aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm-project/llvm/lib/CodeGen/AsmPrinter/CodeViewDebug.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm-project/llvm/lib/CodeGen/AsmPrinter/CodeViewDebug.cpp')
-rw-r--r--contrib/llvm-project/llvm/lib/CodeGen/AsmPrinter/CodeViewDebug.cpp3444
1 files changed, 3444 insertions, 0 deletions
diff --git a/contrib/llvm-project/llvm/lib/CodeGen/AsmPrinter/CodeViewDebug.cpp b/contrib/llvm-project/llvm/lib/CodeGen/AsmPrinter/CodeViewDebug.cpp
new file mode 100644
index 000000000000..8161de57b58e
--- /dev/null
+++ b/contrib/llvm-project/llvm/lib/CodeGen/AsmPrinter/CodeViewDebug.cpp
@@ -0,0 +1,3444 @@
+//===- llvm/lib/CodeGen/AsmPrinter/CodeViewDebug.cpp ----------------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains support for writing Microsoft CodeView debug info.
+//
+//===----------------------------------------------------------------------===//
+
+#include "CodeViewDebug.h"
+#include "llvm/ADT/APSInt.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/SmallString.h"
+#include "llvm/ADT/StringRef.h"
+#include "llvm/ADT/TinyPtrVector.h"
+#include "llvm/ADT/Twine.h"
+#include "llvm/BinaryFormat/COFF.h"
+#include "llvm/BinaryFormat/Dwarf.h"
+#include "llvm/CodeGen/AsmPrinter.h"
+#include "llvm/CodeGen/LexicalScopes.h"
+#include "llvm/CodeGen/MachineFrameInfo.h"
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/MachineInstr.h"
+#include "llvm/CodeGen/MachineModuleInfo.h"
+#include "llvm/CodeGen/TargetFrameLowering.h"
+#include "llvm/CodeGen/TargetRegisterInfo.h"
+#include "llvm/CodeGen/TargetSubtargetInfo.h"
+#include "llvm/Config/llvm-config.h"
+#include "llvm/DebugInfo/CodeView/CVTypeVisitor.h"
+#include "llvm/DebugInfo/CodeView/CodeViewRecordIO.h"
+#include "llvm/DebugInfo/CodeView/ContinuationRecordBuilder.h"
+#include "llvm/DebugInfo/CodeView/DebugInlineeLinesSubsection.h"
+#include "llvm/DebugInfo/CodeView/EnumTables.h"
+#include "llvm/DebugInfo/CodeView/Line.h"
+#include "llvm/DebugInfo/CodeView/SymbolRecord.h"
+#include "llvm/DebugInfo/CodeView/TypeRecord.h"
+#include "llvm/DebugInfo/CodeView/TypeTableCollection.h"
+#include "llvm/DebugInfo/CodeView/TypeVisitorCallbackPipeline.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/DebugInfoMetadata.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/GlobalValue.h"
+#include "llvm/IR/GlobalVariable.h"
+#include "llvm/IR/Metadata.h"
+#include "llvm/IR/Module.h"
+#include "llvm/MC/MCAsmInfo.h"
+#include "llvm/MC/MCContext.h"
+#include "llvm/MC/MCSectionCOFF.h"
+#include "llvm/MC/MCStreamer.h"
+#include "llvm/MC/MCSymbol.h"
+#include "llvm/Support/BinaryStreamWriter.h"
+#include "llvm/Support/Casting.h"
+#include "llvm/Support/Endian.h"
+#include "llvm/Support/Error.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/FormatVariadic.h"
+#include "llvm/Support/Path.h"
+#include "llvm/Support/Program.h"
+#include "llvm/Support/SMLoc.h"
+#include "llvm/Support/ScopedPrinter.h"
+#include "llvm/Target/TargetLoweringObjectFile.h"
+#include "llvm/Target/TargetMachine.h"
+#include "llvm/TargetParser/Triple.h"
+#include <algorithm>
+#include <cassert>
+#include <cctype>
+#include <cstddef>
+#include <iterator>
+#include <limits>
+
+using namespace llvm;
+using namespace llvm::codeview;
+
+namespace {
+class CVMCAdapter : public CodeViewRecordStreamer {
+public:
+ CVMCAdapter(MCStreamer &OS, TypeCollection &TypeTable)
+ : OS(&OS), TypeTable(TypeTable) {}
+
+ void emitBytes(StringRef Data) override { OS->emitBytes(Data); }
+
+ void emitIntValue(uint64_t Value, unsigned Size) override {
+ OS->emitIntValueInHex(Value, Size);
+ }
+
+ void emitBinaryData(StringRef Data) override { OS->emitBinaryData(Data); }
+
+ void AddComment(const Twine &T) override { OS->AddComment(T); }
+
+ void AddRawComment(const Twine &T) override { OS->emitRawComment(T); }
+
+ bool isVerboseAsm() override { return OS->isVerboseAsm(); }
+
+ std::string getTypeName(TypeIndex TI) override {
+ std::string TypeName;
+ if (!TI.isNoneType()) {
+ if (TI.isSimple())
+ TypeName = std::string(TypeIndex::simpleTypeName(TI));
+ else
+ TypeName = std::string(TypeTable.getTypeName(TI));
+ }
+ return TypeName;
+ }
+
+private:
+ MCStreamer *OS = nullptr;
+ TypeCollection &TypeTable;
+};
+} // namespace
+
+static CPUType mapArchToCVCPUType(Triple::ArchType Type) {
+ switch (Type) {
+ case Triple::ArchType::x86:
+ return CPUType::Pentium3;
+ case Triple::ArchType::x86_64:
+ return CPUType::X64;
+ case Triple::ArchType::thumb:
+ // LLVM currently doesn't support Windows CE and so thumb
+ // here is indiscriminately mapped to ARMNT specifically.
+ return CPUType::ARMNT;
+ case Triple::ArchType::aarch64:
+ return CPUType::ARM64;
+ default:
+ report_fatal_error("target architecture doesn't map to a CodeView CPUType");
+ }
+}
+
+CodeViewDebug::CodeViewDebug(AsmPrinter *AP)
+ : DebugHandlerBase(AP), OS(*Asm->OutStreamer), TypeTable(Allocator) {}
+
+StringRef CodeViewDebug::getFullFilepath(const DIFile *File) {
+ std::string &Filepath = FileToFilepathMap[File];
+ if (!Filepath.empty())
+ return Filepath;
+
+ StringRef Dir = File->getDirectory(), Filename = File->getFilename();
+
+ // If this is a Unix-style path, just use it as is. Don't try to canonicalize
+ // it textually because one of the path components could be a symlink.
+ if (Dir.startswith("/") || Filename.startswith("/")) {
+ if (llvm::sys::path::is_absolute(Filename, llvm::sys::path::Style::posix))
+ return Filename;
+ Filepath = std::string(Dir);
+ if (Dir.back() != '/')
+ Filepath += '/';
+ Filepath += Filename;
+ return Filepath;
+ }
+
+ // Clang emits directory and relative filename info into the IR, but CodeView
+ // operates on full paths. We could change Clang to emit full paths too, but
+ // that would increase the IR size and probably not needed for other users.
+ // For now, just concatenate and canonicalize the path here.
+ if (Filename.find(':') == 1)
+ Filepath = std::string(Filename);
+ else
+ Filepath = (Dir + "\\" + Filename).str();
+
+ // Canonicalize the path. We have to do it textually because we may no longer
+ // have access the file in the filesystem.
+ // First, replace all slashes with backslashes.
+ std::replace(Filepath.begin(), Filepath.end(), '/', '\\');
+
+ // Remove all "\.\" with "\".
+ size_t Cursor = 0;
+ while ((Cursor = Filepath.find("\\.\\", Cursor)) != std::string::npos)
+ Filepath.erase(Cursor, 2);
+
+ // Replace all "\XXX\..\" with "\". Don't try too hard though as the original
+ // path should be well-formatted, e.g. start with a drive letter, etc.
+ Cursor = 0;
+ while ((Cursor = Filepath.find("\\..\\", Cursor)) != std::string::npos) {
+ // Something's wrong if the path starts with "\..\", abort.
+ if (Cursor == 0)
+ break;
+
+ size_t PrevSlash = Filepath.rfind('\\', Cursor - 1);
+ if (PrevSlash == std::string::npos)
+ // Something's wrong, abort.
+ break;
+
+ Filepath.erase(PrevSlash, Cursor + 3 - PrevSlash);
+ // The next ".." might be following the one we've just erased.
+ Cursor = PrevSlash;
+ }
+
+ // Remove all duplicate backslashes.
+ Cursor = 0;
+ while ((Cursor = Filepath.find("\\\\", Cursor)) != std::string::npos)
+ Filepath.erase(Cursor, 1);
+
+ return Filepath;
+}
+
+unsigned CodeViewDebug::maybeRecordFile(const DIFile *F) {
+ StringRef FullPath = getFullFilepath(F);
+ unsigned NextId = FileIdMap.size() + 1;
+ auto Insertion = FileIdMap.insert(std::make_pair(FullPath, NextId));
+ if (Insertion.second) {
+ // We have to compute the full filepath and emit a .cv_file directive.
+ ArrayRef<uint8_t> ChecksumAsBytes;
+ FileChecksumKind CSKind = FileChecksumKind::None;
+ if (F->getChecksum()) {
+ std::string Checksum = fromHex(F->getChecksum()->Value);
+ void *CKMem = OS.getContext().allocate(Checksum.size(), 1);
+ memcpy(CKMem, Checksum.data(), Checksum.size());
+ ChecksumAsBytes = ArrayRef<uint8_t>(
+ reinterpret_cast<const uint8_t *>(CKMem), Checksum.size());
+ switch (F->getChecksum()->Kind) {
+ case DIFile::CSK_MD5:
+ CSKind = FileChecksumKind::MD5;
+ break;
+ case DIFile::CSK_SHA1:
+ CSKind = FileChecksumKind::SHA1;
+ break;
+ case DIFile::CSK_SHA256:
+ CSKind = FileChecksumKind::SHA256;
+ break;
+ }
+ }
+ bool Success = OS.emitCVFileDirective(NextId, FullPath, ChecksumAsBytes,
+ static_cast<unsigned>(CSKind));
+ (void)Success;
+ assert(Success && ".cv_file directive failed");
+ }
+ return Insertion.first->second;
+}
+
+CodeViewDebug::InlineSite &
+CodeViewDebug::getInlineSite(const DILocation *InlinedAt,
+ const DISubprogram *Inlinee) {
+ auto SiteInsertion = CurFn->InlineSites.insert({InlinedAt, InlineSite()});
+ InlineSite *Site = &SiteInsertion.first->second;
+ if (SiteInsertion.second) {
+ unsigned ParentFuncId = CurFn->FuncId;
+ if (const DILocation *OuterIA = InlinedAt->getInlinedAt())
+ ParentFuncId =
+ getInlineSite(OuterIA, InlinedAt->getScope()->getSubprogram())
+ .SiteFuncId;
+
+ Site->SiteFuncId = NextFuncId++;
+ OS.emitCVInlineSiteIdDirective(
+ Site->SiteFuncId, ParentFuncId, maybeRecordFile(InlinedAt->getFile()),
+ InlinedAt->getLine(), InlinedAt->getColumn(), SMLoc());
+ Site->Inlinee = Inlinee;
+ InlinedSubprograms.insert(Inlinee);
+ getFuncIdForSubprogram(Inlinee);
+ }
+ return *Site;
+}
+
+static StringRef getPrettyScopeName(const DIScope *Scope) {
+ StringRef ScopeName = Scope->getName();
+ if (!ScopeName.empty())
+ return ScopeName;
+
+ switch (Scope->getTag()) {
+ case dwarf::DW_TAG_enumeration_type:
+ case dwarf::DW_TAG_class_type:
+ case dwarf::DW_TAG_structure_type:
+ case dwarf::DW_TAG_union_type:
+ return "<unnamed-tag>";
+ case dwarf::DW_TAG_namespace:
+ return "`anonymous namespace'";
+ default:
+ return StringRef();
+ }
+}
+
+const DISubprogram *CodeViewDebug::collectParentScopeNames(
+ const DIScope *Scope, SmallVectorImpl<StringRef> &QualifiedNameComponents) {
+ const DISubprogram *ClosestSubprogram = nullptr;
+ while (Scope != nullptr) {
+ if (ClosestSubprogram == nullptr)
+ ClosestSubprogram = dyn_cast<DISubprogram>(Scope);
+
+ // If a type appears in a scope chain, make sure it gets emitted. The
+ // frontend will be responsible for deciding if this should be a forward
+ // declaration or a complete type.
+ if (const auto *Ty = dyn_cast<DICompositeType>(Scope))
+ DeferredCompleteTypes.push_back(Ty);
+
+ StringRef ScopeName = getPrettyScopeName(Scope);
+ if (!ScopeName.empty())
+ QualifiedNameComponents.push_back(ScopeName);
+ Scope = Scope->getScope();
+ }
+ return ClosestSubprogram;
+}
+
+static std::string formatNestedName(ArrayRef<StringRef> QualifiedNameComponents,
+ StringRef TypeName) {
+ std::string FullyQualifiedName;
+ for (StringRef QualifiedNameComponent :
+ llvm::reverse(QualifiedNameComponents)) {
+ FullyQualifiedName.append(std::string(QualifiedNameComponent));
+ FullyQualifiedName.append("::");
+ }
+ FullyQualifiedName.append(std::string(TypeName));
+ return FullyQualifiedName;
+}
+
+struct CodeViewDebug::TypeLoweringScope {
+ TypeLoweringScope(CodeViewDebug &CVD) : CVD(CVD) { ++CVD.TypeEmissionLevel; }
+ ~TypeLoweringScope() {
+ // Don't decrement TypeEmissionLevel until after emitting deferred types, so
+ // inner TypeLoweringScopes don't attempt to emit deferred types.
+ if (CVD.TypeEmissionLevel == 1)
+ CVD.emitDeferredCompleteTypes();
+ --CVD.TypeEmissionLevel;
+ }
+ CodeViewDebug &CVD;
+};
+
+std::string CodeViewDebug::getFullyQualifiedName(const DIScope *Scope,
+ StringRef Name) {
+ // Ensure types in the scope chain are emitted as soon as possible.
+ // This can create otherwise a situation where S_UDTs are emitted while
+ // looping in emitDebugInfoForUDTs.
+ TypeLoweringScope S(*this);
+ SmallVector<StringRef, 5> QualifiedNameComponents;
+ collectParentScopeNames(Scope, QualifiedNameComponents);
+ return formatNestedName(QualifiedNameComponents, Name);
+}
+
+std::string CodeViewDebug::getFullyQualifiedName(const DIScope *Ty) {
+ const DIScope *Scope = Ty->getScope();
+ return getFullyQualifiedName(Scope, getPrettyScopeName(Ty));
+}
+
+TypeIndex CodeViewDebug::getScopeIndex(const DIScope *Scope) {
+ // No scope means global scope and that uses the zero index.
+ //
+ // We also use zero index when the scope is a DISubprogram
+ // to suppress the emission of LF_STRING_ID for the function,
+ // which can trigger a link-time error with the linker in
+ // VS2019 version 16.11.2 or newer.
+ // Note, however, skipping the debug info emission for the DISubprogram
+ // is a temporary fix. The root issue here is that we need to figure out
+ // the proper way to encode a function nested in another function
+ // (as introduced by the Fortran 'contains' keyword) in CodeView.
+ if (!Scope || isa<DIFile>(Scope) || isa<DISubprogram>(Scope))
+ return TypeIndex();
+
+ assert(!isa<DIType>(Scope) && "shouldn't make a namespace scope for a type");
+
+ // Check if we've already translated this scope.
+ auto I = TypeIndices.find({Scope, nullptr});
+ if (I != TypeIndices.end())
+ return I->second;
+
+ // Build the fully qualified name of the scope.
+ std::string ScopeName = getFullyQualifiedName(Scope);
+ StringIdRecord SID(TypeIndex(), ScopeName);
+ auto TI = TypeTable.writeLeafType(SID);
+ return recordTypeIndexForDINode(Scope, TI);
+}
+
+static StringRef removeTemplateArgs(StringRef Name) {
+ // Remove template args from the display name. Assume that the template args
+ // are the last thing in the name.
+ if (Name.empty() || Name.back() != '>')
+ return Name;
+
+ int OpenBrackets = 0;
+ for (int i = Name.size() - 1; i >= 0; --i) {
+ if (Name[i] == '>')
+ ++OpenBrackets;
+ else if (Name[i] == '<') {
+ --OpenBrackets;
+ if (OpenBrackets == 0)
+ return Name.substr(0, i);
+ }
+ }
+ return Name;
+}
+
+TypeIndex CodeViewDebug::getFuncIdForSubprogram(const DISubprogram *SP) {
+ assert(SP);
+
+ // Check if we've already translated this subprogram.
+ auto I = TypeIndices.find({SP, nullptr});
+ if (I != TypeIndices.end())
+ return I->second;
+
+ // The display name includes function template arguments. Drop them to match
+ // MSVC. We need to have the template arguments in the DISubprogram name
+ // because they are used in other symbol records, such as S_GPROC32_IDs.
+ StringRef DisplayName = removeTemplateArgs(SP->getName());
+
+ const DIScope *Scope = SP->getScope();
+ TypeIndex TI;
+ if (const auto *Class = dyn_cast_or_null<DICompositeType>(Scope)) {
+ // If the scope is a DICompositeType, then this must be a method. Member
+ // function types take some special handling, and require access to the
+ // subprogram.
+ TypeIndex ClassType = getTypeIndex(Class);
+ MemberFuncIdRecord MFuncId(ClassType, getMemberFunctionType(SP, Class),
+ DisplayName);
+ TI = TypeTable.writeLeafType(MFuncId);
+ } else {
+ // Otherwise, this must be a free function.
+ TypeIndex ParentScope = getScopeIndex(Scope);
+ FuncIdRecord FuncId(ParentScope, getTypeIndex(SP->getType()), DisplayName);
+ TI = TypeTable.writeLeafType(FuncId);
+ }
+
+ return recordTypeIndexForDINode(SP, TI);
+}
+
+static bool isNonTrivial(const DICompositeType *DCTy) {
+ return ((DCTy->getFlags() & DINode::FlagNonTrivial) == DINode::FlagNonTrivial);
+}
+
+static FunctionOptions
+getFunctionOptions(const DISubroutineType *Ty,
+ const DICompositeType *ClassTy = nullptr,
+ StringRef SPName = StringRef("")) {
+ FunctionOptions FO = FunctionOptions::None;
+ const DIType *ReturnTy = nullptr;
+ if (auto TypeArray = Ty->getTypeArray()) {
+ if (TypeArray.size())
+ ReturnTy = TypeArray[0];
+ }
+
+ // Add CxxReturnUdt option to functions that return nontrivial record types
+ // or methods that return record types.
+ if (auto *ReturnDCTy = dyn_cast_or_null<DICompositeType>(ReturnTy))
+ if (isNonTrivial(ReturnDCTy) || ClassTy)
+ FO |= FunctionOptions::CxxReturnUdt;
+
+ // DISubroutineType is unnamed. Use DISubprogram's i.e. SPName in comparison.
+ if (ClassTy && isNonTrivial(ClassTy) && SPName == ClassTy->getName()) {
+ FO |= FunctionOptions::Constructor;
+
+ // TODO: put the FunctionOptions::ConstructorWithVirtualBases flag.
+
+ }
+ return FO;
+}
+
+TypeIndex CodeViewDebug::getMemberFunctionType(const DISubprogram *SP,
+ const DICompositeType *Class) {
+ // Always use the method declaration as the key for the function type. The
+ // method declaration contains the this adjustment.
+ if (SP->getDeclaration())
+ SP = SP->getDeclaration();
+ assert(!SP->getDeclaration() && "should use declaration as key");
+
+ // Key the MemberFunctionRecord into the map as {SP, Class}. It won't collide
+ // with the MemberFuncIdRecord, which is keyed in as {SP, nullptr}.
+ auto I = TypeIndices.find({SP, Class});
+ if (I != TypeIndices.end())
+ return I->second;
+
+ // Make sure complete type info for the class is emitted *after* the member
+ // function type, as the complete class type is likely to reference this
+ // member function type.
+ TypeLoweringScope S(*this);
+ const bool IsStaticMethod = (SP->getFlags() & DINode::FlagStaticMember) != 0;
+
+ FunctionOptions FO = getFunctionOptions(SP->getType(), Class, SP->getName());
+ TypeIndex TI = lowerTypeMemberFunction(
+ SP->getType(), Class, SP->getThisAdjustment(), IsStaticMethod, FO);
+ return recordTypeIndexForDINode(SP, TI, Class);
+}
+
+TypeIndex CodeViewDebug::recordTypeIndexForDINode(const DINode *Node,
+ TypeIndex TI,
+ const DIType *ClassTy) {
+ auto InsertResult = TypeIndices.insert({{Node, ClassTy}, TI});
+ (void)InsertResult;
+ assert(InsertResult.second && "DINode was already assigned a type index");
+ return TI;
+}
+
+unsigned CodeViewDebug::getPointerSizeInBytes() {
+ return MMI->getModule()->getDataLayout().getPointerSizeInBits() / 8;
+}
+
+void CodeViewDebug::recordLocalVariable(LocalVariable &&Var,
+ const LexicalScope *LS) {
+ if (const DILocation *InlinedAt = LS->getInlinedAt()) {
+ // This variable was inlined. Associate it with the InlineSite.
+ const DISubprogram *Inlinee = Var.DIVar->getScope()->getSubprogram();
+ InlineSite &Site = getInlineSite(InlinedAt, Inlinee);
+ Site.InlinedLocals.emplace_back(std::move(Var));
+ } else {
+ // This variable goes into the corresponding lexical scope.
+ ScopeVariables[LS].emplace_back(std::move(Var));
+ }
+}
+
+static void addLocIfNotPresent(SmallVectorImpl<const DILocation *> &Locs,
+ const DILocation *Loc) {
+ if (!llvm::is_contained(Locs, Loc))
+ Locs.push_back(Loc);
+}
+
+void CodeViewDebug::maybeRecordLocation(const DebugLoc &DL,
+ const MachineFunction *MF) {
+ // Skip this instruction if it has the same location as the previous one.
+ if (!DL || DL == PrevInstLoc)
+ return;
+
+ const DIScope *Scope = DL->getScope();
+ if (!Scope)
+ return;
+
+ // Skip this line if it is longer than the maximum we can record.
+ LineInfo LI(DL.getLine(), DL.getLine(), /*IsStatement=*/true);
+ if (LI.getStartLine() != DL.getLine() || LI.isAlwaysStepInto() ||
+ LI.isNeverStepInto())
+ return;
+
+ ColumnInfo CI(DL.getCol(), /*EndColumn=*/0);
+ if (CI.getStartColumn() != DL.getCol())
+ return;
+
+ if (!CurFn->HaveLineInfo)
+ CurFn->HaveLineInfo = true;
+ unsigned FileId = 0;
+ if (PrevInstLoc.get() && PrevInstLoc->getFile() == DL->getFile())
+ FileId = CurFn->LastFileId;
+ else
+ FileId = CurFn->LastFileId = maybeRecordFile(DL->getFile());
+ PrevInstLoc = DL;
+
+ unsigned FuncId = CurFn->FuncId;
+ if (const DILocation *SiteLoc = DL->getInlinedAt()) {
+ const DILocation *Loc = DL.get();
+
+ // If this location was actually inlined from somewhere else, give it the ID
+ // of the inline call site.
+ FuncId =
+ getInlineSite(SiteLoc, Loc->getScope()->getSubprogram()).SiteFuncId;
+
+ // Ensure we have links in the tree of inline call sites.
+ bool FirstLoc = true;
+ while ((SiteLoc = Loc->getInlinedAt())) {
+ InlineSite &Site =
+ getInlineSite(SiteLoc, Loc->getScope()->getSubprogram());
+ if (!FirstLoc)
+ addLocIfNotPresent(Site.ChildSites, Loc);
+ FirstLoc = false;
+ Loc = SiteLoc;
+ }
+ addLocIfNotPresent(CurFn->ChildSites, Loc);
+ }
+
+ OS.emitCVLocDirective(FuncId, FileId, DL.getLine(), DL.getCol(),
+ /*PrologueEnd=*/false, /*IsStmt=*/false,
+ DL->getFilename(), SMLoc());
+}
+
+void CodeViewDebug::emitCodeViewMagicVersion() {
+ OS.emitValueToAlignment(Align(4));
+ OS.AddComment("Debug section magic");
+ OS.emitInt32(COFF::DEBUG_SECTION_MAGIC);
+}
+
+static SourceLanguage MapDWLangToCVLang(unsigned DWLang) {
+ switch (DWLang) {
+ case dwarf::DW_LANG_C:
+ case dwarf::DW_LANG_C89:
+ case dwarf::DW_LANG_C99:
+ case dwarf::DW_LANG_C11:
+ return SourceLanguage::C;
+ case dwarf::DW_LANG_C_plus_plus:
+ case dwarf::DW_LANG_C_plus_plus_03:
+ case dwarf::DW_LANG_C_plus_plus_11:
+ case dwarf::DW_LANG_C_plus_plus_14:
+ return SourceLanguage::Cpp;
+ case dwarf::DW_LANG_Fortran77:
+ case dwarf::DW_LANG_Fortran90:
+ case dwarf::DW_LANG_Fortran95:
+ case dwarf::DW_LANG_Fortran03:
+ case dwarf::DW_LANG_Fortran08:
+ return SourceLanguage::Fortran;
+ case dwarf::DW_LANG_Pascal83:
+ return SourceLanguage::Pascal;
+ case dwarf::DW_LANG_Cobol74:
+ case dwarf::DW_LANG_Cobol85:
+ return SourceLanguage::Cobol;
+ case dwarf::DW_LANG_Java:
+ return SourceLanguage::Java;
+ case dwarf::DW_LANG_D:
+ return SourceLanguage::D;
+ case dwarf::DW_LANG_Swift:
+ return SourceLanguage::Swift;
+ case dwarf::DW_LANG_Rust:
+ return SourceLanguage::Rust;
+ case dwarf::DW_LANG_ObjC:
+ return SourceLanguage::ObjC;
+ case dwarf::DW_LANG_ObjC_plus_plus:
+ return SourceLanguage::ObjCpp;
+ default:
+ // There's no CodeView representation for this language, and CV doesn't
+ // have an "unknown" option for the language field, so we'll use MASM,
+ // as it's very low level.
+ return SourceLanguage::Masm;
+ }
+}
+
+void CodeViewDebug::beginModule(Module *M) {
+ // If module doesn't have named metadata anchors or COFF debug section
+ // is not available, skip any debug info related stuff.
+ if (!MMI->hasDebugInfo() ||
+ !Asm->getObjFileLowering().getCOFFDebugSymbolsSection()) {
+ Asm = nullptr;
+ return;
+ }
+
+ TheCPU = mapArchToCVCPUType(Triple(M->getTargetTriple()).getArch());
+
+ // Get the current source language.
+ const MDNode *Node = *M->debug_compile_units_begin();
+ const auto *CU = cast<DICompileUnit>(Node);
+
+ CurrentSourceLanguage = MapDWLangToCVLang(CU->getSourceLanguage());
+
+ collectGlobalVariableInfo();
+
+ // Check if we should emit type record hashes.
+ ConstantInt *GH =
+ mdconst::extract_or_null<ConstantInt>(M->getModuleFlag("CodeViewGHash"));
+ EmitDebugGlobalHashes = GH && !GH->isZero();
+}
+
+void CodeViewDebug::endModule() {
+ if (!Asm || !MMI->hasDebugInfo())
+ return;
+
+ // The COFF .debug$S section consists of several subsections, each starting
+ // with a 4-byte control code (e.g. 0xF1, 0xF2, etc) and then a 4-byte length
+ // of the payload followed by the payload itself. The subsections are 4-byte
+ // aligned.
+
+ // Use the generic .debug$S section, and make a subsection for all the inlined
+ // subprograms.
+ switchToDebugSectionForSymbol(nullptr);
+
+ MCSymbol *CompilerInfo = beginCVSubsection(DebugSubsectionKind::Symbols);
+ emitObjName();
+ emitCompilerInformation();
+ endCVSubsection(CompilerInfo);
+
+ emitInlineeLinesSubsection();
+
+ // Emit per-function debug information.
+ for (auto &P : FnDebugInfo)
+ if (!P.first->isDeclarationForLinker())
+ emitDebugInfoForFunction(P.first, *P.second);
+
+ // Get types used by globals without emitting anything.
+ // This is meant to collect all static const data members so they can be
+ // emitted as globals.
+ collectDebugInfoForGlobals();
+
+ // Emit retained types.
+ emitDebugInfoForRetainedTypes();
+
+ // Emit global variable debug information.
+ setCurrentSubprogram(nullptr);
+ emitDebugInfoForGlobals();
+
+ // Switch back to the generic .debug$S section after potentially processing
+ // comdat symbol sections.
+ switchToDebugSectionForSymbol(nullptr);
+
+ // Emit UDT records for any types used by global variables.
+ if (!GlobalUDTs.empty()) {
+ MCSymbol *SymbolsEnd = beginCVSubsection(DebugSubsectionKind::Symbols);
+ emitDebugInfoForUDTs(GlobalUDTs);
+ endCVSubsection(SymbolsEnd);
+ }
+
+ // This subsection holds a file index to offset in string table table.
+ OS.AddComment("File index to string table offset subsection");
+ OS.emitCVFileChecksumsDirective();
+
+ // This subsection holds the string table.
+ OS.AddComment("String table");
+ OS.emitCVStringTableDirective();
+
+ // Emit S_BUILDINFO, which points to LF_BUILDINFO. Put this in its own symbol
+ // subsection in the generic .debug$S section at the end. There is no
+ // particular reason for this ordering other than to match MSVC.
+ emitBuildInfo();
+
+ // Emit type information and hashes last, so that any types we translate while
+ // emitting function info are included.
+ emitTypeInformation();
+
+ if (EmitDebugGlobalHashes)
+ emitTypeGlobalHashes();
+
+ clear();
+}
+
+static void
+emitNullTerminatedSymbolName(MCStreamer &OS, StringRef S,
+ unsigned MaxFixedRecordLength = 0xF00) {
+ // The maximum CV record length is 0xFF00. Most of the strings we emit appear
+ // after a fixed length portion of the record. The fixed length portion should
+ // always be less than 0xF00 (3840) bytes, so truncate the string so that the
+ // overall record size is less than the maximum allowed.
+ SmallString<32> NullTerminatedString(
+ S.take_front(MaxRecordLength - MaxFixedRecordLength - 1));
+ NullTerminatedString.push_back('\0');
+ OS.emitBytes(NullTerminatedString);
+}
+
+void CodeViewDebug::emitTypeInformation() {
+ if (TypeTable.empty())
+ return;
+
+ // Start the .debug$T or .debug$P section with 0x4.
+ OS.switchSection(Asm->getObjFileLowering().getCOFFDebugTypesSection());
+ emitCodeViewMagicVersion();
+
+ TypeTableCollection Table(TypeTable.records());
+ TypeVisitorCallbackPipeline Pipeline;
+
+ // To emit type record using Codeview MCStreamer adapter
+ CVMCAdapter CVMCOS(OS, Table);
+ TypeRecordMapping typeMapping(CVMCOS);
+ Pipeline.addCallbackToPipeline(typeMapping);
+
+ std::optional<TypeIndex> B = Table.getFirst();
+ while (B) {
+ // This will fail if the record data is invalid.
+ CVType Record = Table.getType(*B);
+
+ Error E = codeview::visitTypeRecord(Record, *B, Pipeline);
+
+ if (E) {
+ logAllUnhandledErrors(std::move(E), errs(), "error: ");
+ llvm_unreachable("produced malformed type record");
+ }
+
+ B = Table.getNext(*B);
+ }
+}
+
+void CodeViewDebug::emitTypeGlobalHashes() {
+ if (TypeTable.empty())
+ return;
+
+ // Start the .debug$H section with the version and hash algorithm, currently
+ // hardcoded to version 0, SHA1.
+ OS.switchSection(Asm->getObjFileLowering().getCOFFGlobalTypeHashesSection());
+
+ OS.emitValueToAlignment(Align(4));
+ OS.AddComment("Magic");
+ OS.emitInt32(COFF::DEBUG_HASHES_SECTION_MAGIC);
+ OS.AddComment("Section Version");
+ OS.emitInt16(0);
+ OS.AddComment("Hash Algorithm");
+ OS.emitInt16(uint16_t(GlobalTypeHashAlg::BLAKE3));
+
+ TypeIndex TI(TypeIndex::FirstNonSimpleIndex);
+ for (const auto &GHR : TypeTable.hashes()) {
+ if (OS.isVerboseAsm()) {
+ // Emit an EOL-comment describing which TypeIndex this hash corresponds
+ // to, as well as the stringified SHA1 hash.
+ SmallString<32> Comment;
+ raw_svector_ostream CommentOS(Comment);
+ CommentOS << formatv("{0:X+} [{1}]", TI.getIndex(), GHR);
+ OS.AddComment(Comment);
+ ++TI;
+ }
+ assert(GHR.Hash.size() == 8);
+ StringRef S(reinterpret_cast<const char *>(GHR.Hash.data()),
+ GHR.Hash.size());
+ OS.emitBinaryData(S);
+ }
+}
+
+void CodeViewDebug::emitObjName() {
+ MCSymbol *CompilerEnd = beginSymbolRecord(SymbolKind::S_OBJNAME);
+
+ StringRef PathRef(Asm->TM.Options.ObjectFilenameForDebug);
+ llvm::SmallString<256> PathStore(PathRef);
+
+ if (PathRef.empty() || PathRef == "-") {
+ // Don't emit the filename if we're writing to stdout or to /dev/null.
+ PathRef = {};
+ } else {
+ PathRef = PathStore;
+ }
+
+ OS.AddComment("Signature");
+ OS.emitIntValue(0, 4);
+
+ OS.AddComment("Object name");
+ emitNullTerminatedSymbolName(OS, PathRef);
+
+ endSymbolRecord(CompilerEnd);
+}
+
+namespace {
+struct Version {
+ int Part[4];
+};
+} // end anonymous namespace
+
+// Takes a StringRef like "clang 4.0.0.0 (other nonsense 123)" and parses out
+// the version number.
+static Version parseVersion(StringRef Name) {
+ Version V = {{0}};
+ int N = 0;
+ for (const char C : Name) {
+ if (isdigit(C)) {
+ V.Part[N] *= 10;
+ V.Part[N] += C - '0';
+ V.Part[N] =
+ std::min<int>(V.Part[N], std::numeric_limits<uint16_t>::max());
+ } else if (C == '.') {
+ ++N;
+ if (N >= 4)
+ return V;
+ } else if (N > 0)
+ return V;
+ }
+ return V;
+}
+
+void CodeViewDebug::emitCompilerInformation() {
+ MCSymbol *CompilerEnd = beginSymbolRecord(SymbolKind::S_COMPILE3);
+ uint32_t Flags = 0;
+
+ // The low byte of the flags indicates the source language.
+ Flags = CurrentSourceLanguage;
+ // TODO: Figure out which other flags need to be set.
+ if (MMI->getModule()->getProfileSummary(/*IsCS*/ false) != nullptr) {
+ Flags |= static_cast<uint32_t>(CompileSym3Flags::PGO);
+ }
+ using ArchType = llvm::Triple::ArchType;
+ ArchType Arch = Triple(MMI->getModule()->getTargetTriple()).getArch();
+ if (Asm->TM.Options.Hotpatch || Arch == ArchType::thumb ||
+ Arch == ArchType::aarch64) {
+ Flags |= static_cast<uint32_t>(CompileSym3Flags::HotPatch);
+ }
+
+ OS.AddComment("Flags and language");
+ OS.emitInt32(Flags);
+
+ OS.AddComment("CPUType");
+ OS.emitInt16(static_cast<uint64_t>(TheCPU));
+
+ NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu");
+ const MDNode *Node = *CUs->operands().begin();
+ const auto *CU = cast<DICompileUnit>(Node);
+
+ StringRef CompilerVersion = CU->getProducer();
+ Version FrontVer = parseVersion(CompilerVersion);
+ OS.AddComment("Frontend version");
+ for (int N : FrontVer.Part) {
+ OS.emitInt16(N);
+ }
+
+ // Some Microsoft tools, like Binscope, expect a backend version number of at
+ // least 8.something, so we'll coerce the LLVM version into a form that
+ // guarantees it'll be big enough without really lying about the version.
+ int Major = 1000 * LLVM_VERSION_MAJOR +
+ 10 * LLVM_VERSION_MINOR +
+ LLVM_VERSION_PATCH;
+ // Clamp it for builds that use unusually large version numbers.
+ Major = std::min<int>(Major, std::numeric_limits<uint16_t>::max());
+ Version BackVer = {{ Major, 0, 0, 0 }};
+ OS.AddComment("Backend version");
+ for (int N : BackVer.Part)
+ OS.emitInt16(N);
+
+ OS.AddComment("Null-terminated compiler version string");
+ emitNullTerminatedSymbolName(OS, CompilerVersion);
+
+ endSymbolRecord(CompilerEnd);
+}
+
+static TypeIndex getStringIdTypeIdx(GlobalTypeTableBuilder &TypeTable,
+ StringRef S) {
+ StringIdRecord SIR(TypeIndex(0x0), S);
+ return TypeTable.writeLeafType(SIR);
+}
+
+static std::string flattenCommandLine(ArrayRef<std::string> Args,
+ StringRef MainFilename) {
+ std::string FlatCmdLine;
+ raw_string_ostream OS(FlatCmdLine);
+ bool PrintedOneArg = false;
+ if (!StringRef(Args[0]).contains("-cc1")) {
+ llvm::sys::printArg(OS, "-cc1", /*Quote=*/true);
+ PrintedOneArg = true;
+ }
+ for (unsigned i = 0; i < Args.size(); i++) {
+ StringRef Arg = Args[i];
+ if (Arg.empty())
+ continue;
+ if (Arg == "-main-file-name" || Arg == "-o") {
+ i++; // Skip this argument and next one.
+ continue;
+ }
+ if (Arg.startswith("-object-file-name") || Arg == MainFilename)
+ continue;
+ // Skip fmessage-length for reproduciability.
+ if (Arg.startswith("-fmessage-length"))
+ continue;
+ if (PrintedOneArg)
+ OS << " ";
+ llvm::sys::printArg(OS, Arg, /*Quote=*/true);
+ PrintedOneArg = true;
+ }
+ OS.flush();
+ return FlatCmdLine;
+}
+
+void CodeViewDebug::emitBuildInfo() {
+ // First, make LF_BUILDINFO. It's a sequence of strings with various bits of
+ // build info. The known prefix is:
+ // - Absolute path of current directory
+ // - Compiler path
+ // - Main source file path, relative to CWD or absolute
+ // - Type server PDB file
+ // - Canonical compiler command line
+ // If frontend and backend compilation are separated (think llc or LTO), it's
+ // not clear if the compiler path should refer to the executable for the
+ // frontend or the backend. Leave it blank for now.
+ TypeIndex BuildInfoArgs[BuildInfoRecord::MaxArgs] = {};
+ NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu");
+ const MDNode *Node = *CUs->operands().begin(); // FIXME: Multiple CUs.
+ const auto *CU = cast<DICompileUnit>(Node);
+ const DIFile *MainSourceFile = CU->getFile();
+ BuildInfoArgs[BuildInfoRecord::CurrentDirectory] =
+ getStringIdTypeIdx(TypeTable, MainSourceFile->getDirectory());
+ BuildInfoArgs[BuildInfoRecord::SourceFile] =
+ getStringIdTypeIdx(TypeTable, MainSourceFile->getFilename());
+ // FIXME: PDB is intentionally blank unless we implement /Zi type servers.
+ BuildInfoArgs[BuildInfoRecord::TypeServerPDB] =
+ getStringIdTypeIdx(TypeTable, "");
+ if (Asm->TM.Options.MCOptions.Argv0 != nullptr) {
+ BuildInfoArgs[BuildInfoRecord::BuildTool] =
+ getStringIdTypeIdx(TypeTable, Asm->TM.Options.MCOptions.Argv0);
+ BuildInfoArgs[BuildInfoRecord::CommandLine] = getStringIdTypeIdx(
+ TypeTable, flattenCommandLine(Asm->TM.Options.MCOptions.CommandLineArgs,
+ MainSourceFile->getFilename()));
+ }
+ BuildInfoRecord BIR(BuildInfoArgs);
+ TypeIndex BuildInfoIndex = TypeTable.writeLeafType(BIR);
+
+ // Make a new .debug$S subsection for the S_BUILDINFO record, which points
+ // from the module symbols into the type stream.
+ MCSymbol *BISubsecEnd = beginCVSubsection(DebugSubsectionKind::Symbols);
+ MCSymbol *BIEnd = beginSymbolRecord(SymbolKind::S_BUILDINFO);
+ OS.AddComment("LF_BUILDINFO index");
+ OS.emitInt32(BuildInfoIndex.getIndex());
+ endSymbolRecord(BIEnd);
+ endCVSubsection(BISubsecEnd);
+}
+
+void CodeViewDebug::emitInlineeLinesSubsection() {
+ if (InlinedSubprograms.empty())
+ return;
+
+ OS.AddComment("Inlinee lines subsection");
+ MCSymbol *InlineEnd = beginCVSubsection(DebugSubsectionKind::InlineeLines);
+
+ // We emit the checksum info for files. This is used by debuggers to
+ // determine if a pdb matches the source before loading it. Visual Studio,
+ // for instance, will display a warning that the breakpoints are not valid if
+ // the pdb does not match the source.
+ OS.AddComment("Inlinee lines signature");
+ OS.emitInt32(unsigned(InlineeLinesSignature::Normal));
+
+ for (const DISubprogram *SP : InlinedSubprograms) {
+ assert(TypeIndices.count({SP, nullptr}));
+ TypeIndex InlineeIdx = TypeIndices[{SP, nullptr}];
+
+ OS.addBlankLine();
+ unsigned FileId = maybeRecordFile(SP->getFile());
+ OS.AddComment("Inlined function " + SP->getName() + " starts at " +
+ SP->getFilename() + Twine(':') + Twine(SP->getLine()));
+ OS.addBlankLine();
+ OS.AddComment("Type index of inlined function");
+ OS.emitInt32(InlineeIdx.getIndex());
+ OS.AddComment("Offset into filechecksum table");
+ OS.emitCVFileChecksumOffsetDirective(FileId);
+ OS.AddComment("Starting line number");
+ OS.emitInt32(SP->getLine());
+ }
+
+ endCVSubsection(InlineEnd);
+}
+
+void CodeViewDebug::emitInlinedCallSite(const FunctionInfo &FI,
+ const DILocation *InlinedAt,
+ const InlineSite &Site) {
+ assert(TypeIndices.count({Site.Inlinee, nullptr}));
+ TypeIndex InlineeIdx = TypeIndices[{Site.Inlinee, nullptr}];
+
+ // SymbolRecord
+ MCSymbol *InlineEnd = beginSymbolRecord(SymbolKind::S_INLINESITE);
+
+ OS.AddComment("PtrParent");
+ OS.emitInt32(0);
+ OS.AddComment("PtrEnd");
+ OS.emitInt32(0);
+ OS.AddComment("Inlinee type index");
+ OS.emitInt32(InlineeIdx.getIndex());
+
+ unsigned FileId = maybeRecordFile(Site.Inlinee->getFile());
+ unsigned StartLineNum = Site.Inlinee->getLine();
+
+ OS.emitCVInlineLinetableDirective(Site.SiteFuncId, FileId, StartLineNum,
+ FI.Begin, FI.End);
+
+ endSymbolRecord(InlineEnd);
+
+ emitLocalVariableList(FI, Site.InlinedLocals);
+
+ // Recurse on child inlined call sites before closing the scope.
+ for (const DILocation *ChildSite : Site.ChildSites) {
+ auto I = FI.InlineSites.find(ChildSite);
+ assert(I != FI.InlineSites.end() &&
+ "child site not in function inline site map");
+ emitInlinedCallSite(FI, ChildSite, I->second);
+ }
+
+ // Close the scope.
+ emitEndSymbolRecord(SymbolKind::S_INLINESITE_END);
+}
+
+void CodeViewDebug::switchToDebugSectionForSymbol(const MCSymbol *GVSym) {
+ // If we have a symbol, it may be in a section that is COMDAT. If so, find the
+ // comdat key. A section may be comdat because of -ffunction-sections or
+ // because it is comdat in the IR.
+ MCSectionCOFF *GVSec =
+ GVSym ? dyn_cast<MCSectionCOFF>(&GVSym->getSection()) : nullptr;
+ const MCSymbol *KeySym = GVSec ? GVSec->getCOMDATSymbol() : nullptr;
+
+ MCSectionCOFF *DebugSec = cast<MCSectionCOFF>(
+ Asm->getObjFileLowering().getCOFFDebugSymbolsSection());
+ DebugSec = OS.getContext().getAssociativeCOFFSection(DebugSec, KeySym);
+
+ OS.switchSection(DebugSec);
+
+ // Emit the magic version number if this is the first time we've switched to
+ // this section.
+ if (ComdatDebugSections.insert(DebugSec).second)
+ emitCodeViewMagicVersion();
+}
+
+// Emit an S_THUNK32/S_END symbol pair for a thunk routine.
+// The only supported thunk ordinal is currently the standard type.
+void CodeViewDebug::emitDebugInfoForThunk(const Function *GV,
+ FunctionInfo &FI,
+ const MCSymbol *Fn) {
+ std::string FuncName =
+ std::string(GlobalValue::dropLLVMManglingEscape(GV->getName()));
+ const ThunkOrdinal ordinal = ThunkOrdinal::Standard; // Only supported kind.
+
+ OS.AddComment("Symbol subsection for " + Twine(FuncName));
+ MCSymbol *SymbolsEnd = beginCVSubsection(DebugSubsectionKind::Symbols);
+
+ // Emit S_THUNK32
+ MCSymbol *ThunkRecordEnd = beginSymbolRecord(SymbolKind::S_THUNK32);
+ OS.AddComment("PtrParent");
+ OS.emitInt32(0);
+ OS.AddComment("PtrEnd");
+ OS.emitInt32(0);
+ OS.AddComment("PtrNext");
+ OS.emitInt32(0);
+ OS.AddComment("Thunk section relative address");
+ OS.emitCOFFSecRel32(Fn, /*Offset=*/0);
+ OS.AddComment("Thunk section index");
+ OS.emitCOFFSectionIndex(Fn);
+ OS.AddComment("Code size");
+ OS.emitAbsoluteSymbolDiff(FI.End, Fn, 2);
+ OS.AddComment("Ordinal");
+ OS.emitInt8(unsigned(ordinal));
+ OS.AddComment("Function name");
+ emitNullTerminatedSymbolName(OS, FuncName);
+ // Additional fields specific to the thunk ordinal would go here.
+ endSymbolRecord(ThunkRecordEnd);
+
+ // Local variables/inlined routines are purposely omitted here. The point of
+ // marking this as a thunk is so Visual Studio will NOT stop in this routine.
+
+ // Emit S_PROC_ID_END
+ emitEndSymbolRecord(SymbolKind::S_PROC_ID_END);
+
+ endCVSubsection(SymbolsEnd);
+}
+
+void CodeViewDebug::emitDebugInfoForFunction(const Function *GV,
+ FunctionInfo &FI) {
+ // For each function there is a separate subsection which holds the PC to
+ // file:line table.
+ const MCSymbol *Fn = Asm->getSymbol(GV);
+ assert(Fn);
+
+ // Switch to the to a comdat section, if appropriate.
+ switchToDebugSectionForSymbol(Fn);
+
+ std::string FuncName;
+ auto *SP = GV->getSubprogram();
+ assert(SP);
+ setCurrentSubprogram(SP);
+
+ if (SP->isThunk()) {
+ emitDebugInfoForThunk(GV, FI, Fn);
+ return;
+ }
+
+ // If we have a display name, build the fully qualified name by walking the
+ // chain of scopes.
+ if (!SP->getName().empty())
+ FuncName = getFullyQualifiedName(SP->getScope(), SP->getName());
+
+ // If our DISubprogram name is empty, use the mangled name.
+ if (FuncName.empty())
+ FuncName = std::string(GlobalValue::dropLLVMManglingEscape(GV->getName()));
+
+ // Emit FPO data, but only on 32-bit x86. No other platforms use it.
+ if (Triple(MMI->getModule()->getTargetTriple()).getArch() == Triple::x86)
+ OS.emitCVFPOData(Fn);
+
+ // Emit a symbol subsection, required by VS2012+ to find function boundaries.
+ OS.AddComment("Symbol subsection for " + Twine(FuncName));
+ MCSymbol *SymbolsEnd = beginCVSubsection(DebugSubsectionKind::Symbols);
+ {
+ SymbolKind ProcKind = GV->hasLocalLinkage() ? SymbolKind::S_LPROC32_ID
+ : SymbolKind::S_GPROC32_ID;
+ MCSymbol *ProcRecordEnd = beginSymbolRecord(ProcKind);
+
+ // These fields are filled in by tools like CVPACK which run after the fact.
+ OS.AddComment("PtrParent");
+ OS.emitInt32(0);
+ OS.AddComment("PtrEnd");
+ OS.emitInt32(0);
+ OS.AddComment("PtrNext");
+ OS.emitInt32(0);
+ // This is the important bit that tells the debugger where the function
+ // code is located and what's its size:
+ OS.AddComment("Code size");
+ OS.emitAbsoluteSymbolDiff(FI.End, Fn, 4);
+ OS.AddComment("Offset after prologue");
+ OS.emitInt32(0);
+ OS.AddComment("Offset before epilogue");
+ OS.emitInt32(0);
+ OS.AddComment("Function type index");
+ OS.emitInt32(getFuncIdForSubprogram(GV->getSubprogram()).getIndex());
+ OS.AddComment("Function section relative address");
+ OS.emitCOFFSecRel32(Fn, /*Offset=*/0);
+ OS.AddComment("Function section index");
+ OS.emitCOFFSectionIndex(Fn);
+ OS.AddComment("Flags");
+ ProcSymFlags ProcFlags = ProcSymFlags::HasOptimizedDebugInfo;
+ if (FI.HasFramePointer)
+ ProcFlags |= ProcSymFlags::HasFP;
+ if (GV->hasFnAttribute(Attribute::NoReturn))
+ ProcFlags |= ProcSymFlags::IsNoReturn;
+ if (GV->hasFnAttribute(Attribute::NoInline))
+ ProcFlags |= ProcSymFlags::IsNoInline;
+ OS.emitInt8(static_cast<uint8_t>(ProcFlags));
+ // Emit the function display name as a null-terminated string.
+ OS.AddComment("Function name");
+ // Truncate the name so we won't overflow the record length field.
+ emitNullTerminatedSymbolName(OS, FuncName);
+ endSymbolRecord(ProcRecordEnd);
+
+ MCSymbol *FrameProcEnd = beginSymbolRecord(SymbolKind::S_FRAMEPROC);
+ // Subtract out the CSR size since MSVC excludes that and we include it.
+ OS.AddComment("FrameSize");
+ OS.emitInt32(FI.FrameSize - FI.CSRSize);
+ OS.AddComment("Padding");
+ OS.emitInt32(0);
+ OS.AddComment("Offset of padding");
+ OS.emitInt32(0);
+ OS.AddComment("Bytes of callee saved registers");
+ OS.emitInt32(FI.CSRSize);
+ OS.AddComment("Exception handler offset");
+ OS.emitInt32(0);
+ OS.AddComment("Exception handler section");
+ OS.emitInt16(0);
+ OS.AddComment("Flags (defines frame register)");
+ OS.emitInt32(uint32_t(FI.FrameProcOpts));
+ endSymbolRecord(FrameProcEnd);
+
+ emitLocalVariableList(FI, FI.Locals);
+ emitGlobalVariableList(FI.Globals);
+ emitLexicalBlockList(FI.ChildBlocks, FI);
+
+ // Emit inlined call site information. Only emit functions inlined directly
+ // into the parent function. We'll emit the other sites recursively as part
+ // of their parent inline site.
+ for (const DILocation *InlinedAt : FI.ChildSites) {
+ auto I = FI.InlineSites.find(InlinedAt);
+ assert(I != FI.InlineSites.end() &&
+ "child site not in function inline site map");
+ emitInlinedCallSite(FI, InlinedAt, I->second);
+ }
+
+ for (auto Annot : FI.Annotations) {
+ MCSymbol *Label = Annot.first;
+ MDTuple *Strs = cast<MDTuple>(Annot.second);
+ MCSymbol *AnnotEnd = beginSymbolRecord(SymbolKind::S_ANNOTATION);
+ OS.emitCOFFSecRel32(Label, /*Offset=*/0);
+ // FIXME: Make sure we don't overflow the max record size.
+ OS.emitCOFFSectionIndex(Label);
+ OS.emitInt16(Strs->getNumOperands());
+ for (Metadata *MD : Strs->operands()) {
+ // MDStrings are null terminated, so we can do EmitBytes and get the
+ // nice .asciz directive.
+ StringRef Str = cast<MDString>(MD)->getString();
+ assert(Str.data()[Str.size()] == '\0' && "non-nullterminated MDString");
+ OS.emitBytes(StringRef(Str.data(), Str.size() + 1));
+ }
+ endSymbolRecord(AnnotEnd);
+ }
+
+ for (auto HeapAllocSite : FI.HeapAllocSites) {
+ const MCSymbol *BeginLabel = std::get<0>(HeapAllocSite);
+ const MCSymbol *EndLabel = std::get<1>(HeapAllocSite);
+ const DIType *DITy = std::get<2>(HeapAllocSite);
+ MCSymbol *HeapAllocEnd = beginSymbolRecord(SymbolKind::S_HEAPALLOCSITE);
+ OS.AddComment("Call site offset");
+ OS.emitCOFFSecRel32(BeginLabel, /*Offset=*/0);
+ OS.AddComment("Call site section index");
+ OS.emitCOFFSectionIndex(BeginLabel);
+ OS.AddComment("Call instruction length");
+ OS.emitAbsoluteSymbolDiff(EndLabel, BeginLabel, 2);
+ OS.AddComment("Type index");
+ OS.emitInt32(getCompleteTypeIndex(DITy).getIndex());
+ endSymbolRecord(HeapAllocEnd);
+ }
+
+ if (SP != nullptr)
+ emitDebugInfoForUDTs(LocalUDTs);
+
+ // We're done with this function.
+ emitEndSymbolRecord(SymbolKind::S_PROC_ID_END);
+ }
+ endCVSubsection(SymbolsEnd);
+
+ // We have an assembler directive that takes care of the whole line table.
+ OS.emitCVLinetableDirective(FI.FuncId, Fn, FI.End);
+}
+
+CodeViewDebug::LocalVarDef
+CodeViewDebug::createDefRangeMem(uint16_t CVRegister, int Offset) {
+ LocalVarDef DR;
+ DR.InMemory = -1;
+ DR.DataOffset = Offset;
+ assert(DR.DataOffset == Offset && "truncation");
+ DR.IsSubfield = 0;
+ DR.StructOffset = 0;
+ DR.CVRegister = CVRegister;
+ return DR;
+}
+
+void CodeViewDebug::collectVariableInfoFromMFTable(
+ DenseSet<InlinedEntity> &Processed) {
+ const MachineFunction &MF = *Asm->MF;
+ const TargetSubtargetInfo &TSI = MF.getSubtarget();
+ const TargetFrameLowering *TFI = TSI.getFrameLowering();
+ const TargetRegisterInfo *TRI = TSI.getRegisterInfo();
+
+ for (const MachineFunction::VariableDbgInfo &VI :
+ MF.getInStackSlotVariableDbgInfo()) {
+ if (!VI.Var)
+ continue;
+ assert(VI.Var->isValidLocationForIntrinsic(VI.Loc) &&
+ "Expected inlined-at fields to agree");
+
+ Processed.insert(InlinedEntity(VI.Var, VI.Loc->getInlinedAt()));
+ LexicalScope *Scope = LScopes.findLexicalScope(VI.Loc);
+
+ // If variable scope is not found then skip this variable.
+ if (!Scope)
+ continue;
+
+ // If the variable has an attached offset expression, extract it.
+ // FIXME: Try to handle DW_OP_deref as well.
+ int64_t ExprOffset = 0;
+ bool Deref = false;
+ if (VI.Expr) {
+ // If there is one DW_OP_deref element, use offset of 0 and keep going.
+ if (VI.Expr->getNumElements() == 1 &&
+ VI.Expr->getElement(0) == llvm::dwarf::DW_OP_deref)
+ Deref = true;
+ else if (!VI.Expr->extractIfOffset(ExprOffset))
+ continue;
+ }
+
+ // Get the frame register used and the offset.
+ Register FrameReg;
+ StackOffset FrameOffset =
+ TFI->getFrameIndexReference(*Asm->MF, VI.getStackSlot(), FrameReg);
+ uint16_t CVReg = TRI->getCodeViewRegNum(FrameReg);
+
+ assert(!FrameOffset.getScalable() &&
+ "Frame offsets with a scalable component are not supported");
+
+ // Calculate the label ranges.
+ LocalVarDef DefRange =
+ createDefRangeMem(CVReg, FrameOffset.getFixed() + ExprOffset);
+
+ LocalVariable Var;
+ Var.DIVar = VI.Var;
+
+ for (const InsnRange &Range : Scope->getRanges()) {
+ const MCSymbol *Begin = getLabelBeforeInsn(Range.first);
+ const MCSymbol *End = getLabelAfterInsn(Range.second);
+ End = End ? End : Asm->getFunctionEnd();
+ Var.DefRanges[DefRange].emplace_back(Begin, End);
+ }
+
+ if (Deref)
+ Var.UseReferenceType = true;
+
+ recordLocalVariable(std::move(Var), Scope);
+ }
+}
+
+static bool canUseReferenceType(const DbgVariableLocation &Loc) {
+ return !Loc.LoadChain.empty() && Loc.LoadChain.back() == 0;
+}
+
+static bool needsReferenceType(const DbgVariableLocation &Loc) {
+ return Loc.LoadChain.size() == 2 && Loc.LoadChain.back() == 0;
+}
+
+void CodeViewDebug::calculateRanges(
+ LocalVariable &Var, const DbgValueHistoryMap::Entries &Entries) {
+ const TargetRegisterInfo *TRI = Asm->MF->getSubtarget().getRegisterInfo();
+
+ // Calculate the definition ranges.
+ for (auto I = Entries.begin(), E = Entries.end(); I != E; ++I) {
+ const auto &Entry = *I;
+ if (!Entry.isDbgValue())
+ continue;
+ const MachineInstr *DVInst = Entry.getInstr();
+ assert(DVInst->isDebugValue() && "Invalid History entry");
+ // FIXME: Find a way to represent constant variables, since they are
+ // relatively common.
+ std::optional<DbgVariableLocation> Location =
+ DbgVariableLocation::extractFromMachineInstruction(*DVInst);
+ if (!Location)
+ {
+ // When we don't have a location this is usually because LLVM has
+ // transformed it into a constant and we only have an llvm.dbg.value. We
+ // can't represent these well in CodeView since S_LOCAL only works on
+ // registers and memory locations. Instead, we will pretend this to be a
+ // constant value to at least have it show up in the debugger.
+ auto Op = DVInst->getDebugOperand(0);
+ if (Op.isImm())
+ Var.ConstantValue = APSInt(APInt(64, Op.getImm()), false);
+ continue;
+ }
+
+ // CodeView can only express variables in register and variables in memory
+ // at a constant offset from a register. However, for variables passed
+ // indirectly by pointer, it is common for that pointer to be spilled to a
+ // stack location. For the special case of one offseted load followed by a
+ // zero offset load (a pointer spilled to the stack), we change the type of
+ // the local variable from a value type to a reference type. This tricks the
+ // debugger into doing the load for us.
+ if (Var.UseReferenceType) {
+ // We're using a reference type. Drop the last zero offset load.
+ if (canUseReferenceType(*Location))
+ Location->LoadChain.pop_back();
+ else
+ continue;
+ } else if (needsReferenceType(*Location)) {
+ // This location can't be expressed without switching to a reference type.
+ // Start over using that.
+ Var.UseReferenceType = true;
+ Var.DefRanges.clear();
+ calculateRanges(Var, Entries);
+ return;
+ }
+
+ // We can only handle a register or an offseted load of a register.
+ if (Location->Register == 0 || Location->LoadChain.size() > 1)
+ continue;
+
+ LocalVarDef DR;
+ DR.CVRegister = TRI->getCodeViewRegNum(Location->Register);
+ DR.InMemory = !Location->LoadChain.empty();
+ DR.DataOffset =
+ !Location->LoadChain.empty() ? Location->LoadChain.back() : 0;
+ if (Location->FragmentInfo) {
+ DR.IsSubfield = true;
+ DR.StructOffset = Location->FragmentInfo->OffsetInBits / 8;
+ } else {
+ DR.IsSubfield = false;
+ DR.StructOffset = 0;
+ }
+
+ // Compute the label range.
+ const MCSymbol *Begin = getLabelBeforeInsn(Entry.getInstr());
+ const MCSymbol *End;
+ if (Entry.getEndIndex() != DbgValueHistoryMap::NoEntry) {
+ auto &EndingEntry = Entries[Entry.getEndIndex()];
+ End = EndingEntry.isDbgValue()
+ ? getLabelBeforeInsn(EndingEntry.getInstr())
+ : getLabelAfterInsn(EndingEntry.getInstr());
+ } else
+ End = Asm->getFunctionEnd();
+
+ // If the last range end is our begin, just extend the last range.
+ // Otherwise make a new range.
+ SmallVectorImpl<std::pair<const MCSymbol *, const MCSymbol *>> &R =
+ Var.DefRanges[DR];
+ if (!R.empty() && R.back().second == Begin)
+ R.back().second = End;
+ else
+ R.emplace_back(Begin, End);
+
+ // FIXME: Do more range combining.
+ }
+}
+
+void CodeViewDebug::collectVariableInfo(const DISubprogram *SP) {
+ DenseSet<InlinedEntity> Processed;
+ // Grab the variable info that was squirreled away in the MMI side-table.
+ collectVariableInfoFromMFTable(Processed);
+
+ for (const auto &I : DbgValues) {
+ InlinedEntity IV = I.first;
+ if (Processed.count(IV))
+ continue;
+ const DILocalVariable *DIVar = cast<DILocalVariable>(IV.first);
+ const DILocation *InlinedAt = IV.second;
+
+ // Instruction ranges, specifying where IV is accessible.
+ const auto &Entries = I.second;
+
+ LexicalScope *Scope = nullptr;
+ if (InlinedAt)
+ Scope = LScopes.findInlinedScope(DIVar->getScope(), InlinedAt);
+ else
+ Scope = LScopes.findLexicalScope(DIVar->getScope());
+ // If variable scope is not found then skip this variable.
+ if (!Scope)
+ continue;
+
+ LocalVariable Var;
+ Var.DIVar = DIVar;
+
+ calculateRanges(Var, Entries);
+ recordLocalVariable(std::move(Var), Scope);
+ }
+}
+
+void CodeViewDebug::beginFunctionImpl(const MachineFunction *MF) {
+ const TargetSubtargetInfo &TSI = MF->getSubtarget();
+ const TargetRegisterInfo *TRI = TSI.getRegisterInfo();
+ const MachineFrameInfo &MFI = MF->getFrameInfo();
+ const Function &GV = MF->getFunction();
+ auto Insertion = FnDebugInfo.insert({&GV, std::make_unique<FunctionInfo>()});
+ assert(Insertion.second && "function already has info");
+ CurFn = Insertion.first->second.get();
+ CurFn->FuncId = NextFuncId++;
+ CurFn->Begin = Asm->getFunctionBegin();
+
+ // The S_FRAMEPROC record reports the stack size, and how many bytes of
+ // callee-saved registers were used. For targets that don't use a PUSH
+ // instruction (AArch64), this will be zero.
+ CurFn->CSRSize = MFI.getCVBytesOfCalleeSavedRegisters();
+ CurFn->FrameSize = MFI.getStackSize();
+ CurFn->OffsetAdjustment = MFI.getOffsetAdjustment();
+ CurFn->HasStackRealignment = TRI->hasStackRealignment(*MF);
+
+ // For this function S_FRAMEPROC record, figure out which codeview register
+ // will be the frame pointer.
+ CurFn->EncodedParamFramePtrReg = EncodedFramePtrReg::None; // None.
+ CurFn->EncodedLocalFramePtrReg = EncodedFramePtrReg::None; // None.
+ if (CurFn->FrameSize > 0) {
+ if (!TSI.getFrameLowering()->hasFP(*MF)) {
+ CurFn->EncodedLocalFramePtrReg = EncodedFramePtrReg::StackPtr;
+ CurFn->EncodedParamFramePtrReg = EncodedFramePtrReg::StackPtr;
+ } else {
+ CurFn->HasFramePointer = true;
+ // If there is an FP, parameters are always relative to it.
+ CurFn->EncodedParamFramePtrReg = EncodedFramePtrReg::FramePtr;
+ if (CurFn->HasStackRealignment) {
+ // If the stack needs realignment, locals are relative to SP or VFRAME.
+ CurFn->EncodedLocalFramePtrReg = EncodedFramePtrReg::StackPtr;
+ } else {
+ // Otherwise, locals are relative to EBP, and we probably have VLAs or
+ // other stack adjustments.
+ CurFn->EncodedLocalFramePtrReg = EncodedFramePtrReg::FramePtr;
+ }
+ }
+ }
+
+ // Compute other frame procedure options.
+ FrameProcedureOptions FPO = FrameProcedureOptions::None;
+ if (MFI.hasVarSizedObjects())
+ FPO |= FrameProcedureOptions::HasAlloca;
+ if (MF->exposesReturnsTwice())
+ FPO |= FrameProcedureOptions::HasSetJmp;
+ // FIXME: Set HasLongJmp if we ever track that info.
+ if (MF->hasInlineAsm())
+ FPO |= FrameProcedureOptions::HasInlineAssembly;
+ if (GV.hasPersonalityFn()) {
+ if (isAsynchronousEHPersonality(
+ classifyEHPersonality(GV.getPersonalityFn())))
+ FPO |= FrameProcedureOptions::HasStructuredExceptionHandling;
+ else
+ FPO |= FrameProcedureOptions::HasExceptionHandling;
+ }
+ if (GV.hasFnAttribute(Attribute::InlineHint))
+ FPO |= FrameProcedureOptions::MarkedInline;
+ if (GV.hasFnAttribute(Attribute::Naked))
+ FPO |= FrameProcedureOptions::Naked;
+ if (MFI.hasStackProtectorIndex()) {
+ FPO |= FrameProcedureOptions::SecurityChecks;
+ if (GV.hasFnAttribute(Attribute::StackProtectStrong) ||
+ GV.hasFnAttribute(Attribute::StackProtectReq)) {
+ FPO |= FrameProcedureOptions::StrictSecurityChecks;
+ }
+ } else if (!GV.hasStackProtectorFnAttr()) {
+ // __declspec(safebuffers) disables stack guards.
+ FPO |= FrameProcedureOptions::SafeBuffers;
+ }
+ FPO |= FrameProcedureOptions(uint32_t(CurFn->EncodedLocalFramePtrReg) << 14U);
+ FPO |= FrameProcedureOptions(uint32_t(CurFn->EncodedParamFramePtrReg) << 16U);
+ if (Asm->TM.getOptLevel() != CodeGenOpt::None &&
+ !GV.hasOptSize() && !GV.hasOptNone())
+ FPO |= FrameProcedureOptions::OptimizedForSpeed;
+ if (GV.hasProfileData()) {
+ FPO |= FrameProcedureOptions::ValidProfileCounts;
+ FPO |= FrameProcedureOptions::ProfileGuidedOptimization;
+ }
+ // FIXME: Set GuardCfg when it is implemented.
+ CurFn->FrameProcOpts = FPO;
+
+ OS.emitCVFuncIdDirective(CurFn->FuncId);
+
+ // Find the end of the function prolog. First known non-DBG_VALUE and
+ // non-frame setup location marks the beginning of the function body.
+ // FIXME: is there a simpler a way to do this? Can we just search
+ // for the first instruction of the function, not the last of the prolog?
+ DebugLoc PrologEndLoc;
+ bool EmptyPrologue = true;
+ for (const auto &MBB : *MF) {
+ for (const auto &MI : MBB) {
+ if (!MI.isMetaInstruction() && !MI.getFlag(MachineInstr::FrameSetup) &&
+ MI.getDebugLoc()) {
+ PrologEndLoc = MI.getDebugLoc();
+ break;
+ } else if (!MI.isMetaInstruction()) {
+ EmptyPrologue = false;
+ }
+ }
+ }
+
+ // Record beginning of function if we have a non-empty prologue.
+ if (PrologEndLoc && !EmptyPrologue) {
+ DebugLoc FnStartDL = PrologEndLoc.getFnDebugLoc();
+ maybeRecordLocation(FnStartDL, MF);
+ }
+
+ // Find heap alloc sites and emit labels around them.
+ for (const auto &MBB : *MF) {
+ for (const auto &MI : MBB) {
+ if (MI.getHeapAllocMarker()) {
+ requestLabelBeforeInsn(&MI);
+ requestLabelAfterInsn(&MI);
+ }
+ }
+ }
+}
+
+static bool shouldEmitUdt(const DIType *T) {
+ if (!T)
+ return false;
+
+ // MSVC does not emit UDTs for typedefs that are scoped to classes.
+ if (T->getTag() == dwarf::DW_TAG_typedef) {
+ if (DIScope *Scope = T->getScope()) {
+ switch (Scope->getTag()) {
+ case dwarf::DW_TAG_structure_type:
+ case dwarf::DW_TAG_class_type:
+ case dwarf::DW_TAG_union_type:
+ return false;
+ default:
+ // do nothing.
+ ;
+ }
+ }
+ }
+
+ while (true) {
+ if (!T || T->isForwardDecl())
+ return false;
+
+ const DIDerivedType *DT = dyn_cast<DIDerivedType>(T);
+ if (!DT)
+ return true;
+ T = DT->getBaseType();
+ }
+ return true;
+}
+
+void CodeViewDebug::addToUDTs(const DIType *Ty) {
+ // Don't record empty UDTs.
+ if (Ty->getName().empty())
+ return;
+ if (!shouldEmitUdt(Ty))
+ return;
+
+ SmallVector<StringRef, 5> ParentScopeNames;
+ const DISubprogram *ClosestSubprogram =
+ collectParentScopeNames(Ty->getScope(), ParentScopeNames);
+
+ std::string FullyQualifiedName =
+ formatNestedName(ParentScopeNames, getPrettyScopeName(Ty));
+
+ if (ClosestSubprogram == nullptr) {
+ GlobalUDTs.emplace_back(std::move(FullyQualifiedName), Ty);
+ } else if (ClosestSubprogram == CurrentSubprogram) {
+ LocalUDTs.emplace_back(std::move(FullyQualifiedName), Ty);
+ }
+
+ // TODO: What if the ClosestSubprogram is neither null or the current
+ // subprogram? Currently, the UDT just gets dropped on the floor.
+ //
+ // The current behavior is not desirable. To get maximal fidelity, we would
+ // need to perform all type translation before beginning emission of .debug$S
+ // and then make LocalUDTs a member of FunctionInfo
+}
+
+TypeIndex CodeViewDebug::lowerType(const DIType *Ty, const DIType *ClassTy) {
+ // Generic dispatch for lowering an unknown type.
+ switch (Ty->getTag()) {
+ case dwarf::DW_TAG_array_type:
+ return lowerTypeArray(cast<DICompositeType>(Ty));
+ case dwarf::DW_TAG_typedef:
+ return lowerTypeAlias(cast<DIDerivedType>(Ty));
+ case dwarf::DW_TAG_base_type:
+ return lowerTypeBasic(cast<DIBasicType>(Ty));
+ case dwarf::DW_TAG_pointer_type:
+ if (cast<DIDerivedType>(Ty)->getName() == "__vtbl_ptr_type")
+ return lowerTypeVFTableShape(cast<DIDerivedType>(Ty));
+ [[fallthrough]];
+ case dwarf::DW_TAG_reference_type:
+ case dwarf::DW_TAG_rvalue_reference_type:
+ return lowerTypePointer(cast<DIDerivedType>(Ty));
+ case dwarf::DW_TAG_ptr_to_member_type:
+ return lowerTypeMemberPointer(cast<DIDerivedType>(Ty));
+ case dwarf::DW_TAG_restrict_type:
+ case dwarf::DW_TAG_const_type:
+ case dwarf::DW_TAG_volatile_type:
+ // TODO: add support for DW_TAG_atomic_type here
+ return lowerTypeModifier(cast<DIDerivedType>(Ty));
+ case dwarf::DW_TAG_subroutine_type:
+ if (ClassTy) {
+ // The member function type of a member function pointer has no
+ // ThisAdjustment.
+ return lowerTypeMemberFunction(cast<DISubroutineType>(Ty), ClassTy,
+ /*ThisAdjustment=*/0,
+ /*IsStaticMethod=*/false);
+ }
+ return lowerTypeFunction(cast<DISubroutineType>(Ty));
+ case dwarf::DW_TAG_enumeration_type:
+ return lowerTypeEnum(cast<DICompositeType>(Ty));
+ case dwarf::DW_TAG_class_type:
+ case dwarf::DW_TAG_structure_type:
+ return lowerTypeClass(cast<DICompositeType>(Ty));
+ case dwarf::DW_TAG_union_type:
+ return lowerTypeUnion(cast<DICompositeType>(Ty));
+ case dwarf::DW_TAG_string_type:
+ return lowerTypeString(cast<DIStringType>(Ty));
+ case dwarf::DW_TAG_unspecified_type:
+ if (Ty->getName() == "decltype(nullptr)")
+ return TypeIndex::NullptrT();
+ return TypeIndex::None();
+ default:
+ // Use the null type index.
+ return TypeIndex();
+ }
+}
+
+TypeIndex CodeViewDebug::lowerTypeAlias(const DIDerivedType *Ty) {
+ TypeIndex UnderlyingTypeIndex = getTypeIndex(Ty->getBaseType());
+ StringRef TypeName = Ty->getName();
+
+ addToUDTs(Ty);
+
+ if (UnderlyingTypeIndex == TypeIndex(SimpleTypeKind::Int32Long) &&
+ TypeName == "HRESULT")
+ return TypeIndex(SimpleTypeKind::HResult);
+ if (UnderlyingTypeIndex == TypeIndex(SimpleTypeKind::UInt16Short) &&
+ TypeName == "wchar_t")
+ return TypeIndex(SimpleTypeKind::WideCharacter);
+
+ return UnderlyingTypeIndex;
+}
+
+TypeIndex CodeViewDebug::lowerTypeArray(const DICompositeType *Ty) {
+ const DIType *ElementType = Ty->getBaseType();
+ TypeIndex ElementTypeIndex = getTypeIndex(ElementType);
+ // IndexType is size_t, which depends on the bitness of the target.
+ TypeIndex IndexType = getPointerSizeInBytes() == 8
+ ? TypeIndex(SimpleTypeKind::UInt64Quad)
+ : TypeIndex(SimpleTypeKind::UInt32Long);
+
+ uint64_t ElementSize = getBaseTypeSize(ElementType) / 8;
+
+ // Add subranges to array type.
+ DINodeArray Elements = Ty->getElements();
+ for (int i = Elements.size() - 1; i >= 0; --i) {
+ const DINode *Element = Elements[i];
+ assert(Element->getTag() == dwarf::DW_TAG_subrange_type);
+
+ const DISubrange *Subrange = cast<DISubrange>(Element);
+ int64_t Count = -1;
+
+ // If Subrange has a Count field, use it.
+ // Otherwise, if it has an upperboud, use (upperbound - lowerbound + 1),
+ // where lowerbound is from the LowerBound field of the Subrange,
+ // or the language default lowerbound if that field is unspecified.
+ if (auto *CI = dyn_cast_if_present<ConstantInt *>(Subrange->getCount()))
+ Count = CI->getSExtValue();
+ else if (auto *UI = dyn_cast_if_present<ConstantInt *>(
+ Subrange->getUpperBound())) {
+ // Fortran uses 1 as the default lowerbound; other languages use 0.
+ int64_t Lowerbound = (moduleIsInFortran()) ? 1 : 0;
+ auto *LI = dyn_cast_if_present<ConstantInt *>(Subrange->getLowerBound());
+ Lowerbound = (LI) ? LI->getSExtValue() : Lowerbound;
+ Count = UI->getSExtValue() - Lowerbound + 1;
+ }
+
+ // Forward declarations of arrays without a size and VLAs use a count of -1.
+ // Emit a count of zero in these cases to match what MSVC does for arrays
+ // without a size. MSVC doesn't support VLAs, so it's not clear what we
+ // should do for them even if we could distinguish them.
+ if (Count == -1)
+ Count = 0;
+
+ // Update the element size and element type index for subsequent subranges.
+ ElementSize *= Count;
+
+ // If this is the outermost array, use the size from the array. It will be
+ // more accurate if we had a VLA or an incomplete element type size.
+ uint64_t ArraySize =
+ (i == 0 && ElementSize == 0) ? Ty->getSizeInBits() / 8 : ElementSize;
+
+ StringRef Name = (i == 0) ? Ty->getName() : "";
+ ArrayRecord AR(ElementTypeIndex, IndexType, ArraySize, Name);
+ ElementTypeIndex = TypeTable.writeLeafType(AR);
+ }
+
+ return ElementTypeIndex;
+}
+
+// This function lowers a Fortran character type (DIStringType).
+// Note that it handles only the character*n variant (using SizeInBits
+// field in DIString to describe the type size) at the moment.
+// Other variants (leveraging the StringLength and StringLengthExp
+// fields in DIStringType) remain TBD.
+TypeIndex CodeViewDebug::lowerTypeString(const DIStringType *Ty) {
+ TypeIndex CharType = TypeIndex(SimpleTypeKind::NarrowCharacter);
+ uint64_t ArraySize = Ty->getSizeInBits() >> 3;
+ StringRef Name = Ty->getName();
+ // IndexType is size_t, which depends on the bitness of the target.
+ TypeIndex IndexType = getPointerSizeInBytes() == 8
+ ? TypeIndex(SimpleTypeKind::UInt64Quad)
+ : TypeIndex(SimpleTypeKind::UInt32Long);
+
+ // Create a type of character array of ArraySize.
+ ArrayRecord AR(CharType, IndexType, ArraySize, Name);
+
+ return TypeTable.writeLeafType(AR);
+}
+
+TypeIndex CodeViewDebug::lowerTypeBasic(const DIBasicType *Ty) {
+ TypeIndex Index;
+ dwarf::TypeKind Kind;
+ uint32_t ByteSize;
+
+ Kind = static_cast<dwarf::TypeKind>(Ty->getEncoding());
+ ByteSize = Ty->getSizeInBits() / 8;
+
+ SimpleTypeKind STK = SimpleTypeKind::None;
+ switch (Kind) {
+ case dwarf::DW_ATE_address:
+ // FIXME: Translate
+ break;
+ case dwarf::DW_ATE_boolean:
+ switch (ByteSize) {
+ case 1: STK = SimpleTypeKind::Boolean8; break;
+ case 2: STK = SimpleTypeKind::Boolean16; break;
+ case 4: STK = SimpleTypeKind::Boolean32; break;
+ case 8: STK = SimpleTypeKind::Boolean64; break;
+ case 16: STK = SimpleTypeKind::Boolean128; break;
+ }
+ break;
+ case dwarf::DW_ATE_complex_float:
+ // The CodeView size for a complex represents the size of
+ // an individual component.
+ switch (ByteSize) {
+ case 4: STK = SimpleTypeKind::Complex16; break;
+ case 8: STK = SimpleTypeKind::Complex32; break;
+ case 16: STK = SimpleTypeKind::Complex64; break;
+ case 20: STK = SimpleTypeKind::Complex80; break;
+ case 32: STK = SimpleTypeKind::Complex128; break;
+ }
+ break;
+ case dwarf::DW_ATE_float:
+ switch (ByteSize) {
+ case 2: STK = SimpleTypeKind::Float16; break;
+ case 4: STK = SimpleTypeKind::Float32; break;
+ case 6: STK = SimpleTypeKind::Float48; break;
+ case 8: STK = SimpleTypeKind::Float64; break;
+ case 10: STK = SimpleTypeKind::Float80; break;
+ case 16: STK = SimpleTypeKind::Float128; break;
+ }
+ break;
+ case dwarf::DW_ATE_signed:
+ switch (ByteSize) {
+ case 1: STK = SimpleTypeKind::SignedCharacter; break;
+ case 2: STK = SimpleTypeKind::Int16Short; break;
+ case 4: STK = SimpleTypeKind::Int32; break;
+ case 8: STK = SimpleTypeKind::Int64Quad; break;
+ case 16: STK = SimpleTypeKind::Int128Oct; break;
+ }
+ break;
+ case dwarf::DW_ATE_unsigned:
+ switch (ByteSize) {
+ case 1: STK = SimpleTypeKind::UnsignedCharacter; break;
+ case 2: STK = SimpleTypeKind::UInt16Short; break;
+ case 4: STK = SimpleTypeKind::UInt32; break;
+ case 8: STK = SimpleTypeKind::UInt64Quad; break;
+ case 16: STK = SimpleTypeKind::UInt128Oct; break;
+ }
+ break;
+ case dwarf::DW_ATE_UTF:
+ switch (ByteSize) {
+ case 1: STK = SimpleTypeKind::Character8; break;
+ case 2: STK = SimpleTypeKind::Character16; break;
+ case 4: STK = SimpleTypeKind::Character32; break;
+ }
+ break;
+ case dwarf::DW_ATE_signed_char:
+ if (ByteSize == 1)
+ STK = SimpleTypeKind::SignedCharacter;
+ break;
+ case dwarf::DW_ATE_unsigned_char:
+ if (ByteSize == 1)
+ STK = SimpleTypeKind::UnsignedCharacter;
+ break;
+ default:
+ break;
+ }
+
+ // Apply some fixups based on the source-level type name.
+ // Include some amount of canonicalization from an old naming scheme Clang
+ // used to use for integer types (in an outdated effort to be compatible with
+ // GCC's debug info/GDB's behavior, which has since been addressed).
+ if (STK == SimpleTypeKind::Int32 &&
+ (Ty->getName() == "long int" || Ty->getName() == "long"))
+ STK = SimpleTypeKind::Int32Long;
+ if (STK == SimpleTypeKind::UInt32 && (Ty->getName() == "long unsigned int" ||
+ Ty->getName() == "unsigned long"))
+ STK = SimpleTypeKind::UInt32Long;
+ if (STK == SimpleTypeKind::UInt16Short &&
+ (Ty->getName() == "wchar_t" || Ty->getName() == "__wchar_t"))
+ STK = SimpleTypeKind::WideCharacter;
+ if ((STK == SimpleTypeKind::SignedCharacter ||
+ STK == SimpleTypeKind::UnsignedCharacter) &&
+ Ty->getName() == "char")
+ STK = SimpleTypeKind::NarrowCharacter;
+
+ return TypeIndex(STK);
+}
+
+TypeIndex CodeViewDebug::lowerTypePointer(const DIDerivedType *Ty,
+ PointerOptions PO) {
+ TypeIndex PointeeTI = getTypeIndex(Ty->getBaseType());
+
+ // Pointers to simple types without any options can use SimpleTypeMode, rather
+ // than having a dedicated pointer type record.
+ if (PointeeTI.isSimple() && PO == PointerOptions::None &&
+ PointeeTI.getSimpleMode() == SimpleTypeMode::Direct &&
+ Ty->getTag() == dwarf::DW_TAG_pointer_type) {
+ SimpleTypeMode Mode = Ty->getSizeInBits() == 64
+ ? SimpleTypeMode::NearPointer64
+ : SimpleTypeMode::NearPointer32;
+ return TypeIndex(PointeeTI.getSimpleKind(), Mode);
+ }
+
+ PointerKind PK =
+ Ty->getSizeInBits() == 64 ? PointerKind::Near64 : PointerKind::Near32;
+ PointerMode PM = PointerMode::Pointer;
+ switch (Ty->getTag()) {
+ default: llvm_unreachable("not a pointer tag type");
+ case dwarf::DW_TAG_pointer_type:
+ PM = PointerMode::Pointer;
+ break;
+ case dwarf::DW_TAG_reference_type:
+ PM = PointerMode::LValueReference;
+ break;
+ case dwarf::DW_TAG_rvalue_reference_type:
+ PM = PointerMode::RValueReference;
+ break;
+ }
+
+ if (Ty->isObjectPointer())
+ PO |= PointerOptions::Const;
+
+ PointerRecord PR(PointeeTI, PK, PM, PO, Ty->getSizeInBits() / 8);
+ return TypeTable.writeLeafType(PR);
+}
+
+static PointerToMemberRepresentation
+translatePtrToMemberRep(unsigned SizeInBytes, bool IsPMF, unsigned Flags) {
+ // SizeInBytes being zero generally implies that the member pointer type was
+ // incomplete, which can happen if it is part of a function prototype. In this
+ // case, use the unknown model instead of the general model.
+ if (IsPMF) {
+ switch (Flags & DINode::FlagPtrToMemberRep) {
+ case 0:
+ return SizeInBytes == 0 ? PointerToMemberRepresentation::Unknown
+ : PointerToMemberRepresentation::GeneralFunction;
+ case DINode::FlagSingleInheritance:
+ return PointerToMemberRepresentation::SingleInheritanceFunction;
+ case DINode::FlagMultipleInheritance:
+ return PointerToMemberRepresentation::MultipleInheritanceFunction;
+ case DINode::FlagVirtualInheritance:
+ return PointerToMemberRepresentation::VirtualInheritanceFunction;
+ }
+ } else {
+ switch (Flags & DINode::FlagPtrToMemberRep) {
+ case 0:
+ return SizeInBytes == 0 ? PointerToMemberRepresentation::Unknown
+ : PointerToMemberRepresentation::GeneralData;
+ case DINode::FlagSingleInheritance:
+ return PointerToMemberRepresentation::SingleInheritanceData;
+ case DINode::FlagMultipleInheritance:
+ return PointerToMemberRepresentation::MultipleInheritanceData;
+ case DINode::FlagVirtualInheritance:
+ return PointerToMemberRepresentation::VirtualInheritanceData;
+ }
+ }
+ llvm_unreachable("invalid ptr to member representation");
+}
+
+TypeIndex CodeViewDebug::lowerTypeMemberPointer(const DIDerivedType *Ty,
+ PointerOptions PO) {
+ assert(Ty->getTag() == dwarf::DW_TAG_ptr_to_member_type);
+ bool IsPMF = isa<DISubroutineType>(Ty->getBaseType());
+ TypeIndex ClassTI = getTypeIndex(Ty->getClassType());
+ TypeIndex PointeeTI =
+ getTypeIndex(Ty->getBaseType(), IsPMF ? Ty->getClassType() : nullptr);
+ PointerKind PK = getPointerSizeInBytes() == 8 ? PointerKind::Near64
+ : PointerKind::Near32;
+ PointerMode PM = IsPMF ? PointerMode::PointerToMemberFunction
+ : PointerMode::PointerToDataMember;
+
+ assert(Ty->getSizeInBits() / 8 <= 0xff && "pointer size too big");
+ uint8_t SizeInBytes = Ty->getSizeInBits() / 8;
+ MemberPointerInfo MPI(
+ ClassTI, translatePtrToMemberRep(SizeInBytes, IsPMF, Ty->getFlags()));
+ PointerRecord PR(PointeeTI, PK, PM, PO, SizeInBytes, MPI);
+ return TypeTable.writeLeafType(PR);
+}
+
+/// Given a DWARF calling convention, get the CodeView equivalent. If we don't
+/// have a translation, use the NearC convention.
+static CallingConvention dwarfCCToCodeView(unsigned DwarfCC) {
+ switch (DwarfCC) {
+ case dwarf::DW_CC_normal: return CallingConvention::NearC;
+ case dwarf::DW_CC_BORLAND_msfastcall: return CallingConvention::NearFast;
+ case dwarf::DW_CC_BORLAND_thiscall: return CallingConvention::ThisCall;
+ case dwarf::DW_CC_BORLAND_stdcall: return CallingConvention::NearStdCall;
+ case dwarf::DW_CC_BORLAND_pascal: return CallingConvention::NearPascal;
+ case dwarf::DW_CC_LLVM_vectorcall: return CallingConvention::NearVector;
+ }
+ return CallingConvention::NearC;
+}
+
+TypeIndex CodeViewDebug::lowerTypeModifier(const DIDerivedType *Ty) {
+ ModifierOptions Mods = ModifierOptions::None;
+ PointerOptions PO = PointerOptions::None;
+ bool IsModifier = true;
+ const DIType *BaseTy = Ty;
+ while (IsModifier && BaseTy) {
+ // FIXME: Need to add DWARF tags for __unaligned and _Atomic
+ switch (BaseTy->getTag()) {
+ case dwarf::DW_TAG_const_type:
+ Mods |= ModifierOptions::Const;
+ PO |= PointerOptions::Const;
+ break;
+ case dwarf::DW_TAG_volatile_type:
+ Mods |= ModifierOptions::Volatile;
+ PO |= PointerOptions::Volatile;
+ break;
+ case dwarf::DW_TAG_restrict_type:
+ // Only pointer types be marked with __restrict. There is no known flag
+ // for __restrict in LF_MODIFIER records.
+ PO |= PointerOptions::Restrict;
+ break;
+ default:
+ IsModifier = false;
+ break;
+ }
+ if (IsModifier)
+ BaseTy = cast<DIDerivedType>(BaseTy)->getBaseType();
+ }
+
+ // Check if the inner type will use an LF_POINTER record. If so, the
+ // qualifiers will go in the LF_POINTER record. This comes up for types like
+ // 'int *const' and 'int *__restrict', not the more common cases like 'const
+ // char *'.
+ if (BaseTy) {
+ switch (BaseTy->getTag()) {
+ case dwarf::DW_TAG_pointer_type:
+ case dwarf::DW_TAG_reference_type:
+ case dwarf::DW_TAG_rvalue_reference_type:
+ return lowerTypePointer(cast<DIDerivedType>(BaseTy), PO);
+ case dwarf::DW_TAG_ptr_to_member_type:
+ return lowerTypeMemberPointer(cast<DIDerivedType>(BaseTy), PO);
+ default:
+ break;
+ }
+ }
+
+ TypeIndex ModifiedTI = getTypeIndex(BaseTy);
+
+ // Return the base type index if there aren't any modifiers. For example, the
+ // metadata could contain restrict wrappers around non-pointer types.
+ if (Mods == ModifierOptions::None)
+ return ModifiedTI;
+
+ ModifierRecord MR(ModifiedTI, Mods);
+ return TypeTable.writeLeafType(MR);
+}
+
+TypeIndex CodeViewDebug::lowerTypeFunction(const DISubroutineType *Ty) {
+ SmallVector<TypeIndex, 8> ReturnAndArgTypeIndices;
+ for (const DIType *ArgType : Ty->getTypeArray())
+ ReturnAndArgTypeIndices.push_back(getTypeIndex(ArgType));
+
+ // MSVC uses type none for variadic argument.
+ if (ReturnAndArgTypeIndices.size() > 1 &&
+ ReturnAndArgTypeIndices.back() == TypeIndex::Void()) {
+ ReturnAndArgTypeIndices.back() = TypeIndex::None();
+ }
+ TypeIndex ReturnTypeIndex = TypeIndex::Void();
+ ArrayRef<TypeIndex> ArgTypeIndices = std::nullopt;
+ if (!ReturnAndArgTypeIndices.empty()) {
+ auto ReturnAndArgTypesRef = ArrayRef(ReturnAndArgTypeIndices);
+ ReturnTypeIndex = ReturnAndArgTypesRef.front();
+ ArgTypeIndices = ReturnAndArgTypesRef.drop_front();
+ }
+
+ ArgListRecord ArgListRec(TypeRecordKind::ArgList, ArgTypeIndices);
+ TypeIndex ArgListIndex = TypeTable.writeLeafType(ArgListRec);
+
+ CallingConvention CC = dwarfCCToCodeView(Ty->getCC());
+
+ FunctionOptions FO = getFunctionOptions(Ty);
+ ProcedureRecord Procedure(ReturnTypeIndex, CC, FO, ArgTypeIndices.size(),
+ ArgListIndex);
+ return TypeTable.writeLeafType(Procedure);
+}
+
+TypeIndex CodeViewDebug::lowerTypeMemberFunction(const DISubroutineType *Ty,
+ const DIType *ClassTy,
+ int ThisAdjustment,
+ bool IsStaticMethod,
+ FunctionOptions FO) {
+ // Lower the containing class type.
+ TypeIndex ClassType = getTypeIndex(ClassTy);
+
+ DITypeRefArray ReturnAndArgs = Ty->getTypeArray();
+
+ unsigned Index = 0;
+ SmallVector<TypeIndex, 8> ArgTypeIndices;
+ TypeIndex ReturnTypeIndex = TypeIndex::Void();
+ if (ReturnAndArgs.size() > Index) {
+ ReturnTypeIndex = getTypeIndex(ReturnAndArgs[Index++]);
+ }
+
+ // If the first argument is a pointer type and this isn't a static method,
+ // treat it as the special 'this' parameter, which is encoded separately from
+ // the arguments.
+ TypeIndex ThisTypeIndex;
+ if (!IsStaticMethod && ReturnAndArgs.size() > Index) {
+ if (const DIDerivedType *PtrTy =
+ dyn_cast_or_null<DIDerivedType>(ReturnAndArgs[Index])) {
+ if (PtrTy->getTag() == dwarf::DW_TAG_pointer_type) {
+ ThisTypeIndex = getTypeIndexForThisPtr(PtrTy, Ty);
+ Index++;
+ }
+ }
+ }
+
+ while (Index < ReturnAndArgs.size())
+ ArgTypeIndices.push_back(getTypeIndex(ReturnAndArgs[Index++]));
+
+ // MSVC uses type none for variadic argument.
+ if (!ArgTypeIndices.empty() && ArgTypeIndices.back() == TypeIndex::Void())
+ ArgTypeIndices.back() = TypeIndex::None();
+
+ ArgListRecord ArgListRec(TypeRecordKind::ArgList, ArgTypeIndices);
+ TypeIndex ArgListIndex = TypeTable.writeLeafType(ArgListRec);
+
+ CallingConvention CC = dwarfCCToCodeView(Ty->getCC());
+
+ MemberFunctionRecord MFR(ReturnTypeIndex, ClassType, ThisTypeIndex, CC, FO,
+ ArgTypeIndices.size(), ArgListIndex, ThisAdjustment);
+ return TypeTable.writeLeafType(MFR);
+}
+
+TypeIndex CodeViewDebug::lowerTypeVFTableShape(const DIDerivedType *Ty) {
+ unsigned VSlotCount =
+ Ty->getSizeInBits() / (8 * Asm->MAI->getCodePointerSize());
+ SmallVector<VFTableSlotKind, 4> Slots(VSlotCount, VFTableSlotKind::Near);
+
+ VFTableShapeRecord VFTSR(Slots);
+ return TypeTable.writeLeafType(VFTSR);
+}
+
+static MemberAccess translateAccessFlags(unsigned RecordTag, unsigned Flags) {
+ switch (Flags & DINode::FlagAccessibility) {
+ case DINode::FlagPrivate: return MemberAccess::Private;
+ case DINode::FlagPublic: return MemberAccess::Public;
+ case DINode::FlagProtected: return MemberAccess::Protected;
+ case 0:
+ // If there was no explicit access control, provide the default for the tag.
+ return RecordTag == dwarf::DW_TAG_class_type ? MemberAccess::Private
+ : MemberAccess::Public;
+ }
+ llvm_unreachable("access flags are exclusive");
+}
+
+static MethodOptions translateMethodOptionFlags(const DISubprogram *SP) {
+ if (SP->isArtificial())
+ return MethodOptions::CompilerGenerated;
+
+ // FIXME: Handle other MethodOptions.
+
+ return MethodOptions::None;
+}
+
+static MethodKind translateMethodKindFlags(const DISubprogram *SP,
+ bool Introduced) {
+ if (SP->getFlags() & DINode::FlagStaticMember)
+ return MethodKind::Static;
+
+ switch (SP->getVirtuality()) {
+ case dwarf::DW_VIRTUALITY_none:
+ break;
+ case dwarf::DW_VIRTUALITY_virtual:
+ return Introduced ? MethodKind::IntroducingVirtual : MethodKind::Virtual;
+ case dwarf::DW_VIRTUALITY_pure_virtual:
+ return Introduced ? MethodKind::PureIntroducingVirtual
+ : MethodKind::PureVirtual;
+ default:
+ llvm_unreachable("unhandled virtuality case");
+ }
+
+ return MethodKind::Vanilla;
+}
+
+static TypeRecordKind getRecordKind(const DICompositeType *Ty) {
+ switch (Ty->getTag()) {
+ case dwarf::DW_TAG_class_type:
+ return TypeRecordKind::Class;
+ case dwarf::DW_TAG_structure_type:
+ return TypeRecordKind::Struct;
+ default:
+ llvm_unreachable("unexpected tag");
+ }
+}
+
+/// Return ClassOptions that should be present on both the forward declaration
+/// and the defintion of a tag type.
+static ClassOptions getCommonClassOptions(const DICompositeType *Ty) {
+ ClassOptions CO = ClassOptions::None;
+
+ // MSVC always sets this flag, even for local types. Clang doesn't always
+ // appear to give every type a linkage name, which may be problematic for us.
+ // FIXME: Investigate the consequences of not following them here.
+ if (!Ty->getIdentifier().empty())
+ CO |= ClassOptions::HasUniqueName;
+
+ // Put the Nested flag on a type if it appears immediately inside a tag type.
+ // Do not walk the scope chain. Do not attempt to compute ContainsNestedClass
+ // here. That flag is only set on definitions, and not forward declarations.
+ const DIScope *ImmediateScope = Ty->getScope();
+ if (ImmediateScope && isa<DICompositeType>(ImmediateScope))
+ CO |= ClassOptions::Nested;
+
+ // Put the Scoped flag on function-local types. MSVC puts this flag for enum
+ // type only when it has an immediate function scope. Clang never puts enums
+ // inside DILexicalBlock scopes. Enum types, as generated by clang, are
+ // always in function, class, or file scopes.
+ if (Ty->getTag() == dwarf::DW_TAG_enumeration_type) {
+ if (ImmediateScope && isa<DISubprogram>(ImmediateScope))
+ CO |= ClassOptions::Scoped;
+ } else {
+ for (const DIScope *Scope = ImmediateScope; Scope != nullptr;
+ Scope = Scope->getScope()) {
+ if (isa<DISubprogram>(Scope)) {
+ CO |= ClassOptions::Scoped;
+ break;
+ }
+ }
+ }
+
+ return CO;
+}
+
+void CodeViewDebug::addUDTSrcLine(const DIType *Ty, TypeIndex TI) {
+ switch (Ty->getTag()) {
+ case dwarf::DW_TAG_class_type:
+ case dwarf::DW_TAG_structure_type:
+ case dwarf::DW_TAG_union_type:
+ case dwarf::DW_TAG_enumeration_type:
+ break;
+ default:
+ return;
+ }
+
+ if (const auto *File = Ty->getFile()) {
+ StringIdRecord SIDR(TypeIndex(0x0), getFullFilepath(File));
+ TypeIndex SIDI = TypeTable.writeLeafType(SIDR);
+
+ UdtSourceLineRecord USLR(TI, SIDI, Ty->getLine());
+ TypeTable.writeLeafType(USLR);
+ }
+}
+
+TypeIndex CodeViewDebug::lowerTypeEnum(const DICompositeType *Ty) {
+ ClassOptions CO = getCommonClassOptions(Ty);
+ TypeIndex FTI;
+ unsigned EnumeratorCount = 0;
+
+ if (Ty->isForwardDecl()) {
+ CO |= ClassOptions::ForwardReference;
+ } else {
+ ContinuationRecordBuilder ContinuationBuilder;
+ ContinuationBuilder.begin(ContinuationRecordKind::FieldList);
+ for (const DINode *Element : Ty->getElements()) {
+ // We assume that the frontend provides all members in source declaration
+ // order, which is what MSVC does.
+ if (auto *Enumerator = dyn_cast_or_null<DIEnumerator>(Element)) {
+ // FIXME: Is it correct to always emit these as unsigned here?
+ EnumeratorRecord ER(MemberAccess::Public,
+ APSInt(Enumerator->getValue(), true),
+ Enumerator->getName());
+ ContinuationBuilder.writeMemberType(ER);
+ EnumeratorCount++;
+ }
+ }
+ FTI = TypeTable.insertRecord(ContinuationBuilder);
+ }
+
+ std::string FullName = getFullyQualifiedName(Ty);
+
+ EnumRecord ER(EnumeratorCount, CO, FTI, FullName, Ty->getIdentifier(),
+ getTypeIndex(Ty->getBaseType()));
+ TypeIndex EnumTI = TypeTable.writeLeafType(ER);
+
+ addUDTSrcLine(Ty, EnumTI);
+
+ return EnumTI;
+}
+
+//===----------------------------------------------------------------------===//
+// ClassInfo
+//===----------------------------------------------------------------------===//
+
+struct llvm::ClassInfo {
+ struct MemberInfo {
+ const DIDerivedType *MemberTypeNode;
+ uint64_t BaseOffset;
+ };
+ // [MemberInfo]
+ using MemberList = std::vector<MemberInfo>;
+
+ using MethodsList = TinyPtrVector<const DISubprogram *>;
+ // MethodName -> MethodsList
+ using MethodsMap = MapVector<MDString *, MethodsList>;
+
+ /// Base classes.
+ std::vector<const DIDerivedType *> Inheritance;
+
+ /// Direct members.
+ MemberList Members;
+ // Direct overloaded methods gathered by name.
+ MethodsMap Methods;
+
+ TypeIndex VShapeTI;
+
+ std::vector<const DIType *> NestedTypes;
+};
+
+void CodeViewDebug::clear() {
+ assert(CurFn == nullptr);
+ FileIdMap.clear();
+ FnDebugInfo.clear();
+ FileToFilepathMap.clear();
+ LocalUDTs.clear();
+ GlobalUDTs.clear();
+ TypeIndices.clear();
+ CompleteTypeIndices.clear();
+ ScopeGlobals.clear();
+ CVGlobalVariableOffsets.clear();
+}
+
+void CodeViewDebug::collectMemberInfo(ClassInfo &Info,
+ const DIDerivedType *DDTy) {
+ if (!DDTy->getName().empty()) {
+ Info.Members.push_back({DDTy, 0});
+
+ // Collect static const data members with values.
+ if ((DDTy->getFlags() & DINode::FlagStaticMember) ==
+ DINode::FlagStaticMember) {
+ if (DDTy->getConstant() && (isa<ConstantInt>(DDTy->getConstant()) ||
+ isa<ConstantFP>(DDTy->getConstant())))
+ StaticConstMembers.push_back(DDTy);
+ }
+
+ return;
+ }
+
+ // An unnamed member may represent a nested struct or union. Attempt to
+ // interpret the unnamed member as a DICompositeType possibly wrapped in
+ // qualifier types. Add all the indirect fields to the current record if that
+ // succeeds, and drop the member if that fails.
+ assert((DDTy->getOffsetInBits() % 8) == 0 && "Unnamed bitfield member!");
+ uint64_t Offset = DDTy->getOffsetInBits();
+ const DIType *Ty = DDTy->getBaseType();
+ bool FullyResolved = false;
+ while (!FullyResolved) {
+ switch (Ty->getTag()) {
+ case dwarf::DW_TAG_const_type:
+ case dwarf::DW_TAG_volatile_type:
+ // FIXME: we should apply the qualifier types to the indirect fields
+ // rather than dropping them.
+ Ty = cast<DIDerivedType>(Ty)->getBaseType();
+ break;
+ default:
+ FullyResolved = true;
+ break;
+ }
+ }
+
+ const DICompositeType *DCTy = dyn_cast<DICompositeType>(Ty);
+ if (!DCTy)
+ return;
+
+ ClassInfo NestedInfo = collectClassInfo(DCTy);
+ for (const ClassInfo::MemberInfo &IndirectField : NestedInfo.Members)
+ Info.Members.push_back(
+ {IndirectField.MemberTypeNode, IndirectField.BaseOffset + Offset});
+}
+
+ClassInfo CodeViewDebug::collectClassInfo(const DICompositeType *Ty) {
+ ClassInfo Info;
+ // Add elements to structure type.
+ DINodeArray Elements = Ty->getElements();
+ for (auto *Element : Elements) {
+ // We assume that the frontend provides all members in source declaration
+ // order, which is what MSVC does.
+ if (!Element)
+ continue;
+ if (auto *SP = dyn_cast<DISubprogram>(Element)) {
+ Info.Methods[SP->getRawName()].push_back(SP);
+ } else if (auto *DDTy = dyn_cast<DIDerivedType>(Element)) {
+ if (DDTy->getTag() == dwarf::DW_TAG_member) {
+ collectMemberInfo(Info, DDTy);
+ } else if (DDTy->getTag() == dwarf::DW_TAG_inheritance) {
+ Info.Inheritance.push_back(DDTy);
+ } else if (DDTy->getTag() == dwarf::DW_TAG_pointer_type &&
+ DDTy->getName() == "__vtbl_ptr_type") {
+ Info.VShapeTI = getTypeIndex(DDTy);
+ } else if (DDTy->getTag() == dwarf::DW_TAG_typedef) {
+ Info.NestedTypes.push_back(DDTy);
+ } else if (DDTy->getTag() == dwarf::DW_TAG_friend) {
+ // Ignore friend members. It appears that MSVC emitted info about
+ // friends in the past, but modern versions do not.
+ }
+ } else if (auto *Composite = dyn_cast<DICompositeType>(Element)) {
+ Info.NestedTypes.push_back(Composite);
+ }
+ // Skip other unrecognized kinds of elements.
+ }
+ return Info;
+}
+
+static bool shouldAlwaysEmitCompleteClassType(const DICompositeType *Ty) {
+ // This routine is used by lowerTypeClass and lowerTypeUnion to determine
+ // if a complete type should be emitted instead of a forward reference.
+ return Ty->getName().empty() && Ty->getIdentifier().empty() &&
+ !Ty->isForwardDecl();
+}
+
+TypeIndex CodeViewDebug::lowerTypeClass(const DICompositeType *Ty) {
+ // Emit the complete type for unnamed structs. C++ classes with methods
+ // which have a circular reference back to the class type are expected to
+ // be named by the front-end and should not be "unnamed". C unnamed
+ // structs should not have circular references.
+ if (shouldAlwaysEmitCompleteClassType(Ty)) {
+ // If this unnamed complete type is already in the process of being defined
+ // then the description of the type is malformed and cannot be emitted
+ // into CodeView correctly so report a fatal error.
+ auto I = CompleteTypeIndices.find(Ty);
+ if (I != CompleteTypeIndices.end() && I->second == TypeIndex())
+ report_fatal_error("cannot debug circular reference to unnamed type");
+ return getCompleteTypeIndex(Ty);
+ }
+
+ // First, construct the forward decl. Don't look into Ty to compute the
+ // forward decl options, since it might not be available in all TUs.
+ TypeRecordKind Kind = getRecordKind(Ty);
+ ClassOptions CO =
+ ClassOptions::ForwardReference | getCommonClassOptions(Ty);
+ std::string FullName = getFullyQualifiedName(Ty);
+ ClassRecord CR(Kind, 0, CO, TypeIndex(), TypeIndex(), TypeIndex(), 0,
+ FullName, Ty->getIdentifier());
+ TypeIndex FwdDeclTI = TypeTable.writeLeafType(CR);
+ if (!Ty->isForwardDecl())
+ DeferredCompleteTypes.push_back(Ty);
+ return FwdDeclTI;
+}
+
+TypeIndex CodeViewDebug::lowerCompleteTypeClass(const DICompositeType *Ty) {
+ // Construct the field list and complete type record.
+ TypeRecordKind Kind = getRecordKind(Ty);
+ ClassOptions CO = getCommonClassOptions(Ty);
+ TypeIndex FieldTI;
+ TypeIndex VShapeTI;
+ unsigned FieldCount;
+ bool ContainsNestedClass;
+ std::tie(FieldTI, VShapeTI, FieldCount, ContainsNestedClass) =
+ lowerRecordFieldList(Ty);
+
+ if (ContainsNestedClass)
+ CO |= ClassOptions::ContainsNestedClass;
+
+ // MSVC appears to set this flag by searching any destructor or method with
+ // FunctionOptions::Constructor among the emitted members. Clang AST has all
+ // the members, however special member functions are not yet emitted into
+ // debug information. For now checking a class's non-triviality seems enough.
+ // FIXME: not true for a nested unnamed struct.
+ if (isNonTrivial(Ty))
+ CO |= ClassOptions::HasConstructorOrDestructor;
+
+ std::string FullName = getFullyQualifiedName(Ty);
+
+ uint64_t SizeInBytes = Ty->getSizeInBits() / 8;
+
+ ClassRecord CR(Kind, FieldCount, CO, FieldTI, TypeIndex(), VShapeTI,
+ SizeInBytes, FullName, Ty->getIdentifier());
+ TypeIndex ClassTI = TypeTable.writeLeafType(CR);
+
+ addUDTSrcLine(Ty, ClassTI);
+
+ addToUDTs(Ty);
+
+ return ClassTI;
+}
+
+TypeIndex CodeViewDebug::lowerTypeUnion(const DICompositeType *Ty) {
+ // Emit the complete type for unnamed unions.
+ if (shouldAlwaysEmitCompleteClassType(Ty))
+ return getCompleteTypeIndex(Ty);
+
+ ClassOptions CO =
+ ClassOptions::ForwardReference | getCommonClassOptions(Ty);
+ std::string FullName = getFullyQualifiedName(Ty);
+ UnionRecord UR(0, CO, TypeIndex(), 0, FullName, Ty->getIdentifier());
+ TypeIndex FwdDeclTI = TypeTable.writeLeafType(UR);
+ if (!Ty->isForwardDecl())
+ DeferredCompleteTypes.push_back(Ty);
+ return FwdDeclTI;
+}
+
+TypeIndex CodeViewDebug::lowerCompleteTypeUnion(const DICompositeType *Ty) {
+ ClassOptions CO = ClassOptions::Sealed | getCommonClassOptions(Ty);
+ TypeIndex FieldTI;
+ unsigned FieldCount;
+ bool ContainsNestedClass;
+ std::tie(FieldTI, std::ignore, FieldCount, ContainsNestedClass) =
+ lowerRecordFieldList(Ty);
+
+ if (ContainsNestedClass)
+ CO |= ClassOptions::ContainsNestedClass;
+
+ uint64_t SizeInBytes = Ty->getSizeInBits() / 8;
+ std::string FullName = getFullyQualifiedName(Ty);
+
+ UnionRecord UR(FieldCount, CO, FieldTI, SizeInBytes, FullName,
+ Ty->getIdentifier());
+ TypeIndex UnionTI = TypeTable.writeLeafType(UR);
+
+ addUDTSrcLine(Ty, UnionTI);
+
+ addToUDTs(Ty);
+
+ return UnionTI;
+}
+
+std::tuple<TypeIndex, TypeIndex, unsigned, bool>
+CodeViewDebug::lowerRecordFieldList(const DICompositeType *Ty) {
+ // Manually count members. MSVC appears to count everything that generates a
+ // field list record. Each individual overload in a method overload group
+ // contributes to this count, even though the overload group is a single field
+ // list record.
+ unsigned MemberCount = 0;
+ ClassInfo Info = collectClassInfo(Ty);
+ ContinuationRecordBuilder ContinuationBuilder;
+ ContinuationBuilder.begin(ContinuationRecordKind::FieldList);
+
+ // Create base classes.
+ for (const DIDerivedType *I : Info.Inheritance) {
+ if (I->getFlags() & DINode::FlagVirtual) {
+ // Virtual base.
+ unsigned VBPtrOffset = I->getVBPtrOffset();
+ // FIXME: Despite the accessor name, the offset is really in bytes.
+ unsigned VBTableIndex = I->getOffsetInBits() / 4;
+ auto RecordKind = (I->getFlags() & DINode::FlagIndirectVirtualBase) == DINode::FlagIndirectVirtualBase
+ ? TypeRecordKind::IndirectVirtualBaseClass
+ : TypeRecordKind::VirtualBaseClass;
+ VirtualBaseClassRecord VBCR(
+ RecordKind, translateAccessFlags(Ty->getTag(), I->getFlags()),
+ getTypeIndex(I->getBaseType()), getVBPTypeIndex(), VBPtrOffset,
+ VBTableIndex);
+
+ ContinuationBuilder.writeMemberType(VBCR);
+ MemberCount++;
+ } else {
+ assert(I->getOffsetInBits() % 8 == 0 &&
+ "bases must be on byte boundaries");
+ BaseClassRecord BCR(translateAccessFlags(Ty->getTag(), I->getFlags()),
+ getTypeIndex(I->getBaseType()),
+ I->getOffsetInBits() / 8);
+ ContinuationBuilder.writeMemberType(BCR);
+ MemberCount++;
+ }
+ }
+
+ // Create members.
+ for (ClassInfo::MemberInfo &MemberInfo : Info.Members) {
+ const DIDerivedType *Member = MemberInfo.MemberTypeNode;
+ TypeIndex MemberBaseType = getTypeIndex(Member->getBaseType());
+ StringRef MemberName = Member->getName();
+ MemberAccess Access =
+ translateAccessFlags(Ty->getTag(), Member->getFlags());
+
+ if (Member->isStaticMember()) {
+ StaticDataMemberRecord SDMR(Access, MemberBaseType, MemberName);
+ ContinuationBuilder.writeMemberType(SDMR);
+ MemberCount++;
+ continue;
+ }
+
+ // Virtual function pointer member.
+ if ((Member->getFlags() & DINode::FlagArtificial) &&
+ Member->getName().startswith("_vptr$")) {
+ VFPtrRecord VFPR(getTypeIndex(Member->getBaseType()));
+ ContinuationBuilder.writeMemberType(VFPR);
+ MemberCount++;
+ continue;
+ }
+
+ // Data member.
+ uint64_t MemberOffsetInBits =
+ Member->getOffsetInBits() + MemberInfo.BaseOffset;
+ if (Member->isBitField()) {
+ uint64_t StartBitOffset = MemberOffsetInBits;
+ if (const auto *CI =
+ dyn_cast_or_null<ConstantInt>(Member->getStorageOffsetInBits())) {
+ MemberOffsetInBits = CI->getZExtValue() + MemberInfo.BaseOffset;
+ }
+ StartBitOffset -= MemberOffsetInBits;
+ BitFieldRecord BFR(MemberBaseType, Member->getSizeInBits(),
+ StartBitOffset);
+ MemberBaseType = TypeTable.writeLeafType(BFR);
+ }
+ uint64_t MemberOffsetInBytes = MemberOffsetInBits / 8;
+ DataMemberRecord DMR(Access, MemberBaseType, MemberOffsetInBytes,
+ MemberName);
+ ContinuationBuilder.writeMemberType(DMR);
+ MemberCount++;
+ }
+
+ // Create methods
+ for (auto &MethodItr : Info.Methods) {
+ StringRef Name = MethodItr.first->getString();
+
+ std::vector<OneMethodRecord> Methods;
+ for (const DISubprogram *SP : MethodItr.second) {
+ TypeIndex MethodType = getMemberFunctionType(SP, Ty);
+ bool Introduced = SP->getFlags() & DINode::FlagIntroducedVirtual;
+
+ unsigned VFTableOffset = -1;
+ if (Introduced)
+ VFTableOffset = SP->getVirtualIndex() * getPointerSizeInBytes();
+
+ Methods.push_back(OneMethodRecord(
+ MethodType, translateAccessFlags(Ty->getTag(), SP->getFlags()),
+ translateMethodKindFlags(SP, Introduced),
+ translateMethodOptionFlags(SP), VFTableOffset, Name));
+ MemberCount++;
+ }
+ assert(!Methods.empty() && "Empty methods map entry");
+ if (Methods.size() == 1)
+ ContinuationBuilder.writeMemberType(Methods[0]);
+ else {
+ // FIXME: Make this use its own ContinuationBuilder so that
+ // MethodOverloadList can be split correctly.
+ MethodOverloadListRecord MOLR(Methods);
+ TypeIndex MethodList = TypeTable.writeLeafType(MOLR);
+
+ OverloadedMethodRecord OMR(Methods.size(), MethodList, Name);
+ ContinuationBuilder.writeMemberType(OMR);
+ }
+ }
+
+ // Create nested classes.
+ for (const DIType *Nested : Info.NestedTypes) {
+ NestedTypeRecord R(getTypeIndex(Nested), Nested->getName());
+ ContinuationBuilder.writeMemberType(R);
+ MemberCount++;
+ }
+
+ TypeIndex FieldTI = TypeTable.insertRecord(ContinuationBuilder);
+ return std::make_tuple(FieldTI, Info.VShapeTI, MemberCount,
+ !Info.NestedTypes.empty());
+}
+
+TypeIndex CodeViewDebug::getVBPTypeIndex() {
+ if (!VBPType.getIndex()) {
+ // Make a 'const int *' type.
+ ModifierRecord MR(TypeIndex::Int32(), ModifierOptions::Const);
+ TypeIndex ModifiedTI = TypeTable.writeLeafType(MR);
+
+ PointerKind PK = getPointerSizeInBytes() == 8 ? PointerKind::Near64
+ : PointerKind::Near32;
+ PointerMode PM = PointerMode::Pointer;
+ PointerOptions PO = PointerOptions::None;
+ PointerRecord PR(ModifiedTI, PK, PM, PO, getPointerSizeInBytes());
+ VBPType = TypeTable.writeLeafType(PR);
+ }
+
+ return VBPType;
+}
+
+TypeIndex CodeViewDebug::getTypeIndex(const DIType *Ty, const DIType *ClassTy) {
+ // The null DIType is the void type. Don't try to hash it.
+ if (!Ty)
+ return TypeIndex::Void();
+
+ // Check if we've already translated this type. Don't try to do a
+ // get-or-create style insertion that caches the hash lookup across the
+ // lowerType call. It will update the TypeIndices map.
+ auto I = TypeIndices.find({Ty, ClassTy});
+ if (I != TypeIndices.end())
+ return I->second;
+
+ TypeLoweringScope S(*this);
+ TypeIndex TI = lowerType(Ty, ClassTy);
+ return recordTypeIndexForDINode(Ty, TI, ClassTy);
+}
+
+codeview::TypeIndex
+CodeViewDebug::getTypeIndexForThisPtr(const DIDerivedType *PtrTy,
+ const DISubroutineType *SubroutineTy) {
+ assert(PtrTy->getTag() == dwarf::DW_TAG_pointer_type &&
+ "this type must be a pointer type");
+
+ PointerOptions Options = PointerOptions::None;
+ if (SubroutineTy->getFlags() & DINode::DIFlags::FlagLValueReference)
+ Options = PointerOptions::LValueRefThisPointer;
+ else if (SubroutineTy->getFlags() & DINode::DIFlags::FlagRValueReference)
+ Options = PointerOptions::RValueRefThisPointer;
+
+ // Check if we've already translated this type. If there is no ref qualifier
+ // on the function then we look up this pointer type with no associated class
+ // so that the TypeIndex for the this pointer can be shared with the type
+ // index for other pointers to this class type. If there is a ref qualifier
+ // then we lookup the pointer using the subroutine as the parent type.
+ auto I = TypeIndices.find({PtrTy, SubroutineTy});
+ if (I != TypeIndices.end())
+ return I->second;
+
+ TypeLoweringScope S(*this);
+ TypeIndex TI = lowerTypePointer(PtrTy, Options);
+ return recordTypeIndexForDINode(PtrTy, TI, SubroutineTy);
+}
+
+TypeIndex CodeViewDebug::getTypeIndexForReferenceTo(const DIType *Ty) {
+ PointerRecord PR(getTypeIndex(Ty),
+ getPointerSizeInBytes() == 8 ? PointerKind::Near64
+ : PointerKind::Near32,
+ PointerMode::LValueReference, PointerOptions::None,
+ Ty->getSizeInBits() / 8);
+ return TypeTable.writeLeafType(PR);
+}
+
+TypeIndex CodeViewDebug::getCompleteTypeIndex(const DIType *Ty) {
+ // The null DIType is the void type. Don't try to hash it.
+ if (!Ty)
+ return TypeIndex::Void();
+
+ // Look through typedefs when getting the complete type index. Call
+ // getTypeIndex on the typdef to ensure that any UDTs are accumulated and are
+ // emitted only once.
+ if (Ty->getTag() == dwarf::DW_TAG_typedef)
+ (void)getTypeIndex(Ty);
+ while (Ty->getTag() == dwarf::DW_TAG_typedef)
+ Ty = cast<DIDerivedType>(Ty)->getBaseType();
+
+ // If this is a non-record type, the complete type index is the same as the
+ // normal type index. Just call getTypeIndex.
+ switch (Ty->getTag()) {
+ case dwarf::DW_TAG_class_type:
+ case dwarf::DW_TAG_structure_type:
+ case dwarf::DW_TAG_union_type:
+ break;
+ default:
+ return getTypeIndex(Ty);
+ }
+
+ const auto *CTy = cast<DICompositeType>(Ty);
+
+ TypeLoweringScope S(*this);
+
+ // Make sure the forward declaration is emitted first. It's unclear if this
+ // is necessary, but MSVC does it, and we should follow suit until we can show
+ // otherwise.
+ // We only emit a forward declaration for named types.
+ if (!CTy->getName().empty() || !CTy->getIdentifier().empty()) {
+ TypeIndex FwdDeclTI = getTypeIndex(CTy);
+
+ // Just use the forward decl if we don't have complete type info. This
+ // might happen if the frontend is using modules and expects the complete
+ // definition to be emitted elsewhere.
+ if (CTy->isForwardDecl())
+ return FwdDeclTI;
+ }
+
+ // Check if we've already translated the complete record type.
+ // Insert the type with a null TypeIndex to signify that the type is currently
+ // being lowered.
+ auto InsertResult = CompleteTypeIndices.insert({CTy, TypeIndex()});
+ if (!InsertResult.second)
+ return InsertResult.first->second;
+
+ TypeIndex TI;
+ switch (CTy->getTag()) {
+ case dwarf::DW_TAG_class_type:
+ case dwarf::DW_TAG_structure_type:
+ TI = lowerCompleteTypeClass(CTy);
+ break;
+ case dwarf::DW_TAG_union_type:
+ TI = lowerCompleteTypeUnion(CTy);
+ break;
+ default:
+ llvm_unreachable("not a record");
+ }
+
+ // Update the type index associated with this CompositeType. This cannot
+ // use the 'InsertResult' iterator above because it is potentially
+ // invalidated by map insertions which can occur while lowering the class
+ // type above.
+ CompleteTypeIndices[CTy] = TI;
+ return TI;
+}
+
+/// Emit all the deferred complete record types. Try to do this in FIFO order,
+/// and do this until fixpoint, as each complete record type typically
+/// references
+/// many other record types.
+void CodeViewDebug::emitDeferredCompleteTypes() {
+ SmallVector<const DICompositeType *, 4> TypesToEmit;
+ while (!DeferredCompleteTypes.empty()) {
+ std::swap(DeferredCompleteTypes, TypesToEmit);
+ for (const DICompositeType *RecordTy : TypesToEmit)
+ getCompleteTypeIndex(RecordTy);
+ TypesToEmit.clear();
+ }
+}
+
+void CodeViewDebug::emitLocalVariableList(const FunctionInfo &FI,
+ ArrayRef<LocalVariable> Locals) {
+ // Get the sorted list of parameters and emit them first.
+ SmallVector<const LocalVariable *, 6> Params;
+ for (const LocalVariable &L : Locals)
+ if (L.DIVar->isParameter())
+ Params.push_back(&L);
+ llvm::sort(Params, [](const LocalVariable *L, const LocalVariable *R) {
+ return L->DIVar->getArg() < R->DIVar->getArg();
+ });
+ for (const LocalVariable *L : Params)
+ emitLocalVariable(FI, *L);
+
+ // Next emit all non-parameters in the order that we found them.
+ for (const LocalVariable &L : Locals) {
+ if (!L.DIVar->isParameter()) {
+ if (L.ConstantValue) {
+ // If ConstantValue is set we will emit it as a S_CONSTANT instead of a
+ // S_LOCAL in order to be able to represent it at all.
+ const DIType *Ty = L.DIVar->getType();
+ APSInt Val(*L.ConstantValue);
+ emitConstantSymbolRecord(Ty, Val, std::string(L.DIVar->getName()));
+ } else {
+ emitLocalVariable(FI, L);
+ }
+ }
+ }
+}
+
+void CodeViewDebug::emitLocalVariable(const FunctionInfo &FI,
+ const LocalVariable &Var) {
+ // LocalSym record, see SymbolRecord.h for more info.
+ MCSymbol *LocalEnd = beginSymbolRecord(SymbolKind::S_LOCAL);
+
+ LocalSymFlags Flags = LocalSymFlags::None;
+ if (Var.DIVar->isParameter())
+ Flags |= LocalSymFlags::IsParameter;
+ if (Var.DefRanges.empty())
+ Flags |= LocalSymFlags::IsOptimizedOut;
+
+ OS.AddComment("TypeIndex");
+ TypeIndex TI = Var.UseReferenceType
+ ? getTypeIndexForReferenceTo(Var.DIVar->getType())
+ : getCompleteTypeIndex(Var.DIVar->getType());
+ OS.emitInt32(TI.getIndex());
+ OS.AddComment("Flags");
+ OS.emitInt16(static_cast<uint16_t>(Flags));
+ // Truncate the name so we won't overflow the record length field.
+ emitNullTerminatedSymbolName(OS, Var.DIVar->getName());
+ endSymbolRecord(LocalEnd);
+
+ // Calculate the on disk prefix of the appropriate def range record. The
+ // records and on disk formats are described in SymbolRecords.h. BytePrefix
+ // should be big enough to hold all forms without memory allocation.
+ SmallString<20> BytePrefix;
+ for (const auto &Pair : Var.DefRanges) {
+ LocalVarDef DefRange = Pair.first;
+ const auto &Ranges = Pair.second;
+ BytePrefix.clear();
+ if (DefRange.InMemory) {
+ int Offset = DefRange.DataOffset;
+ unsigned Reg = DefRange.CVRegister;
+
+ // 32-bit x86 call sequences often use PUSH instructions, which disrupt
+ // ESP-relative offsets. Use the virtual frame pointer, VFRAME or $T0,
+ // instead. In frames without stack realignment, $T0 will be the CFA.
+ if (RegisterId(Reg) == RegisterId::ESP) {
+ Reg = unsigned(RegisterId::VFRAME);
+ Offset += FI.OffsetAdjustment;
+ }
+
+ // If we can use the chosen frame pointer for the frame and this isn't a
+ // sliced aggregate, use the smaller S_DEFRANGE_FRAMEPOINTER_REL record.
+ // Otherwise, use S_DEFRANGE_REGISTER_REL.
+ EncodedFramePtrReg EncFP = encodeFramePtrReg(RegisterId(Reg), TheCPU);
+ if (!DefRange.IsSubfield && EncFP != EncodedFramePtrReg::None &&
+ (bool(Flags & LocalSymFlags::IsParameter)
+ ? (EncFP == FI.EncodedParamFramePtrReg)
+ : (EncFP == FI.EncodedLocalFramePtrReg))) {
+ DefRangeFramePointerRelHeader DRHdr;
+ DRHdr.Offset = Offset;
+ OS.emitCVDefRangeDirective(Ranges, DRHdr);
+ } else {
+ uint16_t RegRelFlags = 0;
+ if (DefRange.IsSubfield) {
+ RegRelFlags = DefRangeRegisterRelSym::IsSubfieldFlag |
+ (DefRange.StructOffset
+ << DefRangeRegisterRelSym::OffsetInParentShift);
+ }
+ DefRangeRegisterRelHeader DRHdr;
+ DRHdr.Register = Reg;
+ DRHdr.Flags = RegRelFlags;
+ DRHdr.BasePointerOffset = Offset;
+ OS.emitCVDefRangeDirective(Ranges, DRHdr);
+ }
+ } else {
+ assert(DefRange.DataOffset == 0 && "unexpected offset into register");
+ if (DefRange.IsSubfield) {
+ DefRangeSubfieldRegisterHeader DRHdr;
+ DRHdr.Register = DefRange.CVRegister;
+ DRHdr.MayHaveNoName = 0;
+ DRHdr.OffsetInParent = DefRange.StructOffset;
+ OS.emitCVDefRangeDirective(Ranges, DRHdr);
+ } else {
+ DefRangeRegisterHeader DRHdr;
+ DRHdr.Register = DefRange.CVRegister;
+ DRHdr.MayHaveNoName = 0;
+ OS.emitCVDefRangeDirective(Ranges, DRHdr);
+ }
+ }
+ }
+}
+
+void CodeViewDebug::emitLexicalBlockList(ArrayRef<LexicalBlock *> Blocks,
+ const FunctionInfo& FI) {
+ for (LexicalBlock *Block : Blocks)
+ emitLexicalBlock(*Block, FI);
+}
+
+/// Emit an S_BLOCK32 and S_END record pair delimiting the contents of a
+/// lexical block scope.
+void CodeViewDebug::emitLexicalBlock(const LexicalBlock &Block,
+ const FunctionInfo& FI) {
+ MCSymbol *RecordEnd = beginSymbolRecord(SymbolKind::S_BLOCK32);
+ OS.AddComment("PtrParent");
+ OS.emitInt32(0); // PtrParent
+ OS.AddComment("PtrEnd");
+ OS.emitInt32(0); // PtrEnd
+ OS.AddComment("Code size");
+ OS.emitAbsoluteSymbolDiff(Block.End, Block.Begin, 4); // Code Size
+ OS.AddComment("Function section relative address");
+ OS.emitCOFFSecRel32(Block.Begin, /*Offset=*/0); // Func Offset
+ OS.AddComment("Function section index");
+ OS.emitCOFFSectionIndex(FI.Begin); // Func Symbol
+ OS.AddComment("Lexical block name");
+ emitNullTerminatedSymbolName(OS, Block.Name); // Name
+ endSymbolRecord(RecordEnd);
+
+ // Emit variables local to this lexical block.
+ emitLocalVariableList(FI, Block.Locals);
+ emitGlobalVariableList(Block.Globals);
+
+ // Emit lexical blocks contained within this block.
+ emitLexicalBlockList(Block.Children, FI);
+
+ // Close the lexical block scope.
+ emitEndSymbolRecord(SymbolKind::S_END);
+}
+
+/// Convenience routine for collecting lexical block information for a list
+/// of lexical scopes.
+void CodeViewDebug::collectLexicalBlockInfo(
+ SmallVectorImpl<LexicalScope *> &Scopes,
+ SmallVectorImpl<LexicalBlock *> &Blocks,
+ SmallVectorImpl<LocalVariable> &Locals,
+ SmallVectorImpl<CVGlobalVariable> &Globals) {
+ for (LexicalScope *Scope : Scopes)
+ collectLexicalBlockInfo(*Scope, Blocks, Locals, Globals);
+}
+
+/// Populate the lexical blocks and local variable lists of the parent with
+/// information about the specified lexical scope.
+void CodeViewDebug::collectLexicalBlockInfo(
+ LexicalScope &Scope,
+ SmallVectorImpl<LexicalBlock *> &ParentBlocks,
+ SmallVectorImpl<LocalVariable> &ParentLocals,
+ SmallVectorImpl<CVGlobalVariable> &ParentGlobals) {
+ if (Scope.isAbstractScope())
+ return;
+
+ // Gather information about the lexical scope including local variables,
+ // global variables, and address ranges.
+ bool IgnoreScope = false;
+ auto LI = ScopeVariables.find(&Scope);
+ SmallVectorImpl<LocalVariable> *Locals =
+ LI != ScopeVariables.end() ? &LI->second : nullptr;
+ auto GI = ScopeGlobals.find(Scope.getScopeNode());
+ SmallVectorImpl<CVGlobalVariable> *Globals =
+ GI != ScopeGlobals.end() ? GI->second.get() : nullptr;
+ const DILexicalBlock *DILB = dyn_cast<DILexicalBlock>(Scope.getScopeNode());
+ const SmallVectorImpl<InsnRange> &Ranges = Scope.getRanges();
+
+ // Ignore lexical scopes which do not contain variables.
+ if (!Locals && !Globals)
+ IgnoreScope = true;
+
+ // Ignore lexical scopes which are not lexical blocks.
+ if (!DILB)
+ IgnoreScope = true;
+
+ // Ignore scopes which have too many address ranges to represent in the
+ // current CodeView format or do not have a valid address range.
+ //
+ // For lexical scopes with multiple address ranges you may be tempted to
+ // construct a single range covering every instruction where the block is
+ // live and everything in between. Unfortunately, Visual Studio only
+ // displays variables from the first matching lexical block scope. If the
+ // first lexical block contains exception handling code or cold code which
+ // is moved to the bottom of the routine creating a single range covering
+ // nearly the entire routine, then it will hide all other lexical blocks
+ // and the variables they contain.
+ if (Ranges.size() != 1 || !getLabelAfterInsn(Ranges.front().second))
+ IgnoreScope = true;
+
+ if (IgnoreScope) {
+ // This scope can be safely ignored and eliminating it will reduce the
+ // size of the debug information. Be sure to collect any variable and scope
+ // information from the this scope or any of its children and collapse them
+ // into the parent scope.
+ if (Locals)
+ ParentLocals.append(Locals->begin(), Locals->end());
+ if (Globals)
+ ParentGlobals.append(Globals->begin(), Globals->end());
+ collectLexicalBlockInfo(Scope.getChildren(),
+ ParentBlocks,
+ ParentLocals,
+ ParentGlobals);
+ return;
+ }
+
+ // Create a new CodeView lexical block for this lexical scope. If we've
+ // seen this DILexicalBlock before then the scope tree is malformed and
+ // we can handle this gracefully by not processing it a second time.
+ auto BlockInsertion = CurFn->LexicalBlocks.insert({DILB, LexicalBlock()});
+ if (!BlockInsertion.second)
+ return;
+
+ // Create a lexical block containing the variables and collect the the
+ // lexical block information for the children.
+ const InsnRange &Range = Ranges.front();
+ assert(Range.first && Range.second);
+ LexicalBlock &Block = BlockInsertion.first->second;
+ Block.Begin = getLabelBeforeInsn(Range.first);
+ Block.End = getLabelAfterInsn(Range.second);
+ assert(Block.Begin && "missing label for scope begin");
+ assert(Block.End && "missing label for scope end");
+ Block.Name = DILB->getName();
+ if (Locals)
+ Block.Locals = std::move(*Locals);
+ if (Globals)
+ Block.Globals = std::move(*Globals);
+ ParentBlocks.push_back(&Block);
+ collectLexicalBlockInfo(Scope.getChildren(),
+ Block.Children,
+ Block.Locals,
+ Block.Globals);
+}
+
+void CodeViewDebug::endFunctionImpl(const MachineFunction *MF) {
+ const Function &GV = MF->getFunction();
+ assert(FnDebugInfo.count(&GV));
+ assert(CurFn == FnDebugInfo[&GV].get());
+
+ collectVariableInfo(GV.getSubprogram());
+
+ // Build the lexical block structure to emit for this routine.
+ if (LexicalScope *CFS = LScopes.getCurrentFunctionScope())
+ collectLexicalBlockInfo(*CFS,
+ CurFn->ChildBlocks,
+ CurFn->Locals,
+ CurFn->Globals);
+
+ // Clear the scope and variable information from the map which will not be
+ // valid after we have finished processing this routine. This also prepares
+ // the map for the subsequent routine.
+ ScopeVariables.clear();
+
+ // Don't emit anything if we don't have any line tables.
+ // Thunks are compiler-generated and probably won't have source correlation.
+ if (!CurFn->HaveLineInfo && !GV.getSubprogram()->isThunk()) {
+ FnDebugInfo.erase(&GV);
+ CurFn = nullptr;
+ return;
+ }
+
+ // Find heap alloc sites and add to list.
+ for (const auto &MBB : *MF) {
+ for (const auto &MI : MBB) {
+ if (MDNode *MD = MI.getHeapAllocMarker()) {
+ CurFn->HeapAllocSites.push_back(std::make_tuple(getLabelBeforeInsn(&MI),
+ getLabelAfterInsn(&MI),
+ dyn_cast<DIType>(MD)));
+ }
+ }
+ }
+
+ CurFn->Annotations = MF->getCodeViewAnnotations();
+
+ CurFn->End = Asm->getFunctionEnd();
+
+ CurFn = nullptr;
+}
+
+// Usable locations are valid with non-zero line numbers. A line number of zero
+// corresponds to optimized code that doesn't have a distinct source location.
+// In this case, we try to use the previous or next source location depending on
+// the context.
+static bool isUsableDebugLoc(DebugLoc DL) {
+ return DL && DL.getLine() != 0;
+}
+
+void CodeViewDebug::beginInstruction(const MachineInstr *MI) {
+ DebugHandlerBase::beginInstruction(MI);
+
+ // Ignore DBG_VALUE and DBG_LABEL locations and function prologue.
+ if (!Asm || !CurFn || MI->isDebugInstr() ||
+ MI->getFlag(MachineInstr::FrameSetup))
+ return;
+
+ // If the first instruction of a new MBB has no location, find the first
+ // instruction with a location and use that.
+ DebugLoc DL = MI->getDebugLoc();
+ if (!isUsableDebugLoc(DL) && MI->getParent() != PrevInstBB) {
+ for (const auto &NextMI : *MI->getParent()) {
+ if (NextMI.isDebugInstr())
+ continue;
+ DL = NextMI.getDebugLoc();
+ if (isUsableDebugLoc(DL))
+ break;
+ }
+ // FIXME: Handle the case where the BB has no valid locations. This would
+ // probably require doing a real dataflow analysis.
+ }
+ PrevInstBB = MI->getParent();
+
+ // If we still don't have a debug location, don't record a location.
+ if (!isUsableDebugLoc(DL))
+ return;
+
+ maybeRecordLocation(DL, Asm->MF);
+}
+
+MCSymbol *CodeViewDebug::beginCVSubsection(DebugSubsectionKind Kind) {
+ MCSymbol *BeginLabel = MMI->getContext().createTempSymbol(),
+ *EndLabel = MMI->getContext().createTempSymbol();
+ OS.emitInt32(unsigned(Kind));
+ OS.AddComment("Subsection size");
+ OS.emitAbsoluteSymbolDiff(EndLabel, BeginLabel, 4);
+ OS.emitLabel(BeginLabel);
+ return EndLabel;
+}
+
+void CodeViewDebug::endCVSubsection(MCSymbol *EndLabel) {
+ OS.emitLabel(EndLabel);
+ // Every subsection must be aligned to a 4-byte boundary.
+ OS.emitValueToAlignment(Align(4));
+}
+
+static StringRef getSymbolName(SymbolKind SymKind) {
+ for (const EnumEntry<SymbolKind> &EE : getSymbolTypeNames())
+ if (EE.Value == SymKind)
+ return EE.Name;
+ return "";
+}
+
+MCSymbol *CodeViewDebug::beginSymbolRecord(SymbolKind SymKind) {
+ MCSymbol *BeginLabel = MMI->getContext().createTempSymbol(),
+ *EndLabel = MMI->getContext().createTempSymbol();
+ OS.AddComment("Record length");
+ OS.emitAbsoluteSymbolDiff(EndLabel, BeginLabel, 2);
+ OS.emitLabel(BeginLabel);
+ if (OS.isVerboseAsm())
+ OS.AddComment("Record kind: " + getSymbolName(SymKind));
+ OS.emitInt16(unsigned(SymKind));
+ return EndLabel;
+}
+
+void CodeViewDebug::endSymbolRecord(MCSymbol *SymEnd) {
+ // MSVC does not pad out symbol records to four bytes, but LLVM does to avoid
+ // an extra copy of every symbol record in LLD. This increases object file
+ // size by less than 1% in the clang build, and is compatible with the Visual
+ // C++ linker.
+ OS.emitValueToAlignment(Align(4));
+ OS.emitLabel(SymEnd);
+}
+
+void CodeViewDebug::emitEndSymbolRecord(SymbolKind EndKind) {
+ OS.AddComment("Record length");
+ OS.emitInt16(2);
+ if (OS.isVerboseAsm())
+ OS.AddComment("Record kind: " + getSymbolName(EndKind));
+ OS.emitInt16(uint16_t(EndKind)); // Record Kind
+}
+
+void CodeViewDebug::emitDebugInfoForUDTs(
+ const std::vector<std::pair<std::string, const DIType *>> &UDTs) {
+#ifndef NDEBUG
+ size_t OriginalSize = UDTs.size();
+#endif
+ for (const auto &UDT : UDTs) {
+ const DIType *T = UDT.second;
+ assert(shouldEmitUdt(T));
+ MCSymbol *UDTRecordEnd = beginSymbolRecord(SymbolKind::S_UDT);
+ OS.AddComment("Type");
+ OS.emitInt32(getCompleteTypeIndex(T).getIndex());
+ assert(OriginalSize == UDTs.size() &&
+ "getCompleteTypeIndex found new UDTs!");
+ emitNullTerminatedSymbolName(OS, UDT.first);
+ endSymbolRecord(UDTRecordEnd);
+ }
+}
+
+void CodeViewDebug::collectGlobalVariableInfo() {
+ DenseMap<const DIGlobalVariableExpression *, const GlobalVariable *>
+ GlobalMap;
+ for (const GlobalVariable &GV : MMI->getModule()->globals()) {
+ SmallVector<DIGlobalVariableExpression *, 1> GVEs;
+ GV.getDebugInfo(GVEs);
+ for (const auto *GVE : GVEs)
+ GlobalMap[GVE] = &GV;
+ }
+
+ NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu");
+ for (const MDNode *Node : CUs->operands()) {
+ const auto *CU = cast<DICompileUnit>(Node);
+ for (const auto *GVE : CU->getGlobalVariables()) {
+ const DIGlobalVariable *DIGV = GVE->getVariable();
+ const DIExpression *DIE = GVE->getExpression();
+ // Don't emit string literals in CodeView, as the only useful parts are
+ // generally the filename and line number, which isn't possible to output
+ // in CodeView. String literals should be the only unnamed GlobalVariable
+ // with debug info.
+ if (DIGV->getName().empty()) continue;
+
+ if ((DIE->getNumElements() == 2) &&
+ (DIE->getElement(0) == dwarf::DW_OP_plus_uconst))
+ // Record the constant offset for the variable.
+ //
+ // A Fortran common block uses this idiom to encode the offset
+ // of a variable from the common block's starting address.
+ CVGlobalVariableOffsets.insert(
+ std::make_pair(DIGV, DIE->getElement(1)));
+
+ // Emit constant global variables in a global symbol section.
+ if (GlobalMap.count(GVE) == 0 && DIE->isConstant()) {
+ CVGlobalVariable CVGV = {DIGV, DIE};
+ GlobalVariables.emplace_back(std::move(CVGV));
+ }
+
+ const auto *GV = GlobalMap.lookup(GVE);
+ if (!GV || GV->isDeclarationForLinker())
+ continue;
+
+ DIScope *Scope = DIGV->getScope();
+ SmallVector<CVGlobalVariable, 1> *VariableList;
+ if (Scope && isa<DILocalScope>(Scope)) {
+ // Locate a global variable list for this scope, creating one if
+ // necessary.
+ auto Insertion = ScopeGlobals.insert(
+ {Scope, std::unique_ptr<GlobalVariableList>()});
+ if (Insertion.second)
+ Insertion.first->second = std::make_unique<GlobalVariableList>();
+ VariableList = Insertion.first->second.get();
+ } else if (GV->hasComdat())
+ // Emit this global variable into a COMDAT section.
+ VariableList = &ComdatVariables;
+ else
+ // Emit this global variable in a single global symbol section.
+ VariableList = &GlobalVariables;
+ CVGlobalVariable CVGV = {DIGV, GV};
+ VariableList->emplace_back(std::move(CVGV));
+ }
+ }
+}
+
+void CodeViewDebug::collectDebugInfoForGlobals() {
+ for (const CVGlobalVariable &CVGV : GlobalVariables) {
+ const DIGlobalVariable *DIGV = CVGV.DIGV;
+ const DIScope *Scope = DIGV->getScope();
+ getCompleteTypeIndex(DIGV->getType());
+ getFullyQualifiedName(Scope, DIGV->getName());
+ }
+
+ for (const CVGlobalVariable &CVGV : ComdatVariables) {
+ const DIGlobalVariable *DIGV = CVGV.DIGV;
+ const DIScope *Scope = DIGV->getScope();
+ getCompleteTypeIndex(DIGV->getType());
+ getFullyQualifiedName(Scope, DIGV->getName());
+ }
+}
+
+void CodeViewDebug::emitDebugInfoForGlobals() {
+ // First, emit all globals that are not in a comdat in a single symbol
+ // substream. MSVC doesn't like it if the substream is empty, so only open
+ // it if we have at least one global to emit.
+ switchToDebugSectionForSymbol(nullptr);
+ if (!GlobalVariables.empty() || !StaticConstMembers.empty()) {
+ OS.AddComment("Symbol subsection for globals");
+ MCSymbol *EndLabel = beginCVSubsection(DebugSubsectionKind::Symbols);
+ emitGlobalVariableList(GlobalVariables);
+ emitStaticConstMemberList();
+ endCVSubsection(EndLabel);
+ }
+
+ // Second, emit each global that is in a comdat into its own .debug$S
+ // section along with its own symbol substream.
+ for (const CVGlobalVariable &CVGV : ComdatVariables) {
+ const GlobalVariable *GV = cast<const GlobalVariable *>(CVGV.GVInfo);
+ MCSymbol *GVSym = Asm->getSymbol(GV);
+ OS.AddComment("Symbol subsection for " +
+ Twine(GlobalValue::dropLLVMManglingEscape(GV->getName())));
+ switchToDebugSectionForSymbol(GVSym);
+ MCSymbol *EndLabel = beginCVSubsection(DebugSubsectionKind::Symbols);
+ // FIXME: emitDebugInfoForGlobal() doesn't handle DIExpressions.
+ emitDebugInfoForGlobal(CVGV);
+ endCVSubsection(EndLabel);
+ }
+}
+
+void CodeViewDebug::emitDebugInfoForRetainedTypes() {
+ NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu");
+ for (const MDNode *Node : CUs->operands()) {
+ for (auto *Ty : cast<DICompileUnit>(Node)->getRetainedTypes()) {
+ if (DIType *RT = dyn_cast<DIType>(Ty)) {
+ getTypeIndex(RT);
+ // FIXME: Add to global/local DTU list.
+ }
+ }
+ }
+}
+
+// Emit each global variable in the specified array.
+void CodeViewDebug::emitGlobalVariableList(ArrayRef<CVGlobalVariable> Globals) {
+ for (const CVGlobalVariable &CVGV : Globals) {
+ // FIXME: emitDebugInfoForGlobal() doesn't handle DIExpressions.
+ emitDebugInfoForGlobal(CVGV);
+ }
+}
+
+void CodeViewDebug::emitConstantSymbolRecord(const DIType *DTy, APSInt &Value,
+ const std::string &QualifiedName) {
+ MCSymbol *SConstantEnd = beginSymbolRecord(SymbolKind::S_CONSTANT);
+ OS.AddComment("Type");
+ OS.emitInt32(getTypeIndex(DTy).getIndex());
+
+ OS.AddComment("Value");
+
+ // Encoded integers shouldn't need more than 10 bytes.
+ uint8_t Data[10];
+ BinaryStreamWriter Writer(Data, llvm::support::endianness::little);
+ CodeViewRecordIO IO(Writer);
+ cantFail(IO.mapEncodedInteger(Value));
+ StringRef SRef((char *)Data, Writer.getOffset());
+ OS.emitBinaryData(SRef);
+
+ OS.AddComment("Name");
+ emitNullTerminatedSymbolName(OS, QualifiedName);
+ endSymbolRecord(SConstantEnd);
+}
+
+void CodeViewDebug::emitStaticConstMemberList() {
+ for (const DIDerivedType *DTy : StaticConstMembers) {
+ const DIScope *Scope = DTy->getScope();
+
+ APSInt Value;
+ if (const ConstantInt *CI =
+ dyn_cast_or_null<ConstantInt>(DTy->getConstant()))
+ Value = APSInt(CI->getValue(),
+ DebugHandlerBase::isUnsignedDIType(DTy->getBaseType()));
+ else if (const ConstantFP *CFP =
+ dyn_cast_or_null<ConstantFP>(DTy->getConstant()))
+ Value = APSInt(CFP->getValueAPF().bitcastToAPInt(), true);
+ else
+ llvm_unreachable("cannot emit a constant without a value");
+
+ emitConstantSymbolRecord(DTy->getBaseType(), Value,
+ getFullyQualifiedName(Scope, DTy->getName()));
+ }
+}
+
+static bool isFloatDIType(const DIType *Ty) {
+ if (isa<DICompositeType>(Ty))
+ return false;
+
+ if (auto *DTy = dyn_cast<DIDerivedType>(Ty)) {
+ dwarf::Tag T = (dwarf::Tag)Ty->getTag();
+ if (T == dwarf::DW_TAG_pointer_type ||
+ T == dwarf::DW_TAG_ptr_to_member_type ||
+ T == dwarf::DW_TAG_reference_type ||
+ T == dwarf::DW_TAG_rvalue_reference_type)
+ return false;
+ assert(DTy->getBaseType() && "Expected valid base type");
+ return isFloatDIType(DTy->getBaseType());
+ }
+
+ auto *BTy = cast<DIBasicType>(Ty);
+ return (BTy->getEncoding() == dwarf::DW_ATE_float);
+}
+
+void CodeViewDebug::emitDebugInfoForGlobal(const CVGlobalVariable &CVGV) {
+ const DIGlobalVariable *DIGV = CVGV.DIGV;
+
+ const DIScope *Scope = DIGV->getScope();
+ // For static data members, get the scope from the declaration.
+ if (const auto *MemberDecl = dyn_cast_or_null<DIDerivedType>(
+ DIGV->getRawStaticDataMemberDeclaration()))
+ Scope = MemberDecl->getScope();
+ // For static local variables and Fortran, the scoping portion is elided
+ // in its name so that we can reference the variable in the command line
+ // of the VS debugger.
+ std::string QualifiedName =
+ (moduleIsInFortran() || (Scope && isa<DILocalScope>(Scope)))
+ ? std::string(DIGV->getName())
+ : getFullyQualifiedName(Scope, DIGV->getName());
+
+ if (const GlobalVariable *GV =
+ dyn_cast_if_present<const GlobalVariable *>(CVGV.GVInfo)) {
+ // DataSym record, see SymbolRecord.h for more info. Thread local data
+ // happens to have the same format as global data.
+ MCSymbol *GVSym = Asm->getSymbol(GV);
+ SymbolKind DataSym = GV->isThreadLocal()
+ ? (DIGV->isLocalToUnit() ? SymbolKind::S_LTHREAD32
+ : SymbolKind::S_GTHREAD32)
+ : (DIGV->isLocalToUnit() ? SymbolKind::S_LDATA32
+ : SymbolKind::S_GDATA32);
+ MCSymbol *DataEnd = beginSymbolRecord(DataSym);
+ OS.AddComment("Type");
+ OS.emitInt32(getCompleteTypeIndex(DIGV->getType()).getIndex());
+ OS.AddComment("DataOffset");
+
+ uint64_t Offset = 0;
+ if (CVGlobalVariableOffsets.contains(DIGV))
+ // Use the offset seen while collecting info on globals.
+ Offset = CVGlobalVariableOffsets[DIGV];
+ OS.emitCOFFSecRel32(GVSym, Offset);
+
+ OS.AddComment("Segment");
+ OS.emitCOFFSectionIndex(GVSym);
+ OS.AddComment("Name");
+ const unsigned LengthOfDataRecord = 12;
+ emitNullTerminatedSymbolName(OS, QualifiedName, LengthOfDataRecord);
+ endSymbolRecord(DataEnd);
+ } else {
+ const DIExpression *DIE = cast<const DIExpression *>(CVGV.GVInfo);
+ assert(DIE->isConstant() &&
+ "Global constant variables must contain a constant expression.");
+
+ // Use unsigned for floats.
+ bool isUnsigned = isFloatDIType(DIGV->getType())
+ ? true
+ : DebugHandlerBase::isUnsignedDIType(DIGV->getType());
+ APSInt Value(APInt(/*BitWidth=*/64, DIE->getElement(1)), isUnsigned);
+ emitConstantSymbolRecord(DIGV->getType(), Value, QualifiedName);
+ }
+}