aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm-project/llvm/lib/Analysis/FunctionPropertiesAnalysis.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm-project/llvm/lib/Analysis/FunctionPropertiesAnalysis.cpp')
-rw-r--r--contrib/llvm-project/llvm/lib/Analysis/FunctionPropertiesAnalysis.cpp439
1 files changed, 439 insertions, 0 deletions
diff --git a/contrib/llvm-project/llvm/lib/Analysis/FunctionPropertiesAnalysis.cpp b/contrib/llvm-project/llvm/lib/Analysis/FunctionPropertiesAnalysis.cpp
new file mode 100644
index 000000000000..e27db66710a1
--- /dev/null
+++ b/contrib/llvm-project/llvm/lib/Analysis/FunctionPropertiesAnalysis.cpp
@@ -0,0 +1,439 @@
+//===- FunctionPropertiesAnalysis.cpp - Function Properties Analysis ------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines the FunctionPropertiesInfo and FunctionPropertiesAnalysis
+// classes used to extract function properties.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Analysis/FunctionPropertiesAnalysis.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/SetVector.h"
+#include "llvm/Analysis/LoopInfo.h"
+#include "llvm/IR/CFG.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/Dominators.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/Support/CommandLine.h"
+#include <deque>
+
+using namespace llvm;
+
+namespace llvm {
+cl::opt<bool> EnableDetailedFunctionProperties(
+ "enable-detailed-function-properties", cl::Hidden, cl::init(false),
+ cl::desc("Whether or not to compute detailed function properties."));
+
+cl::opt<unsigned> BigBasicBlockInstructionThreshold(
+ "big-basic-block-instruction-threshold", cl::Hidden, cl::init(500),
+ cl::desc("The minimum number of instructions a basic block should contain "
+ "before being considered big."));
+
+cl::opt<unsigned> MediumBasicBlockInstructionThreshold(
+ "medium-basic-block-instruction-threshold", cl::Hidden, cl::init(15),
+ cl::desc("The minimum number of instructions a basic block should contain "
+ "before being considered medium-sized."));
+}
+
+static cl::opt<unsigned> CallWithManyArgumentsThreshold(
+ "call-with-many-arguments-threshold", cl::Hidden, cl::init(4),
+ cl::desc("The minimum number of arguments a function call must have before "
+ "it is considered having many arguments."));
+
+namespace {
+int64_t getNrBlocksFromCond(const BasicBlock &BB) {
+ int64_t Ret = 0;
+ if (const auto *BI = dyn_cast<BranchInst>(BB.getTerminator())) {
+ if (BI->isConditional())
+ Ret += BI->getNumSuccessors();
+ } else if (const auto *SI = dyn_cast<SwitchInst>(BB.getTerminator())) {
+ Ret += (SI->getNumCases() + (nullptr != SI->getDefaultDest()));
+ }
+ return Ret;
+}
+
+int64_t getUses(const Function &F) {
+ return ((!F.hasLocalLinkage()) ? 1 : 0) + F.getNumUses();
+}
+} // namespace
+
+void FunctionPropertiesInfo::reIncludeBB(const BasicBlock &BB) {
+ updateForBB(BB, +1);
+}
+
+void FunctionPropertiesInfo::updateForBB(const BasicBlock &BB,
+ int64_t Direction) {
+ assert(Direction == 1 || Direction == -1);
+ BasicBlockCount += Direction;
+ BlocksReachedFromConditionalInstruction +=
+ (Direction * getNrBlocksFromCond(BB));
+ for (const auto &I : BB) {
+ if (auto *CS = dyn_cast<CallBase>(&I)) {
+ const auto *Callee = CS->getCalledFunction();
+ if (Callee && !Callee->isIntrinsic() && !Callee->isDeclaration())
+ DirectCallsToDefinedFunctions += Direction;
+ }
+ if (I.getOpcode() == Instruction::Load) {
+ LoadInstCount += Direction;
+ } else if (I.getOpcode() == Instruction::Store) {
+ StoreInstCount += Direction;
+ }
+ }
+ TotalInstructionCount += Direction * BB.sizeWithoutDebug();
+
+ if (EnableDetailedFunctionProperties) {
+ unsigned SuccessorCount = succ_size(&BB);
+ if (SuccessorCount == 1)
+ BasicBlocksWithSingleSuccessor += Direction;
+ else if (SuccessorCount == 2)
+ BasicBlocksWithTwoSuccessors += Direction;
+ else if (SuccessorCount > 2)
+ BasicBlocksWithMoreThanTwoSuccessors += Direction;
+
+ unsigned PredecessorCount = pred_size(&BB);
+ if (PredecessorCount == 1)
+ BasicBlocksWithSinglePredecessor += Direction;
+ else if (PredecessorCount == 2)
+ BasicBlocksWithTwoPredecessors += Direction;
+ else if (PredecessorCount > 2)
+ BasicBlocksWithMoreThanTwoPredecessors += Direction;
+
+ if (TotalInstructionCount > BigBasicBlockInstructionThreshold)
+ BigBasicBlocks += Direction;
+ else if (TotalInstructionCount > MediumBasicBlockInstructionThreshold)
+ MediumBasicBlocks += Direction;
+ else
+ SmallBasicBlocks += Direction;
+
+ // Calculate critical edges by looking through all successors of a basic
+ // block that has multiple successors and finding ones that have multiple
+ // predecessors, which represent critical edges.
+ if (SuccessorCount > 1) {
+ for (const auto *Successor : successors(&BB)) {
+ if (pred_size(Successor) > 1)
+ CriticalEdgeCount += Direction;
+ }
+ }
+
+ ControlFlowEdgeCount += Direction * SuccessorCount;
+
+ if (const auto *BI = dyn_cast<BranchInst>(BB.getTerminator())) {
+ if (!BI->isConditional())
+ UnconditionalBranchCount += Direction;
+ }
+
+ for (const Instruction &I : BB.instructionsWithoutDebug()) {
+ if (I.isCast())
+ CastInstructionCount += Direction;
+
+ if (I.getType()->isFloatTy())
+ FloatingPointInstructionCount += Direction;
+ else if (I.getType()->isIntegerTy())
+ IntegerInstructionCount += Direction;
+
+ if (isa<IntrinsicInst>(I))
+ ++IntrinsicCount;
+
+ if (const auto *Call = dyn_cast<CallInst>(&I)) {
+ if (Call->isIndirectCall())
+ IndirectCallCount += Direction;
+ else
+ DirectCallCount += Direction;
+
+ if (Call->getType()->isIntegerTy())
+ CallReturnsIntegerCount += Direction;
+ else if (Call->getType()->isFloatingPointTy())
+ CallReturnsFloatCount += Direction;
+ else if (Call->getType()->isPointerTy())
+ CallReturnsPointerCount += Direction;
+ else if (Call->getType()->isVectorTy()) {
+ if (Call->getType()->getScalarType()->isIntegerTy())
+ CallReturnsVectorIntCount += Direction;
+ else if (Call->getType()->getScalarType()->isFloatingPointTy())
+ CallReturnsVectorFloatCount += Direction;
+ else if (Call->getType()->getScalarType()->isPointerTy())
+ CallReturnsVectorPointerCount += Direction;
+ }
+
+ if (Call->arg_size() > CallWithManyArgumentsThreshold)
+ CallWithManyArgumentsCount += Direction;
+
+ for (const auto &Arg : Call->args()) {
+ if (Arg->getType()->isPointerTy()) {
+ CallWithPointerArgumentCount += Direction;
+ break;
+ }
+ }
+ }
+
+#define COUNT_OPERAND(OPTYPE) \
+ if (isa<OPTYPE>(Operand)) { \
+ OPTYPE##OperandCount += Direction; \
+ continue; \
+ }
+
+ for (unsigned int OperandIndex = 0; OperandIndex < I.getNumOperands();
+ ++OperandIndex) {
+ Value *Operand = I.getOperand(OperandIndex);
+ COUNT_OPERAND(GlobalValue)
+ COUNT_OPERAND(ConstantInt)
+ COUNT_OPERAND(ConstantFP)
+ COUNT_OPERAND(Constant)
+ COUNT_OPERAND(Instruction)
+ COUNT_OPERAND(BasicBlock)
+ COUNT_OPERAND(InlineAsm)
+ COUNT_OPERAND(Argument)
+
+ // We only get to this point if we haven't matched any of the other
+ // operand types.
+ UnknownOperandCount += Direction;
+ }
+
+#undef CHECK_OPERAND
+ }
+ }
+}
+
+void FunctionPropertiesInfo::updateAggregateStats(const Function &F,
+ const LoopInfo &LI) {
+
+ Uses = getUses(F);
+ TopLevelLoopCount = llvm::size(LI);
+ MaxLoopDepth = 0;
+ std::deque<const Loop *> Worklist;
+ llvm::append_range(Worklist, LI);
+ while (!Worklist.empty()) {
+ const auto *L = Worklist.front();
+ MaxLoopDepth =
+ std::max(MaxLoopDepth, static_cast<int64_t>(L->getLoopDepth()));
+ Worklist.pop_front();
+ llvm::append_range(Worklist, L->getSubLoops());
+ }
+}
+
+FunctionPropertiesInfo FunctionPropertiesInfo::getFunctionPropertiesInfo(
+ Function &F, FunctionAnalysisManager &FAM) {
+ return getFunctionPropertiesInfo(F, FAM.getResult<DominatorTreeAnalysis>(F),
+ FAM.getResult<LoopAnalysis>(F));
+}
+
+FunctionPropertiesInfo FunctionPropertiesInfo::getFunctionPropertiesInfo(
+ const Function &F, const DominatorTree &DT, const LoopInfo &LI) {
+
+ FunctionPropertiesInfo FPI;
+ for (const auto &BB : F)
+ if (DT.isReachableFromEntry(&BB))
+ FPI.reIncludeBB(BB);
+ FPI.updateAggregateStats(F, LI);
+ return FPI;
+}
+
+void FunctionPropertiesInfo::print(raw_ostream &OS) const {
+#define PRINT_PROPERTY(PROP_NAME) OS << #PROP_NAME ": " << PROP_NAME << "\n";
+
+ PRINT_PROPERTY(BasicBlockCount)
+ PRINT_PROPERTY(BlocksReachedFromConditionalInstruction)
+ PRINT_PROPERTY(Uses)
+ PRINT_PROPERTY(DirectCallsToDefinedFunctions)
+ PRINT_PROPERTY(LoadInstCount)
+ PRINT_PROPERTY(StoreInstCount)
+ PRINT_PROPERTY(MaxLoopDepth)
+ PRINT_PROPERTY(TopLevelLoopCount)
+ PRINT_PROPERTY(TotalInstructionCount)
+
+ if (EnableDetailedFunctionProperties) {
+ PRINT_PROPERTY(BasicBlocksWithSingleSuccessor)
+ PRINT_PROPERTY(BasicBlocksWithTwoSuccessors)
+ PRINT_PROPERTY(BasicBlocksWithMoreThanTwoSuccessors)
+ PRINT_PROPERTY(BasicBlocksWithSinglePredecessor)
+ PRINT_PROPERTY(BasicBlocksWithTwoPredecessors)
+ PRINT_PROPERTY(BasicBlocksWithMoreThanTwoPredecessors)
+ PRINT_PROPERTY(BigBasicBlocks)
+ PRINT_PROPERTY(MediumBasicBlocks)
+ PRINT_PROPERTY(SmallBasicBlocks)
+ PRINT_PROPERTY(CastInstructionCount)
+ PRINT_PROPERTY(FloatingPointInstructionCount)
+ PRINT_PROPERTY(IntegerInstructionCount)
+ PRINT_PROPERTY(ConstantIntOperandCount)
+ PRINT_PROPERTY(ConstantFPOperandCount)
+ PRINT_PROPERTY(ConstantOperandCount)
+ PRINT_PROPERTY(InstructionOperandCount)
+ PRINT_PROPERTY(BasicBlockOperandCount)
+ PRINT_PROPERTY(GlobalValueOperandCount)
+ PRINT_PROPERTY(InlineAsmOperandCount)
+ PRINT_PROPERTY(ArgumentOperandCount)
+ PRINT_PROPERTY(UnknownOperandCount)
+ PRINT_PROPERTY(CriticalEdgeCount)
+ PRINT_PROPERTY(ControlFlowEdgeCount)
+ PRINT_PROPERTY(UnconditionalBranchCount)
+ PRINT_PROPERTY(IntrinsicCount)
+ PRINT_PROPERTY(DirectCallCount)
+ PRINT_PROPERTY(IndirectCallCount)
+ PRINT_PROPERTY(CallReturnsIntegerCount)
+ PRINT_PROPERTY(CallReturnsFloatCount)
+ PRINT_PROPERTY(CallReturnsPointerCount)
+ PRINT_PROPERTY(CallReturnsVectorIntCount)
+ PRINT_PROPERTY(CallReturnsVectorFloatCount)
+ PRINT_PROPERTY(CallReturnsVectorPointerCount)
+ PRINT_PROPERTY(CallWithManyArgumentsCount)
+ PRINT_PROPERTY(CallWithPointerArgumentCount)
+ }
+
+#undef PRINT_PROPERTY
+
+ OS << "\n";
+}
+
+AnalysisKey FunctionPropertiesAnalysis::Key;
+
+FunctionPropertiesInfo
+FunctionPropertiesAnalysis::run(Function &F, FunctionAnalysisManager &FAM) {
+ return FunctionPropertiesInfo::getFunctionPropertiesInfo(F, FAM);
+}
+
+PreservedAnalyses
+FunctionPropertiesPrinterPass::run(Function &F, FunctionAnalysisManager &AM) {
+ OS << "Printing analysis results of CFA for function "
+ << "'" << F.getName() << "':"
+ << "\n";
+ AM.getResult<FunctionPropertiesAnalysis>(F).print(OS);
+ return PreservedAnalyses::all();
+}
+
+FunctionPropertiesUpdater::FunctionPropertiesUpdater(
+ FunctionPropertiesInfo &FPI, CallBase &CB)
+ : FPI(FPI), CallSiteBB(*CB.getParent()), Caller(*CallSiteBB.getParent()) {
+ assert(isa<CallInst>(CB) || isa<InvokeInst>(CB));
+ // For BBs that are likely to change, we subtract from feature totals their
+ // contribution. Some features, like max loop counts or depths, are left
+ // invalid, as they will be updated post-inlining.
+ SmallPtrSet<const BasicBlock *, 4> LikelyToChangeBBs;
+ // The CB BB will change - it'll either be split or the callee's body (single
+ // BB) will be pasted in.
+ LikelyToChangeBBs.insert(&CallSiteBB);
+
+ // The caller's entry BB may change due to new alloca instructions.
+ LikelyToChangeBBs.insert(&*Caller.begin());
+
+ // The successors may become unreachable in the case of `invoke` inlining.
+ // We track successors separately, too, because they form a boundary, together
+ // with the CB BB ('Entry') between which the inlined callee will be pasted.
+ Successors.insert(succ_begin(&CallSiteBB), succ_end(&CallSiteBB));
+
+ // Inlining only handles invoke and calls. If this is an invoke, and inlining
+ // it pulls another invoke, the original landing pad may get split, so as to
+ // share its content with other potential users. So the edge up to which we
+ // need to invalidate and then re-account BB data is the successors of the
+ // current landing pad. We can leave the current lp, too - if it doesn't get
+ // split, then it will be the place traversal stops. Either way, the
+ // discounted BBs will be checked if reachable and re-added.
+ if (const auto *II = dyn_cast<InvokeInst>(&CB)) {
+ const auto *UnwindDest = II->getUnwindDest();
+ Successors.insert(succ_begin(UnwindDest), succ_end(UnwindDest));
+ }
+
+ // Exclude the CallSiteBB, if it happens to be its own successor (1-BB loop).
+ // We are only interested in BBs the graph moves past the callsite BB to
+ // define the frontier past which we don't want to re-process BBs. Including
+ // the callsite BB in this case would prematurely stop the traversal in
+ // finish().
+ Successors.erase(&CallSiteBB);
+
+ for (const auto *BB : Successors)
+ LikelyToChangeBBs.insert(BB);
+
+ // Commit the change. While some of the BBs accounted for above may play dual
+ // role - e.g. caller's entry BB may be the same as the callsite BB - set
+ // insertion semantics make sure we account them once. This needs to be
+ // followed in `finish`, too.
+ for (const auto *BB : LikelyToChangeBBs)
+ FPI.updateForBB(*BB, -1);
+}
+
+void FunctionPropertiesUpdater::finish(FunctionAnalysisManager &FAM) const {
+ // Update feature values from the BBs that were copied from the callee, or
+ // might have been modified because of inlining. The latter have been
+ // subtracted in the FunctionPropertiesUpdater ctor.
+ // There could be successors that were reached before but now are only
+ // reachable from elsewhere in the CFG.
+ // One example is the following diamond CFG (lines are arrows pointing down):
+ // A
+ // / \
+ // B C
+ // | |
+ // | D
+ // | |
+ // | E
+ // \ /
+ // F
+ // There's a call site in C that is inlined. Upon doing that, it turns out
+ // it expands to
+ // call void @llvm.trap()
+ // unreachable
+ // F isn't reachable from C anymore, but we did discount it when we set up
+ // FunctionPropertiesUpdater, so we need to re-include it here.
+ // At the same time, D and E were reachable before, but now are not anymore,
+ // so we need to leave D out (we discounted it at setup), and explicitly
+ // remove E.
+ SetVector<const BasicBlock *> Reinclude;
+ SetVector<const BasicBlock *> Unreachable;
+ const auto &DT =
+ FAM.getResult<DominatorTreeAnalysis>(const_cast<Function &>(Caller));
+
+ if (&CallSiteBB != &*Caller.begin())
+ Reinclude.insert(&*Caller.begin());
+
+ // Distribute the successors to the 2 buckets.
+ for (const auto *Succ : Successors)
+ if (DT.isReachableFromEntry(Succ))
+ Reinclude.insert(Succ);
+ else
+ Unreachable.insert(Succ);
+
+ // For reinclusion, we want to stop at the reachable successors, who are at
+ // the beginning of the worklist; but, starting from the callsite bb and
+ // ending at those successors, we also want to perform a traversal.
+ // IncludeSuccessorsMark is the index after which we include successors.
+ const auto IncludeSuccessorsMark = Reinclude.size();
+ bool CSInsertion = Reinclude.insert(&CallSiteBB);
+ (void)CSInsertion;
+ assert(CSInsertion);
+ for (size_t I = 0; I < Reinclude.size(); ++I) {
+ const auto *BB = Reinclude[I];
+ FPI.reIncludeBB(*BB);
+ if (I >= IncludeSuccessorsMark)
+ Reinclude.insert(succ_begin(BB), succ_end(BB));
+ }
+
+ // For exclusion, we don't need to exclude the set of BBs that were successors
+ // before and are now unreachable, because we already did that at setup. For
+ // the rest, as long as a successor is unreachable, we want to explicitly
+ // exclude it.
+ const auto AlreadyExcludedMark = Unreachable.size();
+ for (size_t I = 0; I < Unreachable.size(); ++I) {
+ const auto *U = Unreachable[I];
+ if (I >= AlreadyExcludedMark)
+ FPI.updateForBB(*U, -1);
+ for (const auto *Succ : successors(U))
+ if (!DT.isReachableFromEntry(Succ))
+ Unreachable.insert(Succ);
+ }
+
+ const auto &LI = FAM.getResult<LoopAnalysis>(const_cast<Function &>(Caller));
+ FPI.updateAggregateStats(Caller, LI);
+}
+
+bool FunctionPropertiesUpdater::isUpdateValid(Function &F,
+ const FunctionPropertiesInfo &FPI,
+ FunctionAnalysisManager &FAM) {
+ DominatorTree DT(F);
+ LoopInfo LI(DT);
+ auto Fresh = FunctionPropertiesInfo::getFunctionPropertiesInfo(F, DT, LI);
+ return FPI == Fresh;
+}