan2_finite" || Name == "__atan2f_finite"; +    case 'c': +      return Name == "__cosh_finite" || Name == "__coshf_finite"; +    case 'e': +      return Name == "__exp_finite" || Name == "__expf_finite" || +             Name == "__exp2_finite" || Name == "__exp2f_finite"; +    case 'l': +      return Name == "__log_finite" || Name == "__logf_finite" || +             Name == "__log10_finite" || Name == "__log10f_finite"; +    case 'p': +      return Name == "__pow_finite" || Name == "__powf_finite"; +    case 's': +      return Name == "__sinh_finite" || Name == "__sinhf_finite"; +    } +  } +} + +namespace { + +Constant *GetConstantFoldFPValue(double V, Type *Ty) { +  if (Ty->isHalfTy() || Ty->isFloatTy()) { +    APFloat APF(V); +    bool unused; +    APF.convert(Ty->getFltSemantics(), APFloat::rmNearestTiesToEven, &unused); +    return ConstantFP::get(Ty->getContext(), APF); +  } +  if (Ty->isDoubleTy()) +    return ConstantFP::get(Ty->getContext(), APFloat(V)); +  llvm_unreachable("Can only constant fold half/float/double"); +} + +/// Clear the floating-point exception state. +inline void llvm_fenv_clearexcept() { +#if defined(HAVE_FENV_H) && HAVE_DECL_FE_ALL_EXCEPT +  feclearexcept(FE_ALL_EXCEPT); +#endif +  errno = 0; +} + +/// Test if a floating-point exception was raised. +inline bool llvm_fenv_testexcept() { +  int errno_val = errno; +  if (errno_val == ERANGE || errno_val == EDOM) +    return true; +#if defined(HAVE_FENV_H) && HAVE_DECL_FE_ALL_EXCEPT && HAVE_DECL_FE_INEXACT +  if (fetestexcept(FE_ALL_EXCEPT & ~FE_INEXACT)) +    return true; +#endif +  return false; +} + +Constant *ConstantFoldFP(double (*NativeFP)(double), double V, Type *Ty) { +  llvm_fenv_clearexcept(); +  V = NativeFP(V); +  if (llvm_fenv_testexcept()) { +    llvm_fenv_clearexcept(); +    return nullptr; +  } + +  return GetConstantFoldFPValue(V, Ty); +} + +Constant *ConstantFoldBinaryFP(double (*NativeFP)(double, double), double V, +                               double W, Type *Ty) { +  llvm_fenv_clearexcept(); +  V = NativeFP(V, W); +  if (llvm_fenv_testexcept()) { +    llvm_fenv_clearexcept(); +    return nullptr; +  } + +  return GetConstantFoldFPValue(V, Ty); +} + +/// Attempt to fold an SSE floating point to integer conversion of a constant +/// floating point. If roundTowardZero is false, the default IEEE rounding is +/// used (toward nearest, ties to even). This matches the behavior of the +/// non-truncating SSE instructions in the default rounding mode. The desired +/// integer type Ty is used to select how many bits are available for the +/// result. Returns null if the conversion cannot be performed, otherwise +/// returns the Constant value resulting from the conversion. +Constant *ConstantFoldSSEConvertToInt(const APFloat &Val, bool roundTowardZero, +                                      Type *Ty, bool IsSigned) { +  // All of these conversion intrinsics form an integer of at most 64bits. +  unsigned ResultWidth = Ty->getIntegerBitWidth(); +  assert(ResultWidth <= 64 && +         "Can only constant fold conversions to 64 and 32 bit ints"); + +  uint64_t UIntVal; +  bool isExact = false; +  APFloat::roundingMode mode = roundTowardZero? APFloat::rmTowardZero +                                              : APFloat::rmNearestTiesToEven; +  APFloat::opStatus status = +      Val.convertToInteger(makeMutableArrayRef(UIntVal), ResultWidth, +                           IsSigned, mode, &isExact); +  if (status != APFloat::opOK && +      (!roundTowardZero || status != APFloat::opInexact)) +    return nullptr; +  return ConstantInt::get(Ty, UIntVal, IsSigned); +} + +double getValueAsDouble(ConstantFP *Op) { +  Type *Ty = Op->getType(); + +  if (Ty->isFloatTy()) +    return Op->getValueAPF().convertToFloat(); + +  if (Ty->isDoubleTy()) +    return Op->getValueAPF().convertToDouble(); + +  bool unused; +  APFloat APF = Op->getValueAPF(); +  APF.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, &unused); +  return APF.convertToDouble(); +} + +static bool isManifestConstant(const Constant *c) { +  if (isa<ConstantData>(c)) { +    return true; +  } else if (isa<ConstantAggregate>(c) || isa<ConstantExpr>(c)) { +    for (const Value *subc : c->operand_values()) { +      if (!isManifestConstant(cast<Constant>(subc))) +        return false; +    } +    return true; +  } +  return false; +} + +static bool getConstIntOrUndef(Value *Op, const APInt *&C) { +  if (auto *CI = dyn_cast<ConstantInt>(Op)) { +    C = &CI->getValue(); +    return true; +  } +  if (isa<UndefValue>(Op)) { +    C = nullptr; +    return true; +  } +  return false; +} + +static Constant *ConstantFoldScalarCall1(StringRef Name, +                                         Intrinsic::ID IntrinsicID, +                                         Type *Ty, +                                         ArrayRef<Constant *> Operands, +                                         const TargetLibraryInfo *TLI, +                                         const CallBase *Call) { +  assert(Operands.size() == 1 && "Wrong number of operands."); + +  if (IntrinsicID == Intrinsic::is_constant) { +    // We know we have a "Constant" argument. But we want to only +    // return true for manifest constants, not those that depend on +    // constants with unknowable values, e.g. GlobalValue or BlockAddress. +    if (isManifestConstant(Operands[0])) +      return ConstantInt::getTrue(Ty->getContext()); +    return nullptr; +  } +  if (isa<UndefValue>(Operands[0])) { +    // cosine(arg) is between -1 and 1. cosine(invalid arg) is NaN. +    // ctpop() is between 0 and bitwidth, pick 0 for undef. +    if (IntrinsicID == Intrinsic::cos || +        IntrinsicID == Intrinsic::ctpop) +      return Constant::getNullValue(Ty); +    if (IntrinsicID == Intrinsic::bswap || +        IntrinsicID == Intrinsic::bitreverse || +        IntrinsicID == Intrinsic::launder_invariant_group || +        IntrinsicID == Intrinsic::strip_invariant_group) +      return Operands[0]; +  } + +  if (isa<ConstantPointerNull>(Operands[0])) { +    // launder(null) == null == strip(null) iff in addrspace 0 +    if (IntrinsicID == Intrinsic::launder_invariant_group || +        IntrinsicID == Intrinsic::strip_invariant_group) { +      // If instruction is not yet put in a basic block (e.g. when cloning +      // a function during inlining), Call's caller may not be available. +      // So check Call's BB first before querying Call->getCaller. +      const Function *Caller = +          Call->getParent() ? Call->getCaller() : nullptr; +      if (Caller && +          !NullPointerIsDefined( +              Caller, Operands[0]->getType()->getPointerAddressSpace())) { +        return Operands[0]; +      } +      return nullptr; +    } +  } + +  if (auto *Op = dyn_cast<ConstantFP>(Operands[0])) { +    if (IntrinsicID == Intrinsic::convert_to_fp16) { +      APFloat Val(Op->getValueAPF()); + +      bool lost = false; +      Val.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven, &lost); + +      return ConstantInt::get(Ty->getContext(), Val.bitcastToAPInt()); +    } + +    if (!Ty->isHalfTy() && !Ty->isFloatTy() && !Ty->isDoubleTy()) +      return nullptr; + +    if (IntrinsicID == Intrinsic::round) { +      APFloat V = Op->getValueAPF(); +      V.roundToIntegral(APFloat::rmNearestTiesToAway); +      return ConstantFP::get(Ty->getContext(), V); +    } + +    if (IntrinsicID == Intrinsic::floor) { +      APFloat V = Op->getValueAPF(); +      V.roundToIntegral(APFloat::rmTowardNegative); +      return ConstantFP::get(Ty->getContext(), V); +    } + +    if (IntrinsicID == Intrinsic::ceil) { +      APFloat V = Op->getValueAPF(); +      V.roundToIntegral(APFloat::rmTowardPositive); +      return ConstantFP::get(Ty->getContext(), V); +    } + +    if (IntrinsicID == Intrinsic::trunc) { +      APFloat V = Op->getValueAPF(); +      V.roundToIntegral(APFloat::rmTowardZero); +      return ConstantFP::get(Ty->getContext(), V); +    } + +    if (IntrinsicID == Intrinsic::rint) { +      APFloat V = Op->getValueAPF(); +      V.roundToIntegral(APFloat::rmNearestTiesToEven); +      return ConstantFP::get(Ty->getContext(), V); +    } + +    if (IntrinsicID == Intrinsic::nearbyint) { +      APFloat V = Op->getValueAPF(); +      V.roundToIntegral(APFloat::rmNearestTiesToEven); +      return ConstantFP::get(Ty->getContext(), V); +    } + +    /// We only fold functions with finite arguments. Folding NaN and inf is +    /// likely to be aborted with an exception anyway, and some host libms +    /// have known errors raising exceptions. +    if (Op->getValueAPF().isNaN() || Op->getValueAPF().isInfinity()) +      return nullptr; + +    /// Currently APFloat versions of these functions do not exist, so we use +    /// the host native double versions.  Float versions are not called +    /// directly but for all these it is true (float)(f((double)arg)) == +    /// f(arg).  Long double not supported yet. +    double V = getValueAsDouble(Op); + +    switch (IntrinsicID) { +      default: break; +      case Intrinsic::fabs: +        return ConstantFoldFP(fabs, V, Ty); +      case Intrinsic::log2: +        return ConstantFoldFP(Log2, V, Ty); +      case Intrinsic::log: +        return ConstantFoldFP(log, V, Ty); +      case Intrinsic::log10: +        return ConstantFoldFP(log10, V, Ty); +      case Intrinsic::exp: +        return ConstantFoldFP(exp, V, Ty); +      case Intrinsic::exp2: +        return ConstantFoldFP(exp2, V, Ty); +      case Intrinsic::sin: +        return ConstantFoldFP(sin, V, Ty); +      case Intrinsic::cos: +        return ConstantFoldFP(cos, V, Ty); +      case Intrinsic::sqrt: +        return ConstantFoldFP(sqrt, V, Ty); +    } + +    if (!TLI) +      return nullptr; + +    char NameKeyChar = Name[0]; +    if (Name[0] == '_' && Name.size() > 2 && Name[1] == '_') +      NameKeyChar = Name[2]; + +    switch (NameKeyChar) { +    case 'a': +      if ((Name == "acos" && TLI->has(LibFunc_acos)) || +          (Name == "acosf" && TLI->has(LibFunc_acosf)) || +          (Name == "__acos_finite" && TLI->has(LibFunc_acos_finite)) || +          (Name == "__acosf_finite" && TLI->has(LibFunc_acosf_finite))) +        return ConstantFoldFP(acos, V, Ty); +      else if ((Name == "asin" && TLI->has(LibFunc_asin)) || +               (Name == "asinf" && TLI->has(LibFunc_asinf)) || +               (Name == "__asin_finite" && TLI->has(LibFunc_asin_finite)) || +               (Name == "__asinf_finite" && TLI->has(LibFunc_asinf_finite))) +        return ConstantFoldFP(asin, V, Ty); +      else if ((Name == "atan" && TLI->has(LibFunc_atan)) || +               (Name == "atanf" && TLI->has(LibFunc_atanf))) +        return ConstantFoldFP(atan, V, Ty); +      break; +    case 'c': +      if ((Name == "ceil" && TLI->has(LibFunc_ceil)) || +          (Name == "ceilf" && TLI->has(LibFunc_ceilf))) +        return ConstantFoldFP(ceil, V, Ty); +      else if ((Name == "cos" && TLI->has(LibFunc_cos)) || +               (Name == "cosf" && TLI->has(LibFunc_cosf))) +        return ConstantFoldFP(cos, V, Ty); +      else if ((Name == "cosh" && TLI->has(LibFunc_cosh)) || +               (Name == "coshf" && TLI->has(LibFunc_coshf)) || +               (Name == "__cosh_finite" && TLI->has(LibFunc_cosh_finite)) || +               (Name == "__coshf_finite" && TLI->has(LibFunc_coshf_finite))) +        return ConstantFoldFP(cosh, V, Ty); +      break; +    case 'e': +      if ((Name == "exp" && TLI->has(LibFunc_exp)) || +          (Name == "expf" && TLI->has(LibFunc_expf)) || +          (Name == "__exp_finite" && TLI->has(LibFunc_exp_finite)) || +          (Name == "__expf_finite" && TLI->has(LibFunc_expf_finite))) +        return ConstantFoldFP(exp, V, Ty); +      if ((Name == "exp2" && TLI->has(LibFunc_exp2)) || +          (Name == "exp2f" && TLI->has(LibFunc_exp2f)) || +          (Name == "__exp2_finite" && TLI->has(LibFunc_exp2_finite)) || +          (Name == "__exp2f_finite" && TLI->has(LibFunc_exp2f_finite))) +        // Constant fold exp2(x) as pow(2,x) in case the host doesn't have a +        // C99 library. +        return ConstantFoldBinaryFP(pow, 2.0, V, Ty); +      break; +    case 'f': +      if ((Name == "fabs" && TLI->has(LibFunc_fabs)) || +          (Name == "fabsf" && TLI->has(LibFunc_fabsf))) +        return ConstantFoldFP(fabs, V, Ty); +      else if ((Name == "floor" && TLI->has(LibFunc_floor)) || +               (Name == "floorf" && TLI->has(LibFunc_floorf))) +        return ConstantFoldFP(floor, V, Ty); +      break; +    case 'l': +      if ((Name == "log" && V > 0 && TLI->has(LibFunc_log)) || +          (Name == "logf" && V > 0 && TLI->has(LibFunc_logf)) || +          (Name == "__log_finite" && V > 0 && +            TLI->has(LibFunc_log_finite)) || +          (Name == "__logf_finite" && V > 0 && +            TLI->has(LibFunc_logf_finite))) +        return ConstantFoldFP(log, V, Ty); +      else if ((Name == "log10" && V > 0 && TLI->has(LibFunc_log10)) || +               (Name == "log10f" && V > 0 && TLI->has(LibFunc_log10f)) || +               (Name == "__log10_finite" && V > 0 && +                 TLI->has(LibFunc_log10_finite)) || +               (Name == "__log10f_finite" && V > 0 && +                 TLI->has(LibFunc_log10f_finite))) +        return ConstantFoldFP(log10, V, Ty); +      break; +    case 'r': +      if ((Name == "round" && TLI->has(LibFunc_round)) || +          (Name == "roundf" && TLI->has(LibFunc_roundf))) +        return ConstantFoldFP(round, V, Ty); +      break; +    case 's': +      if ((Name == "sin" && TLI->has(LibFunc_sin)) || +          (Name == "sinf" && TLI->has(LibFunc_sinf))) +        return ConstantFoldFP(sin, V, Ty); +      else if ((Name == "sinh" && TLI->has(LibFunc_sinh)) || +               (Name == "sinhf" && TLI->has(LibFunc_sinhf)) || +               (Name == "__sinh_finite" && TLI->has(LibFunc_sinh_finite)) || +               (Name == "__sinhf_finite" && TLI->has(LibFunc_sinhf_finite))) +        return ConstantFoldFP(sinh, V, Ty); +      else if ((Name == "sqrt" && V >= 0 && TLI->has(LibFunc_sqrt)) || +               (Name == "sqrtf" && V >= 0 && TLI->has(LibFunc_sqrtf))) +        return ConstantFoldFP(sqrt, V, Ty); +      break; +    case 't': +      if ((Name == "tan" && TLI->has(LibFunc_tan)) || +          (Name == "tanf" && TLI->has(LibFunc_tanf))) +        return ConstantFoldFP(tan, V, Ty); +      else if ((Name == "tanh" && TLI->has(LibFunc_tanh)) || +               (Name == "tanhf" && TLI->has(LibFunc_tanhf))) +        return ConstantFoldFP(tanh, V, Ty); +      break; +    default: +      break; +    } +    return nullptr; +  } + +  if (auto *Op = dyn_cast<ConstantInt>(Operands[0])) { +    switch (IntrinsicID) { +    case Intrinsic::bswap: +      return ConstantInt::get(Ty->getContext(), Op->getValue().byteSwap()); +    case Intrinsic::ctpop: +      return ConstantInt::get(Ty, Op->getValue().countPopulation()); +    case Intrinsic::bitreverse: +      return ConstantInt::get(Ty->getContext(), Op->getValue().reverseBits()); +    case Intrinsic::convert_from_fp16: { +      APFloat Val(APFloat::IEEEhalf(), Op->getValue()); + +      bool lost = false; +      APFloat::opStatus status = Val.convert( +          Ty->getFltSemantics(), APFloat::rmNearestTiesToEven, &lost); + +      // Conversion is always precise. +      (void)status; +      assert(status == APFloat::opOK && !lost && +             "Precision lost during fp16 constfolding"); + +      return ConstantFP::get(Ty->getContext(), Val); +    } +    default: +      return nullptr; +    } +  } + +  // Support ConstantVector in case we have an Undef in the top. +  if (isa<ConstantVector>(Operands[0]) || +      isa<ConstantDataVector>(Operands[0])) { +    auto *Op = cast<Constant>(Operands[0]); +    switch (IntrinsicID) { +    default: break; +    case Intrinsic::x86_sse_cvtss2si: +    case Intrinsic::x86_sse_cvtss2si64: +    case Intrinsic::x86_sse2_cvtsd2si: +    case Intrinsic::x86_sse2_cvtsd2si64: +      if (ConstantFP *FPOp = +              dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U))) +        return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(), +                                           /*roundTowardZero=*/false, Ty, +                                           /*IsSigned*/true); +      break; +    case Intrinsic::x86_sse_cvttss2si: +    case Intrinsic::x86_sse_cvttss2si64: +    case Intrinsic::x86_sse2_cvttsd2si: +    case Intrinsic::x86_sse2_cvttsd2si64: +      if (ConstantFP *FPOp = +              dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U))) +        return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(), +                                           /*roundTowardZero=*/true, Ty, +                                           /*IsSigned*/true); +      break; +    } +  } + +  return nullptr; +} + +static Constant *ConstantFoldScalarCall2(StringRef Name, +                                         Intrinsic::ID IntrinsicID, +                                         Type *Ty, +                                         ArrayRef<Constant *> Operands, +                                         const TargetLibraryInfo *TLI, +                                         const CallBase *Call) { +  assert(Operands.size() == 2 && "Wrong number of operands."); + +  if (auto *Op1 = dyn_cast<ConstantFP>(Operands[0])) { +    if (!Ty->isHalfTy() && !Ty->isFloatTy() && !Ty->isDoubleTy()) +      return nullptr; +    double Op1V = getValueAsDouble(Op1); + +    if (auto *Op2 = dyn_cast<ConstantFP>(Operands[1])) { +      if (Op2->getType() != Op1->getType()) +        return nullptr; + +      double Op2V = getValueAsDouble(Op2); +      if (IntrinsicID == Intrinsic::pow) { +        return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty); +      } +      if (IntrinsicID == Intrinsic::copysign) { +        APFloat V1 = Op1->getValueAPF(); +        const APFloat &V2 = Op2->getValueAPF(); +        V1.copySign(V2); +        return ConstantFP::get(Ty->getContext(), V1); +      } + +      if (IntrinsicID == Intrinsic::minnum) { +        const APFloat &C1 = Op1->getValueAPF(); +        const APFloat &C2 = Op2->getValueAPF(); +        return ConstantFP::get(Ty->getContext(), minnum(C1, C2)); +      } + +      if (IntrinsicID == Intrinsic::maxnum) { +        const APFloat &C1 = Op1->getValueAPF(); +        const APFloat &C2 = Op2->getValueAPF(); +        return ConstantFP::get(Ty->getContext(), maxnum(C1, C2)); +      } + +      if (IntrinsicID == Intrinsic::minimum) { +        const APFloat &C1 = Op1->getValueAPF(); +        const APFloat &C2 = Op2->getValueAPF(); +        return ConstantFP::get(Ty->getContext(), minimum(C1, C2)); +      } + +      if (IntrinsicID == Intrinsic::maximum) { +        const APFloat &C1 = Op1->getValueAPF(); +        const APFloat &C2 = Op2->getValueAPF(); +        return ConstantFP::get(Ty->getContext(), maximum(C1, C2)); +      } + +      if (!TLI) +        return nullptr; +      if ((Name == "pow" && TLI->has(LibFunc_pow)) || +          (Name == "powf" && TLI->has(LibFunc_powf)) || +          (Name == "__pow_finite" && TLI->has(LibFunc_pow_finite)) || +          (Name == "__powf_finite" && TLI->has(LibFunc_powf_finite))) +        return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty); +      if ((Name == "fmod" && TLI->has(LibFunc_fmod)) || +          (Name == "fmodf" && TLI->has(LibFunc_fmodf))) +        return ConstantFoldBinaryFP(fmod, Op1V, Op2V, Ty); +      if ((Name == "atan2" && TLI->has(LibFunc_atan2)) || +          (Name == "atan2f" && TLI->has(LibFunc_atan2f)) || +          (Name == "__atan2_finite" && TLI->has(LibFunc_atan2_finite)) || +          (Name == "__atan2f_finite" && TLI->has(LibFunc_atan2f_finite))) +        return ConstantFoldBinaryFP(atan2, Op1V, Op2V, Ty); +    } else if (auto *Op2C = dyn_cast<ConstantInt>(Operands[1])) { +      if (IntrinsicID == Intrinsic::powi && Ty->isHalfTy()) +        return ConstantFP::get(Ty->getContext(), +                               APFloat((float)std::pow((float)Op1V, +                                               (int)Op2C->getZExtValue()))); +      if (IntrinsicID == Intrinsic::powi && Ty->isFloatTy()) +        return ConstantFP::get(Ty->getContext(), +                               APFloat((float)std::pow((float)Op1V, +                                               (int)Op2C->getZExtValue()))); +      if (IntrinsicID == Intrinsic::powi && Ty->isDoubleTy()) +        return ConstantFP::get(Ty->getContext(), +                               APFloat((double)std::pow((double)Op1V, +                                                 (int)Op2C->getZExtValue()))); +    } +    return nullptr; +  } + +  if (Operands[0]->getType()->isIntegerTy() && +      Operands[1]->getType()->isIntegerTy()) { +    const APInt *C0, *C1; +    if (!getConstIntOrUndef(Operands[0], C0) || +        !getConstIntOrUndef(Operands[1], C1)) +      return nullptr; + +    switch (IntrinsicID) { +    default: break; +    case Intrinsic::smul_with_overflow: +    case Intrinsic::umul_with_overflow: +      // Even if both operands are undef, we cannot fold muls to undef +      // in the general case. For example, on i2 there are no inputs +      // that would produce { i2 -1, i1 true } as the result. +      if (!C0 || !C1) +        return Constant::getNullValue(Ty); +      LLVM_FALLTHROUGH; +    case Intrinsic::sadd_with_overflow: +    case Intrinsic::uadd_with_overflow: +    case Intrinsic::ssub_with_overflow: +    case Intrinsic::usub_with_overflow: { +      if (!C0 || !C1) +        return UndefValue::get(Ty); + +      APInt Res; +      bool Overflow; +      switch (IntrinsicID) { +      default: llvm_unreachable("Invalid case"); +      case Intrinsic::sadd_with_overflow: +        Res = C0->sadd_ov(*C1, Overflow); +        break; +      case Intrinsic::uadd_with_overflow: +        Res = C0->uadd_ov(*C1, Overflow); +        break; +      case Intrinsic::ssub_with_overflow: +        Res = C0->ssub_ov(*C1, Overflow); +        break; +      case Intrinsic::usub_with_overflow: +        Res = C0->usub_ov(*C1, Overflow); +        break; +      case Intrinsic::smul_with_overflow: +        Res = C0->smul_ov(*C1, Overflow); +        break; +      case Intrinsic::umul_with_overflow: +        Res = C0->umul_ov(*C1, Overflow); +        break; +      } +      Constant *Ops[] = { +        ConstantInt::get(Ty->getContext(), Res), +        ConstantInt::get(Type::getInt1Ty(Ty->getContext()), Overflow) +      }; +      return ConstantStruct::get(cast<StructType>(Ty), Ops); +    } +    case Intrinsic::uadd_sat: +    case Intrinsic::sadd_sat: +      if (!C0 && !C1) +        return UndefValue::get(Ty); +      if (!C0 || !C1) +        return Constant::getAllOnesValue(Ty); +      if (IntrinsicID == Intrinsic::uadd_sat) +        return ConstantInt::get(Ty, C0->uadd_sat(*C1)); +      else +        return ConstantInt::get(Ty, C0->sadd_sat(*C1)); +    case Intrinsic::usub_sat: +    case Intrinsic::ssub_sat: +      if (!C0 && !C1) +        return UndefValue::get(Ty); +      if (!C0 || !C1) +        return Constant::getNullValue(Ty); +      if (IntrinsicID == Intrinsic::usub_sat) +        return ConstantInt::get(Ty, C0->usub_sat(*C1)); +      else +        return ConstantInt::get(Ty, C0->ssub_sat(*C1)); +    case Intrinsic::cttz: +    case Intrinsic::ctlz: +      assert(C1 && "Must be constant int"); + +      // cttz(0, 1) and ctlz(0, 1) are undef. +      if (C1->isOneValue() && (!C0 || C0->isNullValue())) +        return UndefValue::get(Ty); +      if (!C0) +        return Constant::getNullValue(Ty); +      if (IntrinsicID == Intrinsic::cttz) +        return ConstantInt::get(Ty, C0->countTrailingZeros()); +      else +        return ConstantInt::get(Ty, C0->countLeadingZeros()); +    } + +    return nullptr; +  } + +  // Support ConstantVector in case we have an Undef in the top. +  if ((isa<ConstantVector>(Operands[0]) || +       isa<ConstantDataVector>(Operands[0])) && +      // Check for default rounding mode. +      // FIXME: Support other rounding modes? +      isa<ConstantInt>(Operands[1]) && +      cast<ConstantInt>(Operands[1])->getValue() == 4) { +    auto *Op = cast<Constant>(Operands[0]); +    switch (IntrinsicID) { +    default: break; +    case Intrinsic::x86_avx512_vcvtss2si32: +    case Intrinsic::x86_avx512_vcvtss2si64: +    case Intrinsic::x86_avx512_vcvtsd2si32: +    case Intrinsic::x86_avx512_vcvtsd2si64: +      if (ConstantFP *FPOp = +              dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U))) +        return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(), +                                           /*roundTowardZero=*/false, Ty, +                                           /*IsSigned*/true); +      break; +    case Intrinsic::x86_avx512_vcvtss2usi32: +    case Intrinsic::x86_avx512_vcvtss2usi64: +    case Intrinsic::x86_avx512_vcvtsd2usi32: +    case Intrinsic::x86_avx512_vcvtsd2usi64: +      if (ConstantFP *FPOp = +              dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U))) +        return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(), +                                           /*roundTowardZero=*/false, Ty, +                                           /*IsSigned*/false); +      break; +    case Intrinsic::x86_avx512_cvttss2si: +    case Intrinsic::x86_avx512_cvttss2si64: +    case Intrinsic::x86_avx512_cvttsd2si: +    case Intrinsic::x86_avx512_cvttsd2si64: +      if (ConstantFP *FPOp = +              dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U))) +        return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(), +                                           /*roundTowardZero=*/true, Ty, +                                           /*IsSigned*/true); +      break; +    case Intrinsic::x86_avx512_cvttss2usi: +    case Intrinsic::x86_avx512_cvttss2usi64: +    case Intrinsic::x86_avx512_cvttsd2usi: +    case Intrinsic::x86_avx512_cvttsd2usi64: +      if (ConstantFP *FPOp = +              dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U))) +        return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(), +                                           /*roundTowardZero=*/true, Ty, +                                           /*IsSigned*/false); +      break; +    } +  } +  return nullptr; +} + +static Constant *ConstantFoldScalarCall3(StringRef Name, +                                         Intrinsic::ID IntrinsicID, +                                         Type *Ty, +                                         ArrayRef<Constant *> Operands, +                                         const TargetLibraryInfo *TLI, +                                         const CallBase *Call) { +  assert(Operands.size() == 3 && "Wrong number of operands."); + +  if (const auto *Op1 = dyn_cast<ConstantFP>(Operands[0])) { +    if (const auto *Op2 = dyn_cast<ConstantFP>(Operands[1])) { +      if (const auto *Op3 = dyn_cast<ConstantFP>(Operands[2])) { +        switch (IntrinsicID) { +        default: break; +        case Intrinsic::fma: +        case Intrinsic::fmuladd: { +          APFloat V = Op1->getValueAPF(); +          APFloat::opStatus s = V.fusedMultiplyAdd(Op2->getValueAPF(), +                                                   Op3->getValueAPF(), +                                                   APFloat::rmNearestTiesToEven); +          if (s != APFloat::opInvalidOp) +            return ConstantFP::get(Ty->getContext(), V); + +          return nullptr; +        } +        } +      } +    } +  } + +  if (const auto *Op1 = dyn_cast<ConstantInt>(Operands[0])) { +    if (const auto *Op2 = dyn_cast<ConstantInt>(Operands[1])) { +      if (const auto *Op3 = dyn_cast<ConstantInt>(Operands[2])) { +        switch (IntrinsicID) { +        default: break; +        case Intrinsic::smul_fix: +        case Intrinsic::smul_fix_sat: { +          // This code performs rounding towards negative infinity in case the +          // result cannot be represented exactly for the given scale. Targets +          // that do care about rounding should use a target hook for specifying +          // how rounding should be done, and provide their own folding to be +          // consistent with rounding. This is the same approach as used by +          // DAGTypeLegalizer::ExpandIntRes_MULFIX. +          APInt Lhs = Op1->getValue(); +          APInt Rhs = Op2->getValue(); +          unsigned Scale = Op3->getValue().getZExtValue(); +          unsigned Width = Lhs.getBitWidth(); +          assert(Scale < Width && "Illegal scale."); +          unsigned ExtendedWidth = Width * 2; +          APInt Product = (Lhs.sextOrSelf(ExtendedWidth) * +                           Rhs.sextOrSelf(ExtendedWidth)).ashr(Scale); +          if (IntrinsicID == Intrinsic::smul_fix_sat) { +            APInt MaxValue = +              APInt::getSignedMaxValue(Width).sextOrSelf(ExtendedWidth); +            APInt MinValue = +              APInt::getSignedMinValue(Width).sextOrSelf(ExtendedWidth); +            Product = APIntOps::smin(Product, MaxValue); +            Product = APIntOps::smax(Product, MinValue); +          } +          return ConstantInt::get(Ty->getContext(), +                                  Product.sextOrTrunc(Width)); +        } +        } +      } +    } +  } + +  if (IntrinsicID == Intrinsic::fshl || IntrinsicID == Intrinsic::fshr) { +    const APInt *C0, *C1, *C2; +    if (!getConstIntOrUndef(Operands[0], C0) || +        !getConstIntOrUndef(Operands[1], C1) || +        !getConstIntOrUndef(Operands[2], C2)) +      return nullptr; + +    bool IsRight = IntrinsicID == Intrinsic::fshr; +    if (!C2) +      return Operands[IsRight ? 1 : 0]; +    if (!C0 && !C1) +      return UndefValue::get(Ty); + +    // The shift amount is interpreted as modulo the bitwidth. If the shift +    // amount is effectively 0, avoid UB due to oversized inverse shift below. +    unsigned BitWidth = C2->getBitWidth(); +    unsigned ShAmt = C2->urem(BitWidth); +    if (!ShAmt) +      return Operands[IsRight ? 1 : 0]; + +    // (C0 << ShlAmt) | (C1 >> LshrAmt) +    unsigned LshrAmt = IsRight ? ShAmt : BitWidth - ShAmt; +    unsigned ShlAmt = !IsRight ? ShAmt : BitWidth - ShAmt; +    if (!C0) +      return ConstantInt::get(Ty, C1->lshr(LshrAmt)); +    if (!C1) +      return ConstantInt::get(Ty, C0->shl(ShlAmt)); +    return ConstantInt::get(Ty, C0->shl(ShlAmt) | C1->lshr(LshrAmt)); +  } + +  return nullptr; +} + +static Constant *ConstantFoldScalarCall(StringRef Name, +                                        Intrinsic::ID IntrinsicID, +                                        Type *Ty, +                                        ArrayRef<Constant *> Operands, +                                        const TargetLibraryInfo *TLI, +                                        const CallBase *Call) { +  if (Operands.size() == 1) +    return ConstantFoldScalarCall1(Name, IntrinsicID, Ty, Operands, TLI, Call); + +  if (Operands.size() == 2) +    return ConstantFoldScalarCall2(Name, IntrinsicID, Ty, Operands, TLI, Call); + +  if (Operands.size() == 3) +    return ConstantFoldScalarCall3(Name, IntrinsicID, Ty, Operands, TLI, Call); + +  return nullptr; +} + +static Constant *ConstantFoldVectorCall(StringRef Name, +                                        Intrinsic::ID IntrinsicID, +                                        VectorType *VTy, +                                        ArrayRef<Constant *> Operands, +                                        const DataLayout &DL, +                                        const TargetLibraryInfo *TLI, +                                        const CallBase *Call) { +  SmallVector<Constant *, 4> Result(VTy->getNumElements()); +  SmallVector<Constant *, 4> Lane(Operands.size()); +  Type *Ty = VTy->getElementType(); + +  if (IntrinsicID == Intrinsic::masked_load) { +    auto *SrcPtr = Operands[0]; +    auto *Mask = Operands[2]; +    auto *Passthru = Operands[3]; + +    Constant *VecData = ConstantFoldLoadFromConstPtr(SrcPtr, VTy, DL); + +    SmallVector<Constant *, 32> NewElements; +    for (unsigned I = 0, E = VTy->getNumElements(); I != E; ++I) { +      auto *MaskElt = Mask->getAggregateElement(I); +      if (!MaskElt) +        break; +      auto *PassthruElt = Passthru->getAggregateElement(I); +      auto *VecElt = VecData ? VecData->getAggregateElement(I) : nullptr; +      if (isa<UndefValue>(MaskElt)) { +        if (PassthruElt) +          NewElements.push_back(PassthruElt); +        else if (VecElt) +          NewElements.push_back(VecElt); +        else +          return nullptr; +      } +      if (MaskElt->isNullValue()) { +        if (!PassthruElt) +          return nullptr; +        NewElements.push_back(PassthruElt); +      } else if (MaskElt->isOneValue()) { +        if (!VecElt) +          return nullptr; +        NewElements.push_back(VecElt); +      } else { +        return nullptr; +      } +    } +    if (NewElements.size() != VTy->getNumElements()) +      return nullptr; +    return ConstantVector::get(NewElements); +  } + +  for (unsigned I = 0, E = VTy->getNumElements(); I != E; ++I) { +    // Gather a column of constants. +    for (unsigned J = 0, JE = Operands.size(); J != JE; ++J) { +      // Some intrinsics use a scalar type for certain arguments. +      if (hasVectorInstrinsicScalarOpd(IntrinsicID, J)) { +        Lane[J] = Operands[J]; +        continue; +      } + +      Constant *Agg = Operands[J]->getAggregateElement(I); +      if (!Agg) +        return nullptr; + +      Lane[J] = Agg; +    } + +    // Use the regular scalar folding to simplify this column. +    Constant *Folded = +        ConstantFoldScalarCall(Name, IntrinsicID, Ty, Lane, TLI, Call); +    if (!Folded) +      return nullptr; +    Result[I] = Folded; +  } + +  return ConstantVector::get(Result); +} + +} // end anonymous namespace + +Constant *llvm::ConstantFoldCall(const CallBase *Call, Function *F, +                                 ArrayRef<Constant *> Operands, +                                 const TargetLibraryInfo *TLI) { +  if (Call->isNoBuiltin() || Call->isStrictFP()) +    return nullptr; +  if (!F->hasName()) +    return nullptr; +  StringRef Name = F->getName(); + +  Type *Ty = F->getReturnType(); + +  if (auto *VTy = dyn_cast<VectorType>(Ty)) +    return ConstantFoldVectorCall(Name, F->getIntrinsicID(), VTy, Operands, +                                  F->getParent()->getDataLayout(), TLI, Call); + +  return ConstantFoldScalarCall(Name, F->getIntrinsicID(), Ty, Operands, TLI, +                                Call); +} + +bool llvm::isMathLibCallNoop(const CallBase *Call, +                             const TargetLibraryInfo *TLI) { +  // FIXME: Refactor this code; this duplicates logic in LibCallsShrinkWrap +  // (and to some extent ConstantFoldScalarCall). +  if (Call->isNoBuiltin() || Call->isStrictFP()) +    return false; +  Function *F = Call->getCalledFunction(); +  if (!F) +    return false; + +  LibFunc Func; +  if (!TLI || !TLI->getLibFunc(*F, Func)) +    return false; + +  if (Call->getNumArgOperands() == 1) { +    if (ConstantFP *OpC = dyn_cast<ConstantFP>(Call->getArgOperand(0))) { +      const APFloat &Op = OpC->getValueAPF(); +      switch (Func) { +      case LibFunc_logl: +      case LibFunc_log: +      case LibFunc_logf: +      case LibFunc_log2l: +      case LibFunc_log2: +      case LibFunc_log2f: +      case LibFunc_log10l: +      case LibFunc_log10: +      case LibFunc_log10f: +        return Op.isNaN() || (!Op.isZero() && !Op.isNegative()); + +      case LibFunc_expl: +      case LibFunc_exp: +      case LibFunc_expf: +        // FIXME: These boundaries are slightly conservative. +        if (OpC->getType()->isDoubleTy()) +          return Op.compare(APFloat(-745.0)) != APFloat::cmpLessThan && +                 Op.compare(APFloat(709.0)) != APFloat::cmpGreaterThan; +        if (OpC->getType()->isFloatTy()) +          return Op.compare(APFloat(-103.0f)) != APFloat::cmpLessThan && +                 Op.compare(APFloat(88.0f)) != APFloat::cmpGreaterThan; +        break; + +      case LibFunc_exp2l: +      case LibFunc_exp2: +      case LibFunc_exp2f: +        // FIXME: These boundaries are slightly conservative. +        if (OpC->getType()->isDoubleTy()) +          return Op.compare(APFloat(-1074.0)) != APFloat::cmpLessThan && +                 Op.compare(APFloat(1023.0)) != APFloat::cmpGreaterThan; +        if (OpC->getType()->isFloatTy()) +          return Op.compare(APFloat(-149.0f)) != APFloat::cmpLessThan && +                 Op.compare(APFloat(127.0f)) != APFloat::cmpGreaterThan; +        break; + +      case LibFunc_sinl: +      case LibFunc_sin: +      case LibFunc_sinf: +      case LibFunc_cosl: +      case LibFunc_cos: +      case LibFunc_cosf: +        return !Op.isInfinity(); + +      case LibFunc_tanl: +      case LibFunc_tan: +      case LibFunc_tanf: { +        // FIXME: Stop using the host math library. +        // FIXME: The computation isn't done in the right precision. +        Type *Ty = OpC->getType(); +        if (Ty->isDoubleTy() || Ty->isFloatTy() || Ty->isHalfTy()) { +          double OpV = getValueAsDouble(OpC); +          return ConstantFoldFP(tan, OpV, Ty) != nullptr; +        } +        break; +      } + +      case LibFunc_asinl: +      case LibFunc_asin: +      case LibFunc_asinf: +      case LibFunc_acosl: +      case LibFunc_acos: +      case LibFunc_acosf: +        return Op.compare(APFloat(Op.getSemantics(), "-1")) != +                   APFloat::cmpLessThan && +               Op.compare(APFloat(Op.getSemantics(), "1")) != +                   APFloat::cmpGreaterThan; + +      case LibFunc_sinh: +      case LibFunc_cosh: +      case LibFunc_sinhf: +      case LibFunc_coshf: +      case LibFunc_sinhl: +      case LibFunc_coshl: +        // FIXME: These boundaries are slightly conservative. +        if (OpC->getType()->isDoubleTy()) +          return Op.compare(APFloat(-710.0)) != APFloat::cmpLessThan && +                 Op.compare(APFloat(710.0)) != APFloat::cmpGreaterThan; +        if (OpC->getType()->isFloatTy()) +          return Op.compare(APFloat(-89.0f)) != APFloat::cmpLessThan && +                 Op.compare(APFloat(89.0f)) != APFloat::cmpGreaterThan; +        break; + +      case LibFunc_sqrtl: +      case LibFunc_sqrt: +      case LibFunc_sqrtf: +        return Op.isNaN() || Op.isZero() || !Op.isNegative(); + +      // FIXME: Add more functions: sqrt_finite, atanh, expm1, log1p, +      // maybe others? +      default: +        break; +      } +    } +  } + +  if (Call->getNumArgOperands() == 2) { +    ConstantFP *Op0C = dyn_cast<ConstantFP>(Call->getArgOperand(0)); +    ConstantFP *Op1C = dyn_cast<ConstantFP>(Call->getArgOperand(1)); +    if (Op0C && Op1C) { +      const APFloat &Op0 = Op0C->getValueAPF(); +      const APFloat &Op1 = Op1C->getValueAPF(); + +      switch (Func) { +      case LibFunc_powl: +      case LibFunc_pow: +      case LibFunc_powf: { +        // FIXME: Stop using the host math library. +        // FIXME: The computation isn't done in the right precision. +        Type *Ty = Op0C->getType(); +        if (Ty->isDoubleTy() || Ty->isFloatTy() || Ty->isHalfTy()) { +          if (Ty == Op1C->getType()) { +            double Op0V = getValueAsDouble(Op0C); +            double Op1V = getValueAsDouble(Op1C); +            return ConstantFoldBinaryFP(pow, Op0V, Op1V, Ty) != nullptr; +          } +        } +        break; +      } + +      case LibFunc_fmodl: +      case LibFunc_fmod: +      case LibFunc_fmodf: +        return Op0.isNaN() || Op1.isNaN() || +               (!Op0.isInfinity() && !Op1.isZero()); + +      default: +        break; +      } +    } +  } + +  return false; +}  | 
