diff options
Diffstat (limited to 'contrib/llvm-project/llvm/lib/CodeGen/GlobalISel/LegalizerHelper.cpp')
-rw-r--r-- | contrib/llvm-project/llvm/lib/CodeGen/GlobalISel/LegalizerHelper.cpp | 6261 |
1 files changed, 6261 insertions, 0 deletions
diff --git a/contrib/llvm-project/llvm/lib/CodeGen/GlobalISel/LegalizerHelper.cpp b/contrib/llvm-project/llvm/lib/CodeGen/GlobalISel/LegalizerHelper.cpp new file mode 100644 index 000000000000..3178ee16af2b --- /dev/null +++ b/contrib/llvm-project/llvm/lib/CodeGen/GlobalISel/LegalizerHelper.cpp @@ -0,0 +1,6261 @@ +//===-- llvm/CodeGen/GlobalISel/LegalizerHelper.cpp -----------------------===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +/// \file This file implements the LegalizerHelper class to legalize +/// individual instructions and the LegalizeMachineIR wrapper pass for the +/// primary legalization. +// +//===----------------------------------------------------------------------===// + +#include "llvm/CodeGen/GlobalISel/LegalizerHelper.h" +#include "llvm/CodeGen/GlobalISel/CallLowering.h" +#include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h" +#include "llvm/CodeGen/GlobalISel/LegalizerInfo.h" +#include "llvm/CodeGen/GlobalISel/MIPatternMatch.h" +#include "llvm/CodeGen/MachineRegisterInfo.h" +#include "llvm/CodeGen/TargetFrameLowering.h" +#include "llvm/CodeGen/TargetInstrInfo.h" +#include "llvm/CodeGen/TargetLowering.h" +#include "llvm/CodeGen/TargetSubtargetInfo.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/MathExtras.h" +#include "llvm/Support/raw_ostream.h" + +#define DEBUG_TYPE "legalizer" + +using namespace llvm; +using namespace LegalizeActions; +using namespace MIPatternMatch; + +/// Try to break down \p OrigTy into \p NarrowTy sized pieces. +/// +/// Returns the number of \p NarrowTy elements needed to reconstruct \p OrigTy, +/// with any leftover piece as type \p LeftoverTy +/// +/// Returns -1 in the first element of the pair if the breakdown is not +/// satisfiable. +static std::pair<int, int> +getNarrowTypeBreakDown(LLT OrigTy, LLT NarrowTy, LLT &LeftoverTy) { + assert(!LeftoverTy.isValid() && "this is an out argument"); + + unsigned Size = OrigTy.getSizeInBits(); + unsigned NarrowSize = NarrowTy.getSizeInBits(); + unsigned NumParts = Size / NarrowSize; + unsigned LeftoverSize = Size - NumParts * NarrowSize; + assert(Size > NarrowSize); + + if (LeftoverSize == 0) + return {NumParts, 0}; + + if (NarrowTy.isVector()) { + unsigned EltSize = OrigTy.getScalarSizeInBits(); + if (LeftoverSize % EltSize != 0) + return {-1, -1}; + LeftoverTy = LLT::scalarOrVector(LeftoverSize / EltSize, EltSize); + } else { + LeftoverTy = LLT::scalar(LeftoverSize); + } + + int NumLeftover = LeftoverSize / LeftoverTy.getSizeInBits(); + return std::make_pair(NumParts, NumLeftover); +} + +static Type *getFloatTypeForLLT(LLVMContext &Ctx, LLT Ty) { + + if (!Ty.isScalar()) + return nullptr; + + switch (Ty.getSizeInBits()) { + case 16: + return Type::getHalfTy(Ctx); + case 32: + return Type::getFloatTy(Ctx); + case 64: + return Type::getDoubleTy(Ctx); + case 80: + return Type::getX86_FP80Ty(Ctx); + case 128: + return Type::getFP128Ty(Ctx); + default: + return nullptr; + } +} + +LegalizerHelper::LegalizerHelper(MachineFunction &MF, + GISelChangeObserver &Observer, + MachineIRBuilder &Builder) + : MIRBuilder(Builder), Observer(Observer), MRI(MF.getRegInfo()), + LI(*MF.getSubtarget().getLegalizerInfo()), + TLI(*MF.getSubtarget().getTargetLowering()) { } + +LegalizerHelper::LegalizerHelper(MachineFunction &MF, const LegalizerInfo &LI, + GISelChangeObserver &Observer, + MachineIRBuilder &B) + : MIRBuilder(B), Observer(Observer), MRI(MF.getRegInfo()), LI(LI), + TLI(*MF.getSubtarget().getTargetLowering()) { } + +LegalizerHelper::LegalizeResult +LegalizerHelper::legalizeInstrStep(MachineInstr &MI) { + LLVM_DEBUG(dbgs() << "Legalizing: " << MI); + + MIRBuilder.setInstrAndDebugLoc(MI); + + if (MI.getOpcode() == TargetOpcode::G_INTRINSIC || + MI.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS) + return LI.legalizeIntrinsic(*this, MI) ? Legalized : UnableToLegalize; + auto Step = LI.getAction(MI, MRI); + switch (Step.Action) { + case Legal: + LLVM_DEBUG(dbgs() << ".. Already legal\n"); + return AlreadyLegal; + case Libcall: + LLVM_DEBUG(dbgs() << ".. Convert to libcall\n"); + return libcall(MI); + case NarrowScalar: + LLVM_DEBUG(dbgs() << ".. Narrow scalar\n"); + return narrowScalar(MI, Step.TypeIdx, Step.NewType); + case WidenScalar: + LLVM_DEBUG(dbgs() << ".. Widen scalar\n"); + return widenScalar(MI, Step.TypeIdx, Step.NewType); + case Bitcast: + LLVM_DEBUG(dbgs() << ".. Bitcast type\n"); + return bitcast(MI, Step.TypeIdx, Step.NewType); + case Lower: + LLVM_DEBUG(dbgs() << ".. Lower\n"); + return lower(MI, Step.TypeIdx, Step.NewType); + case FewerElements: + LLVM_DEBUG(dbgs() << ".. Reduce number of elements\n"); + return fewerElementsVector(MI, Step.TypeIdx, Step.NewType); + case MoreElements: + LLVM_DEBUG(dbgs() << ".. Increase number of elements\n"); + return moreElementsVector(MI, Step.TypeIdx, Step.NewType); + case Custom: + LLVM_DEBUG(dbgs() << ".. Custom legalization\n"); + return LI.legalizeCustom(*this, MI) ? Legalized : UnableToLegalize; + default: + LLVM_DEBUG(dbgs() << ".. Unable to legalize\n"); + return UnableToLegalize; + } +} + +void LegalizerHelper::extractParts(Register Reg, LLT Ty, int NumParts, + SmallVectorImpl<Register> &VRegs) { + for (int i = 0; i < NumParts; ++i) + VRegs.push_back(MRI.createGenericVirtualRegister(Ty)); + MIRBuilder.buildUnmerge(VRegs, Reg); +} + +bool LegalizerHelper::extractParts(Register Reg, LLT RegTy, + LLT MainTy, LLT &LeftoverTy, + SmallVectorImpl<Register> &VRegs, + SmallVectorImpl<Register> &LeftoverRegs) { + assert(!LeftoverTy.isValid() && "this is an out argument"); + + unsigned RegSize = RegTy.getSizeInBits(); + unsigned MainSize = MainTy.getSizeInBits(); + unsigned NumParts = RegSize / MainSize; + unsigned LeftoverSize = RegSize - NumParts * MainSize; + + // Use an unmerge when possible. + if (LeftoverSize == 0) { + for (unsigned I = 0; I < NumParts; ++I) + VRegs.push_back(MRI.createGenericVirtualRegister(MainTy)); + MIRBuilder.buildUnmerge(VRegs, Reg); + return true; + } + + if (MainTy.isVector()) { + unsigned EltSize = MainTy.getScalarSizeInBits(); + if (LeftoverSize % EltSize != 0) + return false; + LeftoverTy = LLT::scalarOrVector(LeftoverSize / EltSize, EltSize); + } else { + LeftoverTy = LLT::scalar(LeftoverSize); + } + + // For irregular sizes, extract the individual parts. + for (unsigned I = 0; I != NumParts; ++I) { + Register NewReg = MRI.createGenericVirtualRegister(MainTy); + VRegs.push_back(NewReg); + MIRBuilder.buildExtract(NewReg, Reg, MainSize * I); + } + + for (unsigned Offset = MainSize * NumParts; Offset < RegSize; + Offset += LeftoverSize) { + Register NewReg = MRI.createGenericVirtualRegister(LeftoverTy); + LeftoverRegs.push_back(NewReg); + MIRBuilder.buildExtract(NewReg, Reg, Offset); + } + + return true; +} + +void LegalizerHelper::insertParts(Register DstReg, + LLT ResultTy, LLT PartTy, + ArrayRef<Register> PartRegs, + LLT LeftoverTy, + ArrayRef<Register> LeftoverRegs) { + if (!LeftoverTy.isValid()) { + assert(LeftoverRegs.empty()); + + if (!ResultTy.isVector()) { + MIRBuilder.buildMerge(DstReg, PartRegs); + return; + } + + if (PartTy.isVector()) + MIRBuilder.buildConcatVectors(DstReg, PartRegs); + else + MIRBuilder.buildBuildVector(DstReg, PartRegs); + return; + } + + unsigned PartSize = PartTy.getSizeInBits(); + unsigned LeftoverPartSize = LeftoverTy.getSizeInBits(); + + Register CurResultReg = MRI.createGenericVirtualRegister(ResultTy); + MIRBuilder.buildUndef(CurResultReg); + + unsigned Offset = 0; + for (Register PartReg : PartRegs) { + Register NewResultReg = MRI.createGenericVirtualRegister(ResultTy); + MIRBuilder.buildInsert(NewResultReg, CurResultReg, PartReg, Offset); + CurResultReg = NewResultReg; + Offset += PartSize; + } + + for (unsigned I = 0, E = LeftoverRegs.size(); I != E; ++I) { + // Use the original output register for the final insert to avoid a copy. + Register NewResultReg = (I + 1 == E) ? + DstReg : MRI.createGenericVirtualRegister(ResultTy); + + MIRBuilder.buildInsert(NewResultReg, CurResultReg, LeftoverRegs[I], Offset); + CurResultReg = NewResultReg; + Offset += LeftoverPartSize; + } +} + +/// Append the result registers of G_UNMERGE_VALUES \p MI to \p Regs. +static void getUnmergeResults(SmallVectorImpl<Register> &Regs, + const MachineInstr &MI) { + assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES); + + const int StartIdx = Regs.size(); + const int NumResults = MI.getNumOperands() - 1; + Regs.resize(Regs.size() + NumResults); + for (int I = 0; I != NumResults; ++I) + Regs[StartIdx + I] = MI.getOperand(I).getReg(); +} + +void LegalizerHelper::extractGCDType(SmallVectorImpl<Register> &Parts, + LLT GCDTy, Register SrcReg) { + LLT SrcTy = MRI.getType(SrcReg); + if (SrcTy == GCDTy) { + // If the source already evenly divides the result type, we don't need to do + // anything. + Parts.push_back(SrcReg); + } else { + // Need to split into common type sized pieces. + auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg); + getUnmergeResults(Parts, *Unmerge); + } +} + +LLT LegalizerHelper::extractGCDType(SmallVectorImpl<Register> &Parts, LLT DstTy, + LLT NarrowTy, Register SrcReg) { + LLT SrcTy = MRI.getType(SrcReg); + LLT GCDTy = getGCDType(getGCDType(SrcTy, NarrowTy), DstTy); + extractGCDType(Parts, GCDTy, SrcReg); + return GCDTy; +} + +LLT LegalizerHelper::buildLCMMergePieces(LLT DstTy, LLT NarrowTy, LLT GCDTy, + SmallVectorImpl<Register> &VRegs, + unsigned PadStrategy) { + LLT LCMTy = getLCMType(DstTy, NarrowTy); + + int NumParts = LCMTy.getSizeInBits() / NarrowTy.getSizeInBits(); + int NumSubParts = NarrowTy.getSizeInBits() / GCDTy.getSizeInBits(); + int NumOrigSrc = VRegs.size(); + + Register PadReg; + + // Get a value we can use to pad the source value if the sources won't evenly + // cover the result type. + if (NumOrigSrc < NumParts * NumSubParts) { + if (PadStrategy == TargetOpcode::G_ZEXT) + PadReg = MIRBuilder.buildConstant(GCDTy, 0).getReg(0); + else if (PadStrategy == TargetOpcode::G_ANYEXT) + PadReg = MIRBuilder.buildUndef(GCDTy).getReg(0); + else { + assert(PadStrategy == TargetOpcode::G_SEXT); + + // Shift the sign bit of the low register through the high register. + auto ShiftAmt = + MIRBuilder.buildConstant(LLT::scalar(64), GCDTy.getSizeInBits() - 1); + PadReg = MIRBuilder.buildAShr(GCDTy, VRegs.back(), ShiftAmt).getReg(0); + } + } + + // Registers for the final merge to be produced. + SmallVector<Register, 4> Remerge(NumParts); + + // Registers needed for intermediate merges, which will be merged into a + // source for Remerge. + SmallVector<Register, 4> SubMerge(NumSubParts); + + // Once we've fully read off the end of the original source bits, we can reuse + // the same high bits for remaining padding elements. + Register AllPadReg; + + // Build merges to the LCM type to cover the original result type. + for (int I = 0; I != NumParts; ++I) { + bool AllMergePartsArePadding = true; + + // Build the requested merges to the requested type. + for (int J = 0; J != NumSubParts; ++J) { + int Idx = I * NumSubParts + J; + if (Idx >= NumOrigSrc) { + SubMerge[J] = PadReg; + continue; + } + + SubMerge[J] = VRegs[Idx]; + + // There are meaningful bits here we can't reuse later. + AllMergePartsArePadding = false; + } + + // If we've filled up a complete piece with padding bits, we can directly + // emit the natural sized constant if applicable, rather than a merge of + // smaller constants. + if (AllMergePartsArePadding && !AllPadReg) { + if (PadStrategy == TargetOpcode::G_ANYEXT) + AllPadReg = MIRBuilder.buildUndef(NarrowTy).getReg(0); + else if (PadStrategy == TargetOpcode::G_ZEXT) + AllPadReg = MIRBuilder.buildConstant(NarrowTy, 0).getReg(0); + + // If this is a sign extension, we can't materialize a trivial constant + // with the right type and have to produce a merge. + } + + if (AllPadReg) { + // Avoid creating additional instructions if we're just adding additional + // copies of padding bits. + Remerge[I] = AllPadReg; + continue; + } + + if (NumSubParts == 1) + Remerge[I] = SubMerge[0]; + else + Remerge[I] = MIRBuilder.buildMerge(NarrowTy, SubMerge).getReg(0); + + // In the sign extend padding case, re-use the first all-signbit merge. + if (AllMergePartsArePadding && !AllPadReg) + AllPadReg = Remerge[I]; + } + + VRegs = std::move(Remerge); + return LCMTy; +} + +void LegalizerHelper::buildWidenedRemergeToDst(Register DstReg, LLT LCMTy, + ArrayRef<Register> RemergeRegs) { + LLT DstTy = MRI.getType(DstReg); + + // Create the merge to the widened source, and extract the relevant bits into + // the result. + + if (DstTy == LCMTy) { + MIRBuilder.buildMerge(DstReg, RemergeRegs); + return; + } + + auto Remerge = MIRBuilder.buildMerge(LCMTy, RemergeRegs); + if (DstTy.isScalar() && LCMTy.isScalar()) { + MIRBuilder.buildTrunc(DstReg, Remerge); + return; + } + + if (LCMTy.isVector()) { + unsigned NumDefs = LCMTy.getSizeInBits() / DstTy.getSizeInBits(); + SmallVector<Register, 8> UnmergeDefs(NumDefs); + UnmergeDefs[0] = DstReg; + for (unsigned I = 1; I != NumDefs; ++I) + UnmergeDefs[I] = MRI.createGenericVirtualRegister(DstTy); + + MIRBuilder.buildUnmerge(UnmergeDefs, + MIRBuilder.buildMerge(LCMTy, RemergeRegs)); + return; + } + + llvm_unreachable("unhandled case"); +} + +static RTLIB::Libcall getRTLibDesc(unsigned Opcode, unsigned Size) { +#define RTLIBCASE_INT(LibcallPrefix) \ + do { \ + switch (Size) { \ + case 32: \ + return RTLIB::LibcallPrefix##32; \ + case 64: \ + return RTLIB::LibcallPrefix##64; \ + case 128: \ + return RTLIB::LibcallPrefix##128; \ + default: \ + llvm_unreachable("unexpected size"); \ + } \ + } while (0) + +#define RTLIBCASE(LibcallPrefix) \ + do { \ + switch (Size) { \ + case 32: \ + return RTLIB::LibcallPrefix##32; \ + case 64: \ + return RTLIB::LibcallPrefix##64; \ + case 80: \ + return RTLIB::LibcallPrefix##80; \ + case 128: \ + return RTLIB::LibcallPrefix##128; \ + default: \ + llvm_unreachable("unexpected size"); \ + } \ + } while (0) + + switch (Opcode) { + case TargetOpcode::G_SDIV: + RTLIBCASE_INT(SDIV_I); + case TargetOpcode::G_UDIV: + RTLIBCASE_INT(UDIV_I); + case TargetOpcode::G_SREM: + RTLIBCASE_INT(SREM_I); + case TargetOpcode::G_UREM: + RTLIBCASE_INT(UREM_I); + case TargetOpcode::G_CTLZ_ZERO_UNDEF: + RTLIBCASE_INT(CTLZ_I); + case TargetOpcode::G_FADD: + RTLIBCASE(ADD_F); + case TargetOpcode::G_FSUB: + RTLIBCASE(SUB_F); + case TargetOpcode::G_FMUL: + RTLIBCASE(MUL_F); + case TargetOpcode::G_FDIV: + RTLIBCASE(DIV_F); + case TargetOpcode::G_FEXP: + RTLIBCASE(EXP_F); + case TargetOpcode::G_FEXP2: + RTLIBCASE(EXP2_F); + case TargetOpcode::G_FREM: + RTLIBCASE(REM_F); + case TargetOpcode::G_FPOW: + RTLIBCASE(POW_F); + case TargetOpcode::G_FMA: + RTLIBCASE(FMA_F); + case TargetOpcode::G_FSIN: + RTLIBCASE(SIN_F); + case TargetOpcode::G_FCOS: + RTLIBCASE(COS_F); + case TargetOpcode::G_FLOG10: + RTLIBCASE(LOG10_F); + case TargetOpcode::G_FLOG: + RTLIBCASE(LOG_F); + case TargetOpcode::G_FLOG2: + RTLIBCASE(LOG2_F); + case TargetOpcode::G_FCEIL: + RTLIBCASE(CEIL_F); + case TargetOpcode::G_FFLOOR: + RTLIBCASE(FLOOR_F); + case TargetOpcode::G_FMINNUM: + RTLIBCASE(FMIN_F); + case TargetOpcode::G_FMAXNUM: + RTLIBCASE(FMAX_F); + case TargetOpcode::G_FSQRT: + RTLIBCASE(SQRT_F); + case TargetOpcode::G_FRINT: + RTLIBCASE(RINT_F); + case TargetOpcode::G_FNEARBYINT: + RTLIBCASE(NEARBYINT_F); + case TargetOpcode::G_INTRINSIC_ROUNDEVEN: + RTLIBCASE(ROUNDEVEN_F); + } + llvm_unreachable("Unknown libcall function"); +} + +/// True if an instruction is in tail position in its caller. Intended for +/// legalizing libcalls as tail calls when possible. +static bool isLibCallInTailPosition(const TargetInstrInfo &TII, + MachineInstr &MI) { + MachineBasicBlock &MBB = *MI.getParent(); + const Function &F = MBB.getParent()->getFunction(); + + // Conservatively require the attributes of the call to match those of + // the return. Ignore NoAlias and NonNull because they don't affect the + // call sequence. + AttributeList CallerAttrs = F.getAttributes(); + if (AttrBuilder(CallerAttrs, AttributeList::ReturnIndex) + .removeAttribute(Attribute::NoAlias) + .removeAttribute(Attribute::NonNull) + .hasAttributes()) + return false; + + // It's not safe to eliminate the sign / zero extension of the return value. + if (CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt) || + CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt)) + return false; + + // Only tail call if the following instruction is a standard return. + auto Next = next_nodbg(MI.getIterator(), MBB.instr_end()); + if (Next == MBB.instr_end() || TII.isTailCall(*Next) || !Next->isReturn()) + return false; + + return true; +} + +LegalizerHelper::LegalizeResult +llvm::createLibcall(MachineIRBuilder &MIRBuilder, const char *Name, + const CallLowering::ArgInfo &Result, + ArrayRef<CallLowering::ArgInfo> Args, + const CallingConv::ID CC) { + auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering(); + + CallLowering::CallLoweringInfo Info; + Info.CallConv = CC; + Info.Callee = MachineOperand::CreateES(Name); + Info.OrigRet = Result; + std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs)); + if (!CLI.lowerCall(MIRBuilder, Info)) + return LegalizerHelper::UnableToLegalize; + + return LegalizerHelper::Legalized; +} + +LegalizerHelper::LegalizeResult +llvm::createLibcall(MachineIRBuilder &MIRBuilder, RTLIB::Libcall Libcall, + const CallLowering::ArgInfo &Result, + ArrayRef<CallLowering::ArgInfo> Args) { + auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering(); + const char *Name = TLI.getLibcallName(Libcall); + const CallingConv::ID CC = TLI.getLibcallCallingConv(Libcall); + return createLibcall(MIRBuilder, Name, Result, Args, CC); +} + +// Useful for libcalls where all operands have the same type. +static LegalizerHelper::LegalizeResult +simpleLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, unsigned Size, + Type *OpType) { + auto Libcall = getRTLibDesc(MI.getOpcode(), Size); + + SmallVector<CallLowering::ArgInfo, 3> Args; + for (unsigned i = 1; i < MI.getNumOperands(); i++) + Args.push_back({MI.getOperand(i).getReg(), OpType}); + return createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), OpType}, + Args); +} + +LegalizerHelper::LegalizeResult +llvm::createMemLibcall(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI, + MachineInstr &MI) { + auto &Ctx = MIRBuilder.getMF().getFunction().getContext(); + + SmallVector<CallLowering::ArgInfo, 3> Args; + // Add all the args, except for the last which is an imm denoting 'tail'. + for (unsigned i = 0; i < MI.getNumOperands() - 1; ++i) { + Register Reg = MI.getOperand(i).getReg(); + + // Need derive an IR type for call lowering. + LLT OpLLT = MRI.getType(Reg); + Type *OpTy = nullptr; + if (OpLLT.isPointer()) + OpTy = Type::getInt8PtrTy(Ctx, OpLLT.getAddressSpace()); + else + OpTy = IntegerType::get(Ctx, OpLLT.getSizeInBits()); + Args.push_back({Reg, OpTy}); + } + + auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering(); + auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering(); + RTLIB::Libcall RTLibcall; + switch (MI.getOpcode()) { + case TargetOpcode::G_MEMCPY: + RTLibcall = RTLIB::MEMCPY; + break; + case TargetOpcode::G_MEMMOVE: + RTLibcall = RTLIB::MEMMOVE; + break; + case TargetOpcode::G_MEMSET: + RTLibcall = RTLIB::MEMSET; + break; + default: + return LegalizerHelper::UnableToLegalize; + } + const char *Name = TLI.getLibcallName(RTLibcall); + + CallLowering::CallLoweringInfo Info; + Info.CallConv = TLI.getLibcallCallingConv(RTLibcall); + Info.Callee = MachineOperand::CreateES(Name); + Info.OrigRet = CallLowering::ArgInfo({0}, Type::getVoidTy(Ctx)); + Info.IsTailCall = MI.getOperand(MI.getNumOperands() - 1).getImm() && + isLibCallInTailPosition(MIRBuilder.getTII(), MI); + + std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs)); + if (!CLI.lowerCall(MIRBuilder, Info)) + return LegalizerHelper::UnableToLegalize; + + if (Info.LoweredTailCall) { + assert(Info.IsTailCall && "Lowered tail call when it wasn't a tail call?"); + // We must have a return following the call (or debug insts) to get past + // isLibCallInTailPosition. + do { + MachineInstr *Next = MI.getNextNode(); + assert(Next && (Next->isReturn() || Next->isDebugInstr()) && + "Expected instr following MI to be return or debug inst?"); + // We lowered a tail call, so the call is now the return from the block. + // Delete the old return. + Next->eraseFromParent(); + } while (MI.getNextNode()); + } + + return LegalizerHelper::Legalized; +} + +static RTLIB::Libcall getConvRTLibDesc(unsigned Opcode, Type *ToType, + Type *FromType) { + auto ToMVT = MVT::getVT(ToType); + auto FromMVT = MVT::getVT(FromType); + + switch (Opcode) { + case TargetOpcode::G_FPEXT: + return RTLIB::getFPEXT(FromMVT, ToMVT); + case TargetOpcode::G_FPTRUNC: + return RTLIB::getFPROUND(FromMVT, ToMVT); + case TargetOpcode::G_FPTOSI: + return RTLIB::getFPTOSINT(FromMVT, ToMVT); + case TargetOpcode::G_FPTOUI: + return RTLIB::getFPTOUINT(FromMVT, ToMVT); + case TargetOpcode::G_SITOFP: + return RTLIB::getSINTTOFP(FromMVT, ToMVT); + case TargetOpcode::G_UITOFP: + return RTLIB::getUINTTOFP(FromMVT, ToMVT); + } + llvm_unreachable("Unsupported libcall function"); +} + +static LegalizerHelper::LegalizeResult +conversionLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, Type *ToType, + Type *FromType) { + RTLIB::Libcall Libcall = getConvRTLibDesc(MI.getOpcode(), ToType, FromType); + return createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), ToType}, + {{MI.getOperand(1).getReg(), FromType}}); +} + +LegalizerHelper::LegalizeResult +LegalizerHelper::libcall(MachineInstr &MI) { + LLT LLTy = MRI.getType(MI.getOperand(0).getReg()); + unsigned Size = LLTy.getSizeInBits(); + auto &Ctx = MIRBuilder.getMF().getFunction().getContext(); + + switch (MI.getOpcode()) { + default: + return UnableToLegalize; + case TargetOpcode::G_SDIV: + case TargetOpcode::G_UDIV: + case TargetOpcode::G_SREM: + case TargetOpcode::G_UREM: + case TargetOpcode::G_CTLZ_ZERO_UNDEF: { + Type *HLTy = IntegerType::get(Ctx, Size); + auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy); + if (Status != Legalized) + return Status; + break; + } + case TargetOpcode::G_FADD: + case TargetOpcode::G_FSUB: + case TargetOpcode::G_FMUL: + case TargetOpcode::G_FDIV: + case TargetOpcode::G_FMA: + case TargetOpcode::G_FPOW: + case TargetOpcode::G_FREM: + case TargetOpcode::G_FCOS: + case TargetOpcode::G_FSIN: + case TargetOpcode::G_FLOG10: + case TargetOpcode::G_FLOG: + case TargetOpcode::G_FLOG2: + case TargetOpcode::G_FEXP: + case TargetOpcode::G_FEXP2: + case TargetOpcode::G_FCEIL: + case TargetOpcode::G_FFLOOR: + case TargetOpcode::G_FMINNUM: + case TargetOpcode::G_FMAXNUM: + case TargetOpcode::G_FSQRT: + case TargetOpcode::G_FRINT: + case TargetOpcode::G_FNEARBYINT: + case TargetOpcode::G_INTRINSIC_ROUNDEVEN: { + Type *HLTy = getFloatTypeForLLT(Ctx, LLTy); + if (!HLTy || (Size != 32 && Size != 64 && Size != 80 && Size != 128)) { + LLVM_DEBUG(dbgs() << "No libcall available for type " << LLTy << ".\n"); + return UnableToLegalize; + } + auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy); + if (Status != Legalized) + return Status; + break; + } + case TargetOpcode::G_FPEXT: + case TargetOpcode::G_FPTRUNC: { + Type *FromTy = getFloatTypeForLLT(Ctx, MRI.getType(MI.getOperand(1).getReg())); + Type *ToTy = getFloatTypeForLLT(Ctx, MRI.getType(MI.getOperand(0).getReg())); + if (!FromTy || !ToTy) + return UnableToLegalize; + LegalizeResult Status = conversionLibcall(MI, MIRBuilder, ToTy, FromTy ); + if (Status != Legalized) + return Status; + break; + } + case TargetOpcode::G_FPTOSI: + case TargetOpcode::G_FPTOUI: { + // FIXME: Support other types + unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); + unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); + if ((ToSize != 32 && ToSize != 64) || (FromSize != 32 && FromSize != 64)) + return UnableToLegalize; + LegalizeResult Status = conversionLibcall( + MI, MIRBuilder, + ToSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx), + FromSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx)); + if (Status != Legalized) + return Status; + break; + } + case TargetOpcode::G_SITOFP: + case TargetOpcode::G_UITOFP: { + // FIXME: Support other types + unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); + unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); + if ((FromSize != 32 && FromSize != 64) || (ToSize != 32 && ToSize != 64)) + return UnableToLegalize; + LegalizeResult Status = conversionLibcall( + MI, MIRBuilder, + ToSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx), + FromSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx)); + if (Status != Legalized) + return Status; + break; + } + case TargetOpcode::G_MEMCPY: + case TargetOpcode::G_MEMMOVE: + case TargetOpcode::G_MEMSET: { + LegalizeResult Result = createMemLibcall(MIRBuilder, *MIRBuilder.getMRI(), MI); + MI.eraseFromParent(); + return Result; + } + } + + MI.eraseFromParent(); + return Legalized; +} + +LegalizerHelper::LegalizeResult LegalizerHelper::narrowScalar(MachineInstr &MI, + unsigned TypeIdx, + LLT NarrowTy) { + uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); + uint64_t NarrowSize = NarrowTy.getSizeInBits(); + + switch (MI.getOpcode()) { + default: + return UnableToLegalize; + case TargetOpcode::G_IMPLICIT_DEF: { + Register DstReg = MI.getOperand(0).getReg(); + LLT DstTy = MRI.getType(DstReg); + + // If SizeOp0 is not an exact multiple of NarrowSize, emit + // G_ANYEXT(G_IMPLICIT_DEF). Cast result to vector if needed. + // FIXME: Although this would also be legal for the general case, it causes + // a lot of regressions in the emitted code (superfluous COPYs, artifact + // combines not being hit). This seems to be a problem related to the + // artifact combiner. + if (SizeOp0 % NarrowSize != 0) { + LLT ImplicitTy = NarrowTy; + if (DstTy.isVector()) + ImplicitTy = LLT::vector(DstTy.getNumElements(), ImplicitTy); + + Register ImplicitReg = MIRBuilder.buildUndef(ImplicitTy).getReg(0); + MIRBuilder.buildAnyExt(DstReg, ImplicitReg); + + MI.eraseFromParent(); + return Legalized; + } + + int NumParts = SizeOp0 / NarrowSize; + + SmallVector<Register, 2> DstRegs; + for (int i = 0; i < NumParts; ++i) + DstRegs.push_back(MIRBuilder.buildUndef(NarrowTy).getReg(0)); + + if (DstTy.isVector()) + MIRBuilder.buildBuildVector(DstReg, DstRegs); + else + MIRBuilder.buildMerge(DstReg, DstRegs); + MI.eraseFromParent(); + return Legalized; + } + case TargetOpcode::G_CONSTANT: { + LLT Ty = MRI.getType(MI.getOperand(0).getReg()); + const APInt &Val = MI.getOperand(1).getCImm()->getValue(); + unsigned TotalSize = Ty.getSizeInBits(); + unsigned NarrowSize = NarrowTy.getSizeInBits(); + int NumParts = TotalSize / NarrowSize; + + SmallVector<Register, 4> PartRegs; + for (int I = 0; I != NumParts; ++I) { + unsigned Offset = I * NarrowSize; + auto K = MIRBuilder.buildConstant(NarrowTy, + Val.lshr(Offset).trunc(NarrowSize)); + PartRegs.push_back(K.getReg(0)); + } + + LLT LeftoverTy; + unsigned LeftoverBits = TotalSize - NumParts * NarrowSize; + SmallVector<Register, 1> LeftoverRegs; + if (LeftoverBits != 0) { + LeftoverTy = LLT::scalar(LeftoverBits); + auto K = MIRBuilder.buildConstant( + LeftoverTy, + Val.lshr(NumParts * NarrowSize).trunc(LeftoverBits)); + LeftoverRegs.push_back(K.getReg(0)); + } + + insertParts(MI.getOperand(0).getReg(), + Ty, NarrowTy, PartRegs, LeftoverTy, LeftoverRegs); + + MI.eraseFromParent(); + return Legalized; + } + case TargetOpcode::G_SEXT: + case TargetOpcode::G_ZEXT: + case TargetOpcode::G_ANYEXT: + return narrowScalarExt(MI, TypeIdx, NarrowTy); + case TargetOpcode::G_TRUNC: { + if (TypeIdx != 1) + return UnableToLegalize; + + uint64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); + if (NarrowTy.getSizeInBits() * 2 != SizeOp1) { + LLVM_DEBUG(dbgs() << "Can't narrow trunc to type " << NarrowTy << "\n"); + return UnableToLegalize; + } + + auto Unmerge = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1)); + MIRBuilder.buildCopy(MI.getOperand(0), Unmerge.getReg(0)); + MI.eraseFromParent(); + return Legalized; + } + + case TargetOpcode::G_FREEZE: + return reduceOperationWidth(MI, TypeIdx, NarrowTy); + + case TargetOpcode::G_ADD: { + // FIXME: add support for when SizeOp0 isn't an exact multiple of + // NarrowSize. + if (SizeOp0 % NarrowSize != 0) + return UnableToLegalize; + // Expand in terms of carry-setting/consuming G_ADDE instructions. + int NumParts = SizeOp0 / NarrowTy.getSizeInBits(); + + SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs; + extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, Src1Regs); + extractParts(MI.getOperand(2).getReg(), NarrowTy, NumParts, Src2Regs); + + Register CarryIn; + for (int i = 0; i < NumParts; ++i) { + Register DstReg = MRI.createGenericVirtualRegister(NarrowTy); + Register CarryOut = MRI.createGenericVirtualRegister(LLT::scalar(1)); + + if (i == 0) + MIRBuilder.buildUAddo(DstReg, CarryOut, Src1Regs[i], Src2Regs[i]); + else { + MIRBuilder.buildUAdde(DstReg, CarryOut, Src1Regs[i], + Src2Regs[i], CarryIn); + } + + DstRegs.push_back(DstReg); + CarryIn = CarryOut; + } + Register DstReg = MI.getOperand(0).getReg(); + if(MRI.getType(DstReg).isVector()) + MIRBuilder.buildBuildVector(DstReg, DstRegs); + else + MIRBuilder.buildMerge(DstReg, DstRegs); + MI.eraseFromParent(); + return Legalized; + } + case TargetOpcode::G_SUB: { + // FIXME: add support for when SizeOp0 isn't an exact multiple of + // NarrowSize. + if (SizeOp0 % NarrowSize != 0) + return UnableToLegalize; + + int NumParts = SizeOp0 / NarrowTy.getSizeInBits(); + + SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs; + extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, Src1Regs); + extractParts(MI.getOperand(2).getReg(), NarrowTy, NumParts, Src2Regs); + + Register DstReg = MRI.createGenericVirtualRegister(NarrowTy); + Register BorrowOut = MRI.createGenericVirtualRegister(LLT::scalar(1)); + MIRBuilder.buildInstr(TargetOpcode::G_USUBO, {DstReg, BorrowOut}, + {Src1Regs[0], Src2Regs[0]}); + DstRegs.push_back(DstReg); + Register BorrowIn = BorrowOut; + for (int i = 1; i < NumParts; ++i) { + DstReg = MRI.createGenericVirtualRegister(NarrowTy); + BorrowOut = MRI.createGenericVirtualRegister(LLT::scalar(1)); + + MIRBuilder.buildInstr(TargetOpcode::G_USUBE, {DstReg, BorrowOut}, + {Src1Regs[i], Src2Regs[i], BorrowIn}); + + DstRegs.push_back(DstReg); + BorrowIn = BorrowOut; + } + MIRBuilder.buildMerge(MI.getOperand(0), DstRegs); + MI.eraseFromParent(); + return Legalized; + } + case TargetOpcode::G_MUL: + case TargetOpcode::G_UMULH: + return narrowScalarMul(MI, NarrowTy); + case TargetOpcode::G_EXTRACT: + return narrowScalarExtract(MI, TypeIdx, NarrowTy); + case TargetOpcode::G_INSERT: + return narrowScalarInsert(MI, TypeIdx, NarrowTy); + case TargetOpcode::G_LOAD: { + auto &MMO = **MI.memoperands_begin(); + Register DstReg = MI.getOperand(0).getReg(); + LLT DstTy = MRI.getType(DstReg); + if (DstTy.isVector()) + return UnableToLegalize; + + if (8 * MMO.getSize() != DstTy.getSizeInBits()) { + Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); + MIRBuilder.buildLoad(TmpReg, MI.getOperand(1), MMO); + MIRBuilder.buildAnyExt(DstReg, TmpReg); + MI.eraseFromParent(); + return Legalized; + } + + return reduceLoadStoreWidth(MI, TypeIdx, NarrowTy); + } + case TargetOpcode::G_ZEXTLOAD: + case TargetOpcode::G_SEXTLOAD: { + bool ZExt = MI.getOpcode() == TargetOpcode::G_ZEXTLOAD; + Register DstReg = MI.getOperand(0).getReg(); + Register PtrReg = MI.getOperand(1).getReg(); + + Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); + auto &MMO = **MI.memoperands_begin(); + unsigned MemSize = MMO.getSizeInBits(); + + if (MemSize == NarrowSize) { + MIRBuilder.buildLoad(TmpReg, PtrReg, MMO); + } else if (MemSize < NarrowSize) { + MIRBuilder.buildLoadInstr(MI.getOpcode(), TmpReg, PtrReg, MMO); + } else if (MemSize > NarrowSize) { + // FIXME: Need to split the load. + return UnableToLegalize; + } + + if (ZExt) + MIRBuilder.buildZExt(DstReg, TmpReg); + else + MIRBuilder.buildSExt(DstReg, TmpReg); + + MI.eraseFromParent(); + return Legalized; + } + case TargetOpcode::G_STORE: { + const auto &MMO = **MI.memoperands_begin(); + + Register SrcReg = MI.getOperand(0).getReg(); + LLT SrcTy = MRI.getType(SrcReg); + if (SrcTy.isVector()) + return UnableToLegalize; + + int NumParts = SizeOp0 / NarrowSize; + unsigned HandledSize = NumParts * NarrowTy.getSizeInBits(); + unsigned LeftoverBits = SrcTy.getSizeInBits() - HandledSize; + if (SrcTy.isVector() && LeftoverBits != 0) + return UnableToLegalize; + + if (8 * MMO.getSize() != SrcTy.getSizeInBits()) { + Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); + auto &MMO = **MI.memoperands_begin(); + MIRBuilder.buildTrunc(TmpReg, SrcReg); + MIRBuilder.buildStore(TmpReg, MI.getOperand(1), MMO); + MI.eraseFromParent(); + return Legalized; + } + + return reduceLoadStoreWidth(MI, 0, NarrowTy); + } + case TargetOpcode::G_SELECT: + return narrowScalarSelect(MI, TypeIdx, NarrowTy); + case TargetOpcode::G_AND: + case TargetOpcode::G_OR: + case TargetOpcode::G_XOR: { + // Legalize bitwise operation: + // A = BinOp<Ty> B, C + // into: + // B1, ..., BN = G_UNMERGE_VALUES B + // C1, ..., CN = G_UNMERGE_VALUES C + // A1 = BinOp<Ty/N> B1, C2 + // ... + // AN = BinOp<Ty/N> BN, CN + // A = G_MERGE_VALUES A1, ..., AN + return narrowScalarBasic(MI, TypeIdx, NarrowTy); + } + case TargetOpcode::G_SHL: + case TargetOpcode::G_LSHR: + case TargetOpcode::G_ASHR: + return narrowScalarShift(MI, TypeIdx, NarrowTy); + case TargetOpcode::G_CTLZ: + case TargetOpcode::G_CTLZ_ZERO_UNDEF: + case TargetOpcode::G_CTTZ: + case TargetOpcode::G_CTTZ_ZERO_UNDEF: + case TargetOpcode::G_CTPOP: + if (TypeIdx == 1) + switch (MI.getOpcode()) { + case TargetOpcode::G_CTLZ: + case TargetOpcode::G_CTLZ_ZERO_UNDEF: + return narrowScalarCTLZ(MI, TypeIdx, NarrowTy); + case TargetOpcode::G_CTTZ: + case TargetOpcode::G_CTTZ_ZERO_UNDEF: + return narrowScalarCTTZ(MI, TypeIdx, NarrowTy); + case TargetOpcode::G_CTPOP: + return narrowScalarCTPOP(MI, TypeIdx, NarrowTy); + default: + return UnableToLegalize; + } + + Observer.changingInstr(MI); + narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT); + Observer.changedInstr(MI); + return Legalized; + case TargetOpcode::G_INTTOPTR: + if (TypeIdx != 1) + return UnableToLegalize; + + Observer.changingInstr(MI); + narrowScalarSrc(MI, NarrowTy, 1); + Observer.changedInstr(MI); + return Legalized; + case TargetOpcode::G_PTRTOINT: + if (TypeIdx != 0) + return UnableToLegalize; + + Observer.changingInstr(MI); + narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT); + Observer.changedInstr(MI); + return Legalized; + case TargetOpcode::G_PHI: { + // FIXME: add support for when SizeOp0 isn't an exact multiple of + // NarrowSize. + if (SizeOp0 % NarrowSize != 0) + return UnableToLegalize; + + unsigned NumParts = SizeOp0 / NarrowSize; + SmallVector<Register, 2> DstRegs(NumParts); + SmallVector<SmallVector<Register, 2>, 2> SrcRegs(MI.getNumOperands() / 2); + Observer.changingInstr(MI); + for (unsigned i = 1; i < MI.getNumOperands(); i += 2) { + MachineBasicBlock &OpMBB = *MI.getOperand(i + 1).getMBB(); + MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); + extractParts(MI.getOperand(i).getReg(), NarrowTy, NumParts, + SrcRegs[i / 2]); + } + MachineBasicBlock &MBB = *MI.getParent(); + MIRBuilder.setInsertPt(MBB, MI); + for (unsigned i = 0; i < NumParts; ++i) { + DstRegs[i] = MRI.createGenericVirtualRegister(NarrowTy); + MachineInstrBuilder MIB = + MIRBuilder.buildInstr(TargetOpcode::G_PHI).addDef(DstRegs[i]); + for (unsigned j = 1; j < MI.getNumOperands(); j += 2) + MIB.addUse(SrcRegs[j / 2][i]).add(MI.getOperand(j + 1)); + } + MIRBuilder.setInsertPt(MBB, MBB.getFirstNonPHI()); + MIRBuilder.buildMerge(MI.getOperand(0), DstRegs); + Observer.changedInstr(MI); + MI.eraseFromParent(); + return Legalized; + } + case TargetOpcode::G_EXTRACT_VECTOR_ELT: + case TargetOpcode::G_INSERT_VECTOR_ELT: { + if (TypeIdx != 2) + return UnableToLegalize; + + int OpIdx = MI.getOpcode() == TargetOpcode::G_EXTRACT_VECTOR_ELT ? 2 : 3; + Observer.changingInstr(MI); + narrowScalarSrc(MI, NarrowTy, OpIdx); + Observer.changedInstr(MI); + return Legalized; + } + case TargetOpcode::G_ICMP: { + uint64_t SrcSize = MRI.getType(MI.getOperand(2).getReg()).getSizeInBits(); + if (NarrowSize * 2 != SrcSize) + return UnableToLegalize; + + Observer.changingInstr(MI); + Register LHSL = MRI.createGenericVirtualRegister(NarrowTy); + Register LHSH = MRI.createGenericVirtualRegister(NarrowTy); + MIRBuilder.buildUnmerge({LHSL, LHSH}, MI.getOperand(2)); + + Register RHSL = MRI.createGenericVirtualRegister(NarrowTy); + Register RHSH = MRI.createGenericVirtualRegister(NarrowTy); + MIRBuilder.buildUnmerge({RHSL, RHSH}, MI.getOperand(3)); + + CmpInst::Predicate Pred = + static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate()); + LLT ResTy = MRI.getType(MI.getOperand(0).getReg()); + + if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) { + MachineInstrBuilder XorL = MIRBuilder.buildXor(NarrowTy, LHSL, RHSL); + MachineInstrBuilder XorH = MIRBuilder.buildXor(NarrowTy, LHSH, RHSH); + MachineInstrBuilder Or = MIRBuilder.buildOr(NarrowTy, XorL, XorH); + MachineInstrBuilder Zero = MIRBuilder.buildConstant(NarrowTy, 0); + MIRBuilder.buildICmp(Pred, MI.getOperand(0), Or, Zero); + } else { + MachineInstrBuilder CmpH = MIRBuilder.buildICmp(Pred, ResTy, LHSH, RHSH); + MachineInstrBuilder CmpHEQ = + MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_EQ, ResTy, LHSH, RHSH); + MachineInstrBuilder CmpLU = MIRBuilder.buildICmp( + ICmpInst::getUnsignedPredicate(Pred), ResTy, LHSL, RHSL); + MIRBuilder.buildSelect(MI.getOperand(0), CmpHEQ, CmpLU, CmpH); + } + Observer.changedInstr(MI); + MI.eraseFromParent(); + return Legalized; + } + case TargetOpcode::G_SEXT_INREG: { + if (TypeIdx != 0) + return UnableToLegalize; + + int64_t SizeInBits = MI.getOperand(2).getImm(); + + // So long as the new type has more bits than the bits we're extending we + // don't need to break it apart. + if (NarrowTy.getScalarSizeInBits() >= SizeInBits) { + Observer.changingInstr(MI); + // We don't lose any non-extension bits by truncating the src and + // sign-extending the dst. + MachineOperand &MO1 = MI.getOperand(1); + auto TruncMIB = MIRBuilder.buildTrunc(NarrowTy, MO1); + MO1.setReg(TruncMIB.getReg(0)); + + MachineOperand &MO2 = MI.getOperand(0); + Register DstExt = MRI.createGenericVirtualRegister(NarrowTy); + MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); + MIRBuilder.buildSExt(MO2, DstExt); + MO2.setReg(DstExt); + Observer.changedInstr(MI); + return Legalized; + } + + // Break it apart. Components below the extension point are unmodified. The + // component containing the extension point becomes a narrower SEXT_INREG. + // Components above it are ashr'd from the component containing the + // extension point. + if (SizeOp0 % NarrowSize != 0) + return UnableToLegalize; + int NumParts = SizeOp0 / NarrowSize; + + // List the registers where the destination will be scattered. + SmallVector<Register, 2> DstRegs; + // List the registers where the source will be split. + SmallVector<Register, 2> SrcRegs; + + // Create all the temporary registers. + for (int i = 0; i < NumParts; ++i) { + Register SrcReg = MRI.createGenericVirtualRegister(NarrowTy); + + SrcRegs.push_back(SrcReg); + } + + // Explode the big arguments into smaller chunks. + MIRBuilder.buildUnmerge(SrcRegs, MI.getOperand(1)); + + Register AshrCstReg = + MIRBuilder.buildConstant(NarrowTy, NarrowTy.getScalarSizeInBits() - 1) + .getReg(0); + Register FullExtensionReg = 0; + Register PartialExtensionReg = 0; + + // Do the operation on each small part. + for (int i = 0; i < NumParts; ++i) { + if ((i + 1) * NarrowTy.getScalarSizeInBits() < SizeInBits) + DstRegs.push_back(SrcRegs[i]); + else if (i * NarrowTy.getScalarSizeInBits() > SizeInBits) { + assert(PartialExtensionReg && + "Expected to visit partial extension before full"); + if (FullExtensionReg) { + DstRegs.push_back(FullExtensionReg); + continue; + } + DstRegs.push_back( + MIRBuilder.buildAShr(NarrowTy, PartialExtensionReg, AshrCstReg) + .getReg(0)); + FullExtensionReg = DstRegs.back(); + } else { + DstRegs.push_back( + MIRBuilder + .buildInstr( + TargetOpcode::G_SEXT_INREG, {NarrowTy}, + {SrcRegs[i], SizeInBits % NarrowTy.getScalarSizeInBits()}) + .getReg(0)); + PartialExtensionReg = DstRegs.back(); + } + } + + // Gather the destination registers into the final destination. + Register DstReg = MI.getOperand(0).getReg(); + MIRBuilder.buildMerge(DstReg, DstRegs); + MI.eraseFromParent(); + return Legalized; + } + case TargetOpcode::G_BSWAP: + case TargetOpcode::G_BITREVERSE: { + if (SizeOp0 % NarrowSize != 0) + return UnableToLegalize; + + Observer.changingInstr(MI); + SmallVector<Register, 2> SrcRegs, DstRegs; + unsigned NumParts = SizeOp0 / NarrowSize; + extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs); + + for (unsigned i = 0; i < NumParts; ++i) { + auto DstPart = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy}, + {SrcRegs[NumParts - 1 - i]}); + DstRegs.push_back(DstPart.getReg(0)); + } + + MIRBuilder.buildMerge(MI.getOperand(0), DstRegs); + + Observer.changedInstr(MI); + MI.eraseFromParent(); + return Legalized; + } + case TargetOpcode::G_PTR_ADD: + case TargetOpcode::G_PTRMASK: { + if (TypeIdx != 1) + return UnableToLegalize; + Observer.changingInstr(MI); + narrowScalarSrc(MI, NarrowTy, 2); + Observer.changedInstr(MI); + return Legalized; + } + case TargetOpcode::G_FPTOUI: { + if (TypeIdx != 0) + return UnableToLegalize; + Observer.changingInstr(MI); + narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT); + Observer.changedInstr(MI); + return Legalized; + } + case TargetOpcode::G_FPTOSI: { + if (TypeIdx != 0) + return UnableToLegalize; + Observer.changingInstr(MI); + narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_SEXT); + Observer.changedInstr(MI); + return Legalized; + } + case TargetOpcode::G_FPEXT: + if (TypeIdx != 0) + return UnableToLegalize; + Observer.changingInstr(MI); + narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_FPEXT); + Observer.changedInstr(MI); + return Legalized; + } +} + +Register LegalizerHelper::coerceToScalar(Register Val) { + LLT Ty = MRI.getType(Val); + if (Ty.isScalar()) + return Val; + + const DataLayout &DL = MIRBuilder.getDataLayout(); + LLT NewTy = LLT::scalar(Ty.getSizeInBits()); + if (Ty.isPointer()) { + if (DL.isNonIntegralAddressSpace(Ty.getAddressSpace())) + return Register(); + return MIRBuilder.buildPtrToInt(NewTy, Val).getReg(0); + } + + Register NewVal = Val; + + assert(Ty.isVector()); + LLT EltTy = Ty.getElementType(); + if (EltTy.isPointer()) + NewVal = MIRBuilder.buildPtrToInt(NewTy, NewVal).getReg(0); + return MIRBuilder.buildBitcast(NewTy, NewVal).getReg(0); +} + +void LegalizerHelper::widenScalarSrc(MachineInstr &MI, LLT WideTy, + unsigned OpIdx, unsigned ExtOpcode) { + MachineOperand &MO = MI.getOperand(OpIdx); + auto ExtB = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MO}); + MO.setReg(ExtB.getReg(0)); +} + +void LegalizerHelper::narrowScalarSrc(MachineInstr &MI, LLT NarrowTy, + unsigned OpIdx) { + MachineOperand &MO = MI.getOperand(OpIdx); + auto ExtB = MIRBuilder.buildTrunc(NarrowTy, MO); + MO.setReg(ExtB.getReg(0)); +} + +void LegalizerHelper::widenScalarDst(MachineInstr &MI, LLT WideTy, + unsigned OpIdx, unsigned TruncOpcode) { + MachineOperand &MO = MI.getOperand(OpIdx); + Register DstExt = MRI.createGenericVirtualRegister(WideTy); + MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); + MIRBuilder.buildInstr(TruncOpcode, {MO}, {DstExt}); + MO.setReg(DstExt); +} + +void LegalizerHelper::narrowScalarDst(MachineInstr &MI, LLT NarrowTy, + unsigned OpIdx, unsigned ExtOpcode) { + MachineOperand &MO = MI.getOperand(OpIdx); + Register DstTrunc = MRI.createGenericVirtualRegister(NarrowTy); + MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); + MIRBuilder.buildInstr(ExtOpcode, {MO}, {DstTrunc}); + MO.setReg(DstTrunc); +} + +void LegalizerHelper::moreElementsVectorDst(MachineInstr &MI, LLT WideTy, + unsigned OpIdx) { + MachineOperand &MO = MI.getOperand(OpIdx); + MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); + MO.setReg(widenWithUnmerge(WideTy, MO.getReg())); +} + +void LegalizerHelper::moreElementsVectorSrc(MachineInstr &MI, LLT MoreTy, + unsigned OpIdx) { + MachineOperand &MO = MI.getOperand(OpIdx); + + LLT OldTy = MRI.getType(MO.getReg()); + unsigned OldElts = OldTy.getNumElements(); + unsigned NewElts = MoreTy.getNumElements(); + + unsigned NumParts = NewElts / OldElts; + + // Use concat_vectors if the result is a multiple of the number of elements. + if (NumParts * OldElts == NewElts) { + SmallVector<Register, 8> Parts; + Parts.push_back(MO.getReg()); + + Register ImpDef = MIRBuilder.buildUndef(OldTy).getReg(0); + for (unsigned I = 1; I != NumParts; ++I) + Parts.push_back(ImpDef); + + auto Concat = MIRBuilder.buildConcatVectors(MoreTy, Parts); + MO.setReg(Concat.getReg(0)); + return; + } + + Register MoreReg = MRI.createGenericVirtualRegister(MoreTy); + Register ImpDef = MIRBuilder.buildUndef(MoreTy).getReg(0); + MIRBuilder.buildInsert(MoreReg, ImpDef, MO.getReg(), 0); + MO.setReg(MoreReg); +} + +void LegalizerHelper::bitcastSrc(MachineInstr &MI, LLT CastTy, unsigned OpIdx) { + MachineOperand &Op = MI.getOperand(OpIdx); + Op.setReg(MIRBuilder.buildBitcast(CastTy, Op).getReg(0)); +} + +void LegalizerHelper::bitcastDst(MachineInstr &MI, LLT CastTy, unsigned OpIdx) { + MachineOperand &MO = MI.getOperand(OpIdx); + Register CastDst = MRI.createGenericVirtualRegister(CastTy); + MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); + MIRBuilder.buildBitcast(MO, CastDst); + MO.setReg(CastDst); +} + +LegalizerHelper::LegalizeResult +LegalizerHelper::widenScalarMergeValues(MachineInstr &MI, unsigned TypeIdx, + LLT WideTy) { + if (TypeIdx != 1) + return UnableToLegalize; + + Register DstReg = MI.getOperand(0).getReg(); + LLT DstTy = MRI.getType(DstReg); + if (DstTy.isVector()) + return UnableToLegalize; + + Register Src1 = MI.getOperand(1).getReg(); + LLT SrcTy = MRI.getType(Src1); + const int DstSize = DstTy.getSizeInBits(); + const int SrcSize = SrcTy.getSizeInBits(); + const int WideSize = WideTy.getSizeInBits(); + const int NumMerge = (DstSize + WideSize - 1) / WideSize; + + unsigned NumOps = MI.getNumOperands(); + unsigned NumSrc = MI.getNumOperands() - 1; + unsigned PartSize = DstTy.getSizeInBits() / NumSrc; + + if (WideSize >= DstSize) { + // Directly pack the bits in the target type. + Register ResultReg = MIRBuilder.buildZExt(WideTy, Src1).getReg(0); + + for (unsigned I = 2; I != NumOps; ++I) { + const unsigned Offset = (I - 1) * PartSize; + + Register SrcReg = MI.getOperand(I).getReg(); + assert(MRI.getType(SrcReg) == LLT::scalar(PartSize)); + + auto ZextInput = MIRBuilder.buildZExt(WideTy, SrcReg); + + Register NextResult = I + 1 == NumOps && WideTy == DstTy ? DstReg : + MRI.createGenericVirtualRegister(WideTy); + + auto ShiftAmt = MIRBuilder.buildConstant(WideTy, Offset); + auto Shl = MIRBuilder.buildShl(WideTy, ZextInput, ShiftAmt); + MIRBuilder.buildOr(NextResult, ResultReg, Shl); + ResultReg = NextResult; + } + + if (WideSize > DstSize) + MIRBuilder.buildTrunc(DstReg, ResultReg); + else if (DstTy.isPointer()) + MIRBuilder.buildIntToPtr(DstReg, ResultReg); + + MI.eraseFromParent(); + return Legalized; + } + + // Unmerge the original values to the GCD type, and recombine to the next + // multiple greater than the original type. + // + // %3:_(s12) = G_MERGE_VALUES %0:_(s4), %1:_(s4), %2:_(s4) -> s6 + // %4:_(s2), %5:_(s2) = G_UNMERGE_VALUES %0 + // %6:_(s2), %7:_(s2) = G_UNMERGE_VALUES %1 + // %8:_(s2), %9:_(s2) = G_UNMERGE_VALUES %2 + // %10:_(s6) = G_MERGE_VALUES %4, %5, %6 + // %11:_(s6) = G_MERGE_VALUES %7, %8, %9 + // %12:_(s12) = G_MERGE_VALUES %10, %11 + // + // Padding with undef if necessary: + // + // %2:_(s8) = G_MERGE_VALUES %0:_(s4), %1:_(s4) -> s6 + // %3:_(s2), %4:_(s2) = G_UNMERGE_VALUES %0 + // %5:_(s2), %6:_(s2) = G_UNMERGE_VALUES %1 + // %7:_(s2) = G_IMPLICIT_DEF + // %8:_(s6) = G_MERGE_VALUES %3, %4, %5 + // %9:_(s6) = G_MERGE_VALUES %6, %7, %7 + // %10:_(s12) = G_MERGE_VALUES %8, %9 + + const int GCD = greatestCommonDivisor(SrcSize, WideSize); + LLT GCDTy = LLT::scalar(GCD); + + SmallVector<Register, 8> Parts; + SmallVector<Register, 8> NewMergeRegs; + SmallVector<Register, 8> Unmerges; + LLT WideDstTy = LLT::scalar(NumMerge * WideSize); + + // Decompose the original operands if they don't evenly divide. + for (int I = 1, E = MI.getNumOperands(); I != E; ++I) { + Register SrcReg = MI.getOperand(I).getReg(); + if (GCD == SrcSize) { + Unmerges.push_back(SrcReg); + } else { + auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg); + for (int J = 0, JE = Unmerge->getNumOperands() - 1; J != JE; ++J) + Unmerges.push_back(Unmerge.getReg(J)); + } + } + + // Pad with undef to the next size that is a multiple of the requested size. + if (static_cast<int>(Unmerges.size()) != NumMerge * WideSize) { + Register UndefReg = MIRBuilder.buildUndef(GCDTy).getReg(0); + for (int I = Unmerges.size(); I != NumMerge * WideSize; ++I) + Unmerges.push_back(UndefReg); + } + + const int PartsPerGCD = WideSize / GCD; + + // Build merges of each piece. + ArrayRef<Register> Slicer(Unmerges); + for (int I = 0; I != NumMerge; ++I, Slicer = Slicer.drop_front(PartsPerGCD)) { + auto Merge = MIRBuilder.buildMerge(WideTy, Slicer.take_front(PartsPerGCD)); + NewMergeRegs.push_back(Merge.getReg(0)); + } + + // A truncate may be necessary if the requested type doesn't evenly divide the + // original result type. + if (DstTy.getSizeInBits() == WideDstTy.getSizeInBits()) { + MIRBuilder.buildMerge(DstReg, NewMergeRegs); + } else { + auto FinalMerge = MIRBuilder.buildMerge(WideDstTy, NewMergeRegs); + MIRBuilder.buildTrunc(DstReg, FinalMerge.getReg(0)); + } + + MI.eraseFromParent(); + return Legalized; +} + +Register LegalizerHelper::widenWithUnmerge(LLT WideTy, Register OrigReg) { + Register WideReg = MRI.createGenericVirtualRegister(WideTy); + LLT OrigTy = MRI.getType(OrigReg); + LLT LCMTy = getLCMType(WideTy, OrigTy); + + const int NumMergeParts = LCMTy.getSizeInBits() / WideTy.getSizeInBits(); + const int NumUnmergeParts = LCMTy.getSizeInBits() / OrigTy.getSizeInBits(); + + Register UnmergeSrc = WideReg; + + // Create a merge to the LCM type, padding with undef + // %0:_(<3 x s32>) = G_FOO => <4 x s32> + // => + // %1:_(<4 x s32>) = G_FOO + // %2:_(<4 x s32>) = G_IMPLICIT_DEF + // %3:_(<12 x s32>) = G_CONCAT_VECTORS %1, %2, %2 + // %0:_(<3 x s32>), %4:_, %5:_, %6:_ = G_UNMERGE_VALUES %3 + if (NumMergeParts > 1) { + Register Undef = MIRBuilder.buildUndef(WideTy).getReg(0); + SmallVector<Register, 8> MergeParts(NumMergeParts, Undef); + MergeParts[0] = WideReg; + UnmergeSrc = MIRBuilder.buildMerge(LCMTy, MergeParts).getReg(0); + } + + // Unmerge to the original register and pad with dead defs. + SmallVector<Register, 8> UnmergeResults(NumUnmergeParts); + UnmergeResults[0] = OrigReg; + for (int I = 1; I != NumUnmergeParts; ++I) + UnmergeResults[I] = MRI.createGenericVirtualRegister(OrigTy); + + MIRBuilder.buildUnmerge(UnmergeResults, UnmergeSrc); + return WideReg; +} + +LegalizerHelper::LegalizeResult +LegalizerHelper::widenScalarUnmergeValues(MachineInstr &MI, unsigned TypeIdx, + LLT WideTy) { + if (TypeIdx != 0) + return UnableToLegalize; + + int NumDst = MI.getNumOperands() - 1; + Register SrcReg = MI.getOperand(NumDst).getReg(); + LLT SrcTy = MRI.getType(SrcReg); + if (SrcTy.isVector()) + return UnableToLegalize; + + Register Dst0Reg = MI.getOperand(0).getReg(); + LLT DstTy = MRI.getType(Dst0Reg); + if (!DstTy.isScalar()) + return UnableToLegalize; + + if (WideTy.getSizeInBits() >= SrcTy.getSizeInBits()) { + if (SrcTy.isPointer()) { + const DataLayout &DL = MIRBuilder.getDataLayout(); + if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace())) { + LLVM_DEBUG( + dbgs() << "Not casting non-integral address space integer\n"); + return UnableToLegalize; + } + + SrcTy = LLT::scalar(SrcTy.getSizeInBits()); + SrcReg = MIRBuilder.buildPtrToInt(SrcTy, SrcReg).getReg(0); + } + + // Widen SrcTy to WideTy. This does not affect the result, but since the + // user requested this size, it is probably better handled than SrcTy and + // should reduce the total number of legalization artifacts + if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) { + SrcTy = WideTy; + SrcReg = MIRBuilder.buildAnyExt(WideTy, SrcReg).getReg(0); + } + + // Theres no unmerge type to target. Directly extract the bits from the + // source type + unsigned DstSize = DstTy.getSizeInBits(); + + MIRBuilder.buildTrunc(Dst0Reg, SrcReg); + for (int I = 1; I != NumDst; ++I) { + auto ShiftAmt = MIRBuilder.buildConstant(SrcTy, DstSize * I); + auto Shr = MIRBuilder.buildLShr(SrcTy, SrcReg, ShiftAmt); + MIRBuilder.buildTrunc(MI.getOperand(I), Shr); + } + + MI.eraseFromParent(); + return Legalized; + } + + // Extend the source to a wider type. + LLT LCMTy = getLCMType(SrcTy, WideTy); + + Register WideSrc = SrcReg; + if (LCMTy.getSizeInBits() != SrcTy.getSizeInBits()) { + // TODO: If this is an integral address space, cast to integer and anyext. + if (SrcTy.isPointer()) { + LLVM_DEBUG(dbgs() << "Widening pointer source types not implemented\n"); + return UnableToLegalize; + } + + WideSrc = MIRBuilder.buildAnyExt(LCMTy, WideSrc).getReg(0); + } + + auto Unmerge = MIRBuilder.buildUnmerge(WideTy, WideSrc); + + // Create a sequence of unmerges and merges to the original results. Since we + // may have widened the source, we will need to pad the results with dead defs + // to cover the source register. + // e.g. widen s48 to s64: + // %1:_(s48), %2:_(s48) = G_UNMERGE_VALUES %0:_(s96) + // + // => + // %4:_(s192) = G_ANYEXT %0:_(s96) + // %5:_(s64), %6, %7 = G_UNMERGE_VALUES %4 ; Requested unmerge + // ; unpack to GCD type, with extra dead defs + // %8:_(s16), %9, %10, %11 = G_UNMERGE_VALUES %5:_(s64) + // %12:_(s16), %13, dead %14, dead %15 = G_UNMERGE_VALUES %6:_(s64) + // dead %16:_(s16), dead %17, dead %18, dead %18 = G_UNMERGE_VALUES %7:_(s64) + // %1:_(s48) = G_MERGE_VALUES %8:_(s16), %9, %10 ; Remerge to destination + // %2:_(s48) = G_MERGE_VALUES %11:_(s16), %12, %13 ; Remerge to destination + const LLT GCDTy = getGCDType(WideTy, DstTy); + const int NumUnmerge = Unmerge->getNumOperands() - 1; + const int PartsPerRemerge = DstTy.getSizeInBits() / GCDTy.getSizeInBits(); + + // Directly unmerge to the destination without going through a GCD type + // if possible + if (PartsPerRemerge == 1) { + const int PartsPerUnmerge = WideTy.getSizeInBits() / DstTy.getSizeInBits(); + + for (int I = 0; I != NumUnmerge; ++I) { + auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES); + + for (int J = 0; J != PartsPerUnmerge; ++J) { + int Idx = I * PartsPerUnmerge + J; + if (Idx < NumDst) + MIB.addDef(MI.getOperand(Idx).getReg()); + else { + // Create dead def for excess components. + MIB.addDef(MRI.createGenericVirtualRegister(DstTy)); + } + } + + MIB.addUse(Unmerge.getReg(I)); + } + } else { + SmallVector<Register, 16> Parts; + for (int J = 0; J != NumUnmerge; ++J) + extractGCDType(Parts, GCDTy, Unmerge.getReg(J)); + + SmallVector<Register, 8> RemergeParts; + for (int I = 0; I != NumDst; ++I) { + for (int J = 0; J < PartsPerRemerge; ++J) { + const int Idx = I * PartsPerRemerge + J; + RemergeParts.emplace_back(Parts[Idx]); + } + + MIRBuilder.buildMerge(MI.getOperand(I).getReg(), RemergeParts); + RemergeParts.clear(); + } + } + + MI.eraseFromParent(); + return Legalized; +} + +LegalizerHelper::LegalizeResult +LegalizerHelper::widenScalarExtract(MachineInstr &MI, unsigned TypeIdx, + LLT WideTy) { + Register DstReg = MI.getOperand(0).getReg(); + Register SrcReg = MI.getOperand(1).getReg(); + LLT SrcTy = MRI.getType(SrcReg); + + LLT DstTy = MRI.getType(DstReg); + unsigned Offset = MI.getOperand(2).getImm(); + + if (TypeIdx == 0) { + if (SrcTy.isVector() || DstTy.isVector()) + return UnableToLegalize; + + SrcOp Src(SrcReg); + if (SrcTy.isPointer()) { + // Extracts from pointers can be handled only if they are really just + // simple integers. + const DataLayout &DL = MIRBuilder.getDataLayout(); + if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace())) + return UnableToLegalize; + + LLT SrcAsIntTy = LLT::scalar(SrcTy.getSizeInBits()); + Src = MIRBuilder.buildPtrToInt(SrcAsIntTy, Src); + SrcTy = SrcAsIntTy; + } + + if (DstTy.isPointer()) + return UnableToLegalize; + + if (Offset == 0) { + // Avoid a shift in the degenerate case. + MIRBuilder.buildTrunc(DstReg, + MIRBuilder.buildAnyExtOrTrunc(WideTy, Src)); + MI.eraseFromParent(); + return Legalized; + } + + // Do a shift in the source type. + LLT ShiftTy = SrcTy; + if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) { + Src = MIRBuilder.buildAnyExt(WideTy, Src); + ShiftTy = WideTy; + } + + auto LShr = MIRBuilder.buildLShr( + ShiftTy, Src, MIRBuilder.buildConstant(ShiftTy, Offset)); + MIRBuilder.buildTrunc(DstReg, LShr); + MI.eraseFromParent(); + return Legalized; + } + + if (SrcTy.isScalar()) { + Observer.changingInstr(MI); + widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); + Observer.changedInstr(MI); + return Legalized; + } + + if (!SrcTy.isVector()) + return UnableToLegalize; + + if (DstTy != SrcTy.getElementType()) + return UnableToLegalize; + + if (Offset % SrcTy.getScalarSizeInBits() != 0) + return UnableToLegalize; + + Observer.changingInstr(MI); + widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); + + MI.getOperand(2).setImm((WideTy.getSizeInBits() / SrcTy.getSizeInBits()) * + Offset); + widenScalarDst(MI, WideTy.getScalarType(), 0); + Observer.changedInstr(MI); + return Legalized; +} + +LegalizerHelper::LegalizeResult +LegalizerHelper::widenScalarInsert(MachineInstr &MI, unsigned TypeIdx, + LLT WideTy) { + if (TypeIdx != 0 || WideTy.isVector()) + return UnableToLegalize; + Observer.changingInstr(MI); + widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); + widenScalarDst(MI, WideTy); + Observer.changedInstr(MI); + return Legalized; +} + +LegalizerHelper::LegalizeResult +LegalizerHelper::widenScalarAddoSubo(MachineInstr &MI, unsigned TypeIdx, + LLT WideTy) { + if (TypeIdx == 1) + return UnableToLegalize; // TODO + unsigned Op = MI.getOpcode(); + unsigned Opcode = Op == TargetOpcode::G_UADDO || Op == TargetOpcode::G_SADDO + ? TargetOpcode::G_ADD + : TargetOpcode::G_SUB; + unsigned ExtOpcode = + Op == TargetOpcode::G_UADDO || Op == TargetOpcode::G_USUBO + ? TargetOpcode::G_ZEXT + : TargetOpcode::G_SEXT; + auto LHSExt = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MI.getOperand(2)}); + auto RHSExt = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MI.getOperand(3)}); + // Do the arithmetic in the larger type. + auto NewOp = MIRBuilder.buildInstr(Opcode, {WideTy}, {LHSExt, RHSExt}); + LLT OrigTy = MRI.getType(MI.getOperand(0).getReg()); + auto TruncOp = MIRBuilder.buildTrunc(OrigTy, NewOp); + auto ExtOp = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {TruncOp}); + // There is no overflow if the ExtOp is the same as NewOp. + MIRBuilder.buildICmp(CmpInst::ICMP_NE, MI.getOperand(1), NewOp, ExtOp); + // Now trunc the NewOp to the original result. + MIRBuilder.buildTrunc(MI.getOperand(0), NewOp); + MI.eraseFromParent(); + return Legalized; +} + +LegalizerHelper::LegalizeResult +LegalizerHelper::widenScalarAddSubShlSat(MachineInstr &MI, unsigned TypeIdx, + LLT WideTy) { + bool IsSigned = MI.getOpcode() == TargetOpcode::G_SADDSAT || + MI.getOpcode() == TargetOpcode::G_SSUBSAT || + MI.getOpcode() == TargetOpcode::G_SSHLSAT; + bool IsShift = MI.getOpcode() == TargetOpcode::G_SSHLSAT || + MI.getOpcode() == TargetOpcode::G_USHLSAT; + // We can convert this to: + // 1. Any extend iN to iM + // 2. SHL by M-N + // 3. [US][ADD|SUB|SHL]SAT + // 4. L/ASHR by M-N + // + // It may be more efficient to lower this to a min and a max operation in + // the higher precision arithmetic if the promoted operation isn't legal, + // but this decision is up to the target's lowering request. + Register DstReg = MI.getOperand(0).getReg(); + + unsigned NewBits = WideTy.getScalarSizeInBits(); + unsigned SHLAmount = NewBits - MRI.getType(DstReg).getScalarSizeInBits(); + + // Shifts must zero-extend the RHS to preserve the unsigned quantity, and + // must not left shift the RHS to preserve the shift amount. + auto LHS = MIRBuilder.buildAnyExt(WideTy, MI.getOperand(1)); + auto RHS = IsShift ? MIRBuilder.buildZExt(WideTy, MI.getOperand(2)) + : MIRBuilder.buildAnyExt(WideTy, MI.getOperand(2)); + auto ShiftK = MIRBuilder.buildConstant(WideTy, SHLAmount); + auto ShiftL = MIRBuilder.buildShl(WideTy, LHS, ShiftK); + auto ShiftR = IsShift ? RHS : MIRBuilder.buildShl(WideTy, RHS, ShiftK); + + auto WideInst = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy}, + {ShiftL, ShiftR}, MI.getFlags()); + + // Use a shift that will preserve the number of sign bits when the trunc is + // folded away. + auto Result = IsSigned ? MIRBuilder.buildAShr(WideTy, WideInst, ShiftK) + : MIRBuilder.buildLShr(WideTy, WideInst, ShiftK); + + MIRBuilder.buildTrunc(DstReg, Result); + MI.eraseFromParent(); + return Legalized; +} + +LegalizerHelper::LegalizeResult +LegalizerHelper::widenScalar(MachineInstr &MI, unsigned TypeIdx, LLT WideTy) { + switch (MI.getOpcode()) { + default: + return UnableToLegalize; + case TargetOpcode::G_EXTRACT: + return widenScalarExtract(MI, TypeIdx, WideTy); + case TargetOpcode::G_INSERT: + return widenScalarInsert(MI, TypeIdx, WideTy); + case TargetOpcode::G_MERGE_VALUES: + return widenScalarMergeValues(MI, TypeIdx, WideTy); + case TargetOpcode::G_UNMERGE_VALUES: + return widenScalarUnmergeValues(MI, TypeIdx, WideTy); + case TargetOpcode::G_SADDO: + case TargetOpcode::G_SSUBO: + case TargetOpcode::G_UADDO: + case TargetOpcode::G_USUBO: + return widenScalarAddoSubo(MI, TypeIdx, WideTy); + case TargetOpcode::G_SADDSAT: + case TargetOpcode::G_SSUBSAT: + case TargetOpcode::G_SSHLSAT: + case TargetOpcode::G_UADDSAT: + case TargetOpcode::G_USUBSAT: + case TargetOpcode::G_USHLSAT: + return widenScalarAddSubShlSat(MI, TypeIdx, WideTy); + case TargetOpcode::G_CTTZ: + case TargetOpcode::G_CTTZ_ZERO_UNDEF: + case TargetOpcode::G_CTLZ: + case TargetOpcode::G_CTLZ_ZERO_UNDEF: + case TargetOpcode::G_CTPOP: { + if (TypeIdx == 0) { + Observer.changingInstr(MI); + widenScalarDst(MI, WideTy, 0); + Observer.changedInstr(MI); + return Legalized; + } + + Register SrcReg = MI.getOperand(1).getReg(); + + // First ZEXT the input. + auto MIBSrc = MIRBuilder.buildZExt(WideTy, SrcReg); + LLT CurTy = MRI.getType(SrcReg); + if (MI.getOpcode() == TargetOpcode::G_CTTZ) { + // The count is the same in the larger type except if the original + // value was zero. This can be handled by setting the bit just off + // the top of the original type. + auto TopBit = + APInt::getOneBitSet(WideTy.getSizeInBits(), CurTy.getSizeInBits()); + MIBSrc = MIRBuilder.buildOr( + WideTy, MIBSrc, MIRBuilder.buildConstant(WideTy, TopBit)); + } + + // Perform the operation at the larger size. + auto MIBNewOp = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy}, {MIBSrc}); + // This is already the correct result for CTPOP and CTTZs + if (MI.getOpcode() == TargetOpcode::G_CTLZ || + MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF) { + // The correct result is NewOp - (Difference in widety and current ty). + unsigned SizeDiff = WideTy.getSizeInBits() - CurTy.getSizeInBits(); + MIBNewOp = MIRBuilder.buildSub( + WideTy, MIBNewOp, MIRBuilder.buildConstant(WideTy, SizeDiff)); + } + + MIRBuilder.buildZExtOrTrunc(MI.getOperand(0), MIBNewOp); + MI.eraseFromParent(); + return Legalized; + } + case TargetOpcode::G_BSWAP: { + Observer.changingInstr(MI); + Register DstReg = MI.getOperand(0).getReg(); + + Register ShrReg = MRI.createGenericVirtualRegister(WideTy); + Register DstExt = MRI.createGenericVirtualRegister(WideTy); + Register ShiftAmtReg = MRI.createGenericVirtualRegister(WideTy); + widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); + + MI.getOperand(0).setReg(DstExt); + + MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); + + LLT Ty = MRI.getType(DstReg); + unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits(); + MIRBuilder.buildConstant(ShiftAmtReg, DiffBits); + MIRBuilder.buildLShr(ShrReg, DstExt, ShiftAmtReg); + + MIRBuilder.buildTrunc(DstReg, ShrReg); + Observer.changedInstr(MI); + return Legalized; + } + case TargetOpcode::G_BITREVERSE: { + Observer.changingInstr(MI); + + Register DstReg = MI.getOperand(0).getReg(); + LLT Ty = MRI.getType(DstReg); + unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits(); + + Register DstExt = MRI.createGenericVirtualRegister(WideTy); + widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); + MI.getOperand(0).setReg(DstExt); + MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); + + auto ShiftAmt = MIRBuilder.buildConstant(WideTy, DiffBits); + auto Shift = MIRBuilder.buildLShr(WideTy, DstExt, ShiftAmt); + MIRBuilder.buildTrunc(DstReg, Shift); + Observer.changedInstr(MI); + return Legalized; + } + case TargetOpcode::G_FREEZE: + Observer.changingInstr(MI); + widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); + widenScalarDst(MI, WideTy); + Observer.changedInstr(MI); + return Legalized; + + case TargetOpcode::G_ADD: + case TargetOpcode::G_AND: + case TargetOpcode::G_MUL: + case TargetOpcode::G_OR: + case TargetOpcode::G_XOR: + case TargetOpcode::G_SUB: + // Perform operation at larger width (any extension is fines here, high bits + // don't affect the result) and then truncate the result back to the + // original type. + Observer.changingInstr(MI); + widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); + widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); + widenScalarDst(MI, WideTy); + Observer.changedInstr(MI); + return Legalized; + + case TargetOpcode::G_SHL: + Observer.changingInstr(MI); + + if (TypeIdx == 0) { + widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); + widenScalarDst(MI, WideTy); + } else { + assert(TypeIdx == 1); + // The "number of bits to shift" operand must preserve its value as an + // unsigned integer: + widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); + } + + Observer.changedInstr(MI); + return Legalized; + + case TargetOpcode::G_SDIV: + case TargetOpcode::G_SREM: + case TargetOpcode::G_SMIN: + case TargetOpcode::G_SMAX: + Observer.changingInstr(MI); + widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT); + widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); + widenScalarDst(MI, WideTy); + Observer.changedInstr(MI); + return Legalized; + + case TargetOpcode::G_ASHR: + case TargetOpcode::G_LSHR: + Observer.changingInstr(MI); + + if (TypeIdx == 0) { + unsigned CvtOp = MI.getOpcode() == TargetOpcode::G_ASHR ? + TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT; + + widenScalarSrc(MI, WideTy, 1, CvtOp); + widenScalarDst(MI, WideTy); + } else { + assert(TypeIdx == 1); + // The "number of bits to shift" operand must preserve its value as an + // unsigned integer: + widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); + } + + Observer.changedInstr(MI); + return Legalized; + case TargetOpcode::G_UDIV: + case TargetOpcode::G_UREM: + case TargetOpcode::G_UMIN: + case TargetOpcode::G_UMAX: + Observer.changingInstr(MI); + widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); + widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); + widenScalarDst(MI, WideTy); + Observer.changedInstr(MI); + return Legalized; + + case TargetOpcode::G_SELECT: + Observer.changingInstr(MI); + if (TypeIdx == 0) { + // Perform operation at larger width (any extension is fine here, high + // bits don't affect the result) and then truncate the result back to the + // original type. + widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); + widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ANYEXT); + widenScalarDst(MI, WideTy); + } else { + bool IsVec = MRI.getType(MI.getOperand(1).getReg()).isVector(); + // Explicit extension is required here since high bits affect the result. + widenScalarSrc(MI, WideTy, 1, MIRBuilder.getBoolExtOp(IsVec, false)); + } + Observer.changedInstr(MI); + return Legalized; + + case TargetOpcode::G_FPTOSI: + case TargetOpcode::G_FPTOUI: + Observer.changingInstr(MI); + + if (TypeIdx == 0) + widenScalarDst(MI, WideTy); + else + widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_FPEXT); + + Observer.changedInstr(MI); + return Legalized; + case TargetOpcode::G_SITOFP: + Observer.changingInstr(MI); + + if (TypeIdx == 0) + widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); + else + widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT); + + Observer.changedInstr(MI); + return Legalized; + case TargetOpcode::G_UITOFP: + Observer.changingInstr(MI); + + if (TypeIdx == 0) + widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); + else + widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); + + Observer.changedInstr(MI); + return Legalized; + case TargetOpcode::G_LOAD: + case TargetOpcode::G_SEXTLOAD: + case TargetOpcode::G_ZEXTLOAD: + Observer.changingInstr(MI); + widenScalarDst(MI, WideTy); + Observer.changedInstr(MI); + return Legalized; + + case TargetOpcode::G_STORE: { + if (TypeIdx != 0) + return UnableToLegalize; + + LLT Ty = MRI.getType(MI.getOperand(0).getReg()); + if (!Ty.isScalar()) + return UnableToLegalize; + + Observer.changingInstr(MI); + + unsigned ExtType = Ty.getScalarSizeInBits() == 1 ? + TargetOpcode::G_ZEXT : TargetOpcode::G_ANYEXT; + widenScalarSrc(MI, WideTy, 0, ExtType); + + Observer.changedInstr(MI); + return Legalized; + } + case TargetOpcode::G_CONSTANT: { + MachineOperand &SrcMO = MI.getOperand(1); + LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext(); + unsigned ExtOpc = LI.getExtOpcodeForWideningConstant( + MRI.getType(MI.getOperand(0).getReg())); + assert((ExtOpc == TargetOpcode::G_ZEXT || ExtOpc == TargetOpcode::G_SEXT || + ExtOpc == TargetOpcode::G_ANYEXT) && + "Illegal Extend"); + const APInt &SrcVal = SrcMO.getCImm()->getValue(); + const APInt &Val = (ExtOpc == TargetOpcode::G_SEXT) + ? SrcVal.sext(WideTy.getSizeInBits()) + : SrcVal.zext(WideTy.getSizeInBits()); + Observer.changingInstr(MI); + SrcMO.setCImm(ConstantInt::get(Ctx, Val)); + + widenScalarDst(MI, WideTy); + Observer.changedInstr(MI); + return Legalized; + } + case TargetOpcode::G_FCONSTANT: { + MachineOperand &SrcMO = MI.getOperand(1); + LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext(); + APFloat Val = SrcMO.getFPImm()->getValueAPF(); + bool LosesInfo; + switch (WideTy.getSizeInBits()) { + case 32: + Val.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, + &LosesInfo); + break; + case 64: + Val.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, + &LosesInfo); + break; + default: + return UnableToLegalize; + } + + assert(!LosesInfo && "extend should always be lossless"); + + Observer.changingInstr(MI); + SrcMO.setFPImm(ConstantFP::get(Ctx, Val)); + + widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); + Observer.changedInstr(MI); + return Legalized; + } + case TargetOpcode::G_IMPLICIT_DEF: { + Observer.changingInstr(MI); + widenScalarDst(MI, WideTy); + Observer.changedInstr(MI); + return Legalized; + } + case TargetOpcode::G_BRCOND: + Observer.changingInstr(MI); + widenScalarSrc(MI, WideTy, 0, MIRBuilder.getBoolExtOp(false, false)); + Observer.changedInstr(MI); + return Legalized; + + case TargetOpcode::G_FCMP: + Observer.changingInstr(MI); + if (TypeIdx == 0) + widenScalarDst(MI, WideTy); + else { + widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_FPEXT); + widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_FPEXT); + } + Observer.changedInstr(MI); + return Legalized; + + case TargetOpcode::G_ICMP: + Observer.changingInstr(MI); + if (TypeIdx == 0) + widenScalarDst(MI, WideTy); + else { + unsigned ExtOpcode = CmpInst::isSigned(static_cast<CmpInst::Predicate>( + MI.getOperand(1).getPredicate())) + ? TargetOpcode::G_SEXT + : TargetOpcode::G_ZEXT; + widenScalarSrc(MI, WideTy, 2, ExtOpcode); + widenScalarSrc(MI, WideTy, 3, ExtOpcode); + } + Observer.changedInstr(MI); + return Legalized; + + case TargetOpcode::G_PTR_ADD: + assert(TypeIdx == 1 && "unable to legalize pointer of G_PTR_ADD"); + Observer.changingInstr(MI); + widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); + Observer.changedInstr(MI); + return Legalized; + + case TargetOpcode::G_PHI: { + assert(TypeIdx == 0 && "Expecting only Idx 0"); + + Observer.changingInstr(MI); + for (unsigned I = 1; I < MI.getNumOperands(); I += 2) { + MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB(); + MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); + widenScalarSrc(MI, WideTy, I, TargetOpcode::G_ANYEXT); + } + + MachineBasicBlock &MBB = *MI.getParent(); + MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI()); + widenScalarDst(MI, WideTy); + Observer.changedInstr(MI); + return Legalized; + } + case TargetOpcode::G_EXTRACT_VECTOR_ELT: { + if (TypeIdx == 0) { + Register VecReg = MI.getOperand(1).getReg(); + LLT VecTy = MRI.getType(VecReg); + Observer.changingInstr(MI); + + widenScalarSrc(MI, LLT::vector(VecTy.getNumElements(), + WideTy.getSizeInBits()), + 1, TargetOpcode::G_SEXT); + + widenScalarDst(MI, WideTy, 0); + Observer.changedInstr(MI); + return Legalized; + } + + if (TypeIdx != 2) + return UnableToLegalize; + Observer.changingInstr(MI); + // TODO: Probably should be zext + widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); + Observer.changedInstr(MI); + return Legalized; + } + case TargetOpcode::G_INSERT_VECTOR_ELT: { + if (TypeIdx == 1) { + Observer.changingInstr(MI); + + Register VecReg = MI.getOperand(1).getReg(); + LLT VecTy = MRI.getType(VecReg); + LLT WideVecTy = LLT::vector(VecTy.getNumElements(), WideTy); + + widenScalarSrc(MI, WideVecTy, 1, TargetOpcode::G_ANYEXT); + widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); + widenScalarDst(MI, WideVecTy, 0); + Observer.changedInstr(MI); + return Legalized; + } + + if (TypeIdx == 2) { + Observer.changingInstr(MI); + // TODO: Probably should be zext + widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_SEXT); + Observer.changedInstr(MI); + return Legalized; + } + + return UnableToLegalize; + } + case TargetOpcode::G_FADD: + case TargetOpcode::G_FMUL: + case TargetOpcode::G_FSUB: + case TargetOpcode::G_FMA: + case TargetOpcode::G_FMAD: + case TargetOpcode::G_FNEG: + case TargetOpcode::G_FABS: + case TargetOpcode::G_FCANONICALIZE: + case TargetOpcode::G_FMINNUM: + case TargetOpcode::G_FMAXNUM: + case TargetOpcode::G_FMINNUM_IEEE: + case TargetOpcode::G_FMAXNUM_IEEE: + case TargetOpcode::G_FMINIMUM: + case TargetOpcode::G_FMAXIMUM: + case TargetOpcode::G_FDIV: + case TargetOpcode::G_FREM: + case TargetOpcode::G_FCEIL: + case TargetOpcode::G_FFLOOR: + case TargetOpcode::G_FCOS: + case TargetOpcode::G_FSIN: + case TargetOpcode::G_FLOG10: + case TargetOpcode::G_FLOG: + case TargetOpcode::G_FLOG2: + case TargetOpcode::G_FRINT: + case TargetOpcode::G_FNEARBYINT: + case TargetOpcode::G_FSQRT: + case TargetOpcode::G_FEXP: + case TargetOpcode::G_FEXP2: + case TargetOpcode::G_FPOW: + case TargetOpcode::G_INTRINSIC_TRUNC: + case TargetOpcode::G_INTRINSIC_ROUND: + case TargetOpcode::G_INTRINSIC_ROUNDEVEN: + assert(TypeIdx == 0); + Observer.changingInstr(MI); + + for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) + widenScalarSrc(MI, WideTy, I, TargetOpcode::G_FPEXT); + + widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); + Observer.changedInstr(MI); + return Legalized; + case TargetOpcode::G_FPOWI: { + if (TypeIdx != 0) + return UnableToLegalize; + Observer.changingInstr(MI); + widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_FPEXT); + widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); + Observer.changedInstr(MI); + return Legalized; + } + case TargetOpcode::G_INTTOPTR: + if (TypeIdx != 1) + return UnableToLegalize; + + Observer.changingInstr(MI); + widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); + Observer.changedInstr(MI); + return Legalized; + case TargetOpcode::G_PTRTOINT: + if (TypeIdx != 0) + return UnableToLegalize; + + Observer.changingInstr(MI); + widenScalarDst(MI, WideTy, 0); + Observer.changedInstr(MI); + return Legalized; + case TargetOpcode::G_BUILD_VECTOR: { + Observer.changingInstr(MI); + + const LLT WideEltTy = TypeIdx == 1 ? WideTy : WideTy.getElementType(); + for (int I = 1, E = MI.getNumOperands(); I != E; ++I) + widenScalarSrc(MI, WideEltTy, I, TargetOpcode::G_ANYEXT); + + // Avoid changing the result vector type if the source element type was + // requested. + if (TypeIdx == 1) { + MI.setDesc(MIRBuilder.getTII().get(TargetOpcode::G_BUILD_VECTOR_TRUNC)); + } else { + widenScalarDst(MI, WideTy, 0); + } + + Observer.changedInstr(MI); + return Legalized; + } + case TargetOpcode::G_SEXT_INREG: + if (TypeIdx != 0) + return UnableToLegalize; + + Observer.changingInstr(MI); + widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); + widenScalarDst(MI, WideTy, 0, TargetOpcode::G_TRUNC); + Observer.changedInstr(MI); + return Legalized; + case TargetOpcode::G_PTRMASK: { + if (TypeIdx != 1) + return UnableToLegalize; + Observer.changingInstr(MI); + widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); + Observer.changedInstr(MI); + return Legalized; + } + } +} + +static void getUnmergePieces(SmallVectorImpl<Register> &Pieces, + MachineIRBuilder &B, Register Src, LLT Ty) { + auto Unmerge = B.buildUnmerge(Ty, Src); + for (int I = 0, E = Unmerge->getNumOperands() - 1; I != E; ++I) + Pieces.push_back(Unmerge.getReg(I)); +} + +LegalizerHelper::LegalizeResult +LegalizerHelper::lowerBitcast(MachineInstr &MI) { + Register Dst = MI.getOperand(0).getReg(); + Register Src = MI.getOperand(1).getReg(); + LLT DstTy = MRI.getType(Dst); + LLT SrcTy = MRI.getType(Src); + + if (SrcTy.isVector()) { + LLT SrcEltTy = SrcTy.getElementType(); + SmallVector<Register, 8> SrcRegs; + + if (DstTy.isVector()) { + int NumDstElt = DstTy.getNumElements(); + int NumSrcElt = SrcTy.getNumElements(); + + LLT DstEltTy = DstTy.getElementType(); + LLT DstCastTy = DstEltTy; // Intermediate bitcast result type + LLT SrcPartTy = SrcEltTy; // Original unmerge result type. + + // If there's an element size mismatch, insert intermediate casts to match + // the result element type. + if (NumSrcElt < NumDstElt) { // Source element type is larger. + // %1:_(<4 x s8>) = G_BITCAST %0:_(<2 x s16>) + // + // => + // + // %2:_(s16), %3:_(s16) = G_UNMERGE_VALUES %0 + // %3:_(<2 x s8>) = G_BITCAST %2 + // %4:_(<2 x s8>) = G_BITCAST %3 + // %1:_(<4 x s16>) = G_CONCAT_VECTORS %3, %4 + DstCastTy = LLT::vector(NumDstElt / NumSrcElt, DstEltTy); + SrcPartTy = SrcEltTy; + } else if (NumSrcElt > NumDstElt) { // Source element type is smaller. + // + // %1:_(<2 x s16>) = G_BITCAST %0:_(<4 x s8>) + // + // => + // + // %2:_(<2 x s8>), %3:_(<2 x s8>) = G_UNMERGE_VALUES %0 + // %3:_(s16) = G_BITCAST %2 + // %4:_(s16) = G_BITCAST %3 + // %1:_(<2 x s16>) = G_BUILD_VECTOR %3, %4 + SrcPartTy = LLT::vector(NumSrcElt / NumDstElt, SrcEltTy); + DstCastTy = DstEltTy; + } + + getUnmergePieces(SrcRegs, MIRBuilder, Src, SrcPartTy); + for (Register &SrcReg : SrcRegs) + SrcReg = MIRBuilder.buildBitcast(DstCastTy, SrcReg).getReg(0); + } else + getUnmergePieces(SrcRegs, MIRBuilder, Src, SrcEltTy); + + MIRBuilder.buildMerge(Dst, SrcRegs); + MI.eraseFromParent(); + return Legalized; + } + + if (DstTy.isVector()) { + SmallVector<Register, 8> SrcRegs; + getUnmergePieces(SrcRegs, MIRBuilder, Src, DstTy.getElementType()); + MIRBuilder.buildMerge(Dst, SrcRegs); + MI.eraseFromParent(); + return Legalized; + } + + return UnableToLegalize; +} + +/// Figure out the bit offset into a register when coercing a vector index for +/// the wide element type. This is only for the case when promoting vector to +/// one with larger elements. +// +/// +/// %offset_idx = G_AND %idx, ~(-1 << Log2(DstEltSize / SrcEltSize)) +/// %offset_bits = G_SHL %offset_idx, Log2(SrcEltSize) +static Register getBitcastWiderVectorElementOffset(MachineIRBuilder &B, + Register Idx, + unsigned NewEltSize, + unsigned OldEltSize) { + const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize); + LLT IdxTy = B.getMRI()->getType(Idx); + + // Now figure out the amount we need to shift to get the target bits. + auto OffsetMask = B.buildConstant( + IdxTy, ~(APInt::getAllOnesValue(IdxTy.getSizeInBits()) << Log2EltRatio)); + auto OffsetIdx = B.buildAnd(IdxTy, Idx, OffsetMask); + return B.buildShl(IdxTy, OffsetIdx, + B.buildConstant(IdxTy, Log2_32(OldEltSize))).getReg(0); +} + +/// Perform a G_EXTRACT_VECTOR_ELT in a different sized vector element. If this +/// is casting to a vector with a smaller element size, perform multiple element +/// extracts and merge the results. If this is coercing to a vector with larger +/// elements, index the bitcasted vector and extract the target element with bit +/// operations. This is intended to force the indexing in the native register +/// size for architectures that can dynamically index the register file. +LegalizerHelper::LegalizeResult +LegalizerHelper::bitcastExtractVectorElt(MachineInstr &MI, unsigned TypeIdx, + LLT CastTy) { + if (TypeIdx != 1) + return UnableToLegalize; + + Register Dst = MI.getOperand(0).getReg(); + Register SrcVec = MI.getOperand(1).getReg(); + Register Idx = MI.getOperand(2).getReg(); + LLT SrcVecTy = MRI.getType(SrcVec); + LLT IdxTy = MRI.getType(Idx); + + LLT SrcEltTy = SrcVecTy.getElementType(); + unsigned NewNumElts = CastTy.isVector() ? CastTy.getNumElements() : 1; + unsigned OldNumElts = SrcVecTy.getNumElements(); + + LLT NewEltTy = CastTy.isVector() ? CastTy.getElementType() : CastTy; + Register CastVec = MIRBuilder.buildBitcast(CastTy, SrcVec).getReg(0); + + const unsigned NewEltSize = NewEltTy.getSizeInBits(); + const unsigned OldEltSize = SrcEltTy.getSizeInBits(); + if (NewNumElts > OldNumElts) { + // Decreasing the vector element size + // + // e.g. i64 = extract_vector_elt x:v2i64, y:i32 + // => + // v4i32:castx = bitcast x:v2i64 + // + // i64 = bitcast + // (v2i32 build_vector (i32 (extract_vector_elt castx, (2 * y))), + // (i32 (extract_vector_elt castx, (2 * y + 1))) + // + if (NewNumElts % OldNumElts != 0) + return UnableToLegalize; + + // Type of the intermediate result vector. + const unsigned NewEltsPerOldElt = NewNumElts / OldNumElts; + LLT MidTy = LLT::scalarOrVector(NewEltsPerOldElt, NewEltTy); + + auto NewEltsPerOldEltK = MIRBuilder.buildConstant(IdxTy, NewEltsPerOldElt); + + SmallVector<Register, 8> NewOps(NewEltsPerOldElt); + auto NewBaseIdx = MIRBuilder.buildMul(IdxTy, Idx, NewEltsPerOldEltK); + + for (unsigned I = 0; I < NewEltsPerOldElt; ++I) { + auto IdxOffset = MIRBuilder.buildConstant(IdxTy, I); + auto TmpIdx = MIRBuilder.buildAdd(IdxTy, NewBaseIdx, IdxOffset); + auto Elt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec, TmpIdx); + NewOps[I] = Elt.getReg(0); + } + + auto NewVec = MIRBuilder.buildBuildVector(MidTy, NewOps); + MIRBuilder.buildBitcast(Dst, NewVec); + MI.eraseFromParent(); + return Legalized; + } + + if (NewNumElts < OldNumElts) { + if (NewEltSize % OldEltSize != 0) + return UnableToLegalize; + + // This only depends on powers of 2 because we use bit tricks to figure out + // the bit offset we need to shift to get the target element. A general + // expansion could emit division/multiply. + if (!isPowerOf2_32(NewEltSize / OldEltSize)) + return UnableToLegalize; + + // Increasing the vector element size. + // %elt:_(small_elt) = G_EXTRACT_VECTOR_ELT %vec:_(<N x small_elt>), %idx + // + // => + // + // %cast = G_BITCAST %vec + // %scaled_idx = G_LSHR %idx, Log2(DstEltSize / SrcEltSize) + // %wide_elt = G_EXTRACT_VECTOR_ELT %cast, %scaled_idx + // %offset_idx = G_AND %idx, ~(-1 << Log2(DstEltSize / SrcEltSize)) + // %offset_bits = G_SHL %offset_idx, Log2(SrcEltSize) + // %elt_bits = G_LSHR %wide_elt, %offset_bits + // %elt = G_TRUNC %elt_bits + + const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize); + auto Log2Ratio = MIRBuilder.buildConstant(IdxTy, Log2EltRatio); + + // Divide to get the index in the wider element type. + auto ScaledIdx = MIRBuilder.buildLShr(IdxTy, Idx, Log2Ratio); + + Register WideElt = CastVec; + if (CastTy.isVector()) { + WideElt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec, + ScaledIdx).getReg(0); + } + + // Compute the bit offset into the register of the target element. + Register OffsetBits = getBitcastWiderVectorElementOffset( + MIRBuilder, Idx, NewEltSize, OldEltSize); + + // Shift the wide element to get the target element. + auto ExtractedBits = MIRBuilder.buildLShr(NewEltTy, WideElt, OffsetBits); + MIRBuilder.buildTrunc(Dst, ExtractedBits); + MI.eraseFromParent(); + return Legalized; + } + + return UnableToLegalize; +} + +/// Emit code to insert \p InsertReg into \p TargetRet at \p OffsetBits in \p +/// TargetReg, while preserving other bits in \p TargetReg. +/// +/// (InsertReg << Offset) | (TargetReg & ~(-1 >> InsertReg.size()) << Offset) +static Register buildBitFieldInsert(MachineIRBuilder &B, + Register TargetReg, Register InsertReg, + Register OffsetBits) { + LLT TargetTy = B.getMRI()->getType(TargetReg); + LLT InsertTy = B.getMRI()->getType(InsertReg); + auto ZextVal = B.buildZExt(TargetTy, InsertReg); + auto ShiftedInsertVal = B.buildShl(TargetTy, ZextVal, OffsetBits); + + // Produce a bitmask of the value to insert + auto EltMask = B.buildConstant( + TargetTy, APInt::getLowBitsSet(TargetTy.getSizeInBits(), + InsertTy.getSizeInBits())); + // Shift it into position + auto ShiftedMask = B.buildShl(TargetTy, EltMask, OffsetBits); + auto InvShiftedMask = B.buildNot(TargetTy, ShiftedMask); + + // Clear out the bits in the wide element + auto MaskedOldElt = B.buildAnd(TargetTy, TargetReg, InvShiftedMask); + + // The value to insert has all zeros already, so stick it into the masked + // wide element. + return B.buildOr(TargetTy, MaskedOldElt, ShiftedInsertVal).getReg(0); +} + +/// Perform a G_INSERT_VECTOR_ELT in a different sized vector element. If this +/// is increasing the element size, perform the indexing in the target element +/// type, and use bit operations to insert at the element position. This is +/// intended for architectures that can dynamically index the register file and +/// want to force indexing in the native register size. +LegalizerHelper::LegalizeResult +LegalizerHelper::bitcastInsertVectorElt(MachineInstr &MI, unsigned TypeIdx, + LLT CastTy) { + if (TypeIdx != 0) + return UnableToLegalize; + + Register Dst = MI.getOperand(0).getReg(); + Register SrcVec = MI.getOperand(1).getReg(); + Register Val = MI.getOperand(2).getReg(); + Register Idx = MI.getOperand(3).getReg(); + + LLT VecTy = MRI.getType(Dst); + LLT IdxTy = MRI.getType(Idx); + + LLT VecEltTy = VecTy.getElementType(); + LLT NewEltTy = CastTy.isVector() ? CastTy.getElementType() : CastTy; + const unsigned NewEltSize = NewEltTy.getSizeInBits(); + const unsigned OldEltSize = VecEltTy.getSizeInBits(); + + unsigned NewNumElts = CastTy.isVector() ? CastTy.getNumElements() : 1; + unsigned OldNumElts = VecTy.getNumElements(); + + Register CastVec = MIRBuilder.buildBitcast(CastTy, SrcVec).getReg(0); + if (NewNumElts < OldNumElts) { + if (NewEltSize % OldEltSize != 0) + return UnableToLegalize; + + // This only depends on powers of 2 because we use bit tricks to figure out + // the bit offset we need to shift to get the target element. A general + // expansion could emit division/multiply. + if (!isPowerOf2_32(NewEltSize / OldEltSize)) + return UnableToLegalize; + + const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize); + auto Log2Ratio = MIRBuilder.buildConstant(IdxTy, Log2EltRatio); + + // Divide to get the index in the wider element type. + auto ScaledIdx = MIRBuilder.buildLShr(IdxTy, Idx, Log2Ratio); + + Register ExtractedElt = CastVec; + if (CastTy.isVector()) { + ExtractedElt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec, + ScaledIdx).getReg(0); + } + + // Compute the bit offset into the register of the target element. + Register OffsetBits = getBitcastWiderVectorElementOffset( + MIRBuilder, Idx, NewEltSize, OldEltSize); + + Register InsertedElt = buildBitFieldInsert(MIRBuilder, ExtractedElt, + Val, OffsetBits); + if (CastTy.isVector()) { + InsertedElt = MIRBuilder.buildInsertVectorElement( + CastTy, CastVec, InsertedElt, ScaledIdx).getReg(0); + } + + MIRBuilder.buildBitcast(Dst, InsertedElt); + MI.eraseFromParent(); + return Legalized; + } + + return UnableToLegalize; +} + +LegalizerHelper::LegalizeResult +LegalizerHelper::lowerLoad(MachineInstr &MI) { + // Lower to a memory-width G_LOAD and a G_SEXT/G_ZEXT/G_ANYEXT + Register DstReg = MI.getOperand(0).getReg(); + Register PtrReg = MI.getOperand(1).getReg(); + LLT DstTy = MRI.getType(DstReg); + auto &MMO = **MI.memoperands_begin(); + + if (DstTy.getSizeInBits() == MMO.getSizeInBits()) { + if (MI.getOpcode() == TargetOpcode::G_LOAD) { + // This load needs splitting into power of 2 sized loads. + if (DstTy.isVector()) + return UnableToLegalize; + if (isPowerOf2_32(DstTy.getSizeInBits())) + return UnableToLegalize; // Don't know what we're being asked to do. + + // Our strategy here is to generate anyextending loads for the smaller + // types up to next power-2 result type, and then combine the two larger + // result values together, before truncating back down to the non-pow-2 + // type. + // E.g. v1 = i24 load => + // v2 = i32 zextload (2 byte) + // v3 = i32 load (1 byte) + // v4 = i32 shl v3, 16 + // v5 = i32 or v4, v2 + // v1 = i24 trunc v5 + // By doing this we generate the correct truncate which should get + // combined away as an artifact with a matching extend. + uint64_t LargeSplitSize = PowerOf2Floor(DstTy.getSizeInBits()); + uint64_t SmallSplitSize = DstTy.getSizeInBits() - LargeSplitSize; + + MachineFunction &MF = MIRBuilder.getMF(); + MachineMemOperand *LargeMMO = + MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8); + MachineMemOperand *SmallMMO = MF.getMachineMemOperand( + &MMO, LargeSplitSize / 8, SmallSplitSize / 8); + + LLT PtrTy = MRI.getType(PtrReg); + unsigned AnyExtSize = NextPowerOf2(DstTy.getSizeInBits()); + LLT AnyExtTy = LLT::scalar(AnyExtSize); + Register LargeLdReg = MRI.createGenericVirtualRegister(AnyExtTy); + Register SmallLdReg = MRI.createGenericVirtualRegister(AnyExtTy); + auto LargeLoad = MIRBuilder.buildLoadInstr( + TargetOpcode::G_ZEXTLOAD, LargeLdReg, PtrReg, *LargeMMO); + + auto OffsetCst = MIRBuilder.buildConstant( + LLT::scalar(PtrTy.getSizeInBits()), LargeSplitSize / 8); + Register PtrAddReg = MRI.createGenericVirtualRegister(PtrTy); + auto SmallPtr = + MIRBuilder.buildPtrAdd(PtrAddReg, PtrReg, OffsetCst.getReg(0)); + auto SmallLoad = MIRBuilder.buildLoad(SmallLdReg, SmallPtr.getReg(0), + *SmallMMO); + + auto ShiftAmt = MIRBuilder.buildConstant(AnyExtTy, LargeSplitSize); + auto Shift = MIRBuilder.buildShl(AnyExtTy, SmallLoad, ShiftAmt); + auto Or = MIRBuilder.buildOr(AnyExtTy, Shift, LargeLoad); + MIRBuilder.buildTrunc(DstReg, {Or.getReg(0)}); + MI.eraseFromParent(); + return Legalized; + } + + MIRBuilder.buildLoad(DstReg, PtrReg, MMO); + MI.eraseFromParent(); + return Legalized; + } + + if (DstTy.isScalar()) { + Register TmpReg = + MRI.createGenericVirtualRegister(LLT::scalar(MMO.getSizeInBits())); + MIRBuilder.buildLoad(TmpReg, PtrReg, MMO); + switch (MI.getOpcode()) { + default: + llvm_unreachable("Unexpected opcode"); + case TargetOpcode::G_LOAD: + MIRBuilder.buildAnyExtOrTrunc(DstReg, TmpReg); + break; + case TargetOpcode::G_SEXTLOAD: + MIRBuilder.buildSExt(DstReg, TmpReg); + break; + case TargetOpcode::G_ZEXTLOAD: + MIRBuilder.buildZExt(DstReg, TmpReg); + break; + } + + MI.eraseFromParent(); + return Legalized; + } + + return UnableToLegalize; +} + +LegalizerHelper::LegalizeResult +LegalizerHelper::lowerStore(MachineInstr &MI) { + // Lower a non-power of 2 store into multiple pow-2 stores. + // E.g. split an i24 store into an i16 store + i8 store. + // We do this by first extending the stored value to the next largest power + // of 2 type, and then using truncating stores to store the components. + // By doing this, likewise with G_LOAD, generate an extend that can be + // artifact-combined away instead of leaving behind extracts. + Register SrcReg = MI.getOperand(0).getReg(); + Register PtrReg = MI.getOperand(1).getReg(); + LLT SrcTy = MRI.getType(SrcReg); + MachineMemOperand &MMO = **MI.memoperands_begin(); + if (SrcTy.getSizeInBits() != MMO.getSizeInBits()) + return UnableToLegalize; + if (SrcTy.isVector()) + return UnableToLegalize; + if (isPowerOf2_32(SrcTy.getSizeInBits())) + return UnableToLegalize; // Don't know what we're being asked to do. + + // Extend to the next pow-2. + const LLT ExtendTy = LLT::scalar(NextPowerOf2(SrcTy.getSizeInBits())); + auto ExtVal = MIRBuilder.buildAnyExt(ExtendTy, SrcReg); + + // Obtain the smaller value by shifting away the larger value. + uint64_t LargeSplitSize = PowerOf2Floor(SrcTy.getSizeInBits()); + uint64_t SmallSplitSize = SrcTy.getSizeInBits() - LargeSplitSize; + auto ShiftAmt = MIRBuilder.buildConstant(ExtendTy, LargeSplitSize); + auto SmallVal = MIRBuilder.buildLShr(ExtendTy, ExtVal, ShiftAmt); + + // Generate the PtrAdd and truncating stores. + LLT PtrTy = MRI.getType(PtrReg); + auto OffsetCst = MIRBuilder.buildConstant( + LLT::scalar(PtrTy.getSizeInBits()), LargeSplitSize / 8); + Register PtrAddReg = MRI.createGenericVirtualRegister(PtrTy); + auto SmallPtr = + MIRBuilder.buildPtrAdd(PtrAddReg, PtrReg, OffsetCst.getReg(0)); + + MachineFunction &MF = MIRBuilder.getMF(); + MachineMemOperand *LargeMMO = + MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8); + MachineMemOperand *SmallMMO = + MF.getMachineMemOperand(&MMO, LargeSplitSize / 8, SmallSplitSize / 8); + MIRBuilder.buildStore(ExtVal.getReg(0), PtrReg, *LargeMMO); + MIRBuilder.buildStore(SmallVal.getReg(0), SmallPtr.getReg(0), *SmallMMO); + MI.eraseFromParent(); + return Legalized; +} + +LegalizerHelper::LegalizeResult +LegalizerHelper::bitcast(MachineInstr &MI, unsigned TypeIdx, LLT CastTy) { + switch (MI.getOpcode()) { + case TargetOpcode::G_LOAD: { + if (TypeIdx != 0) + return UnableToLegalize; + + Observer.changingInstr(MI); + bitcastDst(MI, CastTy, 0); + Observer.changedInstr(MI); + return Legalized; + } + case TargetOpcode::G_STORE: { + if (TypeIdx != 0) + return UnableToLegalize; + + Observer.changingInstr(MI); + bitcastSrc(MI, CastTy, 0); + Observer.changedInstr(MI); + return Legalized; + } + case TargetOpcode::G_SELECT: { + if (TypeIdx != 0) + return UnableToLegalize; + + if (MRI.getType(MI.getOperand(1).getReg()).isVector()) { + LLVM_DEBUG( + dbgs() << "bitcast action not implemented for vector select\n"); + return UnableToLegalize; + } + + Observer.changingInstr(MI); + bitcastSrc(MI, CastTy, 2); + bitcastSrc(MI, CastTy, 3); + bitcastDst(MI, CastTy, 0); + Observer.changedInstr(MI); + return Legalized; + } + case TargetOpcode::G_AND: + case TargetOpcode::G_OR: + case TargetOpcode::G_XOR: { + Observer.changingInstr(MI); + bitcastSrc(MI, CastTy, 1); + bitcastSrc(MI, CastTy, 2); + bitcastDst(MI, CastTy, 0); + Observer.changedInstr(MI); + return Legalized; + } + case TargetOpcode::G_EXTRACT_VECTOR_ELT: + return bitcastExtractVectorElt(MI, TypeIdx, CastTy); + case TargetOpcode::G_INSERT_VECTOR_ELT: + return bitcastInsertVectorElt(MI, TypeIdx, CastTy); + default: + return UnableToLegalize; + } +} + +// Legalize an instruction by changing the opcode in place. +void LegalizerHelper::changeOpcode(MachineInstr &MI, unsigned NewOpcode) { + Observer.changingInstr(MI); + MI.setDesc(MIRBuilder.getTII().get(NewOpcode)); + Observer.changedInstr(MI); +} + +LegalizerHelper::LegalizeResult +LegalizerHelper::lower(MachineInstr &MI, unsigned TypeIdx, LLT LowerHintTy) { + using namespace TargetOpcode; + + switch(MI.getOpcode()) { + default: + return UnableToLegalize; + case TargetOpcode::G_BITCAST: + return lowerBitcast(MI); + case TargetOpcode::G_SREM: + case TargetOpcode::G_UREM: { + LLT Ty = MRI.getType(MI.getOperand(0).getReg()); + auto Quot = + MIRBuilder.buildInstr(MI.getOpcode() == G_SREM ? G_SDIV : G_UDIV, {Ty}, + {MI.getOperand(1), MI.getOperand(2)}); + + auto Prod = MIRBuilder.buildMul(Ty, Quot, MI.getOperand(2)); + MIRBuilder.buildSub(MI.getOperand(0), MI.getOperand(1), Prod); + MI.eraseFromParent(); + return Legalized; + } + case TargetOpcode::G_SADDO: + case TargetOpcode::G_SSUBO: + return lowerSADDO_SSUBO(MI); + case TargetOpcode::G_UMULH: + case TargetOpcode::G_SMULH: + return lowerSMULH_UMULH(MI); + case TargetOpcode::G_SMULO: + case TargetOpcode::G_UMULO: { + // Generate G_UMULH/G_SMULH to check for overflow and a normal G_MUL for the + // result. + Register Res = MI.getOperand(0).getReg(); + Register Overflow = MI.getOperand(1).getReg(); + Register LHS = MI.getOperand(2).getReg(); + Register RHS = MI.getOperand(3).getReg(); + LLT Ty = MRI.getType(Res); + + unsigned Opcode = MI.getOpcode() == TargetOpcode::G_SMULO + ? TargetOpcode::G_SMULH + : TargetOpcode::G_UMULH; + + Observer.changingInstr(MI); + const auto &TII = MIRBuilder.getTII(); + MI.setDesc(TII.get(TargetOpcode::G_MUL)); + MI.RemoveOperand(1); + Observer.changedInstr(MI); + + auto HiPart = MIRBuilder.buildInstr(Opcode, {Ty}, {LHS, RHS}); + auto Zero = MIRBuilder.buildConstant(Ty, 0); + + // Move insert point forward so we can use the Res register if needed. + MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); + + // For *signed* multiply, overflow is detected by checking: + // (hi != (lo >> bitwidth-1)) + if (Opcode == TargetOpcode::G_SMULH) { + auto ShiftAmt = MIRBuilder.buildConstant(Ty, Ty.getSizeInBits() - 1); + auto Shifted = MIRBuilder.buildAShr(Ty, Res, ShiftAmt); + MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Shifted); + } else { + MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Zero); + } + return Legalized; + } + case TargetOpcode::G_FNEG: { + Register Res = MI.getOperand(0).getReg(); + LLT Ty = MRI.getType(Res); + + // TODO: Handle vector types once we are able to + // represent them. + if (Ty.isVector()) + return UnableToLegalize; + auto SignMask = + MIRBuilder.buildConstant(Ty, APInt::getSignMask(Ty.getSizeInBits())); + Register SubByReg = MI.getOperand(1).getReg(); + MIRBuilder.buildXor(Res, SubByReg, SignMask); + MI.eraseFromParent(); + return Legalized; + } + case TargetOpcode::G_FSUB: { + Register Res = MI.getOperand(0).getReg(); + LLT Ty = MRI.getType(Res); + + // Lower (G_FSUB LHS, RHS) to (G_FADD LHS, (G_FNEG RHS)). + // First, check if G_FNEG is marked as Lower. If so, we may + // end up with an infinite loop as G_FSUB is used to legalize G_FNEG. + if (LI.getAction({G_FNEG, {Ty}}).Action == Lower) + return UnableToLegalize; + Register LHS = MI.getOperand(1).getReg(); + Register RHS = MI.getOperand(2).getReg(); + Register Neg = MRI.createGenericVirtualRegister(Ty); + MIRBuilder.buildFNeg(Neg, RHS); + MIRBuilder.buildFAdd(Res, LHS, Neg, MI.getFlags()); + MI.eraseFromParent(); + return Legalized; + } + case TargetOpcode::G_FMAD: + return lowerFMad(MI); + case TargetOpcode::G_FFLOOR: + return lowerFFloor(MI); + case TargetOpcode::G_INTRINSIC_ROUND: + return lowerIntrinsicRound(MI); + case TargetOpcode::G_INTRINSIC_ROUNDEVEN: { + // Since round even is the assumed rounding mode for unconstrained FP + // operations, rint and roundeven are the same operation. + changeOpcode(MI, TargetOpcode::G_FRINT); + return Legalized; + } + case TargetOpcode::G_ATOMIC_CMPXCHG_WITH_SUCCESS: { + Register OldValRes = MI.getOperand(0).getReg(); + Register SuccessRes = MI.getOperand(1).getReg(); + Register Addr = MI.getOperand(2).getReg(); + Register CmpVal = MI.getOperand(3).getReg(); + Register NewVal = MI.getOperand(4).getReg(); + MIRBuilder.buildAtomicCmpXchg(OldValRes, Addr, CmpVal, NewVal, + **MI.memoperands_begin()); + MIRBuilder.buildICmp(CmpInst::ICMP_EQ, SuccessRes, OldValRes, CmpVal); + MI.eraseFromParent(); + return Legalized; + } + case TargetOpcode::G_LOAD: + case TargetOpcode::G_SEXTLOAD: + case TargetOpcode::G_ZEXTLOAD: + return lowerLoad(MI); + case TargetOpcode::G_STORE: + return lowerStore(MI); + case TargetOpcode::G_CTLZ_ZERO_UNDEF: + case TargetOpcode::G_CTTZ_ZERO_UNDEF: + case TargetOpcode::G_CTLZ: + case TargetOpcode::G_CTTZ: + case TargetOpcode::G_CTPOP: + return lowerBitCount(MI); + case G_UADDO: { + Register Res = MI.getOperand(0).getReg(); + Register CarryOut = MI.getOperand(1).getReg(); + Register LHS = MI.getOperand(2).getReg(); + Register RHS = MI.getOperand(3).getReg(); + + MIRBuilder.buildAdd(Res, LHS, RHS); + MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, RHS); + + MI.eraseFromParent(); + return Legalized; + } + case G_UADDE: { + Register Res = MI.getOperand(0).getReg(); + Register CarryOut = MI.getOperand(1).getReg(); + Register LHS = MI.getOperand(2).getReg(); + Register RHS = MI.getOperand(3).getReg(); + Register CarryIn = MI.getOperand(4).getReg(); + LLT Ty = MRI.getType(Res); + + auto TmpRes = MIRBuilder.buildAdd(Ty, LHS, RHS); + auto ZExtCarryIn = MIRBuilder.buildZExt(Ty, CarryIn); + MIRBuilder.buildAdd(Res, TmpRes, ZExtCarryIn); + MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, LHS); + + MI.eraseFromParent(); + return Legalized; + } + case G_USUBO: { + Register Res = MI.getOperand(0).getReg(); + Register BorrowOut = MI.getOperand(1).getReg(); + Register LHS = MI.getOperand(2).getReg(); + Register RHS = MI.getOperand(3).getReg(); + + MIRBuilder.buildSub(Res, LHS, RHS); + MIRBuilder.buildICmp(CmpInst::ICMP_ULT, BorrowOut, LHS, RHS); + + MI.eraseFromParent(); + return Legalized; + } + case G_USUBE: { + Register Res = MI.getOperand(0).getReg(); + Register BorrowOut = MI.getOperand(1).getReg(); + Register LHS = MI.getOperand(2).getReg(); + Register RHS = MI.getOperand(3).getReg(); + Register BorrowIn = MI.getOperand(4).getReg(); + const LLT CondTy = MRI.getType(BorrowOut); + const LLT Ty = MRI.getType(Res); + + auto TmpRes = MIRBuilder.buildSub(Ty, LHS, RHS); + auto ZExtBorrowIn = MIRBuilder.buildZExt(Ty, BorrowIn); + MIRBuilder.buildSub(Res, TmpRes, ZExtBorrowIn); + + auto LHS_EQ_RHS = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, CondTy, LHS, RHS); + auto LHS_ULT_RHS = MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CondTy, LHS, RHS); + MIRBuilder.buildSelect(BorrowOut, LHS_EQ_RHS, BorrowIn, LHS_ULT_RHS); + + MI.eraseFromParent(); + return Legalized; + } + case G_UITOFP: + return lowerUITOFP(MI); + case G_SITOFP: + return lowerSITOFP(MI); + case G_FPTOUI: + return lowerFPTOUI(MI); + case G_FPTOSI: + return lowerFPTOSI(MI); + case G_FPTRUNC: + return lowerFPTRUNC(MI); + case G_FPOWI: + return lowerFPOWI(MI); + case G_SMIN: + case G_SMAX: + case G_UMIN: + case G_UMAX: + return lowerMinMax(MI); + case G_FCOPYSIGN: + return lowerFCopySign(MI); + case G_FMINNUM: + case G_FMAXNUM: + return lowerFMinNumMaxNum(MI); + case G_MERGE_VALUES: + return lowerMergeValues(MI); + case G_UNMERGE_VALUES: + return lowerUnmergeValues(MI); + case TargetOpcode::G_SEXT_INREG: { + assert(MI.getOperand(2).isImm() && "Expected immediate"); + int64_t SizeInBits = MI.getOperand(2).getImm(); + + Register DstReg = MI.getOperand(0).getReg(); + Register SrcReg = MI.getOperand(1).getReg(); + LLT DstTy = MRI.getType(DstReg); + Register TmpRes = MRI.createGenericVirtualRegister(DstTy); + + auto MIBSz = MIRBuilder.buildConstant(DstTy, DstTy.getScalarSizeInBits() - SizeInBits); + MIRBuilder.buildShl(TmpRes, SrcReg, MIBSz->getOperand(0)); + MIRBuilder.buildAShr(DstReg, TmpRes, MIBSz->getOperand(0)); + MI.eraseFromParent(); + return Legalized; + } + case G_EXTRACT_VECTOR_ELT: + case G_INSERT_VECTOR_ELT: + return lowerExtractInsertVectorElt(MI); + case G_SHUFFLE_VECTOR: + return lowerShuffleVector(MI); + case G_DYN_STACKALLOC: + return lowerDynStackAlloc(MI); + case G_EXTRACT: + return lowerExtract(MI); + case G_INSERT: + return lowerInsert(MI); + case G_BSWAP: + return lowerBswap(MI); + case G_BITREVERSE: + return lowerBitreverse(MI); + case G_READ_REGISTER: + case G_WRITE_REGISTER: + return lowerReadWriteRegister(MI); + case G_UADDSAT: + case G_USUBSAT: { + // Try to make a reasonable guess about which lowering strategy to use. The + // target can override this with custom lowering and calling the + // implementation functions. + LLT Ty = MRI.getType(MI.getOperand(0).getReg()); + if (LI.isLegalOrCustom({G_UMIN, Ty})) + return lowerAddSubSatToMinMax(MI); + return lowerAddSubSatToAddoSubo(MI); + } + case G_SADDSAT: + case G_SSUBSAT: { + LLT Ty = MRI.getType(MI.getOperand(0).getReg()); + + // FIXME: It would probably make more sense to see if G_SADDO is preferred, + // since it's a shorter expansion. However, we would need to figure out the + // preferred boolean type for the carry out for the query. + if (LI.isLegalOrCustom({G_SMIN, Ty}) && LI.isLegalOrCustom({G_SMAX, Ty})) + return lowerAddSubSatToMinMax(MI); + return lowerAddSubSatToAddoSubo(MI); + } + case G_SSHLSAT: + case G_USHLSAT: + return lowerShlSat(MI); + case G_ABS: { + // Expand %res = G_ABS %a into: + // %v1 = G_ASHR %a, scalar_size-1 + // %v2 = G_ADD %a, %v1 + // %res = G_XOR %v2, %v1 + LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); + Register OpReg = MI.getOperand(1).getReg(); + auto ShiftAmt = + MIRBuilder.buildConstant(DstTy, DstTy.getScalarSizeInBits() - 1); + auto Shift = + MIRBuilder.buildAShr(DstTy, OpReg, ShiftAmt); + auto Add = MIRBuilder.buildAdd(DstTy, OpReg, Shift); + MIRBuilder.buildXor(MI.getOperand(0).getReg(), Add, Shift); + MI.eraseFromParent(); + return Legalized; + } + case G_SELECT: + return lowerSelect(MI); + } +} + +Align LegalizerHelper::getStackTemporaryAlignment(LLT Ty, + Align MinAlign) const { + // FIXME: We're missing a way to go back from LLT to llvm::Type to query the + // datalayout for the preferred alignment. Also there should be a target hook + // for this to allow targets to reduce the alignment and ignore the + // datalayout. e.g. AMDGPU should always use a 4-byte alignment, regardless of + // the type. + return std::max(Align(PowerOf2Ceil(Ty.getSizeInBytes())), MinAlign); +} + +MachineInstrBuilder +LegalizerHelper::createStackTemporary(TypeSize Bytes, Align Alignment, + MachinePointerInfo &PtrInfo) { + MachineFunction &MF = MIRBuilder.getMF(); + const DataLayout &DL = MIRBuilder.getDataLayout(); + int FrameIdx = MF.getFrameInfo().CreateStackObject(Bytes, Alignment, false); + + unsigned AddrSpace = DL.getAllocaAddrSpace(); + LLT FramePtrTy = LLT::pointer(AddrSpace, DL.getPointerSizeInBits(AddrSpace)); + + PtrInfo = MachinePointerInfo::getFixedStack(MF, FrameIdx); + return MIRBuilder.buildFrameIndex(FramePtrTy, FrameIdx); +} + +static Register clampDynamicVectorIndex(MachineIRBuilder &B, Register IdxReg, + LLT VecTy) { + int64_t IdxVal; + if (mi_match(IdxReg, *B.getMRI(), m_ICst(IdxVal))) + return IdxReg; + + LLT IdxTy = B.getMRI()->getType(IdxReg); + unsigned NElts = VecTy.getNumElements(); + if (isPowerOf2_32(NElts)) { + APInt Imm = APInt::getLowBitsSet(IdxTy.getSizeInBits(), Log2_32(NElts)); + return B.buildAnd(IdxTy, IdxReg, B.buildConstant(IdxTy, Imm)).getReg(0); + } + + return B.buildUMin(IdxTy, IdxReg, B.buildConstant(IdxTy, NElts - 1)) + .getReg(0); +} + +Register LegalizerHelper::getVectorElementPointer(Register VecPtr, LLT VecTy, + Register Index) { + LLT EltTy = VecTy.getElementType(); + + // Calculate the element offset and add it to the pointer. + unsigned EltSize = EltTy.getSizeInBits() / 8; // FIXME: should be ABI size. + assert(EltSize * 8 == EltTy.getSizeInBits() && + "Converting bits to bytes lost precision"); + + Index = clampDynamicVectorIndex(MIRBuilder, Index, VecTy); + + LLT IdxTy = MRI.getType(Index); + auto Mul = MIRBuilder.buildMul(IdxTy, Index, + MIRBuilder.buildConstant(IdxTy, EltSize)); + + LLT PtrTy = MRI.getType(VecPtr); + return MIRBuilder.buildPtrAdd(PtrTy, VecPtr, Mul).getReg(0); +} + +LegalizerHelper::LegalizeResult LegalizerHelper::fewerElementsVectorImplicitDef( + MachineInstr &MI, unsigned TypeIdx, LLT NarrowTy) { + Register DstReg = MI.getOperand(0).getReg(); + LLT DstTy = MRI.getType(DstReg); + LLT LCMTy = getLCMType(DstTy, NarrowTy); + + unsigned NumParts = LCMTy.getSizeInBits() / NarrowTy.getSizeInBits(); + + auto NewUndef = MIRBuilder.buildUndef(NarrowTy); + SmallVector<Register, 8> Parts(NumParts, NewUndef.getReg(0)); + + buildWidenedRemergeToDst(DstReg, LCMTy, Parts); + MI.eraseFromParent(); + return Legalized; +} + +// Handle splitting vector operations which need to have the same number of +// elements in each type index, but each type index may have a different element +// type. +// +// e.g. <4 x s64> = G_SHL <4 x s64>, <4 x s32> -> +// <2 x s64> = G_SHL <2 x s64>, <2 x s32> +// <2 x s64> = G_SHL <2 x s64>, <2 x s32> +// +// Also handles some irregular breakdown cases, e.g. +// e.g. <3 x s64> = G_SHL <3 x s64>, <3 x s32> -> +// <2 x s64> = G_SHL <2 x s64>, <2 x s32> +// s64 = G_SHL s64, s32 +LegalizerHelper::LegalizeResult +LegalizerHelper::fewerElementsVectorMultiEltType( + MachineInstr &MI, unsigned TypeIdx, LLT NarrowTyArg) { + if (TypeIdx != 0) + return UnableToLegalize; + + const LLT NarrowTy0 = NarrowTyArg; + const unsigned NewNumElts = + NarrowTy0.isVector() ? NarrowTy0.getNumElements() : 1; + + const Register DstReg = MI.getOperand(0).getReg(); + LLT DstTy = MRI.getType(DstReg); + LLT LeftoverTy0; + + // All of the operands need to have the same number of elements, so if we can + // determine a type breakdown for the result type, we can for all of the + // source types. + int NumParts = getNarrowTypeBreakDown(DstTy, NarrowTy0, LeftoverTy0).first; + if (NumParts < 0) + return UnableToLegalize; + + SmallVector<MachineInstrBuilder, 4> NewInsts; + + SmallVector<Register, 4> DstRegs, LeftoverDstRegs; + SmallVector<Register, 4> PartRegs, LeftoverRegs; + + for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) { + Register SrcReg = MI.getOperand(I).getReg(); + LLT SrcTyI = MRI.getType(SrcReg); + LLT NarrowTyI = LLT::scalarOrVector(NewNumElts, SrcTyI.getScalarType()); + LLT LeftoverTyI; + + // Split this operand into the requested typed registers, and any leftover + // required to reproduce the original type. + if (!extractParts(SrcReg, SrcTyI, NarrowTyI, LeftoverTyI, PartRegs, + LeftoverRegs)) + return UnableToLegalize; + + if (I == 1) { + // For the first operand, create an instruction for each part and setup + // the result. + for (Register PartReg : PartRegs) { + Register PartDstReg = MRI.createGenericVirtualRegister(NarrowTy0); + NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode()) + .addDef(PartDstReg) + .addUse(PartReg)); + DstRegs.push_back(PartDstReg); + } + + for (Register LeftoverReg : LeftoverRegs) { + Register PartDstReg = MRI.createGenericVirtualRegister(LeftoverTy0); + NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode()) + .addDef(PartDstReg) + .addUse(LeftoverReg)); + LeftoverDstRegs.push_back(PartDstReg); + } + } else { + assert(NewInsts.size() == PartRegs.size() + LeftoverRegs.size()); + + // Add the newly created operand splits to the existing instructions. The + // odd-sized pieces are ordered after the requested NarrowTyArg sized + // pieces. + unsigned InstCount = 0; + for (unsigned J = 0, JE = PartRegs.size(); J != JE; ++J) + NewInsts[InstCount++].addUse(PartRegs[J]); + for (unsigned J = 0, JE = LeftoverRegs.size(); J != JE; ++J) + NewInsts[InstCount++].addUse(LeftoverRegs[J]); + } + + PartRegs.clear(); + LeftoverRegs.clear(); + } + + // Insert the newly built operations and rebuild the result register. + for (auto &MIB : NewInsts) + MIRBuilder.insertInstr(MIB); + + insertParts(DstReg, DstTy, NarrowTy0, DstRegs, LeftoverTy0, LeftoverDstRegs); + + MI.eraseFromParent(); + return Legalized; +} + +LegalizerHelper::LegalizeResult +LegalizerHelper::fewerElementsVectorCasts(MachineInstr &MI, unsigned TypeIdx, + LLT NarrowTy) { + if (TypeIdx != 0) + return UnableToLegalize; + + Register DstReg = MI.getOperand(0).getReg(); + Register SrcReg = MI.getOperand(1).getReg(); + LLT DstTy = MRI.getType(DstReg); + LLT SrcTy = MRI.getType(SrcReg); + + LLT NarrowTy0 = NarrowTy; + LLT NarrowTy1; + unsigned NumParts; + + if (NarrowTy.isVector()) { + // Uneven breakdown not handled. + NumParts = DstTy.getNumElements() / NarrowTy.getNumElements(); + if (NumParts * NarrowTy.getNumElements() != DstTy.getNumElements()) + return UnableToLegalize; + + NarrowTy1 = LLT::vector(NarrowTy.getNumElements(), SrcTy.getElementType()); + } else { + NumParts = DstTy.getNumElements(); + NarrowTy1 = SrcTy.getElementType(); + } + + SmallVector<Register, 4> SrcRegs, DstRegs; + extractParts(SrcReg, NarrowTy1, NumParts, SrcRegs); + + for (unsigned I = 0; I < NumParts; ++I) { + Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0); + MachineInstr *NewInst = + MIRBuilder.buildInstr(MI.getOpcode(), {DstReg}, {SrcRegs[I]}); + + NewInst->setFlags(MI.getFlags()); + DstRegs.push_back(DstReg); + } + + if (NarrowTy.isVector()) + MIRBuilder.buildConcatVectors(DstReg, DstRegs); + else + MIRBuilder.buildBuildVector(DstReg, DstRegs); + + MI.eraseFromParent(); + return Legalized; +} + +LegalizerHelper::LegalizeResult +LegalizerHelper::fewerElementsVectorCmp(MachineInstr &MI, unsigned TypeIdx, + LLT NarrowTy) { + Register DstReg = MI.getOperand(0).getReg(); + Register Src0Reg = MI.getOperand(2).getReg(); + LLT DstTy = MRI.getType(DstReg); + LLT SrcTy = MRI.getType(Src0Reg); + + unsigned NumParts; + LLT NarrowTy0, NarrowTy1; + + if (TypeIdx == 0) { + unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1; + unsigned OldElts = DstTy.getNumElements(); + + NarrowTy0 = NarrowTy; + NumParts = NarrowTy.isVector() ? (OldElts / NewElts) : DstTy.getNumElements(); + NarrowTy1 = NarrowTy.isVector() ? + LLT::vector(NarrowTy.getNumElements(), SrcTy.getScalarSizeInBits()) : + SrcTy.getElementType(); + + } else { + unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1; + unsigned OldElts = SrcTy.getNumElements(); + + NumParts = NarrowTy.isVector() ? (OldElts / NewElts) : + NarrowTy.getNumElements(); + NarrowTy0 = LLT::vector(NarrowTy.getNumElements(), + DstTy.getScalarSizeInBits()); + NarrowTy1 = NarrowTy; + } + + // FIXME: Don't know how to handle the situation where the small vectors + // aren't all the same size yet. + if (NarrowTy1.isVector() && + NarrowTy1.getNumElements() * NumParts != DstTy.getNumElements()) + return UnableToLegalize; + + CmpInst::Predicate Pred + = static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate()); + + SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs; + extractParts(MI.getOperand(2).getReg(), NarrowTy1, NumParts, Src1Regs); + extractParts(MI.getOperand(3).getReg(), NarrowTy1, NumParts, Src2Regs); + + for (unsigned I = 0; I < NumParts; ++I) { + Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0); + DstRegs.push_back(DstReg); + + if (MI.getOpcode() == TargetOpcode::G_ICMP) + MIRBuilder.buildICmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]); + else { + MachineInstr *NewCmp + = MIRBuilder.buildFCmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]); + NewCmp->setFlags(MI.getFlags()); + } + } + + if (NarrowTy1.isVector()) + MIRBuilder.buildConcatVectors(DstReg, DstRegs); + else + MIRBuilder.buildBuildVector(DstReg, DstRegs); + + MI.eraseFromParent(); + return Legalized; +} + +LegalizerHelper::LegalizeResult +LegalizerHelper::fewerElementsVectorSelect(MachineInstr &MI, unsigned TypeIdx, + LLT NarrowTy) { + Register DstReg = MI.getOperand(0).getReg(); + Register CondReg = MI.getOperand(1).getReg(); + + unsigned NumParts = 0; + LLT NarrowTy0, NarrowTy1; + + LLT DstTy = MRI.getType(DstReg); + LLT CondTy = MRI.getType(CondReg); + unsigned Size = DstTy.getSizeInBits(); + + assert(TypeIdx == 0 || CondTy.isVector()); + + if (TypeIdx == 0) { + NarrowTy0 = NarrowTy; + NarrowTy1 = CondTy; + + unsigned NarrowSize = NarrowTy0.getSizeInBits(); + // FIXME: Don't know how to handle the situation where the small vectors + // aren't all the same size yet. + if (Size % NarrowSize != 0) + return UnableToLegalize; + + NumParts = Size / NarrowSize; + + // Need to break down the condition type + if (CondTy.isVector()) { + if (CondTy.getNumElements() == NumParts) + NarrowTy1 = CondTy.getElementType(); + else + NarrowTy1 = LLT::vector(CondTy.getNumElements() / NumParts, + CondTy.getScalarSizeInBits()); + } + } else { + NumParts = CondTy.getNumElements(); + if (NarrowTy.isVector()) { + // TODO: Handle uneven breakdown. + if (NumParts * NarrowTy.getNumElements() != CondTy.getNumElements()) + return UnableToLegalize; + + return UnableToLegalize; + } else { + NarrowTy0 = DstTy.getElementType(); + NarrowTy1 = NarrowTy; + } + } + + SmallVector<Register, 2> DstRegs, Src0Regs, Src1Regs, Src2Regs; + if (CondTy.isVector()) + extractParts(MI.getOperand(1).getReg(), NarrowTy1, NumParts, Src0Regs); + + extractParts(MI.getOperand(2).getReg(), NarrowTy0, NumParts, Src1Regs); + extractParts(MI.getOperand(3).getReg(), NarrowTy0, NumParts, Src2Regs); + + for (unsigned i = 0; i < NumParts; ++i) { + Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0); + MIRBuilder.buildSelect(DstReg, CondTy.isVector() ? Src0Regs[i] : CondReg, + Src1Regs[i], Src2Regs[i]); + DstRegs.push_back(DstReg); + } + + if (NarrowTy0.isVector()) + MIRBuilder.buildConcatVectors(DstReg, DstRegs); + else + MIRBuilder.buildBuildVector(DstReg, DstRegs); + + MI.eraseFromParent(); + return Legalized; +} + +LegalizerHelper::LegalizeResult +LegalizerHelper::fewerElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx, + LLT NarrowTy) { + const Register DstReg = MI.getOperand(0).getReg(); + LLT PhiTy = MRI.getType(DstReg); + LLT LeftoverTy; + + // All of the operands need to have the same number of elements, so if we can + // determine a type breakdown for the result type, we can for all of the + // source types. + int NumParts, NumLeftover; + std::tie(NumParts, NumLeftover) + = getNarrowTypeBreakDown(PhiTy, NarrowTy, LeftoverTy); + if (NumParts < 0) + return UnableToLegalize; + + SmallVector<Register, 4> DstRegs, LeftoverDstRegs; + SmallVector<MachineInstrBuilder, 4> NewInsts; + + const int TotalNumParts = NumParts + NumLeftover; + + // Insert the new phis in the result block first. + for (int I = 0; I != TotalNumParts; ++I) { + LLT Ty = I < NumParts ? NarrowTy : LeftoverTy; + Register PartDstReg = MRI.createGenericVirtualRegister(Ty); + NewInsts.push_back(MIRBuilder.buildInstr(TargetOpcode::G_PHI) + .addDef(PartDstReg)); + if (I < NumParts) + DstRegs.push_back(PartDstReg); + else + LeftoverDstRegs.push_back(PartDstReg); + } + + MachineBasicBlock *MBB = MI.getParent(); + MIRBuilder.setInsertPt(*MBB, MBB->getFirstNonPHI()); + insertParts(DstReg, PhiTy, NarrowTy, DstRegs, LeftoverTy, LeftoverDstRegs); + + SmallVector<Register, 4> PartRegs, LeftoverRegs; + + // Insert code to extract the incoming values in each predecessor block. + for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) { + PartRegs.clear(); + LeftoverRegs.clear(); + + Register SrcReg = MI.getOperand(I).getReg(); + MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB(); + MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); + + LLT Unused; + if (!extractParts(SrcReg, PhiTy, NarrowTy, Unused, PartRegs, + LeftoverRegs)) + return UnableToLegalize; + + // Add the newly created operand splits to the existing instructions. The + // odd-sized pieces are ordered after the requested NarrowTyArg sized + // pieces. + for (int J = 0; J != TotalNumParts; ++J) { + MachineInstrBuilder MIB = NewInsts[J]; + MIB.addUse(J < NumParts ? PartRegs[J] : LeftoverRegs[J - NumParts]); + MIB.addMBB(&OpMBB); + } + } + + MI.eraseFromParent(); + return Legalized; +} + +LegalizerHelper::LegalizeResult +LegalizerHelper::fewerElementsVectorUnmergeValues(MachineInstr &MI, + unsigned TypeIdx, + LLT NarrowTy) { + if (TypeIdx != 1) + return UnableToLegalize; + + const int NumDst = MI.getNumOperands() - 1; + const Register SrcReg = MI.getOperand(NumDst).getReg(); + LLT SrcTy = MRI.getType(SrcReg); + + LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); + + // TODO: Create sequence of extracts. + if (DstTy == NarrowTy) + return UnableToLegalize; + + LLT GCDTy = getGCDType(SrcTy, NarrowTy); + if (DstTy == GCDTy) { + // This would just be a copy of the same unmerge. + // TODO: Create extracts, pad with undef and create intermediate merges. + return UnableToLegalize; + } + + auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg); + const int NumUnmerge = Unmerge->getNumOperands() - 1; + const int PartsPerUnmerge = NumDst / NumUnmerge; + + for (int I = 0; I != NumUnmerge; ++I) { + auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES); + + for (int J = 0; J != PartsPerUnmerge; ++J) + MIB.addDef(MI.getOperand(I * PartsPerUnmerge + J).getReg()); + MIB.addUse(Unmerge.getReg(I)); + } + + MI.eraseFromParent(); + return Legalized; +} + +// Handle FewerElementsVector a G_BUILD_VECTOR or G_CONCAT_VECTORS that produces +// a vector +// +// Create a G_BUILD_VECTOR or G_CONCAT_VECTORS of NarrowTy pieces, padding with +// undef as necessary. +// +// %3:_(<3 x s16>) = G_BUILD_VECTOR %0, %1, %2 +// -> <2 x s16> +// +// %4:_(s16) = G_IMPLICIT_DEF +// %5:_(<2 x s16>) = G_BUILD_VECTOR %0, %1 +// %6:_(<2 x s16>) = G_BUILD_VECTOR %2, %4 +// %7:_(<2 x s16>) = G_IMPLICIT_DEF +// %8:_(<6 x s16>) = G_CONCAT_VECTORS %5, %6, %7 +// %3:_(<3 x s16>), %8:_(<3 x s16>) = G_UNMERGE_VALUES %8 +LegalizerHelper::LegalizeResult +LegalizerHelper::fewerElementsVectorMerge(MachineInstr &MI, unsigned TypeIdx, + LLT NarrowTy) { + Register DstReg = MI.getOperand(0).getReg(); + LLT DstTy = MRI.getType(DstReg); + LLT SrcTy = MRI.getType(MI.getOperand(1).getReg()); + LLT GCDTy = getGCDType(getGCDType(SrcTy, NarrowTy), DstTy); + + // Break into a common type + SmallVector<Register, 16> Parts; + for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) + extractGCDType(Parts, GCDTy, MI.getOperand(I).getReg()); + + // Build the requested new merge, padding with undef. + LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts, + TargetOpcode::G_ANYEXT); + + // Pack into the original result register. + buildWidenedRemergeToDst(DstReg, LCMTy, Parts); + + MI.eraseFromParent(); + return Legalized; +} + +LegalizerHelper::LegalizeResult +LegalizerHelper::fewerElementsVectorExtractInsertVectorElt(MachineInstr &MI, + unsigned TypeIdx, + LLT NarrowVecTy) { + Register DstReg = MI.getOperand(0).getReg(); + Register SrcVec = MI.getOperand(1).getReg(); + Register InsertVal; + bool IsInsert = MI.getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT; + + assert((IsInsert ? TypeIdx == 0 : TypeIdx == 1) && "not a vector type index"); + if (IsInsert) + InsertVal = MI.getOperand(2).getReg(); + + Register Idx = MI.getOperand(MI.getNumOperands() - 1).getReg(); + + // TODO: Handle total scalarization case. + if (!NarrowVecTy.isVector()) + return UnableToLegalize; + + LLT VecTy = MRI.getType(SrcVec); + + // If the index is a constant, we can really break this down as you would + // expect, and index into the target size pieces. + int64_t IdxVal; + if (mi_match(Idx, MRI, m_ICst(IdxVal))) { + // Avoid out of bounds indexing the pieces. + if (IdxVal >= VecTy.getNumElements()) { + MIRBuilder.buildUndef(DstReg); + MI.eraseFromParent(); + return Legalized; + } + + SmallVector<Register, 8> VecParts; + LLT GCDTy = extractGCDType(VecParts, VecTy, NarrowVecTy, SrcVec); + + // Build a sequence of NarrowTy pieces in VecParts for this operand. + LLT LCMTy = buildLCMMergePieces(VecTy, NarrowVecTy, GCDTy, VecParts, + TargetOpcode::G_ANYEXT); + + unsigned NewNumElts = NarrowVecTy.getNumElements(); + + LLT IdxTy = MRI.getType(Idx); + int64_t PartIdx = IdxVal / NewNumElts; + auto NewIdx = + MIRBuilder.buildConstant(IdxTy, IdxVal - NewNumElts * PartIdx); + + if (IsInsert) { + LLT PartTy = MRI.getType(VecParts[PartIdx]); + + // Use the adjusted index to insert into one of the subvectors. + auto InsertPart = MIRBuilder.buildInsertVectorElement( + PartTy, VecParts[PartIdx], InsertVal, NewIdx); + VecParts[PartIdx] = InsertPart.getReg(0); + + // Recombine the inserted subvector with the others to reform the result + // vector. + buildWidenedRemergeToDst(DstReg, LCMTy, VecParts); + } else { + MIRBuilder.buildExtractVectorElement(DstReg, VecParts[PartIdx], NewIdx); + } + + MI.eraseFromParent(); + return Legalized; + } + + // With a variable index, we can't perform the operation in a smaller type, so + // we're forced to expand this. + // + // TODO: We could emit a chain of compare/select to figure out which piece to + // index. + return lowerExtractInsertVectorElt(MI); +} + +LegalizerHelper::LegalizeResult +LegalizerHelper::reduceLoadStoreWidth(MachineInstr &MI, unsigned TypeIdx, + LLT NarrowTy) { + // FIXME: Don't know how to handle secondary types yet. + if (TypeIdx != 0) + return UnableToLegalize; + + MachineMemOperand *MMO = *MI.memoperands_begin(); + + // This implementation doesn't work for atomics. Give up instead of doing + // something invalid. + if (MMO->getOrdering() != AtomicOrdering::NotAtomic || + MMO->getFailureOrdering() != AtomicOrdering::NotAtomic) + return UnableToLegalize; + + bool IsLoad = MI.getOpcode() == TargetOpcode::G_LOAD; + Register ValReg = MI.getOperand(0).getReg(); + Register AddrReg = MI.getOperand(1).getReg(); + LLT ValTy = MRI.getType(ValReg); + + // FIXME: Do we need a distinct NarrowMemory legalize action? + if (ValTy.getSizeInBits() != 8 * MMO->getSize()) { + LLVM_DEBUG(dbgs() << "Can't narrow extload/truncstore\n"); + return UnableToLegalize; + } + + int NumParts = -1; + int NumLeftover = -1; + LLT LeftoverTy; + SmallVector<Register, 8> NarrowRegs, NarrowLeftoverRegs; + if (IsLoad) { + std::tie(NumParts, NumLeftover) = getNarrowTypeBreakDown(ValTy, NarrowTy, LeftoverTy); + } else { + if (extractParts(ValReg, ValTy, NarrowTy, LeftoverTy, NarrowRegs, + NarrowLeftoverRegs)) { + NumParts = NarrowRegs.size(); + NumLeftover = NarrowLeftoverRegs.size(); + } + } + + if (NumParts == -1) + return UnableToLegalize; + + LLT PtrTy = MRI.getType(AddrReg); + const LLT OffsetTy = LLT::scalar(PtrTy.getSizeInBits()); + + unsigned TotalSize = ValTy.getSizeInBits(); + + // Split the load/store into PartTy sized pieces starting at Offset. If this + // is a load, return the new registers in ValRegs. For a store, each elements + // of ValRegs should be PartTy. Returns the next offset that needs to be + // handled. + auto splitTypePieces = [=](LLT PartTy, SmallVectorImpl<Register> &ValRegs, + unsigned Offset) -> unsigned { + MachineFunction &MF = MIRBuilder.getMF(); + unsigned PartSize = PartTy.getSizeInBits(); + for (unsigned Idx = 0, E = NumParts; Idx != E && Offset < TotalSize; + Offset += PartSize, ++Idx) { + unsigned ByteSize = PartSize / 8; + unsigned ByteOffset = Offset / 8; + Register NewAddrReg; + + MIRBuilder.materializePtrAdd(NewAddrReg, AddrReg, OffsetTy, ByteOffset); + + MachineMemOperand *NewMMO = + MF.getMachineMemOperand(MMO, ByteOffset, ByteSize); + + if (IsLoad) { + Register Dst = MRI.createGenericVirtualRegister(PartTy); + ValRegs.push_back(Dst); + MIRBuilder.buildLoad(Dst, NewAddrReg, *NewMMO); + } else { + MIRBuilder.buildStore(ValRegs[Idx], NewAddrReg, *NewMMO); + } + } + + return Offset; + }; + + unsigned HandledOffset = splitTypePieces(NarrowTy, NarrowRegs, 0); + + // Handle the rest of the register if this isn't an even type breakdown. + if (LeftoverTy.isValid()) + splitTypePieces(LeftoverTy, NarrowLeftoverRegs, HandledOffset); + + if (IsLoad) { + insertParts(ValReg, ValTy, NarrowTy, NarrowRegs, + LeftoverTy, NarrowLeftoverRegs); + } + + MI.eraseFromParent(); + return Legalized; +} + +LegalizerHelper::LegalizeResult +LegalizerHelper::reduceOperationWidth(MachineInstr &MI, unsigned int TypeIdx, + LLT NarrowTy) { + assert(TypeIdx == 0 && "only one type index expected"); + + const unsigned Opc = MI.getOpcode(); + const int NumOps = MI.getNumOperands() - 1; + const Register DstReg = MI.getOperand(0).getReg(); + const unsigned Flags = MI.getFlags(); + const unsigned NarrowSize = NarrowTy.getSizeInBits(); + const LLT NarrowScalarTy = LLT::scalar(NarrowSize); + + assert(NumOps <= 3 && "expected instruction with 1 result and 1-3 sources"); + + // First of all check whether we are narrowing (changing the element type) + // or reducing the vector elements + const LLT DstTy = MRI.getType(DstReg); + const bool IsNarrow = NarrowTy.getScalarType() != DstTy.getScalarType(); + + SmallVector<Register, 8> ExtractedRegs[3]; + SmallVector<Register, 8> Parts; + + unsigned NarrowElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1; + + // Break down all the sources into NarrowTy pieces we can operate on. This may + // involve creating merges to a wider type, padded with undef. + for (int I = 0; I != NumOps; ++I) { + Register SrcReg = MI.getOperand(I + 1).getReg(); + LLT SrcTy = MRI.getType(SrcReg); + + // The type to narrow SrcReg to. For narrowing, this is a smaller scalar. + // For fewerElements, this is a smaller vector with the same element type. + LLT OpNarrowTy; + if (IsNarrow) { + OpNarrowTy = NarrowScalarTy; + + // In case of narrowing, we need to cast vectors to scalars for this to + // work properly + // FIXME: Can we do without the bitcast here if we're narrowing? + if (SrcTy.isVector()) { + SrcTy = LLT::scalar(SrcTy.getSizeInBits()); + SrcReg = MIRBuilder.buildBitcast(SrcTy, SrcReg).getReg(0); + } + } else { + OpNarrowTy = LLT::scalarOrVector(NarrowElts, SrcTy.getScalarType()); + } + + LLT GCDTy = extractGCDType(ExtractedRegs[I], SrcTy, OpNarrowTy, SrcReg); + + // Build a sequence of NarrowTy pieces in ExtractedRegs for this operand. + buildLCMMergePieces(SrcTy, OpNarrowTy, GCDTy, ExtractedRegs[I], + TargetOpcode::G_ANYEXT); + } + + SmallVector<Register, 8> ResultRegs; + + // Input operands for each sub-instruction. + SmallVector<SrcOp, 4> InputRegs(NumOps, Register()); + + int NumParts = ExtractedRegs[0].size(); + const unsigned DstSize = DstTy.getSizeInBits(); + const LLT DstScalarTy = LLT::scalar(DstSize); + + // Narrowing needs to use scalar types + LLT DstLCMTy, NarrowDstTy; + if (IsNarrow) { + DstLCMTy = getLCMType(DstScalarTy, NarrowScalarTy); + NarrowDstTy = NarrowScalarTy; + } else { + DstLCMTy = getLCMType(DstTy, NarrowTy); + NarrowDstTy = NarrowTy; + } + + // We widened the source registers to satisfy merge/unmerge size + // constraints. We'll have some extra fully undef parts. + const int NumRealParts = (DstSize + NarrowSize - 1) / NarrowSize; + + for (int I = 0; I != NumRealParts; ++I) { + // Emit this instruction on each of the split pieces. + for (int J = 0; J != NumOps; ++J) + InputRegs[J] = ExtractedRegs[J][I]; + + auto Inst = MIRBuilder.buildInstr(Opc, {NarrowDstTy}, InputRegs, Flags); + ResultRegs.push_back(Inst.getReg(0)); + } + + // Fill out the widened result with undef instead of creating instructions + // with undef inputs. + int NumUndefParts = NumParts - NumRealParts; + if (NumUndefParts != 0) + ResultRegs.append(NumUndefParts, + MIRBuilder.buildUndef(NarrowDstTy).getReg(0)); + + // Extract the possibly padded result. Use a scratch register if we need to do + // a final bitcast, otherwise use the original result register. + Register MergeDstReg; + if (IsNarrow && DstTy.isVector()) + MergeDstReg = MRI.createGenericVirtualRegister(DstScalarTy); + else + MergeDstReg = DstReg; + + buildWidenedRemergeToDst(MergeDstReg, DstLCMTy, ResultRegs); + + // Recast to vector if we narrowed a vector + if (IsNarrow && DstTy.isVector()) + MIRBuilder.buildBitcast(DstReg, MergeDstReg); + + MI.eraseFromParent(); + return Legalized; +} + +LegalizerHelper::LegalizeResult +LegalizerHelper::fewerElementsVectorSextInReg(MachineInstr &MI, unsigned TypeIdx, + LLT NarrowTy) { + Register DstReg = MI.getOperand(0).getReg(); + Register SrcReg = MI.getOperand(1).getReg(); + int64_t Imm = MI.getOperand(2).getImm(); + + LLT DstTy = MRI.getType(DstReg); + + SmallVector<Register, 8> Parts; + LLT GCDTy = extractGCDType(Parts, DstTy, NarrowTy, SrcReg); + LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts); + + for (Register &R : Parts) + R = MIRBuilder.buildSExtInReg(NarrowTy, R, Imm).getReg(0); + + buildWidenedRemergeToDst(DstReg, LCMTy, Parts); + + MI.eraseFromParent(); + return Legalized; +} + +LegalizerHelper::LegalizeResult +LegalizerHelper::fewerElementsVector(MachineInstr &MI, unsigned TypeIdx, + LLT NarrowTy) { + using namespace TargetOpcode; + + switch (MI.getOpcode()) { + case G_IMPLICIT_DEF: + return fewerElementsVectorImplicitDef(MI, TypeIdx, NarrowTy); + case G_TRUNC: + case G_AND: + case G_OR: + case G_XOR: + case G_ADD: + case G_SUB: + case G_MUL: + case G_PTR_ADD: + case G_SMULH: + case G_UMULH: + case G_FADD: + case G_FMUL: + case G_FSUB: + case G_FNEG: + case G_FABS: + case G_FCANONICALIZE: + case G_FDIV: + case G_FREM: + case G_FMA: + case G_FMAD: + case G_FPOW: + case G_FEXP: + case G_FEXP2: + case G_FLOG: + case G_FLOG2: + case G_FLOG10: + case G_FNEARBYINT: + case G_FCEIL: + case G_FFLOOR: + case G_FRINT: + case G_INTRINSIC_ROUND: + case G_INTRINSIC_ROUNDEVEN: + case G_INTRINSIC_TRUNC: + case G_FCOS: + case G_FSIN: + case G_FSQRT: + case G_BSWAP: + case G_BITREVERSE: + case G_SDIV: + case G_UDIV: + case G_SREM: + case G_UREM: + case G_SMIN: + case G_SMAX: + case G_UMIN: + case G_UMAX: + case G_FMINNUM: + case G_FMAXNUM: + case G_FMINNUM_IEEE: + case G_FMAXNUM_IEEE: + case G_FMINIMUM: + case G_FMAXIMUM: + case G_FSHL: + case G_FSHR: + case G_FREEZE: + case G_SADDSAT: + case G_SSUBSAT: + case G_UADDSAT: + case G_USUBSAT: + return reduceOperationWidth(MI, TypeIdx, NarrowTy); + case G_SHL: + case G_LSHR: + case G_ASHR: + case G_SSHLSAT: + case G_USHLSAT: + case G_CTLZ: + case G_CTLZ_ZERO_UNDEF: + case G_CTTZ: + case G_CTTZ_ZERO_UNDEF: + case G_CTPOP: + case G_FCOPYSIGN: + return fewerElementsVectorMultiEltType(MI, TypeIdx, NarrowTy); + case G_ZEXT: + case G_SEXT: + case G_ANYEXT: + case G_FPEXT: + case G_FPTRUNC: + case G_SITOFP: + case G_UITOFP: + case G_FPTOSI: + case G_FPTOUI: + case G_INTTOPTR: + case G_PTRTOINT: + case G_ADDRSPACE_CAST: + return fewerElementsVectorCasts(MI, TypeIdx, NarrowTy); + case G_ICMP: + case G_FCMP: + return fewerElementsVectorCmp(MI, TypeIdx, NarrowTy); + case G_SELECT: + return fewerElementsVectorSelect(MI, TypeIdx, NarrowTy); + case G_PHI: + return fewerElementsVectorPhi(MI, TypeIdx, NarrowTy); + case G_UNMERGE_VALUES: + return fewerElementsVectorUnmergeValues(MI, TypeIdx, NarrowTy); + case G_BUILD_VECTOR: + assert(TypeIdx == 0 && "not a vector type index"); + return fewerElementsVectorMerge(MI, TypeIdx, NarrowTy); + case G_CONCAT_VECTORS: + if (TypeIdx != 1) // TODO: This probably does work as expected already. + return UnableToLegalize; + return fewerElementsVectorMerge(MI, TypeIdx, NarrowTy); + case G_EXTRACT_VECTOR_ELT: + case G_INSERT_VECTOR_ELT: + return fewerElementsVectorExtractInsertVectorElt(MI, TypeIdx, NarrowTy); + case G_LOAD: + case G_STORE: + return reduceLoadStoreWidth(MI, TypeIdx, NarrowTy); + case G_SEXT_INREG: + return fewerElementsVectorSextInReg(MI, TypeIdx, NarrowTy); + default: + return UnableToLegalize; + } +} + +LegalizerHelper::LegalizeResult +LegalizerHelper::narrowScalarShiftByConstant(MachineInstr &MI, const APInt &Amt, + const LLT HalfTy, const LLT AmtTy) { + + Register InL = MRI.createGenericVirtualRegister(HalfTy); + Register InH = MRI.createGenericVirtualRegister(HalfTy); + MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1)); + + if (Amt.isNullValue()) { + MIRBuilder.buildMerge(MI.getOperand(0), {InL, InH}); + MI.eraseFromParent(); + return Legalized; + } + + LLT NVT = HalfTy; + unsigned NVTBits = HalfTy.getSizeInBits(); + unsigned VTBits = 2 * NVTBits; + + SrcOp Lo(Register(0)), Hi(Register(0)); + if (MI.getOpcode() == TargetOpcode::G_SHL) { + if (Amt.ugt(VTBits)) { + Lo = Hi = MIRBuilder.buildConstant(NVT, 0); + } else if (Amt.ugt(NVTBits)) { + Lo = MIRBuilder.buildConstant(NVT, 0); + Hi = MIRBuilder.buildShl(NVT, InL, + MIRBuilder.buildConstant(AmtTy, Amt - NVTBits)); + } else if (Amt == NVTBits) { + Lo = MIRBuilder.buildConstant(NVT, 0); + Hi = InL; + } else { + Lo = MIRBuilder.buildShl(NVT, InL, MIRBuilder.buildConstant(AmtTy, Amt)); + auto OrLHS = + MIRBuilder.buildShl(NVT, InH, MIRBuilder.buildConstant(AmtTy, Amt)); + auto OrRHS = MIRBuilder.buildLShr( + NVT, InL, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits)); + Hi = MIRBuilder.buildOr(NVT, OrLHS, OrRHS); + } + } else if (MI.getOpcode() == TargetOpcode::G_LSHR) { + if (Amt.ugt(VTBits)) { + Lo = Hi = MIRBuilder.buildConstant(NVT, 0); + } else if (Amt.ugt(NVTBits)) { + Lo = MIRBuilder.buildLShr(NVT, InH, + MIRBuilder.buildConstant(AmtTy, Amt - NVTBits)); + Hi = MIRBuilder.buildConstant(NVT, 0); + } else if (Amt == NVTBits) { + Lo = InH; + Hi = MIRBuilder.buildConstant(NVT, 0); + } else { + auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt); + + auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst); + auto OrRHS = MIRBuilder.buildShl( + NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits)); + + Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS); + Hi = MIRBuilder.buildLShr(NVT, InH, ShiftAmtConst); + } + } else { + if (Amt.ugt(VTBits)) { + Hi = Lo = MIRBuilder.buildAShr( + NVT, InH, MIRBuilder.buildConstant(AmtTy, NVTBits - 1)); + } else if (Amt.ugt(NVTBits)) { + Lo = MIRBuilder.buildAShr(NVT, InH, + MIRBuilder.buildConstant(AmtTy, Amt - NVTBits)); + Hi = MIRBuilder.buildAShr(NVT, InH, + MIRBuilder.buildConstant(AmtTy, NVTBits - 1)); + } else if (Amt == NVTBits) { + Lo = InH; + Hi = MIRBuilder.buildAShr(NVT, InH, + MIRBuilder.buildConstant(AmtTy, NVTBits - 1)); + } else { + auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt); + + auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst); + auto OrRHS = MIRBuilder.buildShl( + NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits)); + + Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS); + Hi = MIRBuilder.buildAShr(NVT, InH, ShiftAmtConst); + } + } + + MIRBuilder.buildMerge(MI.getOperand(0), {Lo, Hi}); + MI.eraseFromParent(); + + return Legalized; +} + +// TODO: Optimize if constant shift amount. +LegalizerHelper::LegalizeResult +LegalizerHelper::narrowScalarShift(MachineInstr &MI, unsigned TypeIdx, + LLT RequestedTy) { + if (TypeIdx == 1) { + Observer.changingInstr(MI); + narrowScalarSrc(MI, RequestedTy, 2); + Observer.changedInstr(MI); + return Legalized; + } + + Register DstReg = MI.getOperand(0).getReg(); + LLT DstTy = MRI.getType(DstReg); + if (DstTy.isVector()) + return UnableToLegalize; + + Register Amt = MI.getOperand(2).getReg(); + LLT ShiftAmtTy = MRI.getType(Amt); + const unsigned DstEltSize = DstTy.getScalarSizeInBits(); + if (DstEltSize % 2 != 0) + return UnableToLegalize; + + // Ignore the input type. We can only go to exactly half the size of the + // input. If that isn't small enough, the resulting pieces will be further + // legalized. + const unsigned NewBitSize = DstEltSize / 2; + const LLT HalfTy = LLT::scalar(NewBitSize); + const LLT CondTy = LLT::scalar(1); + + if (const MachineInstr *KShiftAmt = + getOpcodeDef(TargetOpcode::G_CONSTANT, Amt, MRI)) { + return narrowScalarShiftByConstant( + MI, KShiftAmt->getOperand(1).getCImm()->getValue(), HalfTy, ShiftAmtTy); + } + + // TODO: Expand with known bits. + + // Handle the fully general expansion by an unknown amount. + auto NewBits = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize); + + Register InL = MRI.createGenericVirtualRegister(HalfTy); + Register InH = MRI.createGenericVirtualRegister(HalfTy); + MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1)); + + auto AmtExcess = MIRBuilder.buildSub(ShiftAmtTy, Amt, NewBits); + auto AmtLack = MIRBuilder.buildSub(ShiftAmtTy, NewBits, Amt); + + auto Zero = MIRBuilder.buildConstant(ShiftAmtTy, 0); + auto IsShort = MIRBuilder.buildICmp(ICmpInst::ICMP_ULT, CondTy, Amt, NewBits); + auto IsZero = MIRBuilder.buildICmp(ICmpInst::ICMP_EQ, CondTy, Amt, Zero); + + Register ResultRegs[2]; + switch (MI.getOpcode()) { + case TargetOpcode::G_SHL: { + // Short: ShAmt < NewBitSize + auto LoS = MIRBuilder.buildShl(HalfTy, InL, Amt); + + auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, AmtLack); + auto HiOr = MIRBuilder.buildShl(HalfTy, InH, Amt); + auto HiS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr); + + // Long: ShAmt >= NewBitSize + auto LoL = MIRBuilder.buildConstant(HalfTy, 0); // Lo part is zero. + auto HiL = MIRBuilder.buildShl(HalfTy, InL, AmtExcess); // Hi from Lo part. + + auto Lo = MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL); + auto Hi = MIRBuilder.buildSelect( + HalfTy, IsZero, InH, MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL)); + + ResultRegs[0] = Lo.getReg(0); + ResultRegs[1] = Hi.getReg(0); + break; + } + case TargetOpcode::G_LSHR: + case TargetOpcode::G_ASHR: { + // Short: ShAmt < NewBitSize + auto HiS = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy}, {InH, Amt}); + + auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, Amt); + auto HiOr = MIRBuilder.buildShl(HalfTy, InH, AmtLack); + auto LoS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr); + + // Long: ShAmt >= NewBitSize + MachineInstrBuilder HiL; + if (MI.getOpcode() == TargetOpcode::G_LSHR) { + HiL = MIRBuilder.buildConstant(HalfTy, 0); // Hi part is zero. + } else { + auto ShiftAmt = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize - 1); + HiL = MIRBuilder.buildAShr(HalfTy, InH, ShiftAmt); // Sign of Hi part. + } + auto LoL = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy}, + {InH, AmtExcess}); // Lo from Hi part. + + auto Lo = MIRBuilder.buildSelect( + HalfTy, IsZero, InL, MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL)); + + auto Hi = MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL); + + ResultRegs[0] = Lo.getReg(0); + ResultRegs[1] = Hi.getReg(0); + break; + } + default: + llvm_unreachable("not a shift"); + } + + MIRBuilder.buildMerge(DstReg, ResultRegs); + MI.eraseFromParent(); + return Legalized; +} + +LegalizerHelper::LegalizeResult +LegalizerHelper::moreElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx, + LLT MoreTy) { + assert(TypeIdx == 0 && "Expecting only Idx 0"); + + Observer.changingInstr(MI); + for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) { + MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB(); + MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); + moreElementsVectorSrc(MI, MoreTy, I); + } + + MachineBasicBlock &MBB = *MI.getParent(); + MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI()); + moreElementsVectorDst(MI, MoreTy, 0); + Observer.changedInstr(MI); + return Legalized; +} + +LegalizerHelper::LegalizeResult +LegalizerHelper::moreElementsVector(MachineInstr &MI, unsigned TypeIdx, + LLT MoreTy) { + unsigned Opc = MI.getOpcode(); + switch (Opc) { + case TargetOpcode::G_IMPLICIT_DEF: + case TargetOpcode::G_LOAD: { + if (TypeIdx != 0) + return UnableToLegalize; + Observer.changingInstr(MI); + moreElementsVectorDst(MI, MoreTy, 0); + Observer.changedInstr(MI); + return Legalized; + } + case TargetOpcode::G_STORE: + if (TypeIdx != 0) + return UnableToLegalize; + Observer.changingInstr(MI); + moreElementsVectorSrc(MI, MoreTy, 0); + Observer.changedInstr(MI); + return Legalized; + case TargetOpcode::G_AND: + case TargetOpcode::G_OR: + case TargetOpcode::G_XOR: + case TargetOpcode::G_SMIN: + case TargetOpcode::G_SMAX: + case TargetOpcode::G_UMIN: + case TargetOpcode::G_UMAX: + case TargetOpcode::G_FMINNUM: + case TargetOpcode::G_FMAXNUM: + case TargetOpcode::G_FMINNUM_IEEE: + case TargetOpcode::G_FMAXNUM_IEEE: + case TargetOpcode::G_FMINIMUM: + case TargetOpcode::G_FMAXIMUM: { + Observer.changingInstr(MI); + moreElementsVectorSrc(MI, MoreTy, 1); + moreElementsVectorSrc(MI, MoreTy, 2); + moreElementsVectorDst(MI, MoreTy, 0); + Observer.changedInstr(MI); + return Legalized; + } + case TargetOpcode::G_EXTRACT: + if (TypeIdx != 1) + return UnableToLegalize; + Observer.changingInstr(MI); + moreElementsVectorSrc(MI, MoreTy, 1); + Observer.changedInstr(MI); + return Legalized; + case TargetOpcode::G_INSERT: + case TargetOpcode::G_FREEZE: + if (TypeIdx != 0) + return UnableToLegalize; + Observer.changingInstr(MI); + moreElementsVectorSrc(MI, MoreTy, 1); + moreElementsVectorDst(MI, MoreTy, 0); + Observer.changedInstr(MI); + return Legalized; + case TargetOpcode::G_SELECT: + if (TypeIdx != 0) + return UnableToLegalize; + if (MRI.getType(MI.getOperand(1).getReg()).isVector()) + return UnableToLegalize; + + Observer.changingInstr(MI); + moreElementsVectorSrc(MI, MoreTy, 2); + moreElementsVectorSrc(MI, MoreTy, 3); + moreElementsVectorDst(MI, MoreTy, 0); + Observer.changedInstr(MI); + return Legalized; + case TargetOpcode::G_UNMERGE_VALUES: { + if (TypeIdx != 1) + return UnableToLegalize; + + LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); + int NumDst = MI.getNumOperands() - 1; + moreElementsVectorSrc(MI, MoreTy, NumDst); + + auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES); + for (int I = 0; I != NumDst; ++I) + MIB.addDef(MI.getOperand(I).getReg()); + + int NewNumDst = MoreTy.getSizeInBits() / DstTy.getSizeInBits(); + for (int I = NumDst; I != NewNumDst; ++I) + MIB.addDef(MRI.createGenericVirtualRegister(DstTy)); + + MIB.addUse(MI.getOperand(NumDst).getReg()); + MI.eraseFromParent(); + return Legalized; + } + case TargetOpcode::G_PHI: + return moreElementsVectorPhi(MI, TypeIdx, MoreTy); + default: + return UnableToLegalize; + } +} + +void LegalizerHelper::multiplyRegisters(SmallVectorImpl<Register> &DstRegs, + ArrayRef<Register> Src1Regs, + ArrayRef<Register> Src2Regs, + LLT NarrowTy) { + MachineIRBuilder &B = MIRBuilder; + unsigned SrcParts = Src1Regs.size(); + unsigned DstParts = DstRegs.size(); + + unsigned DstIdx = 0; // Low bits of the result. + Register FactorSum = + B.buildMul(NarrowTy, Src1Regs[DstIdx], Src2Regs[DstIdx]).getReg(0); + DstRegs[DstIdx] = FactorSum; + + unsigned CarrySumPrevDstIdx; + SmallVector<Register, 4> Factors; + + for (DstIdx = 1; DstIdx < DstParts; DstIdx++) { + // Collect low parts of muls for DstIdx. + for (unsigned i = DstIdx + 1 < SrcParts ? 0 : DstIdx - SrcParts + 1; + i <= std::min(DstIdx, SrcParts - 1); ++i) { + MachineInstrBuilder Mul = + B.buildMul(NarrowTy, Src1Regs[DstIdx - i], Src2Regs[i]); + Factors.push_back(Mul.getReg(0)); + } + // Collect high parts of muls from previous DstIdx. + for (unsigned i = DstIdx < SrcParts ? 0 : DstIdx - SrcParts; + i <= std::min(DstIdx - 1, SrcParts - 1); ++i) { + MachineInstrBuilder Umulh = + B.buildUMulH(NarrowTy, Src1Regs[DstIdx - 1 - i], Src2Regs[i]); + Factors.push_back(Umulh.getReg(0)); + } + // Add CarrySum from additions calculated for previous DstIdx. + if (DstIdx != 1) { + Factors.push_back(CarrySumPrevDstIdx); + } + + Register CarrySum; + // Add all factors and accumulate all carries into CarrySum. + if (DstIdx != DstParts - 1) { + MachineInstrBuilder Uaddo = + B.buildUAddo(NarrowTy, LLT::scalar(1), Factors[0], Factors[1]); + FactorSum = Uaddo.getReg(0); + CarrySum = B.buildZExt(NarrowTy, Uaddo.getReg(1)).getReg(0); + for (unsigned i = 2; i < Factors.size(); ++i) { + MachineInstrBuilder Uaddo = + B.buildUAddo(NarrowTy, LLT::scalar(1), FactorSum, Factors[i]); + FactorSum = Uaddo.getReg(0); + MachineInstrBuilder Carry = B.buildZExt(NarrowTy, Uaddo.getReg(1)); + CarrySum = B.buildAdd(NarrowTy, CarrySum, Carry).getReg(0); + } + } else { + // Since value for the next index is not calculated, neither is CarrySum. + FactorSum = B.buildAdd(NarrowTy, Factors[0], Factors[1]).getReg(0); + for (unsigned i = 2; i < Factors.size(); ++i) + FactorSum = B.buildAdd(NarrowTy, FactorSum, Factors[i]).getReg(0); + } + + CarrySumPrevDstIdx = CarrySum; + DstRegs[DstIdx] = FactorSum; + Factors.clear(); + } +} + +LegalizerHelper::LegalizeResult +LegalizerHelper::narrowScalarMul(MachineInstr &MI, LLT NarrowTy) { + Register DstReg = MI.getOperand(0).getReg(); + Register Src1 = MI.getOperand(1).getReg(); + Register Src2 = MI.getOperand(2).getReg(); + + LLT Ty = MRI.getType(DstReg); + if (Ty.isVector()) + return UnableToLegalize; + + unsigned SrcSize = MRI.getType(Src1).getSizeInBits(); + unsigned DstSize = Ty.getSizeInBits(); + unsigned NarrowSize = NarrowTy.getSizeInBits(); + if (DstSize % NarrowSize != 0 || SrcSize % NarrowSize != 0) + return UnableToLegalize; + + unsigned NumDstParts = DstSize / NarrowSize; + unsigned NumSrcParts = SrcSize / NarrowSize; + bool IsMulHigh = MI.getOpcode() == TargetOpcode::G_UMULH; + unsigned DstTmpParts = NumDstParts * (IsMulHigh ? 2 : 1); + + SmallVector<Register, 2> Src1Parts, Src2Parts; + SmallVector<Register, 2> DstTmpRegs(DstTmpParts); + extractParts(Src1, NarrowTy, NumSrcParts, Src1Parts); + extractParts(Src2, NarrowTy, NumSrcParts, Src2Parts); + multiplyRegisters(DstTmpRegs, Src1Parts, Src2Parts, NarrowTy); + + // Take only high half of registers if this is high mul. + ArrayRef<Register> DstRegs( + IsMulHigh ? &DstTmpRegs[DstTmpParts / 2] : &DstTmpRegs[0], NumDstParts); + MIRBuilder.buildMerge(DstReg, DstRegs); + MI.eraseFromParent(); + return Legalized; +} + +LegalizerHelper::LegalizeResult +LegalizerHelper::narrowScalarExtract(MachineInstr &MI, unsigned TypeIdx, + LLT NarrowTy) { + if (TypeIdx != 1) + return UnableToLegalize; + + uint64_t NarrowSize = NarrowTy.getSizeInBits(); + + int64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); + // FIXME: add support for when SizeOp1 isn't an exact multiple of + // NarrowSize. + if (SizeOp1 % NarrowSize != 0) + return UnableToLegalize; + int NumParts = SizeOp1 / NarrowSize; + + SmallVector<Register, 2> SrcRegs, DstRegs; + SmallVector<uint64_t, 2> Indexes; + extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs); + + Register OpReg = MI.getOperand(0).getReg(); + uint64_t OpStart = MI.getOperand(2).getImm(); + uint64_t OpSize = MRI.getType(OpReg).getSizeInBits(); + for (int i = 0; i < NumParts; ++i) { + unsigned SrcStart = i * NarrowSize; + + if (SrcStart + NarrowSize <= OpStart || SrcStart >= OpStart + OpSize) { + // No part of the extract uses this subregister, ignore it. + continue; + } else if (SrcStart == OpStart && NarrowTy == MRI.getType(OpReg)) { + // The entire subregister is extracted, forward the value. + DstRegs.push_back(SrcRegs[i]); + continue; + } + + // OpSegStart is where this destination segment would start in OpReg if it + // extended infinitely in both directions. + int64_t ExtractOffset; + uint64_t SegSize; + if (OpStart < SrcStart) { + ExtractOffset = 0; + SegSize = std::min(NarrowSize, OpStart + OpSize - SrcStart); + } else { + ExtractOffset = OpStart - SrcStart; + SegSize = std::min(SrcStart + NarrowSize - OpStart, OpSize); + } + + Register SegReg = SrcRegs[i]; + if (ExtractOffset != 0 || SegSize != NarrowSize) { + // A genuine extract is needed. + SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize)); + MIRBuilder.buildExtract(SegReg, SrcRegs[i], ExtractOffset); + } + + DstRegs.push_back(SegReg); + } + + Register DstReg = MI.getOperand(0).getReg(); + if (MRI.getType(DstReg).isVector()) + MIRBuilder.buildBuildVector(DstReg, DstRegs); + else if (DstRegs.size() > 1) + MIRBuilder.buildMerge(DstReg, DstRegs); + else + MIRBuilder.buildCopy(DstReg, DstRegs[0]); + MI.eraseFromParent(); + return Legalized; +} + +LegalizerHelper::LegalizeResult +LegalizerHelper::narrowScalarInsert(MachineInstr &MI, unsigned TypeIdx, + LLT NarrowTy) { + // FIXME: Don't know how to handle secondary types yet. + if (TypeIdx != 0) + return UnableToLegalize; + + uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); + uint64_t NarrowSize = NarrowTy.getSizeInBits(); + + // FIXME: add support for when SizeOp0 isn't an exact multiple of + // NarrowSize. + if (SizeOp0 % NarrowSize != 0) + return UnableToLegalize; + + int NumParts = SizeOp0 / NarrowSize; + + SmallVector<Register, 2> SrcRegs, DstRegs; + SmallVector<uint64_t, 2> Indexes; + extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs); + + Register OpReg = MI.getOperand(2).getReg(); + uint64_t OpStart = MI.getOperand(3).getImm(); + uint64_t OpSize = MRI.getType(OpReg).getSizeInBits(); + for (int i = 0; i < NumParts; ++i) { + unsigned DstStart = i * NarrowSize; + + if (DstStart + NarrowSize <= OpStart || DstStart >= OpStart + OpSize) { + // No part of the insert affects this subregister, forward the original. + DstRegs.push_back(SrcRegs[i]); + continue; + } else if (DstStart == OpStart && NarrowTy == MRI.getType(OpReg)) { + // The entire subregister is defined by this insert, forward the new + // value. + DstRegs.push_back(OpReg); + continue; + } + + // OpSegStart is where this destination segment would start in OpReg if it + // extended infinitely in both directions. + int64_t ExtractOffset, InsertOffset; + uint64_t SegSize; + if (OpStart < DstStart) { + InsertOffset = 0; + ExtractOffset = DstStart - OpStart; + SegSize = std::min(NarrowSize, OpStart + OpSize - DstStart); + } else { + InsertOffset = OpStart - DstStart; + ExtractOffset = 0; + SegSize = + std::min(NarrowSize - InsertOffset, OpStart + OpSize - DstStart); + } + + Register SegReg = OpReg; + if (ExtractOffset != 0 || SegSize != OpSize) { + // A genuine extract is needed. + SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize)); + MIRBuilder.buildExtract(SegReg, OpReg, ExtractOffset); + } + + Register DstReg = MRI.createGenericVirtualRegister(NarrowTy); + MIRBuilder.buildInsert(DstReg, SrcRegs[i], SegReg, InsertOffset); + DstRegs.push_back(DstReg); + } + + assert(DstRegs.size() == (unsigned)NumParts && "not all parts covered"); + Register DstReg = MI.getOperand(0).getReg(); + if(MRI.getType(DstReg).isVector()) + MIRBuilder.buildBuildVector(DstReg, DstRegs); + else + MIRBuilder.buildMerge(DstReg, DstRegs); + MI.eraseFromParent(); + return Legalized; +} + +LegalizerHelper::LegalizeResult +LegalizerHelper::narrowScalarBasic(MachineInstr &MI, unsigned TypeIdx, + LLT NarrowTy) { + Register DstReg = MI.getOperand(0).getReg(); + LLT DstTy = MRI.getType(DstReg); + + assert(MI.getNumOperands() == 3 && TypeIdx == 0); + + SmallVector<Register, 4> DstRegs, DstLeftoverRegs; + SmallVector<Register, 4> Src0Regs, Src0LeftoverRegs; + SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs; + LLT LeftoverTy; + if (!extractParts(MI.getOperand(1).getReg(), DstTy, NarrowTy, LeftoverTy, + Src0Regs, Src0LeftoverRegs)) + return UnableToLegalize; + + LLT Unused; + if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, Unused, + Src1Regs, Src1LeftoverRegs)) + llvm_unreachable("inconsistent extractParts result"); + + for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) { + auto Inst = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy}, + {Src0Regs[I], Src1Regs[I]}); + DstRegs.push_back(Inst.getReg(0)); + } + + for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) { + auto Inst = MIRBuilder.buildInstr( + MI.getOpcode(), + {LeftoverTy}, {Src0LeftoverRegs[I], Src1LeftoverRegs[I]}); + DstLeftoverRegs.push_back(Inst.getReg(0)); + } + + insertParts(DstReg, DstTy, NarrowTy, DstRegs, + LeftoverTy, DstLeftoverRegs); + + MI.eraseFromParent(); + return Legalized; +} + +LegalizerHelper::LegalizeResult +LegalizerHelper::narrowScalarExt(MachineInstr &MI, unsigned TypeIdx, + LLT NarrowTy) { + if (TypeIdx != 0) + return UnableToLegalize; + + Register DstReg = MI.getOperand(0).getReg(); + Register SrcReg = MI.getOperand(1).getReg(); + + LLT DstTy = MRI.getType(DstReg); + if (DstTy.isVector()) + return UnableToLegalize; + + SmallVector<Register, 8> Parts; + LLT GCDTy = extractGCDType(Parts, DstTy, NarrowTy, SrcReg); + LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts, MI.getOpcode()); + buildWidenedRemergeToDst(DstReg, LCMTy, Parts); + + MI.eraseFromParent(); + return Legalized; +} + +LegalizerHelper::LegalizeResult +LegalizerHelper::narrowScalarSelect(MachineInstr &MI, unsigned TypeIdx, + LLT NarrowTy) { + if (TypeIdx != 0) + return UnableToLegalize; + + Register CondReg = MI.getOperand(1).getReg(); + LLT CondTy = MRI.getType(CondReg); + if (CondTy.isVector()) // TODO: Handle vselect + return UnableToLegalize; + + Register DstReg = MI.getOperand(0).getReg(); + LLT DstTy = MRI.getType(DstReg); + + SmallVector<Register, 4> DstRegs, DstLeftoverRegs; + SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs; + SmallVector<Register, 4> Src2Regs, Src2LeftoverRegs; + LLT LeftoverTy; + if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, LeftoverTy, + Src1Regs, Src1LeftoverRegs)) + return UnableToLegalize; + + LLT Unused; + if (!extractParts(MI.getOperand(3).getReg(), DstTy, NarrowTy, Unused, + Src2Regs, Src2LeftoverRegs)) + llvm_unreachable("inconsistent extractParts result"); + + for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) { + auto Select = MIRBuilder.buildSelect(NarrowTy, + CondReg, Src1Regs[I], Src2Regs[I]); + DstRegs.push_back(Select.getReg(0)); + } + + for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) { + auto Select = MIRBuilder.buildSelect( + LeftoverTy, CondReg, Src1LeftoverRegs[I], Src2LeftoverRegs[I]); + DstLeftoverRegs.push_back(Select.getReg(0)); + } + + insertParts(DstReg, DstTy, NarrowTy, DstRegs, + LeftoverTy, DstLeftoverRegs); + + MI.eraseFromParent(); + return Legalized; +} + +LegalizerHelper::LegalizeResult +LegalizerHelper::narrowScalarCTLZ(MachineInstr &MI, unsigned TypeIdx, + LLT NarrowTy) { + if (TypeIdx != 1) + return UnableToLegalize; + + Register DstReg = MI.getOperand(0).getReg(); + Register SrcReg = MI.getOperand(1).getReg(); + LLT DstTy = MRI.getType(DstReg); + LLT SrcTy = MRI.getType(SrcReg); + unsigned NarrowSize = NarrowTy.getSizeInBits(); + + if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) { + const bool IsUndef = MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF; + + MachineIRBuilder &B = MIRBuilder; + auto UnmergeSrc = B.buildUnmerge(NarrowTy, SrcReg); + // ctlz(Hi:Lo) -> Hi == 0 ? (NarrowSize + ctlz(Lo)) : ctlz(Hi) + auto C_0 = B.buildConstant(NarrowTy, 0); + auto HiIsZero = B.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1), + UnmergeSrc.getReg(1), C_0); + auto LoCTLZ = IsUndef ? + B.buildCTLZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(0)) : + B.buildCTLZ(DstTy, UnmergeSrc.getReg(0)); + auto C_NarrowSize = B.buildConstant(DstTy, NarrowSize); + auto HiIsZeroCTLZ = B.buildAdd(DstTy, LoCTLZ, C_NarrowSize); + auto HiCTLZ = B.buildCTLZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(1)); + B.buildSelect(DstReg, HiIsZero, HiIsZeroCTLZ, HiCTLZ); + + MI.eraseFromParent(); + return Legalized; + } + + return UnableToLegalize; +} + +LegalizerHelper::LegalizeResult +LegalizerHelper::narrowScalarCTTZ(MachineInstr &MI, unsigned TypeIdx, + LLT NarrowTy) { + if (TypeIdx != 1) + return UnableToLegalize; + + Register DstReg = MI.getOperand(0).getReg(); + Register SrcReg = MI.getOperand(1).getReg(); + LLT DstTy = MRI.getType(DstReg); + LLT SrcTy = MRI.getType(SrcReg); + unsigned NarrowSize = NarrowTy.getSizeInBits(); + + if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) { + const bool IsUndef = MI.getOpcode() == TargetOpcode::G_CTTZ_ZERO_UNDEF; + + MachineIRBuilder &B = MIRBuilder; + auto UnmergeSrc = B.buildUnmerge(NarrowTy, SrcReg); + // cttz(Hi:Lo) -> Lo == 0 ? (cttz(Hi) + NarrowSize) : cttz(Lo) + auto C_0 = B.buildConstant(NarrowTy, 0); + auto LoIsZero = B.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1), + UnmergeSrc.getReg(0), C_0); + auto HiCTTZ = IsUndef ? + B.buildCTTZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(1)) : + B.buildCTTZ(DstTy, UnmergeSrc.getReg(1)); + auto C_NarrowSize = B.buildConstant(DstTy, NarrowSize); + auto LoIsZeroCTTZ = B.buildAdd(DstTy, HiCTTZ, C_NarrowSize); + auto LoCTTZ = B.buildCTTZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(0)); + B.buildSelect(DstReg, LoIsZero, LoIsZeroCTTZ, LoCTTZ); + + MI.eraseFromParent(); + return Legalized; + } + + return UnableToLegalize; +} + +LegalizerHelper::LegalizeResult +LegalizerHelper::narrowScalarCTPOP(MachineInstr &MI, unsigned TypeIdx, + LLT NarrowTy) { + if (TypeIdx != 1) + return UnableToLegalize; + + Register DstReg = MI.getOperand(0).getReg(); + LLT DstTy = MRI.getType(DstReg); + LLT SrcTy = MRI.getType(MI.getOperand(1).getReg()); + unsigned NarrowSize = NarrowTy.getSizeInBits(); + + if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) { + auto UnmergeSrc = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1)); + + auto LoCTPOP = MIRBuilder.buildCTPOP(DstTy, UnmergeSrc.getReg(0)); + auto HiCTPOP = MIRBuilder.buildCTPOP(DstTy, UnmergeSrc.getReg(1)); + MIRBuilder.buildAdd(DstReg, HiCTPOP, LoCTPOP); + + MI.eraseFromParent(); + return Legalized; + } + + return UnableToLegalize; +} + +LegalizerHelper::LegalizeResult +LegalizerHelper::lowerBitCount(MachineInstr &MI) { + unsigned Opc = MI.getOpcode(); + const auto &TII = MIRBuilder.getTII(); + auto isSupported = [this](const LegalityQuery &Q) { + auto QAction = LI.getAction(Q).Action; + return QAction == Legal || QAction == Libcall || QAction == Custom; + }; + switch (Opc) { + default: + return UnableToLegalize; + case TargetOpcode::G_CTLZ_ZERO_UNDEF: { + // This trivially expands to CTLZ. + Observer.changingInstr(MI); + MI.setDesc(TII.get(TargetOpcode::G_CTLZ)); + Observer.changedInstr(MI); + return Legalized; + } + case TargetOpcode::G_CTLZ: { + Register DstReg = MI.getOperand(0).getReg(); + Register SrcReg = MI.getOperand(1).getReg(); + LLT DstTy = MRI.getType(DstReg); + LLT SrcTy = MRI.getType(SrcReg); + unsigned Len = SrcTy.getSizeInBits(); + + if (isSupported({TargetOpcode::G_CTLZ_ZERO_UNDEF, {DstTy, SrcTy}})) { + // If CTLZ_ZERO_UNDEF is supported, emit that and a select for zero. + auto CtlzZU = MIRBuilder.buildCTLZ_ZERO_UNDEF(DstTy, SrcReg); + auto ZeroSrc = MIRBuilder.buildConstant(SrcTy, 0); + auto ICmp = MIRBuilder.buildICmp( + CmpInst::ICMP_EQ, SrcTy.changeElementSize(1), SrcReg, ZeroSrc); + auto LenConst = MIRBuilder.buildConstant(DstTy, Len); + MIRBuilder.buildSelect(DstReg, ICmp, LenConst, CtlzZU); + MI.eraseFromParent(); + return Legalized; + } + // for now, we do this: + // NewLen = NextPowerOf2(Len); + // x = x | (x >> 1); + // x = x | (x >> 2); + // ... + // x = x | (x >>16); + // x = x | (x >>32); // for 64-bit input + // Upto NewLen/2 + // return Len - popcount(x); + // + // Ref: "Hacker's Delight" by Henry Warren + Register Op = SrcReg; + unsigned NewLen = PowerOf2Ceil(Len); + for (unsigned i = 0; (1U << i) <= (NewLen / 2); ++i) { + auto MIBShiftAmt = MIRBuilder.buildConstant(SrcTy, 1ULL << i); + auto MIBOp = MIRBuilder.buildOr( + SrcTy, Op, MIRBuilder.buildLShr(SrcTy, Op, MIBShiftAmt)); + Op = MIBOp.getReg(0); + } + auto MIBPop = MIRBuilder.buildCTPOP(DstTy, Op); + MIRBuilder.buildSub(MI.getOperand(0), MIRBuilder.buildConstant(DstTy, Len), + MIBPop); + MI.eraseFromParent(); + return Legalized; + } + case TargetOpcode::G_CTTZ_ZERO_UNDEF: { + // This trivially expands to CTTZ. + Observer.changingInstr(MI); + MI.setDesc(TII.get(TargetOpcode::G_CTTZ)); + Observer.changedInstr(MI); + return Legalized; + } + case TargetOpcode::G_CTTZ: { + Register DstReg = MI.getOperand(0).getReg(); + Register SrcReg = MI.getOperand(1).getReg(); + LLT DstTy = MRI.getType(DstReg); + LLT SrcTy = MRI.getType(SrcReg); + + unsigned Len = SrcTy.getSizeInBits(); + if (isSupported({TargetOpcode::G_CTTZ_ZERO_UNDEF, {DstTy, SrcTy}})) { + // If CTTZ_ZERO_UNDEF is legal or custom, emit that and a select with + // zero. + auto CttzZU = MIRBuilder.buildCTTZ_ZERO_UNDEF(DstTy, SrcReg); + auto Zero = MIRBuilder.buildConstant(SrcTy, 0); + auto ICmp = MIRBuilder.buildICmp( + CmpInst::ICMP_EQ, DstTy.changeElementSize(1), SrcReg, Zero); + auto LenConst = MIRBuilder.buildConstant(DstTy, Len); + MIRBuilder.buildSelect(DstReg, ICmp, LenConst, CttzZU); + MI.eraseFromParent(); + return Legalized; + } + // for now, we use: { return popcount(~x & (x - 1)); } + // unless the target has ctlz but not ctpop, in which case we use: + // { return 32 - nlz(~x & (x-1)); } + // Ref: "Hacker's Delight" by Henry Warren + auto MIBCstNeg1 = MIRBuilder.buildConstant(SrcTy, -1); + auto MIBNot = MIRBuilder.buildXor(SrcTy, SrcReg, MIBCstNeg1); + auto MIBTmp = MIRBuilder.buildAnd( + SrcTy, MIBNot, MIRBuilder.buildAdd(SrcTy, SrcReg, MIBCstNeg1)); + if (!isSupported({TargetOpcode::G_CTPOP, {SrcTy, SrcTy}}) && + isSupported({TargetOpcode::G_CTLZ, {SrcTy, SrcTy}})) { + auto MIBCstLen = MIRBuilder.buildConstant(SrcTy, Len); + MIRBuilder.buildSub(MI.getOperand(0), MIBCstLen, + MIRBuilder.buildCTLZ(SrcTy, MIBTmp)); + MI.eraseFromParent(); + return Legalized; + } + MI.setDesc(TII.get(TargetOpcode::G_CTPOP)); + MI.getOperand(1).setReg(MIBTmp.getReg(0)); + return Legalized; + } + case TargetOpcode::G_CTPOP: { + Register SrcReg = MI.getOperand(1).getReg(); + LLT Ty = MRI.getType(SrcReg); + unsigned Size = Ty.getSizeInBits(); + MachineIRBuilder &B = MIRBuilder; + + // Count set bits in blocks of 2 bits. Default approach would be + // B2Count = { val & 0x55555555 } + { (val >> 1) & 0x55555555 } + // We use following formula instead: + // B2Count = val - { (val >> 1) & 0x55555555 } + // since it gives same result in blocks of 2 with one instruction less. + auto C_1 = B.buildConstant(Ty, 1); + auto B2Set1LoTo1Hi = B.buildLShr(Ty, SrcReg, C_1); + APInt B2Mask1HiTo0 = APInt::getSplat(Size, APInt(8, 0x55)); + auto C_B2Mask1HiTo0 = B.buildConstant(Ty, B2Mask1HiTo0); + auto B2Count1Hi = B.buildAnd(Ty, B2Set1LoTo1Hi, C_B2Mask1HiTo0); + auto B2Count = B.buildSub(Ty, SrcReg, B2Count1Hi); + + // In order to get count in blocks of 4 add values from adjacent block of 2. + // B4Count = { B2Count & 0x33333333 } + { (B2Count >> 2) & 0x33333333 } + auto C_2 = B.buildConstant(Ty, 2); + auto B4Set2LoTo2Hi = B.buildLShr(Ty, B2Count, C_2); + APInt B4Mask2HiTo0 = APInt::getSplat(Size, APInt(8, 0x33)); + auto C_B4Mask2HiTo0 = B.buildConstant(Ty, B4Mask2HiTo0); + auto B4HiB2Count = B.buildAnd(Ty, B4Set2LoTo2Hi, C_B4Mask2HiTo0); + auto B4LoB2Count = B.buildAnd(Ty, B2Count, C_B4Mask2HiTo0); + auto B4Count = B.buildAdd(Ty, B4HiB2Count, B4LoB2Count); + + // For count in blocks of 8 bits we don't have to mask high 4 bits before + // addition since count value sits in range {0,...,8} and 4 bits are enough + // to hold such binary values. After addition high 4 bits still hold count + // of set bits in high 4 bit block, set them to zero and get 8 bit result. + // B8Count = { B4Count + (B4Count >> 4) } & 0x0F0F0F0F + auto C_4 = B.buildConstant(Ty, 4); + auto B8HiB4Count = B.buildLShr(Ty, B4Count, C_4); + auto B8CountDirty4Hi = B.buildAdd(Ty, B8HiB4Count, B4Count); + APInt B8Mask4HiTo0 = APInt::getSplat(Size, APInt(8, 0x0F)); + auto C_B8Mask4HiTo0 = B.buildConstant(Ty, B8Mask4HiTo0); + auto B8Count = B.buildAnd(Ty, B8CountDirty4Hi, C_B8Mask4HiTo0); + + assert(Size<=128 && "Scalar size is too large for CTPOP lower algorithm"); + // 8 bits can hold CTPOP result of 128 bit int or smaller. Mul with this + // bitmask will set 8 msb in ResTmp to sum of all B8Counts in 8 bit blocks. + auto MulMask = B.buildConstant(Ty, APInt::getSplat(Size, APInt(8, 0x01))); + auto ResTmp = B.buildMul(Ty, B8Count, MulMask); + + // Shift count result from 8 high bits to low bits. + auto C_SizeM8 = B.buildConstant(Ty, Size - 8); + B.buildLShr(MI.getOperand(0).getReg(), ResTmp, C_SizeM8); + + MI.eraseFromParent(); + return Legalized; + } + } +} + +// Expand s32 = G_UITOFP s64 using bit operations to an IEEE float +// representation. +LegalizerHelper::LegalizeResult +LegalizerHelper::lowerU64ToF32BitOps(MachineInstr &MI) { + Register Dst = MI.getOperand(0).getReg(); + Register Src = MI.getOperand(1).getReg(); + const LLT S64 = LLT::scalar(64); + const LLT S32 = LLT::scalar(32); + const LLT S1 = LLT::scalar(1); + + assert(MRI.getType(Src) == S64 && MRI.getType(Dst) == S32); + + // unsigned cul2f(ulong u) { + // uint lz = clz(u); + // uint e = (u != 0) ? 127U + 63U - lz : 0; + // u = (u << lz) & 0x7fffffffffffffffUL; + // ulong t = u & 0xffffffffffUL; + // uint v = (e << 23) | (uint)(u >> 40); + // uint r = t > 0x8000000000UL ? 1U : (t == 0x8000000000UL ? v & 1U : 0U); + // return as_float(v + r); + // } + + auto Zero32 = MIRBuilder.buildConstant(S32, 0); + auto Zero64 = MIRBuilder.buildConstant(S64, 0); + + auto LZ = MIRBuilder.buildCTLZ_ZERO_UNDEF(S32, Src); + + auto K = MIRBuilder.buildConstant(S32, 127U + 63U); + auto Sub = MIRBuilder.buildSub(S32, K, LZ); + + auto NotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, Src, Zero64); + auto E = MIRBuilder.buildSelect(S32, NotZero, Sub, Zero32); + + auto Mask0 = MIRBuilder.buildConstant(S64, (-1ULL) >> 1); + auto ShlLZ = MIRBuilder.buildShl(S64, Src, LZ); + + auto U = MIRBuilder.buildAnd(S64, ShlLZ, Mask0); + + auto Mask1 = MIRBuilder.buildConstant(S64, 0xffffffffffULL); + auto T = MIRBuilder.buildAnd(S64, U, Mask1); + + auto UShl = MIRBuilder.buildLShr(S64, U, MIRBuilder.buildConstant(S64, 40)); + auto ShlE = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 23)); + auto V = MIRBuilder.buildOr(S32, ShlE, MIRBuilder.buildTrunc(S32, UShl)); + + auto C = MIRBuilder.buildConstant(S64, 0x8000000000ULL); + auto RCmp = MIRBuilder.buildICmp(CmpInst::ICMP_UGT, S1, T, C); + auto TCmp = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, T, C); + auto One = MIRBuilder.buildConstant(S32, 1); + + auto VTrunc1 = MIRBuilder.buildAnd(S32, V, One); + auto Select0 = MIRBuilder.buildSelect(S32, TCmp, VTrunc1, Zero32); + auto R = MIRBuilder.buildSelect(S32, RCmp, One, Select0); + MIRBuilder.buildAdd(Dst, V, R); + + MI.eraseFromParent(); + return Legalized; +} + +LegalizerHelper::LegalizeResult LegalizerHelper::lowerUITOFP(MachineInstr &MI) { + Register Dst = MI.getOperand(0).getReg(); + Register Src = MI.getOperand(1).getReg(); + LLT DstTy = MRI.getType(Dst); + LLT SrcTy = MRI.getType(Src); + + if (SrcTy == LLT::scalar(1)) { + auto True = MIRBuilder.buildFConstant(DstTy, 1.0); + auto False = MIRBuilder.buildFConstant(DstTy, 0.0); + MIRBuilder.buildSelect(Dst, Src, True, False); + MI.eraseFromParent(); + return Legalized; + } + + if (SrcTy != LLT::scalar(64)) + return UnableToLegalize; + + if (DstTy == LLT::scalar(32)) { + // TODO: SelectionDAG has several alternative expansions to port which may + // be more reasonble depending on the available instructions. If a target + // has sitofp, does not have CTLZ, or can efficiently use f64 as an + // intermediate type, this is probably worse. + return lowerU64ToF32BitOps(MI); + } + + return UnableToLegalize; +} + +LegalizerHelper::LegalizeResult LegalizerHelper::lowerSITOFP(MachineInstr &MI) { + Register Dst = MI.getOperand(0).getReg(); + Register Src = MI.getOperand(1).getReg(); + LLT DstTy = MRI.getType(Dst); + LLT SrcTy = MRI.getType(Src); + + const LLT S64 = LLT::scalar(64); + const LLT S32 = LLT::scalar(32); + const LLT S1 = LLT::scalar(1); + + if (SrcTy == S1) { + auto True = MIRBuilder.buildFConstant(DstTy, -1.0); + auto False = MIRBuilder.buildFConstant(DstTy, 0.0); + MIRBuilder.buildSelect(Dst, Src, True, False); + MI.eraseFromParent(); + return Legalized; + } + + if (SrcTy != S64) + return UnableToLegalize; + + if (DstTy == S32) { + // signed cl2f(long l) { + // long s = l >> 63; + // float r = cul2f((l + s) ^ s); + // return s ? -r : r; + // } + Register L = Src; + auto SignBit = MIRBuilder.buildConstant(S64, 63); + auto S = MIRBuilder.buildAShr(S64, L, SignBit); + + auto LPlusS = MIRBuilder.buildAdd(S64, L, S); + auto Xor = MIRBuilder.buildXor(S64, LPlusS, S); + auto R = MIRBuilder.buildUITOFP(S32, Xor); + + auto RNeg = MIRBuilder.buildFNeg(S32, R); + auto SignNotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, S, + MIRBuilder.buildConstant(S64, 0)); + MIRBuilder.buildSelect(Dst, SignNotZero, RNeg, R); + MI.eraseFromParent(); + return Legalized; + } + + return UnableToLegalize; +} + +LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPTOUI(MachineInstr &MI) { + Register Dst = MI.getOperand(0).getReg(); + Register Src = MI.getOperand(1).getReg(); + LLT DstTy = MRI.getType(Dst); + LLT SrcTy = MRI.getType(Src); + const LLT S64 = LLT::scalar(64); + const LLT S32 = LLT::scalar(32); + + if (SrcTy != S64 && SrcTy != S32) + return UnableToLegalize; + if (DstTy != S32 && DstTy != S64) + return UnableToLegalize; + + // FPTOSI gives same result as FPTOUI for positive signed integers. + // FPTOUI needs to deal with fp values that convert to unsigned integers + // greater or equal to 2^31 for float or 2^63 for double. For brevity 2^Exp. + + APInt TwoPExpInt = APInt::getSignMask(DstTy.getSizeInBits()); + APFloat TwoPExpFP(SrcTy.getSizeInBits() == 32 ? APFloat::IEEEsingle() + : APFloat::IEEEdouble(), + APInt::getNullValue(SrcTy.getSizeInBits())); + TwoPExpFP.convertFromAPInt(TwoPExpInt, false, APFloat::rmNearestTiesToEven); + + MachineInstrBuilder FPTOSI = MIRBuilder.buildFPTOSI(DstTy, Src); + + MachineInstrBuilder Threshold = MIRBuilder.buildFConstant(SrcTy, TwoPExpFP); + // For fp Value greater or equal to Threshold(2^Exp), we use FPTOSI on + // (Value - 2^Exp) and add 2^Exp by setting highest bit in result to 1. + MachineInstrBuilder FSub = MIRBuilder.buildFSub(SrcTy, Src, Threshold); + MachineInstrBuilder ResLowBits = MIRBuilder.buildFPTOSI(DstTy, FSub); + MachineInstrBuilder ResHighBit = MIRBuilder.buildConstant(DstTy, TwoPExpInt); + MachineInstrBuilder Res = MIRBuilder.buildXor(DstTy, ResLowBits, ResHighBit); + + const LLT S1 = LLT::scalar(1); + + MachineInstrBuilder FCMP = + MIRBuilder.buildFCmp(CmpInst::FCMP_ULT, S1, Src, Threshold); + MIRBuilder.buildSelect(Dst, FCMP, FPTOSI, Res); + + MI.eraseFromParent(); + return Legalized; +} + +LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPTOSI(MachineInstr &MI) { + Register Dst = MI.getOperand(0).getReg(); + Register Src = MI.getOperand(1).getReg(); + LLT DstTy = MRI.getType(Dst); + LLT SrcTy = MRI.getType(Src); + const LLT S64 = LLT::scalar(64); + const LLT S32 = LLT::scalar(32); + + // FIXME: Only f32 to i64 conversions are supported. + if (SrcTy.getScalarType() != S32 || DstTy.getScalarType() != S64) + return UnableToLegalize; + + // Expand f32 -> i64 conversion + // This algorithm comes from compiler-rt's implementation of fixsfdi: + // https://github.com/llvm/llvm-project/blob/master/compiler-rt/lib/builtins/fixsfdi.c + + unsigned SrcEltBits = SrcTy.getScalarSizeInBits(); + + auto ExponentMask = MIRBuilder.buildConstant(SrcTy, 0x7F800000); + auto ExponentLoBit = MIRBuilder.buildConstant(SrcTy, 23); + + auto AndExpMask = MIRBuilder.buildAnd(SrcTy, Src, ExponentMask); + auto ExponentBits = MIRBuilder.buildLShr(SrcTy, AndExpMask, ExponentLoBit); + + auto SignMask = MIRBuilder.buildConstant(SrcTy, + APInt::getSignMask(SrcEltBits)); + auto AndSignMask = MIRBuilder.buildAnd(SrcTy, Src, SignMask); + auto SignLowBit = MIRBuilder.buildConstant(SrcTy, SrcEltBits - 1); + auto Sign = MIRBuilder.buildAShr(SrcTy, AndSignMask, SignLowBit); + Sign = MIRBuilder.buildSExt(DstTy, Sign); + + auto MantissaMask = MIRBuilder.buildConstant(SrcTy, 0x007FFFFF); + auto AndMantissaMask = MIRBuilder.buildAnd(SrcTy, Src, MantissaMask); + auto K = MIRBuilder.buildConstant(SrcTy, 0x00800000); + + auto R = MIRBuilder.buildOr(SrcTy, AndMantissaMask, K); + R = MIRBuilder.buildZExt(DstTy, R); + + auto Bias = MIRBuilder.buildConstant(SrcTy, 127); + auto Exponent = MIRBuilder.buildSub(SrcTy, ExponentBits, Bias); + auto SubExponent = MIRBuilder.buildSub(SrcTy, Exponent, ExponentLoBit); + auto ExponentSub = MIRBuilder.buildSub(SrcTy, ExponentLoBit, Exponent); + + auto Shl = MIRBuilder.buildShl(DstTy, R, SubExponent); + auto Srl = MIRBuilder.buildLShr(DstTy, R, ExponentSub); + + const LLT S1 = LLT::scalar(1); + auto CmpGt = MIRBuilder.buildICmp(CmpInst::ICMP_SGT, + S1, Exponent, ExponentLoBit); + + R = MIRBuilder.buildSelect(DstTy, CmpGt, Shl, Srl); + + auto XorSign = MIRBuilder.buildXor(DstTy, R, Sign); + auto Ret = MIRBuilder.buildSub(DstTy, XorSign, Sign); + + auto ZeroSrcTy = MIRBuilder.buildConstant(SrcTy, 0); + + auto ExponentLt0 = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, + S1, Exponent, ZeroSrcTy); + + auto ZeroDstTy = MIRBuilder.buildConstant(DstTy, 0); + MIRBuilder.buildSelect(Dst, ExponentLt0, ZeroDstTy, Ret); + + MI.eraseFromParent(); + return Legalized; +} + +// f64 -> f16 conversion using round-to-nearest-even rounding mode. +LegalizerHelper::LegalizeResult +LegalizerHelper::lowerFPTRUNC_F64_TO_F16(MachineInstr &MI) { + Register Dst = MI.getOperand(0).getReg(); + Register Src = MI.getOperand(1).getReg(); + + if (MRI.getType(Src).isVector()) // TODO: Handle vectors directly. + return UnableToLegalize; + + const unsigned ExpMask = 0x7ff; + const unsigned ExpBiasf64 = 1023; + const unsigned ExpBiasf16 = 15; + const LLT S32 = LLT::scalar(32); + const LLT S1 = LLT::scalar(1); + + auto Unmerge = MIRBuilder.buildUnmerge(S32, Src); + Register U = Unmerge.getReg(0); + Register UH = Unmerge.getReg(1); + + auto E = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 20)); + E = MIRBuilder.buildAnd(S32, E, MIRBuilder.buildConstant(S32, ExpMask)); + + // Subtract the fp64 exponent bias (1023) to get the real exponent and + // add the f16 bias (15) to get the biased exponent for the f16 format. + E = MIRBuilder.buildAdd( + S32, E, MIRBuilder.buildConstant(S32, -ExpBiasf64 + ExpBiasf16)); + + auto M = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 8)); + M = MIRBuilder.buildAnd(S32, M, MIRBuilder.buildConstant(S32, 0xffe)); + + auto MaskedSig = MIRBuilder.buildAnd(S32, UH, + MIRBuilder.buildConstant(S32, 0x1ff)); + MaskedSig = MIRBuilder.buildOr(S32, MaskedSig, U); + + auto Zero = MIRBuilder.buildConstant(S32, 0); + auto SigCmpNE0 = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, MaskedSig, Zero); + auto Lo40Set = MIRBuilder.buildZExt(S32, SigCmpNE0); + M = MIRBuilder.buildOr(S32, M, Lo40Set); + + // (M != 0 ? 0x0200 : 0) | 0x7c00; + auto Bits0x200 = MIRBuilder.buildConstant(S32, 0x0200); + auto CmpM_NE0 = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, M, Zero); + auto SelectCC = MIRBuilder.buildSelect(S32, CmpM_NE0, Bits0x200, Zero); + + auto Bits0x7c00 = MIRBuilder.buildConstant(S32, 0x7c00); + auto I = MIRBuilder.buildOr(S32, SelectCC, Bits0x7c00); + + // N = M | (E << 12); + auto EShl12 = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 12)); + auto N = MIRBuilder.buildOr(S32, M, EShl12); + + // B = clamp(1-E, 0, 13); + auto One = MIRBuilder.buildConstant(S32, 1); + auto OneSubExp = MIRBuilder.buildSub(S32, One, E); + auto B = MIRBuilder.buildSMax(S32, OneSubExp, Zero); + B = MIRBuilder.buildSMin(S32, B, MIRBuilder.buildConstant(S32, 13)); + + auto SigSetHigh = MIRBuilder.buildOr(S32, M, + MIRBuilder.buildConstant(S32, 0x1000)); + + auto D = MIRBuilder.buildLShr(S32, SigSetHigh, B); + auto D0 = MIRBuilder.buildShl(S32, D, B); + + auto D0_NE_SigSetHigh = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, + D0, SigSetHigh); + auto D1 = MIRBuilder.buildZExt(S32, D0_NE_SigSetHigh); + D = MIRBuilder.buildOr(S32, D, D1); + + auto CmpELtOne = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, S1, E, One); + auto V = MIRBuilder.buildSelect(S32, CmpELtOne, D, N); + + auto VLow3 = MIRBuilder.buildAnd(S32, V, MIRBuilder.buildConstant(S32, 7)); + V = MIRBuilder.buildLShr(S32, V, MIRBuilder.buildConstant(S32, 2)); + + auto VLow3Eq3 = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, VLow3, + MIRBuilder.buildConstant(S32, 3)); + auto V0 = MIRBuilder.buildZExt(S32, VLow3Eq3); + + auto VLow3Gt5 = MIRBuilder.buildICmp(CmpInst::ICMP_SGT, S1, VLow3, + MIRBuilder.buildConstant(S32, 5)); + auto V1 = MIRBuilder.buildZExt(S32, VLow3Gt5); + + V1 = MIRBuilder.buildOr(S32, V0, V1); + V = MIRBuilder.buildAdd(S32, V, V1); + + auto CmpEGt30 = MIRBuilder.buildICmp(CmpInst::ICMP_SGT, S1, + E, MIRBuilder.buildConstant(S32, 30)); + V = MIRBuilder.buildSelect(S32, CmpEGt30, + MIRBuilder.buildConstant(S32, 0x7c00), V); + + auto CmpEGt1039 = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, + E, MIRBuilder.buildConstant(S32, 1039)); + V = MIRBuilder.buildSelect(S32, CmpEGt1039, I, V); + + // Extract the sign bit. + auto Sign = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 16)); + Sign = MIRBuilder.buildAnd(S32, Sign, MIRBuilder.buildConstant(S32, 0x8000)); + + // Insert the sign bit + V = MIRBuilder.buildOr(S32, Sign, V); + + MIRBuilder.buildTrunc(Dst, V); + MI.eraseFromParent(); + return Legalized; +} + +LegalizerHelper::LegalizeResult +LegalizerHelper::lowerFPTRUNC(MachineInstr &MI) { + Register Dst = MI.getOperand(0).getReg(); + Register Src = MI.getOperand(1).getReg(); + + LLT DstTy = MRI.getType(Dst); + LLT SrcTy = MRI.getType(Src); + const LLT S64 = LLT::scalar(64); + const LLT S16 = LLT::scalar(16); + + if (DstTy.getScalarType() == S16 && SrcTy.getScalarType() == S64) + return lowerFPTRUNC_F64_TO_F16(MI); + + return UnableToLegalize; +} + +// TODO: If RHS is a constant SelectionDAGBuilder expands this into a +// multiplication tree. +LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPOWI(MachineInstr &MI) { + Register Dst = MI.getOperand(0).getReg(); + Register Src0 = MI.getOperand(1).getReg(); + Register Src1 = MI.getOperand(2).getReg(); + LLT Ty = MRI.getType(Dst); + + auto CvtSrc1 = MIRBuilder.buildSITOFP(Ty, Src1); + MIRBuilder.buildFPow(Dst, Src0, CvtSrc1, MI.getFlags()); + MI.eraseFromParent(); + return Legalized; +} + +static CmpInst::Predicate minMaxToCompare(unsigned Opc) { + switch (Opc) { + case TargetOpcode::G_SMIN: + return CmpInst::ICMP_SLT; + case TargetOpcode::G_SMAX: + return CmpInst::ICMP_SGT; + case TargetOpcode::G_UMIN: + return CmpInst::ICMP_ULT; + case TargetOpcode::G_UMAX: + return CmpInst::ICMP_UGT; + default: + llvm_unreachable("not in integer min/max"); + } +} + +LegalizerHelper::LegalizeResult LegalizerHelper::lowerMinMax(MachineInstr &MI) { + Register Dst = MI.getOperand(0).getReg(); + Register Src0 = MI.getOperand(1).getReg(); + Register Src1 = MI.getOperand(2).getReg(); + + const CmpInst::Predicate Pred = minMaxToCompare(MI.getOpcode()); + LLT CmpType = MRI.getType(Dst).changeElementSize(1); + + auto Cmp = MIRBuilder.buildICmp(Pred, CmpType, Src0, Src1); + MIRBuilder.buildSelect(Dst, Cmp, Src0, Src1); + + MI.eraseFromParent(); + return Legalized; +} + +LegalizerHelper::LegalizeResult +LegalizerHelper::lowerFCopySign(MachineInstr &MI) { + Register Dst = MI.getOperand(0).getReg(); + Register Src0 = MI.getOperand(1).getReg(); + Register Src1 = MI.getOperand(2).getReg(); + + const LLT Src0Ty = MRI.getType(Src0); + const LLT Src1Ty = MRI.getType(Src1); + + const int Src0Size = Src0Ty.getScalarSizeInBits(); + const int Src1Size = Src1Ty.getScalarSizeInBits(); + + auto SignBitMask = MIRBuilder.buildConstant( + Src0Ty, APInt::getSignMask(Src0Size)); + + auto NotSignBitMask = MIRBuilder.buildConstant( + Src0Ty, APInt::getLowBitsSet(Src0Size, Src0Size - 1)); + + auto And0 = MIRBuilder.buildAnd(Src0Ty, Src0, NotSignBitMask); + MachineInstr *Or; + + if (Src0Ty == Src1Ty) { + auto And1 = MIRBuilder.buildAnd(Src1Ty, Src1, SignBitMask); + Or = MIRBuilder.buildOr(Dst, And0, And1); + } else if (Src0Size > Src1Size) { + auto ShiftAmt = MIRBuilder.buildConstant(Src0Ty, Src0Size - Src1Size); + auto Zext = MIRBuilder.buildZExt(Src0Ty, Src1); + auto Shift = MIRBuilder.buildShl(Src0Ty, Zext, ShiftAmt); + auto And1 = MIRBuilder.buildAnd(Src0Ty, Shift, SignBitMask); + Or = MIRBuilder.buildOr(Dst, And0, And1); + } else { + auto ShiftAmt = MIRBuilder.buildConstant(Src1Ty, Src1Size - Src0Size); + auto Shift = MIRBuilder.buildLShr(Src1Ty, Src1, ShiftAmt); + auto Trunc = MIRBuilder.buildTrunc(Src0Ty, Shift); + auto And1 = MIRBuilder.buildAnd(Src0Ty, Trunc, SignBitMask); + Or = MIRBuilder.buildOr(Dst, And0, And1); + } + + // Be careful about setting nsz/nnan/ninf on every instruction, since the + // constants are a nan and -0.0, but the final result should preserve + // everything. + if (unsigned Flags = MI.getFlags()) + Or->setFlags(Flags); + + MI.eraseFromParent(); + return Legalized; +} + +LegalizerHelper::LegalizeResult +LegalizerHelper::lowerFMinNumMaxNum(MachineInstr &MI) { + unsigned NewOp = MI.getOpcode() == TargetOpcode::G_FMINNUM ? + TargetOpcode::G_FMINNUM_IEEE : TargetOpcode::G_FMAXNUM_IEEE; + + Register Dst = MI.getOperand(0).getReg(); + Register Src0 = MI.getOperand(1).getReg(); + Register Src1 = MI.getOperand(2).getReg(); + LLT Ty = MRI.getType(Dst); + + if (!MI.getFlag(MachineInstr::FmNoNans)) { + // Insert canonicalizes if it's possible we need to quiet to get correct + // sNaN behavior. + + // Note this must be done here, and not as an optimization combine in the + // absence of a dedicate quiet-snan instruction as we're using an + // omni-purpose G_FCANONICALIZE. + if (!isKnownNeverSNaN(Src0, MRI)) + Src0 = MIRBuilder.buildFCanonicalize(Ty, Src0, MI.getFlags()).getReg(0); + + if (!isKnownNeverSNaN(Src1, MRI)) + Src1 = MIRBuilder.buildFCanonicalize(Ty, Src1, MI.getFlags()).getReg(0); + } + + // If there are no nans, it's safe to simply replace this with the non-IEEE + // version. + MIRBuilder.buildInstr(NewOp, {Dst}, {Src0, Src1}, MI.getFlags()); + MI.eraseFromParent(); + return Legalized; +} + +LegalizerHelper::LegalizeResult LegalizerHelper::lowerFMad(MachineInstr &MI) { + // Expand G_FMAD a, b, c -> G_FADD (G_FMUL a, b), c + Register DstReg = MI.getOperand(0).getReg(); + LLT Ty = MRI.getType(DstReg); + unsigned Flags = MI.getFlags(); + + auto Mul = MIRBuilder.buildFMul(Ty, MI.getOperand(1), MI.getOperand(2), + Flags); + MIRBuilder.buildFAdd(DstReg, Mul, MI.getOperand(3), Flags); + MI.eraseFromParent(); + return Legalized; +} + +LegalizerHelper::LegalizeResult +LegalizerHelper::lowerIntrinsicRound(MachineInstr &MI) { + Register DstReg = MI.getOperand(0).getReg(); + Register X = MI.getOperand(1).getReg(); + const unsigned Flags = MI.getFlags(); + const LLT Ty = MRI.getType(DstReg); + const LLT CondTy = Ty.changeElementSize(1); + + // round(x) => + // t = trunc(x); + // d = fabs(x - t); + // o = copysign(1.0f, x); + // return t + (d >= 0.5 ? o : 0.0); + + auto T = MIRBuilder.buildIntrinsicTrunc(Ty, X, Flags); + + auto Diff = MIRBuilder.buildFSub(Ty, X, T, Flags); + auto AbsDiff = MIRBuilder.buildFAbs(Ty, Diff, Flags); + auto Zero = MIRBuilder.buildFConstant(Ty, 0.0); + auto One = MIRBuilder.buildFConstant(Ty, 1.0); + auto Half = MIRBuilder.buildFConstant(Ty, 0.5); + auto SignOne = MIRBuilder.buildFCopysign(Ty, One, X); + + auto Cmp = MIRBuilder.buildFCmp(CmpInst::FCMP_OGE, CondTy, AbsDiff, Half, + Flags); + auto Sel = MIRBuilder.buildSelect(Ty, Cmp, SignOne, Zero, Flags); + + MIRBuilder.buildFAdd(DstReg, T, Sel, Flags); + + MI.eraseFromParent(); + return Legalized; +} + +LegalizerHelper::LegalizeResult +LegalizerHelper::lowerFFloor(MachineInstr &MI) { + Register DstReg = MI.getOperand(0).getReg(); + Register SrcReg = MI.getOperand(1).getReg(); + unsigned Flags = MI.getFlags(); + LLT Ty = MRI.getType(DstReg); + const LLT CondTy = Ty.changeElementSize(1); + + // result = trunc(src); + // if (src < 0.0 && src != result) + // result += -1.0. + + auto Trunc = MIRBuilder.buildIntrinsicTrunc(Ty, SrcReg, Flags); + auto Zero = MIRBuilder.buildFConstant(Ty, 0.0); + + auto Lt0 = MIRBuilder.buildFCmp(CmpInst::FCMP_OLT, CondTy, + SrcReg, Zero, Flags); + auto NeTrunc = MIRBuilder.buildFCmp(CmpInst::FCMP_ONE, CondTy, + SrcReg, Trunc, Flags); + auto And = MIRBuilder.buildAnd(CondTy, Lt0, NeTrunc); + auto AddVal = MIRBuilder.buildSITOFP(Ty, And); + + MIRBuilder.buildFAdd(DstReg, Trunc, AddVal, Flags); + MI.eraseFromParent(); + return Legalized; +} + +LegalizerHelper::LegalizeResult +LegalizerHelper::lowerMergeValues(MachineInstr &MI) { + const unsigned NumOps = MI.getNumOperands(); + Register DstReg = MI.getOperand(0).getReg(); + Register Src0Reg = MI.getOperand(1).getReg(); + LLT DstTy = MRI.getType(DstReg); + LLT SrcTy = MRI.getType(Src0Reg); + unsigned PartSize = SrcTy.getSizeInBits(); + + LLT WideTy = LLT::scalar(DstTy.getSizeInBits()); + Register ResultReg = MIRBuilder.buildZExt(WideTy, Src0Reg).getReg(0); + + for (unsigned I = 2; I != NumOps; ++I) { + const unsigned Offset = (I - 1) * PartSize; + + Register SrcReg = MI.getOperand(I).getReg(); + auto ZextInput = MIRBuilder.buildZExt(WideTy, SrcReg); + + Register NextResult = I + 1 == NumOps && WideTy == DstTy ? DstReg : + MRI.createGenericVirtualRegister(WideTy); + + auto ShiftAmt = MIRBuilder.buildConstant(WideTy, Offset); + auto Shl = MIRBuilder.buildShl(WideTy, ZextInput, ShiftAmt); + MIRBuilder.buildOr(NextResult, ResultReg, Shl); + ResultReg = NextResult; + } + + if (DstTy.isPointer()) { + if (MIRBuilder.getDataLayout().isNonIntegralAddressSpace( + DstTy.getAddressSpace())) { + LLVM_DEBUG(dbgs() << "Not casting nonintegral address space\n"); + return UnableToLegalize; + } + + MIRBuilder.buildIntToPtr(DstReg, ResultReg); + } + + MI.eraseFromParent(); + return Legalized; +} + +LegalizerHelper::LegalizeResult +LegalizerHelper::lowerUnmergeValues(MachineInstr &MI) { + const unsigned NumDst = MI.getNumOperands() - 1; + Register SrcReg = MI.getOperand(NumDst).getReg(); + Register Dst0Reg = MI.getOperand(0).getReg(); + LLT DstTy = MRI.getType(Dst0Reg); + if (DstTy.isPointer()) + return UnableToLegalize; // TODO + + SrcReg = coerceToScalar(SrcReg); + if (!SrcReg) + return UnableToLegalize; + + // Expand scalarizing unmerge as bitcast to integer and shift. + LLT IntTy = MRI.getType(SrcReg); + + MIRBuilder.buildTrunc(Dst0Reg, SrcReg); + + const unsigned DstSize = DstTy.getSizeInBits(); + unsigned Offset = DstSize; + for (unsigned I = 1; I != NumDst; ++I, Offset += DstSize) { + auto ShiftAmt = MIRBuilder.buildConstant(IntTy, Offset); + auto Shift = MIRBuilder.buildLShr(IntTy, SrcReg, ShiftAmt); + MIRBuilder.buildTrunc(MI.getOperand(I), Shift); + } + + MI.eraseFromParent(); + return Legalized; +} + +/// Lower a vector extract or insert by writing the vector to a stack temporary +/// and reloading the element or vector. +/// +/// %dst = G_EXTRACT_VECTOR_ELT %vec, %idx +/// => +/// %stack_temp = G_FRAME_INDEX +/// G_STORE %vec, %stack_temp +/// %idx = clamp(%idx, %vec.getNumElements()) +/// %element_ptr = G_PTR_ADD %stack_temp, %idx +/// %dst = G_LOAD %element_ptr +LegalizerHelper::LegalizeResult +LegalizerHelper::lowerExtractInsertVectorElt(MachineInstr &MI) { + Register DstReg = MI.getOperand(0).getReg(); + Register SrcVec = MI.getOperand(1).getReg(); + Register InsertVal; + if (MI.getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT) + InsertVal = MI.getOperand(2).getReg(); + + Register Idx = MI.getOperand(MI.getNumOperands() - 1).getReg(); + + LLT VecTy = MRI.getType(SrcVec); + LLT EltTy = VecTy.getElementType(); + if (!EltTy.isByteSized()) { // Not implemented. + LLVM_DEBUG(dbgs() << "Can't handle non-byte element vectors yet\n"); + return UnableToLegalize; + } + + unsigned EltBytes = EltTy.getSizeInBytes(); + Align VecAlign = getStackTemporaryAlignment(VecTy); + Align EltAlign; + + MachinePointerInfo PtrInfo; + auto StackTemp = createStackTemporary(TypeSize::Fixed(VecTy.getSizeInBytes()), + VecAlign, PtrInfo); + MIRBuilder.buildStore(SrcVec, StackTemp, PtrInfo, VecAlign); + + // Get the pointer to the element, and be sure not to hit undefined behavior + // if the index is out of bounds. + Register EltPtr = getVectorElementPointer(StackTemp.getReg(0), VecTy, Idx); + + int64_t IdxVal; + if (mi_match(Idx, MRI, m_ICst(IdxVal))) { + int64_t Offset = IdxVal * EltBytes; + PtrInfo = PtrInfo.getWithOffset(Offset); + EltAlign = commonAlignment(VecAlign, Offset); + } else { + // We lose information with a variable offset. + EltAlign = getStackTemporaryAlignment(EltTy); + PtrInfo = MachinePointerInfo(MRI.getType(EltPtr).getAddressSpace()); + } + + if (InsertVal) { + // Write the inserted element + MIRBuilder.buildStore(InsertVal, EltPtr, PtrInfo, EltAlign); + + // Reload the whole vector. + MIRBuilder.buildLoad(DstReg, StackTemp, PtrInfo, VecAlign); + } else { + MIRBuilder.buildLoad(DstReg, EltPtr, PtrInfo, EltAlign); + } + + MI.eraseFromParent(); + return Legalized; +} + +LegalizerHelper::LegalizeResult +LegalizerHelper::lowerShuffleVector(MachineInstr &MI) { + Register DstReg = MI.getOperand(0).getReg(); + Register Src0Reg = MI.getOperand(1).getReg(); + Register Src1Reg = MI.getOperand(2).getReg(); + LLT Src0Ty = MRI.getType(Src0Reg); + LLT DstTy = MRI.getType(DstReg); + LLT IdxTy = LLT::scalar(32); + + ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask(); + + if (DstTy.isScalar()) { + if (Src0Ty.isVector()) + return UnableToLegalize; + + // This is just a SELECT. + assert(Mask.size() == 1 && "Expected a single mask element"); + Register Val; + if (Mask[0] < 0 || Mask[0] > 1) + Val = MIRBuilder.buildUndef(DstTy).getReg(0); + else + Val = Mask[0] == 0 ? Src0Reg : Src1Reg; + MIRBuilder.buildCopy(DstReg, Val); + MI.eraseFromParent(); + return Legalized; + } + + Register Undef; + SmallVector<Register, 32> BuildVec; + LLT EltTy = DstTy.getElementType(); + + for (int Idx : Mask) { + if (Idx < 0) { + if (!Undef.isValid()) + Undef = MIRBuilder.buildUndef(EltTy).getReg(0); + BuildVec.push_back(Undef); + continue; + } + + if (Src0Ty.isScalar()) { + BuildVec.push_back(Idx == 0 ? Src0Reg : Src1Reg); + } else { + int NumElts = Src0Ty.getNumElements(); + Register SrcVec = Idx < NumElts ? Src0Reg : Src1Reg; + int ExtractIdx = Idx < NumElts ? Idx : Idx - NumElts; + auto IdxK = MIRBuilder.buildConstant(IdxTy, ExtractIdx); + auto Extract = MIRBuilder.buildExtractVectorElement(EltTy, SrcVec, IdxK); + BuildVec.push_back(Extract.getReg(0)); + } + } + + MIRBuilder.buildBuildVector(DstReg, BuildVec); + MI.eraseFromParent(); + return Legalized; +} + +LegalizerHelper::LegalizeResult +LegalizerHelper::lowerDynStackAlloc(MachineInstr &MI) { + const auto &MF = *MI.getMF(); + const auto &TFI = *MF.getSubtarget().getFrameLowering(); + if (TFI.getStackGrowthDirection() == TargetFrameLowering::StackGrowsUp) + return UnableToLegalize; + + Register Dst = MI.getOperand(0).getReg(); + Register AllocSize = MI.getOperand(1).getReg(); + Align Alignment = assumeAligned(MI.getOperand(2).getImm()); + + LLT PtrTy = MRI.getType(Dst); + LLT IntPtrTy = LLT::scalar(PtrTy.getSizeInBits()); + + Register SPReg = TLI.getStackPointerRegisterToSaveRestore(); + auto SPTmp = MIRBuilder.buildCopy(PtrTy, SPReg); + SPTmp = MIRBuilder.buildCast(IntPtrTy, SPTmp); + + // Subtract the final alloc from the SP. We use G_PTRTOINT here so we don't + // have to generate an extra instruction to negate the alloc and then use + // G_PTR_ADD to add the negative offset. + auto Alloc = MIRBuilder.buildSub(IntPtrTy, SPTmp, AllocSize); + if (Alignment > Align(1)) { + APInt AlignMask(IntPtrTy.getSizeInBits(), Alignment.value(), true); + AlignMask.negate(); + auto AlignCst = MIRBuilder.buildConstant(IntPtrTy, AlignMask); + Alloc = MIRBuilder.buildAnd(IntPtrTy, Alloc, AlignCst); + } + + SPTmp = MIRBuilder.buildCast(PtrTy, Alloc); + MIRBuilder.buildCopy(SPReg, SPTmp); + MIRBuilder.buildCopy(Dst, SPTmp); + + MI.eraseFromParent(); + return Legalized; +} + +LegalizerHelper::LegalizeResult +LegalizerHelper::lowerExtract(MachineInstr &MI) { + Register Dst = MI.getOperand(0).getReg(); + Register Src = MI.getOperand(1).getReg(); + unsigned Offset = MI.getOperand(2).getImm(); + + LLT DstTy = MRI.getType(Dst); + LLT SrcTy = MRI.getType(Src); + + if (DstTy.isScalar() && + (SrcTy.isScalar() || + (SrcTy.isVector() && DstTy == SrcTy.getElementType()))) { + LLT SrcIntTy = SrcTy; + if (!SrcTy.isScalar()) { + SrcIntTy = LLT::scalar(SrcTy.getSizeInBits()); + Src = MIRBuilder.buildBitcast(SrcIntTy, Src).getReg(0); + } + + if (Offset == 0) + MIRBuilder.buildTrunc(Dst, Src); + else { + auto ShiftAmt = MIRBuilder.buildConstant(SrcIntTy, Offset); + auto Shr = MIRBuilder.buildLShr(SrcIntTy, Src, ShiftAmt); + MIRBuilder.buildTrunc(Dst, Shr); + } + + MI.eraseFromParent(); + return Legalized; + } + + return UnableToLegalize; +} + +LegalizerHelper::LegalizeResult LegalizerHelper::lowerInsert(MachineInstr &MI) { + Register Dst = MI.getOperand(0).getReg(); + Register Src = MI.getOperand(1).getReg(); + Register InsertSrc = MI.getOperand(2).getReg(); + uint64_t Offset = MI.getOperand(3).getImm(); + + LLT DstTy = MRI.getType(Src); + LLT InsertTy = MRI.getType(InsertSrc); + + if (InsertTy.isVector() || + (DstTy.isVector() && DstTy.getElementType() != InsertTy)) + return UnableToLegalize; + + const DataLayout &DL = MIRBuilder.getDataLayout(); + if ((DstTy.isPointer() && + DL.isNonIntegralAddressSpace(DstTy.getAddressSpace())) || + (InsertTy.isPointer() && + DL.isNonIntegralAddressSpace(InsertTy.getAddressSpace()))) { + LLVM_DEBUG(dbgs() << "Not casting non-integral address space integer\n"); + return UnableToLegalize; + } + + LLT IntDstTy = DstTy; + + if (!DstTy.isScalar()) { + IntDstTy = LLT::scalar(DstTy.getSizeInBits()); + Src = MIRBuilder.buildCast(IntDstTy, Src).getReg(0); + } + + if (!InsertTy.isScalar()) { + const LLT IntInsertTy = LLT::scalar(InsertTy.getSizeInBits()); + InsertSrc = MIRBuilder.buildPtrToInt(IntInsertTy, InsertSrc).getReg(0); + } + + Register ExtInsSrc = MIRBuilder.buildZExt(IntDstTy, InsertSrc).getReg(0); + if (Offset != 0) { + auto ShiftAmt = MIRBuilder.buildConstant(IntDstTy, Offset); + ExtInsSrc = MIRBuilder.buildShl(IntDstTy, ExtInsSrc, ShiftAmt).getReg(0); + } + + APInt MaskVal = APInt::getBitsSetWithWrap( + DstTy.getSizeInBits(), Offset + InsertTy.getSizeInBits(), Offset); + + auto Mask = MIRBuilder.buildConstant(IntDstTy, MaskVal); + auto MaskedSrc = MIRBuilder.buildAnd(IntDstTy, Src, Mask); + auto Or = MIRBuilder.buildOr(IntDstTy, MaskedSrc, ExtInsSrc); + + MIRBuilder.buildCast(Dst, Or); + MI.eraseFromParent(); + return Legalized; +} + +LegalizerHelper::LegalizeResult +LegalizerHelper::lowerSADDO_SSUBO(MachineInstr &MI) { + Register Dst0 = MI.getOperand(0).getReg(); + Register Dst1 = MI.getOperand(1).getReg(); + Register LHS = MI.getOperand(2).getReg(); + Register RHS = MI.getOperand(3).getReg(); + const bool IsAdd = MI.getOpcode() == TargetOpcode::G_SADDO; + + LLT Ty = MRI.getType(Dst0); + LLT BoolTy = MRI.getType(Dst1); + + if (IsAdd) + MIRBuilder.buildAdd(Dst0, LHS, RHS); + else + MIRBuilder.buildSub(Dst0, LHS, RHS); + + // TODO: If SADDSAT/SSUBSAT is legal, compare results to detect overflow. + + auto Zero = MIRBuilder.buildConstant(Ty, 0); + + // For an addition, the result should be less than one of the operands (LHS) + // if and only if the other operand (RHS) is negative, otherwise there will + // be overflow. + // For a subtraction, the result should be less than one of the operands + // (LHS) if and only if the other operand (RHS) is (non-zero) positive, + // otherwise there will be overflow. + auto ResultLowerThanLHS = + MIRBuilder.buildICmp(CmpInst::ICMP_SLT, BoolTy, Dst0, LHS); + auto ConditionRHS = MIRBuilder.buildICmp( + IsAdd ? CmpInst::ICMP_SLT : CmpInst::ICMP_SGT, BoolTy, RHS, Zero); + + MIRBuilder.buildXor(Dst1, ConditionRHS, ResultLowerThanLHS); + MI.eraseFromParent(); + return Legalized; +} + +LegalizerHelper::LegalizeResult +LegalizerHelper::lowerAddSubSatToMinMax(MachineInstr &MI) { + Register Res = MI.getOperand(0).getReg(); + Register LHS = MI.getOperand(1).getReg(); + Register RHS = MI.getOperand(2).getReg(); + LLT Ty = MRI.getType(Res); + bool IsSigned; + bool IsAdd; + unsigned BaseOp; + switch (MI.getOpcode()) { + default: + llvm_unreachable("unexpected addsat/subsat opcode"); + case TargetOpcode::G_UADDSAT: + IsSigned = false; + IsAdd = true; + BaseOp = TargetOpcode::G_ADD; + break; + case TargetOpcode::G_SADDSAT: + IsSigned = true; + IsAdd = true; + BaseOp = TargetOpcode::G_ADD; + break; + case TargetOpcode::G_USUBSAT: + IsSigned = false; + IsAdd = false; + BaseOp = TargetOpcode::G_SUB; + break; + case TargetOpcode::G_SSUBSAT: + IsSigned = true; + IsAdd = false; + BaseOp = TargetOpcode::G_SUB; + break; + } + + if (IsSigned) { + // sadd.sat(a, b) -> + // hi = 0x7fffffff - smax(a, 0) + // lo = 0x80000000 - smin(a, 0) + // a + smin(smax(lo, b), hi) + // ssub.sat(a, b) -> + // lo = smax(a, -1) - 0x7fffffff + // hi = smin(a, -1) - 0x80000000 + // a - smin(smax(lo, b), hi) + // TODO: AMDGPU can use a "median of 3" instruction here: + // a +/- med3(lo, b, hi) + uint64_t NumBits = Ty.getScalarSizeInBits(); + auto MaxVal = + MIRBuilder.buildConstant(Ty, APInt::getSignedMaxValue(NumBits)); + auto MinVal = + MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(NumBits)); + MachineInstrBuilder Hi, Lo; + if (IsAdd) { + auto Zero = MIRBuilder.buildConstant(Ty, 0); + Hi = MIRBuilder.buildSub(Ty, MaxVal, MIRBuilder.buildSMax(Ty, LHS, Zero)); + Lo = MIRBuilder.buildSub(Ty, MinVal, MIRBuilder.buildSMin(Ty, LHS, Zero)); + } else { + auto NegOne = MIRBuilder.buildConstant(Ty, -1); + Lo = MIRBuilder.buildSub(Ty, MIRBuilder.buildSMax(Ty, LHS, NegOne), + MaxVal); + Hi = MIRBuilder.buildSub(Ty, MIRBuilder.buildSMin(Ty, LHS, NegOne), + MinVal); + } + auto RHSClamped = + MIRBuilder.buildSMin(Ty, MIRBuilder.buildSMax(Ty, Lo, RHS), Hi); + MIRBuilder.buildInstr(BaseOp, {Res}, {LHS, RHSClamped}); + } else { + // uadd.sat(a, b) -> a + umin(~a, b) + // usub.sat(a, b) -> a - umin(a, b) + Register Not = IsAdd ? MIRBuilder.buildNot(Ty, LHS).getReg(0) : LHS; + auto Min = MIRBuilder.buildUMin(Ty, Not, RHS); + MIRBuilder.buildInstr(BaseOp, {Res}, {LHS, Min}); + } + + MI.eraseFromParent(); + return Legalized; +} + +LegalizerHelper::LegalizeResult +LegalizerHelper::lowerAddSubSatToAddoSubo(MachineInstr &MI) { + Register Res = MI.getOperand(0).getReg(); + Register LHS = MI.getOperand(1).getReg(); + Register RHS = MI.getOperand(2).getReg(); + LLT Ty = MRI.getType(Res); + LLT BoolTy = Ty.changeElementSize(1); + bool IsSigned; + bool IsAdd; + unsigned OverflowOp; + switch (MI.getOpcode()) { + default: + llvm_unreachable("unexpected addsat/subsat opcode"); + case TargetOpcode::G_UADDSAT: + IsSigned = false; + IsAdd = true; + OverflowOp = TargetOpcode::G_UADDO; + break; + case TargetOpcode::G_SADDSAT: + IsSigned = true; + IsAdd = true; + OverflowOp = TargetOpcode::G_SADDO; + break; + case TargetOpcode::G_USUBSAT: + IsSigned = false; + IsAdd = false; + OverflowOp = TargetOpcode::G_USUBO; + break; + case TargetOpcode::G_SSUBSAT: + IsSigned = true; + IsAdd = false; + OverflowOp = TargetOpcode::G_SSUBO; + break; + } + + auto OverflowRes = + MIRBuilder.buildInstr(OverflowOp, {Ty, BoolTy}, {LHS, RHS}); + Register Tmp = OverflowRes.getReg(0); + Register Ov = OverflowRes.getReg(1); + MachineInstrBuilder Clamp; + if (IsSigned) { + // sadd.sat(a, b) -> + // {tmp, ov} = saddo(a, b) + // ov ? (tmp >>s 31) + 0x80000000 : r + // ssub.sat(a, b) -> + // {tmp, ov} = ssubo(a, b) + // ov ? (tmp >>s 31) + 0x80000000 : r + uint64_t NumBits = Ty.getScalarSizeInBits(); + auto ShiftAmount = MIRBuilder.buildConstant(Ty, NumBits - 1); + auto Sign = MIRBuilder.buildAShr(Ty, Tmp, ShiftAmount); + auto MinVal = + MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(NumBits)); + Clamp = MIRBuilder.buildAdd(Ty, Sign, MinVal); + } else { + // uadd.sat(a, b) -> + // {tmp, ov} = uaddo(a, b) + // ov ? 0xffffffff : tmp + // usub.sat(a, b) -> + // {tmp, ov} = usubo(a, b) + // ov ? 0 : tmp + Clamp = MIRBuilder.buildConstant(Ty, IsAdd ? -1 : 0); + } + MIRBuilder.buildSelect(Res, Ov, Clamp, Tmp); + + MI.eraseFromParent(); + return Legalized; +} + +LegalizerHelper::LegalizeResult +LegalizerHelper::lowerShlSat(MachineInstr &MI) { + assert((MI.getOpcode() == TargetOpcode::G_SSHLSAT || + MI.getOpcode() == TargetOpcode::G_USHLSAT) && + "Expected shlsat opcode!"); + bool IsSigned = MI.getOpcode() == TargetOpcode::G_SSHLSAT; + Register Res = MI.getOperand(0).getReg(); + Register LHS = MI.getOperand(1).getReg(); + Register RHS = MI.getOperand(2).getReg(); + LLT Ty = MRI.getType(Res); + LLT BoolTy = Ty.changeElementSize(1); + + unsigned BW = Ty.getScalarSizeInBits(); + auto Result = MIRBuilder.buildShl(Ty, LHS, RHS); + auto Orig = IsSigned ? MIRBuilder.buildAShr(Ty, Result, RHS) + : MIRBuilder.buildLShr(Ty, Result, RHS); + + MachineInstrBuilder SatVal; + if (IsSigned) { + auto SatMin = MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(BW)); + auto SatMax = MIRBuilder.buildConstant(Ty, APInt::getSignedMaxValue(BW)); + auto Cmp = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, BoolTy, LHS, + MIRBuilder.buildConstant(Ty, 0)); + SatVal = MIRBuilder.buildSelect(Ty, Cmp, SatMin, SatMax); + } else { + SatVal = MIRBuilder.buildConstant(Ty, APInt::getMaxValue(BW)); + } + auto Ov = MIRBuilder.buildICmp(CmpInst::ICMP_NE, BoolTy, LHS, Orig); + MIRBuilder.buildSelect(Res, Ov, SatVal, Result); + + MI.eraseFromParent(); + return Legalized; +} + +LegalizerHelper::LegalizeResult +LegalizerHelper::lowerBswap(MachineInstr &MI) { + Register Dst = MI.getOperand(0).getReg(); + Register Src = MI.getOperand(1).getReg(); + const LLT Ty = MRI.getType(Src); + unsigned SizeInBytes = (Ty.getScalarSizeInBits() + 7) / 8; + unsigned BaseShiftAmt = (SizeInBytes - 1) * 8; + + // Swap most and least significant byte, set remaining bytes in Res to zero. + auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt); + auto LSByteShiftedLeft = MIRBuilder.buildShl(Ty, Src, ShiftAmt); + auto MSByteShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt); + auto Res = MIRBuilder.buildOr(Ty, MSByteShiftedRight, LSByteShiftedLeft); + + // Set i-th high/low byte in Res to i-th low/high byte from Src. + for (unsigned i = 1; i < SizeInBytes / 2; ++i) { + // AND with Mask leaves byte i unchanged and sets remaining bytes to 0. + APInt APMask(SizeInBytes * 8, 0xFF << (i * 8)); + auto Mask = MIRBuilder.buildConstant(Ty, APMask); + auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt - 16 * i); + // Low byte shifted left to place of high byte: (Src & Mask) << ShiftAmt. + auto LoByte = MIRBuilder.buildAnd(Ty, Src, Mask); + auto LoShiftedLeft = MIRBuilder.buildShl(Ty, LoByte, ShiftAmt); + Res = MIRBuilder.buildOr(Ty, Res, LoShiftedLeft); + // High byte shifted right to place of low byte: (Src >> ShiftAmt) & Mask. + auto SrcShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt); + auto HiShiftedRight = MIRBuilder.buildAnd(Ty, SrcShiftedRight, Mask); + Res = MIRBuilder.buildOr(Ty, Res, HiShiftedRight); + } + Res.getInstr()->getOperand(0).setReg(Dst); + + MI.eraseFromParent(); + return Legalized; +} + +//{ (Src & Mask) >> N } | { (Src << N) & Mask } +static MachineInstrBuilder SwapN(unsigned N, DstOp Dst, MachineIRBuilder &B, + MachineInstrBuilder Src, APInt Mask) { + const LLT Ty = Dst.getLLTTy(*B.getMRI()); + MachineInstrBuilder C_N = B.buildConstant(Ty, N); + MachineInstrBuilder MaskLoNTo0 = B.buildConstant(Ty, Mask); + auto LHS = B.buildLShr(Ty, B.buildAnd(Ty, Src, MaskLoNTo0), C_N); + auto RHS = B.buildAnd(Ty, B.buildShl(Ty, Src, C_N), MaskLoNTo0); + return B.buildOr(Dst, LHS, RHS); +} + +LegalizerHelper::LegalizeResult +LegalizerHelper::lowerBitreverse(MachineInstr &MI) { + Register Dst = MI.getOperand(0).getReg(); + Register Src = MI.getOperand(1).getReg(); + const LLT Ty = MRI.getType(Src); + unsigned Size = Ty.getSizeInBits(); + + MachineInstrBuilder BSWAP = + MIRBuilder.buildInstr(TargetOpcode::G_BSWAP, {Ty}, {Src}); + + // swap high and low 4 bits in 8 bit blocks 7654|3210 -> 3210|7654 + // [(val & 0xF0F0F0F0) >> 4] | [(val & 0x0F0F0F0F) << 4] + // -> [(val & 0xF0F0F0F0) >> 4] | [(val << 4) & 0xF0F0F0F0] + MachineInstrBuilder Swap4 = + SwapN(4, Ty, MIRBuilder, BSWAP, APInt::getSplat(Size, APInt(8, 0xF0))); + + // swap high and low 2 bits in 4 bit blocks 32|10 76|54 -> 10|32 54|76 + // [(val & 0xCCCCCCCC) >> 2] & [(val & 0x33333333) << 2] + // -> [(val & 0xCCCCCCCC) >> 2] & [(val << 2) & 0xCCCCCCCC] + MachineInstrBuilder Swap2 = + SwapN(2, Ty, MIRBuilder, Swap4, APInt::getSplat(Size, APInt(8, 0xCC))); + + // swap high and low 1 bit in 2 bit blocks 1|0 3|2 5|4 7|6 -> 0|1 2|3 4|5 6|7 + // [(val & 0xAAAAAAAA) >> 1] & [(val & 0x55555555) << 1] + // -> [(val & 0xAAAAAAAA) >> 1] & [(val << 1) & 0xAAAAAAAA] + SwapN(1, Dst, MIRBuilder, Swap2, APInt::getSplat(Size, APInt(8, 0xAA))); + + MI.eraseFromParent(); + return Legalized; +} + +LegalizerHelper::LegalizeResult +LegalizerHelper::lowerReadWriteRegister(MachineInstr &MI) { + MachineFunction &MF = MIRBuilder.getMF(); + + bool IsRead = MI.getOpcode() == TargetOpcode::G_READ_REGISTER; + int NameOpIdx = IsRead ? 1 : 0; + int ValRegIndex = IsRead ? 0 : 1; + + Register ValReg = MI.getOperand(ValRegIndex).getReg(); + const LLT Ty = MRI.getType(ValReg); + const MDString *RegStr = cast<MDString>( + cast<MDNode>(MI.getOperand(NameOpIdx).getMetadata())->getOperand(0)); + + Register PhysReg = TLI.getRegisterByName(RegStr->getString().data(), Ty, MF); + if (!PhysReg.isValid()) + return UnableToLegalize; + + if (IsRead) + MIRBuilder.buildCopy(ValReg, PhysReg); + else + MIRBuilder.buildCopy(PhysReg, ValReg); + + MI.eraseFromParent(); + return Legalized; +} + +LegalizerHelper::LegalizeResult +LegalizerHelper::lowerSMULH_UMULH(MachineInstr &MI) { + bool IsSigned = MI.getOpcode() == TargetOpcode::G_SMULH; + unsigned ExtOp = IsSigned ? TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT; + Register Result = MI.getOperand(0).getReg(); + LLT OrigTy = MRI.getType(Result); + auto SizeInBits = OrigTy.getScalarSizeInBits(); + LLT WideTy = OrigTy.changeElementSize(SizeInBits * 2); + + auto LHS = MIRBuilder.buildInstr(ExtOp, {WideTy}, {MI.getOperand(1)}); + auto RHS = MIRBuilder.buildInstr(ExtOp, {WideTy}, {MI.getOperand(2)}); + auto Mul = MIRBuilder.buildMul(WideTy, LHS, RHS); + unsigned ShiftOp = IsSigned ? TargetOpcode::G_ASHR : TargetOpcode::G_LSHR; + + auto ShiftAmt = MIRBuilder.buildConstant(WideTy, SizeInBits); + auto Shifted = MIRBuilder.buildInstr(ShiftOp, {WideTy}, {Mul, ShiftAmt}); + MIRBuilder.buildTrunc(Result, Shifted); + + MI.eraseFromParent(); + return Legalized; +} + +LegalizerHelper::LegalizeResult LegalizerHelper::lowerSelect(MachineInstr &MI) { + // Implement vector G_SELECT in terms of XOR, AND, OR. + Register DstReg = MI.getOperand(0).getReg(); + Register MaskReg = MI.getOperand(1).getReg(); + Register Op1Reg = MI.getOperand(2).getReg(); + Register Op2Reg = MI.getOperand(3).getReg(); + LLT DstTy = MRI.getType(DstReg); + LLT MaskTy = MRI.getType(MaskReg); + LLT Op1Ty = MRI.getType(Op1Reg); + if (!DstTy.isVector()) + return UnableToLegalize; + + // Vector selects can have a scalar predicate. If so, splat into a vector and + // finish for later legalization attempts to try again. + if (MaskTy.isScalar()) { + Register MaskElt = MaskReg; + if (MaskTy.getSizeInBits() < DstTy.getScalarSizeInBits()) + MaskElt = MIRBuilder.buildSExt(DstTy.getElementType(), MaskElt).getReg(0); + // Generate a vector splat idiom to be pattern matched later. + auto ShufSplat = MIRBuilder.buildShuffleSplat(DstTy, MaskElt); + Observer.changingInstr(MI); + MI.getOperand(1).setReg(ShufSplat.getReg(0)); + Observer.changedInstr(MI); + return Legalized; + } + + if (MaskTy.getSizeInBits() != Op1Ty.getSizeInBits()) { + return UnableToLegalize; + } + + auto NotMask = MIRBuilder.buildNot(MaskTy, MaskReg); + auto NewOp1 = MIRBuilder.buildAnd(MaskTy, Op1Reg, MaskReg); + auto NewOp2 = MIRBuilder.buildAnd(MaskTy, Op2Reg, NotMask); + MIRBuilder.buildOr(DstReg, NewOp1, NewOp2); + MI.eraseFromParent(); + return Legalized; +} |