aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm-project/llvm/lib/Analysis/DevelopmentModeInlineAdvisor.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm-project/llvm/lib/Analysis/DevelopmentModeInlineAdvisor.cpp')
-rw-r--r--contrib/llvm-project/llvm/lib/Analysis/DevelopmentModeInlineAdvisor.cpp421
1 files changed, 421 insertions, 0 deletions
diff --git a/contrib/llvm-project/llvm/lib/Analysis/DevelopmentModeInlineAdvisor.cpp b/contrib/llvm-project/llvm/lib/Analysis/DevelopmentModeInlineAdvisor.cpp
new file mode 100644
index 000000000000..7d51302bcc1a
--- /dev/null
+++ b/contrib/llvm-project/llvm/lib/Analysis/DevelopmentModeInlineAdvisor.cpp
@@ -0,0 +1,421 @@
+//===- DevelopmentModeInlineAdvisor.cpp - runtime-loadable model runner --===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements a model runner using TFLite, allowing the
+// loading of a model from a command line option.
+//
+//===----------------------------------------------------------------------===//
+#include "llvm/Analysis/TensorSpec.h"
+#include "llvm/Config/config.h"
+#if defined(LLVM_HAVE_TFLITE)
+
+#include "llvm/ADT/BitVector.h"
+#include "llvm/Analysis/CallGraph.h"
+#include "llvm/Analysis/InlineSizeEstimatorAnalysis.h"
+#include "llvm/Analysis/MLInlineAdvisor.h"
+#include "llvm/Analysis/ModelUnderTrainingRunner.h"
+#include "llvm/Analysis/NoInferenceModelRunner.h"
+#include "llvm/Analysis/Utils/TFUtils.h"
+#include "llvm/Analysis/Utils/TrainingLogger.h"
+#include "llvm/IR/LLVMContext.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/ManagedStatic.h"
+
+#include <vector>
+#include <optional>
+
+using namespace llvm;
+
+static cl::opt<std::string> TrainingLog(
+ "training-log", cl::Hidden,
+ cl::desc("Path where the development - mode inlining log is saved."));
+
+static cl::opt<std::string> TFModelUnderTrainingPath(
+ "ml-inliner-model-under-training", cl::Hidden,
+ cl::desc(R"(Path to SavedModel from the previous training iteration.
+The directory is also expected to contain a JSON specification of the
+outputs expected to be logged, where the first entry must be the
+inlining decision. The file containing the specification should be
+called output_spec.json. The expected JSON value is an array of
+dictionaries. Each dictionary should have 2 keys:
+
+- "tensor_spec, followed by the TensorSpec description of the
+output; and
+- "logging_name", a string indicating the name to use when
+logging the output values.
+
+Example:
+[
+ {
+ "logging_name" : "some_name",
+ "tensor_spec" : {
+ "name" : "model_name",
+ "port" : 0,
+ "shape" : [2, 3],
+ "type" : "float"
+ }
+ }
+]
+
+The first value must always correspond to the decision.)"));
+
+static cl::opt<std::string> TFOutputSpecOverride(
+ "ml-inliner-output-spec-override", cl::Hidden,
+ cl::desc("Override the path to the output spec json file. See "
+ "-ml-inliner-model-under-training documentation for the "
+ "specification of that file."));
+
+static cl::opt<std::string> TFFeedPrefix("ml-inliner-trained-model-feed-prefix",
+ cl::Hidden, cl::init("action_"),
+ cl::desc("Prefix for feature names."));
+
+namespace {
+/// An InlineEvent, used by TrainingLogger.
+struct InlineEvent {
+ /// What the default policy's decision would have been.
+ int64_t DefaultDecision = 0;
+
+ /// What we advised. When training off the default policy, this is the same as
+ /// DefaultDecision.
+ int64_t AdvisedDecision = 0;
+
+ /// What actually happened. This would be 'false' in the case of an inline
+ /// error, even if AdvisedDecision were true, otherwise it agrees with
+ /// AdvisedDecision.
+ bool Effect = false;
+
+ /// What the change in size was: size_after - size_before
+ int64_t Reward = 0;
+};
+
+/// Collect data we may use for training a model.
+class TrainingLogger final {
+public:
+ TrainingLogger(StringRef LogFileName, const ModelUnderTrainingRunner *MUTR);
+
+ /// Log one inlining event.
+ void logInlineEvent(const InlineEvent &Event,
+ const MLModelRunner &ModelRunner);
+
+private:
+ StringRef LogFileName;
+ const ModelUnderTrainingRunner *const MUTR;
+ std::unique_ptr<Logger> L;
+ BitVector Effects;
+ /// Set these 2 clearly OOB, to make sure we set them later.
+ size_t DefaultDecisionPos = std::numeric_limits<size_t>::max();
+ size_t DecisionPos = std::numeric_limits<size_t>::max();
+};
+
+/// An extension of the MLInlineAdvisor for the 'development' mode, targeting
+/// the offline training scenario. Note that training happens outside of the
+/// compiler, this facility is concerned with producing training data ("logs").
+/// This InlineAdvisor can operate in the following modes:
+///
+/// 1) collect logs for the default policy. This is useful for bootstrapping
+/// training, which will be considerably faster by starting from a reasonable
+/// policy.
+///
+/// 2) collect logs for the ML policy, using a model from a previous
+/// training. Potentially, that model uses internally some small random
+/// perturbation of its weights, to induce exploration (setting this up is the
+/// responsibility of the training algorithm). The logs would then be used to
+/// retrain and improve on this model.
+///
+/// 3) use the provided model, with no logging. This is useful for end to end
+/// validation - the model, in this case, is a release candidate and shouldn't
+/// have random perturbations. It is a convenience feature: rather than needing
+/// to take the release candidate model and compile it in 'release' mode,
+/// validate it, then potentially discard it, it's easier to just pass the model
+/// to the compiler, albeit compilation would be slower, as a one-off. Once the
+/// model behaves satisfactorily, it can be compiled AOT, for efficiency, in
+/// release mode. The expectation is that a well-trained model provides a good
+/// policy over a sufficiently diverse codebase, over many changes (i.e.
+/// training happens seldom).
+class DevelopmentModeMLInlineAdvisor : public MLInlineAdvisor {
+public:
+ DevelopmentModeMLInlineAdvisor(
+ Module &M, ModuleAnalysisManager &MAM,
+ std::unique_ptr<MLModelRunner> ModelRunner,
+ std::function<bool(CallBase &)> GetDefaultAdvice,
+ std::unique_ptr<TrainingLogger> Logger);
+
+ size_t getTotalSizeEstimate();
+
+ void updateNativeSizeEstimate(int64_t Change) {
+ *CurrentNativeSize += Change;
+ }
+ void resetNativeSize(Function *F) {
+ PreservedAnalyses PA = PreservedAnalyses::all();
+ PA.abandon<InlineSizeEstimatorAnalysis>();
+ FAM.invalidate(*F, PA);
+ }
+
+ std::unique_ptr<MLInlineAdvice>
+ getAdviceFromModel(CallBase &CB, OptimizationRemarkEmitter &ORE) override;
+
+ std::optional<size_t> getNativeSizeEstimate(const Function &F) const;
+
+private:
+ bool isLogging() const { return !!Logger; }
+ std::unique_ptr<MLInlineAdvice> getMandatoryAdviceImpl(CallBase &CB) override;
+
+ const bool IsDoingInference;
+ std::unique_ptr<TrainingLogger> Logger;
+
+ const std::optional<int32_t> InitialNativeSize;
+ std::optional<int32_t> CurrentNativeSize;
+};
+
+/// A variant of MLInlineAdvice that tracks all non-trivial inlining
+/// decisions, for training/logging.
+class LoggingMLInlineAdvice : public MLInlineAdvice {
+public:
+ LoggingMLInlineAdvice(DevelopmentModeMLInlineAdvisor *Advisor, CallBase &CB,
+ OptimizationRemarkEmitter &ORE, bool Recommendation,
+ TrainingLogger &Logger,
+ std::optional<size_t> CallerSizeEstimateBefore,
+ std::optional<size_t> CalleeSizeEstimateBefore,
+ bool DefaultDecision, bool Mandatory = false)
+ : MLInlineAdvice(Advisor, CB, ORE, Recommendation), Logger(Logger),
+ CallerSizeEstimateBefore(CallerSizeEstimateBefore),
+ CalleeSizeEstimateBefore(CalleeSizeEstimateBefore),
+ DefaultDecision(DefaultDecision), Mandatory(Mandatory) {}
+
+ virtual ~LoggingMLInlineAdvice() = default;
+
+private:
+ DevelopmentModeMLInlineAdvisor *getAdvisor() const {
+ return static_cast<DevelopmentModeMLInlineAdvisor *>(Advisor);
+ }
+ void recordInliningImpl() override {
+ MLInlineAdvice::recordInliningImpl();
+ getAdvisor()->resetNativeSize(Caller);
+ int Reward = std::numeric_limits<int>::max();
+ if (InlineSizeEstimatorAnalysis::isEvaluatorRequested() &&
+ !getAdvisor()->isForcedToStop()) {
+ int NativeSizeAfter = *getAdvisor()->getNativeSizeEstimate(*Caller) +
+ *CalleeSizeEstimateBefore;
+ Reward = NativeSizeAfter -
+ (*CallerSizeEstimateBefore + *CalleeSizeEstimateBefore);
+ getAdvisor()->updateNativeSizeEstimate(Reward);
+ }
+ log(Reward, /*Success=*/true);
+ }
+
+ void recordInliningWithCalleeDeletedImpl() override {
+ MLInlineAdvice::recordInliningWithCalleeDeletedImpl();
+ getAdvisor()->resetNativeSize(Caller);
+ if (InlineSizeEstimatorAnalysis::isEvaluatorRequested() &&
+ !getAdvisor()->isForcedToStop()) {
+ int NativeSizeAfter = *getAdvisor()->getNativeSizeEstimate(*Caller);
+ int Reward = NativeSizeAfter -
+ (*CallerSizeEstimateBefore + *CalleeSizeEstimateBefore);
+ getAdvisor()->updateNativeSizeEstimate(Reward);
+ log(Reward, /*Success=*/true);
+ } else {
+ log(NoReward, /*Success=*/true);
+ }
+ }
+
+ void recordUnsuccessfulInliningImpl(const InlineResult &Result) override {
+ MLInlineAdvice::recordUnsuccessfulInliningImpl(Result);
+ log(NoReward, /*Success=*/false);
+ }
+
+ void recordUnattemptedInliningImpl() override {
+ MLInlineAdvice::recordUnattemptedInliningImpl();
+ log(NoReward, /*Success=*/false);
+ }
+
+ void log(int64_t Reward, bool Success) {
+ if (Mandatory)
+ return;
+ InlineEvent Event;
+ Event.AdvisedDecision = isInliningRecommended();
+ Event.DefaultDecision = DefaultDecision;
+ Event.Effect = Success;
+ Event.Reward = Reward;
+ Logger.logInlineEvent(Event, getAdvisor()->getModelRunner());
+ }
+
+ static const int64_t NoReward = 0;
+ TrainingLogger &Logger;
+ const std::optional<size_t> CallerSizeEstimateBefore;
+ const std::optional<size_t> CalleeSizeEstimateBefore;
+ const int64_t DefaultDecision;
+ const int64_t Mandatory;
+};
+
+static const std::vector<TensorSpec> TrainingOnlyFeatures{
+ TensorSpec::createSpec<int64_t>(TFFeedPrefix + "inlining_default", {1}),
+ TensorSpec::createSpec<float>(TFFeedPrefix + "discount", {1}),
+ TensorSpec::createSpec<float>(TFFeedPrefix + "reward", {1}),
+ TensorSpec::createSpec<int32_t>(TFFeedPrefix + "step_type", {1})};
+
+static const std::vector<TensorSpec> getInputFeatures() {
+ std::vector<TensorSpec> InputSpecs;
+ for (size_t I = 0; I < NumberOfFeatures; ++I)
+ InputSpecs.push_back(TensorSpec::createSpec<int64_t>(
+ TFFeedPrefix + FeatureMap[I].name(), FeatureMap[I].shape()));
+ append_range(InputSpecs, TrainingOnlyFeatures);
+ return InputSpecs;
+}
+
+} // namespace
+
+TrainingLogger::TrainingLogger(StringRef LogFileName,
+ const ModelUnderTrainingRunner *MUTR)
+ : LogFileName(LogFileName), MUTR(MUTR) {
+ // The first output is the inlining decision.
+ std::vector<TensorSpec> FT(FeatureMap.begin(), FeatureMap.end());
+
+ if (MUTR)
+ append_range(FT, MUTR->extraOutputsForLoggingSpecs());
+
+ DefaultDecisionPos = FT.size();
+ FT.push_back(DefaultDecisionSpec);
+
+ DecisionPos = FT.size();
+ FT.push_back(InlineDecisionSpec);
+ std::error_code EC;
+ auto OS = std::make_unique<raw_fd_ostream>(TrainingLog, EC);
+ if (EC)
+ dbgs() << (EC.message() + ":" + TrainingLog);
+
+ L = std::make_unique<Logger>(
+ std::move(OS), FT, TensorSpec::createSpec<int64_t>(RewardName, {1}),
+ InlineSizeEstimatorAnalysis::isEvaluatorRequested());
+ L->switchContext("");
+}
+
+/// Log one inlining event.
+void TrainingLogger::logInlineEvent(const InlineEvent &Event,
+ const MLModelRunner &ModelRunner) {
+ L->startObservation();
+ size_t CurrentFeature = 0;
+ for (; CurrentFeature < NumberOfFeatures; ++CurrentFeature)
+ L->logTensorValue(CurrentFeature,
+ reinterpret_cast<const char *>(
+ ModelRunner.getTensorUntyped(CurrentFeature)));
+
+ if (MUTR)
+ for (size_t I = 0; I < MUTR->extraOutputsForLoggingSpecs().size(); ++I) {
+ const char *RawData =
+ reinterpret_cast<const char *>(MUTR->getUntypedExtraOutputValue(I));
+ L->logTensorValue(CurrentFeature, RawData);
+ ++CurrentFeature;
+ }
+
+ assert(CurrentFeature == DefaultDecisionPos);
+ L->logTensorValue(DefaultDecisionPos,
+ reinterpret_cast<const char *>(&Event.DefaultDecision));
+ L->logTensorValue(DecisionPos,
+ reinterpret_cast<const char *>(&Event.AdvisedDecision));
+ L->endObservation();
+ if (InlineSizeEstimatorAnalysis::isEvaluatorRequested())
+ L->logReward(Event.Reward);
+
+ // For debugging / later use
+ Effects.push_back(Event.Effect);
+}
+
+DevelopmentModeMLInlineAdvisor::DevelopmentModeMLInlineAdvisor(
+ Module &M, ModuleAnalysisManager &MAM,
+ std::unique_ptr<MLModelRunner> ModelRunner,
+ std::function<bool(CallBase &)> GetDefaultAdvice,
+ std::unique_ptr<TrainingLogger> Logger)
+ : MLInlineAdvisor(M, MAM, std::move(ModelRunner), GetDefaultAdvice),
+ IsDoingInference(isa<ModelUnderTrainingRunner>(getModelRunner())),
+ Logger(std::move(Logger)),
+ InitialNativeSize(isLogging() ? getTotalSizeEstimate() : 0),
+ CurrentNativeSize(InitialNativeSize) {
+ // We cannot have the case of neither inference nor logging.
+ assert(IsDoingInference || isLogging());
+}
+
+std::optional<size_t>
+DevelopmentModeMLInlineAdvisor::getNativeSizeEstimate(const Function &F) const {
+ if (!InlineSizeEstimatorAnalysis::isEvaluatorRequested())
+ return std::nullopt;
+ auto &R =
+ FAM.getResult<InlineSizeEstimatorAnalysis>(const_cast<Function &>(F));
+ if (!R) {
+ F.getParent()->getContext().emitError(
+ "Native size estimator is not present.");
+ return 0;
+ }
+ return *R;
+}
+
+std::unique_ptr<MLInlineAdvice>
+DevelopmentModeMLInlineAdvisor::getMandatoryAdviceImpl(CallBase &CB) {
+ return std::make_unique<LoggingMLInlineAdvice>(
+ /*Advisor=*/this,
+ /*CB=*/CB, /*ORE=*/getCallerORE(CB), /*Recommendation=*/true,
+ /*Logger=*/*Logger,
+ /*CallerSizeEstimateBefore=*/getNativeSizeEstimate(*CB.getCaller()),
+ /*CalleeSizeEstimateBefore=*/
+ getNativeSizeEstimate(*CB.getCalledFunction()),
+ /*DefaultDecision=*/true, /*Mandatory*/ true);
+}
+
+std::unique_ptr<MLInlineAdvice>
+DevelopmentModeMLInlineAdvisor::getAdviceFromModel(
+ CallBase &CB, OptimizationRemarkEmitter &ORE) {
+ if (IsDoingInference && !isLogging())
+ return MLInlineAdvisor::getAdviceFromModel(CB, ORE);
+
+ bool DefaultAdvice = GetDefaultAdvice(CB);
+ auto Recommendation =
+ IsDoingInference ? static_cast<bool>(ModelRunner->evaluate<int64_t>())
+ : DefaultAdvice;
+ return std::make_unique<LoggingMLInlineAdvice>(
+ /*Advisor=*/this,
+ /*CB=*/CB, /*ORE=*/ORE, /*Recommendation=*/Recommendation,
+ /*Logger=*/*Logger,
+ /*CallerSizeEstimateBefore=*/getNativeSizeEstimate(*CB.getCaller()),
+ /*CalleeSizeEstimateBefore=*/
+ getNativeSizeEstimate(*CB.getCalledFunction()),
+ /*DefaultDecision=*/DefaultAdvice);
+}
+
+size_t DevelopmentModeMLInlineAdvisor::getTotalSizeEstimate() {
+ if (!InlineSizeEstimatorAnalysis::isEvaluatorRequested())
+ return 0;
+ size_t Ret = 0;
+ for (auto &F : M) {
+ if (F.isDeclaration())
+ continue;
+ Ret += *getNativeSizeEstimate(F);
+ }
+ return Ret;
+}
+
+std::unique_ptr<InlineAdvisor> llvm::getDevelopmentModeAdvisor(
+ Module &M, ModuleAnalysisManager &MAM,
+ std::function<bool(CallBase &)> GetDefaultAdvice) {
+ auto &Ctx = M.getContext();
+ std::unique_ptr<MLModelRunner> Runner;
+ if (TFModelUnderTrainingPath.empty())
+ Runner.reset(new NoInferenceModelRunner(Ctx, getInputFeatures()));
+ else
+ Runner = ModelUnderTrainingRunner::createAndEnsureValid(
+ Ctx, TFModelUnderTrainingPath, DecisionName, getInputFeatures(),
+ TFOutputSpecOverride);
+ if (!Runner)
+ return nullptr;
+ std::unique_ptr<TrainingLogger> Logger;
+ if (!TrainingLog.empty())
+ Logger = std::make_unique<TrainingLogger>(
+ TrainingLog, dyn_cast<ModelUnderTrainingRunner>(Runner.get()));
+
+ return std::make_unique<DevelopmentModeMLInlineAdvisor>(
+ M, MAM, std::move(Runner), GetDefaultAdvice, std::move(Logger));
+}
+#endif // defined(LLVM_HAVE_TFLITE)