diff options
Diffstat (limited to 'contrib/llvm-project/llvm/lib/CodeGen/GlobalISel/CombinerHelper.cpp')
| -rw-r--r-- | contrib/llvm-project/llvm/lib/CodeGen/GlobalISel/CombinerHelper.cpp | 6561 |
1 files changed, 6561 insertions, 0 deletions
diff --git a/contrib/llvm-project/llvm/lib/CodeGen/GlobalISel/CombinerHelper.cpp b/contrib/llvm-project/llvm/lib/CodeGen/GlobalISel/CombinerHelper.cpp new file mode 100644 index 000000000000..8b15bdb0aca3 --- /dev/null +++ b/contrib/llvm-project/llvm/lib/CodeGen/GlobalISel/CombinerHelper.cpp @@ -0,0 +1,6561 @@ +//===-- lib/CodeGen/GlobalISel/GICombinerHelper.cpp -----------------------===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +#include "llvm/CodeGen/GlobalISel/CombinerHelper.h" +#include "llvm/ADT/APFloat.h" +#include "llvm/ADT/STLExtras.h" +#include "llvm/ADT/SetVector.h" +#include "llvm/ADT/SmallBitVector.h" +#include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h" +#include "llvm/CodeGen/GlobalISel/GISelKnownBits.h" +#include "llvm/CodeGen/GlobalISel/GenericMachineInstrs.h" +#include "llvm/CodeGen/GlobalISel/LegalizerHelper.h" +#include "llvm/CodeGen/GlobalISel/LegalizerInfo.h" +#include "llvm/CodeGen/GlobalISel/MIPatternMatch.h" +#include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h" +#include "llvm/CodeGen/GlobalISel/Utils.h" +#include "llvm/CodeGen/LowLevelTypeUtils.h" +#include "llvm/CodeGen/MachineBasicBlock.h" +#include "llvm/CodeGen/MachineDominators.h" +#include "llvm/CodeGen/MachineInstr.h" +#include "llvm/CodeGen/MachineMemOperand.h" +#include "llvm/CodeGen/MachineRegisterInfo.h" +#include "llvm/CodeGen/RegisterBankInfo.h" +#include "llvm/CodeGen/TargetInstrInfo.h" +#include "llvm/CodeGen/TargetLowering.h" +#include "llvm/CodeGen/TargetOpcodes.h" +#include "llvm/IR/DataLayout.h" +#include "llvm/IR/InstrTypes.h" +#include "llvm/Support/Casting.h" +#include "llvm/Support/DivisionByConstantInfo.h" +#include "llvm/Support/MathExtras.h" +#include "llvm/Target/TargetMachine.h" +#include <cmath> +#include <optional> +#include <tuple> + +#define DEBUG_TYPE "gi-combiner" + +using namespace llvm; +using namespace MIPatternMatch; + +// Option to allow testing of the combiner while no targets know about indexed +// addressing. +static cl::opt<bool> + ForceLegalIndexing("force-legal-indexing", cl::Hidden, cl::init(false), + cl::desc("Force all indexed operations to be " + "legal for the GlobalISel combiner")); + +CombinerHelper::CombinerHelper(GISelChangeObserver &Observer, + MachineIRBuilder &B, bool IsPreLegalize, + GISelKnownBits *KB, MachineDominatorTree *MDT, + const LegalizerInfo *LI) + : Builder(B), MRI(Builder.getMF().getRegInfo()), Observer(Observer), KB(KB), + MDT(MDT), IsPreLegalize(IsPreLegalize), LI(LI), + RBI(Builder.getMF().getSubtarget().getRegBankInfo()), + TRI(Builder.getMF().getSubtarget().getRegisterInfo()) { + (void)this->KB; +} + +const TargetLowering &CombinerHelper::getTargetLowering() const { + return *Builder.getMF().getSubtarget().getTargetLowering(); +} + +/// \returns The little endian in-memory byte position of byte \p I in a +/// \p ByteWidth bytes wide type. +/// +/// E.g. Given a 4-byte type x, x[0] -> byte 0 +static unsigned littleEndianByteAt(const unsigned ByteWidth, const unsigned I) { + assert(I < ByteWidth && "I must be in [0, ByteWidth)"); + return I; +} + +/// Determines the LogBase2 value for a non-null input value using the +/// transform: LogBase2(V) = (EltBits - 1) - ctlz(V). +static Register buildLogBase2(Register V, MachineIRBuilder &MIB) { + auto &MRI = *MIB.getMRI(); + LLT Ty = MRI.getType(V); + auto Ctlz = MIB.buildCTLZ(Ty, V); + auto Base = MIB.buildConstant(Ty, Ty.getScalarSizeInBits() - 1); + return MIB.buildSub(Ty, Base, Ctlz).getReg(0); +} + +/// \returns The big endian in-memory byte position of byte \p I in a +/// \p ByteWidth bytes wide type. +/// +/// E.g. Given a 4-byte type x, x[0] -> byte 3 +static unsigned bigEndianByteAt(const unsigned ByteWidth, const unsigned I) { + assert(I < ByteWidth && "I must be in [0, ByteWidth)"); + return ByteWidth - I - 1; +} + +/// Given a map from byte offsets in memory to indices in a load/store, +/// determine if that map corresponds to a little or big endian byte pattern. +/// +/// \param MemOffset2Idx maps memory offsets to address offsets. +/// \param LowestIdx is the lowest index in \p MemOffset2Idx. +/// +/// \returns true if the map corresponds to a big endian byte pattern, false if +/// it corresponds to a little endian byte pattern, and std::nullopt otherwise. +/// +/// E.g. given a 32-bit type x, and x[AddrOffset], the in-memory byte patterns +/// are as follows: +/// +/// AddrOffset Little endian Big endian +/// 0 0 3 +/// 1 1 2 +/// 2 2 1 +/// 3 3 0 +static std::optional<bool> +isBigEndian(const SmallDenseMap<int64_t, int64_t, 8> &MemOffset2Idx, + int64_t LowestIdx) { + // Need at least two byte positions to decide on endianness. + unsigned Width = MemOffset2Idx.size(); + if (Width < 2) + return std::nullopt; + bool BigEndian = true, LittleEndian = true; + for (unsigned MemOffset = 0; MemOffset < Width; ++ MemOffset) { + auto MemOffsetAndIdx = MemOffset2Idx.find(MemOffset); + if (MemOffsetAndIdx == MemOffset2Idx.end()) + return std::nullopt; + const int64_t Idx = MemOffsetAndIdx->second - LowestIdx; + assert(Idx >= 0 && "Expected non-negative byte offset?"); + LittleEndian &= Idx == littleEndianByteAt(Width, MemOffset); + BigEndian &= Idx == bigEndianByteAt(Width, MemOffset); + if (!BigEndian && !LittleEndian) + return std::nullopt; + } + + assert((BigEndian != LittleEndian) && + "Pattern cannot be both big and little endian!"); + return BigEndian; +} + +bool CombinerHelper::isPreLegalize() const { return IsPreLegalize; } + +bool CombinerHelper::isLegal(const LegalityQuery &Query) const { + assert(LI && "Must have LegalizerInfo to query isLegal!"); + return LI->getAction(Query).Action == LegalizeActions::Legal; +} + +bool CombinerHelper::isLegalOrBeforeLegalizer( + const LegalityQuery &Query) const { + return isPreLegalize() || isLegal(Query); +} + +bool CombinerHelper::isConstantLegalOrBeforeLegalizer(const LLT Ty) const { + if (!Ty.isVector()) + return isLegalOrBeforeLegalizer({TargetOpcode::G_CONSTANT, {Ty}}); + // Vector constants are represented as a G_BUILD_VECTOR of scalar G_CONSTANTs. + if (isPreLegalize()) + return true; + LLT EltTy = Ty.getElementType(); + return isLegal({TargetOpcode::G_BUILD_VECTOR, {Ty, EltTy}}) && + isLegal({TargetOpcode::G_CONSTANT, {EltTy}}); +} + +void CombinerHelper::replaceRegWith(MachineRegisterInfo &MRI, Register FromReg, + Register ToReg) const { + Observer.changingAllUsesOfReg(MRI, FromReg); + + if (MRI.constrainRegAttrs(ToReg, FromReg)) + MRI.replaceRegWith(FromReg, ToReg); + else + Builder.buildCopy(ToReg, FromReg); + + Observer.finishedChangingAllUsesOfReg(); +} + +void CombinerHelper::replaceRegOpWith(MachineRegisterInfo &MRI, + MachineOperand &FromRegOp, + Register ToReg) const { + assert(FromRegOp.getParent() && "Expected an operand in an MI"); + Observer.changingInstr(*FromRegOp.getParent()); + + FromRegOp.setReg(ToReg); + + Observer.changedInstr(*FromRegOp.getParent()); +} + +void CombinerHelper::replaceOpcodeWith(MachineInstr &FromMI, + unsigned ToOpcode) const { + Observer.changingInstr(FromMI); + + FromMI.setDesc(Builder.getTII().get(ToOpcode)); + + Observer.changedInstr(FromMI); +} + +const RegisterBank *CombinerHelper::getRegBank(Register Reg) const { + return RBI->getRegBank(Reg, MRI, *TRI); +} + +void CombinerHelper::setRegBank(Register Reg, const RegisterBank *RegBank) { + if (RegBank) + MRI.setRegBank(Reg, *RegBank); +} + +bool CombinerHelper::tryCombineCopy(MachineInstr &MI) { + if (matchCombineCopy(MI)) { + applyCombineCopy(MI); + return true; + } + return false; +} +bool CombinerHelper::matchCombineCopy(MachineInstr &MI) { + if (MI.getOpcode() != TargetOpcode::COPY) + return false; + Register DstReg = MI.getOperand(0).getReg(); + Register SrcReg = MI.getOperand(1).getReg(); + return canReplaceReg(DstReg, SrcReg, MRI); +} +void CombinerHelper::applyCombineCopy(MachineInstr &MI) { + Register DstReg = MI.getOperand(0).getReg(); + Register SrcReg = MI.getOperand(1).getReg(); + MI.eraseFromParent(); + replaceRegWith(MRI, DstReg, SrcReg); +} + +bool CombinerHelper::tryCombineConcatVectors(MachineInstr &MI) { + bool IsUndef = false; + SmallVector<Register, 4> Ops; + if (matchCombineConcatVectors(MI, IsUndef, Ops)) { + applyCombineConcatVectors(MI, IsUndef, Ops); + return true; + } + return false; +} + +bool CombinerHelper::matchCombineConcatVectors(MachineInstr &MI, bool &IsUndef, + SmallVectorImpl<Register> &Ops) { + assert(MI.getOpcode() == TargetOpcode::G_CONCAT_VECTORS && + "Invalid instruction"); + IsUndef = true; + MachineInstr *Undef = nullptr; + + // Walk over all the operands of concat vectors and check if they are + // build_vector themselves or undef. + // Then collect their operands in Ops. + for (const MachineOperand &MO : MI.uses()) { + Register Reg = MO.getReg(); + MachineInstr *Def = MRI.getVRegDef(Reg); + assert(Def && "Operand not defined"); + switch (Def->getOpcode()) { + case TargetOpcode::G_BUILD_VECTOR: + IsUndef = false; + // Remember the operands of the build_vector to fold + // them into the yet-to-build flattened concat vectors. + for (const MachineOperand &BuildVecMO : Def->uses()) + Ops.push_back(BuildVecMO.getReg()); + break; + case TargetOpcode::G_IMPLICIT_DEF: { + LLT OpType = MRI.getType(Reg); + // Keep one undef value for all the undef operands. + if (!Undef) { + Builder.setInsertPt(*MI.getParent(), MI); + Undef = Builder.buildUndef(OpType.getScalarType()); + } + assert(MRI.getType(Undef->getOperand(0).getReg()) == + OpType.getScalarType() && + "All undefs should have the same type"); + // Break the undef vector in as many scalar elements as needed + // for the flattening. + for (unsigned EltIdx = 0, EltEnd = OpType.getNumElements(); + EltIdx != EltEnd; ++EltIdx) + Ops.push_back(Undef->getOperand(0).getReg()); + break; + } + default: + return false; + } + } + return true; +} +void CombinerHelper::applyCombineConcatVectors( + MachineInstr &MI, bool IsUndef, const ArrayRef<Register> Ops) { + // We determined that the concat_vectors can be flatten. + // Generate the flattened build_vector. + Register DstReg = MI.getOperand(0).getReg(); + Builder.setInsertPt(*MI.getParent(), MI); + Register NewDstReg = MRI.cloneVirtualRegister(DstReg); + + // Note: IsUndef is sort of redundant. We could have determine it by + // checking that at all Ops are undef. Alternatively, we could have + // generate a build_vector of undefs and rely on another combine to + // clean that up. For now, given we already gather this information + // in tryCombineConcatVectors, just save compile time and issue the + // right thing. + if (IsUndef) + Builder.buildUndef(NewDstReg); + else + Builder.buildBuildVector(NewDstReg, Ops); + MI.eraseFromParent(); + replaceRegWith(MRI, DstReg, NewDstReg); +} + +bool CombinerHelper::tryCombineShuffleVector(MachineInstr &MI) { + SmallVector<Register, 4> Ops; + if (matchCombineShuffleVector(MI, Ops)) { + applyCombineShuffleVector(MI, Ops); + return true; + } + return false; +} + +bool CombinerHelper::matchCombineShuffleVector(MachineInstr &MI, + SmallVectorImpl<Register> &Ops) { + assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR && + "Invalid instruction kind"); + LLT DstType = MRI.getType(MI.getOperand(0).getReg()); + Register Src1 = MI.getOperand(1).getReg(); + LLT SrcType = MRI.getType(Src1); + // As bizarre as it may look, shuffle vector can actually produce + // scalar! This is because at the IR level a <1 x ty> shuffle + // vector is perfectly valid. + unsigned DstNumElts = DstType.isVector() ? DstType.getNumElements() : 1; + unsigned SrcNumElts = SrcType.isVector() ? SrcType.getNumElements() : 1; + + // If the resulting vector is smaller than the size of the source + // vectors being concatenated, we won't be able to replace the + // shuffle vector into a concat_vectors. + // + // Note: We may still be able to produce a concat_vectors fed by + // extract_vector_elt and so on. It is less clear that would + // be better though, so don't bother for now. + // + // If the destination is a scalar, the size of the sources doesn't + // matter. we will lower the shuffle to a plain copy. This will + // work only if the source and destination have the same size. But + // that's covered by the next condition. + // + // TODO: If the size between the source and destination don't match + // we could still emit an extract vector element in that case. + if (DstNumElts < 2 * SrcNumElts && DstNumElts != 1) + return false; + + // Check that the shuffle mask can be broken evenly between the + // different sources. + if (DstNumElts % SrcNumElts != 0) + return false; + + // Mask length is a multiple of the source vector length. + // Check if the shuffle is some kind of concatenation of the input + // vectors. + unsigned NumConcat = DstNumElts / SrcNumElts; + SmallVector<int, 8> ConcatSrcs(NumConcat, -1); + ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask(); + for (unsigned i = 0; i != DstNumElts; ++i) { + int Idx = Mask[i]; + // Undef value. + if (Idx < 0) + continue; + // Ensure the indices in each SrcType sized piece are sequential and that + // the same source is used for the whole piece. + if ((Idx % SrcNumElts != (i % SrcNumElts)) || + (ConcatSrcs[i / SrcNumElts] >= 0 && + ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) + return false; + // Remember which source this index came from. + ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts; + } + + // The shuffle is concatenating multiple vectors together. + // Collect the different operands for that. + Register UndefReg; + Register Src2 = MI.getOperand(2).getReg(); + for (auto Src : ConcatSrcs) { + if (Src < 0) { + if (!UndefReg) { + Builder.setInsertPt(*MI.getParent(), MI); + UndefReg = Builder.buildUndef(SrcType).getReg(0); + } + Ops.push_back(UndefReg); + } else if (Src == 0) + Ops.push_back(Src1); + else + Ops.push_back(Src2); + } + return true; +} + +void CombinerHelper::applyCombineShuffleVector(MachineInstr &MI, + const ArrayRef<Register> Ops) { + Register DstReg = MI.getOperand(0).getReg(); + Builder.setInsertPt(*MI.getParent(), MI); + Register NewDstReg = MRI.cloneVirtualRegister(DstReg); + + if (Ops.size() == 1) + Builder.buildCopy(NewDstReg, Ops[0]); + else + Builder.buildMergeLikeInstr(NewDstReg, Ops); + + MI.eraseFromParent(); + replaceRegWith(MRI, DstReg, NewDstReg); +} + +bool CombinerHelper::matchShuffleToExtract(MachineInstr &MI) { + assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR && + "Invalid instruction kind"); + + ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask(); + return Mask.size() == 1; +} + +void CombinerHelper::applyShuffleToExtract(MachineInstr &MI) { + Register DstReg = MI.getOperand(0).getReg(); + Builder.setInsertPt(*MI.getParent(), MI); + + int I = MI.getOperand(3).getShuffleMask()[0]; + Register Src1 = MI.getOperand(1).getReg(); + LLT Src1Ty = MRI.getType(Src1); + int Src1NumElts = Src1Ty.isVector() ? Src1Ty.getNumElements() : 1; + Register SrcReg; + if (I >= Src1NumElts) { + SrcReg = MI.getOperand(2).getReg(); + I -= Src1NumElts; + } else if (I >= 0) + SrcReg = Src1; + + if (I < 0) + Builder.buildUndef(DstReg); + else if (!MRI.getType(SrcReg).isVector()) + Builder.buildCopy(DstReg, SrcReg); + else + Builder.buildExtractVectorElementConstant(DstReg, SrcReg, I); + + MI.eraseFromParent(); +} + +namespace { + +/// Select a preference between two uses. CurrentUse is the current preference +/// while *ForCandidate is attributes of the candidate under consideration. +PreferredTuple ChoosePreferredUse(MachineInstr &LoadMI, + PreferredTuple &CurrentUse, + const LLT TyForCandidate, + unsigned OpcodeForCandidate, + MachineInstr *MIForCandidate) { + if (!CurrentUse.Ty.isValid()) { + if (CurrentUse.ExtendOpcode == OpcodeForCandidate || + CurrentUse.ExtendOpcode == TargetOpcode::G_ANYEXT) + return {TyForCandidate, OpcodeForCandidate, MIForCandidate}; + return CurrentUse; + } + + // We permit the extend to hoist through basic blocks but this is only + // sensible if the target has extending loads. If you end up lowering back + // into a load and extend during the legalizer then the end result is + // hoisting the extend up to the load. + + // Prefer defined extensions to undefined extensions as these are more + // likely to reduce the number of instructions. + if (OpcodeForCandidate == TargetOpcode::G_ANYEXT && + CurrentUse.ExtendOpcode != TargetOpcode::G_ANYEXT) + return CurrentUse; + else if (CurrentUse.ExtendOpcode == TargetOpcode::G_ANYEXT && + OpcodeForCandidate != TargetOpcode::G_ANYEXT) + return {TyForCandidate, OpcodeForCandidate, MIForCandidate}; + + // Prefer sign extensions to zero extensions as sign-extensions tend to be + // more expensive. Don't do this if the load is already a zero-extend load + // though, otherwise we'll rewrite a zero-extend load into a sign-extend + // later. + if (!isa<GZExtLoad>(LoadMI) && CurrentUse.Ty == TyForCandidate) { + if (CurrentUse.ExtendOpcode == TargetOpcode::G_SEXT && + OpcodeForCandidate == TargetOpcode::G_ZEXT) + return CurrentUse; + else if (CurrentUse.ExtendOpcode == TargetOpcode::G_ZEXT && + OpcodeForCandidate == TargetOpcode::G_SEXT) + return {TyForCandidate, OpcodeForCandidate, MIForCandidate}; + } + + // This is potentially target specific. We've chosen the largest type + // because G_TRUNC is usually free. One potential catch with this is that + // some targets have a reduced number of larger registers than smaller + // registers and this choice potentially increases the live-range for the + // larger value. + if (TyForCandidate.getSizeInBits() > CurrentUse.Ty.getSizeInBits()) { + return {TyForCandidate, OpcodeForCandidate, MIForCandidate}; + } + return CurrentUse; +} + +/// Find a suitable place to insert some instructions and insert them. This +/// function accounts for special cases like inserting before a PHI node. +/// The current strategy for inserting before PHI's is to duplicate the +/// instructions for each predecessor. However, while that's ok for G_TRUNC +/// on most targets since it generally requires no code, other targets/cases may +/// want to try harder to find a dominating block. +static void InsertInsnsWithoutSideEffectsBeforeUse( + MachineIRBuilder &Builder, MachineInstr &DefMI, MachineOperand &UseMO, + std::function<void(MachineBasicBlock *, MachineBasicBlock::iterator, + MachineOperand &UseMO)> + Inserter) { + MachineInstr &UseMI = *UseMO.getParent(); + + MachineBasicBlock *InsertBB = UseMI.getParent(); + + // If the use is a PHI then we want the predecessor block instead. + if (UseMI.isPHI()) { + MachineOperand *PredBB = std::next(&UseMO); + InsertBB = PredBB->getMBB(); + } + + // If the block is the same block as the def then we want to insert just after + // the def instead of at the start of the block. + if (InsertBB == DefMI.getParent()) { + MachineBasicBlock::iterator InsertPt = &DefMI; + Inserter(InsertBB, std::next(InsertPt), UseMO); + return; + } + + // Otherwise we want the start of the BB + Inserter(InsertBB, InsertBB->getFirstNonPHI(), UseMO); +} +} // end anonymous namespace + +bool CombinerHelper::tryCombineExtendingLoads(MachineInstr &MI) { + PreferredTuple Preferred; + if (matchCombineExtendingLoads(MI, Preferred)) { + applyCombineExtendingLoads(MI, Preferred); + return true; + } + return false; +} + +static unsigned getExtLoadOpcForExtend(unsigned ExtOpc) { + unsigned CandidateLoadOpc; + switch (ExtOpc) { + case TargetOpcode::G_ANYEXT: + CandidateLoadOpc = TargetOpcode::G_LOAD; + break; + case TargetOpcode::G_SEXT: + CandidateLoadOpc = TargetOpcode::G_SEXTLOAD; + break; + case TargetOpcode::G_ZEXT: + CandidateLoadOpc = TargetOpcode::G_ZEXTLOAD; + break; + default: + llvm_unreachable("Unexpected extend opc"); + } + return CandidateLoadOpc; +} + +bool CombinerHelper::matchCombineExtendingLoads(MachineInstr &MI, + PreferredTuple &Preferred) { + // We match the loads and follow the uses to the extend instead of matching + // the extends and following the def to the load. This is because the load + // must remain in the same position for correctness (unless we also add code + // to find a safe place to sink it) whereas the extend is freely movable. + // It also prevents us from duplicating the load for the volatile case or just + // for performance. + GAnyLoad *LoadMI = dyn_cast<GAnyLoad>(&MI); + if (!LoadMI) + return false; + + Register LoadReg = LoadMI->getDstReg(); + + LLT LoadValueTy = MRI.getType(LoadReg); + if (!LoadValueTy.isScalar()) + return false; + + // Most architectures are going to legalize <s8 loads into at least a 1 byte + // load, and the MMOs can only describe memory accesses in multiples of bytes. + // If we try to perform extload combining on those, we can end up with + // %a(s8) = extload %ptr (load 1 byte from %ptr) + // ... which is an illegal extload instruction. + if (LoadValueTy.getSizeInBits() < 8) + return false; + + // For non power-of-2 types, they will very likely be legalized into multiple + // loads. Don't bother trying to match them into extending loads. + if (!llvm::has_single_bit<uint32_t>(LoadValueTy.getSizeInBits())) + return false; + + // Find the preferred type aside from the any-extends (unless it's the only + // one) and non-extending ops. We'll emit an extending load to that type and + // and emit a variant of (extend (trunc X)) for the others according to the + // relative type sizes. At the same time, pick an extend to use based on the + // extend involved in the chosen type. + unsigned PreferredOpcode = + isa<GLoad>(&MI) + ? TargetOpcode::G_ANYEXT + : isa<GSExtLoad>(&MI) ? TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT; + Preferred = {LLT(), PreferredOpcode, nullptr}; + for (auto &UseMI : MRI.use_nodbg_instructions(LoadReg)) { + if (UseMI.getOpcode() == TargetOpcode::G_SEXT || + UseMI.getOpcode() == TargetOpcode::G_ZEXT || + (UseMI.getOpcode() == TargetOpcode::G_ANYEXT)) { + const auto &MMO = LoadMI->getMMO(); + // For atomics, only form anyextending loads. + if (MMO.isAtomic() && UseMI.getOpcode() != TargetOpcode::G_ANYEXT) + continue; + // Check for legality. + if (!isPreLegalize()) { + LegalityQuery::MemDesc MMDesc(MMO); + unsigned CandidateLoadOpc = getExtLoadOpcForExtend(UseMI.getOpcode()); + LLT UseTy = MRI.getType(UseMI.getOperand(0).getReg()); + LLT SrcTy = MRI.getType(LoadMI->getPointerReg()); + if (LI->getAction({CandidateLoadOpc, {UseTy, SrcTy}, {MMDesc}}) + .Action != LegalizeActions::Legal) + continue; + } + Preferred = ChoosePreferredUse(MI, Preferred, + MRI.getType(UseMI.getOperand(0).getReg()), + UseMI.getOpcode(), &UseMI); + } + } + + // There were no extends + if (!Preferred.MI) + return false; + // It should be impossible to chose an extend without selecting a different + // type since by definition the result of an extend is larger. + assert(Preferred.Ty != LoadValueTy && "Extending to same type?"); + + LLVM_DEBUG(dbgs() << "Preferred use is: " << *Preferred.MI); + return true; +} + +void CombinerHelper::applyCombineExtendingLoads(MachineInstr &MI, + PreferredTuple &Preferred) { + // Rewrite the load to the chosen extending load. + Register ChosenDstReg = Preferred.MI->getOperand(0).getReg(); + + // Inserter to insert a truncate back to the original type at a given point + // with some basic CSE to limit truncate duplication to one per BB. + DenseMap<MachineBasicBlock *, MachineInstr *> EmittedInsns; + auto InsertTruncAt = [&](MachineBasicBlock *InsertIntoBB, + MachineBasicBlock::iterator InsertBefore, + MachineOperand &UseMO) { + MachineInstr *PreviouslyEmitted = EmittedInsns.lookup(InsertIntoBB); + if (PreviouslyEmitted) { + Observer.changingInstr(*UseMO.getParent()); + UseMO.setReg(PreviouslyEmitted->getOperand(0).getReg()); + Observer.changedInstr(*UseMO.getParent()); + return; + } + + Builder.setInsertPt(*InsertIntoBB, InsertBefore); + Register NewDstReg = MRI.cloneVirtualRegister(MI.getOperand(0).getReg()); + MachineInstr *NewMI = Builder.buildTrunc(NewDstReg, ChosenDstReg); + EmittedInsns[InsertIntoBB] = NewMI; + replaceRegOpWith(MRI, UseMO, NewDstReg); + }; + + Observer.changingInstr(MI); + unsigned LoadOpc = getExtLoadOpcForExtend(Preferred.ExtendOpcode); + MI.setDesc(Builder.getTII().get(LoadOpc)); + + // Rewrite all the uses to fix up the types. + auto &LoadValue = MI.getOperand(0); + SmallVector<MachineOperand *, 4> Uses; + for (auto &UseMO : MRI.use_operands(LoadValue.getReg())) + Uses.push_back(&UseMO); + + for (auto *UseMO : Uses) { + MachineInstr *UseMI = UseMO->getParent(); + + // If the extend is compatible with the preferred extend then we should fix + // up the type and extend so that it uses the preferred use. + if (UseMI->getOpcode() == Preferred.ExtendOpcode || + UseMI->getOpcode() == TargetOpcode::G_ANYEXT) { + Register UseDstReg = UseMI->getOperand(0).getReg(); + MachineOperand &UseSrcMO = UseMI->getOperand(1); + const LLT UseDstTy = MRI.getType(UseDstReg); + if (UseDstReg != ChosenDstReg) { + if (Preferred.Ty == UseDstTy) { + // If the use has the same type as the preferred use, then merge + // the vregs and erase the extend. For example: + // %1:_(s8) = G_LOAD ... + // %2:_(s32) = G_SEXT %1(s8) + // %3:_(s32) = G_ANYEXT %1(s8) + // ... = ... %3(s32) + // rewrites to: + // %2:_(s32) = G_SEXTLOAD ... + // ... = ... %2(s32) + replaceRegWith(MRI, UseDstReg, ChosenDstReg); + Observer.erasingInstr(*UseMO->getParent()); + UseMO->getParent()->eraseFromParent(); + } else if (Preferred.Ty.getSizeInBits() < UseDstTy.getSizeInBits()) { + // If the preferred size is smaller, then keep the extend but extend + // from the result of the extending load. For example: + // %1:_(s8) = G_LOAD ... + // %2:_(s32) = G_SEXT %1(s8) + // %3:_(s64) = G_ANYEXT %1(s8) + // ... = ... %3(s64) + /// rewrites to: + // %2:_(s32) = G_SEXTLOAD ... + // %3:_(s64) = G_ANYEXT %2:_(s32) + // ... = ... %3(s64) + replaceRegOpWith(MRI, UseSrcMO, ChosenDstReg); + } else { + // If the preferred size is large, then insert a truncate. For + // example: + // %1:_(s8) = G_LOAD ... + // %2:_(s64) = G_SEXT %1(s8) + // %3:_(s32) = G_ZEXT %1(s8) + // ... = ... %3(s32) + /// rewrites to: + // %2:_(s64) = G_SEXTLOAD ... + // %4:_(s8) = G_TRUNC %2:_(s32) + // %3:_(s64) = G_ZEXT %2:_(s8) + // ... = ... %3(s64) + InsertInsnsWithoutSideEffectsBeforeUse(Builder, MI, *UseMO, + InsertTruncAt); + } + continue; + } + // The use is (one of) the uses of the preferred use we chose earlier. + // We're going to update the load to def this value later so just erase + // the old extend. + Observer.erasingInstr(*UseMO->getParent()); + UseMO->getParent()->eraseFromParent(); + continue; + } + + // The use isn't an extend. Truncate back to the type we originally loaded. + // This is free on many targets. + InsertInsnsWithoutSideEffectsBeforeUse(Builder, MI, *UseMO, InsertTruncAt); + } + + MI.getOperand(0).setReg(ChosenDstReg); + Observer.changedInstr(MI); +} + +bool CombinerHelper::matchCombineLoadWithAndMask(MachineInstr &MI, + BuildFnTy &MatchInfo) { + assert(MI.getOpcode() == TargetOpcode::G_AND); + + // If we have the following code: + // %mask = G_CONSTANT 255 + // %ld = G_LOAD %ptr, (load s16) + // %and = G_AND %ld, %mask + // + // Try to fold it into + // %ld = G_ZEXTLOAD %ptr, (load s8) + + Register Dst = MI.getOperand(0).getReg(); + if (MRI.getType(Dst).isVector()) + return false; + + auto MaybeMask = + getIConstantVRegValWithLookThrough(MI.getOperand(2).getReg(), MRI); + if (!MaybeMask) + return false; + + APInt MaskVal = MaybeMask->Value; + + if (!MaskVal.isMask()) + return false; + + Register SrcReg = MI.getOperand(1).getReg(); + // Don't use getOpcodeDef() here since intermediate instructions may have + // multiple users. + GAnyLoad *LoadMI = dyn_cast<GAnyLoad>(MRI.getVRegDef(SrcReg)); + if (!LoadMI || !MRI.hasOneNonDBGUse(LoadMI->getDstReg())) + return false; + + Register LoadReg = LoadMI->getDstReg(); + LLT RegTy = MRI.getType(LoadReg); + Register PtrReg = LoadMI->getPointerReg(); + unsigned RegSize = RegTy.getSizeInBits(); + uint64_t LoadSizeBits = LoadMI->getMemSizeInBits(); + unsigned MaskSizeBits = MaskVal.countr_one(); + + // The mask may not be larger than the in-memory type, as it might cover sign + // extended bits + if (MaskSizeBits > LoadSizeBits) + return false; + + // If the mask covers the whole destination register, there's nothing to + // extend + if (MaskSizeBits >= RegSize) + return false; + + // Most targets cannot deal with loads of size < 8 and need to re-legalize to + // at least byte loads. Avoid creating such loads here + if (MaskSizeBits < 8 || !isPowerOf2_32(MaskSizeBits)) + return false; + + const MachineMemOperand &MMO = LoadMI->getMMO(); + LegalityQuery::MemDesc MemDesc(MMO); + + // Don't modify the memory access size if this is atomic/volatile, but we can + // still adjust the opcode to indicate the high bit behavior. + if (LoadMI->isSimple()) + MemDesc.MemoryTy = LLT::scalar(MaskSizeBits); + else if (LoadSizeBits > MaskSizeBits || LoadSizeBits == RegSize) + return false; + + // TODO: Could check if it's legal with the reduced or original memory size. + if (!isLegalOrBeforeLegalizer( + {TargetOpcode::G_ZEXTLOAD, {RegTy, MRI.getType(PtrReg)}, {MemDesc}})) + return false; + + MatchInfo = [=](MachineIRBuilder &B) { + B.setInstrAndDebugLoc(*LoadMI); + auto &MF = B.getMF(); + auto PtrInfo = MMO.getPointerInfo(); + auto *NewMMO = MF.getMachineMemOperand(&MMO, PtrInfo, MemDesc.MemoryTy); + B.buildLoadInstr(TargetOpcode::G_ZEXTLOAD, Dst, PtrReg, *NewMMO); + LoadMI->eraseFromParent(); + }; + return true; +} + +bool CombinerHelper::isPredecessor(const MachineInstr &DefMI, + const MachineInstr &UseMI) { + assert(!DefMI.isDebugInstr() && !UseMI.isDebugInstr() && + "shouldn't consider debug uses"); + assert(DefMI.getParent() == UseMI.getParent()); + if (&DefMI == &UseMI) + return true; + const MachineBasicBlock &MBB = *DefMI.getParent(); + auto DefOrUse = find_if(MBB, [&DefMI, &UseMI](const MachineInstr &MI) { + return &MI == &DefMI || &MI == &UseMI; + }); + if (DefOrUse == MBB.end()) + llvm_unreachable("Block must contain both DefMI and UseMI!"); + return &*DefOrUse == &DefMI; +} + +bool CombinerHelper::dominates(const MachineInstr &DefMI, + const MachineInstr &UseMI) { + assert(!DefMI.isDebugInstr() && !UseMI.isDebugInstr() && + "shouldn't consider debug uses"); + if (MDT) + return MDT->dominates(&DefMI, &UseMI); + else if (DefMI.getParent() != UseMI.getParent()) + return false; + + return isPredecessor(DefMI, UseMI); +} + +bool CombinerHelper::matchSextTruncSextLoad(MachineInstr &MI) { + assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG); + Register SrcReg = MI.getOperand(1).getReg(); + Register LoadUser = SrcReg; + + if (MRI.getType(SrcReg).isVector()) + return false; + + Register TruncSrc; + if (mi_match(SrcReg, MRI, m_GTrunc(m_Reg(TruncSrc)))) + LoadUser = TruncSrc; + + uint64_t SizeInBits = MI.getOperand(2).getImm(); + // If the source is a G_SEXTLOAD from the same bit width, then we don't + // need any extend at all, just a truncate. + if (auto *LoadMI = getOpcodeDef<GSExtLoad>(LoadUser, MRI)) { + // If truncating more than the original extended value, abort. + auto LoadSizeBits = LoadMI->getMemSizeInBits(); + if (TruncSrc && MRI.getType(TruncSrc).getSizeInBits() < LoadSizeBits) + return false; + if (LoadSizeBits == SizeInBits) + return true; + } + return false; +} + +void CombinerHelper::applySextTruncSextLoad(MachineInstr &MI) { + assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG); + Builder.setInstrAndDebugLoc(MI); + Builder.buildCopy(MI.getOperand(0).getReg(), MI.getOperand(1).getReg()); + MI.eraseFromParent(); +} + +bool CombinerHelper::matchSextInRegOfLoad( + MachineInstr &MI, std::tuple<Register, unsigned> &MatchInfo) { + assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG); + + Register DstReg = MI.getOperand(0).getReg(); + LLT RegTy = MRI.getType(DstReg); + + // Only supports scalars for now. + if (RegTy.isVector()) + return false; + + Register SrcReg = MI.getOperand(1).getReg(); + auto *LoadDef = getOpcodeDef<GLoad>(SrcReg, MRI); + if (!LoadDef || !MRI.hasOneNonDBGUse(DstReg)) + return false; + + uint64_t MemBits = LoadDef->getMemSizeInBits(); + + // If the sign extend extends from a narrower width than the load's width, + // then we can narrow the load width when we combine to a G_SEXTLOAD. + // Avoid widening the load at all. + unsigned NewSizeBits = std::min((uint64_t)MI.getOperand(2).getImm(), MemBits); + + // Don't generate G_SEXTLOADs with a < 1 byte width. + if (NewSizeBits < 8) + return false; + // Don't bother creating a non-power-2 sextload, it will likely be broken up + // anyway for most targets. + if (!isPowerOf2_32(NewSizeBits)) + return false; + + const MachineMemOperand &MMO = LoadDef->getMMO(); + LegalityQuery::MemDesc MMDesc(MMO); + + // Don't modify the memory access size if this is atomic/volatile, but we can + // still adjust the opcode to indicate the high bit behavior. + if (LoadDef->isSimple()) + MMDesc.MemoryTy = LLT::scalar(NewSizeBits); + else if (MemBits > NewSizeBits || MemBits == RegTy.getSizeInBits()) + return false; + + // TODO: Could check if it's legal with the reduced or original memory size. + if (!isLegalOrBeforeLegalizer({TargetOpcode::G_SEXTLOAD, + {MRI.getType(LoadDef->getDstReg()), + MRI.getType(LoadDef->getPointerReg())}, + {MMDesc}})) + return false; + + MatchInfo = std::make_tuple(LoadDef->getDstReg(), NewSizeBits); + return true; +} + +void CombinerHelper::applySextInRegOfLoad( + MachineInstr &MI, std::tuple<Register, unsigned> &MatchInfo) { + assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG); + Register LoadReg; + unsigned ScalarSizeBits; + std::tie(LoadReg, ScalarSizeBits) = MatchInfo; + GLoad *LoadDef = cast<GLoad>(MRI.getVRegDef(LoadReg)); + + // If we have the following: + // %ld = G_LOAD %ptr, (load 2) + // %ext = G_SEXT_INREG %ld, 8 + // ==> + // %ld = G_SEXTLOAD %ptr (load 1) + + auto &MMO = LoadDef->getMMO(); + Builder.setInstrAndDebugLoc(*LoadDef); + auto &MF = Builder.getMF(); + auto PtrInfo = MMO.getPointerInfo(); + auto *NewMMO = MF.getMachineMemOperand(&MMO, PtrInfo, ScalarSizeBits / 8); + Builder.buildLoadInstr(TargetOpcode::G_SEXTLOAD, MI.getOperand(0).getReg(), + LoadDef->getPointerReg(), *NewMMO); + MI.eraseFromParent(); +} + +static Type *getTypeForLLT(LLT Ty, LLVMContext &C) { + if (Ty.isVector()) + return FixedVectorType::get(IntegerType::get(C, Ty.getScalarSizeInBits()), + Ty.getNumElements()); + return IntegerType::get(C, Ty.getSizeInBits()); +} + +/// Return true if 'MI' is a load or a store that may be fold it's address +/// operand into the load / store addressing mode. +static bool canFoldInAddressingMode(GLoadStore *MI, const TargetLowering &TLI, + MachineRegisterInfo &MRI) { + TargetLowering::AddrMode AM; + auto *MF = MI->getMF(); + auto *Addr = getOpcodeDef<GPtrAdd>(MI->getPointerReg(), MRI); + if (!Addr) + return false; + + AM.HasBaseReg = true; + if (auto CstOff = getIConstantVRegVal(Addr->getOffsetReg(), MRI)) + AM.BaseOffs = CstOff->getSExtValue(); // [reg +/- imm] + else + AM.Scale = 1; // [reg +/- reg] + + return TLI.isLegalAddressingMode( + MF->getDataLayout(), AM, + getTypeForLLT(MI->getMMO().getMemoryType(), + MF->getFunction().getContext()), + MI->getMMO().getAddrSpace()); +} + +static unsigned getIndexedOpc(unsigned LdStOpc) { + switch (LdStOpc) { + case TargetOpcode::G_LOAD: + return TargetOpcode::G_INDEXED_LOAD; + case TargetOpcode::G_STORE: + return TargetOpcode::G_INDEXED_STORE; + case TargetOpcode::G_ZEXTLOAD: + return TargetOpcode::G_INDEXED_ZEXTLOAD; + case TargetOpcode::G_SEXTLOAD: + return TargetOpcode::G_INDEXED_SEXTLOAD; + default: + llvm_unreachable("Unexpected opcode"); + } +} + +bool CombinerHelper::isIndexedLoadStoreLegal(GLoadStore &LdSt) const { + // Check for legality. + LLT PtrTy = MRI.getType(LdSt.getPointerReg()); + LLT Ty = MRI.getType(LdSt.getReg(0)); + LLT MemTy = LdSt.getMMO().getMemoryType(); + SmallVector<LegalityQuery::MemDesc, 2> MemDescrs( + {{MemTy, MemTy.getSizeInBits(), AtomicOrdering::NotAtomic}}); + unsigned IndexedOpc = getIndexedOpc(LdSt.getOpcode()); + SmallVector<LLT> OpTys; + if (IndexedOpc == TargetOpcode::G_INDEXED_STORE) + OpTys = {PtrTy, Ty, Ty}; + else + OpTys = {Ty, PtrTy}; // For G_INDEXED_LOAD, G_INDEXED_[SZ]EXTLOAD + + LegalityQuery Q(IndexedOpc, OpTys, MemDescrs); + return isLegal(Q); +} + +static cl::opt<unsigned> PostIndexUseThreshold( + "post-index-use-threshold", cl::Hidden, cl::init(32), + cl::desc("Number of uses of a base pointer to check before it is no longer " + "considered for post-indexing.")); + +bool CombinerHelper::findPostIndexCandidate(GLoadStore &LdSt, Register &Addr, + Register &Base, Register &Offset, + bool &RematOffset) { + // We're looking for the following pattern, for either load or store: + // %baseptr:_(p0) = ... + // G_STORE %val(s64), %baseptr(p0) + // %offset:_(s64) = G_CONSTANT i64 -256 + // %new_addr:_(p0) = G_PTR_ADD %baseptr, %offset(s64) + const auto &TLI = getTargetLowering(); + + Register Ptr = LdSt.getPointerReg(); + // If the store is the only use, don't bother. + if (MRI.hasOneNonDBGUse(Ptr)) + return false; + + if (!isIndexedLoadStoreLegal(LdSt)) + return false; + + if (getOpcodeDef(TargetOpcode::G_FRAME_INDEX, Ptr, MRI)) + return false; + + MachineInstr *StoredValDef = getDefIgnoringCopies(LdSt.getReg(0), MRI); + auto *PtrDef = MRI.getVRegDef(Ptr); + + unsigned NumUsesChecked = 0; + for (auto &Use : MRI.use_nodbg_instructions(Ptr)) { + if (++NumUsesChecked > PostIndexUseThreshold) + return false; // Try to avoid exploding compile time. + + auto *PtrAdd = dyn_cast<GPtrAdd>(&Use); + // The use itself might be dead. This can happen during combines if DCE + // hasn't had a chance to run yet. Don't allow it to form an indexed op. + if (!PtrAdd || MRI.use_nodbg_empty(PtrAdd->getReg(0))) + continue; + + // Check the user of this isn't the store, otherwise we'd be generate a + // indexed store defining its own use. + if (StoredValDef == &Use) + continue; + + Offset = PtrAdd->getOffsetReg(); + if (!ForceLegalIndexing && + !TLI.isIndexingLegal(LdSt, PtrAdd->getBaseReg(), Offset, + /*IsPre*/ false, MRI)) + continue; + + // Make sure the offset calculation is before the potentially indexed op. + MachineInstr *OffsetDef = MRI.getVRegDef(Offset); + RematOffset = false; + if (!dominates(*OffsetDef, LdSt)) { + // If the offset however is just a G_CONSTANT, we can always just + // rematerialize it where we need it. + if (OffsetDef->getOpcode() != TargetOpcode::G_CONSTANT) + continue; + RematOffset = true; + } + + for (auto &BasePtrUse : MRI.use_nodbg_instructions(PtrAdd->getBaseReg())) { + if (&BasePtrUse == PtrDef) + continue; + + // If the user is a later load/store that can be post-indexed, then don't + // combine this one. + auto *BasePtrLdSt = dyn_cast<GLoadStore>(&BasePtrUse); + if (BasePtrLdSt && BasePtrLdSt != &LdSt && + dominates(LdSt, *BasePtrLdSt) && + isIndexedLoadStoreLegal(*BasePtrLdSt)) + return false; + + // Now we're looking for the key G_PTR_ADD instruction, which contains + // the offset add that we want to fold. + if (auto *BasePtrUseDef = dyn_cast<GPtrAdd>(&BasePtrUse)) { + Register PtrAddDefReg = BasePtrUseDef->getReg(0); + for (auto &BaseUseUse : MRI.use_nodbg_instructions(PtrAddDefReg)) { + // If the use is in a different block, then we may produce worse code + // due to the extra register pressure. + if (BaseUseUse.getParent() != LdSt.getParent()) + return false; + + if (auto *UseUseLdSt = dyn_cast<GLoadStore>(&BaseUseUse)) + if (canFoldInAddressingMode(UseUseLdSt, TLI, MRI)) + return false; + } + if (!dominates(LdSt, BasePtrUse)) + return false; // All use must be dominated by the load/store. + } + } + + Addr = PtrAdd->getReg(0); + Base = PtrAdd->getBaseReg(); + return true; + } + + return false; +} + +bool CombinerHelper::findPreIndexCandidate(GLoadStore &LdSt, Register &Addr, + Register &Base, Register &Offset) { + auto &MF = *LdSt.getParent()->getParent(); + const auto &TLI = *MF.getSubtarget().getTargetLowering(); + + Addr = LdSt.getPointerReg(); + if (!mi_match(Addr, MRI, m_GPtrAdd(m_Reg(Base), m_Reg(Offset))) || + MRI.hasOneNonDBGUse(Addr)) + return false; + + if (!ForceLegalIndexing && + !TLI.isIndexingLegal(LdSt, Base, Offset, /*IsPre*/ true, MRI)) + return false; + + if (!isIndexedLoadStoreLegal(LdSt)) + return false; + + MachineInstr *BaseDef = getDefIgnoringCopies(Base, MRI); + if (BaseDef->getOpcode() == TargetOpcode::G_FRAME_INDEX) + return false; + + if (auto *St = dyn_cast<GStore>(&LdSt)) { + // Would require a copy. + if (Base == St->getValueReg()) + return false; + + // We're expecting one use of Addr in MI, but it could also be the + // value stored, which isn't actually dominated by the instruction. + if (St->getValueReg() == Addr) + return false; + } + + // Avoid increasing cross-block register pressure. + for (auto &AddrUse : MRI.use_nodbg_instructions(Addr)) + if (AddrUse.getParent() != LdSt.getParent()) + return false; + + // FIXME: check whether all uses of the base pointer are constant PtrAdds. + // That might allow us to end base's liveness here by adjusting the constant. + bool RealUse = false; + for (auto &AddrUse : MRI.use_nodbg_instructions(Addr)) { + if (!dominates(LdSt, AddrUse)) + return false; // All use must be dominated by the load/store. + + // If Ptr may be folded in addressing mode of other use, then it's + // not profitable to do this transformation. + if (auto *UseLdSt = dyn_cast<GLoadStore>(&AddrUse)) { + if (!canFoldInAddressingMode(UseLdSt, TLI, MRI)) + RealUse = true; + } else { + RealUse = true; + } + } + return RealUse; +} + +bool CombinerHelper::matchCombineExtractedVectorLoad(MachineInstr &MI, + BuildFnTy &MatchInfo) { + assert(MI.getOpcode() == TargetOpcode::G_EXTRACT_VECTOR_ELT); + + // Check if there is a load that defines the vector being extracted from. + auto *LoadMI = getOpcodeDef<GLoad>(MI.getOperand(1).getReg(), MRI); + if (!LoadMI) + return false; + + Register Vector = MI.getOperand(1).getReg(); + LLT VecEltTy = MRI.getType(Vector).getElementType(); + + assert(MRI.getType(MI.getOperand(0).getReg()) == VecEltTy); + + // Checking whether we should reduce the load width. + if (!MRI.hasOneNonDBGUse(Vector)) + return false; + + // Check if the defining load is simple. + if (!LoadMI->isSimple()) + return false; + + // If the vector element type is not a multiple of a byte then we are unable + // to correctly compute an address to load only the extracted element as a + // scalar. + if (!VecEltTy.isByteSized()) + return false; + + // Check if the new load that we are going to create is legal + // if we are in the post-legalization phase. + MachineMemOperand MMO = LoadMI->getMMO(); + Align Alignment = MMO.getAlign(); + MachinePointerInfo PtrInfo; + uint64_t Offset; + + // Finding the appropriate PtrInfo if offset is a known constant. + // This is required to create the memory operand for the narrowed load. + // This machine memory operand object helps us infer about legality + // before we proceed to combine the instruction. + if (auto CVal = getIConstantVRegVal(Vector, MRI)) { + int Elt = CVal->getZExtValue(); + // FIXME: should be (ABI size)*Elt. + Offset = VecEltTy.getSizeInBits() * Elt / 8; + PtrInfo = MMO.getPointerInfo().getWithOffset(Offset); + } else { + // Discard the pointer info except the address space because the memory + // operand can't represent this new access since the offset is variable. + Offset = VecEltTy.getSizeInBits() / 8; + PtrInfo = MachinePointerInfo(MMO.getPointerInfo().getAddrSpace()); + } + + Alignment = commonAlignment(Alignment, Offset); + + Register VecPtr = LoadMI->getPointerReg(); + LLT PtrTy = MRI.getType(VecPtr); + + MachineFunction &MF = *MI.getMF(); + auto *NewMMO = MF.getMachineMemOperand(&MMO, PtrInfo, VecEltTy); + + LegalityQuery::MemDesc MMDesc(*NewMMO); + + LegalityQuery Q = {TargetOpcode::G_LOAD, {VecEltTy, PtrTy}, {MMDesc}}; + + if (!isLegalOrBeforeLegalizer(Q)) + return false; + + // Load must be allowed and fast on the target. + LLVMContext &C = MF.getFunction().getContext(); + auto &DL = MF.getDataLayout(); + unsigned Fast = 0; + if (!getTargetLowering().allowsMemoryAccess(C, DL, VecEltTy, *NewMMO, + &Fast) || + !Fast) + return false; + + Register Result = MI.getOperand(0).getReg(); + Register Index = MI.getOperand(2).getReg(); + + MatchInfo = [=](MachineIRBuilder &B) { + GISelObserverWrapper DummyObserver; + LegalizerHelper Helper(B.getMF(), DummyObserver, B); + //// Get pointer to the vector element. + Register finalPtr = Helper.getVectorElementPointer( + LoadMI->getPointerReg(), MRI.getType(LoadMI->getOperand(0).getReg()), + Index); + // New G_LOAD instruction. + B.buildLoad(Result, finalPtr, PtrInfo, Alignment); + // Remove original GLOAD instruction. + LoadMI->eraseFromParent(); + }; + + return true; +} + +bool CombinerHelper::matchCombineIndexedLoadStore( + MachineInstr &MI, IndexedLoadStoreMatchInfo &MatchInfo) { + auto &LdSt = cast<GLoadStore>(MI); + + if (LdSt.isAtomic()) + return false; + + MatchInfo.IsPre = findPreIndexCandidate(LdSt, MatchInfo.Addr, MatchInfo.Base, + MatchInfo.Offset); + if (!MatchInfo.IsPre && + !findPostIndexCandidate(LdSt, MatchInfo.Addr, MatchInfo.Base, + MatchInfo.Offset, MatchInfo.RematOffset)) + return false; + + return true; +} + +void CombinerHelper::applyCombineIndexedLoadStore( + MachineInstr &MI, IndexedLoadStoreMatchInfo &MatchInfo) { + MachineInstr &AddrDef = *MRI.getUniqueVRegDef(MatchInfo.Addr); + Builder.setInstrAndDebugLoc(MI); + unsigned Opcode = MI.getOpcode(); + bool IsStore = Opcode == TargetOpcode::G_STORE; + unsigned NewOpcode = getIndexedOpc(Opcode); + + // If the offset constant didn't happen to dominate the load/store, we can + // just clone it as needed. + if (MatchInfo.RematOffset) { + auto *OldCst = MRI.getVRegDef(MatchInfo.Offset); + auto NewCst = Builder.buildConstant(MRI.getType(MatchInfo.Offset), + *OldCst->getOperand(1).getCImm()); + MatchInfo.Offset = NewCst.getReg(0); + } + + auto MIB = Builder.buildInstr(NewOpcode); + if (IsStore) { + MIB.addDef(MatchInfo.Addr); + MIB.addUse(MI.getOperand(0).getReg()); + } else { + MIB.addDef(MI.getOperand(0).getReg()); + MIB.addDef(MatchInfo.Addr); + } + + MIB.addUse(MatchInfo.Base); + MIB.addUse(MatchInfo.Offset); + MIB.addImm(MatchInfo.IsPre); + MIB->cloneMemRefs(*MI.getMF(), MI); + MI.eraseFromParent(); + AddrDef.eraseFromParent(); + + LLVM_DEBUG(dbgs() << " Combinined to indexed operation"); +} + +bool CombinerHelper::matchCombineDivRem(MachineInstr &MI, + MachineInstr *&OtherMI) { + unsigned Opcode = MI.getOpcode(); + bool IsDiv, IsSigned; + + switch (Opcode) { + default: + llvm_unreachable("Unexpected opcode!"); + case TargetOpcode::G_SDIV: + case TargetOpcode::G_UDIV: { + IsDiv = true; + IsSigned = Opcode == TargetOpcode::G_SDIV; + break; + } + case TargetOpcode::G_SREM: + case TargetOpcode::G_UREM: { + IsDiv = false; + IsSigned = Opcode == TargetOpcode::G_SREM; + break; + } + } + + Register Src1 = MI.getOperand(1).getReg(); + unsigned DivOpcode, RemOpcode, DivremOpcode; + if (IsSigned) { + DivOpcode = TargetOpcode::G_SDIV; + RemOpcode = TargetOpcode::G_SREM; + DivremOpcode = TargetOpcode::G_SDIVREM; + } else { + DivOpcode = TargetOpcode::G_UDIV; + RemOpcode = TargetOpcode::G_UREM; + DivremOpcode = TargetOpcode::G_UDIVREM; + } + + if (!isLegalOrBeforeLegalizer({DivremOpcode, {MRI.getType(Src1)}})) + return false; + + // Combine: + // %div:_ = G_[SU]DIV %src1:_, %src2:_ + // %rem:_ = G_[SU]REM %src1:_, %src2:_ + // into: + // %div:_, %rem:_ = G_[SU]DIVREM %src1:_, %src2:_ + + // Combine: + // %rem:_ = G_[SU]REM %src1:_, %src2:_ + // %div:_ = G_[SU]DIV %src1:_, %src2:_ + // into: + // %div:_, %rem:_ = G_[SU]DIVREM %src1:_, %src2:_ + + for (auto &UseMI : MRI.use_nodbg_instructions(Src1)) { + if (MI.getParent() == UseMI.getParent() && + ((IsDiv && UseMI.getOpcode() == RemOpcode) || + (!IsDiv && UseMI.getOpcode() == DivOpcode)) && + matchEqualDefs(MI.getOperand(2), UseMI.getOperand(2)) && + matchEqualDefs(MI.getOperand(1), UseMI.getOperand(1))) { + OtherMI = &UseMI; + return true; + } + } + + return false; +} + +void CombinerHelper::applyCombineDivRem(MachineInstr &MI, + MachineInstr *&OtherMI) { + unsigned Opcode = MI.getOpcode(); + assert(OtherMI && "OtherMI shouldn't be empty."); + + Register DestDivReg, DestRemReg; + if (Opcode == TargetOpcode::G_SDIV || Opcode == TargetOpcode::G_UDIV) { + DestDivReg = MI.getOperand(0).getReg(); + DestRemReg = OtherMI->getOperand(0).getReg(); + } else { + DestDivReg = OtherMI->getOperand(0).getReg(); + DestRemReg = MI.getOperand(0).getReg(); + } + + bool IsSigned = + Opcode == TargetOpcode::G_SDIV || Opcode == TargetOpcode::G_SREM; + + // Check which instruction is first in the block so we don't break def-use + // deps by "moving" the instruction incorrectly. Also keep track of which + // instruction is first so we pick it's operands, avoiding use-before-def + // bugs. + MachineInstr *FirstInst; + if (dominates(MI, *OtherMI)) { + Builder.setInstrAndDebugLoc(MI); + FirstInst = &MI; + } else { + Builder.setInstrAndDebugLoc(*OtherMI); + FirstInst = OtherMI; + } + + Builder.buildInstr(IsSigned ? TargetOpcode::G_SDIVREM + : TargetOpcode::G_UDIVREM, + {DestDivReg, DestRemReg}, + { FirstInst->getOperand(1), FirstInst->getOperand(2) }); + MI.eraseFromParent(); + OtherMI->eraseFromParent(); +} + +bool CombinerHelper::matchOptBrCondByInvertingCond(MachineInstr &MI, + MachineInstr *&BrCond) { + assert(MI.getOpcode() == TargetOpcode::G_BR); + + // Try to match the following: + // bb1: + // G_BRCOND %c1, %bb2 + // G_BR %bb3 + // bb2: + // ... + // bb3: + + // The above pattern does not have a fall through to the successor bb2, always + // resulting in a branch no matter which path is taken. Here we try to find + // and replace that pattern with conditional branch to bb3 and otherwise + // fallthrough to bb2. This is generally better for branch predictors. + + MachineBasicBlock *MBB = MI.getParent(); + MachineBasicBlock::iterator BrIt(MI); + if (BrIt == MBB->begin()) + return false; + assert(std::next(BrIt) == MBB->end() && "expected G_BR to be a terminator"); + + BrCond = &*std::prev(BrIt); + if (BrCond->getOpcode() != TargetOpcode::G_BRCOND) + return false; + + // Check that the next block is the conditional branch target. Also make sure + // that it isn't the same as the G_BR's target (otherwise, this will loop.) + MachineBasicBlock *BrCondTarget = BrCond->getOperand(1).getMBB(); + return BrCondTarget != MI.getOperand(0).getMBB() && + MBB->isLayoutSuccessor(BrCondTarget); +} + +void CombinerHelper::applyOptBrCondByInvertingCond(MachineInstr &MI, + MachineInstr *&BrCond) { + MachineBasicBlock *BrTarget = MI.getOperand(0).getMBB(); + Builder.setInstrAndDebugLoc(*BrCond); + LLT Ty = MRI.getType(BrCond->getOperand(0).getReg()); + // FIXME: Does int/fp matter for this? If so, we might need to restrict + // this to i1 only since we might not know for sure what kind of + // compare generated the condition value. + auto True = Builder.buildConstant( + Ty, getICmpTrueVal(getTargetLowering(), false, false)); + auto Xor = Builder.buildXor(Ty, BrCond->getOperand(0), True); + + auto *FallthroughBB = BrCond->getOperand(1).getMBB(); + Observer.changingInstr(MI); + MI.getOperand(0).setMBB(FallthroughBB); + Observer.changedInstr(MI); + + // Change the conditional branch to use the inverted condition and + // new target block. + Observer.changingInstr(*BrCond); + BrCond->getOperand(0).setReg(Xor.getReg(0)); + BrCond->getOperand(1).setMBB(BrTarget); + Observer.changedInstr(*BrCond); +} + + +bool CombinerHelper::tryEmitMemcpyInline(MachineInstr &MI) { + MachineIRBuilder HelperBuilder(MI); + GISelObserverWrapper DummyObserver; + LegalizerHelper Helper(HelperBuilder.getMF(), DummyObserver, HelperBuilder); + return Helper.lowerMemcpyInline(MI) == + LegalizerHelper::LegalizeResult::Legalized; +} + +bool CombinerHelper::tryCombineMemCpyFamily(MachineInstr &MI, unsigned MaxLen) { + MachineIRBuilder HelperBuilder(MI); + GISelObserverWrapper DummyObserver; + LegalizerHelper Helper(HelperBuilder.getMF(), DummyObserver, HelperBuilder); + return Helper.lowerMemCpyFamily(MI, MaxLen) == + LegalizerHelper::LegalizeResult::Legalized; +} + +static APFloat constantFoldFpUnary(const MachineInstr &MI, + const MachineRegisterInfo &MRI, + const APFloat &Val) { + APFloat Result(Val); + switch (MI.getOpcode()) { + default: + llvm_unreachable("Unexpected opcode!"); + case TargetOpcode::G_FNEG: { + Result.changeSign(); + return Result; + } + case TargetOpcode::G_FABS: { + Result.clearSign(); + return Result; + } + case TargetOpcode::G_FPTRUNC: { + bool Unused; + LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); + Result.convert(getFltSemanticForLLT(DstTy), APFloat::rmNearestTiesToEven, + &Unused); + return Result; + } + case TargetOpcode::G_FSQRT: { + bool Unused; + Result.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, + &Unused); + Result = APFloat(sqrt(Result.convertToDouble())); + break; + } + case TargetOpcode::G_FLOG2: { + bool Unused; + Result.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, + &Unused); + Result = APFloat(log2(Result.convertToDouble())); + break; + } + } + // Convert `APFloat` to appropriate IEEE type depending on `DstTy`. Otherwise, + // `buildFConstant` will assert on size mismatch. Only `G_FSQRT`, and + // `G_FLOG2` reach here. + bool Unused; + Result.convert(Val.getSemantics(), APFloat::rmNearestTiesToEven, &Unused); + return Result; +} + +void CombinerHelper::applyCombineConstantFoldFpUnary(MachineInstr &MI, + const ConstantFP *Cst) { + Builder.setInstrAndDebugLoc(MI); + APFloat Folded = constantFoldFpUnary(MI, MRI, Cst->getValue()); + const ConstantFP *NewCst = ConstantFP::get(Builder.getContext(), Folded); + Builder.buildFConstant(MI.getOperand(0), *NewCst); + MI.eraseFromParent(); +} + +bool CombinerHelper::matchPtrAddImmedChain(MachineInstr &MI, + PtrAddChain &MatchInfo) { + // We're trying to match the following pattern: + // %t1 = G_PTR_ADD %base, G_CONSTANT imm1 + // %root = G_PTR_ADD %t1, G_CONSTANT imm2 + // --> + // %root = G_PTR_ADD %base, G_CONSTANT (imm1 + imm2) + + if (MI.getOpcode() != TargetOpcode::G_PTR_ADD) + return false; + + Register Add2 = MI.getOperand(1).getReg(); + Register Imm1 = MI.getOperand(2).getReg(); + auto MaybeImmVal = getIConstantVRegValWithLookThrough(Imm1, MRI); + if (!MaybeImmVal) + return false; + + MachineInstr *Add2Def = MRI.getVRegDef(Add2); + if (!Add2Def || Add2Def->getOpcode() != TargetOpcode::G_PTR_ADD) + return false; + + Register Base = Add2Def->getOperand(1).getReg(); + Register Imm2 = Add2Def->getOperand(2).getReg(); + auto MaybeImm2Val = getIConstantVRegValWithLookThrough(Imm2, MRI); + if (!MaybeImm2Val) + return false; + + // Check if the new combined immediate forms an illegal addressing mode. + // Do not combine if it was legal before but would get illegal. + // To do so, we need to find a load/store user of the pointer to get + // the access type. + Type *AccessTy = nullptr; + auto &MF = *MI.getMF(); + for (auto &UseMI : MRI.use_nodbg_instructions(MI.getOperand(0).getReg())) { + if (auto *LdSt = dyn_cast<GLoadStore>(&UseMI)) { + AccessTy = getTypeForLLT(MRI.getType(LdSt->getReg(0)), + MF.getFunction().getContext()); + break; + } + } + TargetLoweringBase::AddrMode AMNew; + APInt CombinedImm = MaybeImmVal->Value + MaybeImm2Val->Value; + AMNew.BaseOffs = CombinedImm.getSExtValue(); + if (AccessTy) { + AMNew.HasBaseReg = true; + TargetLoweringBase::AddrMode AMOld; + AMOld.BaseOffs = MaybeImmVal->Value.getSExtValue(); + AMOld.HasBaseReg = true; + unsigned AS = MRI.getType(Add2).getAddressSpace(); + const auto &TLI = *MF.getSubtarget().getTargetLowering(); + if (TLI.isLegalAddressingMode(MF.getDataLayout(), AMOld, AccessTy, AS) && + !TLI.isLegalAddressingMode(MF.getDataLayout(), AMNew, AccessTy, AS)) + return false; + } + + // Pass the combined immediate to the apply function. + MatchInfo.Imm = AMNew.BaseOffs; + MatchInfo.Base = Base; + MatchInfo.Bank = getRegBank(Imm2); + return true; +} + +void CombinerHelper::applyPtrAddImmedChain(MachineInstr &MI, + PtrAddChain &MatchInfo) { + assert(MI.getOpcode() == TargetOpcode::G_PTR_ADD && "Expected G_PTR_ADD"); + MachineIRBuilder MIB(MI); + LLT OffsetTy = MRI.getType(MI.getOperand(2).getReg()); + auto NewOffset = MIB.buildConstant(OffsetTy, MatchInfo.Imm); + setRegBank(NewOffset.getReg(0), MatchInfo.Bank); + Observer.changingInstr(MI); + MI.getOperand(1).setReg(MatchInfo.Base); + MI.getOperand(2).setReg(NewOffset.getReg(0)); + Observer.changedInstr(MI); +} + +bool CombinerHelper::matchShiftImmedChain(MachineInstr &MI, + RegisterImmPair &MatchInfo) { + // We're trying to match the following pattern with any of + // G_SHL/G_ASHR/G_LSHR/G_SSHLSAT/G_USHLSAT shift instructions: + // %t1 = SHIFT %base, G_CONSTANT imm1 + // %root = SHIFT %t1, G_CONSTANT imm2 + // --> + // %root = SHIFT %base, G_CONSTANT (imm1 + imm2) + + unsigned Opcode = MI.getOpcode(); + assert((Opcode == TargetOpcode::G_SHL || Opcode == TargetOpcode::G_ASHR || + Opcode == TargetOpcode::G_LSHR || Opcode == TargetOpcode::G_SSHLSAT || + Opcode == TargetOpcode::G_USHLSAT) && + "Expected G_SHL, G_ASHR, G_LSHR, G_SSHLSAT or G_USHLSAT"); + + Register Shl2 = MI.getOperand(1).getReg(); + Register Imm1 = MI.getOperand(2).getReg(); + auto MaybeImmVal = getIConstantVRegValWithLookThrough(Imm1, MRI); + if (!MaybeImmVal) + return false; + + MachineInstr *Shl2Def = MRI.getUniqueVRegDef(Shl2); + if (Shl2Def->getOpcode() != Opcode) + return false; + + Register Base = Shl2Def->getOperand(1).getReg(); + Register Imm2 = Shl2Def->getOperand(2).getReg(); + auto MaybeImm2Val = getIConstantVRegValWithLookThrough(Imm2, MRI); + if (!MaybeImm2Val) + return false; + + // Pass the combined immediate to the apply function. + MatchInfo.Imm = + (MaybeImmVal->Value.getZExtValue() + MaybeImm2Val->Value).getZExtValue(); + MatchInfo.Reg = Base; + + // There is no simple replacement for a saturating unsigned left shift that + // exceeds the scalar size. + if (Opcode == TargetOpcode::G_USHLSAT && + MatchInfo.Imm >= MRI.getType(Shl2).getScalarSizeInBits()) + return false; + + return true; +} + +void CombinerHelper::applyShiftImmedChain(MachineInstr &MI, + RegisterImmPair &MatchInfo) { + unsigned Opcode = MI.getOpcode(); + assert((Opcode == TargetOpcode::G_SHL || Opcode == TargetOpcode::G_ASHR || + Opcode == TargetOpcode::G_LSHR || Opcode == TargetOpcode::G_SSHLSAT || + Opcode == TargetOpcode::G_USHLSAT) && + "Expected G_SHL, G_ASHR, G_LSHR, G_SSHLSAT or G_USHLSAT"); + + Builder.setInstrAndDebugLoc(MI); + LLT Ty = MRI.getType(MI.getOperand(1).getReg()); + unsigned const ScalarSizeInBits = Ty.getScalarSizeInBits(); + auto Imm = MatchInfo.Imm; + + if (Imm >= ScalarSizeInBits) { + // Any logical shift that exceeds scalar size will produce zero. + if (Opcode == TargetOpcode::G_SHL || Opcode == TargetOpcode::G_LSHR) { + Builder.buildConstant(MI.getOperand(0), 0); + MI.eraseFromParent(); + return; + } + // Arithmetic shift and saturating signed left shift have no effect beyond + // scalar size. + Imm = ScalarSizeInBits - 1; + } + + LLT ImmTy = MRI.getType(MI.getOperand(2).getReg()); + Register NewImm = Builder.buildConstant(ImmTy, Imm).getReg(0); + Observer.changingInstr(MI); + MI.getOperand(1).setReg(MatchInfo.Reg); + MI.getOperand(2).setReg(NewImm); + Observer.changedInstr(MI); +} + +bool CombinerHelper::matchShiftOfShiftedLogic(MachineInstr &MI, + ShiftOfShiftedLogic &MatchInfo) { + // We're trying to match the following pattern with any of + // G_SHL/G_ASHR/G_LSHR/G_USHLSAT/G_SSHLSAT shift instructions in combination + // with any of G_AND/G_OR/G_XOR logic instructions. + // %t1 = SHIFT %X, G_CONSTANT C0 + // %t2 = LOGIC %t1, %Y + // %root = SHIFT %t2, G_CONSTANT C1 + // --> + // %t3 = SHIFT %X, G_CONSTANT (C0+C1) + // %t4 = SHIFT %Y, G_CONSTANT C1 + // %root = LOGIC %t3, %t4 + unsigned ShiftOpcode = MI.getOpcode(); + assert((ShiftOpcode == TargetOpcode::G_SHL || + ShiftOpcode == TargetOpcode::G_ASHR || + ShiftOpcode == TargetOpcode::G_LSHR || + ShiftOpcode == TargetOpcode::G_USHLSAT || + ShiftOpcode == TargetOpcode::G_SSHLSAT) && + "Expected G_SHL, G_ASHR, G_LSHR, G_USHLSAT and G_SSHLSAT"); + + // Match a one-use bitwise logic op. + Register LogicDest = MI.getOperand(1).getReg(); + if (!MRI.hasOneNonDBGUse(LogicDest)) + return false; + + MachineInstr *LogicMI = MRI.getUniqueVRegDef(LogicDest); + unsigned LogicOpcode = LogicMI->getOpcode(); + if (LogicOpcode != TargetOpcode::G_AND && LogicOpcode != TargetOpcode::G_OR && + LogicOpcode != TargetOpcode::G_XOR) + return false; + + // Find a matching one-use shift by constant. + const Register C1 = MI.getOperand(2).getReg(); + auto MaybeImmVal = getIConstantVRegValWithLookThrough(C1, MRI); + if (!MaybeImmVal || MaybeImmVal->Value == 0) + return false; + + const uint64_t C1Val = MaybeImmVal->Value.getZExtValue(); + + auto matchFirstShift = [&](const MachineInstr *MI, uint64_t &ShiftVal) { + // Shift should match previous one and should be a one-use. + if (MI->getOpcode() != ShiftOpcode || + !MRI.hasOneNonDBGUse(MI->getOperand(0).getReg())) + return false; + + // Must be a constant. + auto MaybeImmVal = + getIConstantVRegValWithLookThrough(MI->getOperand(2).getReg(), MRI); + if (!MaybeImmVal) + return false; + + ShiftVal = MaybeImmVal->Value.getSExtValue(); + return true; + }; + + // Logic ops are commutative, so check each operand for a match. + Register LogicMIReg1 = LogicMI->getOperand(1).getReg(); + MachineInstr *LogicMIOp1 = MRI.getUniqueVRegDef(LogicMIReg1); + Register LogicMIReg2 = LogicMI->getOperand(2).getReg(); + MachineInstr *LogicMIOp2 = MRI.getUniqueVRegDef(LogicMIReg2); + uint64_t C0Val; + + if (matchFirstShift(LogicMIOp1, C0Val)) { + MatchInfo.LogicNonShiftReg = LogicMIReg2; + MatchInfo.Shift2 = LogicMIOp1; + } else if (matchFirstShift(LogicMIOp2, C0Val)) { + MatchInfo.LogicNonShiftReg = LogicMIReg1; + MatchInfo.Shift2 = LogicMIOp2; + } else + return false; + + MatchInfo.ValSum = C0Val + C1Val; + + // The fold is not valid if the sum of the shift values exceeds bitwidth. + if (MatchInfo.ValSum >= MRI.getType(LogicDest).getScalarSizeInBits()) + return false; + + MatchInfo.Logic = LogicMI; + return true; +} + +void CombinerHelper::applyShiftOfShiftedLogic(MachineInstr &MI, + ShiftOfShiftedLogic &MatchInfo) { + unsigned Opcode = MI.getOpcode(); + assert((Opcode == TargetOpcode::G_SHL || Opcode == TargetOpcode::G_ASHR || + Opcode == TargetOpcode::G_LSHR || Opcode == TargetOpcode::G_USHLSAT || + Opcode == TargetOpcode::G_SSHLSAT) && + "Expected G_SHL, G_ASHR, G_LSHR, G_USHLSAT and G_SSHLSAT"); + + LLT ShlType = MRI.getType(MI.getOperand(2).getReg()); + LLT DestType = MRI.getType(MI.getOperand(0).getReg()); + Builder.setInstrAndDebugLoc(MI); + + Register Const = Builder.buildConstant(ShlType, MatchInfo.ValSum).getReg(0); + + Register Shift1Base = MatchInfo.Shift2->getOperand(1).getReg(); + Register Shift1 = + Builder.buildInstr(Opcode, {DestType}, {Shift1Base, Const}).getReg(0); + + // If LogicNonShiftReg is the same to Shift1Base, and shift1 const is the same + // to MatchInfo.Shift2 const, CSEMIRBuilder will reuse the old shift1 when + // build shift2. So, if we erase MatchInfo.Shift2 at the end, actually we + // remove old shift1. And it will cause crash later. So erase it earlier to + // avoid the crash. + MatchInfo.Shift2->eraseFromParent(); + + Register Shift2Const = MI.getOperand(2).getReg(); + Register Shift2 = Builder + .buildInstr(Opcode, {DestType}, + {MatchInfo.LogicNonShiftReg, Shift2Const}) + .getReg(0); + + Register Dest = MI.getOperand(0).getReg(); + Builder.buildInstr(MatchInfo.Logic->getOpcode(), {Dest}, {Shift1, Shift2}); + + // This was one use so it's safe to remove it. + MatchInfo.Logic->eraseFromParent(); + + MI.eraseFromParent(); +} + +bool CombinerHelper::matchCommuteShift(MachineInstr &MI, BuildFnTy &MatchInfo) { + assert(MI.getOpcode() == TargetOpcode::G_SHL && "Expected G_SHL"); + // Combine (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2) + // Combine (shl (or x, c1), c2) -> (or (shl x, c2), c1 << c2) + auto &Shl = cast<GenericMachineInstr>(MI); + Register DstReg = Shl.getReg(0); + Register SrcReg = Shl.getReg(1); + Register ShiftReg = Shl.getReg(2); + Register X, C1; + + if (!getTargetLowering().isDesirableToCommuteWithShift(MI, !isPreLegalize())) + return false; + + if (!mi_match(SrcReg, MRI, + m_OneNonDBGUse(m_any_of(m_GAdd(m_Reg(X), m_Reg(C1)), + m_GOr(m_Reg(X), m_Reg(C1)))))) + return false; + + APInt C1Val, C2Val; + if (!mi_match(C1, MRI, m_ICstOrSplat(C1Val)) || + !mi_match(ShiftReg, MRI, m_ICstOrSplat(C2Val))) + return false; + + auto *SrcDef = MRI.getVRegDef(SrcReg); + assert((SrcDef->getOpcode() == TargetOpcode::G_ADD || + SrcDef->getOpcode() == TargetOpcode::G_OR) && "Unexpected op"); + LLT SrcTy = MRI.getType(SrcReg); + MatchInfo = [=](MachineIRBuilder &B) { + auto S1 = B.buildShl(SrcTy, X, ShiftReg); + auto S2 = B.buildShl(SrcTy, C1, ShiftReg); + B.buildInstr(SrcDef->getOpcode(), {DstReg}, {S1, S2}); + }; + return true; +} + +bool CombinerHelper::matchCombineMulToShl(MachineInstr &MI, + unsigned &ShiftVal) { + assert(MI.getOpcode() == TargetOpcode::G_MUL && "Expected a G_MUL"); + auto MaybeImmVal = + getIConstantVRegValWithLookThrough(MI.getOperand(2).getReg(), MRI); + if (!MaybeImmVal) + return false; + + ShiftVal = MaybeImmVal->Value.exactLogBase2(); + return (static_cast<int32_t>(ShiftVal) != -1); +} + +void CombinerHelper::applyCombineMulToShl(MachineInstr &MI, + unsigned &ShiftVal) { + assert(MI.getOpcode() == TargetOpcode::G_MUL && "Expected a G_MUL"); + MachineIRBuilder MIB(MI); + LLT ShiftTy = MRI.getType(MI.getOperand(0).getReg()); + auto ShiftCst = MIB.buildConstant(ShiftTy, ShiftVal); + Observer.changingInstr(MI); + MI.setDesc(MIB.getTII().get(TargetOpcode::G_SHL)); + MI.getOperand(2).setReg(ShiftCst.getReg(0)); + Observer.changedInstr(MI); +} + +// shl ([sza]ext x), y => zext (shl x, y), if shift does not overflow source +bool CombinerHelper::matchCombineShlOfExtend(MachineInstr &MI, + RegisterImmPair &MatchData) { + assert(MI.getOpcode() == TargetOpcode::G_SHL && KB); + if (!getTargetLowering().isDesirableToPullExtFromShl(MI)) + return false; + + Register LHS = MI.getOperand(1).getReg(); + + Register ExtSrc; + if (!mi_match(LHS, MRI, m_GAnyExt(m_Reg(ExtSrc))) && + !mi_match(LHS, MRI, m_GZExt(m_Reg(ExtSrc))) && + !mi_match(LHS, MRI, m_GSExt(m_Reg(ExtSrc)))) + return false; + + Register RHS = MI.getOperand(2).getReg(); + MachineInstr *MIShiftAmt = MRI.getVRegDef(RHS); + auto MaybeShiftAmtVal = isConstantOrConstantSplatVector(*MIShiftAmt, MRI); + if (!MaybeShiftAmtVal) + return false; + + if (LI) { + LLT SrcTy = MRI.getType(ExtSrc); + + // We only really care about the legality with the shifted value. We can + // pick any type the constant shift amount, so ask the target what to + // use. Otherwise we would have to guess and hope it is reported as legal. + LLT ShiftAmtTy = getTargetLowering().getPreferredShiftAmountTy(SrcTy); + if (!isLegalOrBeforeLegalizer({TargetOpcode::G_SHL, {SrcTy, ShiftAmtTy}})) + return false; + } + + int64_t ShiftAmt = MaybeShiftAmtVal->getSExtValue(); + MatchData.Reg = ExtSrc; + MatchData.Imm = ShiftAmt; + + unsigned MinLeadingZeros = KB->getKnownZeroes(ExtSrc).countl_one(); + unsigned SrcTySize = MRI.getType(ExtSrc).getScalarSizeInBits(); + return MinLeadingZeros >= ShiftAmt && ShiftAmt < SrcTySize; +} + +void CombinerHelper::applyCombineShlOfExtend(MachineInstr &MI, + const RegisterImmPair &MatchData) { + Register ExtSrcReg = MatchData.Reg; + int64_t ShiftAmtVal = MatchData.Imm; + + LLT ExtSrcTy = MRI.getType(ExtSrcReg); + Builder.setInstrAndDebugLoc(MI); + auto ShiftAmt = Builder.buildConstant(ExtSrcTy, ShiftAmtVal); + auto NarrowShift = + Builder.buildShl(ExtSrcTy, ExtSrcReg, ShiftAmt, MI.getFlags()); + Builder.buildZExt(MI.getOperand(0), NarrowShift); + MI.eraseFromParent(); +} + +bool CombinerHelper::matchCombineMergeUnmerge(MachineInstr &MI, + Register &MatchInfo) { + GMerge &Merge = cast<GMerge>(MI); + SmallVector<Register, 16> MergedValues; + for (unsigned I = 0; I < Merge.getNumSources(); ++I) + MergedValues.emplace_back(Merge.getSourceReg(I)); + + auto *Unmerge = getOpcodeDef<GUnmerge>(MergedValues[0], MRI); + if (!Unmerge || Unmerge->getNumDefs() != Merge.getNumSources()) + return false; + + for (unsigned I = 0; I < MergedValues.size(); ++I) + if (MergedValues[I] != Unmerge->getReg(I)) + return false; + + MatchInfo = Unmerge->getSourceReg(); + return true; +} + +static Register peekThroughBitcast(Register Reg, + const MachineRegisterInfo &MRI) { + while (mi_match(Reg, MRI, m_GBitcast(m_Reg(Reg)))) + ; + + return Reg; +} + +bool CombinerHelper::matchCombineUnmergeMergeToPlainValues( + MachineInstr &MI, SmallVectorImpl<Register> &Operands) { + assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES && + "Expected an unmerge"); + auto &Unmerge = cast<GUnmerge>(MI); + Register SrcReg = peekThroughBitcast(Unmerge.getSourceReg(), MRI); + + auto *SrcInstr = getOpcodeDef<GMergeLikeInstr>(SrcReg, MRI); + if (!SrcInstr) + return false; + + // Check the source type of the merge. + LLT SrcMergeTy = MRI.getType(SrcInstr->getSourceReg(0)); + LLT Dst0Ty = MRI.getType(Unmerge.getReg(0)); + bool SameSize = Dst0Ty.getSizeInBits() == SrcMergeTy.getSizeInBits(); + if (SrcMergeTy != Dst0Ty && !SameSize) + return false; + // They are the same now (modulo a bitcast). + // We can collect all the src registers. + for (unsigned Idx = 0; Idx < SrcInstr->getNumSources(); ++Idx) + Operands.push_back(SrcInstr->getSourceReg(Idx)); + return true; +} + +void CombinerHelper::applyCombineUnmergeMergeToPlainValues( + MachineInstr &MI, SmallVectorImpl<Register> &Operands) { + assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES && + "Expected an unmerge"); + assert((MI.getNumOperands() - 1 == Operands.size()) && + "Not enough operands to replace all defs"); + unsigned NumElems = MI.getNumOperands() - 1; + + LLT SrcTy = MRI.getType(Operands[0]); + LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); + bool CanReuseInputDirectly = DstTy == SrcTy; + Builder.setInstrAndDebugLoc(MI); + for (unsigned Idx = 0; Idx < NumElems; ++Idx) { + Register DstReg = MI.getOperand(Idx).getReg(); + Register SrcReg = Operands[Idx]; + + // This combine may run after RegBankSelect, so we need to be aware of + // register banks. + const auto &DstCB = MRI.getRegClassOrRegBank(DstReg); + if (!DstCB.isNull() && DstCB != MRI.getRegClassOrRegBank(SrcReg)) { + SrcReg = Builder.buildCopy(MRI.getType(SrcReg), SrcReg).getReg(0); + MRI.setRegClassOrRegBank(SrcReg, DstCB); + } + + if (CanReuseInputDirectly) + replaceRegWith(MRI, DstReg, SrcReg); + else + Builder.buildCast(DstReg, SrcReg); + } + MI.eraseFromParent(); +} + +bool CombinerHelper::matchCombineUnmergeConstant(MachineInstr &MI, + SmallVectorImpl<APInt> &Csts) { + unsigned SrcIdx = MI.getNumOperands() - 1; + Register SrcReg = MI.getOperand(SrcIdx).getReg(); + MachineInstr *SrcInstr = MRI.getVRegDef(SrcReg); + if (SrcInstr->getOpcode() != TargetOpcode::G_CONSTANT && + SrcInstr->getOpcode() != TargetOpcode::G_FCONSTANT) + return false; + // Break down the big constant in smaller ones. + const MachineOperand &CstVal = SrcInstr->getOperand(1); + APInt Val = SrcInstr->getOpcode() == TargetOpcode::G_CONSTANT + ? CstVal.getCImm()->getValue() + : CstVal.getFPImm()->getValueAPF().bitcastToAPInt(); + + LLT Dst0Ty = MRI.getType(MI.getOperand(0).getReg()); + unsigned ShiftAmt = Dst0Ty.getSizeInBits(); + // Unmerge a constant. + for (unsigned Idx = 0; Idx != SrcIdx; ++Idx) { + Csts.emplace_back(Val.trunc(ShiftAmt)); + Val = Val.lshr(ShiftAmt); + } + + return true; +} + +void CombinerHelper::applyCombineUnmergeConstant(MachineInstr &MI, + SmallVectorImpl<APInt> &Csts) { + assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES && + "Expected an unmerge"); + assert((MI.getNumOperands() - 1 == Csts.size()) && + "Not enough operands to replace all defs"); + unsigned NumElems = MI.getNumOperands() - 1; + Builder.setInstrAndDebugLoc(MI); + for (unsigned Idx = 0; Idx < NumElems; ++Idx) { + Register DstReg = MI.getOperand(Idx).getReg(); + Builder.buildConstant(DstReg, Csts[Idx]); + } + + MI.eraseFromParent(); +} + +bool CombinerHelper::matchCombineUnmergeUndef( + MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { + unsigned SrcIdx = MI.getNumOperands() - 1; + Register SrcReg = MI.getOperand(SrcIdx).getReg(); + MatchInfo = [&MI](MachineIRBuilder &B) { + unsigned NumElems = MI.getNumOperands() - 1; + for (unsigned Idx = 0; Idx < NumElems; ++Idx) { + Register DstReg = MI.getOperand(Idx).getReg(); + B.buildUndef(DstReg); + } + }; + return isa<GImplicitDef>(MRI.getVRegDef(SrcReg)); +} + +bool CombinerHelper::matchCombineUnmergeWithDeadLanesToTrunc(MachineInstr &MI) { + assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES && + "Expected an unmerge"); + // Check that all the lanes are dead except the first one. + for (unsigned Idx = 1, EndIdx = MI.getNumDefs(); Idx != EndIdx; ++Idx) { + if (!MRI.use_nodbg_empty(MI.getOperand(Idx).getReg())) + return false; + } + return true; +} + +void CombinerHelper::applyCombineUnmergeWithDeadLanesToTrunc(MachineInstr &MI) { + Builder.setInstrAndDebugLoc(MI); + Register SrcReg = MI.getOperand(MI.getNumDefs()).getReg(); + // Truncating a vector is going to truncate every single lane, + // whereas we want the full lowbits. + // Do the operation on a scalar instead. + LLT SrcTy = MRI.getType(SrcReg); + if (SrcTy.isVector()) + SrcReg = + Builder.buildCast(LLT::scalar(SrcTy.getSizeInBits()), SrcReg).getReg(0); + + Register Dst0Reg = MI.getOperand(0).getReg(); + LLT Dst0Ty = MRI.getType(Dst0Reg); + if (Dst0Ty.isVector()) { + auto MIB = Builder.buildTrunc(LLT::scalar(Dst0Ty.getSizeInBits()), SrcReg); + Builder.buildCast(Dst0Reg, MIB); + } else + Builder.buildTrunc(Dst0Reg, SrcReg); + MI.eraseFromParent(); +} + +bool CombinerHelper::matchCombineUnmergeZExtToZExt(MachineInstr &MI) { + assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES && + "Expected an unmerge"); + Register Dst0Reg = MI.getOperand(0).getReg(); + LLT Dst0Ty = MRI.getType(Dst0Reg); + // G_ZEXT on vector applies to each lane, so it will + // affect all destinations. Therefore we won't be able + // to simplify the unmerge to just the first definition. + if (Dst0Ty.isVector()) + return false; + Register SrcReg = MI.getOperand(MI.getNumDefs()).getReg(); + LLT SrcTy = MRI.getType(SrcReg); + if (SrcTy.isVector()) + return false; + + Register ZExtSrcReg; + if (!mi_match(SrcReg, MRI, m_GZExt(m_Reg(ZExtSrcReg)))) + return false; + + // Finally we can replace the first definition with + // a zext of the source if the definition is big enough to hold + // all of ZExtSrc bits. + LLT ZExtSrcTy = MRI.getType(ZExtSrcReg); + return ZExtSrcTy.getSizeInBits() <= Dst0Ty.getSizeInBits(); +} + +void CombinerHelper::applyCombineUnmergeZExtToZExt(MachineInstr &MI) { + assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES && + "Expected an unmerge"); + + Register Dst0Reg = MI.getOperand(0).getReg(); + + MachineInstr *ZExtInstr = + MRI.getVRegDef(MI.getOperand(MI.getNumDefs()).getReg()); + assert(ZExtInstr && ZExtInstr->getOpcode() == TargetOpcode::G_ZEXT && + "Expecting a G_ZEXT"); + + Register ZExtSrcReg = ZExtInstr->getOperand(1).getReg(); + LLT Dst0Ty = MRI.getType(Dst0Reg); + LLT ZExtSrcTy = MRI.getType(ZExtSrcReg); + + Builder.setInstrAndDebugLoc(MI); + + if (Dst0Ty.getSizeInBits() > ZExtSrcTy.getSizeInBits()) { + Builder.buildZExt(Dst0Reg, ZExtSrcReg); + } else { + assert(Dst0Ty.getSizeInBits() == ZExtSrcTy.getSizeInBits() && + "ZExt src doesn't fit in destination"); + replaceRegWith(MRI, Dst0Reg, ZExtSrcReg); + } + + Register ZeroReg; + for (unsigned Idx = 1, EndIdx = MI.getNumDefs(); Idx != EndIdx; ++Idx) { + if (!ZeroReg) + ZeroReg = Builder.buildConstant(Dst0Ty, 0).getReg(0); + replaceRegWith(MRI, MI.getOperand(Idx).getReg(), ZeroReg); + } + MI.eraseFromParent(); +} + +bool CombinerHelper::matchCombineShiftToUnmerge(MachineInstr &MI, + unsigned TargetShiftSize, + unsigned &ShiftVal) { + assert((MI.getOpcode() == TargetOpcode::G_SHL || + MI.getOpcode() == TargetOpcode::G_LSHR || + MI.getOpcode() == TargetOpcode::G_ASHR) && "Expected a shift"); + + LLT Ty = MRI.getType(MI.getOperand(0).getReg()); + if (Ty.isVector()) // TODO: + return false; + + // Don't narrow further than the requested size. + unsigned Size = Ty.getSizeInBits(); + if (Size <= TargetShiftSize) + return false; + + auto MaybeImmVal = + getIConstantVRegValWithLookThrough(MI.getOperand(2).getReg(), MRI); + if (!MaybeImmVal) + return false; + + ShiftVal = MaybeImmVal->Value.getSExtValue(); + return ShiftVal >= Size / 2 && ShiftVal < Size; +} + +void CombinerHelper::applyCombineShiftToUnmerge(MachineInstr &MI, + const unsigned &ShiftVal) { + Register DstReg = MI.getOperand(0).getReg(); + Register SrcReg = MI.getOperand(1).getReg(); + LLT Ty = MRI.getType(SrcReg); + unsigned Size = Ty.getSizeInBits(); + unsigned HalfSize = Size / 2; + assert(ShiftVal >= HalfSize); + + LLT HalfTy = LLT::scalar(HalfSize); + + Builder.setInstr(MI); + auto Unmerge = Builder.buildUnmerge(HalfTy, SrcReg); + unsigned NarrowShiftAmt = ShiftVal - HalfSize; + + if (MI.getOpcode() == TargetOpcode::G_LSHR) { + Register Narrowed = Unmerge.getReg(1); + + // dst = G_LSHR s64:x, C for C >= 32 + // => + // lo, hi = G_UNMERGE_VALUES x + // dst = G_MERGE_VALUES (G_LSHR hi, C - 32), 0 + + if (NarrowShiftAmt != 0) { + Narrowed = Builder.buildLShr(HalfTy, Narrowed, + Builder.buildConstant(HalfTy, NarrowShiftAmt)).getReg(0); + } + + auto Zero = Builder.buildConstant(HalfTy, 0); + Builder.buildMergeLikeInstr(DstReg, {Narrowed, Zero}); + } else if (MI.getOpcode() == TargetOpcode::G_SHL) { + Register Narrowed = Unmerge.getReg(0); + // dst = G_SHL s64:x, C for C >= 32 + // => + // lo, hi = G_UNMERGE_VALUES x + // dst = G_MERGE_VALUES 0, (G_SHL hi, C - 32) + if (NarrowShiftAmt != 0) { + Narrowed = Builder.buildShl(HalfTy, Narrowed, + Builder.buildConstant(HalfTy, NarrowShiftAmt)).getReg(0); + } + + auto Zero = Builder.buildConstant(HalfTy, 0); + Builder.buildMergeLikeInstr(DstReg, {Zero, Narrowed}); + } else { + assert(MI.getOpcode() == TargetOpcode::G_ASHR); + auto Hi = Builder.buildAShr( + HalfTy, Unmerge.getReg(1), + Builder.buildConstant(HalfTy, HalfSize - 1)); + + if (ShiftVal == HalfSize) { + // (G_ASHR i64:x, 32) -> + // G_MERGE_VALUES hi_32(x), (G_ASHR hi_32(x), 31) + Builder.buildMergeLikeInstr(DstReg, {Unmerge.getReg(1), Hi}); + } else if (ShiftVal == Size - 1) { + // Don't need a second shift. + // (G_ASHR i64:x, 63) -> + // %narrowed = (G_ASHR hi_32(x), 31) + // G_MERGE_VALUES %narrowed, %narrowed + Builder.buildMergeLikeInstr(DstReg, {Hi, Hi}); + } else { + auto Lo = Builder.buildAShr( + HalfTy, Unmerge.getReg(1), + Builder.buildConstant(HalfTy, ShiftVal - HalfSize)); + + // (G_ASHR i64:x, C) ->, for C >= 32 + // G_MERGE_VALUES (G_ASHR hi_32(x), C - 32), (G_ASHR hi_32(x), 31) + Builder.buildMergeLikeInstr(DstReg, {Lo, Hi}); + } + } + + MI.eraseFromParent(); +} + +bool CombinerHelper::tryCombineShiftToUnmerge(MachineInstr &MI, + unsigned TargetShiftAmount) { + unsigned ShiftAmt; + if (matchCombineShiftToUnmerge(MI, TargetShiftAmount, ShiftAmt)) { + applyCombineShiftToUnmerge(MI, ShiftAmt); + return true; + } + + return false; +} + +bool CombinerHelper::matchCombineI2PToP2I(MachineInstr &MI, Register &Reg) { + assert(MI.getOpcode() == TargetOpcode::G_INTTOPTR && "Expected a G_INTTOPTR"); + Register DstReg = MI.getOperand(0).getReg(); + LLT DstTy = MRI.getType(DstReg); + Register SrcReg = MI.getOperand(1).getReg(); + return mi_match(SrcReg, MRI, + m_GPtrToInt(m_all_of(m_SpecificType(DstTy), m_Reg(Reg)))); +} + +void CombinerHelper::applyCombineI2PToP2I(MachineInstr &MI, Register &Reg) { + assert(MI.getOpcode() == TargetOpcode::G_INTTOPTR && "Expected a G_INTTOPTR"); + Register DstReg = MI.getOperand(0).getReg(); + Builder.setInstr(MI); + Builder.buildCopy(DstReg, Reg); + MI.eraseFromParent(); +} + +void CombinerHelper::applyCombineP2IToI2P(MachineInstr &MI, Register &Reg) { + assert(MI.getOpcode() == TargetOpcode::G_PTRTOINT && "Expected a G_PTRTOINT"); + Register DstReg = MI.getOperand(0).getReg(); + Builder.setInstr(MI); + Builder.buildZExtOrTrunc(DstReg, Reg); + MI.eraseFromParent(); +} + +bool CombinerHelper::matchCombineAddP2IToPtrAdd( + MachineInstr &MI, std::pair<Register, bool> &PtrReg) { + assert(MI.getOpcode() == TargetOpcode::G_ADD); + Register LHS = MI.getOperand(1).getReg(); + Register RHS = MI.getOperand(2).getReg(); + LLT IntTy = MRI.getType(LHS); + + // G_PTR_ADD always has the pointer in the LHS, so we may need to commute the + // instruction. + PtrReg.second = false; + for (Register SrcReg : {LHS, RHS}) { + if (mi_match(SrcReg, MRI, m_GPtrToInt(m_Reg(PtrReg.first)))) { + // Don't handle cases where the integer is implicitly converted to the + // pointer width. + LLT PtrTy = MRI.getType(PtrReg.first); + if (PtrTy.getScalarSizeInBits() == IntTy.getScalarSizeInBits()) + return true; + } + + PtrReg.second = true; + } + + return false; +} + +void CombinerHelper::applyCombineAddP2IToPtrAdd( + MachineInstr &MI, std::pair<Register, bool> &PtrReg) { + Register Dst = MI.getOperand(0).getReg(); + Register LHS = MI.getOperand(1).getReg(); + Register RHS = MI.getOperand(2).getReg(); + + const bool DoCommute = PtrReg.second; + if (DoCommute) + std::swap(LHS, RHS); + LHS = PtrReg.first; + + LLT PtrTy = MRI.getType(LHS); + + Builder.setInstrAndDebugLoc(MI); + auto PtrAdd = Builder.buildPtrAdd(PtrTy, LHS, RHS); + Builder.buildPtrToInt(Dst, PtrAdd); + MI.eraseFromParent(); +} + +bool CombinerHelper::matchCombineConstPtrAddToI2P(MachineInstr &MI, + APInt &NewCst) { + auto &PtrAdd = cast<GPtrAdd>(MI); + Register LHS = PtrAdd.getBaseReg(); + Register RHS = PtrAdd.getOffsetReg(); + MachineRegisterInfo &MRI = Builder.getMF().getRegInfo(); + + if (auto RHSCst = getIConstantVRegVal(RHS, MRI)) { + APInt Cst; + if (mi_match(LHS, MRI, m_GIntToPtr(m_ICst(Cst)))) { + auto DstTy = MRI.getType(PtrAdd.getReg(0)); + // G_INTTOPTR uses zero-extension + NewCst = Cst.zextOrTrunc(DstTy.getSizeInBits()); + NewCst += RHSCst->sextOrTrunc(DstTy.getSizeInBits()); + return true; + } + } + + return false; +} + +void CombinerHelper::applyCombineConstPtrAddToI2P(MachineInstr &MI, + APInt &NewCst) { + auto &PtrAdd = cast<GPtrAdd>(MI); + Register Dst = PtrAdd.getReg(0); + + Builder.setInstrAndDebugLoc(MI); + Builder.buildConstant(Dst, NewCst); + PtrAdd.eraseFromParent(); +} + +bool CombinerHelper::matchCombineAnyExtTrunc(MachineInstr &MI, Register &Reg) { + assert(MI.getOpcode() == TargetOpcode::G_ANYEXT && "Expected a G_ANYEXT"); + Register DstReg = MI.getOperand(0).getReg(); + Register SrcReg = MI.getOperand(1).getReg(); + LLT DstTy = MRI.getType(DstReg); + return mi_match(SrcReg, MRI, + m_GTrunc(m_all_of(m_Reg(Reg), m_SpecificType(DstTy)))); +} + +bool CombinerHelper::matchCombineZextTrunc(MachineInstr &MI, Register &Reg) { + assert(MI.getOpcode() == TargetOpcode::G_ZEXT && "Expected a G_ZEXT"); + Register DstReg = MI.getOperand(0).getReg(); + Register SrcReg = MI.getOperand(1).getReg(); + LLT DstTy = MRI.getType(DstReg); + if (mi_match(SrcReg, MRI, + m_GTrunc(m_all_of(m_Reg(Reg), m_SpecificType(DstTy))))) { + unsigned DstSize = DstTy.getScalarSizeInBits(); + unsigned SrcSize = MRI.getType(SrcReg).getScalarSizeInBits(); + return KB->getKnownBits(Reg).countMinLeadingZeros() >= DstSize - SrcSize; + } + return false; +} + +bool CombinerHelper::matchCombineExtOfExt( + MachineInstr &MI, std::tuple<Register, unsigned> &MatchInfo) { + assert((MI.getOpcode() == TargetOpcode::G_ANYEXT || + MI.getOpcode() == TargetOpcode::G_SEXT || + MI.getOpcode() == TargetOpcode::G_ZEXT) && + "Expected a G_[ASZ]EXT"); + Register SrcReg = MI.getOperand(1).getReg(); + MachineInstr *SrcMI = MRI.getVRegDef(SrcReg); + // Match exts with the same opcode, anyext([sz]ext) and sext(zext). + unsigned Opc = MI.getOpcode(); + unsigned SrcOpc = SrcMI->getOpcode(); + if (Opc == SrcOpc || + (Opc == TargetOpcode::G_ANYEXT && + (SrcOpc == TargetOpcode::G_SEXT || SrcOpc == TargetOpcode::G_ZEXT)) || + (Opc == TargetOpcode::G_SEXT && SrcOpc == TargetOpcode::G_ZEXT)) { + MatchInfo = std::make_tuple(SrcMI->getOperand(1).getReg(), SrcOpc); + return true; + } + return false; +} + +void CombinerHelper::applyCombineExtOfExt( + MachineInstr &MI, std::tuple<Register, unsigned> &MatchInfo) { + assert((MI.getOpcode() == TargetOpcode::G_ANYEXT || + MI.getOpcode() == TargetOpcode::G_SEXT || + MI.getOpcode() == TargetOpcode::G_ZEXT) && + "Expected a G_[ASZ]EXT"); + + Register Reg = std::get<0>(MatchInfo); + unsigned SrcExtOp = std::get<1>(MatchInfo); + + // Combine exts with the same opcode. + if (MI.getOpcode() == SrcExtOp) { + Observer.changingInstr(MI); + MI.getOperand(1).setReg(Reg); + Observer.changedInstr(MI); + return; + } + + // Combine: + // - anyext([sz]ext x) to [sz]ext x + // - sext(zext x) to zext x + if (MI.getOpcode() == TargetOpcode::G_ANYEXT || + (MI.getOpcode() == TargetOpcode::G_SEXT && + SrcExtOp == TargetOpcode::G_ZEXT)) { + Register DstReg = MI.getOperand(0).getReg(); + Builder.setInstrAndDebugLoc(MI); + Builder.buildInstr(SrcExtOp, {DstReg}, {Reg}); + MI.eraseFromParent(); + } +} + +bool CombinerHelper::matchCombineTruncOfExt( + MachineInstr &MI, std::pair<Register, unsigned> &MatchInfo) { + assert(MI.getOpcode() == TargetOpcode::G_TRUNC && "Expected a G_TRUNC"); + Register SrcReg = MI.getOperand(1).getReg(); + MachineInstr *SrcMI = MRI.getVRegDef(SrcReg); + unsigned SrcOpc = SrcMI->getOpcode(); + if (SrcOpc == TargetOpcode::G_ANYEXT || SrcOpc == TargetOpcode::G_SEXT || + SrcOpc == TargetOpcode::G_ZEXT) { + MatchInfo = std::make_pair(SrcMI->getOperand(1).getReg(), SrcOpc); + return true; + } + return false; +} + +void CombinerHelper::applyCombineTruncOfExt( + MachineInstr &MI, std::pair<Register, unsigned> &MatchInfo) { + assert(MI.getOpcode() == TargetOpcode::G_TRUNC && "Expected a G_TRUNC"); + Register SrcReg = MatchInfo.first; + unsigned SrcExtOp = MatchInfo.second; + Register DstReg = MI.getOperand(0).getReg(); + LLT SrcTy = MRI.getType(SrcReg); + LLT DstTy = MRI.getType(DstReg); + if (SrcTy == DstTy) { + MI.eraseFromParent(); + replaceRegWith(MRI, DstReg, SrcReg); + return; + } + Builder.setInstrAndDebugLoc(MI); + if (SrcTy.getSizeInBits() < DstTy.getSizeInBits()) + Builder.buildInstr(SrcExtOp, {DstReg}, {SrcReg}); + else + Builder.buildTrunc(DstReg, SrcReg); + MI.eraseFromParent(); +} + +static LLT getMidVTForTruncRightShiftCombine(LLT ShiftTy, LLT TruncTy) { + const unsigned ShiftSize = ShiftTy.getScalarSizeInBits(); + const unsigned TruncSize = TruncTy.getScalarSizeInBits(); + + // ShiftTy > 32 > TruncTy -> 32 + if (ShiftSize > 32 && TruncSize < 32) + return ShiftTy.changeElementSize(32); + + // TODO: We could also reduce to 16 bits, but that's more target-dependent. + // Some targets like it, some don't, some only like it under certain + // conditions/processor versions, etc. + // A TL hook might be needed for this. + + // Don't combine + return ShiftTy; +} + +bool CombinerHelper::matchCombineTruncOfShift( + MachineInstr &MI, std::pair<MachineInstr *, LLT> &MatchInfo) { + assert(MI.getOpcode() == TargetOpcode::G_TRUNC && "Expected a G_TRUNC"); + Register DstReg = MI.getOperand(0).getReg(); + Register SrcReg = MI.getOperand(1).getReg(); + + if (!MRI.hasOneNonDBGUse(SrcReg)) + return false; + + LLT SrcTy = MRI.getType(SrcReg); + LLT DstTy = MRI.getType(DstReg); + + MachineInstr *SrcMI = getDefIgnoringCopies(SrcReg, MRI); + const auto &TL = getTargetLowering(); + + LLT NewShiftTy; + switch (SrcMI->getOpcode()) { + default: + return false; + case TargetOpcode::G_SHL: { + NewShiftTy = DstTy; + + // Make sure new shift amount is legal. + KnownBits Known = KB->getKnownBits(SrcMI->getOperand(2).getReg()); + if (Known.getMaxValue().uge(NewShiftTy.getScalarSizeInBits())) + return false; + break; + } + case TargetOpcode::G_LSHR: + case TargetOpcode::G_ASHR: { + // For right shifts, we conservatively do not do the transform if the TRUNC + // has any STORE users. The reason is that if we change the type of the + // shift, we may break the truncstore combine. + // + // TODO: Fix truncstore combine to handle (trunc(lshr (trunc x), k)). + for (auto &User : MRI.use_instructions(DstReg)) + if (User.getOpcode() == TargetOpcode::G_STORE) + return false; + + NewShiftTy = getMidVTForTruncRightShiftCombine(SrcTy, DstTy); + if (NewShiftTy == SrcTy) + return false; + + // Make sure we won't lose information by truncating the high bits. + KnownBits Known = KB->getKnownBits(SrcMI->getOperand(2).getReg()); + if (Known.getMaxValue().ugt(NewShiftTy.getScalarSizeInBits() - + DstTy.getScalarSizeInBits())) + return false; + break; + } + } + + if (!isLegalOrBeforeLegalizer( + {SrcMI->getOpcode(), + {NewShiftTy, TL.getPreferredShiftAmountTy(NewShiftTy)}})) + return false; + + MatchInfo = std::make_pair(SrcMI, NewShiftTy); + return true; +} + +void CombinerHelper::applyCombineTruncOfShift( + MachineInstr &MI, std::pair<MachineInstr *, LLT> &MatchInfo) { + Builder.setInstrAndDebugLoc(MI); + + MachineInstr *ShiftMI = MatchInfo.first; + LLT NewShiftTy = MatchInfo.second; + + Register Dst = MI.getOperand(0).getReg(); + LLT DstTy = MRI.getType(Dst); + + Register ShiftAmt = ShiftMI->getOperand(2).getReg(); + Register ShiftSrc = ShiftMI->getOperand(1).getReg(); + ShiftSrc = Builder.buildTrunc(NewShiftTy, ShiftSrc).getReg(0); + + Register NewShift = + Builder + .buildInstr(ShiftMI->getOpcode(), {NewShiftTy}, {ShiftSrc, ShiftAmt}) + .getReg(0); + + if (NewShiftTy == DstTy) + replaceRegWith(MRI, Dst, NewShift); + else + Builder.buildTrunc(Dst, NewShift); + + eraseInst(MI); +} + +bool CombinerHelper::matchAnyExplicitUseIsUndef(MachineInstr &MI) { + return any_of(MI.explicit_uses(), [this](const MachineOperand &MO) { + return MO.isReg() && + getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MO.getReg(), MRI); + }); +} + +bool CombinerHelper::matchAllExplicitUsesAreUndef(MachineInstr &MI) { + return all_of(MI.explicit_uses(), [this](const MachineOperand &MO) { + return !MO.isReg() || + getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MO.getReg(), MRI); + }); +} + +bool CombinerHelper::matchUndefShuffleVectorMask(MachineInstr &MI) { + assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR); + ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask(); + return all_of(Mask, [](int Elt) { return Elt < 0; }); +} + +bool CombinerHelper::matchUndefStore(MachineInstr &MI) { + assert(MI.getOpcode() == TargetOpcode::G_STORE); + return getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MI.getOperand(0).getReg(), + MRI); +} + +bool CombinerHelper::matchUndefSelectCmp(MachineInstr &MI) { + assert(MI.getOpcode() == TargetOpcode::G_SELECT); + return getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MI.getOperand(1).getReg(), + MRI); +} + +bool CombinerHelper::matchInsertExtractVecEltOutOfBounds(MachineInstr &MI) { + assert((MI.getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT || + MI.getOpcode() == TargetOpcode::G_EXTRACT_VECTOR_ELT) && + "Expected an insert/extract element op"); + LLT VecTy = MRI.getType(MI.getOperand(1).getReg()); + unsigned IdxIdx = + MI.getOpcode() == TargetOpcode::G_EXTRACT_VECTOR_ELT ? 2 : 3; + auto Idx = getIConstantVRegVal(MI.getOperand(IdxIdx).getReg(), MRI); + if (!Idx) + return false; + return Idx->getZExtValue() >= VecTy.getNumElements(); +} + +bool CombinerHelper::matchConstantSelectCmp(MachineInstr &MI, unsigned &OpIdx) { + GSelect &SelMI = cast<GSelect>(MI); + auto Cst = + isConstantOrConstantSplatVector(*MRI.getVRegDef(SelMI.getCondReg()), MRI); + if (!Cst) + return false; + OpIdx = Cst->isZero() ? 3 : 2; + return true; +} + +void CombinerHelper::eraseInst(MachineInstr &MI) { MI.eraseFromParent(); } + +bool CombinerHelper::matchEqualDefs(const MachineOperand &MOP1, + const MachineOperand &MOP2) { + if (!MOP1.isReg() || !MOP2.isReg()) + return false; + auto InstAndDef1 = getDefSrcRegIgnoringCopies(MOP1.getReg(), MRI); + if (!InstAndDef1) + return false; + auto InstAndDef2 = getDefSrcRegIgnoringCopies(MOP2.getReg(), MRI); + if (!InstAndDef2) + return false; + MachineInstr *I1 = InstAndDef1->MI; + MachineInstr *I2 = InstAndDef2->MI; + + // Handle a case like this: + // + // %0:_(s64), %1:_(s64) = G_UNMERGE_VALUES %2:_(<2 x s64>) + // + // Even though %0 and %1 are produced by the same instruction they are not + // the same values. + if (I1 == I2) + return MOP1.getReg() == MOP2.getReg(); + + // If we have an instruction which loads or stores, we can't guarantee that + // it is identical. + // + // For example, we may have + // + // %x1 = G_LOAD %addr (load N from @somewhere) + // ... + // call @foo + // ... + // %x2 = G_LOAD %addr (load N from @somewhere) + // ... + // %or = G_OR %x1, %x2 + // + // It's possible that @foo will modify whatever lives at the address we're + // loading from. To be safe, let's just assume that all loads and stores + // are different (unless we have something which is guaranteed to not + // change.) + if (I1->mayLoadOrStore() && !I1->isDereferenceableInvariantLoad()) + return false; + + // If both instructions are loads or stores, they are equal only if both + // are dereferenceable invariant loads with the same number of bits. + if (I1->mayLoadOrStore() && I2->mayLoadOrStore()) { + GLoadStore *LS1 = dyn_cast<GLoadStore>(I1); + GLoadStore *LS2 = dyn_cast<GLoadStore>(I2); + if (!LS1 || !LS2) + return false; + + if (!I2->isDereferenceableInvariantLoad() || + (LS1->getMemSizeInBits() != LS2->getMemSizeInBits())) + return false; + } + + // Check for physical registers on the instructions first to avoid cases + // like this: + // + // %a = COPY $physreg + // ... + // SOMETHING implicit-def $physreg + // ... + // %b = COPY $physreg + // + // These copies are not equivalent. + if (any_of(I1->uses(), [](const MachineOperand &MO) { + return MO.isReg() && MO.getReg().isPhysical(); + })) { + // Check if we have a case like this: + // + // %a = COPY $physreg + // %b = COPY %a + // + // In this case, I1 and I2 will both be equal to %a = COPY $physreg. + // From that, we know that they must have the same value, since they must + // have come from the same COPY. + return I1->isIdenticalTo(*I2); + } + + // We don't have any physical registers, so we don't necessarily need the + // same vreg defs. + // + // On the off-chance that there's some target instruction feeding into the + // instruction, let's use produceSameValue instead of isIdenticalTo. + if (Builder.getTII().produceSameValue(*I1, *I2, &MRI)) { + // Handle instructions with multiple defs that produce same values. Values + // are same for operands with same index. + // %0:_(s8), %1:_(s8), %2:_(s8), %3:_(s8) = G_UNMERGE_VALUES %4:_(<4 x s8>) + // %5:_(s8), %6:_(s8), %7:_(s8), %8:_(s8) = G_UNMERGE_VALUES %4:_(<4 x s8>) + // I1 and I2 are different instructions but produce same values, + // %1 and %6 are same, %1 and %7 are not the same value. + return I1->findRegisterDefOperandIdx(InstAndDef1->Reg) == + I2->findRegisterDefOperandIdx(InstAndDef2->Reg); + } + return false; +} + +bool CombinerHelper::matchConstantOp(const MachineOperand &MOP, int64_t C) { + if (!MOP.isReg()) + return false; + auto *MI = MRI.getVRegDef(MOP.getReg()); + auto MaybeCst = isConstantOrConstantSplatVector(*MI, MRI); + return MaybeCst && MaybeCst->getBitWidth() <= 64 && + MaybeCst->getSExtValue() == C; +} + +bool CombinerHelper::matchConstantFPOp(const MachineOperand &MOP, double C) { + if (!MOP.isReg()) + return false; + std::optional<FPValueAndVReg> MaybeCst; + if (!mi_match(MOP.getReg(), MRI, m_GFCstOrSplat(MaybeCst))) + return false; + + return MaybeCst->Value.isExactlyValue(C); +} + +void CombinerHelper::replaceSingleDefInstWithOperand(MachineInstr &MI, + unsigned OpIdx) { + assert(MI.getNumExplicitDefs() == 1 && "Expected one explicit def?"); + Register OldReg = MI.getOperand(0).getReg(); + Register Replacement = MI.getOperand(OpIdx).getReg(); + assert(canReplaceReg(OldReg, Replacement, MRI) && "Cannot replace register?"); + MI.eraseFromParent(); + replaceRegWith(MRI, OldReg, Replacement); +} + +void CombinerHelper::replaceSingleDefInstWithReg(MachineInstr &MI, + Register Replacement) { + assert(MI.getNumExplicitDefs() == 1 && "Expected one explicit def?"); + Register OldReg = MI.getOperand(0).getReg(); + assert(canReplaceReg(OldReg, Replacement, MRI) && "Cannot replace register?"); + MI.eraseFromParent(); + replaceRegWith(MRI, OldReg, Replacement); +} + +bool CombinerHelper::matchConstantLargerBitWidth(MachineInstr &MI, + unsigned ConstIdx) { + Register ConstReg = MI.getOperand(ConstIdx).getReg(); + LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); + + // Get the shift amount + auto VRegAndVal = getIConstantVRegValWithLookThrough(ConstReg, MRI); + if (!VRegAndVal) + return false; + + // Return true of shift amount >= Bitwidth + return (VRegAndVal->Value.uge(DstTy.getSizeInBits())); +} + +void CombinerHelper::applyFunnelShiftConstantModulo(MachineInstr &MI) { + assert((MI.getOpcode() == TargetOpcode::G_FSHL || + MI.getOpcode() == TargetOpcode::G_FSHR) && + "This is not a funnel shift operation"); + + Register ConstReg = MI.getOperand(3).getReg(); + LLT ConstTy = MRI.getType(ConstReg); + LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); + + auto VRegAndVal = getIConstantVRegValWithLookThrough(ConstReg, MRI); + assert((VRegAndVal) && "Value is not a constant"); + + // Calculate the new Shift Amount = Old Shift Amount % BitWidth + APInt NewConst = VRegAndVal->Value.urem( + APInt(ConstTy.getSizeInBits(), DstTy.getScalarSizeInBits())); + + Builder.setInstrAndDebugLoc(MI); + auto NewConstInstr = Builder.buildConstant(ConstTy, NewConst.getZExtValue()); + Builder.buildInstr( + MI.getOpcode(), {MI.getOperand(0)}, + {MI.getOperand(1), MI.getOperand(2), NewConstInstr.getReg(0)}); + + MI.eraseFromParent(); +} + +bool CombinerHelper::matchSelectSameVal(MachineInstr &MI) { + assert(MI.getOpcode() == TargetOpcode::G_SELECT); + // Match (cond ? x : x) + return matchEqualDefs(MI.getOperand(2), MI.getOperand(3)) && + canReplaceReg(MI.getOperand(0).getReg(), MI.getOperand(2).getReg(), + MRI); +} + +bool CombinerHelper::matchBinOpSameVal(MachineInstr &MI) { + return matchEqualDefs(MI.getOperand(1), MI.getOperand(2)) && + canReplaceReg(MI.getOperand(0).getReg(), MI.getOperand(1).getReg(), + MRI); +} + +bool CombinerHelper::matchOperandIsZero(MachineInstr &MI, unsigned OpIdx) { + return matchConstantOp(MI.getOperand(OpIdx), 0) && + canReplaceReg(MI.getOperand(0).getReg(), MI.getOperand(OpIdx).getReg(), + MRI); +} + +bool CombinerHelper::matchOperandIsUndef(MachineInstr &MI, unsigned OpIdx) { + MachineOperand &MO = MI.getOperand(OpIdx); + return MO.isReg() && + getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MO.getReg(), MRI); +} + +bool CombinerHelper::matchOperandIsKnownToBeAPowerOfTwo(MachineInstr &MI, + unsigned OpIdx) { + MachineOperand &MO = MI.getOperand(OpIdx); + return isKnownToBeAPowerOfTwo(MO.getReg(), MRI, KB); +} + +void CombinerHelper::replaceInstWithFConstant(MachineInstr &MI, double C) { + assert(MI.getNumDefs() == 1 && "Expected only one def?"); + Builder.setInstr(MI); + Builder.buildFConstant(MI.getOperand(0), C); + MI.eraseFromParent(); +} + +void CombinerHelper::replaceInstWithConstant(MachineInstr &MI, int64_t C) { + assert(MI.getNumDefs() == 1 && "Expected only one def?"); + Builder.setInstr(MI); + Builder.buildConstant(MI.getOperand(0), C); + MI.eraseFromParent(); +} + +void CombinerHelper::replaceInstWithConstant(MachineInstr &MI, APInt C) { + assert(MI.getNumDefs() == 1 && "Expected only one def?"); + Builder.setInstr(MI); + Builder.buildConstant(MI.getOperand(0), C); + MI.eraseFromParent(); +} + +void CombinerHelper::replaceInstWithFConstant(MachineInstr &MI, ConstantFP *CFP) { + assert(MI.getNumDefs() == 1 && "Expected only one def?"); + Builder.setInstr(MI); + Builder.buildFConstant(MI.getOperand(0), CFP->getValueAPF()); + MI.eraseFromParent(); +} + +void CombinerHelper::replaceInstWithUndef(MachineInstr &MI) { + assert(MI.getNumDefs() == 1 && "Expected only one def?"); + Builder.setInstr(MI); + Builder.buildUndef(MI.getOperand(0)); + MI.eraseFromParent(); +} + +bool CombinerHelper::matchSimplifyAddToSub( + MachineInstr &MI, std::tuple<Register, Register> &MatchInfo) { + Register LHS = MI.getOperand(1).getReg(); + Register RHS = MI.getOperand(2).getReg(); + Register &NewLHS = std::get<0>(MatchInfo); + Register &NewRHS = std::get<1>(MatchInfo); + + // Helper lambda to check for opportunities for + // ((0-A) + B) -> B - A + // (A + (0-B)) -> A - B + auto CheckFold = [&](Register &MaybeSub, Register &MaybeNewLHS) { + if (!mi_match(MaybeSub, MRI, m_Neg(m_Reg(NewRHS)))) + return false; + NewLHS = MaybeNewLHS; + return true; + }; + + return CheckFold(LHS, RHS) || CheckFold(RHS, LHS); +} + +bool CombinerHelper::matchCombineInsertVecElts( + MachineInstr &MI, SmallVectorImpl<Register> &MatchInfo) { + assert(MI.getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT && + "Invalid opcode"); + Register DstReg = MI.getOperand(0).getReg(); + LLT DstTy = MRI.getType(DstReg); + assert(DstTy.isVector() && "Invalid G_INSERT_VECTOR_ELT?"); + unsigned NumElts = DstTy.getNumElements(); + // If this MI is part of a sequence of insert_vec_elts, then + // don't do the combine in the middle of the sequence. + if (MRI.hasOneUse(DstReg) && MRI.use_instr_begin(DstReg)->getOpcode() == + TargetOpcode::G_INSERT_VECTOR_ELT) + return false; + MachineInstr *CurrInst = &MI; + MachineInstr *TmpInst; + int64_t IntImm; + Register TmpReg; + MatchInfo.resize(NumElts); + while (mi_match( + CurrInst->getOperand(0).getReg(), MRI, + m_GInsertVecElt(m_MInstr(TmpInst), m_Reg(TmpReg), m_ICst(IntImm)))) { + if (IntImm >= NumElts || IntImm < 0) + return false; + if (!MatchInfo[IntImm]) + MatchInfo[IntImm] = TmpReg; + CurrInst = TmpInst; + } + // Variable index. + if (CurrInst->getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT) + return false; + if (TmpInst->getOpcode() == TargetOpcode::G_BUILD_VECTOR) { + for (unsigned I = 1; I < TmpInst->getNumOperands(); ++I) { + if (!MatchInfo[I - 1].isValid()) + MatchInfo[I - 1] = TmpInst->getOperand(I).getReg(); + } + return true; + } + // If we didn't end in a G_IMPLICIT_DEF, bail out. + return TmpInst->getOpcode() == TargetOpcode::G_IMPLICIT_DEF; +} + +void CombinerHelper::applyCombineInsertVecElts( + MachineInstr &MI, SmallVectorImpl<Register> &MatchInfo) { + Builder.setInstr(MI); + Register UndefReg; + auto GetUndef = [&]() { + if (UndefReg) + return UndefReg; + LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); + UndefReg = Builder.buildUndef(DstTy.getScalarType()).getReg(0); + return UndefReg; + }; + for (unsigned I = 0; I < MatchInfo.size(); ++I) { + if (!MatchInfo[I]) + MatchInfo[I] = GetUndef(); + } + Builder.buildBuildVector(MI.getOperand(0).getReg(), MatchInfo); + MI.eraseFromParent(); +} + +void CombinerHelper::applySimplifyAddToSub( + MachineInstr &MI, std::tuple<Register, Register> &MatchInfo) { + Builder.setInstr(MI); + Register SubLHS, SubRHS; + std::tie(SubLHS, SubRHS) = MatchInfo; + Builder.buildSub(MI.getOperand(0).getReg(), SubLHS, SubRHS); + MI.eraseFromParent(); +} + +bool CombinerHelper::matchHoistLogicOpWithSameOpcodeHands( + MachineInstr &MI, InstructionStepsMatchInfo &MatchInfo) { + // Matches: logic (hand x, ...), (hand y, ...) -> hand (logic x, y), ... + // + // Creates the new hand + logic instruction (but does not insert them.) + // + // On success, MatchInfo is populated with the new instructions. These are + // inserted in applyHoistLogicOpWithSameOpcodeHands. + unsigned LogicOpcode = MI.getOpcode(); + assert(LogicOpcode == TargetOpcode::G_AND || + LogicOpcode == TargetOpcode::G_OR || + LogicOpcode == TargetOpcode::G_XOR); + MachineIRBuilder MIB(MI); + Register Dst = MI.getOperand(0).getReg(); + Register LHSReg = MI.getOperand(1).getReg(); + Register RHSReg = MI.getOperand(2).getReg(); + + // Don't recompute anything. + if (!MRI.hasOneNonDBGUse(LHSReg) || !MRI.hasOneNonDBGUse(RHSReg)) + return false; + + // Make sure we have (hand x, ...), (hand y, ...) + MachineInstr *LeftHandInst = getDefIgnoringCopies(LHSReg, MRI); + MachineInstr *RightHandInst = getDefIgnoringCopies(RHSReg, MRI); + if (!LeftHandInst || !RightHandInst) + return false; + unsigned HandOpcode = LeftHandInst->getOpcode(); + if (HandOpcode != RightHandInst->getOpcode()) + return false; + if (!LeftHandInst->getOperand(1).isReg() || + !RightHandInst->getOperand(1).isReg()) + return false; + + // Make sure the types match up, and if we're doing this post-legalization, + // we end up with legal types. + Register X = LeftHandInst->getOperand(1).getReg(); + Register Y = RightHandInst->getOperand(1).getReg(); + LLT XTy = MRI.getType(X); + LLT YTy = MRI.getType(Y); + if (!XTy.isValid() || XTy != YTy) + return false; + + // Optional extra source register. + Register ExtraHandOpSrcReg; + switch (HandOpcode) { + default: + return false; + case TargetOpcode::G_ANYEXT: + case TargetOpcode::G_SEXT: + case TargetOpcode::G_ZEXT: { + // Match: logic (ext X), (ext Y) --> ext (logic X, Y) + break; + } + case TargetOpcode::G_AND: + case TargetOpcode::G_ASHR: + case TargetOpcode::G_LSHR: + case TargetOpcode::G_SHL: { + // Match: logic (binop x, z), (binop y, z) -> binop (logic x, y), z + MachineOperand &ZOp = LeftHandInst->getOperand(2); + if (!matchEqualDefs(ZOp, RightHandInst->getOperand(2))) + return false; + ExtraHandOpSrcReg = ZOp.getReg(); + break; + } + } + + if (!isLegalOrBeforeLegalizer({LogicOpcode, {XTy, YTy}})) + return false; + + // Record the steps to build the new instructions. + // + // Steps to build (logic x, y) + auto NewLogicDst = MRI.createGenericVirtualRegister(XTy); + OperandBuildSteps LogicBuildSteps = { + [=](MachineInstrBuilder &MIB) { MIB.addDef(NewLogicDst); }, + [=](MachineInstrBuilder &MIB) { MIB.addReg(X); }, + [=](MachineInstrBuilder &MIB) { MIB.addReg(Y); }}; + InstructionBuildSteps LogicSteps(LogicOpcode, LogicBuildSteps); + + // Steps to build hand (logic x, y), ...z + OperandBuildSteps HandBuildSteps = { + [=](MachineInstrBuilder &MIB) { MIB.addDef(Dst); }, + [=](MachineInstrBuilder &MIB) { MIB.addReg(NewLogicDst); }}; + if (ExtraHandOpSrcReg.isValid()) + HandBuildSteps.push_back( + [=](MachineInstrBuilder &MIB) { MIB.addReg(ExtraHandOpSrcReg); }); + InstructionBuildSteps HandSteps(HandOpcode, HandBuildSteps); + + MatchInfo = InstructionStepsMatchInfo({LogicSteps, HandSteps}); + return true; +} + +void CombinerHelper::applyBuildInstructionSteps( + MachineInstr &MI, InstructionStepsMatchInfo &MatchInfo) { + assert(MatchInfo.InstrsToBuild.size() && + "Expected at least one instr to build?"); + Builder.setInstr(MI); + for (auto &InstrToBuild : MatchInfo.InstrsToBuild) { + assert(InstrToBuild.Opcode && "Expected a valid opcode?"); + assert(InstrToBuild.OperandFns.size() && "Expected at least one operand?"); + MachineInstrBuilder Instr = Builder.buildInstr(InstrToBuild.Opcode); + for (auto &OperandFn : InstrToBuild.OperandFns) + OperandFn(Instr); + } + MI.eraseFromParent(); +} + +bool CombinerHelper::matchAshrShlToSextInreg( + MachineInstr &MI, std::tuple<Register, int64_t> &MatchInfo) { + assert(MI.getOpcode() == TargetOpcode::G_ASHR); + int64_t ShlCst, AshrCst; + Register Src; + if (!mi_match(MI.getOperand(0).getReg(), MRI, + m_GAShr(m_GShl(m_Reg(Src), m_ICstOrSplat(ShlCst)), + m_ICstOrSplat(AshrCst)))) + return false; + if (ShlCst != AshrCst) + return false; + if (!isLegalOrBeforeLegalizer( + {TargetOpcode::G_SEXT_INREG, {MRI.getType(Src)}})) + return false; + MatchInfo = std::make_tuple(Src, ShlCst); + return true; +} + +void CombinerHelper::applyAshShlToSextInreg( + MachineInstr &MI, std::tuple<Register, int64_t> &MatchInfo) { + assert(MI.getOpcode() == TargetOpcode::G_ASHR); + Register Src; + int64_t ShiftAmt; + std::tie(Src, ShiftAmt) = MatchInfo; + unsigned Size = MRI.getType(Src).getScalarSizeInBits(); + Builder.setInstrAndDebugLoc(MI); + Builder.buildSExtInReg(MI.getOperand(0).getReg(), Src, Size - ShiftAmt); + MI.eraseFromParent(); +} + +/// and(and(x, C1), C2) -> C1&C2 ? and(x, C1&C2) : 0 +bool CombinerHelper::matchOverlappingAnd( + MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { + assert(MI.getOpcode() == TargetOpcode::G_AND); + + Register Dst = MI.getOperand(0).getReg(); + LLT Ty = MRI.getType(Dst); + + Register R; + int64_t C1; + int64_t C2; + if (!mi_match( + Dst, MRI, + m_GAnd(m_GAnd(m_Reg(R), m_ICst(C1)), m_ICst(C2)))) + return false; + + MatchInfo = [=](MachineIRBuilder &B) { + if (C1 & C2) { + B.buildAnd(Dst, R, B.buildConstant(Ty, C1 & C2)); + return; + } + auto Zero = B.buildConstant(Ty, 0); + replaceRegWith(MRI, Dst, Zero->getOperand(0).getReg()); + }; + return true; +} + +bool CombinerHelper::matchRedundantAnd(MachineInstr &MI, + Register &Replacement) { + // Given + // + // %y:_(sN) = G_SOMETHING + // %x:_(sN) = G_SOMETHING + // %res:_(sN) = G_AND %x, %y + // + // Eliminate the G_AND when it is known that x & y == x or x & y == y. + // + // Patterns like this can appear as a result of legalization. E.g. + // + // %cmp:_(s32) = G_ICMP intpred(pred), %x(s32), %y + // %one:_(s32) = G_CONSTANT i32 1 + // %and:_(s32) = G_AND %cmp, %one + // + // In this case, G_ICMP only produces a single bit, so x & 1 == x. + assert(MI.getOpcode() == TargetOpcode::G_AND); + if (!KB) + return false; + + Register AndDst = MI.getOperand(0).getReg(); + Register LHS = MI.getOperand(1).getReg(); + Register RHS = MI.getOperand(2).getReg(); + KnownBits LHSBits = KB->getKnownBits(LHS); + KnownBits RHSBits = KB->getKnownBits(RHS); + + // Check that x & Mask == x. + // x & 1 == x, always + // x & 0 == x, only if x is also 0 + // Meaning Mask has no effect if every bit is either one in Mask or zero in x. + // + // Check if we can replace AndDst with the LHS of the G_AND + if (canReplaceReg(AndDst, LHS, MRI) && + (LHSBits.Zero | RHSBits.One).isAllOnes()) { + Replacement = LHS; + return true; + } + + // Check if we can replace AndDst with the RHS of the G_AND + if (canReplaceReg(AndDst, RHS, MRI) && + (LHSBits.One | RHSBits.Zero).isAllOnes()) { + Replacement = RHS; + return true; + } + + return false; +} + +bool CombinerHelper::matchRedundantOr(MachineInstr &MI, Register &Replacement) { + // Given + // + // %y:_(sN) = G_SOMETHING + // %x:_(sN) = G_SOMETHING + // %res:_(sN) = G_OR %x, %y + // + // Eliminate the G_OR when it is known that x | y == x or x | y == y. + assert(MI.getOpcode() == TargetOpcode::G_OR); + if (!KB) + return false; + + Register OrDst = MI.getOperand(0).getReg(); + Register LHS = MI.getOperand(1).getReg(); + Register RHS = MI.getOperand(2).getReg(); + KnownBits LHSBits = KB->getKnownBits(LHS); + KnownBits RHSBits = KB->getKnownBits(RHS); + + // Check that x | Mask == x. + // x | 0 == x, always + // x | 1 == x, only if x is also 1 + // Meaning Mask has no effect if every bit is either zero in Mask or one in x. + // + // Check if we can replace OrDst with the LHS of the G_OR + if (canReplaceReg(OrDst, LHS, MRI) && + (LHSBits.One | RHSBits.Zero).isAllOnes()) { + Replacement = LHS; + return true; + } + + // Check if we can replace OrDst with the RHS of the G_OR + if (canReplaceReg(OrDst, RHS, MRI) && + (LHSBits.Zero | RHSBits.One).isAllOnes()) { + Replacement = RHS; + return true; + } + + return false; +} + +bool CombinerHelper::matchRedundantSExtInReg(MachineInstr &MI) { + // If the input is already sign extended, just drop the extension. + Register Src = MI.getOperand(1).getReg(); + unsigned ExtBits = MI.getOperand(2).getImm(); + unsigned TypeSize = MRI.getType(Src).getScalarSizeInBits(); + return KB->computeNumSignBits(Src) >= (TypeSize - ExtBits + 1); +} + +static bool isConstValidTrue(const TargetLowering &TLI, unsigned ScalarSizeBits, + int64_t Cst, bool IsVector, bool IsFP) { + // For i1, Cst will always be -1 regardless of boolean contents. + return (ScalarSizeBits == 1 && Cst == -1) || + isConstTrueVal(TLI, Cst, IsVector, IsFP); +} + +bool CombinerHelper::matchNotCmp(MachineInstr &MI, + SmallVectorImpl<Register> &RegsToNegate) { + assert(MI.getOpcode() == TargetOpcode::G_XOR); + LLT Ty = MRI.getType(MI.getOperand(0).getReg()); + const auto &TLI = *Builder.getMF().getSubtarget().getTargetLowering(); + Register XorSrc; + Register CstReg; + // We match xor(src, true) here. + if (!mi_match(MI.getOperand(0).getReg(), MRI, + m_GXor(m_Reg(XorSrc), m_Reg(CstReg)))) + return false; + + if (!MRI.hasOneNonDBGUse(XorSrc)) + return false; + + // Check that XorSrc is the root of a tree of comparisons combined with ANDs + // and ORs. The suffix of RegsToNegate starting from index I is used a work + // list of tree nodes to visit. + RegsToNegate.push_back(XorSrc); + // Remember whether the comparisons are all integer or all floating point. + bool IsInt = false; + bool IsFP = false; + for (unsigned I = 0; I < RegsToNegate.size(); ++I) { + Register Reg = RegsToNegate[I]; + if (!MRI.hasOneNonDBGUse(Reg)) + return false; + MachineInstr *Def = MRI.getVRegDef(Reg); + switch (Def->getOpcode()) { + default: + // Don't match if the tree contains anything other than ANDs, ORs and + // comparisons. + return false; + case TargetOpcode::G_ICMP: + if (IsFP) + return false; + IsInt = true; + // When we apply the combine we will invert the predicate. + break; + case TargetOpcode::G_FCMP: + if (IsInt) + return false; + IsFP = true; + // When we apply the combine we will invert the predicate. + break; + case TargetOpcode::G_AND: + case TargetOpcode::G_OR: + // Implement De Morgan's laws: + // ~(x & y) -> ~x | ~y + // ~(x | y) -> ~x & ~y + // When we apply the combine we will change the opcode and recursively + // negate the operands. + RegsToNegate.push_back(Def->getOperand(1).getReg()); + RegsToNegate.push_back(Def->getOperand(2).getReg()); + break; + } + } + + // Now we know whether the comparisons are integer or floating point, check + // the constant in the xor. + int64_t Cst; + if (Ty.isVector()) { + MachineInstr *CstDef = MRI.getVRegDef(CstReg); + auto MaybeCst = getIConstantSplatSExtVal(*CstDef, MRI); + if (!MaybeCst) + return false; + if (!isConstValidTrue(TLI, Ty.getScalarSizeInBits(), *MaybeCst, true, IsFP)) + return false; + } else { + if (!mi_match(CstReg, MRI, m_ICst(Cst))) + return false; + if (!isConstValidTrue(TLI, Ty.getSizeInBits(), Cst, false, IsFP)) + return false; + } + + return true; +} + +void CombinerHelper::applyNotCmp(MachineInstr &MI, + SmallVectorImpl<Register> &RegsToNegate) { + for (Register Reg : RegsToNegate) { + MachineInstr *Def = MRI.getVRegDef(Reg); + Observer.changingInstr(*Def); + // For each comparison, invert the opcode. For each AND and OR, change the + // opcode. + switch (Def->getOpcode()) { + default: + llvm_unreachable("Unexpected opcode"); + case TargetOpcode::G_ICMP: + case TargetOpcode::G_FCMP: { + MachineOperand &PredOp = Def->getOperand(1); + CmpInst::Predicate NewP = CmpInst::getInversePredicate( + (CmpInst::Predicate)PredOp.getPredicate()); + PredOp.setPredicate(NewP); + break; + } + case TargetOpcode::G_AND: + Def->setDesc(Builder.getTII().get(TargetOpcode::G_OR)); + break; + case TargetOpcode::G_OR: + Def->setDesc(Builder.getTII().get(TargetOpcode::G_AND)); + break; + } + Observer.changedInstr(*Def); + } + + replaceRegWith(MRI, MI.getOperand(0).getReg(), MI.getOperand(1).getReg()); + MI.eraseFromParent(); +} + +bool CombinerHelper::matchXorOfAndWithSameReg( + MachineInstr &MI, std::pair<Register, Register> &MatchInfo) { + // Match (xor (and x, y), y) (or any of its commuted cases) + assert(MI.getOpcode() == TargetOpcode::G_XOR); + Register &X = MatchInfo.first; + Register &Y = MatchInfo.second; + Register AndReg = MI.getOperand(1).getReg(); + Register SharedReg = MI.getOperand(2).getReg(); + + // Find a G_AND on either side of the G_XOR. + // Look for one of + // + // (xor (and x, y), SharedReg) + // (xor SharedReg, (and x, y)) + if (!mi_match(AndReg, MRI, m_GAnd(m_Reg(X), m_Reg(Y)))) { + std::swap(AndReg, SharedReg); + if (!mi_match(AndReg, MRI, m_GAnd(m_Reg(X), m_Reg(Y)))) + return false; + } + + // Only do this if we'll eliminate the G_AND. + if (!MRI.hasOneNonDBGUse(AndReg)) + return false; + + // We can combine if SharedReg is the same as either the LHS or RHS of the + // G_AND. + if (Y != SharedReg) + std::swap(X, Y); + return Y == SharedReg; +} + +void CombinerHelper::applyXorOfAndWithSameReg( + MachineInstr &MI, std::pair<Register, Register> &MatchInfo) { + // Fold (xor (and x, y), y) -> (and (not x), y) + Builder.setInstrAndDebugLoc(MI); + Register X, Y; + std::tie(X, Y) = MatchInfo; + auto Not = Builder.buildNot(MRI.getType(X), X); + Observer.changingInstr(MI); + MI.setDesc(Builder.getTII().get(TargetOpcode::G_AND)); + MI.getOperand(1).setReg(Not->getOperand(0).getReg()); + MI.getOperand(2).setReg(Y); + Observer.changedInstr(MI); +} + +bool CombinerHelper::matchPtrAddZero(MachineInstr &MI) { + auto &PtrAdd = cast<GPtrAdd>(MI); + Register DstReg = PtrAdd.getReg(0); + LLT Ty = MRI.getType(DstReg); + const DataLayout &DL = Builder.getMF().getDataLayout(); + + if (DL.isNonIntegralAddressSpace(Ty.getScalarType().getAddressSpace())) + return false; + + if (Ty.isPointer()) { + auto ConstVal = getIConstantVRegVal(PtrAdd.getBaseReg(), MRI); + return ConstVal && *ConstVal == 0; + } + + assert(Ty.isVector() && "Expecting a vector type"); + const MachineInstr *VecMI = MRI.getVRegDef(PtrAdd.getBaseReg()); + return isBuildVectorAllZeros(*VecMI, MRI); +} + +void CombinerHelper::applyPtrAddZero(MachineInstr &MI) { + auto &PtrAdd = cast<GPtrAdd>(MI); + Builder.setInstrAndDebugLoc(PtrAdd); + Builder.buildIntToPtr(PtrAdd.getReg(0), PtrAdd.getOffsetReg()); + PtrAdd.eraseFromParent(); +} + +/// The second source operand is known to be a power of 2. +void CombinerHelper::applySimplifyURemByPow2(MachineInstr &MI) { + Register DstReg = MI.getOperand(0).getReg(); + Register Src0 = MI.getOperand(1).getReg(); + Register Pow2Src1 = MI.getOperand(2).getReg(); + LLT Ty = MRI.getType(DstReg); + Builder.setInstrAndDebugLoc(MI); + + // Fold (urem x, pow2) -> (and x, pow2-1) + auto NegOne = Builder.buildConstant(Ty, -1); + auto Add = Builder.buildAdd(Ty, Pow2Src1, NegOne); + Builder.buildAnd(DstReg, Src0, Add); + MI.eraseFromParent(); +} + +bool CombinerHelper::matchFoldBinOpIntoSelect(MachineInstr &MI, + unsigned &SelectOpNo) { + Register LHS = MI.getOperand(1).getReg(); + Register RHS = MI.getOperand(2).getReg(); + + Register OtherOperandReg = RHS; + SelectOpNo = 1; + MachineInstr *Select = MRI.getVRegDef(LHS); + + // Don't do this unless the old select is going away. We want to eliminate the + // binary operator, not replace a binop with a select. + if (Select->getOpcode() != TargetOpcode::G_SELECT || + !MRI.hasOneNonDBGUse(LHS)) { + OtherOperandReg = LHS; + SelectOpNo = 2; + Select = MRI.getVRegDef(RHS); + if (Select->getOpcode() != TargetOpcode::G_SELECT || + !MRI.hasOneNonDBGUse(RHS)) + return false; + } + + MachineInstr *SelectLHS = MRI.getVRegDef(Select->getOperand(2).getReg()); + MachineInstr *SelectRHS = MRI.getVRegDef(Select->getOperand(3).getReg()); + + if (!isConstantOrConstantVector(*SelectLHS, MRI, + /*AllowFP*/ true, + /*AllowOpaqueConstants*/ false)) + return false; + if (!isConstantOrConstantVector(*SelectRHS, MRI, + /*AllowFP*/ true, + /*AllowOpaqueConstants*/ false)) + return false; + + unsigned BinOpcode = MI.getOpcode(); + + // We know that one of the operands is a select of constants. Now verify that + // the other binary operator operand is either a constant, or we can handle a + // variable. + bool CanFoldNonConst = + (BinOpcode == TargetOpcode::G_AND || BinOpcode == TargetOpcode::G_OR) && + (isNullOrNullSplat(*SelectLHS, MRI) || + isAllOnesOrAllOnesSplat(*SelectLHS, MRI)) && + (isNullOrNullSplat(*SelectRHS, MRI) || + isAllOnesOrAllOnesSplat(*SelectRHS, MRI)); + if (CanFoldNonConst) + return true; + + return isConstantOrConstantVector(*MRI.getVRegDef(OtherOperandReg), MRI, + /*AllowFP*/ true, + /*AllowOpaqueConstants*/ false); +} + +/// \p SelectOperand is the operand in binary operator \p MI that is the select +/// to fold. +void CombinerHelper::applyFoldBinOpIntoSelect(MachineInstr &MI, + const unsigned &SelectOperand) { + Builder.setInstrAndDebugLoc(MI); + + Register Dst = MI.getOperand(0).getReg(); + Register LHS = MI.getOperand(1).getReg(); + Register RHS = MI.getOperand(2).getReg(); + MachineInstr *Select = MRI.getVRegDef(MI.getOperand(SelectOperand).getReg()); + + Register SelectCond = Select->getOperand(1).getReg(); + Register SelectTrue = Select->getOperand(2).getReg(); + Register SelectFalse = Select->getOperand(3).getReg(); + + LLT Ty = MRI.getType(Dst); + unsigned BinOpcode = MI.getOpcode(); + + Register FoldTrue, FoldFalse; + + // We have a select-of-constants followed by a binary operator with a + // constant. Eliminate the binop by pulling the constant math into the select. + // Example: add (select Cond, CT, CF), CBO --> select Cond, CT + CBO, CF + CBO + if (SelectOperand == 1) { + // TODO: SelectionDAG verifies this actually constant folds before + // committing to the combine. + + FoldTrue = Builder.buildInstr(BinOpcode, {Ty}, {SelectTrue, RHS}).getReg(0); + FoldFalse = + Builder.buildInstr(BinOpcode, {Ty}, {SelectFalse, RHS}).getReg(0); + } else { + FoldTrue = Builder.buildInstr(BinOpcode, {Ty}, {LHS, SelectTrue}).getReg(0); + FoldFalse = + Builder.buildInstr(BinOpcode, {Ty}, {LHS, SelectFalse}).getReg(0); + } + + Builder.buildSelect(Dst, SelectCond, FoldTrue, FoldFalse, MI.getFlags()); + MI.eraseFromParent(); +} + +std::optional<SmallVector<Register, 8>> +CombinerHelper::findCandidatesForLoadOrCombine(const MachineInstr *Root) const { + assert(Root->getOpcode() == TargetOpcode::G_OR && "Expected G_OR only!"); + // We want to detect if Root is part of a tree which represents a bunch + // of loads being merged into a larger load. We'll try to recognize patterns + // like, for example: + // + // Reg Reg + // \ / + // OR_1 Reg + // \ / + // OR_2 + // \ Reg + // .. / + // Root + // + // Reg Reg Reg Reg + // \ / \ / + // OR_1 OR_2 + // \ / + // \ / + // ... + // Root + // + // Each "Reg" may have been produced by a load + some arithmetic. This + // function will save each of them. + SmallVector<Register, 8> RegsToVisit; + SmallVector<const MachineInstr *, 7> Ors = {Root}; + + // In the "worst" case, we're dealing with a load for each byte. So, there + // are at most #bytes - 1 ORs. + const unsigned MaxIter = + MRI.getType(Root->getOperand(0).getReg()).getSizeInBytes() - 1; + for (unsigned Iter = 0; Iter < MaxIter; ++Iter) { + if (Ors.empty()) + break; + const MachineInstr *Curr = Ors.pop_back_val(); + Register OrLHS = Curr->getOperand(1).getReg(); + Register OrRHS = Curr->getOperand(2).getReg(); + + // In the combine, we want to elimate the entire tree. + if (!MRI.hasOneNonDBGUse(OrLHS) || !MRI.hasOneNonDBGUse(OrRHS)) + return std::nullopt; + + // If it's a G_OR, save it and continue to walk. If it's not, then it's + // something that may be a load + arithmetic. + if (const MachineInstr *Or = getOpcodeDef(TargetOpcode::G_OR, OrLHS, MRI)) + Ors.push_back(Or); + else + RegsToVisit.push_back(OrLHS); + if (const MachineInstr *Or = getOpcodeDef(TargetOpcode::G_OR, OrRHS, MRI)) + Ors.push_back(Or); + else + RegsToVisit.push_back(OrRHS); + } + + // We're going to try and merge each register into a wider power-of-2 type, + // so we ought to have an even number of registers. + if (RegsToVisit.empty() || RegsToVisit.size() % 2 != 0) + return std::nullopt; + return RegsToVisit; +} + +/// Helper function for findLoadOffsetsForLoadOrCombine. +/// +/// Check if \p Reg is the result of loading a \p MemSizeInBits wide value, +/// and then moving that value into a specific byte offset. +/// +/// e.g. x[i] << 24 +/// +/// \returns The load instruction and the byte offset it is moved into. +static std::optional<std::pair<GZExtLoad *, int64_t>> +matchLoadAndBytePosition(Register Reg, unsigned MemSizeInBits, + const MachineRegisterInfo &MRI) { + assert(MRI.hasOneNonDBGUse(Reg) && + "Expected Reg to only have one non-debug use?"); + Register MaybeLoad; + int64_t Shift; + if (!mi_match(Reg, MRI, + m_OneNonDBGUse(m_GShl(m_Reg(MaybeLoad), m_ICst(Shift))))) { + Shift = 0; + MaybeLoad = Reg; + } + + if (Shift % MemSizeInBits != 0) + return std::nullopt; + + // TODO: Handle other types of loads. + auto *Load = getOpcodeDef<GZExtLoad>(MaybeLoad, MRI); + if (!Load) + return std::nullopt; + + if (!Load->isUnordered() || Load->getMemSizeInBits() != MemSizeInBits) + return std::nullopt; + + return std::make_pair(Load, Shift / MemSizeInBits); +} + +std::optional<std::tuple<GZExtLoad *, int64_t, GZExtLoad *>> +CombinerHelper::findLoadOffsetsForLoadOrCombine( + SmallDenseMap<int64_t, int64_t, 8> &MemOffset2Idx, + const SmallVector<Register, 8> &RegsToVisit, const unsigned MemSizeInBits) { + + // Each load found for the pattern. There should be one for each RegsToVisit. + SmallSetVector<const MachineInstr *, 8> Loads; + + // The lowest index used in any load. (The lowest "i" for each x[i].) + int64_t LowestIdx = INT64_MAX; + + // The load which uses the lowest index. + GZExtLoad *LowestIdxLoad = nullptr; + + // Keeps track of the load indices we see. We shouldn't see any indices twice. + SmallSet<int64_t, 8> SeenIdx; + + // Ensure each load is in the same MBB. + // TODO: Support multiple MachineBasicBlocks. + MachineBasicBlock *MBB = nullptr; + const MachineMemOperand *MMO = nullptr; + + // Earliest instruction-order load in the pattern. + GZExtLoad *EarliestLoad = nullptr; + + // Latest instruction-order load in the pattern. + GZExtLoad *LatestLoad = nullptr; + + // Base pointer which every load should share. + Register BasePtr; + + // We want to find a load for each register. Each load should have some + // appropriate bit twiddling arithmetic. During this loop, we will also keep + // track of the load which uses the lowest index. Later, we will check if we + // can use its pointer in the final, combined load. + for (auto Reg : RegsToVisit) { + // Find the load, and find the position that it will end up in (e.g. a + // shifted) value. + auto LoadAndPos = matchLoadAndBytePosition(Reg, MemSizeInBits, MRI); + if (!LoadAndPos) + return std::nullopt; + GZExtLoad *Load; + int64_t DstPos; + std::tie(Load, DstPos) = *LoadAndPos; + + // TODO: Handle multiple MachineBasicBlocks. Currently not handled because + // it is difficult to check for stores/calls/etc between loads. + MachineBasicBlock *LoadMBB = Load->getParent(); + if (!MBB) + MBB = LoadMBB; + if (LoadMBB != MBB) + return std::nullopt; + + // Make sure that the MachineMemOperands of every seen load are compatible. + auto &LoadMMO = Load->getMMO(); + if (!MMO) + MMO = &LoadMMO; + if (MMO->getAddrSpace() != LoadMMO.getAddrSpace()) + return std::nullopt; + + // Find out what the base pointer and index for the load is. + Register LoadPtr; + int64_t Idx; + if (!mi_match(Load->getOperand(1).getReg(), MRI, + m_GPtrAdd(m_Reg(LoadPtr), m_ICst(Idx)))) { + LoadPtr = Load->getOperand(1).getReg(); + Idx = 0; + } + + // Don't combine things like a[i], a[i] -> a bigger load. + if (!SeenIdx.insert(Idx).second) + return std::nullopt; + + // Every load must share the same base pointer; don't combine things like: + // + // a[i], b[i + 1] -> a bigger load. + if (!BasePtr.isValid()) + BasePtr = LoadPtr; + if (BasePtr != LoadPtr) + return std::nullopt; + + if (Idx < LowestIdx) { + LowestIdx = Idx; + LowestIdxLoad = Load; + } + + // Keep track of the byte offset that this load ends up at. If we have seen + // the byte offset, then stop here. We do not want to combine: + // + // a[i] << 16, a[i + k] << 16 -> a bigger load. + if (!MemOffset2Idx.try_emplace(DstPos, Idx).second) + return std::nullopt; + Loads.insert(Load); + + // Keep track of the position of the earliest/latest loads in the pattern. + // We will check that there are no load fold barriers between them later + // on. + // + // FIXME: Is there a better way to check for load fold barriers? + if (!EarliestLoad || dominates(*Load, *EarliestLoad)) + EarliestLoad = Load; + if (!LatestLoad || dominates(*LatestLoad, *Load)) + LatestLoad = Load; + } + + // We found a load for each register. Let's check if each load satisfies the + // pattern. + assert(Loads.size() == RegsToVisit.size() && + "Expected to find a load for each register?"); + assert(EarliestLoad != LatestLoad && EarliestLoad && + LatestLoad && "Expected at least two loads?"); + + // Check if there are any stores, calls, etc. between any of the loads. If + // there are, then we can't safely perform the combine. + // + // MaxIter is chosen based off the (worst case) number of iterations it + // typically takes to succeed in the LLVM test suite plus some padding. + // + // FIXME: Is there a better way to check for load fold barriers? + const unsigned MaxIter = 20; + unsigned Iter = 0; + for (const auto &MI : instructionsWithoutDebug(EarliestLoad->getIterator(), + LatestLoad->getIterator())) { + if (Loads.count(&MI)) + continue; + if (MI.isLoadFoldBarrier()) + return std::nullopt; + if (Iter++ == MaxIter) + return std::nullopt; + } + + return std::make_tuple(LowestIdxLoad, LowestIdx, LatestLoad); +} + +bool CombinerHelper::matchLoadOrCombine( + MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { + assert(MI.getOpcode() == TargetOpcode::G_OR); + MachineFunction &MF = *MI.getMF(); + // Assuming a little-endian target, transform: + // s8 *a = ... + // s32 val = a[0] | (a[1] << 8) | (a[2] << 16) | (a[3] << 24) + // => + // s32 val = *((i32)a) + // + // s8 *a = ... + // s32 val = (a[0] << 24) | (a[1] << 16) | (a[2] << 8) | a[3] + // => + // s32 val = BSWAP(*((s32)a)) + Register Dst = MI.getOperand(0).getReg(); + LLT Ty = MRI.getType(Dst); + if (Ty.isVector()) + return false; + + // We need to combine at least two loads into this type. Since the smallest + // possible load is into a byte, we need at least a 16-bit wide type. + const unsigned WideMemSizeInBits = Ty.getSizeInBits(); + if (WideMemSizeInBits < 16 || WideMemSizeInBits % 8 != 0) + return false; + + // Match a collection of non-OR instructions in the pattern. + auto RegsToVisit = findCandidatesForLoadOrCombine(&MI); + if (!RegsToVisit) + return false; + + // We have a collection of non-OR instructions. Figure out how wide each of + // the small loads should be based off of the number of potential loads we + // found. + const unsigned NarrowMemSizeInBits = WideMemSizeInBits / RegsToVisit->size(); + if (NarrowMemSizeInBits % 8 != 0) + return false; + + // Check if each register feeding into each OR is a load from the same + // base pointer + some arithmetic. + // + // e.g. a[0], a[1] << 8, a[2] << 16, etc. + // + // Also verify that each of these ends up putting a[i] into the same memory + // offset as a load into a wide type would. + SmallDenseMap<int64_t, int64_t, 8> MemOffset2Idx; + GZExtLoad *LowestIdxLoad, *LatestLoad; + int64_t LowestIdx; + auto MaybeLoadInfo = findLoadOffsetsForLoadOrCombine( + MemOffset2Idx, *RegsToVisit, NarrowMemSizeInBits); + if (!MaybeLoadInfo) + return false; + std::tie(LowestIdxLoad, LowestIdx, LatestLoad) = *MaybeLoadInfo; + + // We have a bunch of loads being OR'd together. Using the addresses + offsets + // we found before, check if this corresponds to a big or little endian byte + // pattern. If it does, then we can represent it using a load + possibly a + // BSWAP. + bool IsBigEndianTarget = MF.getDataLayout().isBigEndian(); + std::optional<bool> IsBigEndian = isBigEndian(MemOffset2Idx, LowestIdx); + if (!IsBigEndian) + return false; + bool NeedsBSwap = IsBigEndianTarget != *IsBigEndian; + if (NeedsBSwap && !isLegalOrBeforeLegalizer({TargetOpcode::G_BSWAP, {Ty}})) + return false; + + // Make sure that the load from the lowest index produces offset 0 in the + // final value. + // + // This ensures that we won't combine something like this: + // + // load x[i] -> byte 2 + // load x[i+1] -> byte 0 ---> wide_load x[i] + // load x[i+2] -> byte 1 + const unsigned NumLoadsInTy = WideMemSizeInBits / NarrowMemSizeInBits; + const unsigned ZeroByteOffset = + *IsBigEndian + ? bigEndianByteAt(NumLoadsInTy, 0) + : littleEndianByteAt(NumLoadsInTy, 0); + auto ZeroOffsetIdx = MemOffset2Idx.find(ZeroByteOffset); + if (ZeroOffsetIdx == MemOffset2Idx.end() || + ZeroOffsetIdx->second != LowestIdx) + return false; + + // We wil reuse the pointer from the load which ends up at byte offset 0. It + // may not use index 0. + Register Ptr = LowestIdxLoad->getPointerReg(); + const MachineMemOperand &MMO = LowestIdxLoad->getMMO(); + LegalityQuery::MemDesc MMDesc(MMO); + MMDesc.MemoryTy = Ty; + if (!isLegalOrBeforeLegalizer( + {TargetOpcode::G_LOAD, {Ty, MRI.getType(Ptr)}, {MMDesc}})) + return false; + auto PtrInfo = MMO.getPointerInfo(); + auto *NewMMO = MF.getMachineMemOperand(&MMO, PtrInfo, WideMemSizeInBits / 8); + + // Load must be allowed and fast on the target. + LLVMContext &C = MF.getFunction().getContext(); + auto &DL = MF.getDataLayout(); + unsigned Fast = 0; + if (!getTargetLowering().allowsMemoryAccess(C, DL, Ty, *NewMMO, &Fast) || + !Fast) + return false; + + MatchInfo = [=](MachineIRBuilder &MIB) { + MIB.setInstrAndDebugLoc(*LatestLoad); + Register LoadDst = NeedsBSwap ? MRI.cloneVirtualRegister(Dst) : Dst; + MIB.buildLoad(LoadDst, Ptr, *NewMMO); + if (NeedsBSwap) + MIB.buildBSwap(Dst, LoadDst); + }; + return true; +} + +bool CombinerHelper::matchExtendThroughPhis(MachineInstr &MI, + MachineInstr *&ExtMI) { + assert(MI.getOpcode() == TargetOpcode::G_PHI); + + Register DstReg = MI.getOperand(0).getReg(); + + // TODO: Extending a vector may be expensive, don't do this until heuristics + // are better. + if (MRI.getType(DstReg).isVector()) + return false; + + // Try to match a phi, whose only use is an extend. + if (!MRI.hasOneNonDBGUse(DstReg)) + return false; + ExtMI = &*MRI.use_instr_nodbg_begin(DstReg); + switch (ExtMI->getOpcode()) { + case TargetOpcode::G_ANYEXT: + return true; // G_ANYEXT is usually free. + case TargetOpcode::G_ZEXT: + case TargetOpcode::G_SEXT: + break; + default: + return false; + } + + // If the target is likely to fold this extend away, don't propagate. + if (Builder.getTII().isExtendLikelyToBeFolded(*ExtMI, MRI)) + return false; + + // We don't want to propagate the extends unless there's a good chance that + // they'll be optimized in some way. + // Collect the unique incoming values. + SmallPtrSet<MachineInstr *, 4> InSrcs; + for (unsigned Idx = 1; Idx < MI.getNumOperands(); Idx += 2) { + auto *DefMI = getDefIgnoringCopies(MI.getOperand(Idx).getReg(), MRI); + switch (DefMI->getOpcode()) { + case TargetOpcode::G_LOAD: + case TargetOpcode::G_TRUNC: + case TargetOpcode::G_SEXT: + case TargetOpcode::G_ZEXT: + case TargetOpcode::G_ANYEXT: + case TargetOpcode::G_CONSTANT: + InSrcs.insert(getDefIgnoringCopies(MI.getOperand(Idx).getReg(), MRI)); + // Don't try to propagate if there are too many places to create new + // extends, chances are it'll increase code size. + if (InSrcs.size() > 2) + return false; + break; + default: + return false; + } + } + return true; +} + +void CombinerHelper::applyExtendThroughPhis(MachineInstr &MI, + MachineInstr *&ExtMI) { + assert(MI.getOpcode() == TargetOpcode::G_PHI); + Register DstReg = ExtMI->getOperand(0).getReg(); + LLT ExtTy = MRI.getType(DstReg); + + // Propagate the extension into the block of each incoming reg's block. + // Use a SetVector here because PHIs can have duplicate edges, and we want + // deterministic iteration order. + SmallSetVector<MachineInstr *, 8> SrcMIs; + SmallDenseMap<MachineInstr *, MachineInstr *, 8> OldToNewSrcMap; + for (unsigned SrcIdx = 1; SrcIdx < MI.getNumOperands(); SrcIdx += 2) { + auto *SrcMI = MRI.getVRegDef(MI.getOperand(SrcIdx).getReg()); + if (!SrcMIs.insert(SrcMI)) + continue; + + // Build an extend after each src inst. + auto *MBB = SrcMI->getParent(); + MachineBasicBlock::iterator InsertPt = ++SrcMI->getIterator(); + if (InsertPt != MBB->end() && InsertPt->isPHI()) + InsertPt = MBB->getFirstNonPHI(); + + Builder.setInsertPt(*SrcMI->getParent(), InsertPt); + Builder.setDebugLoc(MI.getDebugLoc()); + auto NewExt = Builder.buildExtOrTrunc(ExtMI->getOpcode(), ExtTy, + SrcMI->getOperand(0).getReg()); + OldToNewSrcMap[SrcMI] = NewExt; + } + + // Create a new phi with the extended inputs. + Builder.setInstrAndDebugLoc(MI); + auto NewPhi = Builder.buildInstrNoInsert(TargetOpcode::G_PHI); + NewPhi.addDef(DstReg); + for (const MachineOperand &MO : llvm::drop_begin(MI.operands())) { + if (!MO.isReg()) { + NewPhi.addMBB(MO.getMBB()); + continue; + } + auto *NewSrc = OldToNewSrcMap[MRI.getVRegDef(MO.getReg())]; + NewPhi.addUse(NewSrc->getOperand(0).getReg()); + } + Builder.insertInstr(NewPhi); + ExtMI->eraseFromParent(); +} + +bool CombinerHelper::matchExtractVecEltBuildVec(MachineInstr &MI, + Register &Reg) { + assert(MI.getOpcode() == TargetOpcode::G_EXTRACT_VECTOR_ELT); + // If we have a constant index, look for a G_BUILD_VECTOR source + // and find the source register that the index maps to. + Register SrcVec = MI.getOperand(1).getReg(); + LLT SrcTy = MRI.getType(SrcVec); + + auto Cst = getIConstantVRegValWithLookThrough(MI.getOperand(2).getReg(), MRI); + if (!Cst || Cst->Value.getZExtValue() >= SrcTy.getNumElements()) + return false; + + unsigned VecIdx = Cst->Value.getZExtValue(); + + // Check if we have a build_vector or build_vector_trunc with an optional + // trunc in front. + MachineInstr *SrcVecMI = MRI.getVRegDef(SrcVec); + if (SrcVecMI->getOpcode() == TargetOpcode::G_TRUNC) { + SrcVecMI = MRI.getVRegDef(SrcVecMI->getOperand(1).getReg()); + } + + if (SrcVecMI->getOpcode() != TargetOpcode::G_BUILD_VECTOR && + SrcVecMI->getOpcode() != TargetOpcode::G_BUILD_VECTOR_TRUNC) + return false; + + EVT Ty(getMVTForLLT(SrcTy)); + if (!MRI.hasOneNonDBGUse(SrcVec) && + !getTargetLowering().aggressivelyPreferBuildVectorSources(Ty)) + return false; + + Reg = SrcVecMI->getOperand(VecIdx + 1).getReg(); + return true; +} + +void CombinerHelper::applyExtractVecEltBuildVec(MachineInstr &MI, + Register &Reg) { + // Check the type of the register, since it may have come from a + // G_BUILD_VECTOR_TRUNC. + LLT ScalarTy = MRI.getType(Reg); + Register DstReg = MI.getOperand(0).getReg(); + LLT DstTy = MRI.getType(DstReg); + + Builder.setInstrAndDebugLoc(MI); + if (ScalarTy != DstTy) { + assert(ScalarTy.getSizeInBits() > DstTy.getSizeInBits()); + Builder.buildTrunc(DstReg, Reg); + MI.eraseFromParent(); + return; + } + replaceSingleDefInstWithReg(MI, Reg); +} + +bool CombinerHelper::matchExtractAllEltsFromBuildVector( + MachineInstr &MI, + SmallVectorImpl<std::pair<Register, MachineInstr *>> &SrcDstPairs) { + assert(MI.getOpcode() == TargetOpcode::G_BUILD_VECTOR); + // This combine tries to find build_vector's which have every source element + // extracted using G_EXTRACT_VECTOR_ELT. This can happen when transforms like + // the masked load scalarization is run late in the pipeline. There's already + // a combine for a similar pattern starting from the extract, but that + // doesn't attempt to do it if there are multiple uses of the build_vector, + // which in this case is true. Starting the combine from the build_vector + // feels more natural than trying to find sibling nodes of extracts. + // E.g. + // %vec(<4 x s32>) = G_BUILD_VECTOR %s1(s32), %s2, %s3, %s4 + // %ext1 = G_EXTRACT_VECTOR_ELT %vec, 0 + // %ext2 = G_EXTRACT_VECTOR_ELT %vec, 1 + // %ext3 = G_EXTRACT_VECTOR_ELT %vec, 2 + // %ext4 = G_EXTRACT_VECTOR_ELT %vec, 3 + // ==> + // replace ext{1,2,3,4} with %s{1,2,3,4} + + Register DstReg = MI.getOperand(0).getReg(); + LLT DstTy = MRI.getType(DstReg); + unsigned NumElts = DstTy.getNumElements(); + + SmallBitVector ExtractedElts(NumElts); + for (MachineInstr &II : MRI.use_nodbg_instructions(DstReg)) { + if (II.getOpcode() != TargetOpcode::G_EXTRACT_VECTOR_ELT) + return false; + auto Cst = getIConstantVRegVal(II.getOperand(2).getReg(), MRI); + if (!Cst) + return false; + unsigned Idx = Cst->getZExtValue(); + if (Idx >= NumElts) + return false; // Out of range. + ExtractedElts.set(Idx); + SrcDstPairs.emplace_back( + std::make_pair(MI.getOperand(Idx + 1).getReg(), &II)); + } + // Match if every element was extracted. + return ExtractedElts.all(); +} + +void CombinerHelper::applyExtractAllEltsFromBuildVector( + MachineInstr &MI, + SmallVectorImpl<std::pair<Register, MachineInstr *>> &SrcDstPairs) { + assert(MI.getOpcode() == TargetOpcode::G_BUILD_VECTOR); + for (auto &Pair : SrcDstPairs) { + auto *ExtMI = Pair.second; + replaceRegWith(MRI, ExtMI->getOperand(0).getReg(), Pair.first); + ExtMI->eraseFromParent(); + } + MI.eraseFromParent(); +} + +void CombinerHelper::applyBuildFn( + MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { + Builder.setInstrAndDebugLoc(MI); + MatchInfo(Builder); + MI.eraseFromParent(); +} + +void CombinerHelper::applyBuildFnNoErase( + MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { + Builder.setInstrAndDebugLoc(MI); + MatchInfo(Builder); +} + +bool CombinerHelper::matchOrShiftToFunnelShift(MachineInstr &MI, + BuildFnTy &MatchInfo) { + assert(MI.getOpcode() == TargetOpcode::G_OR); + + Register Dst = MI.getOperand(0).getReg(); + LLT Ty = MRI.getType(Dst); + unsigned BitWidth = Ty.getScalarSizeInBits(); + + Register ShlSrc, ShlAmt, LShrSrc, LShrAmt, Amt; + unsigned FshOpc = 0; + + // Match (or (shl ...), (lshr ...)). + if (!mi_match(Dst, MRI, + // m_GOr() handles the commuted version as well. + m_GOr(m_GShl(m_Reg(ShlSrc), m_Reg(ShlAmt)), + m_GLShr(m_Reg(LShrSrc), m_Reg(LShrAmt))))) + return false; + + // Given constants C0 and C1 such that C0 + C1 is bit-width: + // (or (shl x, C0), (lshr y, C1)) -> (fshl x, y, C0) or (fshr x, y, C1) + int64_t CstShlAmt, CstLShrAmt; + if (mi_match(ShlAmt, MRI, m_ICstOrSplat(CstShlAmt)) && + mi_match(LShrAmt, MRI, m_ICstOrSplat(CstLShrAmt)) && + CstShlAmt + CstLShrAmt == BitWidth) { + FshOpc = TargetOpcode::G_FSHR; + Amt = LShrAmt; + + } else if (mi_match(LShrAmt, MRI, + m_GSub(m_SpecificICstOrSplat(BitWidth), m_Reg(Amt))) && + ShlAmt == Amt) { + // (or (shl x, amt), (lshr y, (sub bw, amt))) -> (fshl x, y, amt) + FshOpc = TargetOpcode::G_FSHL; + + } else if (mi_match(ShlAmt, MRI, + m_GSub(m_SpecificICstOrSplat(BitWidth), m_Reg(Amt))) && + LShrAmt == Amt) { + // (or (shl x, (sub bw, amt)), (lshr y, amt)) -> (fshr x, y, amt) + FshOpc = TargetOpcode::G_FSHR; + + } else { + return false; + } + + LLT AmtTy = MRI.getType(Amt); + if (!isLegalOrBeforeLegalizer({FshOpc, {Ty, AmtTy}})) + return false; + + MatchInfo = [=](MachineIRBuilder &B) { + B.buildInstr(FshOpc, {Dst}, {ShlSrc, LShrSrc, Amt}); + }; + return true; +} + +/// Match an FSHL or FSHR that can be combined to a ROTR or ROTL rotate. +bool CombinerHelper::matchFunnelShiftToRotate(MachineInstr &MI) { + unsigned Opc = MI.getOpcode(); + assert(Opc == TargetOpcode::G_FSHL || Opc == TargetOpcode::G_FSHR); + Register X = MI.getOperand(1).getReg(); + Register Y = MI.getOperand(2).getReg(); + if (X != Y) + return false; + unsigned RotateOpc = + Opc == TargetOpcode::G_FSHL ? TargetOpcode::G_ROTL : TargetOpcode::G_ROTR; + return isLegalOrBeforeLegalizer({RotateOpc, {MRI.getType(X), MRI.getType(Y)}}); +} + +void CombinerHelper::applyFunnelShiftToRotate(MachineInstr &MI) { + unsigned Opc = MI.getOpcode(); + assert(Opc == TargetOpcode::G_FSHL || Opc == TargetOpcode::G_FSHR); + bool IsFSHL = Opc == TargetOpcode::G_FSHL; + Observer.changingInstr(MI); + MI.setDesc(Builder.getTII().get(IsFSHL ? TargetOpcode::G_ROTL + : TargetOpcode::G_ROTR)); + MI.removeOperand(2); + Observer.changedInstr(MI); +} + +// Fold (rot x, c) -> (rot x, c % BitSize) +bool CombinerHelper::matchRotateOutOfRange(MachineInstr &MI) { + assert(MI.getOpcode() == TargetOpcode::G_ROTL || + MI.getOpcode() == TargetOpcode::G_ROTR); + unsigned Bitsize = + MRI.getType(MI.getOperand(0).getReg()).getScalarSizeInBits(); + Register AmtReg = MI.getOperand(2).getReg(); + bool OutOfRange = false; + auto MatchOutOfRange = [Bitsize, &OutOfRange](const Constant *C) { + if (auto *CI = dyn_cast<ConstantInt>(C)) + OutOfRange |= CI->getValue().uge(Bitsize); + return true; + }; + return matchUnaryPredicate(MRI, AmtReg, MatchOutOfRange) && OutOfRange; +} + +void CombinerHelper::applyRotateOutOfRange(MachineInstr &MI) { + assert(MI.getOpcode() == TargetOpcode::G_ROTL || + MI.getOpcode() == TargetOpcode::G_ROTR); + unsigned Bitsize = + MRI.getType(MI.getOperand(0).getReg()).getScalarSizeInBits(); + Builder.setInstrAndDebugLoc(MI); + Register Amt = MI.getOperand(2).getReg(); + LLT AmtTy = MRI.getType(Amt); + auto Bits = Builder.buildConstant(AmtTy, Bitsize); + Amt = Builder.buildURem(AmtTy, MI.getOperand(2).getReg(), Bits).getReg(0); + Observer.changingInstr(MI); + MI.getOperand(2).setReg(Amt); + Observer.changedInstr(MI); +} + +bool CombinerHelper::matchICmpToTrueFalseKnownBits(MachineInstr &MI, + int64_t &MatchInfo) { + assert(MI.getOpcode() == TargetOpcode::G_ICMP); + auto Pred = static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate()); + auto KnownLHS = KB->getKnownBits(MI.getOperand(2).getReg()); + auto KnownRHS = KB->getKnownBits(MI.getOperand(3).getReg()); + std::optional<bool> KnownVal; + switch (Pred) { + default: + llvm_unreachable("Unexpected G_ICMP predicate?"); + case CmpInst::ICMP_EQ: + KnownVal = KnownBits::eq(KnownLHS, KnownRHS); + break; + case CmpInst::ICMP_NE: + KnownVal = KnownBits::ne(KnownLHS, KnownRHS); + break; + case CmpInst::ICMP_SGE: + KnownVal = KnownBits::sge(KnownLHS, KnownRHS); + break; + case CmpInst::ICMP_SGT: + KnownVal = KnownBits::sgt(KnownLHS, KnownRHS); + break; + case CmpInst::ICMP_SLE: + KnownVal = KnownBits::sle(KnownLHS, KnownRHS); + break; + case CmpInst::ICMP_SLT: + KnownVal = KnownBits::slt(KnownLHS, KnownRHS); + break; + case CmpInst::ICMP_UGE: + KnownVal = KnownBits::uge(KnownLHS, KnownRHS); + break; + case CmpInst::ICMP_UGT: + KnownVal = KnownBits::ugt(KnownLHS, KnownRHS); + break; + case CmpInst::ICMP_ULE: + KnownVal = KnownBits::ule(KnownLHS, KnownRHS); + break; + case CmpInst::ICMP_ULT: + KnownVal = KnownBits::ult(KnownLHS, KnownRHS); + break; + } + if (!KnownVal) + return false; + MatchInfo = + *KnownVal + ? getICmpTrueVal(getTargetLowering(), + /*IsVector = */ + MRI.getType(MI.getOperand(0).getReg()).isVector(), + /* IsFP = */ false) + : 0; + return true; +} + +bool CombinerHelper::matchICmpToLHSKnownBits( + MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { + assert(MI.getOpcode() == TargetOpcode::G_ICMP); + // Given: + // + // %x = G_WHATEVER (... x is known to be 0 or 1 ...) + // %cmp = G_ICMP ne %x, 0 + // + // Or: + // + // %x = G_WHATEVER (... x is known to be 0 or 1 ...) + // %cmp = G_ICMP eq %x, 1 + // + // We can replace %cmp with %x assuming true is 1 on the target. + auto Pred = static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate()); + if (!CmpInst::isEquality(Pred)) + return false; + Register Dst = MI.getOperand(0).getReg(); + LLT DstTy = MRI.getType(Dst); + if (getICmpTrueVal(getTargetLowering(), DstTy.isVector(), + /* IsFP = */ false) != 1) + return false; + int64_t OneOrZero = Pred == CmpInst::ICMP_EQ; + if (!mi_match(MI.getOperand(3).getReg(), MRI, m_SpecificICst(OneOrZero))) + return false; + Register LHS = MI.getOperand(2).getReg(); + auto KnownLHS = KB->getKnownBits(LHS); + if (KnownLHS.getMinValue() != 0 || KnownLHS.getMaxValue() != 1) + return false; + // Make sure replacing Dst with the LHS is a legal operation. + LLT LHSTy = MRI.getType(LHS); + unsigned LHSSize = LHSTy.getSizeInBits(); + unsigned DstSize = DstTy.getSizeInBits(); + unsigned Op = TargetOpcode::COPY; + if (DstSize != LHSSize) + Op = DstSize < LHSSize ? TargetOpcode::G_TRUNC : TargetOpcode::G_ZEXT; + if (!isLegalOrBeforeLegalizer({Op, {DstTy, LHSTy}})) + return false; + MatchInfo = [=](MachineIRBuilder &B) { B.buildInstr(Op, {Dst}, {LHS}); }; + return true; +} + +// Replace (and (or x, c1), c2) with (and x, c2) iff c1 & c2 == 0 +bool CombinerHelper::matchAndOrDisjointMask( + MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { + assert(MI.getOpcode() == TargetOpcode::G_AND); + + // Ignore vector types to simplify matching the two constants. + // TODO: do this for vectors and scalars via a demanded bits analysis. + LLT Ty = MRI.getType(MI.getOperand(0).getReg()); + if (Ty.isVector()) + return false; + + Register Src; + Register AndMaskReg; + int64_t AndMaskBits; + int64_t OrMaskBits; + if (!mi_match(MI, MRI, + m_GAnd(m_GOr(m_Reg(Src), m_ICst(OrMaskBits)), + m_all_of(m_ICst(AndMaskBits), m_Reg(AndMaskReg))))) + return false; + + // Check if OrMask could turn on any bits in Src. + if (AndMaskBits & OrMaskBits) + return false; + + MatchInfo = [=, &MI](MachineIRBuilder &B) { + Observer.changingInstr(MI); + // Canonicalize the result to have the constant on the RHS. + if (MI.getOperand(1).getReg() == AndMaskReg) + MI.getOperand(2).setReg(AndMaskReg); + MI.getOperand(1).setReg(Src); + Observer.changedInstr(MI); + }; + return true; +} + +/// Form a G_SBFX from a G_SEXT_INREG fed by a right shift. +bool CombinerHelper::matchBitfieldExtractFromSExtInReg( + MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { + assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG); + Register Dst = MI.getOperand(0).getReg(); + Register Src = MI.getOperand(1).getReg(); + LLT Ty = MRI.getType(Src); + LLT ExtractTy = getTargetLowering().getPreferredShiftAmountTy(Ty); + if (!LI || !LI->isLegalOrCustom({TargetOpcode::G_SBFX, {Ty, ExtractTy}})) + return false; + int64_t Width = MI.getOperand(2).getImm(); + Register ShiftSrc; + int64_t ShiftImm; + if (!mi_match( + Src, MRI, + m_OneNonDBGUse(m_any_of(m_GAShr(m_Reg(ShiftSrc), m_ICst(ShiftImm)), + m_GLShr(m_Reg(ShiftSrc), m_ICst(ShiftImm)))))) + return false; + if (ShiftImm < 0 || ShiftImm + Width > Ty.getScalarSizeInBits()) + return false; + + MatchInfo = [=](MachineIRBuilder &B) { + auto Cst1 = B.buildConstant(ExtractTy, ShiftImm); + auto Cst2 = B.buildConstant(ExtractTy, Width); + B.buildSbfx(Dst, ShiftSrc, Cst1, Cst2); + }; + return true; +} + +/// Form a G_UBFX from "(a srl b) & mask", where b and mask are constants. +bool CombinerHelper::matchBitfieldExtractFromAnd( + MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { + assert(MI.getOpcode() == TargetOpcode::G_AND); + Register Dst = MI.getOperand(0).getReg(); + LLT Ty = MRI.getType(Dst); + LLT ExtractTy = getTargetLowering().getPreferredShiftAmountTy(Ty); + if (LI && !LI->isLegalOrCustom({TargetOpcode::G_UBFX, {Ty, ExtractTy}})) + return false; + + int64_t AndImm, LSBImm; + Register ShiftSrc; + const unsigned Size = Ty.getScalarSizeInBits(); + if (!mi_match(MI.getOperand(0).getReg(), MRI, + m_GAnd(m_OneNonDBGUse(m_GLShr(m_Reg(ShiftSrc), m_ICst(LSBImm))), + m_ICst(AndImm)))) + return false; + + // The mask is a mask of the low bits iff imm & (imm+1) == 0. + auto MaybeMask = static_cast<uint64_t>(AndImm); + if (MaybeMask & (MaybeMask + 1)) + return false; + + // LSB must fit within the register. + if (static_cast<uint64_t>(LSBImm) >= Size) + return false; + + uint64_t Width = APInt(Size, AndImm).countr_one(); + MatchInfo = [=](MachineIRBuilder &B) { + auto WidthCst = B.buildConstant(ExtractTy, Width); + auto LSBCst = B.buildConstant(ExtractTy, LSBImm); + B.buildInstr(TargetOpcode::G_UBFX, {Dst}, {ShiftSrc, LSBCst, WidthCst}); + }; + return true; +} + +bool CombinerHelper::matchBitfieldExtractFromShr( + MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { + const unsigned Opcode = MI.getOpcode(); + assert(Opcode == TargetOpcode::G_ASHR || Opcode == TargetOpcode::G_LSHR); + + const Register Dst = MI.getOperand(0).getReg(); + + const unsigned ExtrOpcode = Opcode == TargetOpcode::G_ASHR + ? TargetOpcode::G_SBFX + : TargetOpcode::G_UBFX; + + // Check if the type we would use for the extract is legal + LLT Ty = MRI.getType(Dst); + LLT ExtractTy = getTargetLowering().getPreferredShiftAmountTy(Ty); + if (!LI || !LI->isLegalOrCustom({ExtrOpcode, {Ty, ExtractTy}})) + return false; + + Register ShlSrc; + int64_t ShrAmt; + int64_t ShlAmt; + const unsigned Size = Ty.getScalarSizeInBits(); + + // Try to match shr (shl x, c1), c2 + if (!mi_match(Dst, MRI, + m_BinOp(Opcode, + m_OneNonDBGUse(m_GShl(m_Reg(ShlSrc), m_ICst(ShlAmt))), + m_ICst(ShrAmt)))) + return false; + + // Make sure that the shift sizes can fit a bitfield extract + if (ShlAmt < 0 || ShlAmt > ShrAmt || ShrAmt >= Size) + return false; + + // Skip this combine if the G_SEXT_INREG combine could handle it + if (Opcode == TargetOpcode::G_ASHR && ShlAmt == ShrAmt) + return false; + + // Calculate start position and width of the extract + const int64_t Pos = ShrAmt - ShlAmt; + const int64_t Width = Size - ShrAmt; + + MatchInfo = [=](MachineIRBuilder &B) { + auto WidthCst = B.buildConstant(ExtractTy, Width); + auto PosCst = B.buildConstant(ExtractTy, Pos); + B.buildInstr(ExtrOpcode, {Dst}, {ShlSrc, PosCst, WidthCst}); + }; + return true; +} + +bool CombinerHelper::matchBitfieldExtractFromShrAnd( + MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { + const unsigned Opcode = MI.getOpcode(); + assert(Opcode == TargetOpcode::G_LSHR || Opcode == TargetOpcode::G_ASHR); + + const Register Dst = MI.getOperand(0).getReg(); + LLT Ty = MRI.getType(Dst); + LLT ExtractTy = getTargetLowering().getPreferredShiftAmountTy(Ty); + if (LI && !LI->isLegalOrCustom({TargetOpcode::G_UBFX, {Ty, ExtractTy}})) + return false; + + // Try to match shr (and x, c1), c2 + Register AndSrc; + int64_t ShrAmt; + int64_t SMask; + if (!mi_match(Dst, MRI, + m_BinOp(Opcode, + m_OneNonDBGUse(m_GAnd(m_Reg(AndSrc), m_ICst(SMask))), + m_ICst(ShrAmt)))) + return false; + + const unsigned Size = Ty.getScalarSizeInBits(); + if (ShrAmt < 0 || ShrAmt >= Size) + return false; + + // If the shift subsumes the mask, emit the 0 directly. + if (0 == (SMask >> ShrAmt)) { + MatchInfo = [=](MachineIRBuilder &B) { + B.buildConstant(Dst, 0); + }; + return true; + } + + // Check that ubfx can do the extraction, with no holes in the mask. + uint64_t UMask = SMask; + UMask |= maskTrailingOnes<uint64_t>(ShrAmt); + UMask &= maskTrailingOnes<uint64_t>(Size); + if (!isMask_64(UMask)) + return false; + + // Calculate start position and width of the extract. + const int64_t Pos = ShrAmt; + const int64_t Width = llvm::countr_one(UMask) - ShrAmt; + + // It's preferable to keep the shift, rather than form G_SBFX. + // TODO: remove the G_AND via demanded bits analysis. + if (Opcode == TargetOpcode::G_ASHR && Width + ShrAmt == Size) + return false; + + MatchInfo = [=](MachineIRBuilder &B) { + auto WidthCst = B.buildConstant(ExtractTy, Width); + auto PosCst = B.buildConstant(ExtractTy, Pos); + B.buildInstr(TargetOpcode::G_UBFX, {Dst}, {AndSrc, PosCst, WidthCst}); + }; + return true; +} + +bool CombinerHelper::reassociationCanBreakAddressingModePattern( + MachineInstr &MI) { + auto &PtrAdd = cast<GPtrAdd>(MI); + + Register Src1Reg = PtrAdd.getBaseReg(); + auto *Src1Def = getOpcodeDef<GPtrAdd>(Src1Reg, MRI); + if (!Src1Def) + return false; + + Register Src2Reg = PtrAdd.getOffsetReg(); + + if (MRI.hasOneNonDBGUse(Src1Reg)) + return false; + + auto C1 = getIConstantVRegVal(Src1Def->getOffsetReg(), MRI); + if (!C1) + return false; + auto C2 = getIConstantVRegVal(Src2Reg, MRI); + if (!C2) + return false; + + const APInt &C1APIntVal = *C1; + const APInt &C2APIntVal = *C2; + const int64_t CombinedValue = (C1APIntVal + C2APIntVal).getSExtValue(); + + for (auto &UseMI : MRI.use_nodbg_instructions(PtrAdd.getReg(0))) { + // This combine may end up running before ptrtoint/inttoptr combines + // manage to eliminate redundant conversions, so try to look through them. + MachineInstr *ConvUseMI = &UseMI; + unsigned ConvUseOpc = ConvUseMI->getOpcode(); + while (ConvUseOpc == TargetOpcode::G_INTTOPTR || + ConvUseOpc == TargetOpcode::G_PTRTOINT) { + Register DefReg = ConvUseMI->getOperand(0).getReg(); + if (!MRI.hasOneNonDBGUse(DefReg)) + break; + ConvUseMI = &*MRI.use_instr_nodbg_begin(DefReg); + ConvUseOpc = ConvUseMI->getOpcode(); + } + auto *LdStMI = dyn_cast<GLoadStore>(ConvUseMI); + if (!LdStMI) + continue; + // Is x[offset2] already not a legal addressing mode? If so then + // reassociating the constants breaks nothing (we test offset2 because + // that's the one we hope to fold into the load or store). + TargetLoweringBase::AddrMode AM; + AM.HasBaseReg = true; + AM.BaseOffs = C2APIntVal.getSExtValue(); + unsigned AS = MRI.getType(LdStMI->getPointerReg()).getAddressSpace(); + Type *AccessTy = getTypeForLLT(LdStMI->getMMO().getMemoryType(), + PtrAdd.getMF()->getFunction().getContext()); + const auto &TLI = *PtrAdd.getMF()->getSubtarget().getTargetLowering(); + if (!TLI.isLegalAddressingMode(PtrAdd.getMF()->getDataLayout(), AM, + AccessTy, AS)) + continue; + + // Would x[offset1+offset2] still be a legal addressing mode? + AM.BaseOffs = CombinedValue; + if (!TLI.isLegalAddressingMode(PtrAdd.getMF()->getDataLayout(), AM, + AccessTy, AS)) + return true; + } + + return false; +} + +bool CombinerHelper::matchReassocConstantInnerRHS(GPtrAdd &MI, + MachineInstr *RHS, + BuildFnTy &MatchInfo) { + // G_PTR_ADD(BASE, G_ADD(X, C)) -> G_PTR_ADD(G_PTR_ADD(BASE, X), C) + Register Src1Reg = MI.getOperand(1).getReg(); + if (RHS->getOpcode() != TargetOpcode::G_ADD) + return false; + auto C2 = getIConstantVRegVal(RHS->getOperand(2).getReg(), MRI); + if (!C2) + return false; + + MatchInfo = [=, &MI](MachineIRBuilder &B) { + LLT PtrTy = MRI.getType(MI.getOperand(0).getReg()); + + auto NewBase = + Builder.buildPtrAdd(PtrTy, Src1Reg, RHS->getOperand(1).getReg()); + Observer.changingInstr(MI); + MI.getOperand(1).setReg(NewBase.getReg(0)); + MI.getOperand(2).setReg(RHS->getOperand(2).getReg()); + Observer.changedInstr(MI); + }; + return !reassociationCanBreakAddressingModePattern(MI); +} + +bool CombinerHelper::matchReassocConstantInnerLHS(GPtrAdd &MI, + MachineInstr *LHS, + MachineInstr *RHS, + BuildFnTy &MatchInfo) { + // G_PTR_ADD (G_PTR_ADD X, C), Y) -> (G_PTR_ADD (G_PTR_ADD(X, Y), C) + // if and only if (G_PTR_ADD X, C) has one use. + Register LHSBase; + std::optional<ValueAndVReg> LHSCstOff; + if (!mi_match(MI.getBaseReg(), MRI, + m_OneNonDBGUse(m_GPtrAdd(m_Reg(LHSBase), m_GCst(LHSCstOff))))) + return false; + + auto *LHSPtrAdd = cast<GPtrAdd>(LHS); + MatchInfo = [=, &MI](MachineIRBuilder &B) { + // When we change LHSPtrAdd's offset register we might cause it to use a reg + // before its def. Sink the instruction so the outer PTR_ADD to ensure this + // doesn't happen. + LHSPtrAdd->moveBefore(&MI); + Register RHSReg = MI.getOffsetReg(); + // set VReg will cause type mismatch if it comes from extend/trunc + auto NewCst = B.buildConstant(MRI.getType(RHSReg), LHSCstOff->Value); + Observer.changingInstr(MI); + MI.getOperand(2).setReg(NewCst.getReg(0)); + Observer.changedInstr(MI); + Observer.changingInstr(*LHSPtrAdd); + LHSPtrAdd->getOperand(2).setReg(RHSReg); + Observer.changedInstr(*LHSPtrAdd); + }; + return !reassociationCanBreakAddressingModePattern(MI); +} + +bool CombinerHelper::matchReassocFoldConstantsInSubTree(GPtrAdd &MI, + MachineInstr *LHS, + MachineInstr *RHS, + BuildFnTy &MatchInfo) { + // G_PTR_ADD(G_PTR_ADD(BASE, C1), C2) -> G_PTR_ADD(BASE, C1+C2) + auto *LHSPtrAdd = dyn_cast<GPtrAdd>(LHS); + if (!LHSPtrAdd) + return false; + + Register Src2Reg = MI.getOperand(2).getReg(); + Register LHSSrc1 = LHSPtrAdd->getBaseReg(); + Register LHSSrc2 = LHSPtrAdd->getOffsetReg(); + auto C1 = getIConstantVRegVal(LHSSrc2, MRI); + if (!C1) + return false; + auto C2 = getIConstantVRegVal(Src2Reg, MRI); + if (!C2) + return false; + + MatchInfo = [=, &MI](MachineIRBuilder &B) { + auto NewCst = B.buildConstant(MRI.getType(Src2Reg), *C1 + *C2); + Observer.changingInstr(MI); + MI.getOperand(1).setReg(LHSSrc1); + MI.getOperand(2).setReg(NewCst.getReg(0)); + Observer.changedInstr(MI); + }; + return !reassociationCanBreakAddressingModePattern(MI); +} + +bool CombinerHelper::matchReassocPtrAdd(MachineInstr &MI, + BuildFnTy &MatchInfo) { + auto &PtrAdd = cast<GPtrAdd>(MI); + // We're trying to match a few pointer computation patterns here for + // re-association opportunities. + // 1) Isolating a constant operand to be on the RHS, e.g.: + // G_PTR_ADD(BASE, G_ADD(X, C)) -> G_PTR_ADD(G_PTR_ADD(BASE, X), C) + // + // 2) Folding two constants in each sub-tree as long as such folding + // doesn't break a legal addressing mode. + // G_PTR_ADD(G_PTR_ADD(BASE, C1), C2) -> G_PTR_ADD(BASE, C1+C2) + // + // 3) Move a constant from the LHS of an inner op to the RHS of the outer. + // G_PTR_ADD (G_PTR_ADD X, C), Y) -> G_PTR_ADD (G_PTR_ADD(X, Y), C) + // iif (G_PTR_ADD X, C) has one use. + MachineInstr *LHS = MRI.getVRegDef(PtrAdd.getBaseReg()); + MachineInstr *RHS = MRI.getVRegDef(PtrAdd.getOffsetReg()); + + // Try to match example 2. + if (matchReassocFoldConstantsInSubTree(PtrAdd, LHS, RHS, MatchInfo)) + return true; + + // Try to match example 3. + if (matchReassocConstantInnerLHS(PtrAdd, LHS, RHS, MatchInfo)) + return true; + + // Try to match example 1. + if (matchReassocConstantInnerRHS(PtrAdd, RHS, MatchInfo)) + return true; + + return false; +} +bool CombinerHelper::tryReassocBinOp(unsigned Opc, Register DstReg, + Register OpLHS, Register OpRHS, + BuildFnTy &MatchInfo) { + LLT OpRHSTy = MRI.getType(OpRHS); + MachineInstr *OpLHSDef = MRI.getVRegDef(OpLHS); + + if (OpLHSDef->getOpcode() != Opc) + return false; + + MachineInstr *OpRHSDef = MRI.getVRegDef(OpRHS); + Register OpLHSLHS = OpLHSDef->getOperand(1).getReg(); + Register OpLHSRHS = OpLHSDef->getOperand(2).getReg(); + + // If the inner op is (X op C), pull the constant out so it can be folded with + // other constants in the expression tree. Folding is not guaranteed so we + // might have (C1 op C2). In that case do not pull a constant out because it + // won't help and can lead to infinite loops. + if (isConstantOrConstantSplatVector(*MRI.getVRegDef(OpLHSRHS), MRI) && + !isConstantOrConstantSplatVector(*MRI.getVRegDef(OpLHSLHS), MRI)) { + if (isConstantOrConstantSplatVector(*OpRHSDef, MRI)) { + // (Opc (Opc X, C1), C2) -> (Opc X, (Opc C1, C2)) + MatchInfo = [=](MachineIRBuilder &B) { + auto NewCst = B.buildInstr(Opc, {OpRHSTy}, {OpLHSRHS, OpRHS}); + B.buildInstr(Opc, {DstReg}, {OpLHSLHS, NewCst}); + }; + return true; + } + if (getTargetLowering().isReassocProfitable(MRI, OpLHS, OpRHS)) { + // Reassociate: (op (op x, c1), y) -> (op (op x, y), c1) + // iff (op x, c1) has one use + MatchInfo = [=](MachineIRBuilder &B) { + auto NewLHSLHS = B.buildInstr(Opc, {OpRHSTy}, {OpLHSLHS, OpRHS}); + B.buildInstr(Opc, {DstReg}, {NewLHSLHS, OpLHSRHS}); + }; + return true; + } + } + + return false; +} + +bool CombinerHelper::matchReassocCommBinOp(MachineInstr &MI, + BuildFnTy &MatchInfo) { + // We don't check if the reassociation will break a legal addressing mode + // here since pointer arithmetic is handled by G_PTR_ADD. + unsigned Opc = MI.getOpcode(); + Register DstReg = MI.getOperand(0).getReg(); + Register LHSReg = MI.getOperand(1).getReg(); + Register RHSReg = MI.getOperand(2).getReg(); + + if (tryReassocBinOp(Opc, DstReg, LHSReg, RHSReg, MatchInfo)) + return true; + if (tryReassocBinOp(Opc, DstReg, RHSReg, LHSReg, MatchInfo)) + return true; + return false; +} + +bool CombinerHelper::matchConstantFoldCastOp(MachineInstr &MI, APInt &MatchInfo) { + LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); + Register SrcOp = MI.getOperand(1).getReg(); + + if (auto MaybeCst = ConstantFoldCastOp(MI.getOpcode(), DstTy, SrcOp, MRI)) { + MatchInfo = *MaybeCst; + return true; + } + + return false; +} + +bool CombinerHelper::matchConstantFoldBinOp(MachineInstr &MI, APInt &MatchInfo) { + Register Op1 = MI.getOperand(1).getReg(); + Register Op2 = MI.getOperand(2).getReg(); + auto MaybeCst = ConstantFoldBinOp(MI.getOpcode(), Op1, Op2, MRI); + if (!MaybeCst) + return false; + MatchInfo = *MaybeCst; + return true; +} + +bool CombinerHelper::matchConstantFoldFPBinOp(MachineInstr &MI, ConstantFP* &MatchInfo) { + Register Op1 = MI.getOperand(1).getReg(); + Register Op2 = MI.getOperand(2).getReg(); + auto MaybeCst = ConstantFoldFPBinOp(MI.getOpcode(), Op1, Op2, MRI); + if (!MaybeCst) + return false; + MatchInfo = + ConstantFP::get(MI.getMF()->getFunction().getContext(), *MaybeCst); + return true; +} + +bool CombinerHelper::matchConstantFoldFMA(MachineInstr &MI, + ConstantFP *&MatchInfo) { + assert(MI.getOpcode() == TargetOpcode::G_FMA || + MI.getOpcode() == TargetOpcode::G_FMAD); + auto [_, Op1, Op2, Op3] = MI.getFirst4Regs(); + + const ConstantFP *Op3Cst = getConstantFPVRegVal(Op3, MRI); + if (!Op3Cst) + return false; + + const ConstantFP *Op2Cst = getConstantFPVRegVal(Op2, MRI); + if (!Op2Cst) + return false; + + const ConstantFP *Op1Cst = getConstantFPVRegVal(Op1, MRI); + if (!Op1Cst) + return false; + + APFloat Op1F = Op1Cst->getValueAPF(); + Op1F.fusedMultiplyAdd(Op2Cst->getValueAPF(), Op3Cst->getValueAPF(), + APFloat::rmNearestTiesToEven); + MatchInfo = ConstantFP::get(MI.getMF()->getFunction().getContext(), Op1F); + return true; +} + +bool CombinerHelper::matchNarrowBinopFeedingAnd( + MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { + // Look for a binop feeding into an AND with a mask: + // + // %add = G_ADD %lhs, %rhs + // %and = G_AND %add, 000...11111111 + // + // Check if it's possible to perform the binop at a narrower width and zext + // back to the original width like so: + // + // %narrow_lhs = G_TRUNC %lhs + // %narrow_rhs = G_TRUNC %rhs + // %narrow_add = G_ADD %narrow_lhs, %narrow_rhs + // %new_add = G_ZEXT %narrow_add + // %and = G_AND %new_add, 000...11111111 + // + // This can allow later combines to eliminate the G_AND if it turns out + // that the mask is irrelevant. + assert(MI.getOpcode() == TargetOpcode::G_AND); + Register Dst = MI.getOperand(0).getReg(); + Register AndLHS = MI.getOperand(1).getReg(); + Register AndRHS = MI.getOperand(2).getReg(); + LLT WideTy = MRI.getType(Dst); + + // If the potential binop has more than one use, then it's possible that one + // of those uses will need its full width. + if (!WideTy.isScalar() || !MRI.hasOneNonDBGUse(AndLHS)) + return false; + + // Check if the LHS feeding the AND is impacted by the high bits that we're + // masking out. + // + // e.g. for 64-bit x, y: + // + // add_64(x, y) & 65535 == zext(add_16(trunc(x), trunc(y))) & 65535 + MachineInstr *LHSInst = getDefIgnoringCopies(AndLHS, MRI); + if (!LHSInst) + return false; + unsigned LHSOpc = LHSInst->getOpcode(); + switch (LHSOpc) { + default: + return false; + case TargetOpcode::G_ADD: + case TargetOpcode::G_SUB: + case TargetOpcode::G_MUL: + case TargetOpcode::G_AND: + case TargetOpcode::G_OR: + case TargetOpcode::G_XOR: + break; + } + + // Find the mask on the RHS. + auto Cst = getIConstantVRegValWithLookThrough(AndRHS, MRI); + if (!Cst) + return false; + auto Mask = Cst->Value; + if (!Mask.isMask()) + return false; + + // No point in combining if there's nothing to truncate. + unsigned NarrowWidth = Mask.countr_one(); + if (NarrowWidth == WideTy.getSizeInBits()) + return false; + LLT NarrowTy = LLT::scalar(NarrowWidth); + + // Check if adding the zext + truncates could be harmful. + auto &MF = *MI.getMF(); + const auto &TLI = getTargetLowering(); + LLVMContext &Ctx = MF.getFunction().getContext(); + auto &DL = MF.getDataLayout(); + if (!TLI.isTruncateFree(WideTy, NarrowTy, DL, Ctx) || + !TLI.isZExtFree(NarrowTy, WideTy, DL, Ctx)) + return false; + if (!isLegalOrBeforeLegalizer({TargetOpcode::G_TRUNC, {NarrowTy, WideTy}}) || + !isLegalOrBeforeLegalizer({TargetOpcode::G_ZEXT, {WideTy, NarrowTy}})) + return false; + Register BinOpLHS = LHSInst->getOperand(1).getReg(); + Register BinOpRHS = LHSInst->getOperand(2).getReg(); + MatchInfo = [=, &MI](MachineIRBuilder &B) { + auto NarrowLHS = Builder.buildTrunc(NarrowTy, BinOpLHS); + auto NarrowRHS = Builder.buildTrunc(NarrowTy, BinOpRHS); + auto NarrowBinOp = + Builder.buildInstr(LHSOpc, {NarrowTy}, {NarrowLHS, NarrowRHS}); + auto Ext = Builder.buildZExt(WideTy, NarrowBinOp); + Observer.changingInstr(MI); + MI.getOperand(1).setReg(Ext.getReg(0)); + Observer.changedInstr(MI); + }; + return true; +} + +bool CombinerHelper::matchMulOBy2(MachineInstr &MI, BuildFnTy &MatchInfo) { + unsigned Opc = MI.getOpcode(); + assert(Opc == TargetOpcode::G_UMULO || Opc == TargetOpcode::G_SMULO); + + if (!mi_match(MI.getOperand(3).getReg(), MRI, m_SpecificICstOrSplat(2))) + return false; + + MatchInfo = [=, &MI](MachineIRBuilder &B) { + Observer.changingInstr(MI); + unsigned NewOpc = Opc == TargetOpcode::G_UMULO ? TargetOpcode::G_UADDO + : TargetOpcode::G_SADDO; + MI.setDesc(Builder.getTII().get(NewOpc)); + MI.getOperand(3).setReg(MI.getOperand(2).getReg()); + Observer.changedInstr(MI); + }; + return true; +} + +bool CombinerHelper::matchMulOBy0(MachineInstr &MI, BuildFnTy &MatchInfo) { + // (G_*MULO x, 0) -> 0 + no carry out + assert(MI.getOpcode() == TargetOpcode::G_UMULO || + MI.getOpcode() == TargetOpcode::G_SMULO); + if (!mi_match(MI.getOperand(3).getReg(), MRI, m_SpecificICstOrSplat(0))) + return false; + Register Dst = MI.getOperand(0).getReg(); + Register Carry = MI.getOperand(1).getReg(); + if (!isConstantLegalOrBeforeLegalizer(MRI.getType(Dst)) || + !isConstantLegalOrBeforeLegalizer(MRI.getType(Carry))) + return false; + MatchInfo = [=](MachineIRBuilder &B) { + B.buildConstant(Dst, 0); + B.buildConstant(Carry, 0); + }; + return true; +} + +bool CombinerHelper::matchAddOBy0(MachineInstr &MI, BuildFnTy &MatchInfo) { + // (G_*ADDO x, 0) -> x + no carry out + assert(MI.getOpcode() == TargetOpcode::G_UADDO || + MI.getOpcode() == TargetOpcode::G_SADDO); + if (!mi_match(MI.getOperand(3).getReg(), MRI, m_SpecificICstOrSplat(0))) + return false; + Register Carry = MI.getOperand(1).getReg(); + if (!isConstantLegalOrBeforeLegalizer(MRI.getType(Carry))) + return false; + Register Dst = MI.getOperand(0).getReg(); + Register LHS = MI.getOperand(2).getReg(); + MatchInfo = [=](MachineIRBuilder &B) { + B.buildCopy(Dst, LHS); + B.buildConstant(Carry, 0); + }; + return true; +} + +bool CombinerHelper::matchAddEToAddO(MachineInstr &MI, BuildFnTy &MatchInfo) { + // (G_*ADDE x, y, 0) -> (G_*ADDO x, y) + // (G_*SUBE x, y, 0) -> (G_*SUBO x, y) + assert(MI.getOpcode() == TargetOpcode::G_UADDE || + MI.getOpcode() == TargetOpcode::G_SADDE || + MI.getOpcode() == TargetOpcode::G_USUBE || + MI.getOpcode() == TargetOpcode::G_SSUBE); + if (!mi_match(MI.getOperand(4).getReg(), MRI, m_SpecificICstOrSplat(0))) + return false; + MatchInfo = [&](MachineIRBuilder &B) { + unsigned NewOpcode; + switch (MI.getOpcode()) { + case TargetOpcode::G_UADDE: + NewOpcode = TargetOpcode::G_UADDO; + break; + case TargetOpcode::G_SADDE: + NewOpcode = TargetOpcode::G_SADDO; + break; + case TargetOpcode::G_USUBE: + NewOpcode = TargetOpcode::G_USUBO; + break; + case TargetOpcode::G_SSUBE: + NewOpcode = TargetOpcode::G_SSUBO; + break; + } + Observer.changingInstr(MI); + MI.setDesc(B.getTII().get(NewOpcode)); + MI.removeOperand(4); + Observer.changedInstr(MI); + }; + return true; +} + +bool CombinerHelper::matchSubAddSameReg(MachineInstr &MI, + BuildFnTy &MatchInfo) { + assert(MI.getOpcode() == TargetOpcode::G_SUB); + Register Dst = MI.getOperand(0).getReg(); + // (x + y) - z -> x (if y == z) + // (x + y) - z -> y (if x == z) + Register X, Y, Z; + if (mi_match(Dst, MRI, m_GSub(m_GAdd(m_Reg(X), m_Reg(Y)), m_Reg(Z)))) { + Register ReplaceReg; + int64_t CstX, CstY; + if (Y == Z || (mi_match(Y, MRI, m_ICstOrSplat(CstY)) && + mi_match(Z, MRI, m_SpecificICstOrSplat(CstY)))) + ReplaceReg = X; + else if (X == Z || (mi_match(X, MRI, m_ICstOrSplat(CstX)) && + mi_match(Z, MRI, m_SpecificICstOrSplat(CstX)))) + ReplaceReg = Y; + if (ReplaceReg) { + MatchInfo = [=](MachineIRBuilder &B) { B.buildCopy(Dst, ReplaceReg); }; + return true; + } + } + + // x - (y + z) -> 0 - y (if x == z) + // x - (y + z) -> 0 - z (if x == y) + if (mi_match(Dst, MRI, m_GSub(m_Reg(X), m_GAdd(m_Reg(Y), m_Reg(Z))))) { + Register ReplaceReg; + int64_t CstX; + if (X == Z || (mi_match(X, MRI, m_ICstOrSplat(CstX)) && + mi_match(Z, MRI, m_SpecificICstOrSplat(CstX)))) + ReplaceReg = Y; + else if (X == Y || (mi_match(X, MRI, m_ICstOrSplat(CstX)) && + mi_match(Y, MRI, m_SpecificICstOrSplat(CstX)))) + ReplaceReg = Z; + if (ReplaceReg) { + MatchInfo = [=](MachineIRBuilder &B) { + auto Zero = B.buildConstant(MRI.getType(Dst), 0); + B.buildSub(Dst, Zero, ReplaceReg); + }; + return true; + } + } + return false; +} + +MachineInstr *CombinerHelper::buildUDivUsingMul(MachineInstr &MI) { + assert(MI.getOpcode() == TargetOpcode::G_UDIV); + auto &UDiv = cast<GenericMachineInstr>(MI); + Register Dst = UDiv.getReg(0); + Register LHS = UDiv.getReg(1); + Register RHS = UDiv.getReg(2); + LLT Ty = MRI.getType(Dst); + LLT ScalarTy = Ty.getScalarType(); + const unsigned EltBits = ScalarTy.getScalarSizeInBits(); + LLT ShiftAmtTy = getTargetLowering().getPreferredShiftAmountTy(Ty); + LLT ScalarShiftAmtTy = ShiftAmtTy.getScalarType(); + auto &MIB = Builder; + MIB.setInstrAndDebugLoc(MI); + + bool UseNPQ = false; + SmallVector<Register, 16> PreShifts, PostShifts, MagicFactors, NPQFactors; + + auto BuildUDIVPattern = [&](const Constant *C) { + auto *CI = cast<ConstantInt>(C); + const APInt &Divisor = CI->getValue(); + + bool SelNPQ = false; + APInt Magic(Divisor.getBitWidth(), 0); + unsigned PreShift = 0, PostShift = 0; + + // Magic algorithm doesn't work for division by 1. We need to emit a select + // at the end. + // TODO: Use undef values for divisor of 1. + if (!Divisor.isOne()) { + UnsignedDivisionByConstantInfo magics = + UnsignedDivisionByConstantInfo::get(Divisor); + + Magic = std::move(magics.Magic); + + assert(magics.PreShift < Divisor.getBitWidth() && + "We shouldn't generate an undefined shift!"); + assert(magics.PostShift < Divisor.getBitWidth() && + "We shouldn't generate an undefined shift!"); + assert((!magics.IsAdd || magics.PreShift == 0) && "Unexpected pre-shift"); + PreShift = magics.PreShift; + PostShift = magics.PostShift; + SelNPQ = magics.IsAdd; + } + + PreShifts.push_back( + MIB.buildConstant(ScalarShiftAmtTy, PreShift).getReg(0)); + MagicFactors.push_back(MIB.buildConstant(ScalarTy, Magic).getReg(0)); + NPQFactors.push_back( + MIB.buildConstant(ScalarTy, + SelNPQ ? APInt::getOneBitSet(EltBits, EltBits - 1) + : APInt::getZero(EltBits)) + .getReg(0)); + PostShifts.push_back( + MIB.buildConstant(ScalarShiftAmtTy, PostShift).getReg(0)); + UseNPQ |= SelNPQ; + return true; + }; + + // Collect the shifts/magic values from each element. + bool Matched = matchUnaryPredicate(MRI, RHS, BuildUDIVPattern); + (void)Matched; + assert(Matched && "Expected unary predicate match to succeed"); + + Register PreShift, PostShift, MagicFactor, NPQFactor; + auto *RHSDef = getOpcodeDef<GBuildVector>(RHS, MRI); + if (RHSDef) { + PreShift = MIB.buildBuildVector(ShiftAmtTy, PreShifts).getReg(0); + MagicFactor = MIB.buildBuildVector(Ty, MagicFactors).getReg(0); + NPQFactor = MIB.buildBuildVector(Ty, NPQFactors).getReg(0); + PostShift = MIB.buildBuildVector(ShiftAmtTy, PostShifts).getReg(0); + } else { + assert(MRI.getType(RHS).isScalar() && + "Non-build_vector operation should have been a scalar"); + PreShift = PreShifts[0]; + MagicFactor = MagicFactors[0]; + PostShift = PostShifts[0]; + } + + Register Q = LHS; + Q = MIB.buildLShr(Ty, Q, PreShift).getReg(0); + + // Multiply the numerator (operand 0) by the magic value. + Q = MIB.buildUMulH(Ty, Q, MagicFactor).getReg(0); + + if (UseNPQ) { + Register NPQ = MIB.buildSub(Ty, LHS, Q).getReg(0); + + // For vectors we might have a mix of non-NPQ/NPQ paths, so use + // G_UMULH to act as a SRL-by-1 for NPQ, else multiply by zero. + if (Ty.isVector()) + NPQ = MIB.buildUMulH(Ty, NPQ, NPQFactor).getReg(0); + else + NPQ = MIB.buildLShr(Ty, NPQ, MIB.buildConstant(ShiftAmtTy, 1)).getReg(0); + + Q = MIB.buildAdd(Ty, NPQ, Q).getReg(0); + } + + Q = MIB.buildLShr(Ty, Q, PostShift).getReg(0); + auto One = MIB.buildConstant(Ty, 1); + auto IsOne = MIB.buildICmp( + CmpInst::Predicate::ICMP_EQ, + Ty.isScalar() ? LLT::scalar(1) : Ty.changeElementSize(1), RHS, One); + return MIB.buildSelect(Ty, IsOne, LHS, Q); +} + +bool CombinerHelper::matchUDivByConst(MachineInstr &MI) { + assert(MI.getOpcode() == TargetOpcode::G_UDIV); + Register Dst = MI.getOperand(0).getReg(); + Register RHS = MI.getOperand(2).getReg(); + LLT DstTy = MRI.getType(Dst); + auto *RHSDef = MRI.getVRegDef(RHS); + if (!isConstantOrConstantVector(*RHSDef, MRI)) + return false; + + auto &MF = *MI.getMF(); + AttributeList Attr = MF.getFunction().getAttributes(); + const auto &TLI = getTargetLowering(); + LLVMContext &Ctx = MF.getFunction().getContext(); + auto &DL = MF.getDataLayout(); + if (TLI.isIntDivCheap(getApproximateEVTForLLT(DstTy, DL, Ctx), Attr)) + return false; + + // Don't do this for minsize because the instruction sequence is usually + // larger. + if (MF.getFunction().hasMinSize()) + return false; + + // Don't do this if the types are not going to be legal. + if (LI) { + if (!isLegalOrBeforeLegalizer({TargetOpcode::G_MUL, {DstTy, DstTy}})) + return false; + if (!isLegalOrBeforeLegalizer({TargetOpcode::G_UMULH, {DstTy}})) + return false; + if (!isLegalOrBeforeLegalizer( + {TargetOpcode::G_ICMP, + {DstTy.isVector() ? DstTy.changeElementSize(1) : LLT::scalar(1), + DstTy}})) + return false; + } + + auto CheckEltValue = [&](const Constant *C) { + if (auto *CI = dyn_cast_or_null<ConstantInt>(C)) + return !CI->isZero(); + return false; + }; + return matchUnaryPredicate(MRI, RHS, CheckEltValue); +} + +void CombinerHelper::applyUDivByConst(MachineInstr &MI) { + auto *NewMI = buildUDivUsingMul(MI); + replaceSingleDefInstWithReg(MI, NewMI->getOperand(0).getReg()); +} + +bool CombinerHelper::matchSDivByConst(MachineInstr &MI) { + assert(MI.getOpcode() == TargetOpcode::G_SDIV && "Expected SDIV"); + Register Dst = MI.getOperand(0).getReg(); + Register RHS = MI.getOperand(2).getReg(); + LLT DstTy = MRI.getType(Dst); + + auto &MF = *MI.getMF(); + AttributeList Attr = MF.getFunction().getAttributes(); + const auto &TLI = getTargetLowering(); + LLVMContext &Ctx = MF.getFunction().getContext(); + auto &DL = MF.getDataLayout(); + if (TLI.isIntDivCheap(getApproximateEVTForLLT(DstTy, DL, Ctx), Attr)) + return false; + + // Don't do this for minsize because the instruction sequence is usually + // larger. + if (MF.getFunction().hasMinSize()) + return false; + + // If the sdiv has an 'exact' flag we can use a simpler lowering. + if (MI.getFlag(MachineInstr::MIFlag::IsExact)) { + return matchUnaryPredicate( + MRI, RHS, [](const Constant *C) { return C && !C->isZeroValue(); }); + } + + // Don't support the general case for now. + return false; +} + +void CombinerHelper::applySDivByConst(MachineInstr &MI) { + auto *NewMI = buildSDivUsingMul(MI); + replaceSingleDefInstWithReg(MI, NewMI->getOperand(0).getReg()); +} + +MachineInstr *CombinerHelper::buildSDivUsingMul(MachineInstr &MI) { + assert(MI.getOpcode() == TargetOpcode::G_SDIV && "Expected SDIV"); + auto &SDiv = cast<GenericMachineInstr>(MI); + Register Dst = SDiv.getReg(0); + Register LHS = SDiv.getReg(1); + Register RHS = SDiv.getReg(2); + LLT Ty = MRI.getType(Dst); + LLT ScalarTy = Ty.getScalarType(); + LLT ShiftAmtTy = getTargetLowering().getPreferredShiftAmountTy(Ty); + LLT ScalarShiftAmtTy = ShiftAmtTy.getScalarType(); + auto &MIB = Builder; + MIB.setInstrAndDebugLoc(MI); + + bool UseSRA = false; + SmallVector<Register, 16> Shifts, Factors; + + auto *RHSDef = cast<GenericMachineInstr>(getDefIgnoringCopies(RHS, MRI)); + bool IsSplat = getIConstantSplatVal(*RHSDef, MRI).has_value(); + + auto BuildSDIVPattern = [&](const Constant *C) { + // Don't recompute inverses for each splat element. + if (IsSplat && !Factors.empty()) { + Shifts.push_back(Shifts[0]); + Factors.push_back(Factors[0]); + return true; + } + + auto *CI = cast<ConstantInt>(C); + APInt Divisor = CI->getValue(); + unsigned Shift = Divisor.countr_zero(); + if (Shift) { + Divisor.ashrInPlace(Shift); + UseSRA = true; + } + + // Calculate the multiplicative inverse modulo BW. + // 2^W requires W + 1 bits, so we have to extend and then truncate. + unsigned W = Divisor.getBitWidth(); + APInt Factor = Divisor.zext(W + 1) + .multiplicativeInverse(APInt::getSignedMinValue(W + 1)) + .trunc(W); + Shifts.push_back(MIB.buildConstant(ScalarShiftAmtTy, Shift).getReg(0)); + Factors.push_back(MIB.buildConstant(ScalarTy, Factor).getReg(0)); + return true; + }; + + // Collect all magic values from the build vector. + bool Matched = matchUnaryPredicate(MRI, RHS, BuildSDIVPattern); + (void)Matched; + assert(Matched && "Expected unary predicate match to succeed"); + + Register Shift, Factor; + if (Ty.isVector()) { + Shift = MIB.buildBuildVector(ShiftAmtTy, Shifts).getReg(0); + Factor = MIB.buildBuildVector(Ty, Factors).getReg(0); + } else { + Shift = Shifts[0]; + Factor = Factors[0]; + } + + Register Res = LHS; + + if (UseSRA) + Res = MIB.buildAShr(Ty, Res, Shift, MachineInstr::IsExact).getReg(0); + + return MIB.buildMul(Ty, Res, Factor); +} + +bool CombinerHelper::matchUMulHToLShr(MachineInstr &MI) { + assert(MI.getOpcode() == TargetOpcode::G_UMULH); + Register RHS = MI.getOperand(2).getReg(); + Register Dst = MI.getOperand(0).getReg(); + LLT Ty = MRI.getType(Dst); + LLT ShiftAmtTy = getTargetLowering().getPreferredShiftAmountTy(Ty); + auto MatchPow2ExceptOne = [&](const Constant *C) { + if (auto *CI = dyn_cast<ConstantInt>(C)) + return CI->getValue().isPowerOf2() && !CI->getValue().isOne(); + return false; + }; + if (!matchUnaryPredicate(MRI, RHS, MatchPow2ExceptOne, false)) + return false; + return isLegalOrBeforeLegalizer({TargetOpcode::G_LSHR, {Ty, ShiftAmtTy}}); +} + +void CombinerHelper::applyUMulHToLShr(MachineInstr &MI) { + Register LHS = MI.getOperand(1).getReg(); + Register RHS = MI.getOperand(2).getReg(); + Register Dst = MI.getOperand(0).getReg(); + LLT Ty = MRI.getType(Dst); + LLT ShiftAmtTy = getTargetLowering().getPreferredShiftAmountTy(Ty); + unsigned NumEltBits = Ty.getScalarSizeInBits(); + + Builder.setInstrAndDebugLoc(MI); + auto LogBase2 = buildLogBase2(RHS, Builder); + auto ShiftAmt = + Builder.buildSub(Ty, Builder.buildConstant(Ty, NumEltBits), LogBase2); + auto Trunc = Builder.buildZExtOrTrunc(ShiftAmtTy, ShiftAmt); + Builder.buildLShr(Dst, LHS, Trunc); + MI.eraseFromParent(); +} + +bool CombinerHelper::matchRedundantNegOperands(MachineInstr &MI, + BuildFnTy &MatchInfo) { + unsigned Opc = MI.getOpcode(); + assert(Opc == TargetOpcode::G_FADD || Opc == TargetOpcode::G_FSUB || + Opc == TargetOpcode::G_FMUL || Opc == TargetOpcode::G_FDIV || + Opc == TargetOpcode::G_FMAD || Opc == TargetOpcode::G_FMA); + + Register Dst = MI.getOperand(0).getReg(); + Register X = MI.getOperand(1).getReg(); + Register Y = MI.getOperand(2).getReg(); + LLT Type = MRI.getType(Dst); + + // fold (fadd x, fneg(y)) -> (fsub x, y) + // fold (fadd fneg(y), x) -> (fsub x, y) + // G_ADD is commutative so both cases are checked by m_GFAdd + if (mi_match(Dst, MRI, m_GFAdd(m_Reg(X), m_GFNeg(m_Reg(Y)))) && + isLegalOrBeforeLegalizer({TargetOpcode::G_FSUB, {Type}})) { + Opc = TargetOpcode::G_FSUB; + } + /// fold (fsub x, fneg(y)) -> (fadd x, y) + else if (mi_match(Dst, MRI, m_GFSub(m_Reg(X), m_GFNeg(m_Reg(Y)))) && + isLegalOrBeforeLegalizer({TargetOpcode::G_FADD, {Type}})) { + Opc = TargetOpcode::G_FADD; + } + // fold (fmul fneg(x), fneg(y)) -> (fmul x, y) + // fold (fdiv fneg(x), fneg(y)) -> (fdiv x, y) + // fold (fmad fneg(x), fneg(y), z) -> (fmad x, y, z) + // fold (fma fneg(x), fneg(y), z) -> (fma x, y, z) + else if ((Opc == TargetOpcode::G_FMUL || Opc == TargetOpcode::G_FDIV || + Opc == TargetOpcode::G_FMAD || Opc == TargetOpcode::G_FMA) && + mi_match(X, MRI, m_GFNeg(m_Reg(X))) && + mi_match(Y, MRI, m_GFNeg(m_Reg(Y)))) { + // no opcode change + } else + return false; + + MatchInfo = [=, &MI](MachineIRBuilder &B) { + Observer.changingInstr(MI); + MI.setDesc(B.getTII().get(Opc)); + MI.getOperand(1).setReg(X); + MI.getOperand(2).setReg(Y); + Observer.changedInstr(MI); + }; + return true; +} + +bool CombinerHelper::matchFsubToFneg(MachineInstr &MI, Register &MatchInfo) { + assert(MI.getOpcode() == TargetOpcode::G_FSUB); + + Register LHS = MI.getOperand(1).getReg(); + MatchInfo = MI.getOperand(2).getReg(); + LLT Ty = MRI.getType(MI.getOperand(0).getReg()); + + const auto LHSCst = Ty.isVector() + ? getFConstantSplat(LHS, MRI, /* allowUndef */ true) + : getFConstantVRegValWithLookThrough(LHS, MRI); + if (!LHSCst) + return false; + + // -0.0 is always allowed + if (LHSCst->Value.isNegZero()) + return true; + + // +0.0 is only allowed if nsz is set. + if (LHSCst->Value.isPosZero()) + return MI.getFlag(MachineInstr::FmNsz); + + return false; +} + +void CombinerHelper::applyFsubToFneg(MachineInstr &MI, Register &MatchInfo) { + Builder.setInstrAndDebugLoc(MI); + Register Dst = MI.getOperand(0).getReg(); + Builder.buildFNeg( + Dst, Builder.buildFCanonicalize(MRI.getType(Dst), MatchInfo).getReg(0)); + eraseInst(MI); +} + +/// Checks if \p MI is TargetOpcode::G_FMUL and contractable either +/// due to global flags or MachineInstr flags. +static bool isContractableFMul(MachineInstr &MI, bool AllowFusionGlobally) { + if (MI.getOpcode() != TargetOpcode::G_FMUL) + return false; + return AllowFusionGlobally || MI.getFlag(MachineInstr::MIFlag::FmContract); +} + +static bool hasMoreUses(const MachineInstr &MI0, const MachineInstr &MI1, + const MachineRegisterInfo &MRI) { + return std::distance(MRI.use_instr_nodbg_begin(MI0.getOperand(0).getReg()), + MRI.use_instr_nodbg_end()) > + std::distance(MRI.use_instr_nodbg_begin(MI1.getOperand(0).getReg()), + MRI.use_instr_nodbg_end()); +} + +bool CombinerHelper::canCombineFMadOrFMA(MachineInstr &MI, + bool &AllowFusionGlobally, + bool &HasFMAD, bool &Aggressive, + bool CanReassociate) { + + auto *MF = MI.getMF(); + const auto &TLI = *MF->getSubtarget().getTargetLowering(); + const TargetOptions &Options = MF->getTarget().Options; + LLT DstType = MRI.getType(MI.getOperand(0).getReg()); + + if (CanReassociate && + !(Options.UnsafeFPMath || MI.getFlag(MachineInstr::MIFlag::FmReassoc))) + return false; + + // Floating-point multiply-add with intermediate rounding. + HasFMAD = (!isPreLegalize() && TLI.isFMADLegal(MI, DstType)); + // Floating-point multiply-add without intermediate rounding. + bool HasFMA = TLI.isFMAFasterThanFMulAndFAdd(*MF, DstType) && + isLegalOrBeforeLegalizer({TargetOpcode::G_FMA, {DstType}}); + // No valid opcode, do not combine. + if (!HasFMAD && !HasFMA) + return false; + + AllowFusionGlobally = Options.AllowFPOpFusion == FPOpFusion::Fast || + Options.UnsafeFPMath || HasFMAD; + // If the addition is not contractable, do not combine. + if (!AllowFusionGlobally && !MI.getFlag(MachineInstr::MIFlag::FmContract)) + return false; + + Aggressive = TLI.enableAggressiveFMAFusion(DstType); + return true; +} + +bool CombinerHelper::matchCombineFAddFMulToFMadOrFMA( + MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { + assert(MI.getOpcode() == TargetOpcode::G_FADD); + + bool AllowFusionGlobally, HasFMAD, Aggressive; + if (!canCombineFMadOrFMA(MI, AllowFusionGlobally, HasFMAD, Aggressive)) + return false; + + Register Op1 = MI.getOperand(1).getReg(); + Register Op2 = MI.getOperand(2).getReg(); + DefinitionAndSourceRegister LHS = {MRI.getVRegDef(Op1), Op1}; + DefinitionAndSourceRegister RHS = {MRI.getVRegDef(Op2), Op2}; + unsigned PreferredFusedOpcode = + HasFMAD ? TargetOpcode::G_FMAD : TargetOpcode::G_FMA; + + // If we have two choices trying to fold (fadd (fmul u, v), (fmul x, y)), + // prefer to fold the multiply with fewer uses. + if (Aggressive && isContractableFMul(*LHS.MI, AllowFusionGlobally) && + isContractableFMul(*RHS.MI, AllowFusionGlobally)) { + if (hasMoreUses(*LHS.MI, *RHS.MI, MRI)) + std::swap(LHS, RHS); + } + + // fold (fadd (fmul x, y), z) -> (fma x, y, z) + if (isContractableFMul(*LHS.MI, AllowFusionGlobally) && + (Aggressive || MRI.hasOneNonDBGUse(LHS.Reg))) { + MatchInfo = [=, &MI](MachineIRBuilder &B) { + B.buildInstr(PreferredFusedOpcode, {MI.getOperand(0).getReg()}, + {LHS.MI->getOperand(1).getReg(), + LHS.MI->getOperand(2).getReg(), RHS.Reg}); + }; + return true; + } + + // fold (fadd x, (fmul y, z)) -> (fma y, z, x) + if (isContractableFMul(*RHS.MI, AllowFusionGlobally) && + (Aggressive || MRI.hasOneNonDBGUse(RHS.Reg))) { + MatchInfo = [=, &MI](MachineIRBuilder &B) { + B.buildInstr(PreferredFusedOpcode, {MI.getOperand(0).getReg()}, + {RHS.MI->getOperand(1).getReg(), + RHS.MI->getOperand(2).getReg(), LHS.Reg}); + }; + return true; + } + + return false; +} + +bool CombinerHelper::matchCombineFAddFpExtFMulToFMadOrFMA( + MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { + assert(MI.getOpcode() == TargetOpcode::G_FADD); + + bool AllowFusionGlobally, HasFMAD, Aggressive; + if (!canCombineFMadOrFMA(MI, AllowFusionGlobally, HasFMAD, Aggressive)) + return false; + + const auto &TLI = *MI.getMF()->getSubtarget().getTargetLowering(); + Register Op1 = MI.getOperand(1).getReg(); + Register Op2 = MI.getOperand(2).getReg(); + DefinitionAndSourceRegister LHS = {MRI.getVRegDef(Op1), Op1}; + DefinitionAndSourceRegister RHS = {MRI.getVRegDef(Op2), Op2}; + LLT DstType = MRI.getType(MI.getOperand(0).getReg()); + + unsigned PreferredFusedOpcode = + HasFMAD ? TargetOpcode::G_FMAD : TargetOpcode::G_FMA; + + // If we have two choices trying to fold (fadd (fmul u, v), (fmul x, y)), + // prefer to fold the multiply with fewer uses. + if (Aggressive && isContractableFMul(*LHS.MI, AllowFusionGlobally) && + isContractableFMul(*RHS.MI, AllowFusionGlobally)) { + if (hasMoreUses(*LHS.MI, *RHS.MI, MRI)) + std::swap(LHS, RHS); + } + + // fold (fadd (fpext (fmul x, y)), z) -> (fma (fpext x), (fpext y), z) + MachineInstr *FpExtSrc; + if (mi_match(LHS.Reg, MRI, m_GFPExt(m_MInstr(FpExtSrc))) && + isContractableFMul(*FpExtSrc, AllowFusionGlobally) && + TLI.isFPExtFoldable(MI, PreferredFusedOpcode, DstType, + MRI.getType(FpExtSrc->getOperand(1).getReg()))) { + MatchInfo = [=, &MI](MachineIRBuilder &B) { + auto FpExtX = B.buildFPExt(DstType, FpExtSrc->getOperand(1).getReg()); + auto FpExtY = B.buildFPExt(DstType, FpExtSrc->getOperand(2).getReg()); + B.buildInstr(PreferredFusedOpcode, {MI.getOperand(0).getReg()}, + {FpExtX.getReg(0), FpExtY.getReg(0), RHS.Reg}); + }; + return true; + } + + // fold (fadd z, (fpext (fmul x, y))) -> (fma (fpext x), (fpext y), z) + // Note: Commutes FADD operands. + if (mi_match(RHS.Reg, MRI, m_GFPExt(m_MInstr(FpExtSrc))) && + isContractableFMul(*FpExtSrc, AllowFusionGlobally) && + TLI.isFPExtFoldable(MI, PreferredFusedOpcode, DstType, + MRI.getType(FpExtSrc->getOperand(1).getReg()))) { + MatchInfo = [=, &MI](MachineIRBuilder &B) { + auto FpExtX = B.buildFPExt(DstType, FpExtSrc->getOperand(1).getReg()); + auto FpExtY = B.buildFPExt(DstType, FpExtSrc->getOperand(2).getReg()); + B.buildInstr(PreferredFusedOpcode, {MI.getOperand(0).getReg()}, + {FpExtX.getReg(0), FpExtY.getReg(0), LHS.Reg}); + }; + return true; + } + + return false; +} + +bool CombinerHelper::matchCombineFAddFMAFMulToFMadOrFMA( + MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { + assert(MI.getOpcode() == TargetOpcode::G_FADD); + + bool AllowFusionGlobally, HasFMAD, Aggressive; + if (!canCombineFMadOrFMA(MI, AllowFusionGlobally, HasFMAD, Aggressive, true)) + return false; + + Register Op1 = MI.getOperand(1).getReg(); + Register Op2 = MI.getOperand(2).getReg(); + DefinitionAndSourceRegister LHS = {MRI.getVRegDef(Op1), Op1}; + DefinitionAndSourceRegister RHS = {MRI.getVRegDef(Op2), Op2}; + LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); + + unsigned PreferredFusedOpcode = + HasFMAD ? TargetOpcode::G_FMAD : TargetOpcode::G_FMA; + + // If we have two choices trying to fold (fadd (fmul u, v), (fmul x, y)), + // prefer to fold the multiply with fewer uses. + if (Aggressive && isContractableFMul(*LHS.MI, AllowFusionGlobally) && + isContractableFMul(*RHS.MI, AllowFusionGlobally)) { + if (hasMoreUses(*LHS.MI, *RHS.MI, MRI)) + std::swap(LHS, RHS); + } + + MachineInstr *FMA = nullptr; + Register Z; + // fold (fadd (fma x, y, (fmul u, v)), z) -> (fma x, y, (fma u, v, z)) + if (LHS.MI->getOpcode() == PreferredFusedOpcode && + (MRI.getVRegDef(LHS.MI->getOperand(3).getReg())->getOpcode() == + TargetOpcode::G_FMUL) && + MRI.hasOneNonDBGUse(LHS.MI->getOperand(0).getReg()) && + MRI.hasOneNonDBGUse(LHS.MI->getOperand(3).getReg())) { + FMA = LHS.MI; + Z = RHS.Reg; + } + // fold (fadd z, (fma x, y, (fmul u, v))) -> (fma x, y, (fma u, v, z)) + else if (RHS.MI->getOpcode() == PreferredFusedOpcode && + (MRI.getVRegDef(RHS.MI->getOperand(3).getReg())->getOpcode() == + TargetOpcode::G_FMUL) && + MRI.hasOneNonDBGUse(RHS.MI->getOperand(0).getReg()) && + MRI.hasOneNonDBGUse(RHS.MI->getOperand(3).getReg())) { + Z = LHS.Reg; + FMA = RHS.MI; + } + + if (FMA) { + MachineInstr *FMulMI = MRI.getVRegDef(FMA->getOperand(3).getReg()); + Register X = FMA->getOperand(1).getReg(); + Register Y = FMA->getOperand(2).getReg(); + Register U = FMulMI->getOperand(1).getReg(); + Register V = FMulMI->getOperand(2).getReg(); + + MatchInfo = [=, &MI](MachineIRBuilder &B) { + Register InnerFMA = MRI.createGenericVirtualRegister(DstTy); + B.buildInstr(PreferredFusedOpcode, {InnerFMA}, {U, V, Z}); + B.buildInstr(PreferredFusedOpcode, {MI.getOperand(0).getReg()}, + {X, Y, InnerFMA}); + }; + return true; + } + + return false; +} + +bool CombinerHelper::matchCombineFAddFpExtFMulToFMadOrFMAAggressive( + MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { + assert(MI.getOpcode() == TargetOpcode::G_FADD); + + bool AllowFusionGlobally, HasFMAD, Aggressive; + if (!canCombineFMadOrFMA(MI, AllowFusionGlobally, HasFMAD, Aggressive)) + return false; + + if (!Aggressive) + return false; + + const auto &TLI = *MI.getMF()->getSubtarget().getTargetLowering(); + LLT DstType = MRI.getType(MI.getOperand(0).getReg()); + Register Op1 = MI.getOperand(1).getReg(); + Register Op2 = MI.getOperand(2).getReg(); + DefinitionAndSourceRegister LHS = {MRI.getVRegDef(Op1), Op1}; + DefinitionAndSourceRegister RHS = {MRI.getVRegDef(Op2), Op2}; + + unsigned PreferredFusedOpcode = + HasFMAD ? TargetOpcode::G_FMAD : TargetOpcode::G_FMA; + + // If we have two choices trying to fold (fadd (fmul u, v), (fmul x, y)), + // prefer to fold the multiply with fewer uses. + if (Aggressive && isContractableFMul(*LHS.MI, AllowFusionGlobally) && + isContractableFMul(*RHS.MI, AllowFusionGlobally)) { + if (hasMoreUses(*LHS.MI, *RHS.MI, MRI)) + std::swap(LHS, RHS); + } + + // Builds: (fma x, y, (fma (fpext u), (fpext v), z)) + auto buildMatchInfo = [=, &MI](Register U, Register V, Register Z, Register X, + Register Y, MachineIRBuilder &B) { + Register FpExtU = B.buildFPExt(DstType, U).getReg(0); + Register FpExtV = B.buildFPExt(DstType, V).getReg(0); + Register InnerFMA = + B.buildInstr(PreferredFusedOpcode, {DstType}, {FpExtU, FpExtV, Z}) + .getReg(0); + B.buildInstr(PreferredFusedOpcode, {MI.getOperand(0).getReg()}, + {X, Y, InnerFMA}); + }; + + MachineInstr *FMulMI, *FMAMI; + // fold (fadd (fma x, y, (fpext (fmul u, v))), z) + // -> (fma x, y, (fma (fpext u), (fpext v), z)) + if (LHS.MI->getOpcode() == PreferredFusedOpcode && + mi_match(LHS.MI->getOperand(3).getReg(), MRI, + m_GFPExt(m_MInstr(FMulMI))) && + isContractableFMul(*FMulMI, AllowFusionGlobally) && + TLI.isFPExtFoldable(MI, PreferredFusedOpcode, DstType, + MRI.getType(FMulMI->getOperand(0).getReg()))) { + MatchInfo = [=](MachineIRBuilder &B) { + buildMatchInfo(FMulMI->getOperand(1).getReg(), + FMulMI->getOperand(2).getReg(), RHS.Reg, + LHS.MI->getOperand(1).getReg(), + LHS.MI->getOperand(2).getReg(), B); + }; + return true; + } + + // fold (fadd (fpext (fma x, y, (fmul u, v))), z) + // -> (fma (fpext x), (fpext y), (fma (fpext u), (fpext v), z)) + // FIXME: This turns two single-precision and one double-precision + // operation into two double-precision operations, which might not be + // interesting for all targets, especially GPUs. + if (mi_match(LHS.Reg, MRI, m_GFPExt(m_MInstr(FMAMI))) && + FMAMI->getOpcode() == PreferredFusedOpcode) { + MachineInstr *FMulMI = MRI.getVRegDef(FMAMI->getOperand(3).getReg()); + if (isContractableFMul(*FMulMI, AllowFusionGlobally) && + TLI.isFPExtFoldable(MI, PreferredFusedOpcode, DstType, + MRI.getType(FMAMI->getOperand(0).getReg()))) { + MatchInfo = [=](MachineIRBuilder &B) { + Register X = FMAMI->getOperand(1).getReg(); + Register Y = FMAMI->getOperand(2).getReg(); + X = B.buildFPExt(DstType, X).getReg(0); + Y = B.buildFPExt(DstType, Y).getReg(0); + buildMatchInfo(FMulMI->getOperand(1).getReg(), + FMulMI->getOperand(2).getReg(), RHS.Reg, X, Y, B); + }; + + return true; + } + } + + // fold (fadd z, (fma x, y, (fpext (fmul u, v))) + // -> (fma x, y, (fma (fpext u), (fpext v), z)) + if (RHS.MI->getOpcode() == PreferredFusedOpcode && + mi_match(RHS.MI->getOperand(3).getReg(), MRI, + m_GFPExt(m_MInstr(FMulMI))) && + isContractableFMul(*FMulMI, AllowFusionGlobally) && + TLI.isFPExtFoldable(MI, PreferredFusedOpcode, DstType, + MRI.getType(FMulMI->getOperand(0).getReg()))) { + MatchInfo = [=](MachineIRBuilder &B) { + buildMatchInfo(FMulMI->getOperand(1).getReg(), + FMulMI->getOperand(2).getReg(), LHS.Reg, + RHS.MI->getOperand(1).getReg(), + RHS.MI->getOperand(2).getReg(), B); + }; + return true; + } + + // fold (fadd z, (fpext (fma x, y, (fmul u, v))) + // -> (fma (fpext x), (fpext y), (fma (fpext u), (fpext v), z)) + // FIXME: This turns two single-precision and one double-precision + // operation into two double-precision operations, which might not be + // interesting for all targets, especially GPUs. + if (mi_match(RHS.Reg, MRI, m_GFPExt(m_MInstr(FMAMI))) && + FMAMI->getOpcode() == PreferredFusedOpcode) { + MachineInstr *FMulMI = MRI.getVRegDef(FMAMI->getOperand(3).getReg()); + if (isContractableFMul(*FMulMI, AllowFusionGlobally) && + TLI.isFPExtFoldable(MI, PreferredFusedOpcode, DstType, + MRI.getType(FMAMI->getOperand(0).getReg()))) { + MatchInfo = [=](MachineIRBuilder &B) { + Register X = FMAMI->getOperand(1).getReg(); + Register Y = FMAMI->getOperand(2).getReg(); + X = B.buildFPExt(DstType, X).getReg(0); + Y = B.buildFPExt(DstType, Y).getReg(0); + buildMatchInfo(FMulMI->getOperand(1).getReg(), + FMulMI->getOperand(2).getReg(), LHS.Reg, X, Y, B); + }; + return true; + } + } + + return false; +} + +bool CombinerHelper::matchCombineFSubFMulToFMadOrFMA( + MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { + assert(MI.getOpcode() == TargetOpcode::G_FSUB); + + bool AllowFusionGlobally, HasFMAD, Aggressive; + if (!canCombineFMadOrFMA(MI, AllowFusionGlobally, HasFMAD, Aggressive)) + return false; + + Register Op1 = MI.getOperand(1).getReg(); + Register Op2 = MI.getOperand(2).getReg(); + DefinitionAndSourceRegister LHS = {MRI.getVRegDef(Op1), Op1}; + DefinitionAndSourceRegister RHS = {MRI.getVRegDef(Op2), Op2}; + LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); + + // If we have two choices trying to fold (fadd (fmul u, v), (fmul x, y)), + // prefer to fold the multiply with fewer uses. + int FirstMulHasFewerUses = true; + if (isContractableFMul(*LHS.MI, AllowFusionGlobally) && + isContractableFMul(*RHS.MI, AllowFusionGlobally) && + hasMoreUses(*LHS.MI, *RHS.MI, MRI)) + FirstMulHasFewerUses = false; + + unsigned PreferredFusedOpcode = + HasFMAD ? TargetOpcode::G_FMAD : TargetOpcode::G_FMA; + + // fold (fsub (fmul x, y), z) -> (fma x, y, -z) + if (FirstMulHasFewerUses && + (isContractableFMul(*LHS.MI, AllowFusionGlobally) && + (Aggressive || MRI.hasOneNonDBGUse(LHS.Reg)))) { + MatchInfo = [=, &MI](MachineIRBuilder &B) { + Register NegZ = B.buildFNeg(DstTy, RHS.Reg).getReg(0); + B.buildInstr(PreferredFusedOpcode, {MI.getOperand(0).getReg()}, + {LHS.MI->getOperand(1).getReg(), + LHS.MI->getOperand(2).getReg(), NegZ}); + }; + return true; + } + // fold (fsub x, (fmul y, z)) -> (fma -y, z, x) + else if ((isContractableFMul(*RHS.MI, AllowFusionGlobally) && + (Aggressive || MRI.hasOneNonDBGUse(RHS.Reg)))) { + MatchInfo = [=, &MI](MachineIRBuilder &B) { + Register NegY = + B.buildFNeg(DstTy, RHS.MI->getOperand(1).getReg()).getReg(0); + B.buildInstr(PreferredFusedOpcode, {MI.getOperand(0).getReg()}, + {NegY, RHS.MI->getOperand(2).getReg(), LHS.Reg}); + }; + return true; + } + + return false; +} + +bool CombinerHelper::matchCombineFSubFNegFMulToFMadOrFMA( + MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { + assert(MI.getOpcode() == TargetOpcode::G_FSUB); + + bool AllowFusionGlobally, HasFMAD, Aggressive; + if (!canCombineFMadOrFMA(MI, AllowFusionGlobally, HasFMAD, Aggressive)) + return false; + + Register LHSReg = MI.getOperand(1).getReg(); + Register RHSReg = MI.getOperand(2).getReg(); + LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); + + unsigned PreferredFusedOpcode = + HasFMAD ? TargetOpcode::G_FMAD : TargetOpcode::G_FMA; + + MachineInstr *FMulMI; + // fold (fsub (fneg (fmul x, y)), z) -> (fma (fneg x), y, (fneg z)) + if (mi_match(LHSReg, MRI, m_GFNeg(m_MInstr(FMulMI))) && + (Aggressive || (MRI.hasOneNonDBGUse(LHSReg) && + MRI.hasOneNonDBGUse(FMulMI->getOperand(0).getReg()))) && + isContractableFMul(*FMulMI, AllowFusionGlobally)) { + MatchInfo = [=, &MI](MachineIRBuilder &B) { + Register NegX = + B.buildFNeg(DstTy, FMulMI->getOperand(1).getReg()).getReg(0); + Register NegZ = B.buildFNeg(DstTy, RHSReg).getReg(0); + B.buildInstr(PreferredFusedOpcode, {MI.getOperand(0).getReg()}, + {NegX, FMulMI->getOperand(2).getReg(), NegZ}); + }; + return true; + } + + // fold (fsub x, (fneg (fmul, y, z))) -> (fma y, z, x) + if (mi_match(RHSReg, MRI, m_GFNeg(m_MInstr(FMulMI))) && + (Aggressive || (MRI.hasOneNonDBGUse(RHSReg) && + MRI.hasOneNonDBGUse(FMulMI->getOperand(0).getReg()))) && + isContractableFMul(*FMulMI, AllowFusionGlobally)) { + MatchInfo = [=, &MI](MachineIRBuilder &B) { + B.buildInstr(PreferredFusedOpcode, {MI.getOperand(0).getReg()}, + {FMulMI->getOperand(1).getReg(), + FMulMI->getOperand(2).getReg(), LHSReg}); + }; + return true; + } + + return false; +} + +bool CombinerHelper::matchCombineFSubFpExtFMulToFMadOrFMA( + MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { + assert(MI.getOpcode() == TargetOpcode::G_FSUB); + + bool AllowFusionGlobally, HasFMAD, Aggressive; + if (!canCombineFMadOrFMA(MI, AllowFusionGlobally, HasFMAD, Aggressive)) + return false; + + Register LHSReg = MI.getOperand(1).getReg(); + Register RHSReg = MI.getOperand(2).getReg(); + LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); + + unsigned PreferredFusedOpcode = + HasFMAD ? TargetOpcode::G_FMAD : TargetOpcode::G_FMA; + + MachineInstr *FMulMI; + // fold (fsub (fpext (fmul x, y)), z) -> (fma (fpext x), (fpext y), (fneg z)) + if (mi_match(LHSReg, MRI, m_GFPExt(m_MInstr(FMulMI))) && + isContractableFMul(*FMulMI, AllowFusionGlobally) && + (Aggressive || MRI.hasOneNonDBGUse(LHSReg))) { + MatchInfo = [=, &MI](MachineIRBuilder &B) { + Register FpExtX = + B.buildFPExt(DstTy, FMulMI->getOperand(1).getReg()).getReg(0); + Register FpExtY = + B.buildFPExt(DstTy, FMulMI->getOperand(2).getReg()).getReg(0); + Register NegZ = B.buildFNeg(DstTy, RHSReg).getReg(0); + B.buildInstr(PreferredFusedOpcode, {MI.getOperand(0).getReg()}, + {FpExtX, FpExtY, NegZ}); + }; + return true; + } + + // fold (fsub x, (fpext (fmul y, z))) -> (fma (fneg (fpext y)), (fpext z), x) + if (mi_match(RHSReg, MRI, m_GFPExt(m_MInstr(FMulMI))) && + isContractableFMul(*FMulMI, AllowFusionGlobally) && + (Aggressive || MRI.hasOneNonDBGUse(RHSReg))) { + MatchInfo = [=, &MI](MachineIRBuilder &B) { + Register FpExtY = + B.buildFPExt(DstTy, FMulMI->getOperand(1).getReg()).getReg(0); + Register NegY = B.buildFNeg(DstTy, FpExtY).getReg(0); + Register FpExtZ = + B.buildFPExt(DstTy, FMulMI->getOperand(2).getReg()).getReg(0); + B.buildInstr(PreferredFusedOpcode, {MI.getOperand(0).getReg()}, + {NegY, FpExtZ, LHSReg}); + }; + return true; + } + + return false; +} + +bool CombinerHelper::matchCombineFSubFpExtFNegFMulToFMadOrFMA( + MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { + assert(MI.getOpcode() == TargetOpcode::G_FSUB); + + bool AllowFusionGlobally, HasFMAD, Aggressive; + if (!canCombineFMadOrFMA(MI, AllowFusionGlobally, HasFMAD, Aggressive)) + return false; + + const auto &TLI = *MI.getMF()->getSubtarget().getTargetLowering(); + LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); + Register LHSReg = MI.getOperand(1).getReg(); + Register RHSReg = MI.getOperand(2).getReg(); + + unsigned PreferredFusedOpcode = + HasFMAD ? TargetOpcode::G_FMAD : TargetOpcode::G_FMA; + + auto buildMatchInfo = [=](Register Dst, Register X, Register Y, Register Z, + MachineIRBuilder &B) { + Register FpExtX = B.buildFPExt(DstTy, X).getReg(0); + Register FpExtY = B.buildFPExt(DstTy, Y).getReg(0); + B.buildInstr(PreferredFusedOpcode, {Dst}, {FpExtX, FpExtY, Z}); + }; + + MachineInstr *FMulMI; + // fold (fsub (fpext (fneg (fmul x, y))), z) -> + // (fneg (fma (fpext x), (fpext y), z)) + // fold (fsub (fneg (fpext (fmul x, y))), z) -> + // (fneg (fma (fpext x), (fpext y), z)) + if ((mi_match(LHSReg, MRI, m_GFPExt(m_GFNeg(m_MInstr(FMulMI)))) || + mi_match(LHSReg, MRI, m_GFNeg(m_GFPExt(m_MInstr(FMulMI))))) && + isContractableFMul(*FMulMI, AllowFusionGlobally) && + TLI.isFPExtFoldable(MI, PreferredFusedOpcode, DstTy, + MRI.getType(FMulMI->getOperand(0).getReg()))) { + MatchInfo = [=, &MI](MachineIRBuilder &B) { + Register FMAReg = MRI.createGenericVirtualRegister(DstTy); + buildMatchInfo(FMAReg, FMulMI->getOperand(1).getReg(), + FMulMI->getOperand(2).getReg(), RHSReg, B); + B.buildFNeg(MI.getOperand(0).getReg(), FMAReg); + }; + return true; + } + + // fold (fsub x, (fpext (fneg (fmul y, z)))) -> (fma (fpext y), (fpext z), x) + // fold (fsub x, (fneg (fpext (fmul y, z)))) -> (fma (fpext y), (fpext z), x) + if ((mi_match(RHSReg, MRI, m_GFPExt(m_GFNeg(m_MInstr(FMulMI)))) || + mi_match(RHSReg, MRI, m_GFNeg(m_GFPExt(m_MInstr(FMulMI))))) && + isContractableFMul(*FMulMI, AllowFusionGlobally) && + TLI.isFPExtFoldable(MI, PreferredFusedOpcode, DstTy, + MRI.getType(FMulMI->getOperand(0).getReg()))) { + MatchInfo = [=, &MI](MachineIRBuilder &B) { + buildMatchInfo(MI.getOperand(0).getReg(), FMulMI->getOperand(1).getReg(), + FMulMI->getOperand(2).getReg(), LHSReg, B); + }; + return true; + } + + return false; +} + +bool CombinerHelper::matchCombineFMinMaxNaN(MachineInstr &MI, + unsigned &IdxToPropagate) { + bool PropagateNaN; + switch (MI.getOpcode()) { + default: + return false; + case TargetOpcode::G_FMINNUM: + case TargetOpcode::G_FMAXNUM: + PropagateNaN = false; + break; + case TargetOpcode::G_FMINIMUM: + case TargetOpcode::G_FMAXIMUM: + PropagateNaN = true; + break; + } + + auto MatchNaN = [&](unsigned Idx) { + Register MaybeNaNReg = MI.getOperand(Idx).getReg(); + const ConstantFP *MaybeCst = getConstantFPVRegVal(MaybeNaNReg, MRI); + if (!MaybeCst || !MaybeCst->getValueAPF().isNaN()) + return false; + IdxToPropagate = PropagateNaN ? Idx : (Idx == 1 ? 2 : 1); + return true; + }; + + return MatchNaN(1) || MatchNaN(2); +} + +bool CombinerHelper::matchAddSubSameReg(MachineInstr &MI, Register &Src) { + assert(MI.getOpcode() == TargetOpcode::G_ADD && "Expected a G_ADD"); + Register LHS = MI.getOperand(1).getReg(); + Register RHS = MI.getOperand(2).getReg(); + + // Helper lambda to check for opportunities for + // A + (B - A) -> B + // (B - A) + A -> B + auto CheckFold = [&](Register MaybeSub, Register MaybeSameReg) { + Register Reg; + return mi_match(MaybeSub, MRI, m_GSub(m_Reg(Src), m_Reg(Reg))) && + Reg == MaybeSameReg; + }; + return CheckFold(LHS, RHS) || CheckFold(RHS, LHS); +} + +bool CombinerHelper::matchBuildVectorIdentityFold(MachineInstr &MI, + Register &MatchInfo) { + // This combine folds the following patterns: + // + // G_BUILD_VECTOR_TRUNC (G_BITCAST(x), G_LSHR(G_BITCAST(x), k)) + // G_BUILD_VECTOR(G_TRUNC(G_BITCAST(x)), G_TRUNC(G_LSHR(G_BITCAST(x), k))) + // into + // x + // if + // k == sizeof(VecEltTy)/2 + // type(x) == type(dst) + // + // G_BUILD_VECTOR(G_TRUNC(G_BITCAST(x)), undef) + // into + // x + // if + // type(x) == type(dst) + + LLT DstVecTy = MRI.getType(MI.getOperand(0).getReg()); + LLT DstEltTy = DstVecTy.getElementType(); + + Register Lo, Hi; + + if (mi_match( + MI, MRI, + m_GBuildVector(m_GTrunc(m_GBitcast(m_Reg(Lo))), m_GImplicitDef()))) { + MatchInfo = Lo; + return MRI.getType(MatchInfo) == DstVecTy; + } + + std::optional<ValueAndVReg> ShiftAmount; + const auto LoPattern = m_GBitcast(m_Reg(Lo)); + const auto HiPattern = m_GLShr(m_GBitcast(m_Reg(Hi)), m_GCst(ShiftAmount)); + if (mi_match( + MI, MRI, + m_any_of(m_GBuildVectorTrunc(LoPattern, HiPattern), + m_GBuildVector(m_GTrunc(LoPattern), m_GTrunc(HiPattern))))) { + if (Lo == Hi && ShiftAmount->Value == DstEltTy.getSizeInBits()) { + MatchInfo = Lo; + return MRI.getType(MatchInfo) == DstVecTy; + } + } + + return false; +} + +bool CombinerHelper::matchTruncBuildVectorFold(MachineInstr &MI, + Register &MatchInfo) { + // Replace (G_TRUNC (G_BITCAST (G_BUILD_VECTOR x, y)) with just x + // if type(x) == type(G_TRUNC) + if (!mi_match(MI.getOperand(1).getReg(), MRI, + m_GBitcast(m_GBuildVector(m_Reg(MatchInfo), m_Reg())))) + return false; + + return MRI.getType(MatchInfo) == MRI.getType(MI.getOperand(0).getReg()); +} + +bool CombinerHelper::matchTruncLshrBuildVectorFold(MachineInstr &MI, + Register &MatchInfo) { + // Replace (G_TRUNC (G_LSHR (G_BITCAST (G_BUILD_VECTOR x, y)), K)) with + // y if K == size of vector element type + std::optional<ValueAndVReg> ShiftAmt; + if (!mi_match(MI.getOperand(1).getReg(), MRI, + m_GLShr(m_GBitcast(m_GBuildVector(m_Reg(), m_Reg(MatchInfo))), + m_GCst(ShiftAmt)))) + return false; + + LLT MatchTy = MRI.getType(MatchInfo); + return ShiftAmt->Value.getZExtValue() == MatchTy.getSizeInBits() && + MatchTy == MRI.getType(MI.getOperand(0).getReg()); +} + +unsigned CombinerHelper::getFPMinMaxOpcForSelect( + CmpInst::Predicate Pred, LLT DstTy, + SelectPatternNaNBehaviour VsNaNRetVal) const { + assert(VsNaNRetVal != SelectPatternNaNBehaviour::NOT_APPLICABLE && + "Expected a NaN behaviour?"); + // Choose an opcode based off of legality or the behaviour when one of the + // LHS/RHS may be NaN. + switch (Pred) { + default: + return 0; + case CmpInst::FCMP_UGT: + case CmpInst::FCMP_UGE: + case CmpInst::FCMP_OGT: + case CmpInst::FCMP_OGE: + if (VsNaNRetVal == SelectPatternNaNBehaviour::RETURNS_OTHER) + return TargetOpcode::G_FMAXNUM; + if (VsNaNRetVal == SelectPatternNaNBehaviour::RETURNS_NAN) + return TargetOpcode::G_FMAXIMUM; + if (isLegal({TargetOpcode::G_FMAXNUM, {DstTy}})) + return TargetOpcode::G_FMAXNUM; + if (isLegal({TargetOpcode::G_FMAXIMUM, {DstTy}})) + return TargetOpcode::G_FMAXIMUM; + return 0; + case CmpInst::FCMP_ULT: + case CmpInst::FCMP_ULE: + case CmpInst::FCMP_OLT: + case CmpInst::FCMP_OLE: + if (VsNaNRetVal == SelectPatternNaNBehaviour::RETURNS_OTHER) + return TargetOpcode::G_FMINNUM; + if (VsNaNRetVal == SelectPatternNaNBehaviour::RETURNS_NAN) + return TargetOpcode::G_FMINIMUM; + if (isLegal({TargetOpcode::G_FMINNUM, {DstTy}})) + return TargetOpcode::G_FMINNUM; + if (!isLegal({TargetOpcode::G_FMINIMUM, {DstTy}})) + return 0; + return TargetOpcode::G_FMINIMUM; + } +} + +CombinerHelper::SelectPatternNaNBehaviour +CombinerHelper::computeRetValAgainstNaN(Register LHS, Register RHS, + bool IsOrderedComparison) const { + bool LHSSafe = isKnownNeverNaN(LHS, MRI); + bool RHSSafe = isKnownNeverNaN(RHS, MRI); + // Completely unsafe. + if (!LHSSafe && !RHSSafe) + return SelectPatternNaNBehaviour::NOT_APPLICABLE; + if (LHSSafe && RHSSafe) + return SelectPatternNaNBehaviour::RETURNS_ANY; + // An ordered comparison will return false when given a NaN, so it + // returns the RHS. + if (IsOrderedComparison) + return LHSSafe ? SelectPatternNaNBehaviour::RETURNS_NAN + : SelectPatternNaNBehaviour::RETURNS_OTHER; + // An unordered comparison will return true when given a NaN, so it + // returns the LHS. + return LHSSafe ? SelectPatternNaNBehaviour::RETURNS_OTHER + : SelectPatternNaNBehaviour::RETURNS_NAN; +} + +bool CombinerHelper::matchFPSelectToMinMax(Register Dst, Register Cond, + Register TrueVal, Register FalseVal, + BuildFnTy &MatchInfo) { + // Match: select (fcmp cond x, y) x, y + // select (fcmp cond x, y) y, x + // And turn it into fminnum/fmaxnum or fmin/fmax based off of the condition. + LLT DstTy = MRI.getType(Dst); + // Bail out early on pointers, since we'll never want to fold to a min/max. + if (DstTy.isPointer()) + return false; + // Match a floating point compare with a less-than/greater-than predicate. + // TODO: Allow multiple users of the compare if they are all selects. + CmpInst::Predicate Pred; + Register CmpLHS, CmpRHS; + if (!mi_match(Cond, MRI, + m_OneNonDBGUse( + m_GFCmp(m_Pred(Pred), m_Reg(CmpLHS), m_Reg(CmpRHS)))) || + CmpInst::isEquality(Pred)) + return false; + SelectPatternNaNBehaviour ResWithKnownNaNInfo = + computeRetValAgainstNaN(CmpLHS, CmpRHS, CmpInst::isOrdered(Pred)); + if (ResWithKnownNaNInfo == SelectPatternNaNBehaviour::NOT_APPLICABLE) + return false; + if (TrueVal == CmpRHS && FalseVal == CmpLHS) { + std::swap(CmpLHS, CmpRHS); + Pred = CmpInst::getSwappedPredicate(Pred); + if (ResWithKnownNaNInfo == SelectPatternNaNBehaviour::RETURNS_NAN) + ResWithKnownNaNInfo = SelectPatternNaNBehaviour::RETURNS_OTHER; + else if (ResWithKnownNaNInfo == SelectPatternNaNBehaviour::RETURNS_OTHER) + ResWithKnownNaNInfo = SelectPatternNaNBehaviour::RETURNS_NAN; + } + if (TrueVal != CmpLHS || FalseVal != CmpRHS) + return false; + // Decide what type of max/min this should be based off of the predicate. + unsigned Opc = getFPMinMaxOpcForSelect(Pred, DstTy, ResWithKnownNaNInfo); + if (!Opc || !isLegal({Opc, {DstTy}})) + return false; + // Comparisons between signed zero and zero may have different results... + // unless we have fmaximum/fminimum. In that case, we know -0 < 0. + if (Opc != TargetOpcode::G_FMAXIMUM && Opc != TargetOpcode::G_FMINIMUM) { + // We don't know if a comparison between two 0s will give us a consistent + // result. Be conservative and only proceed if at least one side is + // non-zero. + auto KnownNonZeroSide = getFConstantVRegValWithLookThrough(CmpLHS, MRI); + if (!KnownNonZeroSide || !KnownNonZeroSide->Value.isNonZero()) { + KnownNonZeroSide = getFConstantVRegValWithLookThrough(CmpRHS, MRI); + if (!KnownNonZeroSide || !KnownNonZeroSide->Value.isNonZero()) + return false; + } + } + MatchInfo = [=](MachineIRBuilder &B) { + B.buildInstr(Opc, {Dst}, {CmpLHS, CmpRHS}); + }; + return true; +} + +bool CombinerHelper::matchSimplifySelectToMinMax(MachineInstr &MI, + BuildFnTy &MatchInfo) { + // TODO: Handle integer cases. + assert(MI.getOpcode() == TargetOpcode::G_SELECT); + // Condition may be fed by a truncated compare. + Register Cond = MI.getOperand(1).getReg(); + Register MaybeTrunc; + if (mi_match(Cond, MRI, m_OneNonDBGUse(m_GTrunc(m_Reg(MaybeTrunc))))) + Cond = MaybeTrunc; + Register Dst = MI.getOperand(0).getReg(); + Register TrueVal = MI.getOperand(2).getReg(); + Register FalseVal = MI.getOperand(3).getReg(); + return matchFPSelectToMinMax(Dst, Cond, TrueVal, FalseVal, MatchInfo); +} + +bool CombinerHelper::matchRedundantBinOpInEquality(MachineInstr &MI, + BuildFnTy &MatchInfo) { + assert(MI.getOpcode() == TargetOpcode::G_ICMP); + // (X + Y) == X --> Y == 0 + // (X + Y) != X --> Y != 0 + // (X - Y) == X --> Y == 0 + // (X - Y) != X --> Y != 0 + // (X ^ Y) == X --> Y == 0 + // (X ^ Y) != X --> Y != 0 + Register Dst = MI.getOperand(0).getReg(); + CmpInst::Predicate Pred; + Register X, Y, OpLHS, OpRHS; + bool MatchedSub = mi_match( + Dst, MRI, + m_c_GICmp(m_Pred(Pred), m_Reg(X), m_GSub(m_Reg(OpLHS), m_Reg(Y)))); + if (MatchedSub && X != OpLHS) + return false; + if (!MatchedSub) { + if (!mi_match(Dst, MRI, + m_c_GICmp(m_Pred(Pred), m_Reg(X), + m_any_of(m_GAdd(m_Reg(OpLHS), m_Reg(OpRHS)), + m_GXor(m_Reg(OpLHS), m_Reg(OpRHS)))))) + return false; + Y = X == OpLHS ? OpRHS : X == OpRHS ? OpLHS : Register(); + } + MatchInfo = [=](MachineIRBuilder &B) { + auto Zero = B.buildConstant(MRI.getType(Y), 0); + B.buildICmp(Pred, Dst, Y, Zero); + }; + return CmpInst::isEquality(Pred) && Y.isValid(); +} + +bool CombinerHelper::matchShiftsTooBig(MachineInstr &MI) { + Register ShiftReg = MI.getOperand(2).getReg(); + LLT ResTy = MRI.getType(MI.getOperand(0).getReg()); + auto IsShiftTooBig = [&](const Constant *C) { + auto *CI = dyn_cast<ConstantInt>(C); + return CI && CI->uge(ResTy.getScalarSizeInBits()); + }; + return matchUnaryPredicate(MRI, ShiftReg, IsShiftTooBig); +} + +bool CombinerHelper::matchCommuteConstantToRHS(MachineInstr &MI) { + Register LHS = MI.getOperand(1).getReg(); + Register RHS = MI.getOperand(2).getReg(); + auto *LHSDef = MRI.getVRegDef(LHS); + if (getIConstantVRegVal(LHS, MRI).has_value()) + return true; + + // LHS may be a G_CONSTANT_FOLD_BARRIER. If so we commute + // as long as we don't already have a constant on the RHS. + if (LHSDef->getOpcode() != TargetOpcode::G_CONSTANT_FOLD_BARRIER) + return false; + return MRI.getVRegDef(RHS)->getOpcode() != + TargetOpcode::G_CONSTANT_FOLD_BARRIER && + !getIConstantVRegVal(RHS, MRI); +} + +bool CombinerHelper::matchCommuteFPConstantToRHS(MachineInstr &MI) { + Register LHS = MI.getOperand(1).getReg(); + Register RHS = MI.getOperand(2).getReg(); + std::optional<FPValueAndVReg> ValAndVReg; + if (!mi_match(LHS, MRI, m_GFCstOrSplat(ValAndVReg))) + return false; + return !mi_match(RHS, MRI, m_GFCstOrSplat(ValAndVReg)); +} + +void CombinerHelper::applyCommuteBinOpOperands(MachineInstr &MI) { + Observer.changingInstr(MI); + Register LHSReg = MI.getOperand(1).getReg(); + Register RHSReg = MI.getOperand(2).getReg(); + MI.getOperand(1).setReg(RHSReg); + MI.getOperand(2).setReg(LHSReg); + Observer.changedInstr(MI); +} + +bool CombinerHelper::isOneOrOneSplat(Register Src, bool AllowUndefs) { + LLT SrcTy = MRI.getType(Src); + if (SrcTy.isFixedVector()) + return isConstantSplatVector(Src, 1, AllowUndefs); + if (SrcTy.isScalar()) { + if (AllowUndefs && getOpcodeDef<GImplicitDef>(Src, MRI) != nullptr) + return true; + auto IConstant = getIConstantVRegValWithLookThrough(Src, MRI); + return IConstant && IConstant->Value == 1; + } + return false; // scalable vector +} + +bool CombinerHelper::isZeroOrZeroSplat(Register Src, bool AllowUndefs) { + LLT SrcTy = MRI.getType(Src); + if (SrcTy.isFixedVector()) + return isConstantSplatVector(Src, 0, AllowUndefs); + if (SrcTy.isScalar()) { + if (AllowUndefs && getOpcodeDef<GImplicitDef>(Src, MRI) != nullptr) + return true; + auto IConstant = getIConstantVRegValWithLookThrough(Src, MRI); + return IConstant && IConstant->Value == 0; + } + return false; // scalable vector +} + +// Ignores COPYs during conformance checks. +// FIXME scalable vectors. +bool CombinerHelper::isConstantSplatVector(Register Src, int64_t SplatValue, + bool AllowUndefs) { + GBuildVector *BuildVector = getOpcodeDef<GBuildVector>(Src, MRI); + if (!BuildVector) + return false; + unsigned NumSources = BuildVector->getNumSources(); + + for (unsigned I = 0; I < NumSources; ++I) { + GImplicitDef *ImplicitDef = + getOpcodeDef<GImplicitDef>(BuildVector->getSourceReg(I), MRI); + if (ImplicitDef && AllowUndefs) + continue; + if (ImplicitDef && !AllowUndefs) + return false; + std::optional<ValueAndVReg> IConstant = + getIConstantVRegValWithLookThrough(BuildVector->getSourceReg(I), MRI); + if (IConstant && IConstant->Value == SplatValue) + continue; + return false; + } + return true; +} + +// Ignores COPYs during lookups. +// FIXME scalable vectors +std::optional<APInt> +CombinerHelper::getConstantOrConstantSplatVector(Register Src) { + auto IConstant = getIConstantVRegValWithLookThrough(Src, MRI); + if (IConstant) + return IConstant->Value; + + GBuildVector *BuildVector = getOpcodeDef<GBuildVector>(Src, MRI); + if (!BuildVector) + return std::nullopt; + unsigned NumSources = BuildVector->getNumSources(); + + std::optional<APInt> Value = std::nullopt; + for (unsigned I = 0; I < NumSources; ++I) { + std::optional<ValueAndVReg> IConstant = + getIConstantVRegValWithLookThrough(BuildVector->getSourceReg(I), MRI); + if (!IConstant) + return std::nullopt; + if (!Value) + Value = IConstant->Value; + else if (*Value != IConstant->Value) + return std::nullopt; + } + return Value; +} + +// TODO: use knownbits to determine zeros +bool CombinerHelper::tryFoldSelectOfConstants(GSelect *Select, + BuildFnTy &MatchInfo) { + uint32_t Flags = Select->getFlags(); + Register Dest = Select->getReg(0); + Register Cond = Select->getCondReg(); + Register True = Select->getTrueReg(); + Register False = Select->getFalseReg(); + LLT CondTy = MRI.getType(Select->getCondReg()); + LLT TrueTy = MRI.getType(Select->getTrueReg()); + + // We only do this combine for scalar boolean conditions. + if (CondTy != LLT::scalar(1)) + return false; + + // Both are scalars. + std::optional<ValueAndVReg> TrueOpt = + getIConstantVRegValWithLookThrough(True, MRI); + std::optional<ValueAndVReg> FalseOpt = + getIConstantVRegValWithLookThrough(False, MRI); + + if (!TrueOpt || !FalseOpt) + return false; + + APInt TrueValue = TrueOpt->Value; + APInt FalseValue = FalseOpt->Value; + + // select Cond, 1, 0 --> zext (Cond) + if (TrueValue.isOne() && FalseValue.isZero()) { + MatchInfo = [=](MachineIRBuilder &B) { + B.setInstrAndDebugLoc(*Select); + B.buildZExtOrTrunc(Dest, Cond); + }; + return true; + } + + // select Cond, -1, 0 --> sext (Cond) + if (TrueValue.isAllOnes() && FalseValue.isZero()) { + MatchInfo = [=](MachineIRBuilder &B) { + B.setInstrAndDebugLoc(*Select); + B.buildSExtOrTrunc(Dest, Cond); + }; + return true; + } + + // select Cond, 0, 1 --> zext (!Cond) + if (TrueValue.isZero() && FalseValue.isOne()) { + MatchInfo = [=](MachineIRBuilder &B) { + B.setInstrAndDebugLoc(*Select); + Register Inner = MRI.createGenericVirtualRegister(CondTy); + B.buildNot(Inner, Cond); + B.buildZExtOrTrunc(Dest, Inner); + }; + return true; + } + + // select Cond, 0, -1 --> sext (!Cond) + if (TrueValue.isZero() && FalseValue.isAllOnes()) { + MatchInfo = [=](MachineIRBuilder &B) { + B.setInstrAndDebugLoc(*Select); + Register Inner = MRI.createGenericVirtualRegister(CondTy); + B.buildNot(Inner, Cond); + B.buildSExtOrTrunc(Dest, Inner); + }; + return true; + } + + // select Cond, C1, C1-1 --> add (zext Cond), C1-1 + if (TrueValue - 1 == FalseValue) { + MatchInfo = [=](MachineIRBuilder &B) { + B.setInstrAndDebugLoc(*Select); + Register Inner = MRI.createGenericVirtualRegister(TrueTy); + B.buildZExtOrTrunc(Inner, Cond); + B.buildAdd(Dest, Inner, False); + }; + return true; + } + + // select Cond, C1, C1+1 --> add (sext Cond), C1+1 + if (TrueValue + 1 == FalseValue) { + MatchInfo = [=](MachineIRBuilder &B) { + B.setInstrAndDebugLoc(*Select); + Register Inner = MRI.createGenericVirtualRegister(TrueTy); + B.buildSExtOrTrunc(Inner, Cond); + B.buildAdd(Dest, Inner, False); + }; + return true; + } + + // select Cond, Pow2, 0 --> (zext Cond) << log2(Pow2) + if (TrueValue.isPowerOf2() && FalseValue.isZero()) { + MatchInfo = [=](MachineIRBuilder &B) { + B.setInstrAndDebugLoc(*Select); + Register Inner = MRI.createGenericVirtualRegister(TrueTy); + B.buildZExtOrTrunc(Inner, Cond); + // The shift amount must be scalar. + LLT ShiftTy = TrueTy.isVector() ? TrueTy.getElementType() : TrueTy; + auto ShAmtC = B.buildConstant(ShiftTy, TrueValue.exactLogBase2()); + B.buildShl(Dest, Inner, ShAmtC, Flags); + }; + return true; + } + // select Cond, -1, C --> or (sext Cond), C + if (TrueValue.isAllOnes()) { + MatchInfo = [=](MachineIRBuilder &B) { + B.setInstrAndDebugLoc(*Select); + Register Inner = MRI.createGenericVirtualRegister(TrueTy); + B.buildSExtOrTrunc(Inner, Cond); + B.buildOr(Dest, Inner, False, Flags); + }; + return true; + } + + // select Cond, C, -1 --> or (sext (not Cond)), C + if (FalseValue.isAllOnes()) { + MatchInfo = [=](MachineIRBuilder &B) { + B.setInstrAndDebugLoc(*Select); + Register Not = MRI.createGenericVirtualRegister(CondTy); + B.buildNot(Not, Cond); + Register Inner = MRI.createGenericVirtualRegister(TrueTy); + B.buildSExtOrTrunc(Inner, Not); + B.buildOr(Dest, Inner, True, Flags); + }; + return true; + } + + return false; +} + +// TODO: use knownbits to determine zeros +bool CombinerHelper::tryFoldBoolSelectToLogic(GSelect *Select, + BuildFnTy &MatchInfo) { + uint32_t Flags = Select->getFlags(); + Register DstReg = Select->getReg(0); + Register Cond = Select->getCondReg(); + Register True = Select->getTrueReg(); + Register False = Select->getFalseReg(); + LLT CondTy = MRI.getType(Select->getCondReg()); + LLT TrueTy = MRI.getType(Select->getTrueReg()); + + // Boolean or fixed vector of booleans. + if (CondTy.isScalableVector() || + (CondTy.isFixedVector() && + CondTy.getElementType().getScalarSizeInBits() != 1) || + CondTy.getScalarSizeInBits() != 1) + return false; + + if (CondTy != TrueTy) + return false; + + // select Cond, Cond, F --> or Cond, F + // select Cond, 1, F --> or Cond, F + if ((Cond == True) || isOneOrOneSplat(True, /* AllowUndefs */ true)) { + MatchInfo = [=](MachineIRBuilder &B) { + B.setInstrAndDebugLoc(*Select); + Register Ext = MRI.createGenericVirtualRegister(TrueTy); + B.buildZExtOrTrunc(Ext, Cond); + B.buildOr(DstReg, Ext, False, Flags); + }; + return true; + } + + // select Cond, T, Cond --> and Cond, T + // select Cond, T, 0 --> and Cond, T + if ((Cond == False) || isZeroOrZeroSplat(False, /* AllowUndefs */ true)) { + MatchInfo = [=](MachineIRBuilder &B) { + B.setInstrAndDebugLoc(*Select); + Register Ext = MRI.createGenericVirtualRegister(TrueTy); + B.buildZExtOrTrunc(Ext, Cond); + B.buildAnd(DstReg, Ext, True); + }; + return true; + } + + // select Cond, T, 1 --> or (not Cond), T + if (isOneOrOneSplat(False, /* AllowUndefs */ true)) { + MatchInfo = [=](MachineIRBuilder &B) { + B.setInstrAndDebugLoc(*Select); + // First the not. + Register Inner = MRI.createGenericVirtualRegister(CondTy); + B.buildNot(Inner, Cond); + // Then an ext to match the destination register. + Register Ext = MRI.createGenericVirtualRegister(TrueTy); + B.buildZExtOrTrunc(Ext, Inner); + B.buildOr(DstReg, Ext, True, Flags); + }; + return true; + } + + // select Cond, 0, F --> and (not Cond), F + if (isZeroOrZeroSplat(True, /* AllowUndefs */ true)) { + MatchInfo = [=](MachineIRBuilder &B) { + B.setInstrAndDebugLoc(*Select); + // First the not. + Register Inner = MRI.createGenericVirtualRegister(CondTy); + B.buildNot(Inner, Cond); + // Then an ext to match the destination register. + Register Ext = MRI.createGenericVirtualRegister(TrueTy); + B.buildZExtOrTrunc(Ext, Inner); + B.buildAnd(DstReg, Ext, False); + }; + return true; + } + + return false; +} + +bool CombinerHelper::matchSelect(MachineInstr &MI, BuildFnTy &MatchInfo) { + GSelect *Select = cast<GSelect>(&MI); + + if (tryFoldSelectOfConstants(Select, MatchInfo)) + return true; + + if (tryFoldBoolSelectToLogic(Select, MatchInfo)) + return true; + + return false; +} |
