aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm-project/llvm/lib/CodeGen/GlobalISel/LegalizerHelper.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm-project/llvm/lib/CodeGen/GlobalISel/LegalizerHelper.cpp')
-rw-r--r--contrib/llvm-project/llvm/lib/CodeGen/GlobalISel/LegalizerHelper.cpp6261
1 files changed, 6261 insertions, 0 deletions
diff --git a/contrib/llvm-project/llvm/lib/CodeGen/GlobalISel/LegalizerHelper.cpp b/contrib/llvm-project/llvm/lib/CodeGen/GlobalISel/LegalizerHelper.cpp
new file mode 100644
index 000000000000..3178ee16af2b
--- /dev/null
+++ b/contrib/llvm-project/llvm/lib/CodeGen/GlobalISel/LegalizerHelper.cpp
@@ -0,0 +1,6261 @@
+//===-- llvm/CodeGen/GlobalISel/LegalizerHelper.cpp -----------------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+/// \file This file implements the LegalizerHelper class to legalize
+/// individual instructions and the LegalizeMachineIR wrapper pass for the
+/// primary legalization.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/CodeGen/GlobalISel/LegalizerHelper.h"
+#include "llvm/CodeGen/GlobalISel/CallLowering.h"
+#include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h"
+#include "llvm/CodeGen/GlobalISel/LegalizerInfo.h"
+#include "llvm/CodeGen/GlobalISel/MIPatternMatch.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/CodeGen/TargetFrameLowering.h"
+#include "llvm/CodeGen/TargetInstrInfo.h"
+#include "llvm/CodeGen/TargetLowering.h"
+#include "llvm/CodeGen/TargetSubtargetInfo.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/MathExtras.h"
+#include "llvm/Support/raw_ostream.h"
+
+#define DEBUG_TYPE "legalizer"
+
+using namespace llvm;
+using namespace LegalizeActions;
+using namespace MIPatternMatch;
+
+/// Try to break down \p OrigTy into \p NarrowTy sized pieces.
+///
+/// Returns the number of \p NarrowTy elements needed to reconstruct \p OrigTy,
+/// with any leftover piece as type \p LeftoverTy
+///
+/// Returns -1 in the first element of the pair if the breakdown is not
+/// satisfiable.
+static std::pair<int, int>
+getNarrowTypeBreakDown(LLT OrigTy, LLT NarrowTy, LLT &LeftoverTy) {
+ assert(!LeftoverTy.isValid() && "this is an out argument");
+
+ unsigned Size = OrigTy.getSizeInBits();
+ unsigned NarrowSize = NarrowTy.getSizeInBits();
+ unsigned NumParts = Size / NarrowSize;
+ unsigned LeftoverSize = Size - NumParts * NarrowSize;
+ assert(Size > NarrowSize);
+
+ if (LeftoverSize == 0)
+ return {NumParts, 0};
+
+ if (NarrowTy.isVector()) {
+ unsigned EltSize = OrigTy.getScalarSizeInBits();
+ if (LeftoverSize % EltSize != 0)
+ return {-1, -1};
+ LeftoverTy = LLT::scalarOrVector(LeftoverSize / EltSize, EltSize);
+ } else {
+ LeftoverTy = LLT::scalar(LeftoverSize);
+ }
+
+ int NumLeftover = LeftoverSize / LeftoverTy.getSizeInBits();
+ return std::make_pair(NumParts, NumLeftover);
+}
+
+static Type *getFloatTypeForLLT(LLVMContext &Ctx, LLT Ty) {
+
+ if (!Ty.isScalar())
+ return nullptr;
+
+ switch (Ty.getSizeInBits()) {
+ case 16:
+ return Type::getHalfTy(Ctx);
+ case 32:
+ return Type::getFloatTy(Ctx);
+ case 64:
+ return Type::getDoubleTy(Ctx);
+ case 80:
+ return Type::getX86_FP80Ty(Ctx);
+ case 128:
+ return Type::getFP128Ty(Ctx);
+ default:
+ return nullptr;
+ }
+}
+
+LegalizerHelper::LegalizerHelper(MachineFunction &MF,
+ GISelChangeObserver &Observer,
+ MachineIRBuilder &Builder)
+ : MIRBuilder(Builder), Observer(Observer), MRI(MF.getRegInfo()),
+ LI(*MF.getSubtarget().getLegalizerInfo()),
+ TLI(*MF.getSubtarget().getTargetLowering()) { }
+
+LegalizerHelper::LegalizerHelper(MachineFunction &MF, const LegalizerInfo &LI,
+ GISelChangeObserver &Observer,
+ MachineIRBuilder &B)
+ : MIRBuilder(B), Observer(Observer), MRI(MF.getRegInfo()), LI(LI),
+ TLI(*MF.getSubtarget().getTargetLowering()) { }
+
+LegalizerHelper::LegalizeResult
+LegalizerHelper::legalizeInstrStep(MachineInstr &MI) {
+ LLVM_DEBUG(dbgs() << "Legalizing: " << MI);
+
+ MIRBuilder.setInstrAndDebugLoc(MI);
+
+ if (MI.getOpcode() == TargetOpcode::G_INTRINSIC ||
+ MI.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS)
+ return LI.legalizeIntrinsic(*this, MI) ? Legalized : UnableToLegalize;
+ auto Step = LI.getAction(MI, MRI);
+ switch (Step.Action) {
+ case Legal:
+ LLVM_DEBUG(dbgs() << ".. Already legal\n");
+ return AlreadyLegal;
+ case Libcall:
+ LLVM_DEBUG(dbgs() << ".. Convert to libcall\n");
+ return libcall(MI);
+ case NarrowScalar:
+ LLVM_DEBUG(dbgs() << ".. Narrow scalar\n");
+ return narrowScalar(MI, Step.TypeIdx, Step.NewType);
+ case WidenScalar:
+ LLVM_DEBUG(dbgs() << ".. Widen scalar\n");
+ return widenScalar(MI, Step.TypeIdx, Step.NewType);
+ case Bitcast:
+ LLVM_DEBUG(dbgs() << ".. Bitcast type\n");
+ return bitcast(MI, Step.TypeIdx, Step.NewType);
+ case Lower:
+ LLVM_DEBUG(dbgs() << ".. Lower\n");
+ return lower(MI, Step.TypeIdx, Step.NewType);
+ case FewerElements:
+ LLVM_DEBUG(dbgs() << ".. Reduce number of elements\n");
+ return fewerElementsVector(MI, Step.TypeIdx, Step.NewType);
+ case MoreElements:
+ LLVM_DEBUG(dbgs() << ".. Increase number of elements\n");
+ return moreElementsVector(MI, Step.TypeIdx, Step.NewType);
+ case Custom:
+ LLVM_DEBUG(dbgs() << ".. Custom legalization\n");
+ return LI.legalizeCustom(*this, MI) ? Legalized : UnableToLegalize;
+ default:
+ LLVM_DEBUG(dbgs() << ".. Unable to legalize\n");
+ return UnableToLegalize;
+ }
+}
+
+void LegalizerHelper::extractParts(Register Reg, LLT Ty, int NumParts,
+ SmallVectorImpl<Register> &VRegs) {
+ for (int i = 0; i < NumParts; ++i)
+ VRegs.push_back(MRI.createGenericVirtualRegister(Ty));
+ MIRBuilder.buildUnmerge(VRegs, Reg);
+}
+
+bool LegalizerHelper::extractParts(Register Reg, LLT RegTy,
+ LLT MainTy, LLT &LeftoverTy,
+ SmallVectorImpl<Register> &VRegs,
+ SmallVectorImpl<Register> &LeftoverRegs) {
+ assert(!LeftoverTy.isValid() && "this is an out argument");
+
+ unsigned RegSize = RegTy.getSizeInBits();
+ unsigned MainSize = MainTy.getSizeInBits();
+ unsigned NumParts = RegSize / MainSize;
+ unsigned LeftoverSize = RegSize - NumParts * MainSize;
+
+ // Use an unmerge when possible.
+ if (LeftoverSize == 0) {
+ for (unsigned I = 0; I < NumParts; ++I)
+ VRegs.push_back(MRI.createGenericVirtualRegister(MainTy));
+ MIRBuilder.buildUnmerge(VRegs, Reg);
+ return true;
+ }
+
+ if (MainTy.isVector()) {
+ unsigned EltSize = MainTy.getScalarSizeInBits();
+ if (LeftoverSize % EltSize != 0)
+ return false;
+ LeftoverTy = LLT::scalarOrVector(LeftoverSize / EltSize, EltSize);
+ } else {
+ LeftoverTy = LLT::scalar(LeftoverSize);
+ }
+
+ // For irregular sizes, extract the individual parts.
+ for (unsigned I = 0; I != NumParts; ++I) {
+ Register NewReg = MRI.createGenericVirtualRegister(MainTy);
+ VRegs.push_back(NewReg);
+ MIRBuilder.buildExtract(NewReg, Reg, MainSize * I);
+ }
+
+ for (unsigned Offset = MainSize * NumParts; Offset < RegSize;
+ Offset += LeftoverSize) {
+ Register NewReg = MRI.createGenericVirtualRegister(LeftoverTy);
+ LeftoverRegs.push_back(NewReg);
+ MIRBuilder.buildExtract(NewReg, Reg, Offset);
+ }
+
+ return true;
+}
+
+void LegalizerHelper::insertParts(Register DstReg,
+ LLT ResultTy, LLT PartTy,
+ ArrayRef<Register> PartRegs,
+ LLT LeftoverTy,
+ ArrayRef<Register> LeftoverRegs) {
+ if (!LeftoverTy.isValid()) {
+ assert(LeftoverRegs.empty());
+
+ if (!ResultTy.isVector()) {
+ MIRBuilder.buildMerge(DstReg, PartRegs);
+ return;
+ }
+
+ if (PartTy.isVector())
+ MIRBuilder.buildConcatVectors(DstReg, PartRegs);
+ else
+ MIRBuilder.buildBuildVector(DstReg, PartRegs);
+ return;
+ }
+
+ unsigned PartSize = PartTy.getSizeInBits();
+ unsigned LeftoverPartSize = LeftoverTy.getSizeInBits();
+
+ Register CurResultReg = MRI.createGenericVirtualRegister(ResultTy);
+ MIRBuilder.buildUndef(CurResultReg);
+
+ unsigned Offset = 0;
+ for (Register PartReg : PartRegs) {
+ Register NewResultReg = MRI.createGenericVirtualRegister(ResultTy);
+ MIRBuilder.buildInsert(NewResultReg, CurResultReg, PartReg, Offset);
+ CurResultReg = NewResultReg;
+ Offset += PartSize;
+ }
+
+ for (unsigned I = 0, E = LeftoverRegs.size(); I != E; ++I) {
+ // Use the original output register for the final insert to avoid a copy.
+ Register NewResultReg = (I + 1 == E) ?
+ DstReg : MRI.createGenericVirtualRegister(ResultTy);
+
+ MIRBuilder.buildInsert(NewResultReg, CurResultReg, LeftoverRegs[I], Offset);
+ CurResultReg = NewResultReg;
+ Offset += LeftoverPartSize;
+ }
+}
+
+/// Append the result registers of G_UNMERGE_VALUES \p MI to \p Regs.
+static void getUnmergeResults(SmallVectorImpl<Register> &Regs,
+ const MachineInstr &MI) {
+ assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES);
+
+ const int StartIdx = Regs.size();
+ const int NumResults = MI.getNumOperands() - 1;
+ Regs.resize(Regs.size() + NumResults);
+ for (int I = 0; I != NumResults; ++I)
+ Regs[StartIdx + I] = MI.getOperand(I).getReg();
+}
+
+void LegalizerHelper::extractGCDType(SmallVectorImpl<Register> &Parts,
+ LLT GCDTy, Register SrcReg) {
+ LLT SrcTy = MRI.getType(SrcReg);
+ if (SrcTy == GCDTy) {
+ // If the source already evenly divides the result type, we don't need to do
+ // anything.
+ Parts.push_back(SrcReg);
+ } else {
+ // Need to split into common type sized pieces.
+ auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg);
+ getUnmergeResults(Parts, *Unmerge);
+ }
+}
+
+LLT LegalizerHelper::extractGCDType(SmallVectorImpl<Register> &Parts, LLT DstTy,
+ LLT NarrowTy, Register SrcReg) {
+ LLT SrcTy = MRI.getType(SrcReg);
+ LLT GCDTy = getGCDType(getGCDType(SrcTy, NarrowTy), DstTy);
+ extractGCDType(Parts, GCDTy, SrcReg);
+ return GCDTy;
+}
+
+LLT LegalizerHelper::buildLCMMergePieces(LLT DstTy, LLT NarrowTy, LLT GCDTy,
+ SmallVectorImpl<Register> &VRegs,
+ unsigned PadStrategy) {
+ LLT LCMTy = getLCMType(DstTy, NarrowTy);
+
+ int NumParts = LCMTy.getSizeInBits() / NarrowTy.getSizeInBits();
+ int NumSubParts = NarrowTy.getSizeInBits() / GCDTy.getSizeInBits();
+ int NumOrigSrc = VRegs.size();
+
+ Register PadReg;
+
+ // Get a value we can use to pad the source value if the sources won't evenly
+ // cover the result type.
+ if (NumOrigSrc < NumParts * NumSubParts) {
+ if (PadStrategy == TargetOpcode::G_ZEXT)
+ PadReg = MIRBuilder.buildConstant(GCDTy, 0).getReg(0);
+ else if (PadStrategy == TargetOpcode::G_ANYEXT)
+ PadReg = MIRBuilder.buildUndef(GCDTy).getReg(0);
+ else {
+ assert(PadStrategy == TargetOpcode::G_SEXT);
+
+ // Shift the sign bit of the low register through the high register.
+ auto ShiftAmt =
+ MIRBuilder.buildConstant(LLT::scalar(64), GCDTy.getSizeInBits() - 1);
+ PadReg = MIRBuilder.buildAShr(GCDTy, VRegs.back(), ShiftAmt).getReg(0);
+ }
+ }
+
+ // Registers for the final merge to be produced.
+ SmallVector<Register, 4> Remerge(NumParts);
+
+ // Registers needed for intermediate merges, which will be merged into a
+ // source for Remerge.
+ SmallVector<Register, 4> SubMerge(NumSubParts);
+
+ // Once we've fully read off the end of the original source bits, we can reuse
+ // the same high bits for remaining padding elements.
+ Register AllPadReg;
+
+ // Build merges to the LCM type to cover the original result type.
+ for (int I = 0; I != NumParts; ++I) {
+ bool AllMergePartsArePadding = true;
+
+ // Build the requested merges to the requested type.
+ for (int J = 0; J != NumSubParts; ++J) {
+ int Idx = I * NumSubParts + J;
+ if (Idx >= NumOrigSrc) {
+ SubMerge[J] = PadReg;
+ continue;
+ }
+
+ SubMerge[J] = VRegs[Idx];
+
+ // There are meaningful bits here we can't reuse later.
+ AllMergePartsArePadding = false;
+ }
+
+ // If we've filled up a complete piece with padding bits, we can directly
+ // emit the natural sized constant if applicable, rather than a merge of
+ // smaller constants.
+ if (AllMergePartsArePadding && !AllPadReg) {
+ if (PadStrategy == TargetOpcode::G_ANYEXT)
+ AllPadReg = MIRBuilder.buildUndef(NarrowTy).getReg(0);
+ else if (PadStrategy == TargetOpcode::G_ZEXT)
+ AllPadReg = MIRBuilder.buildConstant(NarrowTy, 0).getReg(0);
+
+ // If this is a sign extension, we can't materialize a trivial constant
+ // with the right type and have to produce a merge.
+ }
+
+ if (AllPadReg) {
+ // Avoid creating additional instructions if we're just adding additional
+ // copies of padding bits.
+ Remerge[I] = AllPadReg;
+ continue;
+ }
+
+ if (NumSubParts == 1)
+ Remerge[I] = SubMerge[0];
+ else
+ Remerge[I] = MIRBuilder.buildMerge(NarrowTy, SubMerge).getReg(0);
+
+ // In the sign extend padding case, re-use the first all-signbit merge.
+ if (AllMergePartsArePadding && !AllPadReg)
+ AllPadReg = Remerge[I];
+ }
+
+ VRegs = std::move(Remerge);
+ return LCMTy;
+}
+
+void LegalizerHelper::buildWidenedRemergeToDst(Register DstReg, LLT LCMTy,
+ ArrayRef<Register> RemergeRegs) {
+ LLT DstTy = MRI.getType(DstReg);
+
+ // Create the merge to the widened source, and extract the relevant bits into
+ // the result.
+
+ if (DstTy == LCMTy) {
+ MIRBuilder.buildMerge(DstReg, RemergeRegs);
+ return;
+ }
+
+ auto Remerge = MIRBuilder.buildMerge(LCMTy, RemergeRegs);
+ if (DstTy.isScalar() && LCMTy.isScalar()) {
+ MIRBuilder.buildTrunc(DstReg, Remerge);
+ return;
+ }
+
+ if (LCMTy.isVector()) {
+ unsigned NumDefs = LCMTy.getSizeInBits() / DstTy.getSizeInBits();
+ SmallVector<Register, 8> UnmergeDefs(NumDefs);
+ UnmergeDefs[0] = DstReg;
+ for (unsigned I = 1; I != NumDefs; ++I)
+ UnmergeDefs[I] = MRI.createGenericVirtualRegister(DstTy);
+
+ MIRBuilder.buildUnmerge(UnmergeDefs,
+ MIRBuilder.buildMerge(LCMTy, RemergeRegs));
+ return;
+ }
+
+ llvm_unreachable("unhandled case");
+}
+
+static RTLIB::Libcall getRTLibDesc(unsigned Opcode, unsigned Size) {
+#define RTLIBCASE_INT(LibcallPrefix) \
+ do { \
+ switch (Size) { \
+ case 32: \
+ return RTLIB::LibcallPrefix##32; \
+ case 64: \
+ return RTLIB::LibcallPrefix##64; \
+ case 128: \
+ return RTLIB::LibcallPrefix##128; \
+ default: \
+ llvm_unreachable("unexpected size"); \
+ } \
+ } while (0)
+
+#define RTLIBCASE(LibcallPrefix) \
+ do { \
+ switch (Size) { \
+ case 32: \
+ return RTLIB::LibcallPrefix##32; \
+ case 64: \
+ return RTLIB::LibcallPrefix##64; \
+ case 80: \
+ return RTLIB::LibcallPrefix##80; \
+ case 128: \
+ return RTLIB::LibcallPrefix##128; \
+ default: \
+ llvm_unreachable("unexpected size"); \
+ } \
+ } while (0)
+
+ switch (Opcode) {
+ case TargetOpcode::G_SDIV:
+ RTLIBCASE_INT(SDIV_I);
+ case TargetOpcode::G_UDIV:
+ RTLIBCASE_INT(UDIV_I);
+ case TargetOpcode::G_SREM:
+ RTLIBCASE_INT(SREM_I);
+ case TargetOpcode::G_UREM:
+ RTLIBCASE_INT(UREM_I);
+ case TargetOpcode::G_CTLZ_ZERO_UNDEF:
+ RTLIBCASE_INT(CTLZ_I);
+ case TargetOpcode::G_FADD:
+ RTLIBCASE(ADD_F);
+ case TargetOpcode::G_FSUB:
+ RTLIBCASE(SUB_F);
+ case TargetOpcode::G_FMUL:
+ RTLIBCASE(MUL_F);
+ case TargetOpcode::G_FDIV:
+ RTLIBCASE(DIV_F);
+ case TargetOpcode::G_FEXP:
+ RTLIBCASE(EXP_F);
+ case TargetOpcode::G_FEXP2:
+ RTLIBCASE(EXP2_F);
+ case TargetOpcode::G_FREM:
+ RTLIBCASE(REM_F);
+ case TargetOpcode::G_FPOW:
+ RTLIBCASE(POW_F);
+ case TargetOpcode::G_FMA:
+ RTLIBCASE(FMA_F);
+ case TargetOpcode::G_FSIN:
+ RTLIBCASE(SIN_F);
+ case TargetOpcode::G_FCOS:
+ RTLIBCASE(COS_F);
+ case TargetOpcode::G_FLOG10:
+ RTLIBCASE(LOG10_F);
+ case TargetOpcode::G_FLOG:
+ RTLIBCASE(LOG_F);
+ case TargetOpcode::G_FLOG2:
+ RTLIBCASE(LOG2_F);
+ case TargetOpcode::G_FCEIL:
+ RTLIBCASE(CEIL_F);
+ case TargetOpcode::G_FFLOOR:
+ RTLIBCASE(FLOOR_F);
+ case TargetOpcode::G_FMINNUM:
+ RTLIBCASE(FMIN_F);
+ case TargetOpcode::G_FMAXNUM:
+ RTLIBCASE(FMAX_F);
+ case TargetOpcode::G_FSQRT:
+ RTLIBCASE(SQRT_F);
+ case TargetOpcode::G_FRINT:
+ RTLIBCASE(RINT_F);
+ case TargetOpcode::G_FNEARBYINT:
+ RTLIBCASE(NEARBYINT_F);
+ case TargetOpcode::G_INTRINSIC_ROUNDEVEN:
+ RTLIBCASE(ROUNDEVEN_F);
+ }
+ llvm_unreachable("Unknown libcall function");
+}
+
+/// True if an instruction is in tail position in its caller. Intended for
+/// legalizing libcalls as tail calls when possible.
+static bool isLibCallInTailPosition(const TargetInstrInfo &TII,
+ MachineInstr &MI) {
+ MachineBasicBlock &MBB = *MI.getParent();
+ const Function &F = MBB.getParent()->getFunction();
+
+ // Conservatively require the attributes of the call to match those of
+ // the return. Ignore NoAlias and NonNull because they don't affect the
+ // call sequence.
+ AttributeList CallerAttrs = F.getAttributes();
+ if (AttrBuilder(CallerAttrs, AttributeList::ReturnIndex)
+ .removeAttribute(Attribute::NoAlias)
+ .removeAttribute(Attribute::NonNull)
+ .hasAttributes())
+ return false;
+
+ // It's not safe to eliminate the sign / zero extension of the return value.
+ if (CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt) ||
+ CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt))
+ return false;
+
+ // Only tail call if the following instruction is a standard return.
+ auto Next = next_nodbg(MI.getIterator(), MBB.instr_end());
+ if (Next == MBB.instr_end() || TII.isTailCall(*Next) || !Next->isReturn())
+ return false;
+
+ return true;
+}
+
+LegalizerHelper::LegalizeResult
+llvm::createLibcall(MachineIRBuilder &MIRBuilder, const char *Name,
+ const CallLowering::ArgInfo &Result,
+ ArrayRef<CallLowering::ArgInfo> Args,
+ const CallingConv::ID CC) {
+ auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering();
+
+ CallLowering::CallLoweringInfo Info;
+ Info.CallConv = CC;
+ Info.Callee = MachineOperand::CreateES(Name);
+ Info.OrigRet = Result;
+ std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs));
+ if (!CLI.lowerCall(MIRBuilder, Info))
+ return LegalizerHelper::UnableToLegalize;
+
+ return LegalizerHelper::Legalized;
+}
+
+LegalizerHelper::LegalizeResult
+llvm::createLibcall(MachineIRBuilder &MIRBuilder, RTLIB::Libcall Libcall,
+ const CallLowering::ArgInfo &Result,
+ ArrayRef<CallLowering::ArgInfo> Args) {
+ auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering();
+ const char *Name = TLI.getLibcallName(Libcall);
+ const CallingConv::ID CC = TLI.getLibcallCallingConv(Libcall);
+ return createLibcall(MIRBuilder, Name, Result, Args, CC);
+}
+
+// Useful for libcalls where all operands have the same type.
+static LegalizerHelper::LegalizeResult
+simpleLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, unsigned Size,
+ Type *OpType) {
+ auto Libcall = getRTLibDesc(MI.getOpcode(), Size);
+
+ SmallVector<CallLowering::ArgInfo, 3> Args;
+ for (unsigned i = 1; i < MI.getNumOperands(); i++)
+ Args.push_back({MI.getOperand(i).getReg(), OpType});
+ return createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), OpType},
+ Args);
+}
+
+LegalizerHelper::LegalizeResult
+llvm::createMemLibcall(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI,
+ MachineInstr &MI) {
+ auto &Ctx = MIRBuilder.getMF().getFunction().getContext();
+
+ SmallVector<CallLowering::ArgInfo, 3> Args;
+ // Add all the args, except for the last which is an imm denoting 'tail'.
+ for (unsigned i = 0; i < MI.getNumOperands() - 1; ++i) {
+ Register Reg = MI.getOperand(i).getReg();
+
+ // Need derive an IR type for call lowering.
+ LLT OpLLT = MRI.getType(Reg);
+ Type *OpTy = nullptr;
+ if (OpLLT.isPointer())
+ OpTy = Type::getInt8PtrTy(Ctx, OpLLT.getAddressSpace());
+ else
+ OpTy = IntegerType::get(Ctx, OpLLT.getSizeInBits());
+ Args.push_back({Reg, OpTy});
+ }
+
+ auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering();
+ auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering();
+ RTLIB::Libcall RTLibcall;
+ switch (MI.getOpcode()) {
+ case TargetOpcode::G_MEMCPY:
+ RTLibcall = RTLIB::MEMCPY;
+ break;
+ case TargetOpcode::G_MEMMOVE:
+ RTLibcall = RTLIB::MEMMOVE;
+ break;
+ case TargetOpcode::G_MEMSET:
+ RTLibcall = RTLIB::MEMSET;
+ break;
+ default:
+ return LegalizerHelper::UnableToLegalize;
+ }
+ const char *Name = TLI.getLibcallName(RTLibcall);
+
+ CallLowering::CallLoweringInfo Info;
+ Info.CallConv = TLI.getLibcallCallingConv(RTLibcall);
+ Info.Callee = MachineOperand::CreateES(Name);
+ Info.OrigRet = CallLowering::ArgInfo({0}, Type::getVoidTy(Ctx));
+ Info.IsTailCall = MI.getOperand(MI.getNumOperands() - 1).getImm() &&
+ isLibCallInTailPosition(MIRBuilder.getTII(), MI);
+
+ std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs));
+ if (!CLI.lowerCall(MIRBuilder, Info))
+ return LegalizerHelper::UnableToLegalize;
+
+ if (Info.LoweredTailCall) {
+ assert(Info.IsTailCall && "Lowered tail call when it wasn't a tail call?");
+ // We must have a return following the call (or debug insts) to get past
+ // isLibCallInTailPosition.
+ do {
+ MachineInstr *Next = MI.getNextNode();
+ assert(Next && (Next->isReturn() || Next->isDebugInstr()) &&
+ "Expected instr following MI to be return or debug inst?");
+ // We lowered a tail call, so the call is now the return from the block.
+ // Delete the old return.
+ Next->eraseFromParent();
+ } while (MI.getNextNode());
+ }
+
+ return LegalizerHelper::Legalized;
+}
+
+static RTLIB::Libcall getConvRTLibDesc(unsigned Opcode, Type *ToType,
+ Type *FromType) {
+ auto ToMVT = MVT::getVT(ToType);
+ auto FromMVT = MVT::getVT(FromType);
+
+ switch (Opcode) {
+ case TargetOpcode::G_FPEXT:
+ return RTLIB::getFPEXT(FromMVT, ToMVT);
+ case TargetOpcode::G_FPTRUNC:
+ return RTLIB::getFPROUND(FromMVT, ToMVT);
+ case TargetOpcode::G_FPTOSI:
+ return RTLIB::getFPTOSINT(FromMVT, ToMVT);
+ case TargetOpcode::G_FPTOUI:
+ return RTLIB::getFPTOUINT(FromMVT, ToMVT);
+ case TargetOpcode::G_SITOFP:
+ return RTLIB::getSINTTOFP(FromMVT, ToMVT);
+ case TargetOpcode::G_UITOFP:
+ return RTLIB::getUINTTOFP(FromMVT, ToMVT);
+ }
+ llvm_unreachable("Unsupported libcall function");
+}
+
+static LegalizerHelper::LegalizeResult
+conversionLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, Type *ToType,
+ Type *FromType) {
+ RTLIB::Libcall Libcall = getConvRTLibDesc(MI.getOpcode(), ToType, FromType);
+ return createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), ToType},
+ {{MI.getOperand(1).getReg(), FromType}});
+}
+
+LegalizerHelper::LegalizeResult
+LegalizerHelper::libcall(MachineInstr &MI) {
+ LLT LLTy = MRI.getType(MI.getOperand(0).getReg());
+ unsigned Size = LLTy.getSizeInBits();
+ auto &Ctx = MIRBuilder.getMF().getFunction().getContext();
+
+ switch (MI.getOpcode()) {
+ default:
+ return UnableToLegalize;
+ case TargetOpcode::G_SDIV:
+ case TargetOpcode::G_UDIV:
+ case TargetOpcode::G_SREM:
+ case TargetOpcode::G_UREM:
+ case TargetOpcode::G_CTLZ_ZERO_UNDEF: {
+ Type *HLTy = IntegerType::get(Ctx, Size);
+ auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy);
+ if (Status != Legalized)
+ return Status;
+ break;
+ }
+ case TargetOpcode::G_FADD:
+ case TargetOpcode::G_FSUB:
+ case TargetOpcode::G_FMUL:
+ case TargetOpcode::G_FDIV:
+ case TargetOpcode::G_FMA:
+ case TargetOpcode::G_FPOW:
+ case TargetOpcode::G_FREM:
+ case TargetOpcode::G_FCOS:
+ case TargetOpcode::G_FSIN:
+ case TargetOpcode::G_FLOG10:
+ case TargetOpcode::G_FLOG:
+ case TargetOpcode::G_FLOG2:
+ case TargetOpcode::G_FEXP:
+ case TargetOpcode::G_FEXP2:
+ case TargetOpcode::G_FCEIL:
+ case TargetOpcode::G_FFLOOR:
+ case TargetOpcode::G_FMINNUM:
+ case TargetOpcode::G_FMAXNUM:
+ case TargetOpcode::G_FSQRT:
+ case TargetOpcode::G_FRINT:
+ case TargetOpcode::G_FNEARBYINT:
+ case TargetOpcode::G_INTRINSIC_ROUNDEVEN: {
+ Type *HLTy = getFloatTypeForLLT(Ctx, LLTy);
+ if (!HLTy || (Size != 32 && Size != 64 && Size != 80 && Size != 128)) {
+ LLVM_DEBUG(dbgs() << "No libcall available for type " << LLTy << ".\n");
+ return UnableToLegalize;
+ }
+ auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy);
+ if (Status != Legalized)
+ return Status;
+ break;
+ }
+ case TargetOpcode::G_FPEXT:
+ case TargetOpcode::G_FPTRUNC: {
+ Type *FromTy = getFloatTypeForLLT(Ctx, MRI.getType(MI.getOperand(1).getReg()));
+ Type *ToTy = getFloatTypeForLLT(Ctx, MRI.getType(MI.getOperand(0).getReg()));
+ if (!FromTy || !ToTy)
+ return UnableToLegalize;
+ LegalizeResult Status = conversionLibcall(MI, MIRBuilder, ToTy, FromTy );
+ if (Status != Legalized)
+ return Status;
+ break;
+ }
+ case TargetOpcode::G_FPTOSI:
+ case TargetOpcode::G_FPTOUI: {
+ // FIXME: Support other types
+ unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
+ unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
+ if ((ToSize != 32 && ToSize != 64) || (FromSize != 32 && FromSize != 64))
+ return UnableToLegalize;
+ LegalizeResult Status = conversionLibcall(
+ MI, MIRBuilder,
+ ToSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx),
+ FromSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx));
+ if (Status != Legalized)
+ return Status;
+ break;
+ }
+ case TargetOpcode::G_SITOFP:
+ case TargetOpcode::G_UITOFP: {
+ // FIXME: Support other types
+ unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
+ unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
+ if ((FromSize != 32 && FromSize != 64) || (ToSize != 32 && ToSize != 64))
+ return UnableToLegalize;
+ LegalizeResult Status = conversionLibcall(
+ MI, MIRBuilder,
+ ToSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx),
+ FromSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx));
+ if (Status != Legalized)
+ return Status;
+ break;
+ }
+ case TargetOpcode::G_MEMCPY:
+ case TargetOpcode::G_MEMMOVE:
+ case TargetOpcode::G_MEMSET: {
+ LegalizeResult Result = createMemLibcall(MIRBuilder, *MIRBuilder.getMRI(), MI);
+ MI.eraseFromParent();
+ return Result;
+ }
+ }
+
+ MI.eraseFromParent();
+ return Legalized;
+}
+
+LegalizerHelper::LegalizeResult LegalizerHelper::narrowScalar(MachineInstr &MI,
+ unsigned TypeIdx,
+ LLT NarrowTy) {
+ uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
+ uint64_t NarrowSize = NarrowTy.getSizeInBits();
+
+ switch (MI.getOpcode()) {
+ default:
+ return UnableToLegalize;
+ case TargetOpcode::G_IMPLICIT_DEF: {
+ Register DstReg = MI.getOperand(0).getReg();
+ LLT DstTy = MRI.getType(DstReg);
+
+ // If SizeOp0 is not an exact multiple of NarrowSize, emit
+ // G_ANYEXT(G_IMPLICIT_DEF). Cast result to vector if needed.
+ // FIXME: Although this would also be legal for the general case, it causes
+ // a lot of regressions in the emitted code (superfluous COPYs, artifact
+ // combines not being hit). This seems to be a problem related to the
+ // artifact combiner.
+ if (SizeOp0 % NarrowSize != 0) {
+ LLT ImplicitTy = NarrowTy;
+ if (DstTy.isVector())
+ ImplicitTy = LLT::vector(DstTy.getNumElements(), ImplicitTy);
+
+ Register ImplicitReg = MIRBuilder.buildUndef(ImplicitTy).getReg(0);
+ MIRBuilder.buildAnyExt(DstReg, ImplicitReg);
+
+ MI.eraseFromParent();
+ return Legalized;
+ }
+
+ int NumParts = SizeOp0 / NarrowSize;
+
+ SmallVector<Register, 2> DstRegs;
+ for (int i = 0; i < NumParts; ++i)
+ DstRegs.push_back(MIRBuilder.buildUndef(NarrowTy).getReg(0));
+
+ if (DstTy.isVector())
+ MIRBuilder.buildBuildVector(DstReg, DstRegs);
+ else
+ MIRBuilder.buildMerge(DstReg, DstRegs);
+ MI.eraseFromParent();
+ return Legalized;
+ }
+ case TargetOpcode::G_CONSTANT: {
+ LLT Ty = MRI.getType(MI.getOperand(0).getReg());
+ const APInt &Val = MI.getOperand(1).getCImm()->getValue();
+ unsigned TotalSize = Ty.getSizeInBits();
+ unsigned NarrowSize = NarrowTy.getSizeInBits();
+ int NumParts = TotalSize / NarrowSize;
+
+ SmallVector<Register, 4> PartRegs;
+ for (int I = 0; I != NumParts; ++I) {
+ unsigned Offset = I * NarrowSize;
+ auto K = MIRBuilder.buildConstant(NarrowTy,
+ Val.lshr(Offset).trunc(NarrowSize));
+ PartRegs.push_back(K.getReg(0));
+ }
+
+ LLT LeftoverTy;
+ unsigned LeftoverBits = TotalSize - NumParts * NarrowSize;
+ SmallVector<Register, 1> LeftoverRegs;
+ if (LeftoverBits != 0) {
+ LeftoverTy = LLT::scalar(LeftoverBits);
+ auto K = MIRBuilder.buildConstant(
+ LeftoverTy,
+ Val.lshr(NumParts * NarrowSize).trunc(LeftoverBits));
+ LeftoverRegs.push_back(K.getReg(0));
+ }
+
+ insertParts(MI.getOperand(0).getReg(),
+ Ty, NarrowTy, PartRegs, LeftoverTy, LeftoverRegs);
+
+ MI.eraseFromParent();
+ return Legalized;
+ }
+ case TargetOpcode::G_SEXT:
+ case TargetOpcode::G_ZEXT:
+ case TargetOpcode::G_ANYEXT:
+ return narrowScalarExt(MI, TypeIdx, NarrowTy);
+ case TargetOpcode::G_TRUNC: {
+ if (TypeIdx != 1)
+ return UnableToLegalize;
+
+ uint64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
+ if (NarrowTy.getSizeInBits() * 2 != SizeOp1) {
+ LLVM_DEBUG(dbgs() << "Can't narrow trunc to type " << NarrowTy << "\n");
+ return UnableToLegalize;
+ }
+
+ auto Unmerge = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1));
+ MIRBuilder.buildCopy(MI.getOperand(0), Unmerge.getReg(0));
+ MI.eraseFromParent();
+ return Legalized;
+ }
+
+ case TargetOpcode::G_FREEZE:
+ return reduceOperationWidth(MI, TypeIdx, NarrowTy);
+
+ case TargetOpcode::G_ADD: {
+ // FIXME: add support for when SizeOp0 isn't an exact multiple of
+ // NarrowSize.
+ if (SizeOp0 % NarrowSize != 0)
+ return UnableToLegalize;
+ // Expand in terms of carry-setting/consuming G_ADDE instructions.
+ int NumParts = SizeOp0 / NarrowTy.getSizeInBits();
+
+ SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs;
+ extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, Src1Regs);
+ extractParts(MI.getOperand(2).getReg(), NarrowTy, NumParts, Src2Regs);
+
+ Register CarryIn;
+ for (int i = 0; i < NumParts; ++i) {
+ Register DstReg = MRI.createGenericVirtualRegister(NarrowTy);
+ Register CarryOut = MRI.createGenericVirtualRegister(LLT::scalar(1));
+
+ if (i == 0)
+ MIRBuilder.buildUAddo(DstReg, CarryOut, Src1Regs[i], Src2Regs[i]);
+ else {
+ MIRBuilder.buildUAdde(DstReg, CarryOut, Src1Regs[i],
+ Src2Regs[i], CarryIn);
+ }
+
+ DstRegs.push_back(DstReg);
+ CarryIn = CarryOut;
+ }
+ Register DstReg = MI.getOperand(0).getReg();
+ if(MRI.getType(DstReg).isVector())
+ MIRBuilder.buildBuildVector(DstReg, DstRegs);
+ else
+ MIRBuilder.buildMerge(DstReg, DstRegs);
+ MI.eraseFromParent();
+ return Legalized;
+ }
+ case TargetOpcode::G_SUB: {
+ // FIXME: add support for when SizeOp0 isn't an exact multiple of
+ // NarrowSize.
+ if (SizeOp0 % NarrowSize != 0)
+ return UnableToLegalize;
+
+ int NumParts = SizeOp0 / NarrowTy.getSizeInBits();
+
+ SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs;
+ extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, Src1Regs);
+ extractParts(MI.getOperand(2).getReg(), NarrowTy, NumParts, Src2Regs);
+
+ Register DstReg = MRI.createGenericVirtualRegister(NarrowTy);
+ Register BorrowOut = MRI.createGenericVirtualRegister(LLT::scalar(1));
+ MIRBuilder.buildInstr(TargetOpcode::G_USUBO, {DstReg, BorrowOut},
+ {Src1Regs[0], Src2Regs[0]});
+ DstRegs.push_back(DstReg);
+ Register BorrowIn = BorrowOut;
+ for (int i = 1; i < NumParts; ++i) {
+ DstReg = MRI.createGenericVirtualRegister(NarrowTy);
+ BorrowOut = MRI.createGenericVirtualRegister(LLT::scalar(1));
+
+ MIRBuilder.buildInstr(TargetOpcode::G_USUBE, {DstReg, BorrowOut},
+ {Src1Regs[i], Src2Regs[i], BorrowIn});
+
+ DstRegs.push_back(DstReg);
+ BorrowIn = BorrowOut;
+ }
+ MIRBuilder.buildMerge(MI.getOperand(0), DstRegs);
+ MI.eraseFromParent();
+ return Legalized;
+ }
+ case TargetOpcode::G_MUL:
+ case TargetOpcode::G_UMULH:
+ return narrowScalarMul(MI, NarrowTy);
+ case TargetOpcode::G_EXTRACT:
+ return narrowScalarExtract(MI, TypeIdx, NarrowTy);
+ case TargetOpcode::G_INSERT:
+ return narrowScalarInsert(MI, TypeIdx, NarrowTy);
+ case TargetOpcode::G_LOAD: {
+ auto &MMO = **MI.memoperands_begin();
+ Register DstReg = MI.getOperand(0).getReg();
+ LLT DstTy = MRI.getType(DstReg);
+ if (DstTy.isVector())
+ return UnableToLegalize;
+
+ if (8 * MMO.getSize() != DstTy.getSizeInBits()) {
+ Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy);
+ MIRBuilder.buildLoad(TmpReg, MI.getOperand(1), MMO);
+ MIRBuilder.buildAnyExt(DstReg, TmpReg);
+ MI.eraseFromParent();
+ return Legalized;
+ }
+
+ return reduceLoadStoreWidth(MI, TypeIdx, NarrowTy);
+ }
+ case TargetOpcode::G_ZEXTLOAD:
+ case TargetOpcode::G_SEXTLOAD: {
+ bool ZExt = MI.getOpcode() == TargetOpcode::G_ZEXTLOAD;
+ Register DstReg = MI.getOperand(0).getReg();
+ Register PtrReg = MI.getOperand(1).getReg();
+
+ Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy);
+ auto &MMO = **MI.memoperands_begin();
+ unsigned MemSize = MMO.getSizeInBits();
+
+ if (MemSize == NarrowSize) {
+ MIRBuilder.buildLoad(TmpReg, PtrReg, MMO);
+ } else if (MemSize < NarrowSize) {
+ MIRBuilder.buildLoadInstr(MI.getOpcode(), TmpReg, PtrReg, MMO);
+ } else if (MemSize > NarrowSize) {
+ // FIXME: Need to split the load.
+ return UnableToLegalize;
+ }
+
+ if (ZExt)
+ MIRBuilder.buildZExt(DstReg, TmpReg);
+ else
+ MIRBuilder.buildSExt(DstReg, TmpReg);
+
+ MI.eraseFromParent();
+ return Legalized;
+ }
+ case TargetOpcode::G_STORE: {
+ const auto &MMO = **MI.memoperands_begin();
+
+ Register SrcReg = MI.getOperand(0).getReg();
+ LLT SrcTy = MRI.getType(SrcReg);
+ if (SrcTy.isVector())
+ return UnableToLegalize;
+
+ int NumParts = SizeOp0 / NarrowSize;
+ unsigned HandledSize = NumParts * NarrowTy.getSizeInBits();
+ unsigned LeftoverBits = SrcTy.getSizeInBits() - HandledSize;
+ if (SrcTy.isVector() && LeftoverBits != 0)
+ return UnableToLegalize;
+
+ if (8 * MMO.getSize() != SrcTy.getSizeInBits()) {
+ Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy);
+ auto &MMO = **MI.memoperands_begin();
+ MIRBuilder.buildTrunc(TmpReg, SrcReg);
+ MIRBuilder.buildStore(TmpReg, MI.getOperand(1), MMO);
+ MI.eraseFromParent();
+ return Legalized;
+ }
+
+ return reduceLoadStoreWidth(MI, 0, NarrowTy);
+ }
+ case TargetOpcode::G_SELECT:
+ return narrowScalarSelect(MI, TypeIdx, NarrowTy);
+ case TargetOpcode::G_AND:
+ case TargetOpcode::G_OR:
+ case TargetOpcode::G_XOR: {
+ // Legalize bitwise operation:
+ // A = BinOp<Ty> B, C
+ // into:
+ // B1, ..., BN = G_UNMERGE_VALUES B
+ // C1, ..., CN = G_UNMERGE_VALUES C
+ // A1 = BinOp<Ty/N> B1, C2
+ // ...
+ // AN = BinOp<Ty/N> BN, CN
+ // A = G_MERGE_VALUES A1, ..., AN
+ return narrowScalarBasic(MI, TypeIdx, NarrowTy);
+ }
+ case TargetOpcode::G_SHL:
+ case TargetOpcode::G_LSHR:
+ case TargetOpcode::G_ASHR:
+ return narrowScalarShift(MI, TypeIdx, NarrowTy);
+ case TargetOpcode::G_CTLZ:
+ case TargetOpcode::G_CTLZ_ZERO_UNDEF:
+ case TargetOpcode::G_CTTZ:
+ case TargetOpcode::G_CTTZ_ZERO_UNDEF:
+ case TargetOpcode::G_CTPOP:
+ if (TypeIdx == 1)
+ switch (MI.getOpcode()) {
+ case TargetOpcode::G_CTLZ:
+ case TargetOpcode::G_CTLZ_ZERO_UNDEF:
+ return narrowScalarCTLZ(MI, TypeIdx, NarrowTy);
+ case TargetOpcode::G_CTTZ:
+ case TargetOpcode::G_CTTZ_ZERO_UNDEF:
+ return narrowScalarCTTZ(MI, TypeIdx, NarrowTy);
+ case TargetOpcode::G_CTPOP:
+ return narrowScalarCTPOP(MI, TypeIdx, NarrowTy);
+ default:
+ return UnableToLegalize;
+ }
+
+ Observer.changingInstr(MI);
+ narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT);
+ Observer.changedInstr(MI);
+ return Legalized;
+ case TargetOpcode::G_INTTOPTR:
+ if (TypeIdx != 1)
+ return UnableToLegalize;
+
+ Observer.changingInstr(MI);
+ narrowScalarSrc(MI, NarrowTy, 1);
+ Observer.changedInstr(MI);
+ return Legalized;
+ case TargetOpcode::G_PTRTOINT:
+ if (TypeIdx != 0)
+ return UnableToLegalize;
+
+ Observer.changingInstr(MI);
+ narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT);
+ Observer.changedInstr(MI);
+ return Legalized;
+ case TargetOpcode::G_PHI: {
+ // FIXME: add support for when SizeOp0 isn't an exact multiple of
+ // NarrowSize.
+ if (SizeOp0 % NarrowSize != 0)
+ return UnableToLegalize;
+
+ unsigned NumParts = SizeOp0 / NarrowSize;
+ SmallVector<Register, 2> DstRegs(NumParts);
+ SmallVector<SmallVector<Register, 2>, 2> SrcRegs(MI.getNumOperands() / 2);
+ Observer.changingInstr(MI);
+ for (unsigned i = 1; i < MI.getNumOperands(); i += 2) {
+ MachineBasicBlock &OpMBB = *MI.getOperand(i + 1).getMBB();
+ MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
+ extractParts(MI.getOperand(i).getReg(), NarrowTy, NumParts,
+ SrcRegs[i / 2]);
+ }
+ MachineBasicBlock &MBB = *MI.getParent();
+ MIRBuilder.setInsertPt(MBB, MI);
+ for (unsigned i = 0; i < NumParts; ++i) {
+ DstRegs[i] = MRI.createGenericVirtualRegister(NarrowTy);
+ MachineInstrBuilder MIB =
+ MIRBuilder.buildInstr(TargetOpcode::G_PHI).addDef(DstRegs[i]);
+ for (unsigned j = 1; j < MI.getNumOperands(); j += 2)
+ MIB.addUse(SrcRegs[j / 2][i]).add(MI.getOperand(j + 1));
+ }
+ MIRBuilder.setInsertPt(MBB, MBB.getFirstNonPHI());
+ MIRBuilder.buildMerge(MI.getOperand(0), DstRegs);
+ Observer.changedInstr(MI);
+ MI.eraseFromParent();
+ return Legalized;
+ }
+ case TargetOpcode::G_EXTRACT_VECTOR_ELT:
+ case TargetOpcode::G_INSERT_VECTOR_ELT: {
+ if (TypeIdx != 2)
+ return UnableToLegalize;
+
+ int OpIdx = MI.getOpcode() == TargetOpcode::G_EXTRACT_VECTOR_ELT ? 2 : 3;
+ Observer.changingInstr(MI);
+ narrowScalarSrc(MI, NarrowTy, OpIdx);
+ Observer.changedInstr(MI);
+ return Legalized;
+ }
+ case TargetOpcode::G_ICMP: {
+ uint64_t SrcSize = MRI.getType(MI.getOperand(2).getReg()).getSizeInBits();
+ if (NarrowSize * 2 != SrcSize)
+ return UnableToLegalize;
+
+ Observer.changingInstr(MI);
+ Register LHSL = MRI.createGenericVirtualRegister(NarrowTy);
+ Register LHSH = MRI.createGenericVirtualRegister(NarrowTy);
+ MIRBuilder.buildUnmerge({LHSL, LHSH}, MI.getOperand(2));
+
+ Register RHSL = MRI.createGenericVirtualRegister(NarrowTy);
+ Register RHSH = MRI.createGenericVirtualRegister(NarrowTy);
+ MIRBuilder.buildUnmerge({RHSL, RHSH}, MI.getOperand(3));
+
+ CmpInst::Predicate Pred =
+ static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate());
+ LLT ResTy = MRI.getType(MI.getOperand(0).getReg());
+
+ if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) {
+ MachineInstrBuilder XorL = MIRBuilder.buildXor(NarrowTy, LHSL, RHSL);
+ MachineInstrBuilder XorH = MIRBuilder.buildXor(NarrowTy, LHSH, RHSH);
+ MachineInstrBuilder Or = MIRBuilder.buildOr(NarrowTy, XorL, XorH);
+ MachineInstrBuilder Zero = MIRBuilder.buildConstant(NarrowTy, 0);
+ MIRBuilder.buildICmp(Pred, MI.getOperand(0), Or, Zero);
+ } else {
+ MachineInstrBuilder CmpH = MIRBuilder.buildICmp(Pred, ResTy, LHSH, RHSH);
+ MachineInstrBuilder CmpHEQ =
+ MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_EQ, ResTy, LHSH, RHSH);
+ MachineInstrBuilder CmpLU = MIRBuilder.buildICmp(
+ ICmpInst::getUnsignedPredicate(Pred), ResTy, LHSL, RHSL);
+ MIRBuilder.buildSelect(MI.getOperand(0), CmpHEQ, CmpLU, CmpH);
+ }
+ Observer.changedInstr(MI);
+ MI.eraseFromParent();
+ return Legalized;
+ }
+ case TargetOpcode::G_SEXT_INREG: {
+ if (TypeIdx != 0)
+ return UnableToLegalize;
+
+ int64_t SizeInBits = MI.getOperand(2).getImm();
+
+ // So long as the new type has more bits than the bits we're extending we
+ // don't need to break it apart.
+ if (NarrowTy.getScalarSizeInBits() >= SizeInBits) {
+ Observer.changingInstr(MI);
+ // We don't lose any non-extension bits by truncating the src and
+ // sign-extending the dst.
+ MachineOperand &MO1 = MI.getOperand(1);
+ auto TruncMIB = MIRBuilder.buildTrunc(NarrowTy, MO1);
+ MO1.setReg(TruncMIB.getReg(0));
+
+ MachineOperand &MO2 = MI.getOperand(0);
+ Register DstExt = MRI.createGenericVirtualRegister(NarrowTy);
+ MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
+ MIRBuilder.buildSExt(MO2, DstExt);
+ MO2.setReg(DstExt);
+ Observer.changedInstr(MI);
+ return Legalized;
+ }
+
+ // Break it apart. Components below the extension point are unmodified. The
+ // component containing the extension point becomes a narrower SEXT_INREG.
+ // Components above it are ashr'd from the component containing the
+ // extension point.
+ if (SizeOp0 % NarrowSize != 0)
+ return UnableToLegalize;
+ int NumParts = SizeOp0 / NarrowSize;
+
+ // List the registers where the destination will be scattered.
+ SmallVector<Register, 2> DstRegs;
+ // List the registers where the source will be split.
+ SmallVector<Register, 2> SrcRegs;
+
+ // Create all the temporary registers.
+ for (int i = 0; i < NumParts; ++i) {
+ Register SrcReg = MRI.createGenericVirtualRegister(NarrowTy);
+
+ SrcRegs.push_back(SrcReg);
+ }
+
+ // Explode the big arguments into smaller chunks.
+ MIRBuilder.buildUnmerge(SrcRegs, MI.getOperand(1));
+
+ Register AshrCstReg =
+ MIRBuilder.buildConstant(NarrowTy, NarrowTy.getScalarSizeInBits() - 1)
+ .getReg(0);
+ Register FullExtensionReg = 0;
+ Register PartialExtensionReg = 0;
+
+ // Do the operation on each small part.
+ for (int i = 0; i < NumParts; ++i) {
+ if ((i + 1) * NarrowTy.getScalarSizeInBits() < SizeInBits)
+ DstRegs.push_back(SrcRegs[i]);
+ else if (i * NarrowTy.getScalarSizeInBits() > SizeInBits) {
+ assert(PartialExtensionReg &&
+ "Expected to visit partial extension before full");
+ if (FullExtensionReg) {
+ DstRegs.push_back(FullExtensionReg);
+ continue;
+ }
+ DstRegs.push_back(
+ MIRBuilder.buildAShr(NarrowTy, PartialExtensionReg, AshrCstReg)
+ .getReg(0));
+ FullExtensionReg = DstRegs.back();
+ } else {
+ DstRegs.push_back(
+ MIRBuilder
+ .buildInstr(
+ TargetOpcode::G_SEXT_INREG, {NarrowTy},
+ {SrcRegs[i], SizeInBits % NarrowTy.getScalarSizeInBits()})
+ .getReg(0));
+ PartialExtensionReg = DstRegs.back();
+ }
+ }
+
+ // Gather the destination registers into the final destination.
+ Register DstReg = MI.getOperand(0).getReg();
+ MIRBuilder.buildMerge(DstReg, DstRegs);
+ MI.eraseFromParent();
+ return Legalized;
+ }
+ case TargetOpcode::G_BSWAP:
+ case TargetOpcode::G_BITREVERSE: {
+ if (SizeOp0 % NarrowSize != 0)
+ return UnableToLegalize;
+
+ Observer.changingInstr(MI);
+ SmallVector<Register, 2> SrcRegs, DstRegs;
+ unsigned NumParts = SizeOp0 / NarrowSize;
+ extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs);
+
+ for (unsigned i = 0; i < NumParts; ++i) {
+ auto DstPart = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy},
+ {SrcRegs[NumParts - 1 - i]});
+ DstRegs.push_back(DstPart.getReg(0));
+ }
+
+ MIRBuilder.buildMerge(MI.getOperand(0), DstRegs);
+
+ Observer.changedInstr(MI);
+ MI.eraseFromParent();
+ return Legalized;
+ }
+ case TargetOpcode::G_PTR_ADD:
+ case TargetOpcode::G_PTRMASK: {
+ if (TypeIdx != 1)
+ return UnableToLegalize;
+ Observer.changingInstr(MI);
+ narrowScalarSrc(MI, NarrowTy, 2);
+ Observer.changedInstr(MI);
+ return Legalized;
+ }
+ case TargetOpcode::G_FPTOUI: {
+ if (TypeIdx != 0)
+ return UnableToLegalize;
+ Observer.changingInstr(MI);
+ narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT);
+ Observer.changedInstr(MI);
+ return Legalized;
+ }
+ case TargetOpcode::G_FPTOSI: {
+ if (TypeIdx != 0)
+ return UnableToLegalize;
+ Observer.changingInstr(MI);
+ narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_SEXT);
+ Observer.changedInstr(MI);
+ return Legalized;
+ }
+ case TargetOpcode::G_FPEXT:
+ if (TypeIdx != 0)
+ return UnableToLegalize;
+ Observer.changingInstr(MI);
+ narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_FPEXT);
+ Observer.changedInstr(MI);
+ return Legalized;
+ }
+}
+
+Register LegalizerHelper::coerceToScalar(Register Val) {
+ LLT Ty = MRI.getType(Val);
+ if (Ty.isScalar())
+ return Val;
+
+ const DataLayout &DL = MIRBuilder.getDataLayout();
+ LLT NewTy = LLT::scalar(Ty.getSizeInBits());
+ if (Ty.isPointer()) {
+ if (DL.isNonIntegralAddressSpace(Ty.getAddressSpace()))
+ return Register();
+ return MIRBuilder.buildPtrToInt(NewTy, Val).getReg(0);
+ }
+
+ Register NewVal = Val;
+
+ assert(Ty.isVector());
+ LLT EltTy = Ty.getElementType();
+ if (EltTy.isPointer())
+ NewVal = MIRBuilder.buildPtrToInt(NewTy, NewVal).getReg(0);
+ return MIRBuilder.buildBitcast(NewTy, NewVal).getReg(0);
+}
+
+void LegalizerHelper::widenScalarSrc(MachineInstr &MI, LLT WideTy,
+ unsigned OpIdx, unsigned ExtOpcode) {
+ MachineOperand &MO = MI.getOperand(OpIdx);
+ auto ExtB = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MO});
+ MO.setReg(ExtB.getReg(0));
+}
+
+void LegalizerHelper::narrowScalarSrc(MachineInstr &MI, LLT NarrowTy,
+ unsigned OpIdx) {
+ MachineOperand &MO = MI.getOperand(OpIdx);
+ auto ExtB = MIRBuilder.buildTrunc(NarrowTy, MO);
+ MO.setReg(ExtB.getReg(0));
+}
+
+void LegalizerHelper::widenScalarDst(MachineInstr &MI, LLT WideTy,
+ unsigned OpIdx, unsigned TruncOpcode) {
+ MachineOperand &MO = MI.getOperand(OpIdx);
+ Register DstExt = MRI.createGenericVirtualRegister(WideTy);
+ MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
+ MIRBuilder.buildInstr(TruncOpcode, {MO}, {DstExt});
+ MO.setReg(DstExt);
+}
+
+void LegalizerHelper::narrowScalarDst(MachineInstr &MI, LLT NarrowTy,
+ unsigned OpIdx, unsigned ExtOpcode) {
+ MachineOperand &MO = MI.getOperand(OpIdx);
+ Register DstTrunc = MRI.createGenericVirtualRegister(NarrowTy);
+ MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
+ MIRBuilder.buildInstr(ExtOpcode, {MO}, {DstTrunc});
+ MO.setReg(DstTrunc);
+}
+
+void LegalizerHelper::moreElementsVectorDst(MachineInstr &MI, LLT WideTy,
+ unsigned OpIdx) {
+ MachineOperand &MO = MI.getOperand(OpIdx);
+ MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
+ MO.setReg(widenWithUnmerge(WideTy, MO.getReg()));
+}
+
+void LegalizerHelper::moreElementsVectorSrc(MachineInstr &MI, LLT MoreTy,
+ unsigned OpIdx) {
+ MachineOperand &MO = MI.getOperand(OpIdx);
+
+ LLT OldTy = MRI.getType(MO.getReg());
+ unsigned OldElts = OldTy.getNumElements();
+ unsigned NewElts = MoreTy.getNumElements();
+
+ unsigned NumParts = NewElts / OldElts;
+
+ // Use concat_vectors if the result is a multiple of the number of elements.
+ if (NumParts * OldElts == NewElts) {
+ SmallVector<Register, 8> Parts;
+ Parts.push_back(MO.getReg());
+
+ Register ImpDef = MIRBuilder.buildUndef(OldTy).getReg(0);
+ for (unsigned I = 1; I != NumParts; ++I)
+ Parts.push_back(ImpDef);
+
+ auto Concat = MIRBuilder.buildConcatVectors(MoreTy, Parts);
+ MO.setReg(Concat.getReg(0));
+ return;
+ }
+
+ Register MoreReg = MRI.createGenericVirtualRegister(MoreTy);
+ Register ImpDef = MIRBuilder.buildUndef(MoreTy).getReg(0);
+ MIRBuilder.buildInsert(MoreReg, ImpDef, MO.getReg(), 0);
+ MO.setReg(MoreReg);
+}
+
+void LegalizerHelper::bitcastSrc(MachineInstr &MI, LLT CastTy, unsigned OpIdx) {
+ MachineOperand &Op = MI.getOperand(OpIdx);
+ Op.setReg(MIRBuilder.buildBitcast(CastTy, Op).getReg(0));
+}
+
+void LegalizerHelper::bitcastDst(MachineInstr &MI, LLT CastTy, unsigned OpIdx) {
+ MachineOperand &MO = MI.getOperand(OpIdx);
+ Register CastDst = MRI.createGenericVirtualRegister(CastTy);
+ MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
+ MIRBuilder.buildBitcast(MO, CastDst);
+ MO.setReg(CastDst);
+}
+
+LegalizerHelper::LegalizeResult
+LegalizerHelper::widenScalarMergeValues(MachineInstr &MI, unsigned TypeIdx,
+ LLT WideTy) {
+ if (TypeIdx != 1)
+ return UnableToLegalize;
+
+ Register DstReg = MI.getOperand(0).getReg();
+ LLT DstTy = MRI.getType(DstReg);
+ if (DstTy.isVector())
+ return UnableToLegalize;
+
+ Register Src1 = MI.getOperand(1).getReg();
+ LLT SrcTy = MRI.getType(Src1);
+ const int DstSize = DstTy.getSizeInBits();
+ const int SrcSize = SrcTy.getSizeInBits();
+ const int WideSize = WideTy.getSizeInBits();
+ const int NumMerge = (DstSize + WideSize - 1) / WideSize;
+
+ unsigned NumOps = MI.getNumOperands();
+ unsigned NumSrc = MI.getNumOperands() - 1;
+ unsigned PartSize = DstTy.getSizeInBits() / NumSrc;
+
+ if (WideSize >= DstSize) {
+ // Directly pack the bits in the target type.
+ Register ResultReg = MIRBuilder.buildZExt(WideTy, Src1).getReg(0);
+
+ for (unsigned I = 2; I != NumOps; ++I) {
+ const unsigned Offset = (I - 1) * PartSize;
+
+ Register SrcReg = MI.getOperand(I).getReg();
+ assert(MRI.getType(SrcReg) == LLT::scalar(PartSize));
+
+ auto ZextInput = MIRBuilder.buildZExt(WideTy, SrcReg);
+
+ Register NextResult = I + 1 == NumOps && WideTy == DstTy ? DstReg :
+ MRI.createGenericVirtualRegister(WideTy);
+
+ auto ShiftAmt = MIRBuilder.buildConstant(WideTy, Offset);
+ auto Shl = MIRBuilder.buildShl(WideTy, ZextInput, ShiftAmt);
+ MIRBuilder.buildOr(NextResult, ResultReg, Shl);
+ ResultReg = NextResult;
+ }
+
+ if (WideSize > DstSize)
+ MIRBuilder.buildTrunc(DstReg, ResultReg);
+ else if (DstTy.isPointer())
+ MIRBuilder.buildIntToPtr(DstReg, ResultReg);
+
+ MI.eraseFromParent();
+ return Legalized;
+ }
+
+ // Unmerge the original values to the GCD type, and recombine to the next
+ // multiple greater than the original type.
+ //
+ // %3:_(s12) = G_MERGE_VALUES %0:_(s4), %1:_(s4), %2:_(s4) -> s6
+ // %4:_(s2), %5:_(s2) = G_UNMERGE_VALUES %0
+ // %6:_(s2), %7:_(s2) = G_UNMERGE_VALUES %1
+ // %8:_(s2), %9:_(s2) = G_UNMERGE_VALUES %2
+ // %10:_(s6) = G_MERGE_VALUES %4, %5, %6
+ // %11:_(s6) = G_MERGE_VALUES %7, %8, %9
+ // %12:_(s12) = G_MERGE_VALUES %10, %11
+ //
+ // Padding with undef if necessary:
+ //
+ // %2:_(s8) = G_MERGE_VALUES %0:_(s4), %1:_(s4) -> s6
+ // %3:_(s2), %4:_(s2) = G_UNMERGE_VALUES %0
+ // %5:_(s2), %6:_(s2) = G_UNMERGE_VALUES %1
+ // %7:_(s2) = G_IMPLICIT_DEF
+ // %8:_(s6) = G_MERGE_VALUES %3, %4, %5
+ // %9:_(s6) = G_MERGE_VALUES %6, %7, %7
+ // %10:_(s12) = G_MERGE_VALUES %8, %9
+
+ const int GCD = greatestCommonDivisor(SrcSize, WideSize);
+ LLT GCDTy = LLT::scalar(GCD);
+
+ SmallVector<Register, 8> Parts;
+ SmallVector<Register, 8> NewMergeRegs;
+ SmallVector<Register, 8> Unmerges;
+ LLT WideDstTy = LLT::scalar(NumMerge * WideSize);
+
+ // Decompose the original operands if they don't evenly divide.
+ for (int I = 1, E = MI.getNumOperands(); I != E; ++I) {
+ Register SrcReg = MI.getOperand(I).getReg();
+ if (GCD == SrcSize) {
+ Unmerges.push_back(SrcReg);
+ } else {
+ auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg);
+ for (int J = 0, JE = Unmerge->getNumOperands() - 1; J != JE; ++J)
+ Unmerges.push_back(Unmerge.getReg(J));
+ }
+ }
+
+ // Pad with undef to the next size that is a multiple of the requested size.
+ if (static_cast<int>(Unmerges.size()) != NumMerge * WideSize) {
+ Register UndefReg = MIRBuilder.buildUndef(GCDTy).getReg(0);
+ for (int I = Unmerges.size(); I != NumMerge * WideSize; ++I)
+ Unmerges.push_back(UndefReg);
+ }
+
+ const int PartsPerGCD = WideSize / GCD;
+
+ // Build merges of each piece.
+ ArrayRef<Register> Slicer(Unmerges);
+ for (int I = 0; I != NumMerge; ++I, Slicer = Slicer.drop_front(PartsPerGCD)) {
+ auto Merge = MIRBuilder.buildMerge(WideTy, Slicer.take_front(PartsPerGCD));
+ NewMergeRegs.push_back(Merge.getReg(0));
+ }
+
+ // A truncate may be necessary if the requested type doesn't evenly divide the
+ // original result type.
+ if (DstTy.getSizeInBits() == WideDstTy.getSizeInBits()) {
+ MIRBuilder.buildMerge(DstReg, NewMergeRegs);
+ } else {
+ auto FinalMerge = MIRBuilder.buildMerge(WideDstTy, NewMergeRegs);
+ MIRBuilder.buildTrunc(DstReg, FinalMerge.getReg(0));
+ }
+
+ MI.eraseFromParent();
+ return Legalized;
+}
+
+Register LegalizerHelper::widenWithUnmerge(LLT WideTy, Register OrigReg) {
+ Register WideReg = MRI.createGenericVirtualRegister(WideTy);
+ LLT OrigTy = MRI.getType(OrigReg);
+ LLT LCMTy = getLCMType(WideTy, OrigTy);
+
+ const int NumMergeParts = LCMTy.getSizeInBits() / WideTy.getSizeInBits();
+ const int NumUnmergeParts = LCMTy.getSizeInBits() / OrigTy.getSizeInBits();
+
+ Register UnmergeSrc = WideReg;
+
+ // Create a merge to the LCM type, padding with undef
+ // %0:_(<3 x s32>) = G_FOO => <4 x s32>
+ // =>
+ // %1:_(<4 x s32>) = G_FOO
+ // %2:_(<4 x s32>) = G_IMPLICIT_DEF
+ // %3:_(<12 x s32>) = G_CONCAT_VECTORS %1, %2, %2
+ // %0:_(<3 x s32>), %4:_, %5:_, %6:_ = G_UNMERGE_VALUES %3
+ if (NumMergeParts > 1) {
+ Register Undef = MIRBuilder.buildUndef(WideTy).getReg(0);
+ SmallVector<Register, 8> MergeParts(NumMergeParts, Undef);
+ MergeParts[0] = WideReg;
+ UnmergeSrc = MIRBuilder.buildMerge(LCMTy, MergeParts).getReg(0);
+ }
+
+ // Unmerge to the original register and pad with dead defs.
+ SmallVector<Register, 8> UnmergeResults(NumUnmergeParts);
+ UnmergeResults[0] = OrigReg;
+ for (int I = 1; I != NumUnmergeParts; ++I)
+ UnmergeResults[I] = MRI.createGenericVirtualRegister(OrigTy);
+
+ MIRBuilder.buildUnmerge(UnmergeResults, UnmergeSrc);
+ return WideReg;
+}
+
+LegalizerHelper::LegalizeResult
+LegalizerHelper::widenScalarUnmergeValues(MachineInstr &MI, unsigned TypeIdx,
+ LLT WideTy) {
+ if (TypeIdx != 0)
+ return UnableToLegalize;
+
+ int NumDst = MI.getNumOperands() - 1;
+ Register SrcReg = MI.getOperand(NumDst).getReg();
+ LLT SrcTy = MRI.getType(SrcReg);
+ if (SrcTy.isVector())
+ return UnableToLegalize;
+
+ Register Dst0Reg = MI.getOperand(0).getReg();
+ LLT DstTy = MRI.getType(Dst0Reg);
+ if (!DstTy.isScalar())
+ return UnableToLegalize;
+
+ if (WideTy.getSizeInBits() >= SrcTy.getSizeInBits()) {
+ if (SrcTy.isPointer()) {
+ const DataLayout &DL = MIRBuilder.getDataLayout();
+ if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace())) {
+ LLVM_DEBUG(
+ dbgs() << "Not casting non-integral address space integer\n");
+ return UnableToLegalize;
+ }
+
+ SrcTy = LLT::scalar(SrcTy.getSizeInBits());
+ SrcReg = MIRBuilder.buildPtrToInt(SrcTy, SrcReg).getReg(0);
+ }
+
+ // Widen SrcTy to WideTy. This does not affect the result, but since the
+ // user requested this size, it is probably better handled than SrcTy and
+ // should reduce the total number of legalization artifacts
+ if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) {
+ SrcTy = WideTy;
+ SrcReg = MIRBuilder.buildAnyExt(WideTy, SrcReg).getReg(0);
+ }
+
+ // Theres no unmerge type to target. Directly extract the bits from the
+ // source type
+ unsigned DstSize = DstTy.getSizeInBits();
+
+ MIRBuilder.buildTrunc(Dst0Reg, SrcReg);
+ for (int I = 1; I != NumDst; ++I) {
+ auto ShiftAmt = MIRBuilder.buildConstant(SrcTy, DstSize * I);
+ auto Shr = MIRBuilder.buildLShr(SrcTy, SrcReg, ShiftAmt);
+ MIRBuilder.buildTrunc(MI.getOperand(I), Shr);
+ }
+
+ MI.eraseFromParent();
+ return Legalized;
+ }
+
+ // Extend the source to a wider type.
+ LLT LCMTy = getLCMType(SrcTy, WideTy);
+
+ Register WideSrc = SrcReg;
+ if (LCMTy.getSizeInBits() != SrcTy.getSizeInBits()) {
+ // TODO: If this is an integral address space, cast to integer and anyext.
+ if (SrcTy.isPointer()) {
+ LLVM_DEBUG(dbgs() << "Widening pointer source types not implemented\n");
+ return UnableToLegalize;
+ }
+
+ WideSrc = MIRBuilder.buildAnyExt(LCMTy, WideSrc).getReg(0);
+ }
+
+ auto Unmerge = MIRBuilder.buildUnmerge(WideTy, WideSrc);
+
+ // Create a sequence of unmerges and merges to the original results. Since we
+ // may have widened the source, we will need to pad the results with dead defs
+ // to cover the source register.
+ // e.g. widen s48 to s64:
+ // %1:_(s48), %2:_(s48) = G_UNMERGE_VALUES %0:_(s96)
+ //
+ // =>
+ // %4:_(s192) = G_ANYEXT %0:_(s96)
+ // %5:_(s64), %6, %7 = G_UNMERGE_VALUES %4 ; Requested unmerge
+ // ; unpack to GCD type, with extra dead defs
+ // %8:_(s16), %9, %10, %11 = G_UNMERGE_VALUES %5:_(s64)
+ // %12:_(s16), %13, dead %14, dead %15 = G_UNMERGE_VALUES %6:_(s64)
+ // dead %16:_(s16), dead %17, dead %18, dead %18 = G_UNMERGE_VALUES %7:_(s64)
+ // %1:_(s48) = G_MERGE_VALUES %8:_(s16), %9, %10 ; Remerge to destination
+ // %2:_(s48) = G_MERGE_VALUES %11:_(s16), %12, %13 ; Remerge to destination
+ const LLT GCDTy = getGCDType(WideTy, DstTy);
+ const int NumUnmerge = Unmerge->getNumOperands() - 1;
+ const int PartsPerRemerge = DstTy.getSizeInBits() / GCDTy.getSizeInBits();
+
+ // Directly unmerge to the destination without going through a GCD type
+ // if possible
+ if (PartsPerRemerge == 1) {
+ const int PartsPerUnmerge = WideTy.getSizeInBits() / DstTy.getSizeInBits();
+
+ for (int I = 0; I != NumUnmerge; ++I) {
+ auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES);
+
+ for (int J = 0; J != PartsPerUnmerge; ++J) {
+ int Idx = I * PartsPerUnmerge + J;
+ if (Idx < NumDst)
+ MIB.addDef(MI.getOperand(Idx).getReg());
+ else {
+ // Create dead def for excess components.
+ MIB.addDef(MRI.createGenericVirtualRegister(DstTy));
+ }
+ }
+
+ MIB.addUse(Unmerge.getReg(I));
+ }
+ } else {
+ SmallVector<Register, 16> Parts;
+ for (int J = 0; J != NumUnmerge; ++J)
+ extractGCDType(Parts, GCDTy, Unmerge.getReg(J));
+
+ SmallVector<Register, 8> RemergeParts;
+ for (int I = 0; I != NumDst; ++I) {
+ for (int J = 0; J < PartsPerRemerge; ++J) {
+ const int Idx = I * PartsPerRemerge + J;
+ RemergeParts.emplace_back(Parts[Idx]);
+ }
+
+ MIRBuilder.buildMerge(MI.getOperand(I).getReg(), RemergeParts);
+ RemergeParts.clear();
+ }
+ }
+
+ MI.eraseFromParent();
+ return Legalized;
+}
+
+LegalizerHelper::LegalizeResult
+LegalizerHelper::widenScalarExtract(MachineInstr &MI, unsigned TypeIdx,
+ LLT WideTy) {
+ Register DstReg = MI.getOperand(0).getReg();
+ Register SrcReg = MI.getOperand(1).getReg();
+ LLT SrcTy = MRI.getType(SrcReg);
+
+ LLT DstTy = MRI.getType(DstReg);
+ unsigned Offset = MI.getOperand(2).getImm();
+
+ if (TypeIdx == 0) {
+ if (SrcTy.isVector() || DstTy.isVector())
+ return UnableToLegalize;
+
+ SrcOp Src(SrcReg);
+ if (SrcTy.isPointer()) {
+ // Extracts from pointers can be handled only if they are really just
+ // simple integers.
+ const DataLayout &DL = MIRBuilder.getDataLayout();
+ if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace()))
+ return UnableToLegalize;
+
+ LLT SrcAsIntTy = LLT::scalar(SrcTy.getSizeInBits());
+ Src = MIRBuilder.buildPtrToInt(SrcAsIntTy, Src);
+ SrcTy = SrcAsIntTy;
+ }
+
+ if (DstTy.isPointer())
+ return UnableToLegalize;
+
+ if (Offset == 0) {
+ // Avoid a shift in the degenerate case.
+ MIRBuilder.buildTrunc(DstReg,
+ MIRBuilder.buildAnyExtOrTrunc(WideTy, Src));
+ MI.eraseFromParent();
+ return Legalized;
+ }
+
+ // Do a shift in the source type.
+ LLT ShiftTy = SrcTy;
+ if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) {
+ Src = MIRBuilder.buildAnyExt(WideTy, Src);
+ ShiftTy = WideTy;
+ }
+
+ auto LShr = MIRBuilder.buildLShr(
+ ShiftTy, Src, MIRBuilder.buildConstant(ShiftTy, Offset));
+ MIRBuilder.buildTrunc(DstReg, LShr);
+ MI.eraseFromParent();
+ return Legalized;
+ }
+
+ if (SrcTy.isScalar()) {
+ Observer.changingInstr(MI);
+ widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
+ Observer.changedInstr(MI);
+ return Legalized;
+ }
+
+ if (!SrcTy.isVector())
+ return UnableToLegalize;
+
+ if (DstTy != SrcTy.getElementType())
+ return UnableToLegalize;
+
+ if (Offset % SrcTy.getScalarSizeInBits() != 0)
+ return UnableToLegalize;
+
+ Observer.changingInstr(MI);
+ widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
+
+ MI.getOperand(2).setImm((WideTy.getSizeInBits() / SrcTy.getSizeInBits()) *
+ Offset);
+ widenScalarDst(MI, WideTy.getScalarType(), 0);
+ Observer.changedInstr(MI);
+ return Legalized;
+}
+
+LegalizerHelper::LegalizeResult
+LegalizerHelper::widenScalarInsert(MachineInstr &MI, unsigned TypeIdx,
+ LLT WideTy) {
+ if (TypeIdx != 0 || WideTy.isVector())
+ return UnableToLegalize;
+ Observer.changingInstr(MI);
+ widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
+ widenScalarDst(MI, WideTy);
+ Observer.changedInstr(MI);
+ return Legalized;
+}
+
+LegalizerHelper::LegalizeResult
+LegalizerHelper::widenScalarAddoSubo(MachineInstr &MI, unsigned TypeIdx,
+ LLT WideTy) {
+ if (TypeIdx == 1)
+ return UnableToLegalize; // TODO
+ unsigned Op = MI.getOpcode();
+ unsigned Opcode = Op == TargetOpcode::G_UADDO || Op == TargetOpcode::G_SADDO
+ ? TargetOpcode::G_ADD
+ : TargetOpcode::G_SUB;
+ unsigned ExtOpcode =
+ Op == TargetOpcode::G_UADDO || Op == TargetOpcode::G_USUBO
+ ? TargetOpcode::G_ZEXT
+ : TargetOpcode::G_SEXT;
+ auto LHSExt = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MI.getOperand(2)});
+ auto RHSExt = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MI.getOperand(3)});
+ // Do the arithmetic in the larger type.
+ auto NewOp = MIRBuilder.buildInstr(Opcode, {WideTy}, {LHSExt, RHSExt});
+ LLT OrigTy = MRI.getType(MI.getOperand(0).getReg());
+ auto TruncOp = MIRBuilder.buildTrunc(OrigTy, NewOp);
+ auto ExtOp = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {TruncOp});
+ // There is no overflow if the ExtOp is the same as NewOp.
+ MIRBuilder.buildICmp(CmpInst::ICMP_NE, MI.getOperand(1), NewOp, ExtOp);
+ // Now trunc the NewOp to the original result.
+ MIRBuilder.buildTrunc(MI.getOperand(0), NewOp);
+ MI.eraseFromParent();
+ return Legalized;
+}
+
+LegalizerHelper::LegalizeResult
+LegalizerHelper::widenScalarAddSubShlSat(MachineInstr &MI, unsigned TypeIdx,
+ LLT WideTy) {
+ bool IsSigned = MI.getOpcode() == TargetOpcode::G_SADDSAT ||
+ MI.getOpcode() == TargetOpcode::G_SSUBSAT ||
+ MI.getOpcode() == TargetOpcode::G_SSHLSAT;
+ bool IsShift = MI.getOpcode() == TargetOpcode::G_SSHLSAT ||
+ MI.getOpcode() == TargetOpcode::G_USHLSAT;
+ // We can convert this to:
+ // 1. Any extend iN to iM
+ // 2. SHL by M-N
+ // 3. [US][ADD|SUB|SHL]SAT
+ // 4. L/ASHR by M-N
+ //
+ // It may be more efficient to lower this to a min and a max operation in
+ // the higher precision arithmetic if the promoted operation isn't legal,
+ // but this decision is up to the target's lowering request.
+ Register DstReg = MI.getOperand(0).getReg();
+
+ unsigned NewBits = WideTy.getScalarSizeInBits();
+ unsigned SHLAmount = NewBits - MRI.getType(DstReg).getScalarSizeInBits();
+
+ // Shifts must zero-extend the RHS to preserve the unsigned quantity, and
+ // must not left shift the RHS to preserve the shift amount.
+ auto LHS = MIRBuilder.buildAnyExt(WideTy, MI.getOperand(1));
+ auto RHS = IsShift ? MIRBuilder.buildZExt(WideTy, MI.getOperand(2))
+ : MIRBuilder.buildAnyExt(WideTy, MI.getOperand(2));
+ auto ShiftK = MIRBuilder.buildConstant(WideTy, SHLAmount);
+ auto ShiftL = MIRBuilder.buildShl(WideTy, LHS, ShiftK);
+ auto ShiftR = IsShift ? RHS : MIRBuilder.buildShl(WideTy, RHS, ShiftK);
+
+ auto WideInst = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy},
+ {ShiftL, ShiftR}, MI.getFlags());
+
+ // Use a shift that will preserve the number of sign bits when the trunc is
+ // folded away.
+ auto Result = IsSigned ? MIRBuilder.buildAShr(WideTy, WideInst, ShiftK)
+ : MIRBuilder.buildLShr(WideTy, WideInst, ShiftK);
+
+ MIRBuilder.buildTrunc(DstReg, Result);
+ MI.eraseFromParent();
+ return Legalized;
+}
+
+LegalizerHelper::LegalizeResult
+LegalizerHelper::widenScalar(MachineInstr &MI, unsigned TypeIdx, LLT WideTy) {
+ switch (MI.getOpcode()) {
+ default:
+ return UnableToLegalize;
+ case TargetOpcode::G_EXTRACT:
+ return widenScalarExtract(MI, TypeIdx, WideTy);
+ case TargetOpcode::G_INSERT:
+ return widenScalarInsert(MI, TypeIdx, WideTy);
+ case TargetOpcode::G_MERGE_VALUES:
+ return widenScalarMergeValues(MI, TypeIdx, WideTy);
+ case TargetOpcode::G_UNMERGE_VALUES:
+ return widenScalarUnmergeValues(MI, TypeIdx, WideTy);
+ case TargetOpcode::G_SADDO:
+ case TargetOpcode::G_SSUBO:
+ case TargetOpcode::G_UADDO:
+ case TargetOpcode::G_USUBO:
+ return widenScalarAddoSubo(MI, TypeIdx, WideTy);
+ case TargetOpcode::G_SADDSAT:
+ case TargetOpcode::G_SSUBSAT:
+ case TargetOpcode::G_SSHLSAT:
+ case TargetOpcode::G_UADDSAT:
+ case TargetOpcode::G_USUBSAT:
+ case TargetOpcode::G_USHLSAT:
+ return widenScalarAddSubShlSat(MI, TypeIdx, WideTy);
+ case TargetOpcode::G_CTTZ:
+ case TargetOpcode::G_CTTZ_ZERO_UNDEF:
+ case TargetOpcode::G_CTLZ:
+ case TargetOpcode::G_CTLZ_ZERO_UNDEF:
+ case TargetOpcode::G_CTPOP: {
+ if (TypeIdx == 0) {
+ Observer.changingInstr(MI);
+ widenScalarDst(MI, WideTy, 0);
+ Observer.changedInstr(MI);
+ return Legalized;
+ }
+
+ Register SrcReg = MI.getOperand(1).getReg();
+
+ // First ZEXT the input.
+ auto MIBSrc = MIRBuilder.buildZExt(WideTy, SrcReg);
+ LLT CurTy = MRI.getType(SrcReg);
+ if (MI.getOpcode() == TargetOpcode::G_CTTZ) {
+ // The count is the same in the larger type except if the original
+ // value was zero. This can be handled by setting the bit just off
+ // the top of the original type.
+ auto TopBit =
+ APInt::getOneBitSet(WideTy.getSizeInBits(), CurTy.getSizeInBits());
+ MIBSrc = MIRBuilder.buildOr(
+ WideTy, MIBSrc, MIRBuilder.buildConstant(WideTy, TopBit));
+ }
+
+ // Perform the operation at the larger size.
+ auto MIBNewOp = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy}, {MIBSrc});
+ // This is already the correct result for CTPOP and CTTZs
+ if (MI.getOpcode() == TargetOpcode::G_CTLZ ||
+ MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF) {
+ // The correct result is NewOp - (Difference in widety and current ty).
+ unsigned SizeDiff = WideTy.getSizeInBits() - CurTy.getSizeInBits();
+ MIBNewOp = MIRBuilder.buildSub(
+ WideTy, MIBNewOp, MIRBuilder.buildConstant(WideTy, SizeDiff));
+ }
+
+ MIRBuilder.buildZExtOrTrunc(MI.getOperand(0), MIBNewOp);
+ MI.eraseFromParent();
+ return Legalized;
+ }
+ case TargetOpcode::G_BSWAP: {
+ Observer.changingInstr(MI);
+ Register DstReg = MI.getOperand(0).getReg();
+
+ Register ShrReg = MRI.createGenericVirtualRegister(WideTy);
+ Register DstExt = MRI.createGenericVirtualRegister(WideTy);
+ Register ShiftAmtReg = MRI.createGenericVirtualRegister(WideTy);
+ widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
+
+ MI.getOperand(0).setReg(DstExt);
+
+ MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
+
+ LLT Ty = MRI.getType(DstReg);
+ unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits();
+ MIRBuilder.buildConstant(ShiftAmtReg, DiffBits);
+ MIRBuilder.buildLShr(ShrReg, DstExt, ShiftAmtReg);
+
+ MIRBuilder.buildTrunc(DstReg, ShrReg);
+ Observer.changedInstr(MI);
+ return Legalized;
+ }
+ case TargetOpcode::G_BITREVERSE: {
+ Observer.changingInstr(MI);
+
+ Register DstReg = MI.getOperand(0).getReg();
+ LLT Ty = MRI.getType(DstReg);
+ unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits();
+
+ Register DstExt = MRI.createGenericVirtualRegister(WideTy);
+ widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
+ MI.getOperand(0).setReg(DstExt);
+ MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
+
+ auto ShiftAmt = MIRBuilder.buildConstant(WideTy, DiffBits);
+ auto Shift = MIRBuilder.buildLShr(WideTy, DstExt, ShiftAmt);
+ MIRBuilder.buildTrunc(DstReg, Shift);
+ Observer.changedInstr(MI);
+ return Legalized;
+ }
+ case TargetOpcode::G_FREEZE:
+ Observer.changingInstr(MI);
+ widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
+ widenScalarDst(MI, WideTy);
+ Observer.changedInstr(MI);
+ return Legalized;
+
+ case TargetOpcode::G_ADD:
+ case TargetOpcode::G_AND:
+ case TargetOpcode::G_MUL:
+ case TargetOpcode::G_OR:
+ case TargetOpcode::G_XOR:
+ case TargetOpcode::G_SUB:
+ // Perform operation at larger width (any extension is fines here, high bits
+ // don't affect the result) and then truncate the result back to the
+ // original type.
+ Observer.changingInstr(MI);
+ widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
+ widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT);
+ widenScalarDst(MI, WideTy);
+ Observer.changedInstr(MI);
+ return Legalized;
+
+ case TargetOpcode::G_SHL:
+ Observer.changingInstr(MI);
+
+ if (TypeIdx == 0) {
+ widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
+ widenScalarDst(MI, WideTy);
+ } else {
+ assert(TypeIdx == 1);
+ // The "number of bits to shift" operand must preserve its value as an
+ // unsigned integer:
+ widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
+ }
+
+ Observer.changedInstr(MI);
+ return Legalized;
+
+ case TargetOpcode::G_SDIV:
+ case TargetOpcode::G_SREM:
+ case TargetOpcode::G_SMIN:
+ case TargetOpcode::G_SMAX:
+ Observer.changingInstr(MI);
+ widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT);
+ widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT);
+ widenScalarDst(MI, WideTy);
+ Observer.changedInstr(MI);
+ return Legalized;
+
+ case TargetOpcode::G_ASHR:
+ case TargetOpcode::G_LSHR:
+ Observer.changingInstr(MI);
+
+ if (TypeIdx == 0) {
+ unsigned CvtOp = MI.getOpcode() == TargetOpcode::G_ASHR ?
+ TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT;
+
+ widenScalarSrc(MI, WideTy, 1, CvtOp);
+ widenScalarDst(MI, WideTy);
+ } else {
+ assert(TypeIdx == 1);
+ // The "number of bits to shift" operand must preserve its value as an
+ // unsigned integer:
+ widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
+ }
+
+ Observer.changedInstr(MI);
+ return Legalized;
+ case TargetOpcode::G_UDIV:
+ case TargetOpcode::G_UREM:
+ case TargetOpcode::G_UMIN:
+ case TargetOpcode::G_UMAX:
+ Observer.changingInstr(MI);
+ widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT);
+ widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
+ widenScalarDst(MI, WideTy);
+ Observer.changedInstr(MI);
+ return Legalized;
+
+ case TargetOpcode::G_SELECT:
+ Observer.changingInstr(MI);
+ if (TypeIdx == 0) {
+ // Perform operation at larger width (any extension is fine here, high
+ // bits don't affect the result) and then truncate the result back to the
+ // original type.
+ widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT);
+ widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ANYEXT);
+ widenScalarDst(MI, WideTy);
+ } else {
+ bool IsVec = MRI.getType(MI.getOperand(1).getReg()).isVector();
+ // Explicit extension is required here since high bits affect the result.
+ widenScalarSrc(MI, WideTy, 1, MIRBuilder.getBoolExtOp(IsVec, false));
+ }
+ Observer.changedInstr(MI);
+ return Legalized;
+
+ case TargetOpcode::G_FPTOSI:
+ case TargetOpcode::G_FPTOUI:
+ Observer.changingInstr(MI);
+
+ if (TypeIdx == 0)
+ widenScalarDst(MI, WideTy);
+ else
+ widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_FPEXT);
+
+ Observer.changedInstr(MI);
+ return Legalized;
+ case TargetOpcode::G_SITOFP:
+ Observer.changingInstr(MI);
+
+ if (TypeIdx == 0)
+ widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
+ else
+ widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT);
+
+ Observer.changedInstr(MI);
+ return Legalized;
+ case TargetOpcode::G_UITOFP:
+ Observer.changingInstr(MI);
+
+ if (TypeIdx == 0)
+ widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
+ else
+ widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT);
+
+ Observer.changedInstr(MI);
+ return Legalized;
+ case TargetOpcode::G_LOAD:
+ case TargetOpcode::G_SEXTLOAD:
+ case TargetOpcode::G_ZEXTLOAD:
+ Observer.changingInstr(MI);
+ widenScalarDst(MI, WideTy);
+ Observer.changedInstr(MI);
+ return Legalized;
+
+ case TargetOpcode::G_STORE: {
+ if (TypeIdx != 0)
+ return UnableToLegalize;
+
+ LLT Ty = MRI.getType(MI.getOperand(0).getReg());
+ if (!Ty.isScalar())
+ return UnableToLegalize;
+
+ Observer.changingInstr(MI);
+
+ unsigned ExtType = Ty.getScalarSizeInBits() == 1 ?
+ TargetOpcode::G_ZEXT : TargetOpcode::G_ANYEXT;
+ widenScalarSrc(MI, WideTy, 0, ExtType);
+
+ Observer.changedInstr(MI);
+ return Legalized;
+ }
+ case TargetOpcode::G_CONSTANT: {
+ MachineOperand &SrcMO = MI.getOperand(1);
+ LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext();
+ unsigned ExtOpc = LI.getExtOpcodeForWideningConstant(
+ MRI.getType(MI.getOperand(0).getReg()));
+ assert((ExtOpc == TargetOpcode::G_ZEXT || ExtOpc == TargetOpcode::G_SEXT ||
+ ExtOpc == TargetOpcode::G_ANYEXT) &&
+ "Illegal Extend");
+ const APInt &SrcVal = SrcMO.getCImm()->getValue();
+ const APInt &Val = (ExtOpc == TargetOpcode::G_SEXT)
+ ? SrcVal.sext(WideTy.getSizeInBits())
+ : SrcVal.zext(WideTy.getSizeInBits());
+ Observer.changingInstr(MI);
+ SrcMO.setCImm(ConstantInt::get(Ctx, Val));
+
+ widenScalarDst(MI, WideTy);
+ Observer.changedInstr(MI);
+ return Legalized;
+ }
+ case TargetOpcode::G_FCONSTANT: {
+ MachineOperand &SrcMO = MI.getOperand(1);
+ LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext();
+ APFloat Val = SrcMO.getFPImm()->getValueAPF();
+ bool LosesInfo;
+ switch (WideTy.getSizeInBits()) {
+ case 32:
+ Val.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
+ &LosesInfo);
+ break;
+ case 64:
+ Val.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven,
+ &LosesInfo);
+ break;
+ default:
+ return UnableToLegalize;
+ }
+
+ assert(!LosesInfo && "extend should always be lossless");
+
+ Observer.changingInstr(MI);
+ SrcMO.setFPImm(ConstantFP::get(Ctx, Val));
+
+ widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
+ Observer.changedInstr(MI);
+ return Legalized;
+ }
+ case TargetOpcode::G_IMPLICIT_DEF: {
+ Observer.changingInstr(MI);
+ widenScalarDst(MI, WideTy);
+ Observer.changedInstr(MI);
+ return Legalized;
+ }
+ case TargetOpcode::G_BRCOND:
+ Observer.changingInstr(MI);
+ widenScalarSrc(MI, WideTy, 0, MIRBuilder.getBoolExtOp(false, false));
+ Observer.changedInstr(MI);
+ return Legalized;
+
+ case TargetOpcode::G_FCMP:
+ Observer.changingInstr(MI);
+ if (TypeIdx == 0)
+ widenScalarDst(MI, WideTy);
+ else {
+ widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_FPEXT);
+ widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_FPEXT);
+ }
+ Observer.changedInstr(MI);
+ return Legalized;
+
+ case TargetOpcode::G_ICMP:
+ Observer.changingInstr(MI);
+ if (TypeIdx == 0)
+ widenScalarDst(MI, WideTy);
+ else {
+ unsigned ExtOpcode = CmpInst::isSigned(static_cast<CmpInst::Predicate>(
+ MI.getOperand(1).getPredicate()))
+ ? TargetOpcode::G_SEXT
+ : TargetOpcode::G_ZEXT;
+ widenScalarSrc(MI, WideTy, 2, ExtOpcode);
+ widenScalarSrc(MI, WideTy, 3, ExtOpcode);
+ }
+ Observer.changedInstr(MI);
+ return Legalized;
+
+ case TargetOpcode::G_PTR_ADD:
+ assert(TypeIdx == 1 && "unable to legalize pointer of G_PTR_ADD");
+ Observer.changingInstr(MI);
+ widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT);
+ Observer.changedInstr(MI);
+ return Legalized;
+
+ case TargetOpcode::G_PHI: {
+ assert(TypeIdx == 0 && "Expecting only Idx 0");
+
+ Observer.changingInstr(MI);
+ for (unsigned I = 1; I < MI.getNumOperands(); I += 2) {
+ MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB();
+ MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
+ widenScalarSrc(MI, WideTy, I, TargetOpcode::G_ANYEXT);
+ }
+
+ MachineBasicBlock &MBB = *MI.getParent();
+ MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI());
+ widenScalarDst(MI, WideTy);
+ Observer.changedInstr(MI);
+ return Legalized;
+ }
+ case TargetOpcode::G_EXTRACT_VECTOR_ELT: {
+ if (TypeIdx == 0) {
+ Register VecReg = MI.getOperand(1).getReg();
+ LLT VecTy = MRI.getType(VecReg);
+ Observer.changingInstr(MI);
+
+ widenScalarSrc(MI, LLT::vector(VecTy.getNumElements(),
+ WideTy.getSizeInBits()),
+ 1, TargetOpcode::G_SEXT);
+
+ widenScalarDst(MI, WideTy, 0);
+ Observer.changedInstr(MI);
+ return Legalized;
+ }
+
+ if (TypeIdx != 2)
+ return UnableToLegalize;
+ Observer.changingInstr(MI);
+ // TODO: Probably should be zext
+ widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT);
+ Observer.changedInstr(MI);
+ return Legalized;
+ }
+ case TargetOpcode::G_INSERT_VECTOR_ELT: {
+ if (TypeIdx == 1) {
+ Observer.changingInstr(MI);
+
+ Register VecReg = MI.getOperand(1).getReg();
+ LLT VecTy = MRI.getType(VecReg);
+ LLT WideVecTy = LLT::vector(VecTy.getNumElements(), WideTy);
+
+ widenScalarSrc(MI, WideVecTy, 1, TargetOpcode::G_ANYEXT);
+ widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT);
+ widenScalarDst(MI, WideVecTy, 0);
+ Observer.changedInstr(MI);
+ return Legalized;
+ }
+
+ if (TypeIdx == 2) {
+ Observer.changingInstr(MI);
+ // TODO: Probably should be zext
+ widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_SEXT);
+ Observer.changedInstr(MI);
+ return Legalized;
+ }
+
+ return UnableToLegalize;
+ }
+ case TargetOpcode::G_FADD:
+ case TargetOpcode::G_FMUL:
+ case TargetOpcode::G_FSUB:
+ case TargetOpcode::G_FMA:
+ case TargetOpcode::G_FMAD:
+ case TargetOpcode::G_FNEG:
+ case TargetOpcode::G_FABS:
+ case TargetOpcode::G_FCANONICALIZE:
+ case TargetOpcode::G_FMINNUM:
+ case TargetOpcode::G_FMAXNUM:
+ case TargetOpcode::G_FMINNUM_IEEE:
+ case TargetOpcode::G_FMAXNUM_IEEE:
+ case TargetOpcode::G_FMINIMUM:
+ case TargetOpcode::G_FMAXIMUM:
+ case TargetOpcode::G_FDIV:
+ case TargetOpcode::G_FREM:
+ case TargetOpcode::G_FCEIL:
+ case TargetOpcode::G_FFLOOR:
+ case TargetOpcode::G_FCOS:
+ case TargetOpcode::G_FSIN:
+ case TargetOpcode::G_FLOG10:
+ case TargetOpcode::G_FLOG:
+ case TargetOpcode::G_FLOG2:
+ case TargetOpcode::G_FRINT:
+ case TargetOpcode::G_FNEARBYINT:
+ case TargetOpcode::G_FSQRT:
+ case TargetOpcode::G_FEXP:
+ case TargetOpcode::G_FEXP2:
+ case TargetOpcode::G_FPOW:
+ case TargetOpcode::G_INTRINSIC_TRUNC:
+ case TargetOpcode::G_INTRINSIC_ROUND:
+ case TargetOpcode::G_INTRINSIC_ROUNDEVEN:
+ assert(TypeIdx == 0);
+ Observer.changingInstr(MI);
+
+ for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I)
+ widenScalarSrc(MI, WideTy, I, TargetOpcode::G_FPEXT);
+
+ widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
+ Observer.changedInstr(MI);
+ return Legalized;
+ case TargetOpcode::G_FPOWI: {
+ if (TypeIdx != 0)
+ return UnableToLegalize;
+ Observer.changingInstr(MI);
+ widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_FPEXT);
+ widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
+ Observer.changedInstr(MI);
+ return Legalized;
+ }
+ case TargetOpcode::G_INTTOPTR:
+ if (TypeIdx != 1)
+ return UnableToLegalize;
+
+ Observer.changingInstr(MI);
+ widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT);
+ Observer.changedInstr(MI);
+ return Legalized;
+ case TargetOpcode::G_PTRTOINT:
+ if (TypeIdx != 0)
+ return UnableToLegalize;
+
+ Observer.changingInstr(MI);
+ widenScalarDst(MI, WideTy, 0);
+ Observer.changedInstr(MI);
+ return Legalized;
+ case TargetOpcode::G_BUILD_VECTOR: {
+ Observer.changingInstr(MI);
+
+ const LLT WideEltTy = TypeIdx == 1 ? WideTy : WideTy.getElementType();
+ for (int I = 1, E = MI.getNumOperands(); I != E; ++I)
+ widenScalarSrc(MI, WideEltTy, I, TargetOpcode::G_ANYEXT);
+
+ // Avoid changing the result vector type if the source element type was
+ // requested.
+ if (TypeIdx == 1) {
+ MI.setDesc(MIRBuilder.getTII().get(TargetOpcode::G_BUILD_VECTOR_TRUNC));
+ } else {
+ widenScalarDst(MI, WideTy, 0);
+ }
+
+ Observer.changedInstr(MI);
+ return Legalized;
+ }
+ case TargetOpcode::G_SEXT_INREG:
+ if (TypeIdx != 0)
+ return UnableToLegalize;
+
+ Observer.changingInstr(MI);
+ widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
+ widenScalarDst(MI, WideTy, 0, TargetOpcode::G_TRUNC);
+ Observer.changedInstr(MI);
+ return Legalized;
+ case TargetOpcode::G_PTRMASK: {
+ if (TypeIdx != 1)
+ return UnableToLegalize;
+ Observer.changingInstr(MI);
+ widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
+ Observer.changedInstr(MI);
+ return Legalized;
+ }
+ }
+}
+
+static void getUnmergePieces(SmallVectorImpl<Register> &Pieces,
+ MachineIRBuilder &B, Register Src, LLT Ty) {
+ auto Unmerge = B.buildUnmerge(Ty, Src);
+ for (int I = 0, E = Unmerge->getNumOperands() - 1; I != E; ++I)
+ Pieces.push_back(Unmerge.getReg(I));
+}
+
+LegalizerHelper::LegalizeResult
+LegalizerHelper::lowerBitcast(MachineInstr &MI) {
+ Register Dst = MI.getOperand(0).getReg();
+ Register Src = MI.getOperand(1).getReg();
+ LLT DstTy = MRI.getType(Dst);
+ LLT SrcTy = MRI.getType(Src);
+
+ if (SrcTy.isVector()) {
+ LLT SrcEltTy = SrcTy.getElementType();
+ SmallVector<Register, 8> SrcRegs;
+
+ if (DstTy.isVector()) {
+ int NumDstElt = DstTy.getNumElements();
+ int NumSrcElt = SrcTy.getNumElements();
+
+ LLT DstEltTy = DstTy.getElementType();
+ LLT DstCastTy = DstEltTy; // Intermediate bitcast result type
+ LLT SrcPartTy = SrcEltTy; // Original unmerge result type.
+
+ // If there's an element size mismatch, insert intermediate casts to match
+ // the result element type.
+ if (NumSrcElt < NumDstElt) { // Source element type is larger.
+ // %1:_(<4 x s8>) = G_BITCAST %0:_(<2 x s16>)
+ //
+ // =>
+ //
+ // %2:_(s16), %3:_(s16) = G_UNMERGE_VALUES %0
+ // %3:_(<2 x s8>) = G_BITCAST %2
+ // %4:_(<2 x s8>) = G_BITCAST %3
+ // %1:_(<4 x s16>) = G_CONCAT_VECTORS %3, %4
+ DstCastTy = LLT::vector(NumDstElt / NumSrcElt, DstEltTy);
+ SrcPartTy = SrcEltTy;
+ } else if (NumSrcElt > NumDstElt) { // Source element type is smaller.
+ //
+ // %1:_(<2 x s16>) = G_BITCAST %0:_(<4 x s8>)
+ //
+ // =>
+ //
+ // %2:_(<2 x s8>), %3:_(<2 x s8>) = G_UNMERGE_VALUES %0
+ // %3:_(s16) = G_BITCAST %2
+ // %4:_(s16) = G_BITCAST %3
+ // %1:_(<2 x s16>) = G_BUILD_VECTOR %3, %4
+ SrcPartTy = LLT::vector(NumSrcElt / NumDstElt, SrcEltTy);
+ DstCastTy = DstEltTy;
+ }
+
+ getUnmergePieces(SrcRegs, MIRBuilder, Src, SrcPartTy);
+ for (Register &SrcReg : SrcRegs)
+ SrcReg = MIRBuilder.buildBitcast(DstCastTy, SrcReg).getReg(0);
+ } else
+ getUnmergePieces(SrcRegs, MIRBuilder, Src, SrcEltTy);
+
+ MIRBuilder.buildMerge(Dst, SrcRegs);
+ MI.eraseFromParent();
+ return Legalized;
+ }
+
+ if (DstTy.isVector()) {
+ SmallVector<Register, 8> SrcRegs;
+ getUnmergePieces(SrcRegs, MIRBuilder, Src, DstTy.getElementType());
+ MIRBuilder.buildMerge(Dst, SrcRegs);
+ MI.eraseFromParent();
+ return Legalized;
+ }
+
+ return UnableToLegalize;
+}
+
+/// Figure out the bit offset into a register when coercing a vector index for
+/// the wide element type. This is only for the case when promoting vector to
+/// one with larger elements.
+//
+///
+/// %offset_idx = G_AND %idx, ~(-1 << Log2(DstEltSize / SrcEltSize))
+/// %offset_bits = G_SHL %offset_idx, Log2(SrcEltSize)
+static Register getBitcastWiderVectorElementOffset(MachineIRBuilder &B,
+ Register Idx,
+ unsigned NewEltSize,
+ unsigned OldEltSize) {
+ const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize);
+ LLT IdxTy = B.getMRI()->getType(Idx);
+
+ // Now figure out the amount we need to shift to get the target bits.
+ auto OffsetMask = B.buildConstant(
+ IdxTy, ~(APInt::getAllOnesValue(IdxTy.getSizeInBits()) << Log2EltRatio));
+ auto OffsetIdx = B.buildAnd(IdxTy, Idx, OffsetMask);
+ return B.buildShl(IdxTy, OffsetIdx,
+ B.buildConstant(IdxTy, Log2_32(OldEltSize))).getReg(0);
+}
+
+/// Perform a G_EXTRACT_VECTOR_ELT in a different sized vector element. If this
+/// is casting to a vector with a smaller element size, perform multiple element
+/// extracts and merge the results. If this is coercing to a vector with larger
+/// elements, index the bitcasted vector and extract the target element with bit
+/// operations. This is intended to force the indexing in the native register
+/// size for architectures that can dynamically index the register file.
+LegalizerHelper::LegalizeResult
+LegalizerHelper::bitcastExtractVectorElt(MachineInstr &MI, unsigned TypeIdx,
+ LLT CastTy) {
+ if (TypeIdx != 1)
+ return UnableToLegalize;
+
+ Register Dst = MI.getOperand(0).getReg();
+ Register SrcVec = MI.getOperand(1).getReg();
+ Register Idx = MI.getOperand(2).getReg();
+ LLT SrcVecTy = MRI.getType(SrcVec);
+ LLT IdxTy = MRI.getType(Idx);
+
+ LLT SrcEltTy = SrcVecTy.getElementType();
+ unsigned NewNumElts = CastTy.isVector() ? CastTy.getNumElements() : 1;
+ unsigned OldNumElts = SrcVecTy.getNumElements();
+
+ LLT NewEltTy = CastTy.isVector() ? CastTy.getElementType() : CastTy;
+ Register CastVec = MIRBuilder.buildBitcast(CastTy, SrcVec).getReg(0);
+
+ const unsigned NewEltSize = NewEltTy.getSizeInBits();
+ const unsigned OldEltSize = SrcEltTy.getSizeInBits();
+ if (NewNumElts > OldNumElts) {
+ // Decreasing the vector element size
+ //
+ // e.g. i64 = extract_vector_elt x:v2i64, y:i32
+ // =>
+ // v4i32:castx = bitcast x:v2i64
+ //
+ // i64 = bitcast
+ // (v2i32 build_vector (i32 (extract_vector_elt castx, (2 * y))),
+ // (i32 (extract_vector_elt castx, (2 * y + 1)))
+ //
+ if (NewNumElts % OldNumElts != 0)
+ return UnableToLegalize;
+
+ // Type of the intermediate result vector.
+ const unsigned NewEltsPerOldElt = NewNumElts / OldNumElts;
+ LLT MidTy = LLT::scalarOrVector(NewEltsPerOldElt, NewEltTy);
+
+ auto NewEltsPerOldEltK = MIRBuilder.buildConstant(IdxTy, NewEltsPerOldElt);
+
+ SmallVector<Register, 8> NewOps(NewEltsPerOldElt);
+ auto NewBaseIdx = MIRBuilder.buildMul(IdxTy, Idx, NewEltsPerOldEltK);
+
+ for (unsigned I = 0; I < NewEltsPerOldElt; ++I) {
+ auto IdxOffset = MIRBuilder.buildConstant(IdxTy, I);
+ auto TmpIdx = MIRBuilder.buildAdd(IdxTy, NewBaseIdx, IdxOffset);
+ auto Elt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec, TmpIdx);
+ NewOps[I] = Elt.getReg(0);
+ }
+
+ auto NewVec = MIRBuilder.buildBuildVector(MidTy, NewOps);
+ MIRBuilder.buildBitcast(Dst, NewVec);
+ MI.eraseFromParent();
+ return Legalized;
+ }
+
+ if (NewNumElts < OldNumElts) {
+ if (NewEltSize % OldEltSize != 0)
+ return UnableToLegalize;
+
+ // This only depends on powers of 2 because we use bit tricks to figure out
+ // the bit offset we need to shift to get the target element. A general
+ // expansion could emit division/multiply.
+ if (!isPowerOf2_32(NewEltSize / OldEltSize))
+ return UnableToLegalize;
+
+ // Increasing the vector element size.
+ // %elt:_(small_elt) = G_EXTRACT_VECTOR_ELT %vec:_(<N x small_elt>), %idx
+ //
+ // =>
+ //
+ // %cast = G_BITCAST %vec
+ // %scaled_idx = G_LSHR %idx, Log2(DstEltSize / SrcEltSize)
+ // %wide_elt = G_EXTRACT_VECTOR_ELT %cast, %scaled_idx
+ // %offset_idx = G_AND %idx, ~(-1 << Log2(DstEltSize / SrcEltSize))
+ // %offset_bits = G_SHL %offset_idx, Log2(SrcEltSize)
+ // %elt_bits = G_LSHR %wide_elt, %offset_bits
+ // %elt = G_TRUNC %elt_bits
+
+ const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize);
+ auto Log2Ratio = MIRBuilder.buildConstant(IdxTy, Log2EltRatio);
+
+ // Divide to get the index in the wider element type.
+ auto ScaledIdx = MIRBuilder.buildLShr(IdxTy, Idx, Log2Ratio);
+
+ Register WideElt = CastVec;
+ if (CastTy.isVector()) {
+ WideElt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec,
+ ScaledIdx).getReg(0);
+ }
+
+ // Compute the bit offset into the register of the target element.
+ Register OffsetBits = getBitcastWiderVectorElementOffset(
+ MIRBuilder, Idx, NewEltSize, OldEltSize);
+
+ // Shift the wide element to get the target element.
+ auto ExtractedBits = MIRBuilder.buildLShr(NewEltTy, WideElt, OffsetBits);
+ MIRBuilder.buildTrunc(Dst, ExtractedBits);
+ MI.eraseFromParent();
+ return Legalized;
+ }
+
+ return UnableToLegalize;
+}
+
+/// Emit code to insert \p InsertReg into \p TargetRet at \p OffsetBits in \p
+/// TargetReg, while preserving other bits in \p TargetReg.
+///
+/// (InsertReg << Offset) | (TargetReg & ~(-1 >> InsertReg.size()) << Offset)
+static Register buildBitFieldInsert(MachineIRBuilder &B,
+ Register TargetReg, Register InsertReg,
+ Register OffsetBits) {
+ LLT TargetTy = B.getMRI()->getType(TargetReg);
+ LLT InsertTy = B.getMRI()->getType(InsertReg);
+ auto ZextVal = B.buildZExt(TargetTy, InsertReg);
+ auto ShiftedInsertVal = B.buildShl(TargetTy, ZextVal, OffsetBits);
+
+ // Produce a bitmask of the value to insert
+ auto EltMask = B.buildConstant(
+ TargetTy, APInt::getLowBitsSet(TargetTy.getSizeInBits(),
+ InsertTy.getSizeInBits()));
+ // Shift it into position
+ auto ShiftedMask = B.buildShl(TargetTy, EltMask, OffsetBits);
+ auto InvShiftedMask = B.buildNot(TargetTy, ShiftedMask);
+
+ // Clear out the bits in the wide element
+ auto MaskedOldElt = B.buildAnd(TargetTy, TargetReg, InvShiftedMask);
+
+ // The value to insert has all zeros already, so stick it into the masked
+ // wide element.
+ return B.buildOr(TargetTy, MaskedOldElt, ShiftedInsertVal).getReg(0);
+}
+
+/// Perform a G_INSERT_VECTOR_ELT in a different sized vector element. If this
+/// is increasing the element size, perform the indexing in the target element
+/// type, and use bit operations to insert at the element position. This is
+/// intended for architectures that can dynamically index the register file and
+/// want to force indexing in the native register size.
+LegalizerHelper::LegalizeResult
+LegalizerHelper::bitcastInsertVectorElt(MachineInstr &MI, unsigned TypeIdx,
+ LLT CastTy) {
+ if (TypeIdx != 0)
+ return UnableToLegalize;
+
+ Register Dst = MI.getOperand(0).getReg();
+ Register SrcVec = MI.getOperand(1).getReg();
+ Register Val = MI.getOperand(2).getReg();
+ Register Idx = MI.getOperand(3).getReg();
+
+ LLT VecTy = MRI.getType(Dst);
+ LLT IdxTy = MRI.getType(Idx);
+
+ LLT VecEltTy = VecTy.getElementType();
+ LLT NewEltTy = CastTy.isVector() ? CastTy.getElementType() : CastTy;
+ const unsigned NewEltSize = NewEltTy.getSizeInBits();
+ const unsigned OldEltSize = VecEltTy.getSizeInBits();
+
+ unsigned NewNumElts = CastTy.isVector() ? CastTy.getNumElements() : 1;
+ unsigned OldNumElts = VecTy.getNumElements();
+
+ Register CastVec = MIRBuilder.buildBitcast(CastTy, SrcVec).getReg(0);
+ if (NewNumElts < OldNumElts) {
+ if (NewEltSize % OldEltSize != 0)
+ return UnableToLegalize;
+
+ // This only depends on powers of 2 because we use bit tricks to figure out
+ // the bit offset we need to shift to get the target element. A general
+ // expansion could emit division/multiply.
+ if (!isPowerOf2_32(NewEltSize / OldEltSize))
+ return UnableToLegalize;
+
+ const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize);
+ auto Log2Ratio = MIRBuilder.buildConstant(IdxTy, Log2EltRatio);
+
+ // Divide to get the index in the wider element type.
+ auto ScaledIdx = MIRBuilder.buildLShr(IdxTy, Idx, Log2Ratio);
+
+ Register ExtractedElt = CastVec;
+ if (CastTy.isVector()) {
+ ExtractedElt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec,
+ ScaledIdx).getReg(0);
+ }
+
+ // Compute the bit offset into the register of the target element.
+ Register OffsetBits = getBitcastWiderVectorElementOffset(
+ MIRBuilder, Idx, NewEltSize, OldEltSize);
+
+ Register InsertedElt = buildBitFieldInsert(MIRBuilder, ExtractedElt,
+ Val, OffsetBits);
+ if (CastTy.isVector()) {
+ InsertedElt = MIRBuilder.buildInsertVectorElement(
+ CastTy, CastVec, InsertedElt, ScaledIdx).getReg(0);
+ }
+
+ MIRBuilder.buildBitcast(Dst, InsertedElt);
+ MI.eraseFromParent();
+ return Legalized;
+ }
+
+ return UnableToLegalize;
+}
+
+LegalizerHelper::LegalizeResult
+LegalizerHelper::lowerLoad(MachineInstr &MI) {
+ // Lower to a memory-width G_LOAD and a G_SEXT/G_ZEXT/G_ANYEXT
+ Register DstReg = MI.getOperand(0).getReg();
+ Register PtrReg = MI.getOperand(1).getReg();
+ LLT DstTy = MRI.getType(DstReg);
+ auto &MMO = **MI.memoperands_begin();
+
+ if (DstTy.getSizeInBits() == MMO.getSizeInBits()) {
+ if (MI.getOpcode() == TargetOpcode::G_LOAD) {
+ // This load needs splitting into power of 2 sized loads.
+ if (DstTy.isVector())
+ return UnableToLegalize;
+ if (isPowerOf2_32(DstTy.getSizeInBits()))
+ return UnableToLegalize; // Don't know what we're being asked to do.
+
+ // Our strategy here is to generate anyextending loads for the smaller
+ // types up to next power-2 result type, and then combine the two larger
+ // result values together, before truncating back down to the non-pow-2
+ // type.
+ // E.g. v1 = i24 load =>
+ // v2 = i32 zextload (2 byte)
+ // v3 = i32 load (1 byte)
+ // v4 = i32 shl v3, 16
+ // v5 = i32 or v4, v2
+ // v1 = i24 trunc v5
+ // By doing this we generate the correct truncate which should get
+ // combined away as an artifact with a matching extend.
+ uint64_t LargeSplitSize = PowerOf2Floor(DstTy.getSizeInBits());
+ uint64_t SmallSplitSize = DstTy.getSizeInBits() - LargeSplitSize;
+
+ MachineFunction &MF = MIRBuilder.getMF();
+ MachineMemOperand *LargeMMO =
+ MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8);
+ MachineMemOperand *SmallMMO = MF.getMachineMemOperand(
+ &MMO, LargeSplitSize / 8, SmallSplitSize / 8);
+
+ LLT PtrTy = MRI.getType(PtrReg);
+ unsigned AnyExtSize = NextPowerOf2(DstTy.getSizeInBits());
+ LLT AnyExtTy = LLT::scalar(AnyExtSize);
+ Register LargeLdReg = MRI.createGenericVirtualRegister(AnyExtTy);
+ Register SmallLdReg = MRI.createGenericVirtualRegister(AnyExtTy);
+ auto LargeLoad = MIRBuilder.buildLoadInstr(
+ TargetOpcode::G_ZEXTLOAD, LargeLdReg, PtrReg, *LargeMMO);
+
+ auto OffsetCst = MIRBuilder.buildConstant(
+ LLT::scalar(PtrTy.getSizeInBits()), LargeSplitSize / 8);
+ Register PtrAddReg = MRI.createGenericVirtualRegister(PtrTy);
+ auto SmallPtr =
+ MIRBuilder.buildPtrAdd(PtrAddReg, PtrReg, OffsetCst.getReg(0));
+ auto SmallLoad = MIRBuilder.buildLoad(SmallLdReg, SmallPtr.getReg(0),
+ *SmallMMO);
+
+ auto ShiftAmt = MIRBuilder.buildConstant(AnyExtTy, LargeSplitSize);
+ auto Shift = MIRBuilder.buildShl(AnyExtTy, SmallLoad, ShiftAmt);
+ auto Or = MIRBuilder.buildOr(AnyExtTy, Shift, LargeLoad);
+ MIRBuilder.buildTrunc(DstReg, {Or.getReg(0)});
+ MI.eraseFromParent();
+ return Legalized;
+ }
+
+ MIRBuilder.buildLoad(DstReg, PtrReg, MMO);
+ MI.eraseFromParent();
+ return Legalized;
+ }
+
+ if (DstTy.isScalar()) {
+ Register TmpReg =
+ MRI.createGenericVirtualRegister(LLT::scalar(MMO.getSizeInBits()));
+ MIRBuilder.buildLoad(TmpReg, PtrReg, MMO);
+ switch (MI.getOpcode()) {
+ default:
+ llvm_unreachable("Unexpected opcode");
+ case TargetOpcode::G_LOAD:
+ MIRBuilder.buildAnyExtOrTrunc(DstReg, TmpReg);
+ break;
+ case TargetOpcode::G_SEXTLOAD:
+ MIRBuilder.buildSExt(DstReg, TmpReg);
+ break;
+ case TargetOpcode::G_ZEXTLOAD:
+ MIRBuilder.buildZExt(DstReg, TmpReg);
+ break;
+ }
+
+ MI.eraseFromParent();
+ return Legalized;
+ }
+
+ return UnableToLegalize;
+}
+
+LegalizerHelper::LegalizeResult
+LegalizerHelper::lowerStore(MachineInstr &MI) {
+ // Lower a non-power of 2 store into multiple pow-2 stores.
+ // E.g. split an i24 store into an i16 store + i8 store.
+ // We do this by first extending the stored value to the next largest power
+ // of 2 type, and then using truncating stores to store the components.
+ // By doing this, likewise with G_LOAD, generate an extend that can be
+ // artifact-combined away instead of leaving behind extracts.
+ Register SrcReg = MI.getOperand(0).getReg();
+ Register PtrReg = MI.getOperand(1).getReg();
+ LLT SrcTy = MRI.getType(SrcReg);
+ MachineMemOperand &MMO = **MI.memoperands_begin();
+ if (SrcTy.getSizeInBits() != MMO.getSizeInBits())
+ return UnableToLegalize;
+ if (SrcTy.isVector())
+ return UnableToLegalize;
+ if (isPowerOf2_32(SrcTy.getSizeInBits()))
+ return UnableToLegalize; // Don't know what we're being asked to do.
+
+ // Extend to the next pow-2.
+ const LLT ExtendTy = LLT::scalar(NextPowerOf2(SrcTy.getSizeInBits()));
+ auto ExtVal = MIRBuilder.buildAnyExt(ExtendTy, SrcReg);
+
+ // Obtain the smaller value by shifting away the larger value.
+ uint64_t LargeSplitSize = PowerOf2Floor(SrcTy.getSizeInBits());
+ uint64_t SmallSplitSize = SrcTy.getSizeInBits() - LargeSplitSize;
+ auto ShiftAmt = MIRBuilder.buildConstant(ExtendTy, LargeSplitSize);
+ auto SmallVal = MIRBuilder.buildLShr(ExtendTy, ExtVal, ShiftAmt);
+
+ // Generate the PtrAdd and truncating stores.
+ LLT PtrTy = MRI.getType(PtrReg);
+ auto OffsetCst = MIRBuilder.buildConstant(
+ LLT::scalar(PtrTy.getSizeInBits()), LargeSplitSize / 8);
+ Register PtrAddReg = MRI.createGenericVirtualRegister(PtrTy);
+ auto SmallPtr =
+ MIRBuilder.buildPtrAdd(PtrAddReg, PtrReg, OffsetCst.getReg(0));
+
+ MachineFunction &MF = MIRBuilder.getMF();
+ MachineMemOperand *LargeMMO =
+ MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8);
+ MachineMemOperand *SmallMMO =
+ MF.getMachineMemOperand(&MMO, LargeSplitSize / 8, SmallSplitSize / 8);
+ MIRBuilder.buildStore(ExtVal.getReg(0), PtrReg, *LargeMMO);
+ MIRBuilder.buildStore(SmallVal.getReg(0), SmallPtr.getReg(0), *SmallMMO);
+ MI.eraseFromParent();
+ return Legalized;
+}
+
+LegalizerHelper::LegalizeResult
+LegalizerHelper::bitcast(MachineInstr &MI, unsigned TypeIdx, LLT CastTy) {
+ switch (MI.getOpcode()) {
+ case TargetOpcode::G_LOAD: {
+ if (TypeIdx != 0)
+ return UnableToLegalize;
+
+ Observer.changingInstr(MI);
+ bitcastDst(MI, CastTy, 0);
+ Observer.changedInstr(MI);
+ return Legalized;
+ }
+ case TargetOpcode::G_STORE: {
+ if (TypeIdx != 0)
+ return UnableToLegalize;
+
+ Observer.changingInstr(MI);
+ bitcastSrc(MI, CastTy, 0);
+ Observer.changedInstr(MI);
+ return Legalized;
+ }
+ case TargetOpcode::G_SELECT: {
+ if (TypeIdx != 0)
+ return UnableToLegalize;
+
+ if (MRI.getType(MI.getOperand(1).getReg()).isVector()) {
+ LLVM_DEBUG(
+ dbgs() << "bitcast action not implemented for vector select\n");
+ return UnableToLegalize;
+ }
+
+ Observer.changingInstr(MI);
+ bitcastSrc(MI, CastTy, 2);
+ bitcastSrc(MI, CastTy, 3);
+ bitcastDst(MI, CastTy, 0);
+ Observer.changedInstr(MI);
+ return Legalized;
+ }
+ case TargetOpcode::G_AND:
+ case TargetOpcode::G_OR:
+ case TargetOpcode::G_XOR: {
+ Observer.changingInstr(MI);
+ bitcastSrc(MI, CastTy, 1);
+ bitcastSrc(MI, CastTy, 2);
+ bitcastDst(MI, CastTy, 0);
+ Observer.changedInstr(MI);
+ return Legalized;
+ }
+ case TargetOpcode::G_EXTRACT_VECTOR_ELT:
+ return bitcastExtractVectorElt(MI, TypeIdx, CastTy);
+ case TargetOpcode::G_INSERT_VECTOR_ELT:
+ return bitcastInsertVectorElt(MI, TypeIdx, CastTy);
+ default:
+ return UnableToLegalize;
+ }
+}
+
+// Legalize an instruction by changing the opcode in place.
+void LegalizerHelper::changeOpcode(MachineInstr &MI, unsigned NewOpcode) {
+ Observer.changingInstr(MI);
+ MI.setDesc(MIRBuilder.getTII().get(NewOpcode));
+ Observer.changedInstr(MI);
+}
+
+LegalizerHelper::LegalizeResult
+LegalizerHelper::lower(MachineInstr &MI, unsigned TypeIdx, LLT LowerHintTy) {
+ using namespace TargetOpcode;
+
+ switch(MI.getOpcode()) {
+ default:
+ return UnableToLegalize;
+ case TargetOpcode::G_BITCAST:
+ return lowerBitcast(MI);
+ case TargetOpcode::G_SREM:
+ case TargetOpcode::G_UREM: {
+ LLT Ty = MRI.getType(MI.getOperand(0).getReg());
+ auto Quot =
+ MIRBuilder.buildInstr(MI.getOpcode() == G_SREM ? G_SDIV : G_UDIV, {Ty},
+ {MI.getOperand(1), MI.getOperand(2)});
+
+ auto Prod = MIRBuilder.buildMul(Ty, Quot, MI.getOperand(2));
+ MIRBuilder.buildSub(MI.getOperand(0), MI.getOperand(1), Prod);
+ MI.eraseFromParent();
+ return Legalized;
+ }
+ case TargetOpcode::G_SADDO:
+ case TargetOpcode::G_SSUBO:
+ return lowerSADDO_SSUBO(MI);
+ case TargetOpcode::G_UMULH:
+ case TargetOpcode::G_SMULH:
+ return lowerSMULH_UMULH(MI);
+ case TargetOpcode::G_SMULO:
+ case TargetOpcode::G_UMULO: {
+ // Generate G_UMULH/G_SMULH to check for overflow and a normal G_MUL for the
+ // result.
+ Register Res = MI.getOperand(0).getReg();
+ Register Overflow = MI.getOperand(1).getReg();
+ Register LHS = MI.getOperand(2).getReg();
+ Register RHS = MI.getOperand(3).getReg();
+ LLT Ty = MRI.getType(Res);
+
+ unsigned Opcode = MI.getOpcode() == TargetOpcode::G_SMULO
+ ? TargetOpcode::G_SMULH
+ : TargetOpcode::G_UMULH;
+
+ Observer.changingInstr(MI);
+ const auto &TII = MIRBuilder.getTII();
+ MI.setDesc(TII.get(TargetOpcode::G_MUL));
+ MI.RemoveOperand(1);
+ Observer.changedInstr(MI);
+
+ auto HiPart = MIRBuilder.buildInstr(Opcode, {Ty}, {LHS, RHS});
+ auto Zero = MIRBuilder.buildConstant(Ty, 0);
+
+ // Move insert point forward so we can use the Res register if needed.
+ MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
+
+ // For *signed* multiply, overflow is detected by checking:
+ // (hi != (lo >> bitwidth-1))
+ if (Opcode == TargetOpcode::G_SMULH) {
+ auto ShiftAmt = MIRBuilder.buildConstant(Ty, Ty.getSizeInBits() - 1);
+ auto Shifted = MIRBuilder.buildAShr(Ty, Res, ShiftAmt);
+ MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Shifted);
+ } else {
+ MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Zero);
+ }
+ return Legalized;
+ }
+ case TargetOpcode::G_FNEG: {
+ Register Res = MI.getOperand(0).getReg();
+ LLT Ty = MRI.getType(Res);
+
+ // TODO: Handle vector types once we are able to
+ // represent them.
+ if (Ty.isVector())
+ return UnableToLegalize;
+ auto SignMask =
+ MIRBuilder.buildConstant(Ty, APInt::getSignMask(Ty.getSizeInBits()));
+ Register SubByReg = MI.getOperand(1).getReg();
+ MIRBuilder.buildXor(Res, SubByReg, SignMask);
+ MI.eraseFromParent();
+ return Legalized;
+ }
+ case TargetOpcode::G_FSUB: {
+ Register Res = MI.getOperand(0).getReg();
+ LLT Ty = MRI.getType(Res);
+
+ // Lower (G_FSUB LHS, RHS) to (G_FADD LHS, (G_FNEG RHS)).
+ // First, check if G_FNEG is marked as Lower. If so, we may
+ // end up with an infinite loop as G_FSUB is used to legalize G_FNEG.
+ if (LI.getAction({G_FNEG, {Ty}}).Action == Lower)
+ return UnableToLegalize;
+ Register LHS = MI.getOperand(1).getReg();
+ Register RHS = MI.getOperand(2).getReg();
+ Register Neg = MRI.createGenericVirtualRegister(Ty);
+ MIRBuilder.buildFNeg(Neg, RHS);
+ MIRBuilder.buildFAdd(Res, LHS, Neg, MI.getFlags());
+ MI.eraseFromParent();
+ return Legalized;
+ }
+ case TargetOpcode::G_FMAD:
+ return lowerFMad(MI);
+ case TargetOpcode::G_FFLOOR:
+ return lowerFFloor(MI);
+ case TargetOpcode::G_INTRINSIC_ROUND:
+ return lowerIntrinsicRound(MI);
+ case TargetOpcode::G_INTRINSIC_ROUNDEVEN: {
+ // Since round even is the assumed rounding mode for unconstrained FP
+ // operations, rint and roundeven are the same operation.
+ changeOpcode(MI, TargetOpcode::G_FRINT);
+ return Legalized;
+ }
+ case TargetOpcode::G_ATOMIC_CMPXCHG_WITH_SUCCESS: {
+ Register OldValRes = MI.getOperand(0).getReg();
+ Register SuccessRes = MI.getOperand(1).getReg();
+ Register Addr = MI.getOperand(2).getReg();
+ Register CmpVal = MI.getOperand(3).getReg();
+ Register NewVal = MI.getOperand(4).getReg();
+ MIRBuilder.buildAtomicCmpXchg(OldValRes, Addr, CmpVal, NewVal,
+ **MI.memoperands_begin());
+ MIRBuilder.buildICmp(CmpInst::ICMP_EQ, SuccessRes, OldValRes, CmpVal);
+ MI.eraseFromParent();
+ return Legalized;
+ }
+ case TargetOpcode::G_LOAD:
+ case TargetOpcode::G_SEXTLOAD:
+ case TargetOpcode::G_ZEXTLOAD:
+ return lowerLoad(MI);
+ case TargetOpcode::G_STORE:
+ return lowerStore(MI);
+ case TargetOpcode::G_CTLZ_ZERO_UNDEF:
+ case TargetOpcode::G_CTTZ_ZERO_UNDEF:
+ case TargetOpcode::G_CTLZ:
+ case TargetOpcode::G_CTTZ:
+ case TargetOpcode::G_CTPOP:
+ return lowerBitCount(MI);
+ case G_UADDO: {
+ Register Res = MI.getOperand(0).getReg();
+ Register CarryOut = MI.getOperand(1).getReg();
+ Register LHS = MI.getOperand(2).getReg();
+ Register RHS = MI.getOperand(3).getReg();
+
+ MIRBuilder.buildAdd(Res, LHS, RHS);
+ MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, RHS);
+
+ MI.eraseFromParent();
+ return Legalized;
+ }
+ case G_UADDE: {
+ Register Res = MI.getOperand(0).getReg();
+ Register CarryOut = MI.getOperand(1).getReg();
+ Register LHS = MI.getOperand(2).getReg();
+ Register RHS = MI.getOperand(3).getReg();
+ Register CarryIn = MI.getOperand(4).getReg();
+ LLT Ty = MRI.getType(Res);
+
+ auto TmpRes = MIRBuilder.buildAdd(Ty, LHS, RHS);
+ auto ZExtCarryIn = MIRBuilder.buildZExt(Ty, CarryIn);
+ MIRBuilder.buildAdd(Res, TmpRes, ZExtCarryIn);
+ MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, LHS);
+
+ MI.eraseFromParent();
+ return Legalized;
+ }
+ case G_USUBO: {
+ Register Res = MI.getOperand(0).getReg();
+ Register BorrowOut = MI.getOperand(1).getReg();
+ Register LHS = MI.getOperand(2).getReg();
+ Register RHS = MI.getOperand(3).getReg();
+
+ MIRBuilder.buildSub(Res, LHS, RHS);
+ MIRBuilder.buildICmp(CmpInst::ICMP_ULT, BorrowOut, LHS, RHS);
+
+ MI.eraseFromParent();
+ return Legalized;
+ }
+ case G_USUBE: {
+ Register Res = MI.getOperand(0).getReg();
+ Register BorrowOut = MI.getOperand(1).getReg();
+ Register LHS = MI.getOperand(2).getReg();
+ Register RHS = MI.getOperand(3).getReg();
+ Register BorrowIn = MI.getOperand(4).getReg();
+ const LLT CondTy = MRI.getType(BorrowOut);
+ const LLT Ty = MRI.getType(Res);
+
+ auto TmpRes = MIRBuilder.buildSub(Ty, LHS, RHS);
+ auto ZExtBorrowIn = MIRBuilder.buildZExt(Ty, BorrowIn);
+ MIRBuilder.buildSub(Res, TmpRes, ZExtBorrowIn);
+
+ auto LHS_EQ_RHS = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, CondTy, LHS, RHS);
+ auto LHS_ULT_RHS = MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CondTy, LHS, RHS);
+ MIRBuilder.buildSelect(BorrowOut, LHS_EQ_RHS, BorrowIn, LHS_ULT_RHS);
+
+ MI.eraseFromParent();
+ return Legalized;
+ }
+ case G_UITOFP:
+ return lowerUITOFP(MI);
+ case G_SITOFP:
+ return lowerSITOFP(MI);
+ case G_FPTOUI:
+ return lowerFPTOUI(MI);
+ case G_FPTOSI:
+ return lowerFPTOSI(MI);
+ case G_FPTRUNC:
+ return lowerFPTRUNC(MI);
+ case G_FPOWI:
+ return lowerFPOWI(MI);
+ case G_SMIN:
+ case G_SMAX:
+ case G_UMIN:
+ case G_UMAX:
+ return lowerMinMax(MI);
+ case G_FCOPYSIGN:
+ return lowerFCopySign(MI);
+ case G_FMINNUM:
+ case G_FMAXNUM:
+ return lowerFMinNumMaxNum(MI);
+ case G_MERGE_VALUES:
+ return lowerMergeValues(MI);
+ case G_UNMERGE_VALUES:
+ return lowerUnmergeValues(MI);
+ case TargetOpcode::G_SEXT_INREG: {
+ assert(MI.getOperand(2).isImm() && "Expected immediate");
+ int64_t SizeInBits = MI.getOperand(2).getImm();
+
+ Register DstReg = MI.getOperand(0).getReg();
+ Register SrcReg = MI.getOperand(1).getReg();
+ LLT DstTy = MRI.getType(DstReg);
+ Register TmpRes = MRI.createGenericVirtualRegister(DstTy);
+
+ auto MIBSz = MIRBuilder.buildConstant(DstTy, DstTy.getScalarSizeInBits() - SizeInBits);
+ MIRBuilder.buildShl(TmpRes, SrcReg, MIBSz->getOperand(0));
+ MIRBuilder.buildAShr(DstReg, TmpRes, MIBSz->getOperand(0));
+ MI.eraseFromParent();
+ return Legalized;
+ }
+ case G_EXTRACT_VECTOR_ELT:
+ case G_INSERT_VECTOR_ELT:
+ return lowerExtractInsertVectorElt(MI);
+ case G_SHUFFLE_VECTOR:
+ return lowerShuffleVector(MI);
+ case G_DYN_STACKALLOC:
+ return lowerDynStackAlloc(MI);
+ case G_EXTRACT:
+ return lowerExtract(MI);
+ case G_INSERT:
+ return lowerInsert(MI);
+ case G_BSWAP:
+ return lowerBswap(MI);
+ case G_BITREVERSE:
+ return lowerBitreverse(MI);
+ case G_READ_REGISTER:
+ case G_WRITE_REGISTER:
+ return lowerReadWriteRegister(MI);
+ case G_UADDSAT:
+ case G_USUBSAT: {
+ // Try to make a reasonable guess about which lowering strategy to use. The
+ // target can override this with custom lowering and calling the
+ // implementation functions.
+ LLT Ty = MRI.getType(MI.getOperand(0).getReg());
+ if (LI.isLegalOrCustom({G_UMIN, Ty}))
+ return lowerAddSubSatToMinMax(MI);
+ return lowerAddSubSatToAddoSubo(MI);
+ }
+ case G_SADDSAT:
+ case G_SSUBSAT: {
+ LLT Ty = MRI.getType(MI.getOperand(0).getReg());
+
+ // FIXME: It would probably make more sense to see if G_SADDO is preferred,
+ // since it's a shorter expansion. However, we would need to figure out the
+ // preferred boolean type for the carry out for the query.
+ if (LI.isLegalOrCustom({G_SMIN, Ty}) && LI.isLegalOrCustom({G_SMAX, Ty}))
+ return lowerAddSubSatToMinMax(MI);
+ return lowerAddSubSatToAddoSubo(MI);
+ }
+ case G_SSHLSAT:
+ case G_USHLSAT:
+ return lowerShlSat(MI);
+ case G_ABS: {
+ // Expand %res = G_ABS %a into:
+ // %v1 = G_ASHR %a, scalar_size-1
+ // %v2 = G_ADD %a, %v1
+ // %res = G_XOR %v2, %v1
+ LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
+ Register OpReg = MI.getOperand(1).getReg();
+ auto ShiftAmt =
+ MIRBuilder.buildConstant(DstTy, DstTy.getScalarSizeInBits() - 1);
+ auto Shift =
+ MIRBuilder.buildAShr(DstTy, OpReg, ShiftAmt);
+ auto Add = MIRBuilder.buildAdd(DstTy, OpReg, Shift);
+ MIRBuilder.buildXor(MI.getOperand(0).getReg(), Add, Shift);
+ MI.eraseFromParent();
+ return Legalized;
+ }
+ case G_SELECT:
+ return lowerSelect(MI);
+ }
+}
+
+Align LegalizerHelper::getStackTemporaryAlignment(LLT Ty,
+ Align MinAlign) const {
+ // FIXME: We're missing a way to go back from LLT to llvm::Type to query the
+ // datalayout for the preferred alignment. Also there should be a target hook
+ // for this to allow targets to reduce the alignment and ignore the
+ // datalayout. e.g. AMDGPU should always use a 4-byte alignment, regardless of
+ // the type.
+ return std::max(Align(PowerOf2Ceil(Ty.getSizeInBytes())), MinAlign);
+}
+
+MachineInstrBuilder
+LegalizerHelper::createStackTemporary(TypeSize Bytes, Align Alignment,
+ MachinePointerInfo &PtrInfo) {
+ MachineFunction &MF = MIRBuilder.getMF();
+ const DataLayout &DL = MIRBuilder.getDataLayout();
+ int FrameIdx = MF.getFrameInfo().CreateStackObject(Bytes, Alignment, false);
+
+ unsigned AddrSpace = DL.getAllocaAddrSpace();
+ LLT FramePtrTy = LLT::pointer(AddrSpace, DL.getPointerSizeInBits(AddrSpace));
+
+ PtrInfo = MachinePointerInfo::getFixedStack(MF, FrameIdx);
+ return MIRBuilder.buildFrameIndex(FramePtrTy, FrameIdx);
+}
+
+static Register clampDynamicVectorIndex(MachineIRBuilder &B, Register IdxReg,
+ LLT VecTy) {
+ int64_t IdxVal;
+ if (mi_match(IdxReg, *B.getMRI(), m_ICst(IdxVal)))
+ return IdxReg;
+
+ LLT IdxTy = B.getMRI()->getType(IdxReg);
+ unsigned NElts = VecTy.getNumElements();
+ if (isPowerOf2_32(NElts)) {
+ APInt Imm = APInt::getLowBitsSet(IdxTy.getSizeInBits(), Log2_32(NElts));
+ return B.buildAnd(IdxTy, IdxReg, B.buildConstant(IdxTy, Imm)).getReg(0);
+ }
+
+ return B.buildUMin(IdxTy, IdxReg, B.buildConstant(IdxTy, NElts - 1))
+ .getReg(0);
+}
+
+Register LegalizerHelper::getVectorElementPointer(Register VecPtr, LLT VecTy,
+ Register Index) {
+ LLT EltTy = VecTy.getElementType();
+
+ // Calculate the element offset and add it to the pointer.
+ unsigned EltSize = EltTy.getSizeInBits() / 8; // FIXME: should be ABI size.
+ assert(EltSize * 8 == EltTy.getSizeInBits() &&
+ "Converting bits to bytes lost precision");
+
+ Index = clampDynamicVectorIndex(MIRBuilder, Index, VecTy);
+
+ LLT IdxTy = MRI.getType(Index);
+ auto Mul = MIRBuilder.buildMul(IdxTy, Index,
+ MIRBuilder.buildConstant(IdxTy, EltSize));
+
+ LLT PtrTy = MRI.getType(VecPtr);
+ return MIRBuilder.buildPtrAdd(PtrTy, VecPtr, Mul).getReg(0);
+}
+
+LegalizerHelper::LegalizeResult LegalizerHelper::fewerElementsVectorImplicitDef(
+ MachineInstr &MI, unsigned TypeIdx, LLT NarrowTy) {
+ Register DstReg = MI.getOperand(0).getReg();
+ LLT DstTy = MRI.getType(DstReg);
+ LLT LCMTy = getLCMType(DstTy, NarrowTy);
+
+ unsigned NumParts = LCMTy.getSizeInBits() / NarrowTy.getSizeInBits();
+
+ auto NewUndef = MIRBuilder.buildUndef(NarrowTy);
+ SmallVector<Register, 8> Parts(NumParts, NewUndef.getReg(0));
+
+ buildWidenedRemergeToDst(DstReg, LCMTy, Parts);
+ MI.eraseFromParent();
+ return Legalized;
+}
+
+// Handle splitting vector operations which need to have the same number of
+// elements in each type index, but each type index may have a different element
+// type.
+//
+// e.g. <4 x s64> = G_SHL <4 x s64>, <4 x s32> ->
+// <2 x s64> = G_SHL <2 x s64>, <2 x s32>
+// <2 x s64> = G_SHL <2 x s64>, <2 x s32>
+//
+// Also handles some irregular breakdown cases, e.g.
+// e.g. <3 x s64> = G_SHL <3 x s64>, <3 x s32> ->
+// <2 x s64> = G_SHL <2 x s64>, <2 x s32>
+// s64 = G_SHL s64, s32
+LegalizerHelper::LegalizeResult
+LegalizerHelper::fewerElementsVectorMultiEltType(
+ MachineInstr &MI, unsigned TypeIdx, LLT NarrowTyArg) {
+ if (TypeIdx != 0)
+ return UnableToLegalize;
+
+ const LLT NarrowTy0 = NarrowTyArg;
+ const unsigned NewNumElts =
+ NarrowTy0.isVector() ? NarrowTy0.getNumElements() : 1;
+
+ const Register DstReg = MI.getOperand(0).getReg();
+ LLT DstTy = MRI.getType(DstReg);
+ LLT LeftoverTy0;
+
+ // All of the operands need to have the same number of elements, so if we can
+ // determine a type breakdown for the result type, we can for all of the
+ // source types.
+ int NumParts = getNarrowTypeBreakDown(DstTy, NarrowTy0, LeftoverTy0).first;
+ if (NumParts < 0)
+ return UnableToLegalize;
+
+ SmallVector<MachineInstrBuilder, 4> NewInsts;
+
+ SmallVector<Register, 4> DstRegs, LeftoverDstRegs;
+ SmallVector<Register, 4> PartRegs, LeftoverRegs;
+
+ for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) {
+ Register SrcReg = MI.getOperand(I).getReg();
+ LLT SrcTyI = MRI.getType(SrcReg);
+ LLT NarrowTyI = LLT::scalarOrVector(NewNumElts, SrcTyI.getScalarType());
+ LLT LeftoverTyI;
+
+ // Split this operand into the requested typed registers, and any leftover
+ // required to reproduce the original type.
+ if (!extractParts(SrcReg, SrcTyI, NarrowTyI, LeftoverTyI, PartRegs,
+ LeftoverRegs))
+ return UnableToLegalize;
+
+ if (I == 1) {
+ // For the first operand, create an instruction for each part and setup
+ // the result.
+ for (Register PartReg : PartRegs) {
+ Register PartDstReg = MRI.createGenericVirtualRegister(NarrowTy0);
+ NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode())
+ .addDef(PartDstReg)
+ .addUse(PartReg));
+ DstRegs.push_back(PartDstReg);
+ }
+
+ for (Register LeftoverReg : LeftoverRegs) {
+ Register PartDstReg = MRI.createGenericVirtualRegister(LeftoverTy0);
+ NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode())
+ .addDef(PartDstReg)
+ .addUse(LeftoverReg));
+ LeftoverDstRegs.push_back(PartDstReg);
+ }
+ } else {
+ assert(NewInsts.size() == PartRegs.size() + LeftoverRegs.size());
+
+ // Add the newly created operand splits to the existing instructions. The
+ // odd-sized pieces are ordered after the requested NarrowTyArg sized
+ // pieces.
+ unsigned InstCount = 0;
+ for (unsigned J = 0, JE = PartRegs.size(); J != JE; ++J)
+ NewInsts[InstCount++].addUse(PartRegs[J]);
+ for (unsigned J = 0, JE = LeftoverRegs.size(); J != JE; ++J)
+ NewInsts[InstCount++].addUse(LeftoverRegs[J]);
+ }
+
+ PartRegs.clear();
+ LeftoverRegs.clear();
+ }
+
+ // Insert the newly built operations and rebuild the result register.
+ for (auto &MIB : NewInsts)
+ MIRBuilder.insertInstr(MIB);
+
+ insertParts(DstReg, DstTy, NarrowTy0, DstRegs, LeftoverTy0, LeftoverDstRegs);
+
+ MI.eraseFromParent();
+ return Legalized;
+}
+
+LegalizerHelper::LegalizeResult
+LegalizerHelper::fewerElementsVectorCasts(MachineInstr &MI, unsigned TypeIdx,
+ LLT NarrowTy) {
+ if (TypeIdx != 0)
+ return UnableToLegalize;
+
+ Register DstReg = MI.getOperand(0).getReg();
+ Register SrcReg = MI.getOperand(1).getReg();
+ LLT DstTy = MRI.getType(DstReg);
+ LLT SrcTy = MRI.getType(SrcReg);
+
+ LLT NarrowTy0 = NarrowTy;
+ LLT NarrowTy1;
+ unsigned NumParts;
+
+ if (NarrowTy.isVector()) {
+ // Uneven breakdown not handled.
+ NumParts = DstTy.getNumElements() / NarrowTy.getNumElements();
+ if (NumParts * NarrowTy.getNumElements() != DstTy.getNumElements())
+ return UnableToLegalize;
+
+ NarrowTy1 = LLT::vector(NarrowTy.getNumElements(), SrcTy.getElementType());
+ } else {
+ NumParts = DstTy.getNumElements();
+ NarrowTy1 = SrcTy.getElementType();
+ }
+
+ SmallVector<Register, 4> SrcRegs, DstRegs;
+ extractParts(SrcReg, NarrowTy1, NumParts, SrcRegs);
+
+ for (unsigned I = 0; I < NumParts; ++I) {
+ Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0);
+ MachineInstr *NewInst =
+ MIRBuilder.buildInstr(MI.getOpcode(), {DstReg}, {SrcRegs[I]});
+
+ NewInst->setFlags(MI.getFlags());
+ DstRegs.push_back(DstReg);
+ }
+
+ if (NarrowTy.isVector())
+ MIRBuilder.buildConcatVectors(DstReg, DstRegs);
+ else
+ MIRBuilder.buildBuildVector(DstReg, DstRegs);
+
+ MI.eraseFromParent();
+ return Legalized;
+}
+
+LegalizerHelper::LegalizeResult
+LegalizerHelper::fewerElementsVectorCmp(MachineInstr &MI, unsigned TypeIdx,
+ LLT NarrowTy) {
+ Register DstReg = MI.getOperand(0).getReg();
+ Register Src0Reg = MI.getOperand(2).getReg();
+ LLT DstTy = MRI.getType(DstReg);
+ LLT SrcTy = MRI.getType(Src0Reg);
+
+ unsigned NumParts;
+ LLT NarrowTy0, NarrowTy1;
+
+ if (TypeIdx == 0) {
+ unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1;
+ unsigned OldElts = DstTy.getNumElements();
+
+ NarrowTy0 = NarrowTy;
+ NumParts = NarrowTy.isVector() ? (OldElts / NewElts) : DstTy.getNumElements();
+ NarrowTy1 = NarrowTy.isVector() ?
+ LLT::vector(NarrowTy.getNumElements(), SrcTy.getScalarSizeInBits()) :
+ SrcTy.getElementType();
+
+ } else {
+ unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1;
+ unsigned OldElts = SrcTy.getNumElements();
+
+ NumParts = NarrowTy.isVector() ? (OldElts / NewElts) :
+ NarrowTy.getNumElements();
+ NarrowTy0 = LLT::vector(NarrowTy.getNumElements(),
+ DstTy.getScalarSizeInBits());
+ NarrowTy1 = NarrowTy;
+ }
+
+ // FIXME: Don't know how to handle the situation where the small vectors
+ // aren't all the same size yet.
+ if (NarrowTy1.isVector() &&
+ NarrowTy1.getNumElements() * NumParts != DstTy.getNumElements())
+ return UnableToLegalize;
+
+ CmpInst::Predicate Pred
+ = static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate());
+
+ SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs;
+ extractParts(MI.getOperand(2).getReg(), NarrowTy1, NumParts, Src1Regs);
+ extractParts(MI.getOperand(3).getReg(), NarrowTy1, NumParts, Src2Regs);
+
+ for (unsigned I = 0; I < NumParts; ++I) {
+ Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0);
+ DstRegs.push_back(DstReg);
+
+ if (MI.getOpcode() == TargetOpcode::G_ICMP)
+ MIRBuilder.buildICmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]);
+ else {
+ MachineInstr *NewCmp
+ = MIRBuilder.buildFCmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]);
+ NewCmp->setFlags(MI.getFlags());
+ }
+ }
+
+ if (NarrowTy1.isVector())
+ MIRBuilder.buildConcatVectors(DstReg, DstRegs);
+ else
+ MIRBuilder.buildBuildVector(DstReg, DstRegs);
+
+ MI.eraseFromParent();
+ return Legalized;
+}
+
+LegalizerHelper::LegalizeResult
+LegalizerHelper::fewerElementsVectorSelect(MachineInstr &MI, unsigned TypeIdx,
+ LLT NarrowTy) {
+ Register DstReg = MI.getOperand(0).getReg();
+ Register CondReg = MI.getOperand(1).getReg();
+
+ unsigned NumParts = 0;
+ LLT NarrowTy0, NarrowTy1;
+
+ LLT DstTy = MRI.getType(DstReg);
+ LLT CondTy = MRI.getType(CondReg);
+ unsigned Size = DstTy.getSizeInBits();
+
+ assert(TypeIdx == 0 || CondTy.isVector());
+
+ if (TypeIdx == 0) {
+ NarrowTy0 = NarrowTy;
+ NarrowTy1 = CondTy;
+
+ unsigned NarrowSize = NarrowTy0.getSizeInBits();
+ // FIXME: Don't know how to handle the situation where the small vectors
+ // aren't all the same size yet.
+ if (Size % NarrowSize != 0)
+ return UnableToLegalize;
+
+ NumParts = Size / NarrowSize;
+
+ // Need to break down the condition type
+ if (CondTy.isVector()) {
+ if (CondTy.getNumElements() == NumParts)
+ NarrowTy1 = CondTy.getElementType();
+ else
+ NarrowTy1 = LLT::vector(CondTy.getNumElements() / NumParts,
+ CondTy.getScalarSizeInBits());
+ }
+ } else {
+ NumParts = CondTy.getNumElements();
+ if (NarrowTy.isVector()) {
+ // TODO: Handle uneven breakdown.
+ if (NumParts * NarrowTy.getNumElements() != CondTy.getNumElements())
+ return UnableToLegalize;
+
+ return UnableToLegalize;
+ } else {
+ NarrowTy0 = DstTy.getElementType();
+ NarrowTy1 = NarrowTy;
+ }
+ }
+
+ SmallVector<Register, 2> DstRegs, Src0Regs, Src1Regs, Src2Regs;
+ if (CondTy.isVector())
+ extractParts(MI.getOperand(1).getReg(), NarrowTy1, NumParts, Src0Regs);
+
+ extractParts(MI.getOperand(2).getReg(), NarrowTy0, NumParts, Src1Regs);
+ extractParts(MI.getOperand(3).getReg(), NarrowTy0, NumParts, Src2Regs);
+
+ for (unsigned i = 0; i < NumParts; ++i) {
+ Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0);
+ MIRBuilder.buildSelect(DstReg, CondTy.isVector() ? Src0Regs[i] : CondReg,
+ Src1Regs[i], Src2Regs[i]);
+ DstRegs.push_back(DstReg);
+ }
+
+ if (NarrowTy0.isVector())
+ MIRBuilder.buildConcatVectors(DstReg, DstRegs);
+ else
+ MIRBuilder.buildBuildVector(DstReg, DstRegs);
+
+ MI.eraseFromParent();
+ return Legalized;
+}
+
+LegalizerHelper::LegalizeResult
+LegalizerHelper::fewerElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx,
+ LLT NarrowTy) {
+ const Register DstReg = MI.getOperand(0).getReg();
+ LLT PhiTy = MRI.getType(DstReg);
+ LLT LeftoverTy;
+
+ // All of the operands need to have the same number of elements, so if we can
+ // determine a type breakdown for the result type, we can for all of the
+ // source types.
+ int NumParts, NumLeftover;
+ std::tie(NumParts, NumLeftover)
+ = getNarrowTypeBreakDown(PhiTy, NarrowTy, LeftoverTy);
+ if (NumParts < 0)
+ return UnableToLegalize;
+
+ SmallVector<Register, 4> DstRegs, LeftoverDstRegs;
+ SmallVector<MachineInstrBuilder, 4> NewInsts;
+
+ const int TotalNumParts = NumParts + NumLeftover;
+
+ // Insert the new phis in the result block first.
+ for (int I = 0; I != TotalNumParts; ++I) {
+ LLT Ty = I < NumParts ? NarrowTy : LeftoverTy;
+ Register PartDstReg = MRI.createGenericVirtualRegister(Ty);
+ NewInsts.push_back(MIRBuilder.buildInstr(TargetOpcode::G_PHI)
+ .addDef(PartDstReg));
+ if (I < NumParts)
+ DstRegs.push_back(PartDstReg);
+ else
+ LeftoverDstRegs.push_back(PartDstReg);
+ }
+
+ MachineBasicBlock *MBB = MI.getParent();
+ MIRBuilder.setInsertPt(*MBB, MBB->getFirstNonPHI());
+ insertParts(DstReg, PhiTy, NarrowTy, DstRegs, LeftoverTy, LeftoverDstRegs);
+
+ SmallVector<Register, 4> PartRegs, LeftoverRegs;
+
+ // Insert code to extract the incoming values in each predecessor block.
+ for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) {
+ PartRegs.clear();
+ LeftoverRegs.clear();
+
+ Register SrcReg = MI.getOperand(I).getReg();
+ MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB();
+ MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
+
+ LLT Unused;
+ if (!extractParts(SrcReg, PhiTy, NarrowTy, Unused, PartRegs,
+ LeftoverRegs))
+ return UnableToLegalize;
+
+ // Add the newly created operand splits to the existing instructions. The
+ // odd-sized pieces are ordered after the requested NarrowTyArg sized
+ // pieces.
+ for (int J = 0; J != TotalNumParts; ++J) {
+ MachineInstrBuilder MIB = NewInsts[J];
+ MIB.addUse(J < NumParts ? PartRegs[J] : LeftoverRegs[J - NumParts]);
+ MIB.addMBB(&OpMBB);
+ }
+ }
+
+ MI.eraseFromParent();
+ return Legalized;
+}
+
+LegalizerHelper::LegalizeResult
+LegalizerHelper::fewerElementsVectorUnmergeValues(MachineInstr &MI,
+ unsigned TypeIdx,
+ LLT NarrowTy) {
+ if (TypeIdx != 1)
+ return UnableToLegalize;
+
+ const int NumDst = MI.getNumOperands() - 1;
+ const Register SrcReg = MI.getOperand(NumDst).getReg();
+ LLT SrcTy = MRI.getType(SrcReg);
+
+ LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
+
+ // TODO: Create sequence of extracts.
+ if (DstTy == NarrowTy)
+ return UnableToLegalize;
+
+ LLT GCDTy = getGCDType(SrcTy, NarrowTy);
+ if (DstTy == GCDTy) {
+ // This would just be a copy of the same unmerge.
+ // TODO: Create extracts, pad with undef and create intermediate merges.
+ return UnableToLegalize;
+ }
+
+ auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg);
+ const int NumUnmerge = Unmerge->getNumOperands() - 1;
+ const int PartsPerUnmerge = NumDst / NumUnmerge;
+
+ for (int I = 0; I != NumUnmerge; ++I) {
+ auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES);
+
+ for (int J = 0; J != PartsPerUnmerge; ++J)
+ MIB.addDef(MI.getOperand(I * PartsPerUnmerge + J).getReg());
+ MIB.addUse(Unmerge.getReg(I));
+ }
+
+ MI.eraseFromParent();
+ return Legalized;
+}
+
+// Handle FewerElementsVector a G_BUILD_VECTOR or G_CONCAT_VECTORS that produces
+// a vector
+//
+// Create a G_BUILD_VECTOR or G_CONCAT_VECTORS of NarrowTy pieces, padding with
+// undef as necessary.
+//
+// %3:_(<3 x s16>) = G_BUILD_VECTOR %0, %1, %2
+// -> <2 x s16>
+//
+// %4:_(s16) = G_IMPLICIT_DEF
+// %5:_(<2 x s16>) = G_BUILD_VECTOR %0, %1
+// %6:_(<2 x s16>) = G_BUILD_VECTOR %2, %4
+// %7:_(<2 x s16>) = G_IMPLICIT_DEF
+// %8:_(<6 x s16>) = G_CONCAT_VECTORS %5, %6, %7
+// %3:_(<3 x s16>), %8:_(<3 x s16>) = G_UNMERGE_VALUES %8
+LegalizerHelper::LegalizeResult
+LegalizerHelper::fewerElementsVectorMerge(MachineInstr &MI, unsigned TypeIdx,
+ LLT NarrowTy) {
+ Register DstReg = MI.getOperand(0).getReg();
+ LLT DstTy = MRI.getType(DstReg);
+ LLT SrcTy = MRI.getType(MI.getOperand(1).getReg());
+ LLT GCDTy = getGCDType(getGCDType(SrcTy, NarrowTy), DstTy);
+
+ // Break into a common type
+ SmallVector<Register, 16> Parts;
+ for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I)
+ extractGCDType(Parts, GCDTy, MI.getOperand(I).getReg());
+
+ // Build the requested new merge, padding with undef.
+ LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts,
+ TargetOpcode::G_ANYEXT);
+
+ // Pack into the original result register.
+ buildWidenedRemergeToDst(DstReg, LCMTy, Parts);
+
+ MI.eraseFromParent();
+ return Legalized;
+}
+
+LegalizerHelper::LegalizeResult
+LegalizerHelper::fewerElementsVectorExtractInsertVectorElt(MachineInstr &MI,
+ unsigned TypeIdx,
+ LLT NarrowVecTy) {
+ Register DstReg = MI.getOperand(0).getReg();
+ Register SrcVec = MI.getOperand(1).getReg();
+ Register InsertVal;
+ bool IsInsert = MI.getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT;
+
+ assert((IsInsert ? TypeIdx == 0 : TypeIdx == 1) && "not a vector type index");
+ if (IsInsert)
+ InsertVal = MI.getOperand(2).getReg();
+
+ Register Idx = MI.getOperand(MI.getNumOperands() - 1).getReg();
+
+ // TODO: Handle total scalarization case.
+ if (!NarrowVecTy.isVector())
+ return UnableToLegalize;
+
+ LLT VecTy = MRI.getType(SrcVec);
+
+ // If the index is a constant, we can really break this down as you would
+ // expect, and index into the target size pieces.
+ int64_t IdxVal;
+ if (mi_match(Idx, MRI, m_ICst(IdxVal))) {
+ // Avoid out of bounds indexing the pieces.
+ if (IdxVal >= VecTy.getNumElements()) {
+ MIRBuilder.buildUndef(DstReg);
+ MI.eraseFromParent();
+ return Legalized;
+ }
+
+ SmallVector<Register, 8> VecParts;
+ LLT GCDTy = extractGCDType(VecParts, VecTy, NarrowVecTy, SrcVec);
+
+ // Build a sequence of NarrowTy pieces in VecParts for this operand.
+ LLT LCMTy = buildLCMMergePieces(VecTy, NarrowVecTy, GCDTy, VecParts,
+ TargetOpcode::G_ANYEXT);
+
+ unsigned NewNumElts = NarrowVecTy.getNumElements();
+
+ LLT IdxTy = MRI.getType(Idx);
+ int64_t PartIdx = IdxVal / NewNumElts;
+ auto NewIdx =
+ MIRBuilder.buildConstant(IdxTy, IdxVal - NewNumElts * PartIdx);
+
+ if (IsInsert) {
+ LLT PartTy = MRI.getType(VecParts[PartIdx]);
+
+ // Use the adjusted index to insert into one of the subvectors.
+ auto InsertPart = MIRBuilder.buildInsertVectorElement(
+ PartTy, VecParts[PartIdx], InsertVal, NewIdx);
+ VecParts[PartIdx] = InsertPart.getReg(0);
+
+ // Recombine the inserted subvector with the others to reform the result
+ // vector.
+ buildWidenedRemergeToDst(DstReg, LCMTy, VecParts);
+ } else {
+ MIRBuilder.buildExtractVectorElement(DstReg, VecParts[PartIdx], NewIdx);
+ }
+
+ MI.eraseFromParent();
+ return Legalized;
+ }
+
+ // With a variable index, we can't perform the operation in a smaller type, so
+ // we're forced to expand this.
+ //
+ // TODO: We could emit a chain of compare/select to figure out which piece to
+ // index.
+ return lowerExtractInsertVectorElt(MI);
+}
+
+LegalizerHelper::LegalizeResult
+LegalizerHelper::reduceLoadStoreWidth(MachineInstr &MI, unsigned TypeIdx,
+ LLT NarrowTy) {
+ // FIXME: Don't know how to handle secondary types yet.
+ if (TypeIdx != 0)
+ return UnableToLegalize;
+
+ MachineMemOperand *MMO = *MI.memoperands_begin();
+
+ // This implementation doesn't work for atomics. Give up instead of doing
+ // something invalid.
+ if (MMO->getOrdering() != AtomicOrdering::NotAtomic ||
+ MMO->getFailureOrdering() != AtomicOrdering::NotAtomic)
+ return UnableToLegalize;
+
+ bool IsLoad = MI.getOpcode() == TargetOpcode::G_LOAD;
+ Register ValReg = MI.getOperand(0).getReg();
+ Register AddrReg = MI.getOperand(1).getReg();
+ LLT ValTy = MRI.getType(ValReg);
+
+ // FIXME: Do we need a distinct NarrowMemory legalize action?
+ if (ValTy.getSizeInBits() != 8 * MMO->getSize()) {
+ LLVM_DEBUG(dbgs() << "Can't narrow extload/truncstore\n");
+ return UnableToLegalize;
+ }
+
+ int NumParts = -1;
+ int NumLeftover = -1;
+ LLT LeftoverTy;
+ SmallVector<Register, 8> NarrowRegs, NarrowLeftoverRegs;
+ if (IsLoad) {
+ std::tie(NumParts, NumLeftover) = getNarrowTypeBreakDown(ValTy, NarrowTy, LeftoverTy);
+ } else {
+ if (extractParts(ValReg, ValTy, NarrowTy, LeftoverTy, NarrowRegs,
+ NarrowLeftoverRegs)) {
+ NumParts = NarrowRegs.size();
+ NumLeftover = NarrowLeftoverRegs.size();
+ }
+ }
+
+ if (NumParts == -1)
+ return UnableToLegalize;
+
+ LLT PtrTy = MRI.getType(AddrReg);
+ const LLT OffsetTy = LLT::scalar(PtrTy.getSizeInBits());
+
+ unsigned TotalSize = ValTy.getSizeInBits();
+
+ // Split the load/store into PartTy sized pieces starting at Offset. If this
+ // is a load, return the new registers in ValRegs. For a store, each elements
+ // of ValRegs should be PartTy. Returns the next offset that needs to be
+ // handled.
+ auto splitTypePieces = [=](LLT PartTy, SmallVectorImpl<Register> &ValRegs,
+ unsigned Offset) -> unsigned {
+ MachineFunction &MF = MIRBuilder.getMF();
+ unsigned PartSize = PartTy.getSizeInBits();
+ for (unsigned Idx = 0, E = NumParts; Idx != E && Offset < TotalSize;
+ Offset += PartSize, ++Idx) {
+ unsigned ByteSize = PartSize / 8;
+ unsigned ByteOffset = Offset / 8;
+ Register NewAddrReg;
+
+ MIRBuilder.materializePtrAdd(NewAddrReg, AddrReg, OffsetTy, ByteOffset);
+
+ MachineMemOperand *NewMMO =
+ MF.getMachineMemOperand(MMO, ByteOffset, ByteSize);
+
+ if (IsLoad) {
+ Register Dst = MRI.createGenericVirtualRegister(PartTy);
+ ValRegs.push_back(Dst);
+ MIRBuilder.buildLoad(Dst, NewAddrReg, *NewMMO);
+ } else {
+ MIRBuilder.buildStore(ValRegs[Idx], NewAddrReg, *NewMMO);
+ }
+ }
+
+ return Offset;
+ };
+
+ unsigned HandledOffset = splitTypePieces(NarrowTy, NarrowRegs, 0);
+
+ // Handle the rest of the register if this isn't an even type breakdown.
+ if (LeftoverTy.isValid())
+ splitTypePieces(LeftoverTy, NarrowLeftoverRegs, HandledOffset);
+
+ if (IsLoad) {
+ insertParts(ValReg, ValTy, NarrowTy, NarrowRegs,
+ LeftoverTy, NarrowLeftoverRegs);
+ }
+
+ MI.eraseFromParent();
+ return Legalized;
+}
+
+LegalizerHelper::LegalizeResult
+LegalizerHelper::reduceOperationWidth(MachineInstr &MI, unsigned int TypeIdx,
+ LLT NarrowTy) {
+ assert(TypeIdx == 0 && "only one type index expected");
+
+ const unsigned Opc = MI.getOpcode();
+ const int NumOps = MI.getNumOperands() - 1;
+ const Register DstReg = MI.getOperand(0).getReg();
+ const unsigned Flags = MI.getFlags();
+ const unsigned NarrowSize = NarrowTy.getSizeInBits();
+ const LLT NarrowScalarTy = LLT::scalar(NarrowSize);
+
+ assert(NumOps <= 3 && "expected instruction with 1 result and 1-3 sources");
+
+ // First of all check whether we are narrowing (changing the element type)
+ // or reducing the vector elements
+ const LLT DstTy = MRI.getType(DstReg);
+ const bool IsNarrow = NarrowTy.getScalarType() != DstTy.getScalarType();
+
+ SmallVector<Register, 8> ExtractedRegs[3];
+ SmallVector<Register, 8> Parts;
+
+ unsigned NarrowElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1;
+
+ // Break down all the sources into NarrowTy pieces we can operate on. This may
+ // involve creating merges to a wider type, padded with undef.
+ for (int I = 0; I != NumOps; ++I) {
+ Register SrcReg = MI.getOperand(I + 1).getReg();
+ LLT SrcTy = MRI.getType(SrcReg);
+
+ // The type to narrow SrcReg to. For narrowing, this is a smaller scalar.
+ // For fewerElements, this is a smaller vector with the same element type.
+ LLT OpNarrowTy;
+ if (IsNarrow) {
+ OpNarrowTy = NarrowScalarTy;
+
+ // In case of narrowing, we need to cast vectors to scalars for this to
+ // work properly
+ // FIXME: Can we do without the bitcast here if we're narrowing?
+ if (SrcTy.isVector()) {
+ SrcTy = LLT::scalar(SrcTy.getSizeInBits());
+ SrcReg = MIRBuilder.buildBitcast(SrcTy, SrcReg).getReg(0);
+ }
+ } else {
+ OpNarrowTy = LLT::scalarOrVector(NarrowElts, SrcTy.getScalarType());
+ }
+
+ LLT GCDTy = extractGCDType(ExtractedRegs[I], SrcTy, OpNarrowTy, SrcReg);
+
+ // Build a sequence of NarrowTy pieces in ExtractedRegs for this operand.
+ buildLCMMergePieces(SrcTy, OpNarrowTy, GCDTy, ExtractedRegs[I],
+ TargetOpcode::G_ANYEXT);
+ }
+
+ SmallVector<Register, 8> ResultRegs;
+
+ // Input operands for each sub-instruction.
+ SmallVector<SrcOp, 4> InputRegs(NumOps, Register());
+
+ int NumParts = ExtractedRegs[0].size();
+ const unsigned DstSize = DstTy.getSizeInBits();
+ const LLT DstScalarTy = LLT::scalar(DstSize);
+
+ // Narrowing needs to use scalar types
+ LLT DstLCMTy, NarrowDstTy;
+ if (IsNarrow) {
+ DstLCMTy = getLCMType(DstScalarTy, NarrowScalarTy);
+ NarrowDstTy = NarrowScalarTy;
+ } else {
+ DstLCMTy = getLCMType(DstTy, NarrowTy);
+ NarrowDstTy = NarrowTy;
+ }
+
+ // We widened the source registers to satisfy merge/unmerge size
+ // constraints. We'll have some extra fully undef parts.
+ const int NumRealParts = (DstSize + NarrowSize - 1) / NarrowSize;
+
+ for (int I = 0; I != NumRealParts; ++I) {
+ // Emit this instruction on each of the split pieces.
+ for (int J = 0; J != NumOps; ++J)
+ InputRegs[J] = ExtractedRegs[J][I];
+
+ auto Inst = MIRBuilder.buildInstr(Opc, {NarrowDstTy}, InputRegs, Flags);
+ ResultRegs.push_back(Inst.getReg(0));
+ }
+
+ // Fill out the widened result with undef instead of creating instructions
+ // with undef inputs.
+ int NumUndefParts = NumParts - NumRealParts;
+ if (NumUndefParts != 0)
+ ResultRegs.append(NumUndefParts,
+ MIRBuilder.buildUndef(NarrowDstTy).getReg(0));
+
+ // Extract the possibly padded result. Use a scratch register if we need to do
+ // a final bitcast, otherwise use the original result register.
+ Register MergeDstReg;
+ if (IsNarrow && DstTy.isVector())
+ MergeDstReg = MRI.createGenericVirtualRegister(DstScalarTy);
+ else
+ MergeDstReg = DstReg;
+
+ buildWidenedRemergeToDst(MergeDstReg, DstLCMTy, ResultRegs);
+
+ // Recast to vector if we narrowed a vector
+ if (IsNarrow && DstTy.isVector())
+ MIRBuilder.buildBitcast(DstReg, MergeDstReg);
+
+ MI.eraseFromParent();
+ return Legalized;
+}
+
+LegalizerHelper::LegalizeResult
+LegalizerHelper::fewerElementsVectorSextInReg(MachineInstr &MI, unsigned TypeIdx,
+ LLT NarrowTy) {
+ Register DstReg = MI.getOperand(0).getReg();
+ Register SrcReg = MI.getOperand(1).getReg();
+ int64_t Imm = MI.getOperand(2).getImm();
+
+ LLT DstTy = MRI.getType(DstReg);
+
+ SmallVector<Register, 8> Parts;
+ LLT GCDTy = extractGCDType(Parts, DstTy, NarrowTy, SrcReg);
+ LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts);
+
+ for (Register &R : Parts)
+ R = MIRBuilder.buildSExtInReg(NarrowTy, R, Imm).getReg(0);
+
+ buildWidenedRemergeToDst(DstReg, LCMTy, Parts);
+
+ MI.eraseFromParent();
+ return Legalized;
+}
+
+LegalizerHelper::LegalizeResult
+LegalizerHelper::fewerElementsVector(MachineInstr &MI, unsigned TypeIdx,
+ LLT NarrowTy) {
+ using namespace TargetOpcode;
+
+ switch (MI.getOpcode()) {
+ case G_IMPLICIT_DEF:
+ return fewerElementsVectorImplicitDef(MI, TypeIdx, NarrowTy);
+ case G_TRUNC:
+ case G_AND:
+ case G_OR:
+ case G_XOR:
+ case G_ADD:
+ case G_SUB:
+ case G_MUL:
+ case G_PTR_ADD:
+ case G_SMULH:
+ case G_UMULH:
+ case G_FADD:
+ case G_FMUL:
+ case G_FSUB:
+ case G_FNEG:
+ case G_FABS:
+ case G_FCANONICALIZE:
+ case G_FDIV:
+ case G_FREM:
+ case G_FMA:
+ case G_FMAD:
+ case G_FPOW:
+ case G_FEXP:
+ case G_FEXP2:
+ case G_FLOG:
+ case G_FLOG2:
+ case G_FLOG10:
+ case G_FNEARBYINT:
+ case G_FCEIL:
+ case G_FFLOOR:
+ case G_FRINT:
+ case G_INTRINSIC_ROUND:
+ case G_INTRINSIC_ROUNDEVEN:
+ case G_INTRINSIC_TRUNC:
+ case G_FCOS:
+ case G_FSIN:
+ case G_FSQRT:
+ case G_BSWAP:
+ case G_BITREVERSE:
+ case G_SDIV:
+ case G_UDIV:
+ case G_SREM:
+ case G_UREM:
+ case G_SMIN:
+ case G_SMAX:
+ case G_UMIN:
+ case G_UMAX:
+ case G_FMINNUM:
+ case G_FMAXNUM:
+ case G_FMINNUM_IEEE:
+ case G_FMAXNUM_IEEE:
+ case G_FMINIMUM:
+ case G_FMAXIMUM:
+ case G_FSHL:
+ case G_FSHR:
+ case G_FREEZE:
+ case G_SADDSAT:
+ case G_SSUBSAT:
+ case G_UADDSAT:
+ case G_USUBSAT:
+ return reduceOperationWidth(MI, TypeIdx, NarrowTy);
+ case G_SHL:
+ case G_LSHR:
+ case G_ASHR:
+ case G_SSHLSAT:
+ case G_USHLSAT:
+ case G_CTLZ:
+ case G_CTLZ_ZERO_UNDEF:
+ case G_CTTZ:
+ case G_CTTZ_ZERO_UNDEF:
+ case G_CTPOP:
+ case G_FCOPYSIGN:
+ return fewerElementsVectorMultiEltType(MI, TypeIdx, NarrowTy);
+ case G_ZEXT:
+ case G_SEXT:
+ case G_ANYEXT:
+ case G_FPEXT:
+ case G_FPTRUNC:
+ case G_SITOFP:
+ case G_UITOFP:
+ case G_FPTOSI:
+ case G_FPTOUI:
+ case G_INTTOPTR:
+ case G_PTRTOINT:
+ case G_ADDRSPACE_CAST:
+ return fewerElementsVectorCasts(MI, TypeIdx, NarrowTy);
+ case G_ICMP:
+ case G_FCMP:
+ return fewerElementsVectorCmp(MI, TypeIdx, NarrowTy);
+ case G_SELECT:
+ return fewerElementsVectorSelect(MI, TypeIdx, NarrowTy);
+ case G_PHI:
+ return fewerElementsVectorPhi(MI, TypeIdx, NarrowTy);
+ case G_UNMERGE_VALUES:
+ return fewerElementsVectorUnmergeValues(MI, TypeIdx, NarrowTy);
+ case G_BUILD_VECTOR:
+ assert(TypeIdx == 0 && "not a vector type index");
+ return fewerElementsVectorMerge(MI, TypeIdx, NarrowTy);
+ case G_CONCAT_VECTORS:
+ if (TypeIdx != 1) // TODO: This probably does work as expected already.
+ return UnableToLegalize;
+ return fewerElementsVectorMerge(MI, TypeIdx, NarrowTy);
+ case G_EXTRACT_VECTOR_ELT:
+ case G_INSERT_VECTOR_ELT:
+ return fewerElementsVectorExtractInsertVectorElt(MI, TypeIdx, NarrowTy);
+ case G_LOAD:
+ case G_STORE:
+ return reduceLoadStoreWidth(MI, TypeIdx, NarrowTy);
+ case G_SEXT_INREG:
+ return fewerElementsVectorSextInReg(MI, TypeIdx, NarrowTy);
+ default:
+ return UnableToLegalize;
+ }
+}
+
+LegalizerHelper::LegalizeResult
+LegalizerHelper::narrowScalarShiftByConstant(MachineInstr &MI, const APInt &Amt,
+ const LLT HalfTy, const LLT AmtTy) {
+
+ Register InL = MRI.createGenericVirtualRegister(HalfTy);
+ Register InH = MRI.createGenericVirtualRegister(HalfTy);
+ MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1));
+
+ if (Amt.isNullValue()) {
+ MIRBuilder.buildMerge(MI.getOperand(0), {InL, InH});
+ MI.eraseFromParent();
+ return Legalized;
+ }
+
+ LLT NVT = HalfTy;
+ unsigned NVTBits = HalfTy.getSizeInBits();
+ unsigned VTBits = 2 * NVTBits;
+
+ SrcOp Lo(Register(0)), Hi(Register(0));
+ if (MI.getOpcode() == TargetOpcode::G_SHL) {
+ if (Amt.ugt(VTBits)) {
+ Lo = Hi = MIRBuilder.buildConstant(NVT, 0);
+ } else if (Amt.ugt(NVTBits)) {
+ Lo = MIRBuilder.buildConstant(NVT, 0);
+ Hi = MIRBuilder.buildShl(NVT, InL,
+ MIRBuilder.buildConstant(AmtTy, Amt - NVTBits));
+ } else if (Amt == NVTBits) {
+ Lo = MIRBuilder.buildConstant(NVT, 0);
+ Hi = InL;
+ } else {
+ Lo = MIRBuilder.buildShl(NVT, InL, MIRBuilder.buildConstant(AmtTy, Amt));
+ auto OrLHS =
+ MIRBuilder.buildShl(NVT, InH, MIRBuilder.buildConstant(AmtTy, Amt));
+ auto OrRHS = MIRBuilder.buildLShr(
+ NVT, InL, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits));
+ Hi = MIRBuilder.buildOr(NVT, OrLHS, OrRHS);
+ }
+ } else if (MI.getOpcode() == TargetOpcode::G_LSHR) {
+ if (Amt.ugt(VTBits)) {
+ Lo = Hi = MIRBuilder.buildConstant(NVT, 0);
+ } else if (Amt.ugt(NVTBits)) {
+ Lo = MIRBuilder.buildLShr(NVT, InH,
+ MIRBuilder.buildConstant(AmtTy, Amt - NVTBits));
+ Hi = MIRBuilder.buildConstant(NVT, 0);
+ } else if (Amt == NVTBits) {
+ Lo = InH;
+ Hi = MIRBuilder.buildConstant(NVT, 0);
+ } else {
+ auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt);
+
+ auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst);
+ auto OrRHS = MIRBuilder.buildShl(
+ NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits));
+
+ Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS);
+ Hi = MIRBuilder.buildLShr(NVT, InH, ShiftAmtConst);
+ }
+ } else {
+ if (Amt.ugt(VTBits)) {
+ Hi = Lo = MIRBuilder.buildAShr(
+ NVT, InH, MIRBuilder.buildConstant(AmtTy, NVTBits - 1));
+ } else if (Amt.ugt(NVTBits)) {
+ Lo = MIRBuilder.buildAShr(NVT, InH,
+ MIRBuilder.buildConstant(AmtTy, Amt - NVTBits));
+ Hi = MIRBuilder.buildAShr(NVT, InH,
+ MIRBuilder.buildConstant(AmtTy, NVTBits - 1));
+ } else if (Amt == NVTBits) {
+ Lo = InH;
+ Hi = MIRBuilder.buildAShr(NVT, InH,
+ MIRBuilder.buildConstant(AmtTy, NVTBits - 1));
+ } else {
+ auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt);
+
+ auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst);
+ auto OrRHS = MIRBuilder.buildShl(
+ NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits));
+
+ Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS);
+ Hi = MIRBuilder.buildAShr(NVT, InH, ShiftAmtConst);
+ }
+ }
+
+ MIRBuilder.buildMerge(MI.getOperand(0), {Lo, Hi});
+ MI.eraseFromParent();
+
+ return Legalized;
+}
+
+// TODO: Optimize if constant shift amount.
+LegalizerHelper::LegalizeResult
+LegalizerHelper::narrowScalarShift(MachineInstr &MI, unsigned TypeIdx,
+ LLT RequestedTy) {
+ if (TypeIdx == 1) {
+ Observer.changingInstr(MI);
+ narrowScalarSrc(MI, RequestedTy, 2);
+ Observer.changedInstr(MI);
+ return Legalized;
+ }
+
+ Register DstReg = MI.getOperand(0).getReg();
+ LLT DstTy = MRI.getType(DstReg);
+ if (DstTy.isVector())
+ return UnableToLegalize;
+
+ Register Amt = MI.getOperand(2).getReg();
+ LLT ShiftAmtTy = MRI.getType(Amt);
+ const unsigned DstEltSize = DstTy.getScalarSizeInBits();
+ if (DstEltSize % 2 != 0)
+ return UnableToLegalize;
+
+ // Ignore the input type. We can only go to exactly half the size of the
+ // input. If that isn't small enough, the resulting pieces will be further
+ // legalized.
+ const unsigned NewBitSize = DstEltSize / 2;
+ const LLT HalfTy = LLT::scalar(NewBitSize);
+ const LLT CondTy = LLT::scalar(1);
+
+ if (const MachineInstr *KShiftAmt =
+ getOpcodeDef(TargetOpcode::G_CONSTANT, Amt, MRI)) {
+ return narrowScalarShiftByConstant(
+ MI, KShiftAmt->getOperand(1).getCImm()->getValue(), HalfTy, ShiftAmtTy);
+ }
+
+ // TODO: Expand with known bits.
+
+ // Handle the fully general expansion by an unknown amount.
+ auto NewBits = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize);
+
+ Register InL = MRI.createGenericVirtualRegister(HalfTy);
+ Register InH = MRI.createGenericVirtualRegister(HalfTy);
+ MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1));
+
+ auto AmtExcess = MIRBuilder.buildSub(ShiftAmtTy, Amt, NewBits);
+ auto AmtLack = MIRBuilder.buildSub(ShiftAmtTy, NewBits, Amt);
+
+ auto Zero = MIRBuilder.buildConstant(ShiftAmtTy, 0);
+ auto IsShort = MIRBuilder.buildICmp(ICmpInst::ICMP_ULT, CondTy, Amt, NewBits);
+ auto IsZero = MIRBuilder.buildICmp(ICmpInst::ICMP_EQ, CondTy, Amt, Zero);
+
+ Register ResultRegs[2];
+ switch (MI.getOpcode()) {
+ case TargetOpcode::G_SHL: {
+ // Short: ShAmt < NewBitSize
+ auto LoS = MIRBuilder.buildShl(HalfTy, InL, Amt);
+
+ auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, AmtLack);
+ auto HiOr = MIRBuilder.buildShl(HalfTy, InH, Amt);
+ auto HiS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr);
+
+ // Long: ShAmt >= NewBitSize
+ auto LoL = MIRBuilder.buildConstant(HalfTy, 0); // Lo part is zero.
+ auto HiL = MIRBuilder.buildShl(HalfTy, InL, AmtExcess); // Hi from Lo part.
+
+ auto Lo = MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL);
+ auto Hi = MIRBuilder.buildSelect(
+ HalfTy, IsZero, InH, MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL));
+
+ ResultRegs[0] = Lo.getReg(0);
+ ResultRegs[1] = Hi.getReg(0);
+ break;
+ }
+ case TargetOpcode::G_LSHR:
+ case TargetOpcode::G_ASHR: {
+ // Short: ShAmt < NewBitSize
+ auto HiS = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy}, {InH, Amt});
+
+ auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, Amt);
+ auto HiOr = MIRBuilder.buildShl(HalfTy, InH, AmtLack);
+ auto LoS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr);
+
+ // Long: ShAmt >= NewBitSize
+ MachineInstrBuilder HiL;
+ if (MI.getOpcode() == TargetOpcode::G_LSHR) {
+ HiL = MIRBuilder.buildConstant(HalfTy, 0); // Hi part is zero.
+ } else {
+ auto ShiftAmt = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize - 1);
+ HiL = MIRBuilder.buildAShr(HalfTy, InH, ShiftAmt); // Sign of Hi part.
+ }
+ auto LoL = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy},
+ {InH, AmtExcess}); // Lo from Hi part.
+
+ auto Lo = MIRBuilder.buildSelect(
+ HalfTy, IsZero, InL, MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL));
+
+ auto Hi = MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL);
+
+ ResultRegs[0] = Lo.getReg(0);
+ ResultRegs[1] = Hi.getReg(0);
+ break;
+ }
+ default:
+ llvm_unreachable("not a shift");
+ }
+
+ MIRBuilder.buildMerge(DstReg, ResultRegs);
+ MI.eraseFromParent();
+ return Legalized;
+}
+
+LegalizerHelper::LegalizeResult
+LegalizerHelper::moreElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx,
+ LLT MoreTy) {
+ assert(TypeIdx == 0 && "Expecting only Idx 0");
+
+ Observer.changingInstr(MI);
+ for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) {
+ MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB();
+ MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
+ moreElementsVectorSrc(MI, MoreTy, I);
+ }
+
+ MachineBasicBlock &MBB = *MI.getParent();
+ MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI());
+ moreElementsVectorDst(MI, MoreTy, 0);
+ Observer.changedInstr(MI);
+ return Legalized;
+}
+
+LegalizerHelper::LegalizeResult
+LegalizerHelper::moreElementsVector(MachineInstr &MI, unsigned TypeIdx,
+ LLT MoreTy) {
+ unsigned Opc = MI.getOpcode();
+ switch (Opc) {
+ case TargetOpcode::G_IMPLICIT_DEF:
+ case TargetOpcode::G_LOAD: {
+ if (TypeIdx != 0)
+ return UnableToLegalize;
+ Observer.changingInstr(MI);
+ moreElementsVectorDst(MI, MoreTy, 0);
+ Observer.changedInstr(MI);
+ return Legalized;
+ }
+ case TargetOpcode::G_STORE:
+ if (TypeIdx != 0)
+ return UnableToLegalize;
+ Observer.changingInstr(MI);
+ moreElementsVectorSrc(MI, MoreTy, 0);
+ Observer.changedInstr(MI);
+ return Legalized;
+ case TargetOpcode::G_AND:
+ case TargetOpcode::G_OR:
+ case TargetOpcode::G_XOR:
+ case TargetOpcode::G_SMIN:
+ case TargetOpcode::G_SMAX:
+ case TargetOpcode::G_UMIN:
+ case TargetOpcode::G_UMAX:
+ case TargetOpcode::G_FMINNUM:
+ case TargetOpcode::G_FMAXNUM:
+ case TargetOpcode::G_FMINNUM_IEEE:
+ case TargetOpcode::G_FMAXNUM_IEEE:
+ case TargetOpcode::G_FMINIMUM:
+ case TargetOpcode::G_FMAXIMUM: {
+ Observer.changingInstr(MI);
+ moreElementsVectorSrc(MI, MoreTy, 1);
+ moreElementsVectorSrc(MI, MoreTy, 2);
+ moreElementsVectorDst(MI, MoreTy, 0);
+ Observer.changedInstr(MI);
+ return Legalized;
+ }
+ case TargetOpcode::G_EXTRACT:
+ if (TypeIdx != 1)
+ return UnableToLegalize;
+ Observer.changingInstr(MI);
+ moreElementsVectorSrc(MI, MoreTy, 1);
+ Observer.changedInstr(MI);
+ return Legalized;
+ case TargetOpcode::G_INSERT:
+ case TargetOpcode::G_FREEZE:
+ if (TypeIdx != 0)
+ return UnableToLegalize;
+ Observer.changingInstr(MI);
+ moreElementsVectorSrc(MI, MoreTy, 1);
+ moreElementsVectorDst(MI, MoreTy, 0);
+ Observer.changedInstr(MI);
+ return Legalized;
+ case TargetOpcode::G_SELECT:
+ if (TypeIdx != 0)
+ return UnableToLegalize;
+ if (MRI.getType(MI.getOperand(1).getReg()).isVector())
+ return UnableToLegalize;
+
+ Observer.changingInstr(MI);
+ moreElementsVectorSrc(MI, MoreTy, 2);
+ moreElementsVectorSrc(MI, MoreTy, 3);
+ moreElementsVectorDst(MI, MoreTy, 0);
+ Observer.changedInstr(MI);
+ return Legalized;
+ case TargetOpcode::G_UNMERGE_VALUES: {
+ if (TypeIdx != 1)
+ return UnableToLegalize;
+
+ LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
+ int NumDst = MI.getNumOperands() - 1;
+ moreElementsVectorSrc(MI, MoreTy, NumDst);
+
+ auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES);
+ for (int I = 0; I != NumDst; ++I)
+ MIB.addDef(MI.getOperand(I).getReg());
+
+ int NewNumDst = MoreTy.getSizeInBits() / DstTy.getSizeInBits();
+ for (int I = NumDst; I != NewNumDst; ++I)
+ MIB.addDef(MRI.createGenericVirtualRegister(DstTy));
+
+ MIB.addUse(MI.getOperand(NumDst).getReg());
+ MI.eraseFromParent();
+ return Legalized;
+ }
+ case TargetOpcode::G_PHI:
+ return moreElementsVectorPhi(MI, TypeIdx, MoreTy);
+ default:
+ return UnableToLegalize;
+ }
+}
+
+void LegalizerHelper::multiplyRegisters(SmallVectorImpl<Register> &DstRegs,
+ ArrayRef<Register> Src1Regs,
+ ArrayRef<Register> Src2Regs,
+ LLT NarrowTy) {
+ MachineIRBuilder &B = MIRBuilder;
+ unsigned SrcParts = Src1Regs.size();
+ unsigned DstParts = DstRegs.size();
+
+ unsigned DstIdx = 0; // Low bits of the result.
+ Register FactorSum =
+ B.buildMul(NarrowTy, Src1Regs[DstIdx], Src2Regs[DstIdx]).getReg(0);
+ DstRegs[DstIdx] = FactorSum;
+
+ unsigned CarrySumPrevDstIdx;
+ SmallVector<Register, 4> Factors;
+
+ for (DstIdx = 1; DstIdx < DstParts; DstIdx++) {
+ // Collect low parts of muls for DstIdx.
+ for (unsigned i = DstIdx + 1 < SrcParts ? 0 : DstIdx - SrcParts + 1;
+ i <= std::min(DstIdx, SrcParts - 1); ++i) {
+ MachineInstrBuilder Mul =
+ B.buildMul(NarrowTy, Src1Regs[DstIdx - i], Src2Regs[i]);
+ Factors.push_back(Mul.getReg(0));
+ }
+ // Collect high parts of muls from previous DstIdx.
+ for (unsigned i = DstIdx < SrcParts ? 0 : DstIdx - SrcParts;
+ i <= std::min(DstIdx - 1, SrcParts - 1); ++i) {
+ MachineInstrBuilder Umulh =
+ B.buildUMulH(NarrowTy, Src1Regs[DstIdx - 1 - i], Src2Regs[i]);
+ Factors.push_back(Umulh.getReg(0));
+ }
+ // Add CarrySum from additions calculated for previous DstIdx.
+ if (DstIdx != 1) {
+ Factors.push_back(CarrySumPrevDstIdx);
+ }
+
+ Register CarrySum;
+ // Add all factors and accumulate all carries into CarrySum.
+ if (DstIdx != DstParts - 1) {
+ MachineInstrBuilder Uaddo =
+ B.buildUAddo(NarrowTy, LLT::scalar(1), Factors[0], Factors[1]);
+ FactorSum = Uaddo.getReg(0);
+ CarrySum = B.buildZExt(NarrowTy, Uaddo.getReg(1)).getReg(0);
+ for (unsigned i = 2; i < Factors.size(); ++i) {
+ MachineInstrBuilder Uaddo =
+ B.buildUAddo(NarrowTy, LLT::scalar(1), FactorSum, Factors[i]);
+ FactorSum = Uaddo.getReg(0);
+ MachineInstrBuilder Carry = B.buildZExt(NarrowTy, Uaddo.getReg(1));
+ CarrySum = B.buildAdd(NarrowTy, CarrySum, Carry).getReg(0);
+ }
+ } else {
+ // Since value for the next index is not calculated, neither is CarrySum.
+ FactorSum = B.buildAdd(NarrowTy, Factors[0], Factors[1]).getReg(0);
+ for (unsigned i = 2; i < Factors.size(); ++i)
+ FactorSum = B.buildAdd(NarrowTy, FactorSum, Factors[i]).getReg(0);
+ }
+
+ CarrySumPrevDstIdx = CarrySum;
+ DstRegs[DstIdx] = FactorSum;
+ Factors.clear();
+ }
+}
+
+LegalizerHelper::LegalizeResult
+LegalizerHelper::narrowScalarMul(MachineInstr &MI, LLT NarrowTy) {
+ Register DstReg = MI.getOperand(0).getReg();
+ Register Src1 = MI.getOperand(1).getReg();
+ Register Src2 = MI.getOperand(2).getReg();
+
+ LLT Ty = MRI.getType(DstReg);
+ if (Ty.isVector())
+ return UnableToLegalize;
+
+ unsigned SrcSize = MRI.getType(Src1).getSizeInBits();
+ unsigned DstSize = Ty.getSizeInBits();
+ unsigned NarrowSize = NarrowTy.getSizeInBits();
+ if (DstSize % NarrowSize != 0 || SrcSize % NarrowSize != 0)
+ return UnableToLegalize;
+
+ unsigned NumDstParts = DstSize / NarrowSize;
+ unsigned NumSrcParts = SrcSize / NarrowSize;
+ bool IsMulHigh = MI.getOpcode() == TargetOpcode::G_UMULH;
+ unsigned DstTmpParts = NumDstParts * (IsMulHigh ? 2 : 1);
+
+ SmallVector<Register, 2> Src1Parts, Src2Parts;
+ SmallVector<Register, 2> DstTmpRegs(DstTmpParts);
+ extractParts(Src1, NarrowTy, NumSrcParts, Src1Parts);
+ extractParts(Src2, NarrowTy, NumSrcParts, Src2Parts);
+ multiplyRegisters(DstTmpRegs, Src1Parts, Src2Parts, NarrowTy);
+
+ // Take only high half of registers if this is high mul.
+ ArrayRef<Register> DstRegs(
+ IsMulHigh ? &DstTmpRegs[DstTmpParts / 2] : &DstTmpRegs[0], NumDstParts);
+ MIRBuilder.buildMerge(DstReg, DstRegs);
+ MI.eraseFromParent();
+ return Legalized;
+}
+
+LegalizerHelper::LegalizeResult
+LegalizerHelper::narrowScalarExtract(MachineInstr &MI, unsigned TypeIdx,
+ LLT NarrowTy) {
+ if (TypeIdx != 1)
+ return UnableToLegalize;
+
+ uint64_t NarrowSize = NarrowTy.getSizeInBits();
+
+ int64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
+ // FIXME: add support for when SizeOp1 isn't an exact multiple of
+ // NarrowSize.
+ if (SizeOp1 % NarrowSize != 0)
+ return UnableToLegalize;
+ int NumParts = SizeOp1 / NarrowSize;
+
+ SmallVector<Register, 2> SrcRegs, DstRegs;
+ SmallVector<uint64_t, 2> Indexes;
+ extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs);
+
+ Register OpReg = MI.getOperand(0).getReg();
+ uint64_t OpStart = MI.getOperand(2).getImm();
+ uint64_t OpSize = MRI.getType(OpReg).getSizeInBits();
+ for (int i = 0; i < NumParts; ++i) {
+ unsigned SrcStart = i * NarrowSize;
+
+ if (SrcStart + NarrowSize <= OpStart || SrcStart >= OpStart + OpSize) {
+ // No part of the extract uses this subregister, ignore it.
+ continue;
+ } else if (SrcStart == OpStart && NarrowTy == MRI.getType(OpReg)) {
+ // The entire subregister is extracted, forward the value.
+ DstRegs.push_back(SrcRegs[i]);
+ continue;
+ }
+
+ // OpSegStart is where this destination segment would start in OpReg if it
+ // extended infinitely in both directions.
+ int64_t ExtractOffset;
+ uint64_t SegSize;
+ if (OpStart < SrcStart) {
+ ExtractOffset = 0;
+ SegSize = std::min(NarrowSize, OpStart + OpSize - SrcStart);
+ } else {
+ ExtractOffset = OpStart - SrcStart;
+ SegSize = std::min(SrcStart + NarrowSize - OpStart, OpSize);
+ }
+
+ Register SegReg = SrcRegs[i];
+ if (ExtractOffset != 0 || SegSize != NarrowSize) {
+ // A genuine extract is needed.
+ SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize));
+ MIRBuilder.buildExtract(SegReg, SrcRegs[i], ExtractOffset);
+ }
+
+ DstRegs.push_back(SegReg);
+ }
+
+ Register DstReg = MI.getOperand(0).getReg();
+ if (MRI.getType(DstReg).isVector())
+ MIRBuilder.buildBuildVector(DstReg, DstRegs);
+ else if (DstRegs.size() > 1)
+ MIRBuilder.buildMerge(DstReg, DstRegs);
+ else
+ MIRBuilder.buildCopy(DstReg, DstRegs[0]);
+ MI.eraseFromParent();
+ return Legalized;
+}
+
+LegalizerHelper::LegalizeResult
+LegalizerHelper::narrowScalarInsert(MachineInstr &MI, unsigned TypeIdx,
+ LLT NarrowTy) {
+ // FIXME: Don't know how to handle secondary types yet.
+ if (TypeIdx != 0)
+ return UnableToLegalize;
+
+ uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
+ uint64_t NarrowSize = NarrowTy.getSizeInBits();
+
+ // FIXME: add support for when SizeOp0 isn't an exact multiple of
+ // NarrowSize.
+ if (SizeOp0 % NarrowSize != 0)
+ return UnableToLegalize;
+
+ int NumParts = SizeOp0 / NarrowSize;
+
+ SmallVector<Register, 2> SrcRegs, DstRegs;
+ SmallVector<uint64_t, 2> Indexes;
+ extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs);
+
+ Register OpReg = MI.getOperand(2).getReg();
+ uint64_t OpStart = MI.getOperand(3).getImm();
+ uint64_t OpSize = MRI.getType(OpReg).getSizeInBits();
+ for (int i = 0; i < NumParts; ++i) {
+ unsigned DstStart = i * NarrowSize;
+
+ if (DstStart + NarrowSize <= OpStart || DstStart >= OpStart + OpSize) {
+ // No part of the insert affects this subregister, forward the original.
+ DstRegs.push_back(SrcRegs[i]);
+ continue;
+ } else if (DstStart == OpStart && NarrowTy == MRI.getType(OpReg)) {
+ // The entire subregister is defined by this insert, forward the new
+ // value.
+ DstRegs.push_back(OpReg);
+ continue;
+ }
+
+ // OpSegStart is where this destination segment would start in OpReg if it
+ // extended infinitely in both directions.
+ int64_t ExtractOffset, InsertOffset;
+ uint64_t SegSize;
+ if (OpStart < DstStart) {
+ InsertOffset = 0;
+ ExtractOffset = DstStart - OpStart;
+ SegSize = std::min(NarrowSize, OpStart + OpSize - DstStart);
+ } else {
+ InsertOffset = OpStart - DstStart;
+ ExtractOffset = 0;
+ SegSize =
+ std::min(NarrowSize - InsertOffset, OpStart + OpSize - DstStart);
+ }
+
+ Register SegReg = OpReg;
+ if (ExtractOffset != 0 || SegSize != OpSize) {
+ // A genuine extract is needed.
+ SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize));
+ MIRBuilder.buildExtract(SegReg, OpReg, ExtractOffset);
+ }
+
+ Register DstReg = MRI.createGenericVirtualRegister(NarrowTy);
+ MIRBuilder.buildInsert(DstReg, SrcRegs[i], SegReg, InsertOffset);
+ DstRegs.push_back(DstReg);
+ }
+
+ assert(DstRegs.size() == (unsigned)NumParts && "not all parts covered");
+ Register DstReg = MI.getOperand(0).getReg();
+ if(MRI.getType(DstReg).isVector())
+ MIRBuilder.buildBuildVector(DstReg, DstRegs);
+ else
+ MIRBuilder.buildMerge(DstReg, DstRegs);
+ MI.eraseFromParent();
+ return Legalized;
+}
+
+LegalizerHelper::LegalizeResult
+LegalizerHelper::narrowScalarBasic(MachineInstr &MI, unsigned TypeIdx,
+ LLT NarrowTy) {
+ Register DstReg = MI.getOperand(0).getReg();
+ LLT DstTy = MRI.getType(DstReg);
+
+ assert(MI.getNumOperands() == 3 && TypeIdx == 0);
+
+ SmallVector<Register, 4> DstRegs, DstLeftoverRegs;
+ SmallVector<Register, 4> Src0Regs, Src0LeftoverRegs;
+ SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs;
+ LLT LeftoverTy;
+ if (!extractParts(MI.getOperand(1).getReg(), DstTy, NarrowTy, LeftoverTy,
+ Src0Regs, Src0LeftoverRegs))
+ return UnableToLegalize;
+
+ LLT Unused;
+ if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, Unused,
+ Src1Regs, Src1LeftoverRegs))
+ llvm_unreachable("inconsistent extractParts result");
+
+ for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) {
+ auto Inst = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy},
+ {Src0Regs[I], Src1Regs[I]});
+ DstRegs.push_back(Inst.getReg(0));
+ }
+
+ for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) {
+ auto Inst = MIRBuilder.buildInstr(
+ MI.getOpcode(),
+ {LeftoverTy}, {Src0LeftoverRegs[I], Src1LeftoverRegs[I]});
+ DstLeftoverRegs.push_back(Inst.getReg(0));
+ }
+
+ insertParts(DstReg, DstTy, NarrowTy, DstRegs,
+ LeftoverTy, DstLeftoverRegs);
+
+ MI.eraseFromParent();
+ return Legalized;
+}
+
+LegalizerHelper::LegalizeResult
+LegalizerHelper::narrowScalarExt(MachineInstr &MI, unsigned TypeIdx,
+ LLT NarrowTy) {
+ if (TypeIdx != 0)
+ return UnableToLegalize;
+
+ Register DstReg = MI.getOperand(0).getReg();
+ Register SrcReg = MI.getOperand(1).getReg();
+
+ LLT DstTy = MRI.getType(DstReg);
+ if (DstTy.isVector())
+ return UnableToLegalize;
+
+ SmallVector<Register, 8> Parts;
+ LLT GCDTy = extractGCDType(Parts, DstTy, NarrowTy, SrcReg);
+ LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts, MI.getOpcode());
+ buildWidenedRemergeToDst(DstReg, LCMTy, Parts);
+
+ MI.eraseFromParent();
+ return Legalized;
+}
+
+LegalizerHelper::LegalizeResult
+LegalizerHelper::narrowScalarSelect(MachineInstr &MI, unsigned TypeIdx,
+ LLT NarrowTy) {
+ if (TypeIdx != 0)
+ return UnableToLegalize;
+
+ Register CondReg = MI.getOperand(1).getReg();
+ LLT CondTy = MRI.getType(CondReg);
+ if (CondTy.isVector()) // TODO: Handle vselect
+ return UnableToLegalize;
+
+ Register DstReg = MI.getOperand(0).getReg();
+ LLT DstTy = MRI.getType(DstReg);
+
+ SmallVector<Register, 4> DstRegs, DstLeftoverRegs;
+ SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs;
+ SmallVector<Register, 4> Src2Regs, Src2LeftoverRegs;
+ LLT LeftoverTy;
+ if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, LeftoverTy,
+ Src1Regs, Src1LeftoverRegs))
+ return UnableToLegalize;
+
+ LLT Unused;
+ if (!extractParts(MI.getOperand(3).getReg(), DstTy, NarrowTy, Unused,
+ Src2Regs, Src2LeftoverRegs))
+ llvm_unreachable("inconsistent extractParts result");
+
+ for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) {
+ auto Select = MIRBuilder.buildSelect(NarrowTy,
+ CondReg, Src1Regs[I], Src2Regs[I]);
+ DstRegs.push_back(Select.getReg(0));
+ }
+
+ for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) {
+ auto Select = MIRBuilder.buildSelect(
+ LeftoverTy, CondReg, Src1LeftoverRegs[I], Src2LeftoverRegs[I]);
+ DstLeftoverRegs.push_back(Select.getReg(0));
+ }
+
+ insertParts(DstReg, DstTy, NarrowTy, DstRegs,
+ LeftoverTy, DstLeftoverRegs);
+
+ MI.eraseFromParent();
+ return Legalized;
+}
+
+LegalizerHelper::LegalizeResult
+LegalizerHelper::narrowScalarCTLZ(MachineInstr &MI, unsigned TypeIdx,
+ LLT NarrowTy) {
+ if (TypeIdx != 1)
+ return UnableToLegalize;
+
+ Register DstReg = MI.getOperand(0).getReg();
+ Register SrcReg = MI.getOperand(1).getReg();
+ LLT DstTy = MRI.getType(DstReg);
+ LLT SrcTy = MRI.getType(SrcReg);
+ unsigned NarrowSize = NarrowTy.getSizeInBits();
+
+ if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) {
+ const bool IsUndef = MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF;
+
+ MachineIRBuilder &B = MIRBuilder;
+ auto UnmergeSrc = B.buildUnmerge(NarrowTy, SrcReg);
+ // ctlz(Hi:Lo) -> Hi == 0 ? (NarrowSize + ctlz(Lo)) : ctlz(Hi)
+ auto C_0 = B.buildConstant(NarrowTy, 0);
+ auto HiIsZero = B.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1),
+ UnmergeSrc.getReg(1), C_0);
+ auto LoCTLZ = IsUndef ?
+ B.buildCTLZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(0)) :
+ B.buildCTLZ(DstTy, UnmergeSrc.getReg(0));
+ auto C_NarrowSize = B.buildConstant(DstTy, NarrowSize);
+ auto HiIsZeroCTLZ = B.buildAdd(DstTy, LoCTLZ, C_NarrowSize);
+ auto HiCTLZ = B.buildCTLZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(1));
+ B.buildSelect(DstReg, HiIsZero, HiIsZeroCTLZ, HiCTLZ);
+
+ MI.eraseFromParent();
+ return Legalized;
+ }
+
+ return UnableToLegalize;
+}
+
+LegalizerHelper::LegalizeResult
+LegalizerHelper::narrowScalarCTTZ(MachineInstr &MI, unsigned TypeIdx,
+ LLT NarrowTy) {
+ if (TypeIdx != 1)
+ return UnableToLegalize;
+
+ Register DstReg = MI.getOperand(0).getReg();
+ Register SrcReg = MI.getOperand(1).getReg();
+ LLT DstTy = MRI.getType(DstReg);
+ LLT SrcTy = MRI.getType(SrcReg);
+ unsigned NarrowSize = NarrowTy.getSizeInBits();
+
+ if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) {
+ const bool IsUndef = MI.getOpcode() == TargetOpcode::G_CTTZ_ZERO_UNDEF;
+
+ MachineIRBuilder &B = MIRBuilder;
+ auto UnmergeSrc = B.buildUnmerge(NarrowTy, SrcReg);
+ // cttz(Hi:Lo) -> Lo == 0 ? (cttz(Hi) + NarrowSize) : cttz(Lo)
+ auto C_0 = B.buildConstant(NarrowTy, 0);
+ auto LoIsZero = B.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1),
+ UnmergeSrc.getReg(0), C_0);
+ auto HiCTTZ = IsUndef ?
+ B.buildCTTZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(1)) :
+ B.buildCTTZ(DstTy, UnmergeSrc.getReg(1));
+ auto C_NarrowSize = B.buildConstant(DstTy, NarrowSize);
+ auto LoIsZeroCTTZ = B.buildAdd(DstTy, HiCTTZ, C_NarrowSize);
+ auto LoCTTZ = B.buildCTTZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(0));
+ B.buildSelect(DstReg, LoIsZero, LoIsZeroCTTZ, LoCTTZ);
+
+ MI.eraseFromParent();
+ return Legalized;
+ }
+
+ return UnableToLegalize;
+}
+
+LegalizerHelper::LegalizeResult
+LegalizerHelper::narrowScalarCTPOP(MachineInstr &MI, unsigned TypeIdx,
+ LLT NarrowTy) {
+ if (TypeIdx != 1)
+ return UnableToLegalize;
+
+ Register DstReg = MI.getOperand(0).getReg();
+ LLT DstTy = MRI.getType(DstReg);
+ LLT SrcTy = MRI.getType(MI.getOperand(1).getReg());
+ unsigned NarrowSize = NarrowTy.getSizeInBits();
+
+ if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) {
+ auto UnmergeSrc = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1));
+
+ auto LoCTPOP = MIRBuilder.buildCTPOP(DstTy, UnmergeSrc.getReg(0));
+ auto HiCTPOP = MIRBuilder.buildCTPOP(DstTy, UnmergeSrc.getReg(1));
+ MIRBuilder.buildAdd(DstReg, HiCTPOP, LoCTPOP);
+
+ MI.eraseFromParent();
+ return Legalized;
+ }
+
+ return UnableToLegalize;
+}
+
+LegalizerHelper::LegalizeResult
+LegalizerHelper::lowerBitCount(MachineInstr &MI) {
+ unsigned Opc = MI.getOpcode();
+ const auto &TII = MIRBuilder.getTII();
+ auto isSupported = [this](const LegalityQuery &Q) {
+ auto QAction = LI.getAction(Q).Action;
+ return QAction == Legal || QAction == Libcall || QAction == Custom;
+ };
+ switch (Opc) {
+ default:
+ return UnableToLegalize;
+ case TargetOpcode::G_CTLZ_ZERO_UNDEF: {
+ // This trivially expands to CTLZ.
+ Observer.changingInstr(MI);
+ MI.setDesc(TII.get(TargetOpcode::G_CTLZ));
+ Observer.changedInstr(MI);
+ return Legalized;
+ }
+ case TargetOpcode::G_CTLZ: {
+ Register DstReg = MI.getOperand(0).getReg();
+ Register SrcReg = MI.getOperand(1).getReg();
+ LLT DstTy = MRI.getType(DstReg);
+ LLT SrcTy = MRI.getType(SrcReg);
+ unsigned Len = SrcTy.getSizeInBits();
+
+ if (isSupported({TargetOpcode::G_CTLZ_ZERO_UNDEF, {DstTy, SrcTy}})) {
+ // If CTLZ_ZERO_UNDEF is supported, emit that and a select for zero.
+ auto CtlzZU = MIRBuilder.buildCTLZ_ZERO_UNDEF(DstTy, SrcReg);
+ auto ZeroSrc = MIRBuilder.buildConstant(SrcTy, 0);
+ auto ICmp = MIRBuilder.buildICmp(
+ CmpInst::ICMP_EQ, SrcTy.changeElementSize(1), SrcReg, ZeroSrc);
+ auto LenConst = MIRBuilder.buildConstant(DstTy, Len);
+ MIRBuilder.buildSelect(DstReg, ICmp, LenConst, CtlzZU);
+ MI.eraseFromParent();
+ return Legalized;
+ }
+ // for now, we do this:
+ // NewLen = NextPowerOf2(Len);
+ // x = x | (x >> 1);
+ // x = x | (x >> 2);
+ // ...
+ // x = x | (x >>16);
+ // x = x | (x >>32); // for 64-bit input
+ // Upto NewLen/2
+ // return Len - popcount(x);
+ //
+ // Ref: "Hacker's Delight" by Henry Warren
+ Register Op = SrcReg;
+ unsigned NewLen = PowerOf2Ceil(Len);
+ for (unsigned i = 0; (1U << i) <= (NewLen / 2); ++i) {
+ auto MIBShiftAmt = MIRBuilder.buildConstant(SrcTy, 1ULL << i);
+ auto MIBOp = MIRBuilder.buildOr(
+ SrcTy, Op, MIRBuilder.buildLShr(SrcTy, Op, MIBShiftAmt));
+ Op = MIBOp.getReg(0);
+ }
+ auto MIBPop = MIRBuilder.buildCTPOP(DstTy, Op);
+ MIRBuilder.buildSub(MI.getOperand(0), MIRBuilder.buildConstant(DstTy, Len),
+ MIBPop);
+ MI.eraseFromParent();
+ return Legalized;
+ }
+ case TargetOpcode::G_CTTZ_ZERO_UNDEF: {
+ // This trivially expands to CTTZ.
+ Observer.changingInstr(MI);
+ MI.setDesc(TII.get(TargetOpcode::G_CTTZ));
+ Observer.changedInstr(MI);
+ return Legalized;
+ }
+ case TargetOpcode::G_CTTZ: {
+ Register DstReg = MI.getOperand(0).getReg();
+ Register SrcReg = MI.getOperand(1).getReg();
+ LLT DstTy = MRI.getType(DstReg);
+ LLT SrcTy = MRI.getType(SrcReg);
+
+ unsigned Len = SrcTy.getSizeInBits();
+ if (isSupported({TargetOpcode::G_CTTZ_ZERO_UNDEF, {DstTy, SrcTy}})) {
+ // If CTTZ_ZERO_UNDEF is legal or custom, emit that and a select with
+ // zero.
+ auto CttzZU = MIRBuilder.buildCTTZ_ZERO_UNDEF(DstTy, SrcReg);
+ auto Zero = MIRBuilder.buildConstant(SrcTy, 0);
+ auto ICmp = MIRBuilder.buildICmp(
+ CmpInst::ICMP_EQ, DstTy.changeElementSize(1), SrcReg, Zero);
+ auto LenConst = MIRBuilder.buildConstant(DstTy, Len);
+ MIRBuilder.buildSelect(DstReg, ICmp, LenConst, CttzZU);
+ MI.eraseFromParent();
+ return Legalized;
+ }
+ // for now, we use: { return popcount(~x & (x - 1)); }
+ // unless the target has ctlz but not ctpop, in which case we use:
+ // { return 32 - nlz(~x & (x-1)); }
+ // Ref: "Hacker's Delight" by Henry Warren
+ auto MIBCstNeg1 = MIRBuilder.buildConstant(SrcTy, -1);
+ auto MIBNot = MIRBuilder.buildXor(SrcTy, SrcReg, MIBCstNeg1);
+ auto MIBTmp = MIRBuilder.buildAnd(
+ SrcTy, MIBNot, MIRBuilder.buildAdd(SrcTy, SrcReg, MIBCstNeg1));
+ if (!isSupported({TargetOpcode::G_CTPOP, {SrcTy, SrcTy}}) &&
+ isSupported({TargetOpcode::G_CTLZ, {SrcTy, SrcTy}})) {
+ auto MIBCstLen = MIRBuilder.buildConstant(SrcTy, Len);
+ MIRBuilder.buildSub(MI.getOperand(0), MIBCstLen,
+ MIRBuilder.buildCTLZ(SrcTy, MIBTmp));
+ MI.eraseFromParent();
+ return Legalized;
+ }
+ MI.setDesc(TII.get(TargetOpcode::G_CTPOP));
+ MI.getOperand(1).setReg(MIBTmp.getReg(0));
+ return Legalized;
+ }
+ case TargetOpcode::G_CTPOP: {
+ Register SrcReg = MI.getOperand(1).getReg();
+ LLT Ty = MRI.getType(SrcReg);
+ unsigned Size = Ty.getSizeInBits();
+ MachineIRBuilder &B = MIRBuilder;
+
+ // Count set bits in blocks of 2 bits. Default approach would be
+ // B2Count = { val & 0x55555555 } + { (val >> 1) & 0x55555555 }
+ // We use following formula instead:
+ // B2Count = val - { (val >> 1) & 0x55555555 }
+ // since it gives same result in blocks of 2 with one instruction less.
+ auto C_1 = B.buildConstant(Ty, 1);
+ auto B2Set1LoTo1Hi = B.buildLShr(Ty, SrcReg, C_1);
+ APInt B2Mask1HiTo0 = APInt::getSplat(Size, APInt(8, 0x55));
+ auto C_B2Mask1HiTo0 = B.buildConstant(Ty, B2Mask1HiTo0);
+ auto B2Count1Hi = B.buildAnd(Ty, B2Set1LoTo1Hi, C_B2Mask1HiTo0);
+ auto B2Count = B.buildSub(Ty, SrcReg, B2Count1Hi);
+
+ // In order to get count in blocks of 4 add values from adjacent block of 2.
+ // B4Count = { B2Count & 0x33333333 } + { (B2Count >> 2) & 0x33333333 }
+ auto C_2 = B.buildConstant(Ty, 2);
+ auto B4Set2LoTo2Hi = B.buildLShr(Ty, B2Count, C_2);
+ APInt B4Mask2HiTo0 = APInt::getSplat(Size, APInt(8, 0x33));
+ auto C_B4Mask2HiTo0 = B.buildConstant(Ty, B4Mask2HiTo0);
+ auto B4HiB2Count = B.buildAnd(Ty, B4Set2LoTo2Hi, C_B4Mask2HiTo0);
+ auto B4LoB2Count = B.buildAnd(Ty, B2Count, C_B4Mask2HiTo0);
+ auto B4Count = B.buildAdd(Ty, B4HiB2Count, B4LoB2Count);
+
+ // For count in blocks of 8 bits we don't have to mask high 4 bits before
+ // addition since count value sits in range {0,...,8} and 4 bits are enough
+ // to hold such binary values. After addition high 4 bits still hold count
+ // of set bits in high 4 bit block, set them to zero and get 8 bit result.
+ // B8Count = { B4Count + (B4Count >> 4) } & 0x0F0F0F0F
+ auto C_4 = B.buildConstant(Ty, 4);
+ auto B8HiB4Count = B.buildLShr(Ty, B4Count, C_4);
+ auto B8CountDirty4Hi = B.buildAdd(Ty, B8HiB4Count, B4Count);
+ APInt B8Mask4HiTo0 = APInt::getSplat(Size, APInt(8, 0x0F));
+ auto C_B8Mask4HiTo0 = B.buildConstant(Ty, B8Mask4HiTo0);
+ auto B8Count = B.buildAnd(Ty, B8CountDirty4Hi, C_B8Mask4HiTo0);
+
+ assert(Size<=128 && "Scalar size is too large for CTPOP lower algorithm");
+ // 8 bits can hold CTPOP result of 128 bit int or smaller. Mul with this
+ // bitmask will set 8 msb in ResTmp to sum of all B8Counts in 8 bit blocks.
+ auto MulMask = B.buildConstant(Ty, APInt::getSplat(Size, APInt(8, 0x01)));
+ auto ResTmp = B.buildMul(Ty, B8Count, MulMask);
+
+ // Shift count result from 8 high bits to low bits.
+ auto C_SizeM8 = B.buildConstant(Ty, Size - 8);
+ B.buildLShr(MI.getOperand(0).getReg(), ResTmp, C_SizeM8);
+
+ MI.eraseFromParent();
+ return Legalized;
+ }
+ }
+}
+
+// Expand s32 = G_UITOFP s64 using bit operations to an IEEE float
+// representation.
+LegalizerHelper::LegalizeResult
+LegalizerHelper::lowerU64ToF32BitOps(MachineInstr &MI) {
+ Register Dst = MI.getOperand(0).getReg();
+ Register Src = MI.getOperand(1).getReg();
+ const LLT S64 = LLT::scalar(64);
+ const LLT S32 = LLT::scalar(32);
+ const LLT S1 = LLT::scalar(1);
+
+ assert(MRI.getType(Src) == S64 && MRI.getType(Dst) == S32);
+
+ // unsigned cul2f(ulong u) {
+ // uint lz = clz(u);
+ // uint e = (u != 0) ? 127U + 63U - lz : 0;
+ // u = (u << lz) & 0x7fffffffffffffffUL;
+ // ulong t = u & 0xffffffffffUL;
+ // uint v = (e << 23) | (uint)(u >> 40);
+ // uint r = t > 0x8000000000UL ? 1U : (t == 0x8000000000UL ? v & 1U : 0U);
+ // return as_float(v + r);
+ // }
+
+ auto Zero32 = MIRBuilder.buildConstant(S32, 0);
+ auto Zero64 = MIRBuilder.buildConstant(S64, 0);
+
+ auto LZ = MIRBuilder.buildCTLZ_ZERO_UNDEF(S32, Src);
+
+ auto K = MIRBuilder.buildConstant(S32, 127U + 63U);
+ auto Sub = MIRBuilder.buildSub(S32, K, LZ);
+
+ auto NotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, Src, Zero64);
+ auto E = MIRBuilder.buildSelect(S32, NotZero, Sub, Zero32);
+
+ auto Mask0 = MIRBuilder.buildConstant(S64, (-1ULL) >> 1);
+ auto ShlLZ = MIRBuilder.buildShl(S64, Src, LZ);
+
+ auto U = MIRBuilder.buildAnd(S64, ShlLZ, Mask0);
+
+ auto Mask1 = MIRBuilder.buildConstant(S64, 0xffffffffffULL);
+ auto T = MIRBuilder.buildAnd(S64, U, Mask1);
+
+ auto UShl = MIRBuilder.buildLShr(S64, U, MIRBuilder.buildConstant(S64, 40));
+ auto ShlE = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 23));
+ auto V = MIRBuilder.buildOr(S32, ShlE, MIRBuilder.buildTrunc(S32, UShl));
+
+ auto C = MIRBuilder.buildConstant(S64, 0x8000000000ULL);
+ auto RCmp = MIRBuilder.buildICmp(CmpInst::ICMP_UGT, S1, T, C);
+ auto TCmp = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, T, C);
+ auto One = MIRBuilder.buildConstant(S32, 1);
+
+ auto VTrunc1 = MIRBuilder.buildAnd(S32, V, One);
+ auto Select0 = MIRBuilder.buildSelect(S32, TCmp, VTrunc1, Zero32);
+ auto R = MIRBuilder.buildSelect(S32, RCmp, One, Select0);
+ MIRBuilder.buildAdd(Dst, V, R);
+
+ MI.eraseFromParent();
+ return Legalized;
+}
+
+LegalizerHelper::LegalizeResult LegalizerHelper::lowerUITOFP(MachineInstr &MI) {
+ Register Dst = MI.getOperand(0).getReg();
+ Register Src = MI.getOperand(1).getReg();
+ LLT DstTy = MRI.getType(Dst);
+ LLT SrcTy = MRI.getType(Src);
+
+ if (SrcTy == LLT::scalar(1)) {
+ auto True = MIRBuilder.buildFConstant(DstTy, 1.0);
+ auto False = MIRBuilder.buildFConstant(DstTy, 0.0);
+ MIRBuilder.buildSelect(Dst, Src, True, False);
+ MI.eraseFromParent();
+ return Legalized;
+ }
+
+ if (SrcTy != LLT::scalar(64))
+ return UnableToLegalize;
+
+ if (DstTy == LLT::scalar(32)) {
+ // TODO: SelectionDAG has several alternative expansions to port which may
+ // be more reasonble depending on the available instructions. If a target
+ // has sitofp, does not have CTLZ, or can efficiently use f64 as an
+ // intermediate type, this is probably worse.
+ return lowerU64ToF32BitOps(MI);
+ }
+
+ return UnableToLegalize;
+}
+
+LegalizerHelper::LegalizeResult LegalizerHelper::lowerSITOFP(MachineInstr &MI) {
+ Register Dst = MI.getOperand(0).getReg();
+ Register Src = MI.getOperand(1).getReg();
+ LLT DstTy = MRI.getType(Dst);
+ LLT SrcTy = MRI.getType(Src);
+
+ const LLT S64 = LLT::scalar(64);
+ const LLT S32 = LLT::scalar(32);
+ const LLT S1 = LLT::scalar(1);
+
+ if (SrcTy == S1) {
+ auto True = MIRBuilder.buildFConstant(DstTy, -1.0);
+ auto False = MIRBuilder.buildFConstant(DstTy, 0.0);
+ MIRBuilder.buildSelect(Dst, Src, True, False);
+ MI.eraseFromParent();
+ return Legalized;
+ }
+
+ if (SrcTy != S64)
+ return UnableToLegalize;
+
+ if (DstTy == S32) {
+ // signed cl2f(long l) {
+ // long s = l >> 63;
+ // float r = cul2f((l + s) ^ s);
+ // return s ? -r : r;
+ // }
+ Register L = Src;
+ auto SignBit = MIRBuilder.buildConstant(S64, 63);
+ auto S = MIRBuilder.buildAShr(S64, L, SignBit);
+
+ auto LPlusS = MIRBuilder.buildAdd(S64, L, S);
+ auto Xor = MIRBuilder.buildXor(S64, LPlusS, S);
+ auto R = MIRBuilder.buildUITOFP(S32, Xor);
+
+ auto RNeg = MIRBuilder.buildFNeg(S32, R);
+ auto SignNotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, S,
+ MIRBuilder.buildConstant(S64, 0));
+ MIRBuilder.buildSelect(Dst, SignNotZero, RNeg, R);
+ MI.eraseFromParent();
+ return Legalized;
+ }
+
+ return UnableToLegalize;
+}
+
+LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPTOUI(MachineInstr &MI) {
+ Register Dst = MI.getOperand(0).getReg();
+ Register Src = MI.getOperand(1).getReg();
+ LLT DstTy = MRI.getType(Dst);
+ LLT SrcTy = MRI.getType(Src);
+ const LLT S64 = LLT::scalar(64);
+ const LLT S32 = LLT::scalar(32);
+
+ if (SrcTy != S64 && SrcTy != S32)
+ return UnableToLegalize;
+ if (DstTy != S32 && DstTy != S64)
+ return UnableToLegalize;
+
+ // FPTOSI gives same result as FPTOUI for positive signed integers.
+ // FPTOUI needs to deal with fp values that convert to unsigned integers
+ // greater or equal to 2^31 for float or 2^63 for double. For brevity 2^Exp.
+
+ APInt TwoPExpInt = APInt::getSignMask(DstTy.getSizeInBits());
+ APFloat TwoPExpFP(SrcTy.getSizeInBits() == 32 ? APFloat::IEEEsingle()
+ : APFloat::IEEEdouble(),
+ APInt::getNullValue(SrcTy.getSizeInBits()));
+ TwoPExpFP.convertFromAPInt(TwoPExpInt, false, APFloat::rmNearestTiesToEven);
+
+ MachineInstrBuilder FPTOSI = MIRBuilder.buildFPTOSI(DstTy, Src);
+
+ MachineInstrBuilder Threshold = MIRBuilder.buildFConstant(SrcTy, TwoPExpFP);
+ // For fp Value greater or equal to Threshold(2^Exp), we use FPTOSI on
+ // (Value - 2^Exp) and add 2^Exp by setting highest bit in result to 1.
+ MachineInstrBuilder FSub = MIRBuilder.buildFSub(SrcTy, Src, Threshold);
+ MachineInstrBuilder ResLowBits = MIRBuilder.buildFPTOSI(DstTy, FSub);
+ MachineInstrBuilder ResHighBit = MIRBuilder.buildConstant(DstTy, TwoPExpInt);
+ MachineInstrBuilder Res = MIRBuilder.buildXor(DstTy, ResLowBits, ResHighBit);
+
+ const LLT S1 = LLT::scalar(1);
+
+ MachineInstrBuilder FCMP =
+ MIRBuilder.buildFCmp(CmpInst::FCMP_ULT, S1, Src, Threshold);
+ MIRBuilder.buildSelect(Dst, FCMP, FPTOSI, Res);
+
+ MI.eraseFromParent();
+ return Legalized;
+}
+
+LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPTOSI(MachineInstr &MI) {
+ Register Dst = MI.getOperand(0).getReg();
+ Register Src = MI.getOperand(1).getReg();
+ LLT DstTy = MRI.getType(Dst);
+ LLT SrcTy = MRI.getType(Src);
+ const LLT S64 = LLT::scalar(64);
+ const LLT S32 = LLT::scalar(32);
+
+ // FIXME: Only f32 to i64 conversions are supported.
+ if (SrcTy.getScalarType() != S32 || DstTy.getScalarType() != S64)
+ return UnableToLegalize;
+
+ // Expand f32 -> i64 conversion
+ // This algorithm comes from compiler-rt's implementation of fixsfdi:
+ // https://github.com/llvm/llvm-project/blob/master/compiler-rt/lib/builtins/fixsfdi.c
+
+ unsigned SrcEltBits = SrcTy.getScalarSizeInBits();
+
+ auto ExponentMask = MIRBuilder.buildConstant(SrcTy, 0x7F800000);
+ auto ExponentLoBit = MIRBuilder.buildConstant(SrcTy, 23);
+
+ auto AndExpMask = MIRBuilder.buildAnd(SrcTy, Src, ExponentMask);
+ auto ExponentBits = MIRBuilder.buildLShr(SrcTy, AndExpMask, ExponentLoBit);
+
+ auto SignMask = MIRBuilder.buildConstant(SrcTy,
+ APInt::getSignMask(SrcEltBits));
+ auto AndSignMask = MIRBuilder.buildAnd(SrcTy, Src, SignMask);
+ auto SignLowBit = MIRBuilder.buildConstant(SrcTy, SrcEltBits - 1);
+ auto Sign = MIRBuilder.buildAShr(SrcTy, AndSignMask, SignLowBit);
+ Sign = MIRBuilder.buildSExt(DstTy, Sign);
+
+ auto MantissaMask = MIRBuilder.buildConstant(SrcTy, 0x007FFFFF);
+ auto AndMantissaMask = MIRBuilder.buildAnd(SrcTy, Src, MantissaMask);
+ auto K = MIRBuilder.buildConstant(SrcTy, 0x00800000);
+
+ auto R = MIRBuilder.buildOr(SrcTy, AndMantissaMask, K);
+ R = MIRBuilder.buildZExt(DstTy, R);
+
+ auto Bias = MIRBuilder.buildConstant(SrcTy, 127);
+ auto Exponent = MIRBuilder.buildSub(SrcTy, ExponentBits, Bias);
+ auto SubExponent = MIRBuilder.buildSub(SrcTy, Exponent, ExponentLoBit);
+ auto ExponentSub = MIRBuilder.buildSub(SrcTy, ExponentLoBit, Exponent);
+
+ auto Shl = MIRBuilder.buildShl(DstTy, R, SubExponent);
+ auto Srl = MIRBuilder.buildLShr(DstTy, R, ExponentSub);
+
+ const LLT S1 = LLT::scalar(1);
+ auto CmpGt = MIRBuilder.buildICmp(CmpInst::ICMP_SGT,
+ S1, Exponent, ExponentLoBit);
+
+ R = MIRBuilder.buildSelect(DstTy, CmpGt, Shl, Srl);
+
+ auto XorSign = MIRBuilder.buildXor(DstTy, R, Sign);
+ auto Ret = MIRBuilder.buildSub(DstTy, XorSign, Sign);
+
+ auto ZeroSrcTy = MIRBuilder.buildConstant(SrcTy, 0);
+
+ auto ExponentLt0 = MIRBuilder.buildICmp(CmpInst::ICMP_SLT,
+ S1, Exponent, ZeroSrcTy);
+
+ auto ZeroDstTy = MIRBuilder.buildConstant(DstTy, 0);
+ MIRBuilder.buildSelect(Dst, ExponentLt0, ZeroDstTy, Ret);
+
+ MI.eraseFromParent();
+ return Legalized;
+}
+
+// f64 -> f16 conversion using round-to-nearest-even rounding mode.
+LegalizerHelper::LegalizeResult
+LegalizerHelper::lowerFPTRUNC_F64_TO_F16(MachineInstr &MI) {
+ Register Dst = MI.getOperand(0).getReg();
+ Register Src = MI.getOperand(1).getReg();
+
+ if (MRI.getType(Src).isVector()) // TODO: Handle vectors directly.
+ return UnableToLegalize;
+
+ const unsigned ExpMask = 0x7ff;
+ const unsigned ExpBiasf64 = 1023;
+ const unsigned ExpBiasf16 = 15;
+ const LLT S32 = LLT::scalar(32);
+ const LLT S1 = LLT::scalar(1);
+
+ auto Unmerge = MIRBuilder.buildUnmerge(S32, Src);
+ Register U = Unmerge.getReg(0);
+ Register UH = Unmerge.getReg(1);
+
+ auto E = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 20));
+ E = MIRBuilder.buildAnd(S32, E, MIRBuilder.buildConstant(S32, ExpMask));
+
+ // Subtract the fp64 exponent bias (1023) to get the real exponent and
+ // add the f16 bias (15) to get the biased exponent for the f16 format.
+ E = MIRBuilder.buildAdd(
+ S32, E, MIRBuilder.buildConstant(S32, -ExpBiasf64 + ExpBiasf16));
+
+ auto M = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 8));
+ M = MIRBuilder.buildAnd(S32, M, MIRBuilder.buildConstant(S32, 0xffe));
+
+ auto MaskedSig = MIRBuilder.buildAnd(S32, UH,
+ MIRBuilder.buildConstant(S32, 0x1ff));
+ MaskedSig = MIRBuilder.buildOr(S32, MaskedSig, U);
+
+ auto Zero = MIRBuilder.buildConstant(S32, 0);
+ auto SigCmpNE0 = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, MaskedSig, Zero);
+ auto Lo40Set = MIRBuilder.buildZExt(S32, SigCmpNE0);
+ M = MIRBuilder.buildOr(S32, M, Lo40Set);
+
+ // (M != 0 ? 0x0200 : 0) | 0x7c00;
+ auto Bits0x200 = MIRBuilder.buildConstant(S32, 0x0200);
+ auto CmpM_NE0 = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, M, Zero);
+ auto SelectCC = MIRBuilder.buildSelect(S32, CmpM_NE0, Bits0x200, Zero);
+
+ auto Bits0x7c00 = MIRBuilder.buildConstant(S32, 0x7c00);
+ auto I = MIRBuilder.buildOr(S32, SelectCC, Bits0x7c00);
+
+ // N = M | (E << 12);
+ auto EShl12 = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 12));
+ auto N = MIRBuilder.buildOr(S32, M, EShl12);
+
+ // B = clamp(1-E, 0, 13);
+ auto One = MIRBuilder.buildConstant(S32, 1);
+ auto OneSubExp = MIRBuilder.buildSub(S32, One, E);
+ auto B = MIRBuilder.buildSMax(S32, OneSubExp, Zero);
+ B = MIRBuilder.buildSMin(S32, B, MIRBuilder.buildConstant(S32, 13));
+
+ auto SigSetHigh = MIRBuilder.buildOr(S32, M,
+ MIRBuilder.buildConstant(S32, 0x1000));
+
+ auto D = MIRBuilder.buildLShr(S32, SigSetHigh, B);
+ auto D0 = MIRBuilder.buildShl(S32, D, B);
+
+ auto D0_NE_SigSetHigh = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1,
+ D0, SigSetHigh);
+ auto D1 = MIRBuilder.buildZExt(S32, D0_NE_SigSetHigh);
+ D = MIRBuilder.buildOr(S32, D, D1);
+
+ auto CmpELtOne = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, S1, E, One);
+ auto V = MIRBuilder.buildSelect(S32, CmpELtOne, D, N);
+
+ auto VLow3 = MIRBuilder.buildAnd(S32, V, MIRBuilder.buildConstant(S32, 7));
+ V = MIRBuilder.buildLShr(S32, V, MIRBuilder.buildConstant(S32, 2));
+
+ auto VLow3Eq3 = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, VLow3,
+ MIRBuilder.buildConstant(S32, 3));
+ auto V0 = MIRBuilder.buildZExt(S32, VLow3Eq3);
+
+ auto VLow3Gt5 = MIRBuilder.buildICmp(CmpInst::ICMP_SGT, S1, VLow3,
+ MIRBuilder.buildConstant(S32, 5));
+ auto V1 = MIRBuilder.buildZExt(S32, VLow3Gt5);
+
+ V1 = MIRBuilder.buildOr(S32, V0, V1);
+ V = MIRBuilder.buildAdd(S32, V, V1);
+
+ auto CmpEGt30 = MIRBuilder.buildICmp(CmpInst::ICMP_SGT, S1,
+ E, MIRBuilder.buildConstant(S32, 30));
+ V = MIRBuilder.buildSelect(S32, CmpEGt30,
+ MIRBuilder.buildConstant(S32, 0x7c00), V);
+
+ auto CmpEGt1039 = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1,
+ E, MIRBuilder.buildConstant(S32, 1039));
+ V = MIRBuilder.buildSelect(S32, CmpEGt1039, I, V);
+
+ // Extract the sign bit.
+ auto Sign = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 16));
+ Sign = MIRBuilder.buildAnd(S32, Sign, MIRBuilder.buildConstant(S32, 0x8000));
+
+ // Insert the sign bit
+ V = MIRBuilder.buildOr(S32, Sign, V);
+
+ MIRBuilder.buildTrunc(Dst, V);
+ MI.eraseFromParent();
+ return Legalized;
+}
+
+LegalizerHelper::LegalizeResult
+LegalizerHelper::lowerFPTRUNC(MachineInstr &MI) {
+ Register Dst = MI.getOperand(0).getReg();
+ Register Src = MI.getOperand(1).getReg();
+
+ LLT DstTy = MRI.getType(Dst);
+ LLT SrcTy = MRI.getType(Src);
+ const LLT S64 = LLT::scalar(64);
+ const LLT S16 = LLT::scalar(16);
+
+ if (DstTy.getScalarType() == S16 && SrcTy.getScalarType() == S64)
+ return lowerFPTRUNC_F64_TO_F16(MI);
+
+ return UnableToLegalize;
+}
+
+// TODO: If RHS is a constant SelectionDAGBuilder expands this into a
+// multiplication tree.
+LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPOWI(MachineInstr &MI) {
+ Register Dst = MI.getOperand(0).getReg();
+ Register Src0 = MI.getOperand(1).getReg();
+ Register Src1 = MI.getOperand(2).getReg();
+ LLT Ty = MRI.getType(Dst);
+
+ auto CvtSrc1 = MIRBuilder.buildSITOFP(Ty, Src1);
+ MIRBuilder.buildFPow(Dst, Src0, CvtSrc1, MI.getFlags());
+ MI.eraseFromParent();
+ return Legalized;
+}
+
+static CmpInst::Predicate minMaxToCompare(unsigned Opc) {
+ switch (Opc) {
+ case TargetOpcode::G_SMIN:
+ return CmpInst::ICMP_SLT;
+ case TargetOpcode::G_SMAX:
+ return CmpInst::ICMP_SGT;
+ case TargetOpcode::G_UMIN:
+ return CmpInst::ICMP_ULT;
+ case TargetOpcode::G_UMAX:
+ return CmpInst::ICMP_UGT;
+ default:
+ llvm_unreachable("not in integer min/max");
+ }
+}
+
+LegalizerHelper::LegalizeResult LegalizerHelper::lowerMinMax(MachineInstr &MI) {
+ Register Dst = MI.getOperand(0).getReg();
+ Register Src0 = MI.getOperand(1).getReg();
+ Register Src1 = MI.getOperand(2).getReg();
+
+ const CmpInst::Predicate Pred = minMaxToCompare(MI.getOpcode());
+ LLT CmpType = MRI.getType(Dst).changeElementSize(1);
+
+ auto Cmp = MIRBuilder.buildICmp(Pred, CmpType, Src0, Src1);
+ MIRBuilder.buildSelect(Dst, Cmp, Src0, Src1);
+
+ MI.eraseFromParent();
+ return Legalized;
+}
+
+LegalizerHelper::LegalizeResult
+LegalizerHelper::lowerFCopySign(MachineInstr &MI) {
+ Register Dst = MI.getOperand(0).getReg();
+ Register Src0 = MI.getOperand(1).getReg();
+ Register Src1 = MI.getOperand(2).getReg();
+
+ const LLT Src0Ty = MRI.getType(Src0);
+ const LLT Src1Ty = MRI.getType(Src1);
+
+ const int Src0Size = Src0Ty.getScalarSizeInBits();
+ const int Src1Size = Src1Ty.getScalarSizeInBits();
+
+ auto SignBitMask = MIRBuilder.buildConstant(
+ Src0Ty, APInt::getSignMask(Src0Size));
+
+ auto NotSignBitMask = MIRBuilder.buildConstant(
+ Src0Ty, APInt::getLowBitsSet(Src0Size, Src0Size - 1));
+
+ auto And0 = MIRBuilder.buildAnd(Src0Ty, Src0, NotSignBitMask);
+ MachineInstr *Or;
+
+ if (Src0Ty == Src1Ty) {
+ auto And1 = MIRBuilder.buildAnd(Src1Ty, Src1, SignBitMask);
+ Or = MIRBuilder.buildOr(Dst, And0, And1);
+ } else if (Src0Size > Src1Size) {
+ auto ShiftAmt = MIRBuilder.buildConstant(Src0Ty, Src0Size - Src1Size);
+ auto Zext = MIRBuilder.buildZExt(Src0Ty, Src1);
+ auto Shift = MIRBuilder.buildShl(Src0Ty, Zext, ShiftAmt);
+ auto And1 = MIRBuilder.buildAnd(Src0Ty, Shift, SignBitMask);
+ Or = MIRBuilder.buildOr(Dst, And0, And1);
+ } else {
+ auto ShiftAmt = MIRBuilder.buildConstant(Src1Ty, Src1Size - Src0Size);
+ auto Shift = MIRBuilder.buildLShr(Src1Ty, Src1, ShiftAmt);
+ auto Trunc = MIRBuilder.buildTrunc(Src0Ty, Shift);
+ auto And1 = MIRBuilder.buildAnd(Src0Ty, Trunc, SignBitMask);
+ Or = MIRBuilder.buildOr(Dst, And0, And1);
+ }
+
+ // Be careful about setting nsz/nnan/ninf on every instruction, since the
+ // constants are a nan and -0.0, but the final result should preserve
+ // everything.
+ if (unsigned Flags = MI.getFlags())
+ Or->setFlags(Flags);
+
+ MI.eraseFromParent();
+ return Legalized;
+}
+
+LegalizerHelper::LegalizeResult
+LegalizerHelper::lowerFMinNumMaxNum(MachineInstr &MI) {
+ unsigned NewOp = MI.getOpcode() == TargetOpcode::G_FMINNUM ?
+ TargetOpcode::G_FMINNUM_IEEE : TargetOpcode::G_FMAXNUM_IEEE;
+
+ Register Dst = MI.getOperand(0).getReg();
+ Register Src0 = MI.getOperand(1).getReg();
+ Register Src1 = MI.getOperand(2).getReg();
+ LLT Ty = MRI.getType(Dst);
+
+ if (!MI.getFlag(MachineInstr::FmNoNans)) {
+ // Insert canonicalizes if it's possible we need to quiet to get correct
+ // sNaN behavior.
+
+ // Note this must be done here, and not as an optimization combine in the
+ // absence of a dedicate quiet-snan instruction as we're using an
+ // omni-purpose G_FCANONICALIZE.
+ if (!isKnownNeverSNaN(Src0, MRI))
+ Src0 = MIRBuilder.buildFCanonicalize(Ty, Src0, MI.getFlags()).getReg(0);
+
+ if (!isKnownNeverSNaN(Src1, MRI))
+ Src1 = MIRBuilder.buildFCanonicalize(Ty, Src1, MI.getFlags()).getReg(0);
+ }
+
+ // If there are no nans, it's safe to simply replace this with the non-IEEE
+ // version.
+ MIRBuilder.buildInstr(NewOp, {Dst}, {Src0, Src1}, MI.getFlags());
+ MI.eraseFromParent();
+ return Legalized;
+}
+
+LegalizerHelper::LegalizeResult LegalizerHelper::lowerFMad(MachineInstr &MI) {
+ // Expand G_FMAD a, b, c -> G_FADD (G_FMUL a, b), c
+ Register DstReg = MI.getOperand(0).getReg();
+ LLT Ty = MRI.getType(DstReg);
+ unsigned Flags = MI.getFlags();
+
+ auto Mul = MIRBuilder.buildFMul(Ty, MI.getOperand(1), MI.getOperand(2),
+ Flags);
+ MIRBuilder.buildFAdd(DstReg, Mul, MI.getOperand(3), Flags);
+ MI.eraseFromParent();
+ return Legalized;
+}
+
+LegalizerHelper::LegalizeResult
+LegalizerHelper::lowerIntrinsicRound(MachineInstr &MI) {
+ Register DstReg = MI.getOperand(0).getReg();
+ Register X = MI.getOperand(1).getReg();
+ const unsigned Flags = MI.getFlags();
+ const LLT Ty = MRI.getType(DstReg);
+ const LLT CondTy = Ty.changeElementSize(1);
+
+ // round(x) =>
+ // t = trunc(x);
+ // d = fabs(x - t);
+ // o = copysign(1.0f, x);
+ // return t + (d >= 0.5 ? o : 0.0);
+
+ auto T = MIRBuilder.buildIntrinsicTrunc(Ty, X, Flags);
+
+ auto Diff = MIRBuilder.buildFSub(Ty, X, T, Flags);
+ auto AbsDiff = MIRBuilder.buildFAbs(Ty, Diff, Flags);
+ auto Zero = MIRBuilder.buildFConstant(Ty, 0.0);
+ auto One = MIRBuilder.buildFConstant(Ty, 1.0);
+ auto Half = MIRBuilder.buildFConstant(Ty, 0.5);
+ auto SignOne = MIRBuilder.buildFCopysign(Ty, One, X);
+
+ auto Cmp = MIRBuilder.buildFCmp(CmpInst::FCMP_OGE, CondTy, AbsDiff, Half,
+ Flags);
+ auto Sel = MIRBuilder.buildSelect(Ty, Cmp, SignOne, Zero, Flags);
+
+ MIRBuilder.buildFAdd(DstReg, T, Sel, Flags);
+
+ MI.eraseFromParent();
+ return Legalized;
+}
+
+LegalizerHelper::LegalizeResult
+LegalizerHelper::lowerFFloor(MachineInstr &MI) {
+ Register DstReg = MI.getOperand(0).getReg();
+ Register SrcReg = MI.getOperand(1).getReg();
+ unsigned Flags = MI.getFlags();
+ LLT Ty = MRI.getType(DstReg);
+ const LLT CondTy = Ty.changeElementSize(1);
+
+ // result = trunc(src);
+ // if (src < 0.0 && src != result)
+ // result += -1.0.
+
+ auto Trunc = MIRBuilder.buildIntrinsicTrunc(Ty, SrcReg, Flags);
+ auto Zero = MIRBuilder.buildFConstant(Ty, 0.0);
+
+ auto Lt0 = MIRBuilder.buildFCmp(CmpInst::FCMP_OLT, CondTy,
+ SrcReg, Zero, Flags);
+ auto NeTrunc = MIRBuilder.buildFCmp(CmpInst::FCMP_ONE, CondTy,
+ SrcReg, Trunc, Flags);
+ auto And = MIRBuilder.buildAnd(CondTy, Lt0, NeTrunc);
+ auto AddVal = MIRBuilder.buildSITOFP(Ty, And);
+
+ MIRBuilder.buildFAdd(DstReg, Trunc, AddVal, Flags);
+ MI.eraseFromParent();
+ return Legalized;
+}
+
+LegalizerHelper::LegalizeResult
+LegalizerHelper::lowerMergeValues(MachineInstr &MI) {
+ const unsigned NumOps = MI.getNumOperands();
+ Register DstReg = MI.getOperand(0).getReg();
+ Register Src0Reg = MI.getOperand(1).getReg();
+ LLT DstTy = MRI.getType(DstReg);
+ LLT SrcTy = MRI.getType(Src0Reg);
+ unsigned PartSize = SrcTy.getSizeInBits();
+
+ LLT WideTy = LLT::scalar(DstTy.getSizeInBits());
+ Register ResultReg = MIRBuilder.buildZExt(WideTy, Src0Reg).getReg(0);
+
+ for (unsigned I = 2; I != NumOps; ++I) {
+ const unsigned Offset = (I - 1) * PartSize;
+
+ Register SrcReg = MI.getOperand(I).getReg();
+ auto ZextInput = MIRBuilder.buildZExt(WideTy, SrcReg);
+
+ Register NextResult = I + 1 == NumOps && WideTy == DstTy ? DstReg :
+ MRI.createGenericVirtualRegister(WideTy);
+
+ auto ShiftAmt = MIRBuilder.buildConstant(WideTy, Offset);
+ auto Shl = MIRBuilder.buildShl(WideTy, ZextInput, ShiftAmt);
+ MIRBuilder.buildOr(NextResult, ResultReg, Shl);
+ ResultReg = NextResult;
+ }
+
+ if (DstTy.isPointer()) {
+ if (MIRBuilder.getDataLayout().isNonIntegralAddressSpace(
+ DstTy.getAddressSpace())) {
+ LLVM_DEBUG(dbgs() << "Not casting nonintegral address space\n");
+ return UnableToLegalize;
+ }
+
+ MIRBuilder.buildIntToPtr(DstReg, ResultReg);
+ }
+
+ MI.eraseFromParent();
+ return Legalized;
+}
+
+LegalizerHelper::LegalizeResult
+LegalizerHelper::lowerUnmergeValues(MachineInstr &MI) {
+ const unsigned NumDst = MI.getNumOperands() - 1;
+ Register SrcReg = MI.getOperand(NumDst).getReg();
+ Register Dst0Reg = MI.getOperand(0).getReg();
+ LLT DstTy = MRI.getType(Dst0Reg);
+ if (DstTy.isPointer())
+ return UnableToLegalize; // TODO
+
+ SrcReg = coerceToScalar(SrcReg);
+ if (!SrcReg)
+ return UnableToLegalize;
+
+ // Expand scalarizing unmerge as bitcast to integer and shift.
+ LLT IntTy = MRI.getType(SrcReg);
+
+ MIRBuilder.buildTrunc(Dst0Reg, SrcReg);
+
+ const unsigned DstSize = DstTy.getSizeInBits();
+ unsigned Offset = DstSize;
+ for (unsigned I = 1; I != NumDst; ++I, Offset += DstSize) {
+ auto ShiftAmt = MIRBuilder.buildConstant(IntTy, Offset);
+ auto Shift = MIRBuilder.buildLShr(IntTy, SrcReg, ShiftAmt);
+ MIRBuilder.buildTrunc(MI.getOperand(I), Shift);
+ }
+
+ MI.eraseFromParent();
+ return Legalized;
+}
+
+/// Lower a vector extract or insert by writing the vector to a stack temporary
+/// and reloading the element or vector.
+///
+/// %dst = G_EXTRACT_VECTOR_ELT %vec, %idx
+/// =>
+/// %stack_temp = G_FRAME_INDEX
+/// G_STORE %vec, %stack_temp
+/// %idx = clamp(%idx, %vec.getNumElements())
+/// %element_ptr = G_PTR_ADD %stack_temp, %idx
+/// %dst = G_LOAD %element_ptr
+LegalizerHelper::LegalizeResult
+LegalizerHelper::lowerExtractInsertVectorElt(MachineInstr &MI) {
+ Register DstReg = MI.getOperand(0).getReg();
+ Register SrcVec = MI.getOperand(1).getReg();
+ Register InsertVal;
+ if (MI.getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT)
+ InsertVal = MI.getOperand(2).getReg();
+
+ Register Idx = MI.getOperand(MI.getNumOperands() - 1).getReg();
+
+ LLT VecTy = MRI.getType(SrcVec);
+ LLT EltTy = VecTy.getElementType();
+ if (!EltTy.isByteSized()) { // Not implemented.
+ LLVM_DEBUG(dbgs() << "Can't handle non-byte element vectors yet\n");
+ return UnableToLegalize;
+ }
+
+ unsigned EltBytes = EltTy.getSizeInBytes();
+ Align VecAlign = getStackTemporaryAlignment(VecTy);
+ Align EltAlign;
+
+ MachinePointerInfo PtrInfo;
+ auto StackTemp = createStackTemporary(TypeSize::Fixed(VecTy.getSizeInBytes()),
+ VecAlign, PtrInfo);
+ MIRBuilder.buildStore(SrcVec, StackTemp, PtrInfo, VecAlign);
+
+ // Get the pointer to the element, and be sure not to hit undefined behavior
+ // if the index is out of bounds.
+ Register EltPtr = getVectorElementPointer(StackTemp.getReg(0), VecTy, Idx);
+
+ int64_t IdxVal;
+ if (mi_match(Idx, MRI, m_ICst(IdxVal))) {
+ int64_t Offset = IdxVal * EltBytes;
+ PtrInfo = PtrInfo.getWithOffset(Offset);
+ EltAlign = commonAlignment(VecAlign, Offset);
+ } else {
+ // We lose information with a variable offset.
+ EltAlign = getStackTemporaryAlignment(EltTy);
+ PtrInfo = MachinePointerInfo(MRI.getType(EltPtr).getAddressSpace());
+ }
+
+ if (InsertVal) {
+ // Write the inserted element
+ MIRBuilder.buildStore(InsertVal, EltPtr, PtrInfo, EltAlign);
+
+ // Reload the whole vector.
+ MIRBuilder.buildLoad(DstReg, StackTemp, PtrInfo, VecAlign);
+ } else {
+ MIRBuilder.buildLoad(DstReg, EltPtr, PtrInfo, EltAlign);
+ }
+
+ MI.eraseFromParent();
+ return Legalized;
+}
+
+LegalizerHelper::LegalizeResult
+LegalizerHelper::lowerShuffleVector(MachineInstr &MI) {
+ Register DstReg = MI.getOperand(0).getReg();
+ Register Src0Reg = MI.getOperand(1).getReg();
+ Register Src1Reg = MI.getOperand(2).getReg();
+ LLT Src0Ty = MRI.getType(Src0Reg);
+ LLT DstTy = MRI.getType(DstReg);
+ LLT IdxTy = LLT::scalar(32);
+
+ ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask();
+
+ if (DstTy.isScalar()) {
+ if (Src0Ty.isVector())
+ return UnableToLegalize;
+
+ // This is just a SELECT.
+ assert(Mask.size() == 1 && "Expected a single mask element");
+ Register Val;
+ if (Mask[0] < 0 || Mask[0] > 1)
+ Val = MIRBuilder.buildUndef(DstTy).getReg(0);
+ else
+ Val = Mask[0] == 0 ? Src0Reg : Src1Reg;
+ MIRBuilder.buildCopy(DstReg, Val);
+ MI.eraseFromParent();
+ return Legalized;
+ }
+
+ Register Undef;
+ SmallVector<Register, 32> BuildVec;
+ LLT EltTy = DstTy.getElementType();
+
+ for (int Idx : Mask) {
+ if (Idx < 0) {
+ if (!Undef.isValid())
+ Undef = MIRBuilder.buildUndef(EltTy).getReg(0);
+ BuildVec.push_back(Undef);
+ continue;
+ }
+
+ if (Src0Ty.isScalar()) {
+ BuildVec.push_back(Idx == 0 ? Src0Reg : Src1Reg);
+ } else {
+ int NumElts = Src0Ty.getNumElements();
+ Register SrcVec = Idx < NumElts ? Src0Reg : Src1Reg;
+ int ExtractIdx = Idx < NumElts ? Idx : Idx - NumElts;
+ auto IdxK = MIRBuilder.buildConstant(IdxTy, ExtractIdx);
+ auto Extract = MIRBuilder.buildExtractVectorElement(EltTy, SrcVec, IdxK);
+ BuildVec.push_back(Extract.getReg(0));
+ }
+ }
+
+ MIRBuilder.buildBuildVector(DstReg, BuildVec);
+ MI.eraseFromParent();
+ return Legalized;
+}
+
+LegalizerHelper::LegalizeResult
+LegalizerHelper::lowerDynStackAlloc(MachineInstr &MI) {
+ const auto &MF = *MI.getMF();
+ const auto &TFI = *MF.getSubtarget().getFrameLowering();
+ if (TFI.getStackGrowthDirection() == TargetFrameLowering::StackGrowsUp)
+ return UnableToLegalize;
+
+ Register Dst = MI.getOperand(0).getReg();
+ Register AllocSize = MI.getOperand(1).getReg();
+ Align Alignment = assumeAligned(MI.getOperand(2).getImm());
+
+ LLT PtrTy = MRI.getType(Dst);
+ LLT IntPtrTy = LLT::scalar(PtrTy.getSizeInBits());
+
+ Register SPReg = TLI.getStackPointerRegisterToSaveRestore();
+ auto SPTmp = MIRBuilder.buildCopy(PtrTy, SPReg);
+ SPTmp = MIRBuilder.buildCast(IntPtrTy, SPTmp);
+
+ // Subtract the final alloc from the SP. We use G_PTRTOINT here so we don't
+ // have to generate an extra instruction to negate the alloc and then use
+ // G_PTR_ADD to add the negative offset.
+ auto Alloc = MIRBuilder.buildSub(IntPtrTy, SPTmp, AllocSize);
+ if (Alignment > Align(1)) {
+ APInt AlignMask(IntPtrTy.getSizeInBits(), Alignment.value(), true);
+ AlignMask.negate();
+ auto AlignCst = MIRBuilder.buildConstant(IntPtrTy, AlignMask);
+ Alloc = MIRBuilder.buildAnd(IntPtrTy, Alloc, AlignCst);
+ }
+
+ SPTmp = MIRBuilder.buildCast(PtrTy, Alloc);
+ MIRBuilder.buildCopy(SPReg, SPTmp);
+ MIRBuilder.buildCopy(Dst, SPTmp);
+
+ MI.eraseFromParent();
+ return Legalized;
+}
+
+LegalizerHelper::LegalizeResult
+LegalizerHelper::lowerExtract(MachineInstr &MI) {
+ Register Dst = MI.getOperand(0).getReg();
+ Register Src = MI.getOperand(1).getReg();
+ unsigned Offset = MI.getOperand(2).getImm();
+
+ LLT DstTy = MRI.getType(Dst);
+ LLT SrcTy = MRI.getType(Src);
+
+ if (DstTy.isScalar() &&
+ (SrcTy.isScalar() ||
+ (SrcTy.isVector() && DstTy == SrcTy.getElementType()))) {
+ LLT SrcIntTy = SrcTy;
+ if (!SrcTy.isScalar()) {
+ SrcIntTy = LLT::scalar(SrcTy.getSizeInBits());
+ Src = MIRBuilder.buildBitcast(SrcIntTy, Src).getReg(0);
+ }
+
+ if (Offset == 0)
+ MIRBuilder.buildTrunc(Dst, Src);
+ else {
+ auto ShiftAmt = MIRBuilder.buildConstant(SrcIntTy, Offset);
+ auto Shr = MIRBuilder.buildLShr(SrcIntTy, Src, ShiftAmt);
+ MIRBuilder.buildTrunc(Dst, Shr);
+ }
+
+ MI.eraseFromParent();
+ return Legalized;
+ }
+
+ return UnableToLegalize;
+}
+
+LegalizerHelper::LegalizeResult LegalizerHelper::lowerInsert(MachineInstr &MI) {
+ Register Dst = MI.getOperand(0).getReg();
+ Register Src = MI.getOperand(1).getReg();
+ Register InsertSrc = MI.getOperand(2).getReg();
+ uint64_t Offset = MI.getOperand(3).getImm();
+
+ LLT DstTy = MRI.getType(Src);
+ LLT InsertTy = MRI.getType(InsertSrc);
+
+ if (InsertTy.isVector() ||
+ (DstTy.isVector() && DstTy.getElementType() != InsertTy))
+ return UnableToLegalize;
+
+ const DataLayout &DL = MIRBuilder.getDataLayout();
+ if ((DstTy.isPointer() &&
+ DL.isNonIntegralAddressSpace(DstTy.getAddressSpace())) ||
+ (InsertTy.isPointer() &&
+ DL.isNonIntegralAddressSpace(InsertTy.getAddressSpace()))) {
+ LLVM_DEBUG(dbgs() << "Not casting non-integral address space integer\n");
+ return UnableToLegalize;
+ }
+
+ LLT IntDstTy = DstTy;
+
+ if (!DstTy.isScalar()) {
+ IntDstTy = LLT::scalar(DstTy.getSizeInBits());
+ Src = MIRBuilder.buildCast(IntDstTy, Src).getReg(0);
+ }
+
+ if (!InsertTy.isScalar()) {
+ const LLT IntInsertTy = LLT::scalar(InsertTy.getSizeInBits());
+ InsertSrc = MIRBuilder.buildPtrToInt(IntInsertTy, InsertSrc).getReg(0);
+ }
+
+ Register ExtInsSrc = MIRBuilder.buildZExt(IntDstTy, InsertSrc).getReg(0);
+ if (Offset != 0) {
+ auto ShiftAmt = MIRBuilder.buildConstant(IntDstTy, Offset);
+ ExtInsSrc = MIRBuilder.buildShl(IntDstTy, ExtInsSrc, ShiftAmt).getReg(0);
+ }
+
+ APInt MaskVal = APInt::getBitsSetWithWrap(
+ DstTy.getSizeInBits(), Offset + InsertTy.getSizeInBits(), Offset);
+
+ auto Mask = MIRBuilder.buildConstant(IntDstTy, MaskVal);
+ auto MaskedSrc = MIRBuilder.buildAnd(IntDstTy, Src, Mask);
+ auto Or = MIRBuilder.buildOr(IntDstTy, MaskedSrc, ExtInsSrc);
+
+ MIRBuilder.buildCast(Dst, Or);
+ MI.eraseFromParent();
+ return Legalized;
+}
+
+LegalizerHelper::LegalizeResult
+LegalizerHelper::lowerSADDO_SSUBO(MachineInstr &MI) {
+ Register Dst0 = MI.getOperand(0).getReg();
+ Register Dst1 = MI.getOperand(1).getReg();
+ Register LHS = MI.getOperand(2).getReg();
+ Register RHS = MI.getOperand(3).getReg();
+ const bool IsAdd = MI.getOpcode() == TargetOpcode::G_SADDO;
+
+ LLT Ty = MRI.getType(Dst0);
+ LLT BoolTy = MRI.getType(Dst1);
+
+ if (IsAdd)
+ MIRBuilder.buildAdd(Dst0, LHS, RHS);
+ else
+ MIRBuilder.buildSub(Dst0, LHS, RHS);
+
+ // TODO: If SADDSAT/SSUBSAT is legal, compare results to detect overflow.
+
+ auto Zero = MIRBuilder.buildConstant(Ty, 0);
+
+ // For an addition, the result should be less than one of the operands (LHS)
+ // if and only if the other operand (RHS) is negative, otherwise there will
+ // be overflow.
+ // For a subtraction, the result should be less than one of the operands
+ // (LHS) if and only if the other operand (RHS) is (non-zero) positive,
+ // otherwise there will be overflow.
+ auto ResultLowerThanLHS =
+ MIRBuilder.buildICmp(CmpInst::ICMP_SLT, BoolTy, Dst0, LHS);
+ auto ConditionRHS = MIRBuilder.buildICmp(
+ IsAdd ? CmpInst::ICMP_SLT : CmpInst::ICMP_SGT, BoolTy, RHS, Zero);
+
+ MIRBuilder.buildXor(Dst1, ConditionRHS, ResultLowerThanLHS);
+ MI.eraseFromParent();
+ return Legalized;
+}
+
+LegalizerHelper::LegalizeResult
+LegalizerHelper::lowerAddSubSatToMinMax(MachineInstr &MI) {
+ Register Res = MI.getOperand(0).getReg();
+ Register LHS = MI.getOperand(1).getReg();
+ Register RHS = MI.getOperand(2).getReg();
+ LLT Ty = MRI.getType(Res);
+ bool IsSigned;
+ bool IsAdd;
+ unsigned BaseOp;
+ switch (MI.getOpcode()) {
+ default:
+ llvm_unreachable("unexpected addsat/subsat opcode");
+ case TargetOpcode::G_UADDSAT:
+ IsSigned = false;
+ IsAdd = true;
+ BaseOp = TargetOpcode::G_ADD;
+ break;
+ case TargetOpcode::G_SADDSAT:
+ IsSigned = true;
+ IsAdd = true;
+ BaseOp = TargetOpcode::G_ADD;
+ break;
+ case TargetOpcode::G_USUBSAT:
+ IsSigned = false;
+ IsAdd = false;
+ BaseOp = TargetOpcode::G_SUB;
+ break;
+ case TargetOpcode::G_SSUBSAT:
+ IsSigned = true;
+ IsAdd = false;
+ BaseOp = TargetOpcode::G_SUB;
+ break;
+ }
+
+ if (IsSigned) {
+ // sadd.sat(a, b) ->
+ // hi = 0x7fffffff - smax(a, 0)
+ // lo = 0x80000000 - smin(a, 0)
+ // a + smin(smax(lo, b), hi)
+ // ssub.sat(a, b) ->
+ // lo = smax(a, -1) - 0x7fffffff
+ // hi = smin(a, -1) - 0x80000000
+ // a - smin(smax(lo, b), hi)
+ // TODO: AMDGPU can use a "median of 3" instruction here:
+ // a +/- med3(lo, b, hi)
+ uint64_t NumBits = Ty.getScalarSizeInBits();
+ auto MaxVal =
+ MIRBuilder.buildConstant(Ty, APInt::getSignedMaxValue(NumBits));
+ auto MinVal =
+ MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(NumBits));
+ MachineInstrBuilder Hi, Lo;
+ if (IsAdd) {
+ auto Zero = MIRBuilder.buildConstant(Ty, 0);
+ Hi = MIRBuilder.buildSub(Ty, MaxVal, MIRBuilder.buildSMax(Ty, LHS, Zero));
+ Lo = MIRBuilder.buildSub(Ty, MinVal, MIRBuilder.buildSMin(Ty, LHS, Zero));
+ } else {
+ auto NegOne = MIRBuilder.buildConstant(Ty, -1);
+ Lo = MIRBuilder.buildSub(Ty, MIRBuilder.buildSMax(Ty, LHS, NegOne),
+ MaxVal);
+ Hi = MIRBuilder.buildSub(Ty, MIRBuilder.buildSMin(Ty, LHS, NegOne),
+ MinVal);
+ }
+ auto RHSClamped =
+ MIRBuilder.buildSMin(Ty, MIRBuilder.buildSMax(Ty, Lo, RHS), Hi);
+ MIRBuilder.buildInstr(BaseOp, {Res}, {LHS, RHSClamped});
+ } else {
+ // uadd.sat(a, b) -> a + umin(~a, b)
+ // usub.sat(a, b) -> a - umin(a, b)
+ Register Not = IsAdd ? MIRBuilder.buildNot(Ty, LHS).getReg(0) : LHS;
+ auto Min = MIRBuilder.buildUMin(Ty, Not, RHS);
+ MIRBuilder.buildInstr(BaseOp, {Res}, {LHS, Min});
+ }
+
+ MI.eraseFromParent();
+ return Legalized;
+}
+
+LegalizerHelper::LegalizeResult
+LegalizerHelper::lowerAddSubSatToAddoSubo(MachineInstr &MI) {
+ Register Res = MI.getOperand(0).getReg();
+ Register LHS = MI.getOperand(1).getReg();
+ Register RHS = MI.getOperand(2).getReg();
+ LLT Ty = MRI.getType(Res);
+ LLT BoolTy = Ty.changeElementSize(1);
+ bool IsSigned;
+ bool IsAdd;
+ unsigned OverflowOp;
+ switch (MI.getOpcode()) {
+ default:
+ llvm_unreachable("unexpected addsat/subsat opcode");
+ case TargetOpcode::G_UADDSAT:
+ IsSigned = false;
+ IsAdd = true;
+ OverflowOp = TargetOpcode::G_UADDO;
+ break;
+ case TargetOpcode::G_SADDSAT:
+ IsSigned = true;
+ IsAdd = true;
+ OverflowOp = TargetOpcode::G_SADDO;
+ break;
+ case TargetOpcode::G_USUBSAT:
+ IsSigned = false;
+ IsAdd = false;
+ OverflowOp = TargetOpcode::G_USUBO;
+ break;
+ case TargetOpcode::G_SSUBSAT:
+ IsSigned = true;
+ IsAdd = false;
+ OverflowOp = TargetOpcode::G_SSUBO;
+ break;
+ }
+
+ auto OverflowRes =
+ MIRBuilder.buildInstr(OverflowOp, {Ty, BoolTy}, {LHS, RHS});
+ Register Tmp = OverflowRes.getReg(0);
+ Register Ov = OverflowRes.getReg(1);
+ MachineInstrBuilder Clamp;
+ if (IsSigned) {
+ // sadd.sat(a, b) ->
+ // {tmp, ov} = saddo(a, b)
+ // ov ? (tmp >>s 31) + 0x80000000 : r
+ // ssub.sat(a, b) ->
+ // {tmp, ov} = ssubo(a, b)
+ // ov ? (tmp >>s 31) + 0x80000000 : r
+ uint64_t NumBits = Ty.getScalarSizeInBits();
+ auto ShiftAmount = MIRBuilder.buildConstant(Ty, NumBits - 1);
+ auto Sign = MIRBuilder.buildAShr(Ty, Tmp, ShiftAmount);
+ auto MinVal =
+ MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(NumBits));
+ Clamp = MIRBuilder.buildAdd(Ty, Sign, MinVal);
+ } else {
+ // uadd.sat(a, b) ->
+ // {tmp, ov} = uaddo(a, b)
+ // ov ? 0xffffffff : tmp
+ // usub.sat(a, b) ->
+ // {tmp, ov} = usubo(a, b)
+ // ov ? 0 : tmp
+ Clamp = MIRBuilder.buildConstant(Ty, IsAdd ? -1 : 0);
+ }
+ MIRBuilder.buildSelect(Res, Ov, Clamp, Tmp);
+
+ MI.eraseFromParent();
+ return Legalized;
+}
+
+LegalizerHelper::LegalizeResult
+LegalizerHelper::lowerShlSat(MachineInstr &MI) {
+ assert((MI.getOpcode() == TargetOpcode::G_SSHLSAT ||
+ MI.getOpcode() == TargetOpcode::G_USHLSAT) &&
+ "Expected shlsat opcode!");
+ bool IsSigned = MI.getOpcode() == TargetOpcode::G_SSHLSAT;
+ Register Res = MI.getOperand(0).getReg();
+ Register LHS = MI.getOperand(1).getReg();
+ Register RHS = MI.getOperand(2).getReg();
+ LLT Ty = MRI.getType(Res);
+ LLT BoolTy = Ty.changeElementSize(1);
+
+ unsigned BW = Ty.getScalarSizeInBits();
+ auto Result = MIRBuilder.buildShl(Ty, LHS, RHS);
+ auto Orig = IsSigned ? MIRBuilder.buildAShr(Ty, Result, RHS)
+ : MIRBuilder.buildLShr(Ty, Result, RHS);
+
+ MachineInstrBuilder SatVal;
+ if (IsSigned) {
+ auto SatMin = MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(BW));
+ auto SatMax = MIRBuilder.buildConstant(Ty, APInt::getSignedMaxValue(BW));
+ auto Cmp = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, BoolTy, LHS,
+ MIRBuilder.buildConstant(Ty, 0));
+ SatVal = MIRBuilder.buildSelect(Ty, Cmp, SatMin, SatMax);
+ } else {
+ SatVal = MIRBuilder.buildConstant(Ty, APInt::getMaxValue(BW));
+ }
+ auto Ov = MIRBuilder.buildICmp(CmpInst::ICMP_NE, BoolTy, LHS, Orig);
+ MIRBuilder.buildSelect(Res, Ov, SatVal, Result);
+
+ MI.eraseFromParent();
+ return Legalized;
+}
+
+LegalizerHelper::LegalizeResult
+LegalizerHelper::lowerBswap(MachineInstr &MI) {
+ Register Dst = MI.getOperand(0).getReg();
+ Register Src = MI.getOperand(1).getReg();
+ const LLT Ty = MRI.getType(Src);
+ unsigned SizeInBytes = (Ty.getScalarSizeInBits() + 7) / 8;
+ unsigned BaseShiftAmt = (SizeInBytes - 1) * 8;
+
+ // Swap most and least significant byte, set remaining bytes in Res to zero.
+ auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt);
+ auto LSByteShiftedLeft = MIRBuilder.buildShl(Ty, Src, ShiftAmt);
+ auto MSByteShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt);
+ auto Res = MIRBuilder.buildOr(Ty, MSByteShiftedRight, LSByteShiftedLeft);
+
+ // Set i-th high/low byte in Res to i-th low/high byte from Src.
+ for (unsigned i = 1; i < SizeInBytes / 2; ++i) {
+ // AND with Mask leaves byte i unchanged and sets remaining bytes to 0.
+ APInt APMask(SizeInBytes * 8, 0xFF << (i * 8));
+ auto Mask = MIRBuilder.buildConstant(Ty, APMask);
+ auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt - 16 * i);
+ // Low byte shifted left to place of high byte: (Src & Mask) << ShiftAmt.
+ auto LoByte = MIRBuilder.buildAnd(Ty, Src, Mask);
+ auto LoShiftedLeft = MIRBuilder.buildShl(Ty, LoByte, ShiftAmt);
+ Res = MIRBuilder.buildOr(Ty, Res, LoShiftedLeft);
+ // High byte shifted right to place of low byte: (Src >> ShiftAmt) & Mask.
+ auto SrcShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt);
+ auto HiShiftedRight = MIRBuilder.buildAnd(Ty, SrcShiftedRight, Mask);
+ Res = MIRBuilder.buildOr(Ty, Res, HiShiftedRight);
+ }
+ Res.getInstr()->getOperand(0).setReg(Dst);
+
+ MI.eraseFromParent();
+ return Legalized;
+}
+
+//{ (Src & Mask) >> N } | { (Src << N) & Mask }
+static MachineInstrBuilder SwapN(unsigned N, DstOp Dst, MachineIRBuilder &B,
+ MachineInstrBuilder Src, APInt Mask) {
+ const LLT Ty = Dst.getLLTTy(*B.getMRI());
+ MachineInstrBuilder C_N = B.buildConstant(Ty, N);
+ MachineInstrBuilder MaskLoNTo0 = B.buildConstant(Ty, Mask);
+ auto LHS = B.buildLShr(Ty, B.buildAnd(Ty, Src, MaskLoNTo0), C_N);
+ auto RHS = B.buildAnd(Ty, B.buildShl(Ty, Src, C_N), MaskLoNTo0);
+ return B.buildOr(Dst, LHS, RHS);
+}
+
+LegalizerHelper::LegalizeResult
+LegalizerHelper::lowerBitreverse(MachineInstr &MI) {
+ Register Dst = MI.getOperand(0).getReg();
+ Register Src = MI.getOperand(1).getReg();
+ const LLT Ty = MRI.getType(Src);
+ unsigned Size = Ty.getSizeInBits();
+
+ MachineInstrBuilder BSWAP =
+ MIRBuilder.buildInstr(TargetOpcode::G_BSWAP, {Ty}, {Src});
+
+ // swap high and low 4 bits in 8 bit blocks 7654|3210 -> 3210|7654
+ // [(val & 0xF0F0F0F0) >> 4] | [(val & 0x0F0F0F0F) << 4]
+ // -> [(val & 0xF0F0F0F0) >> 4] | [(val << 4) & 0xF0F0F0F0]
+ MachineInstrBuilder Swap4 =
+ SwapN(4, Ty, MIRBuilder, BSWAP, APInt::getSplat(Size, APInt(8, 0xF0)));
+
+ // swap high and low 2 bits in 4 bit blocks 32|10 76|54 -> 10|32 54|76
+ // [(val & 0xCCCCCCCC) >> 2] & [(val & 0x33333333) << 2]
+ // -> [(val & 0xCCCCCCCC) >> 2] & [(val << 2) & 0xCCCCCCCC]
+ MachineInstrBuilder Swap2 =
+ SwapN(2, Ty, MIRBuilder, Swap4, APInt::getSplat(Size, APInt(8, 0xCC)));
+
+ // swap high and low 1 bit in 2 bit blocks 1|0 3|2 5|4 7|6 -> 0|1 2|3 4|5 6|7
+ // [(val & 0xAAAAAAAA) >> 1] & [(val & 0x55555555) << 1]
+ // -> [(val & 0xAAAAAAAA) >> 1] & [(val << 1) & 0xAAAAAAAA]
+ SwapN(1, Dst, MIRBuilder, Swap2, APInt::getSplat(Size, APInt(8, 0xAA)));
+
+ MI.eraseFromParent();
+ return Legalized;
+}
+
+LegalizerHelper::LegalizeResult
+LegalizerHelper::lowerReadWriteRegister(MachineInstr &MI) {
+ MachineFunction &MF = MIRBuilder.getMF();
+
+ bool IsRead = MI.getOpcode() == TargetOpcode::G_READ_REGISTER;
+ int NameOpIdx = IsRead ? 1 : 0;
+ int ValRegIndex = IsRead ? 0 : 1;
+
+ Register ValReg = MI.getOperand(ValRegIndex).getReg();
+ const LLT Ty = MRI.getType(ValReg);
+ const MDString *RegStr = cast<MDString>(
+ cast<MDNode>(MI.getOperand(NameOpIdx).getMetadata())->getOperand(0));
+
+ Register PhysReg = TLI.getRegisterByName(RegStr->getString().data(), Ty, MF);
+ if (!PhysReg.isValid())
+ return UnableToLegalize;
+
+ if (IsRead)
+ MIRBuilder.buildCopy(ValReg, PhysReg);
+ else
+ MIRBuilder.buildCopy(PhysReg, ValReg);
+
+ MI.eraseFromParent();
+ return Legalized;
+}
+
+LegalizerHelper::LegalizeResult
+LegalizerHelper::lowerSMULH_UMULH(MachineInstr &MI) {
+ bool IsSigned = MI.getOpcode() == TargetOpcode::G_SMULH;
+ unsigned ExtOp = IsSigned ? TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT;
+ Register Result = MI.getOperand(0).getReg();
+ LLT OrigTy = MRI.getType(Result);
+ auto SizeInBits = OrigTy.getScalarSizeInBits();
+ LLT WideTy = OrigTy.changeElementSize(SizeInBits * 2);
+
+ auto LHS = MIRBuilder.buildInstr(ExtOp, {WideTy}, {MI.getOperand(1)});
+ auto RHS = MIRBuilder.buildInstr(ExtOp, {WideTy}, {MI.getOperand(2)});
+ auto Mul = MIRBuilder.buildMul(WideTy, LHS, RHS);
+ unsigned ShiftOp = IsSigned ? TargetOpcode::G_ASHR : TargetOpcode::G_LSHR;
+
+ auto ShiftAmt = MIRBuilder.buildConstant(WideTy, SizeInBits);
+ auto Shifted = MIRBuilder.buildInstr(ShiftOp, {WideTy}, {Mul, ShiftAmt});
+ MIRBuilder.buildTrunc(Result, Shifted);
+
+ MI.eraseFromParent();
+ return Legalized;
+}
+
+LegalizerHelper::LegalizeResult LegalizerHelper::lowerSelect(MachineInstr &MI) {
+ // Implement vector G_SELECT in terms of XOR, AND, OR.
+ Register DstReg = MI.getOperand(0).getReg();
+ Register MaskReg = MI.getOperand(1).getReg();
+ Register Op1Reg = MI.getOperand(2).getReg();
+ Register Op2Reg = MI.getOperand(3).getReg();
+ LLT DstTy = MRI.getType(DstReg);
+ LLT MaskTy = MRI.getType(MaskReg);
+ LLT Op1Ty = MRI.getType(Op1Reg);
+ if (!DstTy.isVector())
+ return UnableToLegalize;
+
+ // Vector selects can have a scalar predicate. If so, splat into a vector and
+ // finish for later legalization attempts to try again.
+ if (MaskTy.isScalar()) {
+ Register MaskElt = MaskReg;
+ if (MaskTy.getSizeInBits() < DstTy.getScalarSizeInBits())
+ MaskElt = MIRBuilder.buildSExt(DstTy.getElementType(), MaskElt).getReg(0);
+ // Generate a vector splat idiom to be pattern matched later.
+ auto ShufSplat = MIRBuilder.buildShuffleSplat(DstTy, MaskElt);
+ Observer.changingInstr(MI);
+ MI.getOperand(1).setReg(ShufSplat.getReg(0));
+ Observer.changedInstr(MI);
+ return Legalized;
+ }
+
+ if (MaskTy.getSizeInBits() != Op1Ty.getSizeInBits()) {
+ return UnableToLegalize;
+ }
+
+ auto NotMask = MIRBuilder.buildNot(MaskTy, MaskReg);
+ auto NewOp1 = MIRBuilder.buildAnd(MaskTy, Op1Reg, MaskReg);
+ auto NewOp2 = MIRBuilder.buildAnd(MaskTy, Op2Reg, NotMask);
+ MIRBuilder.buildOr(DstReg, NewOp1, NewOp2);
+ MI.eraseFromParent();
+ return Legalized;
+}