diff options
Diffstat (limited to 'contrib/llvm-project/llvm/lib/CodeGen/CodeGenPrepare.cpp')
| -rw-r--r-- | contrib/llvm-project/llvm/lib/CodeGen/CodeGenPrepare.cpp | 8922 | 
1 files changed, 8922 insertions, 0 deletions
diff --git a/contrib/llvm-project/llvm/lib/CodeGen/CodeGenPrepare.cpp b/contrib/llvm-project/llvm/lib/CodeGen/CodeGenPrepare.cpp new file mode 100644 index 000000000000..22d0708f5478 --- /dev/null +++ b/contrib/llvm-project/llvm/lib/CodeGen/CodeGenPrepare.cpp @@ -0,0 +1,8922 @@ +//===- CodeGenPrepare.cpp - Prepare a function for code generation --------===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// This pass munges the code in the input function to better prepare it for +// SelectionDAG-based code generation. This works around limitations in it's +// basic-block-at-a-time approach. It should eventually be removed. +// +//===----------------------------------------------------------------------===// + +#include "llvm/CodeGen/CodeGenPrepare.h" +#include "llvm/ADT/APInt.h" +#include "llvm/ADT/ArrayRef.h" +#include "llvm/ADT/DenseMap.h" +#include "llvm/ADT/MapVector.h" +#include "llvm/ADT/PointerIntPair.h" +#include "llvm/ADT/STLExtras.h" +#include "llvm/ADT/SmallPtrSet.h" +#include "llvm/ADT/SmallVector.h" +#include "llvm/ADT/Statistic.h" +#include "llvm/Analysis/BlockFrequencyInfo.h" +#include "llvm/Analysis/BranchProbabilityInfo.h" +#include "llvm/Analysis/InstructionSimplify.h" +#include "llvm/Analysis/LoopInfo.h" +#include "llvm/Analysis/ProfileSummaryInfo.h" +#include "llvm/Analysis/TargetLibraryInfo.h" +#include "llvm/Analysis/TargetTransformInfo.h" +#include "llvm/Analysis/ValueTracking.h" +#include "llvm/Analysis/VectorUtils.h" +#include "llvm/CodeGen/Analysis.h" +#include "llvm/CodeGen/BasicBlockSectionsProfileReader.h" +#include "llvm/CodeGen/ISDOpcodes.h" +#include "llvm/CodeGen/SelectionDAGNodes.h" +#include "llvm/CodeGen/TargetLowering.h" +#include "llvm/CodeGen/TargetPassConfig.h" +#include "llvm/CodeGen/TargetSubtargetInfo.h" +#include "llvm/CodeGen/ValueTypes.h" +#include "llvm/CodeGenTypes/MachineValueType.h" +#include "llvm/Config/llvm-config.h" +#include "llvm/IR/Argument.h" +#include "llvm/IR/Attributes.h" +#include "llvm/IR/BasicBlock.h" +#include "llvm/IR/Constant.h" +#include "llvm/IR/Constants.h" +#include "llvm/IR/DataLayout.h" +#include "llvm/IR/DebugInfo.h" +#include "llvm/IR/DerivedTypes.h" +#include "llvm/IR/Dominators.h" +#include "llvm/IR/Function.h" +#include "llvm/IR/GetElementPtrTypeIterator.h" +#include "llvm/IR/GlobalValue.h" +#include "llvm/IR/GlobalVariable.h" +#include "llvm/IR/IRBuilder.h" +#include "llvm/IR/InlineAsm.h" +#include "llvm/IR/InstrTypes.h" +#include "llvm/IR/Instruction.h" +#include "llvm/IR/Instructions.h" +#include "llvm/IR/IntrinsicInst.h" +#include "llvm/IR/Intrinsics.h" +#include "llvm/IR/IntrinsicsAArch64.h" +#include "llvm/IR/LLVMContext.h" +#include "llvm/IR/MDBuilder.h" +#include "llvm/IR/Module.h" +#include "llvm/IR/Operator.h" +#include "llvm/IR/PatternMatch.h" +#include "llvm/IR/ProfDataUtils.h" +#include "llvm/IR/Statepoint.h" +#include "llvm/IR/Type.h" +#include "llvm/IR/Use.h" +#include "llvm/IR/User.h" +#include "llvm/IR/Value.h" +#include "llvm/IR/ValueHandle.h" +#include "llvm/IR/ValueMap.h" +#include "llvm/InitializePasses.h" +#include "llvm/Pass.h" +#include "llvm/Support/BlockFrequency.h" +#include "llvm/Support/BranchProbability.h" +#include "llvm/Support/Casting.h" +#include "llvm/Support/CommandLine.h" +#include "llvm/Support/Compiler.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/ErrorHandling.h" +#include "llvm/Support/MathExtras.h" +#include "llvm/Support/raw_ostream.h" +#include "llvm/Target/TargetMachine.h" +#include "llvm/Target/TargetOptions.h" +#include "llvm/Transforms/Utils/BasicBlockUtils.h" +#include "llvm/Transforms/Utils/BypassSlowDivision.h" +#include "llvm/Transforms/Utils/Local.h" +#include "llvm/Transforms/Utils/SimplifyLibCalls.h" +#include "llvm/Transforms/Utils/SizeOpts.h" +#include <algorithm> +#include <cassert> +#include <cstdint> +#include <iterator> +#include <limits> +#include <memory> +#include <optional> +#include <utility> +#include <vector> + +using namespace llvm; +using namespace llvm::PatternMatch; + +#define DEBUG_TYPE "codegenprepare" + +STATISTIC(NumBlocksElim, "Number of blocks eliminated"); +STATISTIC(NumPHIsElim, "Number of trivial PHIs eliminated"); +STATISTIC(NumGEPsElim, "Number of GEPs converted to casts"); +STATISTIC(NumCmpUses, "Number of uses of Cmp expressions replaced with uses of " +                      "sunken Cmps"); +STATISTIC(NumCastUses, "Number of uses of Cast expressions replaced with uses " +                       "of sunken Casts"); +STATISTIC(NumMemoryInsts, "Number of memory instructions whose address " +                          "computations were sunk"); +STATISTIC(NumMemoryInstsPhiCreated, +          "Number of phis created when address " +          "computations were sunk to memory instructions"); +STATISTIC(NumMemoryInstsSelectCreated, +          "Number of select created when address " +          "computations were sunk to memory instructions"); +STATISTIC(NumExtsMoved, "Number of [s|z]ext instructions combined with loads"); +STATISTIC(NumExtUses, "Number of uses of [s|z]ext instructions optimized"); +STATISTIC(NumAndsAdded, +          "Number of and mask instructions added to form ext loads"); +STATISTIC(NumAndUses, "Number of uses of and mask instructions optimized"); +STATISTIC(NumRetsDup, "Number of return instructions duplicated"); +STATISTIC(NumDbgValueMoved, "Number of debug value instructions moved"); +STATISTIC(NumSelectsExpanded, "Number of selects turned into branches"); +STATISTIC(NumStoreExtractExposed, "Number of store(extractelement) exposed"); + +static cl::opt<bool> DisableBranchOpts( +    "disable-cgp-branch-opts", cl::Hidden, cl::init(false), +    cl::desc("Disable branch optimizations in CodeGenPrepare")); + +static cl::opt<bool> +    DisableGCOpts("disable-cgp-gc-opts", cl::Hidden, cl::init(false), +                  cl::desc("Disable GC optimizations in CodeGenPrepare")); + +static cl::opt<bool> +    DisableSelectToBranch("disable-cgp-select2branch", cl::Hidden, +                          cl::init(false), +                          cl::desc("Disable select to branch conversion.")); + +static cl::opt<bool> +    AddrSinkUsingGEPs("addr-sink-using-gep", cl::Hidden, cl::init(true), +                      cl::desc("Address sinking in CGP using GEPs.")); + +static cl::opt<bool> +    EnableAndCmpSinking("enable-andcmp-sinking", cl::Hidden, cl::init(true), +                        cl::desc("Enable sinkinig and/cmp into branches.")); + +static cl::opt<bool> DisableStoreExtract( +    "disable-cgp-store-extract", cl::Hidden, cl::init(false), +    cl::desc("Disable store(extract) optimizations in CodeGenPrepare")); + +static cl::opt<bool> StressStoreExtract( +    "stress-cgp-store-extract", cl::Hidden, cl::init(false), +    cl::desc("Stress test store(extract) optimizations in CodeGenPrepare")); + +static cl::opt<bool> DisableExtLdPromotion( +    "disable-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), +    cl::desc("Disable ext(promotable(ld)) -> promoted(ext(ld)) optimization in " +             "CodeGenPrepare")); + +static cl::opt<bool> StressExtLdPromotion( +    "stress-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), +    cl::desc("Stress test ext(promotable(ld)) -> promoted(ext(ld)) " +             "optimization in CodeGenPrepare")); + +static cl::opt<bool> DisablePreheaderProtect( +    "disable-preheader-prot", cl::Hidden, cl::init(false), +    cl::desc("Disable protection against removing loop preheaders")); + +static cl::opt<bool> ProfileGuidedSectionPrefix( +    "profile-guided-section-prefix", cl::Hidden, cl::init(true), +    cl::desc("Use profile info to add section prefix for hot/cold functions")); + +static cl::opt<bool> ProfileUnknownInSpecialSection( +    "profile-unknown-in-special-section", cl::Hidden, +    cl::desc("In profiling mode like sampleFDO, if a function doesn't have " +             "profile, we cannot tell the function is cold for sure because " +             "it may be a function newly added without ever being sampled. " +             "With the flag enabled, compiler can put such profile unknown " +             "functions into a special section, so runtime system can choose " +             "to handle it in a different way than .text section, to save " +             "RAM for example. ")); + +static cl::opt<bool> BBSectionsGuidedSectionPrefix( +    "bbsections-guided-section-prefix", cl::Hidden, cl::init(true), +    cl::desc("Use the basic-block-sections profile to determine the text " +             "section prefix for hot functions. Functions with " +             "basic-block-sections profile will be placed in `.text.hot` " +             "regardless of their FDO profile info. Other functions won't be " +             "impacted, i.e., their prefixes will be decided by FDO/sampleFDO " +             "profiles.")); + +static cl::opt<uint64_t> FreqRatioToSkipMerge( +    "cgp-freq-ratio-to-skip-merge", cl::Hidden, cl::init(2), +    cl::desc("Skip merging empty blocks if (frequency of empty block) / " +             "(frequency of destination block) is greater than this ratio")); + +static cl::opt<bool> ForceSplitStore( +    "force-split-store", cl::Hidden, cl::init(false), +    cl::desc("Force store splitting no matter what the target query says.")); + +static cl::opt<bool> EnableTypePromotionMerge( +    "cgp-type-promotion-merge", cl::Hidden, +    cl::desc("Enable merging of redundant sexts when one is dominating" +             " the other."), +    cl::init(true)); + +static cl::opt<bool> DisableComplexAddrModes( +    "disable-complex-addr-modes", cl::Hidden, cl::init(false), +    cl::desc("Disables combining addressing modes with different parts " +             "in optimizeMemoryInst.")); + +static cl::opt<bool> +    AddrSinkNewPhis("addr-sink-new-phis", cl::Hidden, cl::init(false), +                    cl::desc("Allow creation of Phis in Address sinking.")); + +static cl::opt<bool> AddrSinkNewSelects( +    "addr-sink-new-select", cl::Hidden, cl::init(true), +    cl::desc("Allow creation of selects in Address sinking.")); + +static cl::opt<bool> AddrSinkCombineBaseReg( +    "addr-sink-combine-base-reg", cl::Hidden, cl::init(true), +    cl::desc("Allow combining of BaseReg field in Address sinking.")); + +static cl::opt<bool> AddrSinkCombineBaseGV( +    "addr-sink-combine-base-gv", cl::Hidden, cl::init(true), +    cl::desc("Allow combining of BaseGV field in Address sinking.")); + +static cl::opt<bool> AddrSinkCombineBaseOffs( +    "addr-sink-combine-base-offs", cl::Hidden, cl::init(true), +    cl::desc("Allow combining of BaseOffs field in Address sinking.")); + +static cl::opt<bool> AddrSinkCombineScaledReg( +    "addr-sink-combine-scaled-reg", cl::Hidden, cl::init(true), +    cl::desc("Allow combining of ScaledReg field in Address sinking.")); + +static cl::opt<bool> +    EnableGEPOffsetSplit("cgp-split-large-offset-gep", cl::Hidden, +                         cl::init(true), +                         cl::desc("Enable splitting large offset of GEP.")); + +static cl::opt<bool> EnableICMP_EQToICMP_ST( +    "cgp-icmp-eq2icmp-st", cl::Hidden, cl::init(false), +    cl::desc("Enable ICMP_EQ to ICMP_S(L|G)T conversion.")); + +static cl::opt<bool> +    VerifyBFIUpdates("cgp-verify-bfi-updates", cl::Hidden, cl::init(false), +                     cl::desc("Enable BFI update verification for " +                              "CodeGenPrepare.")); + +static cl::opt<bool> +    OptimizePhiTypes("cgp-optimize-phi-types", cl::Hidden, cl::init(true), +                     cl::desc("Enable converting phi types in CodeGenPrepare")); + +static cl::opt<unsigned> +    HugeFuncThresholdInCGPP("cgpp-huge-func", cl::init(10000), cl::Hidden, +                            cl::desc("Least BB number of huge function.")); + +static cl::opt<unsigned> +    MaxAddressUsersToScan("cgp-max-address-users-to-scan", cl::init(100), +                          cl::Hidden, +                          cl::desc("Max number of address users to look at")); + +static cl::opt<bool> +    DisableDeletePHIs("disable-cgp-delete-phis", cl::Hidden, cl::init(false), +                      cl::desc("Disable elimination of dead PHI nodes.")); + +namespace { + +enum ExtType { +  ZeroExtension, // Zero extension has been seen. +  SignExtension, // Sign extension has been seen. +  BothExtension  // This extension type is used if we saw sext after +                 // ZeroExtension had been set, or if we saw zext after +                 // SignExtension had been set. It makes the type +                 // information of a promoted instruction invalid. +}; + +enum ModifyDT { +  NotModifyDT, // Not Modify any DT. +  ModifyBBDT,  // Modify the Basic Block Dominator Tree. +  ModifyInstDT // Modify the Instruction Dominator in a Basic Block, +               // This usually means we move/delete/insert instruction +               // in a Basic Block. So we should re-iterate instructions +               // in such Basic Block. +}; + +using SetOfInstrs = SmallPtrSet<Instruction *, 16>; +using TypeIsSExt = PointerIntPair<Type *, 2, ExtType>; +using InstrToOrigTy = DenseMap<Instruction *, TypeIsSExt>; +using SExts = SmallVector<Instruction *, 16>; +using ValueToSExts = MapVector<Value *, SExts>; + +class TypePromotionTransaction; + +class CodeGenPrepare { +  friend class CodeGenPrepareLegacyPass; +  const TargetMachine *TM = nullptr; +  const TargetSubtargetInfo *SubtargetInfo = nullptr; +  const TargetLowering *TLI = nullptr; +  const TargetRegisterInfo *TRI = nullptr; +  const TargetTransformInfo *TTI = nullptr; +  const BasicBlockSectionsProfileReader *BBSectionsProfileReader = nullptr; +  const TargetLibraryInfo *TLInfo = nullptr; +  LoopInfo *LI = nullptr; +  std::unique_ptr<BlockFrequencyInfo> BFI; +  std::unique_ptr<BranchProbabilityInfo> BPI; +  ProfileSummaryInfo *PSI = nullptr; + +  /// As we scan instructions optimizing them, this is the next instruction +  /// to optimize. Transforms that can invalidate this should update it. +  BasicBlock::iterator CurInstIterator; + +  /// Keeps track of non-local addresses that have been sunk into a block. +  /// This allows us to avoid inserting duplicate code for blocks with +  /// multiple load/stores of the same address. The usage of WeakTrackingVH +  /// enables SunkAddrs to be treated as a cache whose entries can be +  /// invalidated if a sunken address computation has been erased. +  ValueMap<Value *, WeakTrackingVH> SunkAddrs; + +  /// Keeps track of all instructions inserted for the current function. +  SetOfInstrs InsertedInsts; + +  /// Keeps track of the type of the related instruction before their +  /// promotion for the current function. +  InstrToOrigTy PromotedInsts; + +  /// Keep track of instructions removed during promotion. +  SetOfInstrs RemovedInsts; + +  /// Keep track of sext chains based on their initial value. +  DenseMap<Value *, Instruction *> SeenChainsForSExt; + +  /// Keep track of GEPs accessing the same data structures such as structs or +  /// arrays that are candidates to be split later because of their large +  /// size. +  MapVector<AssertingVH<Value>, +            SmallVector<std::pair<AssertingVH<GetElementPtrInst>, int64_t>, 32>> +      LargeOffsetGEPMap; + +  /// Keep track of new GEP base after splitting the GEPs having large offset. +  SmallSet<AssertingVH<Value>, 2> NewGEPBases; + +  /// Map serial numbers to Large offset GEPs. +  DenseMap<AssertingVH<GetElementPtrInst>, int> LargeOffsetGEPID; + +  /// Keep track of SExt promoted. +  ValueToSExts ValToSExtendedUses; + +  /// True if the function has the OptSize attribute. +  bool OptSize; + +  /// DataLayout for the Function being processed. +  const DataLayout *DL = nullptr; + +  /// Building the dominator tree can be expensive, so we only build it +  /// lazily and update it when required. +  std::unique_ptr<DominatorTree> DT; + +public: +  CodeGenPrepare(){}; +  CodeGenPrepare(const TargetMachine *TM) : TM(TM){}; +  /// If encounter huge function, we need to limit the build time. +  bool IsHugeFunc = false; + +  /// FreshBBs is like worklist, it collected the updated BBs which need +  /// to be optimized again. +  /// Note: Consider building time in this pass, when a BB updated, we need +  /// to insert such BB into FreshBBs for huge function. +  SmallSet<BasicBlock *, 32> FreshBBs; + +  void releaseMemory() { +    // Clear per function information. +    InsertedInsts.clear(); +    PromotedInsts.clear(); +    FreshBBs.clear(); +    BPI.reset(); +    BFI.reset(); +  } + +  bool run(Function &F, FunctionAnalysisManager &AM); + +private: +  template <typename F> +  void resetIteratorIfInvalidatedWhileCalling(BasicBlock *BB, F f) { +    // Substituting can cause recursive simplifications, which can invalidate +    // our iterator.  Use a WeakTrackingVH to hold onto it in case this +    // happens. +    Value *CurValue = &*CurInstIterator; +    WeakTrackingVH IterHandle(CurValue); + +    f(); + +    // If the iterator instruction was recursively deleted, start over at the +    // start of the block. +    if (IterHandle != CurValue) { +      CurInstIterator = BB->begin(); +      SunkAddrs.clear(); +    } +  } + +  // Get the DominatorTree, building if necessary. +  DominatorTree &getDT(Function &F) { +    if (!DT) +      DT = std::make_unique<DominatorTree>(F); +    return *DT; +  } + +  void removeAllAssertingVHReferences(Value *V); +  bool eliminateAssumptions(Function &F); +  bool eliminateFallThrough(Function &F, DominatorTree *DT = nullptr); +  bool eliminateMostlyEmptyBlocks(Function &F); +  BasicBlock *findDestBlockOfMergeableEmptyBlock(BasicBlock *BB); +  bool canMergeBlocks(const BasicBlock *BB, const BasicBlock *DestBB) const; +  void eliminateMostlyEmptyBlock(BasicBlock *BB); +  bool isMergingEmptyBlockProfitable(BasicBlock *BB, BasicBlock *DestBB, +                                     bool isPreheader); +  bool makeBitReverse(Instruction &I); +  bool optimizeBlock(BasicBlock &BB, ModifyDT &ModifiedDT); +  bool optimizeInst(Instruction *I, ModifyDT &ModifiedDT); +  bool optimizeMemoryInst(Instruction *MemoryInst, Value *Addr, Type *AccessTy, +                          unsigned AddrSpace); +  bool optimizeGatherScatterInst(Instruction *MemoryInst, Value *Ptr); +  bool optimizeInlineAsmInst(CallInst *CS); +  bool optimizeCallInst(CallInst *CI, ModifyDT &ModifiedDT); +  bool optimizeExt(Instruction *&I); +  bool optimizeExtUses(Instruction *I); +  bool optimizeLoadExt(LoadInst *Load); +  bool optimizeShiftInst(BinaryOperator *BO); +  bool optimizeFunnelShift(IntrinsicInst *Fsh); +  bool optimizeSelectInst(SelectInst *SI); +  bool optimizeShuffleVectorInst(ShuffleVectorInst *SVI); +  bool optimizeSwitchType(SwitchInst *SI); +  bool optimizeSwitchPhiConstants(SwitchInst *SI); +  bool optimizeSwitchInst(SwitchInst *SI); +  bool optimizeExtractElementInst(Instruction *Inst); +  bool dupRetToEnableTailCallOpts(BasicBlock *BB, ModifyDT &ModifiedDT); +  bool fixupDbgValue(Instruction *I); +  bool fixupDbgVariableRecord(DbgVariableRecord &I); +  bool fixupDbgVariableRecordsOnInst(Instruction &I); +  bool placeDbgValues(Function &F); +  bool placePseudoProbes(Function &F); +  bool canFormExtLd(const SmallVectorImpl<Instruction *> &MovedExts, +                    LoadInst *&LI, Instruction *&Inst, bool HasPromoted); +  bool tryToPromoteExts(TypePromotionTransaction &TPT, +                        const SmallVectorImpl<Instruction *> &Exts, +                        SmallVectorImpl<Instruction *> &ProfitablyMovedExts, +                        unsigned CreatedInstsCost = 0); +  bool mergeSExts(Function &F); +  bool splitLargeGEPOffsets(); +  bool optimizePhiType(PHINode *Inst, SmallPtrSetImpl<PHINode *> &Visited, +                       SmallPtrSetImpl<Instruction *> &DeletedInstrs); +  bool optimizePhiTypes(Function &F); +  bool performAddressTypePromotion( +      Instruction *&Inst, bool AllowPromotionWithoutCommonHeader, +      bool HasPromoted, TypePromotionTransaction &TPT, +      SmallVectorImpl<Instruction *> &SpeculativelyMovedExts); +  bool splitBranchCondition(Function &F, ModifyDT &ModifiedDT); +  bool simplifyOffsetableRelocate(GCStatepointInst &I); + +  bool tryToSinkFreeOperands(Instruction *I); +  bool replaceMathCmpWithIntrinsic(BinaryOperator *BO, Value *Arg0, Value *Arg1, +                                   CmpInst *Cmp, Intrinsic::ID IID); +  bool optimizeCmp(CmpInst *Cmp, ModifyDT &ModifiedDT); +  bool combineToUSubWithOverflow(CmpInst *Cmp, ModifyDT &ModifiedDT); +  bool combineToUAddWithOverflow(CmpInst *Cmp, ModifyDT &ModifiedDT); +  void verifyBFIUpdates(Function &F); +  bool _run(Function &F); +}; + +class CodeGenPrepareLegacyPass : public FunctionPass { +public: +  static char ID; // Pass identification, replacement for typeid + +  CodeGenPrepareLegacyPass() : FunctionPass(ID) { +    initializeCodeGenPrepareLegacyPassPass(*PassRegistry::getPassRegistry()); +  } + +  bool runOnFunction(Function &F) override; + +  StringRef getPassName() const override { return "CodeGen Prepare"; } + +  void getAnalysisUsage(AnalysisUsage &AU) const override { +    // FIXME: When we can selectively preserve passes, preserve the domtree. +    AU.addRequired<ProfileSummaryInfoWrapperPass>(); +    AU.addRequired<TargetLibraryInfoWrapperPass>(); +    AU.addRequired<TargetPassConfig>(); +    AU.addRequired<TargetTransformInfoWrapperPass>(); +    AU.addRequired<LoopInfoWrapperPass>(); +    AU.addUsedIfAvailable<BasicBlockSectionsProfileReaderWrapperPass>(); +  } +}; + +} // end anonymous namespace + +char CodeGenPrepareLegacyPass::ID = 0; + +bool CodeGenPrepareLegacyPass::runOnFunction(Function &F) { +  if (skipFunction(F)) +    return false; +  auto TM = &getAnalysis<TargetPassConfig>().getTM<TargetMachine>(); +  CodeGenPrepare CGP(TM); +  CGP.DL = &F.getDataLayout(); +  CGP.SubtargetInfo = TM->getSubtargetImpl(F); +  CGP.TLI = CGP.SubtargetInfo->getTargetLowering(); +  CGP.TRI = CGP.SubtargetInfo->getRegisterInfo(); +  CGP.TLInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); +  CGP.TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); +  CGP.LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); +  CGP.BPI.reset(new BranchProbabilityInfo(F, *CGP.LI)); +  CGP.BFI.reset(new BlockFrequencyInfo(F, *CGP.BPI, *CGP.LI)); +  CGP.PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); +  auto BBSPRWP = +      getAnalysisIfAvailable<BasicBlockSectionsProfileReaderWrapperPass>(); +  CGP.BBSectionsProfileReader = BBSPRWP ? &BBSPRWP->getBBSPR() : nullptr; + +  return CGP._run(F); +} + +INITIALIZE_PASS_BEGIN(CodeGenPrepareLegacyPass, DEBUG_TYPE, +                      "Optimize for code generation", false, false) +INITIALIZE_PASS_DEPENDENCY(BasicBlockSectionsProfileReaderWrapperPass) +INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) +INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) +INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) +INITIALIZE_PASS_DEPENDENCY(TargetPassConfig) +INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) +INITIALIZE_PASS_END(CodeGenPrepareLegacyPass, DEBUG_TYPE, +                    "Optimize for code generation", false, false) + +FunctionPass *llvm::createCodeGenPrepareLegacyPass() { +  return new CodeGenPrepareLegacyPass(); +} + +PreservedAnalyses CodeGenPreparePass::run(Function &F, +                                          FunctionAnalysisManager &AM) { +  CodeGenPrepare CGP(TM); + +  bool Changed = CGP.run(F, AM); +  if (!Changed) +    return PreservedAnalyses::all(); + +  PreservedAnalyses PA; +  PA.preserve<TargetLibraryAnalysis>(); +  PA.preserve<TargetIRAnalysis>(); +  PA.preserve<LoopAnalysis>(); +  return PA; +} + +bool CodeGenPrepare::run(Function &F, FunctionAnalysisManager &AM) { +  DL = &F.getDataLayout(); +  SubtargetInfo = TM->getSubtargetImpl(F); +  TLI = SubtargetInfo->getTargetLowering(); +  TRI = SubtargetInfo->getRegisterInfo(); +  TLInfo = &AM.getResult<TargetLibraryAnalysis>(F); +  TTI = &AM.getResult<TargetIRAnalysis>(F); +  LI = &AM.getResult<LoopAnalysis>(F); +  BPI.reset(new BranchProbabilityInfo(F, *LI)); +  BFI.reset(new BlockFrequencyInfo(F, *BPI, *LI)); +  auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F); +  PSI = MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent()); +  BBSectionsProfileReader = +      AM.getCachedResult<BasicBlockSectionsProfileReaderAnalysis>(F); +  return _run(F); +} + +bool CodeGenPrepare::_run(Function &F) { +  bool EverMadeChange = false; + +  OptSize = F.hasOptSize(); +  // Use the basic-block-sections profile to promote hot functions to .text.hot +  // if requested. +  if (BBSectionsGuidedSectionPrefix && BBSectionsProfileReader && +      BBSectionsProfileReader->isFunctionHot(F.getName())) { +    F.setSectionPrefix("hot"); +  } else if (ProfileGuidedSectionPrefix) { +    // The hot attribute overwrites profile count based hotness while profile +    // counts based hotness overwrite the cold attribute. +    // This is a conservative behabvior. +    if (F.hasFnAttribute(Attribute::Hot) || +        PSI->isFunctionHotInCallGraph(&F, *BFI)) +      F.setSectionPrefix("hot"); +    // If PSI shows this function is not hot, we will placed the function +    // into unlikely section if (1) PSI shows this is a cold function, or +    // (2) the function has a attribute of cold. +    else if (PSI->isFunctionColdInCallGraph(&F, *BFI) || +             F.hasFnAttribute(Attribute::Cold)) +      F.setSectionPrefix("unlikely"); +    else if (ProfileUnknownInSpecialSection && PSI->hasPartialSampleProfile() && +             PSI->isFunctionHotnessUnknown(F)) +      F.setSectionPrefix("unknown"); +  } + +  /// This optimization identifies DIV instructions that can be +  /// profitably bypassed and carried out with a shorter, faster divide. +  if (!OptSize && !PSI->hasHugeWorkingSetSize() && TLI->isSlowDivBypassed()) { +    const DenseMap<unsigned int, unsigned int> &BypassWidths = +        TLI->getBypassSlowDivWidths(); +    BasicBlock *BB = &*F.begin(); +    while (BB != nullptr) { +      // bypassSlowDivision may create new BBs, but we don't want to reapply the +      // optimization to those blocks. +      BasicBlock *Next = BB->getNextNode(); +      // F.hasOptSize is already checked in the outer if statement. +      if (!llvm::shouldOptimizeForSize(BB, PSI, BFI.get())) +        EverMadeChange |= bypassSlowDivision(BB, BypassWidths); +      BB = Next; +    } +  } + +  // Get rid of @llvm.assume builtins before attempting to eliminate empty +  // blocks, since there might be blocks that only contain @llvm.assume calls +  // (plus arguments that we can get rid of). +  EverMadeChange |= eliminateAssumptions(F); + +  // Eliminate blocks that contain only PHI nodes and an +  // unconditional branch. +  EverMadeChange |= eliminateMostlyEmptyBlocks(F); + +  ModifyDT ModifiedDT = ModifyDT::NotModifyDT; +  if (!DisableBranchOpts) +    EverMadeChange |= splitBranchCondition(F, ModifiedDT); + +  // Split some critical edges where one of the sources is an indirect branch, +  // to help generate sane code for PHIs involving such edges. +  EverMadeChange |= +      SplitIndirectBrCriticalEdges(F, /*IgnoreBlocksWithoutPHI=*/true); + +  // If we are optimzing huge function, we need to consider the build time. +  // Because the basic algorithm's complex is near O(N!). +  IsHugeFunc = F.size() > HugeFuncThresholdInCGPP; + +  // Transformations above may invalidate dominator tree and/or loop info. +  DT.reset(); +  LI->releaseMemory(); +  LI->analyze(getDT(F)); + +  bool MadeChange = true; +  bool FuncIterated = false; +  while (MadeChange) { +    MadeChange = false; + +    for (BasicBlock &BB : llvm::make_early_inc_range(F)) { +      if (FuncIterated && !FreshBBs.contains(&BB)) +        continue; + +      ModifyDT ModifiedDTOnIteration = ModifyDT::NotModifyDT; +      bool Changed = optimizeBlock(BB, ModifiedDTOnIteration); + +      if (ModifiedDTOnIteration == ModifyDT::ModifyBBDT) +        DT.reset(); + +      MadeChange |= Changed; +      if (IsHugeFunc) { +        // If the BB is updated, it may still has chance to be optimized. +        // This usually happen at sink optimization. +        // For example: +        // +        // bb0: +        // %and = and i32 %a, 4 +        // %cmp = icmp eq i32 %and, 0 +        // +        // If the %cmp sink to other BB, the %and will has chance to sink. +        if (Changed) +          FreshBBs.insert(&BB); +        else if (FuncIterated) +          FreshBBs.erase(&BB); +      } else { +        // For small/normal functions, we restart BB iteration if the dominator +        // tree of the Function was changed. +        if (ModifiedDTOnIteration != ModifyDT::NotModifyDT) +          break; +      } +    } +    // We have iterated all the BB in the (only work for huge) function. +    FuncIterated = IsHugeFunc; + +    if (EnableTypePromotionMerge && !ValToSExtendedUses.empty()) +      MadeChange |= mergeSExts(F); +    if (!LargeOffsetGEPMap.empty()) +      MadeChange |= splitLargeGEPOffsets(); +    MadeChange |= optimizePhiTypes(F); + +    if (MadeChange) +      eliminateFallThrough(F, DT.get()); + +#ifndef NDEBUG +    if (MadeChange && VerifyLoopInfo) +      LI->verify(getDT(F)); +#endif + +    // Really free removed instructions during promotion. +    for (Instruction *I : RemovedInsts) +      I->deleteValue(); + +    EverMadeChange |= MadeChange; +    SeenChainsForSExt.clear(); +    ValToSExtendedUses.clear(); +    RemovedInsts.clear(); +    LargeOffsetGEPMap.clear(); +    LargeOffsetGEPID.clear(); +  } + +  NewGEPBases.clear(); +  SunkAddrs.clear(); + +  if (!DisableBranchOpts) { +    MadeChange = false; +    // Use a set vector to get deterministic iteration order. The order the +    // blocks are removed may affect whether or not PHI nodes in successors +    // are removed. +    SmallSetVector<BasicBlock *, 8> WorkList; +    for (BasicBlock &BB : F) { +      SmallVector<BasicBlock *, 2> Successors(successors(&BB)); +      MadeChange |= ConstantFoldTerminator(&BB, true); +      if (!MadeChange) +        continue; + +      for (BasicBlock *Succ : Successors) +        if (pred_empty(Succ)) +          WorkList.insert(Succ); +    } + +    // Delete the dead blocks and any of their dead successors. +    MadeChange |= !WorkList.empty(); +    while (!WorkList.empty()) { +      BasicBlock *BB = WorkList.pop_back_val(); +      SmallVector<BasicBlock *, 2> Successors(successors(BB)); + +      DeleteDeadBlock(BB); + +      for (BasicBlock *Succ : Successors) +        if (pred_empty(Succ)) +          WorkList.insert(Succ); +    } + +    // Merge pairs of basic blocks with unconditional branches, connected by +    // a single edge. +    if (EverMadeChange || MadeChange) +      MadeChange |= eliminateFallThrough(F); + +    EverMadeChange |= MadeChange; +  } + +  if (!DisableGCOpts) { +    SmallVector<GCStatepointInst *, 2> Statepoints; +    for (BasicBlock &BB : F) +      for (Instruction &I : BB) +        if (auto *SP = dyn_cast<GCStatepointInst>(&I)) +          Statepoints.push_back(SP); +    for (auto &I : Statepoints) +      EverMadeChange |= simplifyOffsetableRelocate(*I); +  } + +  // Do this last to clean up use-before-def scenarios introduced by other +  // preparatory transforms. +  EverMadeChange |= placeDbgValues(F); +  EverMadeChange |= placePseudoProbes(F); + +#ifndef NDEBUG +  if (VerifyBFIUpdates) +    verifyBFIUpdates(F); +#endif + +  return EverMadeChange; +} + +bool CodeGenPrepare::eliminateAssumptions(Function &F) { +  bool MadeChange = false; +  for (BasicBlock &BB : F) { +    CurInstIterator = BB.begin(); +    while (CurInstIterator != BB.end()) { +      Instruction *I = &*(CurInstIterator++); +      if (auto *Assume = dyn_cast<AssumeInst>(I)) { +        MadeChange = true; +        Value *Operand = Assume->getOperand(0); +        Assume->eraseFromParent(); + +        resetIteratorIfInvalidatedWhileCalling(&BB, [&]() { +          RecursivelyDeleteTriviallyDeadInstructions(Operand, TLInfo, nullptr); +        }); +      } +    } +  } +  return MadeChange; +} + +/// An instruction is about to be deleted, so remove all references to it in our +/// GEP-tracking data strcutures. +void CodeGenPrepare::removeAllAssertingVHReferences(Value *V) { +  LargeOffsetGEPMap.erase(V); +  NewGEPBases.erase(V); + +  auto GEP = dyn_cast<GetElementPtrInst>(V); +  if (!GEP) +    return; + +  LargeOffsetGEPID.erase(GEP); + +  auto VecI = LargeOffsetGEPMap.find(GEP->getPointerOperand()); +  if (VecI == LargeOffsetGEPMap.end()) +    return; + +  auto &GEPVector = VecI->second; +  llvm::erase_if(GEPVector, [=](auto &Elt) { return Elt.first == GEP; }); + +  if (GEPVector.empty()) +    LargeOffsetGEPMap.erase(VecI); +} + +// Verify BFI has been updated correctly by recomputing BFI and comparing them. +void LLVM_ATTRIBUTE_UNUSED CodeGenPrepare::verifyBFIUpdates(Function &F) { +  DominatorTree NewDT(F); +  LoopInfo NewLI(NewDT); +  BranchProbabilityInfo NewBPI(F, NewLI, TLInfo); +  BlockFrequencyInfo NewBFI(F, NewBPI, NewLI); +  NewBFI.verifyMatch(*BFI); +} + +/// Merge basic blocks which are connected by a single edge, where one of the +/// basic blocks has a single successor pointing to the other basic block, +/// which has a single predecessor. +bool CodeGenPrepare::eliminateFallThrough(Function &F, DominatorTree *DT) { +  bool Changed = false; +  // Scan all of the blocks in the function, except for the entry block. +  // Use a temporary array to avoid iterator being invalidated when +  // deleting blocks. +  SmallVector<WeakTrackingVH, 16> Blocks; +  for (auto &Block : llvm::drop_begin(F)) +    Blocks.push_back(&Block); + +  SmallSet<WeakTrackingVH, 16> Preds; +  for (auto &Block : Blocks) { +    auto *BB = cast_or_null<BasicBlock>(Block); +    if (!BB) +      continue; +    // If the destination block has a single pred, then this is a trivial +    // edge, just collapse it. +    BasicBlock *SinglePred = BB->getSinglePredecessor(); + +    // Don't merge if BB's address is taken. +    if (!SinglePred || SinglePred == BB || BB->hasAddressTaken()) +      continue; + +    // Make an effort to skip unreachable blocks. +    if (DT && !DT->isReachableFromEntry(BB)) +      continue; + +    BranchInst *Term = dyn_cast<BranchInst>(SinglePred->getTerminator()); +    if (Term && !Term->isConditional()) { +      Changed = true; +      LLVM_DEBUG(dbgs() << "To merge:\n" << *BB << "\n\n\n"); + +      // Merge BB into SinglePred and delete it. +      MergeBlockIntoPredecessor(BB, /* DTU */ nullptr, LI, /* MSSAU */ nullptr, +                                /* MemDep */ nullptr, +                                /* PredecessorWithTwoSuccessors */ false, DT); +      Preds.insert(SinglePred); + +      if (IsHugeFunc) { +        // Update FreshBBs to optimize the merged BB. +        FreshBBs.insert(SinglePred); +        FreshBBs.erase(BB); +      } +    } +  } + +  // (Repeatedly) merging blocks into their predecessors can create redundant +  // debug intrinsics. +  for (const auto &Pred : Preds) +    if (auto *BB = cast_or_null<BasicBlock>(Pred)) +      RemoveRedundantDbgInstrs(BB); + +  return Changed; +} + +/// Find a destination block from BB if BB is mergeable empty block. +BasicBlock *CodeGenPrepare::findDestBlockOfMergeableEmptyBlock(BasicBlock *BB) { +  // If this block doesn't end with an uncond branch, ignore it. +  BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()); +  if (!BI || !BI->isUnconditional()) +    return nullptr; + +  // If the instruction before the branch (skipping debug info) isn't a phi +  // node, then other stuff is happening here. +  BasicBlock::iterator BBI = BI->getIterator(); +  if (BBI != BB->begin()) { +    --BBI; +    while (isa<DbgInfoIntrinsic>(BBI)) { +      if (BBI == BB->begin()) +        break; +      --BBI; +    } +    if (!isa<DbgInfoIntrinsic>(BBI) && !isa<PHINode>(BBI)) +      return nullptr; +  } + +  // Do not break infinite loops. +  BasicBlock *DestBB = BI->getSuccessor(0); +  if (DestBB == BB) +    return nullptr; + +  if (!canMergeBlocks(BB, DestBB)) +    DestBB = nullptr; + +  return DestBB; +} + +/// Eliminate blocks that contain only PHI nodes, debug info directives, and an +/// unconditional branch. Passes before isel (e.g. LSR/loopsimplify) often split +/// edges in ways that are non-optimal for isel. Start by eliminating these +/// blocks so we can split them the way we want them. +bool CodeGenPrepare::eliminateMostlyEmptyBlocks(Function &F) { +  SmallPtrSet<BasicBlock *, 16> Preheaders; +  SmallVector<Loop *, 16> LoopList(LI->begin(), LI->end()); +  while (!LoopList.empty()) { +    Loop *L = LoopList.pop_back_val(); +    llvm::append_range(LoopList, *L); +    if (BasicBlock *Preheader = L->getLoopPreheader()) +      Preheaders.insert(Preheader); +  } + +  bool MadeChange = false; +  // Copy blocks into a temporary array to avoid iterator invalidation issues +  // as we remove them. +  // Note that this intentionally skips the entry block. +  SmallVector<WeakTrackingVH, 16> Blocks; +  for (auto &Block : llvm::drop_begin(F)) { +    // Delete phi nodes that could block deleting other empty blocks. +    if (!DisableDeletePHIs) +      MadeChange |= DeleteDeadPHIs(&Block, TLInfo); +    Blocks.push_back(&Block); +  } + +  for (auto &Block : Blocks) { +    BasicBlock *BB = cast_or_null<BasicBlock>(Block); +    if (!BB) +      continue; +    BasicBlock *DestBB = findDestBlockOfMergeableEmptyBlock(BB); +    if (!DestBB || +        !isMergingEmptyBlockProfitable(BB, DestBB, Preheaders.count(BB))) +      continue; + +    eliminateMostlyEmptyBlock(BB); +    MadeChange = true; +  } +  return MadeChange; +} + +bool CodeGenPrepare::isMergingEmptyBlockProfitable(BasicBlock *BB, +                                                   BasicBlock *DestBB, +                                                   bool isPreheader) { +  // Do not delete loop preheaders if doing so would create a critical edge. +  // Loop preheaders can be good locations to spill registers. If the +  // preheader is deleted and we create a critical edge, registers may be +  // spilled in the loop body instead. +  if (!DisablePreheaderProtect && isPreheader && +      !(BB->getSinglePredecessor() && +        BB->getSinglePredecessor()->getSingleSuccessor())) +    return false; + +  // Skip merging if the block's successor is also a successor to any callbr +  // that leads to this block. +  // FIXME: Is this really needed? Is this a correctness issue? +  for (BasicBlock *Pred : predecessors(BB)) { +    if (isa<CallBrInst>(Pred->getTerminator()) && +        llvm::is_contained(successors(Pred), DestBB)) +      return false; +  } + +  // Try to skip merging if the unique predecessor of BB is terminated by a +  // switch or indirect branch instruction, and BB is used as an incoming block +  // of PHIs in DestBB. In such case, merging BB and DestBB would cause ISel to +  // add COPY instructions in the predecessor of BB instead of BB (if it is not +  // merged). Note that the critical edge created by merging such blocks wont be +  // split in MachineSink because the jump table is not analyzable. By keeping +  // such empty block (BB), ISel will place COPY instructions in BB, not in the +  // predecessor of BB. +  BasicBlock *Pred = BB->getUniquePredecessor(); +  if (!Pred || !(isa<SwitchInst>(Pred->getTerminator()) || +                 isa<IndirectBrInst>(Pred->getTerminator()))) +    return true; + +  if (BB->getTerminator() != BB->getFirstNonPHIOrDbg()) +    return true; + +  // We use a simple cost heuristic which determine skipping merging is +  // profitable if the cost of skipping merging is less than the cost of +  // merging : Cost(skipping merging) < Cost(merging BB), where the +  // Cost(skipping merging) is Freq(BB) * (Cost(Copy) + Cost(Branch)), and +  // the Cost(merging BB) is Freq(Pred) * Cost(Copy). +  // Assuming Cost(Copy) == Cost(Branch), we could simplify it to : +  //   Freq(Pred) / Freq(BB) > 2. +  // Note that if there are multiple empty blocks sharing the same incoming +  // value for the PHIs in the DestBB, we consider them together. In such +  // case, Cost(merging BB) will be the sum of their frequencies. + +  if (!isa<PHINode>(DestBB->begin())) +    return true; + +  SmallPtrSet<BasicBlock *, 16> SameIncomingValueBBs; + +  // Find all other incoming blocks from which incoming values of all PHIs in +  // DestBB are the same as the ones from BB. +  for (BasicBlock *DestBBPred : predecessors(DestBB)) { +    if (DestBBPred == BB) +      continue; + +    if (llvm::all_of(DestBB->phis(), [&](const PHINode &DestPN) { +          return DestPN.getIncomingValueForBlock(BB) == +                 DestPN.getIncomingValueForBlock(DestBBPred); +        })) +      SameIncomingValueBBs.insert(DestBBPred); +  } + +  // See if all BB's incoming values are same as the value from Pred. In this +  // case, no reason to skip merging because COPYs are expected to be place in +  // Pred already. +  if (SameIncomingValueBBs.count(Pred)) +    return true; + +  BlockFrequency PredFreq = BFI->getBlockFreq(Pred); +  BlockFrequency BBFreq = BFI->getBlockFreq(BB); + +  for (auto *SameValueBB : SameIncomingValueBBs) +    if (SameValueBB->getUniquePredecessor() == Pred && +        DestBB == findDestBlockOfMergeableEmptyBlock(SameValueBB)) +      BBFreq += BFI->getBlockFreq(SameValueBB); + +  std::optional<BlockFrequency> Limit = BBFreq.mul(FreqRatioToSkipMerge); +  return !Limit || PredFreq <= *Limit; +} + +/// Return true if we can merge BB into DestBB if there is a single +/// unconditional branch between them, and BB contains no other non-phi +/// instructions. +bool CodeGenPrepare::canMergeBlocks(const BasicBlock *BB, +                                    const BasicBlock *DestBB) const { +  // We only want to eliminate blocks whose phi nodes are used by phi nodes in +  // the successor.  If there are more complex condition (e.g. preheaders), +  // don't mess around with them. +  for (const PHINode &PN : BB->phis()) { +    for (const User *U : PN.users()) { +      const Instruction *UI = cast<Instruction>(U); +      if (UI->getParent() != DestBB || !isa<PHINode>(UI)) +        return false; +      // If User is inside DestBB block and it is a PHINode then check +      // incoming value. If incoming value is not from BB then this is +      // a complex condition (e.g. preheaders) we want to avoid here. +      if (UI->getParent() == DestBB) { +        if (const PHINode *UPN = dyn_cast<PHINode>(UI)) +          for (unsigned I = 0, E = UPN->getNumIncomingValues(); I != E; ++I) { +            Instruction *Insn = dyn_cast<Instruction>(UPN->getIncomingValue(I)); +            if (Insn && Insn->getParent() == BB && +                Insn->getParent() != UPN->getIncomingBlock(I)) +              return false; +          } +      } +    } +  } + +  // If BB and DestBB contain any common predecessors, then the phi nodes in BB +  // and DestBB may have conflicting incoming values for the block.  If so, we +  // can't merge the block. +  const PHINode *DestBBPN = dyn_cast<PHINode>(DestBB->begin()); +  if (!DestBBPN) +    return true; // no conflict. + +  // Collect the preds of BB. +  SmallPtrSet<const BasicBlock *, 16> BBPreds; +  if (const PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { +    // It is faster to get preds from a PHI than with pred_iterator. +    for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) +      BBPreds.insert(BBPN->getIncomingBlock(i)); +  } else { +    BBPreds.insert(pred_begin(BB), pred_end(BB)); +  } + +  // Walk the preds of DestBB. +  for (unsigned i = 0, e = DestBBPN->getNumIncomingValues(); i != e; ++i) { +    BasicBlock *Pred = DestBBPN->getIncomingBlock(i); +    if (BBPreds.count(Pred)) { // Common predecessor? +      for (const PHINode &PN : DestBB->phis()) { +        const Value *V1 = PN.getIncomingValueForBlock(Pred); +        const Value *V2 = PN.getIncomingValueForBlock(BB); + +        // If V2 is a phi node in BB, look up what the mapped value will be. +        if (const PHINode *V2PN = dyn_cast<PHINode>(V2)) +          if (V2PN->getParent() == BB) +            V2 = V2PN->getIncomingValueForBlock(Pred); + +        // If there is a conflict, bail out. +        if (V1 != V2) +          return false; +      } +    } +  } + +  return true; +} + +/// Replace all old uses with new ones, and push the updated BBs into FreshBBs. +static void replaceAllUsesWith(Value *Old, Value *New, +                               SmallSet<BasicBlock *, 32> &FreshBBs, +                               bool IsHuge) { +  auto *OldI = dyn_cast<Instruction>(Old); +  if (OldI) { +    for (Value::user_iterator UI = OldI->user_begin(), E = OldI->user_end(); +         UI != E; ++UI) { +      Instruction *User = cast<Instruction>(*UI); +      if (IsHuge) +        FreshBBs.insert(User->getParent()); +    } +  } +  Old->replaceAllUsesWith(New); +} + +/// Eliminate a basic block that has only phi's and an unconditional branch in +/// it. +void CodeGenPrepare::eliminateMostlyEmptyBlock(BasicBlock *BB) { +  BranchInst *BI = cast<BranchInst>(BB->getTerminator()); +  BasicBlock *DestBB = BI->getSuccessor(0); + +  LLVM_DEBUG(dbgs() << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n" +                    << *BB << *DestBB); + +  // If the destination block has a single pred, then this is a trivial edge, +  // just collapse it. +  if (BasicBlock *SinglePred = DestBB->getSinglePredecessor()) { +    if (SinglePred != DestBB) { +      assert(SinglePred == BB && +             "Single predecessor not the same as predecessor"); +      // Merge DestBB into SinglePred/BB and delete it. +      MergeBlockIntoPredecessor(DestBB); +      // Note: BB(=SinglePred) will not be deleted on this path. +      // DestBB(=its single successor) is the one that was deleted. +      LLVM_DEBUG(dbgs() << "AFTER:\n" << *SinglePred << "\n\n\n"); + +      if (IsHugeFunc) { +        // Update FreshBBs to optimize the merged BB. +        FreshBBs.insert(SinglePred); +        FreshBBs.erase(DestBB); +      } +      return; +    } +  } + +  // Otherwise, we have multiple predecessors of BB.  Update the PHIs in DestBB +  // to handle the new incoming edges it is about to have. +  for (PHINode &PN : DestBB->phis()) { +    // Remove the incoming value for BB, and remember it. +    Value *InVal = PN.removeIncomingValue(BB, false); + +    // Two options: either the InVal is a phi node defined in BB or it is some +    // value that dominates BB. +    PHINode *InValPhi = dyn_cast<PHINode>(InVal); +    if (InValPhi && InValPhi->getParent() == BB) { +      // Add all of the input values of the input PHI as inputs of this phi. +      for (unsigned i = 0, e = InValPhi->getNumIncomingValues(); i != e; ++i) +        PN.addIncoming(InValPhi->getIncomingValue(i), +                       InValPhi->getIncomingBlock(i)); +    } else { +      // Otherwise, add one instance of the dominating value for each edge that +      // we will be adding. +      if (PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { +        for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) +          PN.addIncoming(InVal, BBPN->getIncomingBlock(i)); +      } else { +        for (BasicBlock *Pred : predecessors(BB)) +          PN.addIncoming(InVal, Pred); +      } +    } +  } + +  // The PHIs are now updated, change everything that refers to BB to use +  // DestBB and remove BB. +  BB->replaceAllUsesWith(DestBB); +  BB->eraseFromParent(); +  ++NumBlocksElim; + +  LLVM_DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n"); +} + +// Computes a map of base pointer relocation instructions to corresponding +// derived pointer relocation instructions given a vector of all relocate calls +static void computeBaseDerivedRelocateMap( +    const SmallVectorImpl<GCRelocateInst *> &AllRelocateCalls, +    MapVector<GCRelocateInst *, SmallVector<GCRelocateInst *, 0>> +        &RelocateInstMap) { +  // Collect information in two maps: one primarily for locating the base object +  // while filling the second map; the second map is the final structure holding +  // a mapping between Base and corresponding Derived relocate calls +  MapVector<std::pair<unsigned, unsigned>, GCRelocateInst *> RelocateIdxMap; +  for (auto *ThisRelocate : AllRelocateCalls) { +    auto K = std::make_pair(ThisRelocate->getBasePtrIndex(), +                            ThisRelocate->getDerivedPtrIndex()); +    RelocateIdxMap.insert(std::make_pair(K, ThisRelocate)); +  } +  for (auto &Item : RelocateIdxMap) { +    std::pair<unsigned, unsigned> Key = Item.first; +    if (Key.first == Key.second) +      // Base relocation: nothing to insert +      continue; + +    GCRelocateInst *I = Item.second; +    auto BaseKey = std::make_pair(Key.first, Key.first); + +    // We're iterating over RelocateIdxMap so we cannot modify it. +    auto MaybeBase = RelocateIdxMap.find(BaseKey); +    if (MaybeBase == RelocateIdxMap.end()) +      // TODO: We might want to insert a new base object relocate and gep off +      // that, if there are enough derived object relocates. +      continue; + +    RelocateInstMap[MaybeBase->second].push_back(I); +  } +} + +// Accepts a GEP and extracts the operands into a vector provided they're all +// small integer constants +static bool getGEPSmallConstantIntOffsetV(GetElementPtrInst *GEP, +                                          SmallVectorImpl<Value *> &OffsetV) { +  for (unsigned i = 1; i < GEP->getNumOperands(); i++) { +    // Only accept small constant integer operands +    auto *Op = dyn_cast<ConstantInt>(GEP->getOperand(i)); +    if (!Op || Op->getZExtValue() > 20) +      return false; +  } + +  for (unsigned i = 1; i < GEP->getNumOperands(); i++) +    OffsetV.push_back(GEP->getOperand(i)); +  return true; +} + +// Takes a RelocatedBase (base pointer relocation instruction) and Targets to +// replace, computes a replacement, and affects it. +static bool +simplifyRelocatesOffABase(GCRelocateInst *RelocatedBase, +                          const SmallVectorImpl<GCRelocateInst *> &Targets) { +  bool MadeChange = false; +  // We must ensure the relocation of derived pointer is defined after +  // relocation of base pointer. If we find a relocation corresponding to base +  // defined earlier than relocation of base then we move relocation of base +  // right before found relocation. We consider only relocation in the same +  // basic block as relocation of base. Relocations from other basic block will +  // be skipped by optimization and we do not care about them. +  for (auto R = RelocatedBase->getParent()->getFirstInsertionPt(); +       &*R != RelocatedBase; ++R) +    if (auto *RI = dyn_cast<GCRelocateInst>(R)) +      if (RI->getStatepoint() == RelocatedBase->getStatepoint()) +        if (RI->getBasePtrIndex() == RelocatedBase->getBasePtrIndex()) { +          RelocatedBase->moveBefore(RI); +          MadeChange = true; +          break; +        } + +  for (GCRelocateInst *ToReplace : Targets) { +    assert(ToReplace->getBasePtrIndex() == RelocatedBase->getBasePtrIndex() && +           "Not relocating a derived object of the original base object"); +    if (ToReplace->getBasePtrIndex() == ToReplace->getDerivedPtrIndex()) { +      // A duplicate relocate call. TODO: coalesce duplicates. +      continue; +    } + +    if (RelocatedBase->getParent() != ToReplace->getParent()) { +      // Base and derived relocates are in different basic blocks. +      // In this case transform is only valid when base dominates derived +      // relocate. However it would be too expensive to check dominance +      // for each such relocate, so we skip the whole transformation. +      continue; +    } + +    Value *Base = ToReplace->getBasePtr(); +    auto *Derived = dyn_cast<GetElementPtrInst>(ToReplace->getDerivedPtr()); +    if (!Derived || Derived->getPointerOperand() != Base) +      continue; + +    SmallVector<Value *, 2> OffsetV; +    if (!getGEPSmallConstantIntOffsetV(Derived, OffsetV)) +      continue; + +    // Create a Builder and replace the target callsite with a gep +    assert(RelocatedBase->getNextNode() && +           "Should always have one since it's not a terminator"); + +    // Insert after RelocatedBase +    IRBuilder<> Builder(RelocatedBase->getNextNode()); +    Builder.SetCurrentDebugLocation(ToReplace->getDebugLoc()); + +    // If gc_relocate does not match the actual type, cast it to the right type. +    // In theory, there must be a bitcast after gc_relocate if the type does not +    // match, and we should reuse it to get the derived pointer. But it could be +    // cases like this: +    // bb1: +    //  ... +    //  %g1 = call coldcc i8 addrspace(1)* +    //  @llvm.experimental.gc.relocate.p1i8(...) br label %merge +    // +    // bb2: +    //  ... +    //  %g2 = call coldcc i8 addrspace(1)* +    //  @llvm.experimental.gc.relocate.p1i8(...) br label %merge +    // +    // merge: +    //  %p1 = phi i8 addrspace(1)* [ %g1, %bb1 ], [ %g2, %bb2 ] +    //  %cast = bitcast i8 addrspace(1)* %p1 in to i32 addrspace(1)* +    // +    // In this case, we can not find the bitcast any more. So we insert a new +    // bitcast no matter there is already one or not. In this way, we can handle +    // all cases, and the extra bitcast should be optimized away in later +    // passes. +    Value *ActualRelocatedBase = RelocatedBase; +    if (RelocatedBase->getType() != Base->getType()) { +      ActualRelocatedBase = +          Builder.CreateBitCast(RelocatedBase, Base->getType()); +    } +    Value *Replacement = +        Builder.CreateGEP(Derived->getSourceElementType(), ActualRelocatedBase, +                          ArrayRef(OffsetV)); +    Replacement->takeName(ToReplace); +    // If the newly generated derived pointer's type does not match the original +    // derived pointer's type, cast the new derived pointer to match it. Same +    // reasoning as above. +    Value *ActualReplacement = Replacement; +    if (Replacement->getType() != ToReplace->getType()) { +      ActualReplacement = +          Builder.CreateBitCast(Replacement, ToReplace->getType()); +    } +    ToReplace->replaceAllUsesWith(ActualReplacement); +    ToReplace->eraseFromParent(); + +    MadeChange = true; +  } +  return MadeChange; +} + +// Turns this: +// +// %base = ... +// %ptr = gep %base + 15 +// %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr) +// %base' = relocate(%tok, i32 4, i32 4) +// %ptr' = relocate(%tok, i32 4, i32 5) +// %val = load %ptr' +// +// into this: +// +// %base = ... +// %ptr = gep %base + 15 +// %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr) +// %base' = gc.relocate(%tok, i32 4, i32 4) +// %ptr' = gep %base' + 15 +// %val = load %ptr' +bool CodeGenPrepare::simplifyOffsetableRelocate(GCStatepointInst &I) { +  bool MadeChange = false; +  SmallVector<GCRelocateInst *, 2> AllRelocateCalls; +  for (auto *U : I.users()) +    if (GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U)) +      // Collect all the relocate calls associated with a statepoint +      AllRelocateCalls.push_back(Relocate); + +  // We need at least one base pointer relocation + one derived pointer +  // relocation to mangle +  if (AllRelocateCalls.size() < 2) +    return false; + +  // RelocateInstMap is a mapping from the base relocate instruction to the +  // corresponding derived relocate instructions +  MapVector<GCRelocateInst *, SmallVector<GCRelocateInst *, 0>> RelocateInstMap; +  computeBaseDerivedRelocateMap(AllRelocateCalls, RelocateInstMap); +  if (RelocateInstMap.empty()) +    return false; + +  for (auto &Item : RelocateInstMap) +    // Item.first is the RelocatedBase to offset against +    // Item.second is the vector of Targets to replace +    MadeChange = simplifyRelocatesOffABase(Item.first, Item.second); +  return MadeChange; +} + +/// Sink the specified cast instruction into its user blocks. +static bool SinkCast(CastInst *CI) { +  BasicBlock *DefBB = CI->getParent(); + +  /// InsertedCasts - Only insert a cast in each block once. +  DenseMap<BasicBlock *, CastInst *> InsertedCasts; + +  bool MadeChange = false; +  for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end(); +       UI != E;) { +    Use &TheUse = UI.getUse(); +    Instruction *User = cast<Instruction>(*UI); + +    // Figure out which BB this cast is used in.  For PHI's this is the +    // appropriate predecessor block. +    BasicBlock *UserBB = User->getParent(); +    if (PHINode *PN = dyn_cast<PHINode>(User)) { +      UserBB = PN->getIncomingBlock(TheUse); +    } + +    // Preincrement use iterator so we don't invalidate it. +    ++UI; + +    // The first insertion point of a block containing an EH pad is after the +    // pad.  If the pad is the user, we cannot sink the cast past the pad. +    if (User->isEHPad()) +      continue; + +    // If the block selected to receive the cast is an EH pad that does not +    // allow non-PHI instructions before the terminator, we can't sink the +    // cast. +    if (UserBB->getTerminator()->isEHPad()) +      continue; + +    // If this user is in the same block as the cast, don't change the cast. +    if (UserBB == DefBB) +      continue; + +    // If we have already inserted a cast into this block, use it. +    CastInst *&InsertedCast = InsertedCasts[UserBB]; + +    if (!InsertedCast) { +      BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); +      assert(InsertPt != UserBB->end()); +      InsertedCast = cast<CastInst>(CI->clone()); +      InsertedCast->insertBefore(*UserBB, InsertPt); +    } + +    // Replace a use of the cast with a use of the new cast. +    TheUse = InsertedCast; +    MadeChange = true; +    ++NumCastUses; +  } + +  // If we removed all uses, nuke the cast. +  if (CI->use_empty()) { +    salvageDebugInfo(*CI); +    CI->eraseFromParent(); +    MadeChange = true; +  } + +  return MadeChange; +} + +/// If the specified cast instruction is a noop copy (e.g. it's casting from +/// one pointer type to another, i32->i8 on PPC), sink it into user blocks to +/// reduce the number of virtual registers that must be created and coalesced. +/// +/// Return true if any changes are made. +static bool OptimizeNoopCopyExpression(CastInst *CI, const TargetLowering &TLI, +                                       const DataLayout &DL) { +  // Sink only "cheap" (or nop) address-space casts.  This is a weaker condition +  // than sinking only nop casts, but is helpful on some platforms. +  if (auto *ASC = dyn_cast<AddrSpaceCastInst>(CI)) { +    if (!TLI.isFreeAddrSpaceCast(ASC->getSrcAddressSpace(), +                                 ASC->getDestAddressSpace())) +      return false; +  } + +  // If this is a noop copy, +  EVT SrcVT = TLI.getValueType(DL, CI->getOperand(0)->getType()); +  EVT DstVT = TLI.getValueType(DL, CI->getType()); + +  // This is an fp<->int conversion? +  if (SrcVT.isInteger() != DstVT.isInteger()) +    return false; + +  // If this is an extension, it will be a zero or sign extension, which +  // isn't a noop. +  if (SrcVT.bitsLT(DstVT)) +    return false; + +  // If these values will be promoted, find out what they will be promoted +  // to.  This helps us consider truncates on PPC as noop copies when they +  // are. +  if (TLI.getTypeAction(CI->getContext(), SrcVT) == +      TargetLowering::TypePromoteInteger) +    SrcVT = TLI.getTypeToTransformTo(CI->getContext(), SrcVT); +  if (TLI.getTypeAction(CI->getContext(), DstVT) == +      TargetLowering::TypePromoteInteger) +    DstVT = TLI.getTypeToTransformTo(CI->getContext(), DstVT); + +  // If, after promotion, these are the same types, this is a noop copy. +  if (SrcVT != DstVT) +    return false; + +  return SinkCast(CI); +} + +// Match a simple increment by constant operation.  Note that if a sub is +// matched, the step is negated (as if the step had been canonicalized to +// an add, even though we leave the instruction alone.) +static bool matchIncrement(const Instruction *IVInc, Instruction *&LHS, +                           Constant *&Step) { +  if (match(IVInc, m_Add(m_Instruction(LHS), m_Constant(Step))) || +      match(IVInc, m_ExtractValue<0>(m_Intrinsic<Intrinsic::uadd_with_overflow>( +                       m_Instruction(LHS), m_Constant(Step))))) +    return true; +  if (match(IVInc, m_Sub(m_Instruction(LHS), m_Constant(Step))) || +      match(IVInc, m_ExtractValue<0>(m_Intrinsic<Intrinsic::usub_with_overflow>( +                       m_Instruction(LHS), m_Constant(Step))))) { +    Step = ConstantExpr::getNeg(Step); +    return true; +  } +  return false; +} + +/// If given \p PN is an inductive variable with value IVInc coming from the +/// backedge, and on each iteration it gets increased by Step, return pair +/// <IVInc, Step>. Otherwise, return std::nullopt. +static std::optional<std::pair<Instruction *, Constant *>> +getIVIncrement(const PHINode *PN, const LoopInfo *LI) { +  const Loop *L = LI->getLoopFor(PN->getParent()); +  if (!L || L->getHeader() != PN->getParent() || !L->getLoopLatch()) +    return std::nullopt; +  auto *IVInc = +      dyn_cast<Instruction>(PN->getIncomingValueForBlock(L->getLoopLatch())); +  if (!IVInc || LI->getLoopFor(IVInc->getParent()) != L) +    return std::nullopt; +  Instruction *LHS = nullptr; +  Constant *Step = nullptr; +  if (matchIncrement(IVInc, LHS, Step) && LHS == PN) +    return std::make_pair(IVInc, Step); +  return std::nullopt; +} + +static bool isIVIncrement(const Value *V, const LoopInfo *LI) { +  auto *I = dyn_cast<Instruction>(V); +  if (!I) +    return false; +  Instruction *LHS = nullptr; +  Constant *Step = nullptr; +  if (!matchIncrement(I, LHS, Step)) +    return false; +  if (auto *PN = dyn_cast<PHINode>(LHS)) +    if (auto IVInc = getIVIncrement(PN, LI)) +      return IVInc->first == I; +  return false; +} + +bool CodeGenPrepare::replaceMathCmpWithIntrinsic(BinaryOperator *BO, +                                                 Value *Arg0, Value *Arg1, +                                                 CmpInst *Cmp, +                                                 Intrinsic::ID IID) { +  auto IsReplacableIVIncrement = [this, &Cmp](BinaryOperator *BO) { +    if (!isIVIncrement(BO, LI)) +      return false; +    const Loop *L = LI->getLoopFor(BO->getParent()); +    assert(L && "L should not be null after isIVIncrement()"); +    // Do not risk on moving increment into a child loop. +    if (LI->getLoopFor(Cmp->getParent()) != L) +      return false; + +    // Finally, we need to ensure that the insert point will dominate all +    // existing uses of the increment. + +    auto &DT = getDT(*BO->getParent()->getParent()); +    if (DT.dominates(Cmp->getParent(), BO->getParent())) +      // If we're moving up the dom tree, all uses are trivially dominated. +      // (This is the common case for code produced by LSR.) +      return true; + +    // Otherwise, special case the single use in the phi recurrence. +    return BO->hasOneUse() && DT.dominates(Cmp->getParent(), L->getLoopLatch()); +  }; +  if (BO->getParent() != Cmp->getParent() && !IsReplacableIVIncrement(BO)) { +    // We used to use a dominator tree here to allow multi-block optimization. +    // But that was problematic because: +    // 1. It could cause a perf regression by hoisting the math op into the +    //    critical path. +    // 2. It could cause a perf regression by creating a value that was live +    //    across multiple blocks and increasing register pressure. +    // 3. Use of a dominator tree could cause large compile-time regression. +    //    This is because we recompute the DT on every change in the main CGP +    //    run-loop. The recomputing is probably unnecessary in many cases, so if +    //    that was fixed, using a DT here would be ok. +    // +    // There is one important particular case we still want to handle: if BO is +    // the IV increment. Important properties that make it profitable: +    // - We can speculate IV increment anywhere in the loop (as long as the +    //   indvar Phi is its only user); +    // - Upon computing Cmp, we effectively compute something equivalent to the +    //   IV increment (despite it loops differently in the IR). So moving it up +    //   to the cmp point does not really increase register pressure. +    return false; +  } + +  // We allow matching the canonical IR (add X, C) back to (usubo X, -C). +  if (BO->getOpcode() == Instruction::Add && +      IID == Intrinsic::usub_with_overflow) { +    assert(isa<Constant>(Arg1) && "Unexpected input for usubo"); +    Arg1 = ConstantExpr::getNeg(cast<Constant>(Arg1)); +  } + +  // Insert at the first instruction of the pair. +  Instruction *InsertPt = nullptr; +  for (Instruction &Iter : *Cmp->getParent()) { +    // If BO is an XOR, it is not guaranteed that it comes after both inputs to +    // the overflow intrinsic are defined. +    if ((BO->getOpcode() != Instruction::Xor && &Iter == BO) || &Iter == Cmp) { +      InsertPt = &Iter; +      break; +    } +  } +  assert(InsertPt != nullptr && "Parent block did not contain cmp or binop"); + +  IRBuilder<> Builder(InsertPt); +  Value *MathOV = Builder.CreateBinaryIntrinsic(IID, Arg0, Arg1); +  if (BO->getOpcode() != Instruction::Xor) { +    Value *Math = Builder.CreateExtractValue(MathOV, 0, "math"); +    replaceAllUsesWith(BO, Math, FreshBBs, IsHugeFunc); +  } else +    assert(BO->hasOneUse() && +           "Patterns with XOr should use the BO only in the compare"); +  Value *OV = Builder.CreateExtractValue(MathOV, 1, "ov"); +  replaceAllUsesWith(Cmp, OV, FreshBBs, IsHugeFunc); +  Cmp->eraseFromParent(); +  BO->eraseFromParent(); +  return true; +} + +/// Match special-case patterns that check for unsigned add overflow. +static bool matchUAddWithOverflowConstantEdgeCases(CmpInst *Cmp, +                                                   BinaryOperator *&Add) { +  // Add = add A, 1; Cmp = icmp eq A,-1 (overflow if A is max val) +  // Add = add A,-1; Cmp = icmp ne A, 0 (overflow if A is non-zero) +  Value *A = Cmp->getOperand(0), *B = Cmp->getOperand(1); + +  // We are not expecting non-canonical/degenerate code. Just bail out. +  if (isa<Constant>(A)) +    return false; + +  ICmpInst::Predicate Pred = Cmp->getPredicate(); +  if (Pred == ICmpInst::ICMP_EQ && match(B, m_AllOnes())) +    B = ConstantInt::get(B->getType(), 1); +  else if (Pred == ICmpInst::ICMP_NE && match(B, m_ZeroInt())) +    B = ConstantInt::get(B->getType(), -1); +  else +    return false; + +  // Check the users of the variable operand of the compare looking for an add +  // with the adjusted constant. +  for (User *U : A->users()) { +    if (match(U, m_Add(m_Specific(A), m_Specific(B)))) { +      Add = cast<BinaryOperator>(U); +      return true; +    } +  } +  return false; +} + +/// Try to combine the compare into a call to the llvm.uadd.with.overflow +/// intrinsic. Return true if any changes were made. +bool CodeGenPrepare::combineToUAddWithOverflow(CmpInst *Cmp, +                                               ModifyDT &ModifiedDT) { +  bool EdgeCase = false; +  Value *A, *B; +  BinaryOperator *Add; +  if (!match(Cmp, m_UAddWithOverflow(m_Value(A), m_Value(B), m_BinOp(Add)))) { +    if (!matchUAddWithOverflowConstantEdgeCases(Cmp, Add)) +      return false; +    // Set A and B in case we match matchUAddWithOverflowConstantEdgeCases. +    A = Add->getOperand(0); +    B = Add->getOperand(1); +    EdgeCase = true; +  } + +  if (!TLI->shouldFormOverflowOp(ISD::UADDO, +                                 TLI->getValueType(*DL, Add->getType()), +                                 Add->hasNUsesOrMore(EdgeCase ? 1 : 2))) +    return false; + +  // We don't want to move around uses of condition values this late, so we +  // check if it is legal to create the call to the intrinsic in the basic +  // block containing the icmp. +  if (Add->getParent() != Cmp->getParent() && !Add->hasOneUse()) +    return false; + +  if (!replaceMathCmpWithIntrinsic(Add, A, B, Cmp, +                                   Intrinsic::uadd_with_overflow)) +    return false; + +  // Reset callers - do not crash by iterating over a dead instruction. +  ModifiedDT = ModifyDT::ModifyInstDT; +  return true; +} + +bool CodeGenPrepare::combineToUSubWithOverflow(CmpInst *Cmp, +                                               ModifyDT &ModifiedDT) { +  // We are not expecting non-canonical/degenerate code. Just bail out. +  Value *A = Cmp->getOperand(0), *B = Cmp->getOperand(1); +  if (isa<Constant>(A) && isa<Constant>(B)) +    return false; + +  // Convert (A u> B) to (A u< B) to simplify pattern matching. +  ICmpInst::Predicate Pred = Cmp->getPredicate(); +  if (Pred == ICmpInst::ICMP_UGT) { +    std::swap(A, B); +    Pred = ICmpInst::ICMP_ULT; +  } +  // Convert special-case: (A == 0) is the same as (A u< 1). +  if (Pred == ICmpInst::ICMP_EQ && match(B, m_ZeroInt())) { +    B = ConstantInt::get(B->getType(), 1); +    Pred = ICmpInst::ICMP_ULT; +  } +  // Convert special-case: (A != 0) is the same as (0 u< A). +  if (Pred == ICmpInst::ICMP_NE && match(B, m_ZeroInt())) { +    std::swap(A, B); +    Pred = ICmpInst::ICMP_ULT; +  } +  if (Pred != ICmpInst::ICMP_ULT) +    return false; + +  // Walk the users of a variable operand of a compare looking for a subtract or +  // add with that same operand. Also match the 2nd operand of the compare to +  // the add/sub, but that may be a negated constant operand of an add. +  Value *CmpVariableOperand = isa<Constant>(A) ? B : A; +  BinaryOperator *Sub = nullptr; +  for (User *U : CmpVariableOperand->users()) { +    // A - B, A u< B --> usubo(A, B) +    if (match(U, m_Sub(m_Specific(A), m_Specific(B)))) { +      Sub = cast<BinaryOperator>(U); +      break; +    } + +    // A + (-C), A u< C (canonicalized form of (sub A, C)) +    const APInt *CmpC, *AddC; +    if (match(U, m_Add(m_Specific(A), m_APInt(AddC))) && +        match(B, m_APInt(CmpC)) && *AddC == -(*CmpC)) { +      Sub = cast<BinaryOperator>(U); +      break; +    } +  } +  if (!Sub) +    return false; + +  if (!TLI->shouldFormOverflowOp(ISD::USUBO, +                                 TLI->getValueType(*DL, Sub->getType()), +                                 Sub->hasNUsesOrMore(1))) +    return false; + +  if (!replaceMathCmpWithIntrinsic(Sub, Sub->getOperand(0), Sub->getOperand(1), +                                   Cmp, Intrinsic::usub_with_overflow)) +    return false; + +  // Reset callers - do not crash by iterating over a dead instruction. +  ModifiedDT = ModifyDT::ModifyInstDT; +  return true; +} + +/// Sink the given CmpInst into user blocks to reduce the number of virtual +/// registers that must be created and coalesced. This is a clear win except on +/// targets with multiple condition code registers (PowerPC), where it might +/// lose; some adjustment may be wanted there. +/// +/// Return true if any changes are made. +static bool sinkCmpExpression(CmpInst *Cmp, const TargetLowering &TLI) { +  if (TLI.hasMultipleConditionRegisters()) +    return false; + +  // Avoid sinking soft-FP comparisons, since this can move them into a loop. +  if (TLI.useSoftFloat() && isa<FCmpInst>(Cmp)) +    return false; + +  // Only insert a cmp in each block once. +  DenseMap<BasicBlock *, CmpInst *> InsertedCmps; + +  bool MadeChange = false; +  for (Value::user_iterator UI = Cmp->user_begin(), E = Cmp->user_end(); +       UI != E;) { +    Use &TheUse = UI.getUse(); +    Instruction *User = cast<Instruction>(*UI); + +    // Preincrement use iterator so we don't invalidate it. +    ++UI; + +    // Don't bother for PHI nodes. +    if (isa<PHINode>(User)) +      continue; + +    // Figure out which BB this cmp is used in. +    BasicBlock *UserBB = User->getParent(); +    BasicBlock *DefBB = Cmp->getParent(); + +    // If this user is in the same block as the cmp, don't change the cmp. +    if (UserBB == DefBB) +      continue; + +    // If we have already inserted a cmp into this block, use it. +    CmpInst *&InsertedCmp = InsertedCmps[UserBB]; + +    if (!InsertedCmp) { +      BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); +      assert(InsertPt != UserBB->end()); +      InsertedCmp = CmpInst::Create(Cmp->getOpcode(), Cmp->getPredicate(), +                                    Cmp->getOperand(0), Cmp->getOperand(1), ""); +      InsertedCmp->insertBefore(*UserBB, InsertPt); +      // Propagate the debug info. +      InsertedCmp->setDebugLoc(Cmp->getDebugLoc()); +    } + +    // Replace a use of the cmp with a use of the new cmp. +    TheUse = InsertedCmp; +    MadeChange = true; +    ++NumCmpUses; +  } + +  // If we removed all uses, nuke the cmp. +  if (Cmp->use_empty()) { +    Cmp->eraseFromParent(); +    MadeChange = true; +  } + +  return MadeChange; +} + +/// For pattern like: +/// +///   DomCond = icmp sgt/slt CmpOp0, CmpOp1 (might not be in DomBB) +///   ... +/// DomBB: +///   ... +///   br DomCond, TrueBB, CmpBB +/// CmpBB: (with DomBB being the single predecessor) +///   ... +///   Cmp = icmp eq CmpOp0, CmpOp1 +///   ... +/// +/// It would use two comparison on targets that lowering of icmp sgt/slt is +/// different from lowering of icmp eq (PowerPC). This function try to convert +/// 'Cmp = icmp eq CmpOp0, CmpOp1' to ' Cmp = icmp slt/sgt CmpOp0, CmpOp1'. +/// After that, DomCond and Cmp can use the same comparison so reduce one +/// comparison. +/// +/// Return true if any changes are made. +static bool foldICmpWithDominatingICmp(CmpInst *Cmp, +                                       const TargetLowering &TLI) { +  if (!EnableICMP_EQToICMP_ST && TLI.isEqualityCmpFoldedWithSignedCmp()) +    return false; + +  ICmpInst::Predicate Pred = Cmp->getPredicate(); +  if (Pred != ICmpInst::ICMP_EQ) +    return false; + +  // If icmp eq has users other than BranchInst and SelectInst, converting it to +  // icmp slt/sgt would introduce more redundant LLVM IR. +  for (User *U : Cmp->users()) { +    if (isa<BranchInst>(U)) +      continue; +    if (isa<SelectInst>(U) && cast<SelectInst>(U)->getCondition() == Cmp) +      continue; +    return false; +  } + +  // This is a cheap/incomplete check for dominance - just match a single +  // predecessor with a conditional branch. +  BasicBlock *CmpBB = Cmp->getParent(); +  BasicBlock *DomBB = CmpBB->getSinglePredecessor(); +  if (!DomBB) +    return false; + +  // We want to ensure that the only way control gets to the comparison of +  // interest is that a less/greater than comparison on the same operands is +  // false. +  Value *DomCond; +  BasicBlock *TrueBB, *FalseBB; +  if (!match(DomBB->getTerminator(), m_Br(m_Value(DomCond), TrueBB, FalseBB))) +    return false; +  if (CmpBB != FalseBB) +    return false; + +  Value *CmpOp0 = Cmp->getOperand(0), *CmpOp1 = Cmp->getOperand(1); +  ICmpInst::Predicate DomPred; +  if (!match(DomCond, m_ICmp(DomPred, m_Specific(CmpOp0), m_Specific(CmpOp1)))) +    return false; +  if (DomPred != ICmpInst::ICMP_SGT && DomPred != ICmpInst::ICMP_SLT) +    return false; + +  // Convert the equality comparison to the opposite of the dominating +  // comparison and swap the direction for all branch/select users. +  // We have conceptually converted: +  // Res = (a < b) ? <LT_RES> : (a == b) ? <EQ_RES> : <GT_RES>; +  // to +  // Res = (a < b) ? <LT_RES> : (a > b)  ? <GT_RES> : <EQ_RES>; +  // And similarly for branches. +  for (User *U : Cmp->users()) { +    if (auto *BI = dyn_cast<BranchInst>(U)) { +      assert(BI->isConditional() && "Must be conditional"); +      BI->swapSuccessors(); +      continue; +    } +    if (auto *SI = dyn_cast<SelectInst>(U)) { +      // Swap operands +      SI->swapValues(); +      SI->swapProfMetadata(); +      continue; +    } +    llvm_unreachable("Must be a branch or a select"); +  } +  Cmp->setPredicate(CmpInst::getSwappedPredicate(DomPred)); +  return true; +} + +/// Many architectures use the same instruction for both subtract and cmp. Try +/// to swap cmp operands to match subtract operations to allow for CSE. +static bool swapICmpOperandsToExposeCSEOpportunities(CmpInst *Cmp) { +  Value *Op0 = Cmp->getOperand(0); +  Value *Op1 = Cmp->getOperand(1); +  if (!Op0->getType()->isIntegerTy() || isa<Constant>(Op0) || +      isa<Constant>(Op1) || Op0 == Op1) +    return false; + +  // If a subtract already has the same operands as a compare, swapping would be +  // bad. If a subtract has the same operands as a compare but in reverse order, +  // then swapping is good. +  int GoodToSwap = 0; +  unsigned NumInspected = 0; +  for (const User *U : Op0->users()) { +    // Avoid walking many users. +    if (++NumInspected > 128) +      return false; +    if (match(U, m_Sub(m_Specific(Op1), m_Specific(Op0)))) +      GoodToSwap++; +    else if (match(U, m_Sub(m_Specific(Op0), m_Specific(Op1)))) +      GoodToSwap--; +  } + +  if (GoodToSwap > 0) { +    Cmp->swapOperands(); +    return true; +  } +  return false; +} + +static bool foldFCmpToFPClassTest(CmpInst *Cmp, const TargetLowering &TLI, +                                  const DataLayout &DL) { +  FCmpInst *FCmp = dyn_cast<FCmpInst>(Cmp); +  if (!FCmp) +    return false; + +  // Don't fold if the target offers free fabs and the predicate is legal. +  EVT VT = TLI.getValueType(DL, Cmp->getOperand(0)->getType()); +  if (TLI.isFAbsFree(VT) && +      TLI.isCondCodeLegal(getFCmpCondCode(FCmp->getPredicate()), +                          VT.getSimpleVT())) +    return false; + +  // Reverse the canonicalization if it is a FP class test +  auto ShouldReverseTransform = [](FPClassTest ClassTest) { +    return ClassTest == fcInf || ClassTest == (fcInf | fcNan); +  }; +  auto [ClassVal, ClassTest] = +      fcmpToClassTest(FCmp->getPredicate(), *FCmp->getParent()->getParent(), +                      FCmp->getOperand(0), FCmp->getOperand(1)); +  if (!ClassVal) +    return false; + +  if (!ShouldReverseTransform(ClassTest) && !ShouldReverseTransform(~ClassTest)) +    return false; + +  IRBuilder<> Builder(Cmp); +  Value *IsFPClass = Builder.createIsFPClass(ClassVal, ClassTest); +  Cmp->replaceAllUsesWith(IsFPClass); +  RecursivelyDeleteTriviallyDeadInstructions(Cmp); +  return true; +} + +bool CodeGenPrepare::optimizeCmp(CmpInst *Cmp, ModifyDT &ModifiedDT) { +  if (sinkCmpExpression(Cmp, *TLI)) +    return true; + +  if (combineToUAddWithOverflow(Cmp, ModifiedDT)) +    return true; + +  if (combineToUSubWithOverflow(Cmp, ModifiedDT)) +    return true; + +  if (foldICmpWithDominatingICmp(Cmp, *TLI)) +    return true; + +  if (swapICmpOperandsToExposeCSEOpportunities(Cmp)) +    return true; + +  if (foldFCmpToFPClassTest(Cmp, *TLI, *DL)) +    return true; + +  return false; +} + +/// Duplicate and sink the given 'and' instruction into user blocks where it is +/// used in a compare to allow isel to generate better code for targets where +/// this operation can be combined. +/// +/// Return true if any changes are made. +static bool sinkAndCmp0Expression(Instruction *AndI, const TargetLowering &TLI, +                                  SetOfInstrs &InsertedInsts) { +  // Double-check that we're not trying to optimize an instruction that was +  // already optimized by some other part of this pass. +  assert(!InsertedInsts.count(AndI) && +         "Attempting to optimize already optimized and instruction"); +  (void)InsertedInsts; + +  // Nothing to do for single use in same basic block. +  if (AndI->hasOneUse() && +      AndI->getParent() == cast<Instruction>(*AndI->user_begin())->getParent()) +    return false; + +  // Try to avoid cases where sinking/duplicating is likely to increase register +  // pressure. +  if (!isa<ConstantInt>(AndI->getOperand(0)) && +      !isa<ConstantInt>(AndI->getOperand(1)) && +      AndI->getOperand(0)->hasOneUse() && AndI->getOperand(1)->hasOneUse()) +    return false; + +  for (auto *U : AndI->users()) { +    Instruction *User = cast<Instruction>(U); + +    // Only sink 'and' feeding icmp with 0. +    if (!isa<ICmpInst>(User)) +      return false; + +    auto *CmpC = dyn_cast<ConstantInt>(User->getOperand(1)); +    if (!CmpC || !CmpC->isZero()) +      return false; +  } + +  if (!TLI.isMaskAndCmp0FoldingBeneficial(*AndI)) +    return false; + +  LLVM_DEBUG(dbgs() << "found 'and' feeding only icmp 0;\n"); +  LLVM_DEBUG(AndI->getParent()->dump()); + +  // Push the 'and' into the same block as the icmp 0.  There should only be +  // one (icmp (and, 0)) in each block, since CSE/GVN should have removed any +  // others, so we don't need to keep track of which BBs we insert into. +  for (Value::user_iterator UI = AndI->user_begin(), E = AndI->user_end(); +       UI != E;) { +    Use &TheUse = UI.getUse(); +    Instruction *User = cast<Instruction>(*UI); + +    // Preincrement use iterator so we don't invalidate it. +    ++UI; + +    LLVM_DEBUG(dbgs() << "sinking 'and' use: " << *User << "\n"); + +    // Keep the 'and' in the same place if the use is already in the same block. +    Instruction *InsertPt = +        User->getParent() == AndI->getParent() ? AndI : User; +    Instruction *InsertedAnd = BinaryOperator::Create( +        Instruction::And, AndI->getOperand(0), AndI->getOperand(1), "", +        InsertPt->getIterator()); +    // Propagate the debug info. +    InsertedAnd->setDebugLoc(AndI->getDebugLoc()); + +    // Replace a use of the 'and' with a use of the new 'and'. +    TheUse = InsertedAnd; +    ++NumAndUses; +    LLVM_DEBUG(User->getParent()->dump()); +  } + +  // We removed all uses, nuke the and. +  AndI->eraseFromParent(); +  return true; +} + +/// Check if the candidates could be combined with a shift instruction, which +/// includes: +/// 1. Truncate instruction +/// 2. And instruction and the imm is a mask of the low bits: +/// imm & (imm+1) == 0 +static bool isExtractBitsCandidateUse(Instruction *User) { +  if (!isa<TruncInst>(User)) { +    if (User->getOpcode() != Instruction::And || +        !isa<ConstantInt>(User->getOperand(1))) +      return false; + +    const APInt &Cimm = cast<ConstantInt>(User->getOperand(1))->getValue(); + +    if ((Cimm & (Cimm + 1)).getBoolValue()) +      return false; +  } +  return true; +} + +/// Sink both shift and truncate instruction to the use of truncate's BB. +static bool +SinkShiftAndTruncate(BinaryOperator *ShiftI, Instruction *User, ConstantInt *CI, +                     DenseMap<BasicBlock *, BinaryOperator *> &InsertedShifts, +                     const TargetLowering &TLI, const DataLayout &DL) { +  BasicBlock *UserBB = User->getParent(); +  DenseMap<BasicBlock *, CastInst *> InsertedTruncs; +  auto *TruncI = cast<TruncInst>(User); +  bool MadeChange = false; + +  for (Value::user_iterator TruncUI = TruncI->user_begin(), +                            TruncE = TruncI->user_end(); +       TruncUI != TruncE;) { + +    Use &TruncTheUse = TruncUI.getUse(); +    Instruction *TruncUser = cast<Instruction>(*TruncUI); +    // Preincrement use iterator so we don't invalidate it. + +    ++TruncUI; + +    int ISDOpcode = TLI.InstructionOpcodeToISD(TruncUser->getOpcode()); +    if (!ISDOpcode) +      continue; + +    // If the use is actually a legal node, there will not be an +    // implicit truncate. +    // FIXME: always querying the result type is just an +    // approximation; some nodes' legality is determined by the +    // operand or other means. There's no good way to find out though. +    if (TLI.isOperationLegalOrCustom( +            ISDOpcode, TLI.getValueType(DL, TruncUser->getType(), true))) +      continue; + +    // Don't bother for PHI nodes. +    if (isa<PHINode>(TruncUser)) +      continue; + +    BasicBlock *TruncUserBB = TruncUser->getParent(); + +    if (UserBB == TruncUserBB) +      continue; + +    BinaryOperator *&InsertedShift = InsertedShifts[TruncUserBB]; +    CastInst *&InsertedTrunc = InsertedTruncs[TruncUserBB]; + +    if (!InsertedShift && !InsertedTrunc) { +      BasicBlock::iterator InsertPt = TruncUserBB->getFirstInsertionPt(); +      assert(InsertPt != TruncUserBB->end()); +      // Sink the shift +      if (ShiftI->getOpcode() == Instruction::AShr) +        InsertedShift = +            BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, ""); +      else +        InsertedShift = +            BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, ""); +      InsertedShift->setDebugLoc(ShiftI->getDebugLoc()); +      InsertedShift->insertBefore(*TruncUserBB, InsertPt); + +      // Sink the trunc +      BasicBlock::iterator TruncInsertPt = TruncUserBB->getFirstInsertionPt(); +      TruncInsertPt++; +      // It will go ahead of any debug-info. +      TruncInsertPt.setHeadBit(true); +      assert(TruncInsertPt != TruncUserBB->end()); + +      InsertedTrunc = CastInst::Create(TruncI->getOpcode(), InsertedShift, +                                       TruncI->getType(), ""); +      InsertedTrunc->insertBefore(*TruncUserBB, TruncInsertPt); +      InsertedTrunc->setDebugLoc(TruncI->getDebugLoc()); + +      MadeChange = true; + +      TruncTheUse = InsertedTrunc; +    } +  } +  return MadeChange; +} + +/// Sink the shift *right* instruction into user blocks if the uses could +/// potentially be combined with this shift instruction and generate BitExtract +/// instruction. It will only be applied if the architecture supports BitExtract +/// instruction. Here is an example: +/// BB1: +///   %x.extract.shift = lshr i64 %arg1, 32 +/// BB2: +///   %x.extract.trunc = trunc i64 %x.extract.shift to i16 +/// ==> +/// +/// BB2: +///   %x.extract.shift.1 = lshr i64 %arg1, 32 +///   %x.extract.trunc = trunc i64 %x.extract.shift.1 to i16 +/// +/// CodeGen will recognize the pattern in BB2 and generate BitExtract +/// instruction. +/// Return true if any changes are made. +static bool OptimizeExtractBits(BinaryOperator *ShiftI, ConstantInt *CI, +                                const TargetLowering &TLI, +                                const DataLayout &DL) { +  BasicBlock *DefBB = ShiftI->getParent(); + +  /// Only insert instructions in each block once. +  DenseMap<BasicBlock *, BinaryOperator *> InsertedShifts; + +  bool shiftIsLegal = TLI.isTypeLegal(TLI.getValueType(DL, ShiftI->getType())); + +  bool MadeChange = false; +  for (Value::user_iterator UI = ShiftI->user_begin(), E = ShiftI->user_end(); +       UI != E;) { +    Use &TheUse = UI.getUse(); +    Instruction *User = cast<Instruction>(*UI); +    // Preincrement use iterator so we don't invalidate it. +    ++UI; + +    // Don't bother for PHI nodes. +    if (isa<PHINode>(User)) +      continue; + +    if (!isExtractBitsCandidateUse(User)) +      continue; + +    BasicBlock *UserBB = User->getParent(); + +    if (UserBB == DefBB) { +      // If the shift and truncate instruction are in the same BB. The use of +      // the truncate(TruncUse) may still introduce another truncate if not +      // legal. In this case, we would like to sink both shift and truncate +      // instruction to the BB of TruncUse. +      // for example: +      // BB1: +      // i64 shift.result = lshr i64 opnd, imm +      // trunc.result = trunc shift.result to i16 +      // +      // BB2: +      //   ----> We will have an implicit truncate here if the architecture does +      //   not have i16 compare. +      // cmp i16 trunc.result, opnd2 +      // +      if (isa<TruncInst>(User) && +          shiftIsLegal +          // If the type of the truncate is legal, no truncate will be +          // introduced in other basic blocks. +          && (!TLI.isTypeLegal(TLI.getValueType(DL, User->getType())))) +        MadeChange = +            SinkShiftAndTruncate(ShiftI, User, CI, InsertedShifts, TLI, DL); + +      continue; +    } +    // If we have already inserted a shift into this block, use it. +    BinaryOperator *&InsertedShift = InsertedShifts[UserBB]; + +    if (!InsertedShift) { +      BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); +      assert(InsertPt != UserBB->end()); + +      if (ShiftI->getOpcode() == Instruction::AShr) +        InsertedShift = +            BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, ""); +      else +        InsertedShift = +            BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, ""); +      InsertedShift->insertBefore(*UserBB, InsertPt); +      InsertedShift->setDebugLoc(ShiftI->getDebugLoc()); + +      MadeChange = true; +    } + +    // Replace a use of the shift with a use of the new shift. +    TheUse = InsertedShift; +  } + +  // If we removed all uses, or there are none, nuke the shift. +  if (ShiftI->use_empty()) { +    salvageDebugInfo(*ShiftI); +    ShiftI->eraseFromParent(); +    MadeChange = true; +  } + +  return MadeChange; +} + +/// If counting leading or trailing zeros is an expensive operation and a zero +/// input is defined, add a check for zero to avoid calling the intrinsic. +/// +/// We want to transform: +///     %z = call i64 @llvm.cttz.i64(i64 %A, i1 false) +/// +/// into: +///   entry: +///     %cmpz = icmp eq i64 %A, 0 +///     br i1 %cmpz, label %cond.end, label %cond.false +///   cond.false: +///     %z = call i64 @llvm.cttz.i64(i64 %A, i1 true) +///     br label %cond.end +///   cond.end: +///     %ctz = phi i64 [ 64, %entry ], [ %z, %cond.false ] +/// +/// If the transform is performed, return true and set ModifiedDT to true. +static bool despeculateCountZeros(IntrinsicInst *CountZeros, +                                  LoopInfo &LI, +                                  const TargetLowering *TLI, +                                  const DataLayout *DL, ModifyDT &ModifiedDT, +                                  SmallSet<BasicBlock *, 32> &FreshBBs, +                                  bool IsHugeFunc) { +  // If a zero input is undefined, it doesn't make sense to despeculate that. +  if (match(CountZeros->getOperand(1), m_One())) +    return false; + +  // If it's cheap to speculate, there's nothing to do. +  Type *Ty = CountZeros->getType(); +  auto IntrinsicID = CountZeros->getIntrinsicID(); +  if ((IntrinsicID == Intrinsic::cttz && TLI->isCheapToSpeculateCttz(Ty)) || +      (IntrinsicID == Intrinsic::ctlz && TLI->isCheapToSpeculateCtlz(Ty))) +    return false; + +  // Only handle legal scalar cases. Anything else requires too much work. +  unsigned SizeInBits = Ty->getScalarSizeInBits(); +  if (Ty->isVectorTy() || SizeInBits > DL->getLargestLegalIntTypeSizeInBits()) +    return false; + +  // Bail if the value is never zero. +  Use &Op = CountZeros->getOperandUse(0); +  if (isKnownNonZero(Op, *DL)) +    return false; + +  // The intrinsic will be sunk behind a compare against zero and branch. +  BasicBlock *StartBlock = CountZeros->getParent(); +  BasicBlock *CallBlock = StartBlock->splitBasicBlock(CountZeros, "cond.false"); +  if (IsHugeFunc) +    FreshBBs.insert(CallBlock); + +  // Create another block after the count zero intrinsic. A PHI will be added +  // in this block to select the result of the intrinsic or the bit-width +  // constant if the input to the intrinsic is zero. +  BasicBlock::iterator SplitPt = std::next(BasicBlock::iterator(CountZeros)); +  // Any debug-info after CountZeros should not be included. +  SplitPt.setHeadBit(true); +  BasicBlock *EndBlock = CallBlock->splitBasicBlock(SplitPt, "cond.end"); +  if (IsHugeFunc) +    FreshBBs.insert(EndBlock); + +  // Update the LoopInfo. The new blocks are in the same loop as the start +  // block. +  if (Loop *L = LI.getLoopFor(StartBlock)) { +    L->addBasicBlockToLoop(CallBlock, LI); +    L->addBasicBlockToLoop(EndBlock, LI); +  } + +  // Set up a builder to create a compare, conditional branch, and PHI. +  IRBuilder<> Builder(CountZeros->getContext()); +  Builder.SetInsertPoint(StartBlock->getTerminator()); +  Builder.SetCurrentDebugLocation(CountZeros->getDebugLoc()); + +  // Replace the unconditional branch that was created by the first split with +  // a compare against zero and a conditional branch. +  Value *Zero = Constant::getNullValue(Ty); +  // Avoid introducing branch on poison. This also replaces the ctz operand. +  if (!isGuaranteedNotToBeUndefOrPoison(Op)) +    Op = Builder.CreateFreeze(Op, Op->getName() + ".fr"); +  Value *Cmp = Builder.CreateICmpEQ(Op, Zero, "cmpz"); +  Builder.CreateCondBr(Cmp, EndBlock, CallBlock); +  StartBlock->getTerminator()->eraseFromParent(); + +  // Create a PHI in the end block to select either the output of the intrinsic +  // or the bit width of the operand. +  Builder.SetInsertPoint(EndBlock, EndBlock->begin()); +  PHINode *PN = Builder.CreatePHI(Ty, 2, "ctz"); +  replaceAllUsesWith(CountZeros, PN, FreshBBs, IsHugeFunc); +  Value *BitWidth = Builder.getInt(APInt(SizeInBits, SizeInBits)); +  PN->addIncoming(BitWidth, StartBlock); +  PN->addIncoming(CountZeros, CallBlock); + +  // We are explicitly handling the zero case, so we can set the intrinsic's +  // undefined zero argument to 'true'. This will also prevent reprocessing the +  // intrinsic; we only despeculate when a zero input is defined. +  CountZeros->setArgOperand(1, Builder.getTrue()); +  ModifiedDT = ModifyDT::ModifyBBDT; +  return true; +} + +bool CodeGenPrepare::optimizeCallInst(CallInst *CI, ModifyDT &ModifiedDT) { +  BasicBlock *BB = CI->getParent(); + +  // Lower inline assembly if we can. +  // If we found an inline asm expession, and if the target knows how to +  // lower it to normal LLVM code, do so now. +  if (CI->isInlineAsm()) { +    if (TLI->ExpandInlineAsm(CI)) { +      // Avoid invalidating the iterator. +      CurInstIterator = BB->begin(); +      // Avoid processing instructions out of order, which could cause +      // reuse before a value is defined. +      SunkAddrs.clear(); +      return true; +    } +    // Sink address computing for memory operands into the block. +    if (optimizeInlineAsmInst(CI)) +      return true; +  } + +  // Align the pointer arguments to this call if the target thinks it's a good +  // idea +  unsigned MinSize; +  Align PrefAlign; +  if (TLI->shouldAlignPointerArgs(CI, MinSize, PrefAlign)) { +    for (auto &Arg : CI->args()) { +      // We want to align both objects whose address is used directly and +      // objects whose address is used in casts and GEPs, though it only makes +      // sense for GEPs if the offset is a multiple of the desired alignment and +      // if size - offset meets the size threshold. +      if (!Arg->getType()->isPointerTy()) +        continue; +      APInt Offset(DL->getIndexSizeInBits( +                       cast<PointerType>(Arg->getType())->getAddressSpace()), +                   0); +      Value *Val = Arg->stripAndAccumulateInBoundsConstantOffsets(*DL, Offset); +      uint64_t Offset2 = Offset.getLimitedValue(); +      if (!isAligned(PrefAlign, Offset2)) +        continue; +      AllocaInst *AI; +      if ((AI = dyn_cast<AllocaInst>(Val)) && AI->getAlign() < PrefAlign && +          DL->getTypeAllocSize(AI->getAllocatedType()) >= MinSize + Offset2) +        AI->setAlignment(PrefAlign); +      // Global variables can only be aligned if they are defined in this +      // object (i.e. they are uniquely initialized in this object), and +      // over-aligning global variables that have an explicit section is +      // forbidden. +      GlobalVariable *GV; +      if ((GV = dyn_cast<GlobalVariable>(Val)) && GV->canIncreaseAlignment() && +          GV->getPointerAlignment(*DL) < PrefAlign && +          DL->getTypeAllocSize(GV->getValueType()) >= MinSize + Offset2) +        GV->setAlignment(PrefAlign); +    } +  } +  // If this is a memcpy (or similar) then we may be able to improve the +  // alignment. +  if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(CI)) { +    Align DestAlign = getKnownAlignment(MI->getDest(), *DL); +    MaybeAlign MIDestAlign = MI->getDestAlign(); +    if (!MIDestAlign || DestAlign > *MIDestAlign) +      MI->setDestAlignment(DestAlign); +    if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) { +      MaybeAlign MTISrcAlign = MTI->getSourceAlign(); +      Align SrcAlign = getKnownAlignment(MTI->getSource(), *DL); +      if (!MTISrcAlign || SrcAlign > *MTISrcAlign) +        MTI->setSourceAlignment(SrcAlign); +    } +  } + +  // If we have a cold call site, try to sink addressing computation into the +  // cold block.  This interacts with our handling for loads and stores to +  // ensure that we can fold all uses of a potential addressing computation +  // into their uses.  TODO: generalize this to work over profiling data +  if (CI->hasFnAttr(Attribute::Cold) && !OptSize && +      !llvm::shouldOptimizeForSize(BB, PSI, BFI.get())) +    for (auto &Arg : CI->args()) { +      if (!Arg->getType()->isPointerTy()) +        continue; +      unsigned AS = Arg->getType()->getPointerAddressSpace(); +      if (optimizeMemoryInst(CI, Arg, Arg->getType(), AS)) +        return true; +    } + +  IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI); +  if (II) { +    switch (II->getIntrinsicID()) { +    default: +      break; +    case Intrinsic::assume: +      llvm_unreachable("llvm.assume should have been removed already"); +    case Intrinsic::allow_runtime_check: +    case Intrinsic::allow_ubsan_check: +    case Intrinsic::experimental_widenable_condition: { +      // Give up on future widening opportunities so that we can fold away dead +      // paths and merge blocks before going into block-local instruction +      // selection. +      if (II->use_empty()) { +        II->eraseFromParent(); +        return true; +      } +      Constant *RetVal = ConstantInt::getTrue(II->getContext()); +      resetIteratorIfInvalidatedWhileCalling(BB, [&]() { +        replaceAndRecursivelySimplify(CI, RetVal, TLInfo, nullptr); +      }); +      return true; +    } +    case Intrinsic::objectsize: +      llvm_unreachable("llvm.objectsize.* should have been lowered already"); +    case Intrinsic::is_constant: +      llvm_unreachable("llvm.is.constant.* should have been lowered already"); +    case Intrinsic::aarch64_stlxr: +    case Intrinsic::aarch64_stxr: { +      ZExtInst *ExtVal = dyn_cast<ZExtInst>(CI->getArgOperand(0)); +      if (!ExtVal || !ExtVal->hasOneUse() || +          ExtVal->getParent() == CI->getParent()) +        return false; +      // Sink a zext feeding stlxr/stxr before it, so it can be folded into it. +      ExtVal->moveBefore(CI); +      // Mark this instruction as "inserted by CGP", so that other +      // optimizations don't touch it. +      InsertedInsts.insert(ExtVal); +      return true; +    } + +    case Intrinsic::launder_invariant_group: +    case Intrinsic::strip_invariant_group: { +      Value *ArgVal = II->getArgOperand(0); +      auto it = LargeOffsetGEPMap.find(II); +      if (it != LargeOffsetGEPMap.end()) { +        // Merge entries in LargeOffsetGEPMap to reflect the RAUW. +        // Make sure not to have to deal with iterator invalidation +        // after possibly adding ArgVal to LargeOffsetGEPMap. +        auto GEPs = std::move(it->second); +        LargeOffsetGEPMap[ArgVal].append(GEPs.begin(), GEPs.end()); +        LargeOffsetGEPMap.erase(II); +      } + +      replaceAllUsesWith(II, ArgVal, FreshBBs, IsHugeFunc); +      II->eraseFromParent(); +      return true; +    } +    case Intrinsic::cttz: +    case Intrinsic::ctlz: +      // If counting zeros is expensive, try to avoid it. +      return despeculateCountZeros(II, *LI, TLI, DL, ModifiedDT, FreshBBs, +                                   IsHugeFunc); +    case Intrinsic::fshl: +    case Intrinsic::fshr: +      return optimizeFunnelShift(II); +    case Intrinsic::dbg_assign: +    case Intrinsic::dbg_value: +      return fixupDbgValue(II); +    case Intrinsic::masked_gather: +      return optimizeGatherScatterInst(II, II->getArgOperand(0)); +    case Intrinsic::masked_scatter: +      return optimizeGatherScatterInst(II, II->getArgOperand(1)); +    } + +    SmallVector<Value *, 2> PtrOps; +    Type *AccessTy; +    if (TLI->getAddrModeArguments(II, PtrOps, AccessTy)) +      while (!PtrOps.empty()) { +        Value *PtrVal = PtrOps.pop_back_val(); +        unsigned AS = PtrVal->getType()->getPointerAddressSpace(); +        if (optimizeMemoryInst(II, PtrVal, AccessTy, AS)) +          return true; +      } +  } + +  // From here on out we're working with named functions. +  if (!CI->getCalledFunction()) +    return false; + +  // Lower all default uses of _chk calls.  This is very similar +  // to what InstCombineCalls does, but here we are only lowering calls +  // to fortified library functions (e.g. __memcpy_chk) that have the default +  // "don't know" as the objectsize.  Anything else should be left alone. +  FortifiedLibCallSimplifier Simplifier(TLInfo, true); +  IRBuilder<> Builder(CI); +  if (Value *V = Simplifier.optimizeCall(CI, Builder)) { +    replaceAllUsesWith(CI, V, FreshBBs, IsHugeFunc); +    CI->eraseFromParent(); +    return true; +  } + +  return false; +} + +static bool isIntrinsicOrLFToBeTailCalled(const TargetLibraryInfo *TLInfo, +                                          const CallInst *CI) { +  assert(CI && CI->use_empty()); + +  if (const auto *II = dyn_cast<IntrinsicInst>(CI)) +    switch (II->getIntrinsicID()) { +    case Intrinsic::memset: +    case Intrinsic::memcpy: +    case Intrinsic::memmove: +      return true; +    default: +      return false; +    } + +  LibFunc LF; +  Function *Callee = CI->getCalledFunction(); +  if (Callee && TLInfo && TLInfo->getLibFunc(*Callee, LF)) +    switch (LF) { +    case LibFunc_strcpy: +    case LibFunc_strncpy: +    case LibFunc_strcat: +    case LibFunc_strncat: +      return true; +    default: +      return false; +    } + +  return false; +} + +/// Look for opportunities to duplicate return instructions to the predecessor +/// to enable tail call optimizations. The case it is currently looking for is +/// the following one. Known intrinsics or library function that may be tail +/// called are taken into account as well. +/// @code +/// bb0: +///   %tmp0 = tail call i32 @f0() +///   br label %return +/// bb1: +///   %tmp1 = tail call i32 @f1() +///   br label %return +/// bb2: +///   %tmp2 = tail call i32 @f2() +///   br label %return +/// return: +///   %retval = phi i32 [ %tmp0, %bb0 ], [ %tmp1, %bb1 ], [ %tmp2, %bb2 ] +///   ret i32 %retval +/// @endcode +/// +/// => +/// +/// @code +/// bb0: +///   %tmp0 = tail call i32 @f0() +///   ret i32 %tmp0 +/// bb1: +///   %tmp1 = tail call i32 @f1() +///   ret i32 %tmp1 +/// bb2: +///   %tmp2 = tail call i32 @f2() +///   ret i32 %tmp2 +/// @endcode +bool CodeGenPrepare::dupRetToEnableTailCallOpts(BasicBlock *BB, +                                                ModifyDT &ModifiedDT) { +  if (!BB->getTerminator()) +    return false; + +  ReturnInst *RetI = dyn_cast<ReturnInst>(BB->getTerminator()); +  if (!RetI) +    return false; + +  assert(LI->getLoopFor(BB) == nullptr && "A return block cannot be in a loop"); + +  PHINode *PN = nullptr; +  ExtractValueInst *EVI = nullptr; +  BitCastInst *BCI = nullptr; +  Value *V = RetI->getReturnValue(); +  if (V) { +    BCI = dyn_cast<BitCastInst>(V); +    if (BCI) +      V = BCI->getOperand(0); + +    EVI = dyn_cast<ExtractValueInst>(V); +    if (EVI) { +      V = EVI->getOperand(0); +      if (!llvm::all_of(EVI->indices(), [](unsigned idx) { return idx == 0; })) +        return false; +    } + +    PN = dyn_cast<PHINode>(V); +  } + +  if (PN && PN->getParent() != BB) +    return false; + +  auto isLifetimeEndOrBitCastFor = [](const Instruction *Inst) { +    const BitCastInst *BC = dyn_cast<BitCastInst>(Inst); +    if (BC && BC->hasOneUse()) +      Inst = BC->user_back(); + +    if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) +      return II->getIntrinsicID() == Intrinsic::lifetime_end; +    return false; +  }; + +  // Make sure there are no instructions between the first instruction +  // and return. +  const Instruction *BI = BB->getFirstNonPHI(); +  // Skip over debug and the bitcast. +  while (isa<DbgInfoIntrinsic>(BI) || BI == BCI || BI == EVI || +         isa<PseudoProbeInst>(BI) || isLifetimeEndOrBitCastFor(BI)) +    BI = BI->getNextNode(); +  if (BI != RetI) +    return false; + +  /// Only dup the ReturnInst if the CallInst is likely to be emitted as a tail +  /// call. +  const Function *F = BB->getParent(); +  SmallVector<BasicBlock *, 4> TailCallBBs; +  if (PN) { +    for (unsigned I = 0, E = PN->getNumIncomingValues(); I != E; ++I) { +      // Look through bitcasts. +      Value *IncomingVal = PN->getIncomingValue(I)->stripPointerCasts(); +      CallInst *CI = dyn_cast<CallInst>(IncomingVal); +      BasicBlock *PredBB = PN->getIncomingBlock(I); +      // Make sure the phi value is indeed produced by the tail call. +      if (CI && CI->hasOneUse() && CI->getParent() == PredBB && +          TLI->mayBeEmittedAsTailCall(CI) && +          attributesPermitTailCall(F, CI, RetI, *TLI)) { +        TailCallBBs.push_back(PredBB); +      } else { +        // Consider the cases in which the phi value is indirectly produced by +        // the tail call, for example when encountering memset(), memmove(), +        // strcpy(), whose return value may have been optimized out. In such +        // cases, the value needs to be the first function argument. +        // +        // bb0: +        //   tail call void @llvm.memset.p0.i64(ptr %0, i8 0, i64 %1) +        //   br label %return +        // return: +        //   %phi = phi ptr [ %0, %bb0 ], [ %2, %entry ] +        if (PredBB && PredBB->getSingleSuccessor() == BB) +          CI = dyn_cast_or_null<CallInst>( +              PredBB->getTerminator()->getPrevNonDebugInstruction(true)); + +        if (CI && CI->use_empty() && +            isIntrinsicOrLFToBeTailCalled(TLInfo, CI) && +            IncomingVal == CI->getArgOperand(0) && +            TLI->mayBeEmittedAsTailCall(CI) && +            attributesPermitTailCall(F, CI, RetI, *TLI)) +          TailCallBBs.push_back(PredBB); +      } +    } +  } else { +    SmallPtrSet<BasicBlock *, 4> VisitedBBs; +    for (BasicBlock *Pred : predecessors(BB)) { +      if (!VisitedBBs.insert(Pred).second) +        continue; +      if (Instruction *I = Pred->rbegin()->getPrevNonDebugInstruction(true)) { +        CallInst *CI = dyn_cast<CallInst>(I); +        if (CI && CI->use_empty() && TLI->mayBeEmittedAsTailCall(CI) && +            attributesPermitTailCall(F, CI, RetI, *TLI)) { +          // Either we return void or the return value must be the first +          // argument of a known intrinsic or library function. +          if (!V || isa<UndefValue>(V) || +              (isIntrinsicOrLFToBeTailCalled(TLInfo, CI) && +               V == CI->getArgOperand(0))) { +            TailCallBBs.push_back(Pred); +          } +        } +      } +    } +  } + +  bool Changed = false; +  for (auto const &TailCallBB : TailCallBBs) { +    // Make sure the call instruction is followed by an unconditional branch to +    // the return block. +    BranchInst *BI = dyn_cast<BranchInst>(TailCallBB->getTerminator()); +    if (!BI || !BI->isUnconditional() || BI->getSuccessor(0) != BB) +      continue; + +    // Duplicate the return into TailCallBB. +    (void)FoldReturnIntoUncondBranch(RetI, BB, TailCallBB); +    assert(!VerifyBFIUpdates || +           BFI->getBlockFreq(BB) >= BFI->getBlockFreq(TailCallBB)); +    BFI->setBlockFreq(BB, +                      (BFI->getBlockFreq(BB) - BFI->getBlockFreq(TailCallBB))); +    ModifiedDT = ModifyDT::ModifyBBDT; +    Changed = true; +    ++NumRetsDup; +  } + +  // If we eliminated all predecessors of the block, delete the block now. +  if (Changed && !BB->hasAddressTaken() && pred_empty(BB)) +    BB->eraseFromParent(); + +  return Changed; +} + +//===----------------------------------------------------------------------===// +// Memory Optimization +//===----------------------------------------------------------------------===// + +namespace { + +/// This is an extended version of TargetLowering::AddrMode +/// which holds actual Value*'s for register values. +struct ExtAddrMode : public TargetLowering::AddrMode { +  Value *BaseReg = nullptr; +  Value *ScaledReg = nullptr; +  Value *OriginalValue = nullptr; +  bool InBounds = true; + +  enum FieldName { +    NoField = 0x00, +    BaseRegField = 0x01, +    BaseGVField = 0x02, +    BaseOffsField = 0x04, +    ScaledRegField = 0x08, +    ScaleField = 0x10, +    MultipleFields = 0xff +  }; + +  ExtAddrMode() = default; + +  void print(raw_ostream &OS) const; +  void dump() const; + +  FieldName compare(const ExtAddrMode &other) { +    // First check that the types are the same on each field, as differing types +    // is something we can't cope with later on. +    if (BaseReg && other.BaseReg && +        BaseReg->getType() != other.BaseReg->getType()) +      return MultipleFields; +    if (BaseGV && other.BaseGV && BaseGV->getType() != other.BaseGV->getType()) +      return MultipleFields; +    if (ScaledReg && other.ScaledReg && +        ScaledReg->getType() != other.ScaledReg->getType()) +      return MultipleFields; + +    // Conservatively reject 'inbounds' mismatches. +    if (InBounds != other.InBounds) +      return MultipleFields; + +    // Check each field to see if it differs. +    unsigned Result = NoField; +    if (BaseReg != other.BaseReg) +      Result |= BaseRegField; +    if (BaseGV != other.BaseGV) +      Result |= BaseGVField; +    if (BaseOffs != other.BaseOffs) +      Result |= BaseOffsField; +    if (ScaledReg != other.ScaledReg) +      Result |= ScaledRegField; +    // Don't count 0 as being a different scale, because that actually means +    // unscaled (which will already be counted by having no ScaledReg). +    if (Scale && other.Scale && Scale != other.Scale) +      Result |= ScaleField; + +    if (llvm::popcount(Result) > 1) +      return MultipleFields; +    else +      return static_cast<FieldName>(Result); +  } + +  // An AddrMode is trivial if it involves no calculation i.e. it is just a base +  // with no offset. +  bool isTrivial() { +    // An AddrMode is (BaseGV + BaseReg + BaseOffs + ScaleReg * Scale) so it is +    // trivial if at most one of these terms is nonzero, except that BaseGV and +    // BaseReg both being zero actually means a null pointer value, which we +    // consider to be 'non-zero' here. +    return !BaseOffs && !Scale && !(BaseGV && BaseReg); +  } + +  Value *GetFieldAsValue(FieldName Field, Type *IntPtrTy) { +    switch (Field) { +    default: +      return nullptr; +    case BaseRegField: +      return BaseReg; +    case BaseGVField: +      return BaseGV; +    case ScaledRegField: +      return ScaledReg; +    case BaseOffsField: +      return ConstantInt::get(IntPtrTy, BaseOffs); +    } +  } + +  void SetCombinedField(FieldName Field, Value *V, +                        const SmallVectorImpl<ExtAddrMode> &AddrModes) { +    switch (Field) { +    default: +      llvm_unreachable("Unhandled fields are expected to be rejected earlier"); +      break; +    case ExtAddrMode::BaseRegField: +      BaseReg = V; +      break; +    case ExtAddrMode::BaseGVField: +      // A combined BaseGV is an Instruction, not a GlobalValue, so it goes +      // in the BaseReg field. +      assert(BaseReg == nullptr); +      BaseReg = V; +      BaseGV = nullptr; +      break; +    case ExtAddrMode::ScaledRegField: +      ScaledReg = V; +      // If we have a mix of scaled and unscaled addrmodes then we want scale +      // to be the scale and not zero. +      if (!Scale) +        for (const ExtAddrMode &AM : AddrModes) +          if (AM.Scale) { +            Scale = AM.Scale; +            break; +          } +      break; +    case ExtAddrMode::BaseOffsField: +      // The offset is no longer a constant, so it goes in ScaledReg with a +      // scale of 1. +      assert(ScaledReg == nullptr); +      ScaledReg = V; +      Scale = 1; +      BaseOffs = 0; +      break; +    } +  } +}; + +#ifndef NDEBUG +static inline raw_ostream &operator<<(raw_ostream &OS, const ExtAddrMode &AM) { +  AM.print(OS); +  return OS; +} +#endif + +#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) +void ExtAddrMode::print(raw_ostream &OS) const { +  bool NeedPlus = false; +  OS << "["; +  if (InBounds) +    OS << "inbounds "; +  if (BaseGV) { +    OS << "GV:"; +    BaseGV->printAsOperand(OS, /*PrintType=*/false); +    NeedPlus = true; +  } + +  if (BaseOffs) { +    OS << (NeedPlus ? " + " : "") << BaseOffs; +    NeedPlus = true; +  } + +  if (BaseReg) { +    OS << (NeedPlus ? " + " : "") << "Base:"; +    BaseReg->printAsOperand(OS, /*PrintType=*/false); +    NeedPlus = true; +  } +  if (Scale) { +    OS << (NeedPlus ? " + " : "") << Scale << "*"; +    ScaledReg->printAsOperand(OS, /*PrintType=*/false); +  } + +  OS << ']'; +} + +LLVM_DUMP_METHOD void ExtAddrMode::dump() const { +  print(dbgs()); +  dbgs() << '\n'; +} +#endif + +} // end anonymous namespace + +namespace { + +/// This class provides transaction based operation on the IR. +/// Every change made through this class is recorded in the internal state and +/// can be undone (rollback) until commit is called. +/// CGP does not check if instructions could be speculatively executed when +/// moved. Preserving the original location would pessimize the debugging +/// experience, as well as negatively impact the quality of sample PGO. +class TypePromotionTransaction { +  /// This represents the common interface of the individual transaction. +  /// Each class implements the logic for doing one specific modification on +  /// the IR via the TypePromotionTransaction. +  class TypePromotionAction { +  protected: +    /// The Instruction modified. +    Instruction *Inst; + +  public: +    /// Constructor of the action. +    /// The constructor performs the related action on the IR. +    TypePromotionAction(Instruction *Inst) : Inst(Inst) {} + +    virtual ~TypePromotionAction() = default; + +    /// Undo the modification done by this action. +    /// When this method is called, the IR must be in the same state as it was +    /// before this action was applied. +    /// \pre Undoing the action works if and only if the IR is in the exact same +    /// state as it was directly after this action was applied. +    virtual void undo() = 0; + +    /// Advocate every change made by this action. +    /// When the results on the IR of the action are to be kept, it is important +    /// to call this function, otherwise hidden information may be kept forever. +    virtual void commit() { +      // Nothing to be done, this action is not doing anything. +    } +  }; + +  /// Utility to remember the position of an instruction. +  class InsertionHandler { +    /// Position of an instruction. +    /// Either an instruction: +    /// - Is the first in a basic block: BB is used. +    /// - Has a previous instruction: PrevInst is used. +    union { +      Instruction *PrevInst; +      BasicBlock *BB; +    } Point; +    std::optional<DbgRecord::self_iterator> BeforeDbgRecord = std::nullopt; + +    /// Remember whether or not the instruction had a previous instruction. +    bool HasPrevInstruction; + +  public: +    /// Record the position of \p Inst. +    InsertionHandler(Instruction *Inst) { +      HasPrevInstruction = (Inst != &*(Inst->getParent()->begin())); +      BasicBlock *BB = Inst->getParent(); + +      // Record where we would have to re-insert the instruction in the sequence +      // of DbgRecords, if we ended up reinserting. +      if (BB->IsNewDbgInfoFormat) +        BeforeDbgRecord = Inst->getDbgReinsertionPosition(); + +      if (HasPrevInstruction) { +        Point.PrevInst = &*std::prev(Inst->getIterator()); +      } else { +        Point.BB = BB; +      } +    } + +    /// Insert \p Inst at the recorded position. +    void insert(Instruction *Inst) { +      if (HasPrevInstruction) { +        if (Inst->getParent()) +          Inst->removeFromParent(); +        Inst->insertAfter(&*Point.PrevInst); +      } else { +        BasicBlock::iterator Position = Point.BB->getFirstInsertionPt(); +        if (Inst->getParent()) +          Inst->moveBefore(*Point.BB, Position); +        else +          Inst->insertBefore(*Point.BB, Position); +      } + +      Inst->getParent()->reinsertInstInDbgRecords(Inst, BeforeDbgRecord); +    } +  }; + +  /// Move an instruction before another. +  class InstructionMoveBefore : public TypePromotionAction { +    /// Original position of the instruction. +    InsertionHandler Position; + +  public: +    /// Move \p Inst before \p Before. +    InstructionMoveBefore(Instruction *Inst, Instruction *Before) +        : TypePromotionAction(Inst), Position(Inst) { +      LLVM_DEBUG(dbgs() << "Do: move: " << *Inst << "\nbefore: " << *Before +                        << "\n"); +      Inst->moveBefore(Before); +    } + +    /// Move the instruction back to its original position. +    void undo() override { +      LLVM_DEBUG(dbgs() << "Undo: moveBefore: " << *Inst << "\n"); +      Position.insert(Inst); +    } +  }; + +  /// Set the operand of an instruction with a new value. +  class OperandSetter : public TypePromotionAction { +    /// Original operand of the instruction. +    Value *Origin; + +    /// Index of the modified instruction. +    unsigned Idx; + +  public: +    /// Set \p Idx operand of \p Inst with \p NewVal. +    OperandSetter(Instruction *Inst, unsigned Idx, Value *NewVal) +        : TypePromotionAction(Inst), Idx(Idx) { +      LLVM_DEBUG(dbgs() << "Do: setOperand: " << Idx << "\n" +                        << "for:" << *Inst << "\n" +                        << "with:" << *NewVal << "\n"); +      Origin = Inst->getOperand(Idx); +      Inst->setOperand(Idx, NewVal); +    } + +    /// Restore the original value of the instruction. +    void undo() override { +      LLVM_DEBUG(dbgs() << "Undo: setOperand:" << Idx << "\n" +                        << "for: " << *Inst << "\n" +                        << "with: " << *Origin << "\n"); +      Inst->setOperand(Idx, Origin); +    } +  }; + +  /// Hide the operands of an instruction. +  /// Do as if this instruction was not using any of its operands. +  class OperandsHider : public TypePromotionAction { +    /// The list of original operands. +    SmallVector<Value *, 4> OriginalValues; + +  public: +    /// Remove \p Inst from the uses of the operands of \p Inst. +    OperandsHider(Instruction *Inst) : TypePromotionAction(Inst) { +      LLVM_DEBUG(dbgs() << "Do: OperandsHider: " << *Inst << "\n"); +      unsigned NumOpnds = Inst->getNumOperands(); +      OriginalValues.reserve(NumOpnds); +      for (unsigned It = 0; It < NumOpnds; ++It) { +        // Save the current operand. +        Value *Val = Inst->getOperand(It); +        OriginalValues.push_back(Val); +        // Set a dummy one. +        // We could use OperandSetter here, but that would imply an overhead +        // that we are not willing to pay. +        Inst->setOperand(It, UndefValue::get(Val->getType())); +      } +    } + +    /// Restore the original list of uses. +    void undo() override { +      LLVM_DEBUG(dbgs() << "Undo: OperandsHider: " << *Inst << "\n"); +      for (unsigned It = 0, EndIt = OriginalValues.size(); It != EndIt; ++It) +        Inst->setOperand(It, OriginalValues[It]); +    } +  }; + +  /// Build a truncate instruction. +  class TruncBuilder : public TypePromotionAction { +    Value *Val; + +  public: +    /// Build a truncate instruction of \p Opnd producing a \p Ty +    /// result. +    /// trunc Opnd to Ty. +    TruncBuilder(Instruction *Opnd, Type *Ty) : TypePromotionAction(Opnd) { +      IRBuilder<> Builder(Opnd); +      Builder.SetCurrentDebugLocation(DebugLoc()); +      Val = Builder.CreateTrunc(Opnd, Ty, "promoted"); +      LLVM_DEBUG(dbgs() << "Do: TruncBuilder: " << *Val << "\n"); +    } + +    /// Get the built value. +    Value *getBuiltValue() { return Val; } + +    /// Remove the built instruction. +    void undo() override { +      LLVM_DEBUG(dbgs() << "Undo: TruncBuilder: " << *Val << "\n"); +      if (Instruction *IVal = dyn_cast<Instruction>(Val)) +        IVal->eraseFromParent(); +    } +  }; + +  /// Build a sign extension instruction. +  class SExtBuilder : public TypePromotionAction { +    Value *Val; + +  public: +    /// Build a sign extension instruction of \p Opnd producing a \p Ty +    /// result. +    /// sext Opnd to Ty. +    SExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) +        : TypePromotionAction(InsertPt) { +      IRBuilder<> Builder(InsertPt); +      Val = Builder.CreateSExt(Opnd, Ty, "promoted"); +      LLVM_DEBUG(dbgs() << "Do: SExtBuilder: " << *Val << "\n"); +    } + +    /// Get the built value. +    Value *getBuiltValue() { return Val; } + +    /// Remove the built instruction. +    void undo() override { +      LLVM_DEBUG(dbgs() << "Undo: SExtBuilder: " << *Val << "\n"); +      if (Instruction *IVal = dyn_cast<Instruction>(Val)) +        IVal->eraseFromParent(); +    } +  }; + +  /// Build a zero extension instruction. +  class ZExtBuilder : public TypePromotionAction { +    Value *Val; + +  public: +    /// Build a zero extension instruction of \p Opnd producing a \p Ty +    /// result. +    /// zext Opnd to Ty. +    ZExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) +        : TypePromotionAction(InsertPt) { +      IRBuilder<> Builder(InsertPt); +      Builder.SetCurrentDebugLocation(DebugLoc()); +      Val = Builder.CreateZExt(Opnd, Ty, "promoted"); +      LLVM_DEBUG(dbgs() << "Do: ZExtBuilder: " << *Val << "\n"); +    } + +    /// Get the built value. +    Value *getBuiltValue() { return Val; } + +    /// Remove the built instruction. +    void undo() override { +      LLVM_DEBUG(dbgs() << "Undo: ZExtBuilder: " << *Val << "\n"); +      if (Instruction *IVal = dyn_cast<Instruction>(Val)) +        IVal->eraseFromParent(); +    } +  }; + +  /// Mutate an instruction to another type. +  class TypeMutator : public TypePromotionAction { +    /// Record the original type. +    Type *OrigTy; + +  public: +    /// Mutate the type of \p Inst into \p NewTy. +    TypeMutator(Instruction *Inst, Type *NewTy) +        : TypePromotionAction(Inst), OrigTy(Inst->getType()) { +      LLVM_DEBUG(dbgs() << "Do: MutateType: " << *Inst << " with " << *NewTy +                        << "\n"); +      Inst->mutateType(NewTy); +    } + +    /// Mutate the instruction back to its original type. +    void undo() override { +      LLVM_DEBUG(dbgs() << "Undo: MutateType: " << *Inst << " with " << *OrigTy +                        << "\n"); +      Inst->mutateType(OrigTy); +    } +  }; + +  /// Replace the uses of an instruction by another instruction. +  class UsesReplacer : public TypePromotionAction { +    /// Helper structure to keep track of the replaced uses. +    struct InstructionAndIdx { +      /// The instruction using the instruction. +      Instruction *Inst; + +      /// The index where this instruction is used for Inst. +      unsigned Idx; + +      InstructionAndIdx(Instruction *Inst, unsigned Idx) +          : Inst(Inst), Idx(Idx) {} +    }; + +    /// Keep track of the original uses (pair Instruction, Index). +    SmallVector<InstructionAndIdx, 4> OriginalUses; +    /// Keep track of the debug users. +    SmallVector<DbgValueInst *, 1> DbgValues; +    /// And non-instruction debug-users too. +    SmallVector<DbgVariableRecord *, 1> DbgVariableRecords; + +    /// Keep track of the new value so that we can undo it by replacing +    /// instances of the new value with the original value. +    Value *New; + +    using use_iterator = SmallVectorImpl<InstructionAndIdx>::iterator; + +  public: +    /// Replace all the use of \p Inst by \p New. +    UsesReplacer(Instruction *Inst, Value *New) +        : TypePromotionAction(Inst), New(New) { +      LLVM_DEBUG(dbgs() << "Do: UsersReplacer: " << *Inst << " with " << *New +                        << "\n"); +      // Record the original uses. +      for (Use &U : Inst->uses()) { +        Instruction *UserI = cast<Instruction>(U.getUser()); +        OriginalUses.push_back(InstructionAndIdx(UserI, U.getOperandNo())); +      } +      // Record the debug uses separately. They are not in the instruction's +      // use list, but they are replaced by RAUW. +      findDbgValues(DbgValues, Inst, &DbgVariableRecords); + +      // Now, we can replace the uses. +      Inst->replaceAllUsesWith(New); +    } + +    /// Reassign the original uses of Inst to Inst. +    void undo() override { +      LLVM_DEBUG(dbgs() << "Undo: UsersReplacer: " << *Inst << "\n"); +      for (InstructionAndIdx &Use : OriginalUses) +        Use.Inst->setOperand(Use.Idx, Inst); +      // RAUW has replaced all original uses with references to the new value, +      // including the debug uses. Since we are undoing the replacements, +      // the original debug uses must also be reinstated to maintain the +      // correctness and utility of debug value instructions. +      for (auto *DVI : DbgValues) +        DVI->replaceVariableLocationOp(New, Inst); +      // Similar story with DbgVariableRecords, the non-instruction +      // representation of dbg.values. +      for (DbgVariableRecord *DVR : DbgVariableRecords) +        DVR->replaceVariableLocationOp(New, Inst); +    } +  }; + +  /// Remove an instruction from the IR. +  class InstructionRemover : public TypePromotionAction { +    /// Original position of the instruction. +    InsertionHandler Inserter; + +    /// Helper structure to hide all the link to the instruction. In other +    /// words, this helps to do as if the instruction was removed. +    OperandsHider Hider; + +    /// Keep track of the uses replaced, if any. +    UsesReplacer *Replacer = nullptr; + +    /// Keep track of instructions removed. +    SetOfInstrs &RemovedInsts; + +  public: +    /// Remove all reference of \p Inst and optionally replace all its +    /// uses with New. +    /// \p RemovedInsts Keep track of the instructions removed by this Action. +    /// \pre If !Inst->use_empty(), then New != nullptr +    InstructionRemover(Instruction *Inst, SetOfInstrs &RemovedInsts, +                       Value *New = nullptr) +        : TypePromotionAction(Inst), Inserter(Inst), Hider(Inst), +          RemovedInsts(RemovedInsts) { +      if (New) +        Replacer = new UsesReplacer(Inst, New); +      LLVM_DEBUG(dbgs() << "Do: InstructionRemover: " << *Inst << "\n"); +      RemovedInsts.insert(Inst); +      /// The instructions removed here will be freed after completing +      /// optimizeBlock() for all blocks as we need to keep track of the +      /// removed instructions during promotion. +      Inst->removeFromParent(); +    } + +    ~InstructionRemover() override { delete Replacer; } + +    InstructionRemover &operator=(const InstructionRemover &other) = delete; +    InstructionRemover(const InstructionRemover &other) = delete; + +    /// Resurrect the instruction and reassign it to the proper uses if +    /// new value was provided when build this action. +    void undo() override { +      LLVM_DEBUG(dbgs() << "Undo: InstructionRemover: " << *Inst << "\n"); +      Inserter.insert(Inst); +      if (Replacer) +        Replacer->undo(); +      Hider.undo(); +      RemovedInsts.erase(Inst); +    } +  }; + +public: +  /// Restoration point. +  /// The restoration point is a pointer to an action instead of an iterator +  /// because the iterator may be invalidated but not the pointer. +  using ConstRestorationPt = const TypePromotionAction *; + +  TypePromotionTransaction(SetOfInstrs &RemovedInsts) +      : RemovedInsts(RemovedInsts) {} + +  /// Advocate every changes made in that transaction. Return true if any change +  /// happen. +  bool commit(); + +  /// Undo all the changes made after the given point. +  void rollback(ConstRestorationPt Point); + +  /// Get the current restoration point. +  ConstRestorationPt getRestorationPoint() const; + +  /// \name API for IR modification with state keeping to support rollback. +  /// @{ +  /// Same as Instruction::setOperand. +  void setOperand(Instruction *Inst, unsigned Idx, Value *NewVal); + +  /// Same as Instruction::eraseFromParent. +  void eraseInstruction(Instruction *Inst, Value *NewVal = nullptr); + +  /// Same as Value::replaceAllUsesWith. +  void replaceAllUsesWith(Instruction *Inst, Value *New); + +  /// Same as Value::mutateType. +  void mutateType(Instruction *Inst, Type *NewTy); + +  /// Same as IRBuilder::createTrunc. +  Value *createTrunc(Instruction *Opnd, Type *Ty); + +  /// Same as IRBuilder::createSExt. +  Value *createSExt(Instruction *Inst, Value *Opnd, Type *Ty); + +  /// Same as IRBuilder::createZExt. +  Value *createZExt(Instruction *Inst, Value *Opnd, Type *Ty); + +private: +  /// The ordered list of actions made so far. +  SmallVector<std::unique_ptr<TypePromotionAction>, 16> Actions; + +  using CommitPt = +      SmallVectorImpl<std::unique_ptr<TypePromotionAction>>::iterator; + +  SetOfInstrs &RemovedInsts; +}; + +} // end anonymous namespace + +void TypePromotionTransaction::setOperand(Instruction *Inst, unsigned Idx, +                                          Value *NewVal) { +  Actions.push_back(std::make_unique<TypePromotionTransaction::OperandSetter>( +      Inst, Idx, NewVal)); +} + +void TypePromotionTransaction::eraseInstruction(Instruction *Inst, +                                                Value *NewVal) { +  Actions.push_back( +      std::make_unique<TypePromotionTransaction::InstructionRemover>( +          Inst, RemovedInsts, NewVal)); +} + +void TypePromotionTransaction::replaceAllUsesWith(Instruction *Inst, +                                                  Value *New) { +  Actions.push_back( +      std::make_unique<TypePromotionTransaction::UsesReplacer>(Inst, New)); +} + +void TypePromotionTransaction::mutateType(Instruction *Inst, Type *NewTy) { +  Actions.push_back( +      std::make_unique<TypePromotionTransaction::TypeMutator>(Inst, NewTy)); +} + +Value *TypePromotionTransaction::createTrunc(Instruction *Opnd, Type *Ty) { +  std::unique_ptr<TruncBuilder> Ptr(new TruncBuilder(Opnd, Ty)); +  Value *Val = Ptr->getBuiltValue(); +  Actions.push_back(std::move(Ptr)); +  return Val; +} + +Value *TypePromotionTransaction::createSExt(Instruction *Inst, Value *Opnd, +                                            Type *Ty) { +  std::unique_ptr<SExtBuilder> Ptr(new SExtBuilder(Inst, Opnd, Ty)); +  Value *Val = Ptr->getBuiltValue(); +  Actions.push_back(std::move(Ptr)); +  return Val; +} + +Value *TypePromotionTransaction::createZExt(Instruction *Inst, Value *Opnd, +                                            Type *Ty) { +  std::unique_ptr<ZExtBuilder> Ptr(new ZExtBuilder(Inst, Opnd, Ty)); +  Value *Val = Ptr->getBuiltValue(); +  Actions.push_back(std::move(Ptr)); +  return Val; +} + +TypePromotionTransaction::ConstRestorationPt +TypePromotionTransaction::getRestorationPoint() const { +  return !Actions.empty() ? Actions.back().get() : nullptr; +} + +bool TypePromotionTransaction::commit() { +  for (std::unique_ptr<TypePromotionAction> &Action : Actions) +    Action->commit(); +  bool Modified = !Actions.empty(); +  Actions.clear(); +  return Modified; +} + +void TypePromotionTransaction::rollback( +    TypePromotionTransaction::ConstRestorationPt Point) { +  while (!Actions.empty() && Point != Actions.back().get()) { +    std::unique_ptr<TypePromotionAction> Curr = Actions.pop_back_val(); +    Curr->undo(); +  } +} + +namespace { + +/// A helper class for matching addressing modes. +/// +/// This encapsulates the logic for matching the target-legal addressing modes. +class AddressingModeMatcher { +  SmallVectorImpl<Instruction *> &AddrModeInsts; +  const TargetLowering &TLI; +  const TargetRegisterInfo &TRI; +  const DataLayout &DL; +  const LoopInfo &LI; +  const std::function<const DominatorTree &()> getDTFn; + +  /// AccessTy/MemoryInst - This is the type for the access (e.g. double) and +  /// the memory instruction that we're computing this address for. +  Type *AccessTy; +  unsigned AddrSpace; +  Instruction *MemoryInst; + +  /// This is the addressing mode that we're building up. This is +  /// part of the return value of this addressing mode matching stuff. +  ExtAddrMode &AddrMode; + +  /// The instructions inserted by other CodeGenPrepare optimizations. +  const SetOfInstrs &InsertedInsts; + +  /// A map from the instructions to their type before promotion. +  InstrToOrigTy &PromotedInsts; + +  /// The ongoing transaction where every action should be registered. +  TypePromotionTransaction &TPT; + +  // A GEP which has too large offset to be folded into the addressing mode. +  std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP; + +  /// This is set to true when we should not do profitability checks. +  /// When true, IsProfitableToFoldIntoAddressingMode always returns true. +  bool IgnoreProfitability; + +  /// True if we are optimizing for size. +  bool OptSize = false; + +  ProfileSummaryInfo *PSI; +  BlockFrequencyInfo *BFI; + +  AddressingModeMatcher( +      SmallVectorImpl<Instruction *> &AMI, const TargetLowering &TLI, +      const TargetRegisterInfo &TRI, const LoopInfo &LI, +      const std::function<const DominatorTree &()> getDTFn, Type *AT, +      unsigned AS, Instruction *MI, ExtAddrMode &AM, +      const SetOfInstrs &InsertedInsts, InstrToOrigTy &PromotedInsts, +      TypePromotionTransaction &TPT, +      std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP, +      bool OptSize, ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI) +      : AddrModeInsts(AMI), TLI(TLI), TRI(TRI), +        DL(MI->getDataLayout()), LI(LI), getDTFn(getDTFn), +        AccessTy(AT), AddrSpace(AS), MemoryInst(MI), AddrMode(AM), +        InsertedInsts(InsertedInsts), PromotedInsts(PromotedInsts), TPT(TPT), +        LargeOffsetGEP(LargeOffsetGEP), OptSize(OptSize), PSI(PSI), BFI(BFI) { +    IgnoreProfitability = false; +  } + +public: +  /// Find the maximal addressing mode that a load/store of V can fold, +  /// give an access type of AccessTy.  This returns a list of involved +  /// instructions in AddrModeInsts. +  /// \p InsertedInsts The instructions inserted by other CodeGenPrepare +  /// optimizations. +  /// \p PromotedInsts maps the instructions to their type before promotion. +  /// \p The ongoing transaction where every action should be registered. +  static ExtAddrMode +  Match(Value *V, Type *AccessTy, unsigned AS, Instruction *MemoryInst, +        SmallVectorImpl<Instruction *> &AddrModeInsts, +        const TargetLowering &TLI, const LoopInfo &LI, +        const std::function<const DominatorTree &()> getDTFn, +        const TargetRegisterInfo &TRI, const SetOfInstrs &InsertedInsts, +        InstrToOrigTy &PromotedInsts, TypePromotionTransaction &TPT, +        std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP, +        bool OptSize, ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI) { +    ExtAddrMode Result; + +    bool Success = AddressingModeMatcher(AddrModeInsts, TLI, TRI, LI, getDTFn, +                                         AccessTy, AS, MemoryInst, Result, +                                         InsertedInsts, PromotedInsts, TPT, +                                         LargeOffsetGEP, OptSize, PSI, BFI) +                       .matchAddr(V, 0); +    (void)Success; +    assert(Success && "Couldn't select *anything*?"); +    return Result; +  } + +private: +  bool matchScaledValue(Value *ScaleReg, int64_t Scale, unsigned Depth); +  bool matchAddr(Value *Addr, unsigned Depth); +  bool matchOperationAddr(User *AddrInst, unsigned Opcode, unsigned Depth, +                          bool *MovedAway = nullptr); +  bool isProfitableToFoldIntoAddressingMode(Instruction *I, +                                            ExtAddrMode &AMBefore, +                                            ExtAddrMode &AMAfter); +  bool valueAlreadyLiveAtInst(Value *Val, Value *KnownLive1, Value *KnownLive2); +  bool isPromotionProfitable(unsigned NewCost, unsigned OldCost, +                             Value *PromotedOperand) const; +}; + +class PhiNodeSet; + +/// An iterator for PhiNodeSet. +class PhiNodeSetIterator { +  PhiNodeSet *const Set; +  size_t CurrentIndex = 0; + +public: +  /// The constructor. Start should point to either a valid element, or be equal +  /// to the size of the underlying SmallVector of the PhiNodeSet. +  PhiNodeSetIterator(PhiNodeSet *const Set, size_t Start); +  PHINode *operator*() const; +  PhiNodeSetIterator &operator++(); +  bool operator==(const PhiNodeSetIterator &RHS) const; +  bool operator!=(const PhiNodeSetIterator &RHS) const; +}; + +/// Keeps a set of PHINodes. +/// +/// This is a minimal set implementation for a specific use case: +/// It is very fast when there are very few elements, but also provides good +/// performance when there are many. It is similar to SmallPtrSet, but also +/// provides iteration by insertion order, which is deterministic and stable +/// across runs. It is also similar to SmallSetVector, but provides removing +/// elements in O(1) time. This is achieved by not actually removing the element +/// from the underlying vector, so comes at the cost of using more memory, but +/// that is fine, since PhiNodeSets are used as short lived objects. +class PhiNodeSet { +  friend class PhiNodeSetIterator; + +  using MapType = SmallDenseMap<PHINode *, size_t, 32>; +  using iterator = PhiNodeSetIterator; + +  /// Keeps the elements in the order of their insertion in the underlying +  /// vector. To achieve constant time removal, it never deletes any element. +  SmallVector<PHINode *, 32> NodeList; + +  /// Keeps the elements in the underlying set implementation. This (and not the +  /// NodeList defined above) is the source of truth on whether an element +  /// is actually in the collection. +  MapType NodeMap; + +  /// Points to the first valid (not deleted) element when the set is not empty +  /// and the value is not zero. Equals to the size of the underlying vector +  /// when the set is empty. When the value is 0, as in the beginning, the +  /// first element may or may not be valid. +  size_t FirstValidElement = 0; + +public: +  /// Inserts a new element to the collection. +  /// \returns true if the element is actually added, i.e. was not in the +  /// collection before the operation. +  bool insert(PHINode *Ptr) { +    if (NodeMap.insert(std::make_pair(Ptr, NodeList.size())).second) { +      NodeList.push_back(Ptr); +      return true; +    } +    return false; +  } + +  /// Removes the element from the collection. +  /// \returns whether the element is actually removed, i.e. was in the +  /// collection before the operation. +  bool erase(PHINode *Ptr) { +    if (NodeMap.erase(Ptr)) { +      SkipRemovedElements(FirstValidElement); +      return true; +    } +    return false; +  } + +  /// Removes all elements and clears the collection. +  void clear() { +    NodeMap.clear(); +    NodeList.clear(); +    FirstValidElement = 0; +  } + +  /// \returns an iterator that will iterate the elements in the order of +  /// insertion. +  iterator begin() { +    if (FirstValidElement == 0) +      SkipRemovedElements(FirstValidElement); +    return PhiNodeSetIterator(this, FirstValidElement); +  } + +  /// \returns an iterator that points to the end of the collection. +  iterator end() { return PhiNodeSetIterator(this, NodeList.size()); } + +  /// Returns the number of elements in the collection. +  size_t size() const { return NodeMap.size(); } + +  /// \returns 1 if the given element is in the collection, and 0 if otherwise. +  size_t count(PHINode *Ptr) const { return NodeMap.count(Ptr); } + +private: +  /// Updates the CurrentIndex so that it will point to a valid element. +  /// +  /// If the element of NodeList at CurrentIndex is valid, it does not +  /// change it. If there are no more valid elements, it updates CurrentIndex +  /// to point to the end of the NodeList. +  void SkipRemovedElements(size_t &CurrentIndex) { +    while (CurrentIndex < NodeList.size()) { +      auto it = NodeMap.find(NodeList[CurrentIndex]); +      // If the element has been deleted and added again later, NodeMap will +      // point to a different index, so CurrentIndex will still be invalid. +      if (it != NodeMap.end() && it->second == CurrentIndex) +        break; +      ++CurrentIndex; +    } +  } +}; + +PhiNodeSetIterator::PhiNodeSetIterator(PhiNodeSet *const Set, size_t Start) +    : Set(Set), CurrentIndex(Start) {} + +PHINode *PhiNodeSetIterator::operator*() const { +  assert(CurrentIndex < Set->NodeList.size() && +         "PhiNodeSet access out of range"); +  return Set->NodeList[CurrentIndex]; +} + +PhiNodeSetIterator &PhiNodeSetIterator::operator++() { +  assert(CurrentIndex < Set->NodeList.size() && +         "PhiNodeSet access out of range"); +  ++CurrentIndex; +  Set->SkipRemovedElements(CurrentIndex); +  return *this; +} + +bool PhiNodeSetIterator::operator==(const PhiNodeSetIterator &RHS) const { +  return CurrentIndex == RHS.CurrentIndex; +} + +bool PhiNodeSetIterator::operator!=(const PhiNodeSetIterator &RHS) const { +  return !((*this) == RHS); +} + +/// Keep track of simplification of Phi nodes. +/// Accept the set of all phi nodes and erase phi node from this set +/// if it is simplified. +class SimplificationTracker { +  DenseMap<Value *, Value *> Storage; +  const SimplifyQuery &SQ; +  // Tracks newly created Phi nodes. The elements are iterated by insertion +  // order. +  PhiNodeSet AllPhiNodes; +  // Tracks newly created Select nodes. +  SmallPtrSet<SelectInst *, 32> AllSelectNodes; + +public: +  SimplificationTracker(const SimplifyQuery &sq) : SQ(sq) {} + +  Value *Get(Value *V) { +    do { +      auto SV = Storage.find(V); +      if (SV == Storage.end()) +        return V; +      V = SV->second; +    } while (true); +  } + +  Value *Simplify(Value *Val) { +    SmallVector<Value *, 32> WorkList; +    SmallPtrSet<Value *, 32> Visited; +    WorkList.push_back(Val); +    while (!WorkList.empty()) { +      auto *P = WorkList.pop_back_val(); +      if (!Visited.insert(P).second) +        continue; +      if (auto *PI = dyn_cast<Instruction>(P)) +        if (Value *V = simplifyInstruction(cast<Instruction>(PI), SQ)) { +          for (auto *U : PI->users()) +            WorkList.push_back(cast<Value>(U)); +          Put(PI, V); +          PI->replaceAllUsesWith(V); +          if (auto *PHI = dyn_cast<PHINode>(PI)) +            AllPhiNodes.erase(PHI); +          if (auto *Select = dyn_cast<SelectInst>(PI)) +            AllSelectNodes.erase(Select); +          PI->eraseFromParent(); +        } +    } +    return Get(Val); +  } + +  void Put(Value *From, Value *To) { Storage.insert({From, To}); } + +  void ReplacePhi(PHINode *From, PHINode *To) { +    Value *OldReplacement = Get(From); +    while (OldReplacement != From) { +      From = To; +      To = dyn_cast<PHINode>(OldReplacement); +      OldReplacement = Get(From); +    } +    assert(To && Get(To) == To && "Replacement PHI node is already replaced."); +    Put(From, To); +    From->replaceAllUsesWith(To); +    AllPhiNodes.erase(From); +    From->eraseFromParent(); +  } + +  PhiNodeSet &newPhiNodes() { return AllPhiNodes; } + +  void insertNewPhi(PHINode *PN) { AllPhiNodes.insert(PN); } + +  void insertNewSelect(SelectInst *SI) { AllSelectNodes.insert(SI); } + +  unsigned countNewPhiNodes() const { return AllPhiNodes.size(); } + +  unsigned countNewSelectNodes() const { return AllSelectNodes.size(); } + +  void destroyNewNodes(Type *CommonType) { +    // For safe erasing, replace the uses with dummy value first. +    auto *Dummy = PoisonValue::get(CommonType); +    for (auto *I : AllPhiNodes) { +      I->replaceAllUsesWith(Dummy); +      I->eraseFromParent(); +    } +    AllPhiNodes.clear(); +    for (auto *I : AllSelectNodes) { +      I->replaceAllUsesWith(Dummy); +      I->eraseFromParent(); +    } +    AllSelectNodes.clear(); +  } +}; + +/// A helper class for combining addressing modes. +class AddressingModeCombiner { +  typedef DenseMap<Value *, Value *> FoldAddrToValueMapping; +  typedef std::pair<PHINode *, PHINode *> PHIPair; + +private: +  /// The addressing modes we've collected. +  SmallVector<ExtAddrMode, 16> AddrModes; + +  /// The field in which the AddrModes differ, when we have more than one. +  ExtAddrMode::FieldName DifferentField = ExtAddrMode::NoField; + +  /// Are the AddrModes that we have all just equal to their original values? +  bool AllAddrModesTrivial = true; + +  /// Common Type for all different fields in addressing modes. +  Type *CommonType = nullptr; + +  /// SimplifyQuery for simplifyInstruction utility. +  const SimplifyQuery &SQ; + +  /// Original Address. +  Value *Original; + +  /// Common value among addresses +  Value *CommonValue = nullptr; + +public: +  AddressingModeCombiner(const SimplifyQuery &_SQ, Value *OriginalValue) +      : SQ(_SQ), Original(OriginalValue) {} + +  ~AddressingModeCombiner() { eraseCommonValueIfDead(); } + +  /// Get the combined AddrMode +  const ExtAddrMode &getAddrMode() const { return AddrModes[0]; } + +  /// Add a new AddrMode if it's compatible with the AddrModes we already +  /// have. +  /// \return True iff we succeeded in doing so. +  bool addNewAddrMode(ExtAddrMode &NewAddrMode) { +    // Take note of if we have any non-trivial AddrModes, as we need to detect +    // when all AddrModes are trivial as then we would introduce a phi or select +    // which just duplicates what's already there. +    AllAddrModesTrivial = AllAddrModesTrivial && NewAddrMode.isTrivial(); + +    // If this is the first addrmode then everything is fine. +    if (AddrModes.empty()) { +      AddrModes.emplace_back(NewAddrMode); +      return true; +    } + +    // Figure out how different this is from the other address modes, which we +    // can do just by comparing against the first one given that we only care +    // about the cumulative difference. +    ExtAddrMode::FieldName ThisDifferentField = +        AddrModes[0].compare(NewAddrMode); +    if (DifferentField == ExtAddrMode::NoField) +      DifferentField = ThisDifferentField; +    else if (DifferentField != ThisDifferentField) +      DifferentField = ExtAddrMode::MultipleFields; + +    // If NewAddrMode differs in more than one dimension we cannot handle it. +    bool CanHandle = DifferentField != ExtAddrMode::MultipleFields; + +    // If Scale Field is different then we reject. +    CanHandle = CanHandle && DifferentField != ExtAddrMode::ScaleField; + +    // We also must reject the case when base offset is different and +    // scale reg is not null, we cannot handle this case due to merge of +    // different offsets will be used as ScaleReg. +    CanHandle = CanHandle && (DifferentField != ExtAddrMode::BaseOffsField || +                              !NewAddrMode.ScaledReg); + +    // We also must reject the case when GV is different and BaseReg installed +    // due to we want to use base reg as a merge of GV values. +    CanHandle = CanHandle && (DifferentField != ExtAddrMode::BaseGVField || +                              !NewAddrMode.HasBaseReg); + +    // Even if NewAddMode is the same we still need to collect it due to +    // original value is different. And later we will need all original values +    // as anchors during finding the common Phi node. +    if (CanHandle) +      AddrModes.emplace_back(NewAddrMode); +    else +      AddrModes.clear(); + +    return CanHandle; +  } + +  /// Combine the addressing modes we've collected into a single +  /// addressing mode. +  /// \return True iff we successfully combined them or we only had one so +  /// didn't need to combine them anyway. +  bool combineAddrModes() { +    // If we have no AddrModes then they can't be combined. +    if (AddrModes.size() == 0) +      return false; + +    // A single AddrMode can trivially be combined. +    if (AddrModes.size() == 1 || DifferentField == ExtAddrMode::NoField) +      return true; + +    // If the AddrModes we collected are all just equal to the value they are +    // derived from then combining them wouldn't do anything useful. +    if (AllAddrModesTrivial) +      return false; + +    if (!addrModeCombiningAllowed()) +      return false; + +    // Build a map between <original value, basic block where we saw it> to +    // value of base register. +    // Bail out if there is no common type. +    FoldAddrToValueMapping Map; +    if (!initializeMap(Map)) +      return false; + +    CommonValue = findCommon(Map); +    if (CommonValue) +      AddrModes[0].SetCombinedField(DifferentField, CommonValue, AddrModes); +    return CommonValue != nullptr; +  } + +private: +  /// `CommonValue` may be a placeholder inserted by us. +  /// If the placeholder is not used, we should remove this dead instruction. +  void eraseCommonValueIfDead() { +    if (CommonValue && CommonValue->getNumUses() == 0) +      if (Instruction *CommonInst = dyn_cast<Instruction>(CommonValue)) +        CommonInst->eraseFromParent(); +  } + +  /// Initialize Map with anchor values. For address seen +  /// we set the value of different field saw in this address. +  /// At the same time we find a common type for different field we will +  /// use to create new Phi/Select nodes. Keep it in CommonType field. +  /// Return false if there is no common type found. +  bool initializeMap(FoldAddrToValueMapping &Map) { +    // Keep track of keys where the value is null. We will need to replace it +    // with constant null when we know the common type. +    SmallVector<Value *, 2> NullValue; +    Type *IntPtrTy = SQ.DL.getIntPtrType(AddrModes[0].OriginalValue->getType()); +    for (auto &AM : AddrModes) { +      Value *DV = AM.GetFieldAsValue(DifferentField, IntPtrTy); +      if (DV) { +        auto *Type = DV->getType(); +        if (CommonType && CommonType != Type) +          return false; +        CommonType = Type; +        Map[AM.OriginalValue] = DV; +      } else { +        NullValue.push_back(AM.OriginalValue); +      } +    } +    assert(CommonType && "At least one non-null value must be!"); +    for (auto *V : NullValue) +      Map[V] = Constant::getNullValue(CommonType); +    return true; +  } + +  /// We have mapping between value A and other value B where B was a field in +  /// addressing mode represented by A. Also we have an original value C +  /// representing an address we start with. Traversing from C through phi and +  /// selects we ended up with A's in a map. This utility function tries to find +  /// a value V which is a field in addressing mode C and traversing through phi +  /// nodes and selects we will end up in corresponded values B in a map. +  /// The utility will create a new Phi/Selects if needed. +  // The simple example looks as follows: +  // BB1: +  //   p1 = b1 + 40 +  //   br cond BB2, BB3 +  // BB2: +  //   p2 = b2 + 40 +  //   br BB3 +  // BB3: +  //   p = phi [p1, BB1], [p2, BB2] +  //   v = load p +  // Map is +  //   p1 -> b1 +  //   p2 -> b2 +  // Request is +  //   p -> ? +  // The function tries to find or build phi [b1, BB1], [b2, BB2] in BB3. +  Value *findCommon(FoldAddrToValueMapping &Map) { +    // Tracks the simplification of newly created phi nodes. The reason we use +    // this mapping is because we will add new created Phi nodes in AddrToBase. +    // Simplification of Phi nodes is recursive, so some Phi node may +    // be simplified after we added it to AddrToBase. In reality this +    // simplification is possible only if original phi/selects were not +    // simplified yet. +    // Using this mapping we can find the current value in AddrToBase. +    SimplificationTracker ST(SQ); + +    // First step, DFS to create PHI nodes for all intermediate blocks. +    // Also fill traverse order for the second step. +    SmallVector<Value *, 32> TraverseOrder; +    InsertPlaceholders(Map, TraverseOrder, ST); + +    // Second Step, fill new nodes by merged values and simplify if possible. +    FillPlaceholders(Map, TraverseOrder, ST); + +    if (!AddrSinkNewSelects && ST.countNewSelectNodes() > 0) { +      ST.destroyNewNodes(CommonType); +      return nullptr; +    } + +    // Now we'd like to match New Phi nodes to existed ones. +    unsigned PhiNotMatchedCount = 0; +    if (!MatchPhiSet(ST, AddrSinkNewPhis, PhiNotMatchedCount)) { +      ST.destroyNewNodes(CommonType); +      return nullptr; +    } + +    auto *Result = ST.Get(Map.find(Original)->second); +    if (Result) { +      NumMemoryInstsPhiCreated += ST.countNewPhiNodes() + PhiNotMatchedCount; +      NumMemoryInstsSelectCreated += ST.countNewSelectNodes(); +    } +    return Result; +  } + +  /// Try to match PHI node to Candidate. +  /// Matcher tracks the matched Phi nodes. +  bool MatchPhiNode(PHINode *PHI, PHINode *Candidate, +                    SmallSetVector<PHIPair, 8> &Matcher, +                    PhiNodeSet &PhiNodesToMatch) { +    SmallVector<PHIPair, 8> WorkList; +    Matcher.insert({PHI, Candidate}); +    SmallSet<PHINode *, 8> MatchedPHIs; +    MatchedPHIs.insert(PHI); +    WorkList.push_back({PHI, Candidate}); +    SmallSet<PHIPair, 8> Visited; +    while (!WorkList.empty()) { +      auto Item = WorkList.pop_back_val(); +      if (!Visited.insert(Item).second) +        continue; +      // We iterate over all incoming values to Phi to compare them. +      // If values are different and both of them Phi and the first one is a +      // Phi we added (subject to match) and both of them is in the same basic +      // block then we can match our pair if values match. So we state that +      // these values match and add it to work list to verify that. +      for (auto *B : Item.first->blocks()) { +        Value *FirstValue = Item.first->getIncomingValueForBlock(B); +        Value *SecondValue = Item.second->getIncomingValueForBlock(B); +        if (FirstValue == SecondValue) +          continue; + +        PHINode *FirstPhi = dyn_cast<PHINode>(FirstValue); +        PHINode *SecondPhi = dyn_cast<PHINode>(SecondValue); + +        // One of them is not Phi or +        // The first one is not Phi node from the set we'd like to match or +        // Phi nodes from different basic blocks then +        // we will not be able to match. +        if (!FirstPhi || !SecondPhi || !PhiNodesToMatch.count(FirstPhi) || +            FirstPhi->getParent() != SecondPhi->getParent()) +          return false; + +        // If we already matched them then continue. +        if (Matcher.count({FirstPhi, SecondPhi})) +          continue; +        // So the values are different and does not match. So we need them to +        // match. (But we register no more than one match per PHI node, so that +        // we won't later try to replace them twice.) +        if (MatchedPHIs.insert(FirstPhi).second) +          Matcher.insert({FirstPhi, SecondPhi}); +        // But me must check it. +        WorkList.push_back({FirstPhi, SecondPhi}); +      } +    } +    return true; +  } + +  /// For the given set of PHI nodes (in the SimplificationTracker) try +  /// to find their equivalents. +  /// Returns false if this matching fails and creation of new Phi is disabled. +  bool MatchPhiSet(SimplificationTracker &ST, bool AllowNewPhiNodes, +                   unsigned &PhiNotMatchedCount) { +    // Matched and PhiNodesToMatch iterate their elements in a deterministic +    // order, so the replacements (ReplacePhi) are also done in a deterministic +    // order. +    SmallSetVector<PHIPair, 8> Matched; +    SmallPtrSet<PHINode *, 8> WillNotMatch; +    PhiNodeSet &PhiNodesToMatch = ST.newPhiNodes(); +    while (PhiNodesToMatch.size()) { +      PHINode *PHI = *PhiNodesToMatch.begin(); + +      // Add us, if no Phi nodes in the basic block we do not match. +      WillNotMatch.clear(); +      WillNotMatch.insert(PHI); + +      // Traverse all Phis until we found equivalent or fail to do that. +      bool IsMatched = false; +      for (auto &P : PHI->getParent()->phis()) { +        // Skip new Phi nodes. +        if (PhiNodesToMatch.count(&P)) +          continue; +        if ((IsMatched = MatchPhiNode(PHI, &P, Matched, PhiNodesToMatch))) +          break; +        // If it does not match, collect all Phi nodes from matcher. +        // if we end up with no match, them all these Phi nodes will not match +        // later. +        for (auto M : Matched) +          WillNotMatch.insert(M.first); +        Matched.clear(); +      } +      if (IsMatched) { +        // Replace all matched values and erase them. +        for (auto MV : Matched) +          ST.ReplacePhi(MV.first, MV.second); +        Matched.clear(); +        continue; +      } +      // If we are not allowed to create new nodes then bail out. +      if (!AllowNewPhiNodes) +        return false; +      // Just remove all seen values in matcher. They will not match anything. +      PhiNotMatchedCount += WillNotMatch.size(); +      for (auto *P : WillNotMatch) +        PhiNodesToMatch.erase(P); +    } +    return true; +  } +  /// Fill the placeholders with values from predecessors and simplify them. +  void FillPlaceholders(FoldAddrToValueMapping &Map, +                        SmallVectorImpl<Value *> &TraverseOrder, +                        SimplificationTracker &ST) { +    while (!TraverseOrder.empty()) { +      Value *Current = TraverseOrder.pop_back_val(); +      assert(Map.contains(Current) && "No node to fill!!!"); +      Value *V = Map[Current]; + +      if (SelectInst *Select = dyn_cast<SelectInst>(V)) { +        // CurrentValue also must be Select. +        auto *CurrentSelect = cast<SelectInst>(Current); +        auto *TrueValue = CurrentSelect->getTrueValue(); +        assert(Map.contains(TrueValue) && "No True Value!"); +        Select->setTrueValue(ST.Get(Map[TrueValue])); +        auto *FalseValue = CurrentSelect->getFalseValue(); +        assert(Map.contains(FalseValue) && "No False Value!"); +        Select->setFalseValue(ST.Get(Map[FalseValue])); +      } else { +        // Must be a Phi node then. +        auto *PHI = cast<PHINode>(V); +        // Fill the Phi node with values from predecessors. +        for (auto *B : predecessors(PHI->getParent())) { +          Value *PV = cast<PHINode>(Current)->getIncomingValueForBlock(B); +          assert(Map.contains(PV) && "No predecessor Value!"); +          PHI->addIncoming(ST.Get(Map[PV]), B); +        } +      } +      Map[Current] = ST.Simplify(V); +    } +  } + +  /// Starting from original value recursively iterates over def-use chain up to +  /// known ending values represented in a map. For each traversed phi/select +  /// inserts a placeholder Phi or Select. +  /// Reports all new created Phi/Select nodes by adding them to set. +  /// Also reports and order in what values have been traversed. +  void InsertPlaceholders(FoldAddrToValueMapping &Map, +                          SmallVectorImpl<Value *> &TraverseOrder, +                          SimplificationTracker &ST) { +    SmallVector<Value *, 32> Worklist; +    assert((isa<PHINode>(Original) || isa<SelectInst>(Original)) && +           "Address must be a Phi or Select node"); +    auto *Dummy = PoisonValue::get(CommonType); +    Worklist.push_back(Original); +    while (!Worklist.empty()) { +      Value *Current = Worklist.pop_back_val(); +      // if it is already visited or it is an ending value then skip it. +      if (Map.contains(Current)) +        continue; +      TraverseOrder.push_back(Current); + +      // CurrentValue must be a Phi node or select. All others must be covered +      // by anchors. +      if (SelectInst *CurrentSelect = dyn_cast<SelectInst>(Current)) { +        // Is it OK to get metadata from OrigSelect?! +        // Create a Select placeholder with dummy value. +        SelectInst *Select = +            SelectInst::Create(CurrentSelect->getCondition(), Dummy, Dummy, +                               CurrentSelect->getName(), +                               CurrentSelect->getIterator(), CurrentSelect); +        Map[Current] = Select; +        ST.insertNewSelect(Select); +        // We are interested in True and False values. +        Worklist.push_back(CurrentSelect->getTrueValue()); +        Worklist.push_back(CurrentSelect->getFalseValue()); +      } else { +        // It must be a Phi node then. +        PHINode *CurrentPhi = cast<PHINode>(Current); +        unsigned PredCount = CurrentPhi->getNumIncomingValues(); +        PHINode *PHI = +            PHINode::Create(CommonType, PredCount, "sunk_phi", CurrentPhi->getIterator()); +        Map[Current] = PHI; +        ST.insertNewPhi(PHI); +        append_range(Worklist, CurrentPhi->incoming_values()); +      } +    } +  } + +  bool addrModeCombiningAllowed() { +    if (DisableComplexAddrModes) +      return false; +    switch (DifferentField) { +    default: +      return false; +    case ExtAddrMode::BaseRegField: +      return AddrSinkCombineBaseReg; +    case ExtAddrMode::BaseGVField: +      return AddrSinkCombineBaseGV; +    case ExtAddrMode::BaseOffsField: +      return AddrSinkCombineBaseOffs; +    case ExtAddrMode::ScaledRegField: +      return AddrSinkCombineScaledReg; +    } +  } +}; +} // end anonymous namespace + +/// Try adding ScaleReg*Scale to the current addressing mode. +/// Return true and update AddrMode if this addr mode is legal for the target, +/// false if not. +bool AddressingModeMatcher::matchScaledValue(Value *ScaleReg, int64_t Scale, +                                             unsigned Depth) { +  // If Scale is 1, then this is the same as adding ScaleReg to the addressing +  // mode.  Just process that directly. +  if (Scale == 1) +    return matchAddr(ScaleReg, Depth); + +  // If the scale is 0, it takes nothing to add this. +  if (Scale == 0) +    return true; + +  // If we already have a scale of this value, we can add to it, otherwise, we +  // need an available scale field. +  if (AddrMode.Scale != 0 && AddrMode.ScaledReg != ScaleReg) +    return false; + +  ExtAddrMode TestAddrMode = AddrMode; + +  // Add scale to turn X*4+X*3 -> X*7.  This could also do things like +  // [A+B + A*7] -> [B+A*8]. +  TestAddrMode.Scale += Scale; +  TestAddrMode.ScaledReg = ScaleReg; + +  // If the new address isn't legal, bail out. +  if (!TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) +    return false; + +  // It was legal, so commit it. +  AddrMode = TestAddrMode; + +  // Okay, we decided that we can add ScaleReg+Scale to AddrMode.  Check now +  // to see if ScaleReg is actually X+C.  If so, we can turn this into adding +  // X*Scale + C*Scale to addr mode. If we found available IV increment, do not +  // go any further: we can reuse it and cannot eliminate it. +  ConstantInt *CI = nullptr; +  Value *AddLHS = nullptr; +  if (isa<Instruction>(ScaleReg) && // not a constant expr. +      match(ScaleReg, m_Add(m_Value(AddLHS), m_ConstantInt(CI))) && +      !isIVIncrement(ScaleReg, &LI) && CI->getValue().isSignedIntN(64)) { +    TestAddrMode.InBounds = false; +    TestAddrMode.ScaledReg = AddLHS; +    TestAddrMode.BaseOffs += CI->getSExtValue() * TestAddrMode.Scale; + +    // If this addressing mode is legal, commit it and remember that we folded +    // this instruction. +    if (TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) { +      AddrModeInsts.push_back(cast<Instruction>(ScaleReg)); +      AddrMode = TestAddrMode; +      return true; +    } +    // Restore status quo. +    TestAddrMode = AddrMode; +  } + +  // If this is an add recurrence with a constant step, return the increment +  // instruction and the canonicalized step. +  auto GetConstantStep = +      [this](const Value *V) -> std::optional<std::pair<Instruction *, APInt>> { +    auto *PN = dyn_cast<PHINode>(V); +    if (!PN) +      return std::nullopt; +    auto IVInc = getIVIncrement(PN, &LI); +    if (!IVInc) +      return std::nullopt; +    // TODO: The result of the intrinsics above is two-complement. However when +    // IV inc is expressed as add or sub, iv.next is potentially a poison value. +    // If it has nuw or nsw flags, we need to make sure that these flags are +    // inferrable at the point of memory instruction. Otherwise we are replacing +    // well-defined two-complement computation with poison. Currently, to avoid +    // potentially complex analysis needed to prove this, we reject such cases. +    if (auto *OIVInc = dyn_cast<OverflowingBinaryOperator>(IVInc->first)) +      if (OIVInc->hasNoSignedWrap() || OIVInc->hasNoUnsignedWrap()) +        return std::nullopt; +    if (auto *ConstantStep = dyn_cast<ConstantInt>(IVInc->second)) +      return std::make_pair(IVInc->first, ConstantStep->getValue()); +    return std::nullopt; +  }; + +  // Try to account for the following special case: +  // 1. ScaleReg is an inductive variable; +  // 2. We use it with non-zero offset; +  // 3. IV's increment is available at the point of memory instruction. +  // +  // In this case, we may reuse the IV increment instead of the IV Phi to +  // achieve the following advantages: +  // 1. If IV step matches the offset, we will have no need in the offset; +  // 2. Even if they don't match, we will reduce the overlap of living IV +  //    and IV increment, that will potentially lead to better register +  //    assignment. +  if (AddrMode.BaseOffs) { +    if (auto IVStep = GetConstantStep(ScaleReg)) { +      Instruction *IVInc = IVStep->first; +      // The following assert is important to ensure a lack of infinite loops. +      // This transforms is (intentionally) the inverse of the one just above. +      // If they don't agree on the definition of an increment, we'd alternate +      // back and forth indefinitely. +      assert(isIVIncrement(IVInc, &LI) && "implied by GetConstantStep"); +      APInt Step = IVStep->second; +      APInt Offset = Step * AddrMode.Scale; +      if (Offset.isSignedIntN(64)) { +        TestAddrMode.InBounds = false; +        TestAddrMode.ScaledReg = IVInc; +        TestAddrMode.BaseOffs -= Offset.getLimitedValue(); +        // If this addressing mode is legal, commit it.. +        // (Note that we defer the (expensive) domtree base legality check +        // to the very last possible point.) +        if (TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace) && +            getDTFn().dominates(IVInc, MemoryInst)) { +          AddrModeInsts.push_back(cast<Instruction>(IVInc)); +          AddrMode = TestAddrMode; +          return true; +        } +        // Restore status quo. +        TestAddrMode = AddrMode; +      } +    } +  } + +  // Otherwise, just return what we have. +  return true; +} + +/// This is a little filter, which returns true if an addressing computation +/// involving I might be folded into a load/store accessing it. +/// This doesn't need to be perfect, but needs to accept at least +/// the set of instructions that MatchOperationAddr can. +static bool MightBeFoldableInst(Instruction *I) { +  switch (I->getOpcode()) { +  case Instruction::BitCast: +  case Instruction::AddrSpaceCast: +    // Don't touch identity bitcasts. +    if (I->getType() == I->getOperand(0)->getType()) +      return false; +    return I->getType()->isIntOrPtrTy(); +  case Instruction::PtrToInt: +    // PtrToInt is always a noop, as we know that the int type is pointer sized. +    return true; +  case Instruction::IntToPtr: +    // We know the input is intptr_t, so this is foldable. +    return true; +  case Instruction::Add: +    return true; +  case Instruction::Mul: +  case Instruction::Shl: +    // Can only handle X*C and X << C. +    return isa<ConstantInt>(I->getOperand(1)); +  case Instruction::GetElementPtr: +    return true; +  default: +    return false; +  } +} + +/// Check whether or not \p Val is a legal instruction for \p TLI. +/// \note \p Val is assumed to be the product of some type promotion. +/// Therefore if \p Val has an undefined state in \p TLI, this is assumed +/// to be legal, as the non-promoted value would have had the same state. +static bool isPromotedInstructionLegal(const TargetLowering &TLI, +                                       const DataLayout &DL, Value *Val) { +  Instruction *PromotedInst = dyn_cast<Instruction>(Val); +  if (!PromotedInst) +    return false; +  int ISDOpcode = TLI.InstructionOpcodeToISD(PromotedInst->getOpcode()); +  // If the ISDOpcode is undefined, it was undefined before the promotion. +  if (!ISDOpcode) +    return true; +  // Otherwise, check if the promoted instruction is legal or not. +  return TLI.isOperationLegalOrCustom( +      ISDOpcode, TLI.getValueType(DL, PromotedInst->getType())); +} + +namespace { + +/// Hepler class to perform type promotion. +class TypePromotionHelper { +  /// Utility function to add a promoted instruction \p ExtOpnd to +  /// \p PromotedInsts and record the type of extension we have seen. +  static void addPromotedInst(InstrToOrigTy &PromotedInsts, +                              Instruction *ExtOpnd, bool IsSExt) { +    ExtType ExtTy = IsSExt ? SignExtension : ZeroExtension; +    InstrToOrigTy::iterator It = PromotedInsts.find(ExtOpnd); +    if (It != PromotedInsts.end()) { +      // If the new extension is same as original, the information in +      // PromotedInsts[ExtOpnd] is still correct. +      if (It->second.getInt() == ExtTy) +        return; + +      // Now the new extension is different from old extension, we make +      // the type information invalid by setting extension type to +      // BothExtension. +      ExtTy = BothExtension; +    } +    PromotedInsts[ExtOpnd] = TypeIsSExt(ExtOpnd->getType(), ExtTy); +  } + +  /// Utility function to query the original type of instruction \p Opnd +  /// with a matched extension type. If the extension doesn't match, we +  /// cannot use the information we had on the original type. +  /// BothExtension doesn't match any extension type. +  static const Type *getOrigType(const InstrToOrigTy &PromotedInsts, +                                 Instruction *Opnd, bool IsSExt) { +    ExtType ExtTy = IsSExt ? SignExtension : ZeroExtension; +    InstrToOrigTy::const_iterator It = PromotedInsts.find(Opnd); +    if (It != PromotedInsts.end() && It->second.getInt() == ExtTy) +      return It->second.getPointer(); +    return nullptr; +  } + +  /// Utility function to check whether or not a sign or zero extension +  /// of \p Inst with \p ConsideredExtType can be moved through \p Inst by +  /// either using the operands of \p Inst or promoting \p Inst. +  /// The type of the extension is defined by \p IsSExt. +  /// In other words, check if: +  /// ext (Ty Inst opnd1 opnd2 ... opndN) to ConsideredExtType. +  /// #1 Promotion applies: +  /// ConsideredExtType Inst (ext opnd1 to ConsideredExtType, ...). +  /// #2 Operand reuses: +  /// ext opnd1 to ConsideredExtType. +  /// \p PromotedInsts maps the instructions to their type before promotion. +  static bool canGetThrough(const Instruction *Inst, Type *ConsideredExtType, +                            const InstrToOrigTy &PromotedInsts, bool IsSExt); + +  /// Utility function to determine if \p OpIdx should be promoted when +  /// promoting \p Inst. +  static bool shouldExtOperand(const Instruction *Inst, int OpIdx) { +    return !(isa<SelectInst>(Inst) && OpIdx == 0); +  } + +  /// Utility function to promote the operand of \p Ext when this +  /// operand is a promotable trunc or sext or zext. +  /// \p PromotedInsts maps the instructions to their type before promotion. +  /// \p CreatedInstsCost[out] contains the cost of all instructions +  /// created to promote the operand of Ext. +  /// Newly added extensions are inserted in \p Exts. +  /// Newly added truncates are inserted in \p Truncs. +  /// Should never be called directly. +  /// \return The promoted value which is used instead of Ext. +  static Value *promoteOperandForTruncAndAnyExt( +      Instruction *Ext, TypePromotionTransaction &TPT, +      InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, +      SmallVectorImpl<Instruction *> *Exts, +      SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI); + +  /// Utility function to promote the operand of \p Ext when this +  /// operand is promotable and is not a supported trunc or sext. +  /// \p PromotedInsts maps the instructions to their type before promotion. +  /// \p CreatedInstsCost[out] contains the cost of all the instructions +  /// created to promote the operand of Ext. +  /// Newly added extensions are inserted in \p Exts. +  /// Newly added truncates are inserted in \p Truncs. +  /// Should never be called directly. +  /// \return The promoted value which is used instead of Ext. +  static Value *promoteOperandForOther(Instruction *Ext, +                                       TypePromotionTransaction &TPT, +                                       InstrToOrigTy &PromotedInsts, +                                       unsigned &CreatedInstsCost, +                                       SmallVectorImpl<Instruction *> *Exts, +                                       SmallVectorImpl<Instruction *> *Truncs, +                                       const TargetLowering &TLI, bool IsSExt); + +  /// \see promoteOperandForOther. +  static Value *signExtendOperandForOther( +      Instruction *Ext, TypePromotionTransaction &TPT, +      InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, +      SmallVectorImpl<Instruction *> *Exts, +      SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { +    return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost, +                                  Exts, Truncs, TLI, true); +  } + +  /// \see promoteOperandForOther. +  static Value *zeroExtendOperandForOther( +      Instruction *Ext, TypePromotionTransaction &TPT, +      InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, +      SmallVectorImpl<Instruction *> *Exts, +      SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { +    return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost, +                                  Exts, Truncs, TLI, false); +  } + +public: +  /// Type for the utility function that promotes the operand of Ext. +  using Action = Value *(*)(Instruction *Ext, TypePromotionTransaction &TPT, +                            InstrToOrigTy &PromotedInsts, +                            unsigned &CreatedInstsCost, +                            SmallVectorImpl<Instruction *> *Exts, +                            SmallVectorImpl<Instruction *> *Truncs, +                            const TargetLowering &TLI); + +  /// Given a sign/zero extend instruction \p Ext, return the appropriate +  /// action to promote the operand of \p Ext instead of using Ext. +  /// \return NULL if no promotable action is possible with the current +  /// sign extension. +  /// \p InsertedInsts keeps track of all the instructions inserted by the +  /// other CodeGenPrepare optimizations. This information is important +  /// because we do not want to promote these instructions as CodeGenPrepare +  /// will reinsert them later. Thus creating an infinite loop: create/remove. +  /// \p PromotedInsts maps the instructions to their type before promotion. +  static Action getAction(Instruction *Ext, const SetOfInstrs &InsertedInsts, +                          const TargetLowering &TLI, +                          const InstrToOrigTy &PromotedInsts); +}; + +} // end anonymous namespace + +bool TypePromotionHelper::canGetThrough(const Instruction *Inst, +                                        Type *ConsideredExtType, +                                        const InstrToOrigTy &PromotedInsts, +                                        bool IsSExt) { +  // The promotion helper does not know how to deal with vector types yet. +  // To be able to fix that, we would need to fix the places where we +  // statically extend, e.g., constants and such. +  if (Inst->getType()->isVectorTy()) +    return false; + +  // We can always get through zext. +  if (isa<ZExtInst>(Inst)) +    return true; + +  // sext(sext) is ok too. +  if (IsSExt && isa<SExtInst>(Inst)) +    return true; + +  // We can get through binary operator, if it is legal. In other words, the +  // binary operator must have a nuw or nsw flag. +  if (const auto *BinOp = dyn_cast<BinaryOperator>(Inst)) +    if (isa<OverflowingBinaryOperator>(BinOp) && +        ((!IsSExt && BinOp->hasNoUnsignedWrap()) || +         (IsSExt && BinOp->hasNoSignedWrap()))) +      return true; + +  // ext(and(opnd, cst)) --> and(ext(opnd), ext(cst)) +  if ((Inst->getOpcode() == Instruction::And || +       Inst->getOpcode() == Instruction::Or)) +    return true; + +  // ext(xor(opnd, cst)) --> xor(ext(opnd), ext(cst)) +  if (Inst->getOpcode() == Instruction::Xor) { +    // Make sure it is not a NOT. +    if (const auto *Cst = dyn_cast<ConstantInt>(Inst->getOperand(1))) +      if (!Cst->getValue().isAllOnes()) +        return true; +  } + +  // zext(shrl(opnd, cst)) --> shrl(zext(opnd), zext(cst)) +  // It may change a poisoned value into a regular value, like +  //     zext i32 (shrl i8 %val, 12)  -->  shrl i32 (zext i8 %val), 12 +  //          poisoned value                    regular value +  // It should be OK since undef covers valid value. +  if (Inst->getOpcode() == Instruction::LShr && !IsSExt) +    return true; + +  // and(ext(shl(opnd, cst)), cst) --> and(shl(ext(opnd), ext(cst)), cst) +  // It may change a poisoned value into a regular value, like +  //     zext i32 (shl i8 %val, 12)  -->  shl i32 (zext i8 %val), 12 +  //          poisoned value                    regular value +  // It should be OK since undef covers valid value. +  if (Inst->getOpcode() == Instruction::Shl && Inst->hasOneUse()) { +    const auto *ExtInst = cast<const Instruction>(*Inst->user_begin()); +    if (ExtInst->hasOneUse()) { +      const auto *AndInst = dyn_cast<const Instruction>(*ExtInst->user_begin()); +      if (AndInst && AndInst->getOpcode() == Instruction::And) { +        const auto *Cst = dyn_cast<ConstantInt>(AndInst->getOperand(1)); +        if (Cst && +            Cst->getValue().isIntN(Inst->getType()->getIntegerBitWidth())) +          return true; +      } +    } +  } + +  // Check if we can do the following simplification. +  // ext(trunc(opnd)) --> ext(opnd) +  if (!isa<TruncInst>(Inst)) +    return false; + +  Value *OpndVal = Inst->getOperand(0); +  // Check if we can use this operand in the extension. +  // If the type is larger than the result type of the extension, we cannot. +  if (!OpndVal->getType()->isIntegerTy() || +      OpndVal->getType()->getIntegerBitWidth() > +          ConsideredExtType->getIntegerBitWidth()) +    return false; + +  // If the operand of the truncate is not an instruction, we will not have +  // any information on the dropped bits. +  // (Actually we could for constant but it is not worth the extra logic). +  Instruction *Opnd = dyn_cast<Instruction>(OpndVal); +  if (!Opnd) +    return false; + +  // Check if the source of the type is narrow enough. +  // I.e., check that trunc just drops extended bits of the same kind of +  // the extension. +  // #1 get the type of the operand and check the kind of the extended bits. +  const Type *OpndType = getOrigType(PromotedInsts, Opnd, IsSExt); +  if (OpndType) +    ; +  else if ((IsSExt && isa<SExtInst>(Opnd)) || (!IsSExt && isa<ZExtInst>(Opnd))) +    OpndType = Opnd->getOperand(0)->getType(); +  else +    return false; + +  // #2 check that the truncate just drops extended bits. +  return Inst->getType()->getIntegerBitWidth() >= +         OpndType->getIntegerBitWidth(); +} + +TypePromotionHelper::Action TypePromotionHelper::getAction( +    Instruction *Ext, const SetOfInstrs &InsertedInsts, +    const TargetLowering &TLI, const InstrToOrigTy &PromotedInsts) { +  assert((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && +         "Unexpected instruction type"); +  Instruction *ExtOpnd = dyn_cast<Instruction>(Ext->getOperand(0)); +  Type *ExtTy = Ext->getType(); +  bool IsSExt = isa<SExtInst>(Ext); +  // If the operand of the extension is not an instruction, we cannot +  // get through. +  // If it, check we can get through. +  if (!ExtOpnd || !canGetThrough(ExtOpnd, ExtTy, PromotedInsts, IsSExt)) +    return nullptr; + +  // Do not promote if the operand has been added by codegenprepare. +  // Otherwise, it means we are undoing an optimization that is likely to be +  // redone, thus causing potential infinite loop. +  if (isa<TruncInst>(ExtOpnd) && InsertedInsts.count(ExtOpnd)) +    return nullptr; + +  // SExt or Trunc instructions. +  // Return the related handler. +  if (isa<SExtInst>(ExtOpnd) || isa<TruncInst>(ExtOpnd) || +      isa<ZExtInst>(ExtOpnd)) +    return promoteOperandForTruncAndAnyExt; + +  // Regular instruction. +  // Abort early if we will have to insert non-free instructions. +  if (!ExtOpnd->hasOneUse() && !TLI.isTruncateFree(ExtTy, ExtOpnd->getType())) +    return nullptr; +  return IsSExt ? signExtendOperandForOther : zeroExtendOperandForOther; +} + +Value *TypePromotionHelper::promoteOperandForTruncAndAnyExt( +    Instruction *SExt, TypePromotionTransaction &TPT, +    InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, +    SmallVectorImpl<Instruction *> *Exts, +    SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { +  // By construction, the operand of SExt is an instruction. Otherwise we cannot +  // get through it and this method should not be called. +  Instruction *SExtOpnd = cast<Instruction>(SExt->getOperand(0)); +  Value *ExtVal = SExt; +  bool HasMergedNonFreeExt = false; +  if (isa<ZExtInst>(SExtOpnd)) { +    // Replace s|zext(zext(opnd)) +    // => zext(opnd). +    HasMergedNonFreeExt = !TLI.isExtFree(SExtOpnd); +    Value *ZExt = +        TPT.createZExt(SExt, SExtOpnd->getOperand(0), SExt->getType()); +    TPT.replaceAllUsesWith(SExt, ZExt); +    TPT.eraseInstruction(SExt); +    ExtVal = ZExt; +  } else { +    // Replace z|sext(trunc(opnd)) or sext(sext(opnd)) +    // => z|sext(opnd). +    TPT.setOperand(SExt, 0, SExtOpnd->getOperand(0)); +  } +  CreatedInstsCost = 0; + +  // Remove dead code. +  if (SExtOpnd->use_empty()) +    TPT.eraseInstruction(SExtOpnd); + +  // Check if the extension is still needed. +  Instruction *ExtInst = dyn_cast<Instruction>(ExtVal); +  if (!ExtInst || ExtInst->getType() != ExtInst->getOperand(0)->getType()) { +    if (ExtInst) { +      if (Exts) +        Exts->push_back(ExtInst); +      CreatedInstsCost = !TLI.isExtFree(ExtInst) && !HasMergedNonFreeExt; +    } +    return ExtVal; +  } + +  // At this point we have: ext ty opnd to ty. +  // Reassign the uses of ExtInst to the opnd and remove ExtInst. +  Value *NextVal = ExtInst->getOperand(0); +  TPT.eraseInstruction(ExtInst, NextVal); +  return NextVal; +} + +Value *TypePromotionHelper::promoteOperandForOther( +    Instruction *Ext, TypePromotionTransaction &TPT, +    InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, +    SmallVectorImpl<Instruction *> *Exts, +    SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI, +    bool IsSExt) { +  // By construction, the operand of Ext is an instruction. Otherwise we cannot +  // get through it and this method should not be called. +  Instruction *ExtOpnd = cast<Instruction>(Ext->getOperand(0)); +  CreatedInstsCost = 0; +  if (!ExtOpnd->hasOneUse()) { +    // ExtOpnd will be promoted. +    // All its uses, but Ext, will need to use a truncated value of the +    // promoted version. +    // Create the truncate now. +    Value *Trunc = TPT.createTrunc(Ext, ExtOpnd->getType()); +    if (Instruction *ITrunc = dyn_cast<Instruction>(Trunc)) { +      // Insert it just after the definition. +      ITrunc->moveAfter(ExtOpnd); +      if (Truncs) +        Truncs->push_back(ITrunc); +    } + +    TPT.replaceAllUsesWith(ExtOpnd, Trunc); +    // Restore the operand of Ext (which has been replaced by the previous call +    // to replaceAllUsesWith) to avoid creating a cycle trunc <-> sext. +    TPT.setOperand(Ext, 0, ExtOpnd); +  } + +  // Get through the Instruction: +  // 1. Update its type. +  // 2. Replace the uses of Ext by Inst. +  // 3. Extend each operand that needs to be extended. + +  // Remember the original type of the instruction before promotion. +  // This is useful to know that the high bits are sign extended bits. +  addPromotedInst(PromotedInsts, ExtOpnd, IsSExt); +  // Step #1. +  TPT.mutateType(ExtOpnd, Ext->getType()); +  // Step #2. +  TPT.replaceAllUsesWith(Ext, ExtOpnd); +  // Step #3. +  LLVM_DEBUG(dbgs() << "Propagate Ext to operands\n"); +  for (int OpIdx = 0, EndOpIdx = ExtOpnd->getNumOperands(); OpIdx != EndOpIdx; +       ++OpIdx) { +    LLVM_DEBUG(dbgs() << "Operand:\n" << *(ExtOpnd->getOperand(OpIdx)) << '\n'); +    if (ExtOpnd->getOperand(OpIdx)->getType() == Ext->getType() || +        !shouldExtOperand(ExtOpnd, OpIdx)) { +      LLVM_DEBUG(dbgs() << "No need to propagate\n"); +      continue; +    } +    // Check if we can statically extend the operand. +    Value *Opnd = ExtOpnd->getOperand(OpIdx); +    if (const ConstantInt *Cst = dyn_cast<ConstantInt>(Opnd)) { +      LLVM_DEBUG(dbgs() << "Statically extend\n"); +      unsigned BitWidth = Ext->getType()->getIntegerBitWidth(); +      APInt CstVal = IsSExt ? Cst->getValue().sext(BitWidth) +                            : Cst->getValue().zext(BitWidth); +      TPT.setOperand(ExtOpnd, OpIdx, ConstantInt::get(Ext->getType(), CstVal)); +      continue; +    } +    // UndefValue are typed, so we have to statically sign extend them. +    if (isa<UndefValue>(Opnd)) { +      LLVM_DEBUG(dbgs() << "Statically extend\n"); +      TPT.setOperand(ExtOpnd, OpIdx, UndefValue::get(Ext->getType())); +      continue; +    } + +    // Otherwise we have to explicitly sign extend the operand. +    Value *ValForExtOpnd = IsSExt +                               ? TPT.createSExt(ExtOpnd, Opnd, Ext->getType()) +                               : TPT.createZExt(ExtOpnd, Opnd, Ext->getType()); +    TPT.setOperand(ExtOpnd, OpIdx, ValForExtOpnd); +    Instruction *InstForExtOpnd = dyn_cast<Instruction>(ValForExtOpnd); +    if (!InstForExtOpnd) +      continue; + +    if (Exts) +      Exts->push_back(InstForExtOpnd); + +    CreatedInstsCost += !TLI.isExtFree(InstForExtOpnd); +  } +  LLVM_DEBUG(dbgs() << "Extension is useless now\n"); +  TPT.eraseInstruction(Ext); +  return ExtOpnd; +} + +/// Check whether or not promoting an instruction to a wider type is profitable. +/// \p NewCost gives the cost of extension instructions created by the +/// promotion. +/// \p OldCost gives the cost of extension instructions before the promotion +/// plus the number of instructions that have been +/// matched in the addressing mode the promotion. +/// \p PromotedOperand is the value that has been promoted. +/// \return True if the promotion is profitable, false otherwise. +bool AddressingModeMatcher::isPromotionProfitable( +    unsigned NewCost, unsigned OldCost, Value *PromotedOperand) const { +  LLVM_DEBUG(dbgs() << "OldCost: " << OldCost << "\tNewCost: " << NewCost +                    << '\n'); +  // The cost of the new extensions is greater than the cost of the +  // old extension plus what we folded. +  // This is not profitable. +  if (NewCost > OldCost) +    return false; +  if (NewCost < OldCost) +    return true; +  // The promotion is neutral but it may help folding the sign extension in +  // loads for instance. +  // Check that we did not create an illegal instruction. +  return isPromotedInstructionLegal(TLI, DL, PromotedOperand); +} + +/// Given an instruction or constant expr, see if we can fold the operation +/// into the addressing mode. If so, update the addressing mode and return +/// true, otherwise return false without modifying AddrMode. +/// If \p MovedAway is not NULL, it contains the information of whether or +/// not AddrInst has to be folded into the addressing mode on success. +/// If \p MovedAway == true, \p AddrInst will not be part of the addressing +/// because it has been moved away. +/// Thus AddrInst must not be added in the matched instructions. +/// This state can happen when AddrInst is a sext, since it may be moved away. +/// Therefore, AddrInst may not be valid when MovedAway is true and it must +/// not be referenced anymore. +bool AddressingModeMatcher::matchOperationAddr(User *AddrInst, unsigned Opcode, +                                               unsigned Depth, +                                               bool *MovedAway) { +  // Avoid exponential behavior on extremely deep expression trees. +  if (Depth >= 5) +    return false; + +  // By default, all matched instructions stay in place. +  if (MovedAway) +    *MovedAway = false; + +  switch (Opcode) { +  case Instruction::PtrToInt: +    // PtrToInt is always a noop, as we know that the int type is pointer sized. +    return matchAddr(AddrInst->getOperand(0), Depth); +  case Instruction::IntToPtr: { +    auto AS = AddrInst->getType()->getPointerAddressSpace(); +    auto PtrTy = MVT::getIntegerVT(DL.getPointerSizeInBits(AS)); +    // This inttoptr is a no-op if the integer type is pointer sized. +    if (TLI.getValueType(DL, AddrInst->getOperand(0)->getType()) == PtrTy) +      return matchAddr(AddrInst->getOperand(0), Depth); +    return false; +  } +  case Instruction::BitCast: +    // BitCast is always a noop, and we can handle it as long as it is +    // int->int or pointer->pointer (we don't want int<->fp or something). +    if (AddrInst->getOperand(0)->getType()->isIntOrPtrTy() && +        // Don't touch identity bitcasts.  These were probably put here by LSR, +        // and we don't want to mess around with them.  Assume it knows what it +        // is doing. +        AddrInst->getOperand(0)->getType() != AddrInst->getType()) +      return matchAddr(AddrInst->getOperand(0), Depth); +    return false; +  case Instruction::AddrSpaceCast: { +    unsigned SrcAS = +        AddrInst->getOperand(0)->getType()->getPointerAddressSpace(); +    unsigned DestAS = AddrInst->getType()->getPointerAddressSpace(); +    if (TLI.getTargetMachine().isNoopAddrSpaceCast(SrcAS, DestAS)) +      return matchAddr(AddrInst->getOperand(0), Depth); +    return false; +  } +  case Instruction::Add: { +    // Check to see if we can merge in one operand, then the other.  If so, we +    // win. +    ExtAddrMode BackupAddrMode = AddrMode; +    unsigned OldSize = AddrModeInsts.size(); +    // Start a transaction at this point. +    // The LHS may match but not the RHS. +    // Therefore, we need a higher level restoration point to undo partially +    // matched operation. +    TypePromotionTransaction::ConstRestorationPt LastKnownGood = +        TPT.getRestorationPoint(); + +    // Try to match an integer constant second to increase its chance of ending +    // up in `BaseOffs`, resp. decrease its chance of ending up in `BaseReg`. +    int First = 0, Second = 1; +    if (isa<ConstantInt>(AddrInst->getOperand(First)) +      && !isa<ConstantInt>(AddrInst->getOperand(Second))) +        std::swap(First, Second); +    AddrMode.InBounds = false; +    if (matchAddr(AddrInst->getOperand(First), Depth + 1) && +        matchAddr(AddrInst->getOperand(Second), Depth + 1)) +      return true; + +    // Restore the old addr mode info. +    AddrMode = BackupAddrMode; +    AddrModeInsts.resize(OldSize); +    TPT.rollback(LastKnownGood); + +    // Otherwise this was over-aggressive.  Try merging operands in the opposite +    // order. +    if (matchAddr(AddrInst->getOperand(Second), Depth + 1) && +        matchAddr(AddrInst->getOperand(First), Depth + 1)) +      return true; + +    // Otherwise we definitely can't merge the ADD in. +    AddrMode = BackupAddrMode; +    AddrModeInsts.resize(OldSize); +    TPT.rollback(LastKnownGood); +    break; +  } +  // case Instruction::Or: +  //  TODO: We can handle "Or Val, Imm" iff this OR is equivalent to an ADD. +  // break; +  case Instruction::Mul: +  case Instruction::Shl: { +    // Can only handle X*C and X << C. +    AddrMode.InBounds = false; +    ConstantInt *RHS = dyn_cast<ConstantInt>(AddrInst->getOperand(1)); +    if (!RHS || RHS->getBitWidth() > 64) +      return false; +    int64_t Scale = Opcode == Instruction::Shl +                        ? 1LL << RHS->getLimitedValue(RHS->getBitWidth() - 1) +                        : RHS->getSExtValue(); + +    return matchScaledValue(AddrInst->getOperand(0), Scale, Depth); +  } +  case Instruction::GetElementPtr: { +    // Scan the GEP.  We check it if it contains constant offsets and at most +    // one variable offset. +    int VariableOperand = -1; +    unsigned VariableScale = 0; + +    int64_t ConstantOffset = 0; +    gep_type_iterator GTI = gep_type_begin(AddrInst); +    for (unsigned i = 1, e = AddrInst->getNumOperands(); i != e; ++i, ++GTI) { +      if (StructType *STy = GTI.getStructTypeOrNull()) { +        const StructLayout *SL = DL.getStructLayout(STy); +        unsigned Idx = +            cast<ConstantInt>(AddrInst->getOperand(i))->getZExtValue(); +        ConstantOffset += SL->getElementOffset(Idx); +      } else { +        TypeSize TS = GTI.getSequentialElementStride(DL); +        if (TS.isNonZero()) { +          // The optimisations below currently only work for fixed offsets. +          if (TS.isScalable()) +            return false; +          int64_t TypeSize = TS.getFixedValue(); +          if (ConstantInt *CI = +                  dyn_cast<ConstantInt>(AddrInst->getOperand(i))) { +            const APInt &CVal = CI->getValue(); +            if (CVal.getSignificantBits() <= 64) { +              ConstantOffset += CVal.getSExtValue() * TypeSize; +              continue; +            } +          } +          // We only allow one variable index at the moment. +          if (VariableOperand != -1) +            return false; + +          // Remember the variable index. +          VariableOperand = i; +          VariableScale = TypeSize; +        } +      } +    } + +    // A common case is for the GEP to only do a constant offset.  In this case, +    // just add it to the disp field and check validity. +    if (VariableOperand == -1) { +      AddrMode.BaseOffs += ConstantOffset; +      if (matchAddr(AddrInst->getOperand(0), Depth + 1)) { +          if (!cast<GEPOperator>(AddrInst)->isInBounds()) +            AddrMode.InBounds = false; +          return true; +      } +      AddrMode.BaseOffs -= ConstantOffset; + +      if (EnableGEPOffsetSplit && isa<GetElementPtrInst>(AddrInst) && +          TLI.shouldConsiderGEPOffsetSplit() && Depth == 0 && +          ConstantOffset > 0) { +          // Record GEPs with non-zero offsets as candidates for splitting in +          // the event that the offset cannot fit into the r+i addressing mode. +          // Simple and common case that only one GEP is used in calculating the +          // address for the memory access. +          Value *Base = AddrInst->getOperand(0); +          auto *BaseI = dyn_cast<Instruction>(Base); +          auto *GEP = cast<GetElementPtrInst>(AddrInst); +          if (isa<Argument>(Base) || isa<GlobalValue>(Base) || +              (BaseI && !isa<CastInst>(BaseI) && +               !isa<GetElementPtrInst>(BaseI))) { +            // Make sure the parent block allows inserting non-PHI instructions +            // before the terminator. +            BasicBlock *Parent = BaseI ? BaseI->getParent() +                                       : &GEP->getFunction()->getEntryBlock(); +            if (!Parent->getTerminator()->isEHPad()) +            LargeOffsetGEP = std::make_pair(GEP, ConstantOffset); +          } +      } + +      return false; +    } + +    // Save the valid addressing mode in case we can't match. +    ExtAddrMode BackupAddrMode = AddrMode; +    unsigned OldSize = AddrModeInsts.size(); + +    // See if the scale and offset amount is valid for this target. +    AddrMode.BaseOffs += ConstantOffset; +    if (!cast<GEPOperator>(AddrInst)->isInBounds()) +      AddrMode.InBounds = false; + +    // Match the base operand of the GEP. +    if (!matchAddr(AddrInst->getOperand(0), Depth + 1)) { +      // If it couldn't be matched, just stuff the value in a register. +      if (AddrMode.HasBaseReg) { +        AddrMode = BackupAddrMode; +        AddrModeInsts.resize(OldSize); +        return false; +      } +      AddrMode.HasBaseReg = true; +      AddrMode.BaseReg = AddrInst->getOperand(0); +    } + +    // Match the remaining variable portion of the GEP. +    if (!matchScaledValue(AddrInst->getOperand(VariableOperand), VariableScale, +                          Depth)) { +      // If it couldn't be matched, try stuffing the base into a register +      // instead of matching it, and retrying the match of the scale. +      AddrMode = BackupAddrMode; +      AddrModeInsts.resize(OldSize); +      if (AddrMode.HasBaseReg) +        return false; +      AddrMode.HasBaseReg = true; +      AddrMode.BaseReg = AddrInst->getOperand(0); +      AddrMode.BaseOffs += ConstantOffset; +      if (!matchScaledValue(AddrInst->getOperand(VariableOperand), +                            VariableScale, Depth)) { +        // If even that didn't work, bail. +        AddrMode = BackupAddrMode; +        AddrModeInsts.resize(OldSize); +        return false; +      } +    } + +    return true; +  } +  case Instruction::SExt: +  case Instruction::ZExt: { +    Instruction *Ext = dyn_cast<Instruction>(AddrInst); +    if (!Ext) +      return false; + +    // Try to move this ext out of the way of the addressing mode. +    // Ask for a method for doing so. +    TypePromotionHelper::Action TPH = +        TypePromotionHelper::getAction(Ext, InsertedInsts, TLI, PromotedInsts); +    if (!TPH) +      return false; + +    TypePromotionTransaction::ConstRestorationPt LastKnownGood = +        TPT.getRestorationPoint(); +    unsigned CreatedInstsCost = 0; +    unsigned ExtCost = !TLI.isExtFree(Ext); +    Value *PromotedOperand = +        TPH(Ext, TPT, PromotedInsts, CreatedInstsCost, nullptr, nullptr, TLI); +    // SExt has been moved away. +    // Thus either it will be rematched later in the recursive calls or it is +    // gone. Anyway, we must not fold it into the addressing mode at this point. +    // E.g., +    // op = add opnd, 1 +    // idx = ext op +    // addr = gep base, idx +    // is now: +    // promotedOpnd = ext opnd            <- no match here +    // op = promoted_add promotedOpnd, 1  <- match (later in recursive calls) +    // addr = gep base, op                <- match +    if (MovedAway) +      *MovedAway = true; + +    assert(PromotedOperand && +           "TypePromotionHelper should have filtered out those cases"); + +    ExtAddrMode BackupAddrMode = AddrMode; +    unsigned OldSize = AddrModeInsts.size(); + +    if (!matchAddr(PromotedOperand, Depth) || +        // The total of the new cost is equal to the cost of the created +        // instructions. +        // The total of the old cost is equal to the cost of the extension plus +        // what we have saved in the addressing mode. +        !isPromotionProfitable(CreatedInstsCost, +                               ExtCost + (AddrModeInsts.size() - OldSize), +                               PromotedOperand)) { +      AddrMode = BackupAddrMode; +      AddrModeInsts.resize(OldSize); +      LLVM_DEBUG(dbgs() << "Sign extension does not pay off: rollback\n"); +      TPT.rollback(LastKnownGood); +      return false; +    } +    return true; +  } +  case Instruction::Call: +    if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(AddrInst)) { +      if (II->getIntrinsicID() == Intrinsic::threadlocal_address) { +        GlobalValue &GV = cast<GlobalValue>(*II->getArgOperand(0)); +        if (TLI.addressingModeSupportsTLS(GV)) +          return matchAddr(AddrInst->getOperand(0), Depth); +      } +    } +    break; +  } +  return false; +} + +/// If we can, try to add the value of 'Addr' into the current addressing mode. +/// If Addr can't be added to AddrMode this returns false and leaves AddrMode +/// unmodified. This assumes that Addr is either a pointer type or intptr_t +/// for the target. +/// +bool AddressingModeMatcher::matchAddr(Value *Addr, unsigned Depth) { +  // Start a transaction at this point that we will rollback if the matching +  // fails. +  TypePromotionTransaction::ConstRestorationPt LastKnownGood = +      TPT.getRestorationPoint(); +  if (ConstantInt *CI = dyn_cast<ConstantInt>(Addr)) { +    if (CI->getValue().isSignedIntN(64)) { +      // Fold in immediates if legal for the target. +      AddrMode.BaseOffs += CI->getSExtValue(); +      if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) +        return true; +      AddrMode.BaseOffs -= CI->getSExtValue(); +    } +  } else if (GlobalValue *GV = dyn_cast<GlobalValue>(Addr)) { +    // If this is a global variable, try to fold it into the addressing mode. +    if (!AddrMode.BaseGV) { +      AddrMode.BaseGV = GV; +      if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) +        return true; +      AddrMode.BaseGV = nullptr; +    } +  } else if (Instruction *I = dyn_cast<Instruction>(Addr)) { +    ExtAddrMode BackupAddrMode = AddrMode; +    unsigned OldSize = AddrModeInsts.size(); + +    // Check to see if it is possible to fold this operation. +    bool MovedAway = false; +    if (matchOperationAddr(I, I->getOpcode(), Depth, &MovedAway)) { +      // This instruction may have been moved away. If so, there is nothing +      // to check here. +      if (MovedAway) +        return true; +      // Okay, it's possible to fold this.  Check to see if it is actually +      // *profitable* to do so.  We use a simple cost model to avoid increasing +      // register pressure too much. +      if (I->hasOneUse() || +          isProfitableToFoldIntoAddressingMode(I, BackupAddrMode, AddrMode)) { +        AddrModeInsts.push_back(I); +        return true; +      } + +      // It isn't profitable to do this, roll back. +      AddrMode = BackupAddrMode; +      AddrModeInsts.resize(OldSize); +      TPT.rollback(LastKnownGood); +    } +  } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) { +    if (matchOperationAddr(CE, CE->getOpcode(), Depth)) +      return true; +    TPT.rollback(LastKnownGood); +  } else if (isa<ConstantPointerNull>(Addr)) { +    // Null pointer gets folded without affecting the addressing mode. +    return true; +  } + +  // Worse case, the target should support [reg] addressing modes. :) +  if (!AddrMode.HasBaseReg) { +    AddrMode.HasBaseReg = true; +    AddrMode.BaseReg = Addr; +    // Still check for legality in case the target supports [imm] but not [i+r]. +    if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) +      return true; +    AddrMode.HasBaseReg = false; +    AddrMode.BaseReg = nullptr; +  } + +  // If the base register is already taken, see if we can do [r+r]. +  if (AddrMode.Scale == 0) { +    AddrMode.Scale = 1; +    AddrMode.ScaledReg = Addr; +    if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) +      return true; +    AddrMode.Scale = 0; +    AddrMode.ScaledReg = nullptr; +  } +  // Couldn't match. +  TPT.rollback(LastKnownGood); +  return false; +} + +/// Check to see if all uses of OpVal by the specified inline asm call are due +/// to memory operands. If so, return true, otherwise return false. +static bool IsOperandAMemoryOperand(CallInst *CI, InlineAsm *IA, Value *OpVal, +                                    const TargetLowering &TLI, +                                    const TargetRegisterInfo &TRI) { +  const Function *F = CI->getFunction(); +  TargetLowering::AsmOperandInfoVector TargetConstraints = +      TLI.ParseConstraints(F->getDataLayout(), &TRI, *CI); + +  for (TargetLowering::AsmOperandInfo &OpInfo : TargetConstraints) { +    // Compute the constraint code and ConstraintType to use. +    TLI.ComputeConstraintToUse(OpInfo, SDValue()); + +    // If this asm operand is our Value*, and if it isn't an indirect memory +    // operand, we can't fold it!  TODO: Also handle C_Address? +    if (OpInfo.CallOperandVal == OpVal && +        (OpInfo.ConstraintType != TargetLowering::C_Memory || +         !OpInfo.isIndirect)) +      return false; +  } + +  return true; +} + +/// Recursively walk all the uses of I until we find a memory use. +/// If we find an obviously non-foldable instruction, return true. +/// Add accessed addresses and types to MemoryUses. +static bool FindAllMemoryUses( +    Instruction *I, SmallVectorImpl<std::pair<Use *, Type *>> &MemoryUses, +    SmallPtrSetImpl<Instruction *> &ConsideredInsts, const TargetLowering &TLI, +    const TargetRegisterInfo &TRI, bool OptSize, ProfileSummaryInfo *PSI, +    BlockFrequencyInfo *BFI, unsigned &SeenInsts) { +  // If we already considered this instruction, we're done. +  if (!ConsideredInsts.insert(I).second) +    return false; + +  // If this is an obviously unfoldable instruction, bail out. +  if (!MightBeFoldableInst(I)) +    return true; + +  // Loop over all the uses, recursively processing them. +  for (Use &U : I->uses()) { +    // Conservatively return true if we're seeing a large number or a deep chain +    // of users. This avoids excessive compilation times in pathological cases. +    if (SeenInsts++ >= MaxAddressUsersToScan) +      return true; + +    Instruction *UserI = cast<Instruction>(U.getUser()); +    if (LoadInst *LI = dyn_cast<LoadInst>(UserI)) { +      MemoryUses.push_back({&U, LI->getType()}); +      continue; +    } + +    if (StoreInst *SI = dyn_cast<StoreInst>(UserI)) { +      if (U.getOperandNo() != StoreInst::getPointerOperandIndex()) +        return true; // Storing addr, not into addr. +      MemoryUses.push_back({&U, SI->getValueOperand()->getType()}); +      continue; +    } + +    if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(UserI)) { +      if (U.getOperandNo() != AtomicRMWInst::getPointerOperandIndex()) +        return true; // Storing addr, not into addr. +      MemoryUses.push_back({&U, RMW->getValOperand()->getType()}); +      continue; +    } + +    if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(UserI)) { +      if (U.getOperandNo() != AtomicCmpXchgInst::getPointerOperandIndex()) +        return true; // Storing addr, not into addr. +      MemoryUses.push_back({&U, CmpX->getCompareOperand()->getType()}); +      continue; +    } + +    if (CallInst *CI = dyn_cast<CallInst>(UserI)) { +      if (CI->hasFnAttr(Attribute::Cold)) { +        // If this is a cold call, we can sink the addressing calculation into +        // the cold path.  See optimizeCallInst +        bool OptForSize = +            OptSize || llvm::shouldOptimizeForSize(CI->getParent(), PSI, BFI); +        if (!OptForSize) +          continue; +      } + +      InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledOperand()); +      if (!IA) +        return true; + +      // If this is a memory operand, we're cool, otherwise bail out. +      if (!IsOperandAMemoryOperand(CI, IA, I, TLI, TRI)) +        return true; +      continue; +    } + +    if (FindAllMemoryUses(UserI, MemoryUses, ConsideredInsts, TLI, TRI, OptSize, +                          PSI, BFI, SeenInsts)) +      return true; +  } + +  return false; +} + +static bool FindAllMemoryUses( +    Instruction *I, SmallVectorImpl<std::pair<Use *, Type *>> &MemoryUses, +    const TargetLowering &TLI, const TargetRegisterInfo &TRI, bool OptSize, +    ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI) { +  unsigned SeenInsts = 0; +  SmallPtrSet<Instruction *, 16> ConsideredInsts; +  return FindAllMemoryUses(I, MemoryUses, ConsideredInsts, TLI, TRI, OptSize, +                           PSI, BFI, SeenInsts); +} + + +/// Return true if Val is already known to be live at the use site that we're +/// folding it into. If so, there is no cost to include it in the addressing +/// mode. KnownLive1 and KnownLive2 are two values that we know are live at the +/// instruction already. +bool AddressingModeMatcher::valueAlreadyLiveAtInst(Value *Val, +                                                   Value *KnownLive1, +                                                   Value *KnownLive2) { +  // If Val is either of the known-live values, we know it is live! +  if (Val == nullptr || Val == KnownLive1 || Val == KnownLive2) +    return true; + +  // All values other than instructions and arguments (e.g. constants) are live. +  if (!isa<Instruction>(Val) && !isa<Argument>(Val)) +    return true; + +  // If Val is a constant sized alloca in the entry block, it is live, this is +  // true because it is just a reference to the stack/frame pointer, which is +  // live for the whole function. +  if (AllocaInst *AI = dyn_cast<AllocaInst>(Val)) +    if (AI->isStaticAlloca()) +      return true; + +  // Check to see if this value is already used in the memory instruction's +  // block.  If so, it's already live into the block at the very least, so we +  // can reasonably fold it. +  return Val->isUsedInBasicBlock(MemoryInst->getParent()); +} + +/// It is possible for the addressing mode of the machine to fold the specified +/// instruction into a load or store that ultimately uses it. +/// However, the specified instruction has multiple uses. +/// Given this, it may actually increase register pressure to fold it +/// into the load. For example, consider this code: +/// +///     X = ... +///     Y = X+1 +///     use(Y)   -> nonload/store +///     Z = Y+1 +///     load Z +/// +/// In this case, Y has multiple uses, and can be folded into the load of Z +/// (yielding load [X+2]).  However, doing this will cause both "X" and "X+1" to +/// be live at the use(Y) line.  If we don't fold Y into load Z, we use one +/// fewer register.  Since Y can't be folded into "use(Y)" we don't increase the +/// number of computations either. +/// +/// Note that this (like most of CodeGenPrepare) is just a rough heuristic.  If +/// X was live across 'load Z' for other reasons, we actually *would* want to +/// fold the addressing mode in the Z case.  This would make Y die earlier. +bool AddressingModeMatcher::isProfitableToFoldIntoAddressingMode( +    Instruction *I, ExtAddrMode &AMBefore, ExtAddrMode &AMAfter) { +  if (IgnoreProfitability) +    return true; + +  // AMBefore is the addressing mode before this instruction was folded into it, +  // and AMAfter is the addressing mode after the instruction was folded.  Get +  // the set of registers referenced by AMAfter and subtract out those +  // referenced by AMBefore: this is the set of values which folding in this +  // address extends the lifetime of. +  // +  // Note that there are only two potential values being referenced here, +  // BaseReg and ScaleReg (global addresses are always available, as are any +  // folded immediates). +  Value *BaseReg = AMAfter.BaseReg, *ScaledReg = AMAfter.ScaledReg; + +  // If the BaseReg or ScaledReg was referenced by the previous addrmode, their +  // lifetime wasn't extended by adding this instruction. +  if (valueAlreadyLiveAtInst(BaseReg, AMBefore.BaseReg, AMBefore.ScaledReg)) +    BaseReg = nullptr; +  if (valueAlreadyLiveAtInst(ScaledReg, AMBefore.BaseReg, AMBefore.ScaledReg)) +    ScaledReg = nullptr; + +  // If folding this instruction (and it's subexprs) didn't extend any live +  // ranges, we're ok with it. +  if (!BaseReg && !ScaledReg) +    return true; + +  // If all uses of this instruction can have the address mode sunk into them, +  // we can remove the addressing mode and effectively trade one live register +  // for another (at worst.)  In this context, folding an addressing mode into +  // the use is just a particularly nice way of sinking it. +  SmallVector<std::pair<Use *, Type *>, 16> MemoryUses; +  if (FindAllMemoryUses(I, MemoryUses, TLI, TRI, OptSize, PSI, BFI)) +    return false; // Has a non-memory, non-foldable use! + +  // Now that we know that all uses of this instruction are part of a chain of +  // computation involving only operations that could theoretically be folded +  // into a memory use, loop over each of these memory operation uses and see +  // if they could  *actually* fold the instruction.  The assumption is that +  // addressing modes are cheap and that duplicating the computation involved +  // many times is worthwhile, even on a fastpath. For sinking candidates +  // (i.e. cold call sites), this serves as a way to prevent excessive code +  // growth since most architectures have some reasonable small and fast way to +  // compute an effective address.  (i.e LEA on x86) +  SmallVector<Instruction *, 32> MatchedAddrModeInsts; +  for (const std::pair<Use *, Type *> &Pair : MemoryUses) { +    Value *Address = Pair.first->get(); +    Instruction *UserI = cast<Instruction>(Pair.first->getUser()); +    Type *AddressAccessTy = Pair.second; +    unsigned AS = Address->getType()->getPointerAddressSpace(); + +    // Do a match against the root of this address, ignoring profitability. This +    // will tell us if the addressing mode for the memory operation will +    // *actually* cover the shared instruction. +    ExtAddrMode Result; +    std::pair<AssertingVH<GetElementPtrInst>, int64_t> LargeOffsetGEP(nullptr, +                                                                      0); +    TypePromotionTransaction::ConstRestorationPt LastKnownGood = +        TPT.getRestorationPoint(); +    AddressingModeMatcher Matcher(MatchedAddrModeInsts, TLI, TRI, LI, getDTFn, +                                  AddressAccessTy, AS, UserI, Result, +                                  InsertedInsts, PromotedInsts, TPT, +                                  LargeOffsetGEP, OptSize, PSI, BFI); +    Matcher.IgnoreProfitability = true; +    bool Success = Matcher.matchAddr(Address, 0); +    (void)Success; +    assert(Success && "Couldn't select *anything*?"); + +    // The match was to check the profitability, the changes made are not +    // part of the original matcher. Therefore, they should be dropped +    // otherwise the original matcher will not present the right state. +    TPT.rollback(LastKnownGood); + +    // If the match didn't cover I, then it won't be shared by it. +    if (!is_contained(MatchedAddrModeInsts, I)) +      return false; + +    MatchedAddrModeInsts.clear(); +  } + +  return true; +} + +/// Return true if the specified values are defined in a +/// different basic block than BB. +static bool IsNonLocalValue(Value *V, BasicBlock *BB) { +  if (Instruction *I = dyn_cast<Instruction>(V)) +    return I->getParent() != BB; +  return false; +} + +/// Sink addressing mode computation immediate before MemoryInst if doing so +/// can be done without increasing register pressure.  The need for the +/// register pressure constraint means this can end up being an all or nothing +/// decision for all uses of the same addressing computation. +/// +/// Load and Store Instructions often have addressing modes that can do +/// significant amounts of computation. As such, instruction selection will try +/// to get the load or store to do as much computation as possible for the +/// program. The problem is that isel can only see within a single block. As +/// such, we sink as much legal addressing mode work into the block as possible. +/// +/// This method is used to optimize both load/store and inline asms with memory +/// operands.  It's also used to sink addressing computations feeding into cold +/// call sites into their (cold) basic block. +/// +/// The motivation for handling sinking into cold blocks is that doing so can +/// both enable other address mode sinking (by satisfying the register pressure +/// constraint above), and reduce register pressure globally (by removing the +/// addressing mode computation from the fast path entirely.). +bool CodeGenPrepare::optimizeMemoryInst(Instruction *MemoryInst, Value *Addr, +                                        Type *AccessTy, unsigned AddrSpace) { +  Value *Repl = Addr; + +  // Try to collapse single-value PHI nodes.  This is necessary to undo +  // unprofitable PRE transformations. +  SmallVector<Value *, 8> worklist; +  SmallPtrSet<Value *, 16> Visited; +  worklist.push_back(Addr); + +  // Use a worklist to iteratively look through PHI and select nodes, and +  // ensure that the addressing mode obtained from the non-PHI/select roots of +  // the graph are compatible. +  bool PhiOrSelectSeen = false; +  SmallVector<Instruction *, 16> AddrModeInsts; +  const SimplifyQuery SQ(*DL, TLInfo); +  AddressingModeCombiner AddrModes(SQ, Addr); +  TypePromotionTransaction TPT(RemovedInsts); +  TypePromotionTransaction::ConstRestorationPt LastKnownGood = +      TPT.getRestorationPoint(); +  while (!worklist.empty()) { +    Value *V = worklist.pop_back_val(); + +    // We allow traversing cyclic Phi nodes. +    // In case of success after this loop we ensure that traversing through +    // Phi nodes ends up with all cases to compute address of the form +    //    BaseGV + Base + Scale * Index + Offset +    // where Scale and Offset are constans and BaseGV, Base and Index +    // are exactly the same Values in all cases. +    // It means that BaseGV, Scale and Offset dominate our memory instruction +    // and have the same value as they had in address computation represented +    // as Phi. So we can safely sink address computation to memory instruction. +    if (!Visited.insert(V).second) +      continue; + +    // For a PHI node, push all of its incoming values. +    if (PHINode *P = dyn_cast<PHINode>(V)) { +      append_range(worklist, P->incoming_values()); +      PhiOrSelectSeen = true; +      continue; +    } +    // Similar for select. +    if (SelectInst *SI = dyn_cast<SelectInst>(V)) { +      worklist.push_back(SI->getFalseValue()); +      worklist.push_back(SI->getTrueValue()); +      PhiOrSelectSeen = true; +      continue; +    } + +    // For non-PHIs, determine the addressing mode being computed.  Note that +    // the result may differ depending on what other uses our candidate +    // addressing instructions might have. +    AddrModeInsts.clear(); +    std::pair<AssertingVH<GetElementPtrInst>, int64_t> LargeOffsetGEP(nullptr, +                                                                      0); +    // Defer the query (and possible computation of) the dom tree to point of +    // actual use.  It's expected that most address matches don't actually need +    // the domtree. +    auto getDTFn = [MemoryInst, this]() -> const DominatorTree & { +      Function *F = MemoryInst->getParent()->getParent(); +      return this->getDT(*F); +    }; +    ExtAddrMode NewAddrMode = AddressingModeMatcher::Match( +        V, AccessTy, AddrSpace, MemoryInst, AddrModeInsts, *TLI, *LI, getDTFn, +        *TRI, InsertedInsts, PromotedInsts, TPT, LargeOffsetGEP, OptSize, PSI, +        BFI.get()); + +    GetElementPtrInst *GEP = LargeOffsetGEP.first; +    if (GEP && !NewGEPBases.count(GEP)) { +      // If splitting the underlying data structure can reduce the offset of a +      // GEP, collect the GEP.  Skip the GEPs that are the new bases of +      // previously split data structures. +      LargeOffsetGEPMap[GEP->getPointerOperand()].push_back(LargeOffsetGEP); +      LargeOffsetGEPID.insert(std::make_pair(GEP, LargeOffsetGEPID.size())); +    } + +    NewAddrMode.OriginalValue = V; +    if (!AddrModes.addNewAddrMode(NewAddrMode)) +      break; +  } + +  // Try to combine the AddrModes we've collected. If we couldn't collect any, +  // or we have multiple but either couldn't combine them or combining them +  // wouldn't do anything useful, bail out now. +  if (!AddrModes.combineAddrModes()) { +    TPT.rollback(LastKnownGood); +    return false; +  } +  bool Modified = TPT.commit(); + +  // Get the combined AddrMode (or the only AddrMode, if we only had one). +  ExtAddrMode AddrMode = AddrModes.getAddrMode(); + +  // If all the instructions matched are already in this BB, don't do anything. +  // If we saw a Phi node then it is not local definitely, and if we saw a +  // select then we want to push the address calculation past it even if it's +  // already in this BB. +  if (!PhiOrSelectSeen && none_of(AddrModeInsts, [&](Value *V) { +        return IsNonLocalValue(V, MemoryInst->getParent()); +      })) { +    LLVM_DEBUG(dbgs() << "CGP: Found      local addrmode: " << AddrMode +                      << "\n"); +    return Modified; +  } + +  // Insert this computation right after this user.  Since our caller is +  // scanning from the top of the BB to the bottom, reuse of the expr are +  // guaranteed to happen later. +  IRBuilder<> Builder(MemoryInst); + +  // Now that we determined the addressing expression we want to use and know +  // that we have to sink it into this block.  Check to see if we have already +  // done this for some other load/store instr in this block.  If so, reuse +  // the computation.  Before attempting reuse, check if the address is valid +  // as it may have been erased. + +  WeakTrackingVH SunkAddrVH = SunkAddrs[Addr]; + +  Value *SunkAddr = SunkAddrVH.pointsToAliveValue() ? SunkAddrVH : nullptr; +  Type *IntPtrTy = DL->getIntPtrType(Addr->getType()); +  if (SunkAddr) { +    LLVM_DEBUG(dbgs() << "CGP: Reusing nonlocal addrmode: " << AddrMode +                      << " for " << *MemoryInst << "\n"); +    if (SunkAddr->getType() != Addr->getType()) { +      if (SunkAddr->getType()->getPointerAddressSpace() != +              Addr->getType()->getPointerAddressSpace() && +          !DL->isNonIntegralPointerType(Addr->getType())) { +        // There are two reasons the address spaces might not match: a no-op +        // addrspacecast, or a ptrtoint/inttoptr pair. Either way, we emit a +        // ptrtoint/inttoptr pair to ensure we match the original semantics. +        // TODO: allow bitcast between different address space pointers with the +        // same size. +        SunkAddr = Builder.CreatePtrToInt(SunkAddr, IntPtrTy, "sunkaddr"); +        SunkAddr = +            Builder.CreateIntToPtr(SunkAddr, Addr->getType(), "sunkaddr"); +      } else +        SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType()); +    } +  } else if (AddrSinkUsingGEPs || (!AddrSinkUsingGEPs.getNumOccurrences() && +                                   SubtargetInfo->addrSinkUsingGEPs())) { +    // By default, we use the GEP-based method when AA is used later. This +    // prevents new inttoptr/ptrtoint pairs from degrading AA capabilities. +    LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode +                      << " for " << *MemoryInst << "\n"); +    Value *ResultPtr = nullptr, *ResultIndex = nullptr; + +    // First, find the pointer. +    if (AddrMode.BaseReg && AddrMode.BaseReg->getType()->isPointerTy()) { +      ResultPtr = AddrMode.BaseReg; +      AddrMode.BaseReg = nullptr; +    } + +    if (AddrMode.Scale && AddrMode.ScaledReg->getType()->isPointerTy()) { +      // We can't add more than one pointer together, nor can we scale a +      // pointer (both of which seem meaningless). +      if (ResultPtr || AddrMode.Scale != 1) +        return Modified; + +      ResultPtr = AddrMode.ScaledReg; +      AddrMode.Scale = 0; +    } + +    // It is only safe to sign extend the BaseReg if we know that the math +    // required to create it did not overflow before we extend it. Since +    // the original IR value was tossed in favor of a constant back when +    // the AddrMode was created we need to bail out gracefully if widths +    // do not match instead of extending it. +    // +    // (See below for code to add the scale.) +    if (AddrMode.Scale) { +      Type *ScaledRegTy = AddrMode.ScaledReg->getType(); +      if (cast<IntegerType>(IntPtrTy)->getBitWidth() > +          cast<IntegerType>(ScaledRegTy)->getBitWidth()) +        return Modified; +    } + +    GlobalValue *BaseGV = AddrMode.BaseGV; +    if (BaseGV != nullptr) { +      if (ResultPtr) +        return Modified; + +      if (BaseGV->isThreadLocal()) { +        ResultPtr = Builder.CreateThreadLocalAddress(BaseGV); +      } else { +        ResultPtr = BaseGV; +      } +    } + +    // If the real base value actually came from an inttoptr, then the matcher +    // will look through it and provide only the integer value. In that case, +    // use it here. +    if (!DL->isNonIntegralPointerType(Addr->getType())) { +      if (!ResultPtr && AddrMode.BaseReg) { +        ResultPtr = Builder.CreateIntToPtr(AddrMode.BaseReg, Addr->getType(), +                                           "sunkaddr"); +        AddrMode.BaseReg = nullptr; +      } else if (!ResultPtr && AddrMode.Scale == 1) { +        ResultPtr = Builder.CreateIntToPtr(AddrMode.ScaledReg, Addr->getType(), +                                           "sunkaddr"); +        AddrMode.Scale = 0; +      } +    } + +    if (!ResultPtr && !AddrMode.BaseReg && !AddrMode.Scale && +        !AddrMode.BaseOffs) { +      SunkAddr = Constant::getNullValue(Addr->getType()); +    } else if (!ResultPtr) { +      return Modified; +    } else { +      Type *I8PtrTy = +          Builder.getPtrTy(Addr->getType()->getPointerAddressSpace()); + +      // Start with the base register. Do this first so that subsequent address +      // matching finds it last, which will prevent it from trying to match it +      // as the scaled value in case it happens to be a mul. That would be +      // problematic if we've sunk a different mul for the scale, because then +      // we'd end up sinking both muls. +      if (AddrMode.BaseReg) { +        Value *V = AddrMode.BaseReg; +        if (V->getType() != IntPtrTy) +          V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); + +        ResultIndex = V; +      } + +      // Add the scale value. +      if (AddrMode.Scale) { +        Value *V = AddrMode.ScaledReg; +        if (V->getType() == IntPtrTy) { +          // done. +        } else { +          assert(cast<IntegerType>(IntPtrTy)->getBitWidth() < +                     cast<IntegerType>(V->getType())->getBitWidth() && +                 "We can't transform if ScaledReg is too narrow"); +          V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); +        } + +        if (AddrMode.Scale != 1) +          V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), +                                "sunkaddr"); +        if (ResultIndex) +          ResultIndex = Builder.CreateAdd(ResultIndex, V, "sunkaddr"); +        else +          ResultIndex = V; +      } + +      // Add in the Base Offset if present. +      if (AddrMode.BaseOffs) { +        Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); +        if (ResultIndex) { +          // We need to add this separately from the scale above to help with +          // SDAG consecutive load/store merging. +          if (ResultPtr->getType() != I8PtrTy) +            ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy); +          ResultPtr = Builder.CreatePtrAdd(ResultPtr, ResultIndex, "sunkaddr", +                                           AddrMode.InBounds); +        } + +        ResultIndex = V; +      } + +      if (!ResultIndex) { +        SunkAddr = ResultPtr; +      } else { +        if (ResultPtr->getType() != I8PtrTy) +          ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy); +        SunkAddr = Builder.CreatePtrAdd(ResultPtr, ResultIndex, "sunkaddr", +                                        AddrMode.InBounds); +      } + +      if (SunkAddr->getType() != Addr->getType()) { +        if (SunkAddr->getType()->getPointerAddressSpace() != +                Addr->getType()->getPointerAddressSpace() && +            !DL->isNonIntegralPointerType(Addr->getType())) { +          // There are two reasons the address spaces might not match: a no-op +          // addrspacecast, or a ptrtoint/inttoptr pair. Either way, we emit a +          // ptrtoint/inttoptr pair to ensure we match the original semantics. +          // TODO: allow bitcast between different address space pointers with +          // the same size. +          SunkAddr = Builder.CreatePtrToInt(SunkAddr, IntPtrTy, "sunkaddr"); +          SunkAddr = +              Builder.CreateIntToPtr(SunkAddr, Addr->getType(), "sunkaddr"); +        } else +          SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType()); +      } +    } +  } else { +    // We'd require a ptrtoint/inttoptr down the line, which we can't do for +    // non-integral pointers, so in that case bail out now. +    Type *BaseTy = AddrMode.BaseReg ? AddrMode.BaseReg->getType() : nullptr; +    Type *ScaleTy = AddrMode.Scale ? AddrMode.ScaledReg->getType() : nullptr; +    PointerType *BasePtrTy = dyn_cast_or_null<PointerType>(BaseTy); +    PointerType *ScalePtrTy = dyn_cast_or_null<PointerType>(ScaleTy); +    if (DL->isNonIntegralPointerType(Addr->getType()) || +        (BasePtrTy && DL->isNonIntegralPointerType(BasePtrTy)) || +        (ScalePtrTy && DL->isNonIntegralPointerType(ScalePtrTy)) || +        (AddrMode.BaseGV && +         DL->isNonIntegralPointerType(AddrMode.BaseGV->getType()))) +      return Modified; + +    LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode +                      << " for " << *MemoryInst << "\n"); +    Type *IntPtrTy = DL->getIntPtrType(Addr->getType()); +    Value *Result = nullptr; + +    // Start with the base register. Do this first so that subsequent address +    // matching finds it last, which will prevent it from trying to match it +    // as the scaled value in case it happens to be a mul. That would be +    // problematic if we've sunk a different mul for the scale, because then +    // we'd end up sinking both muls. +    if (AddrMode.BaseReg) { +      Value *V = AddrMode.BaseReg; +      if (V->getType()->isPointerTy()) +        V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); +      if (V->getType() != IntPtrTy) +        V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); +      Result = V; +    } + +    // Add the scale value. +    if (AddrMode.Scale) { +      Value *V = AddrMode.ScaledReg; +      if (V->getType() == IntPtrTy) { +        // done. +      } else if (V->getType()->isPointerTy()) { +        V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); +      } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() < +                 cast<IntegerType>(V->getType())->getBitWidth()) { +        V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); +      } else { +        // It is only safe to sign extend the BaseReg if we know that the math +        // required to create it did not overflow before we extend it. Since +        // the original IR value was tossed in favor of a constant back when +        // the AddrMode was created we need to bail out gracefully if widths +        // do not match instead of extending it. +        Instruction *I = dyn_cast_or_null<Instruction>(Result); +        if (I && (Result != AddrMode.BaseReg)) +          I->eraseFromParent(); +        return Modified; +      } +      if (AddrMode.Scale != 1) +        V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), +                              "sunkaddr"); +      if (Result) +        Result = Builder.CreateAdd(Result, V, "sunkaddr"); +      else +        Result = V; +    } + +    // Add in the BaseGV if present. +    GlobalValue *BaseGV = AddrMode.BaseGV; +    if (BaseGV != nullptr) { +      Value *BaseGVPtr; +      if (BaseGV->isThreadLocal()) { +        BaseGVPtr = Builder.CreateThreadLocalAddress(BaseGV); +      } else { +        BaseGVPtr = BaseGV; +      } +      Value *V = Builder.CreatePtrToInt(BaseGVPtr, IntPtrTy, "sunkaddr"); +      if (Result) +        Result = Builder.CreateAdd(Result, V, "sunkaddr"); +      else +        Result = V; +    } + +    // Add in the Base Offset if present. +    if (AddrMode.BaseOffs) { +      Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); +      if (Result) +        Result = Builder.CreateAdd(Result, V, "sunkaddr"); +      else +        Result = V; +    } + +    if (!Result) +      SunkAddr = Constant::getNullValue(Addr->getType()); +    else +      SunkAddr = Builder.CreateIntToPtr(Result, Addr->getType(), "sunkaddr"); +  } + +  MemoryInst->replaceUsesOfWith(Repl, SunkAddr); +  // Store the newly computed address into the cache. In the case we reused a +  // value, this should be idempotent. +  SunkAddrs[Addr] = WeakTrackingVH(SunkAddr); + +  // If we have no uses, recursively delete the value and all dead instructions +  // using it. +  if (Repl->use_empty()) { +    resetIteratorIfInvalidatedWhileCalling(CurInstIterator->getParent(), [&]() { +      RecursivelyDeleteTriviallyDeadInstructions( +          Repl, TLInfo, nullptr, +          [&](Value *V) { removeAllAssertingVHReferences(V); }); +    }); +  } +  ++NumMemoryInsts; +  return true; +} + +/// Rewrite GEP input to gather/scatter to enable SelectionDAGBuilder to find +/// a uniform base to use for ISD::MGATHER/MSCATTER. SelectionDAGBuilder can +/// only handle a 2 operand GEP in the same basic block or a splat constant +/// vector. The 2 operands to the GEP must have a scalar pointer and a vector +/// index. +/// +/// If the existing GEP has a vector base pointer that is splat, we can look +/// through the splat to find the scalar pointer. If we can't find a scalar +/// pointer there's nothing we can do. +/// +/// If we have a GEP with more than 2 indices where the middle indices are all +/// zeroes, we can replace it with 2 GEPs where the second has 2 operands. +/// +/// If the final index isn't a vector or is a splat, we can emit a scalar GEP +/// followed by a GEP with an all zeroes vector index. This will enable +/// SelectionDAGBuilder to use the scalar GEP as the uniform base and have a +/// zero index. +bool CodeGenPrepare::optimizeGatherScatterInst(Instruction *MemoryInst, +                                               Value *Ptr) { +  Value *NewAddr; + +  if (const auto *GEP = dyn_cast<GetElementPtrInst>(Ptr)) { +    // Don't optimize GEPs that don't have indices. +    if (!GEP->hasIndices()) +      return false; + +    // If the GEP and the gather/scatter aren't in the same BB, don't optimize. +    // FIXME: We should support this by sinking the GEP. +    if (MemoryInst->getParent() != GEP->getParent()) +      return false; + +    SmallVector<Value *, 2> Ops(GEP->operands()); + +    bool RewriteGEP = false; + +    if (Ops[0]->getType()->isVectorTy()) { +      Ops[0] = getSplatValue(Ops[0]); +      if (!Ops[0]) +        return false; +      RewriteGEP = true; +    } + +    unsigned FinalIndex = Ops.size() - 1; + +    // Ensure all but the last index is 0. +    // FIXME: This isn't strictly required. All that's required is that they are +    // all scalars or splats. +    for (unsigned i = 1; i < FinalIndex; ++i) { +      auto *C = dyn_cast<Constant>(Ops[i]); +      if (!C) +        return false; +      if (isa<VectorType>(C->getType())) +        C = C->getSplatValue(); +      auto *CI = dyn_cast_or_null<ConstantInt>(C); +      if (!CI || !CI->isZero()) +        return false; +      // Scalarize the index if needed. +      Ops[i] = CI; +    } + +    // Try to scalarize the final index. +    if (Ops[FinalIndex]->getType()->isVectorTy()) { +      if (Value *V = getSplatValue(Ops[FinalIndex])) { +        auto *C = dyn_cast<ConstantInt>(V); +        // Don't scalarize all zeros vector. +        if (!C || !C->isZero()) { +          Ops[FinalIndex] = V; +          RewriteGEP = true; +        } +      } +    } + +    // If we made any changes or the we have extra operands, we need to generate +    // new instructions. +    if (!RewriteGEP && Ops.size() == 2) +      return false; + +    auto NumElts = cast<VectorType>(Ptr->getType())->getElementCount(); + +    IRBuilder<> Builder(MemoryInst); + +    Type *SourceTy = GEP->getSourceElementType(); +    Type *ScalarIndexTy = DL->getIndexType(Ops[0]->getType()->getScalarType()); + +    // If the final index isn't a vector, emit a scalar GEP containing all ops +    // and a vector GEP with all zeroes final index. +    if (!Ops[FinalIndex]->getType()->isVectorTy()) { +      NewAddr = Builder.CreateGEP(SourceTy, Ops[0], ArrayRef(Ops).drop_front()); +      auto *IndexTy = VectorType::get(ScalarIndexTy, NumElts); +      auto *SecondTy = GetElementPtrInst::getIndexedType( +          SourceTy, ArrayRef(Ops).drop_front()); +      NewAddr = +          Builder.CreateGEP(SecondTy, NewAddr, Constant::getNullValue(IndexTy)); +    } else { +      Value *Base = Ops[0]; +      Value *Index = Ops[FinalIndex]; + +      // Create a scalar GEP if there are more than 2 operands. +      if (Ops.size() != 2) { +        // Replace the last index with 0. +        Ops[FinalIndex] = +            Constant::getNullValue(Ops[FinalIndex]->getType()->getScalarType()); +        Base = Builder.CreateGEP(SourceTy, Base, ArrayRef(Ops).drop_front()); +        SourceTy = GetElementPtrInst::getIndexedType( +            SourceTy, ArrayRef(Ops).drop_front()); +      } + +      // Now create the GEP with scalar pointer and vector index. +      NewAddr = Builder.CreateGEP(SourceTy, Base, Index); +    } +  } else if (!isa<Constant>(Ptr)) { +    // Not a GEP, maybe its a splat and we can create a GEP to enable +    // SelectionDAGBuilder to use it as a uniform base. +    Value *V = getSplatValue(Ptr); +    if (!V) +      return false; + +    auto NumElts = cast<VectorType>(Ptr->getType())->getElementCount(); + +    IRBuilder<> Builder(MemoryInst); + +    // Emit a vector GEP with a scalar pointer and all 0s vector index. +    Type *ScalarIndexTy = DL->getIndexType(V->getType()->getScalarType()); +    auto *IndexTy = VectorType::get(ScalarIndexTy, NumElts); +    Type *ScalarTy; +    if (cast<IntrinsicInst>(MemoryInst)->getIntrinsicID() == +        Intrinsic::masked_gather) { +      ScalarTy = MemoryInst->getType()->getScalarType(); +    } else { +      assert(cast<IntrinsicInst>(MemoryInst)->getIntrinsicID() == +             Intrinsic::masked_scatter); +      ScalarTy = MemoryInst->getOperand(0)->getType()->getScalarType(); +    } +    NewAddr = Builder.CreateGEP(ScalarTy, V, Constant::getNullValue(IndexTy)); +  } else { +    // Constant, SelectionDAGBuilder knows to check if its a splat. +    return false; +  } + +  MemoryInst->replaceUsesOfWith(Ptr, NewAddr); + +  // If we have no uses, recursively delete the value and all dead instructions +  // using it. +  if (Ptr->use_empty()) +    RecursivelyDeleteTriviallyDeadInstructions( +        Ptr, TLInfo, nullptr, +        [&](Value *V) { removeAllAssertingVHReferences(V); }); + +  return true; +} + +/// If there are any memory operands, use OptimizeMemoryInst to sink their +/// address computing into the block when possible / profitable. +bool CodeGenPrepare::optimizeInlineAsmInst(CallInst *CS) { +  bool MadeChange = false; + +  const TargetRegisterInfo *TRI = +      TM->getSubtargetImpl(*CS->getFunction())->getRegisterInfo(); +  TargetLowering::AsmOperandInfoVector TargetConstraints = +      TLI->ParseConstraints(*DL, TRI, *CS); +  unsigned ArgNo = 0; +  for (TargetLowering::AsmOperandInfo &OpInfo : TargetConstraints) { +    // Compute the constraint code and ConstraintType to use. +    TLI->ComputeConstraintToUse(OpInfo, SDValue()); + +    // TODO: Also handle C_Address? +    if (OpInfo.ConstraintType == TargetLowering::C_Memory && +        OpInfo.isIndirect) { +      Value *OpVal = CS->getArgOperand(ArgNo++); +      MadeChange |= optimizeMemoryInst(CS, OpVal, OpVal->getType(), ~0u); +    } else if (OpInfo.Type == InlineAsm::isInput) +      ArgNo++; +  } + +  return MadeChange; +} + +/// Check if all the uses of \p Val are equivalent (or free) zero or +/// sign extensions. +static bool hasSameExtUse(Value *Val, const TargetLowering &TLI) { +  assert(!Val->use_empty() && "Input must have at least one use"); +  const Instruction *FirstUser = cast<Instruction>(*Val->user_begin()); +  bool IsSExt = isa<SExtInst>(FirstUser); +  Type *ExtTy = FirstUser->getType(); +  for (const User *U : Val->users()) { +    const Instruction *UI = cast<Instruction>(U); +    if ((IsSExt && !isa<SExtInst>(UI)) || (!IsSExt && !isa<ZExtInst>(UI))) +      return false; +    Type *CurTy = UI->getType(); +    // Same input and output types: Same instruction after CSE. +    if (CurTy == ExtTy) +      continue; + +    // If IsSExt is true, we are in this situation: +    // a = Val +    // b = sext ty1 a to ty2 +    // c = sext ty1 a to ty3 +    // Assuming ty2 is shorter than ty3, this could be turned into: +    // a = Val +    // b = sext ty1 a to ty2 +    // c = sext ty2 b to ty3 +    // However, the last sext is not free. +    if (IsSExt) +      return false; + +    // This is a ZExt, maybe this is free to extend from one type to another. +    // In that case, we would not account for a different use. +    Type *NarrowTy; +    Type *LargeTy; +    if (ExtTy->getScalarType()->getIntegerBitWidth() > +        CurTy->getScalarType()->getIntegerBitWidth()) { +      NarrowTy = CurTy; +      LargeTy = ExtTy; +    } else { +      NarrowTy = ExtTy; +      LargeTy = CurTy; +    } + +    if (!TLI.isZExtFree(NarrowTy, LargeTy)) +      return false; +  } +  // All uses are the same or can be derived from one another for free. +  return true; +} + +/// Try to speculatively promote extensions in \p Exts and continue +/// promoting through newly promoted operands recursively as far as doing so is +/// profitable. Save extensions profitably moved up, in \p ProfitablyMovedExts. +/// When some promotion happened, \p TPT contains the proper state to revert +/// them. +/// +/// \return true if some promotion happened, false otherwise. +bool CodeGenPrepare::tryToPromoteExts( +    TypePromotionTransaction &TPT, const SmallVectorImpl<Instruction *> &Exts, +    SmallVectorImpl<Instruction *> &ProfitablyMovedExts, +    unsigned CreatedInstsCost) { +  bool Promoted = false; + +  // Iterate over all the extensions to try to promote them. +  for (auto *I : Exts) { +    // Early check if we directly have ext(load). +    if (isa<LoadInst>(I->getOperand(0))) { +      ProfitablyMovedExts.push_back(I); +      continue; +    } + +    // Check whether or not we want to do any promotion.  The reason we have +    // this check inside the for loop is to catch the case where an extension +    // is directly fed by a load because in such case the extension can be moved +    // up without any promotion on its operands. +    if (!TLI->enableExtLdPromotion() || DisableExtLdPromotion) +      return false; + +    // Get the action to perform the promotion. +    TypePromotionHelper::Action TPH = +        TypePromotionHelper::getAction(I, InsertedInsts, *TLI, PromotedInsts); +    // Check if we can promote. +    if (!TPH) { +      // Save the current extension as we cannot move up through its operand. +      ProfitablyMovedExts.push_back(I); +      continue; +    } + +    // Save the current state. +    TypePromotionTransaction::ConstRestorationPt LastKnownGood = +        TPT.getRestorationPoint(); +    SmallVector<Instruction *, 4> NewExts; +    unsigned NewCreatedInstsCost = 0; +    unsigned ExtCost = !TLI->isExtFree(I); +    // Promote. +    Value *PromotedVal = TPH(I, TPT, PromotedInsts, NewCreatedInstsCost, +                             &NewExts, nullptr, *TLI); +    assert(PromotedVal && +           "TypePromotionHelper should have filtered out those cases"); + +    // We would be able to merge only one extension in a load. +    // Therefore, if we have more than 1 new extension we heuristically +    // cut this search path, because it means we degrade the code quality. +    // With exactly 2, the transformation is neutral, because we will merge +    // one extension but leave one. However, we optimistically keep going, +    // because the new extension may be removed too. Also avoid replacing a +    // single free extension with multiple extensions, as this increases the +    // number of IR instructions while not providing any savings. +    long long TotalCreatedInstsCost = CreatedInstsCost + NewCreatedInstsCost; +    // FIXME: It would be possible to propagate a negative value instead of +    // conservatively ceiling it to 0. +    TotalCreatedInstsCost = +        std::max((long long)0, (TotalCreatedInstsCost - ExtCost)); +    if (!StressExtLdPromotion && +        (TotalCreatedInstsCost > 1 || +         !isPromotedInstructionLegal(*TLI, *DL, PromotedVal) || +         (ExtCost == 0 && NewExts.size() > 1))) { +      // This promotion is not profitable, rollback to the previous state, and +      // save the current extension in ProfitablyMovedExts as the latest +      // speculative promotion turned out to be unprofitable. +      TPT.rollback(LastKnownGood); +      ProfitablyMovedExts.push_back(I); +      continue; +    } +    // Continue promoting NewExts as far as doing so is profitable. +    SmallVector<Instruction *, 2> NewlyMovedExts; +    (void)tryToPromoteExts(TPT, NewExts, NewlyMovedExts, TotalCreatedInstsCost); +    bool NewPromoted = false; +    for (auto *ExtInst : NewlyMovedExts) { +      Instruction *MovedExt = cast<Instruction>(ExtInst); +      Value *ExtOperand = MovedExt->getOperand(0); +      // If we have reached to a load, we need this extra profitability check +      // as it could potentially be merged into an ext(load). +      if (isa<LoadInst>(ExtOperand) && +          !(StressExtLdPromotion || NewCreatedInstsCost <= ExtCost || +            (ExtOperand->hasOneUse() || hasSameExtUse(ExtOperand, *TLI)))) +        continue; + +      ProfitablyMovedExts.push_back(MovedExt); +      NewPromoted = true; +    } + +    // If none of speculative promotions for NewExts is profitable, rollback +    // and save the current extension (I) as the last profitable extension. +    if (!NewPromoted) { +      TPT.rollback(LastKnownGood); +      ProfitablyMovedExts.push_back(I); +      continue; +    } +    // The promotion is profitable. +    Promoted = true; +  } +  return Promoted; +} + +/// Merging redundant sexts when one is dominating the other. +bool CodeGenPrepare::mergeSExts(Function &F) { +  bool Changed = false; +  for (auto &Entry : ValToSExtendedUses) { +    SExts &Insts = Entry.second; +    SExts CurPts; +    for (Instruction *Inst : Insts) { +      if (RemovedInsts.count(Inst) || !isa<SExtInst>(Inst) || +          Inst->getOperand(0) != Entry.first) +        continue; +      bool inserted = false; +      for (auto &Pt : CurPts) { +        if (getDT(F).dominates(Inst, Pt)) { +          replaceAllUsesWith(Pt, Inst, FreshBBs, IsHugeFunc); +          RemovedInsts.insert(Pt); +          Pt->removeFromParent(); +          Pt = Inst; +          inserted = true; +          Changed = true; +          break; +        } +        if (!getDT(F).dominates(Pt, Inst)) +          // Give up if we need to merge in a common dominator as the +          // experiments show it is not profitable. +          continue; +        replaceAllUsesWith(Inst, Pt, FreshBBs, IsHugeFunc); +        RemovedInsts.insert(Inst); +        Inst->removeFromParent(); +        inserted = true; +        Changed = true; +        break; +      } +      if (!inserted) +        CurPts.push_back(Inst); +    } +  } +  return Changed; +} + +// Splitting large data structures so that the GEPs accessing them can have +// smaller offsets so that they can be sunk to the same blocks as their users. +// For example, a large struct starting from %base is split into two parts +// where the second part starts from %new_base. +// +// Before: +// BB0: +//   %base     = +// +// BB1: +//   %gep0     = gep %base, off0 +//   %gep1     = gep %base, off1 +//   %gep2     = gep %base, off2 +// +// BB2: +//   %load1    = load %gep0 +//   %load2    = load %gep1 +//   %load3    = load %gep2 +// +// After: +// BB0: +//   %base     = +//   %new_base = gep %base, off0 +// +// BB1: +//   %new_gep0 = %new_base +//   %new_gep1 = gep %new_base, off1 - off0 +//   %new_gep2 = gep %new_base, off2 - off0 +// +// BB2: +//   %load1    = load i32, i32* %new_gep0 +//   %load2    = load i32, i32* %new_gep1 +//   %load3    = load i32, i32* %new_gep2 +// +// %new_gep1 and %new_gep2 can be sunk to BB2 now after the splitting because +// their offsets are smaller enough to fit into the addressing mode. +bool CodeGenPrepare::splitLargeGEPOffsets() { +  bool Changed = false; +  for (auto &Entry : LargeOffsetGEPMap) { +    Value *OldBase = Entry.first; +    SmallVectorImpl<std::pair<AssertingVH<GetElementPtrInst>, int64_t>> +        &LargeOffsetGEPs = Entry.second; +    auto compareGEPOffset = +        [&](const std::pair<GetElementPtrInst *, int64_t> &LHS, +            const std::pair<GetElementPtrInst *, int64_t> &RHS) { +          if (LHS.first == RHS.first) +            return false; +          if (LHS.second != RHS.second) +            return LHS.second < RHS.second; +          return LargeOffsetGEPID[LHS.first] < LargeOffsetGEPID[RHS.first]; +        }; +    // Sorting all the GEPs of the same data structures based on the offsets. +    llvm::sort(LargeOffsetGEPs, compareGEPOffset); +    LargeOffsetGEPs.erase(llvm::unique(LargeOffsetGEPs), LargeOffsetGEPs.end()); +    // Skip if all the GEPs have the same offsets. +    if (LargeOffsetGEPs.front().second == LargeOffsetGEPs.back().second) +      continue; +    GetElementPtrInst *BaseGEP = LargeOffsetGEPs.begin()->first; +    int64_t BaseOffset = LargeOffsetGEPs.begin()->second; +    Value *NewBaseGEP = nullptr; + +    auto createNewBase = [&](int64_t BaseOffset, Value *OldBase, +                             GetElementPtrInst *GEP) { +      LLVMContext &Ctx = GEP->getContext(); +      Type *PtrIdxTy = DL->getIndexType(GEP->getType()); +      Type *I8PtrTy = +          PointerType::get(Ctx, GEP->getType()->getPointerAddressSpace()); + +      BasicBlock::iterator NewBaseInsertPt; +      BasicBlock *NewBaseInsertBB; +      if (auto *BaseI = dyn_cast<Instruction>(OldBase)) { +        // If the base of the struct is an instruction, the new base will be +        // inserted close to it. +        NewBaseInsertBB = BaseI->getParent(); +        if (isa<PHINode>(BaseI)) +          NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt(); +        else if (InvokeInst *Invoke = dyn_cast<InvokeInst>(BaseI)) { +          NewBaseInsertBB = +              SplitEdge(NewBaseInsertBB, Invoke->getNormalDest(), DT.get(), LI); +          NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt(); +        } else +          NewBaseInsertPt = std::next(BaseI->getIterator()); +      } else { +        // If the current base is an argument or global value, the new base +        // will be inserted to the entry block. +        NewBaseInsertBB = &BaseGEP->getFunction()->getEntryBlock(); +        NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt(); +      } +      IRBuilder<> NewBaseBuilder(NewBaseInsertBB, NewBaseInsertPt); +      // Create a new base. +      Value *BaseIndex = ConstantInt::get(PtrIdxTy, BaseOffset); +      NewBaseGEP = OldBase; +      if (NewBaseGEP->getType() != I8PtrTy) +        NewBaseGEP = NewBaseBuilder.CreatePointerCast(NewBaseGEP, I8PtrTy); +      NewBaseGEP = +          NewBaseBuilder.CreatePtrAdd(NewBaseGEP, BaseIndex, "splitgep"); +      NewGEPBases.insert(NewBaseGEP); +      return; +    }; + +    // Check whether all the offsets can be encoded with prefered common base. +    if (int64_t PreferBase = TLI->getPreferredLargeGEPBaseOffset( +            LargeOffsetGEPs.front().second, LargeOffsetGEPs.back().second)) { +      BaseOffset = PreferBase; +      // Create a new base if the offset of the BaseGEP can be decoded with one +      // instruction. +      createNewBase(BaseOffset, OldBase, BaseGEP); +    } + +    auto *LargeOffsetGEP = LargeOffsetGEPs.begin(); +    while (LargeOffsetGEP != LargeOffsetGEPs.end()) { +      GetElementPtrInst *GEP = LargeOffsetGEP->first; +      int64_t Offset = LargeOffsetGEP->second; +      if (Offset != BaseOffset) { +        TargetLowering::AddrMode AddrMode; +        AddrMode.HasBaseReg = true; +        AddrMode.BaseOffs = Offset - BaseOffset; +        // The result type of the GEP might not be the type of the memory +        // access. +        if (!TLI->isLegalAddressingMode(*DL, AddrMode, +                                        GEP->getResultElementType(), +                                        GEP->getAddressSpace())) { +          // We need to create a new base if the offset to the current base is +          // too large to fit into the addressing mode. So, a very large struct +          // may be split into several parts. +          BaseGEP = GEP; +          BaseOffset = Offset; +          NewBaseGEP = nullptr; +        } +      } + +      // Generate a new GEP to replace the current one. +      Type *PtrIdxTy = DL->getIndexType(GEP->getType()); + +      if (!NewBaseGEP) { +        // Create a new base if we don't have one yet.  Find the insertion +        // pointer for the new base first. +        createNewBase(BaseOffset, OldBase, GEP); +      } + +      IRBuilder<> Builder(GEP); +      Value *NewGEP = NewBaseGEP; +      if (Offset != BaseOffset) { +        // Calculate the new offset for the new GEP. +        Value *Index = ConstantInt::get(PtrIdxTy, Offset - BaseOffset); +        NewGEP = Builder.CreatePtrAdd(NewBaseGEP, Index); +      } +      replaceAllUsesWith(GEP, NewGEP, FreshBBs, IsHugeFunc); +      LargeOffsetGEPID.erase(GEP); +      LargeOffsetGEP = LargeOffsetGEPs.erase(LargeOffsetGEP); +      GEP->eraseFromParent(); +      Changed = true; +    } +  } +  return Changed; +} + +bool CodeGenPrepare::optimizePhiType( +    PHINode *I, SmallPtrSetImpl<PHINode *> &Visited, +    SmallPtrSetImpl<Instruction *> &DeletedInstrs) { +  // We are looking for a collection on interconnected phi nodes that together +  // only use loads/bitcasts and are used by stores/bitcasts, and the bitcasts +  // are of the same type. Convert the whole set of nodes to the type of the +  // bitcast. +  Type *PhiTy = I->getType(); +  Type *ConvertTy = nullptr; +  if (Visited.count(I) || +      (!I->getType()->isIntegerTy() && !I->getType()->isFloatingPointTy())) +    return false; + +  SmallVector<Instruction *, 4> Worklist; +  Worklist.push_back(cast<Instruction>(I)); +  SmallPtrSet<PHINode *, 4> PhiNodes; +  SmallPtrSet<ConstantData *, 4> Constants; +  PhiNodes.insert(I); +  Visited.insert(I); +  SmallPtrSet<Instruction *, 4> Defs; +  SmallPtrSet<Instruction *, 4> Uses; +  // This works by adding extra bitcasts between load/stores and removing +  // existing bicasts. If we have a phi(bitcast(load)) or a store(bitcast(phi)) +  // we can get in the situation where we remove a bitcast in one iteration +  // just to add it again in the next. We need to ensure that at least one +  // bitcast we remove are anchored to something that will not change back. +  bool AnyAnchored = false; + +  while (!Worklist.empty()) { +    Instruction *II = Worklist.pop_back_val(); + +    if (auto *Phi = dyn_cast<PHINode>(II)) { +      // Handle Defs, which might also be PHI's +      for (Value *V : Phi->incoming_values()) { +        if (auto *OpPhi = dyn_cast<PHINode>(V)) { +          if (!PhiNodes.count(OpPhi)) { +            if (!Visited.insert(OpPhi).second) +              return false; +            PhiNodes.insert(OpPhi); +            Worklist.push_back(OpPhi); +          } +        } else if (auto *OpLoad = dyn_cast<LoadInst>(V)) { +          if (!OpLoad->isSimple()) +            return false; +          if (Defs.insert(OpLoad).second) +            Worklist.push_back(OpLoad); +        } else if (auto *OpEx = dyn_cast<ExtractElementInst>(V)) { +          if (Defs.insert(OpEx).second) +            Worklist.push_back(OpEx); +        } else if (auto *OpBC = dyn_cast<BitCastInst>(V)) { +          if (!ConvertTy) +            ConvertTy = OpBC->getOperand(0)->getType(); +          if (OpBC->getOperand(0)->getType() != ConvertTy) +            return false; +          if (Defs.insert(OpBC).second) { +            Worklist.push_back(OpBC); +            AnyAnchored |= !isa<LoadInst>(OpBC->getOperand(0)) && +                           !isa<ExtractElementInst>(OpBC->getOperand(0)); +          } +        } else if (auto *OpC = dyn_cast<ConstantData>(V)) +          Constants.insert(OpC); +        else +          return false; +      } +    } + +    // Handle uses which might also be phi's +    for (User *V : II->users()) { +      if (auto *OpPhi = dyn_cast<PHINode>(V)) { +        if (!PhiNodes.count(OpPhi)) { +          if (Visited.count(OpPhi)) +            return false; +          PhiNodes.insert(OpPhi); +          Visited.insert(OpPhi); +          Worklist.push_back(OpPhi); +        } +      } else if (auto *OpStore = dyn_cast<StoreInst>(V)) { +        if (!OpStore->isSimple() || OpStore->getOperand(0) != II) +          return false; +        Uses.insert(OpStore); +      } else if (auto *OpBC = dyn_cast<BitCastInst>(V)) { +        if (!ConvertTy) +          ConvertTy = OpBC->getType(); +        if (OpBC->getType() != ConvertTy) +          return false; +        Uses.insert(OpBC); +        AnyAnchored |= +            any_of(OpBC->users(), [](User *U) { return !isa<StoreInst>(U); }); +      } else { +        return false; +      } +    } +  } + +  if (!ConvertTy || !AnyAnchored || +      !TLI->shouldConvertPhiType(PhiTy, ConvertTy)) +    return false; + +  LLVM_DEBUG(dbgs() << "Converting " << *I << "\n  and connected nodes to " +                    << *ConvertTy << "\n"); + +  // Create all the new phi nodes of the new type, and bitcast any loads to the +  // correct type. +  ValueToValueMap ValMap; +  for (ConstantData *C : Constants) +    ValMap[C] = ConstantExpr::getBitCast(C, ConvertTy); +  for (Instruction *D : Defs) { +    if (isa<BitCastInst>(D)) { +      ValMap[D] = D->getOperand(0); +      DeletedInstrs.insert(D); +    } else { +      BasicBlock::iterator insertPt = std::next(D->getIterator()); +      ValMap[D] = new BitCastInst(D, ConvertTy, D->getName() + ".bc", insertPt); +    } +  } +  for (PHINode *Phi : PhiNodes) +    ValMap[Phi] = PHINode::Create(ConvertTy, Phi->getNumIncomingValues(), +                                  Phi->getName() + ".tc", Phi->getIterator()); +  // Pipe together all the PhiNodes. +  for (PHINode *Phi : PhiNodes) { +    PHINode *NewPhi = cast<PHINode>(ValMap[Phi]); +    for (int i = 0, e = Phi->getNumIncomingValues(); i < e; i++) +      NewPhi->addIncoming(ValMap[Phi->getIncomingValue(i)], +                          Phi->getIncomingBlock(i)); +    Visited.insert(NewPhi); +  } +  // And finally pipe up the stores and bitcasts +  for (Instruction *U : Uses) { +    if (isa<BitCastInst>(U)) { +      DeletedInstrs.insert(U); +      replaceAllUsesWith(U, ValMap[U->getOperand(0)], FreshBBs, IsHugeFunc); +    } else { +      U->setOperand(0, new BitCastInst(ValMap[U->getOperand(0)], PhiTy, "bc", +                                       U->getIterator())); +    } +  } + +  // Save the removed phis to be deleted later. +  for (PHINode *Phi : PhiNodes) +    DeletedInstrs.insert(Phi); +  return true; +} + +bool CodeGenPrepare::optimizePhiTypes(Function &F) { +  if (!OptimizePhiTypes) +    return false; + +  bool Changed = false; +  SmallPtrSet<PHINode *, 4> Visited; +  SmallPtrSet<Instruction *, 4> DeletedInstrs; + +  // Attempt to optimize all the phis in the functions to the correct type. +  for (auto &BB : F) +    for (auto &Phi : BB.phis()) +      Changed |= optimizePhiType(&Phi, Visited, DeletedInstrs); + +  // Remove any old phi's that have been converted. +  for (auto *I : DeletedInstrs) { +    replaceAllUsesWith(I, PoisonValue::get(I->getType()), FreshBBs, IsHugeFunc); +    I->eraseFromParent(); +  } + +  return Changed; +} + +/// Return true, if an ext(load) can be formed from an extension in +/// \p MovedExts. +bool CodeGenPrepare::canFormExtLd( +    const SmallVectorImpl<Instruction *> &MovedExts, LoadInst *&LI, +    Instruction *&Inst, bool HasPromoted) { +  for (auto *MovedExtInst : MovedExts) { +    if (isa<LoadInst>(MovedExtInst->getOperand(0))) { +      LI = cast<LoadInst>(MovedExtInst->getOperand(0)); +      Inst = MovedExtInst; +      break; +    } +  } +  if (!LI) +    return false; + +  // If they're already in the same block, there's nothing to do. +  // Make the cheap checks first if we did not promote. +  // If we promoted, we need to check if it is indeed profitable. +  if (!HasPromoted && LI->getParent() == Inst->getParent()) +    return false; + +  return TLI->isExtLoad(LI, Inst, *DL); +} + +/// Move a zext or sext fed by a load into the same basic block as the load, +/// unless conditions are unfavorable. This allows SelectionDAG to fold the +/// extend into the load. +/// +/// E.g., +/// \code +/// %ld = load i32* %addr +/// %add = add nuw i32 %ld, 4 +/// %zext = zext i32 %add to i64 +// \endcode +/// => +/// \code +/// %ld = load i32* %addr +/// %zext = zext i32 %ld to i64 +/// %add = add nuw i64 %zext, 4 +/// \encode +/// Note that the promotion in %add to i64 is done in tryToPromoteExts(), which +/// allow us to match zext(load i32*) to i64. +/// +/// Also, try to promote the computations used to obtain a sign extended +/// value used into memory accesses. +/// E.g., +/// \code +/// a = add nsw i32 b, 3 +/// d = sext i32 a to i64 +/// e = getelementptr ..., i64 d +/// \endcode +/// => +/// \code +/// f = sext i32 b to i64 +/// a = add nsw i64 f, 3 +/// e = getelementptr ..., i64 a +/// \endcode +/// +/// \p Inst[in/out] the extension may be modified during the process if some +/// promotions apply. +bool CodeGenPrepare::optimizeExt(Instruction *&Inst) { +  bool AllowPromotionWithoutCommonHeader = false; +  /// See if it is an interesting sext operations for the address type +  /// promotion before trying to promote it, e.g., the ones with the right +  /// type and used in memory accesses. +  bool ATPConsiderable = TTI->shouldConsiderAddressTypePromotion( +      *Inst, AllowPromotionWithoutCommonHeader); +  TypePromotionTransaction TPT(RemovedInsts); +  TypePromotionTransaction::ConstRestorationPt LastKnownGood = +      TPT.getRestorationPoint(); +  SmallVector<Instruction *, 1> Exts; +  SmallVector<Instruction *, 2> SpeculativelyMovedExts; +  Exts.push_back(Inst); + +  bool HasPromoted = tryToPromoteExts(TPT, Exts, SpeculativelyMovedExts); + +  // Look for a load being extended. +  LoadInst *LI = nullptr; +  Instruction *ExtFedByLoad; + +  // Try to promote a chain of computation if it allows to form an extended +  // load. +  if (canFormExtLd(SpeculativelyMovedExts, LI, ExtFedByLoad, HasPromoted)) { +    assert(LI && ExtFedByLoad && "Expect a valid load and extension"); +    TPT.commit(); +    // Move the extend into the same block as the load. +    ExtFedByLoad->moveAfter(LI); +    ++NumExtsMoved; +    Inst = ExtFedByLoad; +    return true; +  } + +  // Continue promoting SExts if known as considerable depending on targets. +  if (ATPConsiderable && +      performAddressTypePromotion(Inst, AllowPromotionWithoutCommonHeader, +                                  HasPromoted, TPT, SpeculativelyMovedExts)) +    return true; + +  TPT.rollback(LastKnownGood); +  return false; +} + +// Perform address type promotion if doing so is profitable. +// If AllowPromotionWithoutCommonHeader == false, we should find other sext +// instructions that sign extended the same initial value. However, if +// AllowPromotionWithoutCommonHeader == true, we expect promoting the +// extension is just profitable. +bool CodeGenPrepare::performAddressTypePromotion( +    Instruction *&Inst, bool AllowPromotionWithoutCommonHeader, +    bool HasPromoted, TypePromotionTransaction &TPT, +    SmallVectorImpl<Instruction *> &SpeculativelyMovedExts) { +  bool Promoted = false; +  SmallPtrSet<Instruction *, 1> UnhandledExts; +  bool AllSeenFirst = true; +  for (auto *I : SpeculativelyMovedExts) { +    Value *HeadOfChain = I->getOperand(0); +    DenseMap<Value *, Instruction *>::iterator AlreadySeen = +        SeenChainsForSExt.find(HeadOfChain); +    // If there is an unhandled SExt which has the same header, try to promote +    // it as well. +    if (AlreadySeen != SeenChainsForSExt.end()) { +      if (AlreadySeen->second != nullptr) +        UnhandledExts.insert(AlreadySeen->second); +      AllSeenFirst = false; +    } +  } + +  if (!AllSeenFirst || (AllowPromotionWithoutCommonHeader && +                        SpeculativelyMovedExts.size() == 1)) { +    TPT.commit(); +    if (HasPromoted) +      Promoted = true; +    for (auto *I : SpeculativelyMovedExts) { +      Value *HeadOfChain = I->getOperand(0); +      SeenChainsForSExt[HeadOfChain] = nullptr; +      ValToSExtendedUses[HeadOfChain].push_back(I); +    } +    // Update Inst as promotion happen. +    Inst = SpeculativelyMovedExts.pop_back_val(); +  } else { +    // This is the first chain visited from the header, keep the current chain +    // as unhandled. Defer to promote this until we encounter another SExt +    // chain derived from the same header. +    for (auto *I : SpeculativelyMovedExts) { +      Value *HeadOfChain = I->getOperand(0); +      SeenChainsForSExt[HeadOfChain] = Inst; +    } +    return false; +  } + +  if (!AllSeenFirst && !UnhandledExts.empty()) +    for (auto *VisitedSExt : UnhandledExts) { +      if (RemovedInsts.count(VisitedSExt)) +        continue; +      TypePromotionTransaction TPT(RemovedInsts); +      SmallVector<Instruction *, 1> Exts; +      SmallVector<Instruction *, 2> Chains; +      Exts.push_back(VisitedSExt); +      bool HasPromoted = tryToPromoteExts(TPT, Exts, Chains); +      TPT.commit(); +      if (HasPromoted) +        Promoted = true; +      for (auto *I : Chains) { +        Value *HeadOfChain = I->getOperand(0); +        // Mark this as handled. +        SeenChainsForSExt[HeadOfChain] = nullptr; +        ValToSExtendedUses[HeadOfChain].push_back(I); +      } +    } +  return Promoted; +} + +bool CodeGenPrepare::optimizeExtUses(Instruction *I) { +  BasicBlock *DefBB = I->getParent(); + +  // If the result of a {s|z}ext and its source are both live out, rewrite all +  // other uses of the source with result of extension. +  Value *Src = I->getOperand(0); +  if (Src->hasOneUse()) +    return false; + +  // Only do this xform if truncating is free. +  if (!TLI->isTruncateFree(I->getType(), Src->getType())) +    return false; + +  // Only safe to perform the optimization if the source is also defined in +  // this block. +  if (!isa<Instruction>(Src) || DefBB != cast<Instruction>(Src)->getParent()) +    return false; + +  bool DefIsLiveOut = false; +  for (User *U : I->users()) { +    Instruction *UI = cast<Instruction>(U); + +    // Figure out which BB this ext is used in. +    BasicBlock *UserBB = UI->getParent(); +    if (UserBB == DefBB) +      continue; +    DefIsLiveOut = true; +    break; +  } +  if (!DefIsLiveOut) +    return false; + +  // Make sure none of the uses are PHI nodes. +  for (User *U : Src->users()) { +    Instruction *UI = cast<Instruction>(U); +    BasicBlock *UserBB = UI->getParent(); +    if (UserBB == DefBB) +      continue; +    // Be conservative. We don't want this xform to end up introducing +    // reloads just before load / store instructions. +    if (isa<PHINode>(UI) || isa<LoadInst>(UI) || isa<StoreInst>(UI)) +      return false; +  } + +  // InsertedTruncs - Only insert one trunc in each block once. +  DenseMap<BasicBlock *, Instruction *> InsertedTruncs; + +  bool MadeChange = false; +  for (Use &U : Src->uses()) { +    Instruction *User = cast<Instruction>(U.getUser()); + +    // Figure out which BB this ext is used in. +    BasicBlock *UserBB = User->getParent(); +    if (UserBB == DefBB) +      continue; + +    // Both src and def are live in this block. Rewrite the use. +    Instruction *&InsertedTrunc = InsertedTruncs[UserBB]; + +    if (!InsertedTrunc) { +      BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); +      assert(InsertPt != UserBB->end()); +      InsertedTrunc = new TruncInst(I, Src->getType(), ""); +      InsertedTrunc->insertBefore(*UserBB, InsertPt); +      InsertedInsts.insert(InsertedTrunc); +    } + +    // Replace a use of the {s|z}ext source with a use of the result. +    U = InsertedTrunc; +    ++NumExtUses; +    MadeChange = true; +  } + +  return MadeChange; +} + +// Find loads whose uses only use some of the loaded value's bits.  Add an "and" +// just after the load if the target can fold this into one extload instruction, +// with the hope of eliminating some of the other later "and" instructions using +// the loaded value.  "and"s that are made trivially redundant by the insertion +// of the new "and" are removed by this function, while others (e.g. those whose +// path from the load goes through a phi) are left for isel to potentially +// remove. +// +// For example: +// +// b0: +//   x = load i32 +//   ... +// b1: +//   y = and x, 0xff +//   z = use y +// +// becomes: +// +// b0: +//   x = load i32 +//   x' = and x, 0xff +//   ... +// b1: +//   z = use x' +// +// whereas: +// +// b0: +//   x1 = load i32 +//   ... +// b1: +//   x2 = load i32 +//   ... +// b2: +//   x = phi x1, x2 +//   y = and x, 0xff +// +// becomes (after a call to optimizeLoadExt for each load): +// +// b0: +//   x1 = load i32 +//   x1' = and x1, 0xff +//   ... +// b1: +//   x2 = load i32 +//   x2' = and x2, 0xff +//   ... +// b2: +//   x = phi x1', x2' +//   y = and x, 0xff +bool CodeGenPrepare::optimizeLoadExt(LoadInst *Load) { +  if (!Load->isSimple() || !Load->getType()->isIntOrPtrTy()) +    return false; + +  // Skip loads we've already transformed. +  if (Load->hasOneUse() && +      InsertedInsts.count(cast<Instruction>(*Load->user_begin()))) +    return false; + +  // Look at all uses of Load, looking through phis, to determine how many bits +  // of the loaded value are needed. +  SmallVector<Instruction *, 8> WorkList; +  SmallPtrSet<Instruction *, 16> Visited; +  SmallVector<Instruction *, 8> AndsToMaybeRemove; +  for (auto *U : Load->users()) +    WorkList.push_back(cast<Instruction>(U)); + +  EVT LoadResultVT = TLI->getValueType(*DL, Load->getType()); +  unsigned BitWidth = LoadResultVT.getSizeInBits(); +  // If the BitWidth is 0, do not try to optimize the type +  if (BitWidth == 0) +    return false; + +  APInt DemandBits(BitWidth, 0); +  APInt WidestAndBits(BitWidth, 0); + +  while (!WorkList.empty()) { +    Instruction *I = WorkList.pop_back_val(); + +    // Break use-def graph loops. +    if (!Visited.insert(I).second) +      continue; + +    // For a PHI node, push all of its users. +    if (auto *Phi = dyn_cast<PHINode>(I)) { +      for (auto *U : Phi->users()) +        WorkList.push_back(cast<Instruction>(U)); +      continue; +    } + +    switch (I->getOpcode()) { +    case Instruction::And: { +      auto *AndC = dyn_cast<ConstantInt>(I->getOperand(1)); +      if (!AndC) +        return false; +      APInt AndBits = AndC->getValue(); +      DemandBits |= AndBits; +      // Keep track of the widest and mask we see. +      if (AndBits.ugt(WidestAndBits)) +        WidestAndBits = AndBits; +      if (AndBits == WidestAndBits && I->getOperand(0) == Load) +        AndsToMaybeRemove.push_back(I); +      break; +    } + +    case Instruction::Shl: { +      auto *ShlC = dyn_cast<ConstantInt>(I->getOperand(1)); +      if (!ShlC) +        return false; +      uint64_t ShiftAmt = ShlC->getLimitedValue(BitWidth - 1); +      DemandBits.setLowBits(BitWidth - ShiftAmt); +      break; +    } + +    case Instruction::Trunc: { +      EVT TruncVT = TLI->getValueType(*DL, I->getType()); +      unsigned TruncBitWidth = TruncVT.getSizeInBits(); +      DemandBits.setLowBits(TruncBitWidth); +      break; +    } + +    default: +      return false; +    } +  } + +  uint32_t ActiveBits = DemandBits.getActiveBits(); +  // Avoid hoisting (and (load x) 1) since it is unlikely to be folded by the +  // target even if isLoadExtLegal says an i1 EXTLOAD is valid.  For example, +  // for the AArch64 target isLoadExtLegal(ZEXTLOAD, i32, i1) returns true, but +  // (and (load x) 1) is not matched as a single instruction, rather as a LDR +  // followed by an AND. +  // TODO: Look into removing this restriction by fixing backends to either +  // return false for isLoadExtLegal for i1 or have them select this pattern to +  // a single instruction. +  // +  // Also avoid hoisting if we didn't see any ands with the exact DemandBits +  // mask, since these are the only ands that will be removed by isel. +  if (ActiveBits <= 1 || !DemandBits.isMask(ActiveBits) || +      WidestAndBits != DemandBits) +    return false; + +  LLVMContext &Ctx = Load->getType()->getContext(); +  Type *TruncTy = Type::getIntNTy(Ctx, ActiveBits); +  EVT TruncVT = TLI->getValueType(*DL, TruncTy); + +  // Reject cases that won't be matched as extloads. +  if (!LoadResultVT.bitsGT(TruncVT) || !TruncVT.isRound() || +      !TLI->isLoadExtLegal(ISD::ZEXTLOAD, LoadResultVT, TruncVT)) +    return false; + +  IRBuilder<> Builder(Load->getNextNonDebugInstruction()); +  auto *NewAnd = cast<Instruction>( +      Builder.CreateAnd(Load, ConstantInt::get(Ctx, DemandBits))); +  // Mark this instruction as "inserted by CGP", so that other +  // optimizations don't touch it. +  InsertedInsts.insert(NewAnd); + +  // Replace all uses of load with new and (except for the use of load in the +  // new and itself). +  replaceAllUsesWith(Load, NewAnd, FreshBBs, IsHugeFunc); +  NewAnd->setOperand(0, Load); + +  // Remove any and instructions that are now redundant. +  for (auto *And : AndsToMaybeRemove) +    // Check that the and mask is the same as the one we decided to put on the +    // new and. +    if (cast<ConstantInt>(And->getOperand(1))->getValue() == DemandBits) { +      replaceAllUsesWith(And, NewAnd, FreshBBs, IsHugeFunc); +      if (&*CurInstIterator == And) +        CurInstIterator = std::next(And->getIterator()); +      And->eraseFromParent(); +      ++NumAndUses; +    } + +  ++NumAndsAdded; +  return true; +} + +/// Check if V (an operand of a select instruction) is an expensive instruction +/// that is only used once. +static bool sinkSelectOperand(const TargetTransformInfo *TTI, Value *V) { +  auto *I = dyn_cast<Instruction>(V); +  // If it's safe to speculatively execute, then it should not have side +  // effects; therefore, it's safe to sink and possibly *not* execute. +  return I && I->hasOneUse() && isSafeToSpeculativelyExecute(I) && +         TTI->isExpensiveToSpeculativelyExecute(I); +} + +/// Returns true if a SelectInst should be turned into an explicit branch. +static bool isFormingBranchFromSelectProfitable(const TargetTransformInfo *TTI, +                                                const TargetLowering *TLI, +                                                SelectInst *SI) { +  // If even a predictable select is cheap, then a branch can't be cheaper. +  if (!TLI->isPredictableSelectExpensive()) +    return false; + +  // FIXME: This should use the same heuristics as IfConversion to determine +  // whether a select is better represented as a branch. + +  // If metadata tells us that the select condition is obviously predictable, +  // then we want to replace the select with a branch. +  uint64_t TrueWeight, FalseWeight; +  if (extractBranchWeights(*SI, TrueWeight, FalseWeight)) { +    uint64_t Max = std::max(TrueWeight, FalseWeight); +    uint64_t Sum = TrueWeight + FalseWeight; +    if (Sum != 0) { +      auto Probability = BranchProbability::getBranchProbability(Max, Sum); +      if (Probability > TTI->getPredictableBranchThreshold()) +        return true; +    } +  } + +  CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition()); + +  // If a branch is predictable, an out-of-order CPU can avoid blocking on its +  // comparison condition. If the compare has more than one use, there's +  // probably another cmov or setcc around, so it's not worth emitting a branch. +  if (!Cmp || !Cmp->hasOneUse()) +    return false; + +  // If either operand of the select is expensive and only needed on one side +  // of the select, we should form a branch. +  if (sinkSelectOperand(TTI, SI->getTrueValue()) || +      sinkSelectOperand(TTI, SI->getFalseValue())) +    return true; + +  return false; +} + +/// If \p isTrue is true, return the true value of \p SI, otherwise return +/// false value of \p SI. If the true/false value of \p SI is defined by any +/// select instructions in \p Selects, look through the defining select +/// instruction until the true/false value is not defined in \p Selects. +static Value * +getTrueOrFalseValue(SelectInst *SI, bool isTrue, +                    const SmallPtrSet<const Instruction *, 2> &Selects) { +  Value *V = nullptr; + +  for (SelectInst *DefSI = SI; DefSI != nullptr && Selects.count(DefSI); +       DefSI = dyn_cast<SelectInst>(V)) { +    assert(DefSI->getCondition() == SI->getCondition() && +           "The condition of DefSI does not match with SI"); +    V = (isTrue ? DefSI->getTrueValue() : DefSI->getFalseValue()); +  } + +  assert(V && "Failed to get select true/false value"); +  return V; +} + +bool CodeGenPrepare::optimizeShiftInst(BinaryOperator *Shift) { +  assert(Shift->isShift() && "Expected a shift"); + +  // If this is (1) a vector shift, (2) shifts by scalars are cheaper than +  // general vector shifts, and (3) the shift amount is a select-of-splatted +  // values, hoist the shifts before the select: +  //   shift Op0, (select Cond, TVal, FVal) --> +  //   select Cond, (shift Op0, TVal), (shift Op0, FVal) +  // +  // This is inverting a generic IR transform when we know that the cost of a +  // general vector shift is more than the cost of 2 shift-by-scalars. +  // We can't do this effectively in SDAG because we may not be able to +  // determine if the select operands are splats from within a basic block. +  Type *Ty = Shift->getType(); +  if (!Ty->isVectorTy() || !TLI->isVectorShiftByScalarCheap(Ty)) +    return false; +  Value *Cond, *TVal, *FVal; +  if (!match(Shift->getOperand(1), +             m_OneUse(m_Select(m_Value(Cond), m_Value(TVal), m_Value(FVal))))) +    return false; +  if (!isSplatValue(TVal) || !isSplatValue(FVal)) +    return false; + +  IRBuilder<> Builder(Shift); +  BinaryOperator::BinaryOps Opcode = Shift->getOpcode(); +  Value *NewTVal = Builder.CreateBinOp(Opcode, Shift->getOperand(0), TVal); +  Value *NewFVal = Builder.CreateBinOp(Opcode, Shift->getOperand(0), FVal); +  Value *NewSel = Builder.CreateSelect(Cond, NewTVal, NewFVal); +  replaceAllUsesWith(Shift, NewSel, FreshBBs, IsHugeFunc); +  Shift->eraseFromParent(); +  return true; +} + +bool CodeGenPrepare::optimizeFunnelShift(IntrinsicInst *Fsh) { +  Intrinsic::ID Opcode = Fsh->getIntrinsicID(); +  assert((Opcode == Intrinsic::fshl || Opcode == Intrinsic::fshr) && +         "Expected a funnel shift"); + +  // If this is (1) a vector funnel shift, (2) shifts by scalars are cheaper +  // than general vector shifts, and (3) the shift amount is select-of-splatted +  // values, hoist the funnel shifts before the select: +  //   fsh Op0, Op1, (select Cond, TVal, FVal) --> +  //   select Cond, (fsh Op0, Op1, TVal), (fsh Op0, Op1, FVal) +  // +  // This is inverting a generic IR transform when we know that the cost of a +  // general vector shift is more than the cost of 2 shift-by-scalars. +  // We can't do this effectively in SDAG because we may not be able to +  // determine if the select operands are splats from within a basic block. +  Type *Ty = Fsh->getType(); +  if (!Ty->isVectorTy() || !TLI->isVectorShiftByScalarCheap(Ty)) +    return false; +  Value *Cond, *TVal, *FVal; +  if (!match(Fsh->getOperand(2), +             m_OneUse(m_Select(m_Value(Cond), m_Value(TVal), m_Value(FVal))))) +    return false; +  if (!isSplatValue(TVal) || !isSplatValue(FVal)) +    return false; + +  IRBuilder<> Builder(Fsh); +  Value *X = Fsh->getOperand(0), *Y = Fsh->getOperand(1); +  Value *NewTVal = Builder.CreateIntrinsic(Opcode, Ty, {X, Y, TVal}); +  Value *NewFVal = Builder.CreateIntrinsic(Opcode, Ty, {X, Y, FVal}); +  Value *NewSel = Builder.CreateSelect(Cond, NewTVal, NewFVal); +  replaceAllUsesWith(Fsh, NewSel, FreshBBs, IsHugeFunc); +  Fsh->eraseFromParent(); +  return true; +} + +/// If we have a SelectInst that will likely profit from branch prediction, +/// turn it into a branch. +bool CodeGenPrepare::optimizeSelectInst(SelectInst *SI) { +  if (DisableSelectToBranch) +    return false; + +  // If the SelectOptimize pass is enabled, selects have already been optimized. +  if (!getCGPassBuilderOption().DisableSelectOptimize) +    return false; + +  // Find all consecutive select instructions that share the same condition. +  SmallVector<SelectInst *, 2> ASI; +  ASI.push_back(SI); +  for (BasicBlock::iterator It = ++BasicBlock::iterator(SI); +       It != SI->getParent()->end(); ++It) { +    SelectInst *I = dyn_cast<SelectInst>(&*It); +    if (I && SI->getCondition() == I->getCondition()) { +      ASI.push_back(I); +    } else { +      break; +    } +  } + +  SelectInst *LastSI = ASI.back(); +  // Increment the current iterator to skip all the rest of select instructions +  // because they will be either "not lowered" or "all lowered" to branch. +  CurInstIterator = std::next(LastSI->getIterator()); +  // Examine debug-info attached to the consecutive select instructions. They +  // won't be individually optimised by optimizeInst, so we need to perform +  // DbgVariableRecord maintenence here instead. +  for (SelectInst *SI : ArrayRef(ASI).drop_front()) +    fixupDbgVariableRecordsOnInst(*SI); + +  bool VectorCond = !SI->getCondition()->getType()->isIntegerTy(1); + +  // Can we convert the 'select' to CF ? +  if (VectorCond || SI->getMetadata(LLVMContext::MD_unpredictable)) +    return false; + +  TargetLowering::SelectSupportKind SelectKind; +  if (SI->getType()->isVectorTy()) +    SelectKind = TargetLowering::ScalarCondVectorVal; +  else +    SelectKind = TargetLowering::ScalarValSelect; + +  if (TLI->isSelectSupported(SelectKind) && +      (!isFormingBranchFromSelectProfitable(TTI, TLI, SI) || OptSize || +       llvm::shouldOptimizeForSize(SI->getParent(), PSI, BFI.get()))) +    return false; + +  // The DominatorTree needs to be rebuilt by any consumers after this +  // transformation. We simply reset here rather than setting the ModifiedDT +  // flag to avoid restarting the function walk in runOnFunction for each +  // select optimized. +  DT.reset(); + +  // Transform a sequence like this: +  //    start: +  //       %cmp = cmp uge i32 %a, %b +  //       %sel = select i1 %cmp, i32 %c, i32 %d +  // +  // Into: +  //    start: +  //       %cmp = cmp uge i32 %a, %b +  //       %cmp.frozen = freeze %cmp +  //       br i1 %cmp.frozen, label %select.true, label %select.false +  //    select.true: +  //       br label %select.end +  //    select.false: +  //       br label %select.end +  //    select.end: +  //       %sel = phi i32 [ %c, %select.true ], [ %d, %select.false ] +  // +  // %cmp should be frozen, otherwise it may introduce undefined behavior. +  // In addition, we may sink instructions that produce %c or %d from +  // the entry block into the destination(s) of the new branch. +  // If the true or false blocks do not contain a sunken instruction, that +  // block and its branch may be optimized away. In that case, one side of the +  // first branch will point directly to select.end, and the corresponding PHI +  // predecessor block will be the start block. + +  // Collect values that go on the true side and the values that go on the false +  // side. +  SmallVector<Instruction *> TrueInstrs, FalseInstrs; +  for (SelectInst *SI : ASI) { +    if (Value *V = SI->getTrueValue(); sinkSelectOperand(TTI, V)) +      TrueInstrs.push_back(cast<Instruction>(V)); +    if (Value *V = SI->getFalseValue(); sinkSelectOperand(TTI, V)) +      FalseInstrs.push_back(cast<Instruction>(V)); +  } + +  // Split the select block, according to how many (if any) values go on each +  // side. +  BasicBlock *StartBlock = SI->getParent(); +  BasicBlock::iterator SplitPt = std::next(BasicBlock::iterator(LastSI)); +  // We should split before any debug-info. +  SplitPt.setHeadBit(true); + +  IRBuilder<> IB(SI); +  auto *CondFr = IB.CreateFreeze(SI->getCondition(), SI->getName() + ".frozen"); + +  BasicBlock *TrueBlock = nullptr; +  BasicBlock *FalseBlock = nullptr; +  BasicBlock *EndBlock = nullptr; +  BranchInst *TrueBranch = nullptr; +  BranchInst *FalseBranch = nullptr; +  if (TrueInstrs.size() == 0) { +    FalseBranch = cast<BranchInst>(SplitBlockAndInsertIfElse( +        CondFr, SplitPt, false, nullptr, nullptr, LI)); +    FalseBlock = FalseBranch->getParent(); +    EndBlock = cast<BasicBlock>(FalseBranch->getOperand(0)); +  } else if (FalseInstrs.size() == 0) { +    TrueBranch = cast<BranchInst>(SplitBlockAndInsertIfThen( +        CondFr, SplitPt, false, nullptr, nullptr, LI)); +    TrueBlock = TrueBranch->getParent(); +    EndBlock = cast<BasicBlock>(TrueBranch->getOperand(0)); +  } else { +    Instruction *ThenTerm = nullptr; +    Instruction *ElseTerm = nullptr; +    SplitBlockAndInsertIfThenElse(CondFr, SplitPt, &ThenTerm, &ElseTerm, +                                  nullptr, nullptr, LI); +    TrueBranch = cast<BranchInst>(ThenTerm); +    FalseBranch = cast<BranchInst>(ElseTerm); +    TrueBlock = TrueBranch->getParent(); +    FalseBlock = FalseBranch->getParent(); +    EndBlock = cast<BasicBlock>(TrueBranch->getOperand(0)); +  } + +  EndBlock->setName("select.end"); +  if (TrueBlock) +    TrueBlock->setName("select.true.sink"); +  if (FalseBlock) +    FalseBlock->setName(FalseInstrs.size() == 0 ? "select.false" +                                                : "select.false.sink"); + +  if (IsHugeFunc) { +    if (TrueBlock) +      FreshBBs.insert(TrueBlock); +    if (FalseBlock) +      FreshBBs.insert(FalseBlock); +    FreshBBs.insert(EndBlock); +  } + +  BFI->setBlockFreq(EndBlock, BFI->getBlockFreq(StartBlock)); + +  static const unsigned MD[] = { +      LLVMContext::MD_prof, LLVMContext::MD_unpredictable, +      LLVMContext::MD_make_implicit, LLVMContext::MD_dbg}; +  StartBlock->getTerminator()->copyMetadata(*SI, MD); + +  // Sink expensive instructions into the conditional blocks to avoid executing +  // them speculatively. +  for (Instruction *I : TrueInstrs) +    I->moveBefore(TrueBranch); +  for (Instruction *I : FalseInstrs) +    I->moveBefore(FalseBranch); + +  // If we did not create a new block for one of the 'true' or 'false' paths +  // of the condition, it means that side of the branch goes to the end block +  // directly and the path originates from the start block from the point of +  // view of the new PHI. +  if (TrueBlock == nullptr) +    TrueBlock = StartBlock; +  else if (FalseBlock == nullptr) +    FalseBlock = StartBlock; + +  SmallPtrSet<const Instruction *, 2> INS; +  INS.insert(ASI.begin(), ASI.end()); +  // Use reverse iterator because later select may use the value of the +  // earlier select, and we need to propagate value through earlier select +  // to get the PHI operand. +  for (SelectInst *SI : llvm::reverse(ASI)) { +    // The select itself is replaced with a PHI Node. +    PHINode *PN = PHINode::Create(SI->getType(), 2, ""); +    PN->insertBefore(EndBlock->begin()); +    PN->takeName(SI); +    PN->addIncoming(getTrueOrFalseValue(SI, true, INS), TrueBlock); +    PN->addIncoming(getTrueOrFalseValue(SI, false, INS), FalseBlock); +    PN->setDebugLoc(SI->getDebugLoc()); + +    replaceAllUsesWith(SI, PN, FreshBBs, IsHugeFunc); +    SI->eraseFromParent(); +    INS.erase(SI); +    ++NumSelectsExpanded; +  } + +  // Instruct OptimizeBlock to skip to the next block. +  CurInstIterator = StartBlock->end(); +  return true; +} + +/// Some targets only accept certain types for splat inputs. For example a VDUP +/// in MVE takes a GPR (integer) register, and the instruction that incorporate +/// a VDUP (such as a VADD qd, qm, rm) also require a gpr register. +bool CodeGenPrepare::optimizeShuffleVectorInst(ShuffleVectorInst *SVI) { +  // Accept shuf(insertelem(undef/poison, val, 0), undef/poison, <0,0,..>) only +  if (!match(SVI, m_Shuffle(m_InsertElt(m_Undef(), m_Value(), m_ZeroInt()), +                            m_Undef(), m_ZeroMask()))) +    return false; +  Type *NewType = TLI->shouldConvertSplatType(SVI); +  if (!NewType) +    return false; + +  auto *SVIVecType = cast<FixedVectorType>(SVI->getType()); +  assert(!NewType->isVectorTy() && "Expected a scalar type!"); +  assert(NewType->getScalarSizeInBits() == SVIVecType->getScalarSizeInBits() && +         "Expected a type of the same size!"); +  auto *NewVecType = +      FixedVectorType::get(NewType, SVIVecType->getNumElements()); + +  // Create a bitcast (shuffle (insert (bitcast(..)))) +  IRBuilder<> Builder(SVI->getContext()); +  Builder.SetInsertPoint(SVI); +  Value *BC1 = Builder.CreateBitCast( +      cast<Instruction>(SVI->getOperand(0))->getOperand(1), NewType); +  Value *Shuffle = Builder.CreateVectorSplat(NewVecType->getNumElements(), BC1); +  Value *BC2 = Builder.CreateBitCast(Shuffle, SVIVecType); + +  replaceAllUsesWith(SVI, BC2, FreshBBs, IsHugeFunc); +  RecursivelyDeleteTriviallyDeadInstructions( +      SVI, TLInfo, nullptr, +      [&](Value *V) { removeAllAssertingVHReferences(V); }); + +  // Also hoist the bitcast up to its operand if it they are not in the same +  // block. +  if (auto *BCI = dyn_cast<Instruction>(BC1)) +    if (auto *Op = dyn_cast<Instruction>(BCI->getOperand(0))) +      if (BCI->getParent() != Op->getParent() && !isa<PHINode>(Op) && +          !Op->isTerminator() && !Op->isEHPad()) +        BCI->moveAfter(Op); + +  return true; +} + +bool CodeGenPrepare::tryToSinkFreeOperands(Instruction *I) { +  // If the operands of I can be folded into a target instruction together with +  // I, duplicate and sink them. +  SmallVector<Use *, 4> OpsToSink; +  if (!TLI->shouldSinkOperands(I, OpsToSink)) +    return false; + +  // OpsToSink can contain multiple uses in a use chain (e.g. +  // (%u1 with %u1 = shufflevector), (%u2 with %u2 = zext %u1)). The dominating +  // uses must come first, so we process the ops in reverse order so as to not +  // create invalid IR. +  BasicBlock *TargetBB = I->getParent(); +  bool Changed = false; +  SmallVector<Use *, 4> ToReplace; +  Instruction *InsertPoint = I; +  DenseMap<const Instruction *, unsigned long> InstOrdering; +  unsigned long InstNumber = 0; +  for (const auto &I : *TargetBB) +    InstOrdering[&I] = InstNumber++; + +  for (Use *U : reverse(OpsToSink)) { +    auto *UI = cast<Instruction>(U->get()); +    if (isa<PHINode>(UI)) +      continue; +    if (UI->getParent() == TargetBB) { +      if (InstOrdering[UI] < InstOrdering[InsertPoint]) +        InsertPoint = UI; +      continue; +    } +    ToReplace.push_back(U); +  } + +  SetVector<Instruction *> MaybeDead; +  DenseMap<Instruction *, Instruction *> NewInstructions; +  for (Use *U : ToReplace) { +    auto *UI = cast<Instruction>(U->get()); +    Instruction *NI = UI->clone(); + +    if (IsHugeFunc) { +      // Now we clone an instruction, its operands' defs may sink to this BB +      // now. So we put the operands defs' BBs into FreshBBs to do optimization. +      for (unsigned I = 0; I < NI->getNumOperands(); ++I) { +        auto *OpDef = dyn_cast<Instruction>(NI->getOperand(I)); +        if (!OpDef) +          continue; +        FreshBBs.insert(OpDef->getParent()); +      } +    } + +    NewInstructions[UI] = NI; +    MaybeDead.insert(UI); +    LLVM_DEBUG(dbgs() << "Sinking " << *UI << " to user " << *I << "\n"); +    NI->insertBefore(InsertPoint); +    InsertPoint = NI; +    InsertedInsts.insert(NI); + +    // Update the use for the new instruction, making sure that we update the +    // sunk instruction uses, if it is part of a chain that has already been +    // sunk. +    Instruction *OldI = cast<Instruction>(U->getUser()); +    if (NewInstructions.count(OldI)) +      NewInstructions[OldI]->setOperand(U->getOperandNo(), NI); +    else +      U->set(NI); +    Changed = true; +  } + +  // Remove instructions that are dead after sinking. +  for (auto *I : MaybeDead) { +    if (!I->hasNUsesOrMore(1)) { +      LLVM_DEBUG(dbgs() << "Removing dead instruction: " << *I << "\n"); +      I->eraseFromParent(); +    } +  } + +  return Changed; +} + +bool CodeGenPrepare::optimizeSwitchType(SwitchInst *SI) { +  Value *Cond = SI->getCondition(); +  Type *OldType = Cond->getType(); +  LLVMContext &Context = Cond->getContext(); +  EVT OldVT = TLI->getValueType(*DL, OldType); +  MVT RegType = TLI->getPreferredSwitchConditionType(Context, OldVT); +  unsigned RegWidth = RegType.getSizeInBits(); + +  if (RegWidth <= cast<IntegerType>(OldType)->getBitWidth()) +    return false; + +  // If the register width is greater than the type width, expand the condition +  // of the switch instruction and each case constant to the width of the +  // register. By widening the type of the switch condition, subsequent +  // comparisons (for case comparisons) will not need to be extended to the +  // preferred register width, so we will potentially eliminate N-1 extends, +  // where N is the number of cases in the switch. +  auto *NewType = Type::getIntNTy(Context, RegWidth); + +  // Extend the switch condition and case constants using the target preferred +  // extend unless the switch condition is a function argument with an extend +  // attribute. In that case, we can avoid an unnecessary mask/extension by +  // matching the argument extension instead. +  Instruction::CastOps ExtType = Instruction::ZExt; +  // Some targets prefer SExt over ZExt. +  if (TLI->isSExtCheaperThanZExt(OldVT, RegType)) +    ExtType = Instruction::SExt; + +  if (auto *Arg = dyn_cast<Argument>(Cond)) { +    if (Arg->hasSExtAttr()) +      ExtType = Instruction::SExt; +    if (Arg->hasZExtAttr()) +      ExtType = Instruction::ZExt; +  } + +  auto *ExtInst = CastInst::Create(ExtType, Cond, NewType); +  ExtInst->insertBefore(SI); +  ExtInst->setDebugLoc(SI->getDebugLoc()); +  SI->setCondition(ExtInst); +  for (auto Case : SI->cases()) { +    const APInt &NarrowConst = Case.getCaseValue()->getValue(); +    APInt WideConst = (ExtType == Instruction::ZExt) +                          ? NarrowConst.zext(RegWidth) +                          : NarrowConst.sext(RegWidth); +    Case.setValue(ConstantInt::get(Context, WideConst)); +  } + +  return true; +} + +bool CodeGenPrepare::optimizeSwitchPhiConstants(SwitchInst *SI) { +  // The SCCP optimization tends to produce code like this: +  //   switch(x) { case 42: phi(42, ...) } +  // Materializing the constant for the phi-argument needs instructions; So we +  // change the code to: +  //   switch(x) { case 42: phi(x, ...) } + +  Value *Condition = SI->getCondition(); +  // Avoid endless loop in degenerate case. +  if (isa<ConstantInt>(*Condition)) +    return false; + +  bool Changed = false; +  BasicBlock *SwitchBB = SI->getParent(); +  Type *ConditionType = Condition->getType(); + +  for (const SwitchInst::CaseHandle &Case : SI->cases()) { +    ConstantInt *CaseValue = Case.getCaseValue(); +    BasicBlock *CaseBB = Case.getCaseSuccessor(); +    // Set to true if we previously checked that `CaseBB` is only reached by +    // a single case from this switch. +    bool CheckedForSinglePred = false; +    for (PHINode &PHI : CaseBB->phis()) { +      Type *PHIType = PHI.getType(); +      // If ZExt is free then we can also catch patterns like this: +      //   switch((i32)x) { case 42: phi((i64)42, ...); } +      // and replace `(i64)42` with `zext i32 %x to i64`. +      bool TryZExt = +          PHIType->isIntegerTy() && +          PHIType->getIntegerBitWidth() > ConditionType->getIntegerBitWidth() && +          TLI->isZExtFree(ConditionType, PHIType); +      if (PHIType == ConditionType || TryZExt) { +        // Set to true to skip this case because of multiple preds. +        bool SkipCase = false; +        Value *Replacement = nullptr; +        for (unsigned I = 0, E = PHI.getNumIncomingValues(); I != E; I++) { +          Value *PHIValue = PHI.getIncomingValue(I); +          if (PHIValue != CaseValue) { +            if (!TryZExt) +              continue; +            ConstantInt *PHIValueInt = dyn_cast<ConstantInt>(PHIValue); +            if (!PHIValueInt || +                PHIValueInt->getValue() != +                    CaseValue->getValue().zext(PHIType->getIntegerBitWidth())) +              continue; +          } +          if (PHI.getIncomingBlock(I) != SwitchBB) +            continue; +          // We cannot optimize if there are multiple case labels jumping to +          // this block.  This check may get expensive when there are many +          // case labels so we test for it last. +          if (!CheckedForSinglePred) { +            CheckedForSinglePred = true; +            if (SI->findCaseDest(CaseBB) == nullptr) { +              SkipCase = true; +              break; +            } +          } + +          if (Replacement == nullptr) { +            if (PHIValue == CaseValue) { +              Replacement = Condition; +            } else { +              IRBuilder<> Builder(SI); +              Replacement = Builder.CreateZExt(Condition, PHIType); +            } +          } +          PHI.setIncomingValue(I, Replacement); +          Changed = true; +        } +        if (SkipCase) +          break; +      } +    } +  } +  return Changed; +} + +bool CodeGenPrepare::optimizeSwitchInst(SwitchInst *SI) { +  bool Changed = optimizeSwitchType(SI); +  Changed |= optimizeSwitchPhiConstants(SI); +  return Changed; +} + +namespace { + +/// Helper class to promote a scalar operation to a vector one. +/// This class is used to move downward extractelement transition. +/// E.g., +/// a = vector_op <2 x i32> +/// b = extractelement <2 x i32> a, i32 0 +/// c = scalar_op b +/// store c +/// +/// => +/// a = vector_op <2 x i32> +/// c = vector_op a (equivalent to scalar_op on the related lane) +/// * d = extractelement <2 x i32> c, i32 0 +/// * store d +/// Assuming both extractelement and store can be combine, we get rid of the +/// transition. +class VectorPromoteHelper { +  /// DataLayout associated with the current module. +  const DataLayout &DL; + +  /// Used to perform some checks on the legality of vector operations. +  const TargetLowering &TLI; + +  /// Used to estimated the cost of the promoted chain. +  const TargetTransformInfo &TTI; + +  /// The transition being moved downwards. +  Instruction *Transition; + +  /// The sequence of instructions to be promoted. +  SmallVector<Instruction *, 4> InstsToBePromoted; + +  /// Cost of combining a store and an extract. +  unsigned StoreExtractCombineCost; + +  /// Instruction that will be combined with the transition. +  Instruction *CombineInst = nullptr; + +  /// The instruction that represents the current end of the transition. +  /// Since we are faking the promotion until we reach the end of the chain +  /// of computation, we need a way to get the current end of the transition. +  Instruction *getEndOfTransition() const { +    if (InstsToBePromoted.empty()) +      return Transition; +    return InstsToBePromoted.back(); +  } + +  /// Return the index of the original value in the transition. +  /// E.g., for "extractelement <2 x i32> c, i32 1" the original value, +  /// c, is at index 0. +  unsigned getTransitionOriginalValueIdx() const { +    assert(isa<ExtractElementInst>(Transition) && +           "Other kind of transitions are not supported yet"); +    return 0; +  } + +  /// Return the index of the index in the transition. +  /// E.g., for "extractelement <2 x i32> c, i32 0" the index +  /// is at index 1. +  unsigned getTransitionIdx() const { +    assert(isa<ExtractElementInst>(Transition) && +           "Other kind of transitions are not supported yet"); +    return 1; +  } + +  /// Get the type of the transition. +  /// This is the type of the original value. +  /// E.g., for "extractelement <2 x i32> c, i32 1" the type of the +  /// transition is <2 x i32>. +  Type *getTransitionType() const { +    return Transition->getOperand(getTransitionOriginalValueIdx())->getType(); +  } + +  /// Promote \p ToBePromoted by moving \p Def downward through. +  /// I.e., we have the following sequence: +  /// Def = Transition <ty1> a to <ty2> +  /// b = ToBePromoted <ty2> Def, ... +  /// => +  /// b = ToBePromoted <ty1> a, ... +  /// Def = Transition <ty1> ToBePromoted to <ty2> +  void promoteImpl(Instruction *ToBePromoted); + +  /// Check whether or not it is profitable to promote all the +  /// instructions enqueued to be promoted. +  bool isProfitableToPromote() { +    Value *ValIdx = Transition->getOperand(getTransitionOriginalValueIdx()); +    unsigned Index = isa<ConstantInt>(ValIdx) +                         ? cast<ConstantInt>(ValIdx)->getZExtValue() +                         : -1; +    Type *PromotedType = getTransitionType(); + +    StoreInst *ST = cast<StoreInst>(CombineInst); +    unsigned AS = ST->getPointerAddressSpace(); +    // Check if this store is supported. +    if (!TLI.allowsMisalignedMemoryAccesses( +            TLI.getValueType(DL, ST->getValueOperand()->getType()), AS, +            ST->getAlign())) { +      // If this is not supported, there is no way we can combine +      // the extract with the store. +      return false; +    } + +    // The scalar chain of computation has to pay for the transition +    // scalar to vector. +    // The vector chain has to account for the combining cost. +    enum TargetTransformInfo::TargetCostKind CostKind = +        TargetTransformInfo::TCK_RecipThroughput; +    InstructionCost ScalarCost = +        TTI.getVectorInstrCost(*Transition, PromotedType, CostKind, Index); +    InstructionCost VectorCost = StoreExtractCombineCost; +    for (const auto &Inst : InstsToBePromoted) { +      // Compute the cost. +      // By construction, all instructions being promoted are arithmetic ones. +      // Moreover, one argument is a constant that can be viewed as a splat +      // constant. +      Value *Arg0 = Inst->getOperand(0); +      bool IsArg0Constant = isa<UndefValue>(Arg0) || isa<ConstantInt>(Arg0) || +                            isa<ConstantFP>(Arg0); +      TargetTransformInfo::OperandValueInfo Arg0Info, Arg1Info; +      if (IsArg0Constant) +        Arg0Info.Kind = TargetTransformInfo::OK_UniformConstantValue; +      else +        Arg1Info.Kind = TargetTransformInfo::OK_UniformConstantValue; + +      ScalarCost += TTI.getArithmeticInstrCost( +          Inst->getOpcode(), Inst->getType(), CostKind, Arg0Info, Arg1Info); +      VectorCost += TTI.getArithmeticInstrCost(Inst->getOpcode(), PromotedType, +                                               CostKind, Arg0Info, Arg1Info); +    } +    LLVM_DEBUG( +        dbgs() << "Estimated cost of computation to be promoted:\nScalar: " +               << ScalarCost << "\nVector: " << VectorCost << '\n'); +    return ScalarCost > VectorCost; +  } + +  /// Generate a constant vector with \p Val with the same +  /// number of elements as the transition. +  /// \p UseSplat defines whether or not \p Val should be replicated +  /// across the whole vector. +  /// In other words, if UseSplat == true, we generate <Val, Val, ..., Val>, +  /// otherwise we generate a vector with as many undef as possible: +  /// <undef, ..., undef, Val, undef, ..., undef> where \p Val is only +  /// used at the index of the extract. +  Value *getConstantVector(Constant *Val, bool UseSplat) const { +    unsigned ExtractIdx = std::numeric_limits<unsigned>::max(); +    if (!UseSplat) { +      // If we cannot determine where the constant must be, we have to +      // use a splat constant. +      Value *ValExtractIdx = Transition->getOperand(getTransitionIdx()); +      if (ConstantInt *CstVal = dyn_cast<ConstantInt>(ValExtractIdx)) +        ExtractIdx = CstVal->getSExtValue(); +      else +        UseSplat = true; +    } + +    ElementCount EC = cast<VectorType>(getTransitionType())->getElementCount(); +    if (UseSplat) +      return ConstantVector::getSplat(EC, Val); + +    if (!EC.isScalable()) { +      SmallVector<Constant *, 4> ConstVec; +      UndefValue *UndefVal = UndefValue::get(Val->getType()); +      for (unsigned Idx = 0; Idx != EC.getKnownMinValue(); ++Idx) { +        if (Idx == ExtractIdx) +          ConstVec.push_back(Val); +        else +          ConstVec.push_back(UndefVal); +      } +      return ConstantVector::get(ConstVec); +    } else +      llvm_unreachable( +          "Generate scalable vector for non-splat is unimplemented"); +  } + +  /// Check if promoting to a vector type an operand at \p OperandIdx +  /// in \p Use can trigger undefined behavior. +  static bool canCauseUndefinedBehavior(const Instruction *Use, +                                        unsigned OperandIdx) { +    // This is not safe to introduce undef when the operand is on +    // the right hand side of a division-like instruction. +    if (OperandIdx != 1) +      return false; +    switch (Use->getOpcode()) { +    default: +      return false; +    case Instruction::SDiv: +    case Instruction::UDiv: +    case Instruction::SRem: +    case Instruction::URem: +      return true; +    case Instruction::FDiv: +    case Instruction::FRem: +      return !Use->hasNoNaNs(); +    } +    llvm_unreachable(nullptr); +  } + +public: +  VectorPromoteHelper(const DataLayout &DL, const TargetLowering &TLI, +                      const TargetTransformInfo &TTI, Instruction *Transition, +                      unsigned CombineCost) +      : DL(DL), TLI(TLI), TTI(TTI), Transition(Transition), +        StoreExtractCombineCost(CombineCost) { +    assert(Transition && "Do not know how to promote null"); +  } + +  /// Check if we can promote \p ToBePromoted to \p Type. +  bool canPromote(const Instruction *ToBePromoted) const { +    // We could support CastInst too. +    return isa<BinaryOperator>(ToBePromoted); +  } + +  /// Check if it is profitable to promote \p ToBePromoted +  /// by moving downward the transition through. +  bool shouldPromote(const Instruction *ToBePromoted) const { +    // Promote only if all the operands can be statically expanded. +    // Indeed, we do not want to introduce any new kind of transitions. +    for (const Use &U : ToBePromoted->operands()) { +      const Value *Val = U.get(); +      if (Val == getEndOfTransition()) { +        // If the use is a division and the transition is on the rhs, +        // we cannot promote the operation, otherwise we may create a +        // division by zero. +        if (canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo())) +          return false; +        continue; +      } +      if (!isa<ConstantInt>(Val) && !isa<UndefValue>(Val) && +          !isa<ConstantFP>(Val)) +        return false; +    } +    // Check that the resulting operation is legal. +    int ISDOpcode = TLI.InstructionOpcodeToISD(ToBePromoted->getOpcode()); +    if (!ISDOpcode) +      return false; +    return StressStoreExtract || +           TLI.isOperationLegalOrCustom( +               ISDOpcode, TLI.getValueType(DL, getTransitionType(), true)); +  } + +  /// Check whether or not \p Use can be combined +  /// with the transition. +  /// I.e., is it possible to do Use(Transition) => AnotherUse? +  bool canCombine(const Instruction *Use) { return isa<StoreInst>(Use); } + +  /// Record \p ToBePromoted as part of the chain to be promoted. +  void enqueueForPromotion(Instruction *ToBePromoted) { +    InstsToBePromoted.push_back(ToBePromoted); +  } + +  /// Set the instruction that will be combined with the transition. +  void recordCombineInstruction(Instruction *ToBeCombined) { +    assert(canCombine(ToBeCombined) && "Unsupported instruction to combine"); +    CombineInst = ToBeCombined; +  } + +  /// Promote all the instructions enqueued for promotion if it is +  /// is profitable. +  /// \return True if the promotion happened, false otherwise. +  bool promote() { +    // Check if there is something to promote. +    // Right now, if we do not have anything to combine with, +    // we assume the promotion is not profitable. +    if (InstsToBePromoted.empty() || !CombineInst) +      return false; + +    // Check cost. +    if (!StressStoreExtract && !isProfitableToPromote()) +      return false; + +    // Promote. +    for (auto &ToBePromoted : InstsToBePromoted) +      promoteImpl(ToBePromoted); +    InstsToBePromoted.clear(); +    return true; +  } +}; + +} // end anonymous namespace + +void VectorPromoteHelper::promoteImpl(Instruction *ToBePromoted) { +  // At this point, we know that all the operands of ToBePromoted but Def +  // can be statically promoted. +  // For Def, we need to use its parameter in ToBePromoted: +  // b = ToBePromoted ty1 a +  // Def = Transition ty1 b to ty2 +  // Move the transition down. +  // 1. Replace all uses of the promoted operation by the transition. +  // = ... b => = ... Def. +  assert(ToBePromoted->getType() == Transition->getType() && +         "The type of the result of the transition does not match " +         "the final type"); +  ToBePromoted->replaceAllUsesWith(Transition); +  // 2. Update the type of the uses. +  // b = ToBePromoted ty2 Def => b = ToBePromoted ty1 Def. +  Type *TransitionTy = getTransitionType(); +  ToBePromoted->mutateType(TransitionTy); +  // 3. Update all the operands of the promoted operation with promoted +  // operands. +  // b = ToBePromoted ty1 Def => b = ToBePromoted ty1 a. +  for (Use &U : ToBePromoted->operands()) { +    Value *Val = U.get(); +    Value *NewVal = nullptr; +    if (Val == Transition) +      NewVal = Transition->getOperand(getTransitionOriginalValueIdx()); +    else if (isa<UndefValue>(Val) || isa<ConstantInt>(Val) || +             isa<ConstantFP>(Val)) { +      // Use a splat constant if it is not safe to use undef. +      NewVal = getConstantVector( +          cast<Constant>(Val), +          isa<UndefValue>(Val) || +              canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo())); +    } else +      llvm_unreachable("Did you modified shouldPromote and forgot to update " +                       "this?"); +    ToBePromoted->setOperand(U.getOperandNo(), NewVal); +  } +  Transition->moveAfter(ToBePromoted); +  Transition->setOperand(getTransitionOriginalValueIdx(), ToBePromoted); +} + +/// Some targets can do store(extractelement) with one instruction. +/// Try to push the extractelement towards the stores when the target +/// has this feature and this is profitable. +bool CodeGenPrepare::optimizeExtractElementInst(Instruction *Inst) { +  unsigned CombineCost = std::numeric_limits<unsigned>::max(); +  if (DisableStoreExtract || +      (!StressStoreExtract && +       !TLI->canCombineStoreAndExtract(Inst->getOperand(0)->getType(), +                                       Inst->getOperand(1), CombineCost))) +    return false; + +  // At this point we know that Inst is a vector to scalar transition. +  // Try to move it down the def-use chain, until: +  // - We can combine the transition with its single use +  //   => we got rid of the transition. +  // - We escape the current basic block +  //   => we would need to check that we are moving it at a cheaper place and +  //      we do not do that for now. +  BasicBlock *Parent = Inst->getParent(); +  LLVM_DEBUG(dbgs() << "Found an interesting transition: " << *Inst << '\n'); +  VectorPromoteHelper VPH(*DL, *TLI, *TTI, Inst, CombineCost); +  // If the transition has more than one use, assume this is not going to be +  // beneficial. +  while (Inst->hasOneUse()) { +    Instruction *ToBePromoted = cast<Instruction>(*Inst->user_begin()); +    LLVM_DEBUG(dbgs() << "Use: " << *ToBePromoted << '\n'); + +    if (ToBePromoted->getParent() != Parent) { +      LLVM_DEBUG(dbgs() << "Instruction to promote is in a different block (" +                        << ToBePromoted->getParent()->getName() +                        << ") than the transition (" << Parent->getName() +                        << ").\n"); +      return false; +    } + +    if (VPH.canCombine(ToBePromoted)) { +      LLVM_DEBUG(dbgs() << "Assume " << *Inst << '\n' +                        << "will be combined with: " << *ToBePromoted << '\n'); +      VPH.recordCombineInstruction(ToBePromoted); +      bool Changed = VPH.promote(); +      NumStoreExtractExposed += Changed; +      return Changed; +    } + +    LLVM_DEBUG(dbgs() << "Try promoting.\n"); +    if (!VPH.canPromote(ToBePromoted) || !VPH.shouldPromote(ToBePromoted)) +      return false; + +    LLVM_DEBUG(dbgs() << "Promoting is possible... Enqueue for promotion!\n"); + +    VPH.enqueueForPromotion(ToBePromoted); +    Inst = ToBePromoted; +  } +  return false; +} + +/// For the instruction sequence of store below, F and I values +/// are bundled together as an i64 value before being stored into memory. +/// Sometimes it is more efficient to generate separate stores for F and I, +/// which can remove the bitwise instructions or sink them to colder places. +/// +///   (store (or (zext (bitcast F to i32) to i64), +///              (shl (zext I to i64), 32)), addr)  --> +///   (store F, addr) and (store I, addr+4) +/// +/// Similarly, splitting for other merged store can also be beneficial, like: +/// For pair of {i32, i32}, i64 store --> two i32 stores. +/// For pair of {i32, i16}, i64 store --> two i32 stores. +/// For pair of {i16, i16}, i32 store --> two i16 stores. +/// For pair of {i16, i8},  i32 store --> two i16 stores. +/// For pair of {i8, i8},   i16 store --> two i8 stores. +/// +/// We allow each target to determine specifically which kind of splitting is +/// supported. +/// +/// The store patterns are commonly seen from the simple code snippet below +/// if only std::make_pair(...) is sroa transformed before inlined into hoo. +///   void goo(const std::pair<int, float> &); +///   hoo() { +///     ... +///     goo(std::make_pair(tmp, ftmp)); +///     ... +///   } +/// +/// Although we already have similar splitting in DAG Combine, we duplicate +/// it in CodeGenPrepare to catch the case in which pattern is across +/// multiple BBs. The logic in DAG Combine is kept to catch case generated +/// during code expansion. +static bool splitMergedValStore(StoreInst &SI, const DataLayout &DL, +                                const TargetLowering &TLI) { +  // Handle simple but common cases only. +  Type *StoreType = SI.getValueOperand()->getType(); + +  // The code below assumes shifting a value by <number of bits>, +  // whereas scalable vectors would have to be shifted by +  // <2log(vscale) + number of bits> in order to store the +  // low/high parts. Bailing out for now. +  if (StoreType->isScalableTy()) +    return false; + +  if (!DL.typeSizeEqualsStoreSize(StoreType) || +      DL.getTypeSizeInBits(StoreType) == 0) +    return false; + +  unsigned HalfValBitSize = DL.getTypeSizeInBits(StoreType) / 2; +  Type *SplitStoreType = Type::getIntNTy(SI.getContext(), HalfValBitSize); +  if (!DL.typeSizeEqualsStoreSize(SplitStoreType)) +    return false; + +  // Don't split the store if it is volatile. +  if (SI.isVolatile()) +    return false; + +  // Match the following patterns: +  // (store (or (zext LValue to i64), +  //            (shl (zext HValue to i64), 32)), HalfValBitSize) +  //  or +  // (store (or (shl (zext HValue to i64), 32)), HalfValBitSize) +  //            (zext LValue to i64), +  // Expect both operands of OR and the first operand of SHL have only +  // one use. +  Value *LValue, *HValue; +  if (!match(SI.getValueOperand(), +             m_c_Or(m_OneUse(m_ZExt(m_Value(LValue))), +                    m_OneUse(m_Shl(m_OneUse(m_ZExt(m_Value(HValue))), +                                   m_SpecificInt(HalfValBitSize)))))) +    return false; + +  // Check LValue and HValue are int with size less or equal than 32. +  if (!LValue->getType()->isIntegerTy() || +      DL.getTypeSizeInBits(LValue->getType()) > HalfValBitSize || +      !HValue->getType()->isIntegerTy() || +      DL.getTypeSizeInBits(HValue->getType()) > HalfValBitSize) +    return false; + +  // If LValue/HValue is a bitcast instruction, use the EVT before bitcast +  // as the input of target query. +  auto *LBC = dyn_cast<BitCastInst>(LValue); +  auto *HBC = dyn_cast<BitCastInst>(HValue); +  EVT LowTy = LBC ? EVT::getEVT(LBC->getOperand(0)->getType()) +                  : EVT::getEVT(LValue->getType()); +  EVT HighTy = HBC ? EVT::getEVT(HBC->getOperand(0)->getType()) +                   : EVT::getEVT(HValue->getType()); +  if (!ForceSplitStore && !TLI.isMultiStoresCheaperThanBitsMerge(LowTy, HighTy)) +    return false; + +  // Start to split store. +  IRBuilder<> Builder(SI.getContext()); +  Builder.SetInsertPoint(&SI); + +  // If LValue/HValue is a bitcast in another BB, create a new one in current +  // BB so it may be merged with the splitted stores by dag combiner. +  if (LBC && LBC->getParent() != SI.getParent()) +    LValue = Builder.CreateBitCast(LBC->getOperand(0), LBC->getType()); +  if (HBC && HBC->getParent() != SI.getParent()) +    HValue = Builder.CreateBitCast(HBC->getOperand(0), HBC->getType()); + +  bool IsLE = SI.getDataLayout().isLittleEndian(); +  auto CreateSplitStore = [&](Value *V, bool Upper) { +    V = Builder.CreateZExtOrBitCast(V, SplitStoreType); +    Value *Addr = SI.getPointerOperand(); +    Align Alignment = SI.getAlign(); +    const bool IsOffsetStore = (IsLE && Upper) || (!IsLE && !Upper); +    if (IsOffsetStore) { +      Addr = Builder.CreateGEP( +          SplitStoreType, Addr, +          ConstantInt::get(Type::getInt32Ty(SI.getContext()), 1)); + +      // When splitting the store in half, naturally one half will retain the +      // alignment of the original wider store, regardless of whether it was +      // over-aligned or not, while the other will require adjustment. +      Alignment = commonAlignment(Alignment, HalfValBitSize / 8); +    } +    Builder.CreateAlignedStore(V, Addr, Alignment); +  }; + +  CreateSplitStore(LValue, false); +  CreateSplitStore(HValue, true); + +  // Delete the old store. +  SI.eraseFromParent(); +  return true; +} + +// Return true if the GEP has two operands, the first operand is of a sequential +// type, and the second operand is a constant. +static bool GEPSequentialConstIndexed(GetElementPtrInst *GEP) { +  gep_type_iterator I = gep_type_begin(*GEP); +  return GEP->getNumOperands() == 2 && I.isSequential() && +         isa<ConstantInt>(GEP->getOperand(1)); +} + +// Try unmerging GEPs to reduce liveness interference (register pressure) across +// IndirectBr edges. Since IndirectBr edges tend to touch on many blocks, +// reducing liveness interference across those edges benefits global register +// allocation. Currently handles only certain cases. +// +// For example, unmerge %GEPI and %UGEPI as below. +// +// ---------- BEFORE ---------- +// SrcBlock: +//   ... +//   %GEPIOp = ... +//   ... +//   %GEPI = gep %GEPIOp, Idx +//   ... +//   indirectbr ... [ label %DstB0, label %DstB1, ... label %DstBi ... ] +//   (* %GEPI is alive on the indirectbr edges due to other uses ahead) +//   (* %GEPIOp is alive on the indirectbr edges only because of it's used by +//   %UGEPI) +// +// DstB0: ... (there may be a gep similar to %UGEPI to be unmerged) +// DstB1: ... (there may be a gep similar to %UGEPI to be unmerged) +// ... +// +// DstBi: +//   ... +//   %UGEPI = gep %GEPIOp, UIdx +// ... +// --------------------------- +// +// ---------- AFTER ---------- +// SrcBlock: +//   ... (same as above) +//    (* %GEPI is still alive on the indirectbr edges) +//    (* %GEPIOp is no longer alive on the indirectbr edges as a result of the +//    unmerging) +// ... +// +// DstBi: +//   ... +//   %UGEPI = gep %GEPI, (UIdx-Idx) +//   ... +// --------------------------- +// +// The register pressure on the IndirectBr edges is reduced because %GEPIOp is +// no longer alive on them. +// +// We try to unmerge GEPs here in CodGenPrepare, as opposed to limiting merging +// of GEPs in the first place in InstCombiner::visitGetElementPtrInst() so as +// not to disable further simplications and optimizations as a result of GEP +// merging. +// +// Note this unmerging may increase the length of the data flow critical path +// (the path from %GEPIOp to %UGEPI would go through %GEPI), which is a tradeoff +// between the register pressure and the length of data-flow critical +// path. Restricting this to the uncommon IndirectBr case would minimize the +// impact of potentially longer critical path, if any, and the impact on compile +// time. +static bool tryUnmergingGEPsAcrossIndirectBr(GetElementPtrInst *GEPI, +                                             const TargetTransformInfo *TTI) { +  BasicBlock *SrcBlock = GEPI->getParent(); +  // Check that SrcBlock ends with an IndirectBr. If not, give up. The common +  // (non-IndirectBr) cases exit early here. +  if (!isa<IndirectBrInst>(SrcBlock->getTerminator())) +    return false; +  // Check that GEPI is a simple gep with a single constant index. +  if (!GEPSequentialConstIndexed(GEPI)) +    return false; +  ConstantInt *GEPIIdx = cast<ConstantInt>(GEPI->getOperand(1)); +  // Check that GEPI is a cheap one. +  if (TTI->getIntImmCost(GEPIIdx->getValue(), GEPIIdx->getType(), +                         TargetTransformInfo::TCK_SizeAndLatency) > +      TargetTransformInfo::TCC_Basic) +    return false; +  Value *GEPIOp = GEPI->getOperand(0); +  // Check that GEPIOp is an instruction that's also defined in SrcBlock. +  if (!isa<Instruction>(GEPIOp)) +    return false; +  auto *GEPIOpI = cast<Instruction>(GEPIOp); +  if (GEPIOpI->getParent() != SrcBlock) +    return false; +  // Check that GEP is used outside the block, meaning it's alive on the +  // IndirectBr edge(s). +  if (llvm::none_of(GEPI->users(), [&](User *Usr) { +        if (auto *I = dyn_cast<Instruction>(Usr)) { +          if (I->getParent() != SrcBlock) { +            return true; +          } +        } +        return false; +      })) +    return false; +  // The second elements of the GEP chains to be unmerged. +  std::vector<GetElementPtrInst *> UGEPIs; +  // Check each user of GEPIOp to check if unmerging would make GEPIOp not alive +  // on IndirectBr edges. +  for (User *Usr : GEPIOp->users()) { +    if (Usr == GEPI) +      continue; +    // Check if Usr is an Instruction. If not, give up. +    if (!isa<Instruction>(Usr)) +      return false; +    auto *UI = cast<Instruction>(Usr); +    // Check if Usr in the same block as GEPIOp, which is fine, skip. +    if (UI->getParent() == SrcBlock) +      continue; +    // Check if Usr is a GEP. If not, give up. +    if (!isa<GetElementPtrInst>(Usr)) +      return false; +    auto *UGEPI = cast<GetElementPtrInst>(Usr); +    // Check if UGEPI is a simple gep with a single constant index and GEPIOp is +    // the pointer operand to it. If so, record it in the vector. If not, give +    // up. +    if (!GEPSequentialConstIndexed(UGEPI)) +      return false; +    if (UGEPI->getOperand(0) != GEPIOp) +      return false; +    if (UGEPI->getSourceElementType() != GEPI->getSourceElementType()) +      return false; +    if (GEPIIdx->getType() != +        cast<ConstantInt>(UGEPI->getOperand(1))->getType()) +      return false; +    ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); +    if (TTI->getIntImmCost(UGEPIIdx->getValue(), UGEPIIdx->getType(), +                           TargetTransformInfo::TCK_SizeAndLatency) > +        TargetTransformInfo::TCC_Basic) +      return false; +    UGEPIs.push_back(UGEPI); +  } +  if (UGEPIs.size() == 0) +    return false; +  // Check the materializing cost of (Uidx-Idx). +  for (GetElementPtrInst *UGEPI : UGEPIs) { +    ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); +    APInt NewIdx = UGEPIIdx->getValue() - GEPIIdx->getValue(); +    InstructionCost ImmCost = TTI->getIntImmCost( +        NewIdx, GEPIIdx->getType(), TargetTransformInfo::TCK_SizeAndLatency); +    if (ImmCost > TargetTransformInfo::TCC_Basic) +      return false; +  } +  // Now unmerge between GEPI and UGEPIs. +  for (GetElementPtrInst *UGEPI : UGEPIs) { +    UGEPI->setOperand(0, GEPI); +    ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); +    Constant *NewUGEPIIdx = ConstantInt::get( +        GEPIIdx->getType(), UGEPIIdx->getValue() - GEPIIdx->getValue()); +    UGEPI->setOperand(1, NewUGEPIIdx); +    // If GEPI is not inbounds but UGEPI is inbounds, change UGEPI to not +    // inbounds to avoid UB. +    if (!GEPI->isInBounds()) { +      UGEPI->setIsInBounds(false); +    } +  } +  // After unmerging, verify that GEPIOp is actually only used in SrcBlock (not +  // alive on IndirectBr edges). +  assert(llvm::none_of(GEPIOp->users(), +                       [&](User *Usr) { +                         return cast<Instruction>(Usr)->getParent() != SrcBlock; +                       }) && +         "GEPIOp is used outside SrcBlock"); +  return true; +} + +static bool optimizeBranch(BranchInst *Branch, const TargetLowering &TLI, +                           SmallSet<BasicBlock *, 32> &FreshBBs, +                           bool IsHugeFunc) { +  // Try and convert +  //  %c = icmp ult %x, 8 +  //  br %c, bla, blb +  //  %tc = lshr %x, 3 +  // to +  //  %tc = lshr %x, 3 +  //  %c = icmp eq %tc, 0 +  //  br %c, bla, blb +  // Creating the cmp to zero can be better for the backend, especially if the +  // lshr produces flags that can be used automatically. +  if (!TLI.preferZeroCompareBranch() || !Branch->isConditional()) +    return false; + +  ICmpInst *Cmp = dyn_cast<ICmpInst>(Branch->getCondition()); +  if (!Cmp || !isa<ConstantInt>(Cmp->getOperand(1)) || !Cmp->hasOneUse()) +    return false; + +  Value *X = Cmp->getOperand(0); +  APInt CmpC = cast<ConstantInt>(Cmp->getOperand(1))->getValue(); + +  for (auto *U : X->users()) { +    Instruction *UI = dyn_cast<Instruction>(U); +    // A quick dominance check +    if (!UI || +        (UI->getParent() != Branch->getParent() && +         UI->getParent() != Branch->getSuccessor(0) && +         UI->getParent() != Branch->getSuccessor(1)) || +        (UI->getParent() != Branch->getParent() && +         !UI->getParent()->getSinglePredecessor())) +      continue; + +    if (CmpC.isPowerOf2() && Cmp->getPredicate() == ICmpInst::ICMP_ULT && +        match(UI, m_Shr(m_Specific(X), m_SpecificInt(CmpC.logBase2())))) { +      IRBuilder<> Builder(Branch); +      if (UI->getParent() != Branch->getParent()) +        UI->moveBefore(Branch); +      UI->dropPoisonGeneratingFlags(); +      Value *NewCmp = Builder.CreateCmp(ICmpInst::ICMP_EQ, UI, +                                        ConstantInt::get(UI->getType(), 0)); +      LLVM_DEBUG(dbgs() << "Converting " << *Cmp << "\n"); +      LLVM_DEBUG(dbgs() << " to compare on zero: " << *NewCmp << "\n"); +      replaceAllUsesWith(Cmp, NewCmp, FreshBBs, IsHugeFunc); +      return true; +    } +    if (Cmp->isEquality() && +        (match(UI, m_Add(m_Specific(X), m_SpecificInt(-CmpC))) || +         match(UI, m_Sub(m_Specific(X), m_SpecificInt(CmpC))))) { +      IRBuilder<> Builder(Branch); +      if (UI->getParent() != Branch->getParent()) +        UI->moveBefore(Branch); +      UI->dropPoisonGeneratingFlags(); +      Value *NewCmp = Builder.CreateCmp(Cmp->getPredicate(), UI, +                                        ConstantInt::get(UI->getType(), 0)); +      LLVM_DEBUG(dbgs() << "Converting " << *Cmp << "\n"); +      LLVM_DEBUG(dbgs() << " to compare on zero: " << *NewCmp << "\n"); +      replaceAllUsesWith(Cmp, NewCmp, FreshBBs, IsHugeFunc); +      return true; +    } +  } +  return false; +} + +bool CodeGenPrepare::optimizeInst(Instruction *I, ModifyDT &ModifiedDT) { +  bool AnyChange = false; +  AnyChange = fixupDbgVariableRecordsOnInst(*I); + +  // Bail out if we inserted the instruction to prevent optimizations from +  // stepping on each other's toes. +  if (InsertedInsts.count(I)) +    return AnyChange; + +  // TODO: Move into the switch on opcode below here. +  if (PHINode *P = dyn_cast<PHINode>(I)) { +    // It is possible for very late stage optimizations (such as SimplifyCFG) +    // to introduce PHI nodes too late to be cleaned up.  If we detect such a +    // trivial PHI, go ahead and zap it here. +    if (Value *V = simplifyInstruction(P, {*DL, TLInfo})) { +      LargeOffsetGEPMap.erase(P); +      replaceAllUsesWith(P, V, FreshBBs, IsHugeFunc); +      P->eraseFromParent(); +      ++NumPHIsElim; +      return true; +    } +    return AnyChange; +  } + +  if (CastInst *CI = dyn_cast<CastInst>(I)) { +    // If the source of the cast is a constant, then this should have +    // already been constant folded.  The only reason NOT to constant fold +    // it is if something (e.g. LSR) was careful to place the constant +    // evaluation in a block other than then one that uses it (e.g. to hoist +    // the address of globals out of a loop).  If this is the case, we don't +    // want to forward-subst the cast. +    if (isa<Constant>(CI->getOperand(0))) +      return AnyChange; + +    if (OptimizeNoopCopyExpression(CI, *TLI, *DL)) +      return true; + +    if ((isa<UIToFPInst>(I) || isa<SIToFPInst>(I) || isa<FPToUIInst>(I) || +         isa<TruncInst>(I)) && +        TLI->optimizeExtendOrTruncateConversion( +            I, LI->getLoopFor(I->getParent()), *TTI)) +      return true; + +    if (isa<ZExtInst>(I) || isa<SExtInst>(I)) { +      /// Sink a zext or sext into its user blocks if the target type doesn't +      /// fit in one register +      if (TLI->getTypeAction(CI->getContext(), +                             TLI->getValueType(*DL, CI->getType())) == +          TargetLowering::TypeExpandInteger) { +        return SinkCast(CI); +      } else { +        if (TLI->optimizeExtendOrTruncateConversion( +                I, LI->getLoopFor(I->getParent()), *TTI)) +          return true; + +        bool MadeChange = optimizeExt(I); +        return MadeChange | optimizeExtUses(I); +      } +    } +    return AnyChange; +  } + +  if (auto *Cmp = dyn_cast<CmpInst>(I)) +    if (optimizeCmp(Cmp, ModifiedDT)) +      return true; + +  if (LoadInst *LI = dyn_cast<LoadInst>(I)) { +    LI->setMetadata(LLVMContext::MD_invariant_group, nullptr); +    bool Modified = optimizeLoadExt(LI); +    unsigned AS = LI->getPointerAddressSpace(); +    Modified |= optimizeMemoryInst(I, I->getOperand(0), LI->getType(), AS); +    return Modified; +  } + +  if (StoreInst *SI = dyn_cast<StoreInst>(I)) { +    if (splitMergedValStore(*SI, *DL, *TLI)) +      return true; +    SI->setMetadata(LLVMContext::MD_invariant_group, nullptr); +    unsigned AS = SI->getPointerAddressSpace(); +    return optimizeMemoryInst(I, SI->getOperand(1), +                              SI->getOperand(0)->getType(), AS); +  } + +  if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) { +    unsigned AS = RMW->getPointerAddressSpace(); +    return optimizeMemoryInst(I, RMW->getPointerOperand(), RMW->getType(), AS); +  } + +  if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(I)) { +    unsigned AS = CmpX->getPointerAddressSpace(); +    return optimizeMemoryInst(I, CmpX->getPointerOperand(), +                              CmpX->getCompareOperand()->getType(), AS); +  } + +  BinaryOperator *BinOp = dyn_cast<BinaryOperator>(I); + +  if (BinOp && BinOp->getOpcode() == Instruction::And && EnableAndCmpSinking && +      sinkAndCmp0Expression(BinOp, *TLI, InsertedInsts)) +    return true; + +  // TODO: Move this into the switch on opcode - it handles shifts already. +  if (BinOp && (BinOp->getOpcode() == Instruction::AShr || +                BinOp->getOpcode() == Instruction::LShr)) { +    ConstantInt *CI = dyn_cast<ConstantInt>(BinOp->getOperand(1)); +    if (CI && TLI->hasExtractBitsInsn()) +      if (OptimizeExtractBits(BinOp, CI, *TLI, *DL)) +        return true; +  } + +  if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) { +    if (GEPI->hasAllZeroIndices()) { +      /// The GEP operand must be a pointer, so must its result -> BitCast +      Instruction *NC = new BitCastInst(GEPI->getOperand(0), GEPI->getType(), +                                        GEPI->getName(), GEPI->getIterator()); +      NC->setDebugLoc(GEPI->getDebugLoc()); +      replaceAllUsesWith(GEPI, NC, FreshBBs, IsHugeFunc); +      RecursivelyDeleteTriviallyDeadInstructions( +          GEPI, TLInfo, nullptr, +          [&](Value *V) { removeAllAssertingVHReferences(V); }); +      ++NumGEPsElim; +      optimizeInst(NC, ModifiedDT); +      return true; +    } +    if (tryUnmergingGEPsAcrossIndirectBr(GEPI, TTI)) { +      return true; +    } +  } + +  if (FreezeInst *FI = dyn_cast<FreezeInst>(I)) { +    // freeze(icmp a, const)) -> icmp (freeze a), const +    // This helps generate efficient conditional jumps. +    Instruction *CmpI = nullptr; +    if (ICmpInst *II = dyn_cast<ICmpInst>(FI->getOperand(0))) +      CmpI = II; +    else if (FCmpInst *F = dyn_cast<FCmpInst>(FI->getOperand(0))) +      CmpI = F->getFastMathFlags().none() ? F : nullptr; + +    if (CmpI && CmpI->hasOneUse()) { +      auto Op0 = CmpI->getOperand(0), Op1 = CmpI->getOperand(1); +      bool Const0 = isa<ConstantInt>(Op0) || isa<ConstantFP>(Op0) || +                    isa<ConstantPointerNull>(Op0); +      bool Const1 = isa<ConstantInt>(Op1) || isa<ConstantFP>(Op1) || +                    isa<ConstantPointerNull>(Op1); +      if (Const0 || Const1) { +        if (!Const0 || !Const1) { +          auto *F = new FreezeInst(Const0 ? Op1 : Op0, "", CmpI->getIterator()); +          F->takeName(FI); +          CmpI->setOperand(Const0 ? 1 : 0, F); +        } +        replaceAllUsesWith(FI, CmpI, FreshBBs, IsHugeFunc); +        FI->eraseFromParent(); +        return true; +      } +    } +    return AnyChange; +  } + +  if (tryToSinkFreeOperands(I)) +    return true; + +  switch (I->getOpcode()) { +  case Instruction::Shl: +  case Instruction::LShr: +  case Instruction::AShr: +    return optimizeShiftInst(cast<BinaryOperator>(I)); +  case Instruction::Call: +    return optimizeCallInst(cast<CallInst>(I), ModifiedDT); +  case Instruction::Select: +    return optimizeSelectInst(cast<SelectInst>(I)); +  case Instruction::ShuffleVector: +    return optimizeShuffleVectorInst(cast<ShuffleVectorInst>(I)); +  case Instruction::Switch: +    return optimizeSwitchInst(cast<SwitchInst>(I)); +  case Instruction::ExtractElement: +    return optimizeExtractElementInst(cast<ExtractElementInst>(I)); +  case Instruction::Br: +    return optimizeBranch(cast<BranchInst>(I), *TLI, FreshBBs, IsHugeFunc); +  } + +  return AnyChange; +} + +/// Given an OR instruction, check to see if this is a bitreverse +/// idiom. If so, insert the new intrinsic and return true. +bool CodeGenPrepare::makeBitReverse(Instruction &I) { +  if (!I.getType()->isIntegerTy() || +      !TLI->isOperationLegalOrCustom(ISD::BITREVERSE, +                                     TLI->getValueType(*DL, I.getType(), true))) +    return false; + +  SmallVector<Instruction *, 4> Insts; +  if (!recognizeBSwapOrBitReverseIdiom(&I, false, true, Insts)) +    return false; +  Instruction *LastInst = Insts.back(); +  replaceAllUsesWith(&I, LastInst, FreshBBs, IsHugeFunc); +  RecursivelyDeleteTriviallyDeadInstructions( +      &I, TLInfo, nullptr, +      [&](Value *V) { removeAllAssertingVHReferences(V); }); +  return true; +} + +// In this pass we look for GEP and cast instructions that are used +// across basic blocks and rewrite them to improve basic-block-at-a-time +// selection. +bool CodeGenPrepare::optimizeBlock(BasicBlock &BB, ModifyDT &ModifiedDT) { +  SunkAddrs.clear(); +  bool MadeChange = false; + +  do { +    CurInstIterator = BB.begin(); +    ModifiedDT = ModifyDT::NotModifyDT; +    while (CurInstIterator != BB.end()) { +      MadeChange |= optimizeInst(&*CurInstIterator++, ModifiedDT); +      if (ModifiedDT != ModifyDT::NotModifyDT) { +        // For huge function we tend to quickly go though the inner optmization +        // opportunities in the BB. So we go back to the BB head to re-optimize +        // each instruction instead of go back to the function head. +        if (IsHugeFunc) { +          DT.reset(); +          getDT(*BB.getParent()); +          break; +        } else { +          return true; +        } +      } +    } +  } while (ModifiedDT == ModifyDT::ModifyInstDT); + +  bool MadeBitReverse = true; +  while (MadeBitReverse) { +    MadeBitReverse = false; +    for (auto &I : reverse(BB)) { +      if (makeBitReverse(I)) { +        MadeBitReverse = MadeChange = true; +        break; +      } +    } +  } +  MadeChange |= dupRetToEnableTailCallOpts(&BB, ModifiedDT); + +  return MadeChange; +} + +// Some CGP optimizations may move or alter what's computed in a block. Check +// whether a dbg.value intrinsic could be pointed at a more appropriate operand. +bool CodeGenPrepare::fixupDbgValue(Instruction *I) { +  assert(isa<DbgValueInst>(I)); +  DbgValueInst &DVI = *cast<DbgValueInst>(I); + +  // Does this dbg.value refer to a sunk address calculation? +  bool AnyChange = false; +  SmallDenseSet<Value *> LocationOps(DVI.location_ops().begin(), +                                     DVI.location_ops().end()); +  for (Value *Location : LocationOps) { +    WeakTrackingVH SunkAddrVH = SunkAddrs[Location]; +    Value *SunkAddr = SunkAddrVH.pointsToAliveValue() ? SunkAddrVH : nullptr; +    if (SunkAddr) { +      // Point dbg.value at locally computed address, which should give the best +      // opportunity to be accurately lowered. This update may change the type +      // of pointer being referred to; however this makes no difference to +      // debugging information, and we can't generate bitcasts that may affect +      // codegen. +      DVI.replaceVariableLocationOp(Location, SunkAddr); +      AnyChange = true; +    } +  } +  return AnyChange; +} + +bool CodeGenPrepare::fixupDbgVariableRecordsOnInst(Instruction &I) { +  bool AnyChange = false; +  for (DbgVariableRecord &DVR : filterDbgVars(I.getDbgRecordRange())) +    AnyChange |= fixupDbgVariableRecord(DVR); +  return AnyChange; +} + +// FIXME: should updating debug-info really cause the "changed" flag to fire, +// which can cause a function to be reprocessed? +bool CodeGenPrepare::fixupDbgVariableRecord(DbgVariableRecord &DVR) { +  if (DVR.Type != DbgVariableRecord::LocationType::Value && +      DVR.Type != DbgVariableRecord::LocationType::Assign) +    return false; + +  // Does this DbgVariableRecord refer to a sunk address calculation? +  bool AnyChange = false; +  SmallDenseSet<Value *> LocationOps(DVR.location_ops().begin(), +                                     DVR.location_ops().end()); +  for (Value *Location : LocationOps) { +    WeakTrackingVH SunkAddrVH = SunkAddrs[Location]; +    Value *SunkAddr = SunkAddrVH.pointsToAliveValue() ? SunkAddrVH : nullptr; +    if (SunkAddr) { +      // Point dbg.value at locally computed address, which should give the best +      // opportunity to be accurately lowered. This update may change the type +      // of pointer being referred to; however this makes no difference to +      // debugging information, and we can't generate bitcasts that may affect +      // codegen. +      DVR.replaceVariableLocationOp(Location, SunkAddr); +      AnyChange = true; +    } +  } +  return AnyChange; +} + +static void DbgInserterHelper(DbgValueInst *DVI, Instruction *VI) { +  DVI->removeFromParent(); +  if (isa<PHINode>(VI)) +    DVI->insertBefore(&*VI->getParent()->getFirstInsertionPt()); +  else +    DVI->insertAfter(VI); +} + +static void DbgInserterHelper(DbgVariableRecord *DVR, Instruction *VI) { +  DVR->removeFromParent(); +  BasicBlock *VIBB = VI->getParent(); +  if (isa<PHINode>(VI)) +    VIBB->insertDbgRecordBefore(DVR, VIBB->getFirstInsertionPt()); +  else +    VIBB->insertDbgRecordAfter(DVR, VI); +} + +// A llvm.dbg.value may be using a value before its definition, due to +// optimizations in this pass and others. Scan for such dbg.values, and rescue +// them by moving the dbg.value to immediately after the value definition. +// FIXME: Ideally this should never be necessary, and this has the potential +// to re-order dbg.value intrinsics. +bool CodeGenPrepare::placeDbgValues(Function &F) { +  bool MadeChange = false; +  DominatorTree DT(F); + +  auto DbgProcessor = [&](auto *DbgItem, Instruction *Position) { +    SmallVector<Instruction *, 4> VIs; +    for (Value *V : DbgItem->location_ops()) +      if (Instruction *VI = dyn_cast_or_null<Instruction>(V)) +        VIs.push_back(VI); + +    // This item may depend on multiple instructions, complicating any +    // potential sink. This block takes the defensive approach, opting to +    // "undef" the item if it has more than one instruction and any of them do +    // not dominate iem. +    for (Instruction *VI : VIs) { +      if (VI->isTerminator()) +        continue; + +      // If VI is a phi in a block with an EHPad terminator, we can't insert +      // after it. +      if (isa<PHINode>(VI) && VI->getParent()->getTerminator()->isEHPad()) +        continue; + +      // If the defining instruction dominates the dbg.value, we do not need +      // to move the dbg.value. +      if (DT.dominates(VI, Position)) +        continue; + +      // If we depend on multiple instructions and any of them doesn't +      // dominate this DVI, we probably can't salvage it: moving it to +      // after any of the instructions could cause us to lose the others. +      if (VIs.size() > 1) { +        LLVM_DEBUG( +            dbgs() +            << "Unable to find valid location for Debug Value, undefing:\n" +            << *DbgItem); +        DbgItem->setKillLocation(); +        break; +      } + +      LLVM_DEBUG(dbgs() << "Moving Debug Value before :\n" +                        << *DbgItem << ' ' << *VI); +      DbgInserterHelper(DbgItem, VI); +      MadeChange = true; +      ++NumDbgValueMoved; +    } +  }; + +  for (BasicBlock &BB : F) { +    for (Instruction &Insn : llvm::make_early_inc_range(BB)) { +      // Process dbg.value intrinsics. +      DbgValueInst *DVI = dyn_cast<DbgValueInst>(&Insn); +      if (DVI) { +        DbgProcessor(DVI, DVI); +        continue; +      } + +      // If this isn't a dbg.value, process any attached DbgVariableRecord +      // records attached to this instruction. +      for (DbgVariableRecord &DVR : llvm::make_early_inc_range( +               filterDbgVars(Insn.getDbgRecordRange()))) { +        if (DVR.Type != DbgVariableRecord::LocationType::Value) +          continue; +        DbgProcessor(&DVR, &Insn); +      } +    } +  } + +  return MadeChange; +} + +// Group scattered pseudo probes in a block to favor SelectionDAG. Scattered +// probes can be chained dependencies of other regular DAG nodes and block DAG +// combine optimizations. +bool CodeGenPrepare::placePseudoProbes(Function &F) { +  bool MadeChange = false; +  for (auto &Block : F) { +    // Move the rest probes to the beginning of the block. +    auto FirstInst = Block.getFirstInsertionPt(); +    while (FirstInst != Block.end() && FirstInst->isDebugOrPseudoInst()) +      ++FirstInst; +    BasicBlock::iterator I(FirstInst); +    I++; +    while (I != Block.end()) { +      if (auto *II = dyn_cast<PseudoProbeInst>(I++)) { +        II->moveBefore(&*FirstInst); +        MadeChange = true; +      } +    } +  } +  return MadeChange; +} + +/// Scale down both weights to fit into uint32_t. +static void scaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) { +  uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse; +  uint32_t Scale = (NewMax / std::numeric_limits<uint32_t>::max()) + 1; +  NewTrue = NewTrue / Scale; +  NewFalse = NewFalse / Scale; +} + +/// Some targets prefer to split a conditional branch like: +/// \code +///   %0 = icmp ne i32 %a, 0 +///   %1 = icmp ne i32 %b, 0 +///   %or.cond = or i1 %0, %1 +///   br i1 %or.cond, label %TrueBB, label %FalseBB +/// \endcode +/// into multiple branch instructions like: +/// \code +///   bb1: +///     %0 = icmp ne i32 %a, 0 +///     br i1 %0, label %TrueBB, label %bb2 +///   bb2: +///     %1 = icmp ne i32 %b, 0 +///     br i1 %1, label %TrueBB, label %FalseBB +/// \endcode +/// This usually allows instruction selection to do even further optimizations +/// and combine the compare with the branch instruction. Currently this is +/// applied for targets which have "cheap" jump instructions. +/// +/// FIXME: Remove the (equivalent?) implementation in SelectionDAG. +/// +bool CodeGenPrepare::splitBranchCondition(Function &F, ModifyDT &ModifiedDT) { +  if (!TM->Options.EnableFastISel || TLI->isJumpExpensive()) +    return false; + +  bool MadeChange = false; +  for (auto &BB : F) { +    // Does this BB end with the following? +    //   %cond1 = icmp|fcmp|binary instruction ... +    //   %cond2 = icmp|fcmp|binary instruction ... +    //   %cond.or = or|and i1 %cond1, cond2 +    //   br i1 %cond.or label %dest1, label %dest2" +    Instruction *LogicOp; +    BasicBlock *TBB, *FBB; +    if (!match(BB.getTerminator(), +               m_Br(m_OneUse(m_Instruction(LogicOp)), TBB, FBB))) +      continue; + +    auto *Br1 = cast<BranchInst>(BB.getTerminator()); +    if (Br1->getMetadata(LLVMContext::MD_unpredictable)) +      continue; + +    // The merging of mostly empty BB can cause a degenerate branch. +    if (TBB == FBB) +      continue; + +    unsigned Opc; +    Value *Cond1, *Cond2; +    if (match(LogicOp, +              m_LogicalAnd(m_OneUse(m_Value(Cond1)), m_OneUse(m_Value(Cond2))))) +      Opc = Instruction::And; +    else if (match(LogicOp, m_LogicalOr(m_OneUse(m_Value(Cond1)), +                                        m_OneUse(m_Value(Cond2))))) +      Opc = Instruction::Or; +    else +      continue; + +    auto IsGoodCond = [](Value *Cond) { +      return match( +          Cond, +          m_CombineOr(m_Cmp(), m_CombineOr(m_LogicalAnd(m_Value(), m_Value()), +                                           m_LogicalOr(m_Value(), m_Value())))); +    }; +    if (!IsGoodCond(Cond1) || !IsGoodCond(Cond2)) +      continue; + +    LLVM_DEBUG(dbgs() << "Before branch condition splitting\n"; BB.dump()); + +    // Create a new BB. +    auto *TmpBB = +        BasicBlock::Create(BB.getContext(), BB.getName() + ".cond.split", +                           BB.getParent(), BB.getNextNode()); +    if (IsHugeFunc) +      FreshBBs.insert(TmpBB); + +    // Update original basic block by using the first condition directly by the +    // branch instruction and removing the no longer needed and/or instruction. +    Br1->setCondition(Cond1); +    LogicOp->eraseFromParent(); + +    // Depending on the condition we have to either replace the true or the +    // false successor of the original branch instruction. +    if (Opc == Instruction::And) +      Br1->setSuccessor(0, TmpBB); +    else +      Br1->setSuccessor(1, TmpBB); + +    // Fill in the new basic block. +    auto *Br2 = IRBuilder<>(TmpBB).CreateCondBr(Cond2, TBB, FBB); +    if (auto *I = dyn_cast<Instruction>(Cond2)) { +      I->removeFromParent(); +      I->insertBefore(Br2); +    } + +    // Update PHI nodes in both successors. The original BB needs to be +    // replaced in one successor's PHI nodes, because the branch comes now from +    // the newly generated BB (NewBB). In the other successor we need to add one +    // incoming edge to the PHI nodes, because both branch instructions target +    // now the same successor. Depending on the original branch condition +    // (and/or) we have to swap the successors (TrueDest, FalseDest), so that +    // we perform the correct update for the PHI nodes. +    // This doesn't change the successor order of the just created branch +    // instruction (or any other instruction). +    if (Opc == Instruction::Or) +      std::swap(TBB, FBB); + +    // Replace the old BB with the new BB. +    TBB->replacePhiUsesWith(&BB, TmpBB); + +    // Add another incoming edge from the new BB. +    for (PHINode &PN : FBB->phis()) { +      auto *Val = PN.getIncomingValueForBlock(&BB); +      PN.addIncoming(Val, TmpBB); +    } + +    // Update the branch weights (from SelectionDAGBuilder:: +    // FindMergedConditions). +    if (Opc == Instruction::Or) { +      // Codegen X | Y as: +      // BB1: +      //   jmp_if_X TBB +      //   jmp TmpBB +      // TmpBB: +      //   jmp_if_Y TBB +      //   jmp FBB +      // + +      // We have flexibility in setting Prob for BB1 and Prob for NewBB. +      // The requirement is that +      //   TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) +      //     = TrueProb for original BB. +      // Assuming the original weights are A and B, one choice is to set BB1's +      // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice +      // assumes that +      //   TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. +      // Another choice is to assume TrueProb for BB1 equals to TrueProb for +      // TmpBB, but the math is more complicated. +      uint64_t TrueWeight, FalseWeight; +      if (extractBranchWeights(*Br1, TrueWeight, FalseWeight)) { +        uint64_t NewTrueWeight = TrueWeight; +        uint64_t NewFalseWeight = TrueWeight + 2 * FalseWeight; +        scaleWeights(NewTrueWeight, NewFalseWeight); +        Br1->setMetadata(LLVMContext::MD_prof, +                         MDBuilder(Br1->getContext()) +                             .createBranchWeights(TrueWeight, FalseWeight, +                                                  hasBranchWeightOrigin(*Br1))); + +        NewTrueWeight = TrueWeight; +        NewFalseWeight = 2 * FalseWeight; +        scaleWeights(NewTrueWeight, NewFalseWeight); +        Br2->setMetadata(LLVMContext::MD_prof, +                         MDBuilder(Br2->getContext()) +                             .createBranchWeights(TrueWeight, FalseWeight)); +      } +    } else { +      // Codegen X & Y as: +      // BB1: +      //   jmp_if_X TmpBB +      //   jmp FBB +      // TmpBB: +      //   jmp_if_Y TBB +      //   jmp FBB +      // +      //  This requires creation of TmpBB after CurBB. + +      // We have flexibility in setting Prob for BB1 and Prob for TmpBB. +      // The requirement is that +      //   FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) +      //     = FalseProb for original BB. +      // Assuming the original weights are A and B, one choice is to set BB1's +      // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice +      // assumes that +      //   FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB. +      uint64_t TrueWeight, FalseWeight; +      if (extractBranchWeights(*Br1, TrueWeight, FalseWeight)) { +        uint64_t NewTrueWeight = 2 * TrueWeight + FalseWeight; +        uint64_t NewFalseWeight = FalseWeight; +        scaleWeights(NewTrueWeight, NewFalseWeight); +        Br1->setMetadata(LLVMContext::MD_prof, +                         MDBuilder(Br1->getContext()) +                             .createBranchWeights(TrueWeight, FalseWeight)); + +        NewTrueWeight = 2 * TrueWeight; +        NewFalseWeight = FalseWeight; +        scaleWeights(NewTrueWeight, NewFalseWeight); +        Br2->setMetadata(LLVMContext::MD_prof, +                         MDBuilder(Br2->getContext()) +                             .createBranchWeights(TrueWeight, FalseWeight)); +      } +    } + +    ModifiedDT = ModifyDT::ModifyBBDT; +    MadeChange = true; + +    LLVM_DEBUG(dbgs() << "After branch condition splitting\n"; BB.dump(); +               TmpBB->dump()); +  } +  return MadeChange; +}  | 
