aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm-project/llvm/lib/CodeGen/LiveDebugValues
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm-project/llvm/lib/CodeGen/LiveDebugValues')
-rw-r--r--contrib/llvm-project/llvm/lib/CodeGen/LiveDebugValues/InstrRefBasedImpl.cpp4228
-rw-r--r--contrib/llvm-project/llvm/lib/CodeGen/LiveDebugValues/InstrRefBasedImpl.h1441
-rw-r--r--contrib/llvm-project/llvm/lib/CodeGen/LiveDebugValues/LiveDebugValues.cpp139
-rw-r--r--contrib/llvm-project/llvm/lib/CodeGen/LiveDebugValues/LiveDebugValues.h43
-rw-r--r--contrib/llvm-project/llvm/lib/CodeGen/LiveDebugValues/VarLocBasedImpl.cpp2403
5 files changed, 8254 insertions, 0 deletions
diff --git a/contrib/llvm-project/llvm/lib/CodeGen/LiveDebugValues/InstrRefBasedImpl.cpp b/contrib/llvm-project/llvm/lib/CodeGen/LiveDebugValues/InstrRefBasedImpl.cpp
new file mode 100644
index 000000000000..ba417322d4f6
--- /dev/null
+++ b/contrib/llvm-project/llvm/lib/CodeGen/LiveDebugValues/InstrRefBasedImpl.cpp
@@ -0,0 +1,4228 @@
+//===- InstrRefBasedImpl.cpp - Tracking Debug Value MIs -------------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+/// \file InstrRefBasedImpl.cpp
+///
+/// This is a separate implementation of LiveDebugValues, see
+/// LiveDebugValues.cpp and VarLocBasedImpl.cpp for more information.
+///
+/// This pass propagates variable locations between basic blocks, resolving
+/// control flow conflicts between them. The problem is SSA construction, where
+/// each debug instruction assigns the *value* that a variable has, and every
+/// instruction where the variable is in scope uses that variable. The resulting
+/// map of instruction-to-value is then translated into a register (or spill)
+/// location for each variable over each instruction.
+///
+/// The primary difference from normal SSA construction is that we cannot
+/// _create_ PHI values that contain variable values. CodeGen has already
+/// completed, and we can't alter it just to make debug-info complete. Thus:
+/// we can identify function positions where we would like a PHI value for a
+/// variable, but must search the MachineFunction to see whether such a PHI is
+/// available. If no such PHI exists, the variable location must be dropped.
+///
+/// To achieve this, we perform two kinds of analysis. First, we identify
+/// every value defined by every instruction (ignoring those that only move
+/// another value), then re-compute an SSA-form representation of the
+/// MachineFunction, using value propagation to eliminate any un-necessary
+/// PHI values. This gives us a map of every value computed in the function,
+/// and its location within the register file / stack.
+///
+/// Secondly, for each variable we perform the same analysis, where each debug
+/// instruction is considered a def, and every instruction where the variable
+/// is in lexical scope as a use. Value propagation is used again to eliminate
+/// any un-necessary PHIs. This gives us a map of each variable to the value
+/// it should have in a block.
+///
+/// Once both are complete, we have two maps for each block:
+/// * Variables to the values they should have,
+/// * Values to the register / spill slot they are located in.
+/// After which we can marry-up variable values with a location, and emit
+/// DBG_VALUE instructions specifying those locations. Variable locations may
+/// be dropped in this process due to the desired variable value not being
+/// resident in any machine location, or because there is no PHI value in any
+/// location that accurately represents the desired value. The building of
+/// location lists for each block is left to DbgEntityHistoryCalculator.
+///
+/// This pass is kept efficient because the size of the first SSA problem
+/// is proportional to the working-set size of the function, which the compiler
+/// tries to keep small. (It's also proportional to the number of blocks).
+/// Additionally, we repeatedly perform the second SSA problem analysis with
+/// only the variables and blocks in a single lexical scope, exploiting their
+/// locality.
+///
+/// ### Terminology
+///
+/// A machine location is a register or spill slot, a value is something that's
+/// defined by an instruction or PHI node, while a variable value is the value
+/// assigned to a variable. A variable location is a machine location, that must
+/// contain the appropriate variable value. A value that is a PHI node is
+/// occasionally called an mphi.
+///
+/// The first SSA problem is the "machine value location" problem,
+/// because we're determining which machine locations contain which values.
+/// The "locations" are constant: what's unknown is what value they contain.
+///
+/// The second SSA problem (the one for variables) is the "variable value
+/// problem", because it's determining what values a variable has, rather than
+/// what location those values are placed in.
+///
+/// TODO:
+/// Overlapping fragments
+/// Entry values
+/// Add back DEBUG statements for debugging this
+/// Collect statistics
+///
+//===----------------------------------------------------------------------===//
+
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/PostOrderIterator.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/SmallPtrSet.h"
+#include "llvm/ADT/SmallSet.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/BinaryFormat/Dwarf.h"
+#include "llvm/CodeGen/LexicalScopes.h"
+#include "llvm/CodeGen/MachineBasicBlock.h"
+#include "llvm/CodeGen/MachineDominators.h"
+#include "llvm/CodeGen/MachineFrameInfo.h"
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/MachineInstr.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineInstrBundle.h"
+#include "llvm/CodeGen/MachineMemOperand.h"
+#include "llvm/CodeGen/MachineOperand.h"
+#include "llvm/CodeGen/PseudoSourceValue.h"
+#include "llvm/CodeGen/TargetFrameLowering.h"
+#include "llvm/CodeGen/TargetInstrInfo.h"
+#include "llvm/CodeGen/TargetLowering.h"
+#include "llvm/CodeGen/TargetPassConfig.h"
+#include "llvm/CodeGen/TargetRegisterInfo.h"
+#include "llvm/CodeGen/TargetSubtargetInfo.h"
+#include "llvm/Config/llvm-config.h"
+#include "llvm/IR/DebugInfoMetadata.h"
+#include "llvm/IR/DebugLoc.h"
+#include "llvm/IR/Function.h"
+#include "llvm/MC/MCRegisterInfo.h"
+#include "llvm/Support/Casting.h"
+#include "llvm/Support/Compiler.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/GenericIteratedDominanceFrontier.h"
+#include "llvm/Support/TypeSize.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Target/TargetMachine.h"
+#include "llvm/Transforms/Utils/SSAUpdaterImpl.h"
+#include <algorithm>
+#include <cassert>
+#include <climits>
+#include <cstdint>
+#include <functional>
+#include <queue>
+#include <tuple>
+#include <utility>
+#include <vector>
+
+#include "InstrRefBasedImpl.h"
+#include "LiveDebugValues.h"
+#include <optional>
+
+using namespace llvm;
+using namespace LiveDebugValues;
+
+// SSAUpdaterImple sets DEBUG_TYPE, change it.
+#undef DEBUG_TYPE
+#define DEBUG_TYPE "livedebugvalues"
+
+// Act more like the VarLoc implementation, by propagating some locations too
+// far and ignoring some transfers.
+static cl::opt<bool> EmulateOldLDV("emulate-old-livedebugvalues", cl::Hidden,
+ cl::desc("Act like old LiveDebugValues did"),
+ cl::init(false));
+
+// Limit for the maximum number of stack slots we should track, past which we
+// will ignore any spills. InstrRefBasedLDV gathers detailed information on all
+// stack slots which leads to high memory consumption, and in some scenarios
+// (such as asan with very many locals) the working set of the function can be
+// very large, causing many spills. In these scenarios, it is very unlikely that
+// the developer has hundreds of variables live at the same time that they're
+// carefully thinking about -- instead, they probably autogenerated the code.
+// When this happens, gracefully stop tracking excess spill slots, rather than
+// consuming all the developer's memory.
+static cl::opt<unsigned>
+ StackWorkingSetLimit("livedebugvalues-max-stack-slots", cl::Hidden,
+ cl::desc("livedebugvalues-stack-ws-limit"),
+ cl::init(250));
+
+DbgOpID DbgOpID::UndefID = DbgOpID(0xffffffff);
+
+/// Tracker for converting machine value locations and variable values into
+/// variable locations (the output of LiveDebugValues), recorded as DBG_VALUEs
+/// specifying block live-in locations and transfers within blocks.
+///
+/// Operating on a per-block basis, this class takes a (pre-loaded) MLocTracker
+/// and must be initialized with the set of variable values that are live-in to
+/// the block. The caller then repeatedly calls process(). TransferTracker picks
+/// out variable locations for the live-in variable values (if there _is_ a
+/// location) and creates the corresponding DBG_VALUEs. Then, as the block is
+/// stepped through, transfers of values between machine locations are
+/// identified and if profitable, a DBG_VALUE created.
+///
+/// This is where debug use-before-defs would be resolved: a variable with an
+/// unavailable value could materialize in the middle of a block, when the
+/// value becomes available. Or, we could detect clobbers and re-specify the
+/// variable in a backup location. (XXX these are unimplemented).
+class TransferTracker {
+public:
+ const TargetInstrInfo *TII;
+ const TargetLowering *TLI;
+ /// This machine location tracker is assumed to always contain the up-to-date
+ /// value mapping for all machine locations. TransferTracker only reads
+ /// information from it. (XXX make it const?)
+ MLocTracker *MTracker;
+ MachineFunction &MF;
+ bool ShouldEmitDebugEntryValues;
+
+ /// Record of all changes in variable locations at a block position. Awkwardly
+ /// we allow inserting either before or after the point: MBB != nullptr
+ /// indicates it's before, otherwise after.
+ struct Transfer {
+ MachineBasicBlock::instr_iterator Pos; /// Position to insert DBG_VALUes
+ MachineBasicBlock *MBB; /// non-null if we should insert after.
+ SmallVector<MachineInstr *, 4> Insts; /// Vector of DBG_VALUEs to insert.
+ };
+
+ /// Stores the resolved operands (machine locations and constants) and
+ /// qualifying meta-information needed to construct a concrete DBG_VALUE-like
+ /// instruction.
+ struct ResolvedDbgValue {
+ SmallVector<ResolvedDbgOp> Ops;
+ DbgValueProperties Properties;
+
+ ResolvedDbgValue(SmallVectorImpl<ResolvedDbgOp> &Ops,
+ DbgValueProperties Properties)
+ : Ops(Ops.begin(), Ops.end()), Properties(Properties) {}
+
+ /// Returns all the LocIdx values used in this struct, in the order in which
+ /// they appear as operands in the debug value; may contain duplicates.
+ auto loc_indices() const {
+ return map_range(
+ make_filter_range(
+ Ops, [](const ResolvedDbgOp &Op) { return !Op.IsConst; }),
+ [](const ResolvedDbgOp &Op) { return Op.Loc; });
+ }
+ };
+
+ /// Collection of transfers (DBG_VALUEs) to be inserted.
+ SmallVector<Transfer, 32> Transfers;
+
+ /// Local cache of what-value-is-in-what-LocIdx. Used to identify differences
+ /// between TransferTrackers view of variable locations and MLocTrackers. For
+ /// example, MLocTracker observes all clobbers, but TransferTracker lazily
+ /// does not.
+ SmallVector<ValueIDNum, 32> VarLocs;
+
+ /// Map from LocIdxes to which DebugVariables are based that location.
+ /// Mantained while stepping through the block. Not accurate if
+ /// VarLocs[Idx] != MTracker->LocIdxToIDNum[Idx].
+ DenseMap<LocIdx, SmallSet<DebugVariable, 4>> ActiveMLocs;
+
+ /// Map from DebugVariable to it's current location and qualifying meta
+ /// information. To be used in conjunction with ActiveMLocs to construct
+ /// enough information for the DBG_VALUEs for a particular LocIdx.
+ DenseMap<DebugVariable, ResolvedDbgValue> ActiveVLocs;
+
+ /// Temporary cache of DBG_VALUEs to be entered into the Transfers collection.
+ SmallVector<MachineInstr *, 4> PendingDbgValues;
+
+ /// Record of a use-before-def: created when a value that's live-in to the
+ /// current block isn't available in any machine location, but it will be
+ /// defined in this block.
+ struct UseBeforeDef {
+ /// Value of this variable, def'd in block.
+ SmallVector<DbgOp> Values;
+ /// Identity of this variable.
+ DebugVariable Var;
+ /// Additional variable properties.
+ DbgValueProperties Properties;
+ UseBeforeDef(ArrayRef<DbgOp> Values, const DebugVariable &Var,
+ const DbgValueProperties &Properties)
+ : Values(Values.begin(), Values.end()), Var(Var),
+ Properties(Properties) {}
+ };
+
+ /// Map from instruction index (within the block) to the set of UseBeforeDefs
+ /// that become defined at that instruction.
+ DenseMap<unsigned, SmallVector<UseBeforeDef, 1>> UseBeforeDefs;
+
+ /// The set of variables that are in UseBeforeDefs and can become a location
+ /// once the relevant value is defined. An element being erased from this
+ /// collection prevents the use-before-def materializing.
+ DenseSet<DebugVariable> UseBeforeDefVariables;
+
+ const TargetRegisterInfo &TRI;
+ const BitVector &CalleeSavedRegs;
+
+ TransferTracker(const TargetInstrInfo *TII, MLocTracker *MTracker,
+ MachineFunction &MF, const TargetRegisterInfo &TRI,
+ const BitVector &CalleeSavedRegs, const TargetPassConfig &TPC)
+ : TII(TII), MTracker(MTracker), MF(MF), TRI(TRI),
+ CalleeSavedRegs(CalleeSavedRegs) {
+ TLI = MF.getSubtarget().getTargetLowering();
+ auto &TM = TPC.getTM<TargetMachine>();
+ ShouldEmitDebugEntryValues = TM.Options.ShouldEmitDebugEntryValues();
+ }
+
+ bool isCalleeSaved(LocIdx L) const {
+ unsigned Reg = MTracker->LocIdxToLocID[L];
+ if (Reg >= MTracker->NumRegs)
+ return false;
+ for (MCRegAliasIterator RAI(Reg, &TRI, true); RAI.isValid(); ++RAI)
+ if (CalleeSavedRegs.test(*RAI))
+ return true;
+ return false;
+ };
+
+ // An estimate of the expected lifespan of values at a machine location, with
+ // a greater value corresponding to a longer expected lifespan, i.e. spill
+ // slots generally live longer than callee-saved registers which generally
+ // live longer than non-callee-saved registers. The minimum value of 0
+ // corresponds to an illegal location that cannot have a "lifespan" at all.
+ enum class LocationQuality : unsigned char {
+ Illegal = 0,
+ Register,
+ CalleeSavedRegister,
+ SpillSlot,
+ Best = SpillSlot
+ };
+
+ class LocationAndQuality {
+ unsigned Location : 24;
+ unsigned Quality : 8;
+
+ public:
+ LocationAndQuality() : Location(0), Quality(0) {}
+ LocationAndQuality(LocIdx L, LocationQuality Q)
+ : Location(L.asU64()), Quality(static_cast<unsigned>(Q)) {}
+ LocIdx getLoc() const {
+ if (!Quality)
+ return LocIdx::MakeIllegalLoc();
+ return LocIdx(Location);
+ }
+ LocationQuality getQuality() const { return LocationQuality(Quality); }
+ bool isIllegal() const { return !Quality; }
+ bool isBest() const { return getQuality() == LocationQuality::Best; }
+ };
+
+ // Returns the LocationQuality for the location L iff the quality of L is
+ // is strictly greater than the provided minimum quality.
+ std::optional<LocationQuality>
+ getLocQualityIfBetter(LocIdx L, LocationQuality Min) const {
+ if (L.isIllegal())
+ return std::nullopt;
+ if (Min >= LocationQuality::SpillSlot)
+ return std::nullopt;
+ if (MTracker->isSpill(L))
+ return LocationQuality::SpillSlot;
+ if (Min >= LocationQuality::CalleeSavedRegister)
+ return std::nullopt;
+ if (isCalleeSaved(L))
+ return LocationQuality::CalleeSavedRegister;
+ if (Min >= LocationQuality::Register)
+ return std::nullopt;
+ return LocationQuality::Register;
+ }
+
+ /// For a variable \p Var with the live-in value \p Value, attempts to resolve
+ /// the DbgValue to a concrete DBG_VALUE, emitting that value and loading the
+ /// tracking information to track Var throughout the block.
+ /// \p ValueToLoc is a map containing the best known location for every
+ /// ValueIDNum that Value may use.
+ /// \p MBB is the basic block that we are loading the live-in value for.
+ /// \p DbgOpStore is the map containing the DbgOpID->DbgOp mapping needed to
+ /// determine the values used by Value.
+ void loadVarInloc(MachineBasicBlock &MBB, DbgOpIDMap &DbgOpStore,
+ const DenseMap<ValueIDNum, LocationAndQuality> &ValueToLoc,
+ DebugVariable Var, DbgValue Value) {
+ SmallVector<DbgOp> DbgOps;
+ SmallVector<ResolvedDbgOp> ResolvedDbgOps;
+ bool IsValueValid = true;
+ unsigned LastUseBeforeDef = 0;
+
+ // If every value used by the incoming DbgValue is available at block
+ // entry, ResolvedDbgOps will contain the machine locations/constants for
+ // those values and will be used to emit a debug location.
+ // If one or more values are not yet available, but will all be defined in
+ // this block, then LastUseBeforeDef will track the instruction index in
+ // this BB at which the last of those values is defined, DbgOps will
+ // contain the values that we will emit when we reach that instruction.
+ // If one or more values are undef or not available throughout this block,
+ // and we can't recover as an entry value, we set IsValueValid=false and
+ // skip this variable.
+ for (DbgOpID ID : Value.getDbgOpIDs()) {
+ DbgOp Op = DbgOpStore.find(ID);
+ DbgOps.push_back(Op);
+ if (ID.isUndef()) {
+ IsValueValid = false;
+ break;
+ }
+ if (ID.isConst()) {
+ ResolvedDbgOps.push_back(Op.MO);
+ continue;
+ }
+
+ // If the value has no location, we can't make a variable location.
+ const ValueIDNum &Num = Op.ID;
+ auto ValuesPreferredLoc = ValueToLoc.find(Num);
+ if (ValuesPreferredLoc->second.isIllegal()) {
+ // If it's a def that occurs in this block, register it as a
+ // use-before-def to be resolved as we step through the block.
+ // Continue processing values so that we add any other UseBeforeDef
+ // entries needed for later.
+ if (Num.getBlock() == (unsigned)MBB.getNumber() && !Num.isPHI()) {
+ LastUseBeforeDef = std::max(LastUseBeforeDef,
+ static_cast<unsigned>(Num.getInst()));
+ continue;
+ }
+ recoverAsEntryValue(Var, Value.Properties, Num);
+ IsValueValid = false;
+ break;
+ }
+
+ // Defer modifying ActiveVLocs until after we've confirmed we have a
+ // live range.
+ LocIdx M = ValuesPreferredLoc->second.getLoc();
+ ResolvedDbgOps.push_back(M);
+ }
+
+ // If we cannot produce a valid value for the LiveIn value within this
+ // block, skip this variable.
+ if (!IsValueValid)
+ return;
+
+ // Add UseBeforeDef entry for the last value to be defined in this block.
+ if (LastUseBeforeDef) {
+ addUseBeforeDef(Var, Value.Properties, DbgOps,
+ LastUseBeforeDef);
+ return;
+ }
+
+ // The LiveIn value is available at block entry, begin tracking and record
+ // the transfer.
+ for (const ResolvedDbgOp &Op : ResolvedDbgOps)
+ if (!Op.IsConst)
+ ActiveMLocs[Op.Loc].insert(Var);
+ auto NewValue = ResolvedDbgValue{ResolvedDbgOps, Value.Properties};
+ auto Result = ActiveVLocs.insert(std::make_pair(Var, NewValue));
+ if (!Result.second)
+ Result.first->second = NewValue;
+ PendingDbgValues.push_back(
+ MTracker->emitLoc(ResolvedDbgOps, Var, Value.Properties));
+ }
+
+ /// Load object with live-in variable values. \p mlocs contains the live-in
+ /// values in each machine location, while \p vlocs the live-in variable
+ /// values. This method picks variable locations for the live-in variables,
+ /// creates DBG_VALUEs and puts them in #Transfers, then prepares the other
+ /// object fields to track variable locations as we step through the block.
+ /// FIXME: could just examine mloctracker instead of passing in \p mlocs?
+ void
+ loadInlocs(MachineBasicBlock &MBB, ValueTable &MLocs, DbgOpIDMap &DbgOpStore,
+ const SmallVectorImpl<std::pair<DebugVariable, DbgValue>> &VLocs,
+ unsigned NumLocs) {
+ ActiveMLocs.clear();
+ ActiveVLocs.clear();
+ VarLocs.clear();
+ VarLocs.reserve(NumLocs);
+ UseBeforeDefs.clear();
+ UseBeforeDefVariables.clear();
+
+ // Map of the preferred location for each value.
+ DenseMap<ValueIDNum, LocationAndQuality> ValueToLoc;
+
+ // Initialized the preferred-location map with illegal locations, to be
+ // filled in later.
+ for (const auto &VLoc : VLocs)
+ if (VLoc.second.Kind == DbgValue::Def)
+ for (DbgOpID OpID : VLoc.second.getDbgOpIDs())
+ if (!OpID.ID.IsConst)
+ ValueToLoc.insert({DbgOpStore.find(OpID).ID, LocationAndQuality()});
+
+ ActiveMLocs.reserve(VLocs.size());
+ ActiveVLocs.reserve(VLocs.size());
+
+ // Produce a map of value numbers to the current machine locs they live
+ // in. When emulating VarLocBasedImpl, there should only be one
+ // location; when not, we get to pick.
+ for (auto Location : MTracker->locations()) {
+ LocIdx Idx = Location.Idx;
+ ValueIDNum &VNum = MLocs[Idx.asU64()];
+ if (VNum == ValueIDNum::EmptyValue)
+ continue;
+ VarLocs.push_back(VNum);
+
+ // Is there a variable that wants a location for this value? If not, skip.
+ auto VIt = ValueToLoc.find(VNum);
+ if (VIt == ValueToLoc.end())
+ continue;
+
+ auto &Previous = VIt->second;
+ // If this is the first location with that value, pick it. Otherwise,
+ // consider whether it's a "longer term" location.
+ std::optional<LocationQuality> ReplacementQuality =
+ getLocQualityIfBetter(Idx, Previous.getQuality());
+ if (ReplacementQuality)
+ Previous = LocationAndQuality(Idx, *ReplacementQuality);
+ }
+
+ // Now map variables to their picked LocIdxes.
+ for (const auto &Var : VLocs) {
+ loadVarInloc(MBB, DbgOpStore, ValueToLoc, Var.first, Var.second);
+ }
+ flushDbgValues(MBB.begin(), &MBB);
+ }
+
+ /// Record that \p Var has value \p ID, a value that becomes available
+ /// later in the function.
+ void addUseBeforeDef(const DebugVariable &Var,
+ const DbgValueProperties &Properties,
+ const SmallVectorImpl<DbgOp> &DbgOps, unsigned Inst) {
+ UseBeforeDefs[Inst].emplace_back(DbgOps, Var, Properties);
+ UseBeforeDefVariables.insert(Var);
+ }
+
+ /// After the instruction at index \p Inst and position \p pos has been
+ /// processed, check whether it defines a variable value in a use-before-def.
+ /// If so, and the variable value hasn't changed since the start of the
+ /// block, create a DBG_VALUE.
+ void checkInstForNewValues(unsigned Inst, MachineBasicBlock::iterator pos) {
+ auto MIt = UseBeforeDefs.find(Inst);
+ if (MIt == UseBeforeDefs.end())
+ return;
+
+ // Map of values to the locations that store them for every value used by
+ // the variables that may have become available.
+ SmallDenseMap<ValueIDNum, LocationAndQuality> ValueToLoc;
+
+ // Populate ValueToLoc with illegal default mappings for every value used by
+ // any UseBeforeDef variables for this instruction.
+ for (auto &Use : MIt->second) {
+ if (!UseBeforeDefVariables.count(Use.Var))
+ continue;
+
+ for (DbgOp &Op : Use.Values) {
+ assert(!Op.isUndef() && "UseBeforeDef erroneously created for a "
+ "DbgValue with undef values.");
+ if (Op.IsConst)
+ continue;
+
+ ValueToLoc.insert({Op.ID, LocationAndQuality()});
+ }
+ }
+
+ // Exit early if we have no DbgValues to produce.
+ if (ValueToLoc.empty())
+ return;
+
+ // Determine the best location for each desired value.
+ for (auto Location : MTracker->locations()) {
+ LocIdx Idx = Location.Idx;
+ ValueIDNum &LocValueID = Location.Value;
+
+ // Is there a variable that wants a location for this value? If not, skip.
+ auto VIt = ValueToLoc.find(LocValueID);
+ if (VIt == ValueToLoc.end())
+ continue;
+
+ auto &Previous = VIt->second;
+ // If this is the first location with that value, pick it. Otherwise,
+ // consider whether it's a "longer term" location.
+ std::optional<LocationQuality> ReplacementQuality =
+ getLocQualityIfBetter(Idx, Previous.getQuality());
+ if (ReplacementQuality)
+ Previous = LocationAndQuality(Idx, *ReplacementQuality);
+ }
+
+ // Using the map of values to locations, produce a final set of values for
+ // this variable.
+ for (auto &Use : MIt->second) {
+ if (!UseBeforeDefVariables.count(Use.Var))
+ continue;
+
+ SmallVector<ResolvedDbgOp> DbgOps;
+
+ for (DbgOp &Op : Use.Values) {
+ if (Op.IsConst) {
+ DbgOps.push_back(Op.MO);
+ continue;
+ }
+ LocIdx NewLoc = ValueToLoc.find(Op.ID)->second.getLoc();
+ if (NewLoc.isIllegal())
+ break;
+ DbgOps.push_back(NewLoc);
+ }
+
+ // If at least one value used by this debug value is no longer available,
+ // i.e. one of the values was killed before we finished defining all of
+ // the values used by this variable, discard.
+ if (DbgOps.size() != Use.Values.size())
+ continue;
+
+ // Otherwise, we're good to go.
+ PendingDbgValues.push_back(
+ MTracker->emitLoc(DbgOps, Use.Var, Use.Properties));
+ }
+ flushDbgValues(pos, nullptr);
+ }
+
+ /// Helper to move created DBG_VALUEs into Transfers collection.
+ void flushDbgValues(MachineBasicBlock::iterator Pos, MachineBasicBlock *MBB) {
+ if (PendingDbgValues.size() == 0)
+ return;
+
+ // Pick out the instruction start position.
+ MachineBasicBlock::instr_iterator BundleStart;
+ if (MBB && Pos == MBB->begin())
+ BundleStart = MBB->instr_begin();
+ else
+ BundleStart = getBundleStart(Pos->getIterator());
+
+ Transfers.push_back({BundleStart, MBB, PendingDbgValues});
+ PendingDbgValues.clear();
+ }
+
+ bool isEntryValueVariable(const DebugVariable &Var,
+ const DIExpression *Expr) const {
+ if (!Var.getVariable()->isParameter())
+ return false;
+
+ if (Var.getInlinedAt())
+ return false;
+
+ if (Expr->getNumElements() > 0)
+ return false;
+
+ return true;
+ }
+
+ bool isEntryValueValue(const ValueIDNum &Val) const {
+ // Must be in entry block (block number zero), and be a PHI / live-in value.
+ if (Val.getBlock() || !Val.isPHI())
+ return false;
+
+ // Entry values must enter in a register.
+ if (MTracker->isSpill(Val.getLoc()))
+ return false;
+
+ Register SP = TLI->getStackPointerRegisterToSaveRestore();
+ Register FP = TRI.getFrameRegister(MF);
+ Register Reg = MTracker->LocIdxToLocID[Val.getLoc()];
+ return Reg != SP && Reg != FP;
+ }
+
+ bool recoverAsEntryValue(const DebugVariable &Var,
+ const DbgValueProperties &Prop,
+ const ValueIDNum &Num) {
+ // Is this variable location a candidate to be an entry value. First,
+ // should we be trying this at all?
+ if (!ShouldEmitDebugEntryValues)
+ return false;
+
+ const DIExpression *DIExpr = Prop.DIExpr;
+
+ // We don't currently emit entry values for DBG_VALUE_LISTs.
+ if (Prop.IsVariadic) {
+ // If this debug value can be converted to be non-variadic, then do so;
+ // otherwise give up.
+ auto NonVariadicExpression =
+ DIExpression::convertToNonVariadicExpression(DIExpr);
+ if (!NonVariadicExpression)
+ return false;
+ DIExpr = *NonVariadicExpression;
+ }
+
+ // Is the variable appropriate for entry values (i.e., is a parameter).
+ if (!isEntryValueVariable(Var, DIExpr))
+ return false;
+
+ // Is the value assigned to this variable still the entry value?
+ if (!isEntryValueValue(Num))
+ return false;
+
+ // Emit a variable location using an entry value expression.
+ DIExpression *NewExpr =
+ DIExpression::prepend(DIExpr, DIExpression::EntryValue);
+ Register Reg = MTracker->LocIdxToLocID[Num.getLoc()];
+ MachineOperand MO = MachineOperand::CreateReg(Reg, false);
+
+ PendingDbgValues.push_back(
+ emitMOLoc(MO, Var, {NewExpr, Prop.Indirect, false}));
+ return true;
+ }
+
+ /// Change a variable value after encountering a DBG_VALUE inside a block.
+ void redefVar(const MachineInstr &MI) {
+ DebugVariable Var(MI.getDebugVariable(), MI.getDebugExpression(),
+ MI.getDebugLoc()->getInlinedAt());
+ DbgValueProperties Properties(MI);
+
+ // Ignore non-register locations, we don't transfer those.
+ if (MI.isUndefDebugValue() ||
+ all_of(MI.debug_operands(),
+ [](const MachineOperand &MO) { return !MO.isReg(); })) {
+ auto It = ActiveVLocs.find(Var);
+ if (It != ActiveVLocs.end()) {
+ for (LocIdx Loc : It->second.loc_indices())
+ ActiveMLocs[Loc].erase(Var);
+ ActiveVLocs.erase(It);
+ }
+ // Any use-before-defs no longer apply.
+ UseBeforeDefVariables.erase(Var);
+ return;
+ }
+
+ SmallVector<ResolvedDbgOp> NewLocs;
+ for (const MachineOperand &MO : MI.debug_operands()) {
+ if (MO.isReg()) {
+ // Any undef regs have already been filtered out above.
+ Register Reg = MO.getReg();
+ LocIdx NewLoc = MTracker->getRegMLoc(Reg);
+ NewLocs.push_back(NewLoc);
+ } else {
+ NewLocs.push_back(MO);
+ }
+ }
+
+ redefVar(MI, Properties, NewLocs);
+ }
+
+ /// Handle a change in variable location within a block. Terminate the
+ /// variables current location, and record the value it now refers to, so
+ /// that we can detect location transfers later on.
+ void redefVar(const MachineInstr &MI, const DbgValueProperties &Properties,
+ SmallVectorImpl<ResolvedDbgOp> &NewLocs) {
+ DebugVariable Var(MI.getDebugVariable(), MI.getDebugExpression(),
+ MI.getDebugLoc()->getInlinedAt());
+ // Any use-before-defs no longer apply.
+ UseBeforeDefVariables.erase(Var);
+
+ // Erase any previous location.
+ auto It = ActiveVLocs.find(Var);
+ if (It != ActiveVLocs.end()) {
+ for (LocIdx Loc : It->second.loc_indices())
+ ActiveMLocs[Loc].erase(Var);
+ }
+
+ // If there _is_ no new location, all we had to do was erase.
+ if (NewLocs.empty()) {
+ if (It != ActiveVLocs.end())
+ ActiveVLocs.erase(It);
+ return;
+ }
+
+ SmallVector<std::pair<LocIdx, DebugVariable>> LostMLocs;
+ for (ResolvedDbgOp &Op : NewLocs) {
+ if (Op.IsConst)
+ continue;
+
+ LocIdx NewLoc = Op.Loc;
+
+ // Check whether our local copy of values-by-location in #VarLocs is out
+ // of date. Wipe old tracking data for the location if it's been clobbered
+ // in the meantime.
+ if (MTracker->readMLoc(NewLoc) != VarLocs[NewLoc.asU64()]) {
+ for (const auto &P : ActiveMLocs[NewLoc]) {
+ auto LostVLocIt = ActiveVLocs.find(P);
+ if (LostVLocIt != ActiveVLocs.end()) {
+ for (LocIdx Loc : LostVLocIt->second.loc_indices()) {
+ // Every active variable mapping for NewLoc will be cleared, no
+ // need to track individual variables.
+ if (Loc == NewLoc)
+ continue;
+ LostMLocs.emplace_back(Loc, P);
+ }
+ }
+ ActiveVLocs.erase(P);
+ }
+ for (const auto &LostMLoc : LostMLocs)
+ ActiveMLocs[LostMLoc.first].erase(LostMLoc.second);
+ LostMLocs.clear();
+ It = ActiveVLocs.find(Var);
+ ActiveMLocs[NewLoc.asU64()].clear();
+ VarLocs[NewLoc.asU64()] = MTracker->readMLoc(NewLoc);
+ }
+
+ ActiveMLocs[NewLoc].insert(Var);
+ }
+
+ if (It == ActiveVLocs.end()) {
+ ActiveVLocs.insert(
+ std::make_pair(Var, ResolvedDbgValue(NewLocs, Properties)));
+ } else {
+ It->second.Ops.assign(NewLocs);
+ It->second.Properties = Properties;
+ }
+ }
+
+ /// Account for a location \p mloc being clobbered. Examine the variable
+ /// locations that will be terminated: and try to recover them by using
+ /// another location. Optionally, given \p MakeUndef, emit a DBG_VALUE to
+ /// explicitly terminate a location if it can't be recovered.
+ void clobberMloc(LocIdx MLoc, MachineBasicBlock::iterator Pos,
+ bool MakeUndef = true) {
+ auto ActiveMLocIt = ActiveMLocs.find(MLoc);
+ if (ActiveMLocIt == ActiveMLocs.end())
+ return;
+
+ // What was the old variable value?
+ ValueIDNum OldValue = VarLocs[MLoc.asU64()];
+ clobberMloc(MLoc, OldValue, Pos, MakeUndef);
+ }
+ /// Overload that takes an explicit value \p OldValue for when the value in
+ /// \p MLoc has changed and the TransferTracker's locations have not been
+ /// updated yet.
+ void clobberMloc(LocIdx MLoc, ValueIDNum OldValue,
+ MachineBasicBlock::iterator Pos, bool MakeUndef = true) {
+ auto ActiveMLocIt = ActiveMLocs.find(MLoc);
+ if (ActiveMLocIt == ActiveMLocs.end())
+ return;
+
+ VarLocs[MLoc.asU64()] = ValueIDNum::EmptyValue;
+
+ // Examine the remaining variable locations: if we can find the same value
+ // again, we can recover the location.
+ std::optional<LocIdx> NewLoc;
+ for (auto Loc : MTracker->locations())
+ if (Loc.Value == OldValue)
+ NewLoc = Loc.Idx;
+
+ // If there is no location, and we weren't asked to make the variable
+ // explicitly undef, then stop here.
+ if (!NewLoc && !MakeUndef) {
+ // Try and recover a few more locations with entry values.
+ for (const auto &Var : ActiveMLocIt->second) {
+ auto &Prop = ActiveVLocs.find(Var)->second.Properties;
+ recoverAsEntryValue(Var, Prop, OldValue);
+ }
+ flushDbgValues(Pos, nullptr);
+ return;
+ }
+
+ // Examine all the variables based on this location.
+ DenseSet<DebugVariable> NewMLocs;
+ // If no new location has been found, every variable that depends on this
+ // MLoc is dead, so end their existing MLoc->Var mappings as well.
+ SmallVector<std::pair<LocIdx, DebugVariable>> LostMLocs;
+ for (const auto &Var : ActiveMLocIt->second) {
+ auto ActiveVLocIt = ActiveVLocs.find(Var);
+ // Re-state the variable location: if there's no replacement then NewLoc
+ // is std::nullopt and a $noreg DBG_VALUE will be created. Otherwise, a
+ // DBG_VALUE identifying the alternative location will be emitted.
+ const DbgValueProperties &Properties = ActiveVLocIt->second.Properties;
+
+ // Produce the new list of debug ops - an empty list if no new location
+ // was found, or the existing list with the substitution MLoc -> NewLoc
+ // otherwise.
+ SmallVector<ResolvedDbgOp> DbgOps;
+ if (NewLoc) {
+ ResolvedDbgOp OldOp(MLoc);
+ ResolvedDbgOp NewOp(*NewLoc);
+ // Insert illegal ops to overwrite afterwards.
+ DbgOps.insert(DbgOps.begin(), ActiveVLocIt->second.Ops.size(),
+ ResolvedDbgOp(LocIdx::MakeIllegalLoc()));
+ replace_copy(ActiveVLocIt->second.Ops, DbgOps.begin(), OldOp, NewOp);
+ }
+
+ PendingDbgValues.push_back(MTracker->emitLoc(DbgOps, Var, Properties));
+
+ // Update machine locations <=> variable locations maps. Defer updating
+ // ActiveMLocs to avoid invalidating the ActiveMLocIt iterator.
+ if (!NewLoc) {
+ for (LocIdx Loc : ActiveVLocIt->second.loc_indices()) {
+ if (Loc != MLoc)
+ LostMLocs.emplace_back(Loc, Var);
+ }
+ ActiveVLocs.erase(ActiveVLocIt);
+ } else {
+ ActiveVLocIt->second.Ops = DbgOps;
+ NewMLocs.insert(Var);
+ }
+ }
+
+ // Remove variables from ActiveMLocs if they no longer use any other MLocs
+ // due to being killed by this clobber.
+ for (auto &LocVarIt : LostMLocs) {
+ auto LostMLocIt = ActiveMLocs.find(LocVarIt.first);
+ assert(LostMLocIt != ActiveMLocs.end() &&
+ "Variable was using this MLoc, but ActiveMLocs[MLoc] has no "
+ "entries?");
+ LostMLocIt->second.erase(LocVarIt.second);
+ }
+
+ // We lazily track what locations have which values; if we've found a new
+ // location for the clobbered value, remember it.
+ if (NewLoc)
+ VarLocs[NewLoc->asU64()] = OldValue;
+
+ flushDbgValues(Pos, nullptr);
+
+ // Commit ActiveMLoc changes.
+ ActiveMLocIt->second.clear();
+ if (!NewMLocs.empty())
+ for (auto &Var : NewMLocs)
+ ActiveMLocs[*NewLoc].insert(Var);
+ }
+
+ /// Transfer variables based on \p Src to be based on \p Dst. This handles
+ /// both register copies as well as spills and restores. Creates DBG_VALUEs
+ /// describing the movement.
+ void transferMlocs(LocIdx Src, LocIdx Dst, MachineBasicBlock::iterator Pos) {
+ // Does Src still contain the value num we expect? If not, it's been
+ // clobbered in the meantime, and our variable locations are stale.
+ if (VarLocs[Src.asU64()] != MTracker->readMLoc(Src))
+ return;
+
+ // assert(ActiveMLocs[Dst].size() == 0);
+ //^^^ Legitimate scenario on account of un-clobbered slot being assigned to?
+
+ // Move set of active variables from one location to another.
+ auto MovingVars = ActiveMLocs[Src];
+ ActiveMLocs[Dst].insert(MovingVars.begin(), MovingVars.end());
+ VarLocs[Dst.asU64()] = VarLocs[Src.asU64()];
+
+ // For each variable based on Src; create a location at Dst.
+ ResolvedDbgOp SrcOp(Src);
+ ResolvedDbgOp DstOp(Dst);
+ for (const auto &Var : MovingVars) {
+ auto ActiveVLocIt = ActiveVLocs.find(Var);
+ assert(ActiveVLocIt != ActiveVLocs.end());
+
+ // Update all instances of Src in the variable's tracked values to Dst.
+ std::replace(ActiveVLocIt->second.Ops.begin(),
+ ActiveVLocIt->second.Ops.end(), SrcOp, DstOp);
+
+ MachineInstr *MI = MTracker->emitLoc(ActiveVLocIt->second.Ops, Var,
+ ActiveVLocIt->second.Properties);
+ PendingDbgValues.push_back(MI);
+ }
+ ActiveMLocs[Src].clear();
+ flushDbgValues(Pos, nullptr);
+
+ // XXX XXX XXX "pretend to be old LDV" means dropping all tracking data
+ // about the old location.
+ if (EmulateOldLDV)
+ VarLocs[Src.asU64()] = ValueIDNum::EmptyValue;
+ }
+
+ MachineInstrBuilder emitMOLoc(const MachineOperand &MO,
+ const DebugVariable &Var,
+ const DbgValueProperties &Properties) {
+ DebugLoc DL = DILocation::get(Var.getVariable()->getContext(), 0, 0,
+ Var.getVariable()->getScope(),
+ const_cast<DILocation *>(Var.getInlinedAt()));
+ auto MIB = BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE));
+ MIB.add(MO);
+ if (Properties.Indirect)
+ MIB.addImm(0);
+ else
+ MIB.addReg(0);
+ MIB.addMetadata(Var.getVariable());
+ MIB.addMetadata(Properties.DIExpr);
+ return MIB;
+ }
+};
+
+//===----------------------------------------------------------------------===//
+// Implementation
+//===----------------------------------------------------------------------===//
+
+ValueIDNum ValueIDNum::EmptyValue = {UINT_MAX, UINT_MAX, UINT_MAX};
+ValueIDNum ValueIDNum::TombstoneValue = {UINT_MAX, UINT_MAX, UINT_MAX - 1};
+
+#ifndef NDEBUG
+void ResolvedDbgOp::dump(const MLocTracker *MTrack) const {
+ if (IsConst) {
+ dbgs() << MO;
+ } else {
+ dbgs() << MTrack->LocIdxToName(Loc);
+ }
+}
+void DbgOp::dump(const MLocTracker *MTrack) const {
+ if (IsConst) {
+ dbgs() << MO;
+ } else if (!isUndef()) {
+ dbgs() << MTrack->IDAsString(ID);
+ }
+}
+void DbgOpID::dump(const MLocTracker *MTrack, const DbgOpIDMap *OpStore) const {
+ if (!OpStore) {
+ dbgs() << "ID(" << asU32() << ")";
+ } else {
+ OpStore->find(*this).dump(MTrack);
+ }
+}
+void DbgValue::dump(const MLocTracker *MTrack,
+ const DbgOpIDMap *OpStore) const {
+ if (Kind == NoVal) {
+ dbgs() << "NoVal(" << BlockNo << ")";
+ } else if (Kind == VPHI || Kind == Def) {
+ if (Kind == VPHI)
+ dbgs() << "VPHI(" << BlockNo << ",";
+ else
+ dbgs() << "Def(";
+ for (unsigned Idx = 0; Idx < getDbgOpIDs().size(); ++Idx) {
+ getDbgOpID(Idx).dump(MTrack, OpStore);
+ if (Idx != 0)
+ dbgs() << ",";
+ }
+ dbgs() << ")";
+ }
+ if (Properties.Indirect)
+ dbgs() << " indir";
+ if (Properties.DIExpr)
+ dbgs() << " " << *Properties.DIExpr;
+}
+#endif
+
+MLocTracker::MLocTracker(MachineFunction &MF, const TargetInstrInfo &TII,
+ const TargetRegisterInfo &TRI,
+ const TargetLowering &TLI)
+ : MF(MF), TII(TII), TRI(TRI), TLI(TLI),
+ LocIdxToIDNum(ValueIDNum::EmptyValue), LocIdxToLocID(0) {
+ NumRegs = TRI.getNumRegs();
+ reset();
+ LocIDToLocIdx.resize(NumRegs, LocIdx::MakeIllegalLoc());
+ assert(NumRegs < (1u << NUM_LOC_BITS)); // Detect bit packing failure
+
+ // Always track SP. This avoids the implicit clobbering caused by regmasks
+ // from affectings its values. (LiveDebugValues disbelieves calls and
+ // regmasks that claim to clobber SP).
+ Register SP = TLI.getStackPointerRegisterToSaveRestore();
+ if (SP) {
+ unsigned ID = getLocID(SP);
+ (void)lookupOrTrackRegister(ID);
+
+ for (MCRegAliasIterator RAI(SP, &TRI, true); RAI.isValid(); ++RAI)
+ SPAliases.insert(*RAI);
+ }
+
+ // Build some common stack positions -- full registers being spilt to the
+ // stack.
+ StackSlotIdxes.insert({{8, 0}, 0});
+ StackSlotIdxes.insert({{16, 0}, 1});
+ StackSlotIdxes.insert({{32, 0}, 2});
+ StackSlotIdxes.insert({{64, 0}, 3});
+ StackSlotIdxes.insert({{128, 0}, 4});
+ StackSlotIdxes.insert({{256, 0}, 5});
+ StackSlotIdxes.insert({{512, 0}, 6});
+
+ // Traverse all the subregister idxes, and ensure there's an index for them.
+ // Duplicates are no problem: we're interested in their position in the
+ // stack slot, we don't want to type the slot.
+ for (unsigned int I = 1; I < TRI.getNumSubRegIndices(); ++I) {
+ unsigned Size = TRI.getSubRegIdxSize(I);
+ unsigned Offs = TRI.getSubRegIdxOffset(I);
+ unsigned Idx = StackSlotIdxes.size();
+
+ // Some subregs have -1, -2 and so forth fed into their fields, to mean
+ // special backend things. Ignore those.
+ if (Size > 60000 || Offs > 60000)
+ continue;
+
+ StackSlotIdxes.insert({{Size, Offs}, Idx});
+ }
+
+ // There may also be strange register class sizes (think x86 fp80s).
+ for (const TargetRegisterClass *RC : TRI.regclasses()) {
+ unsigned Size = TRI.getRegSizeInBits(*RC);
+
+ // We might see special reserved values as sizes, and classes for other
+ // stuff the machine tries to model. If it's more than 512 bits, then it
+ // is very unlikely to be a register than can be spilt.
+ if (Size > 512)
+ continue;
+
+ unsigned Idx = StackSlotIdxes.size();
+ StackSlotIdxes.insert({{Size, 0}, Idx});
+ }
+
+ for (auto &Idx : StackSlotIdxes)
+ StackIdxesToPos[Idx.second] = Idx.first;
+
+ NumSlotIdxes = StackSlotIdxes.size();
+}
+
+LocIdx MLocTracker::trackRegister(unsigned ID) {
+ assert(ID != 0);
+ LocIdx NewIdx = LocIdx(LocIdxToIDNum.size());
+ LocIdxToIDNum.grow(NewIdx);
+ LocIdxToLocID.grow(NewIdx);
+
+ // Default: it's an mphi.
+ ValueIDNum ValNum = {CurBB, 0, NewIdx};
+ // Was this reg ever touched by a regmask?
+ for (const auto &MaskPair : reverse(Masks)) {
+ if (MaskPair.first->clobbersPhysReg(ID)) {
+ // There was an earlier def we skipped.
+ ValNum = {CurBB, MaskPair.second, NewIdx};
+ break;
+ }
+ }
+
+ LocIdxToIDNum[NewIdx] = ValNum;
+ LocIdxToLocID[NewIdx] = ID;
+ return NewIdx;
+}
+
+void MLocTracker::writeRegMask(const MachineOperand *MO, unsigned CurBB,
+ unsigned InstID) {
+ // Def any register we track have that isn't preserved. The regmask
+ // terminates the liveness of a register, meaning its value can't be
+ // relied upon -- we represent this by giving it a new value.
+ for (auto Location : locations()) {
+ unsigned ID = LocIdxToLocID[Location.Idx];
+ // Don't clobber SP, even if the mask says it's clobbered.
+ if (ID < NumRegs && !SPAliases.count(ID) && MO->clobbersPhysReg(ID))
+ defReg(ID, CurBB, InstID);
+ }
+ Masks.push_back(std::make_pair(MO, InstID));
+}
+
+std::optional<SpillLocationNo> MLocTracker::getOrTrackSpillLoc(SpillLoc L) {
+ SpillLocationNo SpillID(SpillLocs.idFor(L));
+
+ if (SpillID.id() == 0) {
+ // If there is no location, and we have reached the limit of how many stack
+ // slots to track, then don't track this one.
+ if (SpillLocs.size() >= StackWorkingSetLimit)
+ return std::nullopt;
+
+ // Spill location is untracked: create record for this one, and all
+ // subregister slots too.
+ SpillID = SpillLocationNo(SpillLocs.insert(L));
+ for (unsigned StackIdx = 0; StackIdx < NumSlotIdxes; ++StackIdx) {
+ unsigned L = getSpillIDWithIdx(SpillID, StackIdx);
+ LocIdx Idx = LocIdx(LocIdxToIDNum.size()); // New idx
+ LocIdxToIDNum.grow(Idx);
+ LocIdxToLocID.grow(Idx);
+ LocIDToLocIdx.push_back(Idx);
+ LocIdxToLocID[Idx] = L;
+ // Initialize to PHI value; corresponds to the location's live-in value
+ // during transfer function construction.
+ LocIdxToIDNum[Idx] = ValueIDNum(CurBB, 0, Idx);
+ }
+ }
+ return SpillID;
+}
+
+std::string MLocTracker::LocIdxToName(LocIdx Idx) const {
+ unsigned ID = LocIdxToLocID[Idx];
+ if (ID >= NumRegs) {
+ StackSlotPos Pos = locIDToSpillIdx(ID);
+ ID -= NumRegs;
+ unsigned Slot = ID / NumSlotIdxes;
+ return Twine("slot ")
+ .concat(Twine(Slot).concat(Twine(" sz ").concat(Twine(Pos.first)
+ .concat(Twine(" offs ").concat(Twine(Pos.second))))))
+ .str();
+ } else {
+ return TRI.getRegAsmName(ID).str();
+ }
+}
+
+std::string MLocTracker::IDAsString(const ValueIDNum &Num) const {
+ std::string DefName = LocIdxToName(Num.getLoc());
+ return Num.asString(DefName);
+}
+
+#ifndef NDEBUG
+LLVM_DUMP_METHOD void MLocTracker::dump() {
+ for (auto Location : locations()) {
+ std::string MLocName = LocIdxToName(Location.Value.getLoc());
+ std::string DefName = Location.Value.asString(MLocName);
+ dbgs() << LocIdxToName(Location.Idx) << " --> " << DefName << "\n";
+ }
+}
+
+LLVM_DUMP_METHOD void MLocTracker::dump_mloc_map() {
+ for (auto Location : locations()) {
+ std::string foo = LocIdxToName(Location.Idx);
+ dbgs() << "Idx " << Location.Idx.asU64() << " " << foo << "\n";
+ }
+}
+#endif
+
+MachineInstrBuilder
+MLocTracker::emitLoc(const SmallVectorImpl<ResolvedDbgOp> &DbgOps,
+ const DebugVariable &Var,
+ const DbgValueProperties &Properties) {
+ DebugLoc DL = DILocation::get(Var.getVariable()->getContext(), 0, 0,
+ Var.getVariable()->getScope(),
+ const_cast<DILocation *>(Var.getInlinedAt()));
+
+ const MCInstrDesc &Desc = Properties.IsVariadic
+ ? TII.get(TargetOpcode::DBG_VALUE_LIST)
+ : TII.get(TargetOpcode::DBG_VALUE);
+
+#ifdef EXPENSIVE_CHECKS
+ assert(all_of(DbgOps,
+ [](const ResolvedDbgOp &Op) {
+ return Op.IsConst || !Op.Loc.isIllegal();
+ }) &&
+ "Did not expect illegal ops in DbgOps.");
+ assert((DbgOps.size() == 0 ||
+ DbgOps.size() == Properties.getLocationOpCount()) &&
+ "Expected to have either one DbgOp per MI LocationOp, or none.");
+#endif
+
+ auto GetRegOp = [](unsigned Reg) -> MachineOperand {
+ return MachineOperand::CreateReg(
+ /* Reg */ Reg, /* isDef */ false, /* isImp */ false,
+ /* isKill */ false, /* isDead */ false,
+ /* isUndef */ false, /* isEarlyClobber */ false,
+ /* SubReg */ 0, /* isDebug */ true);
+ };
+
+ SmallVector<MachineOperand> MOs;
+
+ auto EmitUndef = [&]() {
+ MOs.clear();
+ MOs.assign(Properties.getLocationOpCount(), GetRegOp(0));
+ return BuildMI(MF, DL, Desc, false, MOs, Var.getVariable(),
+ Properties.DIExpr);
+ };
+
+ // Don't bother passing any real operands to BuildMI if any of them would be
+ // $noreg.
+ if (DbgOps.empty())
+ return EmitUndef();
+
+ bool Indirect = Properties.Indirect;
+
+ const DIExpression *Expr = Properties.DIExpr;
+
+ assert(DbgOps.size() == Properties.getLocationOpCount());
+
+ // If all locations are valid, accumulate them into our list of
+ // MachineOperands. For any spilled locations, either update the indirectness
+ // register or apply the appropriate transformations in the DIExpression.
+ for (size_t Idx = 0; Idx < Properties.getLocationOpCount(); ++Idx) {
+ const ResolvedDbgOp &Op = DbgOps[Idx];
+
+ if (Op.IsConst) {
+ MOs.push_back(Op.MO);
+ continue;
+ }
+
+ LocIdx MLoc = Op.Loc;
+ unsigned LocID = LocIdxToLocID[MLoc];
+ if (LocID >= NumRegs) {
+ SpillLocationNo SpillID = locIDToSpill(LocID);
+ StackSlotPos StackIdx = locIDToSpillIdx(LocID);
+ unsigned short Offset = StackIdx.second;
+
+ // TODO: support variables that are located in spill slots, with non-zero
+ // offsets from the start of the spill slot. It would require some more
+ // complex DIExpression calculations. This doesn't seem to be produced by
+ // LLVM right now, so don't try and support it.
+ // Accept no-subregister slots and subregisters where the offset is zero.
+ // The consumer should already have type information to work out how large
+ // the variable is.
+ if (Offset == 0) {
+ const SpillLoc &Spill = SpillLocs[SpillID.id()];
+ unsigned Base = Spill.SpillBase;
+
+ // There are several ways we can dereference things, and several inputs
+ // to consider:
+ // * NRVO variables will appear with IsIndirect set, but should have
+ // nothing else in their DIExpressions,
+ // * Variables with DW_OP_stack_value in their expr already need an
+ // explicit dereference of the stack location,
+ // * Values that don't match the variable size need DW_OP_deref_size,
+ // * Everything else can just become a simple location expression.
+
+ // We need to use deref_size whenever there's a mismatch between the
+ // size of value and the size of variable portion being read.
+ // Additionally, we should use it whenever dealing with stack_value
+ // fragments, to avoid the consumer having to determine the deref size
+ // from DW_OP_piece.
+ bool UseDerefSize = false;
+ unsigned ValueSizeInBits = getLocSizeInBits(MLoc);
+ unsigned DerefSizeInBytes = ValueSizeInBits / 8;
+ if (auto Fragment = Var.getFragment()) {
+ unsigned VariableSizeInBits = Fragment->SizeInBits;
+ if (VariableSizeInBits != ValueSizeInBits || Expr->isComplex())
+ UseDerefSize = true;
+ } else if (auto Size = Var.getVariable()->getSizeInBits()) {
+ if (*Size != ValueSizeInBits) {
+ UseDerefSize = true;
+ }
+ }
+
+ SmallVector<uint64_t, 5> OffsetOps;
+ TRI.getOffsetOpcodes(Spill.SpillOffset, OffsetOps);
+ bool StackValue = false;
+
+ if (Properties.Indirect) {
+ // This is something like an NRVO variable, where the pointer has been
+ // spilt to the stack. It should end up being a memory location, with
+ // the pointer to the variable loaded off the stack with a deref:
+ assert(!Expr->isImplicit());
+ OffsetOps.push_back(dwarf::DW_OP_deref);
+ } else if (UseDerefSize && Expr->isSingleLocationExpression()) {
+ // TODO: Figure out how to handle deref size issues for variadic
+ // values.
+ // We're loading a value off the stack that's not the same size as the
+ // variable. Add / subtract stack offset, explicitly deref with a
+ // size, and add DW_OP_stack_value if not already present.
+ OffsetOps.push_back(dwarf::DW_OP_deref_size);
+ OffsetOps.push_back(DerefSizeInBytes);
+ StackValue = true;
+ } else if (Expr->isComplex() || Properties.IsVariadic) {
+ // A variable with no size ambiguity, but with extra elements in it's
+ // expression. Manually dereference the stack location.
+ OffsetOps.push_back(dwarf::DW_OP_deref);
+ } else {
+ // A plain value that has been spilt to the stack, with no further
+ // context. Request a location expression, marking the DBG_VALUE as
+ // IsIndirect.
+ Indirect = true;
+ }
+
+ Expr = DIExpression::appendOpsToArg(Expr, OffsetOps, Idx, StackValue);
+ MOs.push_back(GetRegOp(Base));
+ } else {
+ // This is a stack location with a weird subregister offset: emit an
+ // undef DBG_VALUE instead.
+ return EmitUndef();
+ }
+ } else {
+ // Non-empty, non-stack slot, must be a plain register.
+ MOs.push_back(GetRegOp(LocID));
+ }
+ }
+
+ return BuildMI(MF, DL, Desc, Indirect, MOs, Var.getVariable(), Expr);
+}
+
+/// Default construct and initialize the pass.
+InstrRefBasedLDV::InstrRefBasedLDV() = default;
+
+bool InstrRefBasedLDV::isCalleeSaved(LocIdx L) const {
+ unsigned Reg = MTracker->LocIdxToLocID[L];
+ return isCalleeSavedReg(Reg);
+}
+bool InstrRefBasedLDV::isCalleeSavedReg(Register R) const {
+ for (MCRegAliasIterator RAI(R, TRI, true); RAI.isValid(); ++RAI)
+ if (CalleeSavedRegs.test(*RAI))
+ return true;
+ return false;
+}
+
+//===----------------------------------------------------------------------===//
+// Debug Range Extension Implementation
+//===----------------------------------------------------------------------===//
+
+#ifndef NDEBUG
+// Something to restore in the future.
+// void InstrRefBasedLDV::printVarLocInMBB(..)
+#endif
+
+std::optional<SpillLocationNo>
+InstrRefBasedLDV::extractSpillBaseRegAndOffset(const MachineInstr &MI) {
+ assert(MI.hasOneMemOperand() &&
+ "Spill instruction does not have exactly one memory operand?");
+ auto MMOI = MI.memoperands_begin();
+ const PseudoSourceValue *PVal = (*MMOI)->getPseudoValue();
+ assert(PVal->kind() == PseudoSourceValue::FixedStack &&
+ "Inconsistent memory operand in spill instruction");
+ int FI = cast<FixedStackPseudoSourceValue>(PVal)->getFrameIndex();
+ const MachineBasicBlock *MBB = MI.getParent();
+ Register Reg;
+ StackOffset Offset = TFI->getFrameIndexReference(*MBB->getParent(), FI, Reg);
+ return MTracker->getOrTrackSpillLoc({Reg, Offset});
+}
+
+std::optional<LocIdx>
+InstrRefBasedLDV::findLocationForMemOperand(const MachineInstr &MI) {
+ std::optional<SpillLocationNo> SpillLoc = extractSpillBaseRegAndOffset(MI);
+ if (!SpillLoc)
+ return std::nullopt;
+
+ // Where in the stack slot is this value defined -- i.e., what size of value
+ // is this? An important question, because it could be loaded into a register
+ // from the stack at some point. Happily the memory operand will tell us
+ // the size written to the stack.
+ auto *MemOperand = *MI.memoperands_begin();
+ unsigned SizeInBits = MemOperand->getSizeInBits();
+
+ // Find that position in the stack indexes we're tracking.
+ auto IdxIt = MTracker->StackSlotIdxes.find({SizeInBits, 0});
+ if (IdxIt == MTracker->StackSlotIdxes.end())
+ // That index is not tracked. This is suprising, and unlikely to ever
+ // occur, but the safe action is to indicate the variable is optimised out.
+ return std::nullopt;
+
+ unsigned SpillID = MTracker->getSpillIDWithIdx(*SpillLoc, IdxIt->second);
+ return MTracker->getSpillMLoc(SpillID);
+}
+
+/// End all previous ranges related to @MI and start a new range from @MI
+/// if it is a DBG_VALUE instr.
+bool InstrRefBasedLDV::transferDebugValue(const MachineInstr &MI) {
+ if (!MI.isDebugValue())
+ return false;
+
+ const DILocalVariable *Var = MI.getDebugVariable();
+ const DIExpression *Expr = MI.getDebugExpression();
+ const DILocation *DebugLoc = MI.getDebugLoc();
+ const DILocation *InlinedAt = DebugLoc->getInlinedAt();
+ assert(Var->isValidLocationForIntrinsic(DebugLoc) &&
+ "Expected inlined-at fields to agree");
+
+ DebugVariable V(Var, Expr, InlinedAt);
+ DbgValueProperties Properties(MI);
+
+ // If there are no instructions in this lexical scope, do no location tracking
+ // at all, this variable shouldn't get a legitimate location range.
+ auto *Scope = LS.findLexicalScope(MI.getDebugLoc().get());
+ if (Scope == nullptr)
+ return true; // handled it; by doing nothing
+
+ // MLocTracker needs to know that this register is read, even if it's only
+ // read by a debug inst.
+ for (const MachineOperand &MO : MI.debug_operands())
+ if (MO.isReg() && MO.getReg() != 0)
+ (void)MTracker->readReg(MO.getReg());
+
+ // If we're preparing for the second analysis (variables), the machine value
+ // locations are already solved, and we report this DBG_VALUE and the value
+ // it refers to to VLocTracker.
+ if (VTracker) {
+ SmallVector<DbgOpID> DebugOps;
+ // Feed defVar the new variable location, or if this is a DBG_VALUE $noreg,
+ // feed defVar None.
+ if (!MI.isUndefDebugValue()) {
+ for (const MachineOperand &MO : MI.debug_operands()) {
+ // There should be no undef registers here, as we've screened for undef
+ // debug values.
+ if (MO.isReg()) {
+ DebugOps.push_back(DbgOpStore.insert(MTracker->readReg(MO.getReg())));
+ } else if (MO.isImm() || MO.isFPImm() || MO.isCImm()) {
+ DebugOps.push_back(DbgOpStore.insert(MO));
+ } else {
+ llvm_unreachable("Unexpected debug operand type.");
+ }
+ }
+ }
+ VTracker->defVar(MI, Properties, DebugOps);
+ }
+
+ // If performing final tracking of transfers, report this variable definition
+ // to the TransferTracker too.
+ if (TTracker)
+ TTracker->redefVar(MI);
+ return true;
+}
+
+std::optional<ValueIDNum> InstrRefBasedLDV::getValueForInstrRef(
+ unsigned InstNo, unsigned OpNo, MachineInstr &MI,
+ const ValueTable *MLiveOuts, const ValueTable *MLiveIns) {
+ // Various optimizations may have happened to the value during codegen,
+ // recorded in the value substitution table. Apply any substitutions to
+ // the instruction / operand number in this DBG_INSTR_REF, and collect
+ // any subregister extractions performed during optimization.
+ const MachineFunction &MF = *MI.getParent()->getParent();
+
+ // Create dummy substitution with Src set, for lookup.
+ auto SoughtSub =
+ MachineFunction::DebugSubstitution({InstNo, OpNo}, {0, 0}, 0);
+
+ SmallVector<unsigned, 4> SeenSubregs;
+ auto LowerBoundIt = llvm::lower_bound(MF.DebugValueSubstitutions, SoughtSub);
+ while (LowerBoundIt != MF.DebugValueSubstitutions.end() &&
+ LowerBoundIt->Src == SoughtSub.Src) {
+ std::tie(InstNo, OpNo) = LowerBoundIt->Dest;
+ SoughtSub.Src = LowerBoundIt->Dest;
+ if (unsigned Subreg = LowerBoundIt->Subreg)
+ SeenSubregs.push_back(Subreg);
+ LowerBoundIt = llvm::lower_bound(MF.DebugValueSubstitutions, SoughtSub);
+ }
+
+ // Default machine value number is <None> -- if no instruction defines
+ // the corresponding value, it must have been optimized out.
+ std::optional<ValueIDNum> NewID;
+
+ // Try to lookup the instruction number, and find the machine value number
+ // that it defines. It could be an instruction, or a PHI.
+ auto InstrIt = DebugInstrNumToInstr.find(InstNo);
+ auto PHIIt = llvm::lower_bound(DebugPHINumToValue, InstNo);
+ if (InstrIt != DebugInstrNumToInstr.end()) {
+ const MachineInstr &TargetInstr = *InstrIt->second.first;
+ uint64_t BlockNo = TargetInstr.getParent()->getNumber();
+
+ // Pick out the designated operand. It might be a memory reference, if
+ // a register def was folded into a stack store.
+ if (OpNo == MachineFunction::DebugOperandMemNumber &&
+ TargetInstr.hasOneMemOperand()) {
+ std::optional<LocIdx> L = findLocationForMemOperand(TargetInstr);
+ if (L)
+ NewID = ValueIDNum(BlockNo, InstrIt->second.second, *L);
+ } else if (OpNo != MachineFunction::DebugOperandMemNumber) {
+ // Permit the debug-info to be completely wrong: identifying a nonexistant
+ // operand, or one that is not a register definition, means something
+ // unexpected happened during optimisation. Broken debug-info, however,
+ // shouldn't crash the compiler -- instead leave the variable value as
+ // None, which will make it appear "optimised out".
+ if (OpNo < TargetInstr.getNumOperands()) {
+ const MachineOperand &MO = TargetInstr.getOperand(OpNo);
+
+ if (MO.isReg() && MO.isDef() && MO.getReg()) {
+ unsigned LocID = MTracker->getLocID(MO.getReg());
+ LocIdx L = MTracker->LocIDToLocIdx[LocID];
+ NewID = ValueIDNum(BlockNo, InstrIt->second.second, L);
+ }
+ }
+
+ if (!NewID) {
+ LLVM_DEBUG(
+ { dbgs() << "Seen instruction reference to illegal operand\n"; });
+ }
+ }
+ // else: NewID is left as None.
+ } else if (PHIIt != DebugPHINumToValue.end() && PHIIt->InstrNum == InstNo) {
+ // It's actually a PHI value. Which value it is might not be obvious, use
+ // the resolver helper to find out.
+ NewID = resolveDbgPHIs(*MI.getParent()->getParent(), MLiveOuts, MLiveIns,
+ MI, InstNo);
+ }
+
+ // Apply any subregister extractions, in reverse. We might have seen code
+ // like this:
+ // CALL64 @foo, implicit-def $rax
+ // %0:gr64 = COPY $rax
+ // %1:gr32 = COPY %0.sub_32bit
+ // %2:gr16 = COPY %1.sub_16bit
+ // %3:gr8 = COPY %2.sub_8bit
+ // In which case each copy would have been recorded as a substitution with
+ // a subregister qualifier. Apply those qualifiers now.
+ if (NewID && !SeenSubregs.empty()) {
+ unsigned Offset = 0;
+ unsigned Size = 0;
+
+ // Look at each subregister that we passed through, and progressively
+ // narrow in, accumulating any offsets that occur. Substitutions should
+ // only ever be the same or narrower width than what they read from;
+ // iterate in reverse order so that we go from wide to small.
+ for (unsigned Subreg : reverse(SeenSubregs)) {
+ unsigned ThisSize = TRI->getSubRegIdxSize(Subreg);
+ unsigned ThisOffset = TRI->getSubRegIdxOffset(Subreg);
+ Offset += ThisOffset;
+ Size = (Size == 0) ? ThisSize : std::min(Size, ThisSize);
+ }
+
+ // If that worked, look for an appropriate subregister with the register
+ // where the define happens. Don't look at values that were defined during
+ // a stack write: we can't currently express register locations within
+ // spills.
+ LocIdx L = NewID->getLoc();
+ if (NewID && !MTracker->isSpill(L)) {
+ // Find the register class for the register where this def happened.
+ // FIXME: no index for this?
+ Register Reg = MTracker->LocIdxToLocID[L];
+ const TargetRegisterClass *TRC = nullptr;
+ for (const auto *TRCI : TRI->regclasses())
+ if (TRCI->contains(Reg))
+ TRC = TRCI;
+ assert(TRC && "Couldn't find target register class?");
+
+ // If the register we have isn't the right size or in the right place,
+ // Try to find a subregister inside it.
+ unsigned MainRegSize = TRI->getRegSizeInBits(*TRC);
+ if (Size != MainRegSize || Offset) {
+ // Enumerate all subregisters, searching.
+ Register NewReg = 0;
+ for (MCSubRegIterator SRI(Reg, TRI, false); SRI.isValid(); ++SRI) {
+ unsigned Subreg = TRI->getSubRegIndex(Reg, *SRI);
+ unsigned SubregSize = TRI->getSubRegIdxSize(Subreg);
+ unsigned SubregOffset = TRI->getSubRegIdxOffset(Subreg);
+ if (SubregSize == Size && SubregOffset == Offset) {
+ NewReg = *SRI;
+ break;
+ }
+ }
+
+ // If we didn't find anything: there's no way to express our value.
+ if (!NewReg) {
+ NewID = std::nullopt;
+ } else {
+ // Re-state the value as being defined within the subregister
+ // that we found.
+ LocIdx NewLoc = MTracker->lookupOrTrackRegister(NewReg);
+ NewID = ValueIDNum(NewID->getBlock(), NewID->getInst(), NewLoc);
+ }
+ }
+ } else {
+ // If we can't handle subregisters, unset the new value.
+ NewID = std::nullopt;
+ }
+ }
+
+ return NewID;
+}
+
+bool InstrRefBasedLDV::transferDebugInstrRef(MachineInstr &MI,
+ const ValueTable *MLiveOuts,
+ const ValueTable *MLiveIns) {
+ if (!MI.isDebugRef())
+ return false;
+
+ // Only handle this instruction when we are building the variable value
+ // transfer function.
+ if (!VTracker && !TTracker)
+ return false;
+
+ const DILocalVariable *Var = MI.getDebugVariable();
+ const DIExpression *Expr = MI.getDebugExpression();
+ const DILocation *DebugLoc = MI.getDebugLoc();
+ const DILocation *InlinedAt = DebugLoc->getInlinedAt();
+ assert(Var->isValidLocationForIntrinsic(DebugLoc) &&
+ "Expected inlined-at fields to agree");
+
+ DebugVariable V(Var, Expr, InlinedAt);
+
+ auto *Scope = LS.findLexicalScope(MI.getDebugLoc().get());
+ if (Scope == nullptr)
+ return true; // Handled by doing nothing. This variable is never in scope.
+
+ SmallVector<DbgOpID> DbgOpIDs;
+ for (const MachineOperand &MO : MI.debug_operands()) {
+ if (!MO.isDbgInstrRef()) {
+ assert(!MO.isReg() && "DBG_INSTR_REF should not contain registers");
+ DbgOpID ConstOpID = DbgOpStore.insert(DbgOp(MO));
+ DbgOpIDs.push_back(ConstOpID);
+ continue;
+ }
+
+ unsigned InstNo = MO.getInstrRefInstrIndex();
+ unsigned OpNo = MO.getInstrRefOpIndex();
+
+ // Default machine value number is <None> -- if no instruction defines
+ // the corresponding value, it must have been optimized out.
+ std::optional<ValueIDNum> NewID =
+ getValueForInstrRef(InstNo, OpNo, MI, MLiveOuts, MLiveIns);
+ // We have a value number or std::nullopt. If the latter, then kill the
+ // entire debug value.
+ if (NewID) {
+ DbgOpIDs.push_back(DbgOpStore.insert(*NewID));
+ } else {
+ DbgOpIDs.clear();
+ break;
+ }
+ }
+
+ // We have a DbgOpID for every value or for none. Tell the variable value
+ // tracker about it. The rest of this LiveDebugValues implementation acts
+ // exactly the same for DBG_INSTR_REFs as DBG_VALUEs (just, the former can
+ // refer to values that aren't immediately available).
+ DbgValueProperties Properties(Expr, false, true);
+ if (VTracker)
+ VTracker->defVar(MI, Properties, DbgOpIDs);
+
+ // If we're on the final pass through the function, decompose this INSTR_REF
+ // into a plain DBG_VALUE.
+ if (!TTracker)
+ return true;
+
+ // Fetch the concrete DbgOps now, as we will need them later.
+ SmallVector<DbgOp> DbgOps;
+ for (DbgOpID OpID : DbgOpIDs) {
+ DbgOps.push_back(DbgOpStore.find(OpID));
+ }
+
+ // Pick a location for the machine value number, if such a location exists.
+ // (This information could be stored in TransferTracker to make it faster).
+ SmallDenseMap<ValueIDNum, TransferTracker::LocationAndQuality> FoundLocs;
+ SmallVector<ValueIDNum> ValuesToFind;
+ // Initialized the preferred-location map with illegal locations, to be
+ // filled in later.
+ for (const DbgOp &Op : DbgOps) {
+ if (!Op.IsConst)
+ if (FoundLocs.insert({Op.ID, TransferTracker::LocationAndQuality()})
+ .second)
+ ValuesToFind.push_back(Op.ID);
+ }
+
+ for (auto Location : MTracker->locations()) {
+ LocIdx CurL = Location.Idx;
+ ValueIDNum ID = MTracker->readMLoc(CurL);
+ auto ValueToFindIt = find(ValuesToFind, ID);
+ if (ValueToFindIt == ValuesToFind.end())
+ continue;
+ auto &Previous = FoundLocs.find(ID)->second;
+ // If this is the first location with that value, pick it. Otherwise,
+ // consider whether it's a "longer term" location.
+ std::optional<TransferTracker::LocationQuality> ReplacementQuality =
+ TTracker->getLocQualityIfBetter(CurL, Previous.getQuality());
+ if (ReplacementQuality) {
+ Previous = TransferTracker::LocationAndQuality(CurL, *ReplacementQuality);
+ if (Previous.isBest()) {
+ ValuesToFind.erase(ValueToFindIt);
+ if (ValuesToFind.empty())
+ break;
+ }
+ }
+ }
+
+ SmallVector<ResolvedDbgOp> NewLocs;
+ for (const DbgOp &DbgOp : DbgOps) {
+ if (DbgOp.IsConst) {
+ NewLocs.push_back(DbgOp.MO);
+ continue;
+ }
+ LocIdx FoundLoc = FoundLocs.find(DbgOp.ID)->second.getLoc();
+ if (FoundLoc.isIllegal()) {
+ NewLocs.clear();
+ break;
+ }
+ NewLocs.push_back(FoundLoc);
+ }
+ // Tell transfer tracker that the variable value has changed.
+ TTracker->redefVar(MI, Properties, NewLocs);
+
+ // If there were values with no location, but all such values are defined in
+ // later instructions in this block, this is a block-local use-before-def.
+ if (!DbgOps.empty() && NewLocs.empty()) {
+ bool IsValidUseBeforeDef = true;
+ uint64_t LastUseBeforeDef = 0;
+ for (auto ValueLoc : FoundLocs) {
+ ValueIDNum NewID = ValueLoc.first;
+ LocIdx FoundLoc = ValueLoc.second.getLoc();
+ if (!FoundLoc.isIllegal())
+ continue;
+ // If we have an value with no location that is not defined in this block,
+ // then it has no location in this block, leaving this value undefined.
+ if (NewID.getBlock() != CurBB || NewID.getInst() <= CurInst) {
+ IsValidUseBeforeDef = false;
+ break;
+ }
+ LastUseBeforeDef = std::max(LastUseBeforeDef, NewID.getInst());
+ }
+ if (IsValidUseBeforeDef) {
+ TTracker->addUseBeforeDef(V, {MI.getDebugExpression(), false, true},
+ DbgOps, LastUseBeforeDef);
+ }
+ }
+
+ // Produce a DBG_VALUE representing what this DBG_INSTR_REF meant.
+ // This DBG_VALUE is potentially a $noreg / undefined location, if
+ // FoundLoc is illegal.
+ // (XXX -- could morph the DBG_INSTR_REF in the future).
+ MachineInstr *DbgMI = MTracker->emitLoc(NewLocs, V, Properties);
+
+ TTracker->PendingDbgValues.push_back(DbgMI);
+ TTracker->flushDbgValues(MI.getIterator(), nullptr);
+ return true;
+}
+
+bool InstrRefBasedLDV::transferDebugPHI(MachineInstr &MI) {
+ if (!MI.isDebugPHI())
+ return false;
+
+ // Analyse these only when solving the machine value location problem.
+ if (VTracker || TTracker)
+ return true;
+
+ // First operand is the value location, either a stack slot or register.
+ // Second is the debug instruction number of the original PHI.
+ const MachineOperand &MO = MI.getOperand(0);
+ unsigned InstrNum = MI.getOperand(1).getImm();
+
+ auto EmitBadPHI = [this, &MI, InstrNum]() -> bool {
+ // Helper lambda to do any accounting when we fail to find a location for
+ // a DBG_PHI. This can happen if DBG_PHIs are malformed, or refer to a
+ // dead stack slot, for example.
+ // Record a DebugPHIRecord with an empty value + location.
+ DebugPHINumToValue.push_back(
+ {InstrNum, MI.getParent(), std::nullopt, std::nullopt});
+ return true;
+ };
+
+ if (MO.isReg() && MO.getReg()) {
+ // The value is whatever's currently in the register. Read and record it,
+ // to be analysed later.
+ Register Reg = MO.getReg();
+ ValueIDNum Num = MTracker->readReg(Reg);
+ auto PHIRec = DebugPHIRecord(
+ {InstrNum, MI.getParent(), Num, MTracker->lookupOrTrackRegister(Reg)});
+ DebugPHINumToValue.push_back(PHIRec);
+
+ // Ensure this register is tracked.
+ for (MCRegAliasIterator RAI(MO.getReg(), TRI, true); RAI.isValid(); ++RAI)
+ MTracker->lookupOrTrackRegister(*RAI);
+ } else if (MO.isFI()) {
+ // The value is whatever's in this stack slot.
+ unsigned FI = MO.getIndex();
+
+ // If the stack slot is dead, then this was optimized away.
+ // FIXME: stack slot colouring should account for slots that get merged.
+ if (MFI->isDeadObjectIndex(FI))
+ return EmitBadPHI();
+
+ // Identify this spill slot, ensure it's tracked.
+ Register Base;
+ StackOffset Offs = TFI->getFrameIndexReference(*MI.getMF(), FI, Base);
+ SpillLoc SL = {Base, Offs};
+ std::optional<SpillLocationNo> SpillNo = MTracker->getOrTrackSpillLoc(SL);
+
+ // We might be able to find a value, but have chosen not to, to avoid
+ // tracking too much stack information.
+ if (!SpillNo)
+ return EmitBadPHI();
+
+ // Any stack location DBG_PHI should have an associate bit-size.
+ assert(MI.getNumOperands() == 3 && "Stack DBG_PHI with no size?");
+ unsigned slotBitSize = MI.getOperand(2).getImm();
+
+ unsigned SpillID = MTracker->getLocID(*SpillNo, {slotBitSize, 0});
+ LocIdx SpillLoc = MTracker->getSpillMLoc(SpillID);
+ ValueIDNum Result = MTracker->readMLoc(SpillLoc);
+
+ // Record this DBG_PHI for later analysis.
+ auto DbgPHI = DebugPHIRecord({InstrNum, MI.getParent(), Result, SpillLoc});
+ DebugPHINumToValue.push_back(DbgPHI);
+ } else {
+ // Else: if the operand is neither a legal register or a stack slot, then
+ // we're being fed illegal debug-info. Record an empty PHI, so that any
+ // debug users trying to read this number will be put off trying to
+ // interpret the value.
+ LLVM_DEBUG(
+ { dbgs() << "Seen DBG_PHI with unrecognised operand format\n"; });
+ return EmitBadPHI();
+ }
+
+ return true;
+}
+
+void InstrRefBasedLDV::transferRegisterDef(MachineInstr &MI) {
+ // Meta Instructions do not affect the debug liveness of any register they
+ // define.
+ if (MI.isImplicitDef()) {
+ // Except when there's an implicit def, and the location it's defining has
+ // no value number. The whole point of an implicit def is to announce that
+ // the register is live, without be specific about it's value. So define
+ // a value if there isn't one already.
+ ValueIDNum Num = MTracker->readReg(MI.getOperand(0).getReg());
+ // Has a legitimate value -> ignore the implicit def.
+ if (Num.getLoc() != 0)
+ return;
+ // Otherwise, def it here.
+ } else if (MI.isMetaInstruction())
+ return;
+
+ // We always ignore SP defines on call instructions, they don't actually
+ // change the value of the stack pointer... except for win32's _chkstk. This
+ // is rare: filter quickly for the common case (no stack adjustments, not a
+ // call, etc). If it is a call that modifies SP, recognise the SP register
+ // defs.
+ bool CallChangesSP = false;
+ if (AdjustsStackInCalls && MI.isCall() && MI.getOperand(0).isSymbol() &&
+ !strcmp(MI.getOperand(0).getSymbolName(), StackProbeSymbolName.data()))
+ CallChangesSP = true;
+
+ // Test whether we should ignore a def of this register due to it being part
+ // of the stack pointer.
+ auto IgnoreSPAlias = [this, &MI, CallChangesSP](Register R) -> bool {
+ if (CallChangesSP)
+ return false;
+ return MI.isCall() && MTracker->SPAliases.count(R);
+ };
+
+ // Find the regs killed by MI, and find regmasks of preserved regs.
+ // Max out the number of statically allocated elements in `DeadRegs`, as this
+ // prevents fallback to std::set::count() operations.
+ SmallSet<uint32_t, 32> DeadRegs;
+ SmallVector<const uint32_t *, 4> RegMasks;
+ SmallVector<const MachineOperand *, 4> RegMaskPtrs;
+ for (const MachineOperand &MO : MI.operands()) {
+ // Determine whether the operand is a register def.
+ if (MO.isReg() && MO.isDef() && MO.getReg() && MO.getReg().isPhysical() &&
+ !IgnoreSPAlias(MO.getReg())) {
+ // Remove ranges of all aliased registers.
+ for (MCRegAliasIterator RAI(MO.getReg(), TRI, true); RAI.isValid(); ++RAI)
+ // FIXME: Can we break out of this loop early if no insertion occurs?
+ DeadRegs.insert(*RAI);
+ } else if (MO.isRegMask()) {
+ RegMasks.push_back(MO.getRegMask());
+ RegMaskPtrs.push_back(&MO);
+ }
+ }
+
+ // Tell MLocTracker about all definitions, of regmasks and otherwise.
+ for (uint32_t DeadReg : DeadRegs)
+ MTracker->defReg(DeadReg, CurBB, CurInst);
+
+ for (const auto *MO : RegMaskPtrs)
+ MTracker->writeRegMask(MO, CurBB, CurInst);
+
+ // If this instruction writes to a spill slot, def that slot.
+ if (hasFoldedStackStore(MI)) {
+ if (std::optional<SpillLocationNo> SpillNo =
+ extractSpillBaseRegAndOffset(MI)) {
+ for (unsigned int I = 0; I < MTracker->NumSlotIdxes; ++I) {
+ unsigned SpillID = MTracker->getSpillIDWithIdx(*SpillNo, I);
+ LocIdx L = MTracker->getSpillMLoc(SpillID);
+ MTracker->setMLoc(L, ValueIDNum(CurBB, CurInst, L));
+ }
+ }
+ }
+
+ if (!TTracker)
+ return;
+
+ // When committing variable values to locations: tell transfer tracker that
+ // we've clobbered things. It may be able to recover the variable from a
+ // different location.
+
+ // Inform TTracker about any direct clobbers.
+ for (uint32_t DeadReg : DeadRegs) {
+ LocIdx Loc = MTracker->lookupOrTrackRegister(DeadReg);
+ TTracker->clobberMloc(Loc, MI.getIterator(), false);
+ }
+
+ // Look for any clobbers performed by a register mask. Only test locations
+ // that are actually being tracked.
+ if (!RegMaskPtrs.empty()) {
+ for (auto L : MTracker->locations()) {
+ // Stack locations can't be clobbered by regmasks.
+ if (MTracker->isSpill(L.Idx))
+ continue;
+
+ Register Reg = MTracker->LocIdxToLocID[L.Idx];
+ if (IgnoreSPAlias(Reg))
+ continue;
+
+ for (const auto *MO : RegMaskPtrs)
+ if (MO->clobbersPhysReg(Reg))
+ TTracker->clobberMloc(L.Idx, MI.getIterator(), false);
+ }
+ }
+
+ // Tell TTracker about any folded stack store.
+ if (hasFoldedStackStore(MI)) {
+ if (std::optional<SpillLocationNo> SpillNo =
+ extractSpillBaseRegAndOffset(MI)) {
+ for (unsigned int I = 0; I < MTracker->NumSlotIdxes; ++I) {
+ unsigned SpillID = MTracker->getSpillIDWithIdx(*SpillNo, I);
+ LocIdx L = MTracker->getSpillMLoc(SpillID);
+ TTracker->clobberMloc(L, MI.getIterator(), true);
+ }
+ }
+ }
+}
+
+void InstrRefBasedLDV::performCopy(Register SrcRegNum, Register DstRegNum) {
+ // In all circumstances, re-def all aliases. It's definitely a new value now.
+ for (MCRegAliasIterator RAI(DstRegNum, TRI, true); RAI.isValid(); ++RAI)
+ MTracker->defReg(*RAI, CurBB, CurInst);
+
+ ValueIDNum SrcValue = MTracker->readReg(SrcRegNum);
+ MTracker->setReg(DstRegNum, SrcValue);
+
+ // Copy subregisters from one location to another.
+ for (MCSubRegIndexIterator SRI(SrcRegNum, TRI); SRI.isValid(); ++SRI) {
+ unsigned SrcSubReg = SRI.getSubReg();
+ unsigned SubRegIdx = SRI.getSubRegIndex();
+ unsigned DstSubReg = TRI->getSubReg(DstRegNum, SubRegIdx);
+ if (!DstSubReg)
+ continue;
+
+ // Do copy. There are two matching subregisters, the source value should
+ // have been def'd when the super-reg was, the latter might not be tracked
+ // yet.
+ // This will force SrcSubReg to be tracked, if it isn't yet. Will read
+ // mphi values if it wasn't tracked.
+ LocIdx SrcL = MTracker->lookupOrTrackRegister(SrcSubReg);
+ LocIdx DstL = MTracker->lookupOrTrackRegister(DstSubReg);
+ (void)SrcL;
+ (void)DstL;
+ ValueIDNum CpyValue = MTracker->readReg(SrcSubReg);
+
+ MTracker->setReg(DstSubReg, CpyValue);
+ }
+}
+
+std::optional<SpillLocationNo>
+InstrRefBasedLDV::isSpillInstruction(const MachineInstr &MI,
+ MachineFunction *MF) {
+ // TODO: Handle multiple stores folded into one.
+ if (!MI.hasOneMemOperand())
+ return std::nullopt;
+
+ // Reject any memory operand that's aliased -- we can't guarantee its value.
+ auto MMOI = MI.memoperands_begin();
+ const PseudoSourceValue *PVal = (*MMOI)->getPseudoValue();
+ if (PVal->isAliased(MFI))
+ return std::nullopt;
+
+ if (!MI.getSpillSize(TII) && !MI.getFoldedSpillSize(TII))
+ return std::nullopt; // This is not a spill instruction, since no valid size
+ // was returned from either function.
+
+ return extractSpillBaseRegAndOffset(MI);
+}
+
+bool InstrRefBasedLDV::isLocationSpill(const MachineInstr &MI,
+ MachineFunction *MF, unsigned &Reg) {
+ if (!isSpillInstruction(MI, MF))
+ return false;
+
+ int FI;
+ Reg = TII->isStoreToStackSlotPostFE(MI, FI);
+ return Reg != 0;
+}
+
+std::optional<SpillLocationNo>
+InstrRefBasedLDV::isRestoreInstruction(const MachineInstr &MI,
+ MachineFunction *MF, unsigned &Reg) {
+ if (!MI.hasOneMemOperand())
+ return std::nullopt;
+
+ // FIXME: Handle folded restore instructions with more than one memory
+ // operand.
+ if (MI.getRestoreSize(TII)) {
+ Reg = MI.getOperand(0).getReg();
+ return extractSpillBaseRegAndOffset(MI);
+ }
+ return std::nullopt;
+}
+
+bool InstrRefBasedLDV::transferSpillOrRestoreInst(MachineInstr &MI) {
+ // XXX -- it's too difficult to implement VarLocBasedImpl's stack location
+ // limitations under the new model. Therefore, when comparing them, compare
+ // versions that don't attempt spills or restores at all.
+ if (EmulateOldLDV)
+ return false;
+
+ // Strictly limit ourselves to plain loads and stores, not all instructions
+ // that can access the stack.
+ int DummyFI = -1;
+ if (!TII->isStoreToStackSlotPostFE(MI, DummyFI) &&
+ !TII->isLoadFromStackSlotPostFE(MI, DummyFI))
+ return false;
+
+ MachineFunction *MF = MI.getMF();
+ unsigned Reg;
+
+ LLVM_DEBUG(dbgs() << "Examining instruction: "; MI.dump(););
+
+ // Strictly limit ourselves to plain loads and stores, not all instructions
+ // that can access the stack.
+ int FIDummy;
+ if (!TII->isStoreToStackSlotPostFE(MI, FIDummy) &&
+ !TII->isLoadFromStackSlotPostFE(MI, FIDummy))
+ return false;
+
+ // First, if there are any DBG_VALUEs pointing at a spill slot that is
+ // written to, terminate that variable location. The value in memory
+ // will have changed. DbgEntityHistoryCalculator doesn't try to detect this.
+ if (std::optional<SpillLocationNo> Loc = isSpillInstruction(MI, MF)) {
+ // Un-set this location and clobber, so that earlier locations don't
+ // continue past this store.
+ for (unsigned SlotIdx = 0; SlotIdx < MTracker->NumSlotIdxes; ++SlotIdx) {
+ unsigned SpillID = MTracker->getSpillIDWithIdx(*Loc, SlotIdx);
+ std::optional<LocIdx> MLoc = MTracker->getSpillMLoc(SpillID);
+ if (!MLoc)
+ continue;
+
+ // We need to over-write the stack slot with something (here, a def at
+ // this instruction) to ensure no values are preserved in this stack slot
+ // after the spill. It also prevents TTracker from trying to recover the
+ // location and re-installing it in the same place.
+ ValueIDNum Def(CurBB, CurInst, *MLoc);
+ MTracker->setMLoc(*MLoc, Def);
+ if (TTracker)
+ TTracker->clobberMloc(*MLoc, MI.getIterator());
+ }
+ }
+
+ // Try to recognise spill and restore instructions that may transfer a value.
+ if (isLocationSpill(MI, MF, Reg)) {
+ // isLocationSpill returning true should guarantee we can extract a
+ // location.
+ SpillLocationNo Loc = *extractSpillBaseRegAndOffset(MI);
+
+ auto DoTransfer = [&](Register SrcReg, unsigned SpillID) {
+ auto ReadValue = MTracker->readReg(SrcReg);
+ LocIdx DstLoc = MTracker->getSpillMLoc(SpillID);
+ MTracker->setMLoc(DstLoc, ReadValue);
+
+ if (TTracker) {
+ LocIdx SrcLoc = MTracker->getRegMLoc(SrcReg);
+ TTracker->transferMlocs(SrcLoc, DstLoc, MI.getIterator());
+ }
+ };
+
+ // Then, transfer subreg bits.
+ for (MCSubRegIterator SRI(Reg, TRI, false); SRI.isValid(); ++SRI) {
+ // Ensure this reg is tracked,
+ (void)MTracker->lookupOrTrackRegister(*SRI);
+ unsigned SubregIdx = TRI->getSubRegIndex(Reg, *SRI);
+ unsigned SpillID = MTracker->getLocID(Loc, SubregIdx);
+ DoTransfer(*SRI, SpillID);
+ }
+
+ // Directly lookup size of main source reg, and transfer.
+ unsigned Size = TRI->getRegSizeInBits(Reg, *MRI);
+ unsigned SpillID = MTracker->getLocID(Loc, {Size, 0});
+ DoTransfer(Reg, SpillID);
+ } else {
+ std::optional<SpillLocationNo> Loc = isRestoreInstruction(MI, MF, Reg);
+ if (!Loc)
+ return false;
+
+ // Assumption: we're reading from the base of the stack slot, not some
+ // offset into it. It seems very unlikely LLVM would ever generate
+ // restores where this wasn't true. This then becomes a question of what
+ // subregisters in the destination register line up with positions in the
+ // stack slot.
+
+ // Def all registers that alias the destination.
+ for (MCRegAliasIterator RAI(Reg, TRI, true); RAI.isValid(); ++RAI)
+ MTracker->defReg(*RAI, CurBB, CurInst);
+
+ // Now find subregisters within the destination register, and load values
+ // from stack slot positions.
+ auto DoTransfer = [&](Register DestReg, unsigned SpillID) {
+ LocIdx SrcIdx = MTracker->getSpillMLoc(SpillID);
+ auto ReadValue = MTracker->readMLoc(SrcIdx);
+ MTracker->setReg(DestReg, ReadValue);
+ };
+
+ for (MCSubRegIterator SRI(Reg, TRI, false); SRI.isValid(); ++SRI) {
+ unsigned Subreg = TRI->getSubRegIndex(Reg, *SRI);
+ unsigned SpillID = MTracker->getLocID(*Loc, Subreg);
+ DoTransfer(*SRI, SpillID);
+ }
+
+ // Directly look up this registers slot idx by size, and transfer.
+ unsigned Size = TRI->getRegSizeInBits(Reg, *MRI);
+ unsigned SpillID = MTracker->getLocID(*Loc, {Size, 0});
+ DoTransfer(Reg, SpillID);
+ }
+ return true;
+}
+
+bool InstrRefBasedLDV::transferRegisterCopy(MachineInstr &MI) {
+ auto DestSrc = TII->isCopyInstr(MI);
+ if (!DestSrc)
+ return false;
+
+ const MachineOperand *DestRegOp = DestSrc->Destination;
+ const MachineOperand *SrcRegOp = DestSrc->Source;
+
+ Register SrcReg = SrcRegOp->getReg();
+ Register DestReg = DestRegOp->getReg();
+
+ // Ignore identity copies. Yep, these make it as far as LiveDebugValues.
+ if (SrcReg == DestReg)
+ return true;
+
+ // For emulating VarLocBasedImpl:
+ // We want to recognize instructions where destination register is callee
+ // saved register. If register that could be clobbered by the call is
+ // included, there would be a great chance that it is going to be clobbered
+ // soon. It is more likely that previous register, which is callee saved, is
+ // going to stay unclobbered longer, even if it is killed.
+ //
+ // For InstrRefBasedImpl, we can track multiple locations per value, so
+ // ignore this condition.
+ if (EmulateOldLDV && !isCalleeSavedReg(DestReg))
+ return false;
+
+ // InstrRefBasedImpl only followed killing copies.
+ if (EmulateOldLDV && !SrcRegOp->isKill())
+ return false;
+
+ // Before we update MTracker, remember which values were present in each of
+ // the locations about to be overwritten, so that we can recover any
+ // potentially clobbered variables.
+ DenseMap<LocIdx, ValueIDNum> ClobberedLocs;
+ if (TTracker) {
+ for (MCRegAliasIterator RAI(DestReg, TRI, true); RAI.isValid(); ++RAI) {
+ LocIdx ClobberedLoc = MTracker->getRegMLoc(*RAI);
+ auto MLocIt = TTracker->ActiveMLocs.find(ClobberedLoc);
+ // If ActiveMLocs isn't tracking this location or there are no variables
+ // using it, don't bother remembering.
+ if (MLocIt == TTracker->ActiveMLocs.end() || MLocIt->second.empty())
+ continue;
+ ValueIDNum Value = MTracker->readReg(*RAI);
+ ClobberedLocs[ClobberedLoc] = Value;
+ }
+ }
+
+ // Copy MTracker info, including subregs if available.
+ InstrRefBasedLDV::performCopy(SrcReg, DestReg);
+
+ // The copy might have clobbered variables based on the destination register.
+ // Tell TTracker about it, passing the old ValueIDNum to search for
+ // alternative locations (or else terminating those variables).
+ if (TTracker) {
+ for (auto LocVal : ClobberedLocs) {
+ TTracker->clobberMloc(LocVal.first, LocVal.second, MI.getIterator(), false);
+ }
+ }
+
+ // Only produce a transfer of DBG_VALUE within a block where old LDV
+ // would have. We might make use of the additional value tracking in some
+ // other way, later.
+ if (TTracker && isCalleeSavedReg(DestReg) && SrcRegOp->isKill())
+ TTracker->transferMlocs(MTracker->getRegMLoc(SrcReg),
+ MTracker->getRegMLoc(DestReg), MI.getIterator());
+
+ // VarLocBasedImpl would quit tracking the old location after copying.
+ if (EmulateOldLDV && SrcReg != DestReg)
+ MTracker->defReg(SrcReg, CurBB, CurInst);
+
+ return true;
+}
+
+/// Accumulate a mapping between each DILocalVariable fragment and other
+/// fragments of that DILocalVariable which overlap. This reduces work during
+/// the data-flow stage from "Find any overlapping fragments" to "Check if the
+/// known-to-overlap fragments are present".
+/// \param MI A previously unprocessed debug instruction to analyze for
+/// fragment usage.
+void InstrRefBasedLDV::accumulateFragmentMap(MachineInstr &MI) {
+ assert(MI.isDebugValueLike());
+ DebugVariable MIVar(MI.getDebugVariable(), MI.getDebugExpression(),
+ MI.getDebugLoc()->getInlinedAt());
+ FragmentInfo ThisFragment = MIVar.getFragmentOrDefault();
+
+ // If this is the first sighting of this variable, then we are guaranteed
+ // there are currently no overlapping fragments either. Initialize the set
+ // of seen fragments, record no overlaps for the current one, and return.
+ auto SeenIt = SeenFragments.find(MIVar.getVariable());
+ if (SeenIt == SeenFragments.end()) {
+ SmallSet<FragmentInfo, 4> OneFragment;
+ OneFragment.insert(ThisFragment);
+ SeenFragments.insert({MIVar.getVariable(), OneFragment});
+
+ OverlapFragments.insert({{MIVar.getVariable(), ThisFragment}, {}});
+ return;
+ }
+
+ // If this particular Variable/Fragment pair already exists in the overlap
+ // map, it has already been accounted for.
+ auto IsInOLapMap =
+ OverlapFragments.insert({{MIVar.getVariable(), ThisFragment}, {}});
+ if (!IsInOLapMap.second)
+ return;
+
+ auto &ThisFragmentsOverlaps = IsInOLapMap.first->second;
+ auto &AllSeenFragments = SeenIt->second;
+
+ // Otherwise, examine all other seen fragments for this variable, with "this"
+ // fragment being a previously unseen fragment. Record any pair of
+ // overlapping fragments.
+ for (const auto &ASeenFragment : AllSeenFragments) {
+ // Does this previously seen fragment overlap?
+ if (DIExpression::fragmentsOverlap(ThisFragment, ASeenFragment)) {
+ // Yes: Mark the current fragment as being overlapped.
+ ThisFragmentsOverlaps.push_back(ASeenFragment);
+ // Mark the previously seen fragment as being overlapped by the current
+ // one.
+ auto ASeenFragmentsOverlaps =
+ OverlapFragments.find({MIVar.getVariable(), ASeenFragment});
+ assert(ASeenFragmentsOverlaps != OverlapFragments.end() &&
+ "Previously seen var fragment has no vector of overlaps");
+ ASeenFragmentsOverlaps->second.push_back(ThisFragment);
+ }
+ }
+
+ AllSeenFragments.insert(ThisFragment);
+}
+
+void InstrRefBasedLDV::process(MachineInstr &MI, const ValueTable *MLiveOuts,
+ const ValueTable *MLiveIns) {
+ // Try to interpret an MI as a debug or transfer instruction. Only if it's
+ // none of these should we interpret it's register defs as new value
+ // definitions.
+ if (transferDebugValue(MI))
+ return;
+ if (transferDebugInstrRef(MI, MLiveOuts, MLiveIns))
+ return;
+ if (transferDebugPHI(MI))
+ return;
+ if (transferRegisterCopy(MI))
+ return;
+ if (transferSpillOrRestoreInst(MI))
+ return;
+ transferRegisterDef(MI);
+}
+
+void InstrRefBasedLDV::produceMLocTransferFunction(
+ MachineFunction &MF, SmallVectorImpl<MLocTransferMap> &MLocTransfer,
+ unsigned MaxNumBlocks) {
+ // Because we try to optimize around register mask operands by ignoring regs
+ // that aren't currently tracked, we set up something ugly for later: RegMask
+ // operands that are seen earlier than the first use of a register, still need
+ // to clobber that register in the transfer function. But this information
+ // isn't actively recorded. Instead, we track each RegMask used in each block,
+ // and accumulated the clobbered but untracked registers in each block into
+ // the following bitvector. Later, if new values are tracked, we can add
+ // appropriate clobbers.
+ SmallVector<BitVector, 32> BlockMasks;
+ BlockMasks.resize(MaxNumBlocks);
+
+ // Reserve one bit per register for the masks described above.
+ unsigned BVWords = MachineOperand::getRegMaskSize(TRI->getNumRegs());
+ for (auto &BV : BlockMasks)
+ BV.resize(TRI->getNumRegs(), true);
+
+ // Step through all instructions and inhale the transfer function.
+ for (auto &MBB : MF) {
+ // Object fields that are read by trackers to know where we are in the
+ // function.
+ CurBB = MBB.getNumber();
+ CurInst = 1;
+
+ // Set all machine locations to a PHI value. For transfer function
+ // production only, this signifies the live-in value to the block.
+ MTracker->reset();
+ MTracker->setMPhis(CurBB);
+
+ // Step through each instruction in this block.
+ for (auto &MI : MBB) {
+ // Pass in an empty unique_ptr for the value tables when accumulating the
+ // machine transfer function.
+ process(MI, nullptr, nullptr);
+
+ // Also accumulate fragment map.
+ if (MI.isDebugValueLike())
+ accumulateFragmentMap(MI);
+
+ // Create a map from the instruction number (if present) to the
+ // MachineInstr and its position.
+ if (uint64_t InstrNo = MI.peekDebugInstrNum()) {
+ auto InstrAndPos = std::make_pair(&MI, CurInst);
+ auto InsertResult =
+ DebugInstrNumToInstr.insert(std::make_pair(InstrNo, InstrAndPos));
+
+ // There should never be duplicate instruction numbers.
+ assert(InsertResult.second);
+ (void)InsertResult;
+ }
+
+ ++CurInst;
+ }
+
+ // Produce the transfer function, a map of machine location to new value. If
+ // any machine location has the live-in phi value from the start of the
+ // block, it's live-through and doesn't need recording in the transfer
+ // function.
+ for (auto Location : MTracker->locations()) {
+ LocIdx Idx = Location.Idx;
+ ValueIDNum &P = Location.Value;
+ if (P.isPHI() && P.getLoc() == Idx.asU64())
+ continue;
+
+ // Insert-or-update.
+ auto &TransferMap = MLocTransfer[CurBB];
+ auto Result = TransferMap.insert(std::make_pair(Idx.asU64(), P));
+ if (!Result.second)
+ Result.first->second = P;
+ }
+
+ // Accumulate any bitmask operands into the clobbered reg mask for this
+ // block.
+ for (auto &P : MTracker->Masks) {
+ BlockMasks[CurBB].clearBitsNotInMask(P.first->getRegMask(), BVWords);
+ }
+ }
+
+ // Compute a bitvector of all the registers that are tracked in this block.
+ BitVector UsedRegs(TRI->getNumRegs());
+ for (auto Location : MTracker->locations()) {
+ unsigned ID = MTracker->LocIdxToLocID[Location.Idx];
+ // Ignore stack slots, and aliases of the stack pointer.
+ if (ID >= TRI->getNumRegs() || MTracker->SPAliases.count(ID))
+ continue;
+ UsedRegs.set(ID);
+ }
+
+ // Check that any regmask-clobber of a register that gets tracked, is not
+ // live-through in the transfer function. It needs to be clobbered at the
+ // very least.
+ for (unsigned int I = 0; I < MaxNumBlocks; ++I) {
+ BitVector &BV = BlockMasks[I];
+ BV.flip();
+ BV &= UsedRegs;
+ // This produces all the bits that we clobber, but also use. Check that
+ // they're all clobbered or at least set in the designated transfer
+ // elem.
+ for (unsigned Bit : BV.set_bits()) {
+ unsigned ID = MTracker->getLocID(Bit);
+ LocIdx Idx = MTracker->LocIDToLocIdx[ID];
+ auto &TransferMap = MLocTransfer[I];
+
+ // Install a value representing the fact that this location is effectively
+ // written to in this block. As there's no reserved value, instead use
+ // a value number that is never generated. Pick the value number for the
+ // first instruction in the block, def'ing this location, which we know
+ // this block never used anyway.
+ ValueIDNum NotGeneratedNum = ValueIDNum(I, 1, Idx);
+ auto Result =
+ TransferMap.insert(std::make_pair(Idx.asU64(), NotGeneratedNum));
+ if (!Result.second) {
+ ValueIDNum &ValueID = Result.first->second;
+ if (ValueID.getBlock() == I && ValueID.isPHI())
+ // It was left as live-through. Set it to clobbered.
+ ValueID = NotGeneratedNum;
+ }
+ }
+ }
+}
+
+bool InstrRefBasedLDV::mlocJoin(
+ MachineBasicBlock &MBB, SmallPtrSet<const MachineBasicBlock *, 16> &Visited,
+ FuncValueTable &OutLocs, ValueTable &InLocs) {
+ LLVM_DEBUG(dbgs() << "join MBB: " << MBB.getNumber() << "\n");
+ bool Changed = false;
+
+ // Handle value-propagation when control flow merges on entry to a block. For
+ // any location without a PHI already placed, the location has the same value
+ // as its predecessors. If a PHI is placed, test to see whether it's now a
+ // redundant PHI that we can eliminate.
+
+ SmallVector<const MachineBasicBlock *, 8> BlockOrders;
+ for (auto *Pred : MBB.predecessors())
+ BlockOrders.push_back(Pred);
+
+ // Visit predecessors in RPOT order.
+ auto Cmp = [&](const MachineBasicBlock *A, const MachineBasicBlock *B) {
+ return BBToOrder.find(A)->second < BBToOrder.find(B)->second;
+ };
+ llvm::sort(BlockOrders, Cmp);
+
+ // Skip entry block.
+ if (BlockOrders.size() == 0)
+ return false;
+
+ // Step through all machine locations, look at each predecessor and test
+ // whether we can eliminate redundant PHIs.
+ for (auto Location : MTracker->locations()) {
+ LocIdx Idx = Location.Idx;
+
+ // Pick out the first predecessors live-out value for this location. It's
+ // guaranteed to not be a backedge, as we order by RPO.
+ ValueIDNum FirstVal = OutLocs[BlockOrders[0]->getNumber()][Idx.asU64()];
+
+ // If we've already eliminated a PHI here, do no further checking, just
+ // propagate the first live-in value into this block.
+ if (InLocs[Idx.asU64()] != ValueIDNum(MBB.getNumber(), 0, Idx)) {
+ if (InLocs[Idx.asU64()] != FirstVal) {
+ InLocs[Idx.asU64()] = FirstVal;
+ Changed |= true;
+ }
+ continue;
+ }
+
+ // We're now examining a PHI to see whether it's un-necessary. Loop around
+ // the other live-in values and test whether they're all the same.
+ bool Disagree = false;
+ for (unsigned int I = 1; I < BlockOrders.size(); ++I) {
+ const MachineBasicBlock *PredMBB = BlockOrders[I];
+ const ValueIDNum &PredLiveOut =
+ OutLocs[PredMBB->getNumber()][Idx.asU64()];
+
+ // Incoming values agree, continue trying to eliminate this PHI.
+ if (FirstVal == PredLiveOut)
+ continue;
+
+ // We can also accept a PHI value that feeds back into itself.
+ if (PredLiveOut == ValueIDNum(MBB.getNumber(), 0, Idx))
+ continue;
+
+ // Live-out of a predecessor disagrees with the first predecessor.
+ Disagree = true;
+ }
+
+ // No disagreement? No PHI. Otherwise, leave the PHI in live-ins.
+ if (!Disagree) {
+ InLocs[Idx.asU64()] = FirstVal;
+ Changed |= true;
+ }
+ }
+
+ // TODO: Reimplement NumInserted and NumRemoved.
+ return Changed;
+}
+
+void InstrRefBasedLDV::findStackIndexInterference(
+ SmallVectorImpl<unsigned> &Slots) {
+ // We could spend a bit of time finding the exact, minimal, set of stack
+ // indexes that interfere with each other, much like reg units. Or, we can
+ // rely on the fact that:
+ // * The smallest / lowest index will interfere with everything at zero
+ // offset, which will be the largest set of registers,
+ // * Most indexes with non-zero offset will end up being interference units
+ // anyway.
+ // So just pick those out and return them.
+
+ // We can rely on a single-byte stack index existing already, because we
+ // initialize them in MLocTracker.
+ auto It = MTracker->StackSlotIdxes.find({8, 0});
+ assert(It != MTracker->StackSlotIdxes.end());
+ Slots.push_back(It->second);
+
+ // Find anything that has a non-zero offset and add that too.
+ for (auto &Pair : MTracker->StackSlotIdxes) {
+ // Is offset zero? If so, ignore.
+ if (!Pair.first.second)
+ continue;
+ Slots.push_back(Pair.second);
+ }
+}
+
+void InstrRefBasedLDV::placeMLocPHIs(
+ MachineFunction &MF, SmallPtrSetImpl<MachineBasicBlock *> &AllBlocks,
+ FuncValueTable &MInLocs, SmallVectorImpl<MLocTransferMap> &MLocTransfer) {
+ SmallVector<unsigned, 4> StackUnits;
+ findStackIndexInterference(StackUnits);
+
+ // To avoid repeatedly running the PHI placement algorithm, leverage the
+ // fact that a def of register MUST also def its register units. Find the
+ // units for registers, place PHIs for them, and then replicate them for
+ // aliasing registers. Some inputs that are never def'd (DBG_PHIs of
+ // arguments) don't lead to register units being tracked, just place PHIs for
+ // those registers directly. Stack slots have their own form of "unit",
+ // store them to one side.
+ SmallSet<Register, 32> RegUnitsToPHIUp;
+ SmallSet<LocIdx, 32> NormalLocsToPHI;
+ SmallSet<SpillLocationNo, 32> StackSlots;
+ for (auto Location : MTracker->locations()) {
+ LocIdx L = Location.Idx;
+ if (MTracker->isSpill(L)) {
+ StackSlots.insert(MTracker->locIDToSpill(MTracker->LocIdxToLocID[L]));
+ continue;
+ }
+
+ Register R = MTracker->LocIdxToLocID[L];
+ SmallSet<Register, 8> FoundRegUnits;
+ bool AnyIllegal = false;
+ for (MCRegUnitIterator RUI(R.asMCReg(), TRI); RUI.isValid(); ++RUI) {
+ for (MCRegUnitRootIterator URoot(*RUI, TRI); URoot.isValid(); ++URoot){
+ if (!MTracker->isRegisterTracked(*URoot)) {
+ // Not all roots were loaded into the tracking map: this register
+ // isn't actually def'd anywhere, we only read from it. Generate PHIs
+ // for this reg, but don't iterate units.
+ AnyIllegal = true;
+ } else {
+ FoundRegUnits.insert(*URoot);
+ }
+ }
+ }
+
+ if (AnyIllegal) {
+ NormalLocsToPHI.insert(L);
+ continue;
+ }
+
+ RegUnitsToPHIUp.insert(FoundRegUnits.begin(), FoundRegUnits.end());
+ }
+
+ // Lambda to fetch PHIs for a given location, and write into the PHIBlocks
+ // collection.
+ SmallVector<MachineBasicBlock *, 32> PHIBlocks;
+ auto CollectPHIsForLoc = [&](LocIdx L) {
+ // Collect the set of defs.
+ SmallPtrSet<MachineBasicBlock *, 32> DefBlocks;
+ for (unsigned int I = 0; I < OrderToBB.size(); ++I) {
+ MachineBasicBlock *MBB = OrderToBB[I];
+ const auto &TransferFunc = MLocTransfer[MBB->getNumber()];
+ if (TransferFunc.find(L) != TransferFunc.end())
+ DefBlocks.insert(MBB);
+ }
+
+ // The entry block defs the location too: it's the live-in / argument value.
+ // Only insert if there are other defs though; everything is trivially live
+ // through otherwise.
+ if (!DefBlocks.empty())
+ DefBlocks.insert(&*MF.begin());
+
+ // Ask the SSA construction algorithm where we should put PHIs. Clear
+ // anything that might have been hanging around from earlier.
+ PHIBlocks.clear();
+ BlockPHIPlacement(AllBlocks, DefBlocks, PHIBlocks);
+ };
+
+ auto InstallPHIsAtLoc = [&PHIBlocks, &MInLocs](LocIdx L) {
+ for (const MachineBasicBlock *MBB : PHIBlocks)
+ MInLocs[MBB->getNumber()][L.asU64()] = ValueIDNum(MBB->getNumber(), 0, L);
+ };
+
+ // For locations with no reg units, just place PHIs.
+ for (LocIdx L : NormalLocsToPHI) {
+ CollectPHIsForLoc(L);
+ // Install those PHI values into the live-in value array.
+ InstallPHIsAtLoc(L);
+ }
+
+ // For stack slots, calculate PHIs for the equivalent of the units, then
+ // install for each index.
+ for (SpillLocationNo Slot : StackSlots) {
+ for (unsigned Idx : StackUnits) {
+ unsigned SpillID = MTracker->getSpillIDWithIdx(Slot, Idx);
+ LocIdx L = MTracker->getSpillMLoc(SpillID);
+ CollectPHIsForLoc(L);
+ InstallPHIsAtLoc(L);
+
+ // Find anything that aliases this stack index, install PHIs for it too.
+ unsigned Size, Offset;
+ std::tie(Size, Offset) = MTracker->StackIdxesToPos[Idx];
+ for (auto &Pair : MTracker->StackSlotIdxes) {
+ unsigned ThisSize, ThisOffset;
+ std::tie(ThisSize, ThisOffset) = Pair.first;
+ if (ThisSize + ThisOffset <= Offset || Size + Offset <= ThisOffset)
+ continue;
+
+ unsigned ThisID = MTracker->getSpillIDWithIdx(Slot, Pair.second);
+ LocIdx ThisL = MTracker->getSpillMLoc(ThisID);
+ InstallPHIsAtLoc(ThisL);
+ }
+ }
+ }
+
+ // For reg units, place PHIs, and then place them for any aliasing registers.
+ for (Register R : RegUnitsToPHIUp) {
+ LocIdx L = MTracker->lookupOrTrackRegister(R);
+ CollectPHIsForLoc(L);
+
+ // Install those PHI values into the live-in value array.
+ InstallPHIsAtLoc(L);
+
+ // Now find aliases and install PHIs for those.
+ for (MCRegAliasIterator RAI(R, TRI, true); RAI.isValid(); ++RAI) {
+ // Super-registers that are "above" the largest register read/written by
+ // the function will alias, but will not be tracked.
+ if (!MTracker->isRegisterTracked(*RAI))
+ continue;
+
+ LocIdx AliasLoc = MTracker->lookupOrTrackRegister(*RAI);
+ InstallPHIsAtLoc(AliasLoc);
+ }
+ }
+}
+
+void InstrRefBasedLDV::buildMLocValueMap(
+ MachineFunction &MF, FuncValueTable &MInLocs, FuncValueTable &MOutLocs,
+ SmallVectorImpl<MLocTransferMap> &MLocTransfer) {
+ std::priority_queue<unsigned int, std::vector<unsigned int>,
+ std::greater<unsigned int>>
+ Worklist, Pending;
+
+ // We track what is on the current and pending worklist to avoid inserting
+ // the same thing twice. We could avoid this with a custom priority queue,
+ // but this is probably not worth it.
+ SmallPtrSet<MachineBasicBlock *, 16> OnPending, OnWorklist;
+
+ // Initialize worklist with every block to be visited. Also produce list of
+ // all blocks.
+ SmallPtrSet<MachineBasicBlock *, 32> AllBlocks;
+ for (unsigned int I = 0; I < BBToOrder.size(); ++I) {
+ Worklist.push(I);
+ OnWorklist.insert(OrderToBB[I]);
+ AllBlocks.insert(OrderToBB[I]);
+ }
+
+ // Initialize entry block to PHIs. These represent arguments.
+ for (auto Location : MTracker->locations())
+ MInLocs[0][Location.Idx.asU64()] = ValueIDNum(0, 0, Location.Idx);
+
+ MTracker->reset();
+
+ // Start by placing PHIs, using the usual SSA constructor algorithm. Consider
+ // any machine-location that isn't live-through a block to be def'd in that
+ // block.
+ placeMLocPHIs(MF, AllBlocks, MInLocs, MLocTransfer);
+
+ // Propagate values to eliminate redundant PHIs. At the same time, this
+ // produces the table of Block x Location => Value for the entry to each
+ // block.
+ // The kind of PHIs we can eliminate are, for example, where one path in a
+ // conditional spills and restores a register, and the register still has
+ // the same value once control flow joins, unbeknowns to the PHI placement
+ // code. Propagating values allows us to identify such un-necessary PHIs and
+ // remove them.
+ SmallPtrSet<const MachineBasicBlock *, 16> Visited;
+ while (!Worklist.empty() || !Pending.empty()) {
+ // Vector for storing the evaluated block transfer function.
+ SmallVector<std::pair<LocIdx, ValueIDNum>, 32> ToRemap;
+
+ while (!Worklist.empty()) {
+ MachineBasicBlock *MBB = OrderToBB[Worklist.top()];
+ CurBB = MBB->getNumber();
+ Worklist.pop();
+
+ // Join the values in all predecessor blocks.
+ bool InLocsChanged;
+ InLocsChanged = mlocJoin(*MBB, Visited, MOutLocs, MInLocs[CurBB]);
+ InLocsChanged |= Visited.insert(MBB).second;
+
+ // Don't examine transfer function if we've visited this loc at least
+ // once, and inlocs haven't changed.
+ if (!InLocsChanged)
+ continue;
+
+ // Load the current set of live-ins into MLocTracker.
+ MTracker->loadFromArray(MInLocs[CurBB], CurBB);
+
+ // Each element of the transfer function can be a new def, or a read of
+ // a live-in value. Evaluate each element, and store to "ToRemap".
+ ToRemap.clear();
+ for (auto &P : MLocTransfer[CurBB]) {
+ if (P.second.getBlock() == CurBB && P.second.isPHI()) {
+ // This is a movement of whatever was live in. Read it.
+ ValueIDNum NewID = MTracker->readMLoc(P.second.getLoc());
+ ToRemap.push_back(std::make_pair(P.first, NewID));
+ } else {
+ // It's a def. Just set it.
+ assert(P.second.getBlock() == CurBB);
+ ToRemap.push_back(std::make_pair(P.first, P.second));
+ }
+ }
+
+ // Commit the transfer function changes into mloc tracker, which
+ // transforms the contents of the MLocTracker into the live-outs.
+ for (auto &P : ToRemap)
+ MTracker->setMLoc(P.first, P.second);
+
+ // Now copy out-locs from mloc tracker into out-loc vector, checking
+ // whether changes have occurred. These changes can have come from both
+ // the transfer function, and mlocJoin.
+ bool OLChanged = false;
+ for (auto Location : MTracker->locations()) {
+ OLChanged |= MOutLocs[CurBB][Location.Idx.asU64()] != Location.Value;
+ MOutLocs[CurBB][Location.Idx.asU64()] = Location.Value;
+ }
+
+ MTracker->reset();
+
+ // No need to examine successors again if out-locs didn't change.
+ if (!OLChanged)
+ continue;
+
+ // All successors should be visited: put any back-edges on the pending
+ // list for the next pass-through, and any other successors to be
+ // visited this pass, if they're not going to be already.
+ for (auto *s : MBB->successors()) {
+ // Does branching to this successor represent a back-edge?
+ if (BBToOrder[s] > BBToOrder[MBB]) {
+ // No: visit it during this dataflow iteration.
+ if (OnWorklist.insert(s).second)
+ Worklist.push(BBToOrder[s]);
+ } else {
+ // Yes: visit it on the next iteration.
+ if (OnPending.insert(s).second)
+ Pending.push(BBToOrder[s]);
+ }
+ }
+ }
+
+ Worklist.swap(Pending);
+ std::swap(OnPending, OnWorklist);
+ OnPending.clear();
+ // At this point, pending must be empty, since it was just the empty
+ // worklist
+ assert(Pending.empty() && "Pending should be empty");
+ }
+
+ // Once all the live-ins don't change on mlocJoin(), we've eliminated all
+ // redundant PHIs.
+}
+
+void InstrRefBasedLDV::BlockPHIPlacement(
+ const SmallPtrSetImpl<MachineBasicBlock *> &AllBlocks,
+ const SmallPtrSetImpl<MachineBasicBlock *> &DefBlocks,
+ SmallVectorImpl<MachineBasicBlock *> &PHIBlocks) {
+ // Apply IDF calculator to the designated set of location defs, storing
+ // required PHIs into PHIBlocks. Uses the dominator tree stored in the
+ // InstrRefBasedLDV object.
+ IDFCalculatorBase<MachineBasicBlock, false> IDF(DomTree->getBase());
+
+ IDF.setLiveInBlocks(AllBlocks);
+ IDF.setDefiningBlocks(DefBlocks);
+ IDF.calculate(PHIBlocks);
+}
+
+bool InstrRefBasedLDV::pickVPHILoc(
+ SmallVectorImpl<DbgOpID> &OutValues, const MachineBasicBlock &MBB,
+ const LiveIdxT &LiveOuts, FuncValueTable &MOutLocs,
+ const SmallVectorImpl<const MachineBasicBlock *> &BlockOrders) {
+
+ // No predecessors means no PHIs.
+ if (BlockOrders.empty())
+ return false;
+
+ // All the location operands that do not already agree need to be joined,
+ // track the indices of each such location operand here.
+ SmallDenseSet<unsigned> LocOpsToJoin;
+
+ auto FirstValueIt = LiveOuts.find(BlockOrders[0]);
+ if (FirstValueIt == LiveOuts.end())
+ return false;
+ const DbgValue &FirstValue = *FirstValueIt->second;
+
+ for (const auto p : BlockOrders) {
+ auto OutValIt = LiveOuts.find(p);
+ if (OutValIt == LiveOuts.end())
+ // If we have a predecessor not in scope, we'll never find a PHI position.
+ return false;
+ const DbgValue &OutVal = *OutValIt->second;
+
+ // No-values cannot have locations we can join on.
+ if (OutVal.Kind == DbgValue::NoVal)
+ return false;
+
+ // For unjoined VPHIs where we don't know the location, we definitely
+ // can't find a join loc unless the VPHI is a backedge.
+ if (OutVal.isUnjoinedPHI() && OutVal.BlockNo != MBB.getNumber())
+ return false;
+
+ if (!FirstValue.Properties.isJoinable(OutVal.Properties))
+ return false;
+
+ for (unsigned Idx = 0; Idx < FirstValue.getLocationOpCount(); ++Idx) {
+ // An unjoined PHI has no defined locations, and so a shared location must
+ // be found for every operand.
+ if (OutVal.isUnjoinedPHI()) {
+ LocOpsToJoin.insert(Idx);
+ continue;
+ }
+ DbgOpID FirstValOp = FirstValue.getDbgOpID(Idx);
+ DbgOpID OutValOp = OutVal.getDbgOpID(Idx);
+ if (FirstValOp != OutValOp) {
+ // We can never join constant ops - the ops must either both be equal
+ // constant ops or non-const ops.
+ if (FirstValOp.isConst() || OutValOp.isConst())
+ return false;
+ else
+ LocOpsToJoin.insert(Idx);
+ }
+ }
+ }
+
+ SmallVector<DbgOpID> NewDbgOps;
+
+ for (unsigned Idx = 0; Idx < FirstValue.getLocationOpCount(); ++Idx) {
+ // If this op doesn't need to be joined because the values agree, use that
+ // already-agreed value.
+ if (!LocOpsToJoin.contains(Idx)) {
+ NewDbgOps.push_back(FirstValue.getDbgOpID(Idx));
+ continue;
+ }
+
+ std::optional<ValueIDNum> JoinedOpLoc =
+ pickOperandPHILoc(Idx, MBB, LiveOuts, MOutLocs, BlockOrders);
+
+ if (!JoinedOpLoc)
+ return false;
+
+ NewDbgOps.push_back(DbgOpStore.insert(*JoinedOpLoc));
+ }
+
+ OutValues.append(NewDbgOps);
+ return true;
+}
+
+std::optional<ValueIDNum> InstrRefBasedLDV::pickOperandPHILoc(
+ unsigned DbgOpIdx, const MachineBasicBlock &MBB, const LiveIdxT &LiveOuts,
+ FuncValueTable &MOutLocs,
+ const SmallVectorImpl<const MachineBasicBlock *> &BlockOrders) {
+
+ // Collect a set of locations from predecessor where its live-out value can
+ // be found.
+ SmallVector<SmallVector<LocIdx, 4>, 8> Locs;
+ unsigned NumLocs = MTracker->getNumLocs();
+
+ for (const auto p : BlockOrders) {
+ unsigned ThisBBNum = p->getNumber();
+ auto OutValIt = LiveOuts.find(p);
+ assert(OutValIt != LiveOuts.end());
+ const DbgValue &OutVal = *OutValIt->second;
+ DbgOpID OutValOpID = OutVal.getDbgOpID(DbgOpIdx);
+ DbgOp OutValOp = DbgOpStore.find(OutValOpID);
+ assert(!OutValOp.IsConst);
+
+ // Create new empty vector of locations.
+ Locs.resize(Locs.size() + 1);
+
+ // If the live-in value is a def, find the locations where that value is
+ // present. Do the same for VPHIs where we know the VPHI value.
+ if (OutVal.Kind == DbgValue::Def ||
+ (OutVal.Kind == DbgValue::VPHI && OutVal.BlockNo != MBB.getNumber() &&
+ !OutValOp.isUndef())) {
+ ValueIDNum ValToLookFor = OutValOp.ID;
+ // Search the live-outs of the predecessor for the specified value.
+ for (unsigned int I = 0; I < NumLocs; ++I) {
+ if (MOutLocs[ThisBBNum][I] == ValToLookFor)
+ Locs.back().push_back(LocIdx(I));
+ }
+ } else {
+ assert(OutVal.Kind == DbgValue::VPHI);
+ // Otherwise: this is a VPHI on a backedge feeding back into itself, i.e.
+ // a value that's live-through the whole loop. (It has to be a backedge,
+ // because a block can't dominate itself). We can accept as a PHI location
+ // any location where the other predecessors agree, _and_ the machine
+ // locations feed back into themselves. Therefore, add all self-looping
+ // machine-value PHI locations.
+ for (unsigned int I = 0; I < NumLocs; ++I) {
+ ValueIDNum MPHI(MBB.getNumber(), 0, LocIdx(I));
+ if (MOutLocs[ThisBBNum][I] == MPHI)
+ Locs.back().push_back(LocIdx(I));
+ }
+ }
+ }
+ // We should have found locations for all predecessors, or returned.
+ assert(Locs.size() == BlockOrders.size());
+
+ // Starting with the first set of locations, take the intersection with
+ // subsequent sets.
+ SmallVector<LocIdx, 4> CandidateLocs = Locs[0];
+ for (unsigned int I = 1; I < Locs.size(); ++I) {
+ auto &LocVec = Locs[I];
+ SmallVector<LocIdx, 4> NewCandidates;
+ std::set_intersection(CandidateLocs.begin(), CandidateLocs.end(),
+ LocVec.begin(), LocVec.end(), std::inserter(NewCandidates, NewCandidates.begin()));
+ CandidateLocs = NewCandidates;
+ }
+ if (CandidateLocs.empty())
+ return std::nullopt;
+
+ // We now have a set of LocIdxes that contain the right output value in
+ // each of the predecessors. Pick the lowest; if there's a register loc,
+ // that'll be it.
+ LocIdx L = *CandidateLocs.begin();
+
+ // Return a PHI-value-number for the found location.
+ ValueIDNum PHIVal = {(unsigned)MBB.getNumber(), 0, L};
+ return PHIVal;
+}
+
+bool InstrRefBasedLDV::vlocJoin(
+ MachineBasicBlock &MBB, LiveIdxT &VLOCOutLocs,
+ SmallPtrSet<const MachineBasicBlock *, 8> &BlocksToExplore,
+ DbgValue &LiveIn) {
+ LLVM_DEBUG(dbgs() << "join MBB: " << MBB.getNumber() << "\n");
+ bool Changed = false;
+
+ // Order predecessors by RPOT order, for exploring them in that order.
+ SmallVector<MachineBasicBlock *, 8> BlockOrders(MBB.predecessors());
+
+ auto Cmp = [&](MachineBasicBlock *A, MachineBasicBlock *B) {
+ return BBToOrder[A] < BBToOrder[B];
+ };
+
+ llvm::sort(BlockOrders, Cmp);
+
+ unsigned CurBlockRPONum = BBToOrder[&MBB];
+
+ // Collect all the incoming DbgValues for this variable, from predecessor
+ // live-out values.
+ SmallVector<InValueT, 8> Values;
+ bool Bail = false;
+ int BackEdgesStart = 0;
+ for (auto *p : BlockOrders) {
+ // If the predecessor isn't in scope / to be explored, we'll never be
+ // able to join any locations.
+ if (!BlocksToExplore.contains(p)) {
+ Bail = true;
+ break;
+ }
+
+ // All Live-outs will have been initialized.
+ DbgValue &OutLoc = *VLOCOutLocs.find(p)->second;
+
+ // Keep track of where back-edges begin in the Values vector. Relies on
+ // BlockOrders being sorted by RPO.
+ unsigned ThisBBRPONum = BBToOrder[p];
+ if (ThisBBRPONum < CurBlockRPONum)
+ ++BackEdgesStart;
+
+ Values.push_back(std::make_pair(p, &OutLoc));
+ }
+
+ // If there were no values, or one of the predecessors couldn't have a
+ // value, then give up immediately. It's not safe to produce a live-in
+ // value. Leave as whatever it was before.
+ if (Bail || Values.size() == 0)
+ return false;
+
+ // All (non-entry) blocks have at least one non-backedge predecessor.
+ // Pick the variable value from the first of these, to compare against
+ // all others.
+ const DbgValue &FirstVal = *Values[0].second;
+
+ // If the old live-in value is not a PHI then either a) no PHI is needed
+ // here, or b) we eliminated the PHI that was here. If so, we can just
+ // propagate in the first parent's incoming value.
+ if (LiveIn.Kind != DbgValue::VPHI || LiveIn.BlockNo != MBB.getNumber()) {
+ Changed = LiveIn != FirstVal;
+ if (Changed)
+ LiveIn = FirstVal;
+ return Changed;
+ }
+
+ // Scan for variable values that can never be resolved: if they have
+ // different DIExpressions, different indirectness, or are mixed constants /
+ // non-constants.
+ for (const auto &V : Values) {
+ if (!V.second->Properties.isJoinable(FirstVal.Properties))
+ return false;
+ if (V.second->Kind == DbgValue::NoVal)
+ return false;
+ if (!V.second->hasJoinableLocOps(FirstVal))
+ return false;
+ }
+
+ // Try to eliminate this PHI. Do the incoming values all agree?
+ bool Disagree = false;
+ for (auto &V : Values) {
+ if (*V.second == FirstVal)
+ continue; // No disagreement.
+
+ // If both values are not equal but have equal non-empty IDs then they refer
+ // to the same value from different sources (e.g. one is VPHI and the other
+ // is Def), which does not cause disagreement.
+ if (V.second->hasIdenticalValidLocOps(FirstVal))
+ continue;
+
+ // Eliminate if a backedge feeds a VPHI back into itself.
+ if (V.second->Kind == DbgValue::VPHI &&
+ V.second->BlockNo == MBB.getNumber() &&
+ // Is this a backedge?
+ std::distance(Values.begin(), &V) >= BackEdgesStart)
+ continue;
+
+ Disagree = true;
+ }
+
+ // No disagreement -> live-through value.
+ if (!Disagree) {
+ Changed = LiveIn != FirstVal;
+ if (Changed)
+ LiveIn = FirstVal;
+ return Changed;
+ } else {
+ // Otherwise use a VPHI.
+ DbgValue VPHI(MBB.getNumber(), FirstVal.Properties, DbgValue::VPHI);
+ Changed = LiveIn != VPHI;
+ if (Changed)
+ LiveIn = VPHI;
+ return Changed;
+ }
+}
+
+void InstrRefBasedLDV::getBlocksForScope(
+ const DILocation *DILoc,
+ SmallPtrSetImpl<const MachineBasicBlock *> &BlocksToExplore,
+ const SmallPtrSetImpl<MachineBasicBlock *> &AssignBlocks) {
+ // Get the set of "normal" in-lexical-scope blocks.
+ LS.getMachineBasicBlocks(DILoc, BlocksToExplore);
+
+ // VarLoc LiveDebugValues tracks variable locations that are defined in
+ // blocks not in scope. This is something we could legitimately ignore, but
+ // lets allow it for now for the sake of coverage.
+ BlocksToExplore.insert(AssignBlocks.begin(), AssignBlocks.end());
+
+ // Storage for artificial blocks we intend to add to BlocksToExplore.
+ DenseSet<const MachineBasicBlock *> ToAdd;
+
+ // To avoid needlessly dropping large volumes of variable locations, propagate
+ // variables through aritifical blocks, i.e. those that don't have any
+ // instructions in scope at all. To accurately replicate VarLoc
+ // LiveDebugValues, this means exploring all artificial successors too.
+ // Perform a depth-first-search to enumerate those blocks.
+ for (const auto *MBB : BlocksToExplore) {
+ // Depth-first-search state: each node is a block and which successor
+ // we're currently exploring.
+ SmallVector<std::pair<const MachineBasicBlock *,
+ MachineBasicBlock::const_succ_iterator>,
+ 8>
+ DFS;
+
+ // Find any artificial successors not already tracked.
+ for (auto *succ : MBB->successors()) {
+ if (BlocksToExplore.count(succ))
+ continue;
+ if (!ArtificialBlocks.count(succ))
+ continue;
+ ToAdd.insert(succ);
+ DFS.push_back({succ, succ->succ_begin()});
+ }
+
+ // Search all those blocks, depth first.
+ while (!DFS.empty()) {
+ const MachineBasicBlock *CurBB = DFS.back().first;
+ MachineBasicBlock::const_succ_iterator &CurSucc = DFS.back().second;
+ // Walk back if we've explored this blocks successors to the end.
+ if (CurSucc == CurBB->succ_end()) {
+ DFS.pop_back();
+ continue;
+ }
+
+ // If the current successor is artificial and unexplored, descend into
+ // it.
+ if (!ToAdd.count(*CurSucc) && ArtificialBlocks.count(*CurSucc)) {
+ ToAdd.insert(*CurSucc);
+ DFS.push_back({*CurSucc, (*CurSucc)->succ_begin()});
+ continue;
+ }
+
+ ++CurSucc;
+ }
+ };
+
+ BlocksToExplore.insert(ToAdd.begin(), ToAdd.end());
+}
+
+void InstrRefBasedLDV::buildVLocValueMap(
+ const DILocation *DILoc, const SmallSet<DebugVariable, 4> &VarsWeCareAbout,
+ SmallPtrSetImpl<MachineBasicBlock *> &AssignBlocks, LiveInsT &Output,
+ FuncValueTable &MOutLocs, FuncValueTable &MInLocs,
+ SmallVectorImpl<VLocTracker> &AllTheVLocs) {
+ // This method is much like buildMLocValueMap: but focuses on a single
+ // LexicalScope at a time. Pick out a set of blocks and variables that are
+ // to have their value assignments solved, then run our dataflow algorithm
+ // until a fixedpoint is reached.
+ std::priority_queue<unsigned int, std::vector<unsigned int>,
+ std::greater<unsigned int>>
+ Worklist, Pending;
+ SmallPtrSet<MachineBasicBlock *, 16> OnWorklist, OnPending;
+
+ // The set of blocks we'll be examining.
+ SmallPtrSet<const MachineBasicBlock *, 8> BlocksToExplore;
+
+ // The order in which to examine them (RPO).
+ SmallVector<MachineBasicBlock *, 8> BlockOrders;
+
+ // RPO ordering function.
+ auto Cmp = [&](MachineBasicBlock *A, MachineBasicBlock *B) {
+ return BBToOrder[A] < BBToOrder[B];
+ };
+
+ getBlocksForScope(DILoc, BlocksToExplore, AssignBlocks);
+
+ // Single block scope: not interesting! No propagation at all. Note that
+ // this could probably go above ArtificialBlocks without damage, but
+ // that then produces output differences from original-live-debug-values,
+ // which propagates from a single block into many artificial ones.
+ if (BlocksToExplore.size() == 1)
+ return;
+
+ // Convert a const set to a non-const set. LexicalScopes
+ // getMachineBasicBlocks returns const MBB pointers, IDF wants mutable ones.
+ // (Neither of them mutate anything).
+ SmallPtrSet<MachineBasicBlock *, 8> MutBlocksToExplore;
+ for (const auto *MBB : BlocksToExplore)
+ MutBlocksToExplore.insert(const_cast<MachineBasicBlock *>(MBB));
+
+ // Picks out relevants blocks RPO order and sort them.
+ for (const auto *MBB : BlocksToExplore)
+ BlockOrders.push_back(const_cast<MachineBasicBlock *>(MBB));
+
+ llvm::sort(BlockOrders, Cmp);
+ unsigned NumBlocks = BlockOrders.size();
+
+ // Allocate some vectors for storing the live ins and live outs. Large.
+ SmallVector<DbgValue, 32> LiveIns, LiveOuts;
+ LiveIns.reserve(NumBlocks);
+ LiveOuts.reserve(NumBlocks);
+
+ // Initialize all values to start as NoVals. This signifies "it's live
+ // through, but we don't know what it is".
+ DbgValueProperties EmptyProperties(EmptyExpr, false, false);
+ for (unsigned int I = 0; I < NumBlocks; ++I) {
+ DbgValue EmptyDbgValue(I, EmptyProperties, DbgValue::NoVal);
+ LiveIns.push_back(EmptyDbgValue);
+ LiveOuts.push_back(EmptyDbgValue);
+ }
+
+ // Produce by-MBB indexes of live-in/live-outs, to ease lookup within
+ // vlocJoin.
+ LiveIdxT LiveOutIdx, LiveInIdx;
+ LiveOutIdx.reserve(NumBlocks);
+ LiveInIdx.reserve(NumBlocks);
+ for (unsigned I = 0; I < NumBlocks; ++I) {
+ LiveOutIdx[BlockOrders[I]] = &LiveOuts[I];
+ LiveInIdx[BlockOrders[I]] = &LiveIns[I];
+ }
+
+ // Loop over each variable and place PHIs for it, then propagate values
+ // between blocks. This keeps the locality of working on one lexical scope at
+ // at time, but avoids re-processing variable values because some other
+ // variable has been assigned.
+ for (const auto &Var : VarsWeCareAbout) {
+ // Re-initialize live-ins and live-outs, to clear the remains of previous
+ // variables live-ins / live-outs.
+ for (unsigned int I = 0; I < NumBlocks; ++I) {
+ DbgValue EmptyDbgValue(I, EmptyProperties, DbgValue::NoVal);
+ LiveIns[I] = EmptyDbgValue;
+ LiveOuts[I] = EmptyDbgValue;
+ }
+
+ // Place PHIs for variable values, using the LLVM IDF calculator.
+ // Collect the set of blocks where variables are def'd.
+ SmallPtrSet<MachineBasicBlock *, 32> DefBlocks;
+ for (const MachineBasicBlock *ExpMBB : BlocksToExplore) {
+ auto &TransferFunc = AllTheVLocs[ExpMBB->getNumber()].Vars;
+ if (TransferFunc.find(Var) != TransferFunc.end())
+ DefBlocks.insert(const_cast<MachineBasicBlock *>(ExpMBB));
+ }
+
+ SmallVector<MachineBasicBlock *, 32> PHIBlocks;
+
+ // Request the set of PHIs we should insert for this variable. If there's
+ // only one value definition, things are very simple.
+ if (DefBlocks.size() == 1) {
+ placePHIsForSingleVarDefinition(MutBlocksToExplore, *DefBlocks.begin(),
+ AllTheVLocs, Var, Output);
+ continue;
+ }
+
+ // Otherwise: we need to place PHIs through SSA and propagate values.
+ BlockPHIPlacement(MutBlocksToExplore, DefBlocks, PHIBlocks);
+
+ // Insert PHIs into the per-block live-in tables for this variable.
+ for (MachineBasicBlock *PHIMBB : PHIBlocks) {
+ unsigned BlockNo = PHIMBB->getNumber();
+ DbgValue *LiveIn = LiveInIdx[PHIMBB];
+ *LiveIn = DbgValue(BlockNo, EmptyProperties, DbgValue::VPHI);
+ }
+
+ for (auto *MBB : BlockOrders) {
+ Worklist.push(BBToOrder[MBB]);
+ OnWorklist.insert(MBB);
+ }
+
+ // Iterate over all the blocks we selected, propagating the variables value.
+ // This loop does two things:
+ // * Eliminates un-necessary VPHIs in vlocJoin,
+ // * Evaluates the blocks transfer function (i.e. variable assignments) and
+ // stores the result to the blocks live-outs.
+ // Always evaluate the transfer function on the first iteration, and when
+ // the live-ins change thereafter.
+ bool FirstTrip = true;
+ while (!Worklist.empty() || !Pending.empty()) {
+ while (!Worklist.empty()) {
+ auto *MBB = OrderToBB[Worklist.top()];
+ CurBB = MBB->getNumber();
+ Worklist.pop();
+
+ auto LiveInsIt = LiveInIdx.find(MBB);
+ assert(LiveInsIt != LiveInIdx.end());
+ DbgValue *LiveIn = LiveInsIt->second;
+
+ // Join values from predecessors. Updates LiveInIdx, and writes output
+ // into JoinedInLocs.
+ bool InLocsChanged =
+ vlocJoin(*MBB, LiveOutIdx, BlocksToExplore, *LiveIn);
+
+ SmallVector<const MachineBasicBlock *, 8> Preds;
+ for (const auto *Pred : MBB->predecessors())
+ Preds.push_back(Pred);
+
+ // If this block's live-in value is a VPHI, try to pick a machine-value
+ // for it. This makes the machine-value available and propagated
+ // through all blocks by the time value propagation finishes. We can't
+ // do this any earlier as it needs to read the block live-outs.
+ if (LiveIn->Kind == DbgValue::VPHI && LiveIn->BlockNo == (int)CurBB) {
+ // There's a small possibility that on a preceeding path, a VPHI is
+ // eliminated and transitions from VPHI-with-location to
+ // live-through-value. As a result, the selected location of any VPHI
+ // might change, so we need to re-compute it on each iteration.
+ SmallVector<DbgOpID> JoinedOps;
+
+ if (pickVPHILoc(JoinedOps, *MBB, LiveOutIdx, MOutLocs, Preds)) {
+ bool NewLocPicked = !equal(LiveIn->getDbgOpIDs(), JoinedOps);
+ InLocsChanged |= NewLocPicked;
+ if (NewLocPicked)
+ LiveIn->setDbgOpIDs(JoinedOps);
+ }
+ }
+
+ if (!InLocsChanged && !FirstTrip)
+ continue;
+
+ DbgValue *LiveOut = LiveOutIdx[MBB];
+ bool OLChanged = false;
+
+ // Do transfer function.
+ auto &VTracker = AllTheVLocs[MBB->getNumber()];
+ auto TransferIt = VTracker.Vars.find(Var);
+ if (TransferIt != VTracker.Vars.end()) {
+ // Erase on empty transfer (DBG_VALUE $noreg).
+ if (TransferIt->second.Kind == DbgValue::Undef) {
+ DbgValue NewVal(MBB->getNumber(), EmptyProperties, DbgValue::NoVal);
+ if (*LiveOut != NewVal) {
+ *LiveOut = NewVal;
+ OLChanged = true;
+ }
+ } else {
+ // Insert new variable value; or overwrite.
+ if (*LiveOut != TransferIt->second) {
+ *LiveOut = TransferIt->second;
+ OLChanged = true;
+ }
+ }
+ } else {
+ // Just copy live-ins to live-outs, for anything not transferred.
+ if (*LiveOut != *LiveIn) {
+ *LiveOut = *LiveIn;
+ OLChanged = true;
+ }
+ }
+
+ // If no live-out value changed, there's no need to explore further.
+ if (!OLChanged)
+ continue;
+
+ // We should visit all successors. Ensure we'll visit any non-backedge
+ // successors during this dataflow iteration; book backedge successors
+ // to be visited next time around.
+ for (auto *s : MBB->successors()) {
+ // Ignore out of scope / not-to-be-explored successors.
+ if (LiveInIdx.find(s) == LiveInIdx.end())
+ continue;
+
+ if (BBToOrder[s] > BBToOrder[MBB]) {
+ if (OnWorklist.insert(s).second)
+ Worklist.push(BBToOrder[s]);
+ } else if (OnPending.insert(s).second && (FirstTrip || OLChanged)) {
+ Pending.push(BBToOrder[s]);
+ }
+ }
+ }
+ Worklist.swap(Pending);
+ std::swap(OnWorklist, OnPending);
+ OnPending.clear();
+ assert(Pending.empty());
+ FirstTrip = false;
+ }
+
+ // Save live-ins to output vector. Ignore any that are still marked as being
+ // VPHIs with no location -- those are variables that we know the value of,
+ // but are not actually available in the register file.
+ for (auto *MBB : BlockOrders) {
+ DbgValue *BlockLiveIn = LiveInIdx[MBB];
+ if (BlockLiveIn->Kind == DbgValue::NoVal)
+ continue;
+ if (BlockLiveIn->isUnjoinedPHI())
+ continue;
+ if (BlockLiveIn->Kind == DbgValue::VPHI)
+ BlockLiveIn->Kind = DbgValue::Def;
+ assert(BlockLiveIn->Properties.DIExpr->getFragmentInfo() ==
+ Var.getFragment() && "Fragment info missing during value prop");
+ Output[MBB->getNumber()].push_back(std::make_pair(Var, *BlockLiveIn));
+ }
+ } // Per-variable loop.
+
+ BlockOrders.clear();
+ BlocksToExplore.clear();
+}
+
+void InstrRefBasedLDV::placePHIsForSingleVarDefinition(
+ const SmallPtrSetImpl<MachineBasicBlock *> &InScopeBlocks,
+ MachineBasicBlock *AssignMBB, SmallVectorImpl<VLocTracker> &AllTheVLocs,
+ const DebugVariable &Var, LiveInsT &Output) {
+ // If there is a single definition of the variable, then working out it's
+ // value everywhere is very simple: it's every block dominated by the
+ // definition. At the dominance frontier, the usual algorithm would:
+ // * Place PHIs,
+ // * Propagate values into them,
+ // * Find there's no incoming variable value from the other incoming branches
+ // of the dominance frontier,
+ // * Specify there's no variable value in blocks past the frontier.
+ // This is a common case, hence it's worth special-casing it.
+
+ // Pick out the variables value from the block transfer function.
+ VLocTracker &VLocs = AllTheVLocs[AssignMBB->getNumber()];
+ auto ValueIt = VLocs.Vars.find(Var);
+ const DbgValue &Value = ValueIt->second;
+
+ // If it's an explicit assignment of "undef", that means there is no location
+ // anyway, anywhere.
+ if (Value.Kind == DbgValue::Undef)
+ return;
+
+ // Assign the variable value to entry to each dominated block that's in scope.
+ // Skip the definition block -- it's assigned the variable value in the middle
+ // of the block somewhere.
+ for (auto *ScopeBlock : InScopeBlocks) {
+ if (!DomTree->properlyDominates(AssignMBB, ScopeBlock))
+ continue;
+
+ Output[ScopeBlock->getNumber()].push_back({Var, Value});
+ }
+
+ // All blocks that aren't dominated have no live-in value, thus no variable
+ // value will be given to them.
+}
+
+#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
+void InstrRefBasedLDV::dump_mloc_transfer(
+ const MLocTransferMap &mloc_transfer) const {
+ for (const auto &P : mloc_transfer) {
+ std::string foo = MTracker->LocIdxToName(P.first);
+ std::string bar = MTracker->IDAsString(P.second);
+ dbgs() << "Loc " << foo << " --> " << bar << "\n";
+ }
+}
+#endif
+
+void InstrRefBasedLDV::initialSetup(MachineFunction &MF) {
+ // Build some useful data structures.
+
+ LLVMContext &Context = MF.getFunction().getContext();
+ EmptyExpr = DIExpression::get(Context, {});
+
+ auto hasNonArtificialLocation = [](const MachineInstr &MI) -> bool {
+ if (const DebugLoc &DL = MI.getDebugLoc())
+ return DL.getLine() != 0;
+ return false;
+ };
+ // Collect a set of all the artificial blocks.
+ for (auto &MBB : MF)
+ if (none_of(MBB.instrs(), hasNonArtificialLocation))
+ ArtificialBlocks.insert(&MBB);
+
+ // Compute mappings of block <=> RPO order.
+ ReversePostOrderTraversal<MachineFunction *> RPOT(&MF);
+ unsigned int RPONumber = 0;
+ auto processMBB = [&](MachineBasicBlock *MBB) {
+ OrderToBB[RPONumber] = MBB;
+ BBToOrder[MBB] = RPONumber;
+ BBNumToRPO[MBB->getNumber()] = RPONumber;
+ ++RPONumber;
+ };
+ for (MachineBasicBlock *MBB : RPOT)
+ processMBB(MBB);
+ for (MachineBasicBlock &MBB : MF)
+ if (BBToOrder.find(&MBB) == BBToOrder.end())
+ processMBB(&MBB);
+
+ // Order value substitutions by their "source" operand pair, for quick lookup.
+ llvm::sort(MF.DebugValueSubstitutions);
+
+#ifdef EXPENSIVE_CHECKS
+ // As an expensive check, test whether there are any duplicate substitution
+ // sources in the collection.
+ if (MF.DebugValueSubstitutions.size() > 2) {
+ for (auto It = MF.DebugValueSubstitutions.begin();
+ It != std::prev(MF.DebugValueSubstitutions.end()); ++It) {
+ assert(It->Src != std::next(It)->Src && "Duplicate variable location "
+ "substitution seen");
+ }
+ }
+#endif
+}
+
+// Produce an "ejection map" for blocks, i.e., what's the highest-numbered
+// lexical scope it's used in. When exploring in DFS order and we pass that
+// scope, the block can be processed and any tracking information freed.
+void InstrRefBasedLDV::makeDepthFirstEjectionMap(
+ SmallVectorImpl<unsigned> &EjectionMap,
+ const ScopeToDILocT &ScopeToDILocation,
+ ScopeToAssignBlocksT &ScopeToAssignBlocks) {
+ SmallPtrSet<const MachineBasicBlock *, 8> BlocksToExplore;
+ SmallVector<std::pair<LexicalScope *, ssize_t>, 4> WorkStack;
+ auto *TopScope = LS.getCurrentFunctionScope();
+
+ // Unlike lexical scope explorers, we explore in reverse order, to find the
+ // "last" lexical scope used for each block early.
+ WorkStack.push_back({TopScope, TopScope->getChildren().size() - 1});
+
+ while (!WorkStack.empty()) {
+ auto &ScopePosition = WorkStack.back();
+ LexicalScope *WS = ScopePosition.first;
+ ssize_t ChildNum = ScopePosition.second--;
+
+ const SmallVectorImpl<LexicalScope *> &Children = WS->getChildren();
+ if (ChildNum >= 0) {
+ // If ChildNum is positive, there are remaining children to explore.
+ // Push the child and its children-count onto the stack.
+ auto &ChildScope = Children[ChildNum];
+ WorkStack.push_back(
+ std::make_pair(ChildScope, ChildScope->getChildren().size() - 1));
+ } else {
+ WorkStack.pop_back();
+
+ // We've explored all children and any later blocks: examine all blocks
+ // in our scope. If they haven't yet had an ejection number set, then
+ // this scope will be the last to use that block.
+ auto DILocationIt = ScopeToDILocation.find(WS);
+ if (DILocationIt != ScopeToDILocation.end()) {
+ getBlocksForScope(DILocationIt->second, BlocksToExplore,
+ ScopeToAssignBlocks.find(WS)->second);
+ for (const auto *MBB : BlocksToExplore) {
+ unsigned BBNum = MBB->getNumber();
+ if (EjectionMap[BBNum] == 0)
+ EjectionMap[BBNum] = WS->getDFSOut();
+ }
+
+ BlocksToExplore.clear();
+ }
+ }
+ }
+}
+
+bool InstrRefBasedLDV::depthFirstVLocAndEmit(
+ unsigned MaxNumBlocks, const ScopeToDILocT &ScopeToDILocation,
+ const ScopeToVarsT &ScopeToVars, ScopeToAssignBlocksT &ScopeToAssignBlocks,
+ LiveInsT &Output, FuncValueTable &MOutLocs, FuncValueTable &MInLocs,
+ SmallVectorImpl<VLocTracker> &AllTheVLocs, MachineFunction &MF,
+ DenseMap<DebugVariable, unsigned> &AllVarsNumbering,
+ const TargetPassConfig &TPC) {
+ TTracker = new TransferTracker(TII, MTracker, MF, *TRI, CalleeSavedRegs, TPC);
+ unsigned NumLocs = MTracker->getNumLocs();
+ VTracker = nullptr;
+
+ // No scopes? No variable locations.
+ if (!LS.getCurrentFunctionScope())
+ return false;
+
+ // Build map from block number to the last scope that uses the block.
+ SmallVector<unsigned, 16> EjectionMap;
+ EjectionMap.resize(MaxNumBlocks, 0);
+ makeDepthFirstEjectionMap(EjectionMap, ScopeToDILocation,
+ ScopeToAssignBlocks);
+
+ // Helper lambda for ejecting a block -- if nothing is going to use the block,
+ // we can translate the variable location information into DBG_VALUEs and then
+ // free all of InstrRefBasedLDV's data structures.
+ auto EjectBlock = [&](MachineBasicBlock &MBB) -> void {
+ unsigned BBNum = MBB.getNumber();
+ AllTheVLocs[BBNum].clear();
+
+ // Prime the transfer-tracker, and then step through all the block
+ // instructions, installing transfers.
+ MTracker->reset();
+ MTracker->loadFromArray(MInLocs[BBNum], BBNum);
+ TTracker->loadInlocs(MBB, MInLocs[BBNum], DbgOpStore, Output[BBNum],
+ NumLocs);
+
+ CurBB = BBNum;
+ CurInst = 1;
+ for (auto &MI : MBB) {
+ process(MI, MOutLocs.get(), MInLocs.get());
+ TTracker->checkInstForNewValues(CurInst, MI.getIterator());
+ ++CurInst;
+ }
+
+ // Free machine-location tables for this block.
+ MInLocs[BBNum].reset();
+ MOutLocs[BBNum].reset();
+ // We don't need live-in variable values for this block either.
+ Output[BBNum].clear();
+ AllTheVLocs[BBNum].clear();
+ };
+
+ SmallPtrSet<const MachineBasicBlock *, 8> BlocksToExplore;
+ SmallVector<std::pair<LexicalScope *, ssize_t>, 4> WorkStack;
+ WorkStack.push_back({LS.getCurrentFunctionScope(), 0});
+ unsigned HighestDFSIn = 0;
+
+ // Proceed to explore in depth first order.
+ while (!WorkStack.empty()) {
+ auto &ScopePosition = WorkStack.back();
+ LexicalScope *WS = ScopePosition.first;
+ ssize_t ChildNum = ScopePosition.second++;
+
+ // We obesrve scopes with children twice here, once descending in, once
+ // ascending out of the scope nest. Use HighestDFSIn as a ratchet to ensure
+ // we don't process a scope twice. Additionally, ignore scopes that don't
+ // have a DILocation -- by proxy, this means we never tracked any variable
+ // assignments in that scope.
+ auto DILocIt = ScopeToDILocation.find(WS);
+ if (HighestDFSIn <= WS->getDFSIn() && DILocIt != ScopeToDILocation.end()) {
+ const DILocation *DILoc = DILocIt->second;
+ auto &VarsWeCareAbout = ScopeToVars.find(WS)->second;
+ auto &BlocksInScope = ScopeToAssignBlocks.find(WS)->second;
+
+ buildVLocValueMap(DILoc, VarsWeCareAbout, BlocksInScope, Output, MOutLocs,
+ MInLocs, AllTheVLocs);
+ }
+
+ HighestDFSIn = std::max(HighestDFSIn, WS->getDFSIn());
+
+ // Descend into any scope nests.
+ const SmallVectorImpl<LexicalScope *> &Children = WS->getChildren();
+ if (ChildNum < (ssize_t)Children.size()) {
+ // There are children to explore -- push onto stack and continue.
+ auto &ChildScope = Children[ChildNum];
+ WorkStack.push_back(std::make_pair(ChildScope, 0));
+ } else {
+ WorkStack.pop_back();
+
+ // We've explored a leaf, or have explored all the children of a scope.
+ // Try to eject any blocks where this is the last scope it's relevant to.
+ auto DILocationIt = ScopeToDILocation.find(WS);
+ if (DILocationIt == ScopeToDILocation.end())
+ continue;
+
+ getBlocksForScope(DILocationIt->second, BlocksToExplore,
+ ScopeToAssignBlocks.find(WS)->second);
+ for (const auto *MBB : BlocksToExplore)
+ if (WS->getDFSOut() == EjectionMap[MBB->getNumber()])
+ EjectBlock(const_cast<MachineBasicBlock &>(*MBB));
+
+ BlocksToExplore.clear();
+ }
+ }
+
+ // Some artificial blocks may not have been ejected, meaning they're not
+ // connected to an actual legitimate scope. This can technically happen
+ // with things like the entry block. In theory, we shouldn't need to do
+ // anything for such out-of-scope blocks, but for the sake of being similar
+ // to VarLocBasedLDV, eject these too.
+ for (auto *MBB : ArtificialBlocks)
+ if (MOutLocs[MBB->getNumber()])
+ EjectBlock(*MBB);
+
+ return emitTransfers(AllVarsNumbering);
+}
+
+bool InstrRefBasedLDV::emitTransfers(
+ DenseMap<DebugVariable, unsigned> &AllVarsNumbering) {
+ // Go through all the transfers recorded in the TransferTracker -- this is
+ // both the live-ins to a block, and any movements of values that happen
+ // in the middle.
+ for (const auto &P : TTracker->Transfers) {
+ // We have to insert DBG_VALUEs in a consistent order, otherwise they
+ // appear in DWARF in different orders. Use the order that they appear
+ // when walking through each block / each instruction, stored in
+ // AllVarsNumbering.
+ SmallVector<std::pair<unsigned, MachineInstr *>> Insts;
+ for (MachineInstr *MI : P.Insts) {
+ DebugVariable Var(MI->getDebugVariable(), MI->getDebugExpression(),
+ MI->getDebugLoc()->getInlinedAt());
+ Insts.emplace_back(AllVarsNumbering.find(Var)->second, MI);
+ }
+ llvm::sort(Insts, llvm::less_first());
+
+ // Insert either before or after the designated point...
+ if (P.MBB) {
+ MachineBasicBlock &MBB = *P.MBB;
+ for (const auto &Pair : Insts)
+ MBB.insert(P.Pos, Pair.second);
+ } else {
+ // Terminators, like tail calls, can clobber things. Don't try and place
+ // transfers after them.
+ if (P.Pos->isTerminator())
+ continue;
+
+ MachineBasicBlock &MBB = *P.Pos->getParent();
+ for (const auto &Pair : Insts)
+ MBB.insertAfterBundle(P.Pos, Pair.second);
+ }
+ }
+
+ return TTracker->Transfers.size() != 0;
+}
+
+/// Calculate the liveness information for the given machine function and
+/// extend ranges across basic blocks.
+bool InstrRefBasedLDV::ExtendRanges(MachineFunction &MF,
+ MachineDominatorTree *DomTree,
+ TargetPassConfig *TPC,
+ unsigned InputBBLimit,
+ unsigned InputDbgValLimit) {
+ // No subprogram means this function contains no debuginfo.
+ if (!MF.getFunction().getSubprogram())
+ return false;
+
+ LLVM_DEBUG(dbgs() << "\nDebug Range Extension\n");
+ this->TPC = TPC;
+
+ this->DomTree = DomTree;
+ TRI = MF.getSubtarget().getRegisterInfo();
+ MRI = &MF.getRegInfo();
+ TII = MF.getSubtarget().getInstrInfo();
+ TFI = MF.getSubtarget().getFrameLowering();
+ TFI->getCalleeSaves(MF, CalleeSavedRegs);
+ MFI = &MF.getFrameInfo();
+ LS.initialize(MF);
+
+ const auto &STI = MF.getSubtarget();
+ AdjustsStackInCalls = MFI->adjustsStack() &&
+ STI.getFrameLowering()->stackProbeFunctionModifiesSP();
+ if (AdjustsStackInCalls)
+ StackProbeSymbolName = STI.getTargetLowering()->getStackProbeSymbolName(MF);
+
+ MTracker =
+ new MLocTracker(MF, *TII, *TRI, *MF.getSubtarget().getTargetLowering());
+ VTracker = nullptr;
+ TTracker = nullptr;
+
+ SmallVector<MLocTransferMap, 32> MLocTransfer;
+ SmallVector<VLocTracker, 8> vlocs;
+ LiveInsT SavedLiveIns;
+
+ int MaxNumBlocks = -1;
+ for (auto &MBB : MF)
+ MaxNumBlocks = std::max(MBB.getNumber(), MaxNumBlocks);
+ assert(MaxNumBlocks >= 0);
+ ++MaxNumBlocks;
+
+ initialSetup(MF);
+
+ MLocTransfer.resize(MaxNumBlocks);
+ vlocs.resize(MaxNumBlocks, VLocTracker(OverlapFragments, EmptyExpr));
+ SavedLiveIns.resize(MaxNumBlocks);
+
+ produceMLocTransferFunction(MF, MLocTransfer, MaxNumBlocks);
+
+ // Allocate and initialize two array-of-arrays for the live-in and live-out
+ // machine values. The outer dimension is the block number; while the inner
+ // dimension is a LocIdx from MLocTracker.
+ FuncValueTable MOutLocs = std::make_unique<ValueTable[]>(MaxNumBlocks);
+ FuncValueTable MInLocs = std::make_unique<ValueTable[]>(MaxNumBlocks);
+ unsigned NumLocs = MTracker->getNumLocs();
+ for (int i = 0; i < MaxNumBlocks; ++i) {
+ // These all auto-initialize to ValueIDNum::EmptyValue
+ MOutLocs[i] = std::make_unique<ValueIDNum[]>(NumLocs);
+ MInLocs[i] = std::make_unique<ValueIDNum[]>(NumLocs);
+ }
+
+ // Solve the machine value dataflow problem using the MLocTransfer function,
+ // storing the computed live-ins / live-outs into the array-of-arrays. We use
+ // both live-ins and live-outs for decision making in the variable value
+ // dataflow problem.
+ buildMLocValueMap(MF, MInLocs, MOutLocs, MLocTransfer);
+
+ // Patch up debug phi numbers, turning unknown block-live-in values into
+ // either live-through machine values, or PHIs.
+ for (auto &DBG_PHI : DebugPHINumToValue) {
+ // Identify unresolved block-live-ins.
+ if (!DBG_PHI.ValueRead)
+ continue;
+
+ ValueIDNum &Num = *DBG_PHI.ValueRead;
+ if (!Num.isPHI())
+ continue;
+
+ unsigned BlockNo = Num.getBlock();
+ LocIdx LocNo = Num.getLoc();
+ Num = MInLocs[BlockNo][LocNo.asU64()];
+ }
+ // Later, we'll be looking up ranges of instruction numbers.
+ llvm::sort(DebugPHINumToValue);
+
+ // Walk back through each block / instruction, collecting DBG_VALUE
+ // instructions and recording what machine value their operands refer to.
+ for (auto &OrderPair : OrderToBB) {
+ MachineBasicBlock &MBB = *OrderPair.second;
+ CurBB = MBB.getNumber();
+ VTracker = &vlocs[CurBB];
+ VTracker->MBB = &MBB;
+ MTracker->loadFromArray(MInLocs[CurBB], CurBB);
+ CurInst = 1;
+ for (auto &MI : MBB) {
+ process(MI, MOutLocs.get(), MInLocs.get());
+ ++CurInst;
+ }
+ MTracker->reset();
+ }
+
+ // Number all variables in the order that they appear, to be used as a stable
+ // insertion order later.
+ DenseMap<DebugVariable, unsigned> AllVarsNumbering;
+
+ // Map from one LexicalScope to all the variables in that scope.
+ ScopeToVarsT ScopeToVars;
+
+ // Map from One lexical scope to all blocks where assignments happen for
+ // that scope.
+ ScopeToAssignBlocksT ScopeToAssignBlocks;
+
+ // Store map of DILocations that describes scopes.
+ ScopeToDILocT ScopeToDILocation;
+
+ // To mirror old LiveDebugValues, enumerate variables in RPOT order. Otherwise
+ // the order is unimportant, it just has to be stable.
+ unsigned VarAssignCount = 0;
+ for (unsigned int I = 0; I < OrderToBB.size(); ++I) {
+ auto *MBB = OrderToBB[I];
+ auto *VTracker = &vlocs[MBB->getNumber()];
+ // Collect each variable with a DBG_VALUE in this block.
+ for (auto &idx : VTracker->Vars) {
+ const auto &Var = idx.first;
+ const DILocation *ScopeLoc = VTracker->Scopes[Var];
+ assert(ScopeLoc != nullptr);
+ auto *Scope = LS.findLexicalScope(ScopeLoc);
+
+ // No insts in scope -> shouldn't have been recorded.
+ assert(Scope != nullptr);
+
+ AllVarsNumbering.insert(std::make_pair(Var, AllVarsNumbering.size()));
+ ScopeToVars[Scope].insert(Var);
+ ScopeToAssignBlocks[Scope].insert(VTracker->MBB);
+ ScopeToDILocation[Scope] = ScopeLoc;
+ ++VarAssignCount;
+ }
+ }
+
+ bool Changed = false;
+
+ // If we have an extremely large number of variable assignments and blocks,
+ // bail out at this point. We've burnt some time doing analysis already,
+ // however we should cut our losses.
+ if ((unsigned)MaxNumBlocks > InputBBLimit &&
+ VarAssignCount > InputDbgValLimit) {
+ LLVM_DEBUG(dbgs() << "Disabling InstrRefBasedLDV: " << MF.getName()
+ << " has " << MaxNumBlocks << " basic blocks and "
+ << VarAssignCount
+ << " variable assignments, exceeding limits.\n");
+ } else {
+ // Optionally, solve the variable value problem and emit to blocks by using
+ // a lexical-scope-depth search. It should be functionally identical to
+ // the "else" block of this condition.
+ Changed = depthFirstVLocAndEmit(
+ MaxNumBlocks, ScopeToDILocation, ScopeToVars, ScopeToAssignBlocks,
+ SavedLiveIns, MOutLocs, MInLocs, vlocs, MF, AllVarsNumbering, *TPC);
+ }
+
+ delete MTracker;
+ delete TTracker;
+ MTracker = nullptr;
+ VTracker = nullptr;
+ TTracker = nullptr;
+
+ ArtificialBlocks.clear();
+ OrderToBB.clear();
+ BBToOrder.clear();
+ BBNumToRPO.clear();
+ DebugInstrNumToInstr.clear();
+ DebugPHINumToValue.clear();
+ OverlapFragments.clear();
+ SeenFragments.clear();
+ SeenDbgPHIs.clear();
+ DbgOpStore.clear();
+
+ return Changed;
+}
+
+LDVImpl *llvm::makeInstrRefBasedLiveDebugValues() {
+ return new InstrRefBasedLDV();
+}
+
+namespace {
+class LDVSSABlock;
+class LDVSSAUpdater;
+
+// Pick a type to identify incoming block values as we construct SSA. We
+// can't use anything more robust than an integer unfortunately, as SSAUpdater
+// expects to zero-initialize the type.
+typedef uint64_t BlockValueNum;
+
+/// Represents an SSA PHI node for the SSA updater class. Contains the block
+/// this PHI is in, the value number it would have, and the expected incoming
+/// values from parent blocks.
+class LDVSSAPhi {
+public:
+ SmallVector<std::pair<LDVSSABlock *, BlockValueNum>, 4> IncomingValues;
+ LDVSSABlock *ParentBlock;
+ BlockValueNum PHIValNum;
+ LDVSSAPhi(BlockValueNum PHIValNum, LDVSSABlock *ParentBlock)
+ : ParentBlock(ParentBlock), PHIValNum(PHIValNum) {}
+
+ LDVSSABlock *getParent() { return ParentBlock; }
+};
+
+/// Thin wrapper around a block predecessor iterator. Only difference from a
+/// normal block iterator is that it dereferences to an LDVSSABlock.
+class LDVSSABlockIterator {
+public:
+ MachineBasicBlock::pred_iterator PredIt;
+ LDVSSAUpdater &Updater;
+
+ LDVSSABlockIterator(MachineBasicBlock::pred_iterator PredIt,
+ LDVSSAUpdater &Updater)
+ : PredIt(PredIt), Updater(Updater) {}
+
+ bool operator!=(const LDVSSABlockIterator &OtherIt) const {
+ return OtherIt.PredIt != PredIt;
+ }
+
+ LDVSSABlockIterator &operator++() {
+ ++PredIt;
+ return *this;
+ }
+
+ LDVSSABlock *operator*();
+};
+
+/// Thin wrapper around a block for SSA Updater interface. Necessary because
+/// we need to track the PHI value(s) that we may have observed as necessary
+/// in this block.
+class LDVSSABlock {
+public:
+ MachineBasicBlock &BB;
+ LDVSSAUpdater &Updater;
+ using PHIListT = SmallVector<LDVSSAPhi, 1>;
+ /// List of PHIs in this block. There should only ever be one.
+ PHIListT PHIList;
+
+ LDVSSABlock(MachineBasicBlock &BB, LDVSSAUpdater &Updater)
+ : BB(BB), Updater(Updater) {}
+
+ LDVSSABlockIterator succ_begin() {
+ return LDVSSABlockIterator(BB.succ_begin(), Updater);
+ }
+
+ LDVSSABlockIterator succ_end() {
+ return LDVSSABlockIterator(BB.succ_end(), Updater);
+ }
+
+ /// SSAUpdater has requested a PHI: create that within this block record.
+ LDVSSAPhi *newPHI(BlockValueNum Value) {
+ PHIList.emplace_back(Value, this);
+ return &PHIList.back();
+ }
+
+ /// SSAUpdater wishes to know what PHIs already exist in this block.
+ PHIListT &phis() { return PHIList; }
+};
+
+/// Utility class for the SSAUpdater interface: tracks blocks, PHIs and values
+/// while SSAUpdater is exploring the CFG. It's passed as a handle / baton to
+// SSAUpdaterTraits<LDVSSAUpdater>.
+class LDVSSAUpdater {
+public:
+ /// Map of value numbers to PHI records.
+ DenseMap<BlockValueNum, LDVSSAPhi *> PHIs;
+ /// Map of which blocks generate Undef values -- blocks that are not
+ /// dominated by any Def.
+ DenseMap<MachineBasicBlock *, BlockValueNum> UndefMap;
+ /// Map of machine blocks to our own records of them.
+ DenseMap<MachineBasicBlock *, LDVSSABlock *> BlockMap;
+ /// Machine location where any PHI must occur.
+ LocIdx Loc;
+ /// Table of live-in machine value numbers for blocks / locations.
+ const ValueTable *MLiveIns;
+
+ LDVSSAUpdater(LocIdx L, const ValueTable *MLiveIns)
+ : Loc(L), MLiveIns(MLiveIns) {}
+
+ void reset() {
+ for (auto &Block : BlockMap)
+ delete Block.second;
+
+ PHIs.clear();
+ UndefMap.clear();
+ BlockMap.clear();
+ }
+
+ ~LDVSSAUpdater() { reset(); }
+
+ /// For a given MBB, create a wrapper block for it. Stores it in the
+ /// LDVSSAUpdater block map.
+ LDVSSABlock *getSSALDVBlock(MachineBasicBlock *BB) {
+ auto it = BlockMap.find(BB);
+ if (it == BlockMap.end()) {
+ BlockMap[BB] = new LDVSSABlock(*BB, *this);
+ it = BlockMap.find(BB);
+ }
+ return it->second;
+ }
+
+ /// Find the live-in value number for the given block. Looks up the value at
+ /// the PHI location on entry.
+ BlockValueNum getValue(LDVSSABlock *LDVBB) {
+ return MLiveIns[LDVBB->BB.getNumber()][Loc.asU64()].asU64();
+ }
+};
+
+LDVSSABlock *LDVSSABlockIterator::operator*() {
+ return Updater.getSSALDVBlock(*PredIt);
+}
+
+#ifndef NDEBUG
+
+raw_ostream &operator<<(raw_ostream &out, const LDVSSAPhi &PHI) {
+ out << "SSALDVPHI " << PHI.PHIValNum;
+ return out;
+}
+
+#endif
+
+} // namespace
+
+namespace llvm {
+
+/// Template specialization to give SSAUpdater access to CFG and value
+/// information. SSAUpdater calls methods in these traits, passing in the
+/// LDVSSAUpdater object, to learn about blocks and the values they define.
+/// It also provides methods to create PHI nodes and track them.
+template <> class SSAUpdaterTraits<LDVSSAUpdater> {
+public:
+ using BlkT = LDVSSABlock;
+ using ValT = BlockValueNum;
+ using PhiT = LDVSSAPhi;
+ using BlkSucc_iterator = LDVSSABlockIterator;
+
+ // Methods to access block successors -- dereferencing to our wrapper class.
+ static BlkSucc_iterator BlkSucc_begin(BlkT *BB) { return BB->succ_begin(); }
+ static BlkSucc_iterator BlkSucc_end(BlkT *BB) { return BB->succ_end(); }
+
+ /// Iterator for PHI operands.
+ class PHI_iterator {
+ private:
+ LDVSSAPhi *PHI;
+ unsigned Idx;
+
+ public:
+ explicit PHI_iterator(LDVSSAPhi *P) // begin iterator
+ : PHI(P), Idx(0) {}
+ PHI_iterator(LDVSSAPhi *P, bool) // end iterator
+ : PHI(P), Idx(PHI->IncomingValues.size()) {}
+
+ PHI_iterator &operator++() {
+ Idx++;
+ return *this;
+ }
+ bool operator==(const PHI_iterator &X) const { return Idx == X.Idx; }
+ bool operator!=(const PHI_iterator &X) const { return !operator==(X); }
+
+ BlockValueNum getIncomingValue() { return PHI->IncomingValues[Idx].second; }
+
+ LDVSSABlock *getIncomingBlock() { return PHI->IncomingValues[Idx].first; }
+ };
+
+ static inline PHI_iterator PHI_begin(PhiT *PHI) { return PHI_iterator(PHI); }
+
+ static inline PHI_iterator PHI_end(PhiT *PHI) {
+ return PHI_iterator(PHI, true);
+ }
+
+ /// FindPredecessorBlocks - Put the predecessors of BB into the Preds
+ /// vector.
+ static void FindPredecessorBlocks(LDVSSABlock *BB,
+ SmallVectorImpl<LDVSSABlock *> *Preds) {
+ for (MachineBasicBlock *Pred : BB->BB.predecessors())
+ Preds->push_back(BB->Updater.getSSALDVBlock(Pred));
+ }
+
+ /// GetUndefVal - Normally creates an IMPLICIT_DEF instruction with a new
+ /// register. For LiveDebugValues, represents a block identified as not having
+ /// any DBG_PHI predecessors.
+ static BlockValueNum GetUndefVal(LDVSSABlock *BB, LDVSSAUpdater *Updater) {
+ // Create a value number for this block -- it needs to be unique and in the
+ // "undef" collection, so that we know it's not real. Use a number
+ // representing a PHI into this block.
+ BlockValueNum Num = ValueIDNum(BB->BB.getNumber(), 0, Updater->Loc).asU64();
+ Updater->UndefMap[&BB->BB] = Num;
+ return Num;
+ }
+
+ /// CreateEmptyPHI - Create a (representation of a) PHI in the given block.
+ /// SSAUpdater will populate it with information about incoming values. The
+ /// value number of this PHI is whatever the machine value number problem
+ /// solution determined it to be. This includes non-phi values if SSAUpdater
+ /// tries to create a PHI where the incoming values are identical.
+ static BlockValueNum CreateEmptyPHI(LDVSSABlock *BB, unsigned NumPreds,
+ LDVSSAUpdater *Updater) {
+ BlockValueNum PHIValNum = Updater->getValue(BB);
+ LDVSSAPhi *PHI = BB->newPHI(PHIValNum);
+ Updater->PHIs[PHIValNum] = PHI;
+ return PHIValNum;
+ }
+
+ /// AddPHIOperand - Add the specified value as an operand of the PHI for
+ /// the specified predecessor block.
+ static void AddPHIOperand(LDVSSAPhi *PHI, BlockValueNum Val, LDVSSABlock *Pred) {
+ PHI->IncomingValues.push_back(std::make_pair(Pred, Val));
+ }
+
+ /// ValueIsPHI - Check if the instruction that defines the specified value
+ /// is a PHI instruction.
+ static LDVSSAPhi *ValueIsPHI(BlockValueNum Val, LDVSSAUpdater *Updater) {
+ auto PHIIt = Updater->PHIs.find(Val);
+ if (PHIIt == Updater->PHIs.end())
+ return nullptr;
+ return PHIIt->second;
+ }
+
+ /// ValueIsNewPHI - Like ValueIsPHI but also check if the PHI has no source
+ /// operands, i.e., it was just added.
+ static LDVSSAPhi *ValueIsNewPHI(BlockValueNum Val, LDVSSAUpdater *Updater) {
+ LDVSSAPhi *PHI = ValueIsPHI(Val, Updater);
+ if (PHI && PHI->IncomingValues.size() == 0)
+ return PHI;
+ return nullptr;
+ }
+
+ /// GetPHIValue - For the specified PHI instruction, return the value
+ /// that it defines.
+ static BlockValueNum GetPHIValue(LDVSSAPhi *PHI) { return PHI->PHIValNum; }
+};
+
+} // end namespace llvm
+
+std::optional<ValueIDNum> InstrRefBasedLDV::resolveDbgPHIs(
+ MachineFunction &MF, const ValueTable *MLiveOuts,
+ const ValueTable *MLiveIns, MachineInstr &Here, uint64_t InstrNum) {
+ assert(MLiveOuts && MLiveIns &&
+ "Tried to resolve DBG_PHI before location "
+ "tables allocated?");
+
+ // This function will be called twice per DBG_INSTR_REF, and might end up
+ // computing lots of SSA information: memoize it.
+ auto SeenDbgPHIIt = SeenDbgPHIs.find(std::make_pair(&Here, InstrNum));
+ if (SeenDbgPHIIt != SeenDbgPHIs.end())
+ return SeenDbgPHIIt->second;
+
+ std::optional<ValueIDNum> Result =
+ resolveDbgPHIsImpl(MF, MLiveOuts, MLiveIns, Here, InstrNum);
+ SeenDbgPHIs.insert({std::make_pair(&Here, InstrNum), Result});
+ return Result;
+}
+
+std::optional<ValueIDNum> InstrRefBasedLDV::resolveDbgPHIsImpl(
+ MachineFunction &MF, const ValueTable *MLiveOuts,
+ const ValueTable *MLiveIns, MachineInstr &Here, uint64_t InstrNum) {
+ // Pick out records of DBG_PHI instructions that have been observed. If there
+ // are none, then we cannot compute a value number.
+ auto RangePair = std::equal_range(DebugPHINumToValue.begin(),
+ DebugPHINumToValue.end(), InstrNum);
+ auto LowerIt = RangePair.first;
+ auto UpperIt = RangePair.second;
+
+ // No DBG_PHI means there can be no location.
+ if (LowerIt == UpperIt)
+ return std::nullopt;
+
+ // If any DBG_PHIs referred to a location we didn't understand, don't try to
+ // compute a value. There might be scenarios where we could recover a value
+ // for some range of DBG_INSTR_REFs, but at this point we can have high
+ // confidence that we've seen a bug.
+ auto DBGPHIRange = make_range(LowerIt, UpperIt);
+ for (const DebugPHIRecord &DBG_PHI : DBGPHIRange)
+ if (!DBG_PHI.ValueRead)
+ return std::nullopt;
+
+ // If there's only one DBG_PHI, then that is our value number.
+ if (std::distance(LowerIt, UpperIt) == 1)
+ return *LowerIt->ValueRead;
+
+ // Pick out the location (physreg, slot) where any PHIs must occur. It's
+ // technically possible for us to merge values in different registers in each
+ // block, but highly unlikely that LLVM will generate such code after register
+ // allocation.
+ LocIdx Loc = *LowerIt->ReadLoc;
+
+ // We have several DBG_PHIs, and a use position (the Here inst). All each
+ // DBG_PHI does is identify a value at a program position. We can treat each
+ // DBG_PHI like it's a Def of a value, and the use position is a Use of a
+ // value, just like SSA. We use the bulk-standard LLVM SSA updater class to
+ // determine which Def is used at the Use, and any PHIs that happen along
+ // the way.
+ // Adapted LLVM SSA Updater:
+ LDVSSAUpdater Updater(Loc, MLiveIns);
+ // Map of which Def or PHI is the current value in each block.
+ DenseMap<LDVSSABlock *, BlockValueNum> AvailableValues;
+ // Set of PHIs that we have created along the way.
+ SmallVector<LDVSSAPhi *, 8> CreatedPHIs;
+
+ // Each existing DBG_PHI is a Def'd value under this model. Record these Defs
+ // for the SSAUpdater.
+ for (const auto &DBG_PHI : DBGPHIRange) {
+ LDVSSABlock *Block = Updater.getSSALDVBlock(DBG_PHI.MBB);
+ const ValueIDNum &Num = *DBG_PHI.ValueRead;
+ AvailableValues.insert(std::make_pair(Block, Num.asU64()));
+ }
+
+ LDVSSABlock *HereBlock = Updater.getSSALDVBlock(Here.getParent());
+ const auto &AvailIt = AvailableValues.find(HereBlock);
+ if (AvailIt != AvailableValues.end()) {
+ // Actually, we already know what the value is -- the Use is in the same
+ // block as the Def.
+ return ValueIDNum::fromU64(AvailIt->second);
+ }
+
+ // Otherwise, we must use the SSA Updater. It will identify the value number
+ // that we are to use, and the PHIs that must happen along the way.
+ SSAUpdaterImpl<LDVSSAUpdater> Impl(&Updater, &AvailableValues, &CreatedPHIs);
+ BlockValueNum ResultInt = Impl.GetValue(Updater.getSSALDVBlock(Here.getParent()));
+ ValueIDNum Result = ValueIDNum::fromU64(ResultInt);
+
+ // We have the number for a PHI, or possibly live-through value, to be used
+ // at this Use. There are a number of things we have to check about it though:
+ // * Does any PHI use an 'Undef' (like an IMPLICIT_DEF) value? If so, this
+ // Use was not completely dominated by DBG_PHIs and we should abort.
+ // * Are the Defs or PHIs clobbered in a block? SSAUpdater isn't aware that
+ // we've left SSA form. Validate that the inputs to each PHI are the
+ // expected values.
+ // * Is a PHI we've created actually a merging of values, or are all the
+ // predecessor values the same, leading to a non-PHI machine value number?
+ // (SSAUpdater doesn't know that either). Remap validated PHIs into the
+ // the ValidatedValues collection below to sort this out.
+ DenseMap<LDVSSABlock *, ValueIDNum> ValidatedValues;
+
+ // Define all the input DBG_PHI values in ValidatedValues.
+ for (const auto &DBG_PHI : DBGPHIRange) {
+ LDVSSABlock *Block = Updater.getSSALDVBlock(DBG_PHI.MBB);
+ const ValueIDNum &Num = *DBG_PHI.ValueRead;
+ ValidatedValues.insert(std::make_pair(Block, Num));
+ }
+
+ // Sort PHIs to validate into RPO-order.
+ SmallVector<LDVSSAPhi *, 8> SortedPHIs;
+ for (auto &PHI : CreatedPHIs)
+ SortedPHIs.push_back(PHI);
+
+ llvm::sort(SortedPHIs, [&](LDVSSAPhi *A, LDVSSAPhi *B) {
+ return BBToOrder[&A->getParent()->BB] < BBToOrder[&B->getParent()->BB];
+ });
+
+ for (auto &PHI : SortedPHIs) {
+ ValueIDNum ThisBlockValueNum =
+ MLiveIns[PHI->ParentBlock->BB.getNumber()][Loc.asU64()];
+
+ // Are all these things actually defined?
+ for (auto &PHIIt : PHI->IncomingValues) {
+ // Any undef input means DBG_PHIs didn't dominate the use point.
+ if (Updater.UndefMap.find(&PHIIt.first->BB) != Updater.UndefMap.end())
+ return std::nullopt;
+
+ ValueIDNum ValueToCheck;
+ const ValueTable &BlockLiveOuts = MLiveOuts[PHIIt.first->BB.getNumber()];
+
+ auto VVal = ValidatedValues.find(PHIIt.first);
+ if (VVal == ValidatedValues.end()) {
+ // We cross a loop, and this is a backedge. LLVMs tail duplication
+ // happens so late that DBG_PHI instructions should not be able to
+ // migrate into loops -- meaning we can only be live-through this
+ // loop.
+ ValueToCheck = ThisBlockValueNum;
+ } else {
+ // Does the block have as a live-out, in the location we're examining,
+ // the value that we expect? If not, it's been moved or clobbered.
+ ValueToCheck = VVal->second;
+ }
+
+ if (BlockLiveOuts[Loc.asU64()] != ValueToCheck)
+ return std::nullopt;
+ }
+
+ // Record this value as validated.
+ ValidatedValues.insert({PHI->ParentBlock, ThisBlockValueNum});
+ }
+
+ // All the PHIs are valid: we can return what the SSAUpdater said our value
+ // number was.
+ return Result;
+}
diff --git a/contrib/llvm-project/llvm/lib/CodeGen/LiveDebugValues/InstrRefBasedImpl.h b/contrib/llvm-project/llvm/lib/CodeGen/LiveDebugValues/InstrRefBasedImpl.h
new file mode 100644
index 000000000000..2fdc37c6dda2
--- /dev/null
+++ b/contrib/llvm-project/llvm/lib/CodeGen/LiveDebugValues/InstrRefBasedImpl.h
@@ -0,0 +1,1441 @@
+//===- InstrRefBasedImpl.h - Tracking Debug Value MIs ---------------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_LIB_CODEGEN_LIVEDEBUGVALUES_INSTRREFBASEDLDV_H
+#define LLVM_LIB_CODEGEN_LIVEDEBUGVALUES_INSTRREFBASEDLDV_H
+
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/IndexedMap.h"
+#include "llvm/ADT/SmallPtrSet.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/UniqueVector.h"
+#include "llvm/CodeGen/LexicalScopes.h"
+#include "llvm/CodeGen/MachineBasicBlock.h"
+#include "llvm/CodeGen/MachineInstr.h"
+#include "llvm/CodeGen/TargetRegisterInfo.h"
+#include "llvm/IR/DebugInfoMetadata.h"
+#include <optional>
+
+#include "LiveDebugValues.h"
+
+class TransferTracker;
+
+// Forward dec of unit test class, so that we can peer into the LDV object.
+class InstrRefLDVTest;
+
+namespace LiveDebugValues {
+
+class MLocTracker;
+class DbgOpIDMap;
+
+using namespace llvm;
+
+/// Handle-class for a particular "location". This value-type uniquely
+/// symbolises a register or stack location, allowing manipulation of locations
+/// without concern for where that location is. Practically, this allows us to
+/// treat the state of the machine at a particular point as an array of values,
+/// rather than a map of values.
+class LocIdx {
+ unsigned Location;
+
+ // Default constructor is private, initializing to an illegal location number.
+ // Use only for "not an entry" elements in IndexedMaps.
+ LocIdx() : Location(UINT_MAX) {}
+
+public:
+#define NUM_LOC_BITS 24
+ LocIdx(unsigned L) : Location(L) {
+ assert(L < (1 << NUM_LOC_BITS) && "Machine locations must fit in 24 bits");
+ }
+
+ static LocIdx MakeIllegalLoc() { return LocIdx(); }
+ static LocIdx MakeTombstoneLoc() {
+ LocIdx L = LocIdx();
+ --L.Location;
+ return L;
+ }
+
+ bool isIllegal() const { return Location == UINT_MAX; }
+
+ uint64_t asU64() const { return Location; }
+
+ bool operator==(unsigned L) const { return Location == L; }
+
+ bool operator==(const LocIdx &L) const { return Location == L.Location; }
+
+ bool operator!=(unsigned L) const { return !(*this == L); }
+
+ bool operator!=(const LocIdx &L) const { return !(*this == L); }
+
+ bool operator<(const LocIdx &Other) const {
+ return Location < Other.Location;
+ }
+};
+
+// The location at which a spilled value resides. It consists of a register and
+// an offset.
+struct SpillLoc {
+ unsigned SpillBase;
+ StackOffset SpillOffset;
+ bool operator==(const SpillLoc &Other) const {
+ return std::make_pair(SpillBase, SpillOffset) ==
+ std::make_pair(Other.SpillBase, Other.SpillOffset);
+ }
+ bool operator<(const SpillLoc &Other) const {
+ return std::make_tuple(SpillBase, SpillOffset.getFixed(),
+ SpillOffset.getScalable()) <
+ std::make_tuple(Other.SpillBase, Other.SpillOffset.getFixed(),
+ Other.SpillOffset.getScalable());
+ }
+};
+
+/// Unique identifier for a value defined by an instruction, as a value type.
+/// Casts back and forth to a uint64_t. Probably replacable with something less
+/// bit-constrained. Each value identifies the instruction and machine location
+/// where the value is defined, although there may be no corresponding machine
+/// operand for it (ex: regmasks clobbering values). The instructions are
+/// one-based, and definitions that are PHIs have instruction number zero.
+///
+/// The obvious limits of a 1M block function or 1M instruction blocks are
+/// problematic; but by that point we should probably have bailed out of
+/// trying to analyse the function.
+class ValueIDNum {
+ union {
+ struct {
+ uint64_t BlockNo : 20; /// The block where the def happens.
+ uint64_t InstNo : 20; /// The Instruction where the def happens.
+ /// One based, is distance from start of block.
+ uint64_t LocNo
+ : NUM_LOC_BITS; /// The machine location where the def happens.
+ } s;
+ uint64_t Value;
+ } u;
+
+ static_assert(sizeof(u) == 8, "Badly packed ValueIDNum?");
+
+public:
+ // Default-initialize to EmptyValue. This is necessary to make IndexedMaps
+ // of values to work.
+ ValueIDNum() { u.Value = EmptyValue.asU64(); }
+
+ ValueIDNum(uint64_t Block, uint64_t Inst, uint64_t Loc) {
+ u.s = {Block, Inst, Loc};
+ }
+
+ ValueIDNum(uint64_t Block, uint64_t Inst, LocIdx Loc) {
+ u.s = {Block, Inst, Loc.asU64()};
+ }
+
+ uint64_t getBlock() const { return u.s.BlockNo; }
+ uint64_t getInst() const { return u.s.InstNo; }
+ uint64_t getLoc() const { return u.s.LocNo; }
+ bool isPHI() const { return u.s.InstNo == 0; }
+
+ uint64_t asU64() const { return u.Value; }
+
+ static ValueIDNum fromU64(uint64_t v) {
+ ValueIDNum Val;
+ Val.u.Value = v;
+ return Val;
+ }
+
+ bool operator<(const ValueIDNum &Other) const {
+ return asU64() < Other.asU64();
+ }
+
+ bool operator==(const ValueIDNum &Other) const {
+ return u.Value == Other.u.Value;
+ }
+
+ bool operator!=(const ValueIDNum &Other) const { return !(*this == Other); }
+
+ std::string asString(const std::string &mlocname) const {
+ return Twine("Value{bb: ")
+ .concat(Twine(u.s.BlockNo)
+ .concat(Twine(", inst: ")
+ .concat((u.s.InstNo ? Twine(u.s.InstNo)
+ : Twine("live-in"))
+ .concat(Twine(", loc: ").concat(
+ Twine(mlocname)))
+ .concat(Twine("}")))))
+ .str();
+ }
+
+ static ValueIDNum EmptyValue;
+ static ValueIDNum TombstoneValue;
+};
+
+} // End namespace LiveDebugValues
+
+namespace llvm {
+using namespace LiveDebugValues;
+
+template <> struct DenseMapInfo<LocIdx> {
+ static inline LocIdx getEmptyKey() { return LocIdx::MakeIllegalLoc(); }
+ static inline LocIdx getTombstoneKey() { return LocIdx::MakeTombstoneLoc(); }
+
+ static unsigned getHashValue(const LocIdx &Loc) { return Loc.asU64(); }
+
+ static bool isEqual(const LocIdx &A, const LocIdx &B) { return A == B; }
+};
+
+template <> struct DenseMapInfo<ValueIDNum> {
+ static inline ValueIDNum getEmptyKey() { return ValueIDNum::EmptyValue; }
+ static inline ValueIDNum getTombstoneKey() {
+ return ValueIDNum::TombstoneValue;
+ }
+
+ static unsigned getHashValue(const ValueIDNum &Val) {
+ return hash_value(Val.asU64());
+ }
+
+ static bool isEqual(const ValueIDNum &A, const ValueIDNum &B) {
+ return A == B;
+ }
+};
+
+} // end namespace llvm
+
+namespace LiveDebugValues {
+using namespace llvm;
+
+/// Type for a table of values in a block.
+using ValueTable = std::unique_ptr<ValueIDNum[]>;
+
+/// Type for a table-of-table-of-values, i.e., the collection of either
+/// live-in or live-out values for each block in the function.
+using FuncValueTable = std::unique_ptr<ValueTable[]>;
+
+/// Thin wrapper around an integer -- designed to give more type safety to
+/// spill location numbers.
+class SpillLocationNo {
+public:
+ explicit SpillLocationNo(unsigned SpillNo) : SpillNo(SpillNo) {}
+ unsigned SpillNo;
+ unsigned id() const { return SpillNo; }
+
+ bool operator<(const SpillLocationNo &Other) const {
+ return SpillNo < Other.SpillNo;
+ }
+
+ bool operator==(const SpillLocationNo &Other) const {
+ return SpillNo == Other.SpillNo;
+ }
+ bool operator!=(const SpillLocationNo &Other) const {
+ return !(*this == Other);
+ }
+};
+
+/// Meta qualifiers for a value. Pair of whatever expression is used to qualify
+/// the value, and Boolean of whether or not it's indirect.
+class DbgValueProperties {
+public:
+ DbgValueProperties(const DIExpression *DIExpr, bool Indirect, bool IsVariadic)
+ : DIExpr(DIExpr), Indirect(Indirect), IsVariadic(IsVariadic) {}
+
+ /// Extract properties from an existing DBG_VALUE instruction.
+ DbgValueProperties(const MachineInstr &MI) {
+ assert(MI.isDebugValue());
+ assert(MI.getDebugExpression()->getNumLocationOperands() == 0 ||
+ MI.isDebugValueList() || MI.isUndefDebugValue());
+ IsVariadic = MI.isDebugValueList();
+ DIExpr = MI.getDebugExpression();
+ Indirect = MI.isDebugOffsetImm();
+ }
+
+ bool isJoinable(const DbgValueProperties &Other) const {
+ return DIExpression::isEqualExpression(DIExpr, Indirect, Other.DIExpr,
+ Other.Indirect);
+ }
+
+ bool operator==(const DbgValueProperties &Other) const {
+ return std::tie(DIExpr, Indirect, IsVariadic) ==
+ std::tie(Other.DIExpr, Other.Indirect, Other.IsVariadic);
+ }
+
+ bool operator!=(const DbgValueProperties &Other) const {
+ return !(*this == Other);
+ }
+
+ unsigned getLocationOpCount() const {
+ return IsVariadic ? DIExpr->getNumLocationOperands() : 1;
+ }
+
+ const DIExpression *DIExpr;
+ bool Indirect;
+ bool IsVariadic;
+};
+
+/// TODO: Might pack better if we changed this to a Struct of Arrays, since
+/// MachineOperand is width 32, making this struct width 33. We could also
+/// potentially avoid storing the whole MachineOperand (sizeof=32), instead
+/// choosing to store just the contents portion (sizeof=8) and a Kind enum,
+/// since we already know it is some type of immediate value.
+/// Stores a single debug operand, which can either be a MachineOperand for
+/// directly storing immediate values, or a ValueIDNum representing some value
+/// computed at some point in the program. IsConst is used as a discriminator.
+struct DbgOp {
+ union {
+ ValueIDNum ID;
+ MachineOperand MO;
+ };
+ bool IsConst;
+
+ DbgOp() : ID(ValueIDNum::EmptyValue), IsConst(false) {}
+ DbgOp(ValueIDNum ID) : ID(ID), IsConst(false) {}
+ DbgOp(MachineOperand MO) : MO(MO), IsConst(true) {}
+
+ bool isUndef() const { return !IsConst && ID == ValueIDNum::EmptyValue; }
+
+#ifndef NDEBUG
+ void dump(const MLocTracker *MTrack) const;
+#endif
+};
+
+/// A DbgOp whose ID (if any) has resolved to an actual location, LocIdx. Used
+/// when working with concrete debug values, i.e. when joining MLocs and VLocs
+/// in the TransferTracker or emitting DBG_VALUE/DBG_VALUE_LIST instructions in
+/// the MLocTracker.
+struct ResolvedDbgOp {
+ union {
+ LocIdx Loc;
+ MachineOperand MO;
+ };
+ bool IsConst;
+
+ ResolvedDbgOp(LocIdx Loc) : Loc(Loc), IsConst(false) {}
+ ResolvedDbgOp(MachineOperand MO) : MO(MO), IsConst(true) {}
+
+ bool operator==(const ResolvedDbgOp &Other) const {
+ if (IsConst != Other.IsConst)
+ return false;
+ if (IsConst)
+ return MO.isIdenticalTo(Other.MO);
+ return Loc == Other.Loc;
+ }
+
+#ifndef NDEBUG
+ void dump(const MLocTracker *MTrack) const;
+#endif
+};
+
+/// An ID used in the DbgOpIDMap (below) to lookup a stored DbgOp. This is used
+/// in place of actual DbgOps inside of a DbgValue to reduce its size, as
+/// DbgValue is very frequently used and passed around, and the actual DbgOp is
+/// over 8x larger than this class, due to storing a MachineOperand. This ID
+/// should be equal for all equal DbgOps, and also encodes whether the mapped
+/// DbgOp is a constant, meaning that for simple equality or const-ness checks
+/// it is not necessary to lookup this ID.
+struct DbgOpID {
+ struct IsConstIndexPair {
+ uint32_t IsConst : 1;
+ uint32_t Index : 31;
+ };
+
+ union {
+ struct IsConstIndexPair ID;
+ uint32_t RawID;
+ };
+
+ DbgOpID() : RawID(UndefID.RawID) {
+ static_assert(sizeof(DbgOpID) == 4, "DbgOpID should fit within 4 bytes.");
+ }
+ DbgOpID(uint32_t RawID) : RawID(RawID) {}
+ DbgOpID(bool IsConst, uint32_t Index) : ID({IsConst, Index}) {}
+
+ static DbgOpID UndefID;
+
+ bool operator==(const DbgOpID &Other) const { return RawID == Other.RawID; }
+ bool operator!=(const DbgOpID &Other) const { return !(*this == Other); }
+
+ uint32_t asU32() const { return RawID; }
+
+ bool isUndef() const { return *this == UndefID; }
+ bool isConst() const { return ID.IsConst && !isUndef(); }
+ uint32_t getIndex() const { return ID.Index; }
+
+#ifndef NDEBUG
+ void dump(const MLocTracker *MTrack, const DbgOpIDMap *OpStore) const;
+#endif
+};
+
+/// Class storing the complete set of values that are observed by DbgValues
+/// within the current function. Allows 2-way lookup, with `find` returning the
+/// Op for a given ID and `insert` returning the ID for a given Op (creating one
+/// if none exists).
+class DbgOpIDMap {
+
+ SmallVector<ValueIDNum, 0> ValueOps;
+ SmallVector<MachineOperand, 0> ConstOps;
+
+ DenseMap<ValueIDNum, DbgOpID> ValueOpToID;
+ DenseMap<MachineOperand, DbgOpID> ConstOpToID;
+
+public:
+ /// If \p Op does not already exist in this map, it is inserted and the
+ /// corresponding DbgOpID is returned. If Op already exists in this map, then
+ /// no change is made and the existing ID for Op is returned.
+ /// Calling this with the undef DbgOp will always return DbgOpID::UndefID.
+ DbgOpID insert(DbgOp Op) {
+ if (Op.isUndef())
+ return DbgOpID::UndefID;
+ if (Op.IsConst)
+ return insertConstOp(Op.MO);
+ return insertValueOp(Op.ID);
+ }
+ /// Returns the DbgOp associated with \p ID. Should only be used for IDs
+ /// returned from calling `insert` from this map or DbgOpID::UndefID.
+ DbgOp find(DbgOpID ID) const {
+ if (ID == DbgOpID::UndefID)
+ return DbgOp();
+ if (ID.isConst())
+ return DbgOp(ConstOps[ID.getIndex()]);
+ return DbgOp(ValueOps[ID.getIndex()]);
+ }
+
+ void clear() {
+ ValueOps.clear();
+ ConstOps.clear();
+ ValueOpToID.clear();
+ ConstOpToID.clear();
+ }
+
+private:
+ DbgOpID insertConstOp(MachineOperand &MO) {
+ auto ExistingIt = ConstOpToID.find(MO);
+ if (ExistingIt != ConstOpToID.end())
+ return ExistingIt->second;
+ DbgOpID ID(true, ConstOps.size());
+ ConstOpToID.insert(std::make_pair(MO, ID));
+ ConstOps.push_back(MO);
+ return ID;
+ }
+ DbgOpID insertValueOp(ValueIDNum VID) {
+ auto ExistingIt = ValueOpToID.find(VID);
+ if (ExistingIt != ValueOpToID.end())
+ return ExistingIt->second;
+ DbgOpID ID(false, ValueOps.size());
+ ValueOpToID.insert(std::make_pair(VID, ID));
+ ValueOps.push_back(VID);
+ return ID;
+ }
+};
+
+// We set the maximum number of operands that we will handle to keep DbgValue
+// within a reasonable size (64 bytes), as we store and pass a lot of them
+// around.
+#define MAX_DBG_OPS 8
+
+/// Class recording the (high level) _value_ of a variable. Identifies the value
+/// of the variable as a list of ValueIDNums and constant MachineOperands, or as
+/// an empty list for undef debug values or VPHI values which we have not found
+/// valid locations for.
+/// This class also stores meta-information about how the value is qualified.
+/// Used to reason about variable values when performing the second
+/// (DebugVariable specific) dataflow analysis.
+class DbgValue {
+private:
+ /// If Kind is Def or VPHI, the set of IDs corresponding to the DbgOps that
+ /// are used. VPHIs set every ID to EmptyID when we have not found a valid
+ /// machine-value for every operand, and sets them to the corresponding
+ /// machine-values when we have found all of them.
+ DbgOpID DbgOps[MAX_DBG_OPS];
+ unsigned OpCount;
+
+public:
+ /// For a NoVal or VPHI DbgValue, which block it was generated in.
+ int BlockNo;
+
+ /// Qualifiers for the ValueIDNum above.
+ DbgValueProperties Properties;
+
+ typedef enum {
+ Undef, // Represents a DBG_VALUE $noreg in the transfer function only.
+ Def, // This value is defined by some combination of constants,
+ // instructions, or PHI values.
+ VPHI, // Incoming values to BlockNo differ, those values must be joined by
+ // a PHI in this block.
+ NoVal, // Empty DbgValue indicating an unknown value. Used as initializer,
+ // before dominating blocks values are propagated in.
+ } KindT;
+ /// Discriminator for whether this is a constant or an in-program value.
+ KindT Kind;
+
+ DbgValue(ArrayRef<DbgOpID> DbgOps, const DbgValueProperties &Prop)
+ : OpCount(DbgOps.size()), BlockNo(0), Properties(Prop), Kind(Def) {
+ static_assert(sizeof(DbgValue) <= 64,
+ "DbgValue should fit within 64 bytes.");
+ assert(DbgOps.size() == Prop.getLocationOpCount());
+ if (DbgOps.size() > MAX_DBG_OPS ||
+ any_of(DbgOps, [](DbgOpID ID) { return ID.isUndef(); })) {
+ Kind = Undef;
+ OpCount = 0;
+#define DEBUG_TYPE "LiveDebugValues"
+ if (DbgOps.size() > MAX_DBG_OPS) {
+ LLVM_DEBUG(dbgs() << "Found DbgValue with more than maximum allowed "
+ "operands.\n");
+ }
+#undef DEBUG_TYPE
+ } else {
+ for (unsigned Idx = 0; Idx < DbgOps.size(); ++Idx)
+ this->DbgOps[Idx] = DbgOps[Idx];
+ }
+ }
+
+ DbgValue(unsigned BlockNo, const DbgValueProperties &Prop, KindT Kind)
+ : OpCount(0), BlockNo(BlockNo), Properties(Prop), Kind(Kind) {
+ assert(Kind == NoVal || Kind == VPHI);
+ }
+
+ DbgValue(const DbgValueProperties &Prop, KindT Kind)
+ : OpCount(0), BlockNo(0), Properties(Prop), Kind(Kind) {
+ assert(Kind == Undef &&
+ "Empty DbgValue constructor must pass in Undef kind");
+ }
+
+#ifndef NDEBUG
+ void dump(const MLocTracker *MTrack = nullptr,
+ const DbgOpIDMap *OpStore = nullptr) const;
+#endif
+
+ bool operator==(const DbgValue &Other) const {
+ if (std::tie(Kind, Properties) != std::tie(Other.Kind, Other.Properties))
+ return false;
+ else if (Kind == Def && !equal(getDbgOpIDs(), Other.getDbgOpIDs()))
+ return false;
+ else if (Kind == NoVal && BlockNo != Other.BlockNo)
+ return false;
+ else if (Kind == VPHI && BlockNo != Other.BlockNo)
+ return false;
+ else if (Kind == VPHI && !equal(getDbgOpIDs(), Other.getDbgOpIDs()))
+ return false;
+
+ return true;
+ }
+
+ bool operator!=(const DbgValue &Other) const { return !(*this == Other); }
+
+ // Returns an array of all the machine values used to calculate this variable
+ // value, or an empty list for an Undef or unjoined VPHI.
+ ArrayRef<DbgOpID> getDbgOpIDs() const { return {DbgOps, OpCount}; }
+
+ // Returns either DbgOps[Index] if this DbgValue has Debug Operands, or
+ // the ID for ValueIDNum::EmptyValue otherwise (i.e. if this is an Undef,
+ // NoVal, or an unjoined VPHI).
+ DbgOpID getDbgOpID(unsigned Index) const {
+ if (!OpCount)
+ return DbgOpID::UndefID;
+ assert(Index < OpCount);
+ return DbgOps[Index];
+ }
+ // Replaces this DbgValue's existing DbgOpIDs (if any) with the contents of
+ // \p NewIDs. The number of DbgOpIDs passed must be equal to the number of
+ // arguments expected by this DbgValue's properties (the return value of
+ // `getLocationOpCount()`).
+ void setDbgOpIDs(ArrayRef<DbgOpID> NewIDs) {
+ // We can go from no ops to some ops, but not from some ops to no ops.
+ assert(NewIDs.size() == getLocationOpCount() &&
+ "Incorrect number of Debug Operands for this DbgValue.");
+ OpCount = NewIDs.size();
+ for (unsigned Idx = 0; Idx < NewIDs.size(); ++Idx)
+ DbgOps[Idx] = NewIDs[Idx];
+ }
+
+ // The number of debug operands expected by this DbgValue's expression.
+ // getDbgOpIDs() should return an array of this length, unless this is an
+ // Undef or an unjoined VPHI.
+ unsigned getLocationOpCount() const {
+ return Properties.getLocationOpCount();
+ }
+
+ // Returns true if this or Other are unjoined PHIs, which do not have defined
+ // Loc Ops, or if the `n`th Loc Op for this has a different constness to the
+ // `n`th Loc Op for Other.
+ bool hasJoinableLocOps(const DbgValue &Other) const {
+ if (isUnjoinedPHI() || Other.isUnjoinedPHI())
+ return true;
+ for (unsigned Idx = 0; Idx < getLocationOpCount(); ++Idx) {
+ if (getDbgOpID(Idx).isConst() != Other.getDbgOpID(Idx).isConst())
+ return false;
+ }
+ return true;
+ }
+
+ bool isUnjoinedPHI() const { return Kind == VPHI && OpCount == 0; }
+
+ bool hasIdenticalValidLocOps(const DbgValue &Other) const {
+ if (!OpCount)
+ return false;
+ return equal(getDbgOpIDs(), Other.getDbgOpIDs());
+ }
+};
+
+class LocIdxToIndexFunctor {
+public:
+ using argument_type = LocIdx;
+ unsigned operator()(const LocIdx &L) const { return L.asU64(); }
+};
+
+/// Tracker for what values are in machine locations. Listens to the Things
+/// being Done by various instructions, and maintains a table of what machine
+/// locations have what values (as defined by a ValueIDNum).
+///
+/// There are potentially a much larger number of machine locations on the
+/// target machine than the actual working-set size of the function. On x86 for
+/// example, we're extremely unlikely to want to track values through control
+/// or debug registers. To avoid doing so, MLocTracker has several layers of
+/// indirection going on, described below, to avoid unnecessarily tracking
+/// any location.
+///
+/// Here's a sort of diagram of the indexes, read from the bottom up:
+///
+/// Size on stack Offset on stack
+/// \ /
+/// Stack Idx (Where in slot is this?)
+/// /
+/// /
+/// Slot Num (%stack.0) /
+/// FrameIdx => SpillNum /
+/// \ /
+/// SpillID (int) Register number (int)
+/// \ /
+/// LocationID => LocIdx
+/// |
+/// LocIdx => ValueIDNum
+///
+/// The aim here is that the LocIdx => ValueIDNum vector is just an array of
+/// values in numbered locations, so that later analyses can ignore whether the
+/// location is a register or otherwise. To map a register / spill location to
+/// a LocIdx, you have to use the (sparse) LocationID => LocIdx map. And to
+/// build a LocationID for a stack slot, you need to combine identifiers for
+/// which stack slot it is and where within that slot is being described.
+///
+/// Register mask operands cause trouble by technically defining every register;
+/// various hacks are used to avoid tracking registers that are never read and
+/// only written by regmasks.
+class MLocTracker {
+public:
+ MachineFunction &MF;
+ const TargetInstrInfo &TII;
+ const TargetRegisterInfo &TRI;
+ const TargetLowering &TLI;
+
+ /// IndexedMap type, mapping from LocIdx to ValueIDNum.
+ using LocToValueType = IndexedMap<ValueIDNum, LocIdxToIndexFunctor>;
+
+ /// Map of LocIdxes to the ValueIDNums that they store. This is tightly
+ /// packed, entries only exist for locations that are being tracked.
+ LocToValueType LocIdxToIDNum;
+
+ /// "Map" of machine location IDs (i.e., raw register or spill number) to the
+ /// LocIdx key / number for that location. There are always at least as many
+ /// as the number of registers on the target -- if the value in the register
+ /// is not being tracked, then the LocIdx value will be zero. New entries are
+ /// appended if a new spill slot begins being tracked.
+ /// This, and the corresponding reverse map persist for the analysis of the
+ /// whole function, and is necessarying for decoding various vectors of
+ /// values.
+ std::vector<LocIdx> LocIDToLocIdx;
+
+ /// Inverse map of LocIDToLocIdx.
+ IndexedMap<unsigned, LocIdxToIndexFunctor> LocIdxToLocID;
+
+ /// When clobbering register masks, we chose to not believe the machine model
+ /// and don't clobber SP. Do the same for SP aliases, and for efficiency,
+ /// keep a set of them here.
+ SmallSet<Register, 8> SPAliases;
+
+ /// Unique-ification of spill. Used to number them -- their LocID number is
+ /// the index in SpillLocs minus one plus NumRegs.
+ UniqueVector<SpillLoc> SpillLocs;
+
+ // If we discover a new machine location, assign it an mphi with this
+ // block number.
+ unsigned CurBB;
+
+ /// Cached local copy of the number of registers the target has.
+ unsigned NumRegs;
+
+ /// Number of slot indexes the target has -- distinct segments of a stack
+ /// slot that can take on the value of a subregister, when a super-register
+ /// is written to the stack.
+ unsigned NumSlotIdxes;
+
+ /// Collection of register mask operands that have been observed. Second part
+ /// of pair indicates the instruction that they happened in. Used to
+ /// reconstruct where defs happened if we start tracking a location later
+ /// on.
+ SmallVector<std::pair<const MachineOperand *, unsigned>, 32> Masks;
+
+ /// Pair for describing a position within a stack slot -- first the size in
+ /// bits, then the offset.
+ typedef std::pair<unsigned short, unsigned short> StackSlotPos;
+
+ /// Map from a size/offset pair describing a position in a stack slot, to a
+ /// numeric identifier for that position. Allows easier identification of
+ /// individual positions.
+ DenseMap<StackSlotPos, unsigned> StackSlotIdxes;
+
+ /// Inverse of StackSlotIdxes.
+ DenseMap<unsigned, StackSlotPos> StackIdxesToPos;
+
+ /// Iterator for locations and the values they contain. Dereferencing
+ /// produces a struct/pair containing the LocIdx key for this location,
+ /// and a reference to the value currently stored. Simplifies the process
+ /// of seeking a particular location.
+ class MLocIterator {
+ LocToValueType &ValueMap;
+ LocIdx Idx;
+
+ public:
+ class value_type {
+ public:
+ value_type(LocIdx Idx, ValueIDNum &Value) : Idx(Idx), Value(Value) {}
+ const LocIdx Idx; /// Read-only index of this location.
+ ValueIDNum &Value; /// Reference to the stored value at this location.
+ };
+
+ MLocIterator(LocToValueType &ValueMap, LocIdx Idx)
+ : ValueMap(ValueMap), Idx(Idx) {}
+
+ bool operator==(const MLocIterator &Other) const {
+ assert(&ValueMap == &Other.ValueMap);
+ return Idx == Other.Idx;
+ }
+
+ bool operator!=(const MLocIterator &Other) const {
+ return !(*this == Other);
+ }
+
+ void operator++() { Idx = LocIdx(Idx.asU64() + 1); }
+
+ value_type operator*() { return value_type(Idx, ValueMap[LocIdx(Idx)]); }
+ };
+
+ MLocTracker(MachineFunction &MF, const TargetInstrInfo &TII,
+ const TargetRegisterInfo &TRI, const TargetLowering &TLI);
+
+ /// Produce location ID number for a Register. Provides some small amount of
+ /// type safety.
+ /// \param Reg The register we're looking up.
+ unsigned getLocID(Register Reg) { return Reg.id(); }
+
+ /// Produce location ID number for a spill position.
+ /// \param Spill The number of the spill we're fetching the location for.
+ /// \param SpillSubReg Subregister within the spill we're addressing.
+ unsigned getLocID(SpillLocationNo Spill, unsigned SpillSubReg) {
+ unsigned short Size = TRI.getSubRegIdxSize(SpillSubReg);
+ unsigned short Offs = TRI.getSubRegIdxOffset(SpillSubReg);
+ return getLocID(Spill, {Size, Offs});
+ }
+
+ /// Produce location ID number for a spill position.
+ /// \param Spill The number of the spill we're fetching the location for.
+ /// \apram SpillIdx size/offset within the spill slot to be addressed.
+ unsigned getLocID(SpillLocationNo Spill, StackSlotPos Idx) {
+ unsigned SlotNo = Spill.id() - 1;
+ SlotNo *= NumSlotIdxes;
+ assert(StackSlotIdxes.find(Idx) != StackSlotIdxes.end());
+ SlotNo += StackSlotIdxes[Idx];
+ SlotNo += NumRegs;
+ return SlotNo;
+ }
+
+ /// Given a spill number, and a slot within the spill, calculate the ID number
+ /// for that location.
+ unsigned getSpillIDWithIdx(SpillLocationNo Spill, unsigned Idx) {
+ unsigned SlotNo = Spill.id() - 1;
+ SlotNo *= NumSlotIdxes;
+ SlotNo += Idx;
+ SlotNo += NumRegs;
+ return SlotNo;
+ }
+
+ /// Return the spill number that a location ID corresponds to.
+ SpillLocationNo locIDToSpill(unsigned ID) const {
+ assert(ID >= NumRegs);
+ ID -= NumRegs;
+ // Truncate away the index part, leaving only the spill number.
+ ID /= NumSlotIdxes;
+ return SpillLocationNo(ID + 1); // The UniqueVector is one-based.
+ }
+
+ /// Returns the spill-slot size/offs that a location ID corresponds to.
+ StackSlotPos locIDToSpillIdx(unsigned ID) const {
+ assert(ID >= NumRegs);
+ ID -= NumRegs;
+ unsigned Idx = ID % NumSlotIdxes;
+ return StackIdxesToPos.find(Idx)->second;
+ }
+
+ unsigned getNumLocs() const { return LocIdxToIDNum.size(); }
+
+ /// Reset all locations to contain a PHI value at the designated block. Used
+ /// sometimes for actual PHI values, othertimes to indicate the block entry
+ /// value (before any more information is known).
+ void setMPhis(unsigned NewCurBB) {
+ CurBB = NewCurBB;
+ for (auto Location : locations())
+ Location.Value = {CurBB, 0, Location.Idx};
+ }
+
+ /// Load values for each location from array of ValueIDNums. Take current
+ /// bbnum just in case we read a value from a hitherto untouched register.
+ void loadFromArray(ValueTable &Locs, unsigned NewCurBB) {
+ CurBB = NewCurBB;
+ // Iterate over all tracked locations, and load each locations live-in
+ // value into our local index.
+ for (auto Location : locations())
+ Location.Value = Locs[Location.Idx.asU64()];
+ }
+
+ /// Wipe any un-necessary location records after traversing a block.
+ void reset() {
+ // We could reset all the location values too; however either loadFromArray
+ // or setMPhis should be called before this object is re-used. Just
+ // clear Masks, they're definitely not needed.
+ Masks.clear();
+ }
+
+ /// Clear all data. Destroys the LocID <=> LocIdx map, which makes most of
+ /// the information in this pass uninterpretable.
+ void clear() {
+ reset();
+ LocIDToLocIdx.clear();
+ LocIdxToLocID.clear();
+ LocIdxToIDNum.clear();
+ // SpillLocs.reset(); XXX UniqueVector::reset assumes a SpillLoc casts from
+ // 0
+ SpillLocs = decltype(SpillLocs)();
+ StackSlotIdxes.clear();
+ StackIdxesToPos.clear();
+
+ LocIDToLocIdx.resize(NumRegs, LocIdx::MakeIllegalLoc());
+ }
+
+ /// Set a locaiton to a certain value.
+ void setMLoc(LocIdx L, ValueIDNum Num) {
+ assert(L.asU64() < LocIdxToIDNum.size());
+ LocIdxToIDNum[L] = Num;
+ }
+
+ /// Read the value of a particular location
+ ValueIDNum readMLoc(LocIdx L) {
+ assert(L.asU64() < LocIdxToIDNum.size());
+ return LocIdxToIDNum[L];
+ }
+
+ /// Create a LocIdx for an untracked register ID. Initialize it to either an
+ /// mphi value representing a live-in, or a recent register mask clobber.
+ LocIdx trackRegister(unsigned ID);
+
+ LocIdx lookupOrTrackRegister(unsigned ID) {
+ LocIdx &Index = LocIDToLocIdx[ID];
+ if (Index.isIllegal())
+ Index = trackRegister(ID);
+ return Index;
+ }
+
+ /// Is register R currently tracked by MLocTracker?
+ bool isRegisterTracked(Register R) {
+ LocIdx &Index = LocIDToLocIdx[R];
+ return !Index.isIllegal();
+ }
+
+ /// Record a definition of the specified register at the given block / inst.
+ /// This doesn't take a ValueIDNum, because the definition and its location
+ /// are synonymous.
+ void defReg(Register R, unsigned BB, unsigned Inst) {
+ unsigned ID = getLocID(R);
+ LocIdx Idx = lookupOrTrackRegister(ID);
+ ValueIDNum ValueID = {BB, Inst, Idx};
+ LocIdxToIDNum[Idx] = ValueID;
+ }
+
+ /// Set a register to a value number. To be used if the value number is
+ /// known in advance.
+ void setReg(Register R, ValueIDNum ValueID) {
+ unsigned ID = getLocID(R);
+ LocIdx Idx = lookupOrTrackRegister(ID);
+ LocIdxToIDNum[Idx] = ValueID;
+ }
+
+ ValueIDNum readReg(Register R) {
+ unsigned ID = getLocID(R);
+ LocIdx Idx = lookupOrTrackRegister(ID);
+ return LocIdxToIDNum[Idx];
+ }
+
+ /// Reset a register value to zero / empty. Needed to replicate the
+ /// VarLoc implementation where a copy to/from a register effectively
+ /// clears the contents of the source register. (Values can only have one
+ /// machine location in VarLocBasedImpl).
+ void wipeRegister(Register R) {
+ unsigned ID = getLocID(R);
+ LocIdx Idx = LocIDToLocIdx[ID];
+ LocIdxToIDNum[Idx] = ValueIDNum::EmptyValue;
+ }
+
+ /// Determine the LocIdx of an existing register.
+ LocIdx getRegMLoc(Register R) {
+ unsigned ID = getLocID(R);
+ assert(ID < LocIDToLocIdx.size());
+ assert(LocIDToLocIdx[ID] != UINT_MAX); // Sentinal for IndexedMap.
+ return LocIDToLocIdx[ID];
+ }
+
+ /// Record a RegMask operand being executed. Defs any register we currently
+ /// track, stores a pointer to the mask in case we have to account for it
+ /// later.
+ void writeRegMask(const MachineOperand *MO, unsigned CurBB, unsigned InstID);
+
+ /// Find LocIdx for SpillLoc \p L, creating a new one if it's not tracked.
+ /// Returns std::nullopt when in scenarios where a spill slot could be
+ /// tracked, but we would likely run into resource limitations.
+ std::optional<SpillLocationNo> getOrTrackSpillLoc(SpillLoc L);
+
+ // Get LocIdx of a spill ID.
+ LocIdx getSpillMLoc(unsigned SpillID) {
+ assert(LocIDToLocIdx[SpillID] != UINT_MAX); // Sentinal for IndexedMap.
+ return LocIDToLocIdx[SpillID];
+ }
+
+ /// Return true if Idx is a spill machine location.
+ bool isSpill(LocIdx Idx) const { return LocIdxToLocID[Idx] >= NumRegs; }
+
+ /// How large is this location (aka, how wide is a value defined there?).
+ unsigned getLocSizeInBits(LocIdx L) const {
+ unsigned ID = LocIdxToLocID[L];
+ if (!isSpill(L)) {
+ return TRI.getRegSizeInBits(Register(ID), MF.getRegInfo());
+ } else {
+ // The slot location on the stack is uninteresting, we care about the
+ // position of the value within the slot (which comes with a size).
+ StackSlotPos Pos = locIDToSpillIdx(ID);
+ return Pos.first;
+ }
+ }
+
+ MLocIterator begin() { return MLocIterator(LocIdxToIDNum, 0); }
+
+ MLocIterator end() {
+ return MLocIterator(LocIdxToIDNum, LocIdxToIDNum.size());
+ }
+
+ /// Return a range over all locations currently tracked.
+ iterator_range<MLocIterator> locations() {
+ return llvm::make_range(begin(), end());
+ }
+
+ std::string LocIdxToName(LocIdx Idx) const;
+
+ std::string IDAsString(const ValueIDNum &Num) const;
+
+#ifndef NDEBUG
+ LLVM_DUMP_METHOD void dump();
+
+ LLVM_DUMP_METHOD void dump_mloc_map();
+#endif
+
+ /// Create a DBG_VALUE based on debug operands \p DbgOps. Qualify it with the
+ /// information in \pProperties, for variable Var. Don't insert it anywhere,
+ /// just return the builder for it.
+ MachineInstrBuilder emitLoc(const SmallVectorImpl<ResolvedDbgOp> &DbgOps,
+ const DebugVariable &Var,
+ const DbgValueProperties &Properties);
+};
+
+/// Types for recording sets of variable fragments that overlap. For a given
+/// local variable, we record all other fragments of that variable that could
+/// overlap it, to reduce search time.
+using FragmentOfVar =
+ std::pair<const DILocalVariable *, DIExpression::FragmentInfo>;
+using OverlapMap =
+ DenseMap<FragmentOfVar, SmallVector<DIExpression::FragmentInfo, 1>>;
+
+/// Collection of DBG_VALUEs observed when traversing a block. Records each
+/// variable and the value the DBG_VALUE refers to. Requires the machine value
+/// location dataflow algorithm to have run already, so that values can be
+/// identified.
+class VLocTracker {
+public:
+ /// Map DebugVariable to the latest Value it's defined to have.
+ /// Needs to be a MapVector because we determine order-in-the-input-MIR from
+ /// the order in this container.
+ /// We only retain the last DbgValue in each block for each variable, to
+ /// determine the blocks live-out variable value. The Vars container forms the
+ /// transfer function for this block, as part of the dataflow analysis. The
+ /// movement of values between locations inside of a block is handled at a
+ /// much later stage, in the TransferTracker class.
+ MapVector<DebugVariable, DbgValue> Vars;
+ SmallDenseMap<DebugVariable, const DILocation *, 8> Scopes;
+ MachineBasicBlock *MBB = nullptr;
+ const OverlapMap &OverlappingFragments;
+ DbgValueProperties EmptyProperties;
+
+public:
+ VLocTracker(const OverlapMap &O, const DIExpression *EmptyExpr)
+ : OverlappingFragments(O), EmptyProperties(EmptyExpr, false, false) {}
+
+ void defVar(const MachineInstr &MI, const DbgValueProperties &Properties,
+ const SmallVectorImpl<DbgOpID> &DebugOps) {
+ assert(MI.isDebugValueLike());
+ DebugVariable Var(MI.getDebugVariable(), MI.getDebugExpression(),
+ MI.getDebugLoc()->getInlinedAt());
+ DbgValue Rec = (DebugOps.size() > 0)
+ ? DbgValue(DebugOps, Properties)
+ : DbgValue(Properties, DbgValue::Undef);
+
+ // Attempt insertion; overwrite if it's already mapped.
+ auto Result = Vars.insert(std::make_pair(Var, Rec));
+ if (!Result.second)
+ Result.first->second = Rec;
+ Scopes[Var] = MI.getDebugLoc().get();
+
+ considerOverlaps(Var, MI.getDebugLoc().get());
+ }
+
+ void considerOverlaps(const DebugVariable &Var, const DILocation *Loc) {
+ auto Overlaps = OverlappingFragments.find(
+ {Var.getVariable(), Var.getFragmentOrDefault()});
+ if (Overlaps == OverlappingFragments.end())
+ return;
+
+ // Otherwise: terminate any overlapped variable locations.
+ for (auto FragmentInfo : Overlaps->second) {
+ // The "empty" fragment is stored as DebugVariable::DefaultFragment, so
+ // that it overlaps with everything, however its cannonical representation
+ // in a DebugVariable is as "None".
+ std::optional<DIExpression::FragmentInfo> OptFragmentInfo = FragmentInfo;
+ if (DebugVariable::isDefaultFragment(FragmentInfo))
+ OptFragmentInfo = std::nullopt;
+
+ DebugVariable Overlapped(Var.getVariable(), OptFragmentInfo,
+ Var.getInlinedAt());
+ DbgValue Rec = DbgValue(EmptyProperties, DbgValue::Undef);
+
+ // Attempt insertion; overwrite if it's already mapped.
+ auto Result = Vars.insert(std::make_pair(Overlapped, Rec));
+ if (!Result.second)
+ Result.first->second = Rec;
+ Scopes[Overlapped] = Loc;
+ }
+ }
+
+ void clear() {
+ Vars.clear();
+ Scopes.clear();
+ }
+};
+
+// XXX XXX docs
+class InstrRefBasedLDV : public LDVImpl {
+public:
+ friend class ::InstrRefLDVTest;
+
+ using FragmentInfo = DIExpression::FragmentInfo;
+ using OptFragmentInfo = std::optional<DIExpression::FragmentInfo>;
+
+ // Helper while building OverlapMap, a map of all fragments seen for a given
+ // DILocalVariable.
+ using VarToFragments =
+ DenseMap<const DILocalVariable *, SmallSet<FragmentInfo, 4>>;
+
+ /// Machine location/value transfer function, a mapping of which locations
+ /// are assigned which new values.
+ using MLocTransferMap = SmallDenseMap<LocIdx, ValueIDNum>;
+
+ /// Live in/out structure for the variable values: a per-block map of
+ /// variables to their values.
+ using LiveIdxT = DenseMap<const MachineBasicBlock *, DbgValue *>;
+
+ using VarAndLoc = std::pair<DebugVariable, DbgValue>;
+
+ /// Type for a live-in value: the predecessor block, and its value.
+ using InValueT = std::pair<MachineBasicBlock *, DbgValue *>;
+
+ /// Vector (per block) of a collection (inner smallvector) of live-ins.
+ /// Used as the result type for the variable value dataflow problem.
+ using LiveInsT = SmallVector<SmallVector<VarAndLoc, 8>, 8>;
+
+ /// Mapping from lexical scopes to a DILocation in that scope.
+ using ScopeToDILocT = DenseMap<const LexicalScope *, const DILocation *>;
+
+ /// Mapping from lexical scopes to variables in that scope.
+ using ScopeToVarsT = DenseMap<const LexicalScope *, SmallSet<DebugVariable, 4>>;
+
+ /// Mapping from lexical scopes to blocks where variables in that scope are
+ /// assigned. Such blocks aren't necessarily "in" the lexical scope, it's
+ /// just a block where an assignment happens.
+ using ScopeToAssignBlocksT = DenseMap<const LexicalScope *, SmallPtrSet<MachineBasicBlock *, 4>>;
+
+private:
+ MachineDominatorTree *DomTree;
+ const TargetRegisterInfo *TRI;
+ const MachineRegisterInfo *MRI;
+ const TargetInstrInfo *TII;
+ const TargetFrameLowering *TFI;
+ const MachineFrameInfo *MFI;
+ BitVector CalleeSavedRegs;
+ LexicalScopes LS;
+ TargetPassConfig *TPC;
+
+ // An empty DIExpression. Used default / placeholder DbgValueProperties
+ // objects, as we can't have null expressions.
+ const DIExpression *EmptyExpr;
+
+ /// Object to track machine locations as we step through a block. Could
+ /// probably be a field rather than a pointer, as it's always used.
+ MLocTracker *MTracker = nullptr;
+
+ /// Number of the current block LiveDebugValues is stepping through.
+ unsigned CurBB;
+
+ /// Number of the current instruction LiveDebugValues is evaluating.
+ unsigned CurInst;
+
+ /// Variable tracker -- listens to DBG_VALUEs occurring as InstrRefBasedImpl
+ /// steps through a block. Reads the values at each location from the
+ /// MLocTracker object.
+ VLocTracker *VTracker = nullptr;
+
+ /// Tracker for transfers, listens to DBG_VALUEs and transfers of values
+ /// between locations during stepping, creates new DBG_VALUEs when values move
+ /// location.
+ TransferTracker *TTracker = nullptr;
+
+ /// Blocks which are artificial, i.e. blocks which exclusively contain
+ /// instructions without DebugLocs, or with line 0 locations.
+ SmallPtrSet<MachineBasicBlock *, 16> ArtificialBlocks;
+
+ // Mapping of blocks to and from their RPOT order.
+ DenseMap<unsigned int, MachineBasicBlock *> OrderToBB;
+ DenseMap<const MachineBasicBlock *, unsigned int> BBToOrder;
+ DenseMap<unsigned, unsigned> BBNumToRPO;
+
+ /// Pair of MachineInstr, and its 1-based offset into the containing block.
+ using InstAndNum = std::pair<const MachineInstr *, unsigned>;
+ /// Map from debug instruction number to the MachineInstr labelled with that
+ /// number, and its location within the function. Used to transform
+ /// instruction numbers in DBG_INSTR_REFs into machine value numbers.
+ std::map<uint64_t, InstAndNum> DebugInstrNumToInstr;
+
+ /// Record of where we observed a DBG_PHI instruction.
+ class DebugPHIRecord {
+ public:
+ /// Instruction number of this DBG_PHI.
+ uint64_t InstrNum;
+ /// Block where DBG_PHI occurred.
+ MachineBasicBlock *MBB;
+ /// The value number read by the DBG_PHI -- or std::nullopt if it didn't
+ /// refer to a value.
+ std::optional<ValueIDNum> ValueRead;
+ /// Register/Stack location the DBG_PHI reads -- or std::nullopt if it
+ /// referred to something unexpected.
+ std::optional<LocIdx> ReadLoc;
+
+ operator unsigned() const { return InstrNum; }
+ };
+
+ /// Map from instruction numbers defined by DBG_PHIs to a record of what that
+ /// DBG_PHI read and where. Populated and edited during the machine value
+ /// location problem -- we use LLVMs SSA Updater to fix changes by
+ /// optimizations that destroy PHI instructions.
+ SmallVector<DebugPHIRecord, 32> DebugPHINumToValue;
+
+ // Map of overlapping variable fragments.
+ OverlapMap OverlapFragments;
+ VarToFragments SeenFragments;
+
+ /// Mapping of DBG_INSTR_REF instructions to their values, for those
+ /// DBG_INSTR_REFs that call resolveDbgPHIs. These variable references solve
+ /// a mini SSA problem caused by DBG_PHIs being cloned, this collection caches
+ /// the result.
+ DenseMap<std::pair<MachineInstr *, unsigned>, std::optional<ValueIDNum>>
+ SeenDbgPHIs;
+
+ DbgOpIDMap DbgOpStore;
+
+ /// True if we need to examine call instructions for stack clobbers. We
+ /// normally assume that they don't clobber SP, but stack probes on Windows
+ /// do.
+ bool AdjustsStackInCalls = false;
+
+ /// If AdjustsStackInCalls is true, this holds the name of the target's stack
+ /// probe function, which is the function we expect will alter the stack
+ /// pointer.
+ StringRef StackProbeSymbolName;
+
+ /// Tests whether this instruction is a spill to a stack slot.
+ std::optional<SpillLocationNo> isSpillInstruction(const MachineInstr &MI,
+ MachineFunction *MF);
+
+ /// Decide if @MI is a spill instruction and return true if it is. We use 2
+ /// criteria to make this decision:
+ /// - Is this instruction a store to a spill slot?
+ /// - Is there a register operand that is both used and killed?
+ /// TODO: Store optimization can fold spills into other stores (including
+ /// other spills). We do not handle this yet (more than one memory operand).
+ bool isLocationSpill(const MachineInstr &MI, MachineFunction *MF,
+ unsigned &Reg);
+
+ /// If a given instruction is identified as a spill, return the spill slot
+ /// and set \p Reg to the spilled register.
+ std::optional<SpillLocationNo> isRestoreInstruction(const MachineInstr &MI,
+ MachineFunction *MF,
+ unsigned &Reg);
+
+ /// Given a spill instruction, extract the spill slot information, ensure it's
+ /// tracked, and return the spill number.
+ std::optional<SpillLocationNo>
+ extractSpillBaseRegAndOffset(const MachineInstr &MI);
+
+ /// For an instruction reference given by \p InstNo and \p OpNo in instruction
+ /// \p MI returns the Value pointed to by that instruction reference if any
+ /// exists, otherwise returns None.
+ std::optional<ValueIDNum> getValueForInstrRef(unsigned InstNo, unsigned OpNo,
+ MachineInstr &MI,
+ const ValueTable *MLiveOuts,
+ const ValueTable *MLiveIns);
+
+ /// Observe a single instruction while stepping through a block.
+ void process(MachineInstr &MI, const ValueTable *MLiveOuts,
+ const ValueTable *MLiveIns);
+
+ /// Examines whether \p MI is a DBG_VALUE and notifies trackers.
+ /// \returns true if MI was recognized and processed.
+ bool transferDebugValue(const MachineInstr &MI);
+
+ /// Examines whether \p MI is a DBG_INSTR_REF and notifies trackers.
+ /// \returns true if MI was recognized and processed.
+ bool transferDebugInstrRef(MachineInstr &MI, const ValueTable *MLiveOuts,
+ const ValueTable *MLiveIns);
+
+ /// Stores value-information about where this PHI occurred, and what
+ /// instruction number is associated with it.
+ /// \returns true if MI was recognized and processed.
+ bool transferDebugPHI(MachineInstr &MI);
+
+ /// Examines whether \p MI is copy instruction, and notifies trackers.
+ /// \returns true if MI was recognized and processed.
+ bool transferRegisterCopy(MachineInstr &MI);
+
+ /// Examines whether \p MI is stack spill or restore instruction, and
+ /// notifies trackers. \returns true if MI was recognized and processed.
+ bool transferSpillOrRestoreInst(MachineInstr &MI);
+
+ /// Examines \p MI for any registers that it defines, and notifies trackers.
+ void transferRegisterDef(MachineInstr &MI);
+
+ /// Copy one location to the other, accounting for movement of subregisters
+ /// too.
+ void performCopy(Register Src, Register Dst);
+
+ void accumulateFragmentMap(MachineInstr &MI);
+
+ /// Determine the machine value number referred to by (potentially several)
+ /// DBG_PHI instructions. Block duplication and tail folding can duplicate
+ /// DBG_PHIs, shifting the position where values in registers merge, and
+ /// forming another mini-ssa problem to solve.
+ /// \p Here the position of a DBG_INSTR_REF seeking a machine value number
+ /// \p InstrNum Debug instruction number defined by DBG_PHI instructions.
+ /// \returns The machine value number at position Here, or std::nullopt.
+ std::optional<ValueIDNum> resolveDbgPHIs(MachineFunction &MF,
+ const ValueTable *MLiveOuts,
+ const ValueTable *MLiveIns,
+ MachineInstr &Here,
+ uint64_t InstrNum);
+
+ std::optional<ValueIDNum> resolveDbgPHIsImpl(MachineFunction &MF,
+ const ValueTable *MLiveOuts,
+ const ValueTable *MLiveIns,
+ MachineInstr &Here,
+ uint64_t InstrNum);
+
+ /// Step through the function, recording register definitions and movements
+ /// in an MLocTracker. Convert the observations into a per-block transfer
+ /// function in \p MLocTransfer, suitable for using with the machine value
+ /// location dataflow problem.
+ void
+ produceMLocTransferFunction(MachineFunction &MF,
+ SmallVectorImpl<MLocTransferMap> &MLocTransfer,
+ unsigned MaxNumBlocks);
+
+ /// Solve the machine value location dataflow problem. Takes as input the
+ /// transfer functions in \p MLocTransfer. Writes the output live-in and
+ /// live-out arrays to the (initialized to zero) multidimensional arrays in
+ /// \p MInLocs and \p MOutLocs. The outer dimension is indexed by block
+ /// number, the inner by LocIdx.
+ void buildMLocValueMap(MachineFunction &MF, FuncValueTable &MInLocs,
+ FuncValueTable &MOutLocs,
+ SmallVectorImpl<MLocTransferMap> &MLocTransfer);
+
+ /// Examine the stack indexes (i.e. offsets within the stack) to find the
+ /// basic units of interference -- like reg units, but for the stack.
+ void findStackIndexInterference(SmallVectorImpl<unsigned> &Slots);
+
+ /// Install PHI values into the live-in array for each block, according to
+ /// the IDF of each register.
+ void placeMLocPHIs(MachineFunction &MF,
+ SmallPtrSetImpl<MachineBasicBlock *> &AllBlocks,
+ FuncValueTable &MInLocs,
+ SmallVectorImpl<MLocTransferMap> &MLocTransfer);
+
+ /// Propagate variable values to blocks in the common case where there's
+ /// only one value assigned to the variable. This function has better
+ /// performance as it doesn't have to find the dominance frontier between
+ /// different assignments.
+ void placePHIsForSingleVarDefinition(
+ const SmallPtrSetImpl<MachineBasicBlock *> &InScopeBlocks,
+ MachineBasicBlock *MBB, SmallVectorImpl<VLocTracker> &AllTheVLocs,
+ const DebugVariable &Var, LiveInsT &Output);
+
+ /// Calculate the iterated-dominance-frontier for a set of defs, using the
+ /// existing LLVM facilities for this. Works for a single "value" or
+ /// machine/variable location.
+ /// \p AllBlocks Set of blocks where we might consume the value.
+ /// \p DefBlocks Set of blocks where the value/location is defined.
+ /// \p PHIBlocks Output set of blocks where PHIs must be placed.
+ void BlockPHIPlacement(const SmallPtrSetImpl<MachineBasicBlock *> &AllBlocks,
+ const SmallPtrSetImpl<MachineBasicBlock *> &DefBlocks,
+ SmallVectorImpl<MachineBasicBlock *> &PHIBlocks);
+
+ /// Perform a control flow join (lattice value meet) of the values in machine
+ /// locations at \p MBB. Follows the algorithm described in the file-comment,
+ /// reading live-outs of predecessors from \p OutLocs, the current live ins
+ /// from \p InLocs, and assigning the newly computed live ins back into
+ /// \p InLocs. \returns two bools -- the first indicates whether a change
+ /// was made, the second whether a lattice downgrade occurred. If the latter
+ /// is true, revisiting this block is necessary.
+ bool mlocJoin(MachineBasicBlock &MBB,
+ SmallPtrSet<const MachineBasicBlock *, 16> &Visited,
+ FuncValueTable &OutLocs, ValueTable &InLocs);
+
+ /// Produce a set of blocks that are in the current lexical scope. This means
+ /// those blocks that contain instructions "in" the scope, blocks where
+ /// assignments to variables in scope occur, and artificial blocks that are
+ /// successors to any of the earlier blocks. See https://llvm.org/PR48091 for
+ /// more commentry on what "in scope" means.
+ /// \p DILoc A location in the scope that we're fetching blocks for.
+ /// \p Output Set to put in-scope-blocks into.
+ /// \p AssignBlocks Blocks known to contain assignments of variables in scope.
+ void
+ getBlocksForScope(const DILocation *DILoc,
+ SmallPtrSetImpl<const MachineBasicBlock *> &Output,
+ const SmallPtrSetImpl<MachineBasicBlock *> &AssignBlocks);
+
+ /// Solve the variable value dataflow problem, for a single lexical scope.
+ /// Uses the algorithm from the file comment to resolve control flow joins
+ /// using PHI placement and value propagation. Reads the locations of machine
+ /// values from the \p MInLocs and \p MOutLocs arrays (see buildMLocValueMap)
+ /// and reads the variable values transfer function from \p AllTheVlocs.
+ /// Live-in and Live-out variable values are stored locally, with the live-ins
+ /// permanently stored to \p Output once a fixedpoint is reached.
+ /// \p VarsWeCareAbout contains a collection of the variables in \p Scope
+ /// that we should be tracking.
+ /// \p AssignBlocks contains the set of blocks that aren't in \p DILoc's
+ /// scope, but which do contain DBG_VALUEs, which VarLocBasedImpl tracks
+ /// locations through.
+ void buildVLocValueMap(const DILocation *DILoc,
+ const SmallSet<DebugVariable, 4> &VarsWeCareAbout,
+ SmallPtrSetImpl<MachineBasicBlock *> &AssignBlocks,
+ LiveInsT &Output, FuncValueTable &MOutLocs,
+ FuncValueTable &MInLocs,
+ SmallVectorImpl<VLocTracker> &AllTheVLocs);
+
+ /// Attempt to eliminate un-necessary PHIs on entry to a block. Examines the
+ /// live-in values coming from predecessors live-outs, and replaces any PHIs
+ /// already present in this blocks live-ins with a live-through value if the
+ /// PHI isn't needed.
+ /// \p LiveIn Old live-in value, overwritten with new one if live-in changes.
+ /// \returns true if any live-ins change value, either from value propagation
+ /// or PHI elimination.
+ bool vlocJoin(MachineBasicBlock &MBB, LiveIdxT &VLOCOutLocs,
+ SmallPtrSet<const MachineBasicBlock *, 8> &BlocksToExplore,
+ DbgValue &LiveIn);
+
+ /// For the given block and live-outs feeding into it, try to find
+ /// machine locations for each debug operand where all the values feeding
+ /// into that operand join together.
+ /// \returns true if a joined location was found for every value that needed
+ /// to be joined.
+ bool
+ pickVPHILoc(SmallVectorImpl<DbgOpID> &OutValues, const MachineBasicBlock &MBB,
+ const LiveIdxT &LiveOuts, FuncValueTable &MOutLocs,
+ const SmallVectorImpl<const MachineBasicBlock *> &BlockOrders);
+
+ std::optional<ValueIDNum> pickOperandPHILoc(
+ unsigned DbgOpIdx, const MachineBasicBlock &MBB, const LiveIdxT &LiveOuts,
+ FuncValueTable &MOutLocs,
+ const SmallVectorImpl<const MachineBasicBlock *> &BlockOrders);
+
+ /// Take collections of DBG_VALUE instructions stored in TTracker, and
+ /// install them into their output blocks. Preserves a stable order of
+ /// DBG_VALUEs produced (which would otherwise cause nondeterminism) through
+ /// the AllVarsNumbering order.
+ bool emitTransfers(DenseMap<DebugVariable, unsigned> &AllVarsNumbering);
+
+ /// Boilerplate computation of some initial sets, artifical blocks and
+ /// RPOT block ordering.
+ void initialSetup(MachineFunction &MF);
+
+ /// Produce a map of the last lexical scope that uses a block, using the
+ /// scopes DFSOut number. Mapping is block-number to DFSOut.
+ /// \p EjectionMap Pre-allocated vector in which to install the built ma.
+ /// \p ScopeToDILocation Mapping of LexicalScopes to their DILocations.
+ /// \p AssignBlocks Map of blocks where assignments happen for a scope.
+ void makeDepthFirstEjectionMap(SmallVectorImpl<unsigned> &EjectionMap,
+ const ScopeToDILocT &ScopeToDILocation,
+ ScopeToAssignBlocksT &AssignBlocks);
+
+ /// When determining per-block variable values and emitting to DBG_VALUEs,
+ /// this function explores by lexical scope depth. Doing so means that per
+ /// block information can be fully computed before exploration finishes,
+ /// allowing us to emit it and free data structures earlier than otherwise.
+ /// It's also good for locality.
+ bool depthFirstVLocAndEmit(
+ unsigned MaxNumBlocks, const ScopeToDILocT &ScopeToDILocation,
+ const ScopeToVarsT &ScopeToVars, ScopeToAssignBlocksT &ScopeToBlocks,
+ LiveInsT &Output, FuncValueTable &MOutLocs, FuncValueTable &MInLocs,
+ SmallVectorImpl<VLocTracker> &AllTheVLocs, MachineFunction &MF,
+ DenseMap<DebugVariable, unsigned> &AllVarsNumbering,
+ const TargetPassConfig &TPC);
+
+ bool ExtendRanges(MachineFunction &MF, MachineDominatorTree *DomTree,
+ TargetPassConfig *TPC, unsigned InputBBLimit,
+ unsigned InputDbgValLimit) override;
+
+public:
+ /// Default construct and initialize the pass.
+ InstrRefBasedLDV();
+
+ LLVM_DUMP_METHOD
+ void dump_mloc_transfer(const MLocTransferMap &mloc_transfer) const;
+
+ bool isCalleeSaved(LocIdx L) const;
+ bool isCalleeSavedReg(Register R) const;
+
+ bool hasFoldedStackStore(const MachineInstr &MI) {
+ // Instruction must have a memory operand that's a stack slot, and isn't
+ // aliased, meaning it's a spill from regalloc instead of a variable.
+ // If it's aliased, we can't guarantee its value.
+ if (!MI.hasOneMemOperand())
+ return false;
+ auto *MemOperand = *MI.memoperands_begin();
+ return MemOperand->isStore() &&
+ MemOperand->getPseudoValue() &&
+ MemOperand->getPseudoValue()->kind() == PseudoSourceValue::FixedStack
+ && !MemOperand->getPseudoValue()->isAliased(MFI);
+ }
+
+ std::optional<LocIdx> findLocationForMemOperand(const MachineInstr &MI);
+};
+
+} // namespace LiveDebugValues
+
+#endif /* LLVM_LIB_CODEGEN_LIVEDEBUGVALUES_INSTRREFBASEDLDV_H */
diff --git a/contrib/llvm-project/llvm/lib/CodeGen/LiveDebugValues/LiveDebugValues.cpp b/contrib/llvm-project/llvm/lib/CodeGen/LiveDebugValues/LiveDebugValues.cpp
new file mode 100644
index 000000000000..9dba9a88f703
--- /dev/null
+++ b/contrib/llvm-project/llvm/lib/CodeGen/LiveDebugValues/LiveDebugValues.cpp
@@ -0,0 +1,139 @@
+//===- LiveDebugValues.cpp - Tracking Debug Value MIs ---------------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+
+#include "LiveDebugValues.h"
+
+#include "llvm/ADT/Triple.h"
+#include "llvm/CodeGen/MachineDominators.h"
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/MachineFunctionPass.h"
+#include "llvm/CodeGen/Passes.h"
+#include "llvm/CodeGen/TargetPassConfig.h"
+#include "llvm/InitializePasses.h"
+#include "llvm/Pass.h"
+#include "llvm/PassRegistry.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Target/TargetMachine.h"
+
+/// \file LiveDebugValues.cpp
+///
+/// The LiveDebugValues pass extends the range of variable locations
+/// (specified by DBG_VALUE instructions) from single blocks to successors
+/// and any other code locations where the variable location is valid.
+/// There are currently two implementations: the "VarLoc" implementation
+/// explicitly tracks the location of a variable, while the "InstrRef"
+/// implementation tracks the values defined by instructions through locations.
+///
+/// This file implements neither; it merely registers the pass, allows the
+/// user to pick which implementation will be used to propagate variable
+/// locations.
+
+#define DEBUG_TYPE "livedebugvalues"
+
+using namespace llvm;
+
+static cl::opt<bool>
+ ForceInstrRefLDV("force-instr-ref-livedebugvalues", cl::Hidden,
+ cl::desc("Use instruction-ref based LiveDebugValues with "
+ "normal DBG_VALUE inputs"),
+ cl::init(false));
+
+static cl::opt<cl::boolOrDefault> ValueTrackingVariableLocations(
+ "experimental-debug-variable-locations",
+ cl::desc("Use experimental new value-tracking variable locations"));
+
+// Options to prevent pathological compile-time behavior. If InputBBLimit and
+// InputDbgValueLimit are both exceeded, range extension is disabled.
+static cl::opt<unsigned> InputBBLimit(
+ "livedebugvalues-input-bb-limit",
+ cl::desc("Maximum input basic blocks before DBG_VALUE limit applies"),
+ cl::init(10000), cl::Hidden);
+static cl::opt<unsigned> InputDbgValueLimit(
+ "livedebugvalues-input-dbg-value-limit",
+ cl::desc(
+ "Maximum input DBG_VALUE insts supported by debug range extension"),
+ cl::init(50000), cl::Hidden);
+
+namespace {
+/// Generic LiveDebugValues pass. Calls through to VarLocBasedLDV or
+/// InstrRefBasedLDV to perform location propagation, via the LDVImpl
+/// base class.
+class LiveDebugValues : public MachineFunctionPass {
+public:
+ static char ID;
+
+ LiveDebugValues();
+ ~LiveDebugValues() = default;
+
+ /// Calculate the liveness information for the given machine function.
+ bool runOnMachineFunction(MachineFunction &MF) override;
+
+ void getAnalysisUsage(AnalysisUsage &AU) const override {
+ AU.setPreservesCFG();
+ MachineFunctionPass::getAnalysisUsage(AU);
+ }
+
+private:
+ std::unique_ptr<LDVImpl> InstrRefImpl;
+ std::unique_ptr<LDVImpl> VarLocImpl;
+ TargetPassConfig *TPC;
+ MachineDominatorTree MDT;
+};
+} // namespace
+
+char LiveDebugValues::ID = 0;
+
+char &llvm::LiveDebugValuesID = LiveDebugValues::ID;
+
+INITIALIZE_PASS(LiveDebugValues, DEBUG_TYPE, "Live DEBUG_VALUE analysis", false,
+ false)
+
+/// Default construct and initialize the pass.
+LiveDebugValues::LiveDebugValues() : MachineFunctionPass(ID) {
+ initializeLiveDebugValuesPass(*PassRegistry::getPassRegistry());
+ InstrRefImpl =
+ std::unique_ptr<LDVImpl>(llvm::makeInstrRefBasedLiveDebugValues());
+ VarLocImpl = std::unique_ptr<LDVImpl>(llvm::makeVarLocBasedLiveDebugValues());
+}
+
+bool LiveDebugValues::runOnMachineFunction(MachineFunction &MF) {
+ // Except for Wasm, all targets should be only using physical register at this
+ // point. Wasm only use virtual registers throught its pipeline, but its
+ // virtual registers don't participate in this LiveDebugValues analysis; only
+ // its target indices do.
+ assert(MF.getTarget().getTargetTriple().isWasm() ||
+ MF.getProperties().hasProperty(
+ MachineFunctionProperties::Property::NoVRegs));
+
+ bool InstrRefBased = MF.useDebugInstrRef();
+ // Allow the user to force selection of InstrRef LDV.
+ InstrRefBased |= ForceInstrRefLDV;
+
+ TPC = getAnalysisIfAvailable<TargetPassConfig>();
+ LDVImpl *TheImpl = &*VarLocImpl;
+
+ MachineDominatorTree *DomTree = nullptr;
+ if (InstrRefBased) {
+ DomTree = &MDT;
+ MDT.calculate(MF);
+ TheImpl = &*InstrRefImpl;
+ }
+
+ return TheImpl->ExtendRanges(MF, DomTree, TPC, InputBBLimit,
+ InputDbgValueLimit);
+}
+
+bool llvm::debuginfoShouldUseDebugInstrRef(const Triple &T) {
+ // Enable by default on x86_64, disable if explicitly turned off on cmdline.
+ if (T.getArch() == llvm::Triple::x86_64 &&
+ ValueTrackingVariableLocations != cl::boolOrDefault::BOU_FALSE)
+ return true;
+
+ // Enable if explicitly requested on command line.
+ return ValueTrackingVariableLocations == cl::boolOrDefault::BOU_TRUE;
+}
diff --git a/contrib/llvm-project/llvm/lib/CodeGen/LiveDebugValues/LiveDebugValues.h b/contrib/llvm-project/llvm/lib/CodeGen/LiveDebugValues/LiveDebugValues.h
new file mode 100644
index 000000000000..6cc1685c0022
--- /dev/null
+++ b/contrib/llvm-project/llvm/lib/CodeGen/LiveDebugValues/LiveDebugValues.h
@@ -0,0 +1,43 @@
+//===- LiveDebugValues.cpp - Tracking Debug Value MIs ---------*- C++ -*---===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_LIB_CODEGEN_LIVEDEBUGVALUES_LIVEDEBUGVALUES_H
+#define LLVM_LIB_CODEGEN_LIVEDEBUGVALUES_LIVEDEBUGVALUES_H
+
+namespace llvm {
+class MachineDominatorTree;
+class MachineFunction;
+class TargetPassConfig;
+class Triple;
+
+// Inline namespace for types / symbols shared between different
+// LiveDebugValues implementations.
+inline namespace SharedLiveDebugValues {
+
+// Expose a base class for LiveDebugValues interfaces to inherit from. This
+// allows the generic LiveDebugValues pass handles to call into the
+// implementation.
+class LDVImpl {
+public:
+ virtual bool ExtendRanges(MachineFunction &MF, MachineDominatorTree *DomTree,
+ TargetPassConfig *TPC, unsigned InputBBLimit,
+ unsigned InputDbgValLimit) = 0;
+ virtual ~LDVImpl() = default;
+};
+
+} // namespace SharedLiveDebugValues
+
+// Factory functions for LiveDebugValues implementations.
+extern LDVImpl *makeVarLocBasedLiveDebugValues();
+extern LDVImpl *makeInstrRefBasedLiveDebugValues();
+
+extern bool debuginfoShouldUseDebugInstrRef(const Triple &T);
+
+} // namespace llvm
+
+#endif // LLVM_LIB_CODEGEN_LIVEDEBUGVALUES_LIVEDEBUGVALUES_H
diff --git a/contrib/llvm-project/llvm/lib/CodeGen/LiveDebugValues/VarLocBasedImpl.cpp b/contrib/llvm-project/llvm/lib/CodeGen/LiveDebugValues/VarLocBasedImpl.cpp
new file mode 100644
index 000000000000..b78757b855f4
--- /dev/null
+++ b/contrib/llvm-project/llvm/lib/CodeGen/LiveDebugValues/VarLocBasedImpl.cpp
@@ -0,0 +1,2403 @@
+//===- VarLocBasedImpl.cpp - Tracking Debug Value MIs with VarLoc class----===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+///
+/// \file VarLocBasedImpl.cpp
+///
+/// LiveDebugValues is an optimistic "available expressions" dataflow
+/// algorithm. The set of expressions is the set of machine locations
+/// (registers, spill slots, constants, and target indices) that a variable
+/// fragment might be located, qualified by a DIExpression and indirect-ness
+/// flag, while each variable is identified by a DebugVariable object. The
+/// availability of an expression begins when a DBG_VALUE instruction specifies
+/// the location of a DebugVariable, and continues until that location is
+/// clobbered or re-specified by a different DBG_VALUE for the same
+/// DebugVariable.
+///
+/// The output of LiveDebugValues is additional DBG_VALUE instructions,
+/// placed to extend variable locations as far they're available. This file
+/// and the VarLocBasedLDV class is an implementation that explicitly tracks
+/// locations, using the VarLoc class.
+///
+/// The canonical "available expressions" problem doesn't have expression
+/// clobbering, instead when a variable is re-assigned, any expressions using
+/// that variable get invalidated. LiveDebugValues can map onto "available
+/// expressions" by having every register represented by a variable, which is
+/// used in an expression that becomes available at a DBG_VALUE instruction.
+/// When the register is clobbered, its variable is effectively reassigned, and
+/// expressions computed from it become unavailable. A similar construct is
+/// needed when a DebugVariable has its location re-specified, to invalidate
+/// all other locations for that DebugVariable.
+///
+/// Using the dataflow analysis to compute the available expressions, we create
+/// a DBG_VALUE at the beginning of each block where the expression is
+/// live-in. This propagates variable locations into every basic block where
+/// the location can be determined, rather than only having DBG_VALUEs in blocks
+/// where locations are specified due to an assignment or some optimization.
+/// Movements of values between registers and spill slots are annotated with
+/// DBG_VALUEs too to track variable values bewteen locations. All this allows
+/// DbgEntityHistoryCalculator to focus on only the locations within individual
+/// blocks, facilitating testing and improving modularity.
+///
+/// We follow an optimisic dataflow approach, with this lattice:
+///
+/// \verbatim
+/// ┬ "Unknown"
+/// |
+/// v
+/// True
+/// |
+/// v
+/// ⊥ False
+/// \endverbatim With "True" signifying that the expression is available (and
+/// thus a DebugVariable's location is the corresponding register), while
+/// "False" signifies that the expression is unavailable. "Unknown"s never
+/// survive to the end of the analysis (see below).
+///
+/// Formally, all DebugVariable locations that are live-out of a block are
+/// initialized to \top. A blocks live-in values take the meet of the lattice
+/// value for every predecessors live-outs, except for the entry block, where
+/// all live-ins are \bot. The usual dataflow propagation occurs: the transfer
+/// function for a block assigns an expression for a DebugVariable to be "True"
+/// if a DBG_VALUE in the block specifies it; "False" if the location is
+/// clobbered; or the live-in value if it is unaffected by the block. We
+/// visit each block in reverse post order until a fixedpoint is reached. The
+/// solution produced is maximal.
+///
+/// Intuitively, we start by assuming that every expression / variable location
+/// is at least "True", and then propagate "False" from the entry block and any
+/// clobbers until there are no more changes to make. This gives us an accurate
+/// solution because all incorrect locations will have a "False" propagated into
+/// them. It also gives us a solution that copes well with loops by assuming
+/// that variable locations are live-through every loop, and then removing those
+/// that are not through dataflow.
+///
+/// Within LiveDebugValues: each variable location is represented by a
+/// VarLoc object that identifies the source variable, the set of
+/// machine-locations that currently describe it (a single location for
+/// DBG_VALUE or multiple for DBG_VALUE_LIST), and the DBG_VALUE inst that
+/// specifies the location. Each VarLoc is indexed in the (function-scope) \p
+/// VarLocMap, giving each VarLoc a set of unique indexes, each of which
+/// corresponds to one of the VarLoc's machine-locations and can be used to
+/// lookup the VarLoc in the VarLocMap. Rather than operate directly on machine
+/// locations, the dataflow analysis in this pass identifies locations by their
+/// indices in the VarLocMap, meaning all the variable locations in a block can
+/// be described by a sparse vector of VarLocMap indicies.
+///
+/// All the storage for the dataflow analysis is local to the ExtendRanges
+/// method and passed down to helper methods. "OutLocs" and "InLocs" record the
+/// in and out lattice values for each block. "OpenRanges" maintains a list of
+/// variable locations and, with the "process" method, evaluates the transfer
+/// function of each block. "flushPendingLocs" installs debug value instructions
+/// for each live-in location at the start of blocks, while "Transfers" records
+/// transfers of values between machine-locations.
+///
+/// We avoid explicitly representing the "Unknown" (\top) lattice value in the
+/// implementation. Instead, unvisited blocks implicitly have all lattice
+/// values set as "Unknown". After being visited, there will be path back to
+/// the entry block where the lattice value is "False", and as the transfer
+/// function cannot make new "Unknown" locations, there are no scenarios where
+/// a block can have an "Unknown" location after being visited. Similarly, we
+/// don't enumerate all possible variable locations before exploring the
+/// function: when a new location is discovered, all blocks previously explored
+/// were implicitly "False" but unrecorded, and become explicitly "False" when
+/// a new VarLoc is created with its bit not set in predecessor InLocs or
+/// OutLocs.
+///
+//===----------------------------------------------------------------------===//
+
+#include "LiveDebugValues.h"
+
+#include "llvm/ADT/CoalescingBitVector.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/PostOrderIterator.h"
+#include "llvm/ADT/SmallPtrSet.h"
+#include "llvm/ADT/SmallSet.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/BinaryFormat/Dwarf.h"
+#include "llvm/CodeGen/LexicalScopes.h"
+#include "llvm/CodeGen/MachineBasicBlock.h"
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/MachineInstr.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineMemOperand.h"
+#include "llvm/CodeGen/MachineOperand.h"
+#include "llvm/CodeGen/PseudoSourceValue.h"
+#include "llvm/CodeGen/TargetFrameLowering.h"
+#include "llvm/CodeGen/TargetInstrInfo.h"
+#include "llvm/CodeGen/TargetLowering.h"
+#include "llvm/CodeGen/TargetPassConfig.h"
+#include "llvm/CodeGen/TargetRegisterInfo.h"
+#include "llvm/CodeGen/TargetSubtargetInfo.h"
+#include "llvm/Config/llvm-config.h"
+#include "llvm/IR/DebugInfoMetadata.h"
+#include "llvm/IR/DebugLoc.h"
+#include "llvm/IR/Function.h"
+#include "llvm/MC/MCRegisterInfo.h"
+#include "llvm/Support/Casting.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/TypeSize.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Target/TargetMachine.h"
+#include <algorithm>
+#include <cassert>
+#include <cstdint>
+#include <functional>
+#include <map>
+#include <optional>
+#include <queue>
+#include <tuple>
+#include <utility>
+#include <vector>
+
+using namespace llvm;
+
+#define DEBUG_TYPE "livedebugvalues"
+
+STATISTIC(NumInserted, "Number of DBG_VALUE instructions inserted");
+
+/// If \p Op is a stack or frame register return true, otherwise return false.
+/// This is used to avoid basing the debug entry values on the registers, since
+/// we do not support it at the moment.
+static bool isRegOtherThanSPAndFP(const MachineOperand &Op,
+ const MachineInstr &MI,
+ const TargetRegisterInfo *TRI) {
+ if (!Op.isReg())
+ return false;
+
+ const MachineFunction *MF = MI.getParent()->getParent();
+ const TargetLowering *TLI = MF->getSubtarget().getTargetLowering();
+ Register SP = TLI->getStackPointerRegisterToSaveRestore();
+ Register FP = TRI->getFrameRegister(*MF);
+ Register Reg = Op.getReg();
+
+ return Reg && Reg != SP && Reg != FP;
+}
+
+namespace {
+
+// Max out the number of statically allocated elements in DefinedRegsSet, as
+// this prevents fallback to std::set::count() operations.
+using DefinedRegsSet = SmallSet<Register, 32>;
+
+// The IDs in this set correspond to MachineLocs in VarLocs, as well as VarLocs
+// that represent Entry Values; every VarLoc in the set will also appear
+// exactly once at Location=0.
+// As a result, each VarLoc may appear more than once in this "set", but each
+// range corresponding to a Reg, SpillLoc, or EntryValue type will still be a
+// "true" set (i.e. each VarLoc may appear only once), and the range Location=0
+// is the set of all VarLocs.
+using VarLocSet = CoalescingBitVector<uint64_t>;
+
+/// A type-checked pair of {Register Location (or 0), Index}, used to index
+/// into a \ref VarLocMap. This can be efficiently converted to a 64-bit int
+/// for insertion into a \ref VarLocSet, and efficiently converted back. The
+/// type-checker helps ensure that the conversions aren't lossy.
+///
+/// Why encode a location /into/ the VarLocMap index? This makes it possible
+/// to find the open VarLocs killed by a register def very quickly. This is a
+/// performance-critical operation for LiveDebugValues.
+struct LocIndex {
+ using u32_location_t = uint32_t;
+ using u32_index_t = uint32_t;
+
+ u32_location_t Location; // Physical registers live in the range [1;2^30) (see
+ // \ref MCRegister), so we have plenty of range left
+ // here to encode non-register locations.
+ u32_index_t Index;
+
+ /// The location that has an entry for every VarLoc in the map.
+ static constexpr u32_location_t kUniversalLocation = 0;
+
+ /// The first location that is reserved for VarLocs with locations of kind
+ /// RegisterKind.
+ static constexpr u32_location_t kFirstRegLocation = 1;
+
+ /// The first location greater than 0 that is not reserved for VarLocs with
+ /// locations of kind RegisterKind.
+ static constexpr u32_location_t kFirstInvalidRegLocation = 1 << 30;
+
+ /// A special location reserved for VarLocs with locations of kind
+ /// SpillLocKind.
+ static constexpr u32_location_t kSpillLocation = kFirstInvalidRegLocation;
+
+ /// A special location reserved for VarLocs of kind EntryValueBackupKind and
+ /// EntryValueCopyBackupKind.
+ static constexpr u32_location_t kEntryValueBackupLocation =
+ kFirstInvalidRegLocation + 1;
+
+ /// A special location reserved for VarLocs with locations of kind
+ /// WasmLocKind.
+ /// TODO Placing all Wasm target index locations in this single kWasmLocation
+ /// may cause slowdown in compilation time in very large functions. Consider
+ /// giving a each target index/offset pair its own u32_location_t if this
+ /// becomes a problem.
+ static constexpr u32_location_t kWasmLocation = kFirstInvalidRegLocation + 2;
+
+ LocIndex(u32_location_t Location, u32_index_t Index)
+ : Location(Location), Index(Index) {}
+
+ uint64_t getAsRawInteger() const {
+ return (static_cast<uint64_t>(Location) << 32) | Index;
+ }
+
+ template<typename IntT> static LocIndex fromRawInteger(IntT ID) {
+ static_assert(std::is_unsigned_v<IntT> && sizeof(ID) == sizeof(uint64_t),
+ "Cannot convert raw integer to LocIndex");
+ return {static_cast<u32_location_t>(ID >> 32),
+ static_cast<u32_index_t>(ID)};
+ }
+
+ /// Get the start of the interval reserved for VarLocs of kind RegisterKind
+ /// which reside in \p Reg. The end is at rawIndexForReg(Reg+1)-1.
+ static uint64_t rawIndexForReg(Register Reg) {
+ return LocIndex(Reg, 0).getAsRawInteger();
+ }
+
+ /// Return a range covering all set indices in the interval reserved for
+ /// \p Location in \p Set.
+ static auto indexRangeForLocation(const VarLocSet &Set,
+ u32_location_t Location) {
+ uint64_t Start = LocIndex(Location, 0).getAsRawInteger();
+ uint64_t End = LocIndex(Location + 1, 0).getAsRawInteger();
+ return Set.half_open_range(Start, End);
+ }
+};
+
+// Simple Set for storing all the VarLoc Indices at a Location bucket.
+using VarLocsInRange = SmallSet<LocIndex::u32_index_t, 32>;
+// Vector of all `LocIndex`s for a given VarLoc; the same Location should not
+// appear in any two of these, as each VarLoc appears at most once in any
+// Location bucket.
+using LocIndices = SmallVector<LocIndex, 2>;
+
+class VarLocBasedLDV : public LDVImpl {
+private:
+ const TargetRegisterInfo *TRI;
+ const TargetInstrInfo *TII;
+ const TargetFrameLowering *TFI;
+ TargetPassConfig *TPC;
+ BitVector CalleeSavedRegs;
+ LexicalScopes LS;
+ VarLocSet::Allocator Alloc;
+
+ const MachineInstr *LastNonDbgMI;
+
+ enum struct TransferKind { TransferCopy, TransferSpill, TransferRestore };
+
+ using FragmentInfo = DIExpression::FragmentInfo;
+ using OptFragmentInfo = std::optional<DIExpression::FragmentInfo>;
+
+ /// A pair of debug variable and value location.
+ struct VarLoc {
+ // The location at which a spilled variable resides. It consists of a
+ // register and an offset.
+ struct SpillLoc {
+ unsigned SpillBase;
+ StackOffset SpillOffset;
+ bool operator==(const SpillLoc &Other) const {
+ return SpillBase == Other.SpillBase && SpillOffset == Other.SpillOffset;
+ }
+ bool operator!=(const SpillLoc &Other) const {
+ return !(*this == Other);
+ }
+ };
+
+ // Target indices used for wasm-specific locations.
+ struct WasmLoc {
+ // One of TargetIndex values defined in WebAssembly.h. We deal with
+ // local-related TargetIndex in this analysis (TI_LOCAL and
+ // TI_LOCAL_INDIRECT). Stack operands (TI_OPERAND_STACK) will be handled
+ // separately WebAssemblyDebugFixup pass, and we don't associate debug
+ // info with values in global operands (TI_GLOBAL_RELOC) at the moment.
+ int Index;
+ int64_t Offset;
+ bool operator==(const WasmLoc &Other) const {
+ return Index == Other.Index && Offset == Other.Offset;
+ }
+ bool operator!=(const WasmLoc &Other) const { return !(*this == Other); }
+ };
+
+ /// Identity of the variable at this location.
+ const DebugVariable Var;
+
+ /// The expression applied to this location.
+ const DIExpression *Expr;
+
+ /// DBG_VALUE to clone var/expr information from if this location
+ /// is moved.
+ const MachineInstr &MI;
+
+ enum class MachineLocKind {
+ InvalidKind = 0,
+ RegisterKind,
+ SpillLocKind,
+ ImmediateKind,
+ WasmLocKind
+ };
+
+ enum class EntryValueLocKind {
+ NonEntryValueKind = 0,
+ EntryValueKind,
+ EntryValueBackupKind,
+ EntryValueCopyBackupKind
+ } EVKind = EntryValueLocKind::NonEntryValueKind;
+
+ /// The value location. Stored separately to avoid repeatedly
+ /// extracting it from MI.
+ union MachineLocValue {
+ uint64_t RegNo;
+ SpillLoc SpillLocation;
+ uint64_t Hash;
+ int64_t Immediate;
+ const ConstantFP *FPImm;
+ const ConstantInt *CImm;
+ WasmLoc WasmLocation;
+ MachineLocValue() : Hash(0) {}
+ };
+
+ /// A single machine location; its Kind is either a register, spill
+ /// location, or immediate value.
+ /// If the VarLoc is not a NonEntryValueKind, then it will use only a
+ /// single MachineLoc of RegisterKind.
+ struct MachineLoc {
+ MachineLocKind Kind;
+ MachineLocValue Value;
+ bool operator==(const MachineLoc &Other) const {
+ if (Kind != Other.Kind)
+ return false;
+ switch (Kind) {
+ case MachineLocKind::SpillLocKind:
+ return Value.SpillLocation == Other.Value.SpillLocation;
+ case MachineLocKind::WasmLocKind:
+ return Value.WasmLocation == Other.Value.WasmLocation;
+ case MachineLocKind::RegisterKind:
+ case MachineLocKind::ImmediateKind:
+ return Value.Hash == Other.Value.Hash;
+ default:
+ llvm_unreachable("Invalid kind");
+ }
+ }
+ bool operator<(const MachineLoc &Other) const {
+ switch (Kind) {
+ case MachineLocKind::SpillLocKind:
+ return std::make_tuple(
+ Kind, Value.SpillLocation.SpillBase,
+ Value.SpillLocation.SpillOffset.getFixed(),
+ Value.SpillLocation.SpillOffset.getScalable()) <
+ std::make_tuple(
+ Other.Kind, Other.Value.SpillLocation.SpillBase,
+ Other.Value.SpillLocation.SpillOffset.getFixed(),
+ Other.Value.SpillLocation.SpillOffset.getScalable());
+ case MachineLocKind::WasmLocKind:
+ return std::make_tuple(Kind, Value.WasmLocation.Index,
+ Value.WasmLocation.Offset) <
+ std::make_tuple(Other.Kind, Other.Value.WasmLocation.Index,
+ Other.Value.WasmLocation.Offset);
+ case MachineLocKind::RegisterKind:
+ case MachineLocKind::ImmediateKind:
+ return std::tie(Kind, Value.Hash) <
+ std::tie(Other.Kind, Other.Value.Hash);
+ default:
+ llvm_unreachable("Invalid kind");
+ }
+ }
+ };
+
+ /// The set of machine locations used to determine the variable's value, in
+ /// conjunction with Expr. Initially populated with MI's debug operands,
+ /// but may be transformed independently afterwards.
+ SmallVector<MachineLoc, 8> Locs;
+ /// Used to map the index of each location in Locs back to the index of its
+ /// original debug operand in MI. Used when multiple location operands are
+ /// coalesced and the original MI's operands need to be accessed while
+ /// emitting a debug value.
+ SmallVector<unsigned, 8> OrigLocMap;
+
+ VarLoc(const MachineInstr &MI)
+ : Var(MI.getDebugVariable(), MI.getDebugExpression(),
+ MI.getDebugLoc()->getInlinedAt()),
+ Expr(MI.getDebugExpression()), MI(MI) {
+ assert(MI.isDebugValue() && "not a DBG_VALUE");
+ assert((MI.isDebugValueList() || MI.getNumOperands() == 4) &&
+ "malformed DBG_VALUE");
+ for (const MachineOperand &Op : MI.debug_operands()) {
+ MachineLoc ML = GetLocForOp(Op);
+ auto It = find(Locs, ML);
+ if (It == Locs.end()) {
+ Locs.push_back(ML);
+ OrigLocMap.push_back(MI.getDebugOperandIndex(&Op));
+ } else {
+ // ML duplicates an element in Locs; replace references to Op
+ // with references to the duplicating element.
+ unsigned OpIdx = Locs.size();
+ unsigned DuplicatingIdx = std::distance(Locs.begin(), It);
+ Expr = DIExpression::replaceArg(Expr, OpIdx, DuplicatingIdx);
+ }
+ }
+
+ // We create the debug entry values from the factory functions rather
+ // than from this ctor.
+ assert(EVKind != EntryValueLocKind::EntryValueKind &&
+ !isEntryBackupLoc());
+ }
+
+ static MachineLoc GetLocForOp(const MachineOperand &Op) {
+ MachineLocKind Kind;
+ MachineLocValue Loc;
+ if (Op.isReg()) {
+ Kind = MachineLocKind::RegisterKind;
+ Loc.RegNo = Op.getReg();
+ } else if (Op.isImm()) {
+ Kind = MachineLocKind::ImmediateKind;
+ Loc.Immediate = Op.getImm();
+ } else if (Op.isFPImm()) {
+ Kind = MachineLocKind::ImmediateKind;
+ Loc.FPImm = Op.getFPImm();
+ } else if (Op.isCImm()) {
+ Kind = MachineLocKind::ImmediateKind;
+ Loc.CImm = Op.getCImm();
+ } else if (Op.isTargetIndex()) {
+ Kind = MachineLocKind::WasmLocKind;
+ Loc.WasmLocation = {Op.getIndex(), Op.getOffset()};
+ } else
+ llvm_unreachable("Invalid Op kind for MachineLoc.");
+ return {Kind, Loc};
+ }
+
+ /// Take the variable and machine-location in DBG_VALUE MI, and build an
+ /// entry location using the given expression.
+ static VarLoc CreateEntryLoc(const MachineInstr &MI,
+ const DIExpression *EntryExpr, Register Reg) {
+ VarLoc VL(MI);
+ assert(VL.Locs.size() == 1 &&
+ VL.Locs[0].Kind == MachineLocKind::RegisterKind);
+ VL.EVKind = EntryValueLocKind::EntryValueKind;
+ VL.Expr = EntryExpr;
+ VL.Locs[0].Value.RegNo = Reg;
+ return VL;
+ }
+
+ /// Take the variable and machine-location from the DBG_VALUE (from the
+ /// function entry), and build an entry value backup location. The backup
+ /// location will turn into the normal location if the backup is valid at
+ /// the time of the primary location clobbering.
+ static VarLoc CreateEntryBackupLoc(const MachineInstr &MI,
+ const DIExpression *EntryExpr) {
+ VarLoc VL(MI);
+ assert(VL.Locs.size() == 1 &&
+ VL.Locs[0].Kind == MachineLocKind::RegisterKind);
+ VL.EVKind = EntryValueLocKind::EntryValueBackupKind;
+ VL.Expr = EntryExpr;
+ return VL;
+ }
+
+ /// Take the variable and machine-location from the DBG_VALUE (from the
+ /// function entry), and build a copy of an entry value backup location by
+ /// setting the register location to NewReg.
+ static VarLoc CreateEntryCopyBackupLoc(const MachineInstr &MI,
+ const DIExpression *EntryExpr,
+ Register NewReg) {
+ VarLoc VL(MI);
+ assert(VL.Locs.size() == 1 &&
+ VL.Locs[0].Kind == MachineLocKind::RegisterKind);
+ VL.EVKind = EntryValueLocKind::EntryValueCopyBackupKind;
+ VL.Expr = EntryExpr;
+ VL.Locs[0].Value.RegNo = NewReg;
+ return VL;
+ }
+
+ /// Copy the register location in DBG_VALUE MI, updating the register to
+ /// be NewReg.
+ static VarLoc CreateCopyLoc(const VarLoc &OldVL, const MachineLoc &OldML,
+ Register NewReg) {
+ VarLoc VL = OldVL;
+ for (MachineLoc &ML : VL.Locs)
+ if (ML == OldML) {
+ ML.Kind = MachineLocKind::RegisterKind;
+ ML.Value.RegNo = NewReg;
+ return VL;
+ }
+ llvm_unreachable("Should have found OldML in new VarLoc.");
+ }
+
+ /// Take the variable described by DBG_VALUE* MI, and create a VarLoc
+ /// locating it in the specified spill location.
+ static VarLoc CreateSpillLoc(const VarLoc &OldVL, const MachineLoc &OldML,
+ unsigned SpillBase, StackOffset SpillOffset) {
+ VarLoc VL = OldVL;
+ for (MachineLoc &ML : VL.Locs)
+ if (ML == OldML) {
+ ML.Kind = MachineLocKind::SpillLocKind;
+ ML.Value.SpillLocation = {SpillBase, SpillOffset};
+ return VL;
+ }
+ llvm_unreachable("Should have found OldML in new VarLoc.");
+ }
+
+ /// Create a DBG_VALUE representing this VarLoc in the given function.
+ /// Copies variable-specific information such as DILocalVariable and
+ /// inlining information from the original DBG_VALUE instruction, which may
+ /// have been several transfers ago.
+ MachineInstr *BuildDbgValue(MachineFunction &MF) const {
+ assert(!isEntryBackupLoc() &&
+ "Tried to produce DBG_VALUE for backup VarLoc");
+ const DebugLoc &DbgLoc = MI.getDebugLoc();
+ bool Indirect = MI.isIndirectDebugValue();
+ const auto &IID = MI.getDesc();
+ const DILocalVariable *Var = MI.getDebugVariable();
+ NumInserted++;
+
+ const DIExpression *DIExpr = Expr;
+ SmallVector<MachineOperand, 8> MOs;
+ for (unsigned I = 0, E = Locs.size(); I < E; ++I) {
+ MachineLocKind LocKind = Locs[I].Kind;
+ MachineLocValue Loc = Locs[I].Value;
+ const MachineOperand &Orig = MI.getDebugOperand(OrigLocMap[I]);
+ switch (LocKind) {
+ case MachineLocKind::RegisterKind:
+ // An entry value is a register location -- but with an updated
+ // expression. The register location of such DBG_VALUE is always the
+ // one from the entry DBG_VALUE, it does not matter if the entry value
+ // was copied in to another register due to some optimizations.
+ // Non-entry value register locations are like the source
+ // DBG_VALUE, but with the register number from this VarLoc.
+ MOs.push_back(MachineOperand::CreateReg(
+ EVKind == EntryValueLocKind::EntryValueKind ? Orig.getReg()
+ : Register(Loc.RegNo),
+ false));
+ break;
+ case MachineLocKind::SpillLocKind: {
+ // Spills are indirect DBG_VALUEs, with a base register and offset.
+ // Use the original DBG_VALUEs expression to build the spilt location
+ // on top of. FIXME: spill locations created before this pass runs
+ // are not recognized, and not handled here.
+ unsigned Base = Loc.SpillLocation.SpillBase;
+ auto *TRI = MF.getSubtarget().getRegisterInfo();
+ if (MI.isNonListDebugValue()) {
+ auto Deref = Indirect ? DIExpression::DerefAfter : 0;
+ DIExpr = TRI->prependOffsetExpression(
+ DIExpr, DIExpression::ApplyOffset | Deref,
+ Loc.SpillLocation.SpillOffset);
+ Indirect = true;
+ } else {
+ SmallVector<uint64_t, 4> Ops;
+ TRI->getOffsetOpcodes(Loc.SpillLocation.SpillOffset, Ops);
+ Ops.push_back(dwarf::DW_OP_deref);
+ DIExpr = DIExpression::appendOpsToArg(DIExpr, Ops, I);
+ }
+ MOs.push_back(MachineOperand::CreateReg(Base, false));
+ break;
+ }
+ case MachineLocKind::ImmediateKind: {
+ MOs.push_back(Orig);
+ break;
+ }
+ case MachineLocKind::WasmLocKind: {
+ MOs.push_back(Orig);
+ break;
+ }
+ case MachineLocKind::InvalidKind:
+ llvm_unreachable("Tried to produce DBG_VALUE for invalid VarLoc");
+ }
+ }
+ return BuildMI(MF, DbgLoc, IID, Indirect, MOs, Var, DIExpr);
+ }
+
+ /// Is the Loc field a constant or constant object?
+ bool isConstant(MachineLocKind Kind) const {
+ return Kind == MachineLocKind::ImmediateKind;
+ }
+
+ /// Check if the Loc field is an entry backup location.
+ bool isEntryBackupLoc() const {
+ return EVKind == EntryValueLocKind::EntryValueBackupKind ||
+ EVKind == EntryValueLocKind::EntryValueCopyBackupKind;
+ }
+
+ /// If this variable is described by register \p Reg holding the entry
+ /// value, return true.
+ bool isEntryValueBackupReg(Register Reg) const {
+ return EVKind == EntryValueLocKind::EntryValueBackupKind && usesReg(Reg);
+ }
+
+ /// If this variable is described by register \p Reg holding a copy of the
+ /// entry value, return true.
+ bool isEntryValueCopyBackupReg(Register Reg) const {
+ return EVKind == EntryValueLocKind::EntryValueCopyBackupKind &&
+ usesReg(Reg);
+ }
+
+ /// If this variable is described in whole or part by \p Reg, return true.
+ bool usesReg(Register Reg) const {
+ MachineLoc RegML;
+ RegML.Kind = MachineLocKind::RegisterKind;
+ RegML.Value.RegNo = Reg;
+ return is_contained(Locs, RegML);
+ }
+
+ /// If this variable is described in whole or part by \p Reg, return true.
+ unsigned getRegIdx(Register Reg) const {
+ for (unsigned Idx = 0; Idx < Locs.size(); ++Idx)
+ if (Locs[Idx].Kind == MachineLocKind::RegisterKind &&
+ Register{static_cast<unsigned>(Locs[Idx].Value.RegNo)} == Reg)
+ return Idx;
+ llvm_unreachable("Could not find given Reg in Locs");
+ }
+
+ /// If this variable is described in whole or part by 1 or more registers,
+ /// add each of them to \p Regs and return true.
+ bool getDescribingRegs(SmallVectorImpl<uint32_t> &Regs) const {
+ bool AnyRegs = false;
+ for (const auto &Loc : Locs)
+ if (Loc.Kind == MachineLocKind::RegisterKind) {
+ Regs.push_back(Loc.Value.RegNo);
+ AnyRegs = true;
+ }
+ return AnyRegs;
+ }
+
+ bool containsSpillLocs() const {
+ return any_of(Locs, [](VarLoc::MachineLoc ML) {
+ return ML.Kind == VarLoc::MachineLocKind::SpillLocKind;
+ });
+ }
+
+ /// If this variable is described in whole or part by \p SpillLocation,
+ /// return true.
+ bool usesSpillLoc(SpillLoc SpillLocation) const {
+ MachineLoc SpillML;
+ SpillML.Kind = MachineLocKind::SpillLocKind;
+ SpillML.Value.SpillLocation = SpillLocation;
+ return is_contained(Locs, SpillML);
+ }
+
+ /// If this variable is described in whole or part by \p SpillLocation,
+ /// return the index .
+ unsigned getSpillLocIdx(SpillLoc SpillLocation) const {
+ for (unsigned Idx = 0; Idx < Locs.size(); ++Idx)
+ if (Locs[Idx].Kind == MachineLocKind::SpillLocKind &&
+ Locs[Idx].Value.SpillLocation == SpillLocation)
+ return Idx;
+ llvm_unreachable("Could not find given SpillLoc in Locs");
+ }
+
+ bool containsWasmLocs() const {
+ return any_of(Locs, [](VarLoc::MachineLoc ML) {
+ return ML.Kind == VarLoc::MachineLocKind::WasmLocKind;
+ });
+ }
+
+ /// If this variable is described in whole or part by \p WasmLocation,
+ /// return true.
+ bool usesWasmLoc(WasmLoc WasmLocation) const {
+ MachineLoc WasmML;
+ WasmML.Kind = MachineLocKind::WasmLocKind;
+ WasmML.Value.WasmLocation = WasmLocation;
+ return is_contained(Locs, WasmML);
+ }
+
+ /// Determine whether the lexical scope of this value's debug location
+ /// dominates MBB.
+ bool dominates(LexicalScopes &LS, MachineBasicBlock &MBB) const {
+ return LS.dominates(MI.getDebugLoc().get(), &MBB);
+ }
+
+#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
+ // TRI and TII can be null.
+ void dump(const TargetRegisterInfo *TRI, const TargetInstrInfo *TII,
+ raw_ostream &Out = dbgs()) const {
+ Out << "VarLoc(";
+ for (const MachineLoc &MLoc : Locs) {
+ if (Locs.begin() != &MLoc)
+ Out << ", ";
+ switch (MLoc.Kind) {
+ case MachineLocKind::RegisterKind:
+ Out << printReg(MLoc.Value.RegNo, TRI);
+ break;
+ case MachineLocKind::SpillLocKind:
+ Out << printReg(MLoc.Value.SpillLocation.SpillBase, TRI);
+ Out << "[" << MLoc.Value.SpillLocation.SpillOffset.getFixed() << " + "
+ << MLoc.Value.SpillLocation.SpillOffset.getScalable()
+ << "x vscale"
+ << "]";
+ break;
+ case MachineLocKind::ImmediateKind:
+ Out << MLoc.Value.Immediate;
+ break;
+ case MachineLocKind::WasmLocKind: {
+ if (TII) {
+ auto Indices = TII->getSerializableTargetIndices();
+ auto Found =
+ find_if(Indices, [&](const std::pair<int, const char *> &I) {
+ return I.first == MLoc.Value.WasmLocation.Index;
+ });
+ assert(Found != Indices.end());
+ Out << Found->second;
+ if (MLoc.Value.WasmLocation.Offset > 0)
+ Out << " + " << MLoc.Value.WasmLocation.Offset;
+ } else {
+ Out << "WasmLoc";
+ }
+ break;
+ }
+ case MachineLocKind::InvalidKind:
+ llvm_unreachable("Invalid VarLoc in dump method");
+ }
+ }
+
+ Out << ", \"" << Var.getVariable()->getName() << "\", " << *Expr << ", ";
+ if (Var.getInlinedAt())
+ Out << "!" << Var.getInlinedAt()->getMetadataID() << ")\n";
+ else
+ Out << "(null))";
+
+ if (isEntryBackupLoc())
+ Out << " (backup loc)\n";
+ else
+ Out << "\n";
+ }
+#endif
+
+ bool operator==(const VarLoc &Other) const {
+ return std::tie(EVKind, Var, Expr, Locs) ==
+ std::tie(Other.EVKind, Other.Var, Other.Expr, Other.Locs);
+ }
+
+ /// This operator guarantees that VarLocs are sorted by Variable first.
+ bool operator<(const VarLoc &Other) const {
+ return std::tie(Var, EVKind, Locs, Expr) <
+ std::tie(Other.Var, Other.EVKind, Other.Locs, Other.Expr);
+ }
+ };
+
+#ifndef NDEBUG
+ using VarVec = SmallVector<VarLoc, 32>;
+#endif
+
+ /// VarLocMap is used for two things:
+ /// 1) Assigning LocIndices to a VarLoc. The LocIndices can be used to
+ /// virtually insert a VarLoc into a VarLocSet.
+ /// 2) Given a LocIndex, look up the unique associated VarLoc.
+ class VarLocMap {
+ /// Map a VarLoc to an index within the vector reserved for its location
+ /// within Loc2Vars.
+ std::map<VarLoc, LocIndices> Var2Indices;
+
+ /// Map a location to a vector which holds VarLocs which live in that
+ /// location.
+ SmallDenseMap<LocIndex::u32_location_t, std::vector<VarLoc>> Loc2Vars;
+
+ public:
+ /// Retrieve LocIndices for \p VL.
+ LocIndices insert(const VarLoc &VL) {
+ LocIndices &Indices = Var2Indices[VL];
+ // If Indices is not empty, VL is already in the map.
+ if (!Indices.empty())
+ return Indices;
+ SmallVector<LocIndex::u32_location_t, 4> Locations;
+ // LocIndices are determined by EVKind and MLs; each Register has a
+ // unique location, while all SpillLocs use a single bucket, and any EV
+ // VarLocs use only the Backup bucket or none at all (except the
+ // compulsory entry at the universal location index). LocIndices will
+ // always have an index at the universal location index as the last index.
+ if (VL.EVKind == VarLoc::EntryValueLocKind::NonEntryValueKind) {
+ VL.getDescribingRegs(Locations);
+ assert(all_of(Locations,
+ [](auto RegNo) {
+ return RegNo < LocIndex::kFirstInvalidRegLocation;
+ }) &&
+ "Physreg out of range?");
+ if (VL.containsSpillLocs())
+ Locations.push_back(LocIndex::kSpillLocation);
+ if (VL.containsWasmLocs())
+ Locations.push_back(LocIndex::kWasmLocation);
+ } else if (VL.EVKind != VarLoc::EntryValueLocKind::EntryValueKind) {
+ LocIndex::u32_location_t Loc = LocIndex::kEntryValueBackupLocation;
+ Locations.push_back(Loc);
+ }
+ Locations.push_back(LocIndex::kUniversalLocation);
+ for (LocIndex::u32_location_t Location : Locations) {
+ auto &Vars = Loc2Vars[Location];
+ Indices.push_back(
+ {Location, static_cast<LocIndex::u32_index_t>(Vars.size())});
+ Vars.push_back(VL);
+ }
+ return Indices;
+ }
+
+ LocIndices getAllIndices(const VarLoc &VL) const {
+ auto IndIt = Var2Indices.find(VL);
+ assert(IndIt != Var2Indices.end() && "VarLoc not tracked");
+ return IndIt->second;
+ }
+
+ /// Retrieve the unique VarLoc associated with \p ID.
+ const VarLoc &operator[](LocIndex ID) const {
+ auto LocIt = Loc2Vars.find(ID.Location);
+ assert(LocIt != Loc2Vars.end() && "Location not tracked");
+ return LocIt->second[ID.Index];
+ }
+ };
+
+ using VarLocInMBB =
+ SmallDenseMap<const MachineBasicBlock *, std::unique_ptr<VarLocSet>>;
+ struct TransferDebugPair {
+ MachineInstr *TransferInst; ///< Instruction where this transfer occurs.
+ LocIndex LocationID; ///< Location number for the transfer dest.
+ };
+ using TransferMap = SmallVector<TransferDebugPair, 4>;
+ // Types for recording Entry Var Locations emitted by a single MachineInstr,
+ // as well as recording MachineInstr which last defined a register.
+ using InstToEntryLocMap = std::multimap<const MachineInstr *, LocIndex>;
+ using RegDefToInstMap = DenseMap<Register, MachineInstr *>;
+
+ // Types for recording sets of variable fragments that overlap. For a given
+ // local variable, we record all other fragments of that variable that could
+ // overlap it, to reduce search time.
+ using FragmentOfVar =
+ std::pair<const DILocalVariable *, DIExpression::FragmentInfo>;
+ using OverlapMap =
+ DenseMap<FragmentOfVar, SmallVector<DIExpression::FragmentInfo, 1>>;
+
+ // Helper while building OverlapMap, a map of all fragments seen for a given
+ // DILocalVariable.
+ using VarToFragments =
+ DenseMap<const DILocalVariable *, SmallSet<FragmentInfo, 4>>;
+
+ /// Collects all VarLocs from \p CollectFrom. Each unique VarLoc is added
+ /// to \p Collected once, in order of insertion into \p VarLocIDs.
+ static void collectAllVarLocs(SmallVectorImpl<VarLoc> &Collected,
+ const VarLocSet &CollectFrom,
+ const VarLocMap &VarLocIDs);
+
+ /// Get the registers which are used by VarLocs of kind RegisterKind tracked
+ /// by \p CollectFrom.
+ void getUsedRegs(const VarLocSet &CollectFrom,
+ SmallVectorImpl<Register> &UsedRegs) const;
+
+ /// This holds the working set of currently open ranges. For fast
+ /// access, this is done both as a set of VarLocIDs, and a map of
+ /// DebugVariable to recent VarLocID. Note that a DBG_VALUE ends all
+ /// previous open ranges for the same variable. In addition, we keep
+ /// two different maps (Vars/EntryValuesBackupVars), so erase/insert
+ /// methods act differently depending on whether a VarLoc is primary
+ /// location or backup one. In the case the VarLoc is backup location
+ /// we will erase/insert from the EntryValuesBackupVars map, otherwise
+ /// we perform the operation on the Vars.
+ class OpenRangesSet {
+ VarLocSet::Allocator &Alloc;
+ VarLocSet VarLocs;
+ // Map the DebugVariable to recent primary location ID.
+ SmallDenseMap<DebugVariable, LocIndices, 8> Vars;
+ // Map the DebugVariable to recent backup location ID.
+ SmallDenseMap<DebugVariable, LocIndices, 8> EntryValuesBackupVars;
+ OverlapMap &OverlappingFragments;
+
+ public:
+ OpenRangesSet(VarLocSet::Allocator &Alloc, OverlapMap &_OLapMap)
+ : Alloc(Alloc), VarLocs(Alloc), OverlappingFragments(_OLapMap) {}
+
+ const VarLocSet &getVarLocs() const { return VarLocs; }
+
+ // Fetches all VarLocs in \p VarLocIDs and inserts them into \p Collected.
+ // This method is needed to get every VarLoc once, as each VarLoc may have
+ // multiple indices in a VarLocMap (corresponding to each applicable
+ // location), but all VarLocs appear exactly once at the universal location
+ // index.
+ void getUniqueVarLocs(SmallVectorImpl<VarLoc> &Collected,
+ const VarLocMap &VarLocIDs) const {
+ collectAllVarLocs(Collected, VarLocs, VarLocIDs);
+ }
+
+ /// Terminate all open ranges for VL.Var by removing it from the set.
+ void erase(const VarLoc &VL);
+
+ /// Terminate all open ranges listed as indices in \c KillSet with
+ /// \c Location by removing them from the set.
+ void erase(const VarLocsInRange &KillSet, const VarLocMap &VarLocIDs,
+ LocIndex::u32_location_t Location);
+
+ /// Insert a new range into the set.
+ void insert(LocIndices VarLocIDs, const VarLoc &VL);
+
+ /// Insert a set of ranges.
+ void insertFromLocSet(const VarLocSet &ToLoad, const VarLocMap &Map);
+
+ std::optional<LocIndices> getEntryValueBackup(DebugVariable Var);
+
+ /// Empty the set.
+ void clear() {
+ VarLocs.clear();
+ Vars.clear();
+ EntryValuesBackupVars.clear();
+ }
+
+ /// Return whether the set is empty or not.
+ bool empty() const {
+ assert(Vars.empty() == EntryValuesBackupVars.empty() &&
+ Vars.empty() == VarLocs.empty() &&
+ "open ranges are inconsistent");
+ return VarLocs.empty();
+ }
+
+ /// Get an empty range of VarLoc IDs.
+ auto getEmptyVarLocRange() const {
+ return iterator_range<VarLocSet::const_iterator>(getVarLocs().end(),
+ getVarLocs().end());
+ }
+
+ /// Get all set IDs for VarLocs with MLs of kind RegisterKind in \p Reg.
+ auto getRegisterVarLocs(Register Reg) const {
+ return LocIndex::indexRangeForLocation(getVarLocs(), Reg);
+ }
+
+ /// Get all set IDs for VarLocs with MLs of kind SpillLocKind.
+ auto getSpillVarLocs() const {
+ return LocIndex::indexRangeForLocation(getVarLocs(),
+ LocIndex::kSpillLocation);
+ }
+
+ /// Get all set IDs for VarLocs of EVKind EntryValueBackupKind or
+ /// EntryValueCopyBackupKind.
+ auto getEntryValueBackupVarLocs() const {
+ return LocIndex::indexRangeForLocation(
+ getVarLocs(), LocIndex::kEntryValueBackupLocation);
+ }
+
+ /// Get all set IDs for VarLocs with MLs of kind WasmLocKind.
+ auto getWasmVarLocs() const {
+ return LocIndex::indexRangeForLocation(getVarLocs(),
+ LocIndex::kWasmLocation);
+ }
+ };
+
+ /// Collect all VarLoc IDs from \p CollectFrom for VarLocs with MLs of kind
+ /// RegisterKind which are located in any reg in \p Regs. The IDs for each
+ /// VarLoc correspond to entries in the universal location bucket, which every
+ /// VarLoc has exactly 1 entry for. Insert collected IDs into \p Collected.
+ static void collectIDsForRegs(VarLocsInRange &Collected,
+ const DefinedRegsSet &Regs,
+ const VarLocSet &CollectFrom,
+ const VarLocMap &VarLocIDs);
+
+ VarLocSet &getVarLocsInMBB(const MachineBasicBlock *MBB, VarLocInMBB &Locs) {
+ std::unique_ptr<VarLocSet> &VLS = Locs[MBB];
+ if (!VLS)
+ VLS = std::make_unique<VarLocSet>(Alloc);
+ return *VLS;
+ }
+
+ const VarLocSet &getVarLocsInMBB(const MachineBasicBlock *MBB,
+ const VarLocInMBB &Locs) const {
+ auto It = Locs.find(MBB);
+ assert(It != Locs.end() && "MBB not in map");
+ return *It->second;
+ }
+
+ /// Tests whether this instruction is a spill to a stack location.
+ bool isSpillInstruction(const MachineInstr &MI, MachineFunction *MF);
+
+ /// Decide if @MI is a spill instruction and return true if it is. We use 2
+ /// criteria to make this decision:
+ /// - Is this instruction a store to a spill slot?
+ /// - Is there a register operand that is both used and killed?
+ /// TODO: Store optimization can fold spills into other stores (including
+ /// other spills). We do not handle this yet (more than one memory operand).
+ bool isLocationSpill(const MachineInstr &MI, MachineFunction *MF,
+ Register &Reg);
+
+ /// Returns true if the given machine instruction is a debug value which we
+ /// can emit entry values for.
+ ///
+ /// Currently, we generate debug entry values only for parameters that are
+ /// unmodified throughout the function and located in a register.
+ bool isEntryValueCandidate(const MachineInstr &MI,
+ const DefinedRegsSet &Regs) const;
+
+ /// If a given instruction is identified as a spill, return the spill location
+ /// and set \p Reg to the spilled register.
+ std::optional<VarLoc::SpillLoc> isRestoreInstruction(const MachineInstr &MI,
+ MachineFunction *MF,
+ Register &Reg);
+ /// Given a spill instruction, extract the register and offset used to
+ /// address the spill location in a target independent way.
+ VarLoc::SpillLoc extractSpillBaseRegAndOffset(const MachineInstr &MI);
+ void insertTransferDebugPair(MachineInstr &MI, OpenRangesSet &OpenRanges,
+ TransferMap &Transfers, VarLocMap &VarLocIDs,
+ LocIndex OldVarID, TransferKind Kind,
+ const VarLoc::MachineLoc &OldLoc,
+ Register NewReg = Register());
+
+ void transferDebugValue(const MachineInstr &MI, OpenRangesSet &OpenRanges,
+ VarLocMap &VarLocIDs,
+ InstToEntryLocMap &EntryValTransfers,
+ RegDefToInstMap &RegSetInstrs);
+ void transferSpillOrRestoreInst(MachineInstr &MI, OpenRangesSet &OpenRanges,
+ VarLocMap &VarLocIDs, TransferMap &Transfers);
+ void cleanupEntryValueTransfers(const MachineInstr *MI,
+ OpenRangesSet &OpenRanges,
+ VarLocMap &VarLocIDs, const VarLoc &EntryVL,
+ InstToEntryLocMap &EntryValTransfers);
+ void removeEntryValue(const MachineInstr &MI, OpenRangesSet &OpenRanges,
+ VarLocMap &VarLocIDs, const VarLoc &EntryVL,
+ InstToEntryLocMap &EntryValTransfers,
+ RegDefToInstMap &RegSetInstrs);
+ void emitEntryValues(MachineInstr &MI, OpenRangesSet &OpenRanges,
+ VarLocMap &VarLocIDs,
+ InstToEntryLocMap &EntryValTransfers,
+ VarLocsInRange &KillSet);
+ void recordEntryValue(const MachineInstr &MI,
+ const DefinedRegsSet &DefinedRegs,
+ OpenRangesSet &OpenRanges, VarLocMap &VarLocIDs);
+ void transferRegisterCopy(MachineInstr &MI, OpenRangesSet &OpenRanges,
+ VarLocMap &VarLocIDs, TransferMap &Transfers);
+ void transferRegisterDef(MachineInstr &MI, OpenRangesSet &OpenRanges,
+ VarLocMap &VarLocIDs,
+ InstToEntryLocMap &EntryValTransfers,
+ RegDefToInstMap &RegSetInstrs);
+ void transferWasmDef(MachineInstr &MI, OpenRangesSet &OpenRanges,
+ VarLocMap &VarLocIDs);
+ bool transferTerminator(MachineBasicBlock *MBB, OpenRangesSet &OpenRanges,
+ VarLocInMBB &OutLocs, const VarLocMap &VarLocIDs);
+
+ void process(MachineInstr &MI, OpenRangesSet &OpenRanges,
+ VarLocMap &VarLocIDs, TransferMap &Transfers,
+ InstToEntryLocMap &EntryValTransfers,
+ RegDefToInstMap &RegSetInstrs);
+
+ void accumulateFragmentMap(MachineInstr &MI, VarToFragments &SeenFragments,
+ OverlapMap &OLapMap);
+
+ bool join(MachineBasicBlock &MBB, VarLocInMBB &OutLocs, VarLocInMBB &InLocs,
+ const VarLocMap &VarLocIDs,
+ SmallPtrSet<const MachineBasicBlock *, 16> &Visited,
+ SmallPtrSetImpl<const MachineBasicBlock *> &ArtificialBlocks);
+
+ /// Create DBG_VALUE insts for inlocs that have been propagated but
+ /// had their instruction creation deferred.
+ void flushPendingLocs(VarLocInMBB &PendingInLocs, VarLocMap &VarLocIDs);
+
+ bool ExtendRanges(MachineFunction &MF, MachineDominatorTree *DomTree,
+ TargetPassConfig *TPC, unsigned InputBBLimit,
+ unsigned InputDbgValLimit) override;
+
+public:
+ /// Default construct and initialize the pass.
+ VarLocBasedLDV();
+
+ ~VarLocBasedLDV();
+
+ /// Print to ostream with a message.
+ void printVarLocInMBB(const MachineFunction &MF, const VarLocInMBB &V,
+ const VarLocMap &VarLocIDs, const char *msg,
+ raw_ostream &Out) const;
+};
+
+} // end anonymous namespace
+
+//===----------------------------------------------------------------------===//
+// Implementation
+//===----------------------------------------------------------------------===//
+
+VarLocBasedLDV::VarLocBasedLDV() = default;
+
+VarLocBasedLDV::~VarLocBasedLDV() = default;
+
+/// Erase a variable from the set of open ranges, and additionally erase any
+/// fragments that may overlap it. If the VarLoc is a backup location, erase
+/// the variable from the EntryValuesBackupVars set, indicating we should stop
+/// tracking its backup entry location. Otherwise, if the VarLoc is primary
+/// location, erase the variable from the Vars set.
+void VarLocBasedLDV::OpenRangesSet::erase(const VarLoc &VL) {
+ // Erasure helper.
+ auto DoErase = [VL, this](DebugVariable VarToErase) {
+ auto *EraseFrom = VL.isEntryBackupLoc() ? &EntryValuesBackupVars : &Vars;
+ auto It = EraseFrom->find(VarToErase);
+ if (It != EraseFrom->end()) {
+ LocIndices IDs = It->second;
+ for (LocIndex ID : IDs)
+ VarLocs.reset(ID.getAsRawInteger());
+ EraseFrom->erase(It);
+ }
+ };
+
+ DebugVariable Var = VL.Var;
+
+ // Erase the variable/fragment that ends here.
+ DoErase(Var);
+
+ // Extract the fragment. Interpret an empty fragment as one that covers all
+ // possible bits.
+ FragmentInfo ThisFragment = Var.getFragmentOrDefault();
+
+ // There may be fragments that overlap the designated fragment. Look them up
+ // in the pre-computed overlap map, and erase them too.
+ auto MapIt = OverlappingFragments.find({Var.getVariable(), ThisFragment});
+ if (MapIt != OverlappingFragments.end()) {
+ for (auto Fragment : MapIt->second) {
+ VarLocBasedLDV::OptFragmentInfo FragmentHolder;
+ if (!DebugVariable::isDefaultFragment(Fragment))
+ FragmentHolder = VarLocBasedLDV::OptFragmentInfo(Fragment);
+ DoErase({Var.getVariable(), FragmentHolder, Var.getInlinedAt()});
+ }
+ }
+}
+
+void VarLocBasedLDV::OpenRangesSet::erase(const VarLocsInRange &KillSet,
+ const VarLocMap &VarLocIDs,
+ LocIndex::u32_location_t Location) {
+ VarLocSet RemoveSet(Alloc);
+ for (LocIndex::u32_index_t ID : KillSet) {
+ const VarLoc &VL = VarLocIDs[LocIndex(Location, ID)];
+ auto *EraseFrom = VL.isEntryBackupLoc() ? &EntryValuesBackupVars : &Vars;
+ EraseFrom->erase(VL.Var);
+ LocIndices VLI = VarLocIDs.getAllIndices(VL);
+ for (LocIndex ID : VLI)
+ RemoveSet.set(ID.getAsRawInteger());
+ }
+ VarLocs.intersectWithComplement(RemoveSet);
+}
+
+void VarLocBasedLDV::OpenRangesSet::insertFromLocSet(const VarLocSet &ToLoad,
+ const VarLocMap &Map) {
+ VarLocsInRange UniqueVarLocIDs;
+ DefinedRegsSet Regs;
+ Regs.insert(LocIndex::kUniversalLocation);
+ collectIDsForRegs(UniqueVarLocIDs, Regs, ToLoad, Map);
+ for (uint64_t ID : UniqueVarLocIDs) {
+ LocIndex Idx = LocIndex::fromRawInteger(ID);
+ const VarLoc &VarL = Map[Idx];
+ const LocIndices Indices = Map.getAllIndices(VarL);
+ insert(Indices, VarL);
+ }
+}
+
+void VarLocBasedLDV::OpenRangesSet::insert(LocIndices VarLocIDs,
+ const VarLoc &VL) {
+ auto *InsertInto = VL.isEntryBackupLoc() ? &EntryValuesBackupVars : &Vars;
+ for (LocIndex ID : VarLocIDs)
+ VarLocs.set(ID.getAsRawInteger());
+ InsertInto->insert({VL.Var, VarLocIDs});
+}
+
+/// Return the Loc ID of an entry value backup location, if it exists for the
+/// variable.
+std::optional<LocIndices>
+VarLocBasedLDV::OpenRangesSet::getEntryValueBackup(DebugVariable Var) {
+ auto It = EntryValuesBackupVars.find(Var);
+ if (It != EntryValuesBackupVars.end())
+ return It->second;
+
+ return std::nullopt;
+}
+
+void VarLocBasedLDV::collectIDsForRegs(VarLocsInRange &Collected,
+ const DefinedRegsSet &Regs,
+ const VarLocSet &CollectFrom,
+ const VarLocMap &VarLocIDs) {
+ assert(!Regs.empty() && "Nothing to collect");
+ SmallVector<Register, 32> SortedRegs;
+ append_range(SortedRegs, Regs);
+ array_pod_sort(SortedRegs.begin(), SortedRegs.end());
+ auto It = CollectFrom.find(LocIndex::rawIndexForReg(SortedRegs.front()));
+ auto End = CollectFrom.end();
+ for (Register Reg : SortedRegs) {
+ // The half-open interval [FirstIndexForReg, FirstInvalidIndex) contains
+ // all possible VarLoc IDs for VarLocs with MLs of kind RegisterKind which
+ // live in Reg.
+ uint64_t FirstIndexForReg = LocIndex::rawIndexForReg(Reg);
+ uint64_t FirstInvalidIndex = LocIndex::rawIndexForReg(Reg + 1);
+ It.advanceToLowerBound(FirstIndexForReg);
+
+ // Iterate through that half-open interval and collect all the set IDs.
+ for (; It != End && *It < FirstInvalidIndex; ++It) {
+ LocIndex ItIdx = LocIndex::fromRawInteger(*It);
+ const VarLoc &VL = VarLocIDs[ItIdx];
+ LocIndices LI = VarLocIDs.getAllIndices(VL);
+ // For now, the back index is always the universal location index.
+ assert(LI.back().Location == LocIndex::kUniversalLocation &&
+ "Unexpected order of LocIndices for VarLoc; was it inserted into "
+ "the VarLocMap correctly?");
+ Collected.insert(LI.back().Index);
+ }
+
+ if (It == End)
+ return;
+ }
+}
+
+void VarLocBasedLDV::getUsedRegs(const VarLocSet &CollectFrom,
+ SmallVectorImpl<Register> &UsedRegs) const {
+ // All register-based VarLocs are assigned indices greater than or equal to
+ // FirstRegIndex.
+ uint64_t FirstRegIndex =
+ LocIndex::rawIndexForReg(LocIndex::kFirstRegLocation);
+ uint64_t FirstInvalidIndex =
+ LocIndex::rawIndexForReg(LocIndex::kFirstInvalidRegLocation);
+ for (auto It = CollectFrom.find(FirstRegIndex),
+ End = CollectFrom.find(FirstInvalidIndex);
+ It != End;) {
+ // We found a VarLoc ID for a VarLoc that lives in a register. Figure out
+ // which register and add it to UsedRegs.
+ uint32_t FoundReg = LocIndex::fromRawInteger(*It).Location;
+ assert((UsedRegs.empty() || FoundReg != UsedRegs.back()) &&
+ "Duplicate used reg");
+ UsedRegs.push_back(FoundReg);
+
+ // Skip to the next /set/ register. Note that this finds a lower bound, so
+ // even if there aren't any VarLocs living in `FoundReg+1`, we're still
+ // guaranteed to move on to the next register (or to end()).
+ uint64_t NextRegIndex = LocIndex::rawIndexForReg(FoundReg + 1);
+ It.advanceToLowerBound(NextRegIndex);
+ }
+}
+
+//===----------------------------------------------------------------------===//
+// Debug Range Extension Implementation
+//===----------------------------------------------------------------------===//
+
+#ifndef NDEBUG
+void VarLocBasedLDV::printVarLocInMBB(const MachineFunction &MF,
+ const VarLocInMBB &V,
+ const VarLocMap &VarLocIDs,
+ const char *msg,
+ raw_ostream &Out) const {
+ Out << '\n' << msg << '\n';
+ for (const MachineBasicBlock &BB : MF) {
+ if (!V.count(&BB))
+ continue;
+ const VarLocSet &L = getVarLocsInMBB(&BB, V);
+ if (L.empty())
+ continue;
+ SmallVector<VarLoc, 32> VarLocs;
+ collectAllVarLocs(VarLocs, L, VarLocIDs);
+ Out << "MBB: " << BB.getNumber() << ":\n";
+ for (const VarLoc &VL : VarLocs) {
+ Out << " Var: " << VL.Var.getVariable()->getName();
+ Out << " MI: ";
+ VL.dump(TRI, TII, Out);
+ }
+ }
+ Out << "\n";
+}
+#endif
+
+VarLocBasedLDV::VarLoc::SpillLoc
+VarLocBasedLDV::extractSpillBaseRegAndOffset(const MachineInstr &MI) {
+ assert(MI.hasOneMemOperand() &&
+ "Spill instruction does not have exactly one memory operand?");
+ auto MMOI = MI.memoperands_begin();
+ const PseudoSourceValue *PVal = (*MMOI)->getPseudoValue();
+ assert(PVal->kind() == PseudoSourceValue::FixedStack &&
+ "Inconsistent memory operand in spill instruction");
+ int FI = cast<FixedStackPseudoSourceValue>(PVal)->getFrameIndex();
+ const MachineBasicBlock *MBB = MI.getParent();
+ Register Reg;
+ StackOffset Offset = TFI->getFrameIndexReference(*MBB->getParent(), FI, Reg);
+ return {Reg, Offset};
+}
+
+/// Do cleanup of \p EntryValTransfers created by \p TRInst, by removing the
+/// Transfer, which uses the to-be-deleted \p EntryVL.
+void VarLocBasedLDV::cleanupEntryValueTransfers(
+ const MachineInstr *TRInst, OpenRangesSet &OpenRanges, VarLocMap &VarLocIDs,
+ const VarLoc &EntryVL, InstToEntryLocMap &EntryValTransfers) {
+ if (EntryValTransfers.empty() || TRInst == nullptr)
+ return;
+
+ auto TransRange = EntryValTransfers.equal_range(TRInst);
+ for (auto TDPair : llvm::make_range(TransRange.first, TransRange.second)) {
+ const VarLoc &EmittedEV = VarLocIDs[TDPair.second];
+ if (std::tie(EntryVL.Var, EntryVL.Locs[0].Value.RegNo, EntryVL.Expr) ==
+ std::tie(EmittedEV.Var, EmittedEV.Locs[0].Value.RegNo,
+ EmittedEV.Expr)) {
+ OpenRanges.erase(EmittedEV);
+ EntryValTransfers.erase(TRInst);
+ break;
+ }
+ }
+}
+
+/// Try to salvage the debug entry value if we encounter a new debug value
+/// describing the same parameter, otherwise stop tracking the value. Return
+/// true if we should stop tracking the entry value and do the cleanup of
+/// emitted Entry Value Transfers, otherwise return false.
+void VarLocBasedLDV::removeEntryValue(const MachineInstr &MI,
+ OpenRangesSet &OpenRanges,
+ VarLocMap &VarLocIDs,
+ const VarLoc &EntryVL,
+ InstToEntryLocMap &EntryValTransfers,
+ RegDefToInstMap &RegSetInstrs) {
+ // Skip the DBG_VALUE which is the debug entry value itself.
+ if (&MI == &EntryVL.MI)
+ return;
+
+ // If the parameter's location is not register location, we can not track
+ // the entry value any more. It doesn't have the TransferInst which defines
+ // register, so no Entry Value Transfers have been emitted already.
+ if (!MI.getDebugOperand(0).isReg())
+ return;
+
+ // Try to get non-debug instruction responsible for the DBG_VALUE.
+ const MachineInstr *TransferInst = nullptr;
+ Register Reg = MI.getDebugOperand(0).getReg();
+ if (Reg.isValid() && RegSetInstrs.find(Reg) != RegSetInstrs.end())
+ TransferInst = RegSetInstrs.find(Reg)->second;
+
+ // Case of the parameter's DBG_VALUE at the start of entry MBB.
+ if (!TransferInst && !LastNonDbgMI && MI.getParent()->isEntryBlock())
+ return;
+
+ // If the debug expression from the DBG_VALUE is not empty, we can assume the
+ // parameter's value has changed indicating that we should stop tracking its
+ // entry value as well.
+ if (MI.getDebugExpression()->getNumElements() == 0 && TransferInst) {
+ // If the DBG_VALUE comes from a copy instruction that copies the entry
+ // value, it means the parameter's value has not changed and we should be
+ // able to use its entry value.
+ // TODO: Try to keep tracking of an entry value if we encounter a propagated
+ // DBG_VALUE describing the copy of the entry value. (Propagated entry value
+ // does not indicate the parameter modification.)
+ auto DestSrc = TII->isCopyInstr(*TransferInst);
+ if (DestSrc) {
+ const MachineOperand *SrcRegOp, *DestRegOp;
+ SrcRegOp = DestSrc->Source;
+ DestRegOp = DestSrc->Destination;
+ if (Reg == DestRegOp->getReg()) {
+ for (uint64_t ID : OpenRanges.getEntryValueBackupVarLocs()) {
+ const VarLoc &VL = VarLocIDs[LocIndex::fromRawInteger(ID)];
+ if (VL.isEntryValueCopyBackupReg(Reg) &&
+ // Entry Values should not be variadic.
+ VL.MI.getDebugOperand(0).getReg() == SrcRegOp->getReg())
+ return;
+ }
+ }
+ }
+ }
+
+ LLVM_DEBUG(dbgs() << "Deleting a DBG entry value because of: ";
+ MI.print(dbgs(), /*IsStandalone*/ false,
+ /*SkipOpers*/ false, /*SkipDebugLoc*/ false,
+ /*AddNewLine*/ true, TII));
+ cleanupEntryValueTransfers(TransferInst, OpenRanges, VarLocIDs, EntryVL,
+ EntryValTransfers);
+ OpenRanges.erase(EntryVL);
+}
+
+/// End all previous ranges related to @MI and start a new range from @MI
+/// if it is a DBG_VALUE instr.
+void VarLocBasedLDV::transferDebugValue(const MachineInstr &MI,
+ OpenRangesSet &OpenRanges,
+ VarLocMap &VarLocIDs,
+ InstToEntryLocMap &EntryValTransfers,
+ RegDefToInstMap &RegSetInstrs) {
+ if (!MI.isDebugValue())
+ return;
+ const DILocalVariable *Var = MI.getDebugVariable();
+ const DIExpression *Expr = MI.getDebugExpression();
+ const DILocation *DebugLoc = MI.getDebugLoc();
+ const DILocation *InlinedAt = DebugLoc->getInlinedAt();
+ assert(Var->isValidLocationForIntrinsic(DebugLoc) &&
+ "Expected inlined-at fields to agree");
+
+ DebugVariable V(Var, Expr, InlinedAt);
+
+ // Check if this DBG_VALUE indicates a parameter's value changing.
+ // If that is the case, we should stop tracking its entry value.
+ auto EntryValBackupID = OpenRanges.getEntryValueBackup(V);
+ if (Var->isParameter() && EntryValBackupID) {
+ const VarLoc &EntryVL = VarLocIDs[EntryValBackupID->back()];
+ removeEntryValue(MI, OpenRanges, VarLocIDs, EntryVL, EntryValTransfers,
+ RegSetInstrs);
+ }
+
+ if (all_of(MI.debug_operands(), [](const MachineOperand &MO) {
+ return (MO.isReg() && MO.getReg()) || MO.isImm() || MO.isFPImm() ||
+ MO.isCImm() || MO.isTargetIndex();
+ })) {
+ // Use normal VarLoc constructor for registers and immediates.
+ VarLoc VL(MI);
+ // End all previous ranges of VL.Var.
+ OpenRanges.erase(VL);
+
+ LocIndices IDs = VarLocIDs.insert(VL);
+ // Add the VarLoc to OpenRanges from this DBG_VALUE.
+ OpenRanges.insert(IDs, VL);
+ } else if (MI.memoperands().size() > 0) {
+ llvm_unreachable("DBG_VALUE with mem operand encountered after regalloc?");
+ } else {
+ // This must be an undefined location. If it has an open range, erase it.
+ assert(MI.isUndefDebugValue() &&
+ "Unexpected non-undef DBG_VALUE encountered");
+ VarLoc VL(MI);
+ OpenRanges.erase(VL);
+ }
+}
+
+// This should be removed later, doesn't fit the new design.
+void VarLocBasedLDV::collectAllVarLocs(SmallVectorImpl<VarLoc> &Collected,
+ const VarLocSet &CollectFrom,
+ const VarLocMap &VarLocIDs) {
+ // The half-open interval [FirstIndexForReg, FirstInvalidIndex) contains all
+ // possible VarLoc IDs for VarLocs with MLs of kind RegisterKind which live
+ // in Reg.
+ uint64_t FirstIndex = LocIndex::rawIndexForReg(LocIndex::kUniversalLocation);
+ uint64_t FirstInvalidIndex =
+ LocIndex::rawIndexForReg(LocIndex::kUniversalLocation + 1);
+ // Iterate through that half-open interval and collect all the set IDs.
+ for (auto It = CollectFrom.find(FirstIndex), End = CollectFrom.end();
+ It != End && *It < FirstInvalidIndex; ++It) {
+ LocIndex RegIdx = LocIndex::fromRawInteger(*It);
+ Collected.push_back(VarLocIDs[RegIdx]);
+ }
+}
+
+/// Turn the entry value backup locations into primary locations.
+void VarLocBasedLDV::emitEntryValues(MachineInstr &MI,
+ OpenRangesSet &OpenRanges,
+ VarLocMap &VarLocIDs,
+ InstToEntryLocMap &EntryValTransfers,
+ VarLocsInRange &KillSet) {
+ // Do not insert entry value locations after a terminator.
+ if (MI.isTerminator())
+ return;
+
+ for (uint32_t ID : KillSet) {
+ // The KillSet IDs are indices for the universal location bucket.
+ LocIndex Idx = LocIndex(LocIndex::kUniversalLocation, ID);
+ const VarLoc &VL = VarLocIDs[Idx];
+ if (!VL.Var.getVariable()->isParameter())
+ continue;
+
+ auto DebugVar = VL.Var;
+ std::optional<LocIndices> EntryValBackupIDs =
+ OpenRanges.getEntryValueBackup(DebugVar);
+
+ // If the parameter has the entry value backup, it means we should
+ // be able to use its entry value.
+ if (!EntryValBackupIDs)
+ continue;
+
+ const VarLoc &EntryVL = VarLocIDs[EntryValBackupIDs->back()];
+ VarLoc EntryLoc = VarLoc::CreateEntryLoc(EntryVL.MI, EntryVL.Expr,
+ EntryVL.Locs[0].Value.RegNo);
+ LocIndices EntryValueIDs = VarLocIDs.insert(EntryLoc);
+ assert(EntryValueIDs.size() == 1 &&
+ "EntryValue loc should not be variadic");
+ EntryValTransfers.insert({&MI, EntryValueIDs.back()});
+ OpenRanges.insert(EntryValueIDs, EntryLoc);
+ }
+}
+
+/// Create new TransferDebugPair and insert it in \p Transfers. The VarLoc
+/// with \p OldVarID should be deleted form \p OpenRanges and replaced with
+/// new VarLoc. If \p NewReg is different than default zero value then the
+/// new location will be register location created by the copy like instruction,
+/// otherwise it is variable's location on the stack.
+void VarLocBasedLDV::insertTransferDebugPair(
+ MachineInstr &MI, OpenRangesSet &OpenRanges, TransferMap &Transfers,
+ VarLocMap &VarLocIDs, LocIndex OldVarID, TransferKind Kind,
+ const VarLoc::MachineLoc &OldLoc, Register NewReg) {
+ const VarLoc &OldVarLoc = VarLocIDs[OldVarID];
+
+ auto ProcessVarLoc = [&MI, &OpenRanges, &Transfers, &VarLocIDs](VarLoc &VL) {
+ LocIndices LocIds = VarLocIDs.insert(VL);
+
+ // Close this variable's previous location range.
+ OpenRanges.erase(VL);
+
+ // Record the new location as an open range, and a postponed transfer
+ // inserting a DBG_VALUE for this location.
+ OpenRanges.insert(LocIds, VL);
+ assert(!MI.isTerminator() && "Cannot insert DBG_VALUE after terminator");
+ TransferDebugPair MIP = {&MI, LocIds.back()};
+ Transfers.push_back(MIP);
+ };
+
+ // End all previous ranges of VL.Var.
+ OpenRanges.erase(VarLocIDs[OldVarID]);
+ switch (Kind) {
+ case TransferKind::TransferCopy: {
+ assert(NewReg &&
+ "No register supplied when handling a copy of a debug value");
+ // Create a DBG_VALUE instruction to describe the Var in its new
+ // register location.
+ VarLoc VL = VarLoc::CreateCopyLoc(OldVarLoc, OldLoc, NewReg);
+ ProcessVarLoc(VL);
+ LLVM_DEBUG({
+ dbgs() << "Creating VarLoc for register copy:";
+ VL.dump(TRI, TII);
+ });
+ return;
+ }
+ case TransferKind::TransferSpill: {
+ // Create a DBG_VALUE instruction to describe the Var in its spilled
+ // location.
+ VarLoc::SpillLoc SpillLocation = extractSpillBaseRegAndOffset(MI);
+ VarLoc VL = VarLoc::CreateSpillLoc(
+ OldVarLoc, OldLoc, SpillLocation.SpillBase, SpillLocation.SpillOffset);
+ ProcessVarLoc(VL);
+ LLVM_DEBUG({
+ dbgs() << "Creating VarLoc for spill:";
+ VL.dump(TRI, TII);
+ });
+ return;
+ }
+ case TransferKind::TransferRestore: {
+ assert(NewReg &&
+ "No register supplied when handling a restore of a debug value");
+ // DebugInstr refers to the pre-spill location, therefore we can reuse
+ // its expression.
+ VarLoc VL = VarLoc::CreateCopyLoc(OldVarLoc, OldLoc, NewReg);
+ ProcessVarLoc(VL);
+ LLVM_DEBUG({
+ dbgs() << "Creating VarLoc for restore:";
+ VL.dump(TRI, TII);
+ });
+ return;
+ }
+ }
+ llvm_unreachable("Invalid transfer kind");
+}
+
+/// A definition of a register may mark the end of a range.
+void VarLocBasedLDV::transferRegisterDef(MachineInstr &MI,
+ OpenRangesSet &OpenRanges,
+ VarLocMap &VarLocIDs,
+ InstToEntryLocMap &EntryValTransfers,
+ RegDefToInstMap &RegSetInstrs) {
+
+ // Meta Instructions do not affect the debug liveness of any register they
+ // define.
+ if (MI.isMetaInstruction())
+ return;
+
+ MachineFunction *MF = MI.getMF();
+ const TargetLowering *TLI = MF->getSubtarget().getTargetLowering();
+ Register SP = TLI->getStackPointerRegisterToSaveRestore();
+
+ // Find the regs killed by MI, and find regmasks of preserved regs.
+ DefinedRegsSet DeadRegs;
+ SmallVector<const uint32_t *, 4> RegMasks;
+ for (const MachineOperand &MO : MI.operands()) {
+ // Determine whether the operand is a register def.
+ if (MO.isReg() && MO.isDef() && MO.getReg() && MO.getReg().isPhysical() &&
+ !(MI.isCall() && MO.getReg() == SP)) {
+ // Remove ranges of all aliased registers.
+ for (MCRegAliasIterator RAI(MO.getReg(), TRI, true); RAI.isValid(); ++RAI)
+ // FIXME: Can we break out of this loop early if no insertion occurs?
+ DeadRegs.insert(*RAI);
+ RegSetInstrs.erase(MO.getReg());
+ RegSetInstrs.insert({MO.getReg(), &MI});
+ } else if (MO.isRegMask()) {
+ RegMasks.push_back(MO.getRegMask());
+ }
+ }
+
+ // Erase VarLocs which reside in one of the dead registers. For performance
+ // reasons, it's critical to not iterate over the full set of open VarLocs.
+ // Iterate over the set of dying/used regs instead.
+ if (!RegMasks.empty()) {
+ SmallVector<Register, 32> UsedRegs;
+ getUsedRegs(OpenRanges.getVarLocs(), UsedRegs);
+ for (Register Reg : UsedRegs) {
+ // Remove ranges of all clobbered registers. Register masks don't usually
+ // list SP as preserved. Assume that call instructions never clobber SP,
+ // because some backends (e.g., AArch64) never list SP in the regmask.
+ // While the debug info may be off for an instruction or two around
+ // callee-cleanup calls, transferring the DEBUG_VALUE across the call is
+ // still a better user experience.
+ if (Reg == SP)
+ continue;
+ bool AnyRegMaskKillsReg =
+ any_of(RegMasks, [Reg](const uint32_t *RegMask) {
+ return MachineOperand::clobbersPhysReg(RegMask, Reg);
+ });
+ if (AnyRegMaskKillsReg)
+ DeadRegs.insert(Reg);
+ if (AnyRegMaskKillsReg) {
+ RegSetInstrs.erase(Reg);
+ RegSetInstrs.insert({Reg, &MI});
+ }
+ }
+ }
+
+ if (DeadRegs.empty())
+ return;
+
+ VarLocsInRange KillSet;
+ collectIDsForRegs(KillSet, DeadRegs, OpenRanges.getVarLocs(), VarLocIDs);
+ OpenRanges.erase(KillSet, VarLocIDs, LocIndex::kUniversalLocation);
+
+ if (TPC) {
+ auto &TM = TPC->getTM<TargetMachine>();
+ if (TM.Options.ShouldEmitDebugEntryValues())
+ emitEntryValues(MI, OpenRanges, VarLocIDs, EntryValTransfers, KillSet);
+ }
+}
+
+void VarLocBasedLDV::transferWasmDef(MachineInstr &MI,
+ OpenRangesSet &OpenRanges,
+ VarLocMap &VarLocIDs) {
+ // If this is not a Wasm local.set or local.tee, which sets local values,
+ // return.
+ int Index;
+ int64_t Offset;
+ if (!TII->isExplicitTargetIndexDef(MI, Index, Offset))
+ return;
+
+ // Find the target indices killed by MI, and delete those variable locations
+ // from the open range.
+ VarLocsInRange KillSet;
+ VarLoc::WasmLoc Loc{Index, Offset};
+ for (uint64_t ID : OpenRanges.getWasmVarLocs()) {
+ LocIndex Idx = LocIndex::fromRawInteger(ID);
+ const VarLoc &VL = VarLocIDs[Idx];
+ assert(VL.containsWasmLocs() && "Broken VarLocSet?");
+ if (VL.usesWasmLoc(Loc))
+ KillSet.insert(ID);
+ }
+ OpenRanges.erase(KillSet, VarLocIDs, LocIndex::kWasmLocation);
+}
+
+bool VarLocBasedLDV::isSpillInstruction(const MachineInstr &MI,
+ MachineFunction *MF) {
+ // TODO: Handle multiple stores folded into one.
+ if (!MI.hasOneMemOperand())
+ return false;
+
+ if (!MI.getSpillSize(TII) && !MI.getFoldedSpillSize(TII))
+ return false; // This is not a spill instruction, since no valid size was
+ // returned from either function.
+
+ return true;
+}
+
+bool VarLocBasedLDV::isLocationSpill(const MachineInstr &MI,
+ MachineFunction *MF, Register &Reg) {
+ if (!isSpillInstruction(MI, MF))
+ return false;
+
+ auto isKilledReg = [&](const MachineOperand MO, Register &Reg) {
+ if (!MO.isReg() || !MO.isUse()) {
+ Reg = 0;
+ return false;
+ }
+ Reg = MO.getReg();
+ return MO.isKill();
+ };
+
+ for (const MachineOperand &MO : MI.operands()) {
+ // In a spill instruction generated by the InlineSpiller the spilled
+ // register has its kill flag set.
+ if (isKilledReg(MO, Reg))
+ return true;
+ if (Reg != 0) {
+ // Check whether next instruction kills the spilled register.
+ // FIXME: Current solution does not cover search for killed register in
+ // bundles and instructions further down the chain.
+ auto NextI = std::next(MI.getIterator());
+ // Skip next instruction that points to basic block end iterator.
+ if (MI.getParent()->end() == NextI)
+ continue;
+ Register RegNext;
+ for (const MachineOperand &MONext : NextI->operands()) {
+ // Return true if we came across the register from the
+ // previous spill instruction that is killed in NextI.
+ if (isKilledReg(MONext, RegNext) && RegNext == Reg)
+ return true;
+ }
+ }
+ }
+ // Return false if we didn't find spilled register.
+ return false;
+}
+
+std::optional<VarLocBasedLDV::VarLoc::SpillLoc>
+VarLocBasedLDV::isRestoreInstruction(const MachineInstr &MI,
+ MachineFunction *MF, Register &Reg) {
+ if (!MI.hasOneMemOperand())
+ return std::nullopt;
+
+ // FIXME: Handle folded restore instructions with more than one memory
+ // operand.
+ if (MI.getRestoreSize(TII)) {
+ Reg = MI.getOperand(0).getReg();
+ return extractSpillBaseRegAndOffset(MI);
+ }
+ return std::nullopt;
+}
+
+/// A spilled register may indicate that we have to end the current range of
+/// a variable and create a new one for the spill location.
+/// A restored register may indicate the reverse situation.
+/// We don't want to insert any instructions in process(), so we just create
+/// the DBG_VALUE without inserting it and keep track of it in \p Transfers.
+/// It will be inserted into the BB when we're done iterating over the
+/// instructions.
+void VarLocBasedLDV::transferSpillOrRestoreInst(MachineInstr &MI,
+ OpenRangesSet &OpenRanges,
+ VarLocMap &VarLocIDs,
+ TransferMap &Transfers) {
+ MachineFunction *MF = MI.getMF();
+ TransferKind TKind;
+ Register Reg;
+ std::optional<VarLoc::SpillLoc> Loc;
+
+ LLVM_DEBUG(dbgs() << "Examining instruction: "; MI.dump(););
+
+ // First, if there are any DBG_VALUEs pointing at a spill slot that is
+ // written to, then close the variable location. The value in memory
+ // will have changed.
+ VarLocsInRange KillSet;
+ if (isSpillInstruction(MI, MF)) {
+ Loc = extractSpillBaseRegAndOffset(MI);
+ for (uint64_t ID : OpenRanges.getSpillVarLocs()) {
+ LocIndex Idx = LocIndex::fromRawInteger(ID);
+ const VarLoc &VL = VarLocIDs[Idx];
+ assert(VL.containsSpillLocs() && "Broken VarLocSet?");
+ if (VL.usesSpillLoc(*Loc)) {
+ // This location is overwritten by the current instruction -- terminate
+ // the open range, and insert an explicit DBG_VALUE $noreg.
+ //
+ // Doing this at a later stage would require re-interpreting all
+ // DBG_VALUes and DIExpressions to identify whether they point at
+ // memory, and then analysing all memory writes to see if they
+ // overwrite that memory, which is expensive.
+ //
+ // At this stage, we already know which DBG_VALUEs are for spills and
+ // where they are located; it's best to fix handle overwrites now.
+ KillSet.insert(ID);
+ unsigned SpillLocIdx = VL.getSpillLocIdx(*Loc);
+ VarLoc::MachineLoc OldLoc = VL.Locs[SpillLocIdx];
+ VarLoc UndefVL = VarLoc::CreateCopyLoc(VL, OldLoc, 0);
+ LocIndices UndefLocIDs = VarLocIDs.insert(UndefVL);
+ Transfers.push_back({&MI, UndefLocIDs.back()});
+ }
+ }
+ OpenRanges.erase(KillSet, VarLocIDs, LocIndex::kSpillLocation);
+ }
+
+ // Try to recognise spill and restore instructions that may create a new
+ // variable location.
+ if (isLocationSpill(MI, MF, Reg)) {
+ TKind = TransferKind::TransferSpill;
+ LLVM_DEBUG(dbgs() << "Recognized as spill: "; MI.dump(););
+ LLVM_DEBUG(dbgs() << "Register: " << Reg << " " << printReg(Reg, TRI)
+ << "\n");
+ } else {
+ if (!(Loc = isRestoreInstruction(MI, MF, Reg)))
+ return;
+ TKind = TransferKind::TransferRestore;
+ LLVM_DEBUG(dbgs() << "Recognized as restore: "; MI.dump(););
+ LLVM_DEBUG(dbgs() << "Register: " << Reg << " " << printReg(Reg, TRI)
+ << "\n");
+ }
+ // Check if the register or spill location is the location of a debug value.
+ auto TransferCandidates = OpenRanges.getEmptyVarLocRange();
+ if (TKind == TransferKind::TransferSpill)
+ TransferCandidates = OpenRanges.getRegisterVarLocs(Reg);
+ else if (TKind == TransferKind::TransferRestore)
+ TransferCandidates = OpenRanges.getSpillVarLocs();
+ for (uint64_t ID : TransferCandidates) {
+ LocIndex Idx = LocIndex::fromRawInteger(ID);
+ const VarLoc &VL = VarLocIDs[Idx];
+ unsigned LocIdx;
+ if (TKind == TransferKind::TransferSpill) {
+ assert(VL.usesReg(Reg) && "Broken VarLocSet?");
+ LLVM_DEBUG(dbgs() << "Spilling Register " << printReg(Reg, TRI) << '('
+ << VL.Var.getVariable()->getName() << ")\n");
+ LocIdx = VL.getRegIdx(Reg);
+ } else {
+ assert(TKind == TransferKind::TransferRestore && VL.containsSpillLocs() &&
+ "Broken VarLocSet?");
+ if (!VL.usesSpillLoc(*Loc))
+ // The spill location is not the location of a debug value.
+ continue;
+ LLVM_DEBUG(dbgs() << "Restoring Register " << printReg(Reg, TRI) << '('
+ << VL.Var.getVariable()->getName() << ")\n");
+ LocIdx = VL.getSpillLocIdx(*Loc);
+ }
+ VarLoc::MachineLoc MLoc = VL.Locs[LocIdx];
+ insertTransferDebugPair(MI, OpenRanges, Transfers, VarLocIDs, Idx, TKind,
+ MLoc, Reg);
+ // FIXME: A comment should explain why it's correct to return early here,
+ // if that is in fact correct.
+ return;
+ }
+}
+
+/// If \p MI is a register copy instruction, that copies a previously tracked
+/// value from one register to another register that is callee saved, we
+/// create new DBG_VALUE instruction described with copy destination register.
+void VarLocBasedLDV::transferRegisterCopy(MachineInstr &MI,
+ OpenRangesSet &OpenRanges,
+ VarLocMap &VarLocIDs,
+ TransferMap &Transfers) {
+ auto DestSrc = TII->isCopyInstr(MI);
+ if (!DestSrc)
+ return;
+
+ const MachineOperand *DestRegOp = DestSrc->Destination;
+ const MachineOperand *SrcRegOp = DestSrc->Source;
+
+ if (!DestRegOp->isDef())
+ return;
+
+ auto isCalleeSavedReg = [&](Register Reg) {
+ for (MCRegAliasIterator RAI(Reg, TRI, true); RAI.isValid(); ++RAI)
+ if (CalleeSavedRegs.test(*RAI))
+ return true;
+ return false;
+ };
+
+ Register SrcReg = SrcRegOp->getReg();
+ Register DestReg = DestRegOp->getReg();
+
+ // We want to recognize instructions where destination register is callee
+ // saved register. If register that could be clobbered by the call is
+ // included, there would be a great chance that it is going to be clobbered
+ // soon. It is more likely that previous register location, which is callee
+ // saved, is going to stay unclobbered longer, even if it is killed.
+ if (!isCalleeSavedReg(DestReg))
+ return;
+
+ // Remember an entry value movement. If we encounter a new debug value of
+ // a parameter describing only a moving of the value around, rather then
+ // modifying it, we are still able to use the entry value if needed.
+ if (isRegOtherThanSPAndFP(*DestRegOp, MI, TRI)) {
+ for (uint64_t ID : OpenRanges.getEntryValueBackupVarLocs()) {
+ LocIndex Idx = LocIndex::fromRawInteger(ID);
+ const VarLoc &VL = VarLocIDs[Idx];
+ if (VL.isEntryValueBackupReg(SrcReg)) {
+ LLVM_DEBUG(dbgs() << "Copy of the entry value: "; MI.dump(););
+ VarLoc EntryValLocCopyBackup =
+ VarLoc::CreateEntryCopyBackupLoc(VL.MI, VL.Expr, DestReg);
+ // Stop tracking the original entry value.
+ OpenRanges.erase(VL);
+
+ // Start tracking the entry value copy.
+ LocIndices EntryValCopyLocIDs = VarLocIDs.insert(EntryValLocCopyBackup);
+ OpenRanges.insert(EntryValCopyLocIDs, EntryValLocCopyBackup);
+ break;
+ }
+ }
+ }
+
+ if (!SrcRegOp->isKill())
+ return;
+
+ for (uint64_t ID : OpenRanges.getRegisterVarLocs(SrcReg)) {
+ LocIndex Idx = LocIndex::fromRawInteger(ID);
+ assert(VarLocIDs[Idx].usesReg(SrcReg) && "Broken VarLocSet?");
+ VarLoc::MachineLocValue Loc;
+ Loc.RegNo = SrcReg;
+ VarLoc::MachineLoc MLoc{VarLoc::MachineLocKind::RegisterKind, Loc};
+ insertTransferDebugPair(MI, OpenRanges, Transfers, VarLocIDs, Idx,
+ TransferKind::TransferCopy, MLoc, DestReg);
+ // FIXME: A comment should explain why it's correct to return early here,
+ // if that is in fact correct.
+ return;
+ }
+}
+
+/// Terminate all open ranges at the end of the current basic block.
+bool VarLocBasedLDV::transferTerminator(MachineBasicBlock *CurMBB,
+ OpenRangesSet &OpenRanges,
+ VarLocInMBB &OutLocs,
+ const VarLocMap &VarLocIDs) {
+ bool Changed = false;
+ LLVM_DEBUG({
+ VarVec VarLocs;
+ OpenRanges.getUniqueVarLocs(VarLocs, VarLocIDs);
+ for (VarLoc &VL : VarLocs) {
+ // Copy OpenRanges to OutLocs, if not already present.
+ dbgs() << "Add to OutLocs in MBB #" << CurMBB->getNumber() << ": ";
+ VL.dump(TRI, TII);
+ }
+ });
+ VarLocSet &VLS = getVarLocsInMBB(CurMBB, OutLocs);
+ Changed = VLS != OpenRanges.getVarLocs();
+ // New OutLocs set may be different due to spill, restore or register
+ // copy instruction processing.
+ if (Changed)
+ VLS = OpenRanges.getVarLocs();
+ OpenRanges.clear();
+ return Changed;
+}
+
+/// Accumulate a mapping between each DILocalVariable fragment and other
+/// fragments of that DILocalVariable which overlap. This reduces work during
+/// the data-flow stage from "Find any overlapping fragments" to "Check if the
+/// known-to-overlap fragments are present".
+/// \param MI A previously unprocessed DEBUG_VALUE instruction to analyze for
+/// fragment usage.
+/// \param SeenFragments Map from DILocalVariable to all fragments of that
+/// Variable which are known to exist.
+/// \param OverlappingFragments The overlap map being constructed, from one
+/// Var/Fragment pair to a vector of fragments known to overlap.
+void VarLocBasedLDV::accumulateFragmentMap(MachineInstr &MI,
+ VarToFragments &SeenFragments,
+ OverlapMap &OverlappingFragments) {
+ DebugVariable MIVar(MI.getDebugVariable(), MI.getDebugExpression(),
+ MI.getDebugLoc()->getInlinedAt());
+ FragmentInfo ThisFragment = MIVar.getFragmentOrDefault();
+
+ // If this is the first sighting of this variable, then we are guaranteed
+ // there are currently no overlapping fragments either. Initialize the set
+ // of seen fragments, record no overlaps for the current one, and return.
+ auto SeenIt = SeenFragments.find(MIVar.getVariable());
+ if (SeenIt == SeenFragments.end()) {
+ SmallSet<FragmentInfo, 4> OneFragment;
+ OneFragment.insert(ThisFragment);
+ SeenFragments.insert({MIVar.getVariable(), OneFragment});
+
+ OverlappingFragments.insert({{MIVar.getVariable(), ThisFragment}, {}});
+ return;
+ }
+
+ // If this particular Variable/Fragment pair already exists in the overlap
+ // map, it has already been accounted for.
+ auto IsInOLapMap =
+ OverlappingFragments.insert({{MIVar.getVariable(), ThisFragment}, {}});
+ if (!IsInOLapMap.second)
+ return;
+
+ auto &ThisFragmentsOverlaps = IsInOLapMap.first->second;
+ auto &AllSeenFragments = SeenIt->second;
+
+ // Otherwise, examine all other seen fragments for this variable, with "this"
+ // fragment being a previously unseen fragment. Record any pair of
+ // overlapping fragments.
+ for (const auto &ASeenFragment : AllSeenFragments) {
+ // Does this previously seen fragment overlap?
+ if (DIExpression::fragmentsOverlap(ThisFragment, ASeenFragment)) {
+ // Yes: Mark the current fragment as being overlapped.
+ ThisFragmentsOverlaps.push_back(ASeenFragment);
+ // Mark the previously seen fragment as being overlapped by the current
+ // one.
+ auto ASeenFragmentsOverlaps =
+ OverlappingFragments.find({MIVar.getVariable(), ASeenFragment});
+ assert(ASeenFragmentsOverlaps != OverlappingFragments.end() &&
+ "Previously seen var fragment has no vector of overlaps");
+ ASeenFragmentsOverlaps->second.push_back(ThisFragment);
+ }
+ }
+
+ AllSeenFragments.insert(ThisFragment);
+}
+
+/// This routine creates OpenRanges.
+void VarLocBasedLDV::process(MachineInstr &MI, OpenRangesSet &OpenRanges,
+ VarLocMap &VarLocIDs, TransferMap &Transfers,
+ InstToEntryLocMap &EntryValTransfers,
+ RegDefToInstMap &RegSetInstrs) {
+ if (!MI.isDebugInstr())
+ LastNonDbgMI = &MI;
+ transferDebugValue(MI, OpenRanges, VarLocIDs, EntryValTransfers,
+ RegSetInstrs);
+ transferRegisterDef(MI, OpenRanges, VarLocIDs, EntryValTransfers,
+ RegSetInstrs);
+ transferWasmDef(MI, OpenRanges, VarLocIDs);
+ transferRegisterCopy(MI, OpenRanges, VarLocIDs, Transfers);
+ transferSpillOrRestoreInst(MI, OpenRanges, VarLocIDs, Transfers);
+}
+
+/// This routine joins the analysis results of all incoming edges in @MBB by
+/// inserting a new DBG_VALUE instruction at the start of the @MBB - if the same
+/// source variable in all the predecessors of @MBB reside in the same location.
+bool VarLocBasedLDV::join(
+ MachineBasicBlock &MBB, VarLocInMBB &OutLocs, VarLocInMBB &InLocs,
+ const VarLocMap &VarLocIDs,
+ SmallPtrSet<const MachineBasicBlock *, 16> &Visited,
+ SmallPtrSetImpl<const MachineBasicBlock *> &ArtificialBlocks) {
+ LLVM_DEBUG(dbgs() << "join MBB: " << MBB.getNumber() << "\n");
+
+ VarLocSet InLocsT(Alloc); // Temporary incoming locations.
+
+ // For all predecessors of this MBB, find the set of VarLocs that
+ // can be joined.
+ int NumVisited = 0;
+ for (auto *p : MBB.predecessors()) {
+ // Ignore backedges if we have not visited the predecessor yet. As the
+ // predecessor hasn't yet had locations propagated into it, most locations
+ // will not yet be valid, so treat them as all being uninitialized and
+ // potentially valid. If a location guessed to be correct here is
+ // invalidated later, we will remove it when we revisit this block.
+ if (!Visited.count(p)) {
+ LLVM_DEBUG(dbgs() << " ignoring unvisited pred MBB: " << p->getNumber()
+ << "\n");
+ continue;
+ }
+ auto OL = OutLocs.find(p);
+ // Join is null in case of empty OutLocs from any of the pred.
+ if (OL == OutLocs.end())
+ return false;
+
+ // Just copy over the Out locs to incoming locs for the first visited
+ // predecessor, and for all other predecessors join the Out locs.
+ VarLocSet &OutLocVLS = *OL->second;
+ if (!NumVisited)
+ InLocsT = OutLocVLS;
+ else
+ InLocsT &= OutLocVLS;
+
+ LLVM_DEBUG({
+ if (!InLocsT.empty()) {
+ VarVec VarLocs;
+ collectAllVarLocs(VarLocs, InLocsT, VarLocIDs);
+ for (const VarLoc &VL : VarLocs)
+ dbgs() << " gathered candidate incoming var: "
+ << VL.Var.getVariable()->getName() << "\n";
+ }
+ });
+
+ NumVisited++;
+ }
+
+ // Filter out DBG_VALUES that are out of scope.
+ VarLocSet KillSet(Alloc);
+ bool IsArtificial = ArtificialBlocks.count(&MBB);
+ if (!IsArtificial) {
+ for (uint64_t ID : InLocsT) {
+ LocIndex Idx = LocIndex::fromRawInteger(ID);
+ if (!VarLocIDs[Idx].dominates(LS, MBB)) {
+ KillSet.set(ID);
+ LLVM_DEBUG({
+ auto Name = VarLocIDs[Idx].Var.getVariable()->getName();
+ dbgs() << " killing " << Name << ", it doesn't dominate MBB\n";
+ });
+ }
+ }
+ }
+ InLocsT.intersectWithComplement(KillSet);
+
+ // As we are processing blocks in reverse post-order we
+ // should have processed at least one predecessor, unless it
+ // is the entry block which has no predecessor.
+ assert((NumVisited || MBB.pred_empty()) &&
+ "Should have processed at least one predecessor");
+
+ VarLocSet &ILS = getVarLocsInMBB(&MBB, InLocs);
+ bool Changed = false;
+ if (ILS != InLocsT) {
+ ILS = InLocsT;
+ Changed = true;
+ }
+
+ return Changed;
+}
+
+void VarLocBasedLDV::flushPendingLocs(VarLocInMBB &PendingInLocs,
+ VarLocMap &VarLocIDs) {
+ // PendingInLocs records all locations propagated into blocks, which have
+ // not had DBG_VALUE insts created. Go through and create those insts now.
+ for (auto &Iter : PendingInLocs) {
+ // Map is keyed on a constant pointer, unwrap it so we can insert insts.
+ auto &MBB = const_cast<MachineBasicBlock &>(*Iter.first);
+ VarLocSet &Pending = *Iter.second;
+
+ SmallVector<VarLoc, 32> VarLocs;
+ collectAllVarLocs(VarLocs, Pending, VarLocIDs);
+
+ for (VarLoc DiffIt : VarLocs) {
+ // The ID location is live-in to MBB -- work out what kind of machine
+ // location it is and create a DBG_VALUE.
+ if (DiffIt.isEntryBackupLoc())
+ continue;
+ MachineInstr *MI = DiffIt.BuildDbgValue(*MBB.getParent());
+ MBB.insert(MBB.instr_begin(), MI);
+
+ (void)MI;
+ LLVM_DEBUG(dbgs() << "Inserted: "; MI->dump(););
+ }
+ }
+}
+
+bool VarLocBasedLDV::isEntryValueCandidate(
+ const MachineInstr &MI, const DefinedRegsSet &DefinedRegs) const {
+ assert(MI.isDebugValue() && "This must be DBG_VALUE.");
+
+ // TODO: Add support for local variables that are expressed in terms of
+ // parameters entry values.
+ // TODO: Add support for modified arguments that can be expressed
+ // by using its entry value.
+ auto *DIVar = MI.getDebugVariable();
+ if (!DIVar->isParameter())
+ return false;
+
+ // Do not consider parameters that belong to an inlined function.
+ if (MI.getDebugLoc()->getInlinedAt())
+ return false;
+
+ // Only consider parameters that are described using registers. Parameters
+ // that are passed on the stack are not yet supported, so ignore debug
+ // values that are described by the frame or stack pointer.
+ if (!isRegOtherThanSPAndFP(MI.getDebugOperand(0), MI, TRI))
+ return false;
+
+ // If a parameter's value has been propagated from the caller, then the
+ // parameter's DBG_VALUE may be described using a register defined by some
+ // instruction in the entry block, in which case we shouldn't create an
+ // entry value.
+ if (DefinedRegs.count(MI.getDebugOperand(0).getReg()))
+ return false;
+
+ // TODO: Add support for parameters that have a pre-existing debug expressions
+ // (e.g. fragments).
+ if (MI.getDebugExpression()->getNumElements() > 0)
+ return false;
+
+ return true;
+}
+
+/// Collect all register defines (including aliases) for the given instruction.
+static void collectRegDefs(const MachineInstr &MI, DefinedRegsSet &Regs,
+ const TargetRegisterInfo *TRI) {
+ for (const MachineOperand &MO : MI.operands()) {
+ if (MO.isReg() && MO.isDef() && MO.getReg() && MO.getReg().isPhysical()) {
+ Regs.insert(MO.getReg());
+ for (MCRegAliasIterator AI(MO.getReg(), TRI, true); AI.isValid(); ++AI)
+ Regs.insert(*AI);
+ }
+ }
+}
+
+/// This routine records the entry values of function parameters. The values
+/// could be used as backup values. If we loose the track of some unmodified
+/// parameters, the backup values will be used as a primary locations.
+void VarLocBasedLDV::recordEntryValue(const MachineInstr &MI,
+ const DefinedRegsSet &DefinedRegs,
+ OpenRangesSet &OpenRanges,
+ VarLocMap &VarLocIDs) {
+ if (TPC) {
+ auto &TM = TPC->getTM<TargetMachine>();
+ if (!TM.Options.ShouldEmitDebugEntryValues())
+ return;
+ }
+
+ DebugVariable V(MI.getDebugVariable(), MI.getDebugExpression(),
+ MI.getDebugLoc()->getInlinedAt());
+
+ if (!isEntryValueCandidate(MI, DefinedRegs) ||
+ OpenRanges.getEntryValueBackup(V))
+ return;
+
+ LLVM_DEBUG(dbgs() << "Creating the backup entry location: "; MI.dump(););
+
+ // Create the entry value and use it as a backup location until it is
+ // valid. It is valid until a parameter is not changed.
+ DIExpression *NewExpr =
+ DIExpression::prepend(MI.getDebugExpression(), DIExpression::EntryValue);
+ VarLoc EntryValLocAsBackup = VarLoc::CreateEntryBackupLoc(MI, NewExpr);
+ LocIndices EntryValLocIDs = VarLocIDs.insert(EntryValLocAsBackup);
+ OpenRanges.insert(EntryValLocIDs, EntryValLocAsBackup);
+}
+
+/// Calculate the liveness information for the given machine function and
+/// extend ranges across basic blocks.
+bool VarLocBasedLDV::ExtendRanges(MachineFunction &MF,
+ MachineDominatorTree *DomTree,
+ TargetPassConfig *TPC, unsigned InputBBLimit,
+ unsigned InputDbgValLimit) {
+ (void)DomTree;
+ LLVM_DEBUG(dbgs() << "\nDebug Range Extension: " << MF.getName() << "\n");
+
+ if (!MF.getFunction().getSubprogram())
+ // VarLocBaseLDV will already have removed all DBG_VALUEs.
+ return false;
+
+ // Skip functions from NoDebug compilation units.
+ if (MF.getFunction().getSubprogram()->getUnit()->getEmissionKind() ==
+ DICompileUnit::NoDebug)
+ return false;
+
+ TRI = MF.getSubtarget().getRegisterInfo();
+ TII = MF.getSubtarget().getInstrInfo();
+ TFI = MF.getSubtarget().getFrameLowering();
+ TFI->getCalleeSaves(MF, CalleeSavedRegs);
+ this->TPC = TPC;
+ LS.initialize(MF);
+
+ bool Changed = false;
+ bool OLChanged = false;
+ bool MBBJoined = false;
+
+ VarLocMap VarLocIDs; // Map VarLoc<>unique ID for use in bitvectors.
+ OverlapMap OverlapFragments; // Map of overlapping variable fragments.
+ OpenRangesSet OpenRanges(Alloc, OverlapFragments);
+ // Ranges that are open until end of bb.
+ VarLocInMBB OutLocs; // Ranges that exist beyond bb.
+ VarLocInMBB InLocs; // Ranges that are incoming after joining.
+ TransferMap Transfers; // DBG_VALUEs associated with transfers (such as
+ // spills, copies and restores).
+ // Map responsible MI to attached Transfer emitted from Backup Entry Value.
+ InstToEntryLocMap EntryValTransfers;
+ // Map a Register to the last MI which clobbered it.
+ RegDefToInstMap RegSetInstrs;
+
+ VarToFragments SeenFragments;
+
+ // Blocks which are artificial, i.e. blocks which exclusively contain
+ // instructions without locations, or with line 0 locations.
+ SmallPtrSet<const MachineBasicBlock *, 16> ArtificialBlocks;
+
+ DenseMap<unsigned int, MachineBasicBlock *> OrderToBB;
+ DenseMap<MachineBasicBlock *, unsigned int> BBToOrder;
+ std::priority_queue<unsigned int, std::vector<unsigned int>,
+ std::greater<unsigned int>>
+ Worklist;
+ std::priority_queue<unsigned int, std::vector<unsigned int>,
+ std::greater<unsigned int>>
+ Pending;
+
+ // Set of register defines that are seen when traversing the entry block
+ // looking for debug entry value candidates.
+ DefinedRegsSet DefinedRegs;
+
+ // Only in the case of entry MBB collect DBG_VALUEs representing
+ // function parameters in order to generate debug entry values for them.
+ MachineBasicBlock &First_MBB = *(MF.begin());
+ for (auto &MI : First_MBB) {
+ collectRegDefs(MI, DefinedRegs, TRI);
+ if (MI.isDebugValue())
+ recordEntryValue(MI, DefinedRegs, OpenRanges, VarLocIDs);
+ }
+
+ // Initialize per-block structures and scan for fragment overlaps.
+ for (auto &MBB : MF)
+ for (auto &MI : MBB)
+ if (MI.isDebugValue())
+ accumulateFragmentMap(MI, SeenFragments, OverlapFragments);
+
+ auto hasNonArtificialLocation = [](const MachineInstr &MI) -> bool {
+ if (const DebugLoc &DL = MI.getDebugLoc())
+ return DL.getLine() != 0;
+ return false;
+ };
+ for (auto &MBB : MF)
+ if (none_of(MBB.instrs(), hasNonArtificialLocation))
+ ArtificialBlocks.insert(&MBB);
+
+ LLVM_DEBUG(printVarLocInMBB(MF, OutLocs, VarLocIDs,
+ "OutLocs after initialization", dbgs()));
+
+ ReversePostOrderTraversal<MachineFunction *> RPOT(&MF);
+ unsigned int RPONumber = 0;
+ for (MachineBasicBlock *MBB : RPOT) {
+ OrderToBB[RPONumber] = MBB;
+ BBToOrder[MBB] = RPONumber;
+ Worklist.push(RPONumber);
+ ++RPONumber;
+ }
+
+ if (RPONumber > InputBBLimit) {
+ unsigned NumInputDbgValues = 0;
+ for (auto &MBB : MF)
+ for (auto &MI : MBB)
+ if (MI.isDebugValue())
+ ++NumInputDbgValues;
+ if (NumInputDbgValues > InputDbgValLimit) {
+ LLVM_DEBUG(dbgs() << "Disabling VarLocBasedLDV: " << MF.getName()
+ << " has " << RPONumber << " basic blocks and "
+ << NumInputDbgValues
+ << " input DBG_VALUEs, exceeding limits.\n");
+ return false;
+ }
+ }
+
+ // This is a standard "union of predecessor outs" dataflow problem.
+ // To solve it, we perform join() and process() using the two worklist method
+ // until the ranges converge.
+ // Ranges have converged when both worklists are empty.
+ SmallPtrSet<const MachineBasicBlock *, 16> Visited;
+ while (!Worklist.empty() || !Pending.empty()) {
+ // We track what is on the pending worklist to avoid inserting the same
+ // thing twice. We could avoid this with a custom priority queue, but this
+ // is probably not worth it.
+ SmallPtrSet<MachineBasicBlock *, 16> OnPending;
+ LLVM_DEBUG(dbgs() << "Processing Worklist\n");
+ while (!Worklist.empty()) {
+ MachineBasicBlock *MBB = OrderToBB[Worklist.top()];
+ Worklist.pop();
+ MBBJoined = join(*MBB, OutLocs, InLocs, VarLocIDs, Visited,
+ ArtificialBlocks);
+ MBBJoined |= Visited.insert(MBB).second;
+ if (MBBJoined) {
+ MBBJoined = false;
+ Changed = true;
+ // Now that we have started to extend ranges across BBs we need to
+ // examine spill, copy and restore instructions to see whether they
+ // operate with registers that correspond to user variables.
+ // First load any pending inlocs.
+ OpenRanges.insertFromLocSet(getVarLocsInMBB(MBB, InLocs), VarLocIDs);
+ LastNonDbgMI = nullptr;
+ RegSetInstrs.clear();
+ for (auto &MI : *MBB)
+ process(MI, OpenRanges, VarLocIDs, Transfers, EntryValTransfers,
+ RegSetInstrs);
+ OLChanged |= transferTerminator(MBB, OpenRanges, OutLocs, VarLocIDs);
+
+ LLVM_DEBUG(printVarLocInMBB(MF, OutLocs, VarLocIDs,
+ "OutLocs after propagating", dbgs()));
+ LLVM_DEBUG(printVarLocInMBB(MF, InLocs, VarLocIDs,
+ "InLocs after propagating", dbgs()));
+
+ if (OLChanged) {
+ OLChanged = false;
+ for (auto *s : MBB->successors())
+ if (OnPending.insert(s).second) {
+ Pending.push(BBToOrder[s]);
+ }
+ }
+ }
+ }
+ Worklist.swap(Pending);
+ // At this point, pending must be empty, since it was just the empty
+ // worklist
+ assert(Pending.empty() && "Pending should be empty");
+ }
+
+ // Add any DBG_VALUE instructions created by location transfers.
+ for (auto &TR : Transfers) {
+ assert(!TR.TransferInst->isTerminator() &&
+ "Cannot insert DBG_VALUE after terminator");
+ MachineBasicBlock *MBB = TR.TransferInst->getParent();
+ const VarLoc &VL = VarLocIDs[TR.LocationID];
+ MachineInstr *MI = VL.BuildDbgValue(MF);
+ MBB->insertAfterBundle(TR.TransferInst->getIterator(), MI);
+ }
+ Transfers.clear();
+
+ // Add DBG_VALUEs created using Backup Entry Value location.
+ for (auto &TR : EntryValTransfers) {
+ MachineInstr *TRInst = const_cast<MachineInstr *>(TR.first);
+ assert(!TRInst->isTerminator() &&
+ "Cannot insert DBG_VALUE after terminator");
+ MachineBasicBlock *MBB = TRInst->getParent();
+ const VarLoc &VL = VarLocIDs[TR.second];
+ MachineInstr *MI = VL.BuildDbgValue(MF);
+ MBB->insertAfterBundle(TRInst->getIterator(), MI);
+ }
+ EntryValTransfers.clear();
+
+ // Deferred inlocs will not have had any DBG_VALUE insts created; do
+ // that now.
+ flushPendingLocs(InLocs, VarLocIDs);
+
+ LLVM_DEBUG(printVarLocInMBB(MF, OutLocs, VarLocIDs, "Final OutLocs", dbgs()));
+ LLVM_DEBUG(printVarLocInMBB(MF, InLocs, VarLocIDs, "Final InLocs", dbgs()));
+ return Changed;
+}
+
+LDVImpl *
+llvm::makeVarLocBasedLiveDebugValues()
+{
+ return new VarLocBasedLDV();
+}