aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm-project/llvm/lib/Analysis/ConstantFolding.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm-project/llvm/lib/Analysis/ConstantFolding.cpp')
-rw-r--r--contrib/llvm-project/llvm/lib/Analysis/ConstantFolding.cpp2952
1 files changed, 2952 insertions, 0 deletions
diff --git a/contrib/llvm-project/llvm/lib/Analysis/ConstantFolding.cpp b/contrib/llvm-project/llvm/lib/Analysis/ConstantFolding.cpp
new file mode 100644
index 000000000000..8c66decaaf58
--- /dev/null
+++ b/contrib/llvm-project/llvm/lib/Analysis/ConstantFolding.cpp
@@ -0,0 +1,2952 @@
+//===-- ConstantFolding.cpp - Fold instructions into constants ------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines routines for folding instructions into constants.
+//
+// Also, to supplement the basic IR ConstantExpr simplifications,
+// this file defines some additional folding routines that can make use of
+// DataLayout information. These functions cannot go in IR due to library
+// dependency issues.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Analysis/ConstantFolding.h"
+#include "llvm/ADT/APFloat.h"
+#include "llvm/ADT/APInt.h"
+#include "llvm/ADT/ArrayRef.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/StringRef.h"
+#include "llvm/Analysis/TargetFolder.h"
+#include "llvm/Analysis/TargetLibraryInfo.h"
+#include "llvm/Analysis/ValueTracking.h"
+#include "llvm/Analysis/VectorUtils.h"
+#include "llvm/Config/config.h"
+#include "llvm/IR/Constant.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/GlobalValue.h"
+#include "llvm/IR/GlobalVariable.h"
+#include "llvm/IR/InstrTypes.h"
+#include "llvm/IR/Instruction.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/Intrinsics.h"
+#include "llvm/IR/IntrinsicsAMDGPU.h"
+#include "llvm/IR/IntrinsicsX86.h"
+#include "llvm/IR/Operator.h"
+#include "llvm/IR/Type.h"
+#include "llvm/IR/Value.h"
+#include "llvm/Support/Casting.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/KnownBits.h"
+#include "llvm/Support/MathExtras.h"
+#include <cassert>
+#include <cerrno>
+#include <cfenv>
+#include <cmath>
+#include <cstddef>
+#include <cstdint>
+
+using namespace llvm;
+
+namespace {
+
+//===----------------------------------------------------------------------===//
+// Constant Folding internal helper functions
+//===----------------------------------------------------------------------===//
+
+static Constant *foldConstVectorToAPInt(APInt &Result, Type *DestTy,
+ Constant *C, Type *SrcEltTy,
+ unsigned NumSrcElts,
+ const DataLayout &DL) {
+ // Now that we know that the input value is a vector of integers, just shift
+ // and insert them into our result.
+ unsigned BitShift = DL.getTypeSizeInBits(SrcEltTy);
+ for (unsigned i = 0; i != NumSrcElts; ++i) {
+ Constant *Element;
+ if (DL.isLittleEndian())
+ Element = C->getAggregateElement(NumSrcElts - i - 1);
+ else
+ Element = C->getAggregateElement(i);
+
+ if (Element && isa<UndefValue>(Element)) {
+ Result <<= BitShift;
+ continue;
+ }
+
+ auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element);
+ if (!ElementCI)
+ return ConstantExpr::getBitCast(C, DestTy);
+
+ Result <<= BitShift;
+ Result |= ElementCI->getValue().zextOrSelf(Result.getBitWidth());
+ }
+
+ return nullptr;
+}
+
+/// Constant fold bitcast, symbolically evaluating it with DataLayout.
+/// This always returns a non-null constant, but it may be a
+/// ConstantExpr if unfoldable.
+Constant *FoldBitCast(Constant *C, Type *DestTy, const DataLayout &DL) {
+ assert(CastInst::castIsValid(Instruction::BitCast, C, DestTy) &&
+ "Invalid constantexpr bitcast!");
+
+ // Catch the obvious splat cases.
+ if (C->isNullValue() && !DestTy->isX86_MMXTy())
+ return Constant::getNullValue(DestTy);
+ if (C->isAllOnesValue() && !DestTy->isX86_MMXTy() &&
+ !DestTy->isPtrOrPtrVectorTy()) // Don't get ones for ptr types!
+ return Constant::getAllOnesValue(DestTy);
+
+ if (auto *VTy = dyn_cast<VectorType>(C->getType())) {
+ // Handle a vector->scalar integer/fp cast.
+ if (isa<IntegerType>(DestTy) || DestTy->isFloatingPointTy()) {
+ unsigned NumSrcElts = VTy->getNumElements();
+ Type *SrcEltTy = VTy->getElementType();
+
+ // If the vector is a vector of floating point, convert it to vector of int
+ // to simplify things.
+ if (SrcEltTy->isFloatingPointTy()) {
+ unsigned FPWidth = SrcEltTy->getPrimitiveSizeInBits();
+ auto *SrcIVTy = FixedVectorType::get(
+ IntegerType::get(C->getContext(), FPWidth), NumSrcElts);
+ // Ask IR to do the conversion now that #elts line up.
+ C = ConstantExpr::getBitCast(C, SrcIVTy);
+ }
+
+ APInt Result(DL.getTypeSizeInBits(DestTy), 0);
+ if (Constant *CE = foldConstVectorToAPInt(Result, DestTy, C,
+ SrcEltTy, NumSrcElts, DL))
+ return CE;
+
+ if (isa<IntegerType>(DestTy))
+ return ConstantInt::get(DestTy, Result);
+
+ APFloat FP(DestTy->getFltSemantics(), Result);
+ return ConstantFP::get(DestTy->getContext(), FP);
+ }
+ }
+
+ // The code below only handles casts to vectors currently.
+ auto *DestVTy = dyn_cast<VectorType>(DestTy);
+ if (!DestVTy)
+ return ConstantExpr::getBitCast(C, DestTy);
+
+ // If this is a scalar -> vector cast, convert the input into a <1 x scalar>
+ // vector so the code below can handle it uniformly.
+ if (isa<ConstantFP>(C) || isa<ConstantInt>(C)) {
+ Constant *Ops = C; // don't take the address of C!
+ return FoldBitCast(ConstantVector::get(Ops), DestTy, DL);
+ }
+
+ // If this is a bitcast from constant vector -> vector, fold it.
+ if (!isa<ConstantDataVector>(C) && !isa<ConstantVector>(C))
+ return ConstantExpr::getBitCast(C, DestTy);
+
+ // If the element types match, IR can fold it.
+ unsigned NumDstElt = DestVTy->getNumElements();
+ unsigned NumSrcElt = cast<VectorType>(C->getType())->getNumElements();
+ if (NumDstElt == NumSrcElt)
+ return ConstantExpr::getBitCast(C, DestTy);
+
+ Type *SrcEltTy = cast<VectorType>(C->getType())->getElementType();
+ Type *DstEltTy = DestVTy->getElementType();
+
+ // Otherwise, we're changing the number of elements in a vector, which
+ // requires endianness information to do the right thing. For example,
+ // bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>)
+ // folds to (little endian):
+ // <4 x i32> <i32 0, i32 0, i32 1, i32 0>
+ // and to (big endian):
+ // <4 x i32> <i32 0, i32 0, i32 0, i32 1>
+
+ // First thing is first. We only want to think about integer here, so if
+ // we have something in FP form, recast it as integer.
+ if (DstEltTy->isFloatingPointTy()) {
+ // Fold to an vector of integers with same size as our FP type.
+ unsigned FPWidth = DstEltTy->getPrimitiveSizeInBits();
+ auto *DestIVTy = FixedVectorType::get(
+ IntegerType::get(C->getContext(), FPWidth), NumDstElt);
+ // Recursively handle this integer conversion, if possible.
+ C = FoldBitCast(C, DestIVTy, DL);
+
+ // Finally, IR can handle this now that #elts line up.
+ return ConstantExpr::getBitCast(C, DestTy);
+ }
+
+ // Okay, we know the destination is integer, if the input is FP, convert
+ // it to integer first.
+ if (SrcEltTy->isFloatingPointTy()) {
+ unsigned FPWidth = SrcEltTy->getPrimitiveSizeInBits();
+ auto *SrcIVTy = FixedVectorType::get(
+ IntegerType::get(C->getContext(), FPWidth), NumSrcElt);
+ // Ask IR to do the conversion now that #elts line up.
+ C = ConstantExpr::getBitCast(C, SrcIVTy);
+ // If IR wasn't able to fold it, bail out.
+ if (!isa<ConstantVector>(C) && // FIXME: Remove ConstantVector.
+ !isa<ConstantDataVector>(C))
+ return C;
+ }
+
+ // Now we know that the input and output vectors are both integer vectors
+ // of the same size, and that their #elements is not the same. Do the
+ // conversion here, which depends on whether the input or output has
+ // more elements.
+ bool isLittleEndian = DL.isLittleEndian();
+
+ SmallVector<Constant*, 32> Result;
+ if (NumDstElt < NumSrcElt) {
+ // Handle: bitcast (<4 x i32> <i32 0, i32 1, i32 2, i32 3> to <2 x i64>)
+ Constant *Zero = Constant::getNullValue(DstEltTy);
+ unsigned Ratio = NumSrcElt/NumDstElt;
+ unsigned SrcBitSize = SrcEltTy->getPrimitiveSizeInBits();
+ unsigned SrcElt = 0;
+ for (unsigned i = 0; i != NumDstElt; ++i) {
+ // Build each element of the result.
+ Constant *Elt = Zero;
+ unsigned ShiftAmt = isLittleEndian ? 0 : SrcBitSize*(Ratio-1);
+ for (unsigned j = 0; j != Ratio; ++j) {
+ Constant *Src = C->getAggregateElement(SrcElt++);
+ if (Src && isa<UndefValue>(Src))
+ Src = Constant::getNullValue(
+ cast<VectorType>(C->getType())->getElementType());
+ else
+ Src = dyn_cast_or_null<ConstantInt>(Src);
+ if (!Src) // Reject constantexpr elements.
+ return ConstantExpr::getBitCast(C, DestTy);
+
+ // Zero extend the element to the right size.
+ Src = ConstantExpr::getZExt(Src, Elt->getType());
+
+ // Shift it to the right place, depending on endianness.
+ Src = ConstantExpr::getShl(Src,
+ ConstantInt::get(Src->getType(), ShiftAmt));
+ ShiftAmt += isLittleEndian ? SrcBitSize : -SrcBitSize;
+
+ // Mix it in.
+ Elt = ConstantExpr::getOr(Elt, Src);
+ }
+ Result.push_back(Elt);
+ }
+ return ConstantVector::get(Result);
+ }
+
+ // Handle: bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>)
+ unsigned Ratio = NumDstElt/NumSrcElt;
+ unsigned DstBitSize = DL.getTypeSizeInBits(DstEltTy);
+
+ // Loop over each source value, expanding into multiple results.
+ for (unsigned i = 0; i != NumSrcElt; ++i) {
+ auto *Element = C->getAggregateElement(i);
+
+ if (!Element) // Reject constantexpr elements.
+ return ConstantExpr::getBitCast(C, DestTy);
+
+ if (isa<UndefValue>(Element)) {
+ // Correctly Propagate undef values.
+ Result.append(Ratio, UndefValue::get(DstEltTy));
+ continue;
+ }
+
+ auto *Src = dyn_cast<ConstantInt>(Element);
+ if (!Src)
+ return ConstantExpr::getBitCast(C, DestTy);
+
+ unsigned ShiftAmt = isLittleEndian ? 0 : DstBitSize*(Ratio-1);
+ for (unsigned j = 0; j != Ratio; ++j) {
+ // Shift the piece of the value into the right place, depending on
+ // endianness.
+ Constant *Elt = ConstantExpr::getLShr(Src,
+ ConstantInt::get(Src->getType(), ShiftAmt));
+ ShiftAmt += isLittleEndian ? DstBitSize : -DstBitSize;
+
+ // Truncate the element to an integer with the same pointer size and
+ // convert the element back to a pointer using a inttoptr.
+ if (DstEltTy->isPointerTy()) {
+ IntegerType *DstIntTy = Type::getIntNTy(C->getContext(), DstBitSize);
+ Constant *CE = ConstantExpr::getTrunc(Elt, DstIntTy);
+ Result.push_back(ConstantExpr::getIntToPtr(CE, DstEltTy));
+ continue;
+ }
+
+ // Truncate and remember this piece.
+ Result.push_back(ConstantExpr::getTrunc(Elt, DstEltTy));
+ }
+ }
+
+ return ConstantVector::get(Result);
+}
+
+} // end anonymous namespace
+
+/// If this constant is a constant offset from a global, return the global and
+/// the constant. Because of constantexprs, this function is recursive.
+bool llvm::IsConstantOffsetFromGlobal(Constant *C, GlobalValue *&GV,
+ APInt &Offset, const DataLayout &DL) {
+ // Trivial case, constant is the global.
+ if ((GV = dyn_cast<GlobalValue>(C))) {
+ unsigned BitWidth = DL.getIndexTypeSizeInBits(GV->getType());
+ Offset = APInt(BitWidth, 0);
+ return true;
+ }
+
+ // Otherwise, if this isn't a constant expr, bail out.
+ auto *CE = dyn_cast<ConstantExpr>(C);
+ if (!CE) return false;
+
+ // Look through ptr->int and ptr->ptr casts.
+ if (CE->getOpcode() == Instruction::PtrToInt ||
+ CE->getOpcode() == Instruction::BitCast)
+ return IsConstantOffsetFromGlobal(CE->getOperand(0), GV, Offset, DL);
+
+ // i32* getelementptr ([5 x i32]* @a, i32 0, i32 5)
+ auto *GEP = dyn_cast<GEPOperator>(CE);
+ if (!GEP)
+ return false;
+
+ unsigned BitWidth = DL.getIndexTypeSizeInBits(GEP->getType());
+ APInt TmpOffset(BitWidth, 0);
+
+ // If the base isn't a global+constant, we aren't either.
+ if (!IsConstantOffsetFromGlobal(CE->getOperand(0), GV, TmpOffset, DL))
+ return false;
+
+ // Otherwise, add any offset that our operands provide.
+ if (!GEP->accumulateConstantOffset(DL, TmpOffset))
+ return false;
+
+ Offset = TmpOffset;
+ return true;
+}
+
+Constant *llvm::ConstantFoldLoadThroughBitcast(Constant *C, Type *DestTy,
+ const DataLayout &DL) {
+ do {
+ Type *SrcTy = C->getType();
+ uint64_t DestSize = DL.getTypeSizeInBits(DestTy);
+ uint64_t SrcSize = DL.getTypeSizeInBits(SrcTy);
+ if (SrcSize < DestSize)
+ return nullptr;
+
+ // Catch the obvious splat cases (since all-zeros can coerce non-integral
+ // pointers legally).
+ if (C->isNullValue() && !DestTy->isX86_MMXTy())
+ return Constant::getNullValue(DestTy);
+ if (C->isAllOnesValue() && !DestTy->isX86_MMXTy() &&
+ !DestTy->isPtrOrPtrVectorTy()) // Don't get ones for ptr types!
+ return Constant::getAllOnesValue(DestTy);
+
+ // If the type sizes are the same and a cast is legal, just directly
+ // cast the constant.
+ // But be careful not to coerce non-integral pointers illegally.
+ if (SrcSize == DestSize &&
+ DL.isNonIntegralPointerType(SrcTy->getScalarType()) ==
+ DL.isNonIntegralPointerType(DestTy->getScalarType())) {
+ Instruction::CastOps Cast = Instruction::BitCast;
+ // If we are going from a pointer to int or vice versa, we spell the cast
+ // differently.
+ if (SrcTy->isIntegerTy() && DestTy->isPointerTy())
+ Cast = Instruction::IntToPtr;
+ else if (SrcTy->isPointerTy() && DestTy->isIntegerTy())
+ Cast = Instruction::PtrToInt;
+
+ if (CastInst::castIsValid(Cast, C, DestTy))
+ return ConstantExpr::getCast(Cast, C, DestTy);
+ }
+
+ // If this isn't an aggregate type, there is nothing we can do to drill down
+ // and find a bitcastable constant.
+ if (!SrcTy->isAggregateType())
+ return nullptr;
+
+ // We're simulating a load through a pointer that was bitcast to point to
+ // a different type, so we can try to walk down through the initial
+ // elements of an aggregate to see if some part of the aggregate is
+ // castable to implement the "load" semantic model.
+ if (SrcTy->isStructTy()) {
+ // Struct types might have leading zero-length elements like [0 x i32],
+ // which are certainly not what we are looking for, so skip them.
+ unsigned Elem = 0;
+ Constant *ElemC;
+ do {
+ ElemC = C->getAggregateElement(Elem++);
+ } while (ElemC && DL.getTypeSizeInBits(ElemC->getType()).isZero());
+ C = ElemC;
+ } else {
+ C = C->getAggregateElement(0u);
+ }
+ } while (C);
+
+ return nullptr;
+}
+
+namespace {
+
+/// Recursive helper to read bits out of global. C is the constant being copied
+/// out of. ByteOffset is an offset into C. CurPtr is the pointer to copy
+/// results into and BytesLeft is the number of bytes left in
+/// the CurPtr buffer. DL is the DataLayout.
+bool ReadDataFromGlobal(Constant *C, uint64_t ByteOffset, unsigned char *CurPtr,
+ unsigned BytesLeft, const DataLayout &DL) {
+ assert(ByteOffset <= DL.getTypeAllocSize(C->getType()) &&
+ "Out of range access");
+
+ // If this element is zero or undefined, we can just return since *CurPtr is
+ // zero initialized.
+ if (isa<ConstantAggregateZero>(C) || isa<UndefValue>(C))
+ return true;
+
+ if (auto *CI = dyn_cast<ConstantInt>(C)) {
+ if (CI->getBitWidth() > 64 ||
+ (CI->getBitWidth() & 7) != 0)
+ return false;
+
+ uint64_t Val = CI->getZExtValue();
+ unsigned IntBytes = unsigned(CI->getBitWidth()/8);
+
+ for (unsigned i = 0; i != BytesLeft && ByteOffset != IntBytes; ++i) {
+ int n = ByteOffset;
+ if (!DL.isLittleEndian())
+ n = IntBytes - n - 1;
+ CurPtr[i] = (unsigned char)(Val >> (n * 8));
+ ++ByteOffset;
+ }
+ return true;
+ }
+
+ if (auto *CFP = dyn_cast<ConstantFP>(C)) {
+ if (CFP->getType()->isDoubleTy()) {
+ C = FoldBitCast(C, Type::getInt64Ty(C->getContext()), DL);
+ return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, DL);
+ }
+ if (CFP->getType()->isFloatTy()){
+ C = FoldBitCast(C, Type::getInt32Ty(C->getContext()), DL);
+ return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, DL);
+ }
+ if (CFP->getType()->isHalfTy()){
+ C = FoldBitCast(C, Type::getInt16Ty(C->getContext()), DL);
+ return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, DL);
+ }
+ return false;
+ }
+
+ if (auto *CS = dyn_cast<ConstantStruct>(C)) {
+ const StructLayout *SL = DL.getStructLayout(CS->getType());
+ unsigned Index = SL->getElementContainingOffset(ByteOffset);
+ uint64_t CurEltOffset = SL->getElementOffset(Index);
+ ByteOffset -= CurEltOffset;
+
+ while (true) {
+ // If the element access is to the element itself and not to tail padding,
+ // read the bytes from the element.
+ uint64_t EltSize = DL.getTypeAllocSize(CS->getOperand(Index)->getType());
+
+ if (ByteOffset < EltSize &&
+ !ReadDataFromGlobal(CS->getOperand(Index), ByteOffset, CurPtr,
+ BytesLeft, DL))
+ return false;
+
+ ++Index;
+
+ // Check to see if we read from the last struct element, if so we're done.
+ if (Index == CS->getType()->getNumElements())
+ return true;
+
+ // If we read all of the bytes we needed from this element we're done.
+ uint64_t NextEltOffset = SL->getElementOffset(Index);
+
+ if (BytesLeft <= NextEltOffset - CurEltOffset - ByteOffset)
+ return true;
+
+ // Move to the next element of the struct.
+ CurPtr += NextEltOffset - CurEltOffset - ByteOffset;
+ BytesLeft -= NextEltOffset - CurEltOffset - ByteOffset;
+ ByteOffset = 0;
+ CurEltOffset = NextEltOffset;
+ }
+ // not reached.
+ }
+
+ if (isa<ConstantArray>(C) || isa<ConstantVector>(C) ||
+ isa<ConstantDataSequential>(C)) {
+ uint64_t NumElts;
+ Type *EltTy;
+ if (auto *AT = dyn_cast<ArrayType>(C->getType())) {
+ NumElts = AT->getNumElements();
+ EltTy = AT->getElementType();
+ } else {
+ NumElts = cast<VectorType>(C->getType())->getNumElements();
+ EltTy = cast<VectorType>(C->getType())->getElementType();
+ }
+ uint64_t EltSize = DL.getTypeAllocSize(EltTy);
+ uint64_t Index = ByteOffset / EltSize;
+ uint64_t Offset = ByteOffset - Index * EltSize;
+
+ for (; Index != NumElts; ++Index) {
+ if (!ReadDataFromGlobal(C->getAggregateElement(Index), Offset, CurPtr,
+ BytesLeft, DL))
+ return false;
+
+ uint64_t BytesWritten = EltSize - Offset;
+ assert(BytesWritten <= EltSize && "Not indexing into this element?");
+ if (BytesWritten >= BytesLeft)
+ return true;
+
+ Offset = 0;
+ BytesLeft -= BytesWritten;
+ CurPtr += BytesWritten;
+ }
+ return true;
+ }
+
+ if (auto *CE = dyn_cast<ConstantExpr>(C)) {
+ if (CE->getOpcode() == Instruction::IntToPtr &&
+ CE->getOperand(0)->getType() == DL.getIntPtrType(CE->getType())) {
+ return ReadDataFromGlobal(CE->getOperand(0), ByteOffset, CurPtr,
+ BytesLeft, DL);
+ }
+ }
+
+ // Otherwise, unknown initializer type.
+ return false;
+}
+
+Constant *FoldReinterpretLoadFromConstPtr(Constant *C, Type *LoadTy,
+ const DataLayout &DL) {
+ // Bail out early. Not expect to load from scalable global variable.
+ if (isa<ScalableVectorType>(LoadTy))
+ return nullptr;
+
+ auto *PTy = cast<PointerType>(C->getType());
+ auto *IntType = dyn_cast<IntegerType>(LoadTy);
+
+ // If this isn't an integer load we can't fold it directly.
+ if (!IntType) {
+ unsigned AS = PTy->getAddressSpace();
+
+ // If this is a float/double load, we can try folding it as an int32/64 load
+ // and then bitcast the result. This can be useful for union cases. Note
+ // that address spaces don't matter here since we're not going to result in
+ // an actual new load.
+ Type *MapTy;
+ if (LoadTy->isHalfTy())
+ MapTy = Type::getInt16Ty(C->getContext());
+ else if (LoadTy->isFloatTy())
+ MapTy = Type::getInt32Ty(C->getContext());
+ else if (LoadTy->isDoubleTy())
+ MapTy = Type::getInt64Ty(C->getContext());
+ else if (LoadTy->isVectorTy()) {
+ MapTy = PointerType::getIntNTy(
+ C->getContext(), DL.getTypeSizeInBits(LoadTy).getFixedSize());
+ } else
+ return nullptr;
+
+ C = FoldBitCast(C, MapTy->getPointerTo(AS), DL);
+ if (Constant *Res = FoldReinterpretLoadFromConstPtr(C, MapTy, DL)) {
+ if (Res->isNullValue() && !LoadTy->isX86_MMXTy())
+ // Materializing a zero can be done trivially without a bitcast
+ return Constant::getNullValue(LoadTy);
+ Type *CastTy = LoadTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(LoadTy) : LoadTy;
+ Res = FoldBitCast(Res, CastTy, DL);
+ if (LoadTy->isPtrOrPtrVectorTy()) {
+ // For vector of pointer, we needed to first convert to a vector of integer, then do vector inttoptr
+ if (Res->isNullValue() && !LoadTy->isX86_MMXTy())
+ return Constant::getNullValue(LoadTy);
+ if (DL.isNonIntegralPointerType(LoadTy->getScalarType()))
+ // Be careful not to replace a load of an addrspace value with an inttoptr here
+ return nullptr;
+ Res = ConstantExpr::getCast(Instruction::IntToPtr, Res, LoadTy);
+ }
+ return Res;
+ }
+ return nullptr;
+ }
+
+ unsigned BytesLoaded = (IntType->getBitWidth() + 7) / 8;
+ if (BytesLoaded > 32 || BytesLoaded == 0)
+ return nullptr;
+
+ GlobalValue *GVal;
+ APInt OffsetAI;
+ if (!IsConstantOffsetFromGlobal(C, GVal, OffsetAI, DL))
+ return nullptr;
+
+ auto *GV = dyn_cast<GlobalVariable>(GVal);
+ if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
+ !GV->getInitializer()->getType()->isSized())
+ return nullptr;
+
+ int64_t Offset = OffsetAI.getSExtValue();
+ int64_t InitializerSize =
+ DL.getTypeAllocSize(GV->getInitializer()->getType()).getFixedSize();
+
+ // If we're not accessing anything in this constant, the result is undefined.
+ if (Offset <= -1 * static_cast<int64_t>(BytesLoaded))
+ return UndefValue::get(IntType);
+
+ // If we're not accessing anything in this constant, the result is undefined.
+ if (Offset >= InitializerSize)
+ return UndefValue::get(IntType);
+
+ unsigned char RawBytes[32] = {0};
+ unsigned char *CurPtr = RawBytes;
+ unsigned BytesLeft = BytesLoaded;
+
+ // If we're loading off the beginning of the global, some bytes may be valid.
+ if (Offset < 0) {
+ CurPtr += -Offset;
+ BytesLeft += Offset;
+ Offset = 0;
+ }
+
+ if (!ReadDataFromGlobal(GV->getInitializer(), Offset, CurPtr, BytesLeft, DL))
+ return nullptr;
+
+ APInt ResultVal = APInt(IntType->getBitWidth(), 0);
+ if (DL.isLittleEndian()) {
+ ResultVal = RawBytes[BytesLoaded - 1];
+ for (unsigned i = 1; i != BytesLoaded; ++i) {
+ ResultVal <<= 8;
+ ResultVal |= RawBytes[BytesLoaded - 1 - i];
+ }
+ } else {
+ ResultVal = RawBytes[0];
+ for (unsigned i = 1; i != BytesLoaded; ++i) {
+ ResultVal <<= 8;
+ ResultVal |= RawBytes[i];
+ }
+ }
+
+ return ConstantInt::get(IntType->getContext(), ResultVal);
+}
+
+Constant *ConstantFoldLoadThroughBitcastExpr(ConstantExpr *CE, Type *DestTy,
+ const DataLayout &DL) {
+ auto *SrcPtr = CE->getOperand(0);
+ auto *SrcPtrTy = dyn_cast<PointerType>(SrcPtr->getType());
+ if (!SrcPtrTy)
+ return nullptr;
+ Type *SrcTy = SrcPtrTy->getPointerElementType();
+
+ Constant *C = ConstantFoldLoadFromConstPtr(SrcPtr, SrcTy, DL);
+ if (!C)
+ return nullptr;
+
+ return llvm::ConstantFoldLoadThroughBitcast(C, DestTy, DL);
+}
+
+} // end anonymous namespace
+
+Constant *llvm::ConstantFoldLoadFromConstPtr(Constant *C, Type *Ty,
+ const DataLayout &DL) {
+ // First, try the easy cases:
+ if (auto *GV = dyn_cast<GlobalVariable>(C))
+ if (GV->isConstant() && GV->hasDefinitiveInitializer())
+ return GV->getInitializer();
+
+ if (auto *GA = dyn_cast<GlobalAlias>(C))
+ if (GA->getAliasee() && !GA->isInterposable())
+ return ConstantFoldLoadFromConstPtr(GA->getAliasee(), Ty, DL);
+
+ // If the loaded value isn't a constant expr, we can't handle it.
+ auto *CE = dyn_cast<ConstantExpr>(C);
+ if (!CE)
+ return nullptr;
+
+ if (CE->getOpcode() == Instruction::GetElementPtr) {
+ if (auto *GV = dyn_cast<GlobalVariable>(CE->getOperand(0))) {
+ if (GV->isConstant() && GV->hasDefinitiveInitializer()) {
+ if (Constant *V =
+ ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE))
+ return V;
+ }
+ }
+ }
+
+ if (CE->getOpcode() == Instruction::BitCast)
+ if (Constant *LoadedC = ConstantFoldLoadThroughBitcastExpr(CE, Ty, DL))
+ return LoadedC;
+
+ // Instead of loading constant c string, use corresponding integer value
+ // directly if string length is small enough.
+ StringRef Str;
+ if (getConstantStringInfo(CE, Str) && !Str.empty()) {
+ size_t StrLen = Str.size();
+ unsigned NumBits = Ty->getPrimitiveSizeInBits();
+ // Replace load with immediate integer if the result is an integer or fp
+ // value.
+ if ((NumBits >> 3) == StrLen + 1 && (NumBits & 7) == 0 &&
+ (isa<IntegerType>(Ty) || Ty->isFloatingPointTy())) {
+ APInt StrVal(NumBits, 0);
+ APInt SingleChar(NumBits, 0);
+ if (DL.isLittleEndian()) {
+ for (unsigned char C : reverse(Str.bytes())) {
+ SingleChar = static_cast<uint64_t>(C);
+ StrVal = (StrVal << 8) | SingleChar;
+ }
+ } else {
+ for (unsigned char C : Str.bytes()) {
+ SingleChar = static_cast<uint64_t>(C);
+ StrVal = (StrVal << 8) | SingleChar;
+ }
+ // Append NULL at the end.
+ SingleChar = 0;
+ StrVal = (StrVal << 8) | SingleChar;
+ }
+
+ Constant *Res = ConstantInt::get(CE->getContext(), StrVal);
+ if (Ty->isFloatingPointTy())
+ Res = ConstantExpr::getBitCast(Res, Ty);
+ return Res;
+ }
+ }
+
+ // If this load comes from anywhere in a constant global, and if the global
+ // is all undef or zero, we know what it loads.
+ if (auto *GV = dyn_cast<GlobalVariable>(GetUnderlyingObject(CE, DL))) {
+ if (GV->isConstant() && GV->hasDefinitiveInitializer()) {
+ if (GV->getInitializer()->isNullValue())
+ return Constant::getNullValue(Ty);
+ if (isa<UndefValue>(GV->getInitializer()))
+ return UndefValue::get(Ty);
+ }
+ }
+
+ // Try hard to fold loads from bitcasted strange and non-type-safe things.
+ return FoldReinterpretLoadFromConstPtr(CE, Ty, DL);
+}
+
+namespace {
+
+Constant *ConstantFoldLoadInst(const LoadInst *LI, const DataLayout &DL) {
+ if (LI->isVolatile()) return nullptr;
+
+ if (auto *C = dyn_cast<Constant>(LI->getOperand(0)))
+ return ConstantFoldLoadFromConstPtr(C, LI->getType(), DL);
+
+ return nullptr;
+}
+
+/// One of Op0/Op1 is a constant expression.
+/// Attempt to symbolically evaluate the result of a binary operator merging
+/// these together. If target data info is available, it is provided as DL,
+/// otherwise DL is null.
+Constant *SymbolicallyEvaluateBinop(unsigned Opc, Constant *Op0, Constant *Op1,
+ const DataLayout &DL) {
+ // SROA
+
+ // Fold (and 0xffffffff00000000, (shl x, 32)) -> shl.
+ // Fold (lshr (or X, Y), 32) -> (lshr [X/Y], 32) if one doesn't contribute
+ // bits.
+
+ if (Opc == Instruction::And) {
+ KnownBits Known0 = computeKnownBits(Op0, DL);
+ KnownBits Known1 = computeKnownBits(Op1, DL);
+ if ((Known1.One | Known0.Zero).isAllOnesValue()) {
+ // All the bits of Op0 that the 'and' could be masking are already zero.
+ return Op0;
+ }
+ if ((Known0.One | Known1.Zero).isAllOnesValue()) {
+ // All the bits of Op1 that the 'and' could be masking are already zero.
+ return Op1;
+ }
+
+ Known0 &= Known1;
+ if (Known0.isConstant())
+ return ConstantInt::get(Op0->getType(), Known0.getConstant());
+ }
+
+ // If the constant expr is something like &A[123] - &A[4].f, fold this into a
+ // constant. This happens frequently when iterating over a global array.
+ if (Opc == Instruction::Sub) {
+ GlobalValue *GV1, *GV2;
+ APInt Offs1, Offs2;
+
+ if (IsConstantOffsetFromGlobal(Op0, GV1, Offs1, DL))
+ if (IsConstantOffsetFromGlobal(Op1, GV2, Offs2, DL) && GV1 == GV2) {
+ unsigned OpSize = DL.getTypeSizeInBits(Op0->getType());
+
+ // (&GV+C1) - (&GV+C2) -> C1-C2, pointer arithmetic cannot overflow.
+ // PtrToInt may change the bitwidth so we have convert to the right size
+ // first.
+ return ConstantInt::get(Op0->getType(), Offs1.zextOrTrunc(OpSize) -
+ Offs2.zextOrTrunc(OpSize));
+ }
+ }
+
+ return nullptr;
+}
+
+/// If array indices are not pointer-sized integers, explicitly cast them so
+/// that they aren't implicitly casted by the getelementptr.
+Constant *CastGEPIndices(Type *SrcElemTy, ArrayRef<Constant *> Ops,
+ Type *ResultTy, Optional<unsigned> InRangeIndex,
+ const DataLayout &DL, const TargetLibraryInfo *TLI) {
+ Type *IntIdxTy = DL.getIndexType(ResultTy);
+ Type *IntIdxScalarTy = IntIdxTy->getScalarType();
+
+ bool Any = false;
+ SmallVector<Constant*, 32> NewIdxs;
+ for (unsigned i = 1, e = Ops.size(); i != e; ++i) {
+ if ((i == 1 ||
+ !isa<StructType>(GetElementPtrInst::getIndexedType(
+ SrcElemTy, Ops.slice(1, i - 1)))) &&
+ Ops[i]->getType()->getScalarType() != IntIdxScalarTy) {
+ Any = true;
+ Type *NewType = Ops[i]->getType()->isVectorTy()
+ ? IntIdxTy
+ : IntIdxScalarTy;
+ NewIdxs.push_back(ConstantExpr::getCast(CastInst::getCastOpcode(Ops[i],
+ true,
+ NewType,
+ true),
+ Ops[i], NewType));
+ } else
+ NewIdxs.push_back(Ops[i]);
+ }
+
+ if (!Any)
+ return nullptr;
+
+ Constant *C = ConstantExpr::getGetElementPtr(
+ SrcElemTy, Ops[0], NewIdxs, /*InBounds=*/false, InRangeIndex);
+ return ConstantFoldConstant(C, DL, TLI);
+}
+
+/// Strip the pointer casts, but preserve the address space information.
+Constant *StripPtrCastKeepAS(Constant *Ptr, Type *&ElemTy) {
+ assert(Ptr->getType()->isPointerTy() && "Not a pointer type");
+ auto *OldPtrTy = cast<PointerType>(Ptr->getType());
+ Ptr = cast<Constant>(Ptr->stripPointerCasts());
+ auto *NewPtrTy = cast<PointerType>(Ptr->getType());
+
+ ElemTy = NewPtrTy->getPointerElementType();
+
+ // Preserve the address space number of the pointer.
+ if (NewPtrTy->getAddressSpace() != OldPtrTy->getAddressSpace()) {
+ NewPtrTy = ElemTy->getPointerTo(OldPtrTy->getAddressSpace());
+ Ptr = ConstantExpr::getPointerCast(Ptr, NewPtrTy);
+ }
+ return Ptr;
+}
+
+/// If we can symbolically evaluate the GEP constant expression, do so.
+Constant *SymbolicallyEvaluateGEP(const GEPOperator *GEP,
+ ArrayRef<Constant *> Ops,
+ const DataLayout &DL,
+ const TargetLibraryInfo *TLI) {
+ const GEPOperator *InnermostGEP = GEP;
+ bool InBounds = GEP->isInBounds();
+
+ Type *SrcElemTy = GEP->getSourceElementType();
+ Type *ResElemTy = GEP->getResultElementType();
+ Type *ResTy = GEP->getType();
+ if (!SrcElemTy->isSized() || isa<ScalableVectorType>(SrcElemTy))
+ return nullptr;
+
+ if (Constant *C = CastGEPIndices(SrcElemTy, Ops, ResTy,
+ GEP->getInRangeIndex(), DL, TLI))
+ return C;
+
+ Constant *Ptr = Ops[0];
+ if (!Ptr->getType()->isPointerTy())
+ return nullptr;
+
+ Type *IntIdxTy = DL.getIndexType(Ptr->getType());
+
+ // If this is a constant expr gep that is effectively computing an
+ // "offsetof", fold it into 'cast int Size to T*' instead of 'gep 0, 0, 12'
+ for (unsigned i = 1, e = Ops.size(); i != e; ++i)
+ if (!isa<ConstantInt>(Ops[i])) {
+
+ // If this is "gep i8* Ptr, (sub 0, V)", fold this as:
+ // "inttoptr (sub (ptrtoint Ptr), V)"
+ if (Ops.size() == 2 && ResElemTy->isIntegerTy(8)) {
+ auto *CE = dyn_cast<ConstantExpr>(Ops[1]);
+ assert((!CE || CE->getType() == IntIdxTy) &&
+ "CastGEPIndices didn't canonicalize index types!");
+ if (CE && CE->getOpcode() == Instruction::Sub &&
+ CE->getOperand(0)->isNullValue()) {
+ Constant *Res = ConstantExpr::getPtrToInt(Ptr, CE->getType());
+ Res = ConstantExpr::getSub(Res, CE->getOperand(1));
+ Res = ConstantExpr::getIntToPtr(Res, ResTy);
+ return ConstantFoldConstant(Res, DL, TLI);
+ }
+ }
+ return nullptr;
+ }
+
+ unsigned BitWidth = DL.getTypeSizeInBits(IntIdxTy);
+ APInt Offset =
+ APInt(BitWidth,
+ DL.getIndexedOffsetInType(
+ SrcElemTy,
+ makeArrayRef((Value * const *)Ops.data() + 1, Ops.size() - 1)));
+ Ptr = StripPtrCastKeepAS(Ptr, SrcElemTy);
+
+ // If this is a GEP of a GEP, fold it all into a single GEP.
+ while (auto *GEP = dyn_cast<GEPOperator>(Ptr)) {
+ InnermostGEP = GEP;
+ InBounds &= GEP->isInBounds();
+
+ SmallVector<Value *, 4> NestedOps(GEP->op_begin() + 1, GEP->op_end());
+
+ // Do not try the incorporate the sub-GEP if some index is not a number.
+ bool AllConstantInt = true;
+ for (Value *NestedOp : NestedOps)
+ if (!isa<ConstantInt>(NestedOp)) {
+ AllConstantInt = false;
+ break;
+ }
+ if (!AllConstantInt)
+ break;
+
+ Ptr = cast<Constant>(GEP->getOperand(0));
+ SrcElemTy = GEP->getSourceElementType();
+ Offset += APInt(BitWidth, DL.getIndexedOffsetInType(SrcElemTy, NestedOps));
+ Ptr = StripPtrCastKeepAS(Ptr, SrcElemTy);
+ }
+
+ // If the base value for this address is a literal integer value, fold the
+ // getelementptr to the resulting integer value casted to the pointer type.
+ APInt BasePtr(BitWidth, 0);
+ if (auto *CE = dyn_cast<ConstantExpr>(Ptr)) {
+ if (CE->getOpcode() == Instruction::IntToPtr) {
+ if (auto *Base = dyn_cast<ConstantInt>(CE->getOperand(0)))
+ BasePtr = Base->getValue().zextOrTrunc(BitWidth);
+ }
+ }
+
+ auto *PTy = cast<PointerType>(Ptr->getType());
+ if ((Ptr->isNullValue() || BasePtr != 0) &&
+ !DL.isNonIntegralPointerType(PTy)) {
+ Constant *C = ConstantInt::get(Ptr->getContext(), Offset + BasePtr);
+ return ConstantExpr::getIntToPtr(C, ResTy);
+ }
+
+ // Otherwise form a regular getelementptr. Recompute the indices so that
+ // we eliminate over-indexing of the notional static type array bounds.
+ // This makes it easy to determine if the getelementptr is "inbounds".
+ // Also, this helps GlobalOpt do SROA on GlobalVariables.
+ Type *Ty = PTy;
+ SmallVector<Constant *, 32> NewIdxs;
+
+ do {
+ if (!Ty->isStructTy()) {
+ if (Ty->isPointerTy()) {
+ // The only pointer indexing we'll do is on the first index of the GEP.
+ if (!NewIdxs.empty())
+ break;
+
+ Ty = SrcElemTy;
+
+ // Only handle pointers to sized types, not pointers to functions.
+ if (!Ty->isSized())
+ return nullptr;
+ } else {
+ Type *NextTy = GetElementPtrInst::getTypeAtIndex(Ty, (uint64_t)0);
+ if (!NextTy)
+ break;
+ Ty = NextTy;
+ }
+
+ // Determine which element of the array the offset points into.
+ APInt ElemSize(BitWidth, DL.getTypeAllocSize(Ty));
+ if (ElemSize == 0) {
+ // The element size is 0. This may be [0 x Ty]*, so just use a zero
+ // index for this level and proceed to the next level to see if it can
+ // accommodate the offset.
+ NewIdxs.push_back(ConstantInt::get(IntIdxTy, 0));
+ } else {
+ // The element size is non-zero divide the offset by the element
+ // size (rounding down), to compute the index at this level.
+ bool Overflow;
+ APInt NewIdx = Offset.sdiv_ov(ElemSize, Overflow);
+ if (Overflow)
+ break;
+ Offset -= NewIdx * ElemSize;
+ NewIdxs.push_back(ConstantInt::get(IntIdxTy, NewIdx));
+ }
+ } else {
+ auto *STy = cast<StructType>(Ty);
+ // If we end up with an offset that isn't valid for this struct type, we
+ // can't re-form this GEP in a regular form, so bail out. The pointer
+ // operand likely went through casts that are necessary to make the GEP
+ // sensible.
+ const StructLayout &SL = *DL.getStructLayout(STy);
+ if (Offset.isNegative() || Offset.uge(SL.getSizeInBytes()))
+ break;
+
+ // Determine which field of the struct the offset points into. The
+ // getZExtValue is fine as we've already ensured that the offset is
+ // within the range representable by the StructLayout API.
+ unsigned ElIdx = SL.getElementContainingOffset(Offset.getZExtValue());
+ NewIdxs.push_back(ConstantInt::get(Type::getInt32Ty(Ty->getContext()),
+ ElIdx));
+ Offset -= APInt(BitWidth, SL.getElementOffset(ElIdx));
+ Ty = STy->getTypeAtIndex(ElIdx);
+ }
+ } while (Ty != ResElemTy);
+
+ // If we haven't used up the entire offset by descending the static
+ // type, then the offset is pointing into the middle of an indivisible
+ // member, so we can't simplify it.
+ if (Offset != 0)
+ return nullptr;
+
+ // Preserve the inrange index from the innermost GEP if possible. We must
+ // have calculated the same indices up to and including the inrange index.
+ Optional<unsigned> InRangeIndex;
+ if (Optional<unsigned> LastIRIndex = InnermostGEP->getInRangeIndex())
+ if (SrcElemTy == InnermostGEP->getSourceElementType() &&
+ NewIdxs.size() > *LastIRIndex) {
+ InRangeIndex = LastIRIndex;
+ for (unsigned I = 0; I <= *LastIRIndex; ++I)
+ if (NewIdxs[I] != InnermostGEP->getOperand(I + 1))
+ return nullptr;
+ }
+
+ // Create a GEP.
+ Constant *C = ConstantExpr::getGetElementPtr(SrcElemTy, Ptr, NewIdxs,
+ InBounds, InRangeIndex);
+ assert(C->getType()->getPointerElementType() == Ty &&
+ "Computed GetElementPtr has unexpected type!");
+
+ // If we ended up indexing a member with a type that doesn't match
+ // the type of what the original indices indexed, add a cast.
+ if (Ty != ResElemTy)
+ C = FoldBitCast(C, ResTy, DL);
+
+ return C;
+}
+
+/// Attempt to constant fold an instruction with the
+/// specified opcode and operands. If successful, the constant result is
+/// returned, if not, null is returned. Note that this function can fail when
+/// attempting to fold instructions like loads and stores, which have no
+/// constant expression form.
+Constant *ConstantFoldInstOperandsImpl(const Value *InstOrCE, unsigned Opcode,
+ ArrayRef<Constant *> Ops,
+ const DataLayout &DL,
+ const TargetLibraryInfo *TLI) {
+ Type *DestTy = InstOrCE->getType();
+
+ if (Instruction::isUnaryOp(Opcode))
+ return ConstantFoldUnaryOpOperand(Opcode, Ops[0], DL);
+
+ if (Instruction::isBinaryOp(Opcode))
+ return ConstantFoldBinaryOpOperands(Opcode, Ops[0], Ops[1], DL);
+
+ if (Instruction::isCast(Opcode))
+ return ConstantFoldCastOperand(Opcode, Ops[0], DestTy, DL);
+
+ if (auto *GEP = dyn_cast<GEPOperator>(InstOrCE)) {
+ if (Constant *C = SymbolicallyEvaluateGEP(GEP, Ops, DL, TLI))
+ return C;
+
+ return ConstantExpr::getGetElementPtr(GEP->getSourceElementType(), Ops[0],
+ Ops.slice(1), GEP->isInBounds(),
+ GEP->getInRangeIndex());
+ }
+
+ if (auto *CE = dyn_cast<ConstantExpr>(InstOrCE))
+ return CE->getWithOperands(Ops);
+
+ switch (Opcode) {
+ default: return nullptr;
+ case Instruction::ICmp:
+ case Instruction::FCmp: llvm_unreachable("Invalid for compares");
+ case Instruction::Call:
+ if (auto *F = dyn_cast<Function>(Ops.back())) {
+ const auto *Call = cast<CallBase>(InstOrCE);
+ if (canConstantFoldCallTo(Call, F))
+ return ConstantFoldCall(Call, F, Ops.slice(0, Ops.size() - 1), TLI);
+ }
+ return nullptr;
+ case Instruction::Select:
+ return ConstantExpr::getSelect(Ops[0], Ops[1], Ops[2]);
+ case Instruction::ExtractElement:
+ return ConstantExpr::getExtractElement(Ops[0], Ops[1]);
+ case Instruction::ExtractValue:
+ return ConstantExpr::getExtractValue(
+ Ops[0], cast<ExtractValueInst>(InstOrCE)->getIndices());
+ case Instruction::InsertElement:
+ return ConstantExpr::getInsertElement(Ops[0], Ops[1], Ops[2]);
+ case Instruction::ShuffleVector:
+ return ConstantExpr::getShuffleVector(
+ Ops[0], Ops[1], cast<ShuffleVectorInst>(InstOrCE)->getShuffleMask());
+ }
+}
+
+} // end anonymous namespace
+
+//===----------------------------------------------------------------------===//
+// Constant Folding public APIs
+//===----------------------------------------------------------------------===//
+
+namespace {
+
+Constant *
+ConstantFoldConstantImpl(const Constant *C, const DataLayout &DL,
+ const TargetLibraryInfo *TLI,
+ SmallDenseMap<Constant *, Constant *> &FoldedOps) {
+ if (!isa<ConstantVector>(C) && !isa<ConstantExpr>(C))
+ return const_cast<Constant *>(C);
+
+ SmallVector<Constant *, 8> Ops;
+ for (const Use &OldU : C->operands()) {
+ Constant *OldC = cast<Constant>(&OldU);
+ Constant *NewC = OldC;
+ // Recursively fold the ConstantExpr's operands. If we have already folded
+ // a ConstantExpr, we don't have to process it again.
+ if (isa<ConstantVector>(OldC) || isa<ConstantExpr>(OldC)) {
+ auto It = FoldedOps.find(OldC);
+ if (It == FoldedOps.end()) {
+ NewC = ConstantFoldConstantImpl(OldC, DL, TLI, FoldedOps);
+ FoldedOps.insert({OldC, NewC});
+ } else {
+ NewC = It->second;
+ }
+ }
+ Ops.push_back(NewC);
+ }
+
+ if (auto *CE = dyn_cast<ConstantExpr>(C)) {
+ if (CE->isCompare())
+ return ConstantFoldCompareInstOperands(CE->getPredicate(), Ops[0], Ops[1],
+ DL, TLI);
+
+ return ConstantFoldInstOperandsImpl(CE, CE->getOpcode(), Ops, DL, TLI);
+ }
+
+ assert(isa<ConstantVector>(C));
+ return ConstantVector::get(Ops);
+}
+
+} // end anonymous namespace
+
+Constant *llvm::ConstantFoldInstruction(Instruction *I, const DataLayout &DL,
+ const TargetLibraryInfo *TLI) {
+ // Handle PHI nodes quickly here...
+ if (auto *PN = dyn_cast<PHINode>(I)) {
+ Constant *CommonValue = nullptr;
+
+ SmallDenseMap<Constant *, Constant *> FoldedOps;
+ for (Value *Incoming : PN->incoming_values()) {
+ // If the incoming value is undef then skip it. Note that while we could
+ // skip the value if it is equal to the phi node itself we choose not to
+ // because that would break the rule that constant folding only applies if
+ // all operands are constants.
+ if (isa<UndefValue>(Incoming))
+ continue;
+ // If the incoming value is not a constant, then give up.
+ auto *C = dyn_cast<Constant>(Incoming);
+ if (!C)
+ return nullptr;
+ // Fold the PHI's operands.
+ C = ConstantFoldConstantImpl(C, DL, TLI, FoldedOps);
+ // If the incoming value is a different constant to
+ // the one we saw previously, then give up.
+ if (CommonValue && C != CommonValue)
+ return nullptr;
+ CommonValue = C;
+ }
+
+ // If we reach here, all incoming values are the same constant or undef.
+ return CommonValue ? CommonValue : UndefValue::get(PN->getType());
+ }
+
+ // Scan the operand list, checking to see if they are all constants, if so,
+ // hand off to ConstantFoldInstOperandsImpl.
+ if (!all_of(I->operands(), [](Use &U) { return isa<Constant>(U); }))
+ return nullptr;
+
+ SmallDenseMap<Constant *, Constant *> FoldedOps;
+ SmallVector<Constant *, 8> Ops;
+ for (const Use &OpU : I->operands()) {
+ auto *Op = cast<Constant>(&OpU);
+ // Fold the Instruction's operands.
+ Op = ConstantFoldConstantImpl(Op, DL, TLI, FoldedOps);
+ Ops.push_back(Op);
+ }
+
+ if (const auto *CI = dyn_cast<CmpInst>(I))
+ return ConstantFoldCompareInstOperands(CI->getPredicate(), Ops[0], Ops[1],
+ DL, TLI);
+
+ if (const auto *LI = dyn_cast<LoadInst>(I))
+ return ConstantFoldLoadInst(LI, DL);
+
+ if (auto *IVI = dyn_cast<InsertValueInst>(I)) {
+ return ConstantExpr::getInsertValue(
+ cast<Constant>(IVI->getAggregateOperand()),
+ cast<Constant>(IVI->getInsertedValueOperand()),
+ IVI->getIndices());
+ }
+
+ if (auto *EVI = dyn_cast<ExtractValueInst>(I)) {
+ return ConstantExpr::getExtractValue(
+ cast<Constant>(EVI->getAggregateOperand()),
+ EVI->getIndices());
+ }
+
+ return ConstantFoldInstOperands(I, Ops, DL, TLI);
+}
+
+Constant *llvm::ConstantFoldConstant(const Constant *C, const DataLayout &DL,
+ const TargetLibraryInfo *TLI) {
+ SmallDenseMap<Constant *, Constant *> FoldedOps;
+ return ConstantFoldConstantImpl(C, DL, TLI, FoldedOps);
+}
+
+Constant *llvm::ConstantFoldInstOperands(Instruction *I,
+ ArrayRef<Constant *> Ops,
+ const DataLayout &DL,
+ const TargetLibraryInfo *TLI) {
+ return ConstantFoldInstOperandsImpl(I, I->getOpcode(), Ops, DL, TLI);
+}
+
+Constant *llvm::ConstantFoldCompareInstOperands(unsigned Predicate,
+ Constant *Ops0, Constant *Ops1,
+ const DataLayout &DL,
+ const TargetLibraryInfo *TLI) {
+ // fold: icmp (inttoptr x), null -> icmp x, 0
+ // fold: icmp null, (inttoptr x) -> icmp 0, x
+ // fold: icmp (ptrtoint x), 0 -> icmp x, null
+ // fold: icmp 0, (ptrtoint x) -> icmp null, x
+ // fold: icmp (inttoptr x), (inttoptr y) -> icmp trunc/zext x, trunc/zext y
+ // fold: icmp (ptrtoint x), (ptrtoint y) -> icmp x, y
+ //
+ // FIXME: The following comment is out of data and the DataLayout is here now.
+ // ConstantExpr::getCompare cannot do this, because it doesn't have DL
+ // around to know if bit truncation is happening.
+ if (auto *CE0 = dyn_cast<ConstantExpr>(Ops0)) {
+ if (Ops1->isNullValue()) {
+ if (CE0->getOpcode() == Instruction::IntToPtr) {
+ Type *IntPtrTy = DL.getIntPtrType(CE0->getType());
+ // Convert the integer value to the right size to ensure we get the
+ // proper extension or truncation.
+ Constant *C = ConstantExpr::getIntegerCast(CE0->getOperand(0),
+ IntPtrTy, false);
+ Constant *Null = Constant::getNullValue(C->getType());
+ return ConstantFoldCompareInstOperands(Predicate, C, Null, DL, TLI);
+ }
+
+ // Only do this transformation if the int is intptrty in size, otherwise
+ // there is a truncation or extension that we aren't modeling.
+ if (CE0->getOpcode() == Instruction::PtrToInt) {
+ Type *IntPtrTy = DL.getIntPtrType(CE0->getOperand(0)->getType());
+ if (CE0->getType() == IntPtrTy) {
+ Constant *C = CE0->getOperand(0);
+ Constant *Null = Constant::getNullValue(C->getType());
+ return ConstantFoldCompareInstOperands(Predicate, C, Null, DL, TLI);
+ }
+ }
+ }
+
+ if (auto *CE1 = dyn_cast<ConstantExpr>(Ops1)) {
+ if (CE0->getOpcode() == CE1->getOpcode()) {
+ if (CE0->getOpcode() == Instruction::IntToPtr) {
+ Type *IntPtrTy = DL.getIntPtrType(CE0->getType());
+
+ // Convert the integer value to the right size to ensure we get the
+ // proper extension or truncation.
+ Constant *C0 = ConstantExpr::getIntegerCast(CE0->getOperand(0),
+ IntPtrTy, false);
+ Constant *C1 = ConstantExpr::getIntegerCast(CE1->getOperand(0),
+ IntPtrTy, false);
+ return ConstantFoldCompareInstOperands(Predicate, C0, C1, DL, TLI);
+ }
+
+ // Only do this transformation if the int is intptrty in size, otherwise
+ // there is a truncation or extension that we aren't modeling.
+ if (CE0->getOpcode() == Instruction::PtrToInt) {
+ Type *IntPtrTy = DL.getIntPtrType(CE0->getOperand(0)->getType());
+ if (CE0->getType() == IntPtrTy &&
+ CE0->getOperand(0)->getType() == CE1->getOperand(0)->getType()) {
+ return ConstantFoldCompareInstOperands(
+ Predicate, CE0->getOperand(0), CE1->getOperand(0), DL, TLI);
+ }
+ }
+ }
+ }
+
+ // icmp eq (or x, y), 0 -> (icmp eq x, 0) & (icmp eq y, 0)
+ // icmp ne (or x, y), 0 -> (icmp ne x, 0) | (icmp ne y, 0)
+ if ((Predicate == ICmpInst::ICMP_EQ || Predicate == ICmpInst::ICMP_NE) &&
+ CE0->getOpcode() == Instruction::Or && Ops1->isNullValue()) {
+ Constant *LHS = ConstantFoldCompareInstOperands(
+ Predicate, CE0->getOperand(0), Ops1, DL, TLI);
+ Constant *RHS = ConstantFoldCompareInstOperands(
+ Predicate, CE0->getOperand(1), Ops1, DL, TLI);
+ unsigned OpC =
+ Predicate == ICmpInst::ICMP_EQ ? Instruction::And : Instruction::Or;
+ return ConstantFoldBinaryOpOperands(OpC, LHS, RHS, DL);
+ }
+ } else if (isa<ConstantExpr>(Ops1)) {
+ // If RHS is a constant expression, but the left side isn't, swap the
+ // operands and try again.
+ Predicate = ICmpInst::getSwappedPredicate((ICmpInst::Predicate)Predicate);
+ return ConstantFoldCompareInstOperands(Predicate, Ops1, Ops0, DL, TLI);
+ }
+
+ return ConstantExpr::getCompare(Predicate, Ops0, Ops1);
+}
+
+Constant *llvm::ConstantFoldUnaryOpOperand(unsigned Opcode, Constant *Op,
+ const DataLayout &DL) {
+ assert(Instruction::isUnaryOp(Opcode));
+
+ return ConstantExpr::get(Opcode, Op);
+}
+
+Constant *llvm::ConstantFoldBinaryOpOperands(unsigned Opcode, Constant *LHS,
+ Constant *RHS,
+ const DataLayout &DL) {
+ assert(Instruction::isBinaryOp(Opcode));
+ if (isa<ConstantExpr>(LHS) || isa<ConstantExpr>(RHS))
+ if (Constant *C = SymbolicallyEvaluateBinop(Opcode, LHS, RHS, DL))
+ return C;
+
+ return ConstantExpr::get(Opcode, LHS, RHS);
+}
+
+Constant *llvm::ConstantFoldCastOperand(unsigned Opcode, Constant *C,
+ Type *DestTy, const DataLayout &DL) {
+ assert(Instruction::isCast(Opcode));
+ switch (Opcode) {
+ default:
+ llvm_unreachable("Missing case");
+ case Instruction::PtrToInt:
+ // If the input is a inttoptr, eliminate the pair. This requires knowing
+ // the width of a pointer, so it can't be done in ConstantExpr::getCast.
+ if (auto *CE = dyn_cast<ConstantExpr>(C)) {
+ if (CE->getOpcode() == Instruction::IntToPtr) {
+ Constant *Input = CE->getOperand(0);
+ unsigned InWidth = Input->getType()->getScalarSizeInBits();
+ unsigned PtrWidth = DL.getPointerTypeSizeInBits(CE->getType());
+ if (PtrWidth < InWidth) {
+ Constant *Mask =
+ ConstantInt::get(CE->getContext(),
+ APInt::getLowBitsSet(InWidth, PtrWidth));
+ Input = ConstantExpr::getAnd(Input, Mask);
+ }
+ // Do a zext or trunc to get to the dest size.
+ return ConstantExpr::getIntegerCast(Input, DestTy, false);
+ }
+ }
+ return ConstantExpr::getCast(Opcode, C, DestTy);
+ case Instruction::IntToPtr:
+ // If the input is a ptrtoint, turn the pair into a ptr to ptr bitcast if
+ // the int size is >= the ptr size and the address spaces are the same.
+ // This requires knowing the width of a pointer, so it can't be done in
+ // ConstantExpr::getCast.
+ if (auto *CE = dyn_cast<ConstantExpr>(C)) {
+ if (CE->getOpcode() == Instruction::PtrToInt) {
+ Constant *SrcPtr = CE->getOperand(0);
+ unsigned SrcPtrSize = DL.getPointerTypeSizeInBits(SrcPtr->getType());
+ unsigned MidIntSize = CE->getType()->getScalarSizeInBits();
+
+ if (MidIntSize >= SrcPtrSize) {
+ unsigned SrcAS = SrcPtr->getType()->getPointerAddressSpace();
+ if (SrcAS == DestTy->getPointerAddressSpace())
+ return FoldBitCast(CE->getOperand(0), DestTy, DL);
+ }
+ }
+ }
+
+ return ConstantExpr::getCast(Opcode, C, DestTy);
+ case Instruction::Trunc:
+ case Instruction::ZExt:
+ case Instruction::SExt:
+ case Instruction::FPTrunc:
+ case Instruction::FPExt:
+ case Instruction::UIToFP:
+ case Instruction::SIToFP:
+ case Instruction::FPToUI:
+ case Instruction::FPToSI:
+ case Instruction::AddrSpaceCast:
+ return ConstantExpr::getCast(Opcode, C, DestTy);
+ case Instruction::BitCast:
+ return FoldBitCast(C, DestTy, DL);
+ }
+}
+
+Constant *llvm::ConstantFoldLoadThroughGEPConstantExpr(Constant *C,
+ ConstantExpr *CE) {
+ if (!CE->getOperand(1)->isNullValue())
+ return nullptr; // Do not allow stepping over the value!
+
+ // Loop over all of the operands, tracking down which value we are
+ // addressing.
+ for (unsigned i = 2, e = CE->getNumOperands(); i != e; ++i) {
+ C = C->getAggregateElement(CE->getOperand(i));
+ if (!C)
+ return nullptr;
+ }
+ return C;
+}
+
+Constant *
+llvm::ConstantFoldLoadThroughGEPIndices(Constant *C,
+ ArrayRef<Constant *> Indices) {
+ // Loop over all of the operands, tracking down which value we are
+ // addressing.
+ for (Constant *Index : Indices) {
+ C = C->getAggregateElement(Index);
+ if (!C)
+ return nullptr;
+ }
+ return C;
+}
+
+//===----------------------------------------------------------------------===//
+// Constant Folding for Calls
+//
+
+bool llvm::canConstantFoldCallTo(const CallBase *Call, const Function *F) {
+ if (Call->isNoBuiltin())
+ return false;
+ switch (F->getIntrinsicID()) {
+ // Operations that do not operate floating-point numbers and do not depend on
+ // FP environment can be folded even in strictfp functions.
+ case Intrinsic::bswap:
+ case Intrinsic::ctpop:
+ case Intrinsic::ctlz:
+ case Intrinsic::cttz:
+ case Intrinsic::fshl:
+ case Intrinsic::fshr:
+ case Intrinsic::launder_invariant_group:
+ case Intrinsic::strip_invariant_group:
+ case Intrinsic::masked_load:
+ case Intrinsic::sadd_with_overflow:
+ case Intrinsic::uadd_with_overflow:
+ case Intrinsic::ssub_with_overflow:
+ case Intrinsic::usub_with_overflow:
+ case Intrinsic::smul_with_overflow:
+ case Intrinsic::umul_with_overflow:
+ case Intrinsic::sadd_sat:
+ case Intrinsic::uadd_sat:
+ case Intrinsic::ssub_sat:
+ case Intrinsic::usub_sat:
+ case Intrinsic::smul_fix:
+ case Intrinsic::smul_fix_sat:
+ case Intrinsic::bitreverse:
+ case Intrinsic::is_constant:
+ case Intrinsic::experimental_vector_reduce_add:
+ case Intrinsic::experimental_vector_reduce_mul:
+ case Intrinsic::experimental_vector_reduce_and:
+ case Intrinsic::experimental_vector_reduce_or:
+ case Intrinsic::experimental_vector_reduce_xor:
+ case Intrinsic::experimental_vector_reduce_smin:
+ case Intrinsic::experimental_vector_reduce_smax:
+ case Intrinsic::experimental_vector_reduce_umin:
+ case Intrinsic::experimental_vector_reduce_umax:
+ return true;
+
+ // Floating point operations cannot be folded in strictfp functions in
+ // general case. They can be folded if FP environment is known to compiler.
+ case Intrinsic::minnum:
+ case Intrinsic::maxnum:
+ case Intrinsic::minimum:
+ case Intrinsic::maximum:
+ case Intrinsic::log:
+ case Intrinsic::log2:
+ case Intrinsic::log10:
+ case Intrinsic::exp:
+ case Intrinsic::exp2:
+ case Intrinsic::sqrt:
+ case Intrinsic::sin:
+ case Intrinsic::cos:
+ case Intrinsic::pow:
+ case Intrinsic::powi:
+ case Intrinsic::fma:
+ case Intrinsic::fmuladd:
+ case Intrinsic::convert_from_fp16:
+ case Intrinsic::convert_to_fp16:
+ case Intrinsic::amdgcn_cos:
+ case Intrinsic::amdgcn_cubeid:
+ case Intrinsic::amdgcn_cubema:
+ case Intrinsic::amdgcn_cubesc:
+ case Intrinsic::amdgcn_cubetc:
+ case Intrinsic::amdgcn_fmul_legacy:
+ case Intrinsic::amdgcn_fract:
+ case Intrinsic::amdgcn_ldexp:
+ case Intrinsic::amdgcn_sin:
+ // The intrinsics below depend on rounding mode in MXCSR.
+ case Intrinsic::x86_sse_cvtss2si:
+ case Intrinsic::x86_sse_cvtss2si64:
+ case Intrinsic::x86_sse_cvttss2si:
+ case Intrinsic::x86_sse_cvttss2si64:
+ case Intrinsic::x86_sse2_cvtsd2si:
+ case Intrinsic::x86_sse2_cvtsd2si64:
+ case Intrinsic::x86_sse2_cvttsd2si:
+ case Intrinsic::x86_sse2_cvttsd2si64:
+ case Intrinsic::x86_avx512_vcvtss2si32:
+ case Intrinsic::x86_avx512_vcvtss2si64:
+ case Intrinsic::x86_avx512_cvttss2si:
+ case Intrinsic::x86_avx512_cvttss2si64:
+ case Intrinsic::x86_avx512_vcvtsd2si32:
+ case Intrinsic::x86_avx512_vcvtsd2si64:
+ case Intrinsic::x86_avx512_cvttsd2si:
+ case Intrinsic::x86_avx512_cvttsd2si64:
+ case Intrinsic::x86_avx512_vcvtss2usi32:
+ case Intrinsic::x86_avx512_vcvtss2usi64:
+ case Intrinsic::x86_avx512_cvttss2usi:
+ case Intrinsic::x86_avx512_cvttss2usi64:
+ case Intrinsic::x86_avx512_vcvtsd2usi32:
+ case Intrinsic::x86_avx512_vcvtsd2usi64:
+ case Intrinsic::x86_avx512_cvttsd2usi:
+ case Intrinsic::x86_avx512_cvttsd2usi64:
+ return !Call->isStrictFP();
+
+ // Sign operations are actually bitwise operations, they do not raise
+ // exceptions even for SNANs.
+ case Intrinsic::fabs:
+ case Intrinsic::copysign:
+ // Non-constrained variants of rounding operations means default FP
+ // environment, they can be folded in any case.
+ case Intrinsic::ceil:
+ case Intrinsic::floor:
+ case Intrinsic::round:
+ case Intrinsic::roundeven:
+ case Intrinsic::trunc:
+ case Intrinsic::nearbyint:
+ case Intrinsic::rint:
+ // Constrained intrinsics can be folded if FP environment is known
+ // to compiler.
+ case Intrinsic::experimental_constrained_ceil:
+ case Intrinsic::experimental_constrained_floor:
+ case Intrinsic::experimental_constrained_round:
+ case Intrinsic::experimental_constrained_roundeven:
+ case Intrinsic::experimental_constrained_trunc:
+ case Intrinsic::experimental_constrained_nearbyint:
+ case Intrinsic::experimental_constrained_rint:
+ return true;
+ default:
+ return false;
+ case Intrinsic::not_intrinsic: break;
+ }
+
+ if (!F->hasName() || Call->isStrictFP())
+ return false;
+
+ // In these cases, the check of the length is required. We don't want to
+ // return true for a name like "cos\0blah" which strcmp would return equal to
+ // "cos", but has length 8.
+ StringRef Name = F->getName();
+ switch (Name[0]) {
+ default:
+ return false;
+ case 'a':
+ return Name == "acos" || Name == "acosf" ||
+ Name == "asin" || Name == "asinf" ||
+ Name == "atan" || Name == "atanf" ||
+ Name == "atan2" || Name == "atan2f";
+ case 'c':
+ return Name == "ceil" || Name == "ceilf" ||
+ Name == "cos" || Name == "cosf" ||
+ Name == "cosh" || Name == "coshf";
+ case 'e':
+ return Name == "exp" || Name == "expf" ||
+ Name == "exp2" || Name == "exp2f";
+ case 'f':
+ return Name == "fabs" || Name == "fabsf" ||
+ Name == "floor" || Name == "floorf" ||
+ Name == "fmod" || Name == "fmodf";
+ case 'l':
+ return Name == "log" || Name == "logf" ||
+ Name == "log2" || Name == "log2f" ||
+ Name == "log10" || Name == "log10f";
+ case 'n':
+ return Name == "nearbyint" || Name == "nearbyintf";
+ case 'p':
+ return Name == "pow" || Name == "powf";
+ case 'r':
+ return Name == "remainder" || Name == "remainderf" ||
+ Name == "rint" || Name == "rintf" ||
+ Name == "round" || Name == "roundf";
+ case 's':
+ return Name == "sin" || Name == "sinf" ||
+ Name == "sinh" || Name == "sinhf" ||
+ Name == "sqrt" || Name == "sqrtf";
+ case 't':
+ return Name == "tan" || Name == "tanf" ||
+ Name == "tanh" || Name == "tanhf" ||
+ Name == "trunc" || Name == "truncf";
+ case '_':
+ // Check for various function names that get used for the math functions
+ // when the header files are preprocessed with the macro
+ // __FINITE_MATH_ONLY__ enabled.
+ // The '12' here is the length of the shortest name that can match.
+ // We need to check the size before looking at Name[1] and Name[2]
+ // so we may as well check a limit that will eliminate mismatches.
+ if (Name.size() < 12 || Name[1] != '_')
+ return false;
+ switch (Name[2]) {
+ default:
+ return false;
+ case 'a':
+ return Name == "__acos_finite" || Name == "__acosf_finite" ||
+ Name == "__asin_finite" || Name == "__asinf_finite" ||
+ Name == "__atan2_finite" || Name == "__atan2f_finite";
+ case 'c':
+ return Name == "__cosh_finite" || Name == "__coshf_finite";
+ case 'e':
+ return Name == "__exp_finite" || Name == "__expf_finite" ||
+ Name == "__exp2_finite" || Name == "__exp2f_finite";
+ case 'l':
+ return Name == "__log_finite" || Name == "__logf_finite" ||
+ Name == "__log10_finite" || Name == "__log10f_finite";
+ case 'p':
+ return Name == "__pow_finite" || Name == "__powf_finite";
+ case 's':
+ return Name == "__sinh_finite" || Name == "__sinhf_finite";
+ }
+ }
+}
+
+namespace {
+
+Constant *GetConstantFoldFPValue(double V, Type *Ty) {
+ if (Ty->isHalfTy() || Ty->isFloatTy()) {
+ APFloat APF(V);
+ bool unused;
+ APF.convert(Ty->getFltSemantics(), APFloat::rmNearestTiesToEven, &unused);
+ return ConstantFP::get(Ty->getContext(), APF);
+ }
+ if (Ty->isDoubleTy())
+ return ConstantFP::get(Ty->getContext(), APFloat(V));
+ llvm_unreachable("Can only constant fold half/float/double");
+}
+
+/// Clear the floating-point exception state.
+inline void llvm_fenv_clearexcept() {
+#if defined(HAVE_FENV_H) && HAVE_DECL_FE_ALL_EXCEPT
+ feclearexcept(FE_ALL_EXCEPT);
+#endif
+ errno = 0;
+}
+
+/// Test if a floating-point exception was raised.
+inline bool llvm_fenv_testexcept() {
+ int errno_val = errno;
+ if (errno_val == ERANGE || errno_val == EDOM)
+ return true;
+#if defined(HAVE_FENV_H) && HAVE_DECL_FE_ALL_EXCEPT && HAVE_DECL_FE_INEXACT
+ if (fetestexcept(FE_ALL_EXCEPT & ~FE_INEXACT))
+ return true;
+#endif
+ return false;
+}
+
+Constant *ConstantFoldFP(double (*NativeFP)(double), double V, Type *Ty) {
+ llvm_fenv_clearexcept();
+ V = NativeFP(V);
+ if (llvm_fenv_testexcept()) {
+ llvm_fenv_clearexcept();
+ return nullptr;
+ }
+
+ return GetConstantFoldFPValue(V, Ty);
+}
+
+Constant *ConstantFoldBinaryFP(double (*NativeFP)(double, double), double V,
+ double W, Type *Ty) {
+ llvm_fenv_clearexcept();
+ V = NativeFP(V, W);
+ if (llvm_fenv_testexcept()) {
+ llvm_fenv_clearexcept();
+ return nullptr;
+ }
+
+ return GetConstantFoldFPValue(V, Ty);
+}
+
+Constant *ConstantFoldVectorReduce(Intrinsic::ID IID, Constant *Op) {
+ FixedVectorType *VT = dyn_cast<FixedVectorType>(Op->getType());
+ if (!VT)
+ return nullptr;
+ ConstantInt *CI = dyn_cast<ConstantInt>(Op->getAggregateElement(0U));
+ if (!CI)
+ return nullptr;
+ APInt Acc = CI->getValue();
+
+ for (unsigned I = 1; I < VT->getNumElements(); I++) {
+ if (!(CI = dyn_cast<ConstantInt>(Op->getAggregateElement(I))))
+ return nullptr;
+ const APInt &X = CI->getValue();
+ switch (IID) {
+ case Intrinsic::experimental_vector_reduce_add:
+ Acc = Acc + X;
+ break;
+ case Intrinsic::experimental_vector_reduce_mul:
+ Acc = Acc * X;
+ break;
+ case Intrinsic::experimental_vector_reduce_and:
+ Acc = Acc & X;
+ break;
+ case Intrinsic::experimental_vector_reduce_or:
+ Acc = Acc | X;
+ break;
+ case Intrinsic::experimental_vector_reduce_xor:
+ Acc = Acc ^ X;
+ break;
+ case Intrinsic::experimental_vector_reduce_smin:
+ Acc = APIntOps::smin(Acc, X);
+ break;
+ case Intrinsic::experimental_vector_reduce_smax:
+ Acc = APIntOps::smax(Acc, X);
+ break;
+ case Intrinsic::experimental_vector_reduce_umin:
+ Acc = APIntOps::umin(Acc, X);
+ break;
+ case Intrinsic::experimental_vector_reduce_umax:
+ Acc = APIntOps::umax(Acc, X);
+ break;
+ }
+ }
+
+ return ConstantInt::get(Op->getContext(), Acc);
+}
+
+/// Attempt to fold an SSE floating point to integer conversion of a constant
+/// floating point. If roundTowardZero is false, the default IEEE rounding is
+/// used (toward nearest, ties to even). This matches the behavior of the
+/// non-truncating SSE instructions in the default rounding mode. The desired
+/// integer type Ty is used to select how many bits are available for the
+/// result. Returns null if the conversion cannot be performed, otherwise
+/// returns the Constant value resulting from the conversion.
+Constant *ConstantFoldSSEConvertToInt(const APFloat &Val, bool roundTowardZero,
+ Type *Ty, bool IsSigned) {
+ // All of these conversion intrinsics form an integer of at most 64bits.
+ unsigned ResultWidth = Ty->getIntegerBitWidth();
+ assert(ResultWidth <= 64 &&
+ "Can only constant fold conversions to 64 and 32 bit ints");
+
+ uint64_t UIntVal;
+ bool isExact = false;
+ APFloat::roundingMode mode = roundTowardZero? APFloat::rmTowardZero
+ : APFloat::rmNearestTiesToEven;
+ APFloat::opStatus status =
+ Val.convertToInteger(makeMutableArrayRef(UIntVal), ResultWidth,
+ IsSigned, mode, &isExact);
+ if (status != APFloat::opOK &&
+ (!roundTowardZero || status != APFloat::opInexact))
+ return nullptr;
+ return ConstantInt::get(Ty, UIntVal, IsSigned);
+}
+
+double getValueAsDouble(ConstantFP *Op) {
+ Type *Ty = Op->getType();
+
+ if (Ty->isFloatTy())
+ return Op->getValueAPF().convertToFloat();
+
+ if (Ty->isDoubleTy())
+ return Op->getValueAPF().convertToDouble();
+
+ bool unused;
+ APFloat APF = Op->getValueAPF();
+ APF.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, &unused);
+ return APF.convertToDouble();
+}
+
+static bool isManifestConstant(const Constant *c) {
+ if (isa<ConstantData>(c)) {
+ return true;
+ } else if (isa<ConstantAggregate>(c) || isa<ConstantExpr>(c)) {
+ for (const Value *subc : c->operand_values()) {
+ if (!isManifestConstant(cast<Constant>(subc)))
+ return false;
+ }
+ return true;
+ }
+ return false;
+}
+
+static bool getConstIntOrUndef(Value *Op, const APInt *&C) {
+ if (auto *CI = dyn_cast<ConstantInt>(Op)) {
+ C = &CI->getValue();
+ return true;
+ }
+ if (isa<UndefValue>(Op)) {
+ C = nullptr;
+ return true;
+ }
+ return false;
+}
+
+static Constant *ConstantFoldScalarCall1(StringRef Name,
+ Intrinsic::ID IntrinsicID,
+ Type *Ty,
+ ArrayRef<Constant *> Operands,
+ const TargetLibraryInfo *TLI,
+ const CallBase *Call) {
+ assert(Operands.size() == 1 && "Wrong number of operands.");
+
+ if (IntrinsicID == Intrinsic::is_constant) {
+ // We know we have a "Constant" argument. But we want to only
+ // return true for manifest constants, not those that depend on
+ // constants with unknowable values, e.g. GlobalValue or BlockAddress.
+ if (isManifestConstant(Operands[0]))
+ return ConstantInt::getTrue(Ty->getContext());
+ return nullptr;
+ }
+ if (isa<UndefValue>(Operands[0])) {
+ // cosine(arg) is between -1 and 1. cosine(invalid arg) is NaN.
+ // ctpop() is between 0 and bitwidth, pick 0 for undef.
+ if (IntrinsicID == Intrinsic::cos ||
+ IntrinsicID == Intrinsic::ctpop)
+ return Constant::getNullValue(Ty);
+ if (IntrinsicID == Intrinsic::bswap ||
+ IntrinsicID == Intrinsic::bitreverse ||
+ IntrinsicID == Intrinsic::launder_invariant_group ||
+ IntrinsicID == Intrinsic::strip_invariant_group)
+ return Operands[0];
+ }
+
+ if (isa<ConstantPointerNull>(Operands[0])) {
+ // launder(null) == null == strip(null) iff in addrspace 0
+ if (IntrinsicID == Intrinsic::launder_invariant_group ||
+ IntrinsicID == Intrinsic::strip_invariant_group) {
+ // If instruction is not yet put in a basic block (e.g. when cloning
+ // a function during inlining), Call's caller may not be available.
+ // So check Call's BB first before querying Call->getCaller.
+ const Function *Caller =
+ Call->getParent() ? Call->getCaller() : nullptr;
+ if (Caller &&
+ !NullPointerIsDefined(
+ Caller, Operands[0]->getType()->getPointerAddressSpace())) {
+ return Operands[0];
+ }
+ return nullptr;
+ }
+ }
+
+ if (auto *Op = dyn_cast<ConstantFP>(Operands[0])) {
+ if (IntrinsicID == Intrinsic::convert_to_fp16) {
+ APFloat Val(Op->getValueAPF());
+
+ bool lost = false;
+ Val.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven, &lost);
+
+ return ConstantInt::get(Ty->getContext(), Val.bitcastToAPInt());
+ }
+
+ if (!Ty->isHalfTy() && !Ty->isFloatTy() && !Ty->isDoubleTy())
+ return nullptr;
+
+ // Use internal versions of these intrinsics.
+ APFloat U = Op->getValueAPF();
+
+ if (IntrinsicID == Intrinsic::nearbyint || IntrinsicID == Intrinsic::rint) {
+ U.roundToIntegral(APFloat::rmNearestTiesToEven);
+ return ConstantFP::get(Ty->getContext(), U);
+ }
+
+ if (IntrinsicID == Intrinsic::round) {
+ U.roundToIntegral(APFloat::rmNearestTiesToAway);
+ return ConstantFP::get(Ty->getContext(), U);
+ }
+
+ if (IntrinsicID == Intrinsic::roundeven) {
+ U.roundToIntegral(APFloat::rmNearestTiesToEven);
+ return ConstantFP::get(Ty->getContext(), U);
+ }
+
+ if (IntrinsicID == Intrinsic::ceil) {
+ U.roundToIntegral(APFloat::rmTowardPositive);
+ return ConstantFP::get(Ty->getContext(), U);
+ }
+
+ if (IntrinsicID == Intrinsic::floor) {
+ U.roundToIntegral(APFloat::rmTowardNegative);
+ return ConstantFP::get(Ty->getContext(), U);
+ }
+
+ if (IntrinsicID == Intrinsic::trunc) {
+ U.roundToIntegral(APFloat::rmTowardZero);
+ return ConstantFP::get(Ty->getContext(), U);
+ }
+
+ if (IntrinsicID == Intrinsic::fabs) {
+ U.clearSign();
+ return ConstantFP::get(Ty->getContext(), U);
+ }
+
+ if (IntrinsicID == Intrinsic::amdgcn_fract) {
+ // The v_fract instruction behaves like the OpenCL spec, which defines
+ // fract(x) as fmin(x - floor(x), 0x1.fffffep-1f): "The min() operator is
+ // there to prevent fract(-small) from returning 1.0. It returns the
+ // largest positive floating-point number less than 1.0."
+ APFloat FloorU(U);
+ FloorU.roundToIntegral(APFloat::rmTowardNegative);
+ APFloat FractU(U - FloorU);
+ APFloat AlmostOne(U.getSemantics(), 1);
+ AlmostOne.next(/*nextDown*/ true);
+ return ConstantFP::get(Ty->getContext(), minimum(FractU, AlmostOne));
+ }
+
+ // Rounding operations (floor, trunc, ceil, round and nearbyint) do not
+ // raise FP exceptions, unless the argument is signaling NaN.
+
+ Optional<APFloat::roundingMode> RM;
+ switch (IntrinsicID) {
+ default:
+ break;
+ case Intrinsic::experimental_constrained_nearbyint:
+ case Intrinsic::experimental_constrained_rint: {
+ auto CI = cast<ConstrainedFPIntrinsic>(Call);
+ RM = CI->getRoundingMode();
+ if (!RM || RM.getValue() == RoundingMode::Dynamic)
+ return nullptr;
+ break;
+ }
+ case Intrinsic::experimental_constrained_round:
+ RM = APFloat::rmNearestTiesToAway;
+ break;
+ case Intrinsic::experimental_constrained_ceil:
+ RM = APFloat::rmTowardPositive;
+ break;
+ case Intrinsic::experimental_constrained_floor:
+ RM = APFloat::rmTowardNegative;
+ break;
+ case Intrinsic::experimental_constrained_trunc:
+ RM = APFloat::rmTowardZero;
+ break;
+ }
+ if (RM) {
+ auto CI = cast<ConstrainedFPIntrinsic>(Call);
+ if (U.isFinite()) {
+ APFloat::opStatus St = U.roundToIntegral(*RM);
+ if (IntrinsicID == Intrinsic::experimental_constrained_rint &&
+ St == APFloat::opInexact) {
+ Optional<fp::ExceptionBehavior> EB = CI->getExceptionBehavior();
+ if (EB && *EB == fp::ebStrict)
+ return nullptr;
+ }
+ } else if (U.isSignaling()) {
+ Optional<fp::ExceptionBehavior> EB = CI->getExceptionBehavior();
+ if (EB && *EB != fp::ebIgnore)
+ return nullptr;
+ U = APFloat::getQNaN(U.getSemantics());
+ }
+ return ConstantFP::get(Ty->getContext(), U);
+ }
+
+ /// We only fold functions with finite arguments. Folding NaN and inf is
+ /// likely to be aborted with an exception anyway, and some host libms
+ /// have known errors raising exceptions.
+ if (!U.isFinite())
+ return nullptr;
+
+ /// Currently APFloat versions of these functions do not exist, so we use
+ /// the host native double versions. Float versions are not called
+ /// directly but for all these it is true (float)(f((double)arg)) ==
+ /// f(arg). Long double not supported yet.
+ double V = getValueAsDouble(Op);
+
+ switch (IntrinsicID) {
+ default: break;
+ case Intrinsic::log:
+ return ConstantFoldFP(log, V, Ty);
+ case Intrinsic::log2:
+ // TODO: What about hosts that lack a C99 library?
+ return ConstantFoldFP(Log2, V, Ty);
+ case Intrinsic::log10:
+ // TODO: What about hosts that lack a C99 library?
+ return ConstantFoldFP(log10, V, Ty);
+ case Intrinsic::exp:
+ return ConstantFoldFP(exp, V, Ty);
+ case Intrinsic::exp2:
+ // Fold exp2(x) as pow(2, x), in case the host lacks a C99 library.
+ return ConstantFoldBinaryFP(pow, 2.0, V, Ty);
+ case Intrinsic::sin:
+ return ConstantFoldFP(sin, V, Ty);
+ case Intrinsic::cos:
+ return ConstantFoldFP(cos, V, Ty);
+ case Intrinsic::sqrt:
+ return ConstantFoldFP(sqrt, V, Ty);
+ case Intrinsic::amdgcn_cos:
+ case Intrinsic::amdgcn_sin:
+ if (V < -256.0 || V > 256.0)
+ // The gfx8 and gfx9 architectures handle arguments outside the range
+ // [-256, 256] differently. This should be a rare case so bail out
+ // rather than trying to handle the difference.
+ return nullptr;
+ bool IsCos = IntrinsicID == Intrinsic::amdgcn_cos;
+ double V4 = V * 4.0;
+ if (V4 == floor(V4)) {
+ // Force exact results for quarter-integer inputs.
+ const double SinVals[4] = { 0.0, 1.0, 0.0, -1.0 };
+ V = SinVals[((int)V4 + (IsCos ? 1 : 0)) & 3];
+ } else {
+ if (IsCos)
+ V = cos(V * 2.0 * numbers::pi);
+ else
+ V = sin(V * 2.0 * numbers::pi);
+ }
+ return GetConstantFoldFPValue(V, Ty);
+ }
+
+ if (!TLI)
+ return nullptr;
+
+ LibFunc Func = NotLibFunc;
+ TLI->getLibFunc(Name, Func);
+ switch (Func) {
+ default:
+ break;
+ case LibFunc_acos:
+ case LibFunc_acosf:
+ case LibFunc_acos_finite:
+ case LibFunc_acosf_finite:
+ if (TLI->has(Func))
+ return ConstantFoldFP(acos, V, Ty);
+ break;
+ case LibFunc_asin:
+ case LibFunc_asinf:
+ case LibFunc_asin_finite:
+ case LibFunc_asinf_finite:
+ if (TLI->has(Func))
+ return ConstantFoldFP(asin, V, Ty);
+ break;
+ case LibFunc_atan:
+ case LibFunc_atanf:
+ if (TLI->has(Func))
+ return ConstantFoldFP(atan, V, Ty);
+ break;
+ case LibFunc_ceil:
+ case LibFunc_ceilf:
+ if (TLI->has(Func)) {
+ U.roundToIntegral(APFloat::rmTowardPositive);
+ return ConstantFP::get(Ty->getContext(), U);
+ }
+ break;
+ case LibFunc_cos:
+ case LibFunc_cosf:
+ if (TLI->has(Func))
+ return ConstantFoldFP(cos, V, Ty);
+ break;
+ case LibFunc_cosh:
+ case LibFunc_coshf:
+ case LibFunc_cosh_finite:
+ case LibFunc_coshf_finite:
+ if (TLI->has(Func))
+ return ConstantFoldFP(cosh, V, Ty);
+ break;
+ case LibFunc_exp:
+ case LibFunc_expf:
+ case LibFunc_exp_finite:
+ case LibFunc_expf_finite:
+ if (TLI->has(Func))
+ return ConstantFoldFP(exp, V, Ty);
+ break;
+ case LibFunc_exp2:
+ case LibFunc_exp2f:
+ case LibFunc_exp2_finite:
+ case LibFunc_exp2f_finite:
+ if (TLI->has(Func))
+ // Fold exp2(x) as pow(2, x), in case the host lacks a C99 library.
+ return ConstantFoldBinaryFP(pow, 2.0, V, Ty);
+ break;
+ case LibFunc_fabs:
+ case LibFunc_fabsf:
+ if (TLI->has(Func)) {
+ U.clearSign();
+ return ConstantFP::get(Ty->getContext(), U);
+ }
+ break;
+ case LibFunc_floor:
+ case LibFunc_floorf:
+ if (TLI->has(Func)) {
+ U.roundToIntegral(APFloat::rmTowardNegative);
+ return ConstantFP::get(Ty->getContext(), U);
+ }
+ break;
+ case LibFunc_log:
+ case LibFunc_logf:
+ case LibFunc_log_finite:
+ case LibFunc_logf_finite:
+ if (V > 0.0 && TLI->has(Func))
+ return ConstantFoldFP(log, V, Ty);
+ break;
+ case LibFunc_log2:
+ case LibFunc_log2f:
+ case LibFunc_log2_finite:
+ case LibFunc_log2f_finite:
+ if (V > 0.0 && TLI->has(Func))
+ // TODO: What about hosts that lack a C99 library?
+ return ConstantFoldFP(Log2, V, Ty);
+ break;
+ case LibFunc_log10:
+ case LibFunc_log10f:
+ case LibFunc_log10_finite:
+ case LibFunc_log10f_finite:
+ if (V > 0.0 && TLI->has(Func))
+ // TODO: What about hosts that lack a C99 library?
+ return ConstantFoldFP(log10, V, Ty);
+ break;
+ case LibFunc_nearbyint:
+ case LibFunc_nearbyintf:
+ case LibFunc_rint:
+ case LibFunc_rintf:
+ if (TLI->has(Func)) {
+ U.roundToIntegral(APFloat::rmNearestTiesToEven);
+ return ConstantFP::get(Ty->getContext(), U);
+ }
+ break;
+ case LibFunc_round:
+ case LibFunc_roundf:
+ if (TLI->has(Func)) {
+ U.roundToIntegral(APFloat::rmNearestTiesToAway);
+ return ConstantFP::get(Ty->getContext(), U);
+ }
+ break;
+ case LibFunc_sin:
+ case LibFunc_sinf:
+ if (TLI->has(Func))
+ return ConstantFoldFP(sin, V, Ty);
+ break;
+ case LibFunc_sinh:
+ case LibFunc_sinhf:
+ case LibFunc_sinh_finite:
+ case LibFunc_sinhf_finite:
+ if (TLI->has(Func))
+ return ConstantFoldFP(sinh, V, Ty);
+ break;
+ case LibFunc_sqrt:
+ case LibFunc_sqrtf:
+ if (V >= 0.0 && TLI->has(Func))
+ return ConstantFoldFP(sqrt, V, Ty);
+ break;
+ case LibFunc_tan:
+ case LibFunc_tanf:
+ if (TLI->has(Func))
+ return ConstantFoldFP(tan, V, Ty);
+ break;
+ case LibFunc_tanh:
+ case LibFunc_tanhf:
+ if (TLI->has(Func))
+ return ConstantFoldFP(tanh, V, Ty);
+ break;
+ case LibFunc_trunc:
+ case LibFunc_truncf:
+ if (TLI->has(Func)) {
+ U.roundToIntegral(APFloat::rmTowardZero);
+ return ConstantFP::get(Ty->getContext(), U);
+ }
+ break;
+ }
+ return nullptr;
+ }
+
+ if (auto *Op = dyn_cast<ConstantInt>(Operands[0])) {
+ switch (IntrinsicID) {
+ case Intrinsic::bswap:
+ return ConstantInt::get(Ty->getContext(), Op->getValue().byteSwap());
+ case Intrinsic::ctpop:
+ return ConstantInt::get(Ty, Op->getValue().countPopulation());
+ case Intrinsic::bitreverse:
+ return ConstantInt::get(Ty->getContext(), Op->getValue().reverseBits());
+ case Intrinsic::convert_from_fp16: {
+ APFloat Val(APFloat::IEEEhalf(), Op->getValue());
+
+ bool lost = false;
+ APFloat::opStatus status = Val.convert(
+ Ty->getFltSemantics(), APFloat::rmNearestTiesToEven, &lost);
+
+ // Conversion is always precise.
+ (void)status;
+ assert(status == APFloat::opOK && !lost &&
+ "Precision lost during fp16 constfolding");
+
+ return ConstantFP::get(Ty->getContext(), Val);
+ }
+ default:
+ return nullptr;
+ }
+ }
+
+ if (isa<ConstantAggregateZero>(Operands[0])) {
+ switch (IntrinsicID) {
+ default: break;
+ case Intrinsic::experimental_vector_reduce_add:
+ case Intrinsic::experimental_vector_reduce_mul:
+ case Intrinsic::experimental_vector_reduce_and:
+ case Intrinsic::experimental_vector_reduce_or:
+ case Intrinsic::experimental_vector_reduce_xor:
+ case Intrinsic::experimental_vector_reduce_smin:
+ case Intrinsic::experimental_vector_reduce_smax:
+ case Intrinsic::experimental_vector_reduce_umin:
+ case Intrinsic::experimental_vector_reduce_umax:
+ return ConstantInt::get(Ty, 0);
+ }
+ }
+
+ // Support ConstantVector in case we have an Undef in the top.
+ if (isa<ConstantVector>(Operands[0]) ||
+ isa<ConstantDataVector>(Operands[0])) {
+ auto *Op = cast<Constant>(Operands[0]);
+ switch (IntrinsicID) {
+ default: break;
+ case Intrinsic::experimental_vector_reduce_add:
+ case Intrinsic::experimental_vector_reduce_mul:
+ case Intrinsic::experimental_vector_reduce_and:
+ case Intrinsic::experimental_vector_reduce_or:
+ case Intrinsic::experimental_vector_reduce_xor:
+ case Intrinsic::experimental_vector_reduce_smin:
+ case Intrinsic::experimental_vector_reduce_smax:
+ case Intrinsic::experimental_vector_reduce_umin:
+ case Intrinsic::experimental_vector_reduce_umax:
+ if (Constant *C = ConstantFoldVectorReduce(IntrinsicID, Op))
+ return C;
+ break;
+ case Intrinsic::x86_sse_cvtss2si:
+ case Intrinsic::x86_sse_cvtss2si64:
+ case Intrinsic::x86_sse2_cvtsd2si:
+ case Intrinsic::x86_sse2_cvtsd2si64:
+ if (ConstantFP *FPOp =
+ dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
+ return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
+ /*roundTowardZero=*/false, Ty,
+ /*IsSigned*/true);
+ break;
+ case Intrinsic::x86_sse_cvttss2si:
+ case Intrinsic::x86_sse_cvttss2si64:
+ case Intrinsic::x86_sse2_cvttsd2si:
+ case Intrinsic::x86_sse2_cvttsd2si64:
+ if (ConstantFP *FPOp =
+ dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
+ return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
+ /*roundTowardZero=*/true, Ty,
+ /*IsSigned*/true);
+ break;
+ }
+ }
+
+ return nullptr;
+}
+
+static Constant *ConstantFoldScalarCall2(StringRef Name,
+ Intrinsic::ID IntrinsicID,
+ Type *Ty,
+ ArrayRef<Constant *> Operands,
+ const TargetLibraryInfo *TLI,
+ const CallBase *Call) {
+ assert(Operands.size() == 2 && "Wrong number of operands.");
+
+ if (auto *Op1 = dyn_cast<ConstantFP>(Operands[0])) {
+ if (!Ty->isHalfTy() && !Ty->isFloatTy() && !Ty->isDoubleTy())
+ return nullptr;
+ double Op1V = getValueAsDouble(Op1);
+
+ if (auto *Op2 = dyn_cast<ConstantFP>(Operands[1])) {
+ if (Op2->getType() != Op1->getType())
+ return nullptr;
+
+ double Op2V = getValueAsDouble(Op2);
+ if (IntrinsicID == Intrinsic::pow) {
+ return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty);
+ }
+ if (IntrinsicID == Intrinsic::copysign) {
+ APFloat V1 = Op1->getValueAPF();
+ const APFloat &V2 = Op2->getValueAPF();
+ V1.copySign(V2);
+ return ConstantFP::get(Ty->getContext(), V1);
+ }
+
+ if (IntrinsicID == Intrinsic::minnum) {
+ const APFloat &C1 = Op1->getValueAPF();
+ const APFloat &C2 = Op2->getValueAPF();
+ return ConstantFP::get(Ty->getContext(), minnum(C1, C2));
+ }
+
+ if (IntrinsicID == Intrinsic::maxnum) {
+ const APFloat &C1 = Op1->getValueAPF();
+ const APFloat &C2 = Op2->getValueAPF();
+ return ConstantFP::get(Ty->getContext(), maxnum(C1, C2));
+ }
+
+ if (IntrinsicID == Intrinsic::minimum) {
+ const APFloat &C1 = Op1->getValueAPF();
+ const APFloat &C2 = Op2->getValueAPF();
+ return ConstantFP::get(Ty->getContext(), minimum(C1, C2));
+ }
+
+ if (IntrinsicID == Intrinsic::maximum) {
+ const APFloat &C1 = Op1->getValueAPF();
+ const APFloat &C2 = Op2->getValueAPF();
+ return ConstantFP::get(Ty->getContext(), maximum(C1, C2));
+ }
+
+ if (IntrinsicID == Intrinsic::amdgcn_fmul_legacy) {
+ const APFloat &C1 = Op1->getValueAPF();
+ const APFloat &C2 = Op2->getValueAPF();
+ // The legacy behaviour is that multiplying zero by anything, even NaN
+ // or infinity, gives +0.0.
+ if (C1.isZero() || C2.isZero())
+ return ConstantFP::getNullValue(Ty);
+ return ConstantFP::get(Ty->getContext(), C1 * C2);
+ }
+
+ if (!TLI)
+ return nullptr;
+
+ LibFunc Func = NotLibFunc;
+ TLI->getLibFunc(Name, Func);
+ switch (Func) {
+ default:
+ break;
+ case LibFunc_pow:
+ case LibFunc_powf:
+ case LibFunc_pow_finite:
+ case LibFunc_powf_finite:
+ if (TLI->has(Func))
+ return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty);
+ break;
+ case LibFunc_fmod:
+ case LibFunc_fmodf:
+ if (TLI->has(Func)) {
+ APFloat V = Op1->getValueAPF();
+ if (APFloat::opStatus::opOK == V.mod(Op2->getValueAPF()))
+ return ConstantFP::get(Ty->getContext(), V);
+ }
+ break;
+ case LibFunc_remainder:
+ case LibFunc_remainderf:
+ if (TLI->has(Func)) {
+ APFloat V = Op1->getValueAPF();
+ if (APFloat::opStatus::opOK == V.remainder(Op2->getValueAPF()))
+ return ConstantFP::get(Ty->getContext(), V);
+ }
+ break;
+ case LibFunc_atan2:
+ case LibFunc_atan2f:
+ case LibFunc_atan2_finite:
+ case LibFunc_atan2f_finite:
+ if (TLI->has(Func))
+ return ConstantFoldBinaryFP(atan2, Op1V, Op2V, Ty);
+ break;
+ }
+ } else if (auto *Op2C = dyn_cast<ConstantInt>(Operands[1])) {
+ if (IntrinsicID == Intrinsic::powi && Ty->isHalfTy())
+ return ConstantFP::get(Ty->getContext(),
+ APFloat((float)std::pow((float)Op1V,
+ (int)Op2C->getZExtValue())));
+ if (IntrinsicID == Intrinsic::powi && Ty->isFloatTy())
+ return ConstantFP::get(Ty->getContext(),
+ APFloat((float)std::pow((float)Op1V,
+ (int)Op2C->getZExtValue())));
+ if (IntrinsicID == Intrinsic::powi && Ty->isDoubleTy())
+ return ConstantFP::get(Ty->getContext(),
+ APFloat((double)std::pow((double)Op1V,
+ (int)Op2C->getZExtValue())));
+
+ if (IntrinsicID == Intrinsic::amdgcn_ldexp) {
+ // FIXME: Should flush denorms depending on FP mode, but that's ignored
+ // everywhere else.
+
+ // scalbn is equivalent to ldexp with float radix 2
+ APFloat Result = scalbn(Op1->getValueAPF(), Op2C->getSExtValue(),
+ APFloat::rmNearestTiesToEven);
+ return ConstantFP::get(Ty->getContext(), Result);
+ }
+ }
+ return nullptr;
+ }
+
+ if (Operands[0]->getType()->isIntegerTy() &&
+ Operands[1]->getType()->isIntegerTy()) {
+ const APInt *C0, *C1;
+ if (!getConstIntOrUndef(Operands[0], C0) ||
+ !getConstIntOrUndef(Operands[1], C1))
+ return nullptr;
+
+ switch (IntrinsicID) {
+ default: break;
+ case Intrinsic::usub_with_overflow:
+ case Intrinsic::ssub_with_overflow:
+ case Intrinsic::uadd_with_overflow:
+ case Intrinsic::sadd_with_overflow:
+ // X - undef -> { undef, false }
+ // undef - X -> { undef, false }
+ // X + undef -> { undef, false }
+ // undef + x -> { undef, false }
+ if (!C0 || !C1) {
+ return ConstantStruct::get(
+ cast<StructType>(Ty),
+ {UndefValue::get(Ty->getStructElementType(0)),
+ Constant::getNullValue(Ty->getStructElementType(1))});
+ }
+ LLVM_FALLTHROUGH;
+ case Intrinsic::smul_with_overflow:
+ case Intrinsic::umul_with_overflow: {
+ // undef * X -> { 0, false }
+ // X * undef -> { 0, false }
+ if (!C0 || !C1)
+ return Constant::getNullValue(Ty);
+
+ APInt Res;
+ bool Overflow;
+ switch (IntrinsicID) {
+ default: llvm_unreachable("Invalid case");
+ case Intrinsic::sadd_with_overflow:
+ Res = C0->sadd_ov(*C1, Overflow);
+ break;
+ case Intrinsic::uadd_with_overflow:
+ Res = C0->uadd_ov(*C1, Overflow);
+ break;
+ case Intrinsic::ssub_with_overflow:
+ Res = C0->ssub_ov(*C1, Overflow);
+ break;
+ case Intrinsic::usub_with_overflow:
+ Res = C0->usub_ov(*C1, Overflow);
+ break;
+ case Intrinsic::smul_with_overflow:
+ Res = C0->smul_ov(*C1, Overflow);
+ break;
+ case Intrinsic::umul_with_overflow:
+ Res = C0->umul_ov(*C1, Overflow);
+ break;
+ }
+ Constant *Ops[] = {
+ ConstantInt::get(Ty->getContext(), Res),
+ ConstantInt::get(Type::getInt1Ty(Ty->getContext()), Overflow)
+ };
+ return ConstantStruct::get(cast<StructType>(Ty), Ops);
+ }
+ case Intrinsic::uadd_sat:
+ case Intrinsic::sadd_sat:
+ if (!C0 && !C1)
+ return UndefValue::get(Ty);
+ if (!C0 || !C1)
+ return Constant::getAllOnesValue(Ty);
+ if (IntrinsicID == Intrinsic::uadd_sat)
+ return ConstantInt::get(Ty, C0->uadd_sat(*C1));
+ else
+ return ConstantInt::get(Ty, C0->sadd_sat(*C1));
+ case Intrinsic::usub_sat:
+ case Intrinsic::ssub_sat:
+ if (!C0 && !C1)
+ return UndefValue::get(Ty);
+ if (!C0 || !C1)
+ return Constant::getNullValue(Ty);
+ if (IntrinsicID == Intrinsic::usub_sat)
+ return ConstantInt::get(Ty, C0->usub_sat(*C1));
+ else
+ return ConstantInt::get(Ty, C0->ssub_sat(*C1));
+ case Intrinsic::cttz:
+ case Intrinsic::ctlz:
+ assert(C1 && "Must be constant int");
+
+ // cttz(0, 1) and ctlz(0, 1) are undef.
+ if (C1->isOneValue() && (!C0 || C0->isNullValue()))
+ return UndefValue::get(Ty);
+ if (!C0)
+ return Constant::getNullValue(Ty);
+ if (IntrinsicID == Intrinsic::cttz)
+ return ConstantInt::get(Ty, C0->countTrailingZeros());
+ else
+ return ConstantInt::get(Ty, C0->countLeadingZeros());
+ }
+
+ return nullptr;
+ }
+
+ // Support ConstantVector in case we have an Undef in the top.
+ if ((isa<ConstantVector>(Operands[0]) ||
+ isa<ConstantDataVector>(Operands[0])) &&
+ // Check for default rounding mode.
+ // FIXME: Support other rounding modes?
+ isa<ConstantInt>(Operands[1]) &&
+ cast<ConstantInt>(Operands[1])->getValue() == 4) {
+ auto *Op = cast<Constant>(Operands[0]);
+ switch (IntrinsicID) {
+ default: break;
+ case Intrinsic::x86_avx512_vcvtss2si32:
+ case Intrinsic::x86_avx512_vcvtss2si64:
+ case Intrinsic::x86_avx512_vcvtsd2si32:
+ case Intrinsic::x86_avx512_vcvtsd2si64:
+ if (ConstantFP *FPOp =
+ dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
+ return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
+ /*roundTowardZero=*/false, Ty,
+ /*IsSigned*/true);
+ break;
+ case Intrinsic::x86_avx512_vcvtss2usi32:
+ case Intrinsic::x86_avx512_vcvtss2usi64:
+ case Intrinsic::x86_avx512_vcvtsd2usi32:
+ case Intrinsic::x86_avx512_vcvtsd2usi64:
+ if (ConstantFP *FPOp =
+ dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
+ return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
+ /*roundTowardZero=*/false, Ty,
+ /*IsSigned*/false);
+ break;
+ case Intrinsic::x86_avx512_cvttss2si:
+ case Intrinsic::x86_avx512_cvttss2si64:
+ case Intrinsic::x86_avx512_cvttsd2si:
+ case Intrinsic::x86_avx512_cvttsd2si64:
+ if (ConstantFP *FPOp =
+ dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
+ return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
+ /*roundTowardZero=*/true, Ty,
+ /*IsSigned*/true);
+ break;
+ case Intrinsic::x86_avx512_cvttss2usi:
+ case Intrinsic::x86_avx512_cvttss2usi64:
+ case Intrinsic::x86_avx512_cvttsd2usi:
+ case Intrinsic::x86_avx512_cvttsd2usi64:
+ if (ConstantFP *FPOp =
+ dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
+ return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
+ /*roundTowardZero=*/true, Ty,
+ /*IsSigned*/false);
+ break;
+ }
+ }
+ return nullptr;
+}
+
+static APFloat ConstantFoldAMDGCNCubeIntrinsic(Intrinsic::ID IntrinsicID,
+ const APFloat &S0,
+ const APFloat &S1,
+ const APFloat &S2) {
+ unsigned ID;
+ const fltSemantics &Sem = S0.getSemantics();
+ APFloat MA(Sem), SC(Sem), TC(Sem);
+ if (abs(S2) >= abs(S0) && abs(S2) >= abs(S1)) {
+ if (S2.isNegative() && S2.isNonZero() && !S2.isNaN()) {
+ // S2 < 0
+ ID = 5;
+ SC = -S0;
+ } else {
+ ID = 4;
+ SC = S0;
+ }
+ MA = S2;
+ TC = -S1;
+ } else if (abs(S1) >= abs(S0)) {
+ if (S1.isNegative() && S1.isNonZero() && !S1.isNaN()) {
+ // S1 < 0
+ ID = 3;
+ TC = -S2;
+ } else {
+ ID = 2;
+ TC = S2;
+ }
+ MA = S1;
+ SC = S0;
+ } else {
+ if (S0.isNegative() && S0.isNonZero() && !S0.isNaN()) {
+ // S0 < 0
+ ID = 1;
+ SC = S2;
+ } else {
+ ID = 0;
+ SC = -S2;
+ }
+ MA = S0;
+ TC = -S1;
+ }
+ switch (IntrinsicID) {
+ default:
+ llvm_unreachable("unhandled amdgcn cube intrinsic");
+ case Intrinsic::amdgcn_cubeid:
+ return APFloat(Sem, ID);
+ case Intrinsic::amdgcn_cubema:
+ return MA + MA;
+ case Intrinsic::amdgcn_cubesc:
+ return SC;
+ case Intrinsic::amdgcn_cubetc:
+ return TC;
+ }
+}
+
+static Constant *ConstantFoldScalarCall3(StringRef Name,
+ Intrinsic::ID IntrinsicID,
+ Type *Ty,
+ ArrayRef<Constant *> Operands,
+ const TargetLibraryInfo *TLI,
+ const CallBase *Call) {
+ assert(Operands.size() == 3 && "Wrong number of operands.");
+
+ if (const auto *Op1 = dyn_cast<ConstantFP>(Operands[0])) {
+ if (const auto *Op2 = dyn_cast<ConstantFP>(Operands[1])) {
+ if (const auto *Op3 = dyn_cast<ConstantFP>(Operands[2])) {
+ switch (IntrinsicID) {
+ default: break;
+ case Intrinsic::fma:
+ case Intrinsic::fmuladd: {
+ APFloat V = Op1->getValueAPF();
+ V.fusedMultiplyAdd(Op2->getValueAPF(), Op3->getValueAPF(),
+ APFloat::rmNearestTiesToEven);
+ return ConstantFP::get(Ty->getContext(), V);
+ }
+ case Intrinsic::amdgcn_cubeid:
+ case Intrinsic::amdgcn_cubema:
+ case Intrinsic::amdgcn_cubesc:
+ case Intrinsic::amdgcn_cubetc: {
+ APFloat V = ConstantFoldAMDGCNCubeIntrinsic(
+ IntrinsicID, Op1->getValueAPF(), Op2->getValueAPF(),
+ Op3->getValueAPF());
+ return ConstantFP::get(Ty->getContext(), V);
+ }
+ }
+ }
+ }
+ }
+
+ if (const auto *Op1 = dyn_cast<ConstantInt>(Operands[0])) {
+ if (const auto *Op2 = dyn_cast<ConstantInt>(Operands[1])) {
+ if (const auto *Op3 = dyn_cast<ConstantInt>(Operands[2])) {
+ switch (IntrinsicID) {
+ default: break;
+ case Intrinsic::smul_fix:
+ case Intrinsic::smul_fix_sat: {
+ // This code performs rounding towards negative infinity in case the
+ // result cannot be represented exactly for the given scale. Targets
+ // that do care about rounding should use a target hook for specifying
+ // how rounding should be done, and provide their own folding to be
+ // consistent with rounding. This is the same approach as used by
+ // DAGTypeLegalizer::ExpandIntRes_MULFIX.
+ const APInt &Lhs = Op1->getValue();
+ const APInt &Rhs = Op2->getValue();
+ unsigned Scale = Op3->getValue().getZExtValue();
+ unsigned Width = Lhs.getBitWidth();
+ assert(Scale < Width && "Illegal scale.");
+ unsigned ExtendedWidth = Width * 2;
+ APInt Product = (Lhs.sextOrSelf(ExtendedWidth) *
+ Rhs.sextOrSelf(ExtendedWidth)).ashr(Scale);
+ if (IntrinsicID == Intrinsic::smul_fix_sat) {
+ APInt MaxValue =
+ APInt::getSignedMaxValue(Width).sextOrSelf(ExtendedWidth);
+ APInt MinValue =
+ APInt::getSignedMinValue(Width).sextOrSelf(ExtendedWidth);
+ Product = APIntOps::smin(Product, MaxValue);
+ Product = APIntOps::smax(Product, MinValue);
+ }
+ return ConstantInt::get(Ty->getContext(),
+ Product.sextOrTrunc(Width));
+ }
+ }
+ }
+ }
+ }
+
+ if (IntrinsicID == Intrinsic::fshl || IntrinsicID == Intrinsic::fshr) {
+ const APInt *C0, *C1, *C2;
+ if (!getConstIntOrUndef(Operands[0], C0) ||
+ !getConstIntOrUndef(Operands[1], C1) ||
+ !getConstIntOrUndef(Operands[2], C2))
+ return nullptr;
+
+ bool IsRight = IntrinsicID == Intrinsic::fshr;
+ if (!C2)
+ return Operands[IsRight ? 1 : 0];
+ if (!C0 && !C1)
+ return UndefValue::get(Ty);
+
+ // The shift amount is interpreted as modulo the bitwidth. If the shift
+ // amount is effectively 0, avoid UB due to oversized inverse shift below.
+ unsigned BitWidth = C2->getBitWidth();
+ unsigned ShAmt = C2->urem(BitWidth);
+ if (!ShAmt)
+ return Operands[IsRight ? 1 : 0];
+
+ // (C0 << ShlAmt) | (C1 >> LshrAmt)
+ unsigned LshrAmt = IsRight ? ShAmt : BitWidth - ShAmt;
+ unsigned ShlAmt = !IsRight ? ShAmt : BitWidth - ShAmt;
+ if (!C0)
+ return ConstantInt::get(Ty, C1->lshr(LshrAmt));
+ if (!C1)
+ return ConstantInt::get(Ty, C0->shl(ShlAmt));
+ return ConstantInt::get(Ty, C0->shl(ShlAmt) | C1->lshr(LshrAmt));
+ }
+
+ return nullptr;
+}
+
+static Constant *ConstantFoldScalarCall(StringRef Name,
+ Intrinsic::ID IntrinsicID,
+ Type *Ty,
+ ArrayRef<Constant *> Operands,
+ const TargetLibraryInfo *TLI,
+ const CallBase *Call) {
+ if (Operands.size() == 1)
+ return ConstantFoldScalarCall1(Name, IntrinsicID, Ty, Operands, TLI, Call);
+
+ if (Operands.size() == 2)
+ return ConstantFoldScalarCall2(Name, IntrinsicID, Ty, Operands, TLI, Call);
+
+ if (Operands.size() == 3)
+ return ConstantFoldScalarCall3(Name, IntrinsicID, Ty, Operands, TLI, Call);
+
+ return nullptr;
+}
+
+static Constant *ConstantFoldVectorCall(StringRef Name,
+ Intrinsic::ID IntrinsicID,
+ VectorType *VTy,
+ ArrayRef<Constant *> Operands,
+ const DataLayout &DL,
+ const TargetLibraryInfo *TLI,
+ const CallBase *Call) {
+ // Do not iterate on scalable vector. The number of elements is unknown at
+ // compile-time.
+ if (isa<ScalableVectorType>(VTy))
+ return nullptr;
+
+ auto *FVTy = cast<FixedVectorType>(VTy);
+
+ SmallVector<Constant *, 4> Result(FVTy->getNumElements());
+ SmallVector<Constant *, 4> Lane(Operands.size());
+ Type *Ty = FVTy->getElementType();
+
+ if (IntrinsicID == Intrinsic::masked_load) {
+ auto *SrcPtr = Operands[0];
+ auto *Mask = Operands[2];
+ auto *Passthru = Operands[3];
+
+ Constant *VecData = ConstantFoldLoadFromConstPtr(SrcPtr, FVTy, DL);
+
+ SmallVector<Constant *, 32> NewElements;
+ for (unsigned I = 0, E = FVTy->getNumElements(); I != E; ++I) {
+ auto *MaskElt = Mask->getAggregateElement(I);
+ if (!MaskElt)
+ break;
+ auto *PassthruElt = Passthru->getAggregateElement(I);
+ auto *VecElt = VecData ? VecData->getAggregateElement(I) : nullptr;
+ if (isa<UndefValue>(MaskElt)) {
+ if (PassthruElt)
+ NewElements.push_back(PassthruElt);
+ else if (VecElt)
+ NewElements.push_back(VecElt);
+ else
+ return nullptr;
+ }
+ if (MaskElt->isNullValue()) {
+ if (!PassthruElt)
+ return nullptr;
+ NewElements.push_back(PassthruElt);
+ } else if (MaskElt->isOneValue()) {
+ if (!VecElt)
+ return nullptr;
+ NewElements.push_back(VecElt);
+ } else {
+ return nullptr;
+ }
+ }
+ if (NewElements.size() != FVTy->getNumElements())
+ return nullptr;
+ return ConstantVector::get(NewElements);
+ }
+
+ for (unsigned I = 0, E = FVTy->getNumElements(); I != E; ++I) {
+ // Gather a column of constants.
+ for (unsigned J = 0, JE = Operands.size(); J != JE; ++J) {
+ // Some intrinsics use a scalar type for certain arguments.
+ if (hasVectorInstrinsicScalarOpd(IntrinsicID, J)) {
+ Lane[J] = Operands[J];
+ continue;
+ }
+
+ Constant *Agg = Operands[J]->getAggregateElement(I);
+ if (!Agg)
+ return nullptr;
+
+ Lane[J] = Agg;
+ }
+
+ // Use the regular scalar folding to simplify this column.
+ Constant *Folded =
+ ConstantFoldScalarCall(Name, IntrinsicID, Ty, Lane, TLI, Call);
+ if (!Folded)
+ return nullptr;
+ Result[I] = Folded;
+ }
+
+ return ConstantVector::get(Result);
+}
+
+} // end anonymous namespace
+
+Constant *llvm::ConstantFoldCall(const CallBase *Call, Function *F,
+ ArrayRef<Constant *> Operands,
+ const TargetLibraryInfo *TLI) {
+ if (Call->isNoBuiltin())
+ return nullptr;
+ if (!F->hasName())
+ return nullptr;
+ StringRef Name = F->getName();
+
+ Type *Ty = F->getReturnType();
+
+ if (auto *VTy = dyn_cast<VectorType>(Ty))
+ return ConstantFoldVectorCall(Name, F->getIntrinsicID(), VTy, Operands,
+ F->getParent()->getDataLayout(), TLI, Call);
+
+ return ConstantFoldScalarCall(Name, F->getIntrinsicID(), Ty, Operands, TLI,
+ Call);
+}
+
+bool llvm::isMathLibCallNoop(const CallBase *Call,
+ const TargetLibraryInfo *TLI) {
+ // FIXME: Refactor this code; this duplicates logic in LibCallsShrinkWrap
+ // (and to some extent ConstantFoldScalarCall).
+ if (Call->isNoBuiltin() || Call->isStrictFP())
+ return false;
+ Function *F = Call->getCalledFunction();
+ if (!F)
+ return false;
+
+ LibFunc Func;
+ if (!TLI || !TLI->getLibFunc(*F, Func))
+ return false;
+
+ if (Call->getNumArgOperands() == 1) {
+ if (ConstantFP *OpC = dyn_cast<ConstantFP>(Call->getArgOperand(0))) {
+ const APFloat &Op = OpC->getValueAPF();
+ switch (Func) {
+ case LibFunc_logl:
+ case LibFunc_log:
+ case LibFunc_logf:
+ case LibFunc_log2l:
+ case LibFunc_log2:
+ case LibFunc_log2f:
+ case LibFunc_log10l:
+ case LibFunc_log10:
+ case LibFunc_log10f:
+ return Op.isNaN() || (!Op.isZero() && !Op.isNegative());
+
+ case LibFunc_expl:
+ case LibFunc_exp:
+ case LibFunc_expf:
+ // FIXME: These boundaries are slightly conservative.
+ if (OpC->getType()->isDoubleTy())
+ return !(Op < APFloat(-745.0) || Op > APFloat(709.0));
+ if (OpC->getType()->isFloatTy())
+ return !(Op < APFloat(-103.0f) || Op > APFloat(88.0f));
+ break;
+
+ case LibFunc_exp2l:
+ case LibFunc_exp2:
+ case LibFunc_exp2f:
+ // FIXME: These boundaries are slightly conservative.
+ if (OpC->getType()->isDoubleTy())
+ return !(Op < APFloat(-1074.0) || Op > APFloat(1023.0));
+ if (OpC->getType()->isFloatTy())
+ return !(Op < APFloat(-149.0f) || Op > APFloat(127.0f));
+ break;
+
+ case LibFunc_sinl:
+ case LibFunc_sin:
+ case LibFunc_sinf:
+ case LibFunc_cosl:
+ case LibFunc_cos:
+ case LibFunc_cosf:
+ return !Op.isInfinity();
+
+ case LibFunc_tanl:
+ case LibFunc_tan:
+ case LibFunc_tanf: {
+ // FIXME: Stop using the host math library.
+ // FIXME: The computation isn't done in the right precision.
+ Type *Ty = OpC->getType();
+ if (Ty->isDoubleTy() || Ty->isFloatTy() || Ty->isHalfTy()) {
+ double OpV = getValueAsDouble(OpC);
+ return ConstantFoldFP(tan, OpV, Ty) != nullptr;
+ }
+ break;
+ }
+
+ case LibFunc_asinl:
+ case LibFunc_asin:
+ case LibFunc_asinf:
+ case LibFunc_acosl:
+ case LibFunc_acos:
+ case LibFunc_acosf:
+ return !(Op < APFloat(Op.getSemantics(), "-1") ||
+ Op > APFloat(Op.getSemantics(), "1"));
+
+ case LibFunc_sinh:
+ case LibFunc_cosh:
+ case LibFunc_sinhf:
+ case LibFunc_coshf:
+ case LibFunc_sinhl:
+ case LibFunc_coshl:
+ // FIXME: These boundaries are slightly conservative.
+ if (OpC->getType()->isDoubleTy())
+ return !(Op < APFloat(-710.0) || Op > APFloat(710.0));
+ if (OpC->getType()->isFloatTy())
+ return !(Op < APFloat(-89.0f) || Op > APFloat(89.0f));
+ break;
+
+ case LibFunc_sqrtl:
+ case LibFunc_sqrt:
+ case LibFunc_sqrtf:
+ return Op.isNaN() || Op.isZero() || !Op.isNegative();
+
+ // FIXME: Add more functions: sqrt_finite, atanh, expm1, log1p,
+ // maybe others?
+ default:
+ break;
+ }
+ }
+ }
+
+ if (Call->getNumArgOperands() == 2) {
+ ConstantFP *Op0C = dyn_cast<ConstantFP>(Call->getArgOperand(0));
+ ConstantFP *Op1C = dyn_cast<ConstantFP>(Call->getArgOperand(1));
+ if (Op0C && Op1C) {
+ const APFloat &Op0 = Op0C->getValueAPF();
+ const APFloat &Op1 = Op1C->getValueAPF();
+
+ switch (Func) {
+ case LibFunc_powl:
+ case LibFunc_pow:
+ case LibFunc_powf: {
+ // FIXME: Stop using the host math library.
+ // FIXME: The computation isn't done in the right precision.
+ Type *Ty = Op0C->getType();
+ if (Ty->isDoubleTy() || Ty->isFloatTy() || Ty->isHalfTy()) {
+ if (Ty == Op1C->getType()) {
+ double Op0V = getValueAsDouble(Op0C);
+ double Op1V = getValueAsDouble(Op1C);
+ return ConstantFoldBinaryFP(pow, Op0V, Op1V, Ty) != nullptr;
+ }
+ }
+ break;
+ }
+
+ case LibFunc_fmodl:
+ case LibFunc_fmod:
+ case LibFunc_fmodf:
+ case LibFunc_remainderl:
+ case LibFunc_remainder:
+ case LibFunc_remainderf:
+ return Op0.isNaN() || Op1.isNaN() ||
+ (!Op0.isInfinity() && !Op1.isZero());
+
+ default:
+ break;
+ }
+ }
+ }
+
+ return false;
+}
+
+void TargetFolder::anchor() {}