diff options
Diffstat (limited to 'contrib/llvm-project/llvm/lib/Analysis/VectorUtils.cpp')
| -rw-r--r-- | contrib/llvm-project/llvm/lib/Analysis/VectorUtils.cpp | 1522 | 
1 files changed, 1522 insertions, 0 deletions
diff --git a/contrib/llvm-project/llvm/lib/Analysis/VectorUtils.cpp b/contrib/llvm-project/llvm/lib/Analysis/VectorUtils.cpp new file mode 100644 index 000000000000..91d8c31fa062 --- /dev/null +++ b/contrib/llvm-project/llvm/lib/Analysis/VectorUtils.cpp @@ -0,0 +1,1522 @@ +//===----------- VectorUtils.cpp - Vectorizer utility functions -----------===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// This file defines vectorizer utilities. +// +//===----------------------------------------------------------------------===// + +#include "llvm/Analysis/VectorUtils.h" +#include "llvm/ADT/EquivalenceClasses.h" +#include "llvm/Analysis/DemandedBits.h" +#include "llvm/Analysis/LoopInfo.h" +#include "llvm/Analysis/LoopIterator.h" +#include "llvm/Analysis/ScalarEvolution.h" +#include "llvm/Analysis/ScalarEvolutionExpressions.h" +#include "llvm/Analysis/TargetTransformInfo.h" +#include "llvm/Analysis/ValueTracking.h" +#include "llvm/IR/Constants.h" +#include "llvm/IR/IRBuilder.h" +#include "llvm/IR/PatternMatch.h" +#include "llvm/IR/Value.h" +#include "llvm/Support/CommandLine.h" + +#define DEBUG_TYPE "vectorutils" + +using namespace llvm; +using namespace llvm::PatternMatch; + +/// Maximum factor for an interleaved memory access. +static cl::opt<unsigned> MaxInterleaveGroupFactor( +    "max-interleave-group-factor", cl::Hidden, +    cl::desc("Maximum factor for an interleaved access group (default = 8)"), +    cl::init(8)); + +/// Return true if all of the intrinsic's arguments and return type are scalars +/// for the scalar form of the intrinsic, and vectors for the vector form of the +/// intrinsic (except operands that are marked as always being scalar by +/// isVectorIntrinsicWithScalarOpAtArg). +bool llvm::isTriviallyVectorizable(Intrinsic::ID ID) { +  switch (ID) { +  case Intrinsic::abs:   // Begin integer bit-manipulation. +  case Intrinsic::bswap: +  case Intrinsic::bitreverse: +  case Intrinsic::ctpop: +  case Intrinsic::ctlz: +  case Intrinsic::cttz: +  case Intrinsic::fshl: +  case Intrinsic::fshr: +  case Intrinsic::smax: +  case Intrinsic::smin: +  case Intrinsic::umax: +  case Intrinsic::umin: +  case Intrinsic::sadd_sat: +  case Intrinsic::ssub_sat: +  case Intrinsic::uadd_sat: +  case Intrinsic::usub_sat: +  case Intrinsic::smul_fix: +  case Intrinsic::smul_fix_sat: +  case Intrinsic::umul_fix: +  case Intrinsic::umul_fix_sat: +  case Intrinsic::sqrt: // Begin floating-point. +  case Intrinsic::sin: +  case Intrinsic::cos: +  case Intrinsic::exp: +  case Intrinsic::exp2: +  case Intrinsic::log: +  case Intrinsic::log10: +  case Intrinsic::log2: +  case Intrinsic::fabs: +  case Intrinsic::minnum: +  case Intrinsic::maxnum: +  case Intrinsic::minimum: +  case Intrinsic::maximum: +  case Intrinsic::copysign: +  case Intrinsic::floor: +  case Intrinsic::ceil: +  case Intrinsic::trunc: +  case Intrinsic::rint: +  case Intrinsic::nearbyint: +  case Intrinsic::round: +  case Intrinsic::roundeven: +  case Intrinsic::pow: +  case Intrinsic::fma: +  case Intrinsic::fmuladd: +  case Intrinsic::is_fpclass: +  case Intrinsic::powi: +  case Intrinsic::canonicalize: +  case Intrinsic::fptosi_sat: +  case Intrinsic::fptoui_sat: +  case Intrinsic::lrint: +  case Intrinsic::llrint: +    return true; +  default: +    return false; +  } +} + +/// Identifies if the vector form of the intrinsic has a scalar operand. +bool llvm::isVectorIntrinsicWithScalarOpAtArg(Intrinsic::ID ID, +                                              unsigned ScalarOpdIdx) { +  switch (ID) { +  case Intrinsic::abs: +  case Intrinsic::ctlz: +  case Intrinsic::cttz: +  case Intrinsic::is_fpclass: +  case Intrinsic::powi: +    return (ScalarOpdIdx == 1); +  case Intrinsic::smul_fix: +  case Intrinsic::smul_fix_sat: +  case Intrinsic::umul_fix: +  case Intrinsic::umul_fix_sat: +    return (ScalarOpdIdx == 2); +  default: +    return false; +  } +} + +bool llvm::isVectorIntrinsicWithOverloadTypeAtArg(Intrinsic::ID ID, +                                                  int OpdIdx) { +  switch (ID) { +  case Intrinsic::fptosi_sat: +  case Intrinsic::fptoui_sat: +  case Intrinsic::lrint: +  case Intrinsic::llrint: +    return OpdIdx == -1 || OpdIdx == 0; +  case Intrinsic::is_fpclass: +    return OpdIdx == 0; +  case Intrinsic::powi: +    return OpdIdx == -1 || OpdIdx == 1; +  default: +    return OpdIdx == -1; +  } +} + +/// Returns intrinsic ID for call. +/// For the input call instruction it finds mapping intrinsic and returns +/// its ID, in case it does not found it return not_intrinsic. +Intrinsic::ID llvm::getVectorIntrinsicIDForCall(const CallInst *CI, +                                                const TargetLibraryInfo *TLI) { +  Intrinsic::ID ID = getIntrinsicForCallSite(*CI, TLI); +  if (ID == Intrinsic::not_intrinsic) +    return Intrinsic::not_intrinsic; + +  if (isTriviallyVectorizable(ID) || ID == Intrinsic::lifetime_start || +      ID == Intrinsic::lifetime_end || ID == Intrinsic::assume || +      ID == Intrinsic::experimental_noalias_scope_decl || +      ID == Intrinsic::sideeffect || ID == Intrinsic::pseudoprobe) +    return ID; +  return Intrinsic::not_intrinsic; +} + +/// Given a vector and an element number, see if the scalar value is +/// already around as a register, for example if it were inserted then extracted +/// from the vector. +Value *llvm::findScalarElement(Value *V, unsigned EltNo) { +  assert(V->getType()->isVectorTy() && "Not looking at a vector?"); +  VectorType *VTy = cast<VectorType>(V->getType()); +  // For fixed-length vector, return undef for out of range access. +  if (auto *FVTy = dyn_cast<FixedVectorType>(VTy)) { +    unsigned Width = FVTy->getNumElements(); +    if (EltNo >= Width) +      return UndefValue::get(FVTy->getElementType()); +  } + +  if (Constant *C = dyn_cast<Constant>(V)) +    return C->getAggregateElement(EltNo); + +  if (InsertElementInst *III = dyn_cast<InsertElementInst>(V)) { +    // If this is an insert to a variable element, we don't know what it is. +    if (!isa<ConstantInt>(III->getOperand(2))) +      return nullptr; +    unsigned IIElt = cast<ConstantInt>(III->getOperand(2))->getZExtValue(); + +    // If this is an insert to the element we are looking for, return the +    // inserted value. +    if (EltNo == IIElt) +      return III->getOperand(1); + +    // Guard against infinite loop on malformed, unreachable IR. +    if (III == III->getOperand(0)) +      return nullptr; + +    // Otherwise, the insertelement doesn't modify the value, recurse on its +    // vector input. +    return findScalarElement(III->getOperand(0), EltNo); +  } + +  ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(V); +  // Restrict the following transformation to fixed-length vector. +  if (SVI && isa<FixedVectorType>(SVI->getType())) { +    unsigned LHSWidth = +        cast<FixedVectorType>(SVI->getOperand(0)->getType())->getNumElements(); +    int InEl = SVI->getMaskValue(EltNo); +    if (InEl < 0) +      return UndefValue::get(VTy->getElementType()); +    if (InEl < (int)LHSWidth) +      return findScalarElement(SVI->getOperand(0), InEl); +    return findScalarElement(SVI->getOperand(1), InEl - LHSWidth); +  } + +  // Extract a value from a vector add operation with a constant zero. +  // TODO: Use getBinOpIdentity() to generalize this. +  Value *Val; Constant *C; +  if (match(V, m_Add(m_Value(Val), m_Constant(C)))) +    if (Constant *Elt = C->getAggregateElement(EltNo)) +      if (Elt->isNullValue()) +        return findScalarElement(Val, EltNo); + +  // If the vector is a splat then we can trivially find the scalar element. +  if (isa<ScalableVectorType>(VTy)) +    if (Value *Splat = getSplatValue(V)) +      if (EltNo < VTy->getElementCount().getKnownMinValue()) +        return Splat; + +  // Otherwise, we don't know. +  return nullptr; +} + +int llvm::getSplatIndex(ArrayRef<int> Mask) { +  int SplatIndex = -1; +  for (int M : Mask) { +    // Ignore invalid (undefined) mask elements. +    if (M < 0) +      continue; + +    // There can be only 1 non-negative mask element value if this is a splat. +    if (SplatIndex != -1 && SplatIndex != M) +      return -1; + +    // Initialize the splat index to the 1st non-negative mask element. +    SplatIndex = M; +  } +  assert((SplatIndex == -1 || SplatIndex >= 0) && "Negative index?"); +  return SplatIndex; +} + +/// Get splat value if the input is a splat vector or return nullptr. +/// This function is not fully general. It checks only 2 cases: +/// the input value is (1) a splat constant vector or (2) a sequence +/// of instructions that broadcasts a scalar at element 0. +Value *llvm::getSplatValue(const Value *V) { +  if (isa<VectorType>(V->getType())) +    if (auto *C = dyn_cast<Constant>(V)) +      return C->getSplatValue(); + +  // shuf (inselt ?, Splat, 0), ?, <0, undef, 0, ...> +  Value *Splat; +  if (match(V, +            m_Shuffle(m_InsertElt(m_Value(), m_Value(Splat), m_ZeroInt()), +                      m_Value(), m_ZeroMask()))) +    return Splat; + +  return nullptr; +} + +bool llvm::isSplatValue(const Value *V, int Index, unsigned Depth) { +  assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth"); + +  if (isa<VectorType>(V->getType())) { +    if (isa<UndefValue>(V)) +      return true; +    // FIXME: We can allow undefs, but if Index was specified, we may want to +    //        check that the constant is defined at that index. +    if (auto *C = dyn_cast<Constant>(V)) +      return C->getSplatValue() != nullptr; +  } + +  if (auto *Shuf = dyn_cast<ShuffleVectorInst>(V)) { +    // FIXME: We can safely allow undefs here. If Index was specified, we will +    //        check that the mask elt is defined at the required index. +    if (!all_equal(Shuf->getShuffleMask())) +      return false; + +    // Match any index. +    if (Index == -1) +      return true; + +    // Match a specific element. The mask should be defined at and match the +    // specified index. +    return Shuf->getMaskValue(Index) == Index; +  } + +  // The remaining tests are all recursive, so bail out if we hit the limit. +  if (Depth++ == MaxAnalysisRecursionDepth) +    return false; + +  // If both operands of a binop are splats, the result is a splat. +  Value *X, *Y, *Z; +  if (match(V, m_BinOp(m_Value(X), m_Value(Y)))) +    return isSplatValue(X, Index, Depth) && isSplatValue(Y, Index, Depth); + +  // If all operands of a select are splats, the result is a splat. +  if (match(V, m_Select(m_Value(X), m_Value(Y), m_Value(Z)))) +    return isSplatValue(X, Index, Depth) && isSplatValue(Y, Index, Depth) && +           isSplatValue(Z, Index, Depth); + +  // TODO: Add support for unary ops (fneg), casts, intrinsics (overflow ops). + +  return false; +} + +bool llvm::getShuffleDemandedElts(int SrcWidth, ArrayRef<int> Mask, +                                  const APInt &DemandedElts, APInt &DemandedLHS, +                                  APInt &DemandedRHS, bool AllowUndefElts) { +  DemandedLHS = DemandedRHS = APInt::getZero(SrcWidth); + +  // Early out if we don't demand any elements. +  if (DemandedElts.isZero()) +    return true; + +  // Simple case of a shuffle with zeroinitializer. +  if (all_of(Mask, [](int Elt) { return Elt == 0; })) { +    DemandedLHS.setBit(0); +    return true; +  } + +  for (unsigned I = 0, E = Mask.size(); I != E; ++I) { +    int M = Mask[I]; +    assert((-1 <= M) && (M < (SrcWidth * 2)) && +           "Invalid shuffle mask constant"); + +    if (!DemandedElts[I] || (AllowUndefElts && (M < 0))) +      continue; + +    // For undef elements, we don't know anything about the common state of +    // the shuffle result. +    if (M < 0) +      return false; + +    if (M < SrcWidth) +      DemandedLHS.setBit(M); +    else +      DemandedRHS.setBit(M - SrcWidth); +  } + +  return true; +} + +void llvm::narrowShuffleMaskElts(int Scale, ArrayRef<int> Mask, +                                 SmallVectorImpl<int> &ScaledMask) { +  assert(Scale > 0 && "Unexpected scaling factor"); + +  // Fast-path: if no scaling, then it is just a copy. +  if (Scale == 1) { +    ScaledMask.assign(Mask.begin(), Mask.end()); +    return; +  } + +  ScaledMask.clear(); +  for (int MaskElt : Mask) { +    if (MaskElt >= 0) { +      assert(((uint64_t)Scale * MaskElt + (Scale - 1)) <= INT32_MAX && +             "Overflowed 32-bits"); +    } +    for (int SliceElt = 0; SliceElt != Scale; ++SliceElt) +      ScaledMask.push_back(MaskElt < 0 ? MaskElt : Scale * MaskElt + SliceElt); +  } +} + +bool llvm::widenShuffleMaskElts(int Scale, ArrayRef<int> Mask, +                                SmallVectorImpl<int> &ScaledMask) { +  assert(Scale > 0 && "Unexpected scaling factor"); + +  // Fast-path: if no scaling, then it is just a copy. +  if (Scale == 1) { +    ScaledMask.assign(Mask.begin(), Mask.end()); +    return true; +  } + +  // We must map the original elements down evenly to a type with less elements. +  int NumElts = Mask.size(); +  if (NumElts % Scale != 0) +    return false; + +  ScaledMask.clear(); +  ScaledMask.reserve(NumElts / Scale); + +  // Step through the input mask by splitting into Scale-sized slices. +  do { +    ArrayRef<int> MaskSlice = Mask.take_front(Scale); +    assert((int)MaskSlice.size() == Scale && "Expected Scale-sized slice."); + +    // The first element of the slice determines how we evaluate this slice. +    int SliceFront = MaskSlice.front(); +    if (SliceFront < 0) { +      // Negative values (undef or other "sentinel" values) must be equal across +      // the entire slice. +      if (!all_equal(MaskSlice)) +        return false; +      ScaledMask.push_back(SliceFront); +    } else { +      // A positive mask element must be cleanly divisible. +      if (SliceFront % Scale != 0) +        return false; +      // Elements of the slice must be consecutive. +      for (int i = 1; i < Scale; ++i) +        if (MaskSlice[i] != SliceFront + i) +          return false; +      ScaledMask.push_back(SliceFront / Scale); +    } +    Mask = Mask.drop_front(Scale); +  } while (!Mask.empty()); + +  assert((int)ScaledMask.size() * Scale == NumElts && "Unexpected scaled mask"); + +  // All elements of the original mask can be scaled down to map to the elements +  // of a mask with wider elements. +  return true; +} + +void llvm::getShuffleMaskWithWidestElts(ArrayRef<int> Mask, +                                        SmallVectorImpl<int> &ScaledMask) { +  std::array<SmallVector<int, 16>, 2> TmpMasks; +  SmallVectorImpl<int> *Output = &TmpMasks[0], *Tmp = &TmpMasks[1]; +  ArrayRef<int> InputMask = Mask; +  for (unsigned Scale = 2; Scale <= InputMask.size(); ++Scale) { +    while (widenShuffleMaskElts(Scale, InputMask, *Output)) { +      InputMask = *Output; +      std::swap(Output, Tmp); +    } +  } +  ScaledMask.assign(InputMask.begin(), InputMask.end()); +} + +void llvm::processShuffleMasks( +    ArrayRef<int> Mask, unsigned NumOfSrcRegs, unsigned NumOfDestRegs, +    unsigned NumOfUsedRegs, function_ref<void()> NoInputAction, +    function_ref<void(ArrayRef<int>, unsigned, unsigned)> SingleInputAction, +    function_ref<void(ArrayRef<int>, unsigned, unsigned)> ManyInputsAction) { +  SmallVector<SmallVector<SmallVector<int>>> Res(NumOfDestRegs); +  // Try to perform better estimation of the permutation. +  // 1. Split the source/destination vectors into real registers. +  // 2. Do the mask analysis to identify which real registers are +  // permuted. +  int Sz = Mask.size(); +  unsigned SzDest = Sz / NumOfDestRegs; +  unsigned SzSrc = Sz / NumOfSrcRegs; +  for (unsigned I = 0; I < NumOfDestRegs; ++I) { +    auto &RegMasks = Res[I]; +    RegMasks.assign(NumOfSrcRegs, {}); +    // Check that the values in dest registers are in the one src +    // register. +    for (unsigned K = 0; K < SzDest; ++K) { +      int Idx = I * SzDest + K; +      if (Idx == Sz) +        break; +      if (Mask[Idx] >= Sz || Mask[Idx] == PoisonMaskElem) +        continue; +      int SrcRegIdx = Mask[Idx] / SzSrc; +      // Add a cost of PermuteTwoSrc for each new source register permute, +      // if we have more than one source registers. +      if (RegMasks[SrcRegIdx].empty()) +        RegMasks[SrcRegIdx].assign(SzDest, PoisonMaskElem); +      RegMasks[SrcRegIdx][K] = Mask[Idx] % SzSrc; +    } +  } +  // Process split mask. +  for (unsigned I = 0; I < NumOfUsedRegs; ++I) { +    auto &Dest = Res[I]; +    int NumSrcRegs = +        count_if(Dest, [](ArrayRef<int> Mask) { return !Mask.empty(); }); +    switch (NumSrcRegs) { +    case 0: +      // No input vectors were used! +      NoInputAction(); +      break; +    case 1: { +      // Find the only mask with at least single undef mask elem. +      auto *It = +          find_if(Dest, [](ArrayRef<int> Mask) { return !Mask.empty(); }); +      unsigned SrcReg = std::distance(Dest.begin(), It); +      SingleInputAction(*It, SrcReg, I); +      break; +    } +    default: { +      // The first mask is a permutation of a single register. Since we have >2 +      // input registers to shuffle, we merge the masks for 2 first registers +      // and generate a shuffle of 2 registers rather than the reordering of the +      // first register and then shuffle with the second register. Next, +      // generate the shuffles of the resulting register + the remaining +      // registers from the list. +      auto &&CombineMasks = [](MutableArrayRef<int> FirstMask, +                               ArrayRef<int> SecondMask) { +        for (int Idx = 0, VF = FirstMask.size(); Idx < VF; ++Idx) { +          if (SecondMask[Idx] != PoisonMaskElem) { +            assert(FirstMask[Idx] == PoisonMaskElem && +                   "Expected undefined mask element."); +            FirstMask[Idx] = SecondMask[Idx] + VF; +          } +        } +      }; +      auto &&NormalizeMask = [](MutableArrayRef<int> Mask) { +        for (int Idx = 0, VF = Mask.size(); Idx < VF; ++Idx) { +          if (Mask[Idx] != PoisonMaskElem) +            Mask[Idx] = Idx; +        } +      }; +      int SecondIdx; +      do { +        int FirstIdx = -1; +        SecondIdx = -1; +        MutableArrayRef<int> FirstMask, SecondMask; +        for (unsigned I = 0; I < NumOfDestRegs; ++I) { +          SmallVectorImpl<int> &RegMask = Dest[I]; +          if (RegMask.empty()) +            continue; + +          if (FirstIdx == SecondIdx) { +            FirstIdx = I; +            FirstMask = RegMask; +            continue; +          } +          SecondIdx = I; +          SecondMask = RegMask; +          CombineMasks(FirstMask, SecondMask); +          ManyInputsAction(FirstMask, FirstIdx, SecondIdx); +          NormalizeMask(FirstMask); +          RegMask.clear(); +          SecondMask = FirstMask; +          SecondIdx = FirstIdx; +        } +        if (FirstIdx != SecondIdx && SecondIdx >= 0) { +          CombineMasks(SecondMask, FirstMask); +          ManyInputsAction(SecondMask, SecondIdx, FirstIdx); +          Dest[FirstIdx].clear(); +          NormalizeMask(SecondMask); +        } +      } while (SecondIdx >= 0); +      break; +    } +    } +  } +} + +MapVector<Instruction *, uint64_t> +llvm::computeMinimumValueSizes(ArrayRef<BasicBlock *> Blocks, DemandedBits &DB, +                               const TargetTransformInfo *TTI) { + +  // DemandedBits will give us every value's live-out bits. But we want +  // to ensure no extra casts would need to be inserted, so every DAG +  // of connected values must have the same minimum bitwidth. +  EquivalenceClasses<Value *> ECs; +  SmallVector<Value *, 16> Worklist; +  SmallPtrSet<Value *, 4> Roots; +  SmallPtrSet<Value *, 16> Visited; +  DenseMap<Value *, uint64_t> DBits; +  SmallPtrSet<Instruction *, 4> InstructionSet; +  MapVector<Instruction *, uint64_t> MinBWs; + +  // Determine the roots. We work bottom-up, from truncs or icmps. +  bool SeenExtFromIllegalType = false; +  for (auto *BB : Blocks) +    for (auto &I : *BB) { +      InstructionSet.insert(&I); + +      if (TTI && (isa<ZExtInst>(&I) || isa<SExtInst>(&I)) && +          !TTI->isTypeLegal(I.getOperand(0)->getType())) +        SeenExtFromIllegalType = true; + +      // Only deal with non-vector integers up to 64-bits wide. +      if ((isa<TruncInst>(&I) || isa<ICmpInst>(&I)) && +          !I.getType()->isVectorTy() && +          I.getOperand(0)->getType()->getScalarSizeInBits() <= 64) { +        // Don't make work for ourselves. If we know the loaded type is legal, +        // don't add it to the worklist. +        if (TTI && isa<TruncInst>(&I) && TTI->isTypeLegal(I.getType())) +          continue; + +        Worklist.push_back(&I); +        Roots.insert(&I); +      } +    } +  // Early exit. +  if (Worklist.empty() || (TTI && !SeenExtFromIllegalType)) +    return MinBWs; + +  // Now proceed breadth-first, unioning values together. +  while (!Worklist.empty()) { +    Value *Val = Worklist.pop_back_val(); +    Value *Leader = ECs.getOrInsertLeaderValue(Val); + +    if (!Visited.insert(Val).second) +      continue; + +    // Non-instructions terminate a chain successfully. +    if (!isa<Instruction>(Val)) +      continue; +    Instruction *I = cast<Instruction>(Val); + +    // If we encounter a type that is larger than 64 bits, we can't represent +    // it so bail out. +    if (DB.getDemandedBits(I).getBitWidth() > 64) +      return MapVector<Instruction *, uint64_t>(); + +    uint64_t V = DB.getDemandedBits(I).getZExtValue(); +    DBits[Leader] |= V; +    DBits[I] = V; + +    // Casts, loads and instructions outside of our range terminate a chain +    // successfully. +    if (isa<SExtInst>(I) || isa<ZExtInst>(I) || isa<LoadInst>(I) || +        !InstructionSet.count(I)) +      continue; + +    // Unsafe casts terminate a chain unsuccessfully. We can't do anything +    // useful with bitcasts, ptrtoints or inttoptrs and it'd be unsafe to +    // transform anything that relies on them. +    if (isa<BitCastInst>(I) || isa<PtrToIntInst>(I) || isa<IntToPtrInst>(I) || +        !I->getType()->isIntegerTy()) { +      DBits[Leader] |= ~0ULL; +      continue; +    } + +    // We don't modify the types of PHIs. Reductions will already have been +    // truncated if possible, and inductions' sizes will have been chosen by +    // indvars. +    if (isa<PHINode>(I)) +      continue; + +    if (DBits[Leader] == ~0ULL) +      // All bits demanded, no point continuing. +      continue; + +    for (Value *O : cast<User>(I)->operands()) { +      ECs.unionSets(Leader, O); +      Worklist.push_back(O); +    } +  } + +  // Now we've discovered all values, walk them to see if there are +  // any users we didn't see. If there are, we can't optimize that +  // chain. +  for (auto &I : DBits) +    for (auto *U : I.first->users()) +      if (U->getType()->isIntegerTy() && DBits.count(U) == 0) +        DBits[ECs.getOrInsertLeaderValue(I.first)] |= ~0ULL; + +  for (auto I = ECs.begin(), E = ECs.end(); I != E; ++I) { +    uint64_t LeaderDemandedBits = 0; +    for (Value *M : llvm::make_range(ECs.member_begin(I), ECs.member_end())) +      LeaderDemandedBits |= DBits[M]; + +    uint64_t MinBW = llvm::bit_width(LeaderDemandedBits); +    // Round up to a power of 2 +    MinBW = llvm::bit_ceil(MinBW); + +    // We don't modify the types of PHIs. Reductions will already have been +    // truncated if possible, and inductions' sizes will have been chosen by +    // indvars. +    // If we are required to shrink a PHI, abandon this entire equivalence class. +    bool Abort = false; +    for (Value *M : llvm::make_range(ECs.member_begin(I), ECs.member_end())) +      if (isa<PHINode>(M) && MinBW < M->getType()->getScalarSizeInBits()) { +        Abort = true; +        break; +      } +    if (Abort) +      continue; + +    for (Value *M : llvm::make_range(ECs.member_begin(I), ECs.member_end())) { +      auto *MI = dyn_cast<Instruction>(M); +      if (!MI) +        continue; +      Type *Ty = M->getType(); +      if (Roots.count(M)) +        Ty = MI->getOperand(0)->getType(); + +      if (MinBW >= Ty->getScalarSizeInBits()) +        continue; + +      // If any of M's operands demand more bits than MinBW then M cannot be +      // performed safely in MinBW. +      if (any_of(MI->operands(), [&DB, MinBW](Use &U) { +            auto *CI = dyn_cast<ConstantInt>(U); +            // For constants shift amounts, check if the shift would result in +            // poison. +            if (CI && +                isa<ShlOperator, LShrOperator, AShrOperator>(U.getUser()) && +                U.getOperandNo() == 1) +              return CI->uge(MinBW); +            uint64_t BW = bit_width(DB.getDemandedBits(&U).getZExtValue()); +            return bit_ceil(BW) > MinBW; +          })) +        continue; + +      MinBWs[MI] = MinBW; +    } +  } + +  return MinBWs; +} + +/// Add all access groups in @p AccGroups to @p List. +template <typename ListT> +static void addToAccessGroupList(ListT &List, MDNode *AccGroups) { +  // Interpret an access group as a list containing itself. +  if (AccGroups->getNumOperands() == 0) { +    assert(isValidAsAccessGroup(AccGroups) && "Node must be an access group"); +    List.insert(AccGroups); +    return; +  } + +  for (const auto &AccGroupListOp : AccGroups->operands()) { +    auto *Item = cast<MDNode>(AccGroupListOp.get()); +    assert(isValidAsAccessGroup(Item) && "List item must be an access group"); +    List.insert(Item); +  } +} + +MDNode *llvm::uniteAccessGroups(MDNode *AccGroups1, MDNode *AccGroups2) { +  if (!AccGroups1) +    return AccGroups2; +  if (!AccGroups2) +    return AccGroups1; +  if (AccGroups1 == AccGroups2) +    return AccGroups1; + +  SmallSetVector<Metadata *, 4> Union; +  addToAccessGroupList(Union, AccGroups1); +  addToAccessGroupList(Union, AccGroups2); + +  if (Union.size() == 0) +    return nullptr; +  if (Union.size() == 1) +    return cast<MDNode>(Union.front()); + +  LLVMContext &Ctx = AccGroups1->getContext(); +  return MDNode::get(Ctx, Union.getArrayRef()); +} + +MDNode *llvm::intersectAccessGroups(const Instruction *Inst1, +                                    const Instruction *Inst2) { +  bool MayAccessMem1 = Inst1->mayReadOrWriteMemory(); +  bool MayAccessMem2 = Inst2->mayReadOrWriteMemory(); + +  if (!MayAccessMem1 && !MayAccessMem2) +    return nullptr; +  if (!MayAccessMem1) +    return Inst2->getMetadata(LLVMContext::MD_access_group); +  if (!MayAccessMem2) +    return Inst1->getMetadata(LLVMContext::MD_access_group); + +  MDNode *MD1 = Inst1->getMetadata(LLVMContext::MD_access_group); +  MDNode *MD2 = Inst2->getMetadata(LLVMContext::MD_access_group); +  if (!MD1 || !MD2) +    return nullptr; +  if (MD1 == MD2) +    return MD1; + +  // Use set for scalable 'contains' check. +  SmallPtrSet<Metadata *, 4> AccGroupSet2; +  addToAccessGroupList(AccGroupSet2, MD2); + +  SmallVector<Metadata *, 4> Intersection; +  if (MD1->getNumOperands() == 0) { +    assert(isValidAsAccessGroup(MD1) && "Node must be an access group"); +    if (AccGroupSet2.count(MD1)) +      Intersection.push_back(MD1); +  } else { +    for (const MDOperand &Node : MD1->operands()) { +      auto *Item = cast<MDNode>(Node.get()); +      assert(isValidAsAccessGroup(Item) && "List item must be an access group"); +      if (AccGroupSet2.count(Item)) +        Intersection.push_back(Item); +    } +  } + +  if (Intersection.size() == 0) +    return nullptr; +  if (Intersection.size() == 1) +    return cast<MDNode>(Intersection.front()); + +  LLVMContext &Ctx = Inst1->getContext(); +  return MDNode::get(Ctx, Intersection); +} + +/// \returns \p I after propagating metadata from \p VL. +Instruction *llvm::propagateMetadata(Instruction *Inst, ArrayRef<Value *> VL) { +  if (VL.empty()) +    return Inst; +  Instruction *I0 = cast<Instruction>(VL[0]); +  SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata; +  I0->getAllMetadataOtherThanDebugLoc(Metadata); + +  for (auto Kind : {LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope, +                    LLVMContext::MD_noalias, LLVMContext::MD_fpmath, +                    LLVMContext::MD_nontemporal, LLVMContext::MD_invariant_load, +                    LLVMContext::MD_access_group}) { +    MDNode *MD = I0->getMetadata(Kind); + +    for (int J = 1, E = VL.size(); MD && J != E; ++J) { +      const Instruction *IJ = cast<Instruction>(VL[J]); +      MDNode *IMD = IJ->getMetadata(Kind); +      switch (Kind) { +      case LLVMContext::MD_tbaa: +        MD = MDNode::getMostGenericTBAA(MD, IMD); +        break; +      case LLVMContext::MD_alias_scope: +        MD = MDNode::getMostGenericAliasScope(MD, IMD); +        break; +      case LLVMContext::MD_fpmath: +        MD = MDNode::getMostGenericFPMath(MD, IMD); +        break; +      case LLVMContext::MD_noalias: +      case LLVMContext::MD_nontemporal: +      case LLVMContext::MD_invariant_load: +        MD = MDNode::intersect(MD, IMD); +        break; +      case LLVMContext::MD_access_group: +        MD = intersectAccessGroups(Inst, IJ); +        break; +      default: +        llvm_unreachable("unhandled metadata"); +      } +    } + +    Inst->setMetadata(Kind, MD); +  } + +  return Inst; +} + +Constant * +llvm::createBitMaskForGaps(IRBuilderBase &Builder, unsigned VF, +                           const InterleaveGroup<Instruction> &Group) { +  // All 1's means mask is not needed. +  if (Group.getNumMembers() == Group.getFactor()) +    return nullptr; + +  // TODO: support reversed access. +  assert(!Group.isReverse() && "Reversed group not supported."); + +  SmallVector<Constant *, 16> Mask; +  for (unsigned i = 0; i < VF; i++) +    for (unsigned j = 0; j < Group.getFactor(); ++j) { +      unsigned HasMember = Group.getMember(j) ? 1 : 0; +      Mask.push_back(Builder.getInt1(HasMember)); +    } + +  return ConstantVector::get(Mask); +} + +llvm::SmallVector<int, 16> +llvm::createReplicatedMask(unsigned ReplicationFactor, unsigned VF) { +  SmallVector<int, 16> MaskVec; +  for (unsigned i = 0; i < VF; i++) +    for (unsigned j = 0; j < ReplicationFactor; j++) +      MaskVec.push_back(i); + +  return MaskVec; +} + +llvm::SmallVector<int, 16> llvm::createInterleaveMask(unsigned VF, +                                                      unsigned NumVecs) { +  SmallVector<int, 16> Mask; +  for (unsigned i = 0; i < VF; i++) +    for (unsigned j = 0; j < NumVecs; j++) +      Mask.push_back(j * VF + i); + +  return Mask; +} + +llvm::SmallVector<int, 16> +llvm::createStrideMask(unsigned Start, unsigned Stride, unsigned VF) { +  SmallVector<int, 16> Mask; +  for (unsigned i = 0; i < VF; i++) +    Mask.push_back(Start + i * Stride); + +  return Mask; +} + +llvm::SmallVector<int, 16> llvm::createSequentialMask(unsigned Start, +                                                      unsigned NumInts, +                                                      unsigned NumUndefs) { +  SmallVector<int, 16> Mask; +  for (unsigned i = 0; i < NumInts; i++) +    Mask.push_back(Start + i); + +  for (unsigned i = 0; i < NumUndefs; i++) +    Mask.push_back(-1); + +  return Mask; +} + +llvm::SmallVector<int, 16> llvm::createUnaryMask(ArrayRef<int> Mask, +                                                 unsigned NumElts) { +  // Avoid casts in the loop and make sure we have a reasonable number. +  int NumEltsSigned = NumElts; +  assert(NumEltsSigned > 0 && "Expected smaller or non-zero element count"); + +  // If the mask chooses an element from operand 1, reduce it to choose from the +  // corresponding element of operand 0. Undef mask elements are unchanged. +  SmallVector<int, 16> UnaryMask; +  for (int MaskElt : Mask) { +    assert((MaskElt < NumEltsSigned * 2) && "Expected valid shuffle mask"); +    int UnaryElt = MaskElt >= NumEltsSigned ? MaskElt - NumEltsSigned : MaskElt; +    UnaryMask.push_back(UnaryElt); +  } +  return UnaryMask; +} + +/// A helper function for concatenating vectors. This function concatenates two +/// vectors having the same element type. If the second vector has fewer +/// elements than the first, it is padded with undefs. +static Value *concatenateTwoVectors(IRBuilderBase &Builder, Value *V1, +                                    Value *V2) { +  VectorType *VecTy1 = dyn_cast<VectorType>(V1->getType()); +  VectorType *VecTy2 = dyn_cast<VectorType>(V2->getType()); +  assert(VecTy1 && VecTy2 && +         VecTy1->getScalarType() == VecTy2->getScalarType() && +         "Expect two vectors with the same element type"); + +  unsigned NumElts1 = cast<FixedVectorType>(VecTy1)->getNumElements(); +  unsigned NumElts2 = cast<FixedVectorType>(VecTy2)->getNumElements(); +  assert(NumElts1 >= NumElts2 && "Unexpect the first vector has less elements"); + +  if (NumElts1 > NumElts2) { +    // Extend with UNDEFs. +    V2 = Builder.CreateShuffleVector( +        V2, createSequentialMask(0, NumElts2, NumElts1 - NumElts2)); +  } + +  return Builder.CreateShuffleVector( +      V1, V2, createSequentialMask(0, NumElts1 + NumElts2, 0)); +} + +Value *llvm::concatenateVectors(IRBuilderBase &Builder, +                                ArrayRef<Value *> Vecs) { +  unsigned NumVecs = Vecs.size(); +  assert(NumVecs > 1 && "Should be at least two vectors"); + +  SmallVector<Value *, 8> ResList; +  ResList.append(Vecs.begin(), Vecs.end()); +  do { +    SmallVector<Value *, 8> TmpList; +    for (unsigned i = 0; i < NumVecs - 1; i += 2) { +      Value *V0 = ResList[i], *V1 = ResList[i + 1]; +      assert((V0->getType() == V1->getType() || i == NumVecs - 2) && +             "Only the last vector may have a different type"); + +      TmpList.push_back(concatenateTwoVectors(Builder, V0, V1)); +    } + +    // Push the last vector if the total number of vectors is odd. +    if (NumVecs % 2 != 0) +      TmpList.push_back(ResList[NumVecs - 1]); + +    ResList = TmpList; +    NumVecs = ResList.size(); +  } while (NumVecs > 1); + +  return ResList[0]; +} + +bool llvm::maskIsAllZeroOrUndef(Value *Mask) { +  assert(isa<VectorType>(Mask->getType()) && +         isa<IntegerType>(Mask->getType()->getScalarType()) && +         cast<IntegerType>(Mask->getType()->getScalarType())->getBitWidth() == +             1 && +         "Mask must be a vector of i1"); + +  auto *ConstMask = dyn_cast<Constant>(Mask); +  if (!ConstMask) +    return false; +  if (ConstMask->isNullValue() || isa<UndefValue>(ConstMask)) +    return true; +  if (isa<ScalableVectorType>(ConstMask->getType())) +    return false; +  for (unsigned +           I = 0, +           E = cast<FixedVectorType>(ConstMask->getType())->getNumElements(); +       I != E; ++I) { +    if (auto *MaskElt = ConstMask->getAggregateElement(I)) +      if (MaskElt->isNullValue() || isa<UndefValue>(MaskElt)) +        continue; +    return false; +  } +  return true; +} + +bool llvm::maskIsAllOneOrUndef(Value *Mask) { +  assert(isa<VectorType>(Mask->getType()) && +         isa<IntegerType>(Mask->getType()->getScalarType()) && +         cast<IntegerType>(Mask->getType()->getScalarType())->getBitWidth() == +             1 && +         "Mask must be a vector of i1"); + +  auto *ConstMask = dyn_cast<Constant>(Mask); +  if (!ConstMask) +    return false; +  if (ConstMask->isAllOnesValue() || isa<UndefValue>(ConstMask)) +    return true; +  if (isa<ScalableVectorType>(ConstMask->getType())) +    return false; +  for (unsigned +           I = 0, +           E = cast<FixedVectorType>(ConstMask->getType())->getNumElements(); +       I != E; ++I) { +    if (auto *MaskElt = ConstMask->getAggregateElement(I)) +      if (MaskElt->isAllOnesValue() || isa<UndefValue>(MaskElt)) +        continue; +    return false; +  } +  return true; +} + +/// TODO: This is a lot like known bits, but for +/// vectors.  Is there something we can common this with? +APInt llvm::possiblyDemandedEltsInMask(Value *Mask) { +  assert(isa<FixedVectorType>(Mask->getType()) && +         isa<IntegerType>(Mask->getType()->getScalarType()) && +         cast<IntegerType>(Mask->getType()->getScalarType())->getBitWidth() == +             1 && +         "Mask must be a fixed width vector of i1"); + +  const unsigned VWidth = +      cast<FixedVectorType>(Mask->getType())->getNumElements(); +  APInt DemandedElts = APInt::getAllOnes(VWidth); +  if (auto *CV = dyn_cast<ConstantVector>(Mask)) +    for (unsigned i = 0; i < VWidth; i++) +      if (CV->getAggregateElement(i)->isNullValue()) +        DemandedElts.clearBit(i); +  return DemandedElts; +} + +bool InterleavedAccessInfo::isStrided(int Stride) { +  unsigned Factor = std::abs(Stride); +  return Factor >= 2 && Factor <= MaxInterleaveGroupFactor; +} + +void InterleavedAccessInfo::collectConstStrideAccesses( +    MapVector<Instruction *, StrideDescriptor> &AccessStrideInfo, +    const DenseMap<Value*, const SCEV*> &Strides) { +  auto &DL = TheLoop->getHeader()->getModule()->getDataLayout(); + +  // Since it's desired that the load/store instructions be maintained in +  // "program order" for the interleaved access analysis, we have to visit the +  // blocks in the loop in reverse postorder (i.e., in a topological order). +  // Such an ordering will ensure that any load/store that may be executed +  // before a second load/store will precede the second load/store in +  // AccessStrideInfo. +  LoopBlocksDFS DFS(TheLoop); +  DFS.perform(LI); +  for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) +    for (auto &I : *BB) { +      Value *Ptr = getLoadStorePointerOperand(&I); +      if (!Ptr) +        continue; +      Type *ElementTy = getLoadStoreType(&I); + +      // Currently, codegen doesn't support cases where the type size doesn't +      // match the alloc size. Skip them for now. +      uint64_t Size = DL.getTypeAllocSize(ElementTy); +      if (Size * 8 != DL.getTypeSizeInBits(ElementTy)) +        continue; + +      // We don't check wrapping here because we don't know yet if Ptr will be +      // part of a full group or a group with gaps. Checking wrapping for all +      // pointers (even those that end up in groups with no gaps) will be overly +      // conservative. For full groups, wrapping should be ok since if we would +      // wrap around the address space we would do a memory access at nullptr +      // even without the transformation. The wrapping checks are therefore +      // deferred until after we've formed the interleaved groups. +      int64_t Stride = +        getPtrStride(PSE, ElementTy, Ptr, TheLoop, Strides, +                     /*Assume=*/true, /*ShouldCheckWrap=*/false).value_or(0); + +      const SCEV *Scev = replaceSymbolicStrideSCEV(PSE, Strides, Ptr); +      AccessStrideInfo[&I] = StrideDescriptor(Stride, Scev, Size, +                                              getLoadStoreAlignment(&I)); +    } +} + +// Analyze interleaved accesses and collect them into interleaved load and +// store groups. +// +// When generating code for an interleaved load group, we effectively hoist all +// loads in the group to the location of the first load in program order. When +// generating code for an interleaved store group, we sink all stores to the +// location of the last store. This code motion can change the order of load +// and store instructions and may break dependences. +// +// The code generation strategy mentioned above ensures that we won't violate +// any write-after-read (WAR) dependences. +// +// E.g., for the WAR dependence:  a = A[i];      // (1) +//                                A[i] = b;      // (2) +// +// The store group of (2) is always inserted at or below (2), and the load +// group of (1) is always inserted at or above (1). Thus, the instructions will +// never be reordered. All other dependences are checked to ensure the +// correctness of the instruction reordering. +// +// The algorithm visits all memory accesses in the loop in bottom-up program +// order. Program order is established by traversing the blocks in the loop in +// reverse postorder when collecting the accesses. +// +// We visit the memory accesses in bottom-up order because it can simplify the +// construction of store groups in the presence of write-after-write (WAW) +// dependences. +// +// E.g., for the WAW dependence:  A[i] = a;      // (1) +//                                A[i] = b;      // (2) +//                                A[i + 1] = c;  // (3) +// +// We will first create a store group with (3) and (2). (1) can't be added to +// this group because it and (2) are dependent. However, (1) can be grouped +// with other accesses that may precede it in program order. Note that a +// bottom-up order does not imply that WAW dependences should not be checked. +void InterleavedAccessInfo::analyzeInterleaving( +                                 bool EnablePredicatedInterleavedMemAccesses) { +  LLVM_DEBUG(dbgs() << "LV: Analyzing interleaved accesses...\n"); +  const auto &Strides = LAI->getSymbolicStrides(); + +  // Holds all accesses with a constant stride. +  MapVector<Instruction *, StrideDescriptor> AccessStrideInfo; +  collectConstStrideAccesses(AccessStrideInfo, Strides); + +  if (AccessStrideInfo.empty()) +    return; + +  // Collect the dependences in the loop. +  collectDependences(); + +  // Holds all interleaved store groups temporarily. +  SmallSetVector<InterleaveGroup<Instruction> *, 4> StoreGroups; +  // Holds all interleaved load groups temporarily. +  SmallSetVector<InterleaveGroup<Instruction> *, 4> LoadGroups; +  // Groups added to this set cannot have new members added. +  SmallPtrSet<InterleaveGroup<Instruction> *, 4> CompletedLoadGroups; + +  // Search in bottom-up program order for pairs of accesses (A and B) that can +  // form interleaved load or store groups. In the algorithm below, access A +  // precedes access B in program order. We initialize a group for B in the +  // outer loop of the algorithm, and then in the inner loop, we attempt to +  // insert each A into B's group if: +  // +  //  1. A and B have the same stride, +  //  2. A and B have the same memory object size, and +  //  3. A belongs in B's group according to its distance from B. +  // +  // Special care is taken to ensure group formation will not break any +  // dependences. +  for (auto BI = AccessStrideInfo.rbegin(), E = AccessStrideInfo.rend(); +       BI != E; ++BI) { +    Instruction *B = BI->first; +    StrideDescriptor DesB = BI->second; + +    // Initialize a group for B if it has an allowable stride. Even if we don't +    // create a group for B, we continue with the bottom-up algorithm to ensure +    // we don't break any of B's dependences. +    InterleaveGroup<Instruction> *GroupB = nullptr; +    if (isStrided(DesB.Stride) && +        (!isPredicated(B->getParent()) || EnablePredicatedInterleavedMemAccesses)) { +      GroupB = getInterleaveGroup(B); +      if (!GroupB) { +        LLVM_DEBUG(dbgs() << "LV: Creating an interleave group with:" << *B +                          << '\n'); +        GroupB = createInterleaveGroup(B, DesB.Stride, DesB.Alignment); +        if (B->mayWriteToMemory()) +          StoreGroups.insert(GroupB); +        else +          LoadGroups.insert(GroupB); +      } +    } + +    for (auto AI = std::next(BI); AI != E; ++AI) { +      Instruction *A = AI->first; +      StrideDescriptor DesA = AI->second; + +      // Our code motion strategy implies that we can't have dependences +      // between accesses in an interleaved group and other accesses located +      // between the first and last member of the group. Note that this also +      // means that a group can't have more than one member at a given offset. +      // The accesses in a group can have dependences with other accesses, but +      // we must ensure we don't extend the boundaries of the group such that +      // we encompass those dependent accesses. +      // +      // For example, assume we have the sequence of accesses shown below in a +      // stride-2 loop: +      // +      //  (1, 2) is a group | A[i]   = a;  // (1) +      //                    | A[i-1] = b;  // (2) | +      //                      A[i-3] = c;  // (3) +      //                      A[i]   = d;  // (4) | (2, 4) is not a group +      // +      // Because accesses (2) and (3) are dependent, we can group (2) with (1) +      // but not with (4). If we did, the dependent access (3) would be within +      // the boundaries of the (2, 4) group. +      auto DependentMember = [&](InterleaveGroup<Instruction> *Group, +                                 StrideEntry *A) -> Instruction * { +        for (uint32_t Index = 0; Index < Group->getFactor(); ++Index) { +          Instruction *MemberOfGroupB = Group->getMember(Index); +          if (MemberOfGroupB && !canReorderMemAccessesForInterleavedGroups( +                                    A, &*AccessStrideInfo.find(MemberOfGroupB))) +            return MemberOfGroupB; +        } +        return nullptr; +      }; + +      auto GroupA = getInterleaveGroup(A); +      // If A is a load, dependencies are tolerable, there's nothing to do here. +      // If both A and B belong to the same (store) group, they are independent, +      // even if dependencies have not been recorded. +      // If both GroupA and GroupB are null, there's nothing to do here. +      if (A->mayWriteToMemory() && GroupA != GroupB) { +        Instruction *DependentInst = nullptr; +        // If GroupB is a load group, we have to compare AI against all +        // members of GroupB because if any load within GroupB has a dependency +        // on AI, we need to mark GroupB as complete and also release the +        // store GroupA (if A belongs to one). The former prevents incorrect +        // hoisting of load B above store A while the latter prevents incorrect +        // sinking of store A below load B. +        if (GroupB && LoadGroups.contains(GroupB)) +          DependentInst = DependentMember(GroupB, &*AI); +        else if (!canReorderMemAccessesForInterleavedGroups(&*AI, &*BI)) +          DependentInst = B; + +        if (DependentInst) { +          // A has a store dependence on B (or on some load within GroupB) and +          // is part of a store group. Release A's group to prevent illegal +          // sinking of A below B. A will then be free to form another group +          // with instructions that precede it. +          if (GroupA && StoreGroups.contains(GroupA)) { +            LLVM_DEBUG(dbgs() << "LV: Invalidated store group due to " +                                 "dependence between " +                              << *A << " and " << *DependentInst << '\n'); +            StoreGroups.remove(GroupA); +            releaseGroup(GroupA); +          } +          // If B is a load and part of an interleave group, no earlier loads +          // can be added to B's interleave group, because this would mean the +          // DependentInst would move across store A. Mark the interleave group +          // as complete. +          if (GroupB && LoadGroups.contains(GroupB)) { +            LLVM_DEBUG(dbgs() << "LV: Marking interleave group for " << *B +                              << " as complete.\n"); +            CompletedLoadGroups.insert(GroupB); +          } +        } +      } +      if (CompletedLoadGroups.contains(GroupB)) { +        // Skip trying to add A to B, continue to look for other conflicting A's +        // in groups to be released. +        continue; +      } + +      // At this point, we've checked for illegal code motion. If either A or B +      // isn't strided, there's nothing left to do. +      if (!isStrided(DesA.Stride) || !isStrided(DesB.Stride)) +        continue; + +      // Ignore A if it's already in a group or isn't the same kind of memory +      // operation as B. +      // Note that mayReadFromMemory() isn't mutually exclusive to +      // mayWriteToMemory in the case of atomic loads. We shouldn't see those +      // here, canVectorizeMemory() should have returned false - except for the +      // case we asked for optimization remarks. +      if (isInterleaved(A) || +          (A->mayReadFromMemory() != B->mayReadFromMemory()) || +          (A->mayWriteToMemory() != B->mayWriteToMemory())) +        continue; + +      // Check rules 1 and 2. Ignore A if its stride or size is different from +      // that of B. +      if (DesA.Stride != DesB.Stride || DesA.Size != DesB.Size) +        continue; + +      // Ignore A if the memory object of A and B don't belong to the same +      // address space +      if (getLoadStoreAddressSpace(A) != getLoadStoreAddressSpace(B)) +        continue; + +      // Calculate the distance from A to B. +      const SCEVConstant *DistToB = dyn_cast<SCEVConstant>( +          PSE.getSE()->getMinusSCEV(DesA.Scev, DesB.Scev)); +      if (!DistToB) +        continue; +      int64_t DistanceToB = DistToB->getAPInt().getSExtValue(); + +      // Check rule 3. Ignore A if its distance to B is not a multiple of the +      // size. +      if (DistanceToB % static_cast<int64_t>(DesB.Size)) +        continue; + +      // All members of a predicated interleave-group must have the same predicate, +      // and currently must reside in the same BB. +      BasicBlock *BlockA = A->getParent(); +      BasicBlock *BlockB = B->getParent(); +      if ((isPredicated(BlockA) || isPredicated(BlockB)) && +          (!EnablePredicatedInterleavedMemAccesses || BlockA != BlockB)) +        continue; + +      // The index of A is the index of B plus A's distance to B in multiples +      // of the size. +      int IndexA = +          GroupB->getIndex(B) + DistanceToB / static_cast<int64_t>(DesB.Size); + +      // Try to insert A into B's group. +      if (GroupB->insertMember(A, IndexA, DesA.Alignment)) { +        LLVM_DEBUG(dbgs() << "LV: Inserted:" << *A << '\n' +                          << "    into the interleave group with" << *B +                          << '\n'); +        InterleaveGroupMap[A] = GroupB; + +        // Set the first load in program order as the insert position. +        if (A->mayReadFromMemory()) +          GroupB->setInsertPos(A); +      } +    } // Iteration over A accesses. +  }   // Iteration over B accesses. + +  auto InvalidateGroupIfMemberMayWrap = [&](InterleaveGroup<Instruction> *Group, +                                            int Index, +                                            std::string FirstOrLast) -> bool { +    Instruction *Member = Group->getMember(Index); +    assert(Member && "Group member does not exist"); +    Value *MemberPtr = getLoadStorePointerOperand(Member); +    Type *AccessTy = getLoadStoreType(Member); +    if (getPtrStride(PSE, AccessTy, MemberPtr, TheLoop, Strides, +                     /*Assume=*/false, /*ShouldCheckWrap=*/true).value_or(0)) +      return false; +    LLVM_DEBUG(dbgs() << "LV: Invalidate candidate interleaved group due to " +                      << FirstOrLast +                      << " group member potentially pointer-wrapping.\n"); +    releaseGroup(Group); +    return true; +  }; + +  // Remove interleaved groups with gaps whose memory +  // accesses may wrap around. We have to revisit the getPtrStride analysis, +  // this time with ShouldCheckWrap=true, since collectConstStrideAccesses does +  // not check wrapping (see documentation there). +  // FORNOW we use Assume=false; +  // TODO: Change to Assume=true but making sure we don't exceed the threshold +  // of runtime SCEV assumptions checks (thereby potentially failing to +  // vectorize altogether). +  // Additional optional optimizations: +  // TODO: If we are peeling the loop and we know that the first pointer doesn't +  // wrap then we can deduce that all pointers in the group don't wrap. +  // This means that we can forcefully peel the loop in order to only have to +  // check the first pointer for no-wrap. When we'll change to use Assume=true +  // we'll only need at most one runtime check per interleaved group. +  for (auto *Group : LoadGroups) { +    // Case 1: A full group. Can Skip the checks; For full groups, if the wide +    // load would wrap around the address space we would do a memory access at +    // nullptr even without the transformation. +    if (Group->getNumMembers() == Group->getFactor()) +      continue; + +    // Case 2: If first and last members of the group don't wrap this implies +    // that all the pointers in the group don't wrap. +    // So we check only group member 0 (which is always guaranteed to exist), +    // and group member Factor - 1; If the latter doesn't exist we rely on +    // peeling (if it is a non-reversed accsess -- see Case 3). +    if (InvalidateGroupIfMemberMayWrap(Group, 0, std::string("first"))) +      continue; +    if (Group->getMember(Group->getFactor() - 1)) +      InvalidateGroupIfMemberMayWrap(Group, Group->getFactor() - 1, +                                     std::string("last")); +    else { +      // Case 3: A non-reversed interleaved load group with gaps: We need +      // to execute at least one scalar epilogue iteration. This will ensure +      // we don't speculatively access memory out-of-bounds. We only need +      // to look for a member at index factor - 1, since every group must have +      // a member at index zero. +      if (Group->isReverse()) { +        LLVM_DEBUG( +            dbgs() << "LV: Invalidate candidate interleaved group due to " +                      "a reverse access with gaps.\n"); +        releaseGroup(Group); +        continue; +      } +      LLVM_DEBUG( +          dbgs() << "LV: Interleaved group requires epilogue iteration.\n"); +      RequiresScalarEpilogue = true; +    } +  } + +  for (auto *Group : StoreGroups) { +    // Case 1: A full group. Can Skip the checks; For full groups, if the wide +    // store would wrap around the address space we would do a memory access at +    // nullptr even without the transformation. +    if (Group->getNumMembers() == Group->getFactor()) +      continue; + +    // Interleave-store-group with gaps is implemented using masked wide store. +    // Remove interleaved store groups with gaps if +    // masked-interleaved-accesses are not enabled by the target. +    if (!EnablePredicatedInterleavedMemAccesses) { +      LLVM_DEBUG( +          dbgs() << "LV: Invalidate candidate interleaved store group due " +                    "to gaps.\n"); +      releaseGroup(Group); +      continue; +    } + +    // Case 2: If first and last members of the group don't wrap this implies +    // that all the pointers in the group don't wrap. +    // So we check only group member 0 (which is always guaranteed to exist), +    // and the last group member. Case 3 (scalar epilog) is not relevant for +    // stores with gaps, which are implemented with masked-store (rather than +    // speculative access, as in loads). +    if (InvalidateGroupIfMemberMayWrap(Group, 0, std::string("first"))) +      continue; +    for (int Index = Group->getFactor() - 1; Index > 0; Index--) +      if (Group->getMember(Index)) { +        InvalidateGroupIfMemberMayWrap(Group, Index, std::string("last")); +        break; +      } +  } +} + +void InterleavedAccessInfo::invalidateGroupsRequiringScalarEpilogue() { +  // If no group had triggered the requirement to create an epilogue loop, +  // there is nothing to do. +  if (!requiresScalarEpilogue()) +    return; + +  bool ReleasedGroup = false; +  // Release groups requiring scalar epilogues. Note that this also removes them +  // from InterleaveGroups. +  for (auto *Group : make_early_inc_range(InterleaveGroups)) { +    if (!Group->requiresScalarEpilogue()) +      continue; +    LLVM_DEBUG( +        dbgs() +        << "LV: Invalidate candidate interleaved group due to gaps that " +           "require a scalar epilogue (not allowed under optsize) and cannot " +           "be masked (not enabled). \n"); +    releaseGroup(Group); +    ReleasedGroup = true; +  } +  assert(ReleasedGroup && "At least one group must be invalidated, as a " +                          "scalar epilogue was required"); +  (void)ReleasedGroup; +  RequiresScalarEpilogue = false; +} + +template <typename InstT> +void InterleaveGroup<InstT>::addMetadata(InstT *NewInst) const { +  llvm_unreachable("addMetadata can only be used for Instruction"); +} + +namespace llvm { +template <> +void InterleaveGroup<Instruction>::addMetadata(Instruction *NewInst) const { +  SmallVector<Value *, 4> VL; +  std::transform(Members.begin(), Members.end(), std::back_inserter(VL), +                 [](std::pair<int, Instruction *> p) { return p.second; }); +  propagateMetadata(NewInst, VL); +} +} + +void VFABI::getVectorVariantNames( +    const CallInst &CI, SmallVectorImpl<std::string> &VariantMappings) { +  const StringRef S = CI.getFnAttr(VFABI::MappingsAttrName).getValueAsString(); +  if (S.empty()) +    return; + +  SmallVector<StringRef, 8> ListAttr; +  S.split(ListAttr, ","); + +  for (const auto &S : SetVector<StringRef>(ListAttr.begin(), ListAttr.end())) { +    std::optional<VFInfo> Info = +        VFABI::tryDemangleForVFABI(S, CI.getFunctionType()); +    if (Info && CI.getModule()->getFunction(Info->VectorName)) { +      LLVM_DEBUG(dbgs() << "VFABI: Adding mapping '" << S << "' for " << CI +                        << "\n"); +      VariantMappings.push_back(std::string(S)); +    } else +      LLVM_DEBUG(dbgs() << "VFABI: Invalid mapping '" << S << "'\n"); +  } +} + +bool VFShape::hasValidParameterList() const { +  for (unsigned Pos = 0, NumParams = Parameters.size(); Pos < NumParams; +       ++Pos) { +    assert(Parameters[Pos].ParamPos == Pos && "Broken parameter list."); + +    switch (Parameters[Pos].ParamKind) { +    default: // Nothing to check. +      break; +    case VFParamKind::OMP_Linear: +    case VFParamKind::OMP_LinearRef: +    case VFParamKind::OMP_LinearVal: +    case VFParamKind::OMP_LinearUVal: +      // Compile time linear steps must be non-zero. +      if (Parameters[Pos].LinearStepOrPos == 0) +        return false; +      break; +    case VFParamKind::OMP_LinearPos: +    case VFParamKind::OMP_LinearRefPos: +    case VFParamKind::OMP_LinearValPos: +    case VFParamKind::OMP_LinearUValPos: +      // The runtime linear step must be referring to some other +      // parameters in the signature. +      if (Parameters[Pos].LinearStepOrPos >= int(NumParams)) +        return false; +      // The linear step parameter must be marked as uniform. +      if (Parameters[Parameters[Pos].LinearStepOrPos].ParamKind != +          VFParamKind::OMP_Uniform) +        return false; +      // The linear step parameter can't point at itself. +      if (Parameters[Pos].LinearStepOrPos == int(Pos)) +        return false; +      break; +    case VFParamKind::GlobalPredicate: +      // The global predicate must be the unique. Can be placed anywhere in the +      // signature. +      for (unsigned NextPos = Pos + 1; NextPos < NumParams; ++NextPos) +        if (Parameters[NextPos].ParamKind == VFParamKind::GlobalPredicate) +          return false; +      break; +    } +  } +  return true; +}  | 
