diff options
Diffstat (limited to 'contrib/llvm-project/llvm/lib/CodeGen/LiveDebugValues/InstrRefBasedImpl.cpp')
| -rw-r--r-- | contrib/llvm-project/llvm/lib/CodeGen/LiveDebugValues/InstrRefBasedImpl.cpp | 4213 |
1 files changed, 4213 insertions, 0 deletions
diff --git a/contrib/llvm-project/llvm/lib/CodeGen/LiveDebugValues/InstrRefBasedImpl.cpp b/contrib/llvm-project/llvm/lib/CodeGen/LiveDebugValues/InstrRefBasedImpl.cpp new file mode 100644 index 000000000000..9037f752dc4f --- /dev/null +++ b/contrib/llvm-project/llvm/lib/CodeGen/LiveDebugValues/InstrRefBasedImpl.cpp @@ -0,0 +1,4213 @@ +//===- InstrRefBasedImpl.cpp - Tracking Debug Value MIs -------------------===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +/// \file InstrRefBasedImpl.cpp +/// +/// This is a separate implementation of LiveDebugValues, see +/// LiveDebugValues.cpp and VarLocBasedImpl.cpp for more information. +/// +/// This pass propagates variable locations between basic blocks, resolving +/// control flow conflicts between them. The problem is SSA construction, where +/// each debug instruction assigns the *value* that a variable has, and every +/// instruction where the variable is in scope uses that variable. The resulting +/// map of instruction-to-value is then translated into a register (or spill) +/// location for each variable over each instruction. +/// +/// The primary difference from normal SSA construction is that we cannot +/// _create_ PHI values that contain variable values. CodeGen has already +/// completed, and we can't alter it just to make debug-info complete. Thus: +/// we can identify function positions where we would like a PHI value for a +/// variable, but must search the MachineFunction to see whether such a PHI is +/// available. If no such PHI exists, the variable location must be dropped. +/// +/// To achieve this, we perform two kinds of analysis. First, we identify +/// every value defined by every instruction (ignoring those that only move +/// another value), then re-compute an SSA-form representation of the +/// MachineFunction, using value propagation to eliminate any un-necessary +/// PHI values. This gives us a map of every value computed in the function, +/// and its location within the register file / stack. +/// +/// Secondly, for each variable we perform the same analysis, where each debug +/// instruction is considered a def, and every instruction where the variable +/// is in lexical scope as a use. Value propagation is used again to eliminate +/// any un-necessary PHIs. This gives us a map of each variable to the value +/// it should have in a block. +/// +/// Once both are complete, we have two maps for each block: +/// * Variables to the values they should have, +/// * Values to the register / spill slot they are located in. +/// After which we can marry-up variable values with a location, and emit +/// DBG_VALUE instructions specifying those locations. Variable locations may +/// be dropped in this process due to the desired variable value not being +/// resident in any machine location, or because there is no PHI value in any +/// location that accurately represents the desired value. The building of +/// location lists for each block is left to DbgEntityHistoryCalculator. +/// +/// This pass is kept efficient because the size of the first SSA problem +/// is proportional to the working-set size of the function, which the compiler +/// tries to keep small. (It's also proportional to the number of blocks). +/// Additionally, we repeatedly perform the second SSA problem analysis with +/// only the variables and blocks in a single lexical scope, exploiting their +/// locality. +/// +/// ### Terminology +/// +/// A machine location is a register or spill slot, a value is something that's +/// defined by an instruction or PHI node, while a variable value is the value +/// assigned to a variable. A variable location is a machine location, that must +/// contain the appropriate variable value. A value that is a PHI node is +/// occasionally called an mphi. +/// +/// The first SSA problem is the "machine value location" problem, +/// because we're determining which machine locations contain which values. +/// The "locations" are constant: what's unknown is what value they contain. +/// +/// The second SSA problem (the one for variables) is the "variable value +/// problem", because it's determining what values a variable has, rather than +/// what location those values are placed in. +/// +/// TODO: +/// Overlapping fragments +/// Entry values +/// Add back DEBUG statements for debugging this +/// Collect statistics +/// +//===----------------------------------------------------------------------===// + +#include "llvm/ADT/DenseMap.h" +#include "llvm/ADT/PostOrderIterator.h" +#include "llvm/ADT/STLExtras.h" +#include "llvm/ADT/SmallPtrSet.h" +#include "llvm/ADT/SmallSet.h" +#include "llvm/ADT/SmallVector.h" +#include "llvm/BinaryFormat/Dwarf.h" +#include "llvm/CodeGen/LexicalScopes.h" +#include "llvm/CodeGen/MachineBasicBlock.h" +#include "llvm/CodeGen/MachineDominators.h" +#include "llvm/CodeGen/MachineFrameInfo.h" +#include "llvm/CodeGen/MachineFunction.h" +#include "llvm/CodeGen/MachineInstr.h" +#include "llvm/CodeGen/MachineInstrBuilder.h" +#include "llvm/CodeGen/MachineInstrBundle.h" +#include "llvm/CodeGen/MachineMemOperand.h" +#include "llvm/CodeGen/MachineOperand.h" +#include "llvm/CodeGen/PseudoSourceValue.h" +#include "llvm/CodeGen/TargetFrameLowering.h" +#include "llvm/CodeGen/TargetInstrInfo.h" +#include "llvm/CodeGen/TargetLowering.h" +#include "llvm/CodeGen/TargetPassConfig.h" +#include "llvm/CodeGen/TargetRegisterInfo.h" +#include "llvm/CodeGen/TargetSubtargetInfo.h" +#include "llvm/Config/llvm-config.h" +#include "llvm/IR/DebugInfoMetadata.h" +#include "llvm/IR/DebugLoc.h" +#include "llvm/IR/Function.h" +#include "llvm/MC/MCRegisterInfo.h" +#include "llvm/Support/Casting.h" +#include "llvm/Support/Compiler.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/GenericIteratedDominanceFrontier.h" +#include "llvm/Support/TypeSize.h" +#include "llvm/Support/raw_ostream.h" +#include "llvm/Target/TargetMachine.h" +#include "llvm/Transforms/Utils/SSAUpdaterImpl.h" +#include <algorithm> +#include <cassert> +#include <climits> +#include <cstdint> +#include <functional> +#include <queue> +#include <tuple> +#include <utility> +#include <vector> + +#include "InstrRefBasedImpl.h" +#include "LiveDebugValues.h" +#include <optional> + +using namespace llvm; +using namespace LiveDebugValues; + +// SSAUpdaterImple sets DEBUG_TYPE, change it. +#undef DEBUG_TYPE +#define DEBUG_TYPE "livedebugvalues" + +// Act more like the VarLoc implementation, by propagating some locations too +// far and ignoring some transfers. +static cl::opt<bool> EmulateOldLDV("emulate-old-livedebugvalues", cl::Hidden, + cl::desc("Act like old LiveDebugValues did"), + cl::init(false)); + +// Limit for the maximum number of stack slots we should track, past which we +// will ignore any spills. InstrRefBasedLDV gathers detailed information on all +// stack slots which leads to high memory consumption, and in some scenarios +// (such as asan with very many locals) the working set of the function can be +// very large, causing many spills. In these scenarios, it is very unlikely that +// the developer has hundreds of variables live at the same time that they're +// carefully thinking about -- instead, they probably autogenerated the code. +// When this happens, gracefully stop tracking excess spill slots, rather than +// consuming all the developer's memory. +static cl::opt<unsigned> + StackWorkingSetLimit("livedebugvalues-max-stack-slots", cl::Hidden, + cl::desc("livedebugvalues-stack-ws-limit"), + cl::init(250)); + +DbgOpID DbgOpID::UndefID = DbgOpID(0xffffffff); + +/// Tracker for converting machine value locations and variable values into +/// variable locations (the output of LiveDebugValues), recorded as DBG_VALUEs +/// specifying block live-in locations and transfers within blocks. +/// +/// Operating on a per-block basis, this class takes a (pre-loaded) MLocTracker +/// and must be initialized with the set of variable values that are live-in to +/// the block. The caller then repeatedly calls process(). TransferTracker picks +/// out variable locations for the live-in variable values (if there _is_ a +/// location) and creates the corresponding DBG_VALUEs. Then, as the block is +/// stepped through, transfers of values between machine locations are +/// identified and if profitable, a DBG_VALUE created. +/// +/// This is where debug use-before-defs would be resolved: a variable with an +/// unavailable value could materialize in the middle of a block, when the +/// value becomes available. Or, we could detect clobbers and re-specify the +/// variable in a backup location. (XXX these are unimplemented). +class TransferTracker { +public: + const TargetInstrInfo *TII; + const TargetLowering *TLI; + /// This machine location tracker is assumed to always contain the up-to-date + /// value mapping for all machine locations. TransferTracker only reads + /// information from it. (XXX make it const?) + MLocTracker *MTracker; + MachineFunction &MF; + bool ShouldEmitDebugEntryValues; + + /// Record of all changes in variable locations at a block position. Awkwardly + /// we allow inserting either before or after the point: MBB != nullptr + /// indicates it's before, otherwise after. + struct Transfer { + MachineBasicBlock::instr_iterator Pos; /// Position to insert DBG_VALUes + MachineBasicBlock *MBB; /// non-null if we should insert after. + SmallVector<MachineInstr *, 4> Insts; /// Vector of DBG_VALUEs to insert. + }; + + /// Stores the resolved operands (machine locations and constants) and + /// qualifying meta-information needed to construct a concrete DBG_VALUE-like + /// instruction. + struct ResolvedDbgValue { + SmallVector<ResolvedDbgOp> Ops; + DbgValueProperties Properties; + + ResolvedDbgValue(SmallVectorImpl<ResolvedDbgOp> &Ops, + DbgValueProperties Properties) + : Ops(Ops.begin(), Ops.end()), Properties(Properties) {} + + /// Returns all the LocIdx values used in this struct, in the order in which + /// they appear as operands in the debug value; may contain duplicates. + auto loc_indices() const { + return map_range( + make_filter_range( + Ops, [](const ResolvedDbgOp &Op) { return !Op.IsConst; }), + [](const ResolvedDbgOp &Op) { return Op.Loc; }); + } + }; + + /// Collection of transfers (DBG_VALUEs) to be inserted. + SmallVector<Transfer, 32> Transfers; + + /// Local cache of what-value-is-in-what-LocIdx. Used to identify differences + /// between TransferTrackers view of variable locations and MLocTrackers. For + /// example, MLocTracker observes all clobbers, but TransferTracker lazily + /// does not. + SmallVector<ValueIDNum, 32> VarLocs; + + /// Map from LocIdxes to which DebugVariables are based that location. + /// Mantained while stepping through the block. Not accurate if + /// VarLocs[Idx] != MTracker->LocIdxToIDNum[Idx]. + DenseMap<LocIdx, SmallSet<DebugVariable, 4>> ActiveMLocs; + + /// Map from DebugVariable to it's current location and qualifying meta + /// information. To be used in conjunction with ActiveMLocs to construct + /// enough information for the DBG_VALUEs for a particular LocIdx. + DenseMap<DebugVariable, ResolvedDbgValue> ActiveVLocs; + + /// Temporary cache of DBG_VALUEs to be entered into the Transfers collection. + SmallVector<MachineInstr *, 4> PendingDbgValues; + + /// Record of a use-before-def: created when a value that's live-in to the + /// current block isn't available in any machine location, but it will be + /// defined in this block. + struct UseBeforeDef { + /// Value of this variable, def'd in block. + SmallVector<DbgOp> Values; + /// Identity of this variable. + DebugVariable Var; + /// Additional variable properties. + DbgValueProperties Properties; + UseBeforeDef(ArrayRef<DbgOp> Values, const DebugVariable &Var, + const DbgValueProperties &Properties) + : Values(Values.begin(), Values.end()), Var(Var), + Properties(Properties) {} + }; + + /// Map from instruction index (within the block) to the set of UseBeforeDefs + /// that become defined at that instruction. + DenseMap<unsigned, SmallVector<UseBeforeDef, 1>> UseBeforeDefs; + + /// The set of variables that are in UseBeforeDefs and can become a location + /// once the relevant value is defined. An element being erased from this + /// collection prevents the use-before-def materializing. + DenseSet<DebugVariable> UseBeforeDefVariables; + + const TargetRegisterInfo &TRI; + const BitVector &CalleeSavedRegs; + + TransferTracker(const TargetInstrInfo *TII, MLocTracker *MTracker, + MachineFunction &MF, const TargetRegisterInfo &TRI, + const BitVector &CalleeSavedRegs, const TargetPassConfig &TPC) + : TII(TII), MTracker(MTracker), MF(MF), TRI(TRI), + CalleeSavedRegs(CalleeSavedRegs) { + TLI = MF.getSubtarget().getTargetLowering(); + auto &TM = TPC.getTM<TargetMachine>(); + ShouldEmitDebugEntryValues = TM.Options.ShouldEmitDebugEntryValues(); + } + + bool isCalleeSaved(LocIdx L) const { + unsigned Reg = MTracker->LocIdxToLocID[L]; + if (Reg >= MTracker->NumRegs) + return false; + for (MCRegAliasIterator RAI(Reg, &TRI, true); RAI.isValid(); ++RAI) + if (CalleeSavedRegs.test(*RAI)) + return true; + return false; + }; + + // An estimate of the expected lifespan of values at a machine location, with + // a greater value corresponding to a longer expected lifespan, i.e. spill + // slots generally live longer than callee-saved registers which generally + // live longer than non-callee-saved registers. The minimum value of 0 + // corresponds to an illegal location that cannot have a "lifespan" at all. + enum class LocationQuality : unsigned char { + Illegal = 0, + Register, + CalleeSavedRegister, + SpillSlot, + Best = SpillSlot + }; + + class LocationAndQuality { + unsigned Location : 24; + unsigned Quality : 8; + + public: + LocationAndQuality() : Location(0), Quality(0) {} + LocationAndQuality(LocIdx L, LocationQuality Q) + : Location(L.asU64()), Quality(static_cast<unsigned>(Q)) {} + LocIdx getLoc() const { + if (!Quality) + return LocIdx::MakeIllegalLoc(); + return LocIdx(Location); + } + LocationQuality getQuality() const { return LocationQuality(Quality); } + bool isIllegal() const { return !Quality; } + bool isBest() const { return getQuality() == LocationQuality::Best; } + }; + + // Returns the LocationQuality for the location L iff the quality of L is + // is strictly greater than the provided minimum quality. + std::optional<LocationQuality> + getLocQualityIfBetter(LocIdx L, LocationQuality Min) const { + if (L.isIllegal()) + return std::nullopt; + if (Min >= LocationQuality::SpillSlot) + return std::nullopt; + if (MTracker->isSpill(L)) + return LocationQuality::SpillSlot; + if (Min >= LocationQuality::CalleeSavedRegister) + return std::nullopt; + if (isCalleeSaved(L)) + return LocationQuality::CalleeSavedRegister; + if (Min >= LocationQuality::Register) + return std::nullopt; + return LocationQuality::Register; + } + + /// For a variable \p Var with the live-in value \p Value, attempts to resolve + /// the DbgValue to a concrete DBG_VALUE, emitting that value and loading the + /// tracking information to track Var throughout the block. + /// \p ValueToLoc is a map containing the best known location for every + /// ValueIDNum that Value may use. + /// \p MBB is the basic block that we are loading the live-in value for. + /// \p DbgOpStore is the map containing the DbgOpID->DbgOp mapping needed to + /// determine the values used by Value. + void loadVarInloc(MachineBasicBlock &MBB, DbgOpIDMap &DbgOpStore, + const DenseMap<ValueIDNum, LocationAndQuality> &ValueToLoc, + DebugVariable Var, DbgValue Value) { + SmallVector<DbgOp> DbgOps; + SmallVector<ResolvedDbgOp> ResolvedDbgOps; + bool IsValueValid = true; + unsigned LastUseBeforeDef = 0; + + // If every value used by the incoming DbgValue is available at block + // entry, ResolvedDbgOps will contain the machine locations/constants for + // those values and will be used to emit a debug location. + // If one or more values are not yet available, but will all be defined in + // this block, then LastUseBeforeDef will track the instruction index in + // this BB at which the last of those values is defined, DbgOps will + // contain the values that we will emit when we reach that instruction. + // If one or more values are undef or not available throughout this block, + // and we can't recover as an entry value, we set IsValueValid=false and + // skip this variable. + for (DbgOpID ID : Value.getDbgOpIDs()) { + DbgOp Op = DbgOpStore.find(ID); + DbgOps.push_back(Op); + if (ID.isUndef()) { + IsValueValid = false; + break; + } + if (ID.isConst()) { + ResolvedDbgOps.push_back(Op.MO); + continue; + } + + // If the value has no location, we can't make a variable location. + const ValueIDNum &Num = Op.ID; + auto ValuesPreferredLoc = ValueToLoc.find(Num); + if (ValuesPreferredLoc->second.isIllegal()) { + // If it's a def that occurs in this block, register it as a + // use-before-def to be resolved as we step through the block. + // Continue processing values so that we add any other UseBeforeDef + // entries needed for later. + if (Num.getBlock() == (unsigned)MBB.getNumber() && !Num.isPHI()) { + LastUseBeforeDef = std::max(LastUseBeforeDef, + static_cast<unsigned>(Num.getInst())); + continue; + } + recoverAsEntryValue(Var, Value.Properties, Num); + IsValueValid = false; + break; + } + + // Defer modifying ActiveVLocs until after we've confirmed we have a + // live range. + LocIdx M = ValuesPreferredLoc->second.getLoc(); + ResolvedDbgOps.push_back(M); + } + + // If we cannot produce a valid value for the LiveIn value within this + // block, skip this variable. + if (!IsValueValid) + return; + + // Add UseBeforeDef entry for the last value to be defined in this block. + if (LastUseBeforeDef) { + addUseBeforeDef(Var, Value.Properties, DbgOps, + LastUseBeforeDef); + return; + } + + // The LiveIn value is available at block entry, begin tracking and record + // the transfer. + for (const ResolvedDbgOp &Op : ResolvedDbgOps) + if (!Op.IsConst) + ActiveMLocs[Op.Loc].insert(Var); + auto NewValue = ResolvedDbgValue{ResolvedDbgOps, Value.Properties}; + auto Result = ActiveVLocs.insert(std::make_pair(Var, NewValue)); + if (!Result.second) + Result.first->second = NewValue; + PendingDbgValues.push_back( + MTracker->emitLoc(ResolvedDbgOps, Var, Value.Properties)); + } + + /// Load object with live-in variable values. \p mlocs contains the live-in + /// values in each machine location, while \p vlocs the live-in variable + /// values. This method picks variable locations for the live-in variables, + /// creates DBG_VALUEs and puts them in #Transfers, then prepares the other + /// object fields to track variable locations as we step through the block. + /// FIXME: could just examine mloctracker instead of passing in \p mlocs? + void + loadInlocs(MachineBasicBlock &MBB, ValueTable &MLocs, DbgOpIDMap &DbgOpStore, + const SmallVectorImpl<std::pair<DebugVariable, DbgValue>> &VLocs, + unsigned NumLocs) { + ActiveMLocs.clear(); + ActiveVLocs.clear(); + VarLocs.clear(); + VarLocs.reserve(NumLocs); + UseBeforeDefs.clear(); + UseBeforeDefVariables.clear(); + + // Map of the preferred location for each value. + DenseMap<ValueIDNum, LocationAndQuality> ValueToLoc; + + // Initialized the preferred-location map with illegal locations, to be + // filled in later. + for (const auto &VLoc : VLocs) + if (VLoc.second.Kind == DbgValue::Def) + for (DbgOpID OpID : VLoc.second.getDbgOpIDs()) + if (!OpID.ID.IsConst) + ValueToLoc.insert({DbgOpStore.find(OpID).ID, LocationAndQuality()}); + + ActiveMLocs.reserve(VLocs.size()); + ActiveVLocs.reserve(VLocs.size()); + + // Produce a map of value numbers to the current machine locs they live + // in. When emulating VarLocBasedImpl, there should only be one + // location; when not, we get to pick. + for (auto Location : MTracker->locations()) { + LocIdx Idx = Location.Idx; + ValueIDNum &VNum = MLocs[Idx.asU64()]; + if (VNum == ValueIDNum::EmptyValue) + continue; + VarLocs.push_back(VNum); + + // Is there a variable that wants a location for this value? If not, skip. + auto VIt = ValueToLoc.find(VNum); + if (VIt == ValueToLoc.end()) + continue; + + auto &Previous = VIt->second; + // If this is the first location with that value, pick it. Otherwise, + // consider whether it's a "longer term" location. + std::optional<LocationQuality> ReplacementQuality = + getLocQualityIfBetter(Idx, Previous.getQuality()); + if (ReplacementQuality) + Previous = LocationAndQuality(Idx, *ReplacementQuality); + } + + // Now map variables to their picked LocIdxes. + for (const auto &Var : VLocs) { + loadVarInloc(MBB, DbgOpStore, ValueToLoc, Var.first, Var.second); + } + flushDbgValues(MBB.begin(), &MBB); + } + + /// Record that \p Var has value \p ID, a value that becomes available + /// later in the function. + void addUseBeforeDef(const DebugVariable &Var, + const DbgValueProperties &Properties, + const SmallVectorImpl<DbgOp> &DbgOps, unsigned Inst) { + UseBeforeDefs[Inst].emplace_back(DbgOps, Var, Properties); + UseBeforeDefVariables.insert(Var); + } + + /// After the instruction at index \p Inst and position \p pos has been + /// processed, check whether it defines a variable value in a use-before-def. + /// If so, and the variable value hasn't changed since the start of the + /// block, create a DBG_VALUE. + void checkInstForNewValues(unsigned Inst, MachineBasicBlock::iterator pos) { + auto MIt = UseBeforeDefs.find(Inst); + if (MIt == UseBeforeDefs.end()) + return; + + // Map of values to the locations that store them for every value used by + // the variables that may have become available. + SmallDenseMap<ValueIDNum, LocationAndQuality> ValueToLoc; + + // Populate ValueToLoc with illegal default mappings for every value used by + // any UseBeforeDef variables for this instruction. + for (auto &Use : MIt->second) { + if (!UseBeforeDefVariables.count(Use.Var)) + continue; + + for (DbgOp &Op : Use.Values) { + assert(!Op.isUndef() && "UseBeforeDef erroneously created for a " + "DbgValue with undef values."); + if (Op.IsConst) + continue; + + ValueToLoc.insert({Op.ID, LocationAndQuality()}); + } + } + + // Exit early if we have no DbgValues to produce. + if (ValueToLoc.empty()) + return; + + // Determine the best location for each desired value. + for (auto Location : MTracker->locations()) { + LocIdx Idx = Location.Idx; + ValueIDNum &LocValueID = Location.Value; + + // Is there a variable that wants a location for this value? If not, skip. + auto VIt = ValueToLoc.find(LocValueID); + if (VIt == ValueToLoc.end()) + continue; + + auto &Previous = VIt->second; + // If this is the first location with that value, pick it. Otherwise, + // consider whether it's a "longer term" location. + std::optional<LocationQuality> ReplacementQuality = + getLocQualityIfBetter(Idx, Previous.getQuality()); + if (ReplacementQuality) + Previous = LocationAndQuality(Idx, *ReplacementQuality); + } + + // Using the map of values to locations, produce a final set of values for + // this variable. + for (auto &Use : MIt->second) { + if (!UseBeforeDefVariables.count(Use.Var)) + continue; + + SmallVector<ResolvedDbgOp> DbgOps; + + for (DbgOp &Op : Use.Values) { + if (Op.IsConst) { + DbgOps.push_back(Op.MO); + continue; + } + LocIdx NewLoc = ValueToLoc.find(Op.ID)->second.getLoc(); + if (NewLoc.isIllegal()) + break; + DbgOps.push_back(NewLoc); + } + + // If at least one value used by this debug value is no longer available, + // i.e. one of the values was killed before we finished defining all of + // the values used by this variable, discard. + if (DbgOps.size() != Use.Values.size()) + continue; + + // Otherwise, we're good to go. + PendingDbgValues.push_back( + MTracker->emitLoc(DbgOps, Use.Var, Use.Properties)); + } + flushDbgValues(pos, nullptr); + } + + /// Helper to move created DBG_VALUEs into Transfers collection. + void flushDbgValues(MachineBasicBlock::iterator Pos, MachineBasicBlock *MBB) { + if (PendingDbgValues.size() == 0) + return; + + // Pick out the instruction start position. + MachineBasicBlock::instr_iterator BundleStart; + if (MBB && Pos == MBB->begin()) + BundleStart = MBB->instr_begin(); + else + BundleStart = getBundleStart(Pos->getIterator()); + + Transfers.push_back({BundleStart, MBB, PendingDbgValues}); + PendingDbgValues.clear(); + } + + bool isEntryValueVariable(const DebugVariable &Var, + const DIExpression *Expr) const { + if (!Var.getVariable()->isParameter()) + return false; + + if (Var.getInlinedAt()) + return false; + + if (Expr->getNumElements() > 0 && !Expr->isDeref()) + return false; + + return true; + } + + bool isEntryValueValue(const ValueIDNum &Val) const { + // Must be in entry block (block number zero), and be a PHI / live-in value. + if (Val.getBlock() || !Val.isPHI()) + return false; + + // Entry values must enter in a register. + if (MTracker->isSpill(Val.getLoc())) + return false; + + Register SP = TLI->getStackPointerRegisterToSaveRestore(); + Register FP = TRI.getFrameRegister(MF); + Register Reg = MTracker->LocIdxToLocID[Val.getLoc()]; + return Reg != SP && Reg != FP; + } + + bool recoverAsEntryValue(const DebugVariable &Var, + const DbgValueProperties &Prop, + const ValueIDNum &Num) { + // Is this variable location a candidate to be an entry value. First, + // should we be trying this at all? + if (!ShouldEmitDebugEntryValues) + return false; + + const DIExpression *DIExpr = Prop.DIExpr; + + // We don't currently emit entry values for DBG_VALUE_LISTs. + if (Prop.IsVariadic) { + // If this debug value can be converted to be non-variadic, then do so; + // otherwise give up. + auto NonVariadicExpression = + DIExpression::convertToNonVariadicExpression(DIExpr); + if (!NonVariadicExpression) + return false; + DIExpr = *NonVariadicExpression; + } + + // Is the variable appropriate for entry values (i.e., is a parameter). + if (!isEntryValueVariable(Var, DIExpr)) + return false; + + // Is the value assigned to this variable still the entry value? + if (!isEntryValueValue(Num)) + return false; + + // Emit a variable location using an entry value expression. + DIExpression *NewExpr = + DIExpression::prepend(DIExpr, DIExpression::EntryValue); + Register Reg = MTracker->LocIdxToLocID[Num.getLoc()]; + MachineOperand MO = MachineOperand::CreateReg(Reg, false); + + PendingDbgValues.push_back( + emitMOLoc(MO, Var, {NewExpr, Prop.Indirect, false})); + return true; + } + + /// Change a variable value after encountering a DBG_VALUE inside a block. + void redefVar(const MachineInstr &MI) { + DebugVariable Var(MI.getDebugVariable(), MI.getDebugExpression(), + MI.getDebugLoc()->getInlinedAt()); + DbgValueProperties Properties(MI); + + // Ignore non-register locations, we don't transfer those. + if (MI.isUndefDebugValue() || + all_of(MI.debug_operands(), + [](const MachineOperand &MO) { return !MO.isReg(); })) { + auto It = ActiveVLocs.find(Var); + if (It != ActiveVLocs.end()) { + for (LocIdx Loc : It->second.loc_indices()) + ActiveMLocs[Loc].erase(Var); + ActiveVLocs.erase(It); + } + // Any use-before-defs no longer apply. + UseBeforeDefVariables.erase(Var); + return; + } + + SmallVector<ResolvedDbgOp> NewLocs; + for (const MachineOperand &MO : MI.debug_operands()) { + if (MO.isReg()) { + // Any undef regs have already been filtered out above. + Register Reg = MO.getReg(); + LocIdx NewLoc = MTracker->getRegMLoc(Reg); + NewLocs.push_back(NewLoc); + } else { + NewLocs.push_back(MO); + } + } + + redefVar(MI, Properties, NewLocs); + } + + /// Handle a change in variable location within a block. Terminate the + /// variables current location, and record the value it now refers to, so + /// that we can detect location transfers later on. + void redefVar(const MachineInstr &MI, const DbgValueProperties &Properties, + SmallVectorImpl<ResolvedDbgOp> &NewLocs) { + DebugVariable Var(MI.getDebugVariable(), MI.getDebugExpression(), + MI.getDebugLoc()->getInlinedAt()); + // Any use-before-defs no longer apply. + UseBeforeDefVariables.erase(Var); + + // Erase any previous location. + auto It = ActiveVLocs.find(Var); + if (It != ActiveVLocs.end()) { + for (LocIdx Loc : It->second.loc_indices()) + ActiveMLocs[Loc].erase(Var); + } + + // If there _is_ no new location, all we had to do was erase. + if (NewLocs.empty()) { + if (It != ActiveVLocs.end()) + ActiveVLocs.erase(It); + return; + } + + SmallVector<std::pair<LocIdx, DebugVariable>> LostMLocs; + for (ResolvedDbgOp &Op : NewLocs) { + if (Op.IsConst) + continue; + + LocIdx NewLoc = Op.Loc; + + // Check whether our local copy of values-by-location in #VarLocs is out + // of date. Wipe old tracking data for the location if it's been clobbered + // in the meantime. + if (MTracker->readMLoc(NewLoc) != VarLocs[NewLoc.asU64()]) { + for (const auto &P : ActiveMLocs[NewLoc]) { + auto LostVLocIt = ActiveVLocs.find(P); + if (LostVLocIt != ActiveVLocs.end()) { + for (LocIdx Loc : LostVLocIt->second.loc_indices()) { + // Every active variable mapping for NewLoc will be cleared, no + // need to track individual variables. + if (Loc == NewLoc) + continue; + LostMLocs.emplace_back(Loc, P); + } + } + ActiveVLocs.erase(P); + } + for (const auto &LostMLoc : LostMLocs) + ActiveMLocs[LostMLoc.first].erase(LostMLoc.second); + LostMLocs.clear(); + It = ActiveVLocs.find(Var); + ActiveMLocs[NewLoc.asU64()].clear(); + VarLocs[NewLoc.asU64()] = MTracker->readMLoc(NewLoc); + } + + ActiveMLocs[NewLoc].insert(Var); + } + + if (It == ActiveVLocs.end()) { + ActiveVLocs.insert( + std::make_pair(Var, ResolvedDbgValue(NewLocs, Properties))); + } else { + It->second.Ops.assign(NewLocs); + It->second.Properties = Properties; + } + } + + /// Account for a location \p mloc being clobbered. Examine the variable + /// locations that will be terminated: and try to recover them by using + /// another location. Optionally, given \p MakeUndef, emit a DBG_VALUE to + /// explicitly terminate a location if it can't be recovered. + void clobberMloc(LocIdx MLoc, MachineBasicBlock::iterator Pos, + bool MakeUndef = true) { + auto ActiveMLocIt = ActiveMLocs.find(MLoc); + if (ActiveMLocIt == ActiveMLocs.end()) + return; + + // What was the old variable value? + ValueIDNum OldValue = VarLocs[MLoc.asU64()]; + clobberMloc(MLoc, OldValue, Pos, MakeUndef); + } + /// Overload that takes an explicit value \p OldValue for when the value in + /// \p MLoc has changed and the TransferTracker's locations have not been + /// updated yet. + void clobberMloc(LocIdx MLoc, ValueIDNum OldValue, + MachineBasicBlock::iterator Pos, bool MakeUndef = true) { + auto ActiveMLocIt = ActiveMLocs.find(MLoc); + if (ActiveMLocIt == ActiveMLocs.end()) + return; + + VarLocs[MLoc.asU64()] = ValueIDNum::EmptyValue; + + // Examine the remaining variable locations: if we can find the same value + // again, we can recover the location. + std::optional<LocIdx> NewLoc; + for (auto Loc : MTracker->locations()) + if (Loc.Value == OldValue) + NewLoc = Loc.Idx; + + // If there is no location, and we weren't asked to make the variable + // explicitly undef, then stop here. + if (!NewLoc && !MakeUndef) { + // Try and recover a few more locations with entry values. + for (const auto &Var : ActiveMLocIt->second) { + auto &Prop = ActiveVLocs.find(Var)->second.Properties; + recoverAsEntryValue(Var, Prop, OldValue); + } + flushDbgValues(Pos, nullptr); + return; + } + + // Examine all the variables based on this location. + DenseSet<DebugVariable> NewMLocs; + // If no new location has been found, every variable that depends on this + // MLoc is dead, so end their existing MLoc->Var mappings as well. + SmallVector<std::pair<LocIdx, DebugVariable>> LostMLocs; + for (const auto &Var : ActiveMLocIt->second) { + auto ActiveVLocIt = ActiveVLocs.find(Var); + // Re-state the variable location: if there's no replacement then NewLoc + // is std::nullopt and a $noreg DBG_VALUE will be created. Otherwise, a + // DBG_VALUE identifying the alternative location will be emitted. + const DbgValueProperties &Properties = ActiveVLocIt->second.Properties; + + // Produce the new list of debug ops - an empty list if no new location + // was found, or the existing list with the substitution MLoc -> NewLoc + // otherwise. + SmallVector<ResolvedDbgOp> DbgOps; + if (NewLoc) { + ResolvedDbgOp OldOp(MLoc); + ResolvedDbgOp NewOp(*NewLoc); + // Insert illegal ops to overwrite afterwards. + DbgOps.insert(DbgOps.begin(), ActiveVLocIt->second.Ops.size(), + ResolvedDbgOp(LocIdx::MakeIllegalLoc())); + replace_copy(ActiveVLocIt->second.Ops, DbgOps.begin(), OldOp, NewOp); + } + + PendingDbgValues.push_back(MTracker->emitLoc(DbgOps, Var, Properties)); + + // Update machine locations <=> variable locations maps. Defer updating + // ActiveMLocs to avoid invalidating the ActiveMLocIt iterator. + if (!NewLoc) { + for (LocIdx Loc : ActiveVLocIt->second.loc_indices()) { + if (Loc != MLoc) + LostMLocs.emplace_back(Loc, Var); + } + ActiveVLocs.erase(ActiveVLocIt); + } else { + ActiveVLocIt->second.Ops = DbgOps; + NewMLocs.insert(Var); + } + } + + // Remove variables from ActiveMLocs if they no longer use any other MLocs + // due to being killed by this clobber. + for (auto &LocVarIt : LostMLocs) { + auto LostMLocIt = ActiveMLocs.find(LocVarIt.first); + assert(LostMLocIt != ActiveMLocs.end() && + "Variable was using this MLoc, but ActiveMLocs[MLoc] has no " + "entries?"); + LostMLocIt->second.erase(LocVarIt.second); + } + + // We lazily track what locations have which values; if we've found a new + // location for the clobbered value, remember it. + if (NewLoc) + VarLocs[NewLoc->asU64()] = OldValue; + + flushDbgValues(Pos, nullptr); + + // Commit ActiveMLoc changes. + ActiveMLocIt->second.clear(); + if (!NewMLocs.empty()) + for (auto &Var : NewMLocs) + ActiveMLocs[*NewLoc].insert(Var); + } + + /// Transfer variables based on \p Src to be based on \p Dst. This handles + /// both register copies as well as spills and restores. Creates DBG_VALUEs + /// describing the movement. + void transferMlocs(LocIdx Src, LocIdx Dst, MachineBasicBlock::iterator Pos) { + // Does Src still contain the value num we expect? If not, it's been + // clobbered in the meantime, and our variable locations are stale. + if (VarLocs[Src.asU64()] != MTracker->readMLoc(Src)) + return; + + // assert(ActiveMLocs[Dst].size() == 0); + //^^^ Legitimate scenario on account of un-clobbered slot being assigned to? + + // Move set of active variables from one location to another. + auto MovingVars = ActiveMLocs[Src]; + ActiveMLocs[Dst].insert(MovingVars.begin(), MovingVars.end()); + VarLocs[Dst.asU64()] = VarLocs[Src.asU64()]; + + // For each variable based on Src; create a location at Dst. + ResolvedDbgOp SrcOp(Src); + ResolvedDbgOp DstOp(Dst); + for (const auto &Var : MovingVars) { + auto ActiveVLocIt = ActiveVLocs.find(Var); + assert(ActiveVLocIt != ActiveVLocs.end()); + + // Update all instances of Src in the variable's tracked values to Dst. + std::replace(ActiveVLocIt->second.Ops.begin(), + ActiveVLocIt->second.Ops.end(), SrcOp, DstOp); + + MachineInstr *MI = MTracker->emitLoc(ActiveVLocIt->second.Ops, Var, + ActiveVLocIt->second.Properties); + PendingDbgValues.push_back(MI); + } + ActiveMLocs[Src].clear(); + flushDbgValues(Pos, nullptr); + + // XXX XXX XXX "pretend to be old LDV" means dropping all tracking data + // about the old location. + if (EmulateOldLDV) + VarLocs[Src.asU64()] = ValueIDNum::EmptyValue; + } + + MachineInstrBuilder emitMOLoc(const MachineOperand &MO, + const DebugVariable &Var, + const DbgValueProperties &Properties) { + DebugLoc DL = DILocation::get(Var.getVariable()->getContext(), 0, 0, + Var.getVariable()->getScope(), + const_cast<DILocation *>(Var.getInlinedAt())); + auto MIB = BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE)); + MIB.add(MO); + if (Properties.Indirect) + MIB.addImm(0); + else + MIB.addReg(0); + MIB.addMetadata(Var.getVariable()); + MIB.addMetadata(Properties.DIExpr); + return MIB; + } +}; + +//===----------------------------------------------------------------------===// +// Implementation +//===----------------------------------------------------------------------===// + +ValueIDNum ValueIDNum::EmptyValue = {UINT_MAX, UINT_MAX, UINT_MAX}; +ValueIDNum ValueIDNum::TombstoneValue = {UINT_MAX, UINT_MAX, UINT_MAX - 1}; + +#ifndef NDEBUG +void ResolvedDbgOp::dump(const MLocTracker *MTrack) const { + if (IsConst) { + dbgs() << MO; + } else { + dbgs() << MTrack->LocIdxToName(Loc); + } +} +void DbgOp::dump(const MLocTracker *MTrack) const { + if (IsConst) { + dbgs() << MO; + } else if (!isUndef()) { + dbgs() << MTrack->IDAsString(ID); + } +} +void DbgOpID::dump(const MLocTracker *MTrack, const DbgOpIDMap *OpStore) const { + if (!OpStore) { + dbgs() << "ID(" << asU32() << ")"; + } else { + OpStore->find(*this).dump(MTrack); + } +} +void DbgValue::dump(const MLocTracker *MTrack, + const DbgOpIDMap *OpStore) const { + if (Kind == NoVal) { + dbgs() << "NoVal(" << BlockNo << ")"; + } else if (Kind == VPHI || Kind == Def) { + if (Kind == VPHI) + dbgs() << "VPHI(" << BlockNo << ","; + else + dbgs() << "Def("; + for (unsigned Idx = 0; Idx < getDbgOpIDs().size(); ++Idx) { + getDbgOpID(Idx).dump(MTrack, OpStore); + if (Idx != 0) + dbgs() << ","; + } + dbgs() << ")"; + } + if (Properties.Indirect) + dbgs() << " indir"; + if (Properties.DIExpr) + dbgs() << " " << *Properties.DIExpr; +} +#endif + +MLocTracker::MLocTracker(MachineFunction &MF, const TargetInstrInfo &TII, + const TargetRegisterInfo &TRI, + const TargetLowering &TLI) + : MF(MF), TII(TII), TRI(TRI), TLI(TLI), + LocIdxToIDNum(ValueIDNum::EmptyValue), LocIdxToLocID(0) { + NumRegs = TRI.getNumRegs(); + reset(); + LocIDToLocIdx.resize(NumRegs, LocIdx::MakeIllegalLoc()); + assert(NumRegs < (1u << NUM_LOC_BITS)); // Detect bit packing failure + + // Always track SP. This avoids the implicit clobbering caused by regmasks + // from affectings its values. (LiveDebugValues disbelieves calls and + // regmasks that claim to clobber SP). + Register SP = TLI.getStackPointerRegisterToSaveRestore(); + if (SP) { + unsigned ID = getLocID(SP); + (void)lookupOrTrackRegister(ID); + + for (MCRegAliasIterator RAI(SP, &TRI, true); RAI.isValid(); ++RAI) + SPAliases.insert(*RAI); + } + + // Build some common stack positions -- full registers being spilt to the + // stack. + StackSlotIdxes.insert({{8, 0}, 0}); + StackSlotIdxes.insert({{16, 0}, 1}); + StackSlotIdxes.insert({{32, 0}, 2}); + StackSlotIdxes.insert({{64, 0}, 3}); + StackSlotIdxes.insert({{128, 0}, 4}); + StackSlotIdxes.insert({{256, 0}, 5}); + StackSlotIdxes.insert({{512, 0}, 6}); + + // Traverse all the subregister idxes, and ensure there's an index for them. + // Duplicates are no problem: we're interested in their position in the + // stack slot, we don't want to type the slot. + for (unsigned int I = 1; I < TRI.getNumSubRegIndices(); ++I) { + unsigned Size = TRI.getSubRegIdxSize(I); + unsigned Offs = TRI.getSubRegIdxOffset(I); + unsigned Idx = StackSlotIdxes.size(); + + // Some subregs have -1, -2 and so forth fed into their fields, to mean + // special backend things. Ignore those. + if (Size > 60000 || Offs > 60000) + continue; + + StackSlotIdxes.insert({{Size, Offs}, Idx}); + } + + // There may also be strange register class sizes (think x86 fp80s). + for (const TargetRegisterClass *RC : TRI.regclasses()) { + unsigned Size = TRI.getRegSizeInBits(*RC); + + // We might see special reserved values as sizes, and classes for other + // stuff the machine tries to model. If it's more than 512 bits, then it + // is very unlikely to be a register than can be spilt. + if (Size > 512) + continue; + + unsigned Idx = StackSlotIdxes.size(); + StackSlotIdxes.insert({{Size, 0}, Idx}); + } + + for (auto &Idx : StackSlotIdxes) + StackIdxesToPos[Idx.second] = Idx.first; + + NumSlotIdxes = StackSlotIdxes.size(); +} + +LocIdx MLocTracker::trackRegister(unsigned ID) { + assert(ID != 0); + LocIdx NewIdx = LocIdx(LocIdxToIDNum.size()); + LocIdxToIDNum.grow(NewIdx); + LocIdxToLocID.grow(NewIdx); + + // Default: it's an mphi. + ValueIDNum ValNum = {CurBB, 0, NewIdx}; + // Was this reg ever touched by a regmask? + for (const auto &MaskPair : reverse(Masks)) { + if (MaskPair.first->clobbersPhysReg(ID)) { + // There was an earlier def we skipped. + ValNum = {CurBB, MaskPair.second, NewIdx}; + break; + } + } + + LocIdxToIDNum[NewIdx] = ValNum; + LocIdxToLocID[NewIdx] = ID; + return NewIdx; +} + +void MLocTracker::writeRegMask(const MachineOperand *MO, unsigned CurBB, + unsigned InstID) { + // Def any register we track have that isn't preserved. The regmask + // terminates the liveness of a register, meaning its value can't be + // relied upon -- we represent this by giving it a new value. + for (auto Location : locations()) { + unsigned ID = LocIdxToLocID[Location.Idx]; + // Don't clobber SP, even if the mask says it's clobbered. + if (ID < NumRegs && !SPAliases.count(ID) && MO->clobbersPhysReg(ID)) + defReg(ID, CurBB, InstID); + } + Masks.push_back(std::make_pair(MO, InstID)); +} + +std::optional<SpillLocationNo> MLocTracker::getOrTrackSpillLoc(SpillLoc L) { + SpillLocationNo SpillID(SpillLocs.idFor(L)); + + if (SpillID.id() == 0) { + // If there is no location, and we have reached the limit of how many stack + // slots to track, then don't track this one. + if (SpillLocs.size() >= StackWorkingSetLimit) + return std::nullopt; + + // Spill location is untracked: create record for this one, and all + // subregister slots too. + SpillID = SpillLocationNo(SpillLocs.insert(L)); + for (unsigned StackIdx = 0; StackIdx < NumSlotIdxes; ++StackIdx) { + unsigned L = getSpillIDWithIdx(SpillID, StackIdx); + LocIdx Idx = LocIdx(LocIdxToIDNum.size()); // New idx + LocIdxToIDNum.grow(Idx); + LocIdxToLocID.grow(Idx); + LocIDToLocIdx.push_back(Idx); + LocIdxToLocID[Idx] = L; + // Initialize to PHI value; corresponds to the location's live-in value + // during transfer function construction. + LocIdxToIDNum[Idx] = ValueIDNum(CurBB, 0, Idx); + } + } + return SpillID; +} + +std::string MLocTracker::LocIdxToName(LocIdx Idx) const { + unsigned ID = LocIdxToLocID[Idx]; + if (ID >= NumRegs) { + StackSlotPos Pos = locIDToSpillIdx(ID); + ID -= NumRegs; + unsigned Slot = ID / NumSlotIdxes; + return Twine("slot ") + .concat(Twine(Slot).concat(Twine(" sz ").concat(Twine(Pos.first) + .concat(Twine(" offs ").concat(Twine(Pos.second)))))) + .str(); + } else { + return TRI.getRegAsmName(ID).str(); + } +} + +std::string MLocTracker::IDAsString(const ValueIDNum &Num) const { + std::string DefName = LocIdxToName(Num.getLoc()); + return Num.asString(DefName); +} + +#ifndef NDEBUG +LLVM_DUMP_METHOD void MLocTracker::dump() { + for (auto Location : locations()) { + std::string MLocName = LocIdxToName(Location.Value.getLoc()); + std::string DefName = Location.Value.asString(MLocName); + dbgs() << LocIdxToName(Location.Idx) << " --> " << DefName << "\n"; + } +} + +LLVM_DUMP_METHOD void MLocTracker::dump_mloc_map() { + for (auto Location : locations()) { + std::string foo = LocIdxToName(Location.Idx); + dbgs() << "Idx " << Location.Idx.asU64() << " " << foo << "\n"; + } +} +#endif + +MachineInstrBuilder +MLocTracker::emitLoc(const SmallVectorImpl<ResolvedDbgOp> &DbgOps, + const DebugVariable &Var, + const DbgValueProperties &Properties) { + DebugLoc DL = DILocation::get(Var.getVariable()->getContext(), 0, 0, + Var.getVariable()->getScope(), + const_cast<DILocation *>(Var.getInlinedAt())); + + const MCInstrDesc &Desc = Properties.IsVariadic + ? TII.get(TargetOpcode::DBG_VALUE_LIST) + : TII.get(TargetOpcode::DBG_VALUE); + +#ifdef EXPENSIVE_CHECKS + assert(all_of(DbgOps, + [](const ResolvedDbgOp &Op) { + return Op.IsConst || !Op.Loc.isIllegal(); + }) && + "Did not expect illegal ops in DbgOps."); + assert((DbgOps.size() == 0 || + DbgOps.size() == Properties.getLocationOpCount()) && + "Expected to have either one DbgOp per MI LocationOp, or none."); +#endif + + auto GetRegOp = [](unsigned Reg) -> MachineOperand { + return MachineOperand::CreateReg( + /* Reg */ Reg, /* isDef */ false, /* isImp */ false, + /* isKill */ false, /* isDead */ false, + /* isUndef */ false, /* isEarlyClobber */ false, + /* SubReg */ 0, /* isDebug */ true); + }; + + SmallVector<MachineOperand> MOs; + + auto EmitUndef = [&]() { + MOs.clear(); + MOs.assign(Properties.getLocationOpCount(), GetRegOp(0)); + return BuildMI(MF, DL, Desc, false, MOs, Var.getVariable(), + Properties.DIExpr); + }; + + // Don't bother passing any real operands to BuildMI if any of them would be + // $noreg. + if (DbgOps.empty()) + return EmitUndef(); + + bool Indirect = Properties.Indirect; + + const DIExpression *Expr = Properties.DIExpr; + + assert(DbgOps.size() == Properties.getLocationOpCount()); + + // If all locations are valid, accumulate them into our list of + // MachineOperands. For any spilled locations, either update the indirectness + // register or apply the appropriate transformations in the DIExpression. + for (size_t Idx = 0; Idx < Properties.getLocationOpCount(); ++Idx) { + const ResolvedDbgOp &Op = DbgOps[Idx]; + + if (Op.IsConst) { + MOs.push_back(Op.MO); + continue; + } + + LocIdx MLoc = Op.Loc; + unsigned LocID = LocIdxToLocID[MLoc]; + if (LocID >= NumRegs) { + SpillLocationNo SpillID = locIDToSpill(LocID); + StackSlotPos StackIdx = locIDToSpillIdx(LocID); + unsigned short Offset = StackIdx.second; + + // TODO: support variables that are located in spill slots, with non-zero + // offsets from the start of the spill slot. It would require some more + // complex DIExpression calculations. This doesn't seem to be produced by + // LLVM right now, so don't try and support it. + // Accept no-subregister slots and subregisters where the offset is zero. + // The consumer should already have type information to work out how large + // the variable is. + if (Offset == 0) { + const SpillLoc &Spill = SpillLocs[SpillID.id()]; + unsigned Base = Spill.SpillBase; + + // There are several ways we can dereference things, and several inputs + // to consider: + // * NRVO variables will appear with IsIndirect set, but should have + // nothing else in their DIExpressions, + // * Variables with DW_OP_stack_value in their expr already need an + // explicit dereference of the stack location, + // * Values that don't match the variable size need DW_OP_deref_size, + // * Everything else can just become a simple location expression. + + // We need to use deref_size whenever there's a mismatch between the + // size of value and the size of variable portion being read. + // Additionally, we should use it whenever dealing with stack_value + // fragments, to avoid the consumer having to determine the deref size + // from DW_OP_piece. + bool UseDerefSize = false; + unsigned ValueSizeInBits = getLocSizeInBits(MLoc); + unsigned DerefSizeInBytes = ValueSizeInBits / 8; + if (auto Fragment = Var.getFragment()) { + unsigned VariableSizeInBits = Fragment->SizeInBits; + if (VariableSizeInBits != ValueSizeInBits || Expr->isComplex()) + UseDerefSize = true; + } else if (auto Size = Var.getVariable()->getSizeInBits()) { + if (*Size != ValueSizeInBits) { + UseDerefSize = true; + } + } + + SmallVector<uint64_t, 5> OffsetOps; + TRI.getOffsetOpcodes(Spill.SpillOffset, OffsetOps); + bool StackValue = false; + + if (Properties.Indirect) { + // This is something like an NRVO variable, where the pointer has been + // spilt to the stack. It should end up being a memory location, with + // the pointer to the variable loaded off the stack with a deref: + assert(!Expr->isImplicit()); + OffsetOps.push_back(dwarf::DW_OP_deref); + } else if (UseDerefSize && Expr->isSingleLocationExpression()) { + // TODO: Figure out how to handle deref size issues for variadic + // values. + // We're loading a value off the stack that's not the same size as the + // variable. Add / subtract stack offset, explicitly deref with a + // size, and add DW_OP_stack_value if not already present. + OffsetOps.push_back(dwarf::DW_OP_deref_size); + OffsetOps.push_back(DerefSizeInBytes); + StackValue = true; + } else if (Expr->isComplex() || Properties.IsVariadic) { + // A variable with no size ambiguity, but with extra elements in it's + // expression. Manually dereference the stack location. + OffsetOps.push_back(dwarf::DW_OP_deref); + } else { + // A plain value that has been spilt to the stack, with no further + // context. Request a location expression, marking the DBG_VALUE as + // IsIndirect. + Indirect = true; + } + + Expr = DIExpression::appendOpsToArg(Expr, OffsetOps, Idx, StackValue); + MOs.push_back(GetRegOp(Base)); + } else { + // This is a stack location with a weird subregister offset: emit an + // undef DBG_VALUE instead. + return EmitUndef(); + } + } else { + // Non-empty, non-stack slot, must be a plain register. + MOs.push_back(GetRegOp(LocID)); + } + } + + return BuildMI(MF, DL, Desc, Indirect, MOs, Var.getVariable(), Expr); +} + +/// Default construct and initialize the pass. +InstrRefBasedLDV::InstrRefBasedLDV() = default; + +bool InstrRefBasedLDV::isCalleeSaved(LocIdx L) const { + unsigned Reg = MTracker->LocIdxToLocID[L]; + return isCalleeSavedReg(Reg); +} +bool InstrRefBasedLDV::isCalleeSavedReg(Register R) const { + for (MCRegAliasIterator RAI(R, TRI, true); RAI.isValid(); ++RAI) + if (CalleeSavedRegs.test(*RAI)) + return true; + return false; +} + +//===----------------------------------------------------------------------===// +// Debug Range Extension Implementation +//===----------------------------------------------------------------------===// + +#ifndef NDEBUG +// Something to restore in the future. +// void InstrRefBasedLDV::printVarLocInMBB(..) +#endif + +std::optional<SpillLocationNo> +InstrRefBasedLDV::extractSpillBaseRegAndOffset(const MachineInstr &MI) { + assert(MI.hasOneMemOperand() && + "Spill instruction does not have exactly one memory operand?"); + auto MMOI = MI.memoperands_begin(); + const PseudoSourceValue *PVal = (*MMOI)->getPseudoValue(); + assert(PVal->kind() == PseudoSourceValue::FixedStack && + "Inconsistent memory operand in spill instruction"); + int FI = cast<FixedStackPseudoSourceValue>(PVal)->getFrameIndex(); + const MachineBasicBlock *MBB = MI.getParent(); + Register Reg; + StackOffset Offset = TFI->getFrameIndexReference(*MBB->getParent(), FI, Reg); + return MTracker->getOrTrackSpillLoc({Reg, Offset}); +} + +std::optional<LocIdx> +InstrRefBasedLDV::findLocationForMemOperand(const MachineInstr &MI) { + std::optional<SpillLocationNo> SpillLoc = extractSpillBaseRegAndOffset(MI); + if (!SpillLoc) + return std::nullopt; + + // Where in the stack slot is this value defined -- i.e., what size of value + // is this? An important question, because it could be loaded into a register + // from the stack at some point. Happily the memory operand will tell us + // the size written to the stack. + auto *MemOperand = *MI.memoperands_begin(); + unsigned SizeInBits = MemOperand->getSizeInBits(); + + // Find that position in the stack indexes we're tracking. + auto IdxIt = MTracker->StackSlotIdxes.find({SizeInBits, 0}); + if (IdxIt == MTracker->StackSlotIdxes.end()) + // That index is not tracked. This is suprising, and unlikely to ever + // occur, but the safe action is to indicate the variable is optimised out. + return std::nullopt; + + unsigned SpillID = MTracker->getSpillIDWithIdx(*SpillLoc, IdxIt->second); + return MTracker->getSpillMLoc(SpillID); +} + +/// End all previous ranges related to @MI and start a new range from @MI +/// if it is a DBG_VALUE instr. +bool InstrRefBasedLDV::transferDebugValue(const MachineInstr &MI) { + if (!MI.isDebugValue()) + return false; + + assert(MI.getDebugVariable()->isValidLocationForIntrinsic(MI.getDebugLoc()) && + "Expected inlined-at fields to agree"); + + // If there are no instructions in this lexical scope, do no location tracking + // at all, this variable shouldn't get a legitimate location range. + auto *Scope = LS.findLexicalScope(MI.getDebugLoc().get()); + if (Scope == nullptr) + return true; // handled it; by doing nothing + + // MLocTracker needs to know that this register is read, even if it's only + // read by a debug inst. + for (const MachineOperand &MO : MI.debug_operands()) + if (MO.isReg() && MO.getReg() != 0) + (void)MTracker->readReg(MO.getReg()); + + // If we're preparing for the second analysis (variables), the machine value + // locations are already solved, and we report this DBG_VALUE and the value + // it refers to to VLocTracker. + if (VTracker) { + SmallVector<DbgOpID> DebugOps; + // Feed defVar the new variable location, or if this is a DBG_VALUE $noreg, + // feed defVar None. + if (!MI.isUndefDebugValue()) { + for (const MachineOperand &MO : MI.debug_operands()) { + // There should be no undef registers here, as we've screened for undef + // debug values. + if (MO.isReg()) { + DebugOps.push_back(DbgOpStore.insert(MTracker->readReg(MO.getReg()))); + } else if (MO.isImm() || MO.isFPImm() || MO.isCImm()) { + DebugOps.push_back(DbgOpStore.insert(MO)); + } else { + llvm_unreachable("Unexpected debug operand type."); + } + } + } + VTracker->defVar(MI, DbgValueProperties(MI), DebugOps); + } + + // If performing final tracking of transfers, report this variable definition + // to the TransferTracker too. + if (TTracker) + TTracker->redefVar(MI); + return true; +} + +std::optional<ValueIDNum> InstrRefBasedLDV::getValueForInstrRef( + unsigned InstNo, unsigned OpNo, MachineInstr &MI, + const FuncValueTable *MLiveOuts, const FuncValueTable *MLiveIns) { + // Various optimizations may have happened to the value during codegen, + // recorded in the value substitution table. Apply any substitutions to + // the instruction / operand number in this DBG_INSTR_REF, and collect + // any subregister extractions performed during optimization. + const MachineFunction &MF = *MI.getParent()->getParent(); + + // Create dummy substitution with Src set, for lookup. + auto SoughtSub = + MachineFunction::DebugSubstitution({InstNo, OpNo}, {0, 0}, 0); + + SmallVector<unsigned, 4> SeenSubregs; + auto LowerBoundIt = llvm::lower_bound(MF.DebugValueSubstitutions, SoughtSub); + while (LowerBoundIt != MF.DebugValueSubstitutions.end() && + LowerBoundIt->Src == SoughtSub.Src) { + std::tie(InstNo, OpNo) = LowerBoundIt->Dest; + SoughtSub.Src = LowerBoundIt->Dest; + if (unsigned Subreg = LowerBoundIt->Subreg) + SeenSubregs.push_back(Subreg); + LowerBoundIt = llvm::lower_bound(MF.DebugValueSubstitutions, SoughtSub); + } + + // Default machine value number is <None> -- if no instruction defines + // the corresponding value, it must have been optimized out. + std::optional<ValueIDNum> NewID; + + // Try to lookup the instruction number, and find the machine value number + // that it defines. It could be an instruction, or a PHI. + auto InstrIt = DebugInstrNumToInstr.find(InstNo); + auto PHIIt = llvm::lower_bound(DebugPHINumToValue, InstNo); + if (InstrIt != DebugInstrNumToInstr.end()) { + const MachineInstr &TargetInstr = *InstrIt->second.first; + uint64_t BlockNo = TargetInstr.getParent()->getNumber(); + + // Pick out the designated operand. It might be a memory reference, if + // a register def was folded into a stack store. + if (OpNo == MachineFunction::DebugOperandMemNumber && + TargetInstr.hasOneMemOperand()) { + std::optional<LocIdx> L = findLocationForMemOperand(TargetInstr); + if (L) + NewID = ValueIDNum(BlockNo, InstrIt->second.second, *L); + } else if (OpNo != MachineFunction::DebugOperandMemNumber) { + // Permit the debug-info to be completely wrong: identifying a nonexistant + // operand, or one that is not a register definition, means something + // unexpected happened during optimisation. Broken debug-info, however, + // shouldn't crash the compiler -- instead leave the variable value as + // None, which will make it appear "optimised out". + if (OpNo < TargetInstr.getNumOperands()) { + const MachineOperand &MO = TargetInstr.getOperand(OpNo); + + if (MO.isReg() && MO.isDef() && MO.getReg()) { + unsigned LocID = MTracker->getLocID(MO.getReg()); + LocIdx L = MTracker->LocIDToLocIdx[LocID]; + NewID = ValueIDNum(BlockNo, InstrIt->second.second, L); + } + } + + if (!NewID) { + LLVM_DEBUG( + { dbgs() << "Seen instruction reference to illegal operand\n"; }); + } + } + // else: NewID is left as None. + } else if (PHIIt != DebugPHINumToValue.end() && PHIIt->InstrNum == InstNo) { + // It's actually a PHI value. Which value it is might not be obvious, use + // the resolver helper to find out. + assert(MLiveOuts && MLiveIns); + NewID = resolveDbgPHIs(*MI.getParent()->getParent(), *MLiveOuts, *MLiveIns, + MI, InstNo); + } + + // Apply any subregister extractions, in reverse. We might have seen code + // like this: + // CALL64 @foo, implicit-def $rax + // %0:gr64 = COPY $rax + // %1:gr32 = COPY %0.sub_32bit + // %2:gr16 = COPY %1.sub_16bit + // %3:gr8 = COPY %2.sub_8bit + // In which case each copy would have been recorded as a substitution with + // a subregister qualifier. Apply those qualifiers now. + if (NewID && !SeenSubregs.empty()) { + unsigned Offset = 0; + unsigned Size = 0; + + // Look at each subregister that we passed through, and progressively + // narrow in, accumulating any offsets that occur. Substitutions should + // only ever be the same or narrower width than what they read from; + // iterate in reverse order so that we go from wide to small. + for (unsigned Subreg : reverse(SeenSubregs)) { + unsigned ThisSize = TRI->getSubRegIdxSize(Subreg); + unsigned ThisOffset = TRI->getSubRegIdxOffset(Subreg); + Offset += ThisOffset; + Size = (Size == 0) ? ThisSize : std::min(Size, ThisSize); + } + + // If that worked, look for an appropriate subregister with the register + // where the define happens. Don't look at values that were defined during + // a stack write: we can't currently express register locations within + // spills. + LocIdx L = NewID->getLoc(); + if (NewID && !MTracker->isSpill(L)) { + // Find the register class for the register where this def happened. + // FIXME: no index for this? + Register Reg = MTracker->LocIdxToLocID[L]; + const TargetRegisterClass *TRC = nullptr; + for (const auto *TRCI : TRI->regclasses()) + if (TRCI->contains(Reg)) + TRC = TRCI; + assert(TRC && "Couldn't find target register class?"); + + // If the register we have isn't the right size or in the right place, + // Try to find a subregister inside it. + unsigned MainRegSize = TRI->getRegSizeInBits(*TRC); + if (Size != MainRegSize || Offset) { + // Enumerate all subregisters, searching. + Register NewReg = 0; + for (MCPhysReg SR : TRI->subregs(Reg)) { + unsigned Subreg = TRI->getSubRegIndex(Reg, SR); + unsigned SubregSize = TRI->getSubRegIdxSize(Subreg); + unsigned SubregOffset = TRI->getSubRegIdxOffset(Subreg); + if (SubregSize == Size && SubregOffset == Offset) { + NewReg = SR; + break; + } + } + + // If we didn't find anything: there's no way to express our value. + if (!NewReg) { + NewID = std::nullopt; + } else { + // Re-state the value as being defined within the subregister + // that we found. + LocIdx NewLoc = MTracker->lookupOrTrackRegister(NewReg); + NewID = ValueIDNum(NewID->getBlock(), NewID->getInst(), NewLoc); + } + } + } else { + // If we can't handle subregisters, unset the new value. + NewID = std::nullopt; + } + } + + return NewID; +} + +bool InstrRefBasedLDV::transferDebugInstrRef(MachineInstr &MI, + const FuncValueTable *MLiveOuts, + const FuncValueTable *MLiveIns) { + if (!MI.isDebugRef()) + return false; + + // Only handle this instruction when we are building the variable value + // transfer function. + if (!VTracker && !TTracker) + return false; + + const DILocalVariable *Var = MI.getDebugVariable(); + const DIExpression *Expr = MI.getDebugExpression(); + const DILocation *DebugLoc = MI.getDebugLoc(); + const DILocation *InlinedAt = DebugLoc->getInlinedAt(); + assert(Var->isValidLocationForIntrinsic(DebugLoc) && + "Expected inlined-at fields to agree"); + + DebugVariable V(Var, Expr, InlinedAt); + + auto *Scope = LS.findLexicalScope(MI.getDebugLoc().get()); + if (Scope == nullptr) + return true; // Handled by doing nothing. This variable is never in scope. + + SmallVector<DbgOpID> DbgOpIDs; + for (const MachineOperand &MO : MI.debug_operands()) { + if (!MO.isDbgInstrRef()) { + assert(!MO.isReg() && "DBG_INSTR_REF should not contain registers"); + DbgOpID ConstOpID = DbgOpStore.insert(DbgOp(MO)); + DbgOpIDs.push_back(ConstOpID); + continue; + } + + unsigned InstNo = MO.getInstrRefInstrIndex(); + unsigned OpNo = MO.getInstrRefOpIndex(); + + // Default machine value number is <None> -- if no instruction defines + // the corresponding value, it must have been optimized out. + std::optional<ValueIDNum> NewID = + getValueForInstrRef(InstNo, OpNo, MI, MLiveOuts, MLiveIns); + // We have a value number or std::nullopt. If the latter, then kill the + // entire debug value. + if (NewID) { + DbgOpIDs.push_back(DbgOpStore.insert(*NewID)); + } else { + DbgOpIDs.clear(); + break; + } + } + + // We have a DbgOpID for every value or for none. Tell the variable value + // tracker about it. The rest of this LiveDebugValues implementation acts + // exactly the same for DBG_INSTR_REFs as DBG_VALUEs (just, the former can + // refer to values that aren't immediately available). + DbgValueProperties Properties(Expr, false, true); + if (VTracker) + VTracker->defVar(MI, Properties, DbgOpIDs); + + // If we're on the final pass through the function, decompose this INSTR_REF + // into a plain DBG_VALUE. + if (!TTracker) + return true; + + // Fetch the concrete DbgOps now, as we will need them later. + SmallVector<DbgOp> DbgOps; + for (DbgOpID OpID : DbgOpIDs) { + DbgOps.push_back(DbgOpStore.find(OpID)); + } + + // Pick a location for the machine value number, if such a location exists. + // (This information could be stored in TransferTracker to make it faster). + SmallDenseMap<ValueIDNum, TransferTracker::LocationAndQuality> FoundLocs; + SmallVector<ValueIDNum> ValuesToFind; + // Initialized the preferred-location map with illegal locations, to be + // filled in later. + for (const DbgOp &Op : DbgOps) { + if (!Op.IsConst) + if (FoundLocs.insert({Op.ID, TransferTracker::LocationAndQuality()}) + .second) + ValuesToFind.push_back(Op.ID); + } + + for (auto Location : MTracker->locations()) { + LocIdx CurL = Location.Idx; + ValueIDNum ID = MTracker->readMLoc(CurL); + auto ValueToFindIt = find(ValuesToFind, ID); + if (ValueToFindIt == ValuesToFind.end()) + continue; + auto &Previous = FoundLocs.find(ID)->second; + // If this is the first location with that value, pick it. Otherwise, + // consider whether it's a "longer term" location. + std::optional<TransferTracker::LocationQuality> ReplacementQuality = + TTracker->getLocQualityIfBetter(CurL, Previous.getQuality()); + if (ReplacementQuality) { + Previous = TransferTracker::LocationAndQuality(CurL, *ReplacementQuality); + if (Previous.isBest()) { + ValuesToFind.erase(ValueToFindIt); + if (ValuesToFind.empty()) + break; + } + } + } + + SmallVector<ResolvedDbgOp> NewLocs; + for (const DbgOp &DbgOp : DbgOps) { + if (DbgOp.IsConst) { + NewLocs.push_back(DbgOp.MO); + continue; + } + LocIdx FoundLoc = FoundLocs.find(DbgOp.ID)->second.getLoc(); + if (FoundLoc.isIllegal()) { + NewLocs.clear(); + break; + } + NewLocs.push_back(FoundLoc); + } + // Tell transfer tracker that the variable value has changed. + TTracker->redefVar(MI, Properties, NewLocs); + + // If there were values with no location, but all such values are defined in + // later instructions in this block, this is a block-local use-before-def. + if (!DbgOps.empty() && NewLocs.empty()) { + bool IsValidUseBeforeDef = true; + uint64_t LastUseBeforeDef = 0; + for (auto ValueLoc : FoundLocs) { + ValueIDNum NewID = ValueLoc.first; + LocIdx FoundLoc = ValueLoc.second.getLoc(); + if (!FoundLoc.isIllegal()) + continue; + // If we have an value with no location that is not defined in this block, + // then it has no location in this block, leaving this value undefined. + if (NewID.getBlock() != CurBB || NewID.getInst() <= CurInst) { + IsValidUseBeforeDef = false; + break; + } + LastUseBeforeDef = std::max(LastUseBeforeDef, NewID.getInst()); + } + if (IsValidUseBeforeDef) { + TTracker->addUseBeforeDef(V, {MI.getDebugExpression(), false, true}, + DbgOps, LastUseBeforeDef); + } + } + + // Produce a DBG_VALUE representing what this DBG_INSTR_REF meant. + // This DBG_VALUE is potentially a $noreg / undefined location, if + // FoundLoc is illegal. + // (XXX -- could morph the DBG_INSTR_REF in the future). + MachineInstr *DbgMI = MTracker->emitLoc(NewLocs, V, Properties); + + TTracker->PendingDbgValues.push_back(DbgMI); + TTracker->flushDbgValues(MI.getIterator(), nullptr); + return true; +} + +bool InstrRefBasedLDV::transferDebugPHI(MachineInstr &MI) { + if (!MI.isDebugPHI()) + return false; + + // Analyse these only when solving the machine value location problem. + if (VTracker || TTracker) + return true; + + // First operand is the value location, either a stack slot or register. + // Second is the debug instruction number of the original PHI. + const MachineOperand &MO = MI.getOperand(0); + unsigned InstrNum = MI.getOperand(1).getImm(); + + auto EmitBadPHI = [this, &MI, InstrNum]() -> bool { + // Helper lambda to do any accounting when we fail to find a location for + // a DBG_PHI. This can happen if DBG_PHIs are malformed, or refer to a + // dead stack slot, for example. + // Record a DebugPHIRecord with an empty value + location. + DebugPHINumToValue.push_back( + {InstrNum, MI.getParent(), std::nullopt, std::nullopt}); + return true; + }; + + if (MO.isReg() && MO.getReg()) { + // The value is whatever's currently in the register. Read and record it, + // to be analysed later. + Register Reg = MO.getReg(); + ValueIDNum Num = MTracker->readReg(Reg); + auto PHIRec = DebugPHIRecord( + {InstrNum, MI.getParent(), Num, MTracker->lookupOrTrackRegister(Reg)}); + DebugPHINumToValue.push_back(PHIRec); + + // Ensure this register is tracked. + for (MCRegAliasIterator RAI(MO.getReg(), TRI, true); RAI.isValid(); ++RAI) + MTracker->lookupOrTrackRegister(*RAI); + } else if (MO.isFI()) { + // The value is whatever's in this stack slot. + unsigned FI = MO.getIndex(); + + // If the stack slot is dead, then this was optimized away. + // FIXME: stack slot colouring should account for slots that get merged. + if (MFI->isDeadObjectIndex(FI)) + return EmitBadPHI(); + + // Identify this spill slot, ensure it's tracked. + Register Base; + StackOffset Offs = TFI->getFrameIndexReference(*MI.getMF(), FI, Base); + SpillLoc SL = {Base, Offs}; + std::optional<SpillLocationNo> SpillNo = MTracker->getOrTrackSpillLoc(SL); + + // We might be able to find a value, but have chosen not to, to avoid + // tracking too much stack information. + if (!SpillNo) + return EmitBadPHI(); + + // Any stack location DBG_PHI should have an associate bit-size. + assert(MI.getNumOperands() == 3 && "Stack DBG_PHI with no size?"); + unsigned slotBitSize = MI.getOperand(2).getImm(); + + unsigned SpillID = MTracker->getLocID(*SpillNo, {slotBitSize, 0}); + LocIdx SpillLoc = MTracker->getSpillMLoc(SpillID); + ValueIDNum Result = MTracker->readMLoc(SpillLoc); + + // Record this DBG_PHI for later analysis. + auto DbgPHI = DebugPHIRecord({InstrNum, MI.getParent(), Result, SpillLoc}); + DebugPHINumToValue.push_back(DbgPHI); + } else { + // Else: if the operand is neither a legal register or a stack slot, then + // we're being fed illegal debug-info. Record an empty PHI, so that any + // debug users trying to read this number will be put off trying to + // interpret the value. + LLVM_DEBUG( + { dbgs() << "Seen DBG_PHI with unrecognised operand format\n"; }); + return EmitBadPHI(); + } + + return true; +} + +void InstrRefBasedLDV::transferRegisterDef(MachineInstr &MI) { + // Meta Instructions do not affect the debug liveness of any register they + // define. + if (MI.isImplicitDef()) { + // Except when there's an implicit def, and the location it's defining has + // no value number. The whole point of an implicit def is to announce that + // the register is live, without be specific about it's value. So define + // a value if there isn't one already. + ValueIDNum Num = MTracker->readReg(MI.getOperand(0).getReg()); + // Has a legitimate value -> ignore the implicit def. + if (Num.getLoc() != 0) + return; + // Otherwise, def it here. + } else if (MI.isMetaInstruction()) + return; + + // We always ignore SP defines on call instructions, they don't actually + // change the value of the stack pointer... except for win32's _chkstk. This + // is rare: filter quickly for the common case (no stack adjustments, not a + // call, etc). If it is a call that modifies SP, recognise the SP register + // defs. + bool CallChangesSP = false; + if (AdjustsStackInCalls && MI.isCall() && MI.getOperand(0).isSymbol() && + !strcmp(MI.getOperand(0).getSymbolName(), StackProbeSymbolName.data())) + CallChangesSP = true; + + // Test whether we should ignore a def of this register due to it being part + // of the stack pointer. + auto IgnoreSPAlias = [this, &MI, CallChangesSP](Register R) -> bool { + if (CallChangesSP) + return false; + return MI.isCall() && MTracker->SPAliases.count(R); + }; + + // Find the regs killed by MI, and find regmasks of preserved regs. + // Max out the number of statically allocated elements in `DeadRegs`, as this + // prevents fallback to std::set::count() operations. + SmallSet<uint32_t, 32> DeadRegs; + SmallVector<const uint32_t *, 4> RegMasks; + SmallVector<const MachineOperand *, 4> RegMaskPtrs; + for (const MachineOperand &MO : MI.operands()) { + // Determine whether the operand is a register def. + if (MO.isReg() && MO.isDef() && MO.getReg() && MO.getReg().isPhysical() && + !IgnoreSPAlias(MO.getReg())) { + // Remove ranges of all aliased registers. + for (MCRegAliasIterator RAI(MO.getReg(), TRI, true); RAI.isValid(); ++RAI) + // FIXME: Can we break out of this loop early if no insertion occurs? + DeadRegs.insert(*RAI); + } else if (MO.isRegMask()) { + RegMasks.push_back(MO.getRegMask()); + RegMaskPtrs.push_back(&MO); + } + } + + // Tell MLocTracker about all definitions, of regmasks and otherwise. + for (uint32_t DeadReg : DeadRegs) + MTracker->defReg(DeadReg, CurBB, CurInst); + + for (const auto *MO : RegMaskPtrs) + MTracker->writeRegMask(MO, CurBB, CurInst); + + // If this instruction writes to a spill slot, def that slot. + if (hasFoldedStackStore(MI)) { + if (std::optional<SpillLocationNo> SpillNo = + extractSpillBaseRegAndOffset(MI)) { + for (unsigned int I = 0; I < MTracker->NumSlotIdxes; ++I) { + unsigned SpillID = MTracker->getSpillIDWithIdx(*SpillNo, I); + LocIdx L = MTracker->getSpillMLoc(SpillID); + MTracker->setMLoc(L, ValueIDNum(CurBB, CurInst, L)); + } + } + } + + if (!TTracker) + return; + + // When committing variable values to locations: tell transfer tracker that + // we've clobbered things. It may be able to recover the variable from a + // different location. + + // Inform TTracker about any direct clobbers. + for (uint32_t DeadReg : DeadRegs) { + LocIdx Loc = MTracker->lookupOrTrackRegister(DeadReg); + TTracker->clobberMloc(Loc, MI.getIterator(), false); + } + + // Look for any clobbers performed by a register mask. Only test locations + // that are actually being tracked. + if (!RegMaskPtrs.empty()) { + for (auto L : MTracker->locations()) { + // Stack locations can't be clobbered by regmasks. + if (MTracker->isSpill(L.Idx)) + continue; + + Register Reg = MTracker->LocIdxToLocID[L.Idx]; + if (IgnoreSPAlias(Reg)) + continue; + + for (const auto *MO : RegMaskPtrs) + if (MO->clobbersPhysReg(Reg)) + TTracker->clobberMloc(L.Idx, MI.getIterator(), false); + } + } + + // Tell TTracker about any folded stack store. + if (hasFoldedStackStore(MI)) { + if (std::optional<SpillLocationNo> SpillNo = + extractSpillBaseRegAndOffset(MI)) { + for (unsigned int I = 0; I < MTracker->NumSlotIdxes; ++I) { + unsigned SpillID = MTracker->getSpillIDWithIdx(*SpillNo, I); + LocIdx L = MTracker->getSpillMLoc(SpillID); + TTracker->clobberMloc(L, MI.getIterator(), true); + } + } + } +} + +void InstrRefBasedLDV::performCopy(Register SrcRegNum, Register DstRegNum) { + // In all circumstances, re-def all aliases. It's definitely a new value now. + for (MCRegAliasIterator RAI(DstRegNum, TRI, true); RAI.isValid(); ++RAI) + MTracker->defReg(*RAI, CurBB, CurInst); + + ValueIDNum SrcValue = MTracker->readReg(SrcRegNum); + MTracker->setReg(DstRegNum, SrcValue); + + // Copy subregisters from one location to another. + for (MCSubRegIndexIterator SRI(SrcRegNum, TRI); SRI.isValid(); ++SRI) { + unsigned SrcSubReg = SRI.getSubReg(); + unsigned SubRegIdx = SRI.getSubRegIndex(); + unsigned DstSubReg = TRI->getSubReg(DstRegNum, SubRegIdx); + if (!DstSubReg) + continue; + + // Do copy. There are two matching subregisters, the source value should + // have been def'd when the super-reg was, the latter might not be tracked + // yet. + // This will force SrcSubReg to be tracked, if it isn't yet. Will read + // mphi values if it wasn't tracked. + LocIdx SrcL = MTracker->lookupOrTrackRegister(SrcSubReg); + LocIdx DstL = MTracker->lookupOrTrackRegister(DstSubReg); + (void)SrcL; + (void)DstL; + ValueIDNum CpyValue = MTracker->readReg(SrcSubReg); + + MTracker->setReg(DstSubReg, CpyValue); + } +} + +std::optional<SpillLocationNo> +InstrRefBasedLDV::isSpillInstruction(const MachineInstr &MI, + MachineFunction *MF) { + // TODO: Handle multiple stores folded into one. + if (!MI.hasOneMemOperand()) + return std::nullopt; + + // Reject any memory operand that's aliased -- we can't guarantee its value. + auto MMOI = MI.memoperands_begin(); + const PseudoSourceValue *PVal = (*MMOI)->getPseudoValue(); + if (PVal->isAliased(MFI)) + return std::nullopt; + + if (!MI.getSpillSize(TII) && !MI.getFoldedSpillSize(TII)) + return std::nullopt; // This is not a spill instruction, since no valid size + // was returned from either function. + + return extractSpillBaseRegAndOffset(MI); +} + +bool InstrRefBasedLDV::isLocationSpill(const MachineInstr &MI, + MachineFunction *MF, unsigned &Reg) { + if (!isSpillInstruction(MI, MF)) + return false; + + int FI; + Reg = TII->isStoreToStackSlotPostFE(MI, FI); + return Reg != 0; +} + +std::optional<SpillLocationNo> +InstrRefBasedLDV::isRestoreInstruction(const MachineInstr &MI, + MachineFunction *MF, unsigned &Reg) { + if (!MI.hasOneMemOperand()) + return std::nullopt; + + // FIXME: Handle folded restore instructions with more than one memory + // operand. + if (MI.getRestoreSize(TII)) { + Reg = MI.getOperand(0).getReg(); + return extractSpillBaseRegAndOffset(MI); + } + return std::nullopt; +} + +bool InstrRefBasedLDV::transferSpillOrRestoreInst(MachineInstr &MI) { + // XXX -- it's too difficult to implement VarLocBasedImpl's stack location + // limitations under the new model. Therefore, when comparing them, compare + // versions that don't attempt spills or restores at all. + if (EmulateOldLDV) + return false; + + // Strictly limit ourselves to plain loads and stores, not all instructions + // that can access the stack. + int DummyFI = -1; + if (!TII->isStoreToStackSlotPostFE(MI, DummyFI) && + !TII->isLoadFromStackSlotPostFE(MI, DummyFI)) + return false; + + MachineFunction *MF = MI.getMF(); + unsigned Reg; + + LLVM_DEBUG(dbgs() << "Examining instruction: "; MI.dump();); + + // Strictly limit ourselves to plain loads and stores, not all instructions + // that can access the stack. + int FIDummy; + if (!TII->isStoreToStackSlotPostFE(MI, FIDummy) && + !TII->isLoadFromStackSlotPostFE(MI, FIDummy)) + return false; + + // First, if there are any DBG_VALUEs pointing at a spill slot that is + // written to, terminate that variable location. The value in memory + // will have changed. DbgEntityHistoryCalculator doesn't try to detect this. + if (std::optional<SpillLocationNo> Loc = isSpillInstruction(MI, MF)) { + // Un-set this location and clobber, so that earlier locations don't + // continue past this store. + for (unsigned SlotIdx = 0; SlotIdx < MTracker->NumSlotIdxes; ++SlotIdx) { + unsigned SpillID = MTracker->getSpillIDWithIdx(*Loc, SlotIdx); + std::optional<LocIdx> MLoc = MTracker->getSpillMLoc(SpillID); + if (!MLoc) + continue; + + // We need to over-write the stack slot with something (here, a def at + // this instruction) to ensure no values are preserved in this stack slot + // after the spill. It also prevents TTracker from trying to recover the + // location and re-installing it in the same place. + ValueIDNum Def(CurBB, CurInst, *MLoc); + MTracker->setMLoc(*MLoc, Def); + if (TTracker) + TTracker->clobberMloc(*MLoc, MI.getIterator()); + } + } + + // Try to recognise spill and restore instructions that may transfer a value. + if (isLocationSpill(MI, MF, Reg)) { + // isLocationSpill returning true should guarantee we can extract a + // location. + SpillLocationNo Loc = *extractSpillBaseRegAndOffset(MI); + + auto DoTransfer = [&](Register SrcReg, unsigned SpillID) { + auto ReadValue = MTracker->readReg(SrcReg); + LocIdx DstLoc = MTracker->getSpillMLoc(SpillID); + MTracker->setMLoc(DstLoc, ReadValue); + + if (TTracker) { + LocIdx SrcLoc = MTracker->getRegMLoc(SrcReg); + TTracker->transferMlocs(SrcLoc, DstLoc, MI.getIterator()); + } + }; + + // Then, transfer subreg bits. + for (MCPhysReg SR : TRI->subregs(Reg)) { + // Ensure this reg is tracked, + (void)MTracker->lookupOrTrackRegister(SR); + unsigned SubregIdx = TRI->getSubRegIndex(Reg, SR); + unsigned SpillID = MTracker->getLocID(Loc, SubregIdx); + DoTransfer(SR, SpillID); + } + + // Directly lookup size of main source reg, and transfer. + unsigned Size = TRI->getRegSizeInBits(Reg, *MRI); + unsigned SpillID = MTracker->getLocID(Loc, {Size, 0}); + DoTransfer(Reg, SpillID); + } else { + std::optional<SpillLocationNo> Loc = isRestoreInstruction(MI, MF, Reg); + if (!Loc) + return false; + + // Assumption: we're reading from the base of the stack slot, not some + // offset into it. It seems very unlikely LLVM would ever generate + // restores where this wasn't true. This then becomes a question of what + // subregisters in the destination register line up with positions in the + // stack slot. + + // Def all registers that alias the destination. + for (MCRegAliasIterator RAI(Reg, TRI, true); RAI.isValid(); ++RAI) + MTracker->defReg(*RAI, CurBB, CurInst); + + // Now find subregisters within the destination register, and load values + // from stack slot positions. + auto DoTransfer = [&](Register DestReg, unsigned SpillID) { + LocIdx SrcIdx = MTracker->getSpillMLoc(SpillID); + auto ReadValue = MTracker->readMLoc(SrcIdx); + MTracker->setReg(DestReg, ReadValue); + }; + + for (MCPhysReg SR : TRI->subregs(Reg)) { + unsigned Subreg = TRI->getSubRegIndex(Reg, SR); + unsigned SpillID = MTracker->getLocID(*Loc, Subreg); + DoTransfer(SR, SpillID); + } + + // Directly look up this registers slot idx by size, and transfer. + unsigned Size = TRI->getRegSizeInBits(Reg, *MRI); + unsigned SpillID = MTracker->getLocID(*Loc, {Size, 0}); + DoTransfer(Reg, SpillID); + } + return true; +} + +bool InstrRefBasedLDV::transferRegisterCopy(MachineInstr &MI) { + auto DestSrc = TII->isCopyLikeInstr(MI); + if (!DestSrc) + return false; + + const MachineOperand *DestRegOp = DestSrc->Destination; + const MachineOperand *SrcRegOp = DestSrc->Source; + + Register SrcReg = SrcRegOp->getReg(); + Register DestReg = DestRegOp->getReg(); + + // Ignore identity copies. Yep, these make it as far as LiveDebugValues. + if (SrcReg == DestReg) + return true; + + // For emulating VarLocBasedImpl: + // We want to recognize instructions where destination register is callee + // saved register. If register that could be clobbered by the call is + // included, there would be a great chance that it is going to be clobbered + // soon. It is more likely that previous register, which is callee saved, is + // going to stay unclobbered longer, even if it is killed. + // + // For InstrRefBasedImpl, we can track multiple locations per value, so + // ignore this condition. + if (EmulateOldLDV && !isCalleeSavedReg(DestReg)) + return false; + + // InstrRefBasedImpl only followed killing copies. + if (EmulateOldLDV && !SrcRegOp->isKill()) + return false; + + // Before we update MTracker, remember which values were present in each of + // the locations about to be overwritten, so that we can recover any + // potentially clobbered variables. + DenseMap<LocIdx, ValueIDNum> ClobberedLocs; + if (TTracker) { + for (MCRegAliasIterator RAI(DestReg, TRI, true); RAI.isValid(); ++RAI) { + LocIdx ClobberedLoc = MTracker->getRegMLoc(*RAI); + auto MLocIt = TTracker->ActiveMLocs.find(ClobberedLoc); + // If ActiveMLocs isn't tracking this location or there are no variables + // using it, don't bother remembering. + if (MLocIt == TTracker->ActiveMLocs.end() || MLocIt->second.empty()) + continue; + ValueIDNum Value = MTracker->readReg(*RAI); + ClobberedLocs[ClobberedLoc] = Value; + } + } + + // Copy MTracker info, including subregs if available. + InstrRefBasedLDV::performCopy(SrcReg, DestReg); + + // The copy might have clobbered variables based on the destination register. + // Tell TTracker about it, passing the old ValueIDNum to search for + // alternative locations (or else terminating those variables). + if (TTracker) { + for (auto LocVal : ClobberedLocs) { + TTracker->clobberMloc(LocVal.first, LocVal.second, MI.getIterator(), false); + } + } + + // Only produce a transfer of DBG_VALUE within a block where old LDV + // would have. We might make use of the additional value tracking in some + // other way, later. + if (TTracker && isCalleeSavedReg(DestReg) && SrcRegOp->isKill()) + TTracker->transferMlocs(MTracker->getRegMLoc(SrcReg), + MTracker->getRegMLoc(DestReg), MI.getIterator()); + + // VarLocBasedImpl would quit tracking the old location after copying. + if (EmulateOldLDV && SrcReg != DestReg) + MTracker->defReg(SrcReg, CurBB, CurInst); + + return true; +} + +/// Accumulate a mapping between each DILocalVariable fragment and other +/// fragments of that DILocalVariable which overlap. This reduces work during +/// the data-flow stage from "Find any overlapping fragments" to "Check if the +/// known-to-overlap fragments are present". +/// \param MI A previously unprocessed debug instruction to analyze for +/// fragment usage. +void InstrRefBasedLDV::accumulateFragmentMap(MachineInstr &MI) { + assert(MI.isDebugValueLike()); + DebugVariable MIVar(MI.getDebugVariable(), MI.getDebugExpression(), + MI.getDebugLoc()->getInlinedAt()); + FragmentInfo ThisFragment = MIVar.getFragmentOrDefault(); + + // If this is the first sighting of this variable, then we are guaranteed + // there are currently no overlapping fragments either. Initialize the set + // of seen fragments, record no overlaps for the current one, and return. + auto SeenIt = SeenFragments.find(MIVar.getVariable()); + if (SeenIt == SeenFragments.end()) { + SmallSet<FragmentInfo, 4> OneFragment; + OneFragment.insert(ThisFragment); + SeenFragments.insert({MIVar.getVariable(), OneFragment}); + + OverlapFragments.insert({{MIVar.getVariable(), ThisFragment}, {}}); + return; + } + + // If this particular Variable/Fragment pair already exists in the overlap + // map, it has already been accounted for. + auto IsInOLapMap = + OverlapFragments.insert({{MIVar.getVariable(), ThisFragment}, {}}); + if (!IsInOLapMap.second) + return; + + auto &ThisFragmentsOverlaps = IsInOLapMap.first->second; + auto &AllSeenFragments = SeenIt->second; + + // Otherwise, examine all other seen fragments for this variable, with "this" + // fragment being a previously unseen fragment. Record any pair of + // overlapping fragments. + for (const auto &ASeenFragment : AllSeenFragments) { + // Does this previously seen fragment overlap? + if (DIExpression::fragmentsOverlap(ThisFragment, ASeenFragment)) { + // Yes: Mark the current fragment as being overlapped. + ThisFragmentsOverlaps.push_back(ASeenFragment); + // Mark the previously seen fragment as being overlapped by the current + // one. + auto ASeenFragmentsOverlaps = + OverlapFragments.find({MIVar.getVariable(), ASeenFragment}); + assert(ASeenFragmentsOverlaps != OverlapFragments.end() && + "Previously seen var fragment has no vector of overlaps"); + ASeenFragmentsOverlaps->second.push_back(ThisFragment); + } + } + + AllSeenFragments.insert(ThisFragment); +} + +void InstrRefBasedLDV::process(MachineInstr &MI, + const FuncValueTable *MLiveOuts, + const FuncValueTable *MLiveIns) { + // Try to interpret an MI as a debug or transfer instruction. Only if it's + // none of these should we interpret it's register defs as new value + // definitions. + if (transferDebugValue(MI)) + return; + if (transferDebugInstrRef(MI, MLiveOuts, MLiveIns)) + return; + if (transferDebugPHI(MI)) + return; + if (transferRegisterCopy(MI)) + return; + if (transferSpillOrRestoreInst(MI)) + return; + transferRegisterDef(MI); +} + +void InstrRefBasedLDV::produceMLocTransferFunction( + MachineFunction &MF, SmallVectorImpl<MLocTransferMap> &MLocTransfer, + unsigned MaxNumBlocks) { + // Because we try to optimize around register mask operands by ignoring regs + // that aren't currently tracked, we set up something ugly for later: RegMask + // operands that are seen earlier than the first use of a register, still need + // to clobber that register in the transfer function. But this information + // isn't actively recorded. Instead, we track each RegMask used in each block, + // and accumulated the clobbered but untracked registers in each block into + // the following bitvector. Later, if new values are tracked, we can add + // appropriate clobbers. + SmallVector<BitVector, 32> BlockMasks; + BlockMasks.resize(MaxNumBlocks); + + // Reserve one bit per register for the masks described above. + unsigned BVWords = MachineOperand::getRegMaskSize(TRI->getNumRegs()); + for (auto &BV : BlockMasks) + BV.resize(TRI->getNumRegs(), true); + + // Step through all instructions and inhale the transfer function. + for (auto &MBB : MF) { + // Object fields that are read by trackers to know where we are in the + // function. + CurBB = MBB.getNumber(); + CurInst = 1; + + // Set all machine locations to a PHI value. For transfer function + // production only, this signifies the live-in value to the block. + MTracker->reset(); + MTracker->setMPhis(CurBB); + + // Step through each instruction in this block. + for (auto &MI : MBB) { + // Pass in an empty unique_ptr for the value tables when accumulating the + // machine transfer function. + process(MI, nullptr, nullptr); + + // Also accumulate fragment map. + if (MI.isDebugValueLike()) + accumulateFragmentMap(MI); + + // Create a map from the instruction number (if present) to the + // MachineInstr and its position. + if (uint64_t InstrNo = MI.peekDebugInstrNum()) { + auto InstrAndPos = std::make_pair(&MI, CurInst); + auto InsertResult = + DebugInstrNumToInstr.insert(std::make_pair(InstrNo, InstrAndPos)); + + // There should never be duplicate instruction numbers. + assert(InsertResult.second); + (void)InsertResult; + } + + ++CurInst; + } + + // Produce the transfer function, a map of machine location to new value. If + // any machine location has the live-in phi value from the start of the + // block, it's live-through and doesn't need recording in the transfer + // function. + for (auto Location : MTracker->locations()) { + LocIdx Idx = Location.Idx; + ValueIDNum &P = Location.Value; + if (P.isPHI() && P.getLoc() == Idx.asU64()) + continue; + + // Insert-or-update. + auto &TransferMap = MLocTransfer[CurBB]; + auto Result = TransferMap.insert(std::make_pair(Idx.asU64(), P)); + if (!Result.second) + Result.first->second = P; + } + + // Accumulate any bitmask operands into the clobbered reg mask for this + // block. + for (auto &P : MTracker->Masks) { + BlockMasks[CurBB].clearBitsNotInMask(P.first->getRegMask(), BVWords); + } + } + + // Compute a bitvector of all the registers that are tracked in this block. + BitVector UsedRegs(TRI->getNumRegs()); + for (auto Location : MTracker->locations()) { + unsigned ID = MTracker->LocIdxToLocID[Location.Idx]; + // Ignore stack slots, and aliases of the stack pointer. + if (ID >= TRI->getNumRegs() || MTracker->SPAliases.count(ID)) + continue; + UsedRegs.set(ID); + } + + // Check that any regmask-clobber of a register that gets tracked, is not + // live-through in the transfer function. It needs to be clobbered at the + // very least. + for (unsigned int I = 0; I < MaxNumBlocks; ++I) { + BitVector &BV = BlockMasks[I]; + BV.flip(); + BV &= UsedRegs; + // This produces all the bits that we clobber, but also use. Check that + // they're all clobbered or at least set in the designated transfer + // elem. + for (unsigned Bit : BV.set_bits()) { + unsigned ID = MTracker->getLocID(Bit); + LocIdx Idx = MTracker->LocIDToLocIdx[ID]; + auto &TransferMap = MLocTransfer[I]; + + // Install a value representing the fact that this location is effectively + // written to in this block. As there's no reserved value, instead use + // a value number that is never generated. Pick the value number for the + // first instruction in the block, def'ing this location, which we know + // this block never used anyway. + ValueIDNum NotGeneratedNum = ValueIDNum(I, 1, Idx); + auto Result = + TransferMap.insert(std::make_pair(Idx.asU64(), NotGeneratedNum)); + if (!Result.second) { + ValueIDNum &ValueID = Result.first->second; + if (ValueID.getBlock() == I && ValueID.isPHI()) + // It was left as live-through. Set it to clobbered. + ValueID = NotGeneratedNum; + } + } + } +} + +bool InstrRefBasedLDV::mlocJoin( + MachineBasicBlock &MBB, SmallPtrSet<const MachineBasicBlock *, 16> &Visited, + FuncValueTable &OutLocs, ValueTable &InLocs) { + LLVM_DEBUG(dbgs() << "join MBB: " << MBB.getNumber() << "\n"); + bool Changed = false; + + // Handle value-propagation when control flow merges on entry to a block. For + // any location without a PHI already placed, the location has the same value + // as its predecessors. If a PHI is placed, test to see whether it's now a + // redundant PHI that we can eliminate. + + SmallVector<const MachineBasicBlock *, 8> BlockOrders; + for (auto *Pred : MBB.predecessors()) + BlockOrders.push_back(Pred); + + // Visit predecessors in RPOT order. + auto Cmp = [&](const MachineBasicBlock *A, const MachineBasicBlock *B) { + return BBToOrder.find(A)->second < BBToOrder.find(B)->second; + }; + llvm::sort(BlockOrders, Cmp); + + // Skip entry block. + if (BlockOrders.size() == 0) + return false; + + // Step through all machine locations, look at each predecessor and test + // whether we can eliminate redundant PHIs. + for (auto Location : MTracker->locations()) { + LocIdx Idx = Location.Idx; + + // Pick out the first predecessors live-out value for this location. It's + // guaranteed to not be a backedge, as we order by RPO. + ValueIDNum FirstVal = OutLocs[*BlockOrders[0]][Idx.asU64()]; + + // If we've already eliminated a PHI here, do no further checking, just + // propagate the first live-in value into this block. + if (InLocs[Idx.asU64()] != ValueIDNum(MBB.getNumber(), 0, Idx)) { + if (InLocs[Idx.asU64()] != FirstVal) { + InLocs[Idx.asU64()] = FirstVal; + Changed |= true; + } + continue; + } + + // We're now examining a PHI to see whether it's un-necessary. Loop around + // the other live-in values and test whether they're all the same. + bool Disagree = false; + for (unsigned int I = 1; I < BlockOrders.size(); ++I) { + const MachineBasicBlock *PredMBB = BlockOrders[I]; + const ValueIDNum &PredLiveOut = OutLocs[*PredMBB][Idx.asU64()]; + + // Incoming values agree, continue trying to eliminate this PHI. + if (FirstVal == PredLiveOut) + continue; + + // We can also accept a PHI value that feeds back into itself. + if (PredLiveOut == ValueIDNum(MBB.getNumber(), 0, Idx)) + continue; + + // Live-out of a predecessor disagrees with the first predecessor. + Disagree = true; + } + + // No disagreement? No PHI. Otherwise, leave the PHI in live-ins. + if (!Disagree) { + InLocs[Idx.asU64()] = FirstVal; + Changed |= true; + } + } + + // TODO: Reimplement NumInserted and NumRemoved. + return Changed; +} + +void InstrRefBasedLDV::findStackIndexInterference( + SmallVectorImpl<unsigned> &Slots) { + // We could spend a bit of time finding the exact, minimal, set of stack + // indexes that interfere with each other, much like reg units. Or, we can + // rely on the fact that: + // * The smallest / lowest index will interfere with everything at zero + // offset, which will be the largest set of registers, + // * Most indexes with non-zero offset will end up being interference units + // anyway. + // So just pick those out and return them. + + // We can rely on a single-byte stack index existing already, because we + // initialize them in MLocTracker. + auto It = MTracker->StackSlotIdxes.find({8, 0}); + assert(It != MTracker->StackSlotIdxes.end()); + Slots.push_back(It->second); + + // Find anything that has a non-zero offset and add that too. + for (auto &Pair : MTracker->StackSlotIdxes) { + // Is offset zero? If so, ignore. + if (!Pair.first.second) + continue; + Slots.push_back(Pair.second); + } +} + +void InstrRefBasedLDV::placeMLocPHIs( + MachineFunction &MF, SmallPtrSetImpl<MachineBasicBlock *> &AllBlocks, + FuncValueTable &MInLocs, SmallVectorImpl<MLocTransferMap> &MLocTransfer) { + SmallVector<unsigned, 4> StackUnits; + findStackIndexInterference(StackUnits); + + // To avoid repeatedly running the PHI placement algorithm, leverage the + // fact that a def of register MUST also def its register units. Find the + // units for registers, place PHIs for them, and then replicate them for + // aliasing registers. Some inputs that are never def'd (DBG_PHIs of + // arguments) don't lead to register units being tracked, just place PHIs for + // those registers directly. Stack slots have their own form of "unit", + // store them to one side. + SmallSet<Register, 32> RegUnitsToPHIUp; + SmallSet<LocIdx, 32> NormalLocsToPHI; + SmallSet<SpillLocationNo, 32> StackSlots; + for (auto Location : MTracker->locations()) { + LocIdx L = Location.Idx; + if (MTracker->isSpill(L)) { + StackSlots.insert(MTracker->locIDToSpill(MTracker->LocIdxToLocID[L])); + continue; + } + + Register R = MTracker->LocIdxToLocID[L]; + SmallSet<Register, 8> FoundRegUnits; + bool AnyIllegal = false; + for (MCRegUnit Unit : TRI->regunits(R.asMCReg())) { + for (MCRegUnitRootIterator URoot(Unit, TRI); URoot.isValid(); ++URoot) { + if (!MTracker->isRegisterTracked(*URoot)) { + // Not all roots were loaded into the tracking map: this register + // isn't actually def'd anywhere, we only read from it. Generate PHIs + // for this reg, but don't iterate units. + AnyIllegal = true; + } else { + FoundRegUnits.insert(*URoot); + } + } + } + + if (AnyIllegal) { + NormalLocsToPHI.insert(L); + continue; + } + + RegUnitsToPHIUp.insert(FoundRegUnits.begin(), FoundRegUnits.end()); + } + + // Lambda to fetch PHIs for a given location, and write into the PHIBlocks + // collection. + SmallVector<MachineBasicBlock *, 32> PHIBlocks; + auto CollectPHIsForLoc = [&](LocIdx L) { + // Collect the set of defs. + SmallPtrSet<MachineBasicBlock *, 32> DefBlocks; + for (unsigned int I = 0; I < OrderToBB.size(); ++I) { + MachineBasicBlock *MBB = OrderToBB[I]; + const auto &TransferFunc = MLocTransfer[MBB->getNumber()]; + if (TransferFunc.contains(L)) + DefBlocks.insert(MBB); + } + + // The entry block defs the location too: it's the live-in / argument value. + // Only insert if there are other defs though; everything is trivially live + // through otherwise. + if (!DefBlocks.empty()) + DefBlocks.insert(&*MF.begin()); + + // Ask the SSA construction algorithm where we should put PHIs. Clear + // anything that might have been hanging around from earlier. + PHIBlocks.clear(); + BlockPHIPlacement(AllBlocks, DefBlocks, PHIBlocks); + }; + + auto InstallPHIsAtLoc = [&PHIBlocks, &MInLocs](LocIdx L) { + for (const MachineBasicBlock *MBB : PHIBlocks) + MInLocs[*MBB][L.asU64()] = ValueIDNum(MBB->getNumber(), 0, L); + }; + + // For locations with no reg units, just place PHIs. + for (LocIdx L : NormalLocsToPHI) { + CollectPHIsForLoc(L); + // Install those PHI values into the live-in value array. + InstallPHIsAtLoc(L); + } + + // For stack slots, calculate PHIs for the equivalent of the units, then + // install for each index. + for (SpillLocationNo Slot : StackSlots) { + for (unsigned Idx : StackUnits) { + unsigned SpillID = MTracker->getSpillIDWithIdx(Slot, Idx); + LocIdx L = MTracker->getSpillMLoc(SpillID); + CollectPHIsForLoc(L); + InstallPHIsAtLoc(L); + + // Find anything that aliases this stack index, install PHIs for it too. + unsigned Size, Offset; + std::tie(Size, Offset) = MTracker->StackIdxesToPos[Idx]; + for (auto &Pair : MTracker->StackSlotIdxes) { + unsigned ThisSize, ThisOffset; + std::tie(ThisSize, ThisOffset) = Pair.first; + if (ThisSize + ThisOffset <= Offset || Size + Offset <= ThisOffset) + continue; + + unsigned ThisID = MTracker->getSpillIDWithIdx(Slot, Pair.second); + LocIdx ThisL = MTracker->getSpillMLoc(ThisID); + InstallPHIsAtLoc(ThisL); + } + } + } + + // For reg units, place PHIs, and then place them for any aliasing registers. + for (Register R : RegUnitsToPHIUp) { + LocIdx L = MTracker->lookupOrTrackRegister(R); + CollectPHIsForLoc(L); + + // Install those PHI values into the live-in value array. + InstallPHIsAtLoc(L); + + // Now find aliases and install PHIs for those. + for (MCRegAliasIterator RAI(R, TRI, true); RAI.isValid(); ++RAI) { + // Super-registers that are "above" the largest register read/written by + // the function will alias, but will not be tracked. + if (!MTracker->isRegisterTracked(*RAI)) + continue; + + LocIdx AliasLoc = MTracker->lookupOrTrackRegister(*RAI); + InstallPHIsAtLoc(AliasLoc); + } + } +} + +void InstrRefBasedLDV::buildMLocValueMap( + MachineFunction &MF, FuncValueTable &MInLocs, FuncValueTable &MOutLocs, + SmallVectorImpl<MLocTransferMap> &MLocTransfer) { + std::priority_queue<unsigned int, std::vector<unsigned int>, + std::greater<unsigned int>> + Worklist, Pending; + + // We track what is on the current and pending worklist to avoid inserting + // the same thing twice. We could avoid this with a custom priority queue, + // but this is probably not worth it. + SmallPtrSet<MachineBasicBlock *, 16> OnPending, OnWorklist; + + // Initialize worklist with every block to be visited. Also produce list of + // all blocks. + SmallPtrSet<MachineBasicBlock *, 32> AllBlocks; + for (unsigned int I = 0; I < BBToOrder.size(); ++I) { + Worklist.push(I); + OnWorklist.insert(OrderToBB[I]); + AllBlocks.insert(OrderToBB[I]); + } + + // Initialize entry block to PHIs. These represent arguments. + for (auto Location : MTracker->locations()) + MInLocs.tableForEntryMBB()[Location.Idx.asU64()] = + ValueIDNum(0, 0, Location.Idx); + + MTracker->reset(); + + // Start by placing PHIs, using the usual SSA constructor algorithm. Consider + // any machine-location that isn't live-through a block to be def'd in that + // block. + placeMLocPHIs(MF, AllBlocks, MInLocs, MLocTransfer); + + // Propagate values to eliminate redundant PHIs. At the same time, this + // produces the table of Block x Location => Value for the entry to each + // block. + // The kind of PHIs we can eliminate are, for example, where one path in a + // conditional spills and restores a register, and the register still has + // the same value once control flow joins, unbeknowns to the PHI placement + // code. Propagating values allows us to identify such un-necessary PHIs and + // remove them. + SmallPtrSet<const MachineBasicBlock *, 16> Visited; + while (!Worklist.empty() || !Pending.empty()) { + // Vector for storing the evaluated block transfer function. + SmallVector<std::pair<LocIdx, ValueIDNum>, 32> ToRemap; + + while (!Worklist.empty()) { + MachineBasicBlock *MBB = OrderToBB[Worklist.top()]; + CurBB = MBB->getNumber(); + Worklist.pop(); + + // Join the values in all predecessor blocks. + bool InLocsChanged; + InLocsChanged = mlocJoin(*MBB, Visited, MOutLocs, MInLocs[*MBB]); + InLocsChanged |= Visited.insert(MBB).second; + + // Don't examine transfer function if we've visited this loc at least + // once, and inlocs haven't changed. + if (!InLocsChanged) + continue; + + // Load the current set of live-ins into MLocTracker. + MTracker->loadFromArray(MInLocs[*MBB], CurBB); + + // Each element of the transfer function can be a new def, or a read of + // a live-in value. Evaluate each element, and store to "ToRemap". + ToRemap.clear(); + for (auto &P : MLocTransfer[CurBB]) { + if (P.second.getBlock() == CurBB && P.second.isPHI()) { + // This is a movement of whatever was live in. Read it. + ValueIDNum NewID = MTracker->readMLoc(P.second.getLoc()); + ToRemap.push_back(std::make_pair(P.first, NewID)); + } else { + // It's a def. Just set it. + assert(P.second.getBlock() == CurBB); + ToRemap.push_back(std::make_pair(P.first, P.second)); + } + } + + // Commit the transfer function changes into mloc tracker, which + // transforms the contents of the MLocTracker into the live-outs. + for (auto &P : ToRemap) + MTracker->setMLoc(P.first, P.second); + + // Now copy out-locs from mloc tracker into out-loc vector, checking + // whether changes have occurred. These changes can have come from both + // the transfer function, and mlocJoin. + bool OLChanged = false; + for (auto Location : MTracker->locations()) { + OLChanged |= MOutLocs[*MBB][Location.Idx.asU64()] != Location.Value; + MOutLocs[*MBB][Location.Idx.asU64()] = Location.Value; + } + + MTracker->reset(); + + // No need to examine successors again if out-locs didn't change. + if (!OLChanged) + continue; + + // All successors should be visited: put any back-edges on the pending + // list for the next pass-through, and any other successors to be + // visited this pass, if they're not going to be already. + for (auto *s : MBB->successors()) { + // Does branching to this successor represent a back-edge? + if (BBToOrder[s] > BBToOrder[MBB]) { + // No: visit it during this dataflow iteration. + if (OnWorklist.insert(s).second) + Worklist.push(BBToOrder[s]); + } else { + // Yes: visit it on the next iteration. + if (OnPending.insert(s).second) + Pending.push(BBToOrder[s]); + } + } + } + + Worklist.swap(Pending); + std::swap(OnPending, OnWorklist); + OnPending.clear(); + // At this point, pending must be empty, since it was just the empty + // worklist + assert(Pending.empty() && "Pending should be empty"); + } + + // Once all the live-ins don't change on mlocJoin(), we've eliminated all + // redundant PHIs. +} + +void InstrRefBasedLDV::BlockPHIPlacement( + const SmallPtrSetImpl<MachineBasicBlock *> &AllBlocks, + const SmallPtrSetImpl<MachineBasicBlock *> &DefBlocks, + SmallVectorImpl<MachineBasicBlock *> &PHIBlocks) { + // Apply IDF calculator to the designated set of location defs, storing + // required PHIs into PHIBlocks. Uses the dominator tree stored in the + // InstrRefBasedLDV object. + IDFCalculatorBase<MachineBasicBlock, false> IDF(DomTree->getBase()); + + IDF.setLiveInBlocks(AllBlocks); + IDF.setDefiningBlocks(DefBlocks); + IDF.calculate(PHIBlocks); +} + +bool InstrRefBasedLDV::pickVPHILoc( + SmallVectorImpl<DbgOpID> &OutValues, const MachineBasicBlock &MBB, + const LiveIdxT &LiveOuts, FuncValueTable &MOutLocs, + const SmallVectorImpl<const MachineBasicBlock *> &BlockOrders) { + + // No predecessors means no PHIs. + if (BlockOrders.empty()) + return false; + + // All the location operands that do not already agree need to be joined, + // track the indices of each such location operand here. + SmallDenseSet<unsigned> LocOpsToJoin; + + auto FirstValueIt = LiveOuts.find(BlockOrders[0]); + if (FirstValueIt == LiveOuts.end()) + return false; + const DbgValue &FirstValue = *FirstValueIt->second; + + for (const auto p : BlockOrders) { + auto OutValIt = LiveOuts.find(p); + if (OutValIt == LiveOuts.end()) + // If we have a predecessor not in scope, we'll never find a PHI position. + return false; + const DbgValue &OutVal = *OutValIt->second; + + // No-values cannot have locations we can join on. + if (OutVal.Kind == DbgValue::NoVal) + return false; + + // For unjoined VPHIs where we don't know the location, we definitely + // can't find a join loc unless the VPHI is a backedge. + if (OutVal.isUnjoinedPHI() && OutVal.BlockNo != MBB.getNumber()) + return false; + + if (!FirstValue.Properties.isJoinable(OutVal.Properties)) + return false; + + for (unsigned Idx = 0; Idx < FirstValue.getLocationOpCount(); ++Idx) { + // An unjoined PHI has no defined locations, and so a shared location must + // be found for every operand. + if (OutVal.isUnjoinedPHI()) { + LocOpsToJoin.insert(Idx); + continue; + } + DbgOpID FirstValOp = FirstValue.getDbgOpID(Idx); + DbgOpID OutValOp = OutVal.getDbgOpID(Idx); + if (FirstValOp != OutValOp) { + // We can never join constant ops - the ops must either both be equal + // constant ops or non-const ops. + if (FirstValOp.isConst() || OutValOp.isConst()) + return false; + else + LocOpsToJoin.insert(Idx); + } + } + } + + SmallVector<DbgOpID> NewDbgOps; + + for (unsigned Idx = 0; Idx < FirstValue.getLocationOpCount(); ++Idx) { + // If this op doesn't need to be joined because the values agree, use that + // already-agreed value. + if (!LocOpsToJoin.contains(Idx)) { + NewDbgOps.push_back(FirstValue.getDbgOpID(Idx)); + continue; + } + + std::optional<ValueIDNum> JoinedOpLoc = + pickOperandPHILoc(Idx, MBB, LiveOuts, MOutLocs, BlockOrders); + + if (!JoinedOpLoc) + return false; + + NewDbgOps.push_back(DbgOpStore.insert(*JoinedOpLoc)); + } + + OutValues.append(NewDbgOps); + return true; +} + +std::optional<ValueIDNum> InstrRefBasedLDV::pickOperandPHILoc( + unsigned DbgOpIdx, const MachineBasicBlock &MBB, const LiveIdxT &LiveOuts, + FuncValueTable &MOutLocs, + const SmallVectorImpl<const MachineBasicBlock *> &BlockOrders) { + + // Collect a set of locations from predecessor where its live-out value can + // be found. + SmallVector<SmallVector<LocIdx, 4>, 8> Locs; + unsigned NumLocs = MTracker->getNumLocs(); + + for (const auto p : BlockOrders) { + auto OutValIt = LiveOuts.find(p); + assert(OutValIt != LiveOuts.end()); + const DbgValue &OutVal = *OutValIt->second; + DbgOpID OutValOpID = OutVal.getDbgOpID(DbgOpIdx); + DbgOp OutValOp = DbgOpStore.find(OutValOpID); + assert(!OutValOp.IsConst); + + // Create new empty vector of locations. + Locs.resize(Locs.size() + 1); + + // If the live-in value is a def, find the locations where that value is + // present. Do the same for VPHIs where we know the VPHI value. + if (OutVal.Kind == DbgValue::Def || + (OutVal.Kind == DbgValue::VPHI && OutVal.BlockNo != MBB.getNumber() && + !OutValOp.isUndef())) { + ValueIDNum ValToLookFor = OutValOp.ID; + // Search the live-outs of the predecessor for the specified value. + for (unsigned int I = 0; I < NumLocs; ++I) { + if (MOutLocs[*p][I] == ValToLookFor) + Locs.back().push_back(LocIdx(I)); + } + } else { + assert(OutVal.Kind == DbgValue::VPHI); + // Otherwise: this is a VPHI on a backedge feeding back into itself, i.e. + // a value that's live-through the whole loop. (It has to be a backedge, + // because a block can't dominate itself). We can accept as a PHI location + // any location where the other predecessors agree, _and_ the machine + // locations feed back into themselves. Therefore, add all self-looping + // machine-value PHI locations. + for (unsigned int I = 0; I < NumLocs; ++I) { + ValueIDNum MPHI(MBB.getNumber(), 0, LocIdx(I)); + if (MOutLocs[*p][I] == MPHI) + Locs.back().push_back(LocIdx(I)); + } + } + } + // We should have found locations for all predecessors, or returned. + assert(Locs.size() == BlockOrders.size()); + + // Starting with the first set of locations, take the intersection with + // subsequent sets. + SmallVector<LocIdx, 4> CandidateLocs = Locs[0]; + for (unsigned int I = 1; I < Locs.size(); ++I) { + auto &LocVec = Locs[I]; + SmallVector<LocIdx, 4> NewCandidates; + std::set_intersection(CandidateLocs.begin(), CandidateLocs.end(), + LocVec.begin(), LocVec.end(), std::inserter(NewCandidates, NewCandidates.begin())); + CandidateLocs = NewCandidates; + } + if (CandidateLocs.empty()) + return std::nullopt; + + // We now have a set of LocIdxes that contain the right output value in + // each of the predecessors. Pick the lowest; if there's a register loc, + // that'll be it. + LocIdx L = *CandidateLocs.begin(); + + // Return a PHI-value-number for the found location. + ValueIDNum PHIVal = {(unsigned)MBB.getNumber(), 0, L}; + return PHIVal; +} + +bool InstrRefBasedLDV::vlocJoin( + MachineBasicBlock &MBB, LiveIdxT &VLOCOutLocs, + SmallPtrSet<const MachineBasicBlock *, 8> &BlocksToExplore, + DbgValue &LiveIn) { + LLVM_DEBUG(dbgs() << "join MBB: " << MBB.getNumber() << "\n"); + bool Changed = false; + + // Order predecessors by RPOT order, for exploring them in that order. + SmallVector<MachineBasicBlock *, 8> BlockOrders(MBB.predecessors()); + + auto Cmp = [&](MachineBasicBlock *A, MachineBasicBlock *B) { + return BBToOrder[A] < BBToOrder[B]; + }; + + llvm::sort(BlockOrders, Cmp); + + unsigned CurBlockRPONum = BBToOrder[&MBB]; + + // Collect all the incoming DbgValues for this variable, from predecessor + // live-out values. + SmallVector<InValueT, 8> Values; + bool Bail = false; + int BackEdgesStart = 0; + for (auto *p : BlockOrders) { + // If the predecessor isn't in scope / to be explored, we'll never be + // able to join any locations. + if (!BlocksToExplore.contains(p)) { + Bail = true; + break; + } + + // All Live-outs will have been initialized. + DbgValue &OutLoc = *VLOCOutLocs.find(p)->second; + + // Keep track of where back-edges begin in the Values vector. Relies on + // BlockOrders being sorted by RPO. + unsigned ThisBBRPONum = BBToOrder[p]; + if (ThisBBRPONum < CurBlockRPONum) + ++BackEdgesStart; + + Values.push_back(std::make_pair(p, &OutLoc)); + } + + // If there were no values, or one of the predecessors couldn't have a + // value, then give up immediately. It's not safe to produce a live-in + // value. Leave as whatever it was before. + if (Bail || Values.size() == 0) + return false; + + // All (non-entry) blocks have at least one non-backedge predecessor. + // Pick the variable value from the first of these, to compare against + // all others. + const DbgValue &FirstVal = *Values[0].second; + + // If the old live-in value is not a PHI then either a) no PHI is needed + // here, or b) we eliminated the PHI that was here. If so, we can just + // propagate in the first parent's incoming value. + if (LiveIn.Kind != DbgValue::VPHI || LiveIn.BlockNo != MBB.getNumber()) { + Changed = LiveIn != FirstVal; + if (Changed) + LiveIn = FirstVal; + return Changed; + } + + // Scan for variable values that can never be resolved: if they have + // different DIExpressions, different indirectness, or are mixed constants / + // non-constants. + for (const auto &V : Values) { + if (!V.second->Properties.isJoinable(FirstVal.Properties)) + return false; + if (V.second->Kind == DbgValue::NoVal) + return false; + if (!V.second->hasJoinableLocOps(FirstVal)) + return false; + } + + // Try to eliminate this PHI. Do the incoming values all agree? + bool Disagree = false; + for (auto &V : Values) { + if (*V.second == FirstVal) + continue; // No disagreement. + + // If both values are not equal but have equal non-empty IDs then they refer + // to the same value from different sources (e.g. one is VPHI and the other + // is Def), which does not cause disagreement. + if (V.second->hasIdenticalValidLocOps(FirstVal)) + continue; + + // Eliminate if a backedge feeds a VPHI back into itself. + if (V.second->Kind == DbgValue::VPHI && + V.second->BlockNo == MBB.getNumber() && + // Is this a backedge? + std::distance(Values.begin(), &V) >= BackEdgesStart) + continue; + + Disagree = true; + } + + // No disagreement -> live-through value. + if (!Disagree) { + Changed = LiveIn != FirstVal; + if (Changed) + LiveIn = FirstVal; + return Changed; + } else { + // Otherwise use a VPHI. + DbgValue VPHI(MBB.getNumber(), FirstVal.Properties, DbgValue::VPHI); + Changed = LiveIn != VPHI; + if (Changed) + LiveIn = VPHI; + return Changed; + } +} + +void InstrRefBasedLDV::getBlocksForScope( + const DILocation *DILoc, + SmallPtrSetImpl<const MachineBasicBlock *> &BlocksToExplore, + const SmallPtrSetImpl<MachineBasicBlock *> &AssignBlocks) { + // Get the set of "normal" in-lexical-scope blocks. + LS.getMachineBasicBlocks(DILoc, BlocksToExplore); + + // VarLoc LiveDebugValues tracks variable locations that are defined in + // blocks not in scope. This is something we could legitimately ignore, but + // lets allow it for now for the sake of coverage. + BlocksToExplore.insert(AssignBlocks.begin(), AssignBlocks.end()); + + // Storage for artificial blocks we intend to add to BlocksToExplore. + DenseSet<const MachineBasicBlock *> ToAdd; + + // To avoid needlessly dropping large volumes of variable locations, propagate + // variables through aritifical blocks, i.e. those that don't have any + // instructions in scope at all. To accurately replicate VarLoc + // LiveDebugValues, this means exploring all artificial successors too. + // Perform a depth-first-search to enumerate those blocks. + for (const auto *MBB : BlocksToExplore) { + // Depth-first-search state: each node is a block and which successor + // we're currently exploring. + SmallVector<std::pair<const MachineBasicBlock *, + MachineBasicBlock::const_succ_iterator>, + 8> + DFS; + + // Find any artificial successors not already tracked. + for (auto *succ : MBB->successors()) { + if (BlocksToExplore.count(succ)) + continue; + if (!ArtificialBlocks.count(succ)) + continue; + ToAdd.insert(succ); + DFS.push_back({succ, succ->succ_begin()}); + } + + // Search all those blocks, depth first. + while (!DFS.empty()) { + const MachineBasicBlock *CurBB = DFS.back().first; + MachineBasicBlock::const_succ_iterator &CurSucc = DFS.back().second; + // Walk back if we've explored this blocks successors to the end. + if (CurSucc == CurBB->succ_end()) { + DFS.pop_back(); + continue; + } + + // If the current successor is artificial and unexplored, descend into + // it. + if (!ToAdd.count(*CurSucc) && ArtificialBlocks.count(*CurSucc)) { + ToAdd.insert(*CurSucc); + DFS.push_back({*CurSucc, (*CurSucc)->succ_begin()}); + continue; + } + + ++CurSucc; + } + }; + + BlocksToExplore.insert(ToAdd.begin(), ToAdd.end()); +} + +void InstrRefBasedLDV::buildVLocValueMap( + const DILocation *DILoc, const SmallSet<DebugVariable, 4> &VarsWeCareAbout, + SmallPtrSetImpl<MachineBasicBlock *> &AssignBlocks, LiveInsT &Output, + FuncValueTable &MOutLocs, FuncValueTable &MInLocs, + SmallVectorImpl<VLocTracker> &AllTheVLocs) { + // This method is much like buildMLocValueMap: but focuses on a single + // LexicalScope at a time. Pick out a set of blocks and variables that are + // to have their value assignments solved, then run our dataflow algorithm + // until a fixedpoint is reached. + std::priority_queue<unsigned int, std::vector<unsigned int>, + std::greater<unsigned int>> + Worklist, Pending; + SmallPtrSet<MachineBasicBlock *, 16> OnWorklist, OnPending; + + // The set of blocks we'll be examining. + SmallPtrSet<const MachineBasicBlock *, 8> BlocksToExplore; + + // The order in which to examine them (RPO). + SmallVector<MachineBasicBlock *, 8> BlockOrders; + + // RPO ordering function. + auto Cmp = [&](MachineBasicBlock *A, MachineBasicBlock *B) { + return BBToOrder[A] < BBToOrder[B]; + }; + + getBlocksForScope(DILoc, BlocksToExplore, AssignBlocks); + + // Single block scope: not interesting! No propagation at all. Note that + // this could probably go above ArtificialBlocks without damage, but + // that then produces output differences from original-live-debug-values, + // which propagates from a single block into many artificial ones. + if (BlocksToExplore.size() == 1) + return; + + // Convert a const set to a non-const set. LexicalScopes + // getMachineBasicBlocks returns const MBB pointers, IDF wants mutable ones. + // (Neither of them mutate anything). + SmallPtrSet<MachineBasicBlock *, 8> MutBlocksToExplore; + for (const auto *MBB : BlocksToExplore) + MutBlocksToExplore.insert(const_cast<MachineBasicBlock *>(MBB)); + + // Picks out relevants blocks RPO order and sort them. + for (const auto *MBB : BlocksToExplore) + BlockOrders.push_back(const_cast<MachineBasicBlock *>(MBB)); + + llvm::sort(BlockOrders, Cmp); + unsigned NumBlocks = BlockOrders.size(); + + // Allocate some vectors for storing the live ins and live outs. Large. + SmallVector<DbgValue, 32> LiveIns, LiveOuts; + LiveIns.reserve(NumBlocks); + LiveOuts.reserve(NumBlocks); + + // Initialize all values to start as NoVals. This signifies "it's live + // through, but we don't know what it is". + DbgValueProperties EmptyProperties(EmptyExpr, false, false); + for (unsigned int I = 0; I < NumBlocks; ++I) { + DbgValue EmptyDbgValue(I, EmptyProperties, DbgValue::NoVal); + LiveIns.push_back(EmptyDbgValue); + LiveOuts.push_back(EmptyDbgValue); + } + + // Produce by-MBB indexes of live-in/live-outs, to ease lookup within + // vlocJoin. + LiveIdxT LiveOutIdx, LiveInIdx; + LiveOutIdx.reserve(NumBlocks); + LiveInIdx.reserve(NumBlocks); + for (unsigned I = 0; I < NumBlocks; ++I) { + LiveOutIdx[BlockOrders[I]] = &LiveOuts[I]; + LiveInIdx[BlockOrders[I]] = &LiveIns[I]; + } + + // Loop over each variable and place PHIs for it, then propagate values + // between blocks. This keeps the locality of working on one lexical scope at + // at time, but avoids re-processing variable values because some other + // variable has been assigned. + for (const auto &Var : VarsWeCareAbout) { + // Re-initialize live-ins and live-outs, to clear the remains of previous + // variables live-ins / live-outs. + for (unsigned int I = 0; I < NumBlocks; ++I) { + DbgValue EmptyDbgValue(I, EmptyProperties, DbgValue::NoVal); + LiveIns[I] = EmptyDbgValue; + LiveOuts[I] = EmptyDbgValue; + } + + // Place PHIs for variable values, using the LLVM IDF calculator. + // Collect the set of blocks where variables are def'd. + SmallPtrSet<MachineBasicBlock *, 32> DefBlocks; + for (const MachineBasicBlock *ExpMBB : BlocksToExplore) { + auto &TransferFunc = AllTheVLocs[ExpMBB->getNumber()].Vars; + if (TransferFunc.contains(Var)) + DefBlocks.insert(const_cast<MachineBasicBlock *>(ExpMBB)); + } + + SmallVector<MachineBasicBlock *, 32> PHIBlocks; + + // Request the set of PHIs we should insert for this variable. If there's + // only one value definition, things are very simple. + if (DefBlocks.size() == 1) { + placePHIsForSingleVarDefinition(MutBlocksToExplore, *DefBlocks.begin(), + AllTheVLocs, Var, Output); + continue; + } + + // Otherwise: we need to place PHIs through SSA and propagate values. + BlockPHIPlacement(MutBlocksToExplore, DefBlocks, PHIBlocks); + + // Insert PHIs into the per-block live-in tables for this variable. + for (MachineBasicBlock *PHIMBB : PHIBlocks) { + unsigned BlockNo = PHIMBB->getNumber(); + DbgValue *LiveIn = LiveInIdx[PHIMBB]; + *LiveIn = DbgValue(BlockNo, EmptyProperties, DbgValue::VPHI); + } + + for (auto *MBB : BlockOrders) { + Worklist.push(BBToOrder[MBB]); + OnWorklist.insert(MBB); + } + + // Iterate over all the blocks we selected, propagating the variables value. + // This loop does two things: + // * Eliminates un-necessary VPHIs in vlocJoin, + // * Evaluates the blocks transfer function (i.e. variable assignments) and + // stores the result to the blocks live-outs. + // Always evaluate the transfer function on the first iteration, and when + // the live-ins change thereafter. + bool FirstTrip = true; + while (!Worklist.empty() || !Pending.empty()) { + while (!Worklist.empty()) { + auto *MBB = OrderToBB[Worklist.top()]; + CurBB = MBB->getNumber(); + Worklist.pop(); + + auto LiveInsIt = LiveInIdx.find(MBB); + assert(LiveInsIt != LiveInIdx.end()); + DbgValue *LiveIn = LiveInsIt->second; + + // Join values from predecessors. Updates LiveInIdx, and writes output + // into JoinedInLocs. + bool InLocsChanged = + vlocJoin(*MBB, LiveOutIdx, BlocksToExplore, *LiveIn); + + SmallVector<const MachineBasicBlock *, 8> Preds; + for (const auto *Pred : MBB->predecessors()) + Preds.push_back(Pred); + + // If this block's live-in value is a VPHI, try to pick a machine-value + // for it. This makes the machine-value available and propagated + // through all blocks by the time value propagation finishes. We can't + // do this any earlier as it needs to read the block live-outs. + if (LiveIn->Kind == DbgValue::VPHI && LiveIn->BlockNo == (int)CurBB) { + // There's a small possibility that on a preceeding path, a VPHI is + // eliminated and transitions from VPHI-with-location to + // live-through-value. As a result, the selected location of any VPHI + // might change, so we need to re-compute it on each iteration. + SmallVector<DbgOpID> JoinedOps; + + if (pickVPHILoc(JoinedOps, *MBB, LiveOutIdx, MOutLocs, Preds)) { + bool NewLocPicked = !equal(LiveIn->getDbgOpIDs(), JoinedOps); + InLocsChanged |= NewLocPicked; + if (NewLocPicked) + LiveIn->setDbgOpIDs(JoinedOps); + } + } + + if (!InLocsChanged && !FirstTrip) + continue; + + DbgValue *LiveOut = LiveOutIdx[MBB]; + bool OLChanged = false; + + // Do transfer function. + auto &VTracker = AllTheVLocs[MBB->getNumber()]; + auto TransferIt = VTracker.Vars.find(Var); + if (TransferIt != VTracker.Vars.end()) { + // Erase on empty transfer (DBG_VALUE $noreg). + if (TransferIt->second.Kind == DbgValue::Undef) { + DbgValue NewVal(MBB->getNumber(), EmptyProperties, DbgValue::NoVal); + if (*LiveOut != NewVal) { + *LiveOut = NewVal; + OLChanged = true; + } + } else { + // Insert new variable value; or overwrite. + if (*LiveOut != TransferIt->second) { + *LiveOut = TransferIt->second; + OLChanged = true; + } + } + } else { + // Just copy live-ins to live-outs, for anything not transferred. + if (*LiveOut != *LiveIn) { + *LiveOut = *LiveIn; + OLChanged = true; + } + } + + // If no live-out value changed, there's no need to explore further. + if (!OLChanged) + continue; + + // We should visit all successors. Ensure we'll visit any non-backedge + // successors during this dataflow iteration; book backedge successors + // to be visited next time around. + for (auto *s : MBB->successors()) { + // Ignore out of scope / not-to-be-explored successors. + if (!LiveInIdx.contains(s)) + continue; + + if (BBToOrder[s] > BBToOrder[MBB]) { + if (OnWorklist.insert(s).second) + Worklist.push(BBToOrder[s]); + } else if (OnPending.insert(s).second && (FirstTrip || OLChanged)) { + Pending.push(BBToOrder[s]); + } + } + } + Worklist.swap(Pending); + std::swap(OnWorklist, OnPending); + OnPending.clear(); + assert(Pending.empty()); + FirstTrip = false; + } + + // Save live-ins to output vector. Ignore any that are still marked as being + // VPHIs with no location -- those are variables that we know the value of, + // but are not actually available in the register file. + for (auto *MBB : BlockOrders) { + DbgValue *BlockLiveIn = LiveInIdx[MBB]; + if (BlockLiveIn->Kind == DbgValue::NoVal) + continue; + if (BlockLiveIn->isUnjoinedPHI()) + continue; + if (BlockLiveIn->Kind == DbgValue::VPHI) + BlockLiveIn->Kind = DbgValue::Def; + assert(BlockLiveIn->Properties.DIExpr->getFragmentInfo() == + Var.getFragment() && "Fragment info missing during value prop"); + Output[MBB->getNumber()].push_back(std::make_pair(Var, *BlockLiveIn)); + } + } // Per-variable loop. + + BlockOrders.clear(); + BlocksToExplore.clear(); +} + +void InstrRefBasedLDV::placePHIsForSingleVarDefinition( + const SmallPtrSetImpl<MachineBasicBlock *> &InScopeBlocks, + MachineBasicBlock *AssignMBB, SmallVectorImpl<VLocTracker> &AllTheVLocs, + const DebugVariable &Var, LiveInsT &Output) { + // If there is a single definition of the variable, then working out it's + // value everywhere is very simple: it's every block dominated by the + // definition. At the dominance frontier, the usual algorithm would: + // * Place PHIs, + // * Propagate values into them, + // * Find there's no incoming variable value from the other incoming branches + // of the dominance frontier, + // * Specify there's no variable value in blocks past the frontier. + // This is a common case, hence it's worth special-casing it. + + // Pick out the variables value from the block transfer function. + VLocTracker &VLocs = AllTheVLocs[AssignMBB->getNumber()]; + auto ValueIt = VLocs.Vars.find(Var); + const DbgValue &Value = ValueIt->second; + + // If it's an explicit assignment of "undef", that means there is no location + // anyway, anywhere. + if (Value.Kind == DbgValue::Undef) + return; + + // Assign the variable value to entry to each dominated block that's in scope. + // Skip the definition block -- it's assigned the variable value in the middle + // of the block somewhere. + for (auto *ScopeBlock : InScopeBlocks) { + if (!DomTree->properlyDominates(AssignMBB, ScopeBlock)) + continue; + + Output[ScopeBlock->getNumber()].push_back({Var, Value}); + } + + // All blocks that aren't dominated have no live-in value, thus no variable + // value will be given to them. +} + +#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) +void InstrRefBasedLDV::dump_mloc_transfer( + const MLocTransferMap &mloc_transfer) const { + for (const auto &P : mloc_transfer) { + std::string foo = MTracker->LocIdxToName(P.first); + std::string bar = MTracker->IDAsString(P.second); + dbgs() << "Loc " << foo << " --> " << bar << "\n"; + } +} +#endif + +void InstrRefBasedLDV::initialSetup(MachineFunction &MF) { + // Build some useful data structures. + + LLVMContext &Context = MF.getFunction().getContext(); + EmptyExpr = DIExpression::get(Context, {}); + + auto hasNonArtificialLocation = [](const MachineInstr &MI) -> bool { + if (const DebugLoc &DL = MI.getDebugLoc()) + return DL.getLine() != 0; + return false; + }; + // Collect a set of all the artificial blocks. + for (auto &MBB : MF) + if (none_of(MBB.instrs(), hasNonArtificialLocation)) + ArtificialBlocks.insert(&MBB); + + // Compute mappings of block <=> RPO order. + ReversePostOrderTraversal<MachineFunction *> RPOT(&MF); + unsigned int RPONumber = 0; + auto processMBB = [&](MachineBasicBlock *MBB) { + OrderToBB[RPONumber] = MBB; + BBToOrder[MBB] = RPONumber; + BBNumToRPO[MBB->getNumber()] = RPONumber; + ++RPONumber; + }; + for (MachineBasicBlock *MBB : RPOT) + processMBB(MBB); + for (MachineBasicBlock &MBB : MF) + if (!BBToOrder.contains(&MBB)) + processMBB(&MBB); + + // Order value substitutions by their "source" operand pair, for quick lookup. + llvm::sort(MF.DebugValueSubstitutions); + +#ifdef EXPENSIVE_CHECKS + // As an expensive check, test whether there are any duplicate substitution + // sources in the collection. + if (MF.DebugValueSubstitutions.size() > 2) { + for (auto It = MF.DebugValueSubstitutions.begin(); + It != std::prev(MF.DebugValueSubstitutions.end()); ++It) { + assert(It->Src != std::next(It)->Src && "Duplicate variable location " + "substitution seen"); + } + } +#endif +} + +// Produce an "ejection map" for blocks, i.e., what's the highest-numbered +// lexical scope it's used in. When exploring in DFS order and we pass that +// scope, the block can be processed and any tracking information freed. +void InstrRefBasedLDV::makeDepthFirstEjectionMap( + SmallVectorImpl<unsigned> &EjectionMap, + const ScopeToDILocT &ScopeToDILocation, + ScopeToAssignBlocksT &ScopeToAssignBlocks) { + SmallPtrSet<const MachineBasicBlock *, 8> BlocksToExplore; + SmallVector<std::pair<LexicalScope *, ssize_t>, 4> WorkStack; + auto *TopScope = LS.getCurrentFunctionScope(); + + // Unlike lexical scope explorers, we explore in reverse order, to find the + // "last" lexical scope used for each block early. + WorkStack.push_back({TopScope, TopScope->getChildren().size() - 1}); + + while (!WorkStack.empty()) { + auto &ScopePosition = WorkStack.back(); + LexicalScope *WS = ScopePosition.first; + ssize_t ChildNum = ScopePosition.second--; + + const SmallVectorImpl<LexicalScope *> &Children = WS->getChildren(); + if (ChildNum >= 0) { + // If ChildNum is positive, there are remaining children to explore. + // Push the child and its children-count onto the stack. + auto &ChildScope = Children[ChildNum]; + WorkStack.push_back( + std::make_pair(ChildScope, ChildScope->getChildren().size() - 1)); + } else { + WorkStack.pop_back(); + + // We've explored all children and any later blocks: examine all blocks + // in our scope. If they haven't yet had an ejection number set, then + // this scope will be the last to use that block. + auto DILocationIt = ScopeToDILocation.find(WS); + if (DILocationIt != ScopeToDILocation.end()) { + getBlocksForScope(DILocationIt->second, BlocksToExplore, + ScopeToAssignBlocks.find(WS)->second); + for (const auto *MBB : BlocksToExplore) { + unsigned BBNum = MBB->getNumber(); + if (EjectionMap[BBNum] == 0) + EjectionMap[BBNum] = WS->getDFSOut(); + } + + BlocksToExplore.clear(); + } + } + } +} + +bool InstrRefBasedLDV::depthFirstVLocAndEmit( + unsigned MaxNumBlocks, const ScopeToDILocT &ScopeToDILocation, + const ScopeToVarsT &ScopeToVars, ScopeToAssignBlocksT &ScopeToAssignBlocks, + LiveInsT &Output, FuncValueTable &MOutLocs, FuncValueTable &MInLocs, + SmallVectorImpl<VLocTracker> &AllTheVLocs, MachineFunction &MF, + DenseMap<DebugVariable, unsigned> &AllVarsNumbering, + const TargetPassConfig &TPC) { + TTracker = new TransferTracker(TII, MTracker, MF, *TRI, CalleeSavedRegs, TPC); + unsigned NumLocs = MTracker->getNumLocs(); + VTracker = nullptr; + + // No scopes? No variable locations. + if (!LS.getCurrentFunctionScope()) + return false; + + // Build map from block number to the last scope that uses the block. + SmallVector<unsigned, 16> EjectionMap; + EjectionMap.resize(MaxNumBlocks, 0); + makeDepthFirstEjectionMap(EjectionMap, ScopeToDILocation, + ScopeToAssignBlocks); + + // Helper lambda for ejecting a block -- if nothing is going to use the block, + // we can translate the variable location information into DBG_VALUEs and then + // free all of InstrRefBasedLDV's data structures. + auto EjectBlock = [&](MachineBasicBlock &MBB) -> void { + unsigned BBNum = MBB.getNumber(); + AllTheVLocs[BBNum].clear(); + + // Prime the transfer-tracker, and then step through all the block + // instructions, installing transfers. + MTracker->reset(); + MTracker->loadFromArray(MInLocs[MBB], BBNum); + TTracker->loadInlocs(MBB, MInLocs[MBB], DbgOpStore, Output[BBNum], NumLocs); + + CurBB = BBNum; + CurInst = 1; + for (auto &MI : MBB) { + process(MI, &MOutLocs, &MInLocs); + TTracker->checkInstForNewValues(CurInst, MI.getIterator()); + ++CurInst; + } + + // Free machine-location tables for this block. + MInLocs.ejectTableForBlock(MBB); + MOutLocs.ejectTableForBlock(MBB); + // We don't need live-in variable values for this block either. + Output[BBNum].clear(); + AllTheVLocs[BBNum].clear(); + }; + + SmallPtrSet<const MachineBasicBlock *, 8> BlocksToExplore; + SmallVector<std::pair<LexicalScope *, ssize_t>, 4> WorkStack; + WorkStack.push_back({LS.getCurrentFunctionScope(), 0}); + unsigned HighestDFSIn = 0; + + // Proceed to explore in depth first order. + while (!WorkStack.empty()) { + auto &ScopePosition = WorkStack.back(); + LexicalScope *WS = ScopePosition.first; + ssize_t ChildNum = ScopePosition.second++; + + // We obesrve scopes with children twice here, once descending in, once + // ascending out of the scope nest. Use HighestDFSIn as a ratchet to ensure + // we don't process a scope twice. Additionally, ignore scopes that don't + // have a DILocation -- by proxy, this means we never tracked any variable + // assignments in that scope. + auto DILocIt = ScopeToDILocation.find(WS); + if (HighestDFSIn <= WS->getDFSIn() && DILocIt != ScopeToDILocation.end()) { + const DILocation *DILoc = DILocIt->second; + auto &VarsWeCareAbout = ScopeToVars.find(WS)->second; + auto &BlocksInScope = ScopeToAssignBlocks.find(WS)->second; + + buildVLocValueMap(DILoc, VarsWeCareAbout, BlocksInScope, Output, MOutLocs, + MInLocs, AllTheVLocs); + } + + HighestDFSIn = std::max(HighestDFSIn, WS->getDFSIn()); + + // Descend into any scope nests. + const SmallVectorImpl<LexicalScope *> &Children = WS->getChildren(); + if (ChildNum < (ssize_t)Children.size()) { + // There are children to explore -- push onto stack and continue. + auto &ChildScope = Children[ChildNum]; + WorkStack.push_back(std::make_pair(ChildScope, 0)); + } else { + WorkStack.pop_back(); + + // We've explored a leaf, or have explored all the children of a scope. + // Try to eject any blocks where this is the last scope it's relevant to. + auto DILocationIt = ScopeToDILocation.find(WS); + if (DILocationIt == ScopeToDILocation.end()) + continue; + + getBlocksForScope(DILocationIt->second, BlocksToExplore, + ScopeToAssignBlocks.find(WS)->second); + for (const auto *MBB : BlocksToExplore) + if (WS->getDFSOut() == EjectionMap[MBB->getNumber()]) + EjectBlock(const_cast<MachineBasicBlock &>(*MBB)); + + BlocksToExplore.clear(); + } + } + + // Some artificial blocks may not have been ejected, meaning they're not + // connected to an actual legitimate scope. This can technically happen + // with things like the entry block. In theory, we shouldn't need to do + // anything for such out-of-scope blocks, but for the sake of being similar + // to VarLocBasedLDV, eject these too. + for (auto *MBB : ArtificialBlocks) + if (MInLocs.hasTableFor(*MBB)) + EjectBlock(*MBB); + + return emitTransfers(AllVarsNumbering); +} + +bool InstrRefBasedLDV::emitTransfers( + DenseMap<DebugVariable, unsigned> &AllVarsNumbering) { + // Go through all the transfers recorded in the TransferTracker -- this is + // both the live-ins to a block, and any movements of values that happen + // in the middle. + for (const auto &P : TTracker->Transfers) { + // We have to insert DBG_VALUEs in a consistent order, otherwise they + // appear in DWARF in different orders. Use the order that they appear + // when walking through each block / each instruction, stored in + // AllVarsNumbering. + SmallVector<std::pair<unsigned, MachineInstr *>> Insts; + for (MachineInstr *MI : P.Insts) { + DebugVariable Var(MI->getDebugVariable(), MI->getDebugExpression(), + MI->getDebugLoc()->getInlinedAt()); + Insts.emplace_back(AllVarsNumbering.find(Var)->second, MI); + } + llvm::sort(Insts, llvm::less_first()); + + // Insert either before or after the designated point... + if (P.MBB) { + MachineBasicBlock &MBB = *P.MBB; + for (const auto &Pair : Insts) + MBB.insert(P.Pos, Pair.second); + } else { + // Terminators, like tail calls, can clobber things. Don't try and place + // transfers after them. + if (P.Pos->isTerminator()) + continue; + + MachineBasicBlock &MBB = *P.Pos->getParent(); + for (const auto &Pair : Insts) + MBB.insertAfterBundle(P.Pos, Pair.second); + } + } + + return TTracker->Transfers.size() != 0; +} + +/// Calculate the liveness information for the given machine function and +/// extend ranges across basic blocks. +bool InstrRefBasedLDV::ExtendRanges(MachineFunction &MF, + MachineDominatorTree *DomTree, + TargetPassConfig *TPC, + unsigned InputBBLimit, + unsigned InputDbgValLimit) { + // No subprogram means this function contains no debuginfo. + if (!MF.getFunction().getSubprogram()) + return false; + + LLVM_DEBUG(dbgs() << "\nDebug Range Extension\n"); + this->TPC = TPC; + + this->DomTree = DomTree; + TRI = MF.getSubtarget().getRegisterInfo(); + MRI = &MF.getRegInfo(); + TII = MF.getSubtarget().getInstrInfo(); + TFI = MF.getSubtarget().getFrameLowering(); + TFI->getCalleeSaves(MF, CalleeSavedRegs); + MFI = &MF.getFrameInfo(); + LS.initialize(MF); + + const auto &STI = MF.getSubtarget(); + AdjustsStackInCalls = MFI->adjustsStack() && + STI.getFrameLowering()->stackProbeFunctionModifiesSP(); + if (AdjustsStackInCalls) + StackProbeSymbolName = STI.getTargetLowering()->getStackProbeSymbolName(MF); + + MTracker = + new MLocTracker(MF, *TII, *TRI, *MF.getSubtarget().getTargetLowering()); + VTracker = nullptr; + TTracker = nullptr; + + SmallVector<MLocTransferMap, 32> MLocTransfer; + SmallVector<VLocTracker, 8> vlocs; + LiveInsT SavedLiveIns; + + int MaxNumBlocks = -1; + for (auto &MBB : MF) + MaxNumBlocks = std::max(MBB.getNumber(), MaxNumBlocks); + assert(MaxNumBlocks >= 0); + ++MaxNumBlocks; + + initialSetup(MF); + + MLocTransfer.resize(MaxNumBlocks); + vlocs.resize(MaxNumBlocks, VLocTracker(OverlapFragments, EmptyExpr)); + SavedLiveIns.resize(MaxNumBlocks); + + produceMLocTransferFunction(MF, MLocTransfer, MaxNumBlocks); + + // Allocate and initialize two array-of-arrays for the live-in and live-out + // machine values. The outer dimension is the block number; while the inner + // dimension is a LocIdx from MLocTracker. + unsigned NumLocs = MTracker->getNumLocs(); + FuncValueTable MOutLocs(MaxNumBlocks, NumLocs); + FuncValueTable MInLocs(MaxNumBlocks, NumLocs); + + // Solve the machine value dataflow problem using the MLocTransfer function, + // storing the computed live-ins / live-outs into the array-of-arrays. We use + // both live-ins and live-outs for decision making in the variable value + // dataflow problem. + buildMLocValueMap(MF, MInLocs, MOutLocs, MLocTransfer); + + // Patch up debug phi numbers, turning unknown block-live-in values into + // either live-through machine values, or PHIs. + for (auto &DBG_PHI : DebugPHINumToValue) { + // Identify unresolved block-live-ins. + if (!DBG_PHI.ValueRead) + continue; + + ValueIDNum &Num = *DBG_PHI.ValueRead; + if (!Num.isPHI()) + continue; + + unsigned BlockNo = Num.getBlock(); + LocIdx LocNo = Num.getLoc(); + ValueIDNum ResolvedValue = MInLocs[BlockNo][LocNo.asU64()]; + // If there is no resolved value for this live-in then it is not directly + // reachable from the entry block -- model it as a PHI on entry to this + // block, which means we leave the ValueIDNum unchanged. + if (ResolvedValue != ValueIDNum::EmptyValue) + Num = ResolvedValue; + } + // Later, we'll be looking up ranges of instruction numbers. + llvm::sort(DebugPHINumToValue); + + // Walk back through each block / instruction, collecting DBG_VALUE + // instructions and recording what machine value their operands refer to. + for (auto &OrderPair : OrderToBB) { + MachineBasicBlock &MBB = *OrderPair.second; + CurBB = MBB.getNumber(); + VTracker = &vlocs[CurBB]; + VTracker->MBB = &MBB; + MTracker->loadFromArray(MInLocs[MBB], CurBB); + CurInst = 1; + for (auto &MI : MBB) { + process(MI, &MOutLocs, &MInLocs); + ++CurInst; + } + MTracker->reset(); + } + + // Number all variables in the order that they appear, to be used as a stable + // insertion order later. + DenseMap<DebugVariable, unsigned> AllVarsNumbering; + + // Map from one LexicalScope to all the variables in that scope. + ScopeToVarsT ScopeToVars; + + // Map from One lexical scope to all blocks where assignments happen for + // that scope. + ScopeToAssignBlocksT ScopeToAssignBlocks; + + // Store map of DILocations that describes scopes. + ScopeToDILocT ScopeToDILocation; + + // To mirror old LiveDebugValues, enumerate variables in RPOT order. Otherwise + // the order is unimportant, it just has to be stable. + unsigned VarAssignCount = 0; + for (unsigned int I = 0; I < OrderToBB.size(); ++I) { + auto *MBB = OrderToBB[I]; + auto *VTracker = &vlocs[MBB->getNumber()]; + // Collect each variable with a DBG_VALUE in this block. + for (auto &idx : VTracker->Vars) { + const auto &Var = idx.first; + const DILocation *ScopeLoc = VTracker->Scopes[Var]; + assert(ScopeLoc != nullptr); + auto *Scope = LS.findLexicalScope(ScopeLoc); + + // No insts in scope -> shouldn't have been recorded. + assert(Scope != nullptr); + + AllVarsNumbering.insert(std::make_pair(Var, AllVarsNumbering.size())); + ScopeToVars[Scope].insert(Var); + ScopeToAssignBlocks[Scope].insert(VTracker->MBB); + ScopeToDILocation[Scope] = ScopeLoc; + ++VarAssignCount; + } + } + + bool Changed = false; + + // If we have an extremely large number of variable assignments and blocks, + // bail out at this point. We've burnt some time doing analysis already, + // however we should cut our losses. + if ((unsigned)MaxNumBlocks > InputBBLimit && + VarAssignCount > InputDbgValLimit) { + LLVM_DEBUG(dbgs() << "Disabling InstrRefBasedLDV: " << MF.getName() + << " has " << MaxNumBlocks << " basic blocks and " + << VarAssignCount + << " variable assignments, exceeding limits.\n"); + } else { + // Optionally, solve the variable value problem and emit to blocks by using + // a lexical-scope-depth search. It should be functionally identical to + // the "else" block of this condition. + Changed = depthFirstVLocAndEmit( + MaxNumBlocks, ScopeToDILocation, ScopeToVars, ScopeToAssignBlocks, + SavedLiveIns, MOutLocs, MInLocs, vlocs, MF, AllVarsNumbering, *TPC); + } + + delete MTracker; + delete TTracker; + MTracker = nullptr; + VTracker = nullptr; + TTracker = nullptr; + + ArtificialBlocks.clear(); + OrderToBB.clear(); + BBToOrder.clear(); + BBNumToRPO.clear(); + DebugInstrNumToInstr.clear(); + DebugPHINumToValue.clear(); + OverlapFragments.clear(); + SeenFragments.clear(); + SeenDbgPHIs.clear(); + DbgOpStore.clear(); + + return Changed; +} + +LDVImpl *llvm::makeInstrRefBasedLiveDebugValues() { + return new InstrRefBasedLDV(); +} + +namespace { +class LDVSSABlock; +class LDVSSAUpdater; + +// Pick a type to identify incoming block values as we construct SSA. We +// can't use anything more robust than an integer unfortunately, as SSAUpdater +// expects to zero-initialize the type. +typedef uint64_t BlockValueNum; + +/// Represents an SSA PHI node for the SSA updater class. Contains the block +/// this PHI is in, the value number it would have, and the expected incoming +/// values from parent blocks. +class LDVSSAPhi { +public: + SmallVector<std::pair<LDVSSABlock *, BlockValueNum>, 4> IncomingValues; + LDVSSABlock *ParentBlock; + BlockValueNum PHIValNum; + LDVSSAPhi(BlockValueNum PHIValNum, LDVSSABlock *ParentBlock) + : ParentBlock(ParentBlock), PHIValNum(PHIValNum) {} + + LDVSSABlock *getParent() { return ParentBlock; } +}; + +/// Thin wrapper around a block predecessor iterator. Only difference from a +/// normal block iterator is that it dereferences to an LDVSSABlock. +class LDVSSABlockIterator { +public: + MachineBasicBlock::pred_iterator PredIt; + LDVSSAUpdater &Updater; + + LDVSSABlockIterator(MachineBasicBlock::pred_iterator PredIt, + LDVSSAUpdater &Updater) + : PredIt(PredIt), Updater(Updater) {} + + bool operator!=(const LDVSSABlockIterator &OtherIt) const { + return OtherIt.PredIt != PredIt; + } + + LDVSSABlockIterator &operator++() { + ++PredIt; + return *this; + } + + LDVSSABlock *operator*(); +}; + +/// Thin wrapper around a block for SSA Updater interface. Necessary because +/// we need to track the PHI value(s) that we may have observed as necessary +/// in this block. +class LDVSSABlock { +public: + MachineBasicBlock &BB; + LDVSSAUpdater &Updater; + using PHIListT = SmallVector<LDVSSAPhi, 1>; + /// List of PHIs in this block. There should only ever be one. + PHIListT PHIList; + + LDVSSABlock(MachineBasicBlock &BB, LDVSSAUpdater &Updater) + : BB(BB), Updater(Updater) {} + + LDVSSABlockIterator succ_begin() { + return LDVSSABlockIterator(BB.succ_begin(), Updater); + } + + LDVSSABlockIterator succ_end() { + return LDVSSABlockIterator(BB.succ_end(), Updater); + } + + /// SSAUpdater has requested a PHI: create that within this block record. + LDVSSAPhi *newPHI(BlockValueNum Value) { + PHIList.emplace_back(Value, this); + return &PHIList.back(); + } + + /// SSAUpdater wishes to know what PHIs already exist in this block. + PHIListT &phis() { return PHIList; } +}; + +/// Utility class for the SSAUpdater interface: tracks blocks, PHIs and values +/// while SSAUpdater is exploring the CFG. It's passed as a handle / baton to +// SSAUpdaterTraits<LDVSSAUpdater>. +class LDVSSAUpdater { +public: + /// Map of value numbers to PHI records. + DenseMap<BlockValueNum, LDVSSAPhi *> PHIs; + /// Map of which blocks generate Undef values -- blocks that are not + /// dominated by any Def. + DenseMap<MachineBasicBlock *, BlockValueNum> UndefMap; + /// Map of machine blocks to our own records of them. + DenseMap<MachineBasicBlock *, LDVSSABlock *> BlockMap; + /// Machine location where any PHI must occur. + LocIdx Loc; + /// Table of live-in machine value numbers for blocks / locations. + const FuncValueTable &MLiveIns; + + LDVSSAUpdater(LocIdx L, const FuncValueTable &MLiveIns) + : Loc(L), MLiveIns(MLiveIns) {} + + void reset() { + for (auto &Block : BlockMap) + delete Block.second; + + PHIs.clear(); + UndefMap.clear(); + BlockMap.clear(); + } + + ~LDVSSAUpdater() { reset(); } + + /// For a given MBB, create a wrapper block for it. Stores it in the + /// LDVSSAUpdater block map. + LDVSSABlock *getSSALDVBlock(MachineBasicBlock *BB) { + auto it = BlockMap.find(BB); + if (it == BlockMap.end()) { + BlockMap[BB] = new LDVSSABlock(*BB, *this); + it = BlockMap.find(BB); + } + return it->second; + } + + /// Find the live-in value number for the given block. Looks up the value at + /// the PHI location on entry. + BlockValueNum getValue(LDVSSABlock *LDVBB) { + return MLiveIns[LDVBB->BB][Loc.asU64()].asU64(); + } +}; + +LDVSSABlock *LDVSSABlockIterator::operator*() { + return Updater.getSSALDVBlock(*PredIt); +} + +#ifndef NDEBUG + +raw_ostream &operator<<(raw_ostream &out, const LDVSSAPhi &PHI) { + out << "SSALDVPHI " << PHI.PHIValNum; + return out; +} + +#endif + +} // namespace + +namespace llvm { + +/// Template specialization to give SSAUpdater access to CFG and value +/// information. SSAUpdater calls methods in these traits, passing in the +/// LDVSSAUpdater object, to learn about blocks and the values they define. +/// It also provides methods to create PHI nodes and track them. +template <> class SSAUpdaterTraits<LDVSSAUpdater> { +public: + using BlkT = LDVSSABlock; + using ValT = BlockValueNum; + using PhiT = LDVSSAPhi; + using BlkSucc_iterator = LDVSSABlockIterator; + + // Methods to access block successors -- dereferencing to our wrapper class. + static BlkSucc_iterator BlkSucc_begin(BlkT *BB) { return BB->succ_begin(); } + static BlkSucc_iterator BlkSucc_end(BlkT *BB) { return BB->succ_end(); } + + /// Iterator for PHI operands. + class PHI_iterator { + private: + LDVSSAPhi *PHI; + unsigned Idx; + + public: + explicit PHI_iterator(LDVSSAPhi *P) // begin iterator + : PHI(P), Idx(0) {} + PHI_iterator(LDVSSAPhi *P, bool) // end iterator + : PHI(P), Idx(PHI->IncomingValues.size()) {} + + PHI_iterator &operator++() { + Idx++; + return *this; + } + bool operator==(const PHI_iterator &X) const { return Idx == X.Idx; } + bool operator!=(const PHI_iterator &X) const { return !operator==(X); } + + BlockValueNum getIncomingValue() { return PHI->IncomingValues[Idx].second; } + + LDVSSABlock *getIncomingBlock() { return PHI->IncomingValues[Idx].first; } + }; + + static inline PHI_iterator PHI_begin(PhiT *PHI) { return PHI_iterator(PHI); } + + static inline PHI_iterator PHI_end(PhiT *PHI) { + return PHI_iterator(PHI, true); + } + + /// FindPredecessorBlocks - Put the predecessors of BB into the Preds + /// vector. + static void FindPredecessorBlocks(LDVSSABlock *BB, + SmallVectorImpl<LDVSSABlock *> *Preds) { + for (MachineBasicBlock *Pred : BB->BB.predecessors()) + Preds->push_back(BB->Updater.getSSALDVBlock(Pred)); + } + + /// GetUndefVal - Normally creates an IMPLICIT_DEF instruction with a new + /// register. For LiveDebugValues, represents a block identified as not having + /// any DBG_PHI predecessors. + static BlockValueNum GetUndefVal(LDVSSABlock *BB, LDVSSAUpdater *Updater) { + // Create a value number for this block -- it needs to be unique and in the + // "undef" collection, so that we know it's not real. Use a number + // representing a PHI into this block. + BlockValueNum Num = ValueIDNum(BB->BB.getNumber(), 0, Updater->Loc).asU64(); + Updater->UndefMap[&BB->BB] = Num; + return Num; + } + + /// CreateEmptyPHI - Create a (representation of a) PHI in the given block. + /// SSAUpdater will populate it with information about incoming values. The + /// value number of this PHI is whatever the machine value number problem + /// solution determined it to be. This includes non-phi values if SSAUpdater + /// tries to create a PHI where the incoming values are identical. + static BlockValueNum CreateEmptyPHI(LDVSSABlock *BB, unsigned NumPreds, + LDVSSAUpdater *Updater) { + BlockValueNum PHIValNum = Updater->getValue(BB); + LDVSSAPhi *PHI = BB->newPHI(PHIValNum); + Updater->PHIs[PHIValNum] = PHI; + return PHIValNum; + } + + /// AddPHIOperand - Add the specified value as an operand of the PHI for + /// the specified predecessor block. + static void AddPHIOperand(LDVSSAPhi *PHI, BlockValueNum Val, LDVSSABlock *Pred) { + PHI->IncomingValues.push_back(std::make_pair(Pred, Val)); + } + + /// ValueIsPHI - Check if the instruction that defines the specified value + /// is a PHI instruction. + static LDVSSAPhi *ValueIsPHI(BlockValueNum Val, LDVSSAUpdater *Updater) { + return Updater->PHIs.lookup(Val); + } + + /// ValueIsNewPHI - Like ValueIsPHI but also check if the PHI has no source + /// operands, i.e., it was just added. + static LDVSSAPhi *ValueIsNewPHI(BlockValueNum Val, LDVSSAUpdater *Updater) { + LDVSSAPhi *PHI = ValueIsPHI(Val, Updater); + if (PHI && PHI->IncomingValues.size() == 0) + return PHI; + return nullptr; + } + + /// GetPHIValue - For the specified PHI instruction, return the value + /// that it defines. + static BlockValueNum GetPHIValue(LDVSSAPhi *PHI) { return PHI->PHIValNum; } +}; + +} // end namespace llvm + +std::optional<ValueIDNum> InstrRefBasedLDV::resolveDbgPHIs( + MachineFunction &MF, const FuncValueTable &MLiveOuts, + const FuncValueTable &MLiveIns, MachineInstr &Here, uint64_t InstrNum) { + // This function will be called twice per DBG_INSTR_REF, and might end up + // computing lots of SSA information: memoize it. + auto SeenDbgPHIIt = SeenDbgPHIs.find(std::make_pair(&Here, InstrNum)); + if (SeenDbgPHIIt != SeenDbgPHIs.end()) + return SeenDbgPHIIt->second; + + std::optional<ValueIDNum> Result = + resolveDbgPHIsImpl(MF, MLiveOuts, MLiveIns, Here, InstrNum); + SeenDbgPHIs.insert({std::make_pair(&Here, InstrNum), Result}); + return Result; +} + +std::optional<ValueIDNum> InstrRefBasedLDV::resolveDbgPHIsImpl( + MachineFunction &MF, const FuncValueTable &MLiveOuts, + const FuncValueTable &MLiveIns, MachineInstr &Here, uint64_t InstrNum) { + // Pick out records of DBG_PHI instructions that have been observed. If there + // are none, then we cannot compute a value number. + auto RangePair = std::equal_range(DebugPHINumToValue.begin(), + DebugPHINumToValue.end(), InstrNum); + auto LowerIt = RangePair.first; + auto UpperIt = RangePair.second; + + // No DBG_PHI means there can be no location. + if (LowerIt == UpperIt) + return std::nullopt; + + // If any DBG_PHIs referred to a location we didn't understand, don't try to + // compute a value. There might be scenarios where we could recover a value + // for some range of DBG_INSTR_REFs, but at this point we can have high + // confidence that we've seen a bug. + auto DBGPHIRange = make_range(LowerIt, UpperIt); + for (const DebugPHIRecord &DBG_PHI : DBGPHIRange) + if (!DBG_PHI.ValueRead) + return std::nullopt; + + // If there's only one DBG_PHI, then that is our value number. + if (std::distance(LowerIt, UpperIt) == 1) + return *LowerIt->ValueRead; + + // Pick out the location (physreg, slot) where any PHIs must occur. It's + // technically possible for us to merge values in different registers in each + // block, but highly unlikely that LLVM will generate such code after register + // allocation. + LocIdx Loc = *LowerIt->ReadLoc; + + // We have several DBG_PHIs, and a use position (the Here inst). All each + // DBG_PHI does is identify a value at a program position. We can treat each + // DBG_PHI like it's a Def of a value, and the use position is a Use of a + // value, just like SSA. We use the bulk-standard LLVM SSA updater class to + // determine which Def is used at the Use, and any PHIs that happen along + // the way. + // Adapted LLVM SSA Updater: + LDVSSAUpdater Updater(Loc, MLiveIns); + // Map of which Def or PHI is the current value in each block. + DenseMap<LDVSSABlock *, BlockValueNum> AvailableValues; + // Set of PHIs that we have created along the way. + SmallVector<LDVSSAPhi *, 8> CreatedPHIs; + + // Each existing DBG_PHI is a Def'd value under this model. Record these Defs + // for the SSAUpdater. + for (const auto &DBG_PHI : DBGPHIRange) { + LDVSSABlock *Block = Updater.getSSALDVBlock(DBG_PHI.MBB); + const ValueIDNum &Num = *DBG_PHI.ValueRead; + AvailableValues.insert(std::make_pair(Block, Num.asU64())); + } + + LDVSSABlock *HereBlock = Updater.getSSALDVBlock(Here.getParent()); + const auto &AvailIt = AvailableValues.find(HereBlock); + if (AvailIt != AvailableValues.end()) { + // Actually, we already know what the value is -- the Use is in the same + // block as the Def. + return ValueIDNum::fromU64(AvailIt->second); + } + + // Otherwise, we must use the SSA Updater. It will identify the value number + // that we are to use, and the PHIs that must happen along the way. + SSAUpdaterImpl<LDVSSAUpdater> Impl(&Updater, &AvailableValues, &CreatedPHIs); + BlockValueNum ResultInt = Impl.GetValue(Updater.getSSALDVBlock(Here.getParent())); + ValueIDNum Result = ValueIDNum::fromU64(ResultInt); + + // We have the number for a PHI, or possibly live-through value, to be used + // at this Use. There are a number of things we have to check about it though: + // * Does any PHI use an 'Undef' (like an IMPLICIT_DEF) value? If so, this + // Use was not completely dominated by DBG_PHIs and we should abort. + // * Are the Defs or PHIs clobbered in a block? SSAUpdater isn't aware that + // we've left SSA form. Validate that the inputs to each PHI are the + // expected values. + // * Is a PHI we've created actually a merging of values, or are all the + // predecessor values the same, leading to a non-PHI machine value number? + // (SSAUpdater doesn't know that either). Remap validated PHIs into the + // the ValidatedValues collection below to sort this out. + DenseMap<LDVSSABlock *, ValueIDNum> ValidatedValues; + + // Define all the input DBG_PHI values in ValidatedValues. + for (const auto &DBG_PHI : DBGPHIRange) { + LDVSSABlock *Block = Updater.getSSALDVBlock(DBG_PHI.MBB); + const ValueIDNum &Num = *DBG_PHI.ValueRead; + ValidatedValues.insert(std::make_pair(Block, Num)); + } + + // Sort PHIs to validate into RPO-order. + SmallVector<LDVSSAPhi *, 8> SortedPHIs; + for (auto &PHI : CreatedPHIs) + SortedPHIs.push_back(PHI); + + llvm::sort(SortedPHIs, [&](LDVSSAPhi *A, LDVSSAPhi *B) { + return BBToOrder[&A->getParent()->BB] < BBToOrder[&B->getParent()->BB]; + }); + + for (auto &PHI : SortedPHIs) { + ValueIDNum ThisBlockValueNum = MLiveIns[PHI->ParentBlock->BB][Loc.asU64()]; + + // Are all these things actually defined? + for (auto &PHIIt : PHI->IncomingValues) { + // Any undef input means DBG_PHIs didn't dominate the use point. + if (Updater.UndefMap.contains(&PHIIt.first->BB)) + return std::nullopt; + + ValueIDNum ValueToCheck; + const ValueTable &BlockLiveOuts = MLiveOuts[PHIIt.first->BB]; + + auto VVal = ValidatedValues.find(PHIIt.first); + if (VVal == ValidatedValues.end()) { + // We cross a loop, and this is a backedge. LLVMs tail duplication + // happens so late that DBG_PHI instructions should not be able to + // migrate into loops -- meaning we can only be live-through this + // loop. + ValueToCheck = ThisBlockValueNum; + } else { + // Does the block have as a live-out, in the location we're examining, + // the value that we expect? If not, it's been moved or clobbered. + ValueToCheck = VVal->second; + } + + if (BlockLiveOuts[Loc.asU64()] != ValueToCheck) + return std::nullopt; + } + + // Record this value as validated. + ValidatedValues.insert({PHI->ParentBlock, ThisBlockValueNum}); + } + + // All the PHIs are valid: we can return what the SSAUpdater said our value + // number was. + return Result; +} |
