aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm-project/llvm/lib/Analysis/VectorUtils.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm-project/llvm/lib/Analysis/VectorUtils.cpp')
-rw-r--r--contrib/llvm-project/llvm/lib/Analysis/VectorUtils.cpp1612
1 files changed, 1612 insertions, 0 deletions
diff --git a/contrib/llvm-project/llvm/lib/Analysis/VectorUtils.cpp b/contrib/llvm-project/llvm/lib/Analysis/VectorUtils.cpp
new file mode 100644
index 000000000000..1e48d3e2fbca
--- /dev/null
+++ b/contrib/llvm-project/llvm/lib/Analysis/VectorUtils.cpp
@@ -0,0 +1,1612 @@
+//===----------- VectorUtils.cpp - Vectorizer utility functions -----------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines vectorizer utilities.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Analysis/VectorUtils.h"
+#include "llvm/ADT/EquivalenceClasses.h"
+#include "llvm/Analysis/DemandedBits.h"
+#include "llvm/Analysis/LoopInfo.h"
+#include "llvm/Analysis/LoopIterator.h"
+#include "llvm/Analysis/ScalarEvolution.h"
+#include "llvm/Analysis/ScalarEvolutionExpressions.h"
+#include "llvm/Analysis/TargetTransformInfo.h"
+#include "llvm/Analysis/ValueTracking.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/GetElementPtrTypeIterator.h"
+#include "llvm/IR/IRBuilder.h"
+#include "llvm/IR/PatternMatch.h"
+#include "llvm/IR/Value.h"
+#include "llvm/Support/CommandLine.h"
+
+#define DEBUG_TYPE "vectorutils"
+
+using namespace llvm;
+using namespace llvm::PatternMatch;
+
+/// Maximum factor for an interleaved memory access.
+static cl::opt<unsigned> MaxInterleaveGroupFactor(
+ "max-interleave-group-factor", cl::Hidden,
+ cl::desc("Maximum factor for an interleaved access group (default = 8)"),
+ cl::init(8));
+
+/// Return true if all of the intrinsic's arguments and return type are scalars
+/// for the scalar form of the intrinsic, and vectors for the vector form of the
+/// intrinsic (except operands that are marked as always being scalar by
+/// isVectorIntrinsicWithScalarOpAtArg).
+bool llvm::isTriviallyVectorizable(Intrinsic::ID ID) {
+ switch (ID) {
+ case Intrinsic::abs: // Begin integer bit-manipulation.
+ case Intrinsic::bswap:
+ case Intrinsic::bitreverse:
+ case Intrinsic::ctpop:
+ case Intrinsic::ctlz:
+ case Intrinsic::cttz:
+ case Intrinsic::fshl:
+ case Intrinsic::fshr:
+ case Intrinsic::smax:
+ case Intrinsic::smin:
+ case Intrinsic::umax:
+ case Intrinsic::umin:
+ case Intrinsic::sadd_sat:
+ case Intrinsic::ssub_sat:
+ case Intrinsic::uadd_sat:
+ case Intrinsic::usub_sat:
+ case Intrinsic::smul_fix:
+ case Intrinsic::smul_fix_sat:
+ case Intrinsic::umul_fix:
+ case Intrinsic::umul_fix_sat:
+ case Intrinsic::sqrt: // Begin floating-point.
+ case Intrinsic::sin:
+ case Intrinsic::cos:
+ case Intrinsic::exp:
+ case Intrinsic::exp2:
+ case Intrinsic::log:
+ case Intrinsic::log10:
+ case Intrinsic::log2:
+ case Intrinsic::fabs:
+ case Intrinsic::minnum:
+ case Intrinsic::maxnum:
+ case Intrinsic::minimum:
+ case Intrinsic::maximum:
+ case Intrinsic::copysign:
+ case Intrinsic::floor:
+ case Intrinsic::ceil:
+ case Intrinsic::trunc:
+ case Intrinsic::rint:
+ case Intrinsic::nearbyint:
+ case Intrinsic::round:
+ case Intrinsic::roundeven:
+ case Intrinsic::pow:
+ case Intrinsic::fma:
+ case Intrinsic::fmuladd:
+ case Intrinsic::powi:
+ case Intrinsic::canonicalize:
+ case Intrinsic::fptosi_sat:
+ case Intrinsic::fptoui_sat:
+ return true;
+ default:
+ return false;
+ }
+}
+
+/// Identifies if the vector form of the intrinsic has a scalar operand.
+bool llvm::isVectorIntrinsicWithScalarOpAtArg(Intrinsic::ID ID,
+ unsigned ScalarOpdIdx) {
+ switch (ID) {
+ case Intrinsic::abs:
+ case Intrinsic::ctlz:
+ case Intrinsic::cttz:
+ case Intrinsic::powi:
+ return (ScalarOpdIdx == 1);
+ case Intrinsic::smul_fix:
+ case Intrinsic::smul_fix_sat:
+ case Intrinsic::umul_fix:
+ case Intrinsic::umul_fix_sat:
+ return (ScalarOpdIdx == 2);
+ default:
+ return false;
+ }
+}
+
+bool llvm::isVectorIntrinsicWithOverloadTypeAtArg(Intrinsic::ID ID,
+ unsigned OpdIdx) {
+ switch (ID) {
+ case Intrinsic::fptosi_sat:
+ case Intrinsic::fptoui_sat:
+ return OpdIdx == 0;
+ case Intrinsic::powi:
+ return OpdIdx == 1;
+ default:
+ return false;
+ }
+}
+
+/// Returns intrinsic ID for call.
+/// For the input call instruction it finds mapping intrinsic and returns
+/// its ID, in case it does not found it return not_intrinsic.
+Intrinsic::ID llvm::getVectorIntrinsicIDForCall(const CallInst *CI,
+ const TargetLibraryInfo *TLI) {
+ Intrinsic::ID ID = getIntrinsicForCallSite(*CI, TLI);
+ if (ID == Intrinsic::not_intrinsic)
+ return Intrinsic::not_intrinsic;
+
+ if (isTriviallyVectorizable(ID) || ID == Intrinsic::lifetime_start ||
+ ID == Intrinsic::lifetime_end || ID == Intrinsic::assume ||
+ ID == Intrinsic::experimental_noalias_scope_decl ||
+ ID == Intrinsic::sideeffect || ID == Intrinsic::pseudoprobe)
+ return ID;
+ return Intrinsic::not_intrinsic;
+}
+
+/// Find the operand of the GEP that should be checked for consecutive
+/// stores. This ignores trailing indices that have no effect on the final
+/// pointer.
+unsigned llvm::getGEPInductionOperand(const GetElementPtrInst *Gep) {
+ const DataLayout &DL = Gep->getModule()->getDataLayout();
+ unsigned LastOperand = Gep->getNumOperands() - 1;
+ TypeSize GEPAllocSize = DL.getTypeAllocSize(Gep->getResultElementType());
+
+ // Walk backwards and try to peel off zeros.
+ while (LastOperand > 1 && match(Gep->getOperand(LastOperand), m_Zero())) {
+ // Find the type we're currently indexing into.
+ gep_type_iterator GEPTI = gep_type_begin(Gep);
+ std::advance(GEPTI, LastOperand - 2);
+
+ // If it's a type with the same allocation size as the result of the GEP we
+ // can peel off the zero index.
+ if (DL.getTypeAllocSize(GEPTI.getIndexedType()) != GEPAllocSize)
+ break;
+ --LastOperand;
+ }
+
+ return LastOperand;
+}
+
+/// If the argument is a GEP, then returns the operand identified by
+/// getGEPInductionOperand. However, if there is some other non-loop-invariant
+/// operand, it returns that instead.
+Value *llvm::stripGetElementPtr(Value *Ptr, ScalarEvolution *SE, Loop *Lp) {
+ GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
+ if (!GEP)
+ return Ptr;
+
+ unsigned InductionOperand = getGEPInductionOperand(GEP);
+
+ // Check that all of the gep indices are uniform except for our induction
+ // operand.
+ for (unsigned i = 0, e = GEP->getNumOperands(); i != e; ++i)
+ if (i != InductionOperand &&
+ !SE->isLoopInvariant(SE->getSCEV(GEP->getOperand(i)), Lp))
+ return Ptr;
+ return GEP->getOperand(InductionOperand);
+}
+
+/// If a value has only one user that is a CastInst, return it.
+Value *llvm::getUniqueCastUse(Value *Ptr, Loop *Lp, Type *Ty) {
+ Value *UniqueCast = nullptr;
+ for (User *U : Ptr->users()) {
+ CastInst *CI = dyn_cast<CastInst>(U);
+ if (CI && CI->getType() == Ty) {
+ if (!UniqueCast)
+ UniqueCast = CI;
+ else
+ return nullptr;
+ }
+ }
+ return UniqueCast;
+}
+
+/// Get the stride of a pointer access in a loop. Looks for symbolic
+/// strides "a[i*stride]". Returns the symbolic stride, or null otherwise.
+Value *llvm::getStrideFromPointer(Value *Ptr, ScalarEvolution *SE, Loop *Lp) {
+ auto *PtrTy = dyn_cast<PointerType>(Ptr->getType());
+ if (!PtrTy || PtrTy->isAggregateType())
+ return nullptr;
+
+ // Try to remove a gep instruction to make the pointer (actually index at this
+ // point) easier analyzable. If OrigPtr is equal to Ptr we are analyzing the
+ // pointer, otherwise, we are analyzing the index.
+ Value *OrigPtr = Ptr;
+
+ // The size of the pointer access.
+ int64_t PtrAccessSize = 1;
+
+ Ptr = stripGetElementPtr(Ptr, SE, Lp);
+ const SCEV *V = SE->getSCEV(Ptr);
+
+ if (Ptr != OrigPtr)
+ // Strip off casts.
+ while (const SCEVIntegralCastExpr *C = dyn_cast<SCEVIntegralCastExpr>(V))
+ V = C->getOperand();
+
+ const SCEVAddRecExpr *S = dyn_cast<SCEVAddRecExpr>(V);
+ if (!S)
+ return nullptr;
+
+ V = S->getStepRecurrence(*SE);
+ if (!V)
+ return nullptr;
+
+ // Strip off the size of access multiplication if we are still analyzing the
+ // pointer.
+ if (OrigPtr == Ptr) {
+ if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(V)) {
+ if (M->getOperand(0)->getSCEVType() != scConstant)
+ return nullptr;
+
+ const APInt &APStepVal = cast<SCEVConstant>(M->getOperand(0))->getAPInt();
+
+ // Huge step value - give up.
+ if (APStepVal.getBitWidth() > 64)
+ return nullptr;
+
+ int64_t StepVal = APStepVal.getSExtValue();
+ if (PtrAccessSize != StepVal)
+ return nullptr;
+ V = M->getOperand(1);
+ }
+ }
+
+ // Strip off casts.
+ Type *StripedOffRecurrenceCast = nullptr;
+ if (const SCEVIntegralCastExpr *C = dyn_cast<SCEVIntegralCastExpr>(V)) {
+ StripedOffRecurrenceCast = C->getType();
+ V = C->getOperand();
+ }
+
+ // Look for the loop invariant symbolic value.
+ const SCEVUnknown *U = dyn_cast<SCEVUnknown>(V);
+ if (!U)
+ return nullptr;
+
+ Value *Stride = U->getValue();
+ if (!Lp->isLoopInvariant(Stride))
+ return nullptr;
+
+ // If we have stripped off the recurrence cast we have to make sure that we
+ // return the value that is used in this loop so that we can replace it later.
+ if (StripedOffRecurrenceCast)
+ Stride = getUniqueCastUse(Stride, Lp, StripedOffRecurrenceCast);
+
+ return Stride;
+}
+
+/// Given a vector and an element number, see if the scalar value is
+/// already around as a register, for example if it were inserted then extracted
+/// from the vector.
+Value *llvm::findScalarElement(Value *V, unsigned EltNo) {
+ assert(V->getType()->isVectorTy() && "Not looking at a vector?");
+ VectorType *VTy = cast<VectorType>(V->getType());
+ // For fixed-length vector, return undef for out of range access.
+ if (auto *FVTy = dyn_cast<FixedVectorType>(VTy)) {
+ unsigned Width = FVTy->getNumElements();
+ if (EltNo >= Width)
+ return UndefValue::get(FVTy->getElementType());
+ }
+
+ if (Constant *C = dyn_cast<Constant>(V))
+ return C->getAggregateElement(EltNo);
+
+ if (InsertElementInst *III = dyn_cast<InsertElementInst>(V)) {
+ // If this is an insert to a variable element, we don't know what it is.
+ if (!isa<ConstantInt>(III->getOperand(2)))
+ return nullptr;
+ unsigned IIElt = cast<ConstantInt>(III->getOperand(2))->getZExtValue();
+
+ // If this is an insert to the element we are looking for, return the
+ // inserted value.
+ if (EltNo == IIElt)
+ return III->getOperand(1);
+
+ // Guard against infinite loop on malformed, unreachable IR.
+ if (III == III->getOperand(0))
+ return nullptr;
+
+ // Otherwise, the insertelement doesn't modify the value, recurse on its
+ // vector input.
+ return findScalarElement(III->getOperand(0), EltNo);
+ }
+
+ ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(V);
+ // Restrict the following transformation to fixed-length vector.
+ if (SVI && isa<FixedVectorType>(SVI->getType())) {
+ unsigned LHSWidth =
+ cast<FixedVectorType>(SVI->getOperand(0)->getType())->getNumElements();
+ int InEl = SVI->getMaskValue(EltNo);
+ if (InEl < 0)
+ return UndefValue::get(VTy->getElementType());
+ if (InEl < (int)LHSWidth)
+ return findScalarElement(SVI->getOperand(0), InEl);
+ return findScalarElement(SVI->getOperand(1), InEl - LHSWidth);
+ }
+
+ // Extract a value from a vector add operation with a constant zero.
+ // TODO: Use getBinOpIdentity() to generalize this.
+ Value *Val; Constant *C;
+ if (match(V, m_Add(m_Value(Val), m_Constant(C))))
+ if (Constant *Elt = C->getAggregateElement(EltNo))
+ if (Elt->isNullValue())
+ return findScalarElement(Val, EltNo);
+
+ // If the vector is a splat then we can trivially find the scalar element.
+ if (isa<ScalableVectorType>(VTy))
+ if (Value *Splat = getSplatValue(V))
+ if (EltNo < VTy->getElementCount().getKnownMinValue())
+ return Splat;
+
+ // Otherwise, we don't know.
+ return nullptr;
+}
+
+int llvm::getSplatIndex(ArrayRef<int> Mask) {
+ int SplatIndex = -1;
+ for (int M : Mask) {
+ // Ignore invalid (undefined) mask elements.
+ if (M < 0)
+ continue;
+
+ // There can be only 1 non-negative mask element value if this is a splat.
+ if (SplatIndex != -1 && SplatIndex != M)
+ return -1;
+
+ // Initialize the splat index to the 1st non-negative mask element.
+ SplatIndex = M;
+ }
+ assert((SplatIndex == -1 || SplatIndex >= 0) && "Negative index?");
+ return SplatIndex;
+}
+
+/// Get splat value if the input is a splat vector or return nullptr.
+/// This function is not fully general. It checks only 2 cases:
+/// the input value is (1) a splat constant vector or (2) a sequence
+/// of instructions that broadcasts a scalar at element 0.
+Value *llvm::getSplatValue(const Value *V) {
+ if (isa<VectorType>(V->getType()))
+ if (auto *C = dyn_cast<Constant>(V))
+ return C->getSplatValue();
+
+ // shuf (inselt ?, Splat, 0), ?, <0, undef, 0, ...>
+ Value *Splat;
+ if (match(V,
+ m_Shuffle(m_InsertElt(m_Value(), m_Value(Splat), m_ZeroInt()),
+ m_Value(), m_ZeroMask())))
+ return Splat;
+
+ return nullptr;
+}
+
+bool llvm::isSplatValue(const Value *V, int Index, unsigned Depth) {
+ assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth");
+
+ if (isa<VectorType>(V->getType())) {
+ if (isa<UndefValue>(V))
+ return true;
+ // FIXME: We can allow undefs, but if Index was specified, we may want to
+ // check that the constant is defined at that index.
+ if (auto *C = dyn_cast<Constant>(V))
+ return C->getSplatValue() != nullptr;
+ }
+
+ if (auto *Shuf = dyn_cast<ShuffleVectorInst>(V)) {
+ // FIXME: We can safely allow undefs here. If Index was specified, we will
+ // check that the mask elt is defined at the required index.
+ if (!all_equal(Shuf->getShuffleMask()))
+ return false;
+
+ // Match any index.
+ if (Index == -1)
+ return true;
+
+ // Match a specific element. The mask should be defined at and match the
+ // specified index.
+ return Shuf->getMaskValue(Index) == Index;
+ }
+
+ // The remaining tests are all recursive, so bail out if we hit the limit.
+ if (Depth++ == MaxAnalysisRecursionDepth)
+ return false;
+
+ // If both operands of a binop are splats, the result is a splat.
+ Value *X, *Y, *Z;
+ if (match(V, m_BinOp(m_Value(X), m_Value(Y))))
+ return isSplatValue(X, Index, Depth) && isSplatValue(Y, Index, Depth);
+
+ // If all operands of a select are splats, the result is a splat.
+ if (match(V, m_Select(m_Value(X), m_Value(Y), m_Value(Z))))
+ return isSplatValue(X, Index, Depth) && isSplatValue(Y, Index, Depth) &&
+ isSplatValue(Z, Index, Depth);
+
+ // TODO: Add support for unary ops (fneg), casts, intrinsics (overflow ops).
+
+ return false;
+}
+
+bool llvm::getShuffleDemandedElts(int SrcWidth, ArrayRef<int> Mask,
+ const APInt &DemandedElts, APInt &DemandedLHS,
+ APInt &DemandedRHS, bool AllowUndefElts) {
+ DemandedLHS = DemandedRHS = APInt::getZero(SrcWidth);
+
+ // Early out if we don't demand any elements.
+ if (DemandedElts.isZero())
+ return true;
+
+ // Simple case of a shuffle with zeroinitializer.
+ if (all_of(Mask, [](int Elt) { return Elt == 0; })) {
+ DemandedLHS.setBit(0);
+ return true;
+ }
+
+ for (unsigned I = 0, E = Mask.size(); I != E; ++I) {
+ int M = Mask[I];
+ assert((-1 <= M) && (M < (SrcWidth * 2)) &&
+ "Invalid shuffle mask constant");
+
+ if (!DemandedElts[I] || (AllowUndefElts && (M < 0)))
+ continue;
+
+ // For undef elements, we don't know anything about the common state of
+ // the shuffle result.
+ if (M < 0)
+ return false;
+
+ if (M < SrcWidth)
+ DemandedLHS.setBit(M);
+ else
+ DemandedRHS.setBit(M - SrcWidth);
+ }
+
+ return true;
+}
+
+void llvm::narrowShuffleMaskElts(int Scale, ArrayRef<int> Mask,
+ SmallVectorImpl<int> &ScaledMask) {
+ assert(Scale > 0 && "Unexpected scaling factor");
+
+ // Fast-path: if no scaling, then it is just a copy.
+ if (Scale == 1) {
+ ScaledMask.assign(Mask.begin(), Mask.end());
+ return;
+ }
+
+ ScaledMask.clear();
+ for (int MaskElt : Mask) {
+ if (MaskElt >= 0) {
+ assert(((uint64_t)Scale * MaskElt + (Scale - 1)) <= INT32_MAX &&
+ "Overflowed 32-bits");
+ }
+ for (int SliceElt = 0; SliceElt != Scale; ++SliceElt)
+ ScaledMask.push_back(MaskElt < 0 ? MaskElt : Scale * MaskElt + SliceElt);
+ }
+}
+
+bool llvm::widenShuffleMaskElts(int Scale, ArrayRef<int> Mask,
+ SmallVectorImpl<int> &ScaledMask) {
+ assert(Scale > 0 && "Unexpected scaling factor");
+
+ // Fast-path: if no scaling, then it is just a copy.
+ if (Scale == 1) {
+ ScaledMask.assign(Mask.begin(), Mask.end());
+ return true;
+ }
+
+ // We must map the original elements down evenly to a type with less elements.
+ int NumElts = Mask.size();
+ if (NumElts % Scale != 0)
+ return false;
+
+ ScaledMask.clear();
+ ScaledMask.reserve(NumElts / Scale);
+
+ // Step through the input mask by splitting into Scale-sized slices.
+ do {
+ ArrayRef<int> MaskSlice = Mask.take_front(Scale);
+ assert((int)MaskSlice.size() == Scale && "Expected Scale-sized slice.");
+
+ // The first element of the slice determines how we evaluate this slice.
+ int SliceFront = MaskSlice.front();
+ if (SliceFront < 0) {
+ // Negative values (undef or other "sentinel" values) must be equal across
+ // the entire slice.
+ if (!all_equal(MaskSlice))
+ return false;
+ ScaledMask.push_back(SliceFront);
+ } else {
+ // A positive mask element must be cleanly divisible.
+ if (SliceFront % Scale != 0)
+ return false;
+ // Elements of the slice must be consecutive.
+ for (int i = 1; i < Scale; ++i)
+ if (MaskSlice[i] != SliceFront + i)
+ return false;
+ ScaledMask.push_back(SliceFront / Scale);
+ }
+ Mask = Mask.drop_front(Scale);
+ } while (!Mask.empty());
+
+ assert((int)ScaledMask.size() * Scale == NumElts && "Unexpected scaled mask");
+
+ // All elements of the original mask can be scaled down to map to the elements
+ // of a mask with wider elements.
+ return true;
+}
+
+void llvm::getShuffleMaskWithWidestElts(ArrayRef<int> Mask,
+ SmallVectorImpl<int> &ScaledMask) {
+ std::array<SmallVector<int, 16>, 2> TmpMasks;
+ SmallVectorImpl<int> *Output = &TmpMasks[0], *Tmp = &TmpMasks[1];
+ ArrayRef<int> InputMask = Mask;
+ for (unsigned Scale = 2; Scale <= InputMask.size(); ++Scale) {
+ while (widenShuffleMaskElts(Scale, InputMask, *Output)) {
+ InputMask = *Output;
+ std::swap(Output, Tmp);
+ }
+ }
+ ScaledMask.assign(InputMask.begin(), InputMask.end());
+}
+
+void llvm::processShuffleMasks(
+ ArrayRef<int> Mask, unsigned NumOfSrcRegs, unsigned NumOfDestRegs,
+ unsigned NumOfUsedRegs, function_ref<void()> NoInputAction,
+ function_ref<void(ArrayRef<int>, unsigned, unsigned)> SingleInputAction,
+ function_ref<void(ArrayRef<int>, unsigned, unsigned)> ManyInputsAction) {
+ SmallVector<SmallVector<SmallVector<int>>> Res(NumOfDestRegs);
+ // Try to perform better estimation of the permutation.
+ // 1. Split the source/destination vectors into real registers.
+ // 2. Do the mask analysis to identify which real registers are
+ // permuted.
+ int Sz = Mask.size();
+ unsigned SzDest = Sz / NumOfDestRegs;
+ unsigned SzSrc = Sz / NumOfSrcRegs;
+ for (unsigned I = 0; I < NumOfDestRegs; ++I) {
+ auto &RegMasks = Res[I];
+ RegMasks.assign(NumOfSrcRegs, {});
+ // Check that the values in dest registers are in the one src
+ // register.
+ for (unsigned K = 0; K < SzDest; ++K) {
+ int Idx = I * SzDest + K;
+ if (Idx == Sz)
+ break;
+ if (Mask[Idx] >= Sz || Mask[Idx] == UndefMaskElem)
+ continue;
+ int SrcRegIdx = Mask[Idx] / SzSrc;
+ // Add a cost of PermuteTwoSrc for each new source register permute,
+ // if we have more than one source registers.
+ if (RegMasks[SrcRegIdx].empty())
+ RegMasks[SrcRegIdx].assign(SzDest, UndefMaskElem);
+ RegMasks[SrcRegIdx][K] = Mask[Idx] % SzSrc;
+ }
+ }
+ // Process split mask.
+ for (unsigned I = 0; I < NumOfUsedRegs; ++I) {
+ auto &Dest = Res[I];
+ int NumSrcRegs =
+ count_if(Dest, [](ArrayRef<int> Mask) { return !Mask.empty(); });
+ switch (NumSrcRegs) {
+ case 0:
+ // No input vectors were used!
+ NoInputAction();
+ break;
+ case 1: {
+ // Find the only mask with at least single undef mask elem.
+ auto *It =
+ find_if(Dest, [](ArrayRef<int> Mask) { return !Mask.empty(); });
+ unsigned SrcReg = std::distance(Dest.begin(), It);
+ SingleInputAction(*It, SrcReg, I);
+ break;
+ }
+ default: {
+ // The first mask is a permutation of a single register. Since we have >2
+ // input registers to shuffle, we merge the masks for 2 first registers
+ // and generate a shuffle of 2 registers rather than the reordering of the
+ // first register and then shuffle with the second register. Next,
+ // generate the shuffles of the resulting register + the remaining
+ // registers from the list.
+ auto &&CombineMasks = [](MutableArrayRef<int> FirstMask,
+ ArrayRef<int> SecondMask) {
+ for (int Idx = 0, VF = FirstMask.size(); Idx < VF; ++Idx) {
+ if (SecondMask[Idx] != UndefMaskElem) {
+ assert(FirstMask[Idx] == UndefMaskElem &&
+ "Expected undefined mask element.");
+ FirstMask[Idx] = SecondMask[Idx] + VF;
+ }
+ }
+ };
+ auto &&NormalizeMask = [](MutableArrayRef<int> Mask) {
+ for (int Idx = 0, VF = Mask.size(); Idx < VF; ++Idx) {
+ if (Mask[Idx] != UndefMaskElem)
+ Mask[Idx] = Idx;
+ }
+ };
+ int SecondIdx;
+ do {
+ int FirstIdx = -1;
+ SecondIdx = -1;
+ MutableArrayRef<int> FirstMask, SecondMask;
+ for (unsigned I = 0; I < NumOfDestRegs; ++I) {
+ SmallVectorImpl<int> &RegMask = Dest[I];
+ if (RegMask.empty())
+ continue;
+
+ if (FirstIdx == SecondIdx) {
+ FirstIdx = I;
+ FirstMask = RegMask;
+ continue;
+ }
+ SecondIdx = I;
+ SecondMask = RegMask;
+ CombineMasks(FirstMask, SecondMask);
+ ManyInputsAction(FirstMask, FirstIdx, SecondIdx);
+ NormalizeMask(FirstMask);
+ RegMask.clear();
+ SecondMask = FirstMask;
+ SecondIdx = FirstIdx;
+ }
+ if (FirstIdx != SecondIdx && SecondIdx >= 0) {
+ CombineMasks(SecondMask, FirstMask);
+ ManyInputsAction(SecondMask, SecondIdx, FirstIdx);
+ Dest[FirstIdx].clear();
+ NormalizeMask(SecondMask);
+ }
+ } while (SecondIdx >= 0);
+ break;
+ }
+ }
+ }
+}
+
+MapVector<Instruction *, uint64_t>
+llvm::computeMinimumValueSizes(ArrayRef<BasicBlock *> Blocks, DemandedBits &DB,
+ const TargetTransformInfo *TTI) {
+
+ // DemandedBits will give us every value's live-out bits. But we want
+ // to ensure no extra casts would need to be inserted, so every DAG
+ // of connected values must have the same minimum bitwidth.
+ EquivalenceClasses<Value *> ECs;
+ SmallVector<Value *, 16> Worklist;
+ SmallPtrSet<Value *, 4> Roots;
+ SmallPtrSet<Value *, 16> Visited;
+ DenseMap<Value *, uint64_t> DBits;
+ SmallPtrSet<Instruction *, 4> InstructionSet;
+ MapVector<Instruction *, uint64_t> MinBWs;
+
+ // Determine the roots. We work bottom-up, from truncs or icmps.
+ bool SeenExtFromIllegalType = false;
+ for (auto *BB : Blocks)
+ for (auto &I : *BB) {
+ InstructionSet.insert(&I);
+
+ if (TTI && (isa<ZExtInst>(&I) || isa<SExtInst>(&I)) &&
+ !TTI->isTypeLegal(I.getOperand(0)->getType()))
+ SeenExtFromIllegalType = true;
+
+ // Only deal with non-vector integers up to 64-bits wide.
+ if ((isa<TruncInst>(&I) || isa<ICmpInst>(&I)) &&
+ !I.getType()->isVectorTy() &&
+ I.getOperand(0)->getType()->getScalarSizeInBits() <= 64) {
+ // Don't make work for ourselves. If we know the loaded type is legal,
+ // don't add it to the worklist.
+ if (TTI && isa<TruncInst>(&I) && TTI->isTypeLegal(I.getType()))
+ continue;
+
+ Worklist.push_back(&I);
+ Roots.insert(&I);
+ }
+ }
+ // Early exit.
+ if (Worklist.empty() || (TTI && !SeenExtFromIllegalType))
+ return MinBWs;
+
+ // Now proceed breadth-first, unioning values together.
+ while (!Worklist.empty()) {
+ Value *Val = Worklist.pop_back_val();
+ Value *Leader = ECs.getOrInsertLeaderValue(Val);
+
+ if (!Visited.insert(Val).second)
+ continue;
+
+ // Non-instructions terminate a chain successfully.
+ if (!isa<Instruction>(Val))
+ continue;
+ Instruction *I = cast<Instruction>(Val);
+
+ // If we encounter a type that is larger than 64 bits, we can't represent
+ // it so bail out.
+ if (DB.getDemandedBits(I).getBitWidth() > 64)
+ return MapVector<Instruction *, uint64_t>();
+
+ uint64_t V = DB.getDemandedBits(I).getZExtValue();
+ DBits[Leader] |= V;
+ DBits[I] = V;
+
+ // Casts, loads and instructions outside of our range terminate a chain
+ // successfully.
+ if (isa<SExtInst>(I) || isa<ZExtInst>(I) || isa<LoadInst>(I) ||
+ !InstructionSet.count(I))
+ continue;
+
+ // Unsafe casts terminate a chain unsuccessfully. We can't do anything
+ // useful with bitcasts, ptrtoints or inttoptrs and it'd be unsafe to
+ // transform anything that relies on them.
+ if (isa<BitCastInst>(I) || isa<PtrToIntInst>(I) || isa<IntToPtrInst>(I) ||
+ !I->getType()->isIntegerTy()) {
+ DBits[Leader] |= ~0ULL;
+ continue;
+ }
+
+ // We don't modify the types of PHIs. Reductions will already have been
+ // truncated if possible, and inductions' sizes will have been chosen by
+ // indvars.
+ if (isa<PHINode>(I))
+ continue;
+
+ if (DBits[Leader] == ~0ULL)
+ // All bits demanded, no point continuing.
+ continue;
+
+ for (Value *O : cast<User>(I)->operands()) {
+ ECs.unionSets(Leader, O);
+ Worklist.push_back(O);
+ }
+ }
+
+ // Now we've discovered all values, walk them to see if there are
+ // any users we didn't see. If there are, we can't optimize that
+ // chain.
+ for (auto &I : DBits)
+ for (auto *U : I.first->users())
+ if (U->getType()->isIntegerTy() && DBits.count(U) == 0)
+ DBits[ECs.getOrInsertLeaderValue(I.first)] |= ~0ULL;
+
+ for (auto I = ECs.begin(), E = ECs.end(); I != E; ++I) {
+ uint64_t LeaderDemandedBits = 0;
+ for (Value *M : llvm::make_range(ECs.member_begin(I), ECs.member_end()))
+ LeaderDemandedBits |= DBits[M];
+
+ uint64_t MinBW = (sizeof(LeaderDemandedBits) * 8) -
+ llvm::countLeadingZeros(LeaderDemandedBits);
+ // Round up to a power of 2
+ if (!isPowerOf2_64((uint64_t)MinBW))
+ MinBW = NextPowerOf2(MinBW);
+
+ // We don't modify the types of PHIs. Reductions will already have been
+ // truncated if possible, and inductions' sizes will have been chosen by
+ // indvars.
+ // If we are required to shrink a PHI, abandon this entire equivalence class.
+ bool Abort = false;
+ for (Value *M : llvm::make_range(ECs.member_begin(I), ECs.member_end()))
+ if (isa<PHINode>(M) && MinBW < M->getType()->getScalarSizeInBits()) {
+ Abort = true;
+ break;
+ }
+ if (Abort)
+ continue;
+
+ for (Value *M : llvm::make_range(ECs.member_begin(I), ECs.member_end())) {
+ if (!isa<Instruction>(M))
+ continue;
+ Type *Ty = M->getType();
+ if (Roots.count(M))
+ Ty = cast<Instruction>(M)->getOperand(0)->getType();
+ if (MinBW < Ty->getScalarSizeInBits())
+ MinBWs[cast<Instruction>(M)] = MinBW;
+ }
+ }
+
+ return MinBWs;
+}
+
+/// Add all access groups in @p AccGroups to @p List.
+template <typename ListT>
+static void addToAccessGroupList(ListT &List, MDNode *AccGroups) {
+ // Interpret an access group as a list containing itself.
+ if (AccGroups->getNumOperands() == 0) {
+ assert(isValidAsAccessGroup(AccGroups) && "Node must be an access group");
+ List.insert(AccGroups);
+ return;
+ }
+
+ for (const auto &AccGroupListOp : AccGroups->operands()) {
+ auto *Item = cast<MDNode>(AccGroupListOp.get());
+ assert(isValidAsAccessGroup(Item) && "List item must be an access group");
+ List.insert(Item);
+ }
+}
+
+MDNode *llvm::uniteAccessGroups(MDNode *AccGroups1, MDNode *AccGroups2) {
+ if (!AccGroups1)
+ return AccGroups2;
+ if (!AccGroups2)
+ return AccGroups1;
+ if (AccGroups1 == AccGroups2)
+ return AccGroups1;
+
+ SmallSetVector<Metadata *, 4> Union;
+ addToAccessGroupList(Union, AccGroups1);
+ addToAccessGroupList(Union, AccGroups2);
+
+ if (Union.size() == 0)
+ return nullptr;
+ if (Union.size() == 1)
+ return cast<MDNode>(Union.front());
+
+ LLVMContext &Ctx = AccGroups1->getContext();
+ return MDNode::get(Ctx, Union.getArrayRef());
+}
+
+MDNode *llvm::intersectAccessGroups(const Instruction *Inst1,
+ const Instruction *Inst2) {
+ bool MayAccessMem1 = Inst1->mayReadOrWriteMemory();
+ bool MayAccessMem2 = Inst2->mayReadOrWriteMemory();
+
+ if (!MayAccessMem1 && !MayAccessMem2)
+ return nullptr;
+ if (!MayAccessMem1)
+ return Inst2->getMetadata(LLVMContext::MD_access_group);
+ if (!MayAccessMem2)
+ return Inst1->getMetadata(LLVMContext::MD_access_group);
+
+ MDNode *MD1 = Inst1->getMetadata(LLVMContext::MD_access_group);
+ MDNode *MD2 = Inst2->getMetadata(LLVMContext::MD_access_group);
+ if (!MD1 || !MD2)
+ return nullptr;
+ if (MD1 == MD2)
+ return MD1;
+
+ // Use set for scalable 'contains' check.
+ SmallPtrSet<Metadata *, 4> AccGroupSet2;
+ addToAccessGroupList(AccGroupSet2, MD2);
+
+ SmallVector<Metadata *, 4> Intersection;
+ if (MD1->getNumOperands() == 0) {
+ assert(isValidAsAccessGroup(MD1) && "Node must be an access group");
+ if (AccGroupSet2.count(MD1))
+ Intersection.push_back(MD1);
+ } else {
+ for (const MDOperand &Node : MD1->operands()) {
+ auto *Item = cast<MDNode>(Node.get());
+ assert(isValidAsAccessGroup(Item) && "List item must be an access group");
+ if (AccGroupSet2.count(Item))
+ Intersection.push_back(Item);
+ }
+ }
+
+ if (Intersection.size() == 0)
+ return nullptr;
+ if (Intersection.size() == 1)
+ return cast<MDNode>(Intersection.front());
+
+ LLVMContext &Ctx = Inst1->getContext();
+ return MDNode::get(Ctx, Intersection);
+}
+
+/// \returns \p I after propagating metadata from \p VL.
+Instruction *llvm::propagateMetadata(Instruction *Inst, ArrayRef<Value *> VL) {
+ if (VL.empty())
+ return Inst;
+ Instruction *I0 = cast<Instruction>(VL[0]);
+ SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata;
+ I0->getAllMetadataOtherThanDebugLoc(Metadata);
+
+ for (auto Kind : {LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope,
+ LLVMContext::MD_noalias, LLVMContext::MD_fpmath,
+ LLVMContext::MD_nontemporal, LLVMContext::MD_invariant_load,
+ LLVMContext::MD_access_group}) {
+ MDNode *MD = I0->getMetadata(Kind);
+
+ for (int J = 1, E = VL.size(); MD && J != E; ++J) {
+ const Instruction *IJ = cast<Instruction>(VL[J]);
+ MDNode *IMD = IJ->getMetadata(Kind);
+ switch (Kind) {
+ case LLVMContext::MD_tbaa:
+ MD = MDNode::getMostGenericTBAA(MD, IMD);
+ break;
+ case LLVMContext::MD_alias_scope:
+ MD = MDNode::getMostGenericAliasScope(MD, IMD);
+ break;
+ case LLVMContext::MD_fpmath:
+ MD = MDNode::getMostGenericFPMath(MD, IMD);
+ break;
+ case LLVMContext::MD_noalias:
+ case LLVMContext::MD_nontemporal:
+ case LLVMContext::MD_invariant_load:
+ MD = MDNode::intersect(MD, IMD);
+ break;
+ case LLVMContext::MD_access_group:
+ MD = intersectAccessGroups(Inst, IJ);
+ break;
+ default:
+ llvm_unreachable("unhandled metadata");
+ }
+ }
+
+ Inst->setMetadata(Kind, MD);
+ }
+
+ return Inst;
+}
+
+Constant *
+llvm::createBitMaskForGaps(IRBuilderBase &Builder, unsigned VF,
+ const InterleaveGroup<Instruction> &Group) {
+ // All 1's means mask is not needed.
+ if (Group.getNumMembers() == Group.getFactor())
+ return nullptr;
+
+ // TODO: support reversed access.
+ assert(!Group.isReverse() && "Reversed group not supported.");
+
+ SmallVector<Constant *, 16> Mask;
+ for (unsigned i = 0; i < VF; i++)
+ for (unsigned j = 0; j < Group.getFactor(); ++j) {
+ unsigned HasMember = Group.getMember(j) ? 1 : 0;
+ Mask.push_back(Builder.getInt1(HasMember));
+ }
+
+ return ConstantVector::get(Mask);
+}
+
+llvm::SmallVector<int, 16>
+llvm::createReplicatedMask(unsigned ReplicationFactor, unsigned VF) {
+ SmallVector<int, 16> MaskVec;
+ for (unsigned i = 0; i < VF; i++)
+ for (unsigned j = 0; j < ReplicationFactor; j++)
+ MaskVec.push_back(i);
+
+ return MaskVec;
+}
+
+llvm::SmallVector<int, 16> llvm::createInterleaveMask(unsigned VF,
+ unsigned NumVecs) {
+ SmallVector<int, 16> Mask;
+ for (unsigned i = 0; i < VF; i++)
+ for (unsigned j = 0; j < NumVecs; j++)
+ Mask.push_back(j * VF + i);
+
+ return Mask;
+}
+
+llvm::SmallVector<int, 16>
+llvm::createStrideMask(unsigned Start, unsigned Stride, unsigned VF) {
+ SmallVector<int, 16> Mask;
+ for (unsigned i = 0; i < VF; i++)
+ Mask.push_back(Start + i * Stride);
+
+ return Mask;
+}
+
+llvm::SmallVector<int, 16> llvm::createSequentialMask(unsigned Start,
+ unsigned NumInts,
+ unsigned NumUndefs) {
+ SmallVector<int, 16> Mask;
+ for (unsigned i = 0; i < NumInts; i++)
+ Mask.push_back(Start + i);
+
+ for (unsigned i = 0; i < NumUndefs; i++)
+ Mask.push_back(-1);
+
+ return Mask;
+}
+
+llvm::SmallVector<int, 16> llvm::createUnaryMask(ArrayRef<int> Mask,
+ unsigned NumElts) {
+ // Avoid casts in the loop and make sure we have a reasonable number.
+ int NumEltsSigned = NumElts;
+ assert(NumEltsSigned > 0 && "Expected smaller or non-zero element count");
+
+ // If the mask chooses an element from operand 1, reduce it to choose from the
+ // corresponding element of operand 0. Undef mask elements are unchanged.
+ SmallVector<int, 16> UnaryMask;
+ for (int MaskElt : Mask) {
+ assert((MaskElt < NumEltsSigned * 2) && "Expected valid shuffle mask");
+ int UnaryElt = MaskElt >= NumEltsSigned ? MaskElt - NumEltsSigned : MaskElt;
+ UnaryMask.push_back(UnaryElt);
+ }
+ return UnaryMask;
+}
+
+/// A helper function for concatenating vectors. This function concatenates two
+/// vectors having the same element type. If the second vector has fewer
+/// elements than the first, it is padded with undefs.
+static Value *concatenateTwoVectors(IRBuilderBase &Builder, Value *V1,
+ Value *V2) {
+ VectorType *VecTy1 = dyn_cast<VectorType>(V1->getType());
+ VectorType *VecTy2 = dyn_cast<VectorType>(V2->getType());
+ assert(VecTy1 && VecTy2 &&
+ VecTy1->getScalarType() == VecTy2->getScalarType() &&
+ "Expect two vectors with the same element type");
+
+ unsigned NumElts1 = cast<FixedVectorType>(VecTy1)->getNumElements();
+ unsigned NumElts2 = cast<FixedVectorType>(VecTy2)->getNumElements();
+ assert(NumElts1 >= NumElts2 && "Unexpect the first vector has less elements");
+
+ if (NumElts1 > NumElts2) {
+ // Extend with UNDEFs.
+ V2 = Builder.CreateShuffleVector(
+ V2, createSequentialMask(0, NumElts2, NumElts1 - NumElts2));
+ }
+
+ return Builder.CreateShuffleVector(
+ V1, V2, createSequentialMask(0, NumElts1 + NumElts2, 0));
+}
+
+Value *llvm::concatenateVectors(IRBuilderBase &Builder,
+ ArrayRef<Value *> Vecs) {
+ unsigned NumVecs = Vecs.size();
+ assert(NumVecs > 1 && "Should be at least two vectors");
+
+ SmallVector<Value *, 8> ResList;
+ ResList.append(Vecs.begin(), Vecs.end());
+ do {
+ SmallVector<Value *, 8> TmpList;
+ for (unsigned i = 0; i < NumVecs - 1; i += 2) {
+ Value *V0 = ResList[i], *V1 = ResList[i + 1];
+ assert((V0->getType() == V1->getType() || i == NumVecs - 2) &&
+ "Only the last vector may have a different type");
+
+ TmpList.push_back(concatenateTwoVectors(Builder, V0, V1));
+ }
+
+ // Push the last vector if the total number of vectors is odd.
+ if (NumVecs % 2 != 0)
+ TmpList.push_back(ResList[NumVecs - 1]);
+
+ ResList = TmpList;
+ NumVecs = ResList.size();
+ } while (NumVecs > 1);
+
+ return ResList[0];
+}
+
+bool llvm::maskIsAllZeroOrUndef(Value *Mask) {
+ assert(isa<VectorType>(Mask->getType()) &&
+ isa<IntegerType>(Mask->getType()->getScalarType()) &&
+ cast<IntegerType>(Mask->getType()->getScalarType())->getBitWidth() ==
+ 1 &&
+ "Mask must be a vector of i1");
+
+ auto *ConstMask = dyn_cast<Constant>(Mask);
+ if (!ConstMask)
+ return false;
+ if (ConstMask->isNullValue() || isa<UndefValue>(ConstMask))
+ return true;
+ if (isa<ScalableVectorType>(ConstMask->getType()))
+ return false;
+ for (unsigned
+ I = 0,
+ E = cast<FixedVectorType>(ConstMask->getType())->getNumElements();
+ I != E; ++I) {
+ if (auto *MaskElt = ConstMask->getAggregateElement(I))
+ if (MaskElt->isNullValue() || isa<UndefValue>(MaskElt))
+ continue;
+ return false;
+ }
+ return true;
+}
+
+bool llvm::maskIsAllOneOrUndef(Value *Mask) {
+ assert(isa<VectorType>(Mask->getType()) &&
+ isa<IntegerType>(Mask->getType()->getScalarType()) &&
+ cast<IntegerType>(Mask->getType()->getScalarType())->getBitWidth() ==
+ 1 &&
+ "Mask must be a vector of i1");
+
+ auto *ConstMask = dyn_cast<Constant>(Mask);
+ if (!ConstMask)
+ return false;
+ if (ConstMask->isAllOnesValue() || isa<UndefValue>(ConstMask))
+ return true;
+ if (isa<ScalableVectorType>(ConstMask->getType()))
+ return false;
+ for (unsigned
+ I = 0,
+ E = cast<FixedVectorType>(ConstMask->getType())->getNumElements();
+ I != E; ++I) {
+ if (auto *MaskElt = ConstMask->getAggregateElement(I))
+ if (MaskElt->isAllOnesValue() || isa<UndefValue>(MaskElt))
+ continue;
+ return false;
+ }
+ return true;
+}
+
+/// TODO: This is a lot like known bits, but for
+/// vectors. Is there something we can common this with?
+APInt llvm::possiblyDemandedEltsInMask(Value *Mask) {
+ assert(isa<FixedVectorType>(Mask->getType()) &&
+ isa<IntegerType>(Mask->getType()->getScalarType()) &&
+ cast<IntegerType>(Mask->getType()->getScalarType())->getBitWidth() ==
+ 1 &&
+ "Mask must be a fixed width vector of i1");
+
+ const unsigned VWidth =
+ cast<FixedVectorType>(Mask->getType())->getNumElements();
+ APInt DemandedElts = APInt::getAllOnes(VWidth);
+ if (auto *CV = dyn_cast<ConstantVector>(Mask))
+ for (unsigned i = 0; i < VWidth; i++)
+ if (CV->getAggregateElement(i)->isNullValue())
+ DemandedElts.clearBit(i);
+ return DemandedElts;
+}
+
+bool InterleavedAccessInfo::isStrided(int Stride) {
+ unsigned Factor = std::abs(Stride);
+ return Factor >= 2 && Factor <= MaxInterleaveGroupFactor;
+}
+
+void InterleavedAccessInfo::collectConstStrideAccesses(
+ MapVector<Instruction *, StrideDescriptor> &AccessStrideInfo,
+ const ValueToValueMap &Strides) {
+ auto &DL = TheLoop->getHeader()->getModule()->getDataLayout();
+
+ // Since it's desired that the load/store instructions be maintained in
+ // "program order" for the interleaved access analysis, we have to visit the
+ // blocks in the loop in reverse postorder (i.e., in a topological order).
+ // Such an ordering will ensure that any load/store that may be executed
+ // before a second load/store will precede the second load/store in
+ // AccessStrideInfo.
+ LoopBlocksDFS DFS(TheLoop);
+ DFS.perform(LI);
+ for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO()))
+ for (auto &I : *BB) {
+ Value *Ptr = getLoadStorePointerOperand(&I);
+ if (!Ptr)
+ continue;
+ Type *ElementTy = getLoadStoreType(&I);
+
+ // Currently, codegen doesn't support cases where the type size doesn't
+ // match the alloc size. Skip them for now.
+ uint64_t Size = DL.getTypeAllocSize(ElementTy);
+ if (Size * 8 != DL.getTypeSizeInBits(ElementTy))
+ continue;
+
+ // We don't check wrapping here because we don't know yet if Ptr will be
+ // part of a full group or a group with gaps. Checking wrapping for all
+ // pointers (even those that end up in groups with no gaps) will be overly
+ // conservative. For full groups, wrapping should be ok since if we would
+ // wrap around the address space we would do a memory access at nullptr
+ // even without the transformation. The wrapping checks are therefore
+ // deferred until after we've formed the interleaved groups.
+ int64_t Stride =
+ getPtrStride(PSE, ElementTy, Ptr, TheLoop, Strides,
+ /*Assume=*/true, /*ShouldCheckWrap=*/false).value_or(0);
+
+ const SCEV *Scev = replaceSymbolicStrideSCEV(PSE, Strides, Ptr);
+ AccessStrideInfo[&I] = StrideDescriptor(Stride, Scev, Size,
+ getLoadStoreAlignment(&I));
+ }
+}
+
+// Analyze interleaved accesses and collect them into interleaved load and
+// store groups.
+//
+// When generating code for an interleaved load group, we effectively hoist all
+// loads in the group to the location of the first load in program order. When
+// generating code for an interleaved store group, we sink all stores to the
+// location of the last store. This code motion can change the order of load
+// and store instructions and may break dependences.
+//
+// The code generation strategy mentioned above ensures that we won't violate
+// any write-after-read (WAR) dependences.
+//
+// E.g., for the WAR dependence: a = A[i]; // (1)
+// A[i] = b; // (2)
+//
+// The store group of (2) is always inserted at or below (2), and the load
+// group of (1) is always inserted at or above (1). Thus, the instructions will
+// never be reordered. All other dependences are checked to ensure the
+// correctness of the instruction reordering.
+//
+// The algorithm visits all memory accesses in the loop in bottom-up program
+// order. Program order is established by traversing the blocks in the loop in
+// reverse postorder when collecting the accesses.
+//
+// We visit the memory accesses in bottom-up order because it can simplify the
+// construction of store groups in the presence of write-after-write (WAW)
+// dependences.
+//
+// E.g., for the WAW dependence: A[i] = a; // (1)
+// A[i] = b; // (2)
+// A[i + 1] = c; // (3)
+//
+// We will first create a store group with (3) and (2). (1) can't be added to
+// this group because it and (2) are dependent. However, (1) can be grouped
+// with other accesses that may precede it in program order. Note that a
+// bottom-up order does not imply that WAW dependences should not be checked.
+void InterleavedAccessInfo::analyzeInterleaving(
+ bool EnablePredicatedInterleavedMemAccesses) {
+ LLVM_DEBUG(dbgs() << "LV: Analyzing interleaved accesses...\n");
+ const ValueToValueMap &Strides = LAI->getSymbolicStrides();
+
+ // Holds all accesses with a constant stride.
+ MapVector<Instruction *, StrideDescriptor> AccessStrideInfo;
+ collectConstStrideAccesses(AccessStrideInfo, Strides);
+
+ if (AccessStrideInfo.empty())
+ return;
+
+ // Collect the dependences in the loop.
+ collectDependences();
+
+ // Holds all interleaved store groups temporarily.
+ SmallSetVector<InterleaveGroup<Instruction> *, 4> StoreGroups;
+ // Holds all interleaved load groups temporarily.
+ SmallSetVector<InterleaveGroup<Instruction> *, 4> LoadGroups;
+
+ // Search in bottom-up program order for pairs of accesses (A and B) that can
+ // form interleaved load or store groups. In the algorithm below, access A
+ // precedes access B in program order. We initialize a group for B in the
+ // outer loop of the algorithm, and then in the inner loop, we attempt to
+ // insert each A into B's group if:
+ //
+ // 1. A and B have the same stride,
+ // 2. A and B have the same memory object size, and
+ // 3. A belongs in B's group according to its distance from B.
+ //
+ // Special care is taken to ensure group formation will not break any
+ // dependences.
+ for (auto BI = AccessStrideInfo.rbegin(), E = AccessStrideInfo.rend();
+ BI != E; ++BI) {
+ Instruction *B = BI->first;
+ StrideDescriptor DesB = BI->second;
+
+ // Initialize a group for B if it has an allowable stride. Even if we don't
+ // create a group for B, we continue with the bottom-up algorithm to ensure
+ // we don't break any of B's dependences.
+ InterleaveGroup<Instruction> *Group = nullptr;
+ if (isStrided(DesB.Stride) &&
+ (!isPredicated(B->getParent()) || EnablePredicatedInterleavedMemAccesses)) {
+ Group = getInterleaveGroup(B);
+ if (!Group) {
+ LLVM_DEBUG(dbgs() << "LV: Creating an interleave group with:" << *B
+ << '\n');
+ Group = createInterleaveGroup(B, DesB.Stride, DesB.Alignment);
+ }
+ if (B->mayWriteToMemory())
+ StoreGroups.insert(Group);
+ else
+ LoadGroups.insert(Group);
+ }
+
+ for (auto AI = std::next(BI); AI != E; ++AI) {
+ Instruction *A = AI->first;
+ StrideDescriptor DesA = AI->second;
+
+ // Our code motion strategy implies that we can't have dependences
+ // between accesses in an interleaved group and other accesses located
+ // between the first and last member of the group. Note that this also
+ // means that a group can't have more than one member at a given offset.
+ // The accesses in a group can have dependences with other accesses, but
+ // we must ensure we don't extend the boundaries of the group such that
+ // we encompass those dependent accesses.
+ //
+ // For example, assume we have the sequence of accesses shown below in a
+ // stride-2 loop:
+ //
+ // (1, 2) is a group | A[i] = a; // (1)
+ // | A[i-1] = b; // (2) |
+ // A[i-3] = c; // (3)
+ // A[i] = d; // (4) | (2, 4) is not a group
+ //
+ // Because accesses (2) and (3) are dependent, we can group (2) with (1)
+ // but not with (4). If we did, the dependent access (3) would be within
+ // the boundaries of the (2, 4) group.
+ if (!canReorderMemAccessesForInterleavedGroups(&*AI, &*BI)) {
+ // If a dependence exists and A is already in a group, we know that A
+ // must be a store since A precedes B and WAR dependences are allowed.
+ // Thus, A would be sunk below B. We release A's group to prevent this
+ // illegal code motion. A will then be free to form another group with
+ // instructions that precede it.
+ if (isInterleaved(A)) {
+ InterleaveGroup<Instruction> *StoreGroup = getInterleaveGroup(A);
+
+ LLVM_DEBUG(dbgs() << "LV: Invalidated store group due to "
+ "dependence between " << *A << " and "<< *B << '\n');
+
+ StoreGroups.remove(StoreGroup);
+ releaseGroup(StoreGroup);
+ }
+
+ // If a dependence exists and A is not already in a group (or it was
+ // and we just released it), B might be hoisted above A (if B is a
+ // load) or another store might be sunk below A (if B is a store). In
+ // either case, we can't add additional instructions to B's group. B
+ // will only form a group with instructions that it precedes.
+ break;
+ }
+
+ // At this point, we've checked for illegal code motion. If either A or B
+ // isn't strided, there's nothing left to do.
+ if (!isStrided(DesA.Stride) || !isStrided(DesB.Stride))
+ continue;
+
+ // Ignore A if it's already in a group or isn't the same kind of memory
+ // operation as B.
+ // Note that mayReadFromMemory() isn't mutually exclusive to
+ // mayWriteToMemory in the case of atomic loads. We shouldn't see those
+ // here, canVectorizeMemory() should have returned false - except for the
+ // case we asked for optimization remarks.
+ if (isInterleaved(A) ||
+ (A->mayReadFromMemory() != B->mayReadFromMemory()) ||
+ (A->mayWriteToMemory() != B->mayWriteToMemory()))
+ continue;
+
+ // Check rules 1 and 2. Ignore A if its stride or size is different from
+ // that of B.
+ if (DesA.Stride != DesB.Stride || DesA.Size != DesB.Size)
+ continue;
+
+ // Ignore A if the memory object of A and B don't belong to the same
+ // address space
+ if (getLoadStoreAddressSpace(A) != getLoadStoreAddressSpace(B))
+ continue;
+
+ // Calculate the distance from A to B.
+ const SCEVConstant *DistToB = dyn_cast<SCEVConstant>(
+ PSE.getSE()->getMinusSCEV(DesA.Scev, DesB.Scev));
+ if (!DistToB)
+ continue;
+ int64_t DistanceToB = DistToB->getAPInt().getSExtValue();
+
+ // Check rule 3. Ignore A if its distance to B is not a multiple of the
+ // size.
+ if (DistanceToB % static_cast<int64_t>(DesB.Size))
+ continue;
+
+ // All members of a predicated interleave-group must have the same predicate,
+ // and currently must reside in the same BB.
+ BasicBlock *BlockA = A->getParent();
+ BasicBlock *BlockB = B->getParent();
+ if ((isPredicated(BlockA) || isPredicated(BlockB)) &&
+ (!EnablePredicatedInterleavedMemAccesses || BlockA != BlockB))
+ continue;
+
+ // The index of A is the index of B plus A's distance to B in multiples
+ // of the size.
+ int IndexA =
+ Group->getIndex(B) + DistanceToB / static_cast<int64_t>(DesB.Size);
+
+ // Try to insert A into B's group.
+ if (Group->insertMember(A, IndexA, DesA.Alignment)) {
+ LLVM_DEBUG(dbgs() << "LV: Inserted:" << *A << '\n'
+ << " into the interleave group with" << *B
+ << '\n');
+ InterleaveGroupMap[A] = Group;
+
+ // Set the first load in program order as the insert position.
+ if (A->mayReadFromMemory())
+ Group->setInsertPos(A);
+ }
+ } // Iteration over A accesses.
+ } // Iteration over B accesses.
+
+ auto InvalidateGroupIfMemberMayWrap = [&](InterleaveGroup<Instruction> *Group,
+ int Index,
+ std::string FirstOrLast) -> bool {
+ Instruction *Member = Group->getMember(Index);
+ assert(Member && "Group member does not exist");
+ Value *MemberPtr = getLoadStorePointerOperand(Member);
+ Type *AccessTy = getLoadStoreType(Member);
+ if (getPtrStride(PSE, AccessTy, MemberPtr, TheLoop, Strides,
+ /*Assume=*/false, /*ShouldCheckWrap=*/true).value_or(0))
+ return false;
+ LLVM_DEBUG(dbgs() << "LV: Invalidate candidate interleaved group due to "
+ << FirstOrLast
+ << " group member potentially pointer-wrapping.\n");
+ releaseGroup(Group);
+ return true;
+ };
+
+ // Remove interleaved groups with gaps whose memory
+ // accesses may wrap around. We have to revisit the getPtrStride analysis,
+ // this time with ShouldCheckWrap=true, since collectConstStrideAccesses does
+ // not check wrapping (see documentation there).
+ // FORNOW we use Assume=false;
+ // TODO: Change to Assume=true but making sure we don't exceed the threshold
+ // of runtime SCEV assumptions checks (thereby potentially failing to
+ // vectorize altogether).
+ // Additional optional optimizations:
+ // TODO: If we are peeling the loop and we know that the first pointer doesn't
+ // wrap then we can deduce that all pointers in the group don't wrap.
+ // This means that we can forcefully peel the loop in order to only have to
+ // check the first pointer for no-wrap. When we'll change to use Assume=true
+ // we'll only need at most one runtime check per interleaved group.
+ for (auto *Group : LoadGroups) {
+ // Case 1: A full group. Can Skip the checks; For full groups, if the wide
+ // load would wrap around the address space we would do a memory access at
+ // nullptr even without the transformation.
+ if (Group->getNumMembers() == Group->getFactor())
+ continue;
+
+ // Case 2: If first and last members of the group don't wrap this implies
+ // that all the pointers in the group don't wrap.
+ // So we check only group member 0 (which is always guaranteed to exist),
+ // and group member Factor - 1; If the latter doesn't exist we rely on
+ // peeling (if it is a non-reversed accsess -- see Case 3).
+ if (InvalidateGroupIfMemberMayWrap(Group, 0, std::string("first")))
+ continue;
+ if (Group->getMember(Group->getFactor() - 1))
+ InvalidateGroupIfMemberMayWrap(Group, Group->getFactor() - 1,
+ std::string("last"));
+ else {
+ // Case 3: A non-reversed interleaved load group with gaps: We need
+ // to execute at least one scalar epilogue iteration. This will ensure
+ // we don't speculatively access memory out-of-bounds. We only need
+ // to look for a member at index factor - 1, since every group must have
+ // a member at index zero.
+ if (Group->isReverse()) {
+ LLVM_DEBUG(
+ dbgs() << "LV: Invalidate candidate interleaved group due to "
+ "a reverse access with gaps.\n");
+ releaseGroup(Group);
+ continue;
+ }
+ LLVM_DEBUG(
+ dbgs() << "LV: Interleaved group requires epilogue iteration.\n");
+ RequiresScalarEpilogue = true;
+ }
+ }
+
+ for (auto *Group : StoreGroups) {
+ // Case 1: A full group. Can Skip the checks; For full groups, if the wide
+ // store would wrap around the address space we would do a memory access at
+ // nullptr even without the transformation.
+ if (Group->getNumMembers() == Group->getFactor())
+ continue;
+
+ // Interleave-store-group with gaps is implemented using masked wide store.
+ // Remove interleaved store groups with gaps if
+ // masked-interleaved-accesses are not enabled by the target.
+ if (!EnablePredicatedInterleavedMemAccesses) {
+ LLVM_DEBUG(
+ dbgs() << "LV: Invalidate candidate interleaved store group due "
+ "to gaps.\n");
+ releaseGroup(Group);
+ continue;
+ }
+
+ // Case 2: If first and last members of the group don't wrap this implies
+ // that all the pointers in the group don't wrap.
+ // So we check only group member 0 (which is always guaranteed to exist),
+ // and the last group member. Case 3 (scalar epilog) is not relevant for
+ // stores with gaps, which are implemented with masked-store (rather than
+ // speculative access, as in loads).
+ if (InvalidateGroupIfMemberMayWrap(Group, 0, std::string("first")))
+ continue;
+ for (int Index = Group->getFactor() - 1; Index > 0; Index--)
+ if (Group->getMember(Index)) {
+ InvalidateGroupIfMemberMayWrap(Group, Index, std::string("last"));
+ break;
+ }
+ }
+}
+
+void InterleavedAccessInfo::invalidateGroupsRequiringScalarEpilogue() {
+ // If no group had triggered the requirement to create an epilogue loop,
+ // there is nothing to do.
+ if (!requiresScalarEpilogue())
+ return;
+
+ bool ReleasedGroup = false;
+ // Release groups requiring scalar epilogues. Note that this also removes them
+ // from InterleaveGroups.
+ for (auto *Group : make_early_inc_range(InterleaveGroups)) {
+ if (!Group->requiresScalarEpilogue())
+ continue;
+ LLVM_DEBUG(
+ dbgs()
+ << "LV: Invalidate candidate interleaved group due to gaps that "
+ "require a scalar epilogue (not allowed under optsize) and cannot "
+ "be masked (not enabled). \n");
+ releaseGroup(Group);
+ ReleasedGroup = true;
+ }
+ assert(ReleasedGroup && "At least one group must be invalidated, as a "
+ "scalar epilogue was required");
+ (void)ReleasedGroup;
+ RequiresScalarEpilogue = false;
+}
+
+template <typename InstT>
+void InterleaveGroup<InstT>::addMetadata(InstT *NewInst) const {
+ llvm_unreachable("addMetadata can only be used for Instruction");
+}
+
+namespace llvm {
+template <>
+void InterleaveGroup<Instruction>::addMetadata(Instruction *NewInst) const {
+ SmallVector<Value *, 4> VL;
+ std::transform(Members.begin(), Members.end(), std::back_inserter(VL),
+ [](std::pair<int, Instruction *> p) { return p.second; });
+ propagateMetadata(NewInst, VL);
+}
+}
+
+std::string VFABI::mangleTLIVectorName(StringRef VectorName,
+ StringRef ScalarName, unsigned numArgs,
+ ElementCount VF) {
+ SmallString<256> Buffer;
+ llvm::raw_svector_ostream Out(Buffer);
+ Out << "_ZGV" << VFABI::_LLVM_ << "N";
+ if (VF.isScalable())
+ Out << 'x';
+ else
+ Out << VF.getFixedValue();
+ for (unsigned I = 0; I < numArgs; ++I)
+ Out << "v";
+ Out << "_" << ScalarName << "(" << VectorName << ")";
+ return std::string(Out.str());
+}
+
+void VFABI::getVectorVariantNames(
+ const CallInst &CI, SmallVectorImpl<std::string> &VariantMappings) {
+ const StringRef S = CI.getFnAttr(VFABI::MappingsAttrName).getValueAsString();
+ if (S.empty())
+ return;
+
+ SmallVector<StringRef, 8> ListAttr;
+ S.split(ListAttr, ",");
+
+ for (const auto &S : SetVector<StringRef>(ListAttr.begin(), ListAttr.end())) {
+#ifndef NDEBUG
+ LLVM_DEBUG(dbgs() << "VFABI: adding mapping '" << S << "'\n");
+ std::optional<VFInfo> Info =
+ VFABI::tryDemangleForVFABI(S, *(CI.getModule()));
+ assert(Info && "Invalid name for a VFABI variant.");
+ assert(CI.getModule()->getFunction(Info->VectorName) &&
+ "Vector function is missing.");
+#endif
+ VariantMappings.push_back(std::string(S));
+ }
+}
+
+bool VFShape::hasValidParameterList() const {
+ for (unsigned Pos = 0, NumParams = Parameters.size(); Pos < NumParams;
+ ++Pos) {
+ assert(Parameters[Pos].ParamPos == Pos && "Broken parameter list.");
+
+ switch (Parameters[Pos].ParamKind) {
+ default: // Nothing to check.
+ break;
+ case VFParamKind::OMP_Linear:
+ case VFParamKind::OMP_LinearRef:
+ case VFParamKind::OMP_LinearVal:
+ case VFParamKind::OMP_LinearUVal:
+ // Compile time linear steps must be non-zero.
+ if (Parameters[Pos].LinearStepOrPos == 0)
+ return false;
+ break;
+ case VFParamKind::OMP_LinearPos:
+ case VFParamKind::OMP_LinearRefPos:
+ case VFParamKind::OMP_LinearValPos:
+ case VFParamKind::OMP_LinearUValPos:
+ // The runtime linear step must be referring to some other
+ // parameters in the signature.
+ if (Parameters[Pos].LinearStepOrPos >= int(NumParams))
+ return false;
+ // The linear step parameter must be marked as uniform.
+ if (Parameters[Parameters[Pos].LinearStepOrPos].ParamKind !=
+ VFParamKind::OMP_Uniform)
+ return false;
+ // The linear step parameter can't point at itself.
+ if (Parameters[Pos].LinearStepOrPos == int(Pos))
+ return false;
+ break;
+ case VFParamKind::GlobalPredicate:
+ // The global predicate must be the unique. Can be placed anywhere in the
+ // signature.
+ for (unsigned NextPos = Pos + 1; NextPos < NumParams; ++NextPos)
+ if (Parameters[NextPos].ParamKind == VFParamKind::GlobalPredicate)
+ return false;
+ break;
+ }
+ }
+ return true;
+}