aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm-project/llvm/lib/CodeGen/GlobalISel/CombinerHelper.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm-project/llvm/lib/CodeGen/GlobalISel/CombinerHelper.cpp')
-rw-r--r--contrib/llvm-project/llvm/lib/CodeGen/GlobalISel/CombinerHelper.cpp6561
1 files changed, 6561 insertions, 0 deletions
diff --git a/contrib/llvm-project/llvm/lib/CodeGen/GlobalISel/CombinerHelper.cpp b/contrib/llvm-project/llvm/lib/CodeGen/GlobalISel/CombinerHelper.cpp
new file mode 100644
index 000000000000..8b15bdb0aca3
--- /dev/null
+++ b/contrib/llvm-project/llvm/lib/CodeGen/GlobalISel/CombinerHelper.cpp
@@ -0,0 +1,6561 @@
+//===-- lib/CodeGen/GlobalISel/GICombinerHelper.cpp -----------------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+#include "llvm/CodeGen/GlobalISel/CombinerHelper.h"
+#include "llvm/ADT/APFloat.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/SetVector.h"
+#include "llvm/ADT/SmallBitVector.h"
+#include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h"
+#include "llvm/CodeGen/GlobalISel/GISelKnownBits.h"
+#include "llvm/CodeGen/GlobalISel/GenericMachineInstrs.h"
+#include "llvm/CodeGen/GlobalISel/LegalizerHelper.h"
+#include "llvm/CodeGen/GlobalISel/LegalizerInfo.h"
+#include "llvm/CodeGen/GlobalISel/MIPatternMatch.h"
+#include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
+#include "llvm/CodeGen/GlobalISel/Utils.h"
+#include "llvm/CodeGen/LowLevelTypeUtils.h"
+#include "llvm/CodeGen/MachineBasicBlock.h"
+#include "llvm/CodeGen/MachineDominators.h"
+#include "llvm/CodeGen/MachineInstr.h"
+#include "llvm/CodeGen/MachineMemOperand.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/CodeGen/RegisterBankInfo.h"
+#include "llvm/CodeGen/TargetInstrInfo.h"
+#include "llvm/CodeGen/TargetLowering.h"
+#include "llvm/CodeGen/TargetOpcodes.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/InstrTypes.h"
+#include "llvm/Support/Casting.h"
+#include "llvm/Support/DivisionByConstantInfo.h"
+#include "llvm/Support/MathExtras.h"
+#include "llvm/Target/TargetMachine.h"
+#include <cmath>
+#include <optional>
+#include <tuple>
+
+#define DEBUG_TYPE "gi-combiner"
+
+using namespace llvm;
+using namespace MIPatternMatch;
+
+// Option to allow testing of the combiner while no targets know about indexed
+// addressing.
+static cl::opt<bool>
+ ForceLegalIndexing("force-legal-indexing", cl::Hidden, cl::init(false),
+ cl::desc("Force all indexed operations to be "
+ "legal for the GlobalISel combiner"));
+
+CombinerHelper::CombinerHelper(GISelChangeObserver &Observer,
+ MachineIRBuilder &B, bool IsPreLegalize,
+ GISelKnownBits *KB, MachineDominatorTree *MDT,
+ const LegalizerInfo *LI)
+ : Builder(B), MRI(Builder.getMF().getRegInfo()), Observer(Observer), KB(KB),
+ MDT(MDT), IsPreLegalize(IsPreLegalize), LI(LI),
+ RBI(Builder.getMF().getSubtarget().getRegBankInfo()),
+ TRI(Builder.getMF().getSubtarget().getRegisterInfo()) {
+ (void)this->KB;
+}
+
+const TargetLowering &CombinerHelper::getTargetLowering() const {
+ return *Builder.getMF().getSubtarget().getTargetLowering();
+}
+
+/// \returns The little endian in-memory byte position of byte \p I in a
+/// \p ByteWidth bytes wide type.
+///
+/// E.g. Given a 4-byte type x, x[0] -> byte 0
+static unsigned littleEndianByteAt(const unsigned ByteWidth, const unsigned I) {
+ assert(I < ByteWidth && "I must be in [0, ByteWidth)");
+ return I;
+}
+
+/// Determines the LogBase2 value for a non-null input value using the
+/// transform: LogBase2(V) = (EltBits - 1) - ctlz(V).
+static Register buildLogBase2(Register V, MachineIRBuilder &MIB) {
+ auto &MRI = *MIB.getMRI();
+ LLT Ty = MRI.getType(V);
+ auto Ctlz = MIB.buildCTLZ(Ty, V);
+ auto Base = MIB.buildConstant(Ty, Ty.getScalarSizeInBits() - 1);
+ return MIB.buildSub(Ty, Base, Ctlz).getReg(0);
+}
+
+/// \returns The big endian in-memory byte position of byte \p I in a
+/// \p ByteWidth bytes wide type.
+///
+/// E.g. Given a 4-byte type x, x[0] -> byte 3
+static unsigned bigEndianByteAt(const unsigned ByteWidth, const unsigned I) {
+ assert(I < ByteWidth && "I must be in [0, ByteWidth)");
+ return ByteWidth - I - 1;
+}
+
+/// Given a map from byte offsets in memory to indices in a load/store,
+/// determine if that map corresponds to a little or big endian byte pattern.
+///
+/// \param MemOffset2Idx maps memory offsets to address offsets.
+/// \param LowestIdx is the lowest index in \p MemOffset2Idx.
+///
+/// \returns true if the map corresponds to a big endian byte pattern, false if
+/// it corresponds to a little endian byte pattern, and std::nullopt otherwise.
+///
+/// E.g. given a 32-bit type x, and x[AddrOffset], the in-memory byte patterns
+/// are as follows:
+///
+/// AddrOffset Little endian Big endian
+/// 0 0 3
+/// 1 1 2
+/// 2 2 1
+/// 3 3 0
+static std::optional<bool>
+isBigEndian(const SmallDenseMap<int64_t, int64_t, 8> &MemOffset2Idx,
+ int64_t LowestIdx) {
+ // Need at least two byte positions to decide on endianness.
+ unsigned Width = MemOffset2Idx.size();
+ if (Width < 2)
+ return std::nullopt;
+ bool BigEndian = true, LittleEndian = true;
+ for (unsigned MemOffset = 0; MemOffset < Width; ++ MemOffset) {
+ auto MemOffsetAndIdx = MemOffset2Idx.find(MemOffset);
+ if (MemOffsetAndIdx == MemOffset2Idx.end())
+ return std::nullopt;
+ const int64_t Idx = MemOffsetAndIdx->second - LowestIdx;
+ assert(Idx >= 0 && "Expected non-negative byte offset?");
+ LittleEndian &= Idx == littleEndianByteAt(Width, MemOffset);
+ BigEndian &= Idx == bigEndianByteAt(Width, MemOffset);
+ if (!BigEndian && !LittleEndian)
+ return std::nullopt;
+ }
+
+ assert((BigEndian != LittleEndian) &&
+ "Pattern cannot be both big and little endian!");
+ return BigEndian;
+}
+
+bool CombinerHelper::isPreLegalize() const { return IsPreLegalize; }
+
+bool CombinerHelper::isLegal(const LegalityQuery &Query) const {
+ assert(LI && "Must have LegalizerInfo to query isLegal!");
+ return LI->getAction(Query).Action == LegalizeActions::Legal;
+}
+
+bool CombinerHelper::isLegalOrBeforeLegalizer(
+ const LegalityQuery &Query) const {
+ return isPreLegalize() || isLegal(Query);
+}
+
+bool CombinerHelper::isConstantLegalOrBeforeLegalizer(const LLT Ty) const {
+ if (!Ty.isVector())
+ return isLegalOrBeforeLegalizer({TargetOpcode::G_CONSTANT, {Ty}});
+ // Vector constants are represented as a G_BUILD_VECTOR of scalar G_CONSTANTs.
+ if (isPreLegalize())
+ return true;
+ LLT EltTy = Ty.getElementType();
+ return isLegal({TargetOpcode::G_BUILD_VECTOR, {Ty, EltTy}}) &&
+ isLegal({TargetOpcode::G_CONSTANT, {EltTy}});
+}
+
+void CombinerHelper::replaceRegWith(MachineRegisterInfo &MRI, Register FromReg,
+ Register ToReg) const {
+ Observer.changingAllUsesOfReg(MRI, FromReg);
+
+ if (MRI.constrainRegAttrs(ToReg, FromReg))
+ MRI.replaceRegWith(FromReg, ToReg);
+ else
+ Builder.buildCopy(ToReg, FromReg);
+
+ Observer.finishedChangingAllUsesOfReg();
+}
+
+void CombinerHelper::replaceRegOpWith(MachineRegisterInfo &MRI,
+ MachineOperand &FromRegOp,
+ Register ToReg) const {
+ assert(FromRegOp.getParent() && "Expected an operand in an MI");
+ Observer.changingInstr(*FromRegOp.getParent());
+
+ FromRegOp.setReg(ToReg);
+
+ Observer.changedInstr(*FromRegOp.getParent());
+}
+
+void CombinerHelper::replaceOpcodeWith(MachineInstr &FromMI,
+ unsigned ToOpcode) const {
+ Observer.changingInstr(FromMI);
+
+ FromMI.setDesc(Builder.getTII().get(ToOpcode));
+
+ Observer.changedInstr(FromMI);
+}
+
+const RegisterBank *CombinerHelper::getRegBank(Register Reg) const {
+ return RBI->getRegBank(Reg, MRI, *TRI);
+}
+
+void CombinerHelper::setRegBank(Register Reg, const RegisterBank *RegBank) {
+ if (RegBank)
+ MRI.setRegBank(Reg, *RegBank);
+}
+
+bool CombinerHelper::tryCombineCopy(MachineInstr &MI) {
+ if (matchCombineCopy(MI)) {
+ applyCombineCopy(MI);
+ return true;
+ }
+ return false;
+}
+bool CombinerHelper::matchCombineCopy(MachineInstr &MI) {
+ if (MI.getOpcode() != TargetOpcode::COPY)
+ return false;
+ Register DstReg = MI.getOperand(0).getReg();
+ Register SrcReg = MI.getOperand(1).getReg();
+ return canReplaceReg(DstReg, SrcReg, MRI);
+}
+void CombinerHelper::applyCombineCopy(MachineInstr &MI) {
+ Register DstReg = MI.getOperand(0).getReg();
+ Register SrcReg = MI.getOperand(1).getReg();
+ MI.eraseFromParent();
+ replaceRegWith(MRI, DstReg, SrcReg);
+}
+
+bool CombinerHelper::tryCombineConcatVectors(MachineInstr &MI) {
+ bool IsUndef = false;
+ SmallVector<Register, 4> Ops;
+ if (matchCombineConcatVectors(MI, IsUndef, Ops)) {
+ applyCombineConcatVectors(MI, IsUndef, Ops);
+ return true;
+ }
+ return false;
+}
+
+bool CombinerHelper::matchCombineConcatVectors(MachineInstr &MI, bool &IsUndef,
+ SmallVectorImpl<Register> &Ops) {
+ assert(MI.getOpcode() == TargetOpcode::G_CONCAT_VECTORS &&
+ "Invalid instruction");
+ IsUndef = true;
+ MachineInstr *Undef = nullptr;
+
+ // Walk over all the operands of concat vectors and check if they are
+ // build_vector themselves or undef.
+ // Then collect their operands in Ops.
+ for (const MachineOperand &MO : MI.uses()) {
+ Register Reg = MO.getReg();
+ MachineInstr *Def = MRI.getVRegDef(Reg);
+ assert(Def && "Operand not defined");
+ switch (Def->getOpcode()) {
+ case TargetOpcode::G_BUILD_VECTOR:
+ IsUndef = false;
+ // Remember the operands of the build_vector to fold
+ // them into the yet-to-build flattened concat vectors.
+ for (const MachineOperand &BuildVecMO : Def->uses())
+ Ops.push_back(BuildVecMO.getReg());
+ break;
+ case TargetOpcode::G_IMPLICIT_DEF: {
+ LLT OpType = MRI.getType(Reg);
+ // Keep one undef value for all the undef operands.
+ if (!Undef) {
+ Builder.setInsertPt(*MI.getParent(), MI);
+ Undef = Builder.buildUndef(OpType.getScalarType());
+ }
+ assert(MRI.getType(Undef->getOperand(0).getReg()) ==
+ OpType.getScalarType() &&
+ "All undefs should have the same type");
+ // Break the undef vector in as many scalar elements as needed
+ // for the flattening.
+ for (unsigned EltIdx = 0, EltEnd = OpType.getNumElements();
+ EltIdx != EltEnd; ++EltIdx)
+ Ops.push_back(Undef->getOperand(0).getReg());
+ break;
+ }
+ default:
+ return false;
+ }
+ }
+ return true;
+}
+void CombinerHelper::applyCombineConcatVectors(
+ MachineInstr &MI, bool IsUndef, const ArrayRef<Register> Ops) {
+ // We determined that the concat_vectors can be flatten.
+ // Generate the flattened build_vector.
+ Register DstReg = MI.getOperand(0).getReg();
+ Builder.setInsertPt(*MI.getParent(), MI);
+ Register NewDstReg = MRI.cloneVirtualRegister(DstReg);
+
+ // Note: IsUndef is sort of redundant. We could have determine it by
+ // checking that at all Ops are undef. Alternatively, we could have
+ // generate a build_vector of undefs and rely on another combine to
+ // clean that up. For now, given we already gather this information
+ // in tryCombineConcatVectors, just save compile time and issue the
+ // right thing.
+ if (IsUndef)
+ Builder.buildUndef(NewDstReg);
+ else
+ Builder.buildBuildVector(NewDstReg, Ops);
+ MI.eraseFromParent();
+ replaceRegWith(MRI, DstReg, NewDstReg);
+}
+
+bool CombinerHelper::tryCombineShuffleVector(MachineInstr &MI) {
+ SmallVector<Register, 4> Ops;
+ if (matchCombineShuffleVector(MI, Ops)) {
+ applyCombineShuffleVector(MI, Ops);
+ return true;
+ }
+ return false;
+}
+
+bool CombinerHelper::matchCombineShuffleVector(MachineInstr &MI,
+ SmallVectorImpl<Register> &Ops) {
+ assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR &&
+ "Invalid instruction kind");
+ LLT DstType = MRI.getType(MI.getOperand(0).getReg());
+ Register Src1 = MI.getOperand(1).getReg();
+ LLT SrcType = MRI.getType(Src1);
+ // As bizarre as it may look, shuffle vector can actually produce
+ // scalar! This is because at the IR level a <1 x ty> shuffle
+ // vector is perfectly valid.
+ unsigned DstNumElts = DstType.isVector() ? DstType.getNumElements() : 1;
+ unsigned SrcNumElts = SrcType.isVector() ? SrcType.getNumElements() : 1;
+
+ // If the resulting vector is smaller than the size of the source
+ // vectors being concatenated, we won't be able to replace the
+ // shuffle vector into a concat_vectors.
+ //
+ // Note: We may still be able to produce a concat_vectors fed by
+ // extract_vector_elt and so on. It is less clear that would
+ // be better though, so don't bother for now.
+ //
+ // If the destination is a scalar, the size of the sources doesn't
+ // matter. we will lower the shuffle to a plain copy. This will
+ // work only if the source and destination have the same size. But
+ // that's covered by the next condition.
+ //
+ // TODO: If the size between the source and destination don't match
+ // we could still emit an extract vector element in that case.
+ if (DstNumElts < 2 * SrcNumElts && DstNumElts != 1)
+ return false;
+
+ // Check that the shuffle mask can be broken evenly between the
+ // different sources.
+ if (DstNumElts % SrcNumElts != 0)
+ return false;
+
+ // Mask length is a multiple of the source vector length.
+ // Check if the shuffle is some kind of concatenation of the input
+ // vectors.
+ unsigned NumConcat = DstNumElts / SrcNumElts;
+ SmallVector<int, 8> ConcatSrcs(NumConcat, -1);
+ ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask();
+ for (unsigned i = 0; i != DstNumElts; ++i) {
+ int Idx = Mask[i];
+ // Undef value.
+ if (Idx < 0)
+ continue;
+ // Ensure the indices in each SrcType sized piece are sequential and that
+ // the same source is used for the whole piece.
+ if ((Idx % SrcNumElts != (i % SrcNumElts)) ||
+ (ConcatSrcs[i / SrcNumElts] >= 0 &&
+ ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts)))
+ return false;
+ // Remember which source this index came from.
+ ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts;
+ }
+
+ // The shuffle is concatenating multiple vectors together.
+ // Collect the different operands for that.
+ Register UndefReg;
+ Register Src2 = MI.getOperand(2).getReg();
+ for (auto Src : ConcatSrcs) {
+ if (Src < 0) {
+ if (!UndefReg) {
+ Builder.setInsertPt(*MI.getParent(), MI);
+ UndefReg = Builder.buildUndef(SrcType).getReg(0);
+ }
+ Ops.push_back(UndefReg);
+ } else if (Src == 0)
+ Ops.push_back(Src1);
+ else
+ Ops.push_back(Src2);
+ }
+ return true;
+}
+
+void CombinerHelper::applyCombineShuffleVector(MachineInstr &MI,
+ const ArrayRef<Register> Ops) {
+ Register DstReg = MI.getOperand(0).getReg();
+ Builder.setInsertPt(*MI.getParent(), MI);
+ Register NewDstReg = MRI.cloneVirtualRegister(DstReg);
+
+ if (Ops.size() == 1)
+ Builder.buildCopy(NewDstReg, Ops[0]);
+ else
+ Builder.buildMergeLikeInstr(NewDstReg, Ops);
+
+ MI.eraseFromParent();
+ replaceRegWith(MRI, DstReg, NewDstReg);
+}
+
+bool CombinerHelper::matchShuffleToExtract(MachineInstr &MI) {
+ assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR &&
+ "Invalid instruction kind");
+
+ ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask();
+ return Mask.size() == 1;
+}
+
+void CombinerHelper::applyShuffleToExtract(MachineInstr &MI) {
+ Register DstReg = MI.getOperand(0).getReg();
+ Builder.setInsertPt(*MI.getParent(), MI);
+
+ int I = MI.getOperand(3).getShuffleMask()[0];
+ Register Src1 = MI.getOperand(1).getReg();
+ LLT Src1Ty = MRI.getType(Src1);
+ int Src1NumElts = Src1Ty.isVector() ? Src1Ty.getNumElements() : 1;
+ Register SrcReg;
+ if (I >= Src1NumElts) {
+ SrcReg = MI.getOperand(2).getReg();
+ I -= Src1NumElts;
+ } else if (I >= 0)
+ SrcReg = Src1;
+
+ if (I < 0)
+ Builder.buildUndef(DstReg);
+ else if (!MRI.getType(SrcReg).isVector())
+ Builder.buildCopy(DstReg, SrcReg);
+ else
+ Builder.buildExtractVectorElementConstant(DstReg, SrcReg, I);
+
+ MI.eraseFromParent();
+}
+
+namespace {
+
+/// Select a preference between two uses. CurrentUse is the current preference
+/// while *ForCandidate is attributes of the candidate under consideration.
+PreferredTuple ChoosePreferredUse(MachineInstr &LoadMI,
+ PreferredTuple &CurrentUse,
+ const LLT TyForCandidate,
+ unsigned OpcodeForCandidate,
+ MachineInstr *MIForCandidate) {
+ if (!CurrentUse.Ty.isValid()) {
+ if (CurrentUse.ExtendOpcode == OpcodeForCandidate ||
+ CurrentUse.ExtendOpcode == TargetOpcode::G_ANYEXT)
+ return {TyForCandidate, OpcodeForCandidate, MIForCandidate};
+ return CurrentUse;
+ }
+
+ // We permit the extend to hoist through basic blocks but this is only
+ // sensible if the target has extending loads. If you end up lowering back
+ // into a load and extend during the legalizer then the end result is
+ // hoisting the extend up to the load.
+
+ // Prefer defined extensions to undefined extensions as these are more
+ // likely to reduce the number of instructions.
+ if (OpcodeForCandidate == TargetOpcode::G_ANYEXT &&
+ CurrentUse.ExtendOpcode != TargetOpcode::G_ANYEXT)
+ return CurrentUse;
+ else if (CurrentUse.ExtendOpcode == TargetOpcode::G_ANYEXT &&
+ OpcodeForCandidate != TargetOpcode::G_ANYEXT)
+ return {TyForCandidate, OpcodeForCandidate, MIForCandidate};
+
+ // Prefer sign extensions to zero extensions as sign-extensions tend to be
+ // more expensive. Don't do this if the load is already a zero-extend load
+ // though, otherwise we'll rewrite a zero-extend load into a sign-extend
+ // later.
+ if (!isa<GZExtLoad>(LoadMI) && CurrentUse.Ty == TyForCandidate) {
+ if (CurrentUse.ExtendOpcode == TargetOpcode::G_SEXT &&
+ OpcodeForCandidate == TargetOpcode::G_ZEXT)
+ return CurrentUse;
+ else if (CurrentUse.ExtendOpcode == TargetOpcode::G_ZEXT &&
+ OpcodeForCandidate == TargetOpcode::G_SEXT)
+ return {TyForCandidate, OpcodeForCandidate, MIForCandidate};
+ }
+
+ // This is potentially target specific. We've chosen the largest type
+ // because G_TRUNC is usually free. One potential catch with this is that
+ // some targets have a reduced number of larger registers than smaller
+ // registers and this choice potentially increases the live-range for the
+ // larger value.
+ if (TyForCandidate.getSizeInBits() > CurrentUse.Ty.getSizeInBits()) {
+ return {TyForCandidate, OpcodeForCandidate, MIForCandidate};
+ }
+ return CurrentUse;
+}
+
+/// Find a suitable place to insert some instructions and insert them. This
+/// function accounts for special cases like inserting before a PHI node.
+/// The current strategy for inserting before PHI's is to duplicate the
+/// instructions for each predecessor. However, while that's ok for G_TRUNC
+/// on most targets since it generally requires no code, other targets/cases may
+/// want to try harder to find a dominating block.
+static void InsertInsnsWithoutSideEffectsBeforeUse(
+ MachineIRBuilder &Builder, MachineInstr &DefMI, MachineOperand &UseMO,
+ std::function<void(MachineBasicBlock *, MachineBasicBlock::iterator,
+ MachineOperand &UseMO)>
+ Inserter) {
+ MachineInstr &UseMI = *UseMO.getParent();
+
+ MachineBasicBlock *InsertBB = UseMI.getParent();
+
+ // If the use is a PHI then we want the predecessor block instead.
+ if (UseMI.isPHI()) {
+ MachineOperand *PredBB = std::next(&UseMO);
+ InsertBB = PredBB->getMBB();
+ }
+
+ // If the block is the same block as the def then we want to insert just after
+ // the def instead of at the start of the block.
+ if (InsertBB == DefMI.getParent()) {
+ MachineBasicBlock::iterator InsertPt = &DefMI;
+ Inserter(InsertBB, std::next(InsertPt), UseMO);
+ return;
+ }
+
+ // Otherwise we want the start of the BB
+ Inserter(InsertBB, InsertBB->getFirstNonPHI(), UseMO);
+}
+} // end anonymous namespace
+
+bool CombinerHelper::tryCombineExtendingLoads(MachineInstr &MI) {
+ PreferredTuple Preferred;
+ if (matchCombineExtendingLoads(MI, Preferred)) {
+ applyCombineExtendingLoads(MI, Preferred);
+ return true;
+ }
+ return false;
+}
+
+static unsigned getExtLoadOpcForExtend(unsigned ExtOpc) {
+ unsigned CandidateLoadOpc;
+ switch (ExtOpc) {
+ case TargetOpcode::G_ANYEXT:
+ CandidateLoadOpc = TargetOpcode::G_LOAD;
+ break;
+ case TargetOpcode::G_SEXT:
+ CandidateLoadOpc = TargetOpcode::G_SEXTLOAD;
+ break;
+ case TargetOpcode::G_ZEXT:
+ CandidateLoadOpc = TargetOpcode::G_ZEXTLOAD;
+ break;
+ default:
+ llvm_unreachable("Unexpected extend opc");
+ }
+ return CandidateLoadOpc;
+}
+
+bool CombinerHelper::matchCombineExtendingLoads(MachineInstr &MI,
+ PreferredTuple &Preferred) {
+ // We match the loads and follow the uses to the extend instead of matching
+ // the extends and following the def to the load. This is because the load
+ // must remain in the same position for correctness (unless we also add code
+ // to find a safe place to sink it) whereas the extend is freely movable.
+ // It also prevents us from duplicating the load for the volatile case or just
+ // for performance.
+ GAnyLoad *LoadMI = dyn_cast<GAnyLoad>(&MI);
+ if (!LoadMI)
+ return false;
+
+ Register LoadReg = LoadMI->getDstReg();
+
+ LLT LoadValueTy = MRI.getType(LoadReg);
+ if (!LoadValueTy.isScalar())
+ return false;
+
+ // Most architectures are going to legalize <s8 loads into at least a 1 byte
+ // load, and the MMOs can only describe memory accesses in multiples of bytes.
+ // If we try to perform extload combining on those, we can end up with
+ // %a(s8) = extload %ptr (load 1 byte from %ptr)
+ // ... which is an illegal extload instruction.
+ if (LoadValueTy.getSizeInBits() < 8)
+ return false;
+
+ // For non power-of-2 types, they will very likely be legalized into multiple
+ // loads. Don't bother trying to match them into extending loads.
+ if (!llvm::has_single_bit<uint32_t>(LoadValueTy.getSizeInBits()))
+ return false;
+
+ // Find the preferred type aside from the any-extends (unless it's the only
+ // one) and non-extending ops. We'll emit an extending load to that type and
+ // and emit a variant of (extend (trunc X)) for the others according to the
+ // relative type sizes. At the same time, pick an extend to use based on the
+ // extend involved in the chosen type.
+ unsigned PreferredOpcode =
+ isa<GLoad>(&MI)
+ ? TargetOpcode::G_ANYEXT
+ : isa<GSExtLoad>(&MI) ? TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT;
+ Preferred = {LLT(), PreferredOpcode, nullptr};
+ for (auto &UseMI : MRI.use_nodbg_instructions(LoadReg)) {
+ if (UseMI.getOpcode() == TargetOpcode::G_SEXT ||
+ UseMI.getOpcode() == TargetOpcode::G_ZEXT ||
+ (UseMI.getOpcode() == TargetOpcode::G_ANYEXT)) {
+ const auto &MMO = LoadMI->getMMO();
+ // For atomics, only form anyextending loads.
+ if (MMO.isAtomic() && UseMI.getOpcode() != TargetOpcode::G_ANYEXT)
+ continue;
+ // Check for legality.
+ if (!isPreLegalize()) {
+ LegalityQuery::MemDesc MMDesc(MMO);
+ unsigned CandidateLoadOpc = getExtLoadOpcForExtend(UseMI.getOpcode());
+ LLT UseTy = MRI.getType(UseMI.getOperand(0).getReg());
+ LLT SrcTy = MRI.getType(LoadMI->getPointerReg());
+ if (LI->getAction({CandidateLoadOpc, {UseTy, SrcTy}, {MMDesc}})
+ .Action != LegalizeActions::Legal)
+ continue;
+ }
+ Preferred = ChoosePreferredUse(MI, Preferred,
+ MRI.getType(UseMI.getOperand(0).getReg()),
+ UseMI.getOpcode(), &UseMI);
+ }
+ }
+
+ // There were no extends
+ if (!Preferred.MI)
+ return false;
+ // It should be impossible to chose an extend without selecting a different
+ // type since by definition the result of an extend is larger.
+ assert(Preferred.Ty != LoadValueTy && "Extending to same type?");
+
+ LLVM_DEBUG(dbgs() << "Preferred use is: " << *Preferred.MI);
+ return true;
+}
+
+void CombinerHelper::applyCombineExtendingLoads(MachineInstr &MI,
+ PreferredTuple &Preferred) {
+ // Rewrite the load to the chosen extending load.
+ Register ChosenDstReg = Preferred.MI->getOperand(0).getReg();
+
+ // Inserter to insert a truncate back to the original type at a given point
+ // with some basic CSE to limit truncate duplication to one per BB.
+ DenseMap<MachineBasicBlock *, MachineInstr *> EmittedInsns;
+ auto InsertTruncAt = [&](MachineBasicBlock *InsertIntoBB,
+ MachineBasicBlock::iterator InsertBefore,
+ MachineOperand &UseMO) {
+ MachineInstr *PreviouslyEmitted = EmittedInsns.lookup(InsertIntoBB);
+ if (PreviouslyEmitted) {
+ Observer.changingInstr(*UseMO.getParent());
+ UseMO.setReg(PreviouslyEmitted->getOperand(0).getReg());
+ Observer.changedInstr(*UseMO.getParent());
+ return;
+ }
+
+ Builder.setInsertPt(*InsertIntoBB, InsertBefore);
+ Register NewDstReg = MRI.cloneVirtualRegister(MI.getOperand(0).getReg());
+ MachineInstr *NewMI = Builder.buildTrunc(NewDstReg, ChosenDstReg);
+ EmittedInsns[InsertIntoBB] = NewMI;
+ replaceRegOpWith(MRI, UseMO, NewDstReg);
+ };
+
+ Observer.changingInstr(MI);
+ unsigned LoadOpc = getExtLoadOpcForExtend(Preferred.ExtendOpcode);
+ MI.setDesc(Builder.getTII().get(LoadOpc));
+
+ // Rewrite all the uses to fix up the types.
+ auto &LoadValue = MI.getOperand(0);
+ SmallVector<MachineOperand *, 4> Uses;
+ for (auto &UseMO : MRI.use_operands(LoadValue.getReg()))
+ Uses.push_back(&UseMO);
+
+ for (auto *UseMO : Uses) {
+ MachineInstr *UseMI = UseMO->getParent();
+
+ // If the extend is compatible with the preferred extend then we should fix
+ // up the type and extend so that it uses the preferred use.
+ if (UseMI->getOpcode() == Preferred.ExtendOpcode ||
+ UseMI->getOpcode() == TargetOpcode::G_ANYEXT) {
+ Register UseDstReg = UseMI->getOperand(0).getReg();
+ MachineOperand &UseSrcMO = UseMI->getOperand(1);
+ const LLT UseDstTy = MRI.getType(UseDstReg);
+ if (UseDstReg != ChosenDstReg) {
+ if (Preferred.Ty == UseDstTy) {
+ // If the use has the same type as the preferred use, then merge
+ // the vregs and erase the extend. For example:
+ // %1:_(s8) = G_LOAD ...
+ // %2:_(s32) = G_SEXT %1(s8)
+ // %3:_(s32) = G_ANYEXT %1(s8)
+ // ... = ... %3(s32)
+ // rewrites to:
+ // %2:_(s32) = G_SEXTLOAD ...
+ // ... = ... %2(s32)
+ replaceRegWith(MRI, UseDstReg, ChosenDstReg);
+ Observer.erasingInstr(*UseMO->getParent());
+ UseMO->getParent()->eraseFromParent();
+ } else if (Preferred.Ty.getSizeInBits() < UseDstTy.getSizeInBits()) {
+ // If the preferred size is smaller, then keep the extend but extend
+ // from the result of the extending load. For example:
+ // %1:_(s8) = G_LOAD ...
+ // %2:_(s32) = G_SEXT %1(s8)
+ // %3:_(s64) = G_ANYEXT %1(s8)
+ // ... = ... %3(s64)
+ /// rewrites to:
+ // %2:_(s32) = G_SEXTLOAD ...
+ // %3:_(s64) = G_ANYEXT %2:_(s32)
+ // ... = ... %3(s64)
+ replaceRegOpWith(MRI, UseSrcMO, ChosenDstReg);
+ } else {
+ // If the preferred size is large, then insert a truncate. For
+ // example:
+ // %1:_(s8) = G_LOAD ...
+ // %2:_(s64) = G_SEXT %1(s8)
+ // %3:_(s32) = G_ZEXT %1(s8)
+ // ... = ... %3(s32)
+ /// rewrites to:
+ // %2:_(s64) = G_SEXTLOAD ...
+ // %4:_(s8) = G_TRUNC %2:_(s32)
+ // %3:_(s64) = G_ZEXT %2:_(s8)
+ // ... = ... %3(s64)
+ InsertInsnsWithoutSideEffectsBeforeUse(Builder, MI, *UseMO,
+ InsertTruncAt);
+ }
+ continue;
+ }
+ // The use is (one of) the uses of the preferred use we chose earlier.
+ // We're going to update the load to def this value later so just erase
+ // the old extend.
+ Observer.erasingInstr(*UseMO->getParent());
+ UseMO->getParent()->eraseFromParent();
+ continue;
+ }
+
+ // The use isn't an extend. Truncate back to the type we originally loaded.
+ // This is free on many targets.
+ InsertInsnsWithoutSideEffectsBeforeUse(Builder, MI, *UseMO, InsertTruncAt);
+ }
+
+ MI.getOperand(0).setReg(ChosenDstReg);
+ Observer.changedInstr(MI);
+}
+
+bool CombinerHelper::matchCombineLoadWithAndMask(MachineInstr &MI,
+ BuildFnTy &MatchInfo) {
+ assert(MI.getOpcode() == TargetOpcode::G_AND);
+
+ // If we have the following code:
+ // %mask = G_CONSTANT 255
+ // %ld = G_LOAD %ptr, (load s16)
+ // %and = G_AND %ld, %mask
+ //
+ // Try to fold it into
+ // %ld = G_ZEXTLOAD %ptr, (load s8)
+
+ Register Dst = MI.getOperand(0).getReg();
+ if (MRI.getType(Dst).isVector())
+ return false;
+
+ auto MaybeMask =
+ getIConstantVRegValWithLookThrough(MI.getOperand(2).getReg(), MRI);
+ if (!MaybeMask)
+ return false;
+
+ APInt MaskVal = MaybeMask->Value;
+
+ if (!MaskVal.isMask())
+ return false;
+
+ Register SrcReg = MI.getOperand(1).getReg();
+ // Don't use getOpcodeDef() here since intermediate instructions may have
+ // multiple users.
+ GAnyLoad *LoadMI = dyn_cast<GAnyLoad>(MRI.getVRegDef(SrcReg));
+ if (!LoadMI || !MRI.hasOneNonDBGUse(LoadMI->getDstReg()))
+ return false;
+
+ Register LoadReg = LoadMI->getDstReg();
+ LLT RegTy = MRI.getType(LoadReg);
+ Register PtrReg = LoadMI->getPointerReg();
+ unsigned RegSize = RegTy.getSizeInBits();
+ uint64_t LoadSizeBits = LoadMI->getMemSizeInBits();
+ unsigned MaskSizeBits = MaskVal.countr_one();
+
+ // The mask may not be larger than the in-memory type, as it might cover sign
+ // extended bits
+ if (MaskSizeBits > LoadSizeBits)
+ return false;
+
+ // If the mask covers the whole destination register, there's nothing to
+ // extend
+ if (MaskSizeBits >= RegSize)
+ return false;
+
+ // Most targets cannot deal with loads of size < 8 and need to re-legalize to
+ // at least byte loads. Avoid creating such loads here
+ if (MaskSizeBits < 8 || !isPowerOf2_32(MaskSizeBits))
+ return false;
+
+ const MachineMemOperand &MMO = LoadMI->getMMO();
+ LegalityQuery::MemDesc MemDesc(MMO);
+
+ // Don't modify the memory access size if this is atomic/volatile, but we can
+ // still adjust the opcode to indicate the high bit behavior.
+ if (LoadMI->isSimple())
+ MemDesc.MemoryTy = LLT::scalar(MaskSizeBits);
+ else if (LoadSizeBits > MaskSizeBits || LoadSizeBits == RegSize)
+ return false;
+
+ // TODO: Could check if it's legal with the reduced or original memory size.
+ if (!isLegalOrBeforeLegalizer(
+ {TargetOpcode::G_ZEXTLOAD, {RegTy, MRI.getType(PtrReg)}, {MemDesc}}))
+ return false;
+
+ MatchInfo = [=](MachineIRBuilder &B) {
+ B.setInstrAndDebugLoc(*LoadMI);
+ auto &MF = B.getMF();
+ auto PtrInfo = MMO.getPointerInfo();
+ auto *NewMMO = MF.getMachineMemOperand(&MMO, PtrInfo, MemDesc.MemoryTy);
+ B.buildLoadInstr(TargetOpcode::G_ZEXTLOAD, Dst, PtrReg, *NewMMO);
+ LoadMI->eraseFromParent();
+ };
+ return true;
+}
+
+bool CombinerHelper::isPredecessor(const MachineInstr &DefMI,
+ const MachineInstr &UseMI) {
+ assert(!DefMI.isDebugInstr() && !UseMI.isDebugInstr() &&
+ "shouldn't consider debug uses");
+ assert(DefMI.getParent() == UseMI.getParent());
+ if (&DefMI == &UseMI)
+ return true;
+ const MachineBasicBlock &MBB = *DefMI.getParent();
+ auto DefOrUse = find_if(MBB, [&DefMI, &UseMI](const MachineInstr &MI) {
+ return &MI == &DefMI || &MI == &UseMI;
+ });
+ if (DefOrUse == MBB.end())
+ llvm_unreachable("Block must contain both DefMI and UseMI!");
+ return &*DefOrUse == &DefMI;
+}
+
+bool CombinerHelper::dominates(const MachineInstr &DefMI,
+ const MachineInstr &UseMI) {
+ assert(!DefMI.isDebugInstr() && !UseMI.isDebugInstr() &&
+ "shouldn't consider debug uses");
+ if (MDT)
+ return MDT->dominates(&DefMI, &UseMI);
+ else if (DefMI.getParent() != UseMI.getParent())
+ return false;
+
+ return isPredecessor(DefMI, UseMI);
+}
+
+bool CombinerHelper::matchSextTruncSextLoad(MachineInstr &MI) {
+ assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG);
+ Register SrcReg = MI.getOperand(1).getReg();
+ Register LoadUser = SrcReg;
+
+ if (MRI.getType(SrcReg).isVector())
+ return false;
+
+ Register TruncSrc;
+ if (mi_match(SrcReg, MRI, m_GTrunc(m_Reg(TruncSrc))))
+ LoadUser = TruncSrc;
+
+ uint64_t SizeInBits = MI.getOperand(2).getImm();
+ // If the source is a G_SEXTLOAD from the same bit width, then we don't
+ // need any extend at all, just a truncate.
+ if (auto *LoadMI = getOpcodeDef<GSExtLoad>(LoadUser, MRI)) {
+ // If truncating more than the original extended value, abort.
+ auto LoadSizeBits = LoadMI->getMemSizeInBits();
+ if (TruncSrc && MRI.getType(TruncSrc).getSizeInBits() < LoadSizeBits)
+ return false;
+ if (LoadSizeBits == SizeInBits)
+ return true;
+ }
+ return false;
+}
+
+void CombinerHelper::applySextTruncSextLoad(MachineInstr &MI) {
+ assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG);
+ Builder.setInstrAndDebugLoc(MI);
+ Builder.buildCopy(MI.getOperand(0).getReg(), MI.getOperand(1).getReg());
+ MI.eraseFromParent();
+}
+
+bool CombinerHelper::matchSextInRegOfLoad(
+ MachineInstr &MI, std::tuple<Register, unsigned> &MatchInfo) {
+ assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG);
+
+ Register DstReg = MI.getOperand(0).getReg();
+ LLT RegTy = MRI.getType(DstReg);
+
+ // Only supports scalars for now.
+ if (RegTy.isVector())
+ return false;
+
+ Register SrcReg = MI.getOperand(1).getReg();
+ auto *LoadDef = getOpcodeDef<GLoad>(SrcReg, MRI);
+ if (!LoadDef || !MRI.hasOneNonDBGUse(DstReg))
+ return false;
+
+ uint64_t MemBits = LoadDef->getMemSizeInBits();
+
+ // If the sign extend extends from a narrower width than the load's width,
+ // then we can narrow the load width when we combine to a G_SEXTLOAD.
+ // Avoid widening the load at all.
+ unsigned NewSizeBits = std::min((uint64_t)MI.getOperand(2).getImm(), MemBits);
+
+ // Don't generate G_SEXTLOADs with a < 1 byte width.
+ if (NewSizeBits < 8)
+ return false;
+ // Don't bother creating a non-power-2 sextload, it will likely be broken up
+ // anyway for most targets.
+ if (!isPowerOf2_32(NewSizeBits))
+ return false;
+
+ const MachineMemOperand &MMO = LoadDef->getMMO();
+ LegalityQuery::MemDesc MMDesc(MMO);
+
+ // Don't modify the memory access size if this is atomic/volatile, but we can
+ // still adjust the opcode to indicate the high bit behavior.
+ if (LoadDef->isSimple())
+ MMDesc.MemoryTy = LLT::scalar(NewSizeBits);
+ else if (MemBits > NewSizeBits || MemBits == RegTy.getSizeInBits())
+ return false;
+
+ // TODO: Could check if it's legal with the reduced or original memory size.
+ if (!isLegalOrBeforeLegalizer({TargetOpcode::G_SEXTLOAD,
+ {MRI.getType(LoadDef->getDstReg()),
+ MRI.getType(LoadDef->getPointerReg())},
+ {MMDesc}}))
+ return false;
+
+ MatchInfo = std::make_tuple(LoadDef->getDstReg(), NewSizeBits);
+ return true;
+}
+
+void CombinerHelper::applySextInRegOfLoad(
+ MachineInstr &MI, std::tuple<Register, unsigned> &MatchInfo) {
+ assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG);
+ Register LoadReg;
+ unsigned ScalarSizeBits;
+ std::tie(LoadReg, ScalarSizeBits) = MatchInfo;
+ GLoad *LoadDef = cast<GLoad>(MRI.getVRegDef(LoadReg));
+
+ // If we have the following:
+ // %ld = G_LOAD %ptr, (load 2)
+ // %ext = G_SEXT_INREG %ld, 8
+ // ==>
+ // %ld = G_SEXTLOAD %ptr (load 1)
+
+ auto &MMO = LoadDef->getMMO();
+ Builder.setInstrAndDebugLoc(*LoadDef);
+ auto &MF = Builder.getMF();
+ auto PtrInfo = MMO.getPointerInfo();
+ auto *NewMMO = MF.getMachineMemOperand(&MMO, PtrInfo, ScalarSizeBits / 8);
+ Builder.buildLoadInstr(TargetOpcode::G_SEXTLOAD, MI.getOperand(0).getReg(),
+ LoadDef->getPointerReg(), *NewMMO);
+ MI.eraseFromParent();
+}
+
+static Type *getTypeForLLT(LLT Ty, LLVMContext &C) {
+ if (Ty.isVector())
+ return FixedVectorType::get(IntegerType::get(C, Ty.getScalarSizeInBits()),
+ Ty.getNumElements());
+ return IntegerType::get(C, Ty.getSizeInBits());
+}
+
+/// Return true if 'MI' is a load or a store that may be fold it's address
+/// operand into the load / store addressing mode.
+static bool canFoldInAddressingMode(GLoadStore *MI, const TargetLowering &TLI,
+ MachineRegisterInfo &MRI) {
+ TargetLowering::AddrMode AM;
+ auto *MF = MI->getMF();
+ auto *Addr = getOpcodeDef<GPtrAdd>(MI->getPointerReg(), MRI);
+ if (!Addr)
+ return false;
+
+ AM.HasBaseReg = true;
+ if (auto CstOff = getIConstantVRegVal(Addr->getOffsetReg(), MRI))
+ AM.BaseOffs = CstOff->getSExtValue(); // [reg +/- imm]
+ else
+ AM.Scale = 1; // [reg +/- reg]
+
+ return TLI.isLegalAddressingMode(
+ MF->getDataLayout(), AM,
+ getTypeForLLT(MI->getMMO().getMemoryType(),
+ MF->getFunction().getContext()),
+ MI->getMMO().getAddrSpace());
+}
+
+static unsigned getIndexedOpc(unsigned LdStOpc) {
+ switch (LdStOpc) {
+ case TargetOpcode::G_LOAD:
+ return TargetOpcode::G_INDEXED_LOAD;
+ case TargetOpcode::G_STORE:
+ return TargetOpcode::G_INDEXED_STORE;
+ case TargetOpcode::G_ZEXTLOAD:
+ return TargetOpcode::G_INDEXED_ZEXTLOAD;
+ case TargetOpcode::G_SEXTLOAD:
+ return TargetOpcode::G_INDEXED_SEXTLOAD;
+ default:
+ llvm_unreachable("Unexpected opcode");
+ }
+}
+
+bool CombinerHelper::isIndexedLoadStoreLegal(GLoadStore &LdSt) const {
+ // Check for legality.
+ LLT PtrTy = MRI.getType(LdSt.getPointerReg());
+ LLT Ty = MRI.getType(LdSt.getReg(0));
+ LLT MemTy = LdSt.getMMO().getMemoryType();
+ SmallVector<LegalityQuery::MemDesc, 2> MemDescrs(
+ {{MemTy, MemTy.getSizeInBits(), AtomicOrdering::NotAtomic}});
+ unsigned IndexedOpc = getIndexedOpc(LdSt.getOpcode());
+ SmallVector<LLT> OpTys;
+ if (IndexedOpc == TargetOpcode::G_INDEXED_STORE)
+ OpTys = {PtrTy, Ty, Ty};
+ else
+ OpTys = {Ty, PtrTy}; // For G_INDEXED_LOAD, G_INDEXED_[SZ]EXTLOAD
+
+ LegalityQuery Q(IndexedOpc, OpTys, MemDescrs);
+ return isLegal(Q);
+}
+
+static cl::opt<unsigned> PostIndexUseThreshold(
+ "post-index-use-threshold", cl::Hidden, cl::init(32),
+ cl::desc("Number of uses of a base pointer to check before it is no longer "
+ "considered for post-indexing."));
+
+bool CombinerHelper::findPostIndexCandidate(GLoadStore &LdSt, Register &Addr,
+ Register &Base, Register &Offset,
+ bool &RematOffset) {
+ // We're looking for the following pattern, for either load or store:
+ // %baseptr:_(p0) = ...
+ // G_STORE %val(s64), %baseptr(p0)
+ // %offset:_(s64) = G_CONSTANT i64 -256
+ // %new_addr:_(p0) = G_PTR_ADD %baseptr, %offset(s64)
+ const auto &TLI = getTargetLowering();
+
+ Register Ptr = LdSt.getPointerReg();
+ // If the store is the only use, don't bother.
+ if (MRI.hasOneNonDBGUse(Ptr))
+ return false;
+
+ if (!isIndexedLoadStoreLegal(LdSt))
+ return false;
+
+ if (getOpcodeDef(TargetOpcode::G_FRAME_INDEX, Ptr, MRI))
+ return false;
+
+ MachineInstr *StoredValDef = getDefIgnoringCopies(LdSt.getReg(0), MRI);
+ auto *PtrDef = MRI.getVRegDef(Ptr);
+
+ unsigned NumUsesChecked = 0;
+ for (auto &Use : MRI.use_nodbg_instructions(Ptr)) {
+ if (++NumUsesChecked > PostIndexUseThreshold)
+ return false; // Try to avoid exploding compile time.
+
+ auto *PtrAdd = dyn_cast<GPtrAdd>(&Use);
+ // The use itself might be dead. This can happen during combines if DCE
+ // hasn't had a chance to run yet. Don't allow it to form an indexed op.
+ if (!PtrAdd || MRI.use_nodbg_empty(PtrAdd->getReg(0)))
+ continue;
+
+ // Check the user of this isn't the store, otherwise we'd be generate a
+ // indexed store defining its own use.
+ if (StoredValDef == &Use)
+ continue;
+
+ Offset = PtrAdd->getOffsetReg();
+ if (!ForceLegalIndexing &&
+ !TLI.isIndexingLegal(LdSt, PtrAdd->getBaseReg(), Offset,
+ /*IsPre*/ false, MRI))
+ continue;
+
+ // Make sure the offset calculation is before the potentially indexed op.
+ MachineInstr *OffsetDef = MRI.getVRegDef(Offset);
+ RematOffset = false;
+ if (!dominates(*OffsetDef, LdSt)) {
+ // If the offset however is just a G_CONSTANT, we can always just
+ // rematerialize it where we need it.
+ if (OffsetDef->getOpcode() != TargetOpcode::G_CONSTANT)
+ continue;
+ RematOffset = true;
+ }
+
+ for (auto &BasePtrUse : MRI.use_nodbg_instructions(PtrAdd->getBaseReg())) {
+ if (&BasePtrUse == PtrDef)
+ continue;
+
+ // If the user is a later load/store that can be post-indexed, then don't
+ // combine this one.
+ auto *BasePtrLdSt = dyn_cast<GLoadStore>(&BasePtrUse);
+ if (BasePtrLdSt && BasePtrLdSt != &LdSt &&
+ dominates(LdSt, *BasePtrLdSt) &&
+ isIndexedLoadStoreLegal(*BasePtrLdSt))
+ return false;
+
+ // Now we're looking for the key G_PTR_ADD instruction, which contains
+ // the offset add that we want to fold.
+ if (auto *BasePtrUseDef = dyn_cast<GPtrAdd>(&BasePtrUse)) {
+ Register PtrAddDefReg = BasePtrUseDef->getReg(0);
+ for (auto &BaseUseUse : MRI.use_nodbg_instructions(PtrAddDefReg)) {
+ // If the use is in a different block, then we may produce worse code
+ // due to the extra register pressure.
+ if (BaseUseUse.getParent() != LdSt.getParent())
+ return false;
+
+ if (auto *UseUseLdSt = dyn_cast<GLoadStore>(&BaseUseUse))
+ if (canFoldInAddressingMode(UseUseLdSt, TLI, MRI))
+ return false;
+ }
+ if (!dominates(LdSt, BasePtrUse))
+ return false; // All use must be dominated by the load/store.
+ }
+ }
+
+ Addr = PtrAdd->getReg(0);
+ Base = PtrAdd->getBaseReg();
+ return true;
+ }
+
+ return false;
+}
+
+bool CombinerHelper::findPreIndexCandidate(GLoadStore &LdSt, Register &Addr,
+ Register &Base, Register &Offset) {
+ auto &MF = *LdSt.getParent()->getParent();
+ const auto &TLI = *MF.getSubtarget().getTargetLowering();
+
+ Addr = LdSt.getPointerReg();
+ if (!mi_match(Addr, MRI, m_GPtrAdd(m_Reg(Base), m_Reg(Offset))) ||
+ MRI.hasOneNonDBGUse(Addr))
+ return false;
+
+ if (!ForceLegalIndexing &&
+ !TLI.isIndexingLegal(LdSt, Base, Offset, /*IsPre*/ true, MRI))
+ return false;
+
+ if (!isIndexedLoadStoreLegal(LdSt))
+ return false;
+
+ MachineInstr *BaseDef = getDefIgnoringCopies(Base, MRI);
+ if (BaseDef->getOpcode() == TargetOpcode::G_FRAME_INDEX)
+ return false;
+
+ if (auto *St = dyn_cast<GStore>(&LdSt)) {
+ // Would require a copy.
+ if (Base == St->getValueReg())
+ return false;
+
+ // We're expecting one use of Addr in MI, but it could also be the
+ // value stored, which isn't actually dominated by the instruction.
+ if (St->getValueReg() == Addr)
+ return false;
+ }
+
+ // Avoid increasing cross-block register pressure.
+ for (auto &AddrUse : MRI.use_nodbg_instructions(Addr))
+ if (AddrUse.getParent() != LdSt.getParent())
+ return false;
+
+ // FIXME: check whether all uses of the base pointer are constant PtrAdds.
+ // That might allow us to end base's liveness here by adjusting the constant.
+ bool RealUse = false;
+ for (auto &AddrUse : MRI.use_nodbg_instructions(Addr)) {
+ if (!dominates(LdSt, AddrUse))
+ return false; // All use must be dominated by the load/store.
+
+ // If Ptr may be folded in addressing mode of other use, then it's
+ // not profitable to do this transformation.
+ if (auto *UseLdSt = dyn_cast<GLoadStore>(&AddrUse)) {
+ if (!canFoldInAddressingMode(UseLdSt, TLI, MRI))
+ RealUse = true;
+ } else {
+ RealUse = true;
+ }
+ }
+ return RealUse;
+}
+
+bool CombinerHelper::matchCombineExtractedVectorLoad(MachineInstr &MI,
+ BuildFnTy &MatchInfo) {
+ assert(MI.getOpcode() == TargetOpcode::G_EXTRACT_VECTOR_ELT);
+
+ // Check if there is a load that defines the vector being extracted from.
+ auto *LoadMI = getOpcodeDef<GLoad>(MI.getOperand(1).getReg(), MRI);
+ if (!LoadMI)
+ return false;
+
+ Register Vector = MI.getOperand(1).getReg();
+ LLT VecEltTy = MRI.getType(Vector).getElementType();
+
+ assert(MRI.getType(MI.getOperand(0).getReg()) == VecEltTy);
+
+ // Checking whether we should reduce the load width.
+ if (!MRI.hasOneNonDBGUse(Vector))
+ return false;
+
+ // Check if the defining load is simple.
+ if (!LoadMI->isSimple())
+ return false;
+
+ // If the vector element type is not a multiple of a byte then we are unable
+ // to correctly compute an address to load only the extracted element as a
+ // scalar.
+ if (!VecEltTy.isByteSized())
+ return false;
+
+ // Check if the new load that we are going to create is legal
+ // if we are in the post-legalization phase.
+ MachineMemOperand MMO = LoadMI->getMMO();
+ Align Alignment = MMO.getAlign();
+ MachinePointerInfo PtrInfo;
+ uint64_t Offset;
+
+ // Finding the appropriate PtrInfo if offset is a known constant.
+ // This is required to create the memory operand for the narrowed load.
+ // This machine memory operand object helps us infer about legality
+ // before we proceed to combine the instruction.
+ if (auto CVal = getIConstantVRegVal(Vector, MRI)) {
+ int Elt = CVal->getZExtValue();
+ // FIXME: should be (ABI size)*Elt.
+ Offset = VecEltTy.getSizeInBits() * Elt / 8;
+ PtrInfo = MMO.getPointerInfo().getWithOffset(Offset);
+ } else {
+ // Discard the pointer info except the address space because the memory
+ // operand can't represent this new access since the offset is variable.
+ Offset = VecEltTy.getSizeInBits() / 8;
+ PtrInfo = MachinePointerInfo(MMO.getPointerInfo().getAddrSpace());
+ }
+
+ Alignment = commonAlignment(Alignment, Offset);
+
+ Register VecPtr = LoadMI->getPointerReg();
+ LLT PtrTy = MRI.getType(VecPtr);
+
+ MachineFunction &MF = *MI.getMF();
+ auto *NewMMO = MF.getMachineMemOperand(&MMO, PtrInfo, VecEltTy);
+
+ LegalityQuery::MemDesc MMDesc(*NewMMO);
+
+ LegalityQuery Q = {TargetOpcode::G_LOAD, {VecEltTy, PtrTy}, {MMDesc}};
+
+ if (!isLegalOrBeforeLegalizer(Q))
+ return false;
+
+ // Load must be allowed and fast on the target.
+ LLVMContext &C = MF.getFunction().getContext();
+ auto &DL = MF.getDataLayout();
+ unsigned Fast = 0;
+ if (!getTargetLowering().allowsMemoryAccess(C, DL, VecEltTy, *NewMMO,
+ &Fast) ||
+ !Fast)
+ return false;
+
+ Register Result = MI.getOperand(0).getReg();
+ Register Index = MI.getOperand(2).getReg();
+
+ MatchInfo = [=](MachineIRBuilder &B) {
+ GISelObserverWrapper DummyObserver;
+ LegalizerHelper Helper(B.getMF(), DummyObserver, B);
+ //// Get pointer to the vector element.
+ Register finalPtr = Helper.getVectorElementPointer(
+ LoadMI->getPointerReg(), MRI.getType(LoadMI->getOperand(0).getReg()),
+ Index);
+ // New G_LOAD instruction.
+ B.buildLoad(Result, finalPtr, PtrInfo, Alignment);
+ // Remove original GLOAD instruction.
+ LoadMI->eraseFromParent();
+ };
+
+ return true;
+}
+
+bool CombinerHelper::matchCombineIndexedLoadStore(
+ MachineInstr &MI, IndexedLoadStoreMatchInfo &MatchInfo) {
+ auto &LdSt = cast<GLoadStore>(MI);
+
+ if (LdSt.isAtomic())
+ return false;
+
+ MatchInfo.IsPre = findPreIndexCandidate(LdSt, MatchInfo.Addr, MatchInfo.Base,
+ MatchInfo.Offset);
+ if (!MatchInfo.IsPre &&
+ !findPostIndexCandidate(LdSt, MatchInfo.Addr, MatchInfo.Base,
+ MatchInfo.Offset, MatchInfo.RematOffset))
+ return false;
+
+ return true;
+}
+
+void CombinerHelper::applyCombineIndexedLoadStore(
+ MachineInstr &MI, IndexedLoadStoreMatchInfo &MatchInfo) {
+ MachineInstr &AddrDef = *MRI.getUniqueVRegDef(MatchInfo.Addr);
+ Builder.setInstrAndDebugLoc(MI);
+ unsigned Opcode = MI.getOpcode();
+ bool IsStore = Opcode == TargetOpcode::G_STORE;
+ unsigned NewOpcode = getIndexedOpc(Opcode);
+
+ // If the offset constant didn't happen to dominate the load/store, we can
+ // just clone it as needed.
+ if (MatchInfo.RematOffset) {
+ auto *OldCst = MRI.getVRegDef(MatchInfo.Offset);
+ auto NewCst = Builder.buildConstant(MRI.getType(MatchInfo.Offset),
+ *OldCst->getOperand(1).getCImm());
+ MatchInfo.Offset = NewCst.getReg(0);
+ }
+
+ auto MIB = Builder.buildInstr(NewOpcode);
+ if (IsStore) {
+ MIB.addDef(MatchInfo.Addr);
+ MIB.addUse(MI.getOperand(0).getReg());
+ } else {
+ MIB.addDef(MI.getOperand(0).getReg());
+ MIB.addDef(MatchInfo.Addr);
+ }
+
+ MIB.addUse(MatchInfo.Base);
+ MIB.addUse(MatchInfo.Offset);
+ MIB.addImm(MatchInfo.IsPre);
+ MIB->cloneMemRefs(*MI.getMF(), MI);
+ MI.eraseFromParent();
+ AddrDef.eraseFromParent();
+
+ LLVM_DEBUG(dbgs() << " Combinined to indexed operation");
+}
+
+bool CombinerHelper::matchCombineDivRem(MachineInstr &MI,
+ MachineInstr *&OtherMI) {
+ unsigned Opcode = MI.getOpcode();
+ bool IsDiv, IsSigned;
+
+ switch (Opcode) {
+ default:
+ llvm_unreachable("Unexpected opcode!");
+ case TargetOpcode::G_SDIV:
+ case TargetOpcode::G_UDIV: {
+ IsDiv = true;
+ IsSigned = Opcode == TargetOpcode::G_SDIV;
+ break;
+ }
+ case TargetOpcode::G_SREM:
+ case TargetOpcode::G_UREM: {
+ IsDiv = false;
+ IsSigned = Opcode == TargetOpcode::G_SREM;
+ break;
+ }
+ }
+
+ Register Src1 = MI.getOperand(1).getReg();
+ unsigned DivOpcode, RemOpcode, DivremOpcode;
+ if (IsSigned) {
+ DivOpcode = TargetOpcode::G_SDIV;
+ RemOpcode = TargetOpcode::G_SREM;
+ DivremOpcode = TargetOpcode::G_SDIVREM;
+ } else {
+ DivOpcode = TargetOpcode::G_UDIV;
+ RemOpcode = TargetOpcode::G_UREM;
+ DivremOpcode = TargetOpcode::G_UDIVREM;
+ }
+
+ if (!isLegalOrBeforeLegalizer({DivremOpcode, {MRI.getType(Src1)}}))
+ return false;
+
+ // Combine:
+ // %div:_ = G_[SU]DIV %src1:_, %src2:_
+ // %rem:_ = G_[SU]REM %src1:_, %src2:_
+ // into:
+ // %div:_, %rem:_ = G_[SU]DIVREM %src1:_, %src2:_
+
+ // Combine:
+ // %rem:_ = G_[SU]REM %src1:_, %src2:_
+ // %div:_ = G_[SU]DIV %src1:_, %src2:_
+ // into:
+ // %div:_, %rem:_ = G_[SU]DIVREM %src1:_, %src2:_
+
+ for (auto &UseMI : MRI.use_nodbg_instructions(Src1)) {
+ if (MI.getParent() == UseMI.getParent() &&
+ ((IsDiv && UseMI.getOpcode() == RemOpcode) ||
+ (!IsDiv && UseMI.getOpcode() == DivOpcode)) &&
+ matchEqualDefs(MI.getOperand(2), UseMI.getOperand(2)) &&
+ matchEqualDefs(MI.getOperand(1), UseMI.getOperand(1))) {
+ OtherMI = &UseMI;
+ return true;
+ }
+ }
+
+ return false;
+}
+
+void CombinerHelper::applyCombineDivRem(MachineInstr &MI,
+ MachineInstr *&OtherMI) {
+ unsigned Opcode = MI.getOpcode();
+ assert(OtherMI && "OtherMI shouldn't be empty.");
+
+ Register DestDivReg, DestRemReg;
+ if (Opcode == TargetOpcode::G_SDIV || Opcode == TargetOpcode::G_UDIV) {
+ DestDivReg = MI.getOperand(0).getReg();
+ DestRemReg = OtherMI->getOperand(0).getReg();
+ } else {
+ DestDivReg = OtherMI->getOperand(0).getReg();
+ DestRemReg = MI.getOperand(0).getReg();
+ }
+
+ bool IsSigned =
+ Opcode == TargetOpcode::G_SDIV || Opcode == TargetOpcode::G_SREM;
+
+ // Check which instruction is first in the block so we don't break def-use
+ // deps by "moving" the instruction incorrectly. Also keep track of which
+ // instruction is first so we pick it's operands, avoiding use-before-def
+ // bugs.
+ MachineInstr *FirstInst;
+ if (dominates(MI, *OtherMI)) {
+ Builder.setInstrAndDebugLoc(MI);
+ FirstInst = &MI;
+ } else {
+ Builder.setInstrAndDebugLoc(*OtherMI);
+ FirstInst = OtherMI;
+ }
+
+ Builder.buildInstr(IsSigned ? TargetOpcode::G_SDIVREM
+ : TargetOpcode::G_UDIVREM,
+ {DestDivReg, DestRemReg},
+ { FirstInst->getOperand(1), FirstInst->getOperand(2) });
+ MI.eraseFromParent();
+ OtherMI->eraseFromParent();
+}
+
+bool CombinerHelper::matchOptBrCondByInvertingCond(MachineInstr &MI,
+ MachineInstr *&BrCond) {
+ assert(MI.getOpcode() == TargetOpcode::G_BR);
+
+ // Try to match the following:
+ // bb1:
+ // G_BRCOND %c1, %bb2
+ // G_BR %bb3
+ // bb2:
+ // ...
+ // bb3:
+
+ // The above pattern does not have a fall through to the successor bb2, always
+ // resulting in a branch no matter which path is taken. Here we try to find
+ // and replace that pattern with conditional branch to bb3 and otherwise
+ // fallthrough to bb2. This is generally better for branch predictors.
+
+ MachineBasicBlock *MBB = MI.getParent();
+ MachineBasicBlock::iterator BrIt(MI);
+ if (BrIt == MBB->begin())
+ return false;
+ assert(std::next(BrIt) == MBB->end() && "expected G_BR to be a terminator");
+
+ BrCond = &*std::prev(BrIt);
+ if (BrCond->getOpcode() != TargetOpcode::G_BRCOND)
+ return false;
+
+ // Check that the next block is the conditional branch target. Also make sure
+ // that it isn't the same as the G_BR's target (otherwise, this will loop.)
+ MachineBasicBlock *BrCondTarget = BrCond->getOperand(1).getMBB();
+ return BrCondTarget != MI.getOperand(0).getMBB() &&
+ MBB->isLayoutSuccessor(BrCondTarget);
+}
+
+void CombinerHelper::applyOptBrCondByInvertingCond(MachineInstr &MI,
+ MachineInstr *&BrCond) {
+ MachineBasicBlock *BrTarget = MI.getOperand(0).getMBB();
+ Builder.setInstrAndDebugLoc(*BrCond);
+ LLT Ty = MRI.getType(BrCond->getOperand(0).getReg());
+ // FIXME: Does int/fp matter for this? If so, we might need to restrict
+ // this to i1 only since we might not know for sure what kind of
+ // compare generated the condition value.
+ auto True = Builder.buildConstant(
+ Ty, getICmpTrueVal(getTargetLowering(), false, false));
+ auto Xor = Builder.buildXor(Ty, BrCond->getOperand(0), True);
+
+ auto *FallthroughBB = BrCond->getOperand(1).getMBB();
+ Observer.changingInstr(MI);
+ MI.getOperand(0).setMBB(FallthroughBB);
+ Observer.changedInstr(MI);
+
+ // Change the conditional branch to use the inverted condition and
+ // new target block.
+ Observer.changingInstr(*BrCond);
+ BrCond->getOperand(0).setReg(Xor.getReg(0));
+ BrCond->getOperand(1).setMBB(BrTarget);
+ Observer.changedInstr(*BrCond);
+}
+
+
+bool CombinerHelper::tryEmitMemcpyInline(MachineInstr &MI) {
+ MachineIRBuilder HelperBuilder(MI);
+ GISelObserverWrapper DummyObserver;
+ LegalizerHelper Helper(HelperBuilder.getMF(), DummyObserver, HelperBuilder);
+ return Helper.lowerMemcpyInline(MI) ==
+ LegalizerHelper::LegalizeResult::Legalized;
+}
+
+bool CombinerHelper::tryCombineMemCpyFamily(MachineInstr &MI, unsigned MaxLen) {
+ MachineIRBuilder HelperBuilder(MI);
+ GISelObserverWrapper DummyObserver;
+ LegalizerHelper Helper(HelperBuilder.getMF(), DummyObserver, HelperBuilder);
+ return Helper.lowerMemCpyFamily(MI, MaxLen) ==
+ LegalizerHelper::LegalizeResult::Legalized;
+}
+
+static APFloat constantFoldFpUnary(const MachineInstr &MI,
+ const MachineRegisterInfo &MRI,
+ const APFloat &Val) {
+ APFloat Result(Val);
+ switch (MI.getOpcode()) {
+ default:
+ llvm_unreachable("Unexpected opcode!");
+ case TargetOpcode::G_FNEG: {
+ Result.changeSign();
+ return Result;
+ }
+ case TargetOpcode::G_FABS: {
+ Result.clearSign();
+ return Result;
+ }
+ case TargetOpcode::G_FPTRUNC: {
+ bool Unused;
+ LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
+ Result.convert(getFltSemanticForLLT(DstTy), APFloat::rmNearestTiesToEven,
+ &Unused);
+ return Result;
+ }
+ case TargetOpcode::G_FSQRT: {
+ bool Unused;
+ Result.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven,
+ &Unused);
+ Result = APFloat(sqrt(Result.convertToDouble()));
+ break;
+ }
+ case TargetOpcode::G_FLOG2: {
+ bool Unused;
+ Result.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven,
+ &Unused);
+ Result = APFloat(log2(Result.convertToDouble()));
+ break;
+ }
+ }
+ // Convert `APFloat` to appropriate IEEE type depending on `DstTy`. Otherwise,
+ // `buildFConstant` will assert on size mismatch. Only `G_FSQRT`, and
+ // `G_FLOG2` reach here.
+ bool Unused;
+ Result.convert(Val.getSemantics(), APFloat::rmNearestTiesToEven, &Unused);
+ return Result;
+}
+
+void CombinerHelper::applyCombineConstantFoldFpUnary(MachineInstr &MI,
+ const ConstantFP *Cst) {
+ Builder.setInstrAndDebugLoc(MI);
+ APFloat Folded = constantFoldFpUnary(MI, MRI, Cst->getValue());
+ const ConstantFP *NewCst = ConstantFP::get(Builder.getContext(), Folded);
+ Builder.buildFConstant(MI.getOperand(0), *NewCst);
+ MI.eraseFromParent();
+}
+
+bool CombinerHelper::matchPtrAddImmedChain(MachineInstr &MI,
+ PtrAddChain &MatchInfo) {
+ // We're trying to match the following pattern:
+ // %t1 = G_PTR_ADD %base, G_CONSTANT imm1
+ // %root = G_PTR_ADD %t1, G_CONSTANT imm2
+ // -->
+ // %root = G_PTR_ADD %base, G_CONSTANT (imm1 + imm2)
+
+ if (MI.getOpcode() != TargetOpcode::G_PTR_ADD)
+ return false;
+
+ Register Add2 = MI.getOperand(1).getReg();
+ Register Imm1 = MI.getOperand(2).getReg();
+ auto MaybeImmVal = getIConstantVRegValWithLookThrough(Imm1, MRI);
+ if (!MaybeImmVal)
+ return false;
+
+ MachineInstr *Add2Def = MRI.getVRegDef(Add2);
+ if (!Add2Def || Add2Def->getOpcode() != TargetOpcode::G_PTR_ADD)
+ return false;
+
+ Register Base = Add2Def->getOperand(1).getReg();
+ Register Imm2 = Add2Def->getOperand(2).getReg();
+ auto MaybeImm2Val = getIConstantVRegValWithLookThrough(Imm2, MRI);
+ if (!MaybeImm2Val)
+ return false;
+
+ // Check if the new combined immediate forms an illegal addressing mode.
+ // Do not combine if it was legal before but would get illegal.
+ // To do so, we need to find a load/store user of the pointer to get
+ // the access type.
+ Type *AccessTy = nullptr;
+ auto &MF = *MI.getMF();
+ for (auto &UseMI : MRI.use_nodbg_instructions(MI.getOperand(0).getReg())) {
+ if (auto *LdSt = dyn_cast<GLoadStore>(&UseMI)) {
+ AccessTy = getTypeForLLT(MRI.getType(LdSt->getReg(0)),
+ MF.getFunction().getContext());
+ break;
+ }
+ }
+ TargetLoweringBase::AddrMode AMNew;
+ APInt CombinedImm = MaybeImmVal->Value + MaybeImm2Val->Value;
+ AMNew.BaseOffs = CombinedImm.getSExtValue();
+ if (AccessTy) {
+ AMNew.HasBaseReg = true;
+ TargetLoweringBase::AddrMode AMOld;
+ AMOld.BaseOffs = MaybeImmVal->Value.getSExtValue();
+ AMOld.HasBaseReg = true;
+ unsigned AS = MRI.getType(Add2).getAddressSpace();
+ const auto &TLI = *MF.getSubtarget().getTargetLowering();
+ if (TLI.isLegalAddressingMode(MF.getDataLayout(), AMOld, AccessTy, AS) &&
+ !TLI.isLegalAddressingMode(MF.getDataLayout(), AMNew, AccessTy, AS))
+ return false;
+ }
+
+ // Pass the combined immediate to the apply function.
+ MatchInfo.Imm = AMNew.BaseOffs;
+ MatchInfo.Base = Base;
+ MatchInfo.Bank = getRegBank(Imm2);
+ return true;
+}
+
+void CombinerHelper::applyPtrAddImmedChain(MachineInstr &MI,
+ PtrAddChain &MatchInfo) {
+ assert(MI.getOpcode() == TargetOpcode::G_PTR_ADD && "Expected G_PTR_ADD");
+ MachineIRBuilder MIB(MI);
+ LLT OffsetTy = MRI.getType(MI.getOperand(2).getReg());
+ auto NewOffset = MIB.buildConstant(OffsetTy, MatchInfo.Imm);
+ setRegBank(NewOffset.getReg(0), MatchInfo.Bank);
+ Observer.changingInstr(MI);
+ MI.getOperand(1).setReg(MatchInfo.Base);
+ MI.getOperand(2).setReg(NewOffset.getReg(0));
+ Observer.changedInstr(MI);
+}
+
+bool CombinerHelper::matchShiftImmedChain(MachineInstr &MI,
+ RegisterImmPair &MatchInfo) {
+ // We're trying to match the following pattern with any of
+ // G_SHL/G_ASHR/G_LSHR/G_SSHLSAT/G_USHLSAT shift instructions:
+ // %t1 = SHIFT %base, G_CONSTANT imm1
+ // %root = SHIFT %t1, G_CONSTANT imm2
+ // -->
+ // %root = SHIFT %base, G_CONSTANT (imm1 + imm2)
+
+ unsigned Opcode = MI.getOpcode();
+ assert((Opcode == TargetOpcode::G_SHL || Opcode == TargetOpcode::G_ASHR ||
+ Opcode == TargetOpcode::G_LSHR || Opcode == TargetOpcode::G_SSHLSAT ||
+ Opcode == TargetOpcode::G_USHLSAT) &&
+ "Expected G_SHL, G_ASHR, G_LSHR, G_SSHLSAT or G_USHLSAT");
+
+ Register Shl2 = MI.getOperand(1).getReg();
+ Register Imm1 = MI.getOperand(2).getReg();
+ auto MaybeImmVal = getIConstantVRegValWithLookThrough(Imm1, MRI);
+ if (!MaybeImmVal)
+ return false;
+
+ MachineInstr *Shl2Def = MRI.getUniqueVRegDef(Shl2);
+ if (Shl2Def->getOpcode() != Opcode)
+ return false;
+
+ Register Base = Shl2Def->getOperand(1).getReg();
+ Register Imm2 = Shl2Def->getOperand(2).getReg();
+ auto MaybeImm2Val = getIConstantVRegValWithLookThrough(Imm2, MRI);
+ if (!MaybeImm2Val)
+ return false;
+
+ // Pass the combined immediate to the apply function.
+ MatchInfo.Imm =
+ (MaybeImmVal->Value.getZExtValue() + MaybeImm2Val->Value).getZExtValue();
+ MatchInfo.Reg = Base;
+
+ // There is no simple replacement for a saturating unsigned left shift that
+ // exceeds the scalar size.
+ if (Opcode == TargetOpcode::G_USHLSAT &&
+ MatchInfo.Imm >= MRI.getType(Shl2).getScalarSizeInBits())
+ return false;
+
+ return true;
+}
+
+void CombinerHelper::applyShiftImmedChain(MachineInstr &MI,
+ RegisterImmPair &MatchInfo) {
+ unsigned Opcode = MI.getOpcode();
+ assert((Opcode == TargetOpcode::G_SHL || Opcode == TargetOpcode::G_ASHR ||
+ Opcode == TargetOpcode::G_LSHR || Opcode == TargetOpcode::G_SSHLSAT ||
+ Opcode == TargetOpcode::G_USHLSAT) &&
+ "Expected G_SHL, G_ASHR, G_LSHR, G_SSHLSAT or G_USHLSAT");
+
+ Builder.setInstrAndDebugLoc(MI);
+ LLT Ty = MRI.getType(MI.getOperand(1).getReg());
+ unsigned const ScalarSizeInBits = Ty.getScalarSizeInBits();
+ auto Imm = MatchInfo.Imm;
+
+ if (Imm >= ScalarSizeInBits) {
+ // Any logical shift that exceeds scalar size will produce zero.
+ if (Opcode == TargetOpcode::G_SHL || Opcode == TargetOpcode::G_LSHR) {
+ Builder.buildConstant(MI.getOperand(0), 0);
+ MI.eraseFromParent();
+ return;
+ }
+ // Arithmetic shift and saturating signed left shift have no effect beyond
+ // scalar size.
+ Imm = ScalarSizeInBits - 1;
+ }
+
+ LLT ImmTy = MRI.getType(MI.getOperand(2).getReg());
+ Register NewImm = Builder.buildConstant(ImmTy, Imm).getReg(0);
+ Observer.changingInstr(MI);
+ MI.getOperand(1).setReg(MatchInfo.Reg);
+ MI.getOperand(2).setReg(NewImm);
+ Observer.changedInstr(MI);
+}
+
+bool CombinerHelper::matchShiftOfShiftedLogic(MachineInstr &MI,
+ ShiftOfShiftedLogic &MatchInfo) {
+ // We're trying to match the following pattern with any of
+ // G_SHL/G_ASHR/G_LSHR/G_USHLSAT/G_SSHLSAT shift instructions in combination
+ // with any of G_AND/G_OR/G_XOR logic instructions.
+ // %t1 = SHIFT %X, G_CONSTANT C0
+ // %t2 = LOGIC %t1, %Y
+ // %root = SHIFT %t2, G_CONSTANT C1
+ // -->
+ // %t3 = SHIFT %X, G_CONSTANT (C0+C1)
+ // %t4 = SHIFT %Y, G_CONSTANT C1
+ // %root = LOGIC %t3, %t4
+ unsigned ShiftOpcode = MI.getOpcode();
+ assert((ShiftOpcode == TargetOpcode::G_SHL ||
+ ShiftOpcode == TargetOpcode::G_ASHR ||
+ ShiftOpcode == TargetOpcode::G_LSHR ||
+ ShiftOpcode == TargetOpcode::G_USHLSAT ||
+ ShiftOpcode == TargetOpcode::G_SSHLSAT) &&
+ "Expected G_SHL, G_ASHR, G_LSHR, G_USHLSAT and G_SSHLSAT");
+
+ // Match a one-use bitwise logic op.
+ Register LogicDest = MI.getOperand(1).getReg();
+ if (!MRI.hasOneNonDBGUse(LogicDest))
+ return false;
+
+ MachineInstr *LogicMI = MRI.getUniqueVRegDef(LogicDest);
+ unsigned LogicOpcode = LogicMI->getOpcode();
+ if (LogicOpcode != TargetOpcode::G_AND && LogicOpcode != TargetOpcode::G_OR &&
+ LogicOpcode != TargetOpcode::G_XOR)
+ return false;
+
+ // Find a matching one-use shift by constant.
+ const Register C1 = MI.getOperand(2).getReg();
+ auto MaybeImmVal = getIConstantVRegValWithLookThrough(C1, MRI);
+ if (!MaybeImmVal || MaybeImmVal->Value == 0)
+ return false;
+
+ const uint64_t C1Val = MaybeImmVal->Value.getZExtValue();
+
+ auto matchFirstShift = [&](const MachineInstr *MI, uint64_t &ShiftVal) {
+ // Shift should match previous one and should be a one-use.
+ if (MI->getOpcode() != ShiftOpcode ||
+ !MRI.hasOneNonDBGUse(MI->getOperand(0).getReg()))
+ return false;
+
+ // Must be a constant.
+ auto MaybeImmVal =
+ getIConstantVRegValWithLookThrough(MI->getOperand(2).getReg(), MRI);
+ if (!MaybeImmVal)
+ return false;
+
+ ShiftVal = MaybeImmVal->Value.getSExtValue();
+ return true;
+ };
+
+ // Logic ops are commutative, so check each operand for a match.
+ Register LogicMIReg1 = LogicMI->getOperand(1).getReg();
+ MachineInstr *LogicMIOp1 = MRI.getUniqueVRegDef(LogicMIReg1);
+ Register LogicMIReg2 = LogicMI->getOperand(2).getReg();
+ MachineInstr *LogicMIOp2 = MRI.getUniqueVRegDef(LogicMIReg2);
+ uint64_t C0Val;
+
+ if (matchFirstShift(LogicMIOp1, C0Val)) {
+ MatchInfo.LogicNonShiftReg = LogicMIReg2;
+ MatchInfo.Shift2 = LogicMIOp1;
+ } else if (matchFirstShift(LogicMIOp2, C0Val)) {
+ MatchInfo.LogicNonShiftReg = LogicMIReg1;
+ MatchInfo.Shift2 = LogicMIOp2;
+ } else
+ return false;
+
+ MatchInfo.ValSum = C0Val + C1Val;
+
+ // The fold is not valid if the sum of the shift values exceeds bitwidth.
+ if (MatchInfo.ValSum >= MRI.getType(LogicDest).getScalarSizeInBits())
+ return false;
+
+ MatchInfo.Logic = LogicMI;
+ return true;
+}
+
+void CombinerHelper::applyShiftOfShiftedLogic(MachineInstr &MI,
+ ShiftOfShiftedLogic &MatchInfo) {
+ unsigned Opcode = MI.getOpcode();
+ assert((Opcode == TargetOpcode::G_SHL || Opcode == TargetOpcode::G_ASHR ||
+ Opcode == TargetOpcode::G_LSHR || Opcode == TargetOpcode::G_USHLSAT ||
+ Opcode == TargetOpcode::G_SSHLSAT) &&
+ "Expected G_SHL, G_ASHR, G_LSHR, G_USHLSAT and G_SSHLSAT");
+
+ LLT ShlType = MRI.getType(MI.getOperand(2).getReg());
+ LLT DestType = MRI.getType(MI.getOperand(0).getReg());
+ Builder.setInstrAndDebugLoc(MI);
+
+ Register Const = Builder.buildConstant(ShlType, MatchInfo.ValSum).getReg(0);
+
+ Register Shift1Base = MatchInfo.Shift2->getOperand(1).getReg();
+ Register Shift1 =
+ Builder.buildInstr(Opcode, {DestType}, {Shift1Base, Const}).getReg(0);
+
+ // If LogicNonShiftReg is the same to Shift1Base, and shift1 const is the same
+ // to MatchInfo.Shift2 const, CSEMIRBuilder will reuse the old shift1 when
+ // build shift2. So, if we erase MatchInfo.Shift2 at the end, actually we
+ // remove old shift1. And it will cause crash later. So erase it earlier to
+ // avoid the crash.
+ MatchInfo.Shift2->eraseFromParent();
+
+ Register Shift2Const = MI.getOperand(2).getReg();
+ Register Shift2 = Builder
+ .buildInstr(Opcode, {DestType},
+ {MatchInfo.LogicNonShiftReg, Shift2Const})
+ .getReg(0);
+
+ Register Dest = MI.getOperand(0).getReg();
+ Builder.buildInstr(MatchInfo.Logic->getOpcode(), {Dest}, {Shift1, Shift2});
+
+ // This was one use so it's safe to remove it.
+ MatchInfo.Logic->eraseFromParent();
+
+ MI.eraseFromParent();
+}
+
+bool CombinerHelper::matchCommuteShift(MachineInstr &MI, BuildFnTy &MatchInfo) {
+ assert(MI.getOpcode() == TargetOpcode::G_SHL && "Expected G_SHL");
+ // Combine (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2)
+ // Combine (shl (or x, c1), c2) -> (or (shl x, c2), c1 << c2)
+ auto &Shl = cast<GenericMachineInstr>(MI);
+ Register DstReg = Shl.getReg(0);
+ Register SrcReg = Shl.getReg(1);
+ Register ShiftReg = Shl.getReg(2);
+ Register X, C1;
+
+ if (!getTargetLowering().isDesirableToCommuteWithShift(MI, !isPreLegalize()))
+ return false;
+
+ if (!mi_match(SrcReg, MRI,
+ m_OneNonDBGUse(m_any_of(m_GAdd(m_Reg(X), m_Reg(C1)),
+ m_GOr(m_Reg(X), m_Reg(C1))))))
+ return false;
+
+ APInt C1Val, C2Val;
+ if (!mi_match(C1, MRI, m_ICstOrSplat(C1Val)) ||
+ !mi_match(ShiftReg, MRI, m_ICstOrSplat(C2Val)))
+ return false;
+
+ auto *SrcDef = MRI.getVRegDef(SrcReg);
+ assert((SrcDef->getOpcode() == TargetOpcode::G_ADD ||
+ SrcDef->getOpcode() == TargetOpcode::G_OR) && "Unexpected op");
+ LLT SrcTy = MRI.getType(SrcReg);
+ MatchInfo = [=](MachineIRBuilder &B) {
+ auto S1 = B.buildShl(SrcTy, X, ShiftReg);
+ auto S2 = B.buildShl(SrcTy, C1, ShiftReg);
+ B.buildInstr(SrcDef->getOpcode(), {DstReg}, {S1, S2});
+ };
+ return true;
+}
+
+bool CombinerHelper::matchCombineMulToShl(MachineInstr &MI,
+ unsigned &ShiftVal) {
+ assert(MI.getOpcode() == TargetOpcode::G_MUL && "Expected a G_MUL");
+ auto MaybeImmVal =
+ getIConstantVRegValWithLookThrough(MI.getOperand(2).getReg(), MRI);
+ if (!MaybeImmVal)
+ return false;
+
+ ShiftVal = MaybeImmVal->Value.exactLogBase2();
+ return (static_cast<int32_t>(ShiftVal) != -1);
+}
+
+void CombinerHelper::applyCombineMulToShl(MachineInstr &MI,
+ unsigned &ShiftVal) {
+ assert(MI.getOpcode() == TargetOpcode::G_MUL && "Expected a G_MUL");
+ MachineIRBuilder MIB(MI);
+ LLT ShiftTy = MRI.getType(MI.getOperand(0).getReg());
+ auto ShiftCst = MIB.buildConstant(ShiftTy, ShiftVal);
+ Observer.changingInstr(MI);
+ MI.setDesc(MIB.getTII().get(TargetOpcode::G_SHL));
+ MI.getOperand(2).setReg(ShiftCst.getReg(0));
+ Observer.changedInstr(MI);
+}
+
+// shl ([sza]ext x), y => zext (shl x, y), if shift does not overflow source
+bool CombinerHelper::matchCombineShlOfExtend(MachineInstr &MI,
+ RegisterImmPair &MatchData) {
+ assert(MI.getOpcode() == TargetOpcode::G_SHL && KB);
+ if (!getTargetLowering().isDesirableToPullExtFromShl(MI))
+ return false;
+
+ Register LHS = MI.getOperand(1).getReg();
+
+ Register ExtSrc;
+ if (!mi_match(LHS, MRI, m_GAnyExt(m_Reg(ExtSrc))) &&
+ !mi_match(LHS, MRI, m_GZExt(m_Reg(ExtSrc))) &&
+ !mi_match(LHS, MRI, m_GSExt(m_Reg(ExtSrc))))
+ return false;
+
+ Register RHS = MI.getOperand(2).getReg();
+ MachineInstr *MIShiftAmt = MRI.getVRegDef(RHS);
+ auto MaybeShiftAmtVal = isConstantOrConstantSplatVector(*MIShiftAmt, MRI);
+ if (!MaybeShiftAmtVal)
+ return false;
+
+ if (LI) {
+ LLT SrcTy = MRI.getType(ExtSrc);
+
+ // We only really care about the legality with the shifted value. We can
+ // pick any type the constant shift amount, so ask the target what to
+ // use. Otherwise we would have to guess and hope it is reported as legal.
+ LLT ShiftAmtTy = getTargetLowering().getPreferredShiftAmountTy(SrcTy);
+ if (!isLegalOrBeforeLegalizer({TargetOpcode::G_SHL, {SrcTy, ShiftAmtTy}}))
+ return false;
+ }
+
+ int64_t ShiftAmt = MaybeShiftAmtVal->getSExtValue();
+ MatchData.Reg = ExtSrc;
+ MatchData.Imm = ShiftAmt;
+
+ unsigned MinLeadingZeros = KB->getKnownZeroes(ExtSrc).countl_one();
+ unsigned SrcTySize = MRI.getType(ExtSrc).getScalarSizeInBits();
+ return MinLeadingZeros >= ShiftAmt && ShiftAmt < SrcTySize;
+}
+
+void CombinerHelper::applyCombineShlOfExtend(MachineInstr &MI,
+ const RegisterImmPair &MatchData) {
+ Register ExtSrcReg = MatchData.Reg;
+ int64_t ShiftAmtVal = MatchData.Imm;
+
+ LLT ExtSrcTy = MRI.getType(ExtSrcReg);
+ Builder.setInstrAndDebugLoc(MI);
+ auto ShiftAmt = Builder.buildConstant(ExtSrcTy, ShiftAmtVal);
+ auto NarrowShift =
+ Builder.buildShl(ExtSrcTy, ExtSrcReg, ShiftAmt, MI.getFlags());
+ Builder.buildZExt(MI.getOperand(0), NarrowShift);
+ MI.eraseFromParent();
+}
+
+bool CombinerHelper::matchCombineMergeUnmerge(MachineInstr &MI,
+ Register &MatchInfo) {
+ GMerge &Merge = cast<GMerge>(MI);
+ SmallVector<Register, 16> MergedValues;
+ for (unsigned I = 0; I < Merge.getNumSources(); ++I)
+ MergedValues.emplace_back(Merge.getSourceReg(I));
+
+ auto *Unmerge = getOpcodeDef<GUnmerge>(MergedValues[0], MRI);
+ if (!Unmerge || Unmerge->getNumDefs() != Merge.getNumSources())
+ return false;
+
+ for (unsigned I = 0; I < MergedValues.size(); ++I)
+ if (MergedValues[I] != Unmerge->getReg(I))
+ return false;
+
+ MatchInfo = Unmerge->getSourceReg();
+ return true;
+}
+
+static Register peekThroughBitcast(Register Reg,
+ const MachineRegisterInfo &MRI) {
+ while (mi_match(Reg, MRI, m_GBitcast(m_Reg(Reg))))
+ ;
+
+ return Reg;
+}
+
+bool CombinerHelper::matchCombineUnmergeMergeToPlainValues(
+ MachineInstr &MI, SmallVectorImpl<Register> &Operands) {
+ assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES &&
+ "Expected an unmerge");
+ auto &Unmerge = cast<GUnmerge>(MI);
+ Register SrcReg = peekThroughBitcast(Unmerge.getSourceReg(), MRI);
+
+ auto *SrcInstr = getOpcodeDef<GMergeLikeInstr>(SrcReg, MRI);
+ if (!SrcInstr)
+ return false;
+
+ // Check the source type of the merge.
+ LLT SrcMergeTy = MRI.getType(SrcInstr->getSourceReg(0));
+ LLT Dst0Ty = MRI.getType(Unmerge.getReg(0));
+ bool SameSize = Dst0Ty.getSizeInBits() == SrcMergeTy.getSizeInBits();
+ if (SrcMergeTy != Dst0Ty && !SameSize)
+ return false;
+ // They are the same now (modulo a bitcast).
+ // We can collect all the src registers.
+ for (unsigned Idx = 0; Idx < SrcInstr->getNumSources(); ++Idx)
+ Operands.push_back(SrcInstr->getSourceReg(Idx));
+ return true;
+}
+
+void CombinerHelper::applyCombineUnmergeMergeToPlainValues(
+ MachineInstr &MI, SmallVectorImpl<Register> &Operands) {
+ assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES &&
+ "Expected an unmerge");
+ assert((MI.getNumOperands() - 1 == Operands.size()) &&
+ "Not enough operands to replace all defs");
+ unsigned NumElems = MI.getNumOperands() - 1;
+
+ LLT SrcTy = MRI.getType(Operands[0]);
+ LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
+ bool CanReuseInputDirectly = DstTy == SrcTy;
+ Builder.setInstrAndDebugLoc(MI);
+ for (unsigned Idx = 0; Idx < NumElems; ++Idx) {
+ Register DstReg = MI.getOperand(Idx).getReg();
+ Register SrcReg = Operands[Idx];
+
+ // This combine may run after RegBankSelect, so we need to be aware of
+ // register banks.
+ const auto &DstCB = MRI.getRegClassOrRegBank(DstReg);
+ if (!DstCB.isNull() && DstCB != MRI.getRegClassOrRegBank(SrcReg)) {
+ SrcReg = Builder.buildCopy(MRI.getType(SrcReg), SrcReg).getReg(0);
+ MRI.setRegClassOrRegBank(SrcReg, DstCB);
+ }
+
+ if (CanReuseInputDirectly)
+ replaceRegWith(MRI, DstReg, SrcReg);
+ else
+ Builder.buildCast(DstReg, SrcReg);
+ }
+ MI.eraseFromParent();
+}
+
+bool CombinerHelper::matchCombineUnmergeConstant(MachineInstr &MI,
+ SmallVectorImpl<APInt> &Csts) {
+ unsigned SrcIdx = MI.getNumOperands() - 1;
+ Register SrcReg = MI.getOperand(SrcIdx).getReg();
+ MachineInstr *SrcInstr = MRI.getVRegDef(SrcReg);
+ if (SrcInstr->getOpcode() != TargetOpcode::G_CONSTANT &&
+ SrcInstr->getOpcode() != TargetOpcode::G_FCONSTANT)
+ return false;
+ // Break down the big constant in smaller ones.
+ const MachineOperand &CstVal = SrcInstr->getOperand(1);
+ APInt Val = SrcInstr->getOpcode() == TargetOpcode::G_CONSTANT
+ ? CstVal.getCImm()->getValue()
+ : CstVal.getFPImm()->getValueAPF().bitcastToAPInt();
+
+ LLT Dst0Ty = MRI.getType(MI.getOperand(0).getReg());
+ unsigned ShiftAmt = Dst0Ty.getSizeInBits();
+ // Unmerge a constant.
+ for (unsigned Idx = 0; Idx != SrcIdx; ++Idx) {
+ Csts.emplace_back(Val.trunc(ShiftAmt));
+ Val = Val.lshr(ShiftAmt);
+ }
+
+ return true;
+}
+
+void CombinerHelper::applyCombineUnmergeConstant(MachineInstr &MI,
+ SmallVectorImpl<APInt> &Csts) {
+ assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES &&
+ "Expected an unmerge");
+ assert((MI.getNumOperands() - 1 == Csts.size()) &&
+ "Not enough operands to replace all defs");
+ unsigned NumElems = MI.getNumOperands() - 1;
+ Builder.setInstrAndDebugLoc(MI);
+ for (unsigned Idx = 0; Idx < NumElems; ++Idx) {
+ Register DstReg = MI.getOperand(Idx).getReg();
+ Builder.buildConstant(DstReg, Csts[Idx]);
+ }
+
+ MI.eraseFromParent();
+}
+
+bool CombinerHelper::matchCombineUnmergeUndef(
+ MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) {
+ unsigned SrcIdx = MI.getNumOperands() - 1;
+ Register SrcReg = MI.getOperand(SrcIdx).getReg();
+ MatchInfo = [&MI](MachineIRBuilder &B) {
+ unsigned NumElems = MI.getNumOperands() - 1;
+ for (unsigned Idx = 0; Idx < NumElems; ++Idx) {
+ Register DstReg = MI.getOperand(Idx).getReg();
+ B.buildUndef(DstReg);
+ }
+ };
+ return isa<GImplicitDef>(MRI.getVRegDef(SrcReg));
+}
+
+bool CombinerHelper::matchCombineUnmergeWithDeadLanesToTrunc(MachineInstr &MI) {
+ assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES &&
+ "Expected an unmerge");
+ // Check that all the lanes are dead except the first one.
+ for (unsigned Idx = 1, EndIdx = MI.getNumDefs(); Idx != EndIdx; ++Idx) {
+ if (!MRI.use_nodbg_empty(MI.getOperand(Idx).getReg()))
+ return false;
+ }
+ return true;
+}
+
+void CombinerHelper::applyCombineUnmergeWithDeadLanesToTrunc(MachineInstr &MI) {
+ Builder.setInstrAndDebugLoc(MI);
+ Register SrcReg = MI.getOperand(MI.getNumDefs()).getReg();
+ // Truncating a vector is going to truncate every single lane,
+ // whereas we want the full lowbits.
+ // Do the operation on a scalar instead.
+ LLT SrcTy = MRI.getType(SrcReg);
+ if (SrcTy.isVector())
+ SrcReg =
+ Builder.buildCast(LLT::scalar(SrcTy.getSizeInBits()), SrcReg).getReg(0);
+
+ Register Dst0Reg = MI.getOperand(0).getReg();
+ LLT Dst0Ty = MRI.getType(Dst0Reg);
+ if (Dst0Ty.isVector()) {
+ auto MIB = Builder.buildTrunc(LLT::scalar(Dst0Ty.getSizeInBits()), SrcReg);
+ Builder.buildCast(Dst0Reg, MIB);
+ } else
+ Builder.buildTrunc(Dst0Reg, SrcReg);
+ MI.eraseFromParent();
+}
+
+bool CombinerHelper::matchCombineUnmergeZExtToZExt(MachineInstr &MI) {
+ assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES &&
+ "Expected an unmerge");
+ Register Dst0Reg = MI.getOperand(0).getReg();
+ LLT Dst0Ty = MRI.getType(Dst0Reg);
+ // G_ZEXT on vector applies to each lane, so it will
+ // affect all destinations. Therefore we won't be able
+ // to simplify the unmerge to just the first definition.
+ if (Dst0Ty.isVector())
+ return false;
+ Register SrcReg = MI.getOperand(MI.getNumDefs()).getReg();
+ LLT SrcTy = MRI.getType(SrcReg);
+ if (SrcTy.isVector())
+ return false;
+
+ Register ZExtSrcReg;
+ if (!mi_match(SrcReg, MRI, m_GZExt(m_Reg(ZExtSrcReg))))
+ return false;
+
+ // Finally we can replace the first definition with
+ // a zext of the source if the definition is big enough to hold
+ // all of ZExtSrc bits.
+ LLT ZExtSrcTy = MRI.getType(ZExtSrcReg);
+ return ZExtSrcTy.getSizeInBits() <= Dst0Ty.getSizeInBits();
+}
+
+void CombinerHelper::applyCombineUnmergeZExtToZExt(MachineInstr &MI) {
+ assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES &&
+ "Expected an unmerge");
+
+ Register Dst0Reg = MI.getOperand(0).getReg();
+
+ MachineInstr *ZExtInstr =
+ MRI.getVRegDef(MI.getOperand(MI.getNumDefs()).getReg());
+ assert(ZExtInstr && ZExtInstr->getOpcode() == TargetOpcode::G_ZEXT &&
+ "Expecting a G_ZEXT");
+
+ Register ZExtSrcReg = ZExtInstr->getOperand(1).getReg();
+ LLT Dst0Ty = MRI.getType(Dst0Reg);
+ LLT ZExtSrcTy = MRI.getType(ZExtSrcReg);
+
+ Builder.setInstrAndDebugLoc(MI);
+
+ if (Dst0Ty.getSizeInBits() > ZExtSrcTy.getSizeInBits()) {
+ Builder.buildZExt(Dst0Reg, ZExtSrcReg);
+ } else {
+ assert(Dst0Ty.getSizeInBits() == ZExtSrcTy.getSizeInBits() &&
+ "ZExt src doesn't fit in destination");
+ replaceRegWith(MRI, Dst0Reg, ZExtSrcReg);
+ }
+
+ Register ZeroReg;
+ for (unsigned Idx = 1, EndIdx = MI.getNumDefs(); Idx != EndIdx; ++Idx) {
+ if (!ZeroReg)
+ ZeroReg = Builder.buildConstant(Dst0Ty, 0).getReg(0);
+ replaceRegWith(MRI, MI.getOperand(Idx).getReg(), ZeroReg);
+ }
+ MI.eraseFromParent();
+}
+
+bool CombinerHelper::matchCombineShiftToUnmerge(MachineInstr &MI,
+ unsigned TargetShiftSize,
+ unsigned &ShiftVal) {
+ assert((MI.getOpcode() == TargetOpcode::G_SHL ||
+ MI.getOpcode() == TargetOpcode::G_LSHR ||
+ MI.getOpcode() == TargetOpcode::G_ASHR) && "Expected a shift");
+
+ LLT Ty = MRI.getType(MI.getOperand(0).getReg());
+ if (Ty.isVector()) // TODO:
+ return false;
+
+ // Don't narrow further than the requested size.
+ unsigned Size = Ty.getSizeInBits();
+ if (Size <= TargetShiftSize)
+ return false;
+
+ auto MaybeImmVal =
+ getIConstantVRegValWithLookThrough(MI.getOperand(2).getReg(), MRI);
+ if (!MaybeImmVal)
+ return false;
+
+ ShiftVal = MaybeImmVal->Value.getSExtValue();
+ return ShiftVal >= Size / 2 && ShiftVal < Size;
+}
+
+void CombinerHelper::applyCombineShiftToUnmerge(MachineInstr &MI,
+ const unsigned &ShiftVal) {
+ Register DstReg = MI.getOperand(0).getReg();
+ Register SrcReg = MI.getOperand(1).getReg();
+ LLT Ty = MRI.getType(SrcReg);
+ unsigned Size = Ty.getSizeInBits();
+ unsigned HalfSize = Size / 2;
+ assert(ShiftVal >= HalfSize);
+
+ LLT HalfTy = LLT::scalar(HalfSize);
+
+ Builder.setInstr(MI);
+ auto Unmerge = Builder.buildUnmerge(HalfTy, SrcReg);
+ unsigned NarrowShiftAmt = ShiftVal - HalfSize;
+
+ if (MI.getOpcode() == TargetOpcode::G_LSHR) {
+ Register Narrowed = Unmerge.getReg(1);
+
+ // dst = G_LSHR s64:x, C for C >= 32
+ // =>
+ // lo, hi = G_UNMERGE_VALUES x
+ // dst = G_MERGE_VALUES (G_LSHR hi, C - 32), 0
+
+ if (NarrowShiftAmt != 0) {
+ Narrowed = Builder.buildLShr(HalfTy, Narrowed,
+ Builder.buildConstant(HalfTy, NarrowShiftAmt)).getReg(0);
+ }
+
+ auto Zero = Builder.buildConstant(HalfTy, 0);
+ Builder.buildMergeLikeInstr(DstReg, {Narrowed, Zero});
+ } else if (MI.getOpcode() == TargetOpcode::G_SHL) {
+ Register Narrowed = Unmerge.getReg(0);
+ // dst = G_SHL s64:x, C for C >= 32
+ // =>
+ // lo, hi = G_UNMERGE_VALUES x
+ // dst = G_MERGE_VALUES 0, (G_SHL hi, C - 32)
+ if (NarrowShiftAmt != 0) {
+ Narrowed = Builder.buildShl(HalfTy, Narrowed,
+ Builder.buildConstant(HalfTy, NarrowShiftAmt)).getReg(0);
+ }
+
+ auto Zero = Builder.buildConstant(HalfTy, 0);
+ Builder.buildMergeLikeInstr(DstReg, {Zero, Narrowed});
+ } else {
+ assert(MI.getOpcode() == TargetOpcode::G_ASHR);
+ auto Hi = Builder.buildAShr(
+ HalfTy, Unmerge.getReg(1),
+ Builder.buildConstant(HalfTy, HalfSize - 1));
+
+ if (ShiftVal == HalfSize) {
+ // (G_ASHR i64:x, 32) ->
+ // G_MERGE_VALUES hi_32(x), (G_ASHR hi_32(x), 31)
+ Builder.buildMergeLikeInstr(DstReg, {Unmerge.getReg(1), Hi});
+ } else if (ShiftVal == Size - 1) {
+ // Don't need a second shift.
+ // (G_ASHR i64:x, 63) ->
+ // %narrowed = (G_ASHR hi_32(x), 31)
+ // G_MERGE_VALUES %narrowed, %narrowed
+ Builder.buildMergeLikeInstr(DstReg, {Hi, Hi});
+ } else {
+ auto Lo = Builder.buildAShr(
+ HalfTy, Unmerge.getReg(1),
+ Builder.buildConstant(HalfTy, ShiftVal - HalfSize));
+
+ // (G_ASHR i64:x, C) ->, for C >= 32
+ // G_MERGE_VALUES (G_ASHR hi_32(x), C - 32), (G_ASHR hi_32(x), 31)
+ Builder.buildMergeLikeInstr(DstReg, {Lo, Hi});
+ }
+ }
+
+ MI.eraseFromParent();
+}
+
+bool CombinerHelper::tryCombineShiftToUnmerge(MachineInstr &MI,
+ unsigned TargetShiftAmount) {
+ unsigned ShiftAmt;
+ if (matchCombineShiftToUnmerge(MI, TargetShiftAmount, ShiftAmt)) {
+ applyCombineShiftToUnmerge(MI, ShiftAmt);
+ return true;
+ }
+
+ return false;
+}
+
+bool CombinerHelper::matchCombineI2PToP2I(MachineInstr &MI, Register &Reg) {
+ assert(MI.getOpcode() == TargetOpcode::G_INTTOPTR && "Expected a G_INTTOPTR");
+ Register DstReg = MI.getOperand(0).getReg();
+ LLT DstTy = MRI.getType(DstReg);
+ Register SrcReg = MI.getOperand(1).getReg();
+ return mi_match(SrcReg, MRI,
+ m_GPtrToInt(m_all_of(m_SpecificType(DstTy), m_Reg(Reg))));
+}
+
+void CombinerHelper::applyCombineI2PToP2I(MachineInstr &MI, Register &Reg) {
+ assert(MI.getOpcode() == TargetOpcode::G_INTTOPTR && "Expected a G_INTTOPTR");
+ Register DstReg = MI.getOperand(0).getReg();
+ Builder.setInstr(MI);
+ Builder.buildCopy(DstReg, Reg);
+ MI.eraseFromParent();
+}
+
+void CombinerHelper::applyCombineP2IToI2P(MachineInstr &MI, Register &Reg) {
+ assert(MI.getOpcode() == TargetOpcode::G_PTRTOINT && "Expected a G_PTRTOINT");
+ Register DstReg = MI.getOperand(0).getReg();
+ Builder.setInstr(MI);
+ Builder.buildZExtOrTrunc(DstReg, Reg);
+ MI.eraseFromParent();
+}
+
+bool CombinerHelper::matchCombineAddP2IToPtrAdd(
+ MachineInstr &MI, std::pair<Register, bool> &PtrReg) {
+ assert(MI.getOpcode() == TargetOpcode::G_ADD);
+ Register LHS = MI.getOperand(1).getReg();
+ Register RHS = MI.getOperand(2).getReg();
+ LLT IntTy = MRI.getType(LHS);
+
+ // G_PTR_ADD always has the pointer in the LHS, so we may need to commute the
+ // instruction.
+ PtrReg.second = false;
+ for (Register SrcReg : {LHS, RHS}) {
+ if (mi_match(SrcReg, MRI, m_GPtrToInt(m_Reg(PtrReg.first)))) {
+ // Don't handle cases where the integer is implicitly converted to the
+ // pointer width.
+ LLT PtrTy = MRI.getType(PtrReg.first);
+ if (PtrTy.getScalarSizeInBits() == IntTy.getScalarSizeInBits())
+ return true;
+ }
+
+ PtrReg.second = true;
+ }
+
+ return false;
+}
+
+void CombinerHelper::applyCombineAddP2IToPtrAdd(
+ MachineInstr &MI, std::pair<Register, bool> &PtrReg) {
+ Register Dst = MI.getOperand(0).getReg();
+ Register LHS = MI.getOperand(1).getReg();
+ Register RHS = MI.getOperand(2).getReg();
+
+ const bool DoCommute = PtrReg.second;
+ if (DoCommute)
+ std::swap(LHS, RHS);
+ LHS = PtrReg.first;
+
+ LLT PtrTy = MRI.getType(LHS);
+
+ Builder.setInstrAndDebugLoc(MI);
+ auto PtrAdd = Builder.buildPtrAdd(PtrTy, LHS, RHS);
+ Builder.buildPtrToInt(Dst, PtrAdd);
+ MI.eraseFromParent();
+}
+
+bool CombinerHelper::matchCombineConstPtrAddToI2P(MachineInstr &MI,
+ APInt &NewCst) {
+ auto &PtrAdd = cast<GPtrAdd>(MI);
+ Register LHS = PtrAdd.getBaseReg();
+ Register RHS = PtrAdd.getOffsetReg();
+ MachineRegisterInfo &MRI = Builder.getMF().getRegInfo();
+
+ if (auto RHSCst = getIConstantVRegVal(RHS, MRI)) {
+ APInt Cst;
+ if (mi_match(LHS, MRI, m_GIntToPtr(m_ICst(Cst)))) {
+ auto DstTy = MRI.getType(PtrAdd.getReg(0));
+ // G_INTTOPTR uses zero-extension
+ NewCst = Cst.zextOrTrunc(DstTy.getSizeInBits());
+ NewCst += RHSCst->sextOrTrunc(DstTy.getSizeInBits());
+ return true;
+ }
+ }
+
+ return false;
+}
+
+void CombinerHelper::applyCombineConstPtrAddToI2P(MachineInstr &MI,
+ APInt &NewCst) {
+ auto &PtrAdd = cast<GPtrAdd>(MI);
+ Register Dst = PtrAdd.getReg(0);
+
+ Builder.setInstrAndDebugLoc(MI);
+ Builder.buildConstant(Dst, NewCst);
+ PtrAdd.eraseFromParent();
+}
+
+bool CombinerHelper::matchCombineAnyExtTrunc(MachineInstr &MI, Register &Reg) {
+ assert(MI.getOpcode() == TargetOpcode::G_ANYEXT && "Expected a G_ANYEXT");
+ Register DstReg = MI.getOperand(0).getReg();
+ Register SrcReg = MI.getOperand(1).getReg();
+ LLT DstTy = MRI.getType(DstReg);
+ return mi_match(SrcReg, MRI,
+ m_GTrunc(m_all_of(m_Reg(Reg), m_SpecificType(DstTy))));
+}
+
+bool CombinerHelper::matchCombineZextTrunc(MachineInstr &MI, Register &Reg) {
+ assert(MI.getOpcode() == TargetOpcode::G_ZEXT && "Expected a G_ZEXT");
+ Register DstReg = MI.getOperand(0).getReg();
+ Register SrcReg = MI.getOperand(1).getReg();
+ LLT DstTy = MRI.getType(DstReg);
+ if (mi_match(SrcReg, MRI,
+ m_GTrunc(m_all_of(m_Reg(Reg), m_SpecificType(DstTy))))) {
+ unsigned DstSize = DstTy.getScalarSizeInBits();
+ unsigned SrcSize = MRI.getType(SrcReg).getScalarSizeInBits();
+ return KB->getKnownBits(Reg).countMinLeadingZeros() >= DstSize - SrcSize;
+ }
+ return false;
+}
+
+bool CombinerHelper::matchCombineExtOfExt(
+ MachineInstr &MI, std::tuple<Register, unsigned> &MatchInfo) {
+ assert((MI.getOpcode() == TargetOpcode::G_ANYEXT ||
+ MI.getOpcode() == TargetOpcode::G_SEXT ||
+ MI.getOpcode() == TargetOpcode::G_ZEXT) &&
+ "Expected a G_[ASZ]EXT");
+ Register SrcReg = MI.getOperand(1).getReg();
+ MachineInstr *SrcMI = MRI.getVRegDef(SrcReg);
+ // Match exts with the same opcode, anyext([sz]ext) and sext(zext).
+ unsigned Opc = MI.getOpcode();
+ unsigned SrcOpc = SrcMI->getOpcode();
+ if (Opc == SrcOpc ||
+ (Opc == TargetOpcode::G_ANYEXT &&
+ (SrcOpc == TargetOpcode::G_SEXT || SrcOpc == TargetOpcode::G_ZEXT)) ||
+ (Opc == TargetOpcode::G_SEXT && SrcOpc == TargetOpcode::G_ZEXT)) {
+ MatchInfo = std::make_tuple(SrcMI->getOperand(1).getReg(), SrcOpc);
+ return true;
+ }
+ return false;
+}
+
+void CombinerHelper::applyCombineExtOfExt(
+ MachineInstr &MI, std::tuple<Register, unsigned> &MatchInfo) {
+ assert((MI.getOpcode() == TargetOpcode::G_ANYEXT ||
+ MI.getOpcode() == TargetOpcode::G_SEXT ||
+ MI.getOpcode() == TargetOpcode::G_ZEXT) &&
+ "Expected a G_[ASZ]EXT");
+
+ Register Reg = std::get<0>(MatchInfo);
+ unsigned SrcExtOp = std::get<1>(MatchInfo);
+
+ // Combine exts with the same opcode.
+ if (MI.getOpcode() == SrcExtOp) {
+ Observer.changingInstr(MI);
+ MI.getOperand(1).setReg(Reg);
+ Observer.changedInstr(MI);
+ return;
+ }
+
+ // Combine:
+ // - anyext([sz]ext x) to [sz]ext x
+ // - sext(zext x) to zext x
+ if (MI.getOpcode() == TargetOpcode::G_ANYEXT ||
+ (MI.getOpcode() == TargetOpcode::G_SEXT &&
+ SrcExtOp == TargetOpcode::G_ZEXT)) {
+ Register DstReg = MI.getOperand(0).getReg();
+ Builder.setInstrAndDebugLoc(MI);
+ Builder.buildInstr(SrcExtOp, {DstReg}, {Reg});
+ MI.eraseFromParent();
+ }
+}
+
+bool CombinerHelper::matchCombineTruncOfExt(
+ MachineInstr &MI, std::pair<Register, unsigned> &MatchInfo) {
+ assert(MI.getOpcode() == TargetOpcode::G_TRUNC && "Expected a G_TRUNC");
+ Register SrcReg = MI.getOperand(1).getReg();
+ MachineInstr *SrcMI = MRI.getVRegDef(SrcReg);
+ unsigned SrcOpc = SrcMI->getOpcode();
+ if (SrcOpc == TargetOpcode::G_ANYEXT || SrcOpc == TargetOpcode::G_SEXT ||
+ SrcOpc == TargetOpcode::G_ZEXT) {
+ MatchInfo = std::make_pair(SrcMI->getOperand(1).getReg(), SrcOpc);
+ return true;
+ }
+ return false;
+}
+
+void CombinerHelper::applyCombineTruncOfExt(
+ MachineInstr &MI, std::pair<Register, unsigned> &MatchInfo) {
+ assert(MI.getOpcode() == TargetOpcode::G_TRUNC && "Expected a G_TRUNC");
+ Register SrcReg = MatchInfo.first;
+ unsigned SrcExtOp = MatchInfo.second;
+ Register DstReg = MI.getOperand(0).getReg();
+ LLT SrcTy = MRI.getType(SrcReg);
+ LLT DstTy = MRI.getType(DstReg);
+ if (SrcTy == DstTy) {
+ MI.eraseFromParent();
+ replaceRegWith(MRI, DstReg, SrcReg);
+ return;
+ }
+ Builder.setInstrAndDebugLoc(MI);
+ if (SrcTy.getSizeInBits() < DstTy.getSizeInBits())
+ Builder.buildInstr(SrcExtOp, {DstReg}, {SrcReg});
+ else
+ Builder.buildTrunc(DstReg, SrcReg);
+ MI.eraseFromParent();
+}
+
+static LLT getMidVTForTruncRightShiftCombine(LLT ShiftTy, LLT TruncTy) {
+ const unsigned ShiftSize = ShiftTy.getScalarSizeInBits();
+ const unsigned TruncSize = TruncTy.getScalarSizeInBits();
+
+ // ShiftTy > 32 > TruncTy -> 32
+ if (ShiftSize > 32 && TruncSize < 32)
+ return ShiftTy.changeElementSize(32);
+
+ // TODO: We could also reduce to 16 bits, but that's more target-dependent.
+ // Some targets like it, some don't, some only like it under certain
+ // conditions/processor versions, etc.
+ // A TL hook might be needed for this.
+
+ // Don't combine
+ return ShiftTy;
+}
+
+bool CombinerHelper::matchCombineTruncOfShift(
+ MachineInstr &MI, std::pair<MachineInstr *, LLT> &MatchInfo) {
+ assert(MI.getOpcode() == TargetOpcode::G_TRUNC && "Expected a G_TRUNC");
+ Register DstReg = MI.getOperand(0).getReg();
+ Register SrcReg = MI.getOperand(1).getReg();
+
+ if (!MRI.hasOneNonDBGUse(SrcReg))
+ return false;
+
+ LLT SrcTy = MRI.getType(SrcReg);
+ LLT DstTy = MRI.getType(DstReg);
+
+ MachineInstr *SrcMI = getDefIgnoringCopies(SrcReg, MRI);
+ const auto &TL = getTargetLowering();
+
+ LLT NewShiftTy;
+ switch (SrcMI->getOpcode()) {
+ default:
+ return false;
+ case TargetOpcode::G_SHL: {
+ NewShiftTy = DstTy;
+
+ // Make sure new shift amount is legal.
+ KnownBits Known = KB->getKnownBits(SrcMI->getOperand(2).getReg());
+ if (Known.getMaxValue().uge(NewShiftTy.getScalarSizeInBits()))
+ return false;
+ break;
+ }
+ case TargetOpcode::G_LSHR:
+ case TargetOpcode::G_ASHR: {
+ // For right shifts, we conservatively do not do the transform if the TRUNC
+ // has any STORE users. The reason is that if we change the type of the
+ // shift, we may break the truncstore combine.
+ //
+ // TODO: Fix truncstore combine to handle (trunc(lshr (trunc x), k)).
+ for (auto &User : MRI.use_instructions(DstReg))
+ if (User.getOpcode() == TargetOpcode::G_STORE)
+ return false;
+
+ NewShiftTy = getMidVTForTruncRightShiftCombine(SrcTy, DstTy);
+ if (NewShiftTy == SrcTy)
+ return false;
+
+ // Make sure we won't lose information by truncating the high bits.
+ KnownBits Known = KB->getKnownBits(SrcMI->getOperand(2).getReg());
+ if (Known.getMaxValue().ugt(NewShiftTy.getScalarSizeInBits() -
+ DstTy.getScalarSizeInBits()))
+ return false;
+ break;
+ }
+ }
+
+ if (!isLegalOrBeforeLegalizer(
+ {SrcMI->getOpcode(),
+ {NewShiftTy, TL.getPreferredShiftAmountTy(NewShiftTy)}}))
+ return false;
+
+ MatchInfo = std::make_pair(SrcMI, NewShiftTy);
+ return true;
+}
+
+void CombinerHelper::applyCombineTruncOfShift(
+ MachineInstr &MI, std::pair<MachineInstr *, LLT> &MatchInfo) {
+ Builder.setInstrAndDebugLoc(MI);
+
+ MachineInstr *ShiftMI = MatchInfo.first;
+ LLT NewShiftTy = MatchInfo.second;
+
+ Register Dst = MI.getOperand(0).getReg();
+ LLT DstTy = MRI.getType(Dst);
+
+ Register ShiftAmt = ShiftMI->getOperand(2).getReg();
+ Register ShiftSrc = ShiftMI->getOperand(1).getReg();
+ ShiftSrc = Builder.buildTrunc(NewShiftTy, ShiftSrc).getReg(0);
+
+ Register NewShift =
+ Builder
+ .buildInstr(ShiftMI->getOpcode(), {NewShiftTy}, {ShiftSrc, ShiftAmt})
+ .getReg(0);
+
+ if (NewShiftTy == DstTy)
+ replaceRegWith(MRI, Dst, NewShift);
+ else
+ Builder.buildTrunc(Dst, NewShift);
+
+ eraseInst(MI);
+}
+
+bool CombinerHelper::matchAnyExplicitUseIsUndef(MachineInstr &MI) {
+ return any_of(MI.explicit_uses(), [this](const MachineOperand &MO) {
+ return MO.isReg() &&
+ getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MO.getReg(), MRI);
+ });
+}
+
+bool CombinerHelper::matchAllExplicitUsesAreUndef(MachineInstr &MI) {
+ return all_of(MI.explicit_uses(), [this](const MachineOperand &MO) {
+ return !MO.isReg() ||
+ getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MO.getReg(), MRI);
+ });
+}
+
+bool CombinerHelper::matchUndefShuffleVectorMask(MachineInstr &MI) {
+ assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR);
+ ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask();
+ return all_of(Mask, [](int Elt) { return Elt < 0; });
+}
+
+bool CombinerHelper::matchUndefStore(MachineInstr &MI) {
+ assert(MI.getOpcode() == TargetOpcode::G_STORE);
+ return getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MI.getOperand(0).getReg(),
+ MRI);
+}
+
+bool CombinerHelper::matchUndefSelectCmp(MachineInstr &MI) {
+ assert(MI.getOpcode() == TargetOpcode::G_SELECT);
+ return getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MI.getOperand(1).getReg(),
+ MRI);
+}
+
+bool CombinerHelper::matchInsertExtractVecEltOutOfBounds(MachineInstr &MI) {
+ assert((MI.getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT ||
+ MI.getOpcode() == TargetOpcode::G_EXTRACT_VECTOR_ELT) &&
+ "Expected an insert/extract element op");
+ LLT VecTy = MRI.getType(MI.getOperand(1).getReg());
+ unsigned IdxIdx =
+ MI.getOpcode() == TargetOpcode::G_EXTRACT_VECTOR_ELT ? 2 : 3;
+ auto Idx = getIConstantVRegVal(MI.getOperand(IdxIdx).getReg(), MRI);
+ if (!Idx)
+ return false;
+ return Idx->getZExtValue() >= VecTy.getNumElements();
+}
+
+bool CombinerHelper::matchConstantSelectCmp(MachineInstr &MI, unsigned &OpIdx) {
+ GSelect &SelMI = cast<GSelect>(MI);
+ auto Cst =
+ isConstantOrConstantSplatVector(*MRI.getVRegDef(SelMI.getCondReg()), MRI);
+ if (!Cst)
+ return false;
+ OpIdx = Cst->isZero() ? 3 : 2;
+ return true;
+}
+
+void CombinerHelper::eraseInst(MachineInstr &MI) { MI.eraseFromParent(); }
+
+bool CombinerHelper::matchEqualDefs(const MachineOperand &MOP1,
+ const MachineOperand &MOP2) {
+ if (!MOP1.isReg() || !MOP2.isReg())
+ return false;
+ auto InstAndDef1 = getDefSrcRegIgnoringCopies(MOP1.getReg(), MRI);
+ if (!InstAndDef1)
+ return false;
+ auto InstAndDef2 = getDefSrcRegIgnoringCopies(MOP2.getReg(), MRI);
+ if (!InstAndDef2)
+ return false;
+ MachineInstr *I1 = InstAndDef1->MI;
+ MachineInstr *I2 = InstAndDef2->MI;
+
+ // Handle a case like this:
+ //
+ // %0:_(s64), %1:_(s64) = G_UNMERGE_VALUES %2:_(<2 x s64>)
+ //
+ // Even though %0 and %1 are produced by the same instruction they are not
+ // the same values.
+ if (I1 == I2)
+ return MOP1.getReg() == MOP2.getReg();
+
+ // If we have an instruction which loads or stores, we can't guarantee that
+ // it is identical.
+ //
+ // For example, we may have
+ //
+ // %x1 = G_LOAD %addr (load N from @somewhere)
+ // ...
+ // call @foo
+ // ...
+ // %x2 = G_LOAD %addr (load N from @somewhere)
+ // ...
+ // %or = G_OR %x1, %x2
+ //
+ // It's possible that @foo will modify whatever lives at the address we're
+ // loading from. To be safe, let's just assume that all loads and stores
+ // are different (unless we have something which is guaranteed to not
+ // change.)
+ if (I1->mayLoadOrStore() && !I1->isDereferenceableInvariantLoad())
+ return false;
+
+ // If both instructions are loads or stores, they are equal only if both
+ // are dereferenceable invariant loads with the same number of bits.
+ if (I1->mayLoadOrStore() && I2->mayLoadOrStore()) {
+ GLoadStore *LS1 = dyn_cast<GLoadStore>(I1);
+ GLoadStore *LS2 = dyn_cast<GLoadStore>(I2);
+ if (!LS1 || !LS2)
+ return false;
+
+ if (!I2->isDereferenceableInvariantLoad() ||
+ (LS1->getMemSizeInBits() != LS2->getMemSizeInBits()))
+ return false;
+ }
+
+ // Check for physical registers on the instructions first to avoid cases
+ // like this:
+ //
+ // %a = COPY $physreg
+ // ...
+ // SOMETHING implicit-def $physreg
+ // ...
+ // %b = COPY $physreg
+ //
+ // These copies are not equivalent.
+ if (any_of(I1->uses(), [](const MachineOperand &MO) {
+ return MO.isReg() && MO.getReg().isPhysical();
+ })) {
+ // Check if we have a case like this:
+ //
+ // %a = COPY $physreg
+ // %b = COPY %a
+ //
+ // In this case, I1 and I2 will both be equal to %a = COPY $physreg.
+ // From that, we know that they must have the same value, since they must
+ // have come from the same COPY.
+ return I1->isIdenticalTo(*I2);
+ }
+
+ // We don't have any physical registers, so we don't necessarily need the
+ // same vreg defs.
+ //
+ // On the off-chance that there's some target instruction feeding into the
+ // instruction, let's use produceSameValue instead of isIdenticalTo.
+ if (Builder.getTII().produceSameValue(*I1, *I2, &MRI)) {
+ // Handle instructions with multiple defs that produce same values. Values
+ // are same for operands with same index.
+ // %0:_(s8), %1:_(s8), %2:_(s8), %3:_(s8) = G_UNMERGE_VALUES %4:_(<4 x s8>)
+ // %5:_(s8), %6:_(s8), %7:_(s8), %8:_(s8) = G_UNMERGE_VALUES %4:_(<4 x s8>)
+ // I1 and I2 are different instructions but produce same values,
+ // %1 and %6 are same, %1 and %7 are not the same value.
+ return I1->findRegisterDefOperandIdx(InstAndDef1->Reg) ==
+ I2->findRegisterDefOperandIdx(InstAndDef2->Reg);
+ }
+ return false;
+}
+
+bool CombinerHelper::matchConstantOp(const MachineOperand &MOP, int64_t C) {
+ if (!MOP.isReg())
+ return false;
+ auto *MI = MRI.getVRegDef(MOP.getReg());
+ auto MaybeCst = isConstantOrConstantSplatVector(*MI, MRI);
+ return MaybeCst && MaybeCst->getBitWidth() <= 64 &&
+ MaybeCst->getSExtValue() == C;
+}
+
+bool CombinerHelper::matchConstantFPOp(const MachineOperand &MOP, double C) {
+ if (!MOP.isReg())
+ return false;
+ std::optional<FPValueAndVReg> MaybeCst;
+ if (!mi_match(MOP.getReg(), MRI, m_GFCstOrSplat(MaybeCst)))
+ return false;
+
+ return MaybeCst->Value.isExactlyValue(C);
+}
+
+void CombinerHelper::replaceSingleDefInstWithOperand(MachineInstr &MI,
+ unsigned OpIdx) {
+ assert(MI.getNumExplicitDefs() == 1 && "Expected one explicit def?");
+ Register OldReg = MI.getOperand(0).getReg();
+ Register Replacement = MI.getOperand(OpIdx).getReg();
+ assert(canReplaceReg(OldReg, Replacement, MRI) && "Cannot replace register?");
+ MI.eraseFromParent();
+ replaceRegWith(MRI, OldReg, Replacement);
+}
+
+void CombinerHelper::replaceSingleDefInstWithReg(MachineInstr &MI,
+ Register Replacement) {
+ assert(MI.getNumExplicitDefs() == 1 && "Expected one explicit def?");
+ Register OldReg = MI.getOperand(0).getReg();
+ assert(canReplaceReg(OldReg, Replacement, MRI) && "Cannot replace register?");
+ MI.eraseFromParent();
+ replaceRegWith(MRI, OldReg, Replacement);
+}
+
+bool CombinerHelper::matchConstantLargerBitWidth(MachineInstr &MI,
+ unsigned ConstIdx) {
+ Register ConstReg = MI.getOperand(ConstIdx).getReg();
+ LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
+
+ // Get the shift amount
+ auto VRegAndVal = getIConstantVRegValWithLookThrough(ConstReg, MRI);
+ if (!VRegAndVal)
+ return false;
+
+ // Return true of shift amount >= Bitwidth
+ return (VRegAndVal->Value.uge(DstTy.getSizeInBits()));
+}
+
+void CombinerHelper::applyFunnelShiftConstantModulo(MachineInstr &MI) {
+ assert((MI.getOpcode() == TargetOpcode::G_FSHL ||
+ MI.getOpcode() == TargetOpcode::G_FSHR) &&
+ "This is not a funnel shift operation");
+
+ Register ConstReg = MI.getOperand(3).getReg();
+ LLT ConstTy = MRI.getType(ConstReg);
+ LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
+
+ auto VRegAndVal = getIConstantVRegValWithLookThrough(ConstReg, MRI);
+ assert((VRegAndVal) && "Value is not a constant");
+
+ // Calculate the new Shift Amount = Old Shift Amount % BitWidth
+ APInt NewConst = VRegAndVal->Value.urem(
+ APInt(ConstTy.getSizeInBits(), DstTy.getScalarSizeInBits()));
+
+ Builder.setInstrAndDebugLoc(MI);
+ auto NewConstInstr = Builder.buildConstant(ConstTy, NewConst.getZExtValue());
+ Builder.buildInstr(
+ MI.getOpcode(), {MI.getOperand(0)},
+ {MI.getOperand(1), MI.getOperand(2), NewConstInstr.getReg(0)});
+
+ MI.eraseFromParent();
+}
+
+bool CombinerHelper::matchSelectSameVal(MachineInstr &MI) {
+ assert(MI.getOpcode() == TargetOpcode::G_SELECT);
+ // Match (cond ? x : x)
+ return matchEqualDefs(MI.getOperand(2), MI.getOperand(3)) &&
+ canReplaceReg(MI.getOperand(0).getReg(), MI.getOperand(2).getReg(),
+ MRI);
+}
+
+bool CombinerHelper::matchBinOpSameVal(MachineInstr &MI) {
+ return matchEqualDefs(MI.getOperand(1), MI.getOperand(2)) &&
+ canReplaceReg(MI.getOperand(0).getReg(), MI.getOperand(1).getReg(),
+ MRI);
+}
+
+bool CombinerHelper::matchOperandIsZero(MachineInstr &MI, unsigned OpIdx) {
+ return matchConstantOp(MI.getOperand(OpIdx), 0) &&
+ canReplaceReg(MI.getOperand(0).getReg(), MI.getOperand(OpIdx).getReg(),
+ MRI);
+}
+
+bool CombinerHelper::matchOperandIsUndef(MachineInstr &MI, unsigned OpIdx) {
+ MachineOperand &MO = MI.getOperand(OpIdx);
+ return MO.isReg() &&
+ getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MO.getReg(), MRI);
+}
+
+bool CombinerHelper::matchOperandIsKnownToBeAPowerOfTwo(MachineInstr &MI,
+ unsigned OpIdx) {
+ MachineOperand &MO = MI.getOperand(OpIdx);
+ return isKnownToBeAPowerOfTwo(MO.getReg(), MRI, KB);
+}
+
+void CombinerHelper::replaceInstWithFConstant(MachineInstr &MI, double C) {
+ assert(MI.getNumDefs() == 1 && "Expected only one def?");
+ Builder.setInstr(MI);
+ Builder.buildFConstant(MI.getOperand(0), C);
+ MI.eraseFromParent();
+}
+
+void CombinerHelper::replaceInstWithConstant(MachineInstr &MI, int64_t C) {
+ assert(MI.getNumDefs() == 1 && "Expected only one def?");
+ Builder.setInstr(MI);
+ Builder.buildConstant(MI.getOperand(0), C);
+ MI.eraseFromParent();
+}
+
+void CombinerHelper::replaceInstWithConstant(MachineInstr &MI, APInt C) {
+ assert(MI.getNumDefs() == 1 && "Expected only one def?");
+ Builder.setInstr(MI);
+ Builder.buildConstant(MI.getOperand(0), C);
+ MI.eraseFromParent();
+}
+
+void CombinerHelper::replaceInstWithFConstant(MachineInstr &MI, ConstantFP *CFP) {
+ assert(MI.getNumDefs() == 1 && "Expected only one def?");
+ Builder.setInstr(MI);
+ Builder.buildFConstant(MI.getOperand(0), CFP->getValueAPF());
+ MI.eraseFromParent();
+}
+
+void CombinerHelper::replaceInstWithUndef(MachineInstr &MI) {
+ assert(MI.getNumDefs() == 1 && "Expected only one def?");
+ Builder.setInstr(MI);
+ Builder.buildUndef(MI.getOperand(0));
+ MI.eraseFromParent();
+}
+
+bool CombinerHelper::matchSimplifyAddToSub(
+ MachineInstr &MI, std::tuple<Register, Register> &MatchInfo) {
+ Register LHS = MI.getOperand(1).getReg();
+ Register RHS = MI.getOperand(2).getReg();
+ Register &NewLHS = std::get<0>(MatchInfo);
+ Register &NewRHS = std::get<1>(MatchInfo);
+
+ // Helper lambda to check for opportunities for
+ // ((0-A) + B) -> B - A
+ // (A + (0-B)) -> A - B
+ auto CheckFold = [&](Register &MaybeSub, Register &MaybeNewLHS) {
+ if (!mi_match(MaybeSub, MRI, m_Neg(m_Reg(NewRHS))))
+ return false;
+ NewLHS = MaybeNewLHS;
+ return true;
+ };
+
+ return CheckFold(LHS, RHS) || CheckFold(RHS, LHS);
+}
+
+bool CombinerHelper::matchCombineInsertVecElts(
+ MachineInstr &MI, SmallVectorImpl<Register> &MatchInfo) {
+ assert(MI.getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT &&
+ "Invalid opcode");
+ Register DstReg = MI.getOperand(0).getReg();
+ LLT DstTy = MRI.getType(DstReg);
+ assert(DstTy.isVector() && "Invalid G_INSERT_VECTOR_ELT?");
+ unsigned NumElts = DstTy.getNumElements();
+ // If this MI is part of a sequence of insert_vec_elts, then
+ // don't do the combine in the middle of the sequence.
+ if (MRI.hasOneUse(DstReg) && MRI.use_instr_begin(DstReg)->getOpcode() ==
+ TargetOpcode::G_INSERT_VECTOR_ELT)
+ return false;
+ MachineInstr *CurrInst = &MI;
+ MachineInstr *TmpInst;
+ int64_t IntImm;
+ Register TmpReg;
+ MatchInfo.resize(NumElts);
+ while (mi_match(
+ CurrInst->getOperand(0).getReg(), MRI,
+ m_GInsertVecElt(m_MInstr(TmpInst), m_Reg(TmpReg), m_ICst(IntImm)))) {
+ if (IntImm >= NumElts || IntImm < 0)
+ return false;
+ if (!MatchInfo[IntImm])
+ MatchInfo[IntImm] = TmpReg;
+ CurrInst = TmpInst;
+ }
+ // Variable index.
+ if (CurrInst->getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT)
+ return false;
+ if (TmpInst->getOpcode() == TargetOpcode::G_BUILD_VECTOR) {
+ for (unsigned I = 1; I < TmpInst->getNumOperands(); ++I) {
+ if (!MatchInfo[I - 1].isValid())
+ MatchInfo[I - 1] = TmpInst->getOperand(I).getReg();
+ }
+ return true;
+ }
+ // If we didn't end in a G_IMPLICIT_DEF, bail out.
+ return TmpInst->getOpcode() == TargetOpcode::G_IMPLICIT_DEF;
+}
+
+void CombinerHelper::applyCombineInsertVecElts(
+ MachineInstr &MI, SmallVectorImpl<Register> &MatchInfo) {
+ Builder.setInstr(MI);
+ Register UndefReg;
+ auto GetUndef = [&]() {
+ if (UndefReg)
+ return UndefReg;
+ LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
+ UndefReg = Builder.buildUndef(DstTy.getScalarType()).getReg(0);
+ return UndefReg;
+ };
+ for (unsigned I = 0; I < MatchInfo.size(); ++I) {
+ if (!MatchInfo[I])
+ MatchInfo[I] = GetUndef();
+ }
+ Builder.buildBuildVector(MI.getOperand(0).getReg(), MatchInfo);
+ MI.eraseFromParent();
+}
+
+void CombinerHelper::applySimplifyAddToSub(
+ MachineInstr &MI, std::tuple<Register, Register> &MatchInfo) {
+ Builder.setInstr(MI);
+ Register SubLHS, SubRHS;
+ std::tie(SubLHS, SubRHS) = MatchInfo;
+ Builder.buildSub(MI.getOperand(0).getReg(), SubLHS, SubRHS);
+ MI.eraseFromParent();
+}
+
+bool CombinerHelper::matchHoistLogicOpWithSameOpcodeHands(
+ MachineInstr &MI, InstructionStepsMatchInfo &MatchInfo) {
+ // Matches: logic (hand x, ...), (hand y, ...) -> hand (logic x, y), ...
+ //
+ // Creates the new hand + logic instruction (but does not insert them.)
+ //
+ // On success, MatchInfo is populated with the new instructions. These are
+ // inserted in applyHoistLogicOpWithSameOpcodeHands.
+ unsigned LogicOpcode = MI.getOpcode();
+ assert(LogicOpcode == TargetOpcode::G_AND ||
+ LogicOpcode == TargetOpcode::G_OR ||
+ LogicOpcode == TargetOpcode::G_XOR);
+ MachineIRBuilder MIB(MI);
+ Register Dst = MI.getOperand(0).getReg();
+ Register LHSReg = MI.getOperand(1).getReg();
+ Register RHSReg = MI.getOperand(2).getReg();
+
+ // Don't recompute anything.
+ if (!MRI.hasOneNonDBGUse(LHSReg) || !MRI.hasOneNonDBGUse(RHSReg))
+ return false;
+
+ // Make sure we have (hand x, ...), (hand y, ...)
+ MachineInstr *LeftHandInst = getDefIgnoringCopies(LHSReg, MRI);
+ MachineInstr *RightHandInst = getDefIgnoringCopies(RHSReg, MRI);
+ if (!LeftHandInst || !RightHandInst)
+ return false;
+ unsigned HandOpcode = LeftHandInst->getOpcode();
+ if (HandOpcode != RightHandInst->getOpcode())
+ return false;
+ if (!LeftHandInst->getOperand(1).isReg() ||
+ !RightHandInst->getOperand(1).isReg())
+ return false;
+
+ // Make sure the types match up, and if we're doing this post-legalization,
+ // we end up with legal types.
+ Register X = LeftHandInst->getOperand(1).getReg();
+ Register Y = RightHandInst->getOperand(1).getReg();
+ LLT XTy = MRI.getType(X);
+ LLT YTy = MRI.getType(Y);
+ if (!XTy.isValid() || XTy != YTy)
+ return false;
+
+ // Optional extra source register.
+ Register ExtraHandOpSrcReg;
+ switch (HandOpcode) {
+ default:
+ return false;
+ case TargetOpcode::G_ANYEXT:
+ case TargetOpcode::G_SEXT:
+ case TargetOpcode::G_ZEXT: {
+ // Match: logic (ext X), (ext Y) --> ext (logic X, Y)
+ break;
+ }
+ case TargetOpcode::G_AND:
+ case TargetOpcode::G_ASHR:
+ case TargetOpcode::G_LSHR:
+ case TargetOpcode::G_SHL: {
+ // Match: logic (binop x, z), (binop y, z) -> binop (logic x, y), z
+ MachineOperand &ZOp = LeftHandInst->getOperand(2);
+ if (!matchEqualDefs(ZOp, RightHandInst->getOperand(2)))
+ return false;
+ ExtraHandOpSrcReg = ZOp.getReg();
+ break;
+ }
+ }
+
+ if (!isLegalOrBeforeLegalizer({LogicOpcode, {XTy, YTy}}))
+ return false;
+
+ // Record the steps to build the new instructions.
+ //
+ // Steps to build (logic x, y)
+ auto NewLogicDst = MRI.createGenericVirtualRegister(XTy);
+ OperandBuildSteps LogicBuildSteps = {
+ [=](MachineInstrBuilder &MIB) { MIB.addDef(NewLogicDst); },
+ [=](MachineInstrBuilder &MIB) { MIB.addReg(X); },
+ [=](MachineInstrBuilder &MIB) { MIB.addReg(Y); }};
+ InstructionBuildSteps LogicSteps(LogicOpcode, LogicBuildSteps);
+
+ // Steps to build hand (logic x, y), ...z
+ OperandBuildSteps HandBuildSteps = {
+ [=](MachineInstrBuilder &MIB) { MIB.addDef(Dst); },
+ [=](MachineInstrBuilder &MIB) { MIB.addReg(NewLogicDst); }};
+ if (ExtraHandOpSrcReg.isValid())
+ HandBuildSteps.push_back(
+ [=](MachineInstrBuilder &MIB) { MIB.addReg(ExtraHandOpSrcReg); });
+ InstructionBuildSteps HandSteps(HandOpcode, HandBuildSteps);
+
+ MatchInfo = InstructionStepsMatchInfo({LogicSteps, HandSteps});
+ return true;
+}
+
+void CombinerHelper::applyBuildInstructionSteps(
+ MachineInstr &MI, InstructionStepsMatchInfo &MatchInfo) {
+ assert(MatchInfo.InstrsToBuild.size() &&
+ "Expected at least one instr to build?");
+ Builder.setInstr(MI);
+ for (auto &InstrToBuild : MatchInfo.InstrsToBuild) {
+ assert(InstrToBuild.Opcode && "Expected a valid opcode?");
+ assert(InstrToBuild.OperandFns.size() && "Expected at least one operand?");
+ MachineInstrBuilder Instr = Builder.buildInstr(InstrToBuild.Opcode);
+ for (auto &OperandFn : InstrToBuild.OperandFns)
+ OperandFn(Instr);
+ }
+ MI.eraseFromParent();
+}
+
+bool CombinerHelper::matchAshrShlToSextInreg(
+ MachineInstr &MI, std::tuple<Register, int64_t> &MatchInfo) {
+ assert(MI.getOpcode() == TargetOpcode::G_ASHR);
+ int64_t ShlCst, AshrCst;
+ Register Src;
+ if (!mi_match(MI.getOperand(0).getReg(), MRI,
+ m_GAShr(m_GShl(m_Reg(Src), m_ICstOrSplat(ShlCst)),
+ m_ICstOrSplat(AshrCst))))
+ return false;
+ if (ShlCst != AshrCst)
+ return false;
+ if (!isLegalOrBeforeLegalizer(
+ {TargetOpcode::G_SEXT_INREG, {MRI.getType(Src)}}))
+ return false;
+ MatchInfo = std::make_tuple(Src, ShlCst);
+ return true;
+}
+
+void CombinerHelper::applyAshShlToSextInreg(
+ MachineInstr &MI, std::tuple<Register, int64_t> &MatchInfo) {
+ assert(MI.getOpcode() == TargetOpcode::G_ASHR);
+ Register Src;
+ int64_t ShiftAmt;
+ std::tie(Src, ShiftAmt) = MatchInfo;
+ unsigned Size = MRI.getType(Src).getScalarSizeInBits();
+ Builder.setInstrAndDebugLoc(MI);
+ Builder.buildSExtInReg(MI.getOperand(0).getReg(), Src, Size - ShiftAmt);
+ MI.eraseFromParent();
+}
+
+/// and(and(x, C1), C2) -> C1&C2 ? and(x, C1&C2) : 0
+bool CombinerHelper::matchOverlappingAnd(
+ MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) {
+ assert(MI.getOpcode() == TargetOpcode::G_AND);
+
+ Register Dst = MI.getOperand(0).getReg();
+ LLT Ty = MRI.getType(Dst);
+
+ Register R;
+ int64_t C1;
+ int64_t C2;
+ if (!mi_match(
+ Dst, MRI,
+ m_GAnd(m_GAnd(m_Reg(R), m_ICst(C1)), m_ICst(C2))))
+ return false;
+
+ MatchInfo = [=](MachineIRBuilder &B) {
+ if (C1 & C2) {
+ B.buildAnd(Dst, R, B.buildConstant(Ty, C1 & C2));
+ return;
+ }
+ auto Zero = B.buildConstant(Ty, 0);
+ replaceRegWith(MRI, Dst, Zero->getOperand(0).getReg());
+ };
+ return true;
+}
+
+bool CombinerHelper::matchRedundantAnd(MachineInstr &MI,
+ Register &Replacement) {
+ // Given
+ //
+ // %y:_(sN) = G_SOMETHING
+ // %x:_(sN) = G_SOMETHING
+ // %res:_(sN) = G_AND %x, %y
+ //
+ // Eliminate the G_AND when it is known that x & y == x or x & y == y.
+ //
+ // Patterns like this can appear as a result of legalization. E.g.
+ //
+ // %cmp:_(s32) = G_ICMP intpred(pred), %x(s32), %y
+ // %one:_(s32) = G_CONSTANT i32 1
+ // %and:_(s32) = G_AND %cmp, %one
+ //
+ // In this case, G_ICMP only produces a single bit, so x & 1 == x.
+ assert(MI.getOpcode() == TargetOpcode::G_AND);
+ if (!KB)
+ return false;
+
+ Register AndDst = MI.getOperand(0).getReg();
+ Register LHS = MI.getOperand(1).getReg();
+ Register RHS = MI.getOperand(2).getReg();
+ KnownBits LHSBits = KB->getKnownBits(LHS);
+ KnownBits RHSBits = KB->getKnownBits(RHS);
+
+ // Check that x & Mask == x.
+ // x & 1 == x, always
+ // x & 0 == x, only if x is also 0
+ // Meaning Mask has no effect if every bit is either one in Mask or zero in x.
+ //
+ // Check if we can replace AndDst with the LHS of the G_AND
+ if (canReplaceReg(AndDst, LHS, MRI) &&
+ (LHSBits.Zero | RHSBits.One).isAllOnes()) {
+ Replacement = LHS;
+ return true;
+ }
+
+ // Check if we can replace AndDst with the RHS of the G_AND
+ if (canReplaceReg(AndDst, RHS, MRI) &&
+ (LHSBits.One | RHSBits.Zero).isAllOnes()) {
+ Replacement = RHS;
+ return true;
+ }
+
+ return false;
+}
+
+bool CombinerHelper::matchRedundantOr(MachineInstr &MI, Register &Replacement) {
+ // Given
+ //
+ // %y:_(sN) = G_SOMETHING
+ // %x:_(sN) = G_SOMETHING
+ // %res:_(sN) = G_OR %x, %y
+ //
+ // Eliminate the G_OR when it is known that x | y == x or x | y == y.
+ assert(MI.getOpcode() == TargetOpcode::G_OR);
+ if (!KB)
+ return false;
+
+ Register OrDst = MI.getOperand(0).getReg();
+ Register LHS = MI.getOperand(1).getReg();
+ Register RHS = MI.getOperand(2).getReg();
+ KnownBits LHSBits = KB->getKnownBits(LHS);
+ KnownBits RHSBits = KB->getKnownBits(RHS);
+
+ // Check that x | Mask == x.
+ // x | 0 == x, always
+ // x | 1 == x, only if x is also 1
+ // Meaning Mask has no effect if every bit is either zero in Mask or one in x.
+ //
+ // Check if we can replace OrDst with the LHS of the G_OR
+ if (canReplaceReg(OrDst, LHS, MRI) &&
+ (LHSBits.One | RHSBits.Zero).isAllOnes()) {
+ Replacement = LHS;
+ return true;
+ }
+
+ // Check if we can replace OrDst with the RHS of the G_OR
+ if (canReplaceReg(OrDst, RHS, MRI) &&
+ (LHSBits.Zero | RHSBits.One).isAllOnes()) {
+ Replacement = RHS;
+ return true;
+ }
+
+ return false;
+}
+
+bool CombinerHelper::matchRedundantSExtInReg(MachineInstr &MI) {
+ // If the input is already sign extended, just drop the extension.
+ Register Src = MI.getOperand(1).getReg();
+ unsigned ExtBits = MI.getOperand(2).getImm();
+ unsigned TypeSize = MRI.getType(Src).getScalarSizeInBits();
+ return KB->computeNumSignBits(Src) >= (TypeSize - ExtBits + 1);
+}
+
+static bool isConstValidTrue(const TargetLowering &TLI, unsigned ScalarSizeBits,
+ int64_t Cst, bool IsVector, bool IsFP) {
+ // For i1, Cst will always be -1 regardless of boolean contents.
+ return (ScalarSizeBits == 1 && Cst == -1) ||
+ isConstTrueVal(TLI, Cst, IsVector, IsFP);
+}
+
+bool CombinerHelper::matchNotCmp(MachineInstr &MI,
+ SmallVectorImpl<Register> &RegsToNegate) {
+ assert(MI.getOpcode() == TargetOpcode::G_XOR);
+ LLT Ty = MRI.getType(MI.getOperand(0).getReg());
+ const auto &TLI = *Builder.getMF().getSubtarget().getTargetLowering();
+ Register XorSrc;
+ Register CstReg;
+ // We match xor(src, true) here.
+ if (!mi_match(MI.getOperand(0).getReg(), MRI,
+ m_GXor(m_Reg(XorSrc), m_Reg(CstReg))))
+ return false;
+
+ if (!MRI.hasOneNonDBGUse(XorSrc))
+ return false;
+
+ // Check that XorSrc is the root of a tree of comparisons combined with ANDs
+ // and ORs. The suffix of RegsToNegate starting from index I is used a work
+ // list of tree nodes to visit.
+ RegsToNegate.push_back(XorSrc);
+ // Remember whether the comparisons are all integer or all floating point.
+ bool IsInt = false;
+ bool IsFP = false;
+ for (unsigned I = 0; I < RegsToNegate.size(); ++I) {
+ Register Reg = RegsToNegate[I];
+ if (!MRI.hasOneNonDBGUse(Reg))
+ return false;
+ MachineInstr *Def = MRI.getVRegDef(Reg);
+ switch (Def->getOpcode()) {
+ default:
+ // Don't match if the tree contains anything other than ANDs, ORs and
+ // comparisons.
+ return false;
+ case TargetOpcode::G_ICMP:
+ if (IsFP)
+ return false;
+ IsInt = true;
+ // When we apply the combine we will invert the predicate.
+ break;
+ case TargetOpcode::G_FCMP:
+ if (IsInt)
+ return false;
+ IsFP = true;
+ // When we apply the combine we will invert the predicate.
+ break;
+ case TargetOpcode::G_AND:
+ case TargetOpcode::G_OR:
+ // Implement De Morgan's laws:
+ // ~(x & y) -> ~x | ~y
+ // ~(x | y) -> ~x & ~y
+ // When we apply the combine we will change the opcode and recursively
+ // negate the operands.
+ RegsToNegate.push_back(Def->getOperand(1).getReg());
+ RegsToNegate.push_back(Def->getOperand(2).getReg());
+ break;
+ }
+ }
+
+ // Now we know whether the comparisons are integer or floating point, check
+ // the constant in the xor.
+ int64_t Cst;
+ if (Ty.isVector()) {
+ MachineInstr *CstDef = MRI.getVRegDef(CstReg);
+ auto MaybeCst = getIConstantSplatSExtVal(*CstDef, MRI);
+ if (!MaybeCst)
+ return false;
+ if (!isConstValidTrue(TLI, Ty.getScalarSizeInBits(), *MaybeCst, true, IsFP))
+ return false;
+ } else {
+ if (!mi_match(CstReg, MRI, m_ICst(Cst)))
+ return false;
+ if (!isConstValidTrue(TLI, Ty.getSizeInBits(), Cst, false, IsFP))
+ return false;
+ }
+
+ return true;
+}
+
+void CombinerHelper::applyNotCmp(MachineInstr &MI,
+ SmallVectorImpl<Register> &RegsToNegate) {
+ for (Register Reg : RegsToNegate) {
+ MachineInstr *Def = MRI.getVRegDef(Reg);
+ Observer.changingInstr(*Def);
+ // For each comparison, invert the opcode. For each AND and OR, change the
+ // opcode.
+ switch (Def->getOpcode()) {
+ default:
+ llvm_unreachable("Unexpected opcode");
+ case TargetOpcode::G_ICMP:
+ case TargetOpcode::G_FCMP: {
+ MachineOperand &PredOp = Def->getOperand(1);
+ CmpInst::Predicate NewP = CmpInst::getInversePredicate(
+ (CmpInst::Predicate)PredOp.getPredicate());
+ PredOp.setPredicate(NewP);
+ break;
+ }
+ case TargetOpcode::G_AND:
+ Def->setDesc(Builder.getTII().get(TargetOpcode::G_OR));
+ break;
+ case TargetOpcode::G_OR:
+ Def->setDesc(Builder.getTII().get(TargetOpcode::G_AND));
+ break;
+ }
+ Observer.changedInstr(*Def);
+ }
+
+ replaceRegWith(MRI, MI.getOperand(0).getReg(), MI.getOperand(1).getReg());
+ MI.eraseFromParent();
+}
+
+bool CombinerHelper::matchXorOfAndWithSameReg(
+ MachineInstr &MI, std::pair<Register, Register> &MatchInfo) {
+ // Match (xor (and x, y), y) (or any of its commuted cases)
+ assert(MI.getOpcode() == TargetOpcode::G_XOR);
+ Register &X = MatchInfo.first;
+ Register &Y = MatchInfo.second;
+ Register AndReg = MI.getOperand(1).getReg();
+ Register SharedReg = MI.getOperand(2).getReg();
+
+ // Find a G_AND on either side of the G_XOR.
+ // Look for one of
+ //
+ // (xor (and x, y), SharedReg)
+ // (xor SharedReg, (and x, y))
+ if (!mi_match(AndReg, MRI, m_GAnd(m_Reg(X), m_Reg(Y)))) {
+ std::swap(AndReg, SharedReg);
+ if (!mi_match(AndReg, MRI, m_GAnd(m_Reg(X), m_Reg(Y))))
+ return false;
+ }
+
+ // Only do this if we'll eliminate the G_AND.
+ if (!MRI.hasOneNonDBGUse(AndReg))
+ return false;
+
+ // We can combine if SharedReg is the same as either the LHS or RHS of the
+ // G_AND.
+ if (Y != SharedReg)
+ std::swap(X, Y);
+ return Y == SharedReg;
+}
+
+void CombinerHelper::applyXorOfAndWithSameReg(
+ MachineInstr &MI, std::pair<Register, Register> &MatchInfo) {
+ // Fold (xor (and x, y), y) -> (and (not x), y)
+ Builder.setInstrAndDebugLoc(MI);
+ Register X, Y;
+ std::tie(X, Y) = MatchInfo;
+ auto Not = Builder.buildNot(MRI.getType(X), X);
+ Observer.changingInstr(MI);
+ MI.setDesc(Builder.getTII().get(TargetOpcode::G_AND));
+ MI.getOperand(1).setReg(Not->getOperand(0).getReg());
+ MI.getOperand(2).setReg(Y);
+ Observer.changedInstr(MI);
+}
+
+bool CombinerHelper::matchPtrAddZero(MachineInstr &MI) {
+ auto &PtrAdd = cast<GPtrAdd>(MI);
+ Register DstReg = PtrAdd.getReg(0);
+ LLT Ty = MRI.getType(DstReg);
+ const DataLayout &DL = Builder.getMF().getDataLayout();
+
+ if (DL.isNonIntegralAddressSpace(Ty.getScalarType().getAddressSpace()))
+ return false;
+
+ if (Ty.isPointer()) {
+ auto ConstVal = getIConstantVRegVal(PtrAdd.getBaseReg(), MRI);
+ return ConstVal && *ConstVal == 0;
+ }
+
+ assert(Ty.isVector() && "Expecting a vector type");
+ const MachineInstr *VecMI = MRI.getVRegDef(PtrAdd.getBaseReg());
+ return isBuildVectorAllZeros(*VecMI, MRI);
+}
+
+void CombinerHelper::applyPtrAddZero(MachineInstr &MI) {
+ auto &PtrAdd = cast<GPtrAdd>(MI);
+ Builder.setInstrAndDebugLoc(PtrAdd);
+ Builder.buildIntToPtr(PtrAdd.getReg(0), PtrAdd.getOffsetReg());
+ PtrAdd.eraseFromParent();
+}
+
+/// The second source operand is known to be a power of 2.
+void CombinerHelper::applySimplifyURemByPow2(MachineInstr &MI) {
+ Register DstReg = MI.getOperand(0).getReg();
+ Register Src0 = MI.getOperand(1).getReg();
+ Register Pow2Src1 = MI.getOperand(2).getReg();
+ LLT Ty = MRI.getType(DstReg);
+ Builder.setInstrAndDebugLoc(MI);
+
+ // Fold (urem x, pow2) -> (and x, pow2-1)
+ auto NegOne = Builder.buildConstant(Ty, -1);
+ auto Add = Builder.buildAdd(Ty, Pow2Src1, NegOne);
+ Builder.buildAnd(DstReg, Src0, Add);
+ MI.eraseFromParent();
+}
+
+bool CombinerHelper::matchFoldBinOpIntoSelect(MachineInstr &MI,
+ unsigned &SelectOpNo) {
+ Register LHS = MI.getOperand(1).getReg();
+ Register RHS = MI.getOperand(2).getReg();
+
+ Register OtherOperandReg = RHS;
+ SelectOpNo = 1;
+ MachineInstr *Select = MRI.getVRegDef(LHS);
+
+ // Don't do this unless the old select is going away. We want to eliminate the
+ // binary operator, not replace a binop with a select.
+ if (Select->getOpcode() != TargetOpcode::G_SELECT ||
+ !MRI.hasOneNonDBGUse(LHS)) {
+ OtherOperandReg = LHS;
+ SelectOpNo = 2;
+ Select = MRI.getVRegDef(RHS);
+ if (Select->getOpcode() != TargetOpcode::G_SELECT ||
+ !MRI.hasOneNonDBGUse(RHS))
+ return false;
+ }
+
+ MachineInstr *SelectLHS = MRI.getVRegDef(Select->getOperand(2).getReg());
+ MachineInstr *SelectRHS = MRI.getVRegDef(Select->getOperand(3).getReg());
+
+ if (!isConstantOrConstantVector(*SelectLHS, MRI,
+ /*AllowFP*/ true,
+ /*AllowOpaqueConstants*/ false))
+ return false;
+ if (!isConstantOrConstantVector(*SelectRHS, MRI,
+ /*AllowFP*/ true,
+ /*AllowOpaqueConstants*/ false))
+ return false;
+
+ unsigned BinOpcode = MI.getOpcode();
+
+ // We know that one of the operands is a select of constants. Now verify that
+ // the other binary operator operand is either a constant, or we can handle a
+ // variable.
+ bool CanFoldNonConst =
+ (BinOpcode == TargetOpcode::G_AND || BinOpcode == TargetOpcode::G_OR) &&
+ (isNullOrNullSplat(*SelectLHS, MRI) ||
+ isAllOnesOrAllOnesSplat(*SelectLHS, MRI)) &&
+ (isNullOrNullSplat(*SelectRHS, MRI) ||
+ isAllOnesOrAllOnesSplat(*SelectRHS, MRI));
+ if (CanFoldNonConst)
+ return true;
+
+ return isConstantOrConstantVector(*MRI.getVRegDef(OtherOperandReg), MRI,
+ /*AllowFP*/ true,
+ /*AllowOpaqueConstants*/ false);
+}
+
+/// \p SelectOperand is the operand in binary operator \p MI that is the select
+/// to fold.
+void CombinerHelper::applyFoldBinOpIntoSelect(MachineInstr &MI,
+ const unsigned &SelectOperand) {
+ Builder.setInstrAndDebugLoc(MI);
+
+ Register Dst = MI.getOperand(0).getReg();
+ Register LHS = MI.getOperand(1).getReg();
+ Register RHS = MI.getOperand(2).getReg();
+ MachineInstr *Select = MRI.getVRegDef(MI.getOperand(SelectOperand).getReg());
+
+ Register SelectCond = Select->getOperand(1).getReg();
+ Register SelectTrue = Select->getOperand(2).getReg();
+ Register SelectFalse = Select->getOperand(3).getReg();
+
+ LLT Ty = MRI.getType(Dst);
+ unsigned BinOpcode = MI.getOpcode();
+
+ Register FoldTrue, FoldFalse;
+
+ // We have a select-of-constants followed by a binary operator with a
+ // constant. Eliminate the binop by pulling the constant math into the select.
+ // Example: add (select Cond, CT, CF), CBO --> select Cond, CT + CBO, CF + CBO
+ if (SelectOperand == 1) {
+ // TODO: SelectionDAG verifies this actually constant folds before
+ // committing to the combine.
+
+ FoldTrue = Builder.buildInstr(BinOpcode, {Ty}, {SelectTrue, RHS}).getReg(0);
+ FoldFalse =
+ Builder.buildInstr(BinOpcode, {Ty}, {SelectFalse, RHS}).getReg(0);
+ } else {
+ FoldTrue = Builder.buildInstr(BinOpcode, {Ty}, {LHS, SelectTrue}).getReg(0);
+ FoldFalse =
+ Builder.buildInstr(BinOpcode, {Ty}, {LHS, SelectFalse}).getReg(0);
+ }
+
+ Builder.buildSelect(Dst, SelectCond, FoldTrue, FoldFalse, MI.getFlags());
+ MI.eraseFromParent();
+}
+
+std::optional<SmallVector<Register, 8>>
+CombinerHelper::findCandidatesForLoadOrCombine(const MachineInstr *Root) const {
+ assert(Root->getOpcode() == TargetOpcode::G_OR && "Expected G_OR only!");
+ // We want to detect if Root is part of a tree which represents a bunch
+ // of loads being merged into a larger load. We'll try to recognize patterns
+ // like, for example:
+ //
+ // Reg Reg
+ // \ /
+ // OR_1 Reg
+ // \ /
+ // OR_2
+ // \ Reg
+ // .. /
+ // Root
+ //
+ // Reg Reg Reg Reg
+ // \ / \ /
+ // OR_1 OR_2
+ // \ /
+ // \ /
+ // ...
+ // Root
+ //
+ // Each "Reg" may have been produced by a load + some arithmetic. This
+ // function will save each of them.
+ SmallVector<Register, 8> RegsToVisit;
+ SmallVector<const MachineInstr *, 7> Ors = {Root};
+
+ // In the "worst" case, we're dealing with a load for each byte. So, there
+ // are at most #bytes - 1 ORs.
+ const unsigned MaxIter =
+ MRI.getType(Root->getOperand(0).getReg()).getSizeInBytes() - 1;
+ for (unsigned Iter = 0; Iter < MaxIter; ++Iter) {
+ if (Ors.empty())
+ break;
+ const MachineInstr *Curr = Ors.pop_back_val();
+ Register OrLHS = Curr->getOperand(1).getReg();
+ Register OrRHS = Curr->getOperand(2).getReg();
+
+ // In the combine, we want to elimate the entire tree.
+ if (!MRI.hasOneNonDBGUse(OrLHS) || !MRI.hasOneNonDBGUse(OrRHS))
+ return std::nullopt;
+
+ // If it's a G_OR, save it and continue to walk. If it's not, then it's
+ // something that may be a load + arithmetic.
+ if (const MachineInstr *Or = getOpcodeDef(TargetOpcode::G_OR, OrLHS, MRI))
+ Ors.push_back(Or);
+ else
+ RegsToVisit.push_back(OrLHS);
+ if (const MachineInstr *Or = getOpcodeDef(TargetOpcode::G_OR, OrRHS, MRI))
+ Ors.push_back(Or);
+ else
+ RegsToVisit.push_back(OrRHS);
+ }
+
+ // We're going to try and merge each register into a wider power-of-2 type,
+ // so we ought to have an even number of registers.
+ if (RegsToVisit.empty() || RegsToVisit.size() % 2 != 0)
+ return std::nullopt;
+ return RegsToVisit;
+}
+
+/// Helper function for findLoadOffsetsForLoadOrCombine.
+///
+/// Check if \p Reg is the result of loading a \p MemSizeInBits wide value,
+/// and then moving that value into a specific byte offset.
+///
+/// e.g. x[i] << 24
+///
+/// \returns The load instruction and the byte offset it is moved into.
+static std::optional<std::pair<GZExtLoad *, int64_t>>
+matchLoadAndBytePosition(Register Reg, unsigned MemSizeInBits,
+ const MachineRegisterInfo &MRI) {
+ assert(MRI.hasOneNonDBGUse(Reg) &&
+ "Expected Reg to only have one non-debug use?");
+ Register MaybeLoad;
+ int64_t Shift;
+ if (!mi_match(Reg, MRI,
+ m_OneNonDBGUse(m_GShl(m_Reg(MaybeLoad), m_ICst(Shift))))) {
+ Shift = 0;
+ MaybeLoad = Reg;
+ }
+
+ if (Shift % MemSizeInBits != 0)
+ return std::nullopt;
+
+ // TODO: Handle other types of loads.
+ auto *Load = getOpcodeDef<GZExtLoad>(MaybeLoad, MRI);
+ if (!Load)
+ return std::nullopt;
+
+ if (!Load->isUnordered() || Load->getMemSizeInBits() != MemSizeInBits)
+ return std::nullopt;
+
+ return std::make_pair(Load, Shift / MemSizeInBits);
+}
+
+std::optional<std::tuple<GZExtLoad *, int64_t, GZExtLoad *>>
+CombinerHelper::findLoadOffsetsForLoadOrCombine(
+ SmallDenseMap<int64_t, int64_t, 8> &MemOffset2Idx,
+ const SmallVector<Register, 8> &RegsToVisit, const unsigned MemSizeInBits) {
+
+ // Each load found for the pattern. There should be one for each RegsToVisit.
+ SmallSetVector<const MachineInstr *, 8> Loads;
+
+ // The lowest index used in any load. (The lowest "i" for each x[i].)
+ int64_t LowestIdx = INT64_MAX;
+
+ // The load which uses the lowest index.
+ GZExtLoad *LowestIdxLoad = nullptr;
+
+ // Keeps track of the load indices we see. We shouldn't see any indices twice.
+ SmallSet<int64_t, 8> SeenIdx;
+
+ // Ensure each load is in the same MBB.
+ // TODO: Support multiple MachineBasicBlocks.
+ MachineBasicBlock *MBB = nullptr;
+ const MachineMemOperand *MMO = nullptr;
+
+ // Earliest instruction-order load in the pattern.
+ GZExtLoad *EarliestLoad = nullptr;
+
+ // Latest instruction-order load in the pattern.
+ GZExtLoad *LatestLoad = nullptr;
+
+ // Base pointer which every load should share.
+ Register BasePtr;
+
+ // We want to find a load for each register. Each load should have some
+ // appropriate bit twiddling arithmetic. During this loop, we will also keep
+ // track of the load which uses the lowest index. Later, we will check if we
+ // can use its pointer in the final, combined load.
+ for (auto Reg : RegsToVisit) {
+ // Find the load, and find the position that it will end up in (e.g. a
+ // shifted) value.
+ auto LoadAndPos = matchLoadAndBytePosition(Reg, MemSizeInBits, MRI);
+ if (!LoadAndPos)
+ return std::nullopt;
+ GZExtLoad *Load;
+ int64_t DstPos;
+ std::tie(Load, DstPos) = *LoadAndPos;
+
+ // TODO: Handle multiple MachineBasicBlocks. Currently not handled because
+ // it is difficult to check for stores/calls/etc between loads.
+ MachineBasicBlock *LoadMBB = Load->getParent();
+ if (!MBB)
+ MBB = LoadMBB;
+ if (LoadMBB != MBB)
+ return std::nullopt;
+
+ // Make sure that the MachineMemOperands of every seen load are compatible.
+ auto &LoadMMO = Load->getMMO();
+ if (!MMO)
+ MMO = &LoadMMO;
+ if (MMO->getAddrSpace() != LoadMMO.getAddrSpace())
+ return std::nullopt;
+
+ // Find out what the base pointer and index for the load is.
+ Register LoadPtr;
+ int64_t Idx;
+ if (!mi_match(Load->getOperand(1).getReg(), MRI,
+ m_GPtrAdd(m_Reg(LoadPtr), m_ICst(Idx)))) {
+ LoadPtr = Load->getOperand(1).getReg();
+ Idx = 0;
+ }
+
+ // Don't combine things like a[i], a[i] -> a bigger load.
+ if (!SeenIdx.insert(Idx).second)
+ return std::nullopt;
+
+ // Every load must share the same base pointer; don't combine things like:
+ //
+ // a[i], b[i + 1] -> a bigger load.
+ if (!BasePtr.isValid())
+ BasePtr = LoadPtr;
+ if (BasePtr != LoadPtr)
+ return std::nullopt;
+
+ if (Idx < LowestIdx) {
+ LowestIdx = Idx;
+ LowestIdxLoad = Load;
+ }
+
+ // Keep track of the byte offset that this load ends up at. If we have seen
+ // the byte offset, then stop here. We do not want to combine:
+ //
+ // a[i] << 16, a[i + k] << 16 -> a bigger load.
+ if (!MemOffset2Idx.try_emplace(DstPos, Idx).second)
+ return std::nullopt;
+ Loads.insert(Load);
+
+ // Keep track of the position of the earliest/latest loads in the pattern.
+ // We will check that there are no load fold barriers between them later
+ // on.
+ //
+ // FIXME: Is there a better way to check for load fold barriers?
+ if (!EarliestLoad || dominates(*Load, *EarliestLoad))
+ EarliestLoad = Load;
+ if (!LatestLoad || dominates(*LatestLoad, *Load))
+ LatestLoad = Load;
+ }
+
+ // We found a load for each register. Let's check if each load satisfies the
+ // pattern.
+ assert(Loads.size() == RegsToVisit.size() &&
+ "Expected to find a load for each register?");
+ assert(EarliestLoad != LatestLoad && EarliestLoad &&
+ LatestLoad && "Expected at least two loads?");
+
+ // Check if there are any stores, calls, etc. between any of the loads. If
+ // there are, then we can't safely perform the combine.
+ //
+ // MaxIter is chosen based off the (worst case) number of iterations it
+ // typically takes to succeed in the LLVM test suite plus some padding.
+ //
+ // FIXME: Is there a better way to check for load fold barriers?
+ const unsigned MaxIter = 20;
+ unsigned Iter = 0;
+ for (const auto &MI : instructionsWithoutDebug(EarliestLoad->getIterator(),
+ LatestLoad->getIterator())) {
+ if (Loads.count(&MI))
+ continue;
+ if (MI.isLoadFoldBarrier())
+ return std::nullopt;
+ if (Iter++ == MaxIter)
+ return std::nullopt;
+ }
+
+ return std::make_tuple(LowestIdxLoad, LowestIdx, LatestLoad);
+}
+
+bool CombinerHelper::matchLoadOrCombine(
+ MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) {
+ assert(MI.getOpcode() == TargetOpcode::G_OR);
+ MachineFunction &MF = *MI.getMF();
+ // Assuming a little-endian target, transform:
+ // s8 *a = ...
+ // s32 val = a[0] | (a[1] << 8) | (a[2] << 16) | (a[3] << 24)
+ // =>
+ // s32 val = *((i32)a)
+ //
+ // s8 *a = ...
+ // s32 val = (a[0] << 24) | (a[1] << 16) | (a[2] << 8) | a[3]
+ // =>
+ // s32 val = BSWAP(*((s32)a))
+ Register Dst = MI.getOperand(0).getReg();
+ LLT Ty = MRI.getType(Dst);
+ if (Ty.isVector())
+ return false;
+
+ // We need to combine at least two loads into this type. Since the smallest
+ // possible load is into a byte, we need at least a 16-bit wide type.
+ const unsigned WideMemSizeInBits = Ty.getSizeInBits();
+ if (WideMemSizeInBits < 16 || WideMemSizeInBits % 8 != 0)
+ return false;
+
+ // Match a collection of non-OR instructions in the pattern.
+ auto RegsToVisit = findCandidatesForLoadOrCombine(&MI);
+ if (!RegsToVisit)
+ return false;
+
+ // We have a collection of non-OR instructions. Figure out how wide each of
+ // the small loads should be based off of the number of potential loads we
+ // found.
+ const unsigned NarrowMemSizeInBits = WideMemSizeInBits / RegsToVisit->size();
+ if (NarrowMemSizeInBits % 8 != 0)
+ return false;
+
+ // Check if each register feeding into each OR is a load from the same
+ // base pointer + some arithmetic.
+ //
+ // e.g. a[0], a[1] << 8, a[2] << 16, etc.
+ //
+ // Also verify that each of these ends up putting a[i] into the same memory
+ // offset as a load into a wide type would.
+ SmallDenseMap<int64_t, int64_t, 8> MemOffset2Idx;
+ GZExtLoad *LowestIdxLoad, *LatestLoad;
+ int64_t LowestIdx;
+ auto MaybeLoadInfo = findLoadOffsetsForLoadOrCombine(
+ MemOffset2Idx, *RegsToVisit, NarrowMemSizeInBits);
+ if (!MaybeLoadInfo)
+ return false;
+ std::tie(LowestIdxLoad, LowestIdx, LatestLoad) = *MaybeLoadInfo;
+
+ // We have a bunch of loads being OR'd together. Using the addresses + offsets
+ // we found before, check if this corresponds to a big or little endian byte
+ // pattern. If it does, then we can represent it using a load + possibly a
+ // BSWAP.
+ bool IsBigEndianTarget = MF.getDataLayout().isBigEndian();
+ std::optional<bool> IsBigEndian = isBigEndian(MemOffset2Idx, LowestIdx);
+ if (!IsBigEndian)
+ return false;
+ bool NeedsBSwap = IsBigEndianTarget != *IsBigEndian;
+ if (NeedsBSwap && !isLegalOrBeforeLegalizer({TargetOpcode::G_BSWAP, {Ty}}))
+ return false;
+
+ // Make sure that the load from the lowest index produces offset 0 in the
+ // final value.
+ //
+ // This ensures that we won't combine something like this:
+ //
+ // load x[i] -> byte 2
+ // load x[i+1] -> byte 0 ---> wide_load x[i]
+ // load x[i+2] -> byte 1
+ const unsigned NumLoadsInTy = WideMemSizeInBits / NarrowMemSizeInBits;
+ const unsigned ZeroByteOffset =
+ *IsBigEndian
+ ? bigEndianByteAt(NumLoadsInTy, 0)
+ : littleEndianByteAt(NumLoadsInTy, 0);
+ auto ZeroOffsetIdx = MemOffset2Idx.find(ZeroByteOffset);
+ if (ZeroOffsetIdx == MemOffset2Idx.end() ||
+ ZeroOffsetIdx->second != LowestIdx)
+ return false;
+
+ // We wil reuse the pointer from the load which ends up at byte offset 0. It
+ // may not use index 0.
+ Register Ptr = LowestIdxLoad->getPointerReg();
+ const MachineMemOperand &MMO = LowestIdxLoad->getMMO();
+ LegalityQuery::MemDesc MMDesc(MMO);
+ MMDesc.MemoryTy = Ty;
+ if (!isLegalOrBeforeLegalizer(
+ {TargetOpcode::G_LOAD, {Ty, MRI.getType(Ptr)}, {MMDesc}}))
+ return false;
+ auto PtrInfo = MMO.getPointerInfo();
+ auto *NewMMO = MF.getMachineMemOperand(&MMO, PtrInfo, WideMemSizeInBits / 8);
+
+ // Load must be allowed and fast on the target.
+ LLVMContext &C = MF.getFunction().getContext();
+ auto &DL = MF.getDataLayout();
+ unsigned Fast = 0;
+ if (!getTargetLowering().allowsMemoryAccess(C, DL, Ty, *NewMMO, &Fast) ||
+ !Fast)
+ return false;
+
+ MatchInfo = [=](MachineIRBuilder &MIB) {
+ MIB.setInstrAndDebugLoc(*LatestLoad);
+ Register LoadDst = NeedsBSwap ? MRI.cloneVirtualRegister(Dst) : Dst;
+ MIB.buildLoad(LoadDst, Ptr, *NewMMO);
+ if (NeedsBSwap)
+ MIB.buildBSwap(Dst, LoadDst);
+ };
+ return true;
+}
+
+bool CombinerHelper::matchExtendThroughPhis(MachineInstr &MI,
+ MachineInstr *&ExtMI) {
+ assert(MI.getOpcode() == TargetOpcode::G_PHI);
+
+ Register DstReg = MI.getOperand(0).getReg();
+
+ // TODO: Extending a vector may be expensive, don't do this until heuristics
+ // are better.
+ if (MRI.getType(DstReg).isVector())
+ return false;
+
+ // Try to match a phi, whose only use is an extend.
+ if (!MRI.hasOneNonDBGUse(DstReg))
+ return false;
+ ExtMI = &*MRI.use_instr_nodbg_begin(DstReg);
+ switch (ExtMI->getOpcode()) {
+ case TargetOpcode::G_ANYEXT:
+ return true; // G_ANYEXT is usually free.
+ case TargetOpcode::G_ZEXT:
+ case TargetOpcode::G_SEXT:
+ break;
+ default:
+ return false;
+ }
+
+ // If the target is likely to fold this extend away, don't propagate.
+ if (Builder.getTII().isExtendLikelyToBeFolded(*ExtMI, MRI))
+ return false;
+
+ // We don't want to propagate the extends unless there's a good chance that
+ // they'll be optimized in some way.
+ // Collect the unique incoming values.
+ SmallPtrSet<MachineInstr *, 4> InSrcs;
+ for (unsigned Idx = 1; Idx < MI.getNumOperands(); Idx += 2) {
+ auto *DefMI = getDefIgnoringCopies(MI.getOperand(Idx).getReg(), MRI);
+ switch (DefMI->getOpcode()) {
+ case TargetOpcode::G_LOAD:
+ case TargetOpcode::G_TRUNC:
+ case TargetOpcode::G_SEXT:
+ case TargetOpcode::G_ZEXT:
+ case TargetOpcode::G_ANYEXT:
+ case TargetOpcode::G_CONSTANT:
+ InSrcs.insert(getDefIgnoringCopies(MI.getOperand(Idx).getReg(), MRI));
+ // Don't try to propagate if there are too many places to create new
+ // extends, chances are it'll increase code size.
+ if (InSrcs.size() > 2)
+ return false;
+ break;
+ default:
+ return false;
+ }
+ }
+ return true;
+}
+
+void CombinerHelper::applyExtendThroughPhis(MachineInstr &MI,
+ MachineInstr *&ExtMI) {
+ assert(MI.getOpcode() == TargetOpcode::G_PHI);
+ Register DstReg = ExtMI->getOperand(0).getReg();
+ LLT ExtTy = MRI.getType(DstReg);
+
+ // Propagate the extension into the block of each incoming reg's block.
+ // Use a SetVector here because PHIs can have duplicate edges, and we want
+ // deterministic iteration order.
+ SmallSetVector<MachineInstr *, 8> SrcMIs;
+ SmallDenseMap<MachineInstr *, MachineInstr *, 8> OldToNewSrcMap;
+ for (unsigned SrcIdx = 1; SrcIdx < MI.getNumOperands(); SrcIdx += 2) {
+ auto *SrcMI = MRI.getVRegDef(MI.getOperand(SrcIdx).getReg());
+ if (!SrcMIs.insert(SrcMI))
+ continue;
+
+ // Build an extend after each src inst.
+ auto *MBB = SrcMI->getParent();
+ MachineBasicBlock::iterator InsertPt = ++SrcMI->getIterator();
+ if (InsertPt != MBB->end() && InsertPt->isPHI())
+ InsertPt = MBB->getFirstNonPHI();
+
+ Builder.setInsertPt(*SrcMI->getParent(), InsertPt);
+ Builder.setDebugLoc(MI.getDebugLoc());
+ auto NewExt = Builder.buildExtOrTrunc(ExtMI->getOpcode(), ExtTy,
+ SrcMI->getOperand(0).getReg());
+ OldToNewSrcMap[SrcMI] = NewExt;
+ }
+
+ // Create a new phi with the extended inputs.
+ Builder.setInstrAndDebugLoc(MI);
+ auto NewPhi = Builder.buildInstrNoInsert(TargetOpcode::G_PHI);
+ NewPhi.addDef(DstReg);
+ for (const MachineOperand &MO : llvm::drop_begin(MI.operands())) {
+ if (!MO.isReg()) {
+ NewPhi.addMBB(MO.getMBB());
+ continue;
+ }
+ auto *NewSrc = OldToNewSrcMap[MRI.getVRegDef(MO.getReg())];
+ NewPhi.addUse(NewSrc->getOperand(0).getReg());
+ }
+ Builder.insertInstr(NewPhi);
+ ExtMI->eraseFromParent();
+}
+
+bool CombinerHelper::matchExtractVecEltBuildVec(MachineInstr &MI,
+ Register &Reg) {
+ assert(MI.getOpcode() == TargetOpcode::G_EXTRACT_VECTOR_ELT);
+ // If we have a constant index, look for a G_BUILD_VECTOR source
+ // and find the source register that the index maps to.
+ Register SrcVec = MI.getOperand(1).getReg();
+ LLT SrcTy = MRI.getType(SrcVec);
+
+ auto Cst = getIConstantVRegValWithLookThrough(MI.getOperand(2).getReg(), MRI);
+ if (!Cst || Cst->Value.getZExtValue() >= SrcTy.getNumElements())
+ return false;
+
+ unsigned VecIdx = Cst->Value.getZExtValue();
+
+ // Check if we have a build_vector or build_vector_trunc with an optional
+ // trunc in front.
+ MachineInstr *SrcVecMI = MRI.getVRegDef(SrcVec);
+ if (SrcVecMI->getOpcode() == TargetOpcode::G_TRUNC) {
+ SrcVecMI = MRI.getVRegDef(SrcVecMI->getOperand(1).getReg());
+ }
+
+ if (SrcVecMI->getOpcode() != TargetOpcode::G_BUILD_VECTOR &&
+ SrcVecMI->getOpcode() != TargetOpcode::G_BUILD_VECTOR_TRUNC)
+ return false;
+
+ EVT Ty(getMVTForLLT(SrcTy));
+ if (!MRI.hasOneNonDBGUse(SrcVec) &&
+ !getTargetLowering().aggressivelyPreferBuildVectorSources(Ty))
+ return false;
+
+ Reg = SrcVecMI->getOperand(VecIdx + 1).getReg();
+ return true;
+}
+
+void CombinerHelper::applyExtractVecEltBuildVec(MachineInstr &MI,
+ Register &Reg) {
+ // Check the type of the register, since it may have come from a
+ // G_BUILD_VECTOR_TRUNC.
+ LLT ScalarTy = MRI.getType(Reg);
+ Register DstReg = MI.getOperand(0).getReg();
+ LLT DstTy = MRI.getType(DstReg);
+
+ Builder.setInstrAndDebugLoc(MI);
+ if (ScalarTy != DstTy) {
+ assert(ScalarTy.getSizeInBits() > DstTy.getSizeInBits());
+ Builder.buildTrunc(DstReg, Reg);
+ MI.eraseFromParent();
+ return;
+ }
+ replaceSingleDefInstWithReg(MI, Reg);
+}
+
+bool CombinerHelper::matchExtractAllEltsFromBuildVector(
+ MachineInstr &MI,
+ SmallVectorImpl<std::pair<Register, MachineInstr *>> &SrcDstPairs) {
+ assert(MI.getOpcode() == TargetOpcode::G_BUILD_VECTOR);
+ // This combine tries to find build_vector's which have every source element
+ // extracted using G_EXTRACT_VECTOR_ELT. This can happen when transforms like
+ // the masked load scalarization is run late in the pipeline. There's already
+ // a combine for a similar pattern starting from the extract, but that
+ // doesn't attempt to do it if there are multiple uses of the build_vector,
+ // which in this case is true. Starting the combine from the build_vector
+ // feels more natural than trying to find sibling nodes of extracts.
+ // E.g.
+ // %vec(<4 x s32>) = G_BUILD_VECTOR %s1(s32), %s2, %s3, %s4
+ // %ext1 = G_EXTRACT_VECTOR_ELT %vec, 0
+ // %ext2 = G_EXTRACT_VECTOR_ELT %vec, 1
+ // %ext3 = G_EXTRACT_VECTOR_ELT %vec, 2
+ // %ext4 = G_EXTRACT_VECTOR_ELT %vec, 3
+ // ==>
+ // replace ext{1,2,3,4} with %s{1,2,3,4}
+
+ Register DstReg = MI.getOperand(0).getReg();
+ LLT DstTy = MRI.getType(DstReg);
+ unsigned NumElts = DstTy.getNumElements();
+
+ SmallBitVector ExtractedElts(NumElts);
+ for (MachineInstr &II : MRI.use_nodbg_instructions(DstReg)) {
+ if (II.getOpcode() != TargetOpcode::G_EXTRACT_VECTOR_ELT)
+ return false;
+ auto Cst = getIConstantVRegVal(II.getOperand(2).getReg(), MRI);
+ if (!Cst)
+ return false;
+ unsigned Idx = Cst->getZExtValue();
+ if (Idx >= NumElts)
+ return false; // Out of range.
+ ExtractedElts.set(Idx);
+ SrcDstPairs.emplace_back(
+ std::make_pair(MI.getOperand(Idx + 1).getReg(), &II));
+ }
+ // Match if every element was extracted.
+ return ExtractedElts.all();
+}
+
+void CombinerHelper::applyExtractAllEltsFromBuildVector(
+ MachineInstr &MI,
+ SmallVectorImpl<std::pair<Register, MachineInstr *>> &SrcDstPairs) {
+ assert(MI.getOpcode() == TargetOpcode::G_BUILD_VECTOR);
+ for (auto &Pair : SrcDstPairs) {
+ auto *ExtMI = Pair.second;
+ replaceRegWith(MRI, ExtMI->getOperand(0).getReg(), Pair.first);
+ ExtMI->eraseFromParent();
+ }
+ MI.eraseFromParent();
+}
+
+void CombinerHelper::applyBuildFn(
+ MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) {
+ Builder.setInstrAndDebugLoc(MI);
+ MatchInfo(Builder);
+ MI.eraseFromParent();
+}
+
+void CombinerHelper::applyBuildFnNoErase(
+ MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) {
+ Builder.setInstrAndDebugLoc(MI);
+ MatchInfo(Builder);
+}
+
+bool CombinerHelper::matchOrShiftToFunnelShift(MachineInstr &MI,
+ BuildFnTy &MatchInfo) {
+ assert(MI.getOpcode() == TargetOpcode::G_OR);
+
+ Register Dst = MI.getOperand(0).getReg();
+ LLT Ty = MRI.getType(Dst);
+ unsigned BitWidth = Ty.getScalarSizeInBits();
+
+ Register ShlSrc, ShlAmt, LShrSrc, LShrAmt, Amt;
+ unsigned FshOpc = 0;
+
+ // Match (or (shl ...), (lshr ...)).
+ if (!mi_match(Dst, MRI,
+ // m_GOr() handles the commuted version as well.
+ m_GOr(m_GShl(m_Reg(ShlSrc), m_Reg(ShlAmt)),
+ m_GLShr(m_Reg(LShrSrc), m_Reg(LShrAmt)))))
+ return false;
+
+ // Given constants C0 and C1 such that C0 + C1 is bit-width:
+ // (or (shl x, C0), (lshr y, C1)) -> (fshl x, y, C0) or (fshr x, y, C1)
+ int64_t CstShlAmt, CstLShrAmt;
+ if (mi_match(ShlAmt, MRI, m_ICstOrSplat(CstShlAmt)) &&
+ mi_match(LShrAmt, MRI, m_ICstOrSplat(CstLShrAmt)) &&
+ CstShlAmt + CstLShrAmt == BitWidth) {
+ FshOpc = TargetOpcode::G_FSHR;
+ Amt = LShrAmt;
+
+ } else if (mi_match(LShrAmt, MRI,
+ m_GSub(m_SpecificICstOrSplat(BitWidth), m_Reg(Amt))) &&
+ ShlAmt == Amt) {
+ // (or (shl x, amt), (lshr y, (sub bw, amt))) -> (fshl x, y, amt)
+ FshOpc = TargetOpcode::G_FSHL;
+
+ } else if (mi_match(ShlAmt, MRI,
+ m_GSub(m_SpecificICstOrSplat(BitWidth), m_Reg(Amt))) &&
+ LShrAmt == Amt) {
+ // (or (shl x, (sub bw, amt)), (lshr y, amt)) -> (fshr x, y, amt)
+ FshOpc = TargetOpcode::G_FSHR;
+
+ } else {
+ return false;
+ }
+
+ LLT AmtTy = MRI.getType(Amt);
+ if (!isLegalOrBeforeLegalizer({FshOpc, {Ty, AmtTy}}))
+ return false;
+
+ MatchInfo = [=](MachineIRBuilder &B) {
+ B.buildInstr(FshOpc, {Dst}, {ShlSrc, LShrSrc, Amt});
+ };
+ return true;
+}
+
+/// Match an FSHL or FSHR that can be combined to a ROTR or ROTL rotate.
+bool CombinerHelper::matchFunnelShiftToRotate(MachineInstr &MI) {
+ unsigned Opc = MI.getOpcode();
+ assert(Opc == TargetOpcode::G_FSHL || Opc == TargetOpcode::G_FSHR);
+ Register X = MI.getOperand(1).getReg();
+ Register Y = MI.getOperand(2).getReg();
+ if (X != Y)
+ return false;
+ unsigned RotateOpc =
+ Opc == TargetOpcode::G_FSHL ? TargetOpcode::G_ROTL : TargetOpcode::G_ROTR;
+ return isLegalOrBeforeLegalizer({RotateOpc, {MRI.getType(X), MRI.getType(Y)}});
+}
+
+void CombinerHelper::applyFunnelShiftToRotate(MachineInstr &MI) {
+ unsigned Opc = MI.getOpcode();
+ assert(Opc == TargetOpcode::G_FSHL || Opc == TargetOpcode::G_FSHR);
+ bool IsFSHL = Opc == TargetOpcode::G_FSHL;
+ Observer.changingInstr(MI);
+ MI.setDesc(Builder.getTII().get(IsFSHL ? TargetOpcode::G_ROTL
+ : TargetOpcode::G_ROTR));
+ MI.removeOperand(2);
+ Observer.changedInstr(MI);
+}
+
+// Fold (rot x, c) -> (rot x, c % BitSize)
+bool CombinerHelper::matchRotateOutOfRange(MachineInstr &MI) {
+ assert(MI.getOpcode() == TargetOpcode::G_ROTL ||
+ MI.getOpcode() == TargetOpcode::G_ROTR);
+ unsigned Bitsize =
+ MRI.getType(MI.getOperand(0).getReg()).getScalarSizeInBits();
+ Register AmtReg = MI.getOperand(2).getReg();
+ bool OutOfRange = false;
+ auto MatchOutOfRange = [Bitsize, &OutOfRange](const Constant *C) {
+ if (auto *CI = dyn_cast<ConstantInt>(C))
+ OutOfRange |= CI->getValue().uge(Bitsize);
+ return true;
+ };
+ return matchUnaryPredicate(MRI, AmtReg, MatchOutOfRange) && OutOfRange;
+}
+
+void CombinerHelper::applyRotateOutOfRange(MachineInstr &MI) {
+ assert(MI.getOpcode() == TargetOpcode::G_ROTL ||
+ MI.getOpcode() == TargetOpcode::G_ROTR);
+ unsigned Bitsize =
+ MRI.getType(MI.getOperand(0).getReg()).getScalarSizeInBits();
+ Builder.setInstrAndDebugLoc(MI);
+ Register Amt = MI.getOperand(2).getReg();
+ LLT AmtTy = MRI.getType(Amt);
+ auto Bits = Builder.buildConstant(AmtTy, Bitsize);
+ Amt = Builder.buildURem(AmtTy, MI.getOperand(2).getReg(), Bits).getReg(0);
+ Observer.changingInstr(MI);
+ MI.getOperand(2).setReg(Amt);
+ Observer.changedInstr(MI);
+}
+
+bool CombinerHelper::matchICmpToTrueFalseKnownBits(MachineInstr &MI,
+ int64_t &MatchInfo) {
+ assert(MI.getOpcode() == TargetOpcode::G_ICMP);
+ auto Pred = static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate());
+ auto KnownLHS = KB->getKnownBits(MI.getOperand(2).getReg());
+ auto KnownRHS = KB->getKnownBits(MI.getOperand(3).getReg());
+ std::optional<bool> KnownVal;
+ switch (Pred) {
+ default:
+ llvm_unreachable("Unexpected G_ICMP predicate?");
+ case CmpInst::ICMP_EQ:
+ KnownVal = KnownBits::eq(KnownLHS, KnownRHS);
+ break;
+ case CmpInst::ICMP_NE:
+ KnownVal = KnownBits::ne(KnownLHS, KnownRHS);
+ break;
+ case CmpInst::ICMP_SGE:
+ KnownVal = KnownBits::sge(KnownLHS, KnownRHS);
+ break;
+ case CmpInst::ICMP_SGT:
+ KnownVal = KnownBits::sgt(KnownLHS, KnownRHS);
+ break;
+ case CmpInst::ICMP_SLE:
+ KnownVal = KnownBits::sle(KnownLHS, KnownRHS);
+ break;
+ case CmpInst::ICMP_SLT:
+ KnownVal = KnownBits::slt(KnownLHS, KnownRHS);
+ break;
+ case CmpInst::ICMP_UGE:
+ KnownVal = KnownBits::uge(KnownLHS, KnownRHS);
+ break;
+ case CmpInst::ICMP_UGT:
+ KnownVal = KnownBits::ugt(KnownLHS, KnownRHS);
+ break;
+ case CmpInst::ICMP_ULE:
+ KnownVal = KnownBits::ule(KnownLHS, KnownRHS);
+ break;
+ case CmpInst::ICMP_ULT:
+ KnownVal = KnownBits::ult(KnownLHS, KnownRHS);
+ break;
+ }
+ if (!KnownVal)
+ return false;
+ MatchInfo =
+ *KnownVal
+ ? getICmpTrueVal(getTargetLowering(),
+ /*IsVector = */
+ MRI.getType(MI.getOperand(0).getReg()).isVector(),
+ /* IsFP = */ false)
+ : 0;
+ return true;
+}
+
+bool CombinerHelper::matchICmpToLHSKnownBits(
+ MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) {
+ assert(MI.getOpcode() == TargetOpcode::G_ICMP);
+ // Given:
+ //
+ // %x = G_WHATEVER (... x is known to be 0 or 1 ...)
+ // %cmp = G_ICMP ne %x, 0
+ //
+ // Or:
+ //
+ // %x = G_WHATEVER (... x is known to be 0 or 1 ...)
+ // %cmp = G_ICMP eq %x, 1
+ //
+ // We can replace %cmp with %x assuming true is 1 on the target.
+ auto Pred = static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate());
+ if (!CmpInst::isEquality(Pred))
+ return false;
+ Register Dst = MI.getOperand(0).getReg();
+ LLT DstTy = MRI.getType(Dst);
+ if (getICmpTrueVal(getTargetLowering(), DstTy.isVector(),
+ /* IsFP = */ false) != 1)
+ return false;
+ int64_t OneOrZero = Pred == CmpInst::ICMP_EQ;
+ if (!mi_match(MI.getOperand(3).getReg(), MRI, m_SpecificICst(OneOrZero)))
+ return false;
+ Register LHS = MI.getOperand(2).getReg();
+ auto KnownLHS = KB->getKnownBits(LHS);
+ if (KnownLHS.getMinValue() != 0 || KnownLHS.getMaxValue() != 1)
+ return false;
+ // Make sure replacing Dst with the LHS is a legal operation.
+ LLT LHSTy = MRI.getType(LHS);
+ unsigned LHSSize = LHSTy.getSizeInBits();
+ unsigned DstSize = DstTy.getSizeInBits();
+ unsigned Op = TargetOpcode::COPY;
+ if (DstSize != LHSSize)
+ Op = DstSize < LHSSize ? TargetOpcode::G_TRUNC : TargetOpcode::G_ZEXT;
+ if (!isLegalOrBeforeLegalizer({Op, {DstTy, LHSTy}}))
+ return false;
+ MatchInfo = [=](MachineIRBuilder &B) { B.buildInstr(Op, {Dst}, {LHS}); };
+ return true;
+}
+
+// Replace (and (or x, c1), c2) with (and x, c2) iff c1 & c2 == 0
+bool CombinerHelper::matchAndOrDisjointMask(
+ MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) {
+ assert(MI.getOpcode() == TargetOpcode::G_AND);
+
+ // Ignore vector types to simplify matching the two constants.
+ // TODO: do this for vectors and scalars via a demanded bits analysis.
+ LLT Ty = MRI.getType(MI.getOperand(0).getReg());
+ if (Ty.isVector())
+ return false;
+
+ Register Src;
+ Register AndMaskReg;
+ int64_t AndMaskBits;
+ int64_t OrMaskBits;
+ if (!mi_match(MI, MRI,
+ m_GAnd(m_GOr(m_Reg(Src), m_ICst(OrMaskBits)),
+ m_all_of(m_ICst(AndMaskBits), m_Reg(AndMaskReg)))))
+ return false;
+
+ // Check if OrMask could turn on any bits in Src.
+ if (AndMaskBits & OrMaskBits)
+ return false;
+
+ MatchInfo = [=, &MI](MachineIRBuilder &B) {
+ Observer.changingInstr(MI);
+ // Canonicalize the result to have the constant on the RHS.
+ if (MI.getOperand(1).getReg() == AndMaskReg)
+ MI.getOperand(2).setReg(AndMaskReg);
+ MI.getOperand(1).setReg(Src);
+ Observer.changedInstr(MI);
+ };
+ return true;
+}
+
+/// Form a G_SBFX from a G_SEXT_INREG fed by a right shift.
+bool CombinerHelper::matchBitfieldExtractFromSExtInReg(
+ MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) {
+ assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG);
+ Register Dst = MI.getOperand(0).getReg();
+ Register Src = MI.getOperand(1).getReg();
+ LLT Ty = MRI.getType(Src);
+ LLT ExtractTy = getTargetLowering().getPreferredShiftAmountTy(Ty);
+ if (!LI || !LI->isLegalOrCustom({TargetOpcode::G_SBFX, {Ty, ExtractTy}}))
+ return false;
+ int64_t Width = MI.getOperand(2).getImm();
+ Register ShiftSrc;
+ int64_t ShiftImm;
+ if (!mi_match(
+ Src, MRI,
+ m_OneNonDBGUse(m_any_of(m_GAShr(m_Reg(ShiftSrc), m_ICst(ShiftImm)),
+ m_GLShr(m_Reg(ShiftSrc), m_ICst(ShiftImm))))))
+ return false;
+ if (ShiftImm < 0 || ShiftImm + Width > Ty.getScalarSizeInBits())
+ return false;
+
+ MatchInfo = [=](MachineIRBuilder &B) {
+ auto Cst1 = B.buildConstant(ExtractTy, ShiftImm);
+ auto Cst2 = B.buildConstant(ExtractTy, Width);
+ B.buildSbfx(Dst, ShiftSrc, Cst1, Cst2);
+ };
+ return true;
+}
+
+/// Form a G_UBFX from "(a srl b) & mask", where b and mask are constants.
+bool CombinerHelper::matchBitfieldExtractFromAnd(
+ MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) {
+ assert(MI.getOpcode() == TargetOpcode::G_AND);
+ Register Dst = MI.getOperand(0).getReg();
+ LLT Ty = MRI.getType(Dst);
+ LLT ExtractTy = getTargetLowering().getPreferredShiftAmountTy(Ty);
+ if (LI && !LI->isLegalOrCustom({TargetOpcode::G_UBFX, {Ty, ExtractTy}}))
+ return false;
+
+ int64_t AndImm, LSBImm;
+ Register ShiftSrc;
+ const unsigned Size = Ty.getScalarSizeInBits();
+ if (!mi_match(MI.getOperand(0).getReg(), MRI,
+ m_GAnd(m_OneNonDBGUse(m_GLShr(m_Reg(ShiftSrc), m_ICst(LSBImm))),
+ m_ICst(AndImm))))
+ return false;
+
+ // The mask is a mask of the low bits iff imm & (imm+1) == 0.
+ auto MaybeMask = static_cast<uint64_t>(AndImm);
+ if (MaybeMask & (MaybeMask + 1))
+ return false;
+
+ // LSB must fit within the register.
+ if (static_cast<uint64_t>(LSBImm) >= Size)
+ return false;
+
+ uint64_t Width = APInt(Size, AndImm).countr_one();
+ MatchInfo = [=](MachineIRBuilder &B) {
+ auto WidthCst = B.buildConstant(ExtractTy, Width);
+ auto LSBCst = B.buildConstant(ExtractTy, LSBImm);
+ B.buildInstr(TargetOpcode::G_UBFX, {Dst}, {ShiftSrc, LSBCst, WidthCst});
+ };
+ return true;
+}
+
+bool CombinerHelper::matchBitfieldExtractFromShr(
+ MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) {
+ const unsigned Opcode = MI.getOpcode();
+ assert(Opcode == TargetOpcode::G_ASHR || Opcode == TargetOpcode::G_LSHR);
+
+ const Register Dst = MI.getOperand(0).getReg();
+
+ const unsigned ExtrOpcode = Opcode == TargetOpcode::G_ASHR
+ ? TargetOpcode::G_SBFX
+ : TargetOpcode::G_UBFX;
+
+ // Check if the type we would use for the extract is legal
+ LLT Ty = MRI.getType(Dst);
+ LLT ExtractTy = getTargetLowering().getPreferredShiftAmountTy(Ty);
+ if (!LI || !LI->isLegalOrCustom({ExtrOpcode, {Ty, ExtractTy}}))
+ return false;
+
+ Register ShlSrc;
+ int64_t ShrAmt;
+ int64_t ShlAmt;
+ const unsigned Size = Ty.getScalarSizeInBits();
+
+ // Try to match shr (shl x, c1), c2
+ if (!mi_match(Dst, MRI,
+ m_BinOp(Opcode,
+ m_OneNonDBGUse(m_GShl(m_Reg(ShlSrc), m_ICst(ShlAmt))),
+ m_ICst(ShrAmt))))
+ return false;
+
+ // Make sure that the shift sizes can fit a bitfield extract
+ if (ShlAmt < 0 || ShlAmt > ShrAmt || ShrAmt >= Size)
+ return false;
+
+ // Skip this combine if the G_SEXT_INREG combine could handle it
+ if (Opcode == TargetOpcode::G_ASHR && ShlAmt == ShrAmt)
+ return false;
+
+ // Calculate start position and width of the extract
+ const int64_t Pos = ShrAmt - ShlAmt;
+ const int64_t Width = Size - ShrAmt;
+
+ MatchInfo = [=](MachineIRBuilder &B) {
+ auto WidthCst = B.buildConstant(ExtractTy, Width);
+ auto PosCst = B.buildConstant(ExtractTy, Pos);
+ B.buildInstr(ExtrOpcode, {Dst}, {ShlSrc, PosCst, WidthCst});
+ };
+ return true;
+}
+
+bool CombinerHelper::matchBitfieldExtractFromShrAnd(
+ MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) {
+ const unsigned Opcode = MI.getOpcode();
+ assert(Opcode == TargetOpcode::G_LSHR || Opcode == TargetOpcode::G_ASHR);
+
+ const Register Dst = MI.getOperand(0).getReg();
+ LLT Ty = MRI.getType(Dst);
+ LLT ExtractTy = getTargetLowering().getPreferredShiftAmountTy(Ty);
+ if (LI && !LI->isLegalOrCustom({TargetOpcode::G_UBFX, {Ty, ExtractTy}}))
+ return false;
+
+ // Try to match shr (and x, c1), c2
+ Register AndSrc;
+ int64_t ShrAmt;
+ int64_t SMask;
+ if (!mi_match(Dst, MRI,
+ m_BinOp(Opcode,
+ m_OneNonDBGUse(m_GAnd(m_Reg(AndSrc), m_ICst(SMask))),
+ m_ICst(ShrAmt))))
+ return false;
+
+ const unsigned Size = Ty.getScalarSizeInBits();
+ if (ShrAmt < 0 || ShrAmt >= Size)
+ return false;
+
+ // If the shift subsumes the mask, emit the 0 directly.
+ if (0 == (SMask >> ShrAmt)) {
+ MatchInfo = [=](MachineIRBuilder &B) {
+ B.buildConstant(Dst, 0);
+ };
+ return true;
+ }
+
+ // Check that ubfx can do the extraction, with no holes in the mask.
+ uint64_t UMask = SMask;
+ UMask |= maskTrailingOnes<uint64_t>(ShrAmt);
+ UMask &= maskTrailingOnes<uint64_t>(Size);
+ if (!isMask_64(UMask))
+ return false;
+
+ // Calculate start position and width of the extract.
+ const int64_t Pos = ShrAmt;
+ const int64_t Width = llvm::countr_one(UMask) - ShrAmt;
+
+ // It's preferable to keep the shift, rather than form G_SBFX.
+ // TODO: remove the G_AND via demanded bits analysis.
+ if (Opcode == TargetOpcode::G_ASHR && Width + ShrAmt == Size)
+ return false;
+
+ MatchInfo = [=](MachineIRBuilder &B) {
+ auto WidthCst = B.buildConstant(ExtractTy, Width);
+ auto PosCst = B.buildConstant(ExtractTy, Pos);
+ B.buildInstr(TargetOpcode::G_UBFX, {Dst}, {AndSrc, PosCst, WidthCst});
+ };
+ return true;
+}
+
+bool CombinerHelper::reassociationCanBreakAddressingModePattern(
+ MachineInstr &MI) {
+ auto &PtrAdd = cast<GPtrAdd>(MI);
+
+ Register Src1Reg = PtrAdd.getBaseReg();
+ auto *Src1Def = getOpcodeDef<GPtrAdd>(Src1Reg, MRI);
+ if (!Src1Def)
+ return false;
+
+ Register Src2Reg = PtrAdd.getOffsetReg();
+
+ if (MRI.hasOneNonDBGUse(Src1Reg))
+ return false;
+
+ auto C1 = getIConstantVRegVal(Src1Def->getOffsetReg(), MRI);
+ if (!C1)
+ return false;
+ auto C2 = getIConstantVRegVal(Src2Reg, MRI);
+ if (!C2)
+ return false;
+
+ const APInt &C1APIntVal = *C1;
+ const APInt &C2APIntVal = *C2;
+ const int64_t CombinedValue = (C1APIntVal + C2APIntVal).getSExtValue();
+
+ for (auto &UseMI : MRI.use_nodbg_instructions(PtrAdd.getReg(0))) {
+ // This combine may end up running before ptrtoint/inttoptr combines
+ // manage to eliminate redundant conversions, so try to look through them.
+ MachineInstr *ConvUseMI = &UseMI;
+ unsigned ConvUseOpc = ConvUseMI->getOpcode();
+ while (ConvUseOpc == TargetOpcode::G_INTTOPTR ||
+ ConvUseOpc == TargetOpcode::G_PTRTOINT) {
+ Register DefReg = ConvUseMI->getOperand(0).getReg();
+ if (!MRI.hasOneNonDBGUse(DefReg))
+ break;
+ ConvUseMI = &*MRI.use_instr_nodbg_begin(DefReg);
+ ConvUseOpc = ConvUseMI->getOpcode();
+ }
+ auto *LdStMI = dyn_cast<GLoadStore>(ConvUseMI);
+ if (!LdStMI)
+ continue;
+ // Is x[offset2] already not a legal addressing mode? If so then
+ // reassociating the constants breaks nothing (we test offset2 because
+ // that's the one we hope to fold into the load or store).
+ TargetLoweringBase::AddrMode AM;
+ AM.HasBaseReg = true;
+ AM.BaseOffs = C2APIntVal.getSExtValue();
+ unsigned AS = MRI.getType(LdStMI->getPointerReg()).getAddressSpace();
+ Type *AccessTy = getTypeForLLT(LdStMI->getMMO().getMemoryType(),
+ PtrAdd.getMF()->getFunction().getContext());
+ const auto &TLI = *PtrAdd.getMF()->getSubtarget().getTargetLowering();
+ if (!TLI.isLegalAddressingMode(PtrAdd.getMF()->getDataLayout(), AM,
+ AccessTy, AS))
+ continue;
+
+ // Would x[offset1+offset2] still be a legal addressing mode?
+ AM.BaseOffs = CombinedValue;
+ if (!TLI.isLegalAddressingMode(PtrAdd.getMF()->getDataLayout(), AM,
+ AccessTy, AS))
+ return true;
+ }
+
+ return false;
+}
+
+bool CombinerHelper::matchReassocConstantInnerRHS(GPtrAdd &MI,
+ MachineInstr *RHS,
+ BuildFnTy &MatchInfo) {
+ // G_PTR_ADD(BASE, G_ADD(X, C)) -> G_PTR_ADD(G_PTR_ADD(BASE, X), C)
+ Register Src1Reg = MI.getOperand(1).getReg();
+ if (RHS->getOpcode() != TargetOpcode::G_ADD)
+ return false;
+ auto C2 = getIConstantVRegVal(RHS->getOperand(2).getReg(), MRI);
+ if (!C2)
+ return false;
+
+ MatchInfo = [=, &MI](MachineIRBuilder &B) {
+ LLT PtrTy = MRI.getType(MI.getOperand(0).getReg());
+
+ auto NewBase =
+ Builder.buildPtrAdd(PtrTy, Src1Reg, RHS->getOperand(1).getReg());
+ Observer.changingInstr(MI);
+ MI.getOperand(1).setReg(NewBase.getReg(0));
+ MI.getOperand(2).setReg(RHS->getOperand(2).getReg());
+ Observer.changedInstr(MI);
+ };
+ return !reassociationCanBreakAddressingModePattern(MI);
+}
+
+bool CombinerHelper::matchReassocConstantInnerLHS(GPtrAdd &MI,
+ MachineInstr *LHS,
+ MachineInstr *RHS,
+ BuildFnTy &MatchInfo) {
+ // G_PTR_ADD (G_PTR_ADD X, C), Y) -> (G_PTR_ADD (G_PTR_ADD(X, Y), C)
+ // if and only if (G_PTR_ADD X, C) has one use.
+ Register LHSBase;
+ std::optional<ValueAndVReg> LHSCstOff;
+ if (!mi_match(MI.getBaseReg(), MRI,
+ m_OneNonDBGUse(m_GPtrAdd(m_Reg(LHSBase), m_GCst(LHSCstOff)))))
+ return false;
+
+ auto *LHSPtrAdd = cast<GPtrAdd>(LHS);
+ MatchInfo = [=, &MI](MachineIRBuilder &B) {
+ // When we change LHSPtrAdd's offset register we might cause it to use a reg
+ // before its def. Sink the instruction so the outer PTR_ADD to ensure this
+ // doesn't happen.
+ LHSPtrAdd->moveBefore(&MI);
+ Register RHSReg = MI.getOffsetReg();
+ // set VReg will cause type mismatch if it comes from extend/trunc
+ auto NewCst = B.buildConstant(MRI.getType(RHSReg), LHSCstOff->Value);
+ Observer.changingInstr(MI);
+ MI.getOperand(2).setReg(NewCst.getReg(0));
+ Observer.changedInstr(MI);
+ Observer.changingInstr(*LHSPtrAdd);
+ LHSPtrAdd->getOperand(2).setReg(RHSReg);
+ Observer.changedInstr(*LHSPtrAdd);
+ };
+ return !reassociationCanBreakAddressingModePattern(MI);
+}
+
+bool CombinerHelper::matchReassocFoldConstantsInSubTree(GPtrAdd &MI,
+ MachineInstr *LHS,
+ MachineInstr *RHS,
+ BuildFnTy &MatchInfo) {
+ // G_PTR_ADD(G_PTR_ADD(BASE, C1), C2) -> G_PTR_ADD(BASE, C1+C2)
+ auto *LHSPtrAdd = dyn_cast<GPtrAdd>(LHS);
+ if (!LHSPtrAdd)
+ return false;
+
+ Register Src2Reg = MI.getOperand(2).getReg();
+ Register LHSSrc1 = LHSPtrAdd->getBaseReg();
+ Register LHSSrc2 = LHSPtrAdd->getOffsetReg();
+ auto C1 = getIConstantVRegVal(LHSSrc2, MRI);
+ if (!C1)
+ return false;
+ auto C2 = getIConstantVRegVal(Src2Reg, MRI);
+ if (!C2)
+ return false;
+
+ MatchInfo = [=, &MI](MachineIRBuilder &B) {
+ auto NewCst = B.buildConstant(MRI.getType(Src2Reg), *C1 + *C2);
+ Observer.changingInstr(MI);
+ MI.getOperand(1).setReg(LHSSrc1);
+ MI.getOperand(2).setReg(NewCst.getReg(0));
+ Observer.changedInstr(MI);
+ };
+ return !reassociationCanBreakAddressingModePattern(MI);
+}
+
+bool CombinerHelper::matchReassocPtrAdd(MachineInstr &MI,
+ BuildFnTy &MatchInfo) {
+ auto &PtrAdd = cast<GPtrAdd>(MI);
+ // We're trying to match a few pointer computation patterns here for
+ // re-association opportunities.
+ // 1) Isolating a constant operand to be on the RHS, e.g.:
+ // G_PTR_ADD(BASE, G_ADD(X, C)) -> G_PTR_ADD(G_PTR_ADD(BASE, X), C)
+ //
+ // 2) Folding two constants in each sub-tree as long as such folding
+ // doesn't break a legal addressing mode.
+ // G_PTR_ADD(G_PTR_ADD(BASE, C1), C2) -> G_PTR_ADD(BASE, C1+C2)
+ //
+ // 3) Move a constant from the LHS of an inner op to the RHS of the outer.
+ // G_PTR_ADD (G_PTR_ADD X, C), Y) -> G_PTR_ADD (G_PTR_ADD(X, Y), C)
+ // iif (G_PTR_ADD X, C) has one use.
+ MachineInstr *LHS = MRI.getVRegDef(PtrAdd.getBaseReg());
+ MachineInstr *RHS = MRI.getVRegDef(PtrAdd.getOffsetReg());
+
+ // Try to match example 2.
+ if (matchReassocFoldConstantsInSubTree(PtrAdd, LHS, RHS, MatchInfo))
+ return true;
+
+ // Try to match example 3.
+ if (matchReassocConstantInnerLHS(PtrAdd, LHS, RHS, MatchInfo))
+ return true;
+
+ // Try to match example 1.
+ if (matchReassocConstantInnerRHS(PtrAdd, RHS, MatchInfo))
+ return true;
+
+ return false;
+}
+bool CombinerHelper::tryReassocBinOp(unsigned Opc, Register DstReg,
+ Register OpLHS, Register OpRHS,
+ BuildFnTy &MatchInfo) {
+ LLT OpRHSTy = MRI.getType(OpRHS);
+ MachineInstr *OpLHSDef = MRI.getVRegDef(OpLHS);
+
+ if (OpLHSDef->getOpcode() != Opc)
+ return false;
+
+ MachineInstr *OpRHSDef = MRI.getVRegDef(OpRHS);
+ Register OpLHSLHS = OpLHSDef->getOperand(1).getReg();
+ Register OpLHSRHS = OpLHSDef->getOperand(2).getReg();
+
+ // If the inner op is (X op C), pull the constant out so it can be folded with
+ // other constants in the expression tree. Folding is not guaranteed so we
+ // might have (C1 op C2). In that case do not pull a constant out because it
+ // won't help and can lead to infinite loops.
+ if (isConstantOrConstantSplatVector(*MRI.getVRegDef(OpLHSRHS), MRI) &&
+ !isConstantOrConstantSplatVector(*MRI.getVRegDef(OpLHSLHS), MRI)) {
+ if (isConstantOrConstantSplatVector(*OpRHSDef, MRI)) {
+ // (Opc (Opc X, C1), C2) -> (Opc X, (Opc C1, C2))
+ MatchInfo = [=](MachineIRBuilder &B) {
+ auto NewCst = B.buildInstr(Opc, {OpRHSTy}, {OpLHSRHS, OpRHS});
+ B.buildInstr(Opc, {DstReg}, {OpLHSLHS, NewCst});
+ };
+ return true;
+ }
+ if (getTargetLowering().isReassocProfitable(MRI, OpLHS, OpRHS)) {
+ // Reassociate: (op (op x, c1), y) -> (op (op x, y), c1)
+ // iff (op x, c1) has one use
+ MatchInfo = [=](MachineIRBuilder &B) {
+ auto NewLHSLHS = B.buildInstr(Opc, {OpRHSTy}, {OpLHSLHS, OpRHS});
+ B.buildInstr(Opc, {DstReg}, {NewLHSLHS, OpLHSRHS});
+ };
+ return true;
+ }
+ }
+
+ return false;
+}
+
+bool CombinerHelper::matchReassocCommBinOp(MachineInstr &MI,
+ BuildFnTy &MatchInfo) {
+ // We don't check if the reassociation will break a legal addressing mode
+ // here since pointer arithmetic is handled by G_PTR_ADD.
+ unsigned Opc = MI.getOpcode();
+ Register DstReg = MI.getOperand(0).getReg();
+ Register LHSReg = MI.getOperand(1).getReg();
+ Register RHSReg = MI.getOperand(2).getReg();
+
+ if (tryReassocBinOp(Opc, DstReg, LHSReg, RHSReg, MatchInfo))
+ return true;
+ if (tryReassocBinOp(Opc, DstReg, RHSReg, LHSReg, MatchInfo))
+ return true;
+ return false;
+}
+
+bool CombinerHelper::matchConstantFoldCastOp(MachineInstr &MI, APInt &MatchInfo) {
+ LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
+ Register SrcOp = MI.getOperand(1).getReg();
+
+ if (auto MaybeCst = ConstantFoldCastOp(MI.getOpcode(), DstTy, SrcOp, MRI)) {
+ MatchInfo = *MaybeCst;
+ return true;
+ }
+
+ return false;
+}
+
+bool CombinerHelper::matchConstantFoldBinOp(MachineInstr &MI, APInt &MatchInfo) {
+ Register Op1 = MI.getOperand(1).getReg();
+ Register Op2 = MI.getOperand(2).getReg();
+ auto MaybeCst = ConstantFoldBinOp(MI.getOpcode(), Op1, Op2, MRI);
+ if (!MaybeCst)
+ return false;
+ MatchInfo = *MaybeCst;
+ return true;
+}
+
+bool CombinerHelper::matchConstantFoldFPBinOp(MachineInstr &MI, ConstantFP* &MatchInfo) {
+ Register Op1 = MI.getOperand(1).getReg();
+ Register Op2 = MI.getOperand(2).getReg();
+ auto MaybeCst = ConstantFoldFPBinOp(MI.getOpcode(), Op1, Op2, MRI);
+ if (!MaybeCst)
+ return false;
+ MatchInfo =
+ ConstantFP::get(MI.getMF()->getFunction().getContext(), *MaybeCst);
+ return true;
+}
+
+bool CombinerHelper::matchConstantFoldFMA(MachineInstr &MI,
+ ConstantFP *&MatchInfo) {
+ assert(MI.getOpcode() == TargetOpcode::G_FMA ||
+ MI.getOpcode() == TargetOpcode::G_FMAD);
+ auto [_, Op1, Op2, Op3] = MI.getFirst4Regs();
+
+ const ConstantFP *Op3Cst = getConstantFPVRegVal(Op3, MRI);
+ if (!Op3Cst)
+ return false;
+
+ const ConstantFP *Op2Cst = getConstantFPVRegVal(Op2, MRI);
+ if (!Op2Cst)
+ return false;
+
+ const ConstantFP *Op1Cst = getConstantFPVRegVal(Op1, MRI);
+ if (!Op1Cst)
+ return false;
+
+ APFloat Op1F = Op1Cst->getValueAPF();
+ Op1F.fusedMultiplyAdd(Op2Cst->getValueAPF(), Op3Cst->getValueAPF(),
+ APFloat::rmNearestTiesToEven);
+ MatchInfo = ConstantFP::get(MI.getMF()->getFunction().getContext(), Op1F);
+ return true;
+}
+
+bool CombinerHelper::matchNarrowBinopFeedingAnd(
+ MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) {
+ // Look for a binop feeding into an AND with a mask:
+ //
+ // %add = G_ADD %lhs, %rhs
+ // %and = G_AND %add, 000...11111111
+ //
+ // Check if it's possible to perform the binop at a narrower width and zext
+ // back to the original width like so:
+ //
+ // %narrow_lhs = G_TRUNC %lhs
+ // %narrow_rhs = G_TRUNC %rhs
+ // %narrow_add = G_ADD %narrow_lhs, %narrow_rhs
+ // %new_add = G_ZEXT %narrow_add
+ // %and = G_AND %new_add, 000...11111111
+ //
+ // This can allow later combines to eliminate the G_AND if it turns out
+ // that the mask is irrelevant.
+ assert(MI.getOpcode() == TargetOpcode::G_AND);
+ Register Dst = MI.getOperand(0).getReg();
+ Register AndLHS = MI.getOperand(1).getReg();
+ Register AndRHS = MI.getOperand(2).getReg();
+ LLT WideTy = MRI.getType(Dst);
+
+ // If the potential binop has more than one use, then it's possible that one
+ // of those uses will need its full width.
+ if (!WideTy.isScalar() || !MRI.hasOneNonDBGUse(AndLHS))
+ return false;
+
+ // Check if the LHS feeding the AND is impacted by the high bits that we're
+ // masking out.
+ //
+ // e.g. for 64-bit x, y:
+ //
+ // add_64(x, y) & 65535 == zext(add_16(trunc(x), trunc(y))) & 65535
+ MachineInstr *LHSInst = getDefIgnoringCopies(AndLHS, MRI);
+ if (!LHSInst)
+ return false;
+ unsigned LHSOpc = LHSInst->getOpcode();
+ switch (LHSOpc) {
+ default:
+ return false;
+ case TargetOpcode::G_ADD:
+ case TargetOpcode::G_SUB:
+ case TargetOpcode::G_MUL:
+ case TargetOpcode::G_AND:
+ case TargetOpcode::G_OR:
+ case TargetOpcode::G_XOR:
+ break;
+ }
+
+ // Find the mask on the RHS.
+ auto Cst = getIConstantVRegValWithLookThrough(AndRHS, MRI);
+ if (!Cst)
+ return false;
+ auto Mask = Cst->Value;
+ if (!Mask.isMask())
+ return false;
+
+ // No point in combining if there's nothing to truncate.
+ unsigned NarrowWidth = Mask.countr_one();
+ if (NarrowWidth == WideTy.getSizeInBits())
+ return false;
+ LLT NarrowTy = LLT::scalar(NarrowWidth);
+
+ // Check if adding the zext + truncates could be harmful.
+ auto &MF = *MI.getMF();
+ const auto &TLI = getTargetLowering();
+ LLVMContext &Ctx = MF.getFunction().getContext();
+ auto &DL = MF.getDataLayout();
+ if (!TLI.isTruncateFree(WideTy, NarrowTy, DL, Ctx) ||
+ !TLI.isZExtFree(NarrowTy, WideTy, DL, Ctx))
+ return false;
+ if (!isLegalOrBeforeLegalizer({TargetOpcode::G_TRUNC, {NarrowTy, WideTy}}) ||
+ !isLegalOrBeforeLegalizer({TargetOpcode::G_ZEXT, {WideTy, NarrowTy}}))
+ return false;
+ Register BinOpLHS = LHSInst->getOperand(1).getReg();
+ Register BinOpRHS = LHSInst->getOperand(2).getReg();
+ MatchInfo = [=, &MI](MachineIRBuilder &B) {
+ auto NarrowLHS = Builder.buildTrunc(NarrowTy, BinOpLHS);
+ auto NarrowRHS = Builder.buildTrunc(NarrowTy, BinOpRHS);
+ auto NarrowBinOp =
+ Builder.buildInstr(LHSOpc, {NarrowTy}, {NarrowLHS, NarrowRHS});
+ auto Ext = Builder.buildZExt(WideTy, NarrowBinOp);
+ Observer.changingInstr(MI);
+ MI.getOperand(1).setReg(Ext.getReg(0));
+ Observer.changedInstr(MI);
+ };
+ return true;
+}
+
+bool CombinerHelper::matchMulOBy2(MachineInstr &MI, BuildFnTy &MatchInfo) {
+ unsigned Opc = MI.getOpcode();
+ assert(Opc == TargetOpcode::G_UMULO || Opc == TargetOpcode::G_SMULO);
+
+ if (!mi_match(MI.getOperand(3).getReg(), MRI, m_SpecificICstOrSplat(2)))
+ return false;
+
+ MatchInfo = [=, &MI](MachineIRBuilder &B) {
+ Observer.changingInstr(MI);
+ unsigned NewOpc = Opc == TargetOpcode::G_UMULO ? TargetOpcode::G_UADDO
+ : TargetOpcode::G_SADDO;
+ MI.setDesc(Builder.getTII().get(NewOpc));
+ MI.getOperand(3).setReg(MI.getOperand(2).getReg());
+ Observer.changedInstr(MI);
+ };
+ return true;
+}
+
+bool CombinerHelper::matchMulOBy0(MachineInstr &MI, BuildFnTy &MatchInfo) {
+ // (G_*MULO x, 0) -> 0 + no carry out
+ assert(MI.getOpcode() == TargetOpcode::G_UMULO ||
+ MI.getOpcode() == TargetOpcode::G_SMULO);
+ if (!mi_match(MI.getOperand(3).getReg(), MRI, m_SpecificICstOrSplat(0)))
+ return false;
+ Register Dst = MI.getOperand(0).getReg();
+ Register Carry = MI.getOperand(1).getReg();
+ if (!isConstantLegalOrBeforeLegalizer(MRI.getType(Dst)) ||
+ !isConstantLegalOrBeforeLegalizer(MRI.getType(Carry)))
+ return false;
+ MatchInfo = [=](MachineIRBuilder &B) {
+ B.buildConstant(Dst, 0);
+ B.buildConstant(Carry, 0);
+ };
+ return true;
+}
+
+bool CombinerHelper::matchAddOBy0(MachineInstr &MI, BuildFnTy &MatchInfo) {
+ // (G_*ADDO x, 0) -> x + no carry out
+ assert(MI.getOpcode() == TargetOpcode::G_UADDO ||
+ MI.getOpcode() == TargetOpcode::G_SADDO);
+ if (!mi_match(MI.getOperand(3).getReg(), MRI, m_SpecificICstOrSplat(0)))
+ return false;
+ Register Carry = MI.getOperand(1).getReg();
+ if (!isConstantLegalOrBeforeLegalizer(MRI.getType(Carry)))
+ return false;
+ Register Dst = MI.getOperand(0).getReg();
+ Register LHS = MI.getOperand(2).getReg();
+ MatchInfo = [=](MachineIRBuilder &B) {
+ B.buildCopy(Dst, LHS);
+ B.buildConstant(Carry, 0);
+ };
+ return true;
+}
+
+bool CombinerHelper::matchAddEToAddO(MachineInstr &MI, BuildFnTy &MatchInfo) {
+ // (G_*ADDE x, y, 0) -> (G_*ADDO x, y)
+ // (G_*SUBE x, y, 0) -> (G_*SUBO x, y)
+ assert(MI.getOpcode() == TargetOpcode::G_UADDE ||
+ MI.getOpcode() == TargetOpcode::G_SADDE ||
+ MI.getOpcode() == TargetOpcode::G_USUBE ||
+ MI.getOpcode() == TargetOpcode::G_SSUBE);
+ if (!mi_match(MI.getOperand(4).getReg(), MRI, m_SpecificICstOrSplat(0)))
+ return false;
+ MatchInfo = [&](MachineIRBuilder &B) {
+ unsigned NewOpcode;
+ switch (MI.getOpcode()) {
+ case TargetOpcode::G_UADDE:
+ NewOpcode = TargetOpcode::G_UADDO;
+ break;
+ case TargetOpcode::G_SADDE:
+ NewOpcode = TargetOpcode::G_SADDO;
+ break;
+ case TargetOpcode::G_USUBE:
+ NewOpcode = TargetOpcode::G_USUBO;
+ break;
+ case TargetOpcode::G_SSUBE:
+ NewOpcode = TargetOpcode::G_SSUBO;
+ break;
+ }
+ Observer.changingInstr(MI);
+ MI.setDesc(B.getTII().get(NewOpcode));
+ MI.removeOperand(4);
+ Observer.changedInstr(MI);
+ };
+ return true;
+}
+
+bool CombinerHelper::matchSubAddSameReg(MachineInstr &MI,
+ BuildFnTy &MatchInfo) {
+ assert(MI.getOpcode() == TargetOpcode::G_SUB);
+ Register Dst = MI.getOperand(0).getReg();
+ // (x + y) - z -> x (if y == z)
+ // (x + y) - z -> y (if x == z)
+ Register X, Y, Z;
+ if (mi_match(Dst, MRI, m_GSub(m_GAdd(m_Reg(X), m_Reg(Y)), m_Reg(Z)))) {
+ Register ReplaceReg;
+ int64_t CstX, CstY;
+ if (Y == Z || (mi_match(Y, MRI, m_ICstOrSplat(CstY)) &&
+ mi_match(Z, MRI, m_SpecificICstOrSplat(CstY))))
+ ReplaceReg = X;
+ else if (X == Z || (mi_match(X, MRI, m_ICstOrSplat(CstX)) &&
+ mi_match(Z, MRI, m_SpecificICstOrSplat(CstX))))
+ ReplaceReg = Y;
+ if (ReplaceReg) {
+ MatchInfo = [=](MachineIRBuilder &B) { B.buildCopy(Dst, ReplaceReg); };
+ return true;
+ }
+ }
+
+ // x - (y + z) -> 0 - y (if x == z)
+ // x - (y + z) -> 0 - z (if x == y)
+ if (mi_match(Dst, MRI, m_GSub(m_Reg(X), m_GAdd(m_Reg(Y), m_Reg(Z))))) {
+ Register ReplaceReg;
+ int64_t CstX;
+ if (X == Z || (mi_match(X, MRI, m_ICstOrSplat(CstX)) &&
+ mi_match(Z, MRI, m_SpecificICstOrSplat(CstX))))
+ ReplaceReg = Y;
+ else if (X == Y || (mi_match(X, MRI, m_ICstOrSplat(CstX)) &&
+ mi_match(Y, MRI, m_SpecificICstOrSplat(CstX))))
+ ReplaceReg = Z;
+ if (ReplaceReg) {
+ MatchInfo = [=](MachineIRBuilder &B) {
+ auto Zero = B.buildConstant(MRI.getType(Dst), 0);
+ B.buildSub(Dst, Zero, ReplaceReg);
+ };
+ return true;
+ }
+ }
+ return false;
+}
+
+MachineInstr *CombinerHelper::buildUDivUsingMul(MachineInstr &MI) {
+ assert(MI.getOpcode() == TargetOpcode::G_UDIV);
+ auto &UDiv = cast<GenericMachineInstr>(MI);
+ Register Dst = UDiv.getReg(0);
+ Register LHS = UDiv.getReg(1);
+ Register RHS = UDiv.getReg(2);
+ LLT Ty = MRI.getType(Dst);
+ LLT ScalarTy = Ty.getScalarType();
+ const unsigned EltBits = ScalarTy.getScalarSizeInBits();
+ LLT ShiftAmtTy = getTargetLowering().getPreferredShiftAmountTy(Ty);
+ LLT ScalarShiftAmtTy = ShiftAmtTy.getScalarType();
+ auto &MIB = Builder;
+ MIB.setInstrAndDebugLoc(MI);
+
+ bool UseNPQ = false;
+ SmallVector<Register, 16> PreShifts, PostShifts, MagicFactors, NPQFactors;
+
+ auto BuildUDIVPattern = [&](const Constant *C) {
+ auto *CI = cast<ConstantInt>(C);
+ const APInt &Divisor = CI->getValue();
+
+ bool SelNPQ = false;
+ APInt Magic(Divisor.getBitWidth(), 0);
+ unsigned PreShift = 0, PostShift = 0;
+
+ // Magic algorithm doesn't work for division by 1. We need to emit a select
+ // at the end.
+ // TODO: Use undef values for divisor of 1.
+ if (!Divisor.isOne()) {
+ UnsignedDivisionByConstantInfo magics =
+ UnsignedDivisionByConstantInfo::get(Divisor);
+
+ Magic = std::move(magics.Magic);
+
+ assert(magics.PreShift < Divisor.getBitWidth() &&
+ "We shouldn't generate an undefined shift!");
+ assert(magics.PostShift < Divisor.getBitWidth() &&
+ "We shouldn't generate an undefined shift!");
+ assert((!magics.IsAdd || magics.PreShift == 0) && "Unexpected pre-shift");
+ PreShift = magics.PreShift;
+ PostShift = magics.PostShift;
+ SelNPQ = magics.IsAdd;
+ }
+
+ PreShifts.push_back(
+ MIB.buildConstant(ScalarShiftAmtTy, PreShift).getReg(0));
+ MagicFactors.push_back(MIB.buildConstant(ScalarTy, Magic).getReg(0));
+ NPQFactors.push_back(
+ MIB.buildConstant(ScalarTy,
+ SelNPQ ? APInt::getOneBitSet(EltBits, EltBits - 1)
+ : APInt::getZero(EltBits))
+ .getReg(0));
+ PostShifts.push_back(
+ MIB.buildConstant(ScalarShiftAmtTy, PostShift).getReg(0));
+ UseNPQ |= SelNPQ;
+ return true;
+ };
+
+ // Collect the shifts/magic values from each element.
+ bool Matched = matchUnaryPredicate(MRI, RHS, BuildUDIVPattern);
+ (void)Matched;
+ assert(Matched && "Expected unary predicate match to succeed");
+
+ Register PreShift, PostShift, MagicFactor, NPQFactor;
+ auto *RHSDef = getOpcodeDef<GBuildVector>(RHS, MRI);
+ if (RHSDef) {
+ PreShift = MIB.buildBuildVector(ShiftAmtTy, PreShifts).getReg(0);
+ MagicFactor = MIB.buildBuildVector(Ty, MagicFactors).getReg(0);
+ NPQFactor = MIB.buildBuildVector(Ty, NPQFactors).getReg(0);
+ PostShift = MIB.buildBuildVector(ShiftAmtTy, PostShifts).getReg(0);
+ } else {
+ assert(MRI.getType(RHS).isScalar() &&
+ "Non-build_vector operation should have been a scalar");
+ PreShift = PreShifts[0];
+ MagicFactor = MagicFactors[0];
+ PostShift = PostShifts[0];
+ }
+
+ Register Q = LHS;
+ Q = MIB.buildLShr(Ty, Q, PreShift).getReg(0);
+
+ // Multiply the numerator (operand 0) by the magic value.
+ Q = MIB.buildUMulH(Ty, Q, MagicFactor).getReg(0);
+
+ if (UseNPQ) {
+ Register NPQ = MIB.buildSub(Ty, LHS, Q).getReg(0);
+
+ // For vectors we might have a mix of non-NPQ/NPQ paths, so use
+ // G_UMULH to act as a SRL-by-1 for NPQ, else multiply by zero.
+ if (Ty.isVector())
+ NPQ = MIB.buildUMulH(Ty, NPQ, NPQFactor).getReg(0);
+ else
+ NPQ = MIB.buildLShr(Ty, NPQ, MIB.buildConstant(ShiftAmtTy, 1)).getReg(0);
+
+ Q = MIB.buildAdd(Ty, NPQ, Q).getReg(0);
+ }
+
+ Q = MIB.buildLShr(Ty, Q, PostShift).getReg(0);
+ auto One = MIB.buildConstant(Ty, 1);
+ auto IsOne = MIB.buildICmp(
+ CmpInst::Predicate::ICMP_EQ,
+ Ty.isScalar() ? LLT::scalar(1) : Ty.changeElementSize(1), RHS, One);
+ return MIB.buildSelect(Ty, IsOne, LHS, Q);
+}
+
+bool CombinerHelper::matchUDivByConst(MachineInstr &MI) {
+ assert(MI.getOpcode() == TargetOpcode::G_UDIV);
+ Register Dst = MI.getOperand(0).getReg();
+ Register RHS = MI.getOperand(2).getReg();
+ LLT DstTy = MRI.getType(Dst);
+ auto *RHSDef = MRI.getVRegDef(RHS);
+ if (!isConstantOrConstantVector(*RHSDef, MRI))
+ return false;
+
+ auto &MF = *MI.getMF();
+ AttributeList Attr = MF.getFunction().getAttributes();
+ const auto &TLI = getTargetLowering();
+ LLVMContext &Ctx = MF.getFunction().getContext();
+ auto &DL = MF.getDataLayout();
+ if (TLI.isIntDivCheap(getApproximateEVTForLLT(DstTy, DL, Ctx), Attr))
+ return false;
+
+ // Don't do this for minsize because the instruction sequence is usually
+ // larger.
+ if (MF.getFunction().hasMinSize())
+ return false;
+
+ // Don't do this if the types are not going to be legal.
+ if (LI) {
+ if (!isLegalOrBeforeLegalizer({TargetOpcode::G_MUL, {DstTy, DstTy}}))
+ return false;
+ if (!isLegalOrBeforeLegalizer({TargetOpcode::G_UMULH, {DstTy}}))
+ return false;
+ if (!isLegalOrBeforeLegalizer(
+ {TargetOpcode::G_ICMP,
+ {DstTy.isVector() ? DstTy.changeElementSize(1) : LLT::scalar(1),
+ DstTy}}))
+ return false;
+ }
+
+ auto CheckEltValue = [&](const Constant *C) {
+ if (auto *CI = dyn_cast_or_null<ConstantInt>(C))
+ return !CI->isZero();
+ return false;
+ };
+ return matchUnaryPredicate(MRI, RHS, CheckEltValue);
+}
+
+void CombinerHelper::applyUDivByConst(MachineInstr &MI) {
+ auto *NewMI = buildUDivUsingMul(MI);
+ replaceSingleDefInstWithReg(MI, NewMI->getOperand(0).getReg());
+}
+
+bool CombinerHelper::matchSDivByConst(MachineInstr &MI) {
+ assert(MI.getOpcode() == TargetOpcode::G_SDIV && "Expected SDIV");
+ Register Dst = MI.getOperand(0).getReg();
+ Register RHS = MI.getOperand(2).getReg();
+ LLT DstTy = MRI.getType(Dst);
+
+ auto &MF = *MI.getMF();
+ AttributeList Attr = MF.getFunction().getAttributes();
+ const auto &TLI = getTargetLowering();
+ LLVMContext &Ctx = MF.getFunction().getContext();
+ auto &DL = MF.getDataLayout();
+ if (TLI.isIntDivCheap(getApproximateEVTForLLT(DstTy, DL, Ctx), Attr))
+ return false;
+
+ // Don't do this for minsize because the instruction sequence is usually
+ // larger.
+ if (MF.getFunction().hasMinSize())
+ return false;
+
+ // If the sdiv has an 'exact' flag we can use a simpler lowering.
+ if (MI.getFlag(MachineInstr::MIFlag::IsExact)) {
+ return matchUnaryPredicate(
+ MRI, RHS, [](const Constant *C) { return C && !C->isZeroValue(); });
+ }
+
+ // Don't support the general case for now.
+ return false;
+}
+
+void CombinerHelper::applySDivByConst(MachineInstr &MI) {
+ auto *NewMI = buildSDivUsingMul(MI);
+ replaceSingleDefInstWithReg(MI, NewMI->getOperand(0).getReg());
+}
+
+MachineInstr *CombinerHelper::buildSDivUsingMul(MachineInstr &MI) {
+ assert(MI.getOpcode() == TargetOpcode::G_SDIV && "Expected SDIV");
+ auto &SDiv = cast<GenericMachineInstr>(MI);
+ Register Dst = SDiv.getReg(0);
+ Register LHS = SDiv.getReg(1);
+ Register RHS = SDiv.getReg(2);
+ LLT Ty = MRI.getType(Dst);
+ LLT ScalarTy = Ty.getScalarType();
+ LLT ShiftAmtTy = getTargetLowering().getPreferredShiftAmountTy(Ty);
+ LLT ScalarShiftAmtTy = ShiftAmtTy.getScalarType();
+ auto &MIB = Builder;
+ MIB.setInstrAndDebugLoc(MI);
+
+ bool UseSRA = false;
+ SmallVector<Register, 16> Shifts, Factors;
+
+ auto *RHSDef = cast<GenericMachineInstr>(getDefIgnoringCopies(RHS, MRI));
+ bool IsSplat = getIConstantSplatVal(*RHSDef, MRI).has_value();
+
+ auto BuildSDIVPattern = [&](const Constant *C) {
+ // Don't recompute inverses for each splat element.
+ if (IsSplat && !Factors.empty()) {
+ Shifts.push_back(Shifts[0]);
+ Factors.push_back(Factors[0]);
+ return true;
+ }
+
+ auto *CI = cast<ConstantInt>(C);
+ APInt Divisor = CI->getValue();
+ unsigned Shift = Divisor.countr_zero();
+ if (Shift) {
+ Divisor.ashrInPlace(Shift);
+ UseSRA = true;
+ }
+
+ // Calculate the multiplicative inverse modulo BW.
+ // 2^W requires W + 1 bits, so we have to extend and then truncate.
+ unsigned W = Divisor.getBitWidth();
+ APInt Factor = Divisor.zext(W + 1)
+ .multiplicativeInverse(APInt::getSignedMinValue(W + 1))
+ .trunc(W);
+ Shifts.push_back(MIB.buildConstant(ScalarShiftAmtTy, Shift).getReg(0));
+ Factors.push_back(MIB.buildConstant(ScalarTy, Factor).getReg(0));
+ return true;
+ };
+
+ // Collect all magic values from the build vector.
+ bool Matched = matchUnaryPredicate(MRI, RHS, BuildSDIVPattern);
+ (void)Matched;
+ assert(Matched && "Expected unary predicate match to succeed");
+
+ Register Shift, Factor;
+ if (Ty.isVector()) {
+ Shift = MIB.buildBuildVector(ShiftAmtTy, Shifts).getReg(0);
+ Factor = MIB.buildBuildVector(Ty, Factors).getReg(0);
+ } else {
+ Shift = Shifts[0];
+ Factor = Factors[0];
+ }
+
+ Register Res = LHS;
+
+ if (UseSRA)
+ Res = MIB.buildAShr(Ty, Res, Shift, MachineInstr::IsExact).getReg(0);
+
+ return MIB.buildMul(Ty, Res, Factor);
+}
+
+bool CombinerHelper::matchUMulHToLShr(MachineInstr &MI) {
+ assert(MI.getOpcode() == TargetOpcode::G_UMULH);
+ Register RHS = MI.getOperand(2).getReg();
+ Register Dst = MI.getOperand(0).getReg();
+ LLT Ty = MRI.getType(Dst);
+ LLT ShiftAmtTy = getTargetLowering().getPreferredShiftAmountTy(Ty);
+ auto MatchPow2ExceptOne = [&](const Constant *C) {
+ if (auto *CI = dyn_cast<ConstantInt>(C))
+ return CI->getValue().isPowerOf2() && !CI->getValue().isOne();
+ return false;
+ };
+ if (!matchUnaryPredicate(MRI, RHS, MatchPow2ExceptOne, false))
+ return false;
+ return isLegalOrBeforeLegalizer({TargetOpcode::G_LSHR, {Ty, ShiftAmtTy}});
+}
+
+void CombinerHelper::applyUMulHToLShr(MachineInstr &MI) {
+ Register LHS = MI.getOperand(1).getReg();
+ Register RHS = MI.getOperand(2).getReg();
+ Register Dst = MI.getOperand(0).getReg();
+ LLT Ty = MRI.getType(Dst);
+ LLT ShiftAmtTy = getTargetLowering().getPreferredShiftAmountTy(Ty);
+ unsigned NumEltBits = Ty.getScalarSizeInBits();
+
+ Builder.setInstrAndDebugLoc(MI);
+ auto LogBase2 = buildLogBase2(RHS, Builder);
+ auto ShiftAmt =
+ Builder.buildSub(Ty, Builder.buildConstant(Ty, NumEltBits), LogBase2);
+ auto Trunc = Builder.buildZExtOrTrunc(ShiftAmtTy, ShiftAmt);
+ Builder.buildLShr(Dst, LHS, Trunc);
+ MI.eraseFromParent();
+}
+
+bool CombinerHelper::matchRedundantNegOperands(MachineInstr &MI,
+ BuildFnTy &MatchInfo) {
+ unsigned Opc = MI.getOpcode();
+ assert(Opc == TargetOpcode::G_FADD || Opc == TargetOpcode::G_FSUB ||
+ Opc == TargetOpcode::G_FMUL || Opc == TargetOpcode::G_FDIV ||
+ Opc == TargetOpcode::G_FMAD || Opc == TargetOpcode::G_FMA);
+
+ Register Dst = MI.getOperand(0).getReg();
+ Register X = MI.getOperand(1).getReg();
+ Register Y = MI.getOperand(2).getReg();
+ LLT Type = MRI.getType(Dst);
+
+ // fold (fadd x, fneg(y)) -> (fsub x, y)
+ // fold (fadd fneg(y), x) -> (fsub x, y)
+ // G_ADD is commutative so both cases are checked by m_GFAdd
+ if (mi_match(Dst, MRI, m_GFAdd(m_Reg(X), m_GFNeg(m_Reg(Y)))) &&
+ isLegalOrBeforeLegalizer({TargetOpcode::G_FSUB, {Type}})) {
+ Opc = TargetOpcode::G_FSUB;
+ }
+ /// fold (fsub x, fneg(y)) -> (fadd x, y)
+ else if (mi_match(Dst, MRI, m_GFSub(m_Reg(X), m_GFNeg(m_Reg(Y)))) &&
+ isLegalOrBeforeLegalizer({TargetOpcode::G_FADD, {Type}})) {
+ Opc = TargetOpcode::G_FADD;
+ }
+ // fold (fmul fneg(x), fneg(y)) -> (fmul x, y)
+ // fold (fdiv fneg(x), fneg(y)) -> (fdiv x, y)
+ // fold (fmad fneg(x), fneg(y), z) -> (fmad x, y, z)
+ // fold (fma fneg(x), fneg(y), z) -> (fma x, y, z)
+ else if ((Opc == TargetOpcode::G_FMUL || Opc == TargetOpcode::G_FDIV ||
+ Opc == TargetOpcode::G_FMAD || Opc == TargetOpcode::G_FMA) &&
+ mi_match(X, MRI, m_GFNeg(m_Reg(X))) &&
+ mi_match(Y, MRI, m_GFNeg(m_Reg(Y)))) {
+ // no opcode change
+ } else
+ return false;
+
+ MatchInfo = [=, &MI](MachineIRBuilder &B) {
+ Observer.changingInstr(MI);
+ MI.setDesc(B.getTII().get(Opc));
+ MI.getOperand(1).setReg(X);
+ MI.getOperand(2).setReg(Y);
+ Observer.changedInstr(MI);
+ };
+ return true;
+}
+
+bool CombinerHelper::matchFsubToFneg(MachineInstr &MI, Register &MatchInfo) {
+ assert(MI.getOpcode() == TargetOpcode::G_FSUB);
+
+ Register LHS = MI.getOperand(1).getReg();
+ MatchInfo = MI.getOperand(2).getReg();
+ LLT Ty = MRI.getType(MI.getOperand(0).getReg());
+
+ const auto LHSCst = Ty.isVector()
+ ? getFConstantSplat(LHS, MRI, /* allowUndef */ true)
+ : getFConstantVRegValWithLookThrough(LHS, MRI);
+ if (!LHSCst)
+ return false;
+
+ // -0.0 is always allowed
+ if (LHSCst->Value.isNegZero())
+ return true;
+
+ // +0.0 is only allowed if nsz is set.
+ if (LHSCst->Value.isPosZero())
+ return MI.getFlag(MachineInstr::FmNsz);
+
+ return false;
+}
+
+void CombinerHelper::applyFsubToFneg(MachineInstr &MI, Register &MatchInfo) {
+ Builder.setInstrAndDebugLoc(MI);
+ Register Dst = MI.getOperand(0).getReg();
+ Builder.buildFNeg(
+ Dst, Builder.buildFCanonicalize(MRI.getType(Dst), MatchInfo).getReg(0));
+ eraseInst(MI);
+}
+
+/// Checks if \p MI is TargetOpcode::G_FMUL and contractable either
+/// due to global flags or MachineInstr flags.
+static bool isContractableFMul(MachineInstr &MI, bool AllowFusionGlobally) {
+ if (MI.getOpcode() != TargetOpcode::G_FMUL)
+ return false;
+ return AllowFusionGlobally || MI.getFlag(MachineInstr::MIFlag::FmContract);
+}
+
+static bool hasMoreUses(const MachineInstr &MI0, const MachineInstr &MI1,
+ const MachineRegisterInfo &MRI) {
+ return std::distance(MRI.use_instr_nodbg_begin(MI0.getOperand(0).getReg()),
+ MRI.use_instr_nodbg_end()) >
+ std::distance(MRI.use_instr_nodbg_begin(MI1.getOperand(0).getReg()),
+ MRI.use_instr_nodbg_end());
+}
+
+bool CombinerHelper::canCombineFMadOrFMA(MachineInstr &MI,
+ bool &AllowFusionGlobally,
+ bool &HasFMAD, bool &Aggressive,
+ bool CanReassociate) {
+
+ auto *MF = MI.getMF();
+ const auto &TLI = *MF->getSubtarget().getTargetLowering();
+ const TargetOptions &Options = MF->getTarget().Options;
+ LLT DstType = MRI.getType(MI.getOperand(0).getReg());
+
+ if (CanReassociate &&
+ !(Options.UnsafeFPMath || MI.getFlag(MachineInstr::MIFlag::FmReassoc)))
+ return false;
+
+ // Floating-point multiply-add with intermediate rounding.
+ HasFMAD = (!isPreLegalize() && TLI.isFMADLegal(MI, DstType));
+ // Floating-point multiply-add without intermediate rounding.
+ bool HasFMA = TLI.isFMAFasterThanFMulAndFAdd(*MF, DstType) &&
+ isLegalOrBeforeLegalizer({TargetOpcode::G_FMA, {DstType}});
+ // No valid opcode, do not combine.
+ if (!HasFMAD && !HasFMA)
+ return false;
+
+ AllowFusionGlobally = Options.AllowFPOpFusion == FPOpFusion::Fast ||
+ Options.UnsafeFPMath || HasFMAD;
+ // If the addition is not contractable, do not combine.
+ if (!AllowFusionGlobally && !MI.getFlag(MachineInstr::MIFlag::FmContract))
+ return false;
+
+ Aggressive = TLI.enableAggressiveFMAFusion(DstType);
+ return true;
+}
+
+bool CombinerHelper::matchCombineFAddFMulToFMadOrFMA(
+ MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) {
+ assert(MI.getOpcode() == TargetOpcode::G_FADD);
+
+ bool AllowFusionGlobally, HasFMAD, Aggressive;
+ if (!canCombineFMadOrFMA(MI, AllowFusionGlobally, HasFMAD, Aggressive))
+ return false;
+
+ Register Op1 = MI.getOperand(1).getReg();
+ Register Op2 = MI.getOperand(2).getReg();
+ DefinitionAndSourceRegister LHS = {MRI.getVRegDef(Op1), Op1};
+ DefinitionAndSourceRegister RHS = {MRI.getVRegDef(Op2), Op2};
+ unsigned PreferredFusedOpcode =
+ HasFMAD ? TargetOpcode::G_FMAD : TargetOpcode::G_FMA;
+
+ // If we have two choices trying to fold (fadd (fmul u, v), (fmul x, y)),
+ // prefer to fold the multiply with fewer uses.
+ if (Aggressive && isContractableFMul(*LHS.MI, AllowFusionGlobally) &&
+ isContractableFMul(*RHS.MI, AllowFusionGlobally)) {
+ if (hasMoreUses(*LHS.MI, *RHS.MI, MRI))
+ std::swap(LHS, RHS);
+ }
+
+ // fold (fadd (fmul x, y), z) -> (fma x, y, z)
+ if (isContractableFMul(*LHS.MI, AllowFusionGlobally) &&
+ (Aggressive || MRI.hasOneNonDBGUse(LHS.Reg))) {
+ MatchInfo = [=, &MI](MachineIRBuilder &B) {
+ B.buildInstr(PreferredFusedOpcode, {MI.getOperand(0).getReg()},
+ {LHS.MI->getOperand(1).getReg(),
+ LHS.MI->getOperand(2).getReg(), RHS.Reg});
+ };
+ return true;
+ }
+
+ // fold (fadd x, (fmul y, z)) -> (fma y, z, x)
+ if (isContractableFMul(*RHS.MI, AllowFusionGlobally) &&
+ (Aggressive || MRI.hasOneNonDBGUse(RHS.Reg))) {
+ MatchInfo = [=, &MI](MachineIRBuilder &B) {
+ B.buildInstr(PreferredFusedOpcode, {MI.getOperand(0).getReg()},
+ {RHS.MI->getOperand(1).getReg(),
+ RHS.MI->getOperand(2).getReg(), LHS.Reg});
+ };
+ return true;
+ }
+
+ return false;
+}
+
+bool CombinerHelper::matchCombineFAddFpExtFMulToFMadOrFMA(
+ MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) {
+ assert(MI.getOpcode() == TargetOpcode::G_FADD);
+
+ bool AllowFusionGlobally, HasFMAD, Aggressive;
+ if (!canCombineFMadOrFMA(MI, AllowFusionGlobally, HasFMAD, Aggressive))
+ return false;
+
+ const auto &TLI = *MI.getMF()->getSubtarget().getTargetLowering();
+ Register Op1 = MI.getOperand(1).getReg();
+ Register Op2 = MI.getOperand(2).getReg();
+ DefinitionAndSourceRegister LHS = {MRI.getVRegDef(Op1), Op1};
+ DefinitionAndSourceRegister RHS = {MRI.getVRegDef(Op2), Op2};
+ LLT DstType = MRI.getType(MI.getOperand(0).getReg());
+
+ unsigned PreferredFusedOpcode =
+ HasFMAD ? TargetOpcode::G_FMAD : TargetOpcode::G_FMA;
+
+ // If we have two choices trying to fold (fadd (fmul u, v), (fmul x, y)),
+ // prefer to fold the multiply with fewer uses.
+ if (Aggressive && isContractableFMul(*LHS.MI, AllowFusionGlobally) &&
+ isContractableFMul(*RHS.MI, AllowFusionGlobally)) {
+ if (hasMoreUses(*LHS.MI, *RHS.MI, MRI))
+ std::swap(LHS, RHS);
+ }
+
+ // fold (fadd (fpext (fmul x, y)), z) -> (fma (fpext x), (fpext y), z)
+ MachineInstr *FpExtSrc;
+ if (mi_match(LHS.Reg, MRI, m_GFPExt(m_MInstr(FpExtSrc))) &&
+ isContractableFMul(*FpExtSrc, AllowFusionGlobally) &&
+ TLI.isFPExtFoldable(MI, PreferredFusedOpcode, DstType,
+ MRI.getType(FpExtSrc->getOperand(1).getReg()))) {
+ MatchInfo = [=, &MI](MachineIRBuilder &B) {
+ auto FpExtX = B.buildFPExt(DstType, FpExtSrc->getOperand(1).getReg());
+ auto FpExtY = B.buildFPExt(DstType, FpExtSrc->getOperand(2).getReg());
+ B.buildInstr(PreferredFusedOpcode, {MI.getOperand(0).getReg()},
+ {FpExtX.getReg(0), FpExtY.getReg(0), RHS.Reg});
+ };
+ return true;
+ }
+
+ // fold (fadd z, (fpext (fmul x, y))) -> (fma (fpext x), (fpext y), z)
+ // Note: Commutes FADD operands.
+ if (mi_match(RHS.Reg, MRI, m_GFPExt(m_MInstr(FpExtSrc))) &&
+ isContractableFMul(*FpExtSrc, AllowFusionGlobally) &&
+ TLI.isFPExtFoldable(MI, PreferredFusedOpcode, DstType,
+ MRI.getType(FpExtSrc->getOperand(1).getReg()))) {
+ MatchInfo = [=, &MI](MachineIRBuilder &B) {
+ auto FpExtX = B.buildFPExt(DstType, FpExtSrc->getOperand(1).getReg());
+ auto FpExtY = B.buildFPExt(DstType, FpExtSrc->getOperand(2).getReg());
+ B.buildInstr(PreferredFusedOpcode, {MI.getOperand(0).getReg()},
+ {FpExtX.getReg(0), FpExtY.getReg(0), LHS.Reg});
+ };
+ return true;
+ }
+
+ return false;
+}
+
+bool CombinerHelper::matchCombineFAddFMAFMulToFMadOrFMA(
+ MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) {
+ assert(MI.getOpcode() == TargetOpcode::G_FADD);
+
+ bool AllowFusionGlobally, HasFMAD, Aggressive;
+ if (!canCombineFMadOrFMA(MI, AllowFusionGlobally, HasFMAD, Aggressive, true))
+ return false;
+
+ Register Op1 = MI.getOperand(1).getReg();
+ Register Op2 = MI.getOperand(2).getReg();
+ DefinitionAndSourceRegister LHS = {MRI.getVRegDef(Op1), Op1};
+ DefinitionAndSourceRegister RHS = {MRI.getVRegDef(Op2), Op2};
+ LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
+
+ unsigned PreferredFusedOpcode =
+ HasFMAD ? TargetOpcode::G_FMAD : TargetOpcode::G_FMA;
+
+ // If we have two choices trying to fold (fadd (fmul u, v), (fmul x, y)),
+ // prefer to fold the multiply with fewer uses.
+ if (Aggressive && isContractableFMul(*LHS.MI, AllowFusionGlobally) &&
+ isContractableFMul(*RHS.MI, AllowFusionGlobally)) {
+ if (hasMoreUses(*LHS.MI, *RHS.MI, MRI))
+ std::swap(LHS, RHS);
+ }
+
+ MachineInstr *FMA = nullptr;
+ Register Z;
+ // fold (fadd (fma x, y, (fmul u, v)), z) -> (fma x, y, (fma u, v, z))
+ if (LHS.MI->getOpcode() == PreferredFusedOpcode &&
+ (MRI.getVRegDef(LHS.MI->getOperand(3).getReg())->getOpcode() ==
+ TargetOpcode::G_FMUL) &&
+ MRI.hasOneNonDBGUse(LHS.MI->getOperand(0).getReg()) &&
+ MRI.hasOneNonDBGUse(LHS.MI->getOperand(3).getReg())) {
+ FMA = LHS.MI;
+ Z = RHS.Reg;
+ }
+ // fold (fadd z, (fma x, y, (fmul u, v))) -> (fma x, y, (fma u, v, z))
+ else if (RHS.MI->getOpcode() == PreferredFusedOpcode &&
+ (MRI.getVRegDef(RHS.MI->getOperand(3).getReg())->getOpcode() ==
+ TargetOpcode::G_FMUL) &&
+ MRI.hasOneNonDBGUse(RHS.MI->getOperand(0).getReg()) &&
+ MRI.hasOneNonDBGUse(RHS.MI->getOperand(3).getReg())) {
+ Z = LHS.Reg;
+ FMA = RHS.MI;
+ }
+
+ if (FMA) {
+ MachineInstr *FMulMI = MRI.getVRegDef(FMA->getOperand(3).getReg());
+ Register X = FMA->getOperand(1).getReg();
+ Register Y = FMA->getOperand(2).getReg();
+ Register U = FMulMI->getOperand(1).getReg();
+ Register V = FMulMI->getOperand(2).getReg();
+
+ MatchInfo = [=, &MI](MachineIRBuilder &B) {
+ Register InnerFMA = MRI.createGenericVirtualRegister(DstTy);
+ B.buildInstr(PreferredFusedOpcode, {InnerFMA}, {U, V, Z});
+ B.buildInstr(PreferredFusedOpcode, {MI.getOperand(0).getReg()},
+ {X, Y, InnerFMA});
+ };
+ return true;
+ }
+
+ return false;
+}
+
+bool CombinerHelper::matchCombineFAddFpExtFMulToFMadOrFMAAggressive(
+ MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) {
+ assert(MI.getOpcode() == TargetOpcode::G_FADD);
+
+ bool AllowFusionGlobally, HasFMAD, Aggressive;
+ if (!canCombineFMadOrFMA(MI, AllowFusionGlobally, HasFMAD, Aggressive))
+ return false;
+
+ if (!Aggressive)
+ return false;
+
+ const auto &TLI = *MI.getMF()->getSubtarget().getTargetLowering();
+ LLT DstType = MRI.getType(MI.getOperand(0).getReg());
+ Register Op1 = MI.getOperand(1).getReg();
+ Register Op2 = MI.getOperand(2).getReg();
+ DefinitionAndSourceRegister LHS = {MRI.getVRegDef(Op1), Op1};
+ DefinitionAndSourceRegister RHS = {MRI.getVRegDef(Op2), Op2};
+
+ unsigned PreferredFusedOpcode =
+ HasFMAD ? TargetOpcode::G_FMAD : TargetOpcode::G_FMA;
+
+ // If we have two choices trying to fold (fadd (fmul u, v), (fmul x, y)),
+ // prefer to fold the multiply with fewer uses.
+ if (Aggressive && isContractableFMul(*LHS.MI, AllowFusionGlobally) &&
+ isContractableFMul(*RHS.MI, AllowFusionGlobally)) {
+ if (hasMoreUses(*LHS.MI, *RHS.MI, MRI))
+ std::swap(LHS, RHS);
+ }
+
+ // Builds: (fma x, y, (fma (fpext u), (fpext v), z))
+ auto buildMatchInfo = [=, &MI](Register U, Register V, Register Z, Register X,
+ Register Y, MachineIRBuilder &B) {
+ Register FpExtU = B.buildFPExt(DstType, U).getReg(0);
+ Register FpExtV = B.buildFPExt(DstType, V).getReg(0);
+ Register InnerFMA =
+ B.buildInstr(PreferredFusedOpcode, {DstType}, {FpExtU, FpExtV, Z})
+ .getReg(0);
+ B.buildInstr(PreferredFusedOpcode, {MI.getOperand(0).getReg()},
+ {X, Y, InnerFMA});
+ };
+
+ MachineInstr *FMulMI, *FMAMI;
+ // fold (fadd (fma x, y, (fpext (fmul u, v))), z)
+ // -> (fma x, y, (fma (fpext u), (fpext v), z))
+ if (LHS.MI->getOpcode() == PreferredFusedOpcode &&
+ mi_match(LHS.MI->getOperand(3).getReg(), MRI,
+ m_GFPExt(m_MInstr(FMulMI))) &&
+ isContractableFMul(*FMulMI, AllowFusionGlobally) &&
+ TLI.isFPExtFoldable(MI, PreferredFusedOpcode, DstType,
+ MRI.getType(FMulMI->getOperand(0).getReg()))) {
+ MatchInfo = [=](MachineIRBuilder &B) {
+ buildMatchInfo(FMulMI->getOperand(1).getReg(),
+ FMulMI->getOperand(2).getReg(), RHS.Reg,
+ LHS.MI->getOperand(1).getReg(),
+ LHS.MI->getOperand(2).getReg(), B);
+ };
+ return true;
+ }
+
+ // fold (fadd (fpext (fma x, y, (fmul u, v))), z)
+ // -> (fma (fpext x), (fpext y), (fma (fpext u), (fpext v), z))
+ // FIXME: This turns two single-precision and one double-precision
+ // operation into two double-precision operations, which might not be
+ // interesting for all targets, especially GPUs.
+ if (mi_match(LHS.Reg, MRI, m_GFPExt(m_MInstr(FMAMI))) &&
+ FMAMI->getOpcode() == PreferredFusedOpcode) {
+ MachineInstr *FMulMI = MRI.getVRegDef(FMAMI->getOperand(3).getReg());
+ if (isContractableFMul(*FMulMI, AllowFusionGlobally) &&
+ TLI.isFPExtFoldable(MI, PreferredFusedOpcode, DstType,
+ MRI.getType(FMAMI->getOperand(0).getReg()))) {
+ MatchInfo = [=](MachineIRBuilder &B) {
+ Register X = FMAMI->getOperand(1).getReg();
+ Register Y = FMAMI->getOperand(2).getReg();
+ X = B.buildFPExt(DstType, X).getReg(0);
+ Y = B.buildFPExt(DstType, Y).getReg(0);
+ buildMatchInfo(FMulMI->getOperand(1).getReg(),
+ FMulMI->getOperand(2).getReg(), RHS.Reg, X, Y, B);
+ };
+
+ return true;
+ }
+ }
+
+ // fold (fadd z, (fma x, y, (fpext (fmul u, v)))
+ // -> (fma x, y, (fma (fpext u), (fpext v), z))
+ if (RHS.MI->getOpcode() == PreferredFusedOpcode &&
+ mi_match(RHS.MI->getOperand(3).getReg(), MRI,
+ m_GFPExt(m_MInstr(FMulMI))) &&
+ isContractableFMul(*FMulMI, AllowFusionGlobally) &&
+ TLI.isFPExtFoldable(MI, PreferredFusedOpcode, DstType,
+ MRI.getType(FMulMI->getOperand(0).getReg()))) {
+ MatchInfo = [=](MachineIRBuilder &B) {
+ buildMatchInfo(FMulMI->getOperand(1).getReg(),
+ FMulMI->getOperand(2).getReg(), LHS.Reg,
+ RHS.MI->getOperand(1).getReg(),
+ RHS.MI->getOperand(2).getReg(), B);
+ };
+ return true;
+ }
+
+ // fold (fadd z, (fpext (fma x, y, (fmul u, v)))
+ // -> (fma (fpext x), (fpext y), (fma (fpext u), (fpext v), z))
+ // FIXME: This turns two single-precision and one double-precision
+ // operation into two double-precision operations, which might not be
+ // interesting for all targets, especially GPUs.
+ if (mi_match(RHS.Reg, MRI, m_GFPExt(m_MInstr(FMAMI))) &&
+ FMAMI->getOpcode() == PreferredFusedOpcode) {
+ MachineInstr *FMulMI = MRI.getVRegDef(FMAMI->getOperand(3).getReg());
+ if (isContractableFMul(*FMulMI, AllowFusionGlobally) &&
+ TLI.isFPExtFoldable(MI, PreferredFusedOpcode, DstType,
+ MRI.getType(FMAMI->getOperand(0).getReg()))) {
+ MatchInfo = [=](MachineIRBuilder &B) {
+ Register X = FMAMI->getOperand(1).getReg();
+ Register Y = FMAMI->getOperand(2).getReg();
+ X = B.buildFPExt(DstType, X).getReg(0);
+ Y = B.buildFPExt(DstType, Y).getReg(0);
+ buildMatchInfo(FMulMI->getOperand(1).getReg(),
+ FMulMI->getOperand(2).getReg(), LHS.Reg, X, Y, B);
+ };
+ return true;
+ }
+ }
+
+ return false;
+}
+
+bool CombinerHelper::matchCombineFSubFMulToFMadOrFMA(
+ MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) {
+ assert(MI.getOpcode() == TargetOpcode::G_FSUB);
+
+ bool AllowFusionGlobally, HasFMAD, Aggressive;
+ if (!canCombineFMadOrFMA(MI, AllowFusionGlobally, HasFMAD, Aggressive))
+ return false;
+
+ Register Op1 = MI.getOperand(1).getReg();
+ Register Op2 = MI.getOperand(2).getReg();
+ DefinitionAndSourceRegister LHS = {MRI.getVRegDef(Op1), Op1};
+ DefinitionAndSourceRegister RHS = {MRI.getVRegDef(Op2), Op2};
+ LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
+
+ // If we have two choices trying to fold (fadd (fmul u, v), (fmul x, y)),
+ // prefer to fold the multiply with fewer uses.
+ int FirstMulHasFewerUses = true;
+ if (isContractableFMul(*LHS.MI, AllowFusionGlobally) &&
+ isContractableFMul(*RHS.MI, AllowFusionGlobally) &&
+ hasMoreUses(*LHS.MI, *RHS.MI, MRI))
+ FirstMulHasFewerUses = false;
+
+ unsigned PreferredFusedOpcode =
+ HasFMAD ? TargetOpcode::G_FMAD : TargetOpcode::G_FMA;
+
+ // fold (fsub (fmul x, y), z) -> (fma x, y, -z)
+ if (FirstMulHasFewerUses &&
+ (isContractableFMul(*LHS.MI, AllowFusionGlobally) &&
+ (Aggressive || MRI.hasOneNonDBGUse(LHS.Reg)))) {
+ MatchInfo = [=, &MI](MachineIRBuilder &B) {
+ Register NegZ = B.buildFNeg(DstTy, RHS.Reg).getReg(0);
+ B.buildInstr(PreferredFusedOpcode, {MI.getOperand(0).getReg()},
+ {LHS.MI->getOperand(1).getReg(),
+ LHS.MI->getOperand(2).getReg(), NegZ});
+ };
+ return true;
+ }
+ // fold (fsub x, (fmul y, z)) -> (fma -y, z, x)
+ else if ((isContractableFMul(*RHS.MI, AllowFusionGlobally) &&
+ (Aggressive || MRI.hasOneNonDBGUse(RHS.Reg)))) {
+ MatchInfo = [=, &MI](MachineIRBuilder &B) {
+ Register NegY =
+ B.buildFNeg(DstTy, RHS.MI->getOperand(1).getReg()).getReg(0);
+ B.buildInstr(PreferredFusedOpcode, {MI.getOperand(0).getReg()},
+ {NegY, RHS.MI->getOperand(2).getReg(), LHS.Reg});
+ };
+ return true;
+ }
+
+ return false;
+}
+
+bool CombinerHelper::matchCombineFSubFNegFMulToFMadOrFMA(
+ MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) {
+ assert(MI.getOpcode() == TargetOpcode::G_FSUB);
+
+ bool AllowFusionGlobally, HasFMAD, Aggressive;
+ if (!canCombineFMadOrFMA(MI, AllowFusionGlobally, HasFMAD, Aggressive))
+ return false;
+
+ Register LHSReg = MI.getOperand(1).getReg();
+ Register RHSReg = MI.getOperand(2).getReg();
+ LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
+
+ unsigned PreferredFusedOpcode =
+ HasFMAD ? TargetOpcode::G_FMAD : TargetOpcode::G_FMA;
+
+ MachineInstr *FMulMI;
+ // fold (fsub (fneg (fmul x, y)), z) -> (fma (fneg x), y, (fneg z))
+ if (mi_match(LHSReg, MRI, m_GFNeg(m_MInstr(FMulMI))) &&
+ (Aggressive || (MRI.hasOneNonDBGUse(LHSReg) &&
+ MRI.hasOneNonDBGUse(FMulMI->getOperand(0).getReg()))) &&
+ isContractableFMul(*FMulMI, AllowFusionGlobally)) {
+ MatchInfo = [=, &MI](MachineIRBuilder &B) {
+ Register NegX =
+ B.buildFNeg(DstTy, FMulMI->getOperand(1).getReg()).getReg(0);
+ Register NegZ = B.buildFNeg(DstTy, RHSReg).getReg(0);
+ B.buildInstr(PreferredFusedOpcode, {MI.getOperand(0).getReg()},
+ {NegX, FMulMI->getOperand(2).getReg(), NegZ});
+ };
+ return true;
+ }
+
+ // fold (fsub x, (fneg (fmul, y, z))) -> (fma y, z, x)
+ if (mi_match(RHSReg, MRI, m_GFNeg(m_MInstr(FMulMI))) &&
+ (Aggressive || (MRI.hasOneNonDBGUse(RHSReg) &&
+ MRI.hasOneNonDBGUse(FMulMI->getOperand(0).getReg()))) &&
+ isContractableFMul(*FMulMI, AllowFusionGlobally)) {
+ MatchInfo = [=, &MI](MachineIRBuilder &B) {
+ B.buildInstr(PreferredFusedOpcode, {MI.getOperand(0).getReg()},
+ {FMulMI->getOperand(1).getReg(),
+ FMulMI->getOperand(2).getReg(), LHSReg});
+ };
+ return true;
+ }
+
+ return false;
+}
+
+bool CombinerHelper::matchCombineFSubFpExtFMulToFMadOrFMA(
+ MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) {
+ assert(MI.getOpcode() == TargetOpcode::G_FSUB);
+
+ bool AllowFusionGlobally, HasFMAD, Aggressive;
+ if (!canCombineFMadOrFMA(MI, AllowFusionGlobally, HasFMAD, Aggressive))
+ return false;
+
+ Register LHSReg = MI.getOperand(1).getReg();
+ Register RHSReg = MI.getOperand(2).getReg();
+ LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
+
+ unsigned PreferredFusedOpcode =
+ HasFMAD ? TargetOpcode::G_FMAD : TargetOpcode::G_FMA;
+
+ MachineInstr *FMulMI;
+ // fold (fsub (fpext (fmul x, y)), z) -> (fma (fpext x), (fpext y), (fneg z))
+ if (mi_match(LHSReg, MRI, m_GFPExt(m_MInstr(FMulMI))) &&
+ isContractableFMul(*FMulMI, AllowFusionGlobally) &&
+ (Aggressive || MRI.hasOneNonDBGUse(LHSReg))) {
+ MatchInfo = [=, &MI](MachineIRBuilder &B) {
+ Register FpExtX =
+ B.buildFPExt(DstTy, FMulMI->getOperand(1).getReg()).getReg(0);
+ Register FpExtY =
+ B.buildFPExt(DstTy, FMulMI->getOperand(2).getReg()).getReg(0);
+ Register NegZ = B.buildFNeg(DstTy, RHSReg).getReg(0);
+ B.buildInstr(PreferredFusedOpcode, {MI.getOperand(0).getReg()},
+ {FpExtX, FpExtY, NegZ});
+ };
+ return true;
+ }
+
+ // fold (fsub x, (fpext (fmul y, z))) -> (fma (fneg (fpext y)), (fpext z), x)
+ if (mi_match(RHSReg, MRI, m_GFPExt(m_MInstr(FMulMI))) &&
+ isContractableFMul(*FMulMI, AllowFusionGlobally) &&
+ (Aggressive || MRI.hasOneNonDBGUse(RHSReg))) {
+ MatchInfo = [=, &MI](MachineIRBuilder &B) {
+ Register FpExtY =
+ B.buildFPExt(DstTy, FMulMI->getOperand(1).getReg()).getReg(0);
+ Register NegY = B.buildFNeg(DstTy, FpExtY).getReg(0);
+ Register FpExtZ =
+ B.buildFPExt(DstTy, FMulMI->getOperand(2).getReg()).getReg(0);
+ B.buildInstr(PreferredFusedOpcode, {MI.getOperand(0).getReg()},
+ {NegY, FpExtZ, LHSReg});
+ };
+ return true;
+ }
+
+ return false;
+}
+
+bool CombinerHelper::matchCombineFSubFpExtFNegFMulToFMadOrFMA(
+ MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) {
+ assert(MI.getOpcode() == TargetOpcode::G_FSUB);
+
+ bool AllowFusionGlobally, HasFMAD, Aggressive;
+ if (!canCombineFMadOrFMA(MI, AllowFusionGlobally, HasFMAD, Aggressive))
+ return false;
+
+ const auto &TLI = *MI.getMF()->getSubtarget().getTargetLowering();
+ LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
+ Register LHSReg = MI.getOperand(1).getReg();
+ Register RHSReg = MI.getOperand(2).getReg();
+
+ unsigned PreferredFusedOpcode =
+ HasFMAD ? TargetOpcode::G_FMAD : TargetOpcode::G_FMA;
+
+ auto buildMatchInfo = [=](Register Dst, Register X, Register Y, Register Z,
+ MachineIRBuilder &B) {
+ Register FpExtX = B.buildFPExt(DstTy, X).getReg(0);
+ Register FpExtY = B.buildFPExt(DstTy, Y).getReg(0);
+ B.buildInstr(PreferredFusedOpcode, {Dst}, {FpExtX, FpExtY, Z});
+ };
+
+ MachineInstr *FMulMI;
+ // fold (fsub (fpext (fneg (fmul x, y))), z) ->
+ // (fneg (fma (fpext x), (fpext y), z))
+ // fold (fsub (fneg (fpext (fmul x, y))), z) ->
+ // (fneg (fma (fpext x), (fpext y), z))
+ if ((mi_match(LHSReg, MRI, m_GFPExt(m_GFNeg(m_MInstr(FMulMI)))) ||
+ mi_match(LHSReg, MRI, m_GFNeg(m_GFPExt(m_MInstr(FMulMI))))) &&
+ isContractableFMul(*FMulMI, AllowFusionGlobally) &&
+ TLI.isFPExtFoldable(MI, PreferredFusedOpcode, DstTy,
+ MRI.getType(FMulMI->getOperand(0).getReg()))) {
+ MatchInfo = [=, &MI](MachineIRBuilder &B) {
+ Register FMAReg = MRI.createGenericVirtualRegister(DstTy);
+ buildMatchInfo(FMAReg, FMulMI->getOperand(1).getReg(),
+ FMulMI->getOperand(2).getReg(), RHSReg, B);
+ B.buildFNeg(MI.getOperand(0).getReg(), FMAReg);
+ };
+ return true;
+ }
+
+ // fold (fsub x, (fpext (fneg (fmul y, z)))) -> (fma (fpext y), (fpext z), x)
+ // fold (fsub x, (fneg (fpext (fmul y, z)))) -> (fma (fpext y), (fpext z), x)
+ if ((mi_match(RHSReg, MRI, m_GFPExt(m_GFNeg(m_MInstr(FMulMI)))) ||
+ mi_match(RHSReg, MRI, m_GFNeg(m_GFPExt(m_MInstr(FMulMI))))) &&
+ isContractableFMul(*FMulMI, AllowFusionGlobally) &&
+ TLI.isFPExtFoldable(MI, PreferredFusedOpcode, DstTy,
+ MRI.getType(FMulMI->getOperand(0).getReg()))) {
+ MatchInfo = [=, &MI](MachineIRBuilder &B) {
+ buildMatchInfo(MI.getOperand(0).getReg(), FMulMI->getOperand(1).getReg(),
+ FMulMI->getOperand(2).getReg(), LHSReg, B);
+ };
+ return true;
+ }
+
+ return false;
+}
+
+bool CombinerHelper::matchCombineFMinMaxNaN(MachineInstr &MI,
+ unsigned &IdxToPropagate) {
+ bool PropagateNaN;
+ switch (MI.getOpcode()) {
+ default:
+ return false;
+ case TargetOpcode::G_FMINNUM:
+ case TargetOpcode::G_FMAXNUM:
+ PropagateNaN = false;
+ break;
+ case TargetOpcode::G_FMINIMUM:
+ case TargetOpcode::G_FMAXIMUM:
+ PropagateNaN = true;
+ break;
+ }
+
+ auto MatchNaN = [&](unsigned Idx) {
+ Register MaybeNaNReg = MI.getOperand(Idx).getReg();
+ const ConstantFP *MaybeCst = getConstantFPVRegVal(MaybeNaNReg, MRI);
+ if (!MaybeCst || !MaybeCst->getValueAPF().isNaN())
+ return false;
+ IdxToPropagate = PropagateNaN ? Idx : (Idx == 1 ? 2 : 1);
+ return true;
+ };
+
+ return MatchNaN(1) || MatchNaN(2);
+}
+
+bool CombinerHelper::matchAddSubSameReg(MachineInstr &MI, Register &Src) {
+ assert(MI.getOpcode() == TargetOpcode::G_ADD && "Expected a G_ADD");
+ Register LHS = MI.getOperand(1).getReg();
+ Register RHS = MI.getOperand(2).getReg();
+
+ // Helper lambda to check for opportunities for
+ // A + (B - A) -> B
+ // (B - A) + A -> B
+ auto CheckFold = [&](Register MaybeSub, Register MaybeSameReg) {
+ Register Reg;
+ return mi_match(MaybeSub, MRI, m_GSub(m_Reg(Src), m_Reg(Reg))) &&
+ Reg == MaybeSameReg;
+ };
+ return CheckFold(LHS, RHS) || CheckFold(RHS, LHS);
+}
+
+bool CombinerHelper::matchBuildVectorIdentityFold(MachineInstr &MI,
+ Register &MatchInfo) {
+ // This combine folds the following patterns:
+ //
+ // G_BUILD_VECTOR_TRUNC (G_BITCAST(x), G_LSHR(G_BITCAST(x), k))
+ // G_BUILD_VECTOR(G_TRUNC(G_BITCAST(x)), G_TRUNC(G_LSHR(G_BITCAST(x), k)))
+ // into
+ // x
+ // if
+ // k == sizeof(VecEltTy)/2
+ // type(x) == type(dst)
+ //
+ // G_BUILD_VECTOR(G_TRUNC(G_BITCAST(x)), undef)
+ // into
+ // x
+ // if
+ // type(x) == type(dst)
+
+ LLT DstVecTy = MRI.getType(MI.getOperand(0).getReg());
+ LLT DstEltTy = DstVecTy.getElementType();
+
+ Register Lo, Hi;
+
+ if (mi_match(
+ MI, MRI,
+ m_GBuildVector(m_GTrunc(m_GBitcast(m_Reg(Lo))), m_GImplicitDef()))) {
+ MatchInfo = Lo;
+ return MRI.getType(MatchInfo) == DstVecTy;
+ }
+
+ std::optional<ValueAndVReg> ShiftAmount;
+ const auto LoPattern = m_GBitcast(m_Reg(Lo));
+ const auto HiPattern = m_GLShr(m_GBitcast(m_Reg(Hi)), m_GCst(ShiftAmount));
+ if (mi_match(
+ MI, MRI,
+ m_any_of(m_GBuildVectorTrunc(LoPattern, HiPattern),
+ m_GBuildVector(m_GTrunc(LoPattern), m_GTrunc(HiPattern))))) {
+ if (Lo == Hi && ShiftAmount->Value == DstEltTy.getSizeInBits()) {
+ MatchInfo = Lo;
+ return MRI.getType(MatchInfo) == DstVecTy;
+ }
+ }
+
+ return false;
+}
+
+bool CombinerHelper::matchTruncBuildVectorFold(MachineInstr &MI,
+ Register &MatchInfo) {
+ // Replace (G_TRUNC (G_BITCAST (G_BUILD_VECTOR x, y)) with just x
+ // if type(x) == type(G_TRUNC)
+ if (!mi_match(MI.getOperand(1).getReg(), MRI,
+ m_GBitcast(m_GBuildVector(m_Reg(MatchInfo), m_Reg()))))
+ return false;
+
+ return MRI.getType(MatchInfo) == MRI.getType(MI.getOperand(0).getReg());
+}
+
+bool CombinerHelper::matchTruncLshrBuildVectorFold(MachineInstr &MI,
+ Register &MatchInfo) {
+ // Replace (G_TRUNC (G_LSHR (G_BITCAST (G_BUILD_VECTOR x, y)), K)) with
+ // y if K == size of vector element type
+ std::optional<ValueAndVReg> ShiftAmt;
+ if (!mi_match(MI.getOperand(1).getReg(), MRI,
+ m_GLShr(m_GBitcast(m_GBuildVector(m_Reg(), m_Reg(MatchInfo))),
+ m_GCst(ShiftAmt))))
+ return false;
+
+ LLT MatchTy = MRI.getType(MatchInfo);
+ return ShiftAmt->Value.getZExtValue() == MatchTy.getSizeInBits() &&
+ MatchTy == MRI.getType(MI.getOperand(0).getReg());
+}
+
+unsigned CombinerHelper::getFPMinMaxOpcForSelect(
+ CmpInst::Predicate Pred, LLT DstTy,
+ SelectPatternNaNBehaviour VsNaNRetVal) const {
+ assert(VsNaNRetVal != SelectPatternNaNBehaviour::NOT_APPLICABLE &&
+ "Expected a NaN behaviour?");
+ // Choose an opcode based off of legality or the behaviour when one of the
+ // LHS/RHS may be NaN.
+ switch (Pred) {
+ default:
+ return 0;
+ case CmpInst::FCMP_UGT:
+ case CmpInst::FCMP_UGE:
+ case CmpInst::FCMP_OGT:
+ case CmpInst::FCMP_OGE:
+ if (VsNaNRetVal == SelectPatternNaNBehaviour::RETURNS_OTHER)
+ return TargetOpcode::G_FMAXNUM;
+ if (VsNaNRetVal == SelectPatternNaNBehaviour::RETURNS_NAN)
+ return TargetOpcode::G_FMAXIMUM;
+ if (isLegal({TargetOpcode::G_FMAXNUM, {DstTy}}))
+ return TargetOpcode::G_FMAXNUM;
+ if (isLegal({TargetOpcode::G_FMAXIMUM, {DstTy}}))
+ return TargetOpcode::G_FMAXIMUM;
+ return 0;
+ case CmpInst::FCMP_ULT:
+ case CmpInst::FCMP_ULE:
+ case CmpInst::FCMP_OLT:
+ case CmpInst::FCMP_OLE:
+ if (VsNaNRetVal == SelectPatternNaNBehaviour::RETURNS_OTHER)
+ return TargetOpcode::G_FMINNUM;
+ if (VsNaNRetVal == SelectPatternNaNBehaviour::RETURNS_NAN)
+ return TargetOpcode::G_FMINIMUM;
+ if (isLegal({TargetOpcode::G_FMINNUM, {DstTy}}))
+ return TargetOpcode::G_FMINNUM;
+ if (!isLegal({TargetOpcode::G_FMINIMUM, {DstTy}}))
+ return 0;
+ return TargetOpcode::G_FMINIMUM;
+ }
+}
+
+CombinerHelper::SelectPatternNaNBehaviour
+CombinerHelper::computeRetValAgainstNaN(Register LHS, Register RHS,
+ bool IsOrderedComparison) const {
+ bool LHSSafe = isKnownNeverNaN(LHS, MRI);
+ bool RHSSafe = isKnownNeverNaN(RHS, MRI);
+ // Completely unsafe.
+ if (!LHSSafe && !RHSSafe)
+ return SelectPatternNaNBehaviour::NOT_APPLICABLE;
+ if (LHSSafe && RHSSafe)
+ return SelectPatternNaNBehaviour::RETURNS_ANY;
+ // An ordered comparison will return false when given a NaN, so it
+ // returns the RHS.
+ if (IsOrderedComparison)
+ return LHSSafe ? SelectPatternNaNBehaviour::RETURNS_NAN
+ : SelectPatternNaNBehaviour::RETURNS_OTHER;
+ // An unordered comparison will return true when given a NaN, so it
+ // returns the LHS.
+ return LHSSafe ? SelectPatternNaNBehaviour::RETURNS_OTHER
+ : SelectPatternNaNBehaviour::RETURNS_NAN;
+}
+
+bool CombinerHelper::matchFPSelectToMinMax(Register Dst, Register Cond,
+ Register TrueVal, Register FalseVal,
+ BuildFnTy &MatchInfo) {
+ // Match: select (fcmp cond x, y) x, y
+ // select (fcmp cond x, y) y, x
+ // And turn it into fminnum/fmaxnum or fmin/fmax based off of the condition.
+ LLT DstTy = MRI.getType(Dst);
+ // Bail out early on pointers, since we'll never want to fold to a min/max.
+ if (DstTy.isPointer())
+ return false;
+ // Match a floating point compare with a less-than/greater-than predicate.
+ // TODO: Allow multiple users of the compare if they are all selects.
+ CmpInst::Predicate Pred;
+ Register CmpLHS, CmpRHS;
+ if (!mi_match(Cond, MRI,
+ m_OneNonDBGUse(
+ m_GFCmp(m_Pred(Pred), m_Reg(CmpLHS), m_Reg(CmpRHS)))) ||
+ CmpInst::isEquality(Pred))
+ return false;
+ SelectPatternNaNBehaviour ResWithKnownNaNInfo =
+ computeRetValAgainstNaN(CmpLHS, CmpRHS, CmpInst::isOrdered(Pred));
+ if (ResWithKnownNaNInfo == SelectPatternNaNBehaviour::NOT_APPLICABLE)
+ return false;
+ if (TrueVal == CmpRHS && FalseVal == CmpLHS) {
+ std::swap(CmpLHS, CmpRHS);
+ Pred = CmpInst::getSwappedPredicate(Pred);
+ if (ResWithKnownNaNInfo == SelectPatternNaNBehaviour::RETURNS_NAN)
+ ResWithKnownNaNInfo = SelectPatternNaNBehaviour::RETURNS_OTHER;
+ else if (ResWithKnownNaNInfo == SelectPatternNaNBehaviour::RETURNS_OTHER)
+ ResWithKnownNaNInfo = SelectPatternNaNBehaviour::RETURNS_NAN;
+ }
+ if (TrueVal != CmpLHS || FalseVal != CmpRHS)
+ return false;
+ // Decide what type of max/min this should be based off of the predicate.
+ unsigned Opc = getFPMinMaxOpcForSelect(Pred, DstTy, ResWithKnownNaNInfo);
+ if (!Opc || !isLegal({Opc, {DstTy}}))
+ return false;
+ // Comparisons between signed zero and zero may have different results...
+ // unless we have fmaximum/fminimum. In that case, we know -0 < 0.
+ if (Opc != TargetOpcode::G_FMAXIMUM && Opc != TargetOpcode::G_FMINIMUM) {
+ // We don't know if a comparison between two 0s will give us a consistent
+ // result. Be conservative and only proceed if at least one side is
+ // non-zero.
+ auto KnownNonZeroSide = getFConstantVRegValWithLookThrough(CmpLHS, MRI);
+ if (!KnownNonZeroSide || !KnownNonZeroSide->Value.isNonZero()) {
+ KnownNonZeroSide = getFConstantVRegValWithLookThrough(CmpRHS, MRI);
+ if (!KnownNonZeroSide || !KnownNonZeroSide->Value.isNonZero())
+ return false;
+ }
+ }
+ MatchInfo = [=](MachineIRBuilder &B) {
+ B.buildInstr(Opc, {Dst}, {CmpLHS, CmpRHS});
+ };
+ return true;
+}
+
+bool CombinerHelper::matchSimplifySelectToMinMax(MachineInstr &MI,
+ BuildFnTy &MatchInfo) {
+ // TODO: Handle integer cases.
+ assert(MI.getOpcode() == TargetOpcode::G_SELECT);
+ // Condition may be fed by a truncated compare.
+ Register Cond = MI.getOperand(1).getReg();
+ Register MaybeTrunc;
+ if (mi_match(Cond, MRI, m_OneNonDBGUse(m_GTrunc(m_Reg(MaybeTrunc)))))
+ Cond = MaybeTrunc;
+ Register Dst = MI.getOperand(0).getReg();
+ Register TrueVal = MI.getOperand(2).getReg();
+ Register FalseVal = MI.getOperand(3).getReg();
+ return matchFPSelectToMinMax(Dst, Cond, TrueVal, FalseVal, MatchInfo);
+}
+
+bool CombinerHelper::matchRedundantBinOpInEquality(MachineInstr &MI,
+ BuildFnTy &MatchInfo) {
+ assert(MI.getOpcode() == TargetOpcode::G_ICMP);
+ // (X + Y) == X --> Y == 0
+ // (X + Y) != X --> Y != 0
+ // (X - Y) == X --> Y == 0
+ // (X - Y) != X --> Y != 0
+ // (X ^ Y) == X --> Y == 0
+ // (X ^ Y) != X --> Y != 0
+ Register Dst = MI.getOperand(0).getReg();
+ CmpInst::Predicate Pred;
+ Register X, Y, OpLHS, OpRHS;
+ bool MatchedSub = mi_match(
+ Dst, MRI,
+ m_c_GICmp(m_Pred(Pred), m_Reg(X), m_GSub(m_Reg(OpLHS), m_Reg(Y))));
+ if (MatchedSub && X != OpLHS)
+ return false;
+ if (!MatchedSub) {
+ if (!mi_match(Dst, MRI,
+ m_c_GICmp(m_Pred(Pred), m_Reg(X),
+ m_any_of(m_GAdd(m_Reg(OpLHS), m_Reg(OpRHS)),
+ m_GXor(m_Reg(OpLHS), m_Reg(OpRHS))))))
+ return false;
+ Y = X == OpLHS ? OpRHS : X == OpRHS ? OpLHS : Register();
+ }
+ MatchInfo = [=](MachineIRBuilder &B) {
+ auto Zero = B.buildConstant(MRI.getType(Y), 0);
+ B.buildICmp(Pred, Dst, Y, Zero);
+ };
+ return CmpInst::isEquality(Pred) && Y.isValid();
+}
+
+bool CombinerHelper::matchShiftsTooBig(MachineInstr &MI) {
+ Register ShiftReg = MI.getOperand(2).getReg();
+ LLT ResTy = MRI.getType(MI.getOperand(0).getReg());
+ auto IsShiftTooBig = [&](const Constant *C) {
+ auto *CI = dyn_cast<ConstantInt>(C);
+ return CI && CI->uge(ResTy.getScalarSizeInBits());
+ };
+ return matchUnaryPredicate(MRI, ShiftReg, IsShiftTooBig);
+}
+
+bool CombinerHelper::matchCommuteConstantToRHS(MachineInstr &MI) {
+ Register LHS = MI.getOperand(1).getReg();
+ Register RHS = MI.getOperand(2).getReg();
+ auto *LHSDef = MRI.getVRegDef(LHS);
+ if (getIConstantVRegVal(LHS, MRI).has_value())
+ return true;
+
+ // LHS may be a G_CONSTANT_FOLD_BARRIER. If so we commute
+ // as long as we don't already have a constant on the RHS.
+ if (LHSDef->getOpcode() != TargetOpcode::G_CONSTANT_FOLD_BARRIER)
+ return false;
+ return MRI.getVRegDef(RHS)->getOpcode() !=
+ TargetOpcode::G_CONSTANT_FOLD_BARRIER &&
+ !getIConstantVRegVal(RHS, MRI);
+}
+
+bool CombinerHelper::matchCommuteFPConstantToRHS(MachineInstr &MI) {
+ Register LHS = MI.getOperand(1).getReg();
+ Register RHS = MI.getOperand(2).getReg();
+ std::optional<FPValueAndVReg> ValAndVReg;
+ if (!mi_match(LHS, MRI, m_GFCstOrSplat(ValAndVReg)))
+ return false;
+ return !mi_match(RHS, MRI, m_GFCstOrSplat(ValAndVReg));
+}
+
+void CombinerHelper::applyCommuteBinOpOperands(MachineInstr &MI) {
+ Observer.changingInstr(MI);
+ Register LHSReg = MI.getOperand(1).getReg();
+ Register RHSReg = MI.getOperand(2).getReg();
+ MI.getOperand(1).setReg(RHSReg);
+ MI.getOperand(2).setReg(LHSReg);
+ Observer.changedInstr(MI);
+}
+
+bool CombinerHelper::isOneOrOneSplat(Register Src, bool AllowUndefs) {
+ LLT SrcTy = MRI.getType(Src);
+ if (SrcTy.isFixedVector())
+ return isConstantSplatVector(Src, 1, AllowUndefs);
+ if (SrcTy.isScalar()) {
+ if (AllowUndefs && getOpcodeDef<GImplicitDef>(Src, MRI) != nullptr)
+ return true;
+ auto IConstant = getIConstantVRegValWithLookThrough(Src, MRI);
+ return IConstant && IConstant->Value == 1;
+ }
+ return false; // scalable vector
+}
+
+bool CombinerHelper::isZeroOrZeroSplat(Register Src, bool AllowUndefs) {
+ LLT SrcTy = MRI.getType(Src);
+ if (SrcTy.isFixedVector())
+ return isConstantSplatVector(Src, 0, AllowUndefs);
+ if (SrcTy.isScalar()) {
+ if (AllowUndefs && getOpcodeDef<GImplicitDef>(Src, MRI) != nullptr)
+ return true;
+ auto IConstant = getIConstantVRegValWithLookThrough(Src, MRI);
+ return IConstant && IConstant->Value == 0;
+ }
+ return false; // scalable vector
+}
+
+// Ignores COPYs during conformance checks.
+// FIXME scalable vectors.
+bool CombinerHelper::isConstantSplatVector(Register Src, int64_t SplatValue,
+ bool AllowUndefs) {
+ GBuildVector *BuildVector = getOpcodeDef<GBuildVector>(Src, MRI);
+ if (!BuildVector)
+ return false;
+ unsigned NumSources = BuildVector->getNumSources();
+
+ for (unsigned I = 0; I < NumSources; ++I) {
+ GImplicitDef *ImplicitDef =
+ getOpcodeDef<GImplicitDef>(BuildVector->getSourceReg(I), MRI);
+ if (ImplicitDef && AllowUndefs)
+ continue;
+ if (ImplicitDef && !AllowUndefs)
+ return false;
+ std::optional<ValueAndVReg> IConstant =
+ getIConstantVRegValWithLookThrough(BuildVector->getSourceReg(I), MRI);
+ if (IConstant && IConstant->Value == SplatValue)
+ continue;
+ return false;
+ }
+ return true;
+}
+
+// Ignores COPYs during lookups.
+// FIXME scalable vectors
+std::optional<APInt>
+CombinerHelper::getConstantOrConstantSplatVector(Register Src) {
+ auto IConstant = getIConstantVRegValWithLookThrough(Src, MRI);
+ if (IConstant)
+ return IConstant->Value;
+
+ GBuildVector *BuildVector = getOpcodeDef<GBuildVector>(Src, MRI);
+ if (!BuildVector)
+ return std::nullopt;
+ unsigned NumSources = BuildVector->getNumSources();
+
+ std::optional<APInt> Value = std::nullopt;
+ for (unsigned I = 0; I < NumSources; ++I) {
+ std::optional<ValueAndVReg> IConstant =
+ getIConstantVRegValWithLookThrough(BuildVector->getSourceReg(I), MRI);
+ if (!IConstant)
+ return std::nullopt;
+ if (!Value)
+ Value = IConstant->Value;
+ else if (*Value != IConstant->Value)
+ return std::nullopt;
+ }
+ return Value;
+}
+
+// TODO: use knownbits to determine zeros
+bool CombinerHelper::tryFoldSelectOfConstants(GSelect *Select,
+ BuildFnTy &MatchInfo) {
+ uint32_t Flags = Select->getFlags();
+ Register Dest = Select->getReg(0);
+ Register Cond = Select->getCondReg();
+ Register True = Select->getTrueReg();
+ Register False = Select->getFalseReg();
+ LLT CondTy = MRI.getType(Select->getCondReg());
+ LLT TrueTy = MRI.getType(Select->getTrueReg());
+
+ // We only do this combine for scalar boolean conditions.
+ if (CondTy != LLT::scalar(1))
+ return false;
+
+ // Both are scalars.
+ std::optional<ValueAndVReg> TrueOpt =
+ getIConstantVRegValWithLookThrough(True, MRI);
+ std::optional<ValueAndVReg> FalseOpt =
+ getIConstantVRegValWithLookThrough(False, MRI);
+
+ if (!TrueOpt || !FalseOpt)
+ return false;
+
+ APInt TrueValue = TrueOpt->Value;
+ APInt FalseValue = FalseOpt->Value;
+
+ // select Cond, 1, 0 --> zext (Cond)
+ if (TrueValue.isOne() && FalseValue.isZero()) {
+ MatchInfo = [=](MachineIRBuilder &B) {
+ B.setInstrAndDebugLoc(*Select);
+ B.buildZExtOrTrunc(Dest, Cond);
+ };
+ return true;
+ }
+
+ // select Cond, -1, 0 --> sext (Cond)
+ if (TrueValue.isAllOnes() && FalseValue.isZero()) {
+ MatchInfo = [=](MachineIRBuilder &B) {
+ B.setInstrAndDebugLoc(*Select);
+ B.buildSExtOrTrunc(Dest, Cond);
+ };
+ return true;
+ }
+
+ // select Cond, 0, 1 --> zext (!Cond)
+ if (TrueValue.isZero() && FalseValue.isOne()) {
+ MatchInfo = [=](MachineIRBuilder &B) {
+ B.setInstrAndDebugLoc(*Select);
+ Register Inner = MRI.createGenericVirtualRegister(CondTy);
+ B.buildNot(Inner, Cond);
+ B.buildZExtOrTrunc(Dest, Inner);
+ };
+ return true;
+ }
+
+ // select Cond, 0, -1 --> sext (!Cond)
+ if (TrueValue.isZero() && FalseValue.isAllOnes()) {
+ MatchInfo = [=](MachineIRBuilder &B) {
+ B.setInstrAndDebugLoc(*Select);
+ Register Inner = MRI.createGenericVirtualRegister(CondTy);
+ B.buildNot(Inner, Cond);
+ B.buildSExtOrTrunc(Dest, Inner);
+ };
+ return true;
+ }
+
+ // select Cond, C1, C1-1 --> add (zext Cond), C1-1
+ if (TrueValue - 1 == FalseValue) {
+ MatchInfo = [=](MachineIRBuilder &B) {
+ B.setInstrAndDebugLoc(*Select);
+ Register Inner = MRI.createGenericVirtualRegister(TrueTy);
+ B.buildZExtOrTrunc(Inner, Cond);
+ B.buildAdd(Dest, Inner, False);
+ };
+ return true;
+ }
+
+ // select Cond, C1, C1+1 --> add (sext Cond), C1+1
+ if (TrueValue + 1 == FalseValue) {
+ MatchInfo = [=](MachineIRBuilder &B) {
+ B.setInstrAndDebugLoc(*Select);
+ Register Inner = MRI.createGenericVirtualRegister(TrueTy);
+ B.buildSExtOrTrunc(Inner, Cond);
+ B.buildAdd(Dest, Inner, False);
+ };
+ return true;
+ }
+
+ // select Cond, Pow2, 0 --> (zext Cond) << log2(Pow2)
+ if (TrueValue.isPowerOf2() && FalseValue.isZero()) {
+ MatchInfo = [=](MachineIRBuilder &B) {
+ B.setInstrAndDebugLoc(*Select);
+ Register Inner = MRI.createGenericVirtualRegister(TrueTy);
+ B.buildZExtOrTrunc(Inner, Cond);
+ // The shift amount must be scalar.
+ LLT ShiftTy = TrueTy.isVector() ? TrueTy.getElementType() : TrueTy;
+ auto ShAmtC = B.buildConstant(ShiftTy, TrueValue.exactLogBase2());
+ B.buildShl(Dest, Inner, ShAmtC, Flags);
+ };
+ return true;
+ }
+ // select Cond, -1, C --> or (sext Cond), C
+ if (TrueValue.isAllOnes()) {
+ MatchInfo = [=](MachineIRBuilder &B) {
+ B.setInstrAndDebugLoc(*Select);
+ Register Inner = MRI.createGenericVirtualRegister(TrueTy);
+ B.buildSExtOrTrunc(Inner, Cond);
+ B.buildOr(Dest, Inner, False, Flags);
+ };
+ return true;
+ }
+
+ // select Cond, C, -1 --> or (sext (not Cond)), C
+ if (FalseValue.isAllOnes()) {
+ MatchInfo = [=](MachineIRBuilder &B) {
+ B.setInstrAndDebugLoc(*Select);
+ Register Not = MRI.createGenericVirtualRegister(CondTy);
+ B.buildNot(Not, Cond);
+ Register Inner = MRI.createGenericVirtualRegister(TrueTy);
+ B.buildSExtOrTrunc(Inner, Not);
+ B.buildOr(Dest, Inner, True, Flags);
+ };
+ return true;
+ }
+
+ return false;
+}
+
+// TODO: use knownbits to determine zeros
+bool CombinerHelper::tryFoldBoolSelectToLogic(GSelect *Select,
+ BuildFnTy &MatchInfo) {
+ uint32_t Flags = Select->getFlags();
+ Register DstReg = Select->getReg(0);
+ Register Cond = Select->getCondReg();
+ Register True = Select->getTrueReg();
+ Register False = Select->getFalseReg();
+ LLT CondTy = MRI.getType(Select->getCondReg());
+ LLT TrueTy = MRI.getType(Select->getTrueReg());
+
+ // Boolean or fixed vector of booleans.
+ if (CondTy.isScalableVector() ||
+ (CondTy.isFixedVector() &&
+ CondTy.getElementType().getScalarSizeInBits() != 1) ||
+ CondTy.getScalarSizeInBits() != 1)
+ return false;
+
+ if (CondTy != TrueTy)
+ return false;
+
+ // select Cond, Cond, F --> or Cond, F
+ // select Cond, 1, F --> or Cond, F
+ if ((Cond == True) || isOneOrOneSplat(True, /* AllowUndefs */ true)) {
+ MatchInfo = [=](MachineIRBuilder &B) {
+ B.setInstrAndDebugLoc(*Select);
+ Register Ext = MRI.createGenericVirtualRegister(TrueTy);
+ B.buildZExtOrTrunc(Ext, Cond);
+ B.buildOr(DstReg, Ext, False, Flags);
+ };
+ return true;
+ }
+
+ // select Cond, T, Cond --> and Cond, T
+ // select Cond, T, 0 --> and Cond, T
+ if ((Cond == False) || isZeroOrZeroSplat(False, /* AllowUndefs */ true)) {
+ MatchInfo = [=](MachineIRBuilder &B) {
+ B.setInstrAndDebugLoc(*Select);
+ Register Ext = MRI.createGenericVirtualRegister(TrueTy);
+ B.buildZExtOrTrunc(Ext, Cond);
+ B.buildAnd(DstReg, Ext, True);
+ };
+ return true;
+ }
+
+ // select Cond, T, 1 --> or (not Cond), T
+ if (isOneOrOneSplat(False, /* AllowUndefs */ true)) {
+ MatchInfo = [=](MachineIRBuilder &B) {
+ B.setInstrAndDebugLoc(*Select);
+ // First the not.
+ Register Inner = MRI.createGenericVirtualRegister(CondTy);
+ B.buildNot(Inner, Cond);
+ // Then an ext to match the destination register.
+ Register Ext = MRI.createGenericVirtualRegister(TrueTy);
+ B.buildZExtOrTrunc(Ext, Inner);
+ B.buildOr(DstReg, Ext, True, Flags);
+ };
+ return true;
+ }
+
+ // select Cond, 0, F --> and (not Cond), F
+ if (isZeroOrZeroSplat(True, /* AllowUndefs */ true)) {
+ MatchInfo = [=](MachineIRBuilder &B) {
+ B.setInstrAndDebugLoc(*Select);
+ // First the not.
+ Register Inner = MRI.createGenericVirtualRegister(CondTy);
+ B.buildNot(Inner, Cond);
+ // Then an ext to match the destination register.
+ Register Ext = MRI.createGenericVirtualRegister(TrueTy);
+ B.buildZExtOrTrunc(Ext, Inner);
+ B.buildAnd(DstReg, Ext, False);
+ };
+ return true;
+ }
+
+ return false;
+}
+
+bool CombinerHelper::matchSelect(MachineInstr &MI, BuildFnTy &MatchInfo) {
+ GSelect *Select = cast<GSelect>(&MI);
+
+ if (tryFoldSelectOfConstants(Select, MatchInfo))
+ return true;
+
+ if (tryFoldBoolSelectToLogic(Select, MatchInfo))
+ return true;
+
+ return false;
+}