aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm-project/llvm/lib/CodeGen/CallingConvLower.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm-project/llvm/lib/CodeGen/CallingConvLower.cpp')
-rw-r--r--contrib/llvm-project/llvm/lib/CodeGen/CallingConvLower.cpp292
1 files changed, 292 insertions, 0 deletions
diff --git a/contrib/llvm-project/llvm/lib/CodeGen/CallingConvLower.cpp b/contrib/llvm-project/llvm/lib/CodeGen/CallingConvLower.cpp
new file mode 100644
index 000000000000..b7152587a9fa
--- /dev/null
+++ b/contrib/llvm-project/llvm/lib/CodeGen/CallingConvLower.cpp
@@ -0,0 +1,292 @@
+//===-- CallingConvLower.cpp - Calling Conventions ------------------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the CCState class, used for lowering and implementing
+// calling conventions.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/CodeGen/CallingConvLower.h"
+#include "llvm/CodeGen/MachineFrameInfo.h"
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/TargetLowering.h"
+#include "llvm/CodeGen/TargetRegisterInfo.h"
+#include "llvm/CodeGen/TargetSubtargetInfo.h"
+#include "llvm/MC/MCRegisterInfo.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/SaveAndRestore.h"
+#include "llvm/Support/raw_ostream.h"
+
+using namespace llvm;
+
+CCState::CCState(CallingConv::ID CC, bool IsVarArg, MachineFunction &MF,
+ SmallVectorImpl<CCValAssign> &Locs, LLVMContext &Context,
+ bool NegativeOffsets)
+ : CallingConv(CC), IsVarArg(IsVarArg), MF(MF),
+ TRI(*MF.getSubtarget().getRegisterInfo()), Locs(Locs), Context(Context),
+ NegativeOffsets(NegativeOffsets) {
+
+ // No stack is used.
+ StackSize = 0;
+
+ clearByValRegsInfo();
+ UsedRegs.resize((TRI.getNumRegs()+31)/32);
+}
+
+/// Allocate space on the stack large enough to pass an argument by value.
+/// The size and alignment information of the argument is encoded in
+/// its parameter attribute.
+void CCState::HandleByVal(unsigned ValNo, MVT ValVT, MVT LocVT,
+ CCValAssign::LocInfo LocInfo, int MinSize,
+ Align MinAlign, ISD::ArgFlagsTy ArgFlags) {
+ Align Alignment = ArgFlags.getNonZeroByValAlign();
+ unsigned Size = ArgFlags.getByValSize();
+ if (MinSize > (int)Size)
+ Size = MinSize;
+ if (MinAlign > Alignment)
+ Alignment = MinAlign;
+ ensureMaxAlignment(Alignment);
+ MF.getSubtarget().getTargetLowering()->HandleByVal(this, Size, Alignment);
+ Size = unsigned(alignTo(Size, MinAlign));
+ uint64_t Offset = AllocateStack(Size, Alignment);
+ addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
+}
+
+/// Mark a register and all of its aliases as allocated.
+void CCState::MarkAllocated(MCPhysReg Reg) {
+ for (MCRegAliasIterator AI(Reg, &TRI, true); AI.isValid(); ++AI)
+ UsedRegs[*AI / 32] |= 1 << (*AI & 31);
+}
+
+void CCState::MarkUnallocated(MCPhysReg Reg) {
+ for (MCRegAliasIterator AI(Reg, &TRI, true); AI.isValid(); ++AI)
+ UsedRegs[*AI / 32] &= ~(1 << (*AI & 31));
+}
+
+bool CCState::IsShadowAllocatedReg(MCRegister Reg) const {
+ if (!isAllocated(Reg))
+ return false;
+
+ for (auto const &ValAssign : Locs)
+ if (ValAssign.isRegLoc() && TRI.regsOverlap(ValAssign.getLocReg(), Reg))
+ return false;
+ return true;
+}
+
+/// Analyze an array of argument values,
+/// incorporating info about the formals into this state.
+void
+CCState::AnalyzeFormalArguments(const SmallVectorImpl<ISD::InputArg> &Ins,
+ CCAssignFn Fn) {
+ unsigned NumArgs = Ins.size();
+
+ for (unsigned i = 0; i != NumArgs; ++i) {
+ MVT ArgVT = Ins[i].VT;
+ ISD::ArgFlagsTy ArgFlags = Ins[i].Flags;
+ if (Fn(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, *this))
+ report_fatal_error("unable to allocate function argument #" + Twine(i));
+ }
+}
+
+/// Analyze the return values of a function, returning true if the return can
+/// be performed without sret-demotion and false otherwise.
+bool CCState::CheckReturn(const SmallVectorImpl<ISD::OutputArg> &Outs,
+ CCAssignFn Fn) {
+ // Determine which register each value should be copied into.
+ for (unsigned i = 0, e = Outs.size(); i != e; ++i) {
+ MVT VT = Outs[i].VT;
+ ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
+ if (Fn(i, VT, VT, CCValAssign::Full, ArgFlags, *this))
+ return false;
+ }
+ return true;
+}
+
+/// Analyze the returned values of a return,
+/// incorporating info about the result values into this state.
+void CCState::AnalyzeReturn(const SmallVectorImpl<ISD::OutputArg> &Outs,
+ CCAssignFn Fn) {
+ // Determine which register each value should be copied into.
+ for (unsigned i = 0, e = Outs.size(); i != e; ++i) {
+ MVT VT = Outs[i].VT;
+ ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
+ if (Fn(i, VT, VT, CCValAssign::Full, ArgFlags, *this))
+ report_fatal_error("unable to allocate function return #" + Twine(i));
+ }
+}
+
+/// Analyze the outgoing arguments to a call,
+/// incorporating info about the passed values into this state.
+void CCState::AnalyzeCallOperands(const SmallVectorImpl<ISD::OutputArg> &Outs,
+ CCAssignFn Fn) {
+ unsigned NumOps = Outs.size();
+ for (unsigned i = 0; i != NumOps; ++i) {
+ MVT ArgVT = Outs[i].VT;
+ ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
+ if (Fn(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, *this)) {
+#ifndef NDEBUG
+ dbgs() << "Call operand #" << i << " has unhandled type "
+ << ArgVT << '\n';
+#endif
+ llvm_unreachable(nullptr);
+ }
+ }
+}
+
+/// Same as above except it takes vectors of types and argument flags.
+void CCState::AnalyzeCallOperands(SmallVectorImpl<MVT> &ArgVTs,
+ SmallVectorImpl<ISD::ArgFlagsTy> &Flags,
+ CCAssignFn Fn) {
+ unsigned NumOps = ArgVTs.size();
+ for (unsigned i = 0; i != NumOps; ++i) {
+ MVT ArgVT = ArgVTs[i];
+ ISD::ArgFlagsTy ArgFlags = Flags[i];
+ if (Fn(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, *this)) {
+#ifndef NDEBUG
+ dbgs() << "Call operand #" << i << " has unhandled type "
+ << ArgVT << '\n';
+#endif
+ llvm_unreachable(nullptr);
+ }
+ }
+}
+
+/// Analyze the return values of a call, incorporating info about the passed
+/// values into this state.
+void CCState::AnalyzeCallResult(const SmallVectorImpl<ISD::InputArg> &Ins,
+ CCAssignFn Fn) {
+ for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
+ MVT VT = Ins[i].VT;
+ ISD::ArgFlagsTy Flags = Ins[i].Flags;
+ if (Fn(i, VT, VT, CCValAssign::Full, Flags, *this)) {
+#ifndef NDEBUG
+ dbgs() << "Call result #" << i << " has unhandled type "
+ << VT << '\n';
+#endif
+ llvm_unreachable(nullptr);
+ }
+ }
+}
+
+/// Same as above except it's specialized for calls that produce a single value.
+void CCState::AnalyzeCallResult(MVT VT, CCAssignFn Fn) {
+ if (Fn(0, VT, VT, CCValAssign::Full, ISD::ArgFlagsTy(), *this)) {
+#ifndef NDEBUG
+ dbgs() << "Call result has unhandled type "
+ << VT << '\n';
+#endif
+ llvm_unreachable(nullptr);
+ }
+}
+
+void CCState::ensureMaxAlignment(Align Alignment) {
+ if (!AnalyzingMustTailForwardedRegs)
+ MF.getFrameInfo().ensureMaxAlignment(Alignment);
+}
+
+static bool isValueTypeInRegForCC(CallingConv::ID CC, MVT VT) {
+ if (VT.isVector())
+ return true; // Assume -msse-regparm might be in effect.
+ if (!VT.isInteger())
+ return false;
+ return (CC == CallingConv::X86_VectorCall || CC == CallingConv::X86_FastCall);
+}
+
+void CCState::getRemainingRegParmsForType(SmallVectorImpl<MCPhysReg> &Regs,
+ MVT VT, CCAssignFn Fn) {
+ uint64_t SavedStackSize = StackSize;
+ Align SavedMaxStackArgAlign = MaxStackArgAlign;
+ unsigned NumLocs = Locs.size();
+
+ // Set the 'inreg' flag if it is used for this calling convention.
+ ISD::ArgFlagsTy Flags;
+ if (isValueTypeInRegForCC(CallingConv, VT))
+ Flags.setInReg();
+
+ // Allocate something of this value type repeatedly until we get assigned a
+ // location in memory.
+ bool HaveRegParm;
+ do {
+ if (Fn(0, VT, VT, CCValAssign::Full, Flags, *this)) {
+#ifndef NDEBUG
+ dbgs() << "Call has unhandled type " << VT
+ << " while computing remaining regparms\n";
+#endif
+ llvm_unreachable(nullptr);
+ }
+ HaveRegParm = Locs.back().isRegLoc();
+ } while (HaveRegParm);
+
+ // Copy all the registers from the value locations we added.
+ assert(NumLocs < Locs.size() && "CC assignment failed to add location");
+ for (unsigned I = NumLocs, E = Locs.size(); I != E; ++I)
+ if (Locs[I].isRegLoc())
+ Regs.push_back(MCPhysReg(Locs[I].getLocReg()));
+
+ // Clear the assigned values and stack memory. We leave the registers marked
+ // as allocated so that future queries don't return the same registers, i.e.
+ // when i64 and f64 are both passed in GPRs.
+ StackSize = SavedStackSize;
+ MaxStackArgAlign = SavedMaxStackArgAlign;
+ Locs.truncate(NumLocs);
+}
+
+void CCState::analyzeMustTailForwardedRegisters(
+ SmallVectorImpl<ForwardedRegister> &Forwards, ArrayRef<MVT> RegParmTypes,
+ CCAssignFn Fn) {
+ // Oftentimes calling conventions will not user register parameters for
+ // variadic functions, so we need to assume we're not variadic so that we get
+ // all the registers that might be used in a non-variadic call.
+ SaveAndRestore SavedVarArg(IsVarArg, false);
+ SaveAndRestore SavedMustTail(AnalyzingMustTailForwardedRegs, true);
+
+ for (MVT RegVT : RegParmTypes) {
+ SmallVector<MCPhysReg, 8> RemainingRegs;
+ getRemainingRegParmsForType(RemainingRegs, RegVT, Fn);
+ const TargetLowering *TL = MF.getSubtarget().getTargetLowering();
+ const TargetRegisterClass *RC = TL->getRegClassFor(RegVT);
+ for (MCPhysReg PReg : RemainingRegs) {
+ Register VReg = MF.addLiveIn(PReg, RC);
+ Forwards.push_back(ForwardedRegister(VReg, PReg, RegVT));
+ }
+ }
+}
+
+bool CCState::resultsCompatible(CallingConv::ID CalleeCC,
+ CallingConv::ID CallerCC, MachineFunction &MF,
+ LLVMContext &C,
+ const SmallVectorImpl<ISD::InputArg> &Ins,
+ CCAssignFn CalleeFn, CCAssignFn CallerFn) {
+ if (CalleeCC == CallerCC)
+ return true;
+ SmallVector<CCValAssign, 4> RVLocs1;
+ CCState CCInfo1(CalleeCC, false, MF, RVLocs1, C);
+ CCInfo1.AnalyzeCallResult(Ins, CalleeFn);
+
+ SmallVector<CCValAssign, 4> RVLocs2;
+ CCState CCInfo2(CallerCC, false, MF, RVLocs2, C);
+ CCInfo2.AnalyzeCallResult(Ins, CallerFn);
+
+ auto AreCompatible = [](const CCValAssign &Loc1, const CCValAssign &Loc2) {
+ assert(!Loc1.isPendingLoc() && !Loc2.isPendingLoc() &&
+ "The location must have been decided by now");
+ // Must fill the same part of their locations.
+ if (Loc1.getLocInfo() != Loc2.getLocInfo())
+ return false;
+ // Must both be in the same registers, or both in memory at the same offset.
+ if (Loc1.isRegLoc() && Loc2.isRegLoc())
+ return Loc1.getLocReg() == Loc2.getLocReg();
+ if (Loc1.isMemLoc() && Loc2.isMemLoc())
+ return Loc1.getLocMemOffset() == Loc2.getLocMemOffset();
+ llvm_unreachable("Unknown location kind");
+ };
+
+ return std::equal(RVLocs1.begin(), RVLocs1.end(), RVLocs2.begin(),
+ RVLocs2.end(), AreCompatible);
+}