diff options
Diffstat (limited to 'contrib/llvm-project/llvm/lib/CodeGen/LiveDebugVariables.cpp')
-rw-r--r-- | contrib/llvm-project/llvm/lib/CodeGen/LiveDebugVariables.cpp | 1971 |
1 files changed, 1971 insertions, 0 deletions
diff --git a/contrib/llvm-project/llvm/lib/CodeGen/LiveDebugVariables.cpp b/contrib/llvm-project/llvm/lib/CodeGen/LiveDebugVariables.cpp new file mode 100644 index 000000000000..7cb90af5ff17 --- /dev/null +++ b/contrib/llvm-project/llvm/lib/CodeGen/LiveDebugVariables.cpp @@ -0,0 +1,1971 @@ +//===- LiveDebugVariables.cpp - Tracking debug info variables -------------===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// This file implements the LiveDebugVariables analysis. +// +// Remove all DBG_VALUE instructions referencing virtual registers and replace +// them with a data structure tracking where live user variables are kept - in a +// virtual register or in a stack slot. +// +// Allow the data structure to be updated during register allocation when values +// are moved between registers and stack slots. Finally emit new DBG_VALUE +// instructions after register allocation is complete. +// +//===----------------------------------------------------------------------===// + +#include "LiveDebugVariables.h" +#include "llvm/ADT/ArrayRef.h" +#include "llvm/ADT/DenseMap.h" +#include "llvm/ADT/IntervalMap.h" +#include "llvm/ADT/MapVector.h" +#include "llvm/ADT/STLExtras.h" +#include "llvm/ADT/SmallSet.h" +#include "llvm/ADT/SmallVector.h" +#include "llvm/ADT/Statistic.h" +#include "llvm/ADT/StringRef.h" +#include "llvm/BinaryFormat/Dwarf.h" +#include "llvm/CodeGen/LexicalScopes.h" +#include "llvm/CodeGen/LiveInterval.h" +#include "llvm/CodeGen/LiveIntervals.h" +#include "llvm/CodeGen/MachineBasicBlock.h" +#include "llvm/CodeGen/MachineDominators.h" +#include "llvm/CodeGen/MachineFunction.h" +#include "llvm/CodeGen/MachineInstr.h" +#include "llvm/CodeGen/MachineInstrBuilder.h" +#include "llvm/CodeGen/MachineOperand.h" +#include "llvm/CodeGen/MachineRegisterInfo.h" +#include "llvm/CodeGen/SlotIndexes.h" +#include "llvm/CodeGen/TargetInstrInfo.h" +#include "llvm/CodeGen/TargetOpcodes.h" +#include "llvm/CodeGen/TargetRegisterInfo.h" +#include "llvm/CodeGen/TargetSubtargetInfo.h" +#include "llvm/CodeGen/VirtRegMap.h" +#include "llvm/Config/llvm-config.h" +#include "llvm/IR/DebugInfoMetadata.h" +#include "llvm/IR/DebugLoc.h" +#include "llvm/IR/Function.h" +#include "llvm/InitializePasses.h" +#include "llvm/Pass.h" +#include "llvm/Support/Casting.h" +#include "llvm/Support/CommandLine.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/raw_ostream.h" +#include <algorithm> +#include <cassert> +#include <iterator> +#include <map> +#include <memory> +#include <optional> +#include <utility> + +using namespace llvm; + +#define DEBUG_TYPE "livedebugvars" + +static cl::opt<bool> +EnableLDV("live-debug-variables", cl::init(true), + cl::desc("Enable the live debug variables pass"), cl::Hidden); + +STATISTIC(NumInsertedDebugValues, "Number of DBG_VALUEs inserted"); +STATISTIC(NumInsertedDebugLabels, "Number of DBG_LABELs inserted"); + +char LiveDebugVariables::ID = 0; + +INITIALIZE_PASS_BEGIN(LiveDebugVariables, DEBUG_TYPE, + "Debug Variable Analysis", false, false) +INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) +INITIALIZE_PASS_DEPENDENCY(LiveIntervals) +INITIALIZE_PASS_END(LiveDebugVariables, DEBUG_TYPE, + "Debug Variable Analysis", false, false) + +void LiveDebugVariables::getAnalysisUsage(AnalysisUsage &AU) const { + AU.addRequired<MachineDominatorTree>(); + AU.addRequiredTransitive<LiveIntervals>(); + AU.setPreservesAll(); + MachineFunctionPass::getAnalysisUsage(AU); +} + +LiveDebugVariables::LiveDebugVariables() : MachineFunctionPass(ID) { + initializeLiveDebugVariablesPass(*PassRegistry::getPassRegistry()); +} + +enum : unsigned { UndefLocNo = ~0U }; + +namespace { +/// Describes a debug variable value by location number and expression along +/// with some flags about the original usage of the location. +class DbgVariableValue { +public: + DbgVariableValue(ArrayRef<unsigned> NewLocs, bool WasIndirect, bool WasList, + const DIExpression &Expr) + : WasIndirect(WasIndirect), WasList(WasList), Expression(&Expr) { + assert(!(WasIndirect && WasList) && + "DBG_VALUE_LISTs should not be indirect."); + SmallVector<unsigned> LocNoVec; + for (unsigned LocNo : NewLocs) { + auto It = find(LocNoVec, LocNo); + if (It == LocNoVec.end()) + LocNoVec.push_back(LocNo); + else { + // Loc duplicates an element in LocNos; replace references to Op + // with references to the duplicating element. + unsigned OpIdx = LocNoVec.size(); + unsigned DuplicatingIdx = std::distance(LocNoVec.begin(), It); + Expression = + DIExpression::replaceArg(Expression, OpIdx, DuplicatingIdx); + } + } + // FIXME: Debug values referencing 64+ unique machine locations are rare and + // currently unsupported for performance reasons. If we can verify that + // performance is acceptable for such debug values, we can increase the + // bit-width of LocNoCount to 14 to enable up to 16384 unique machine + // locations. We will also need to verify that this does not cause issues + // with LiveDebugVariables' use of IntervalMap. + if (LocNoVec.size() < 64) { + LocNoCount = LocNoVec.size(); + if (LocNoCount > 0) { + LocNos = std::make_unique<unsigned[]>(LocNoCount); + std::copy(LocNoVec.begin(), LocNoVec.end(), loc_nos_begin()); + } + } else { + LLVM_DEBUG(dbgs() << "Found debug value with 64+ unique machine " + "locations, dropping...\n"); + LocNoCount = 1; + // Turn this into an undef debug value list; right now, the simplest form + // of this is an expression with one arg, and an undef debug operand. + Expression = + DIExpression::get(Expr.getContext(), {dwarf::DW_OP_LLVM_arg, 0}); + if (auto FragmentInfoOpt = Expr.getFragmentInfo()) + Expression = *DIExpression::createFragmentExpression( + Expression, FragmentInfoOpt->OffsetInBits, + FragmentInfoOpt->SizeInBits); + LocNos = std::make_unique<unsigned[]>(LocNoCount); + LocNos[0] = UndefLocNo; + } + } + + DbgVariableValue() : LocNoCount(0), WasIndirect(false), WasList(false) {} + DbgVariableValue(const DbgVariableValue &Other) + : LocNoCount(Other.LocNoCount), WasIndirect(Other.getWasIndirect()), + WasList(Other.getWasList()), Expression(Other.getExpression()) { + if (Other.getLocNoCount()) { + LocNos.reset(new unsigned[Other.getLocNoCount()]); + std::copy(Other.loc_nos_begin(), Other.loc_nos_end(), loc_nos_begin()); + } + } + + DbgVariableValue &operator=(const DbgVariableValue &Other) { + if (this == &Other) + return *this; + if (Other.getLocNoCount()) { + LocNos.reset(new unsigned[Other.getLocNoCount()]); + std::copy(Other.loc_nos_begin(), Other.loc_nos_end(), loc_nos_begin()); + } else { + LocNos.release(); + } + LocNoCount = Other.getLocNoCount(); + WasIndirect = Other.getWasIndirect(); + WasList = Other.getWasList(); + Expression = Other.getExpression(); + return *this; + } + + const DIExpression *getExpression() const { return Expression; } + uint8_t getLocNoCount() const { return LocNoCount; } + bool containsLocNo(unsigned LocNo) const { + return is_contained(loc_nos(), LocNo); + } + bool getWasIndirect() const { return WasIndirect; } + bool getWasList() const { return WasList; } + bool isUndef() const { return LocNoCount == 0 || containsLocNo(UndefLocNo); } + + DbgVariableValue decrementLocNosAfterPivot(unsigned Pivot) const { + SmallVector<unsigned, 4> NewLocNos; + for (unsigned LocNo : loc_nos()) + NewLocNos.push_back(LocNo != UndefLocNo && LocNo > Pivot ? LocNo - 1 + : LocNo); + return DbgVariableValue(NewLocNos, WasIndirect, WasList, *Expression); + } + + DbgVariableValue remapLocNos(ArrayRef<unsigned> LocNoMap) const { + SmallVector<unsigned> NewLocNos; + for (unsigned LocNo : loc_nos()) + // Undef values don't exist in locations (and thus not in LocNoMap + // either) so skip over them. See getLocationNo(). + NewLocNos.push_back(LocNo == UndefLocNo ? UndefLocNo : LocNoMap[LocNo]); + return DbgVariableValue(NewLocNos, WasIndirect, WasList, *Expression); + } + + DbgVariableValue changeLocNo(unsigned OldLocNo, unsigned NewLocNo) const { + SmallVector<unsigned> NewLocNos; + NewLocNos.assign(loc_nos_begin(), loc_nos_end()); + auto OldLocIt = find(NewLocNos, OldLocNo); + assert(OldLocIt != NewLocNos.end() && "Old location must be present."); + *OldLocIt = NewLocNo; + return DbgVariableValue(NewLocNos, WasIndirect, WasList, *Expression); + } + + bool hasLocNoGreaterThan(unsigned LocNo) const { + return any_of(loc_nos(), + [LocNo](unsigned ThisLocNo) { return ThisLocNo > LocNo; }); + } + + void printLocNos(llvm::raw_ostream &OS) const { + for (const unsigned &Loc : loc_nos()) + OS << (&Loc == loc_nos_begin() ? " " : ", ") << Loc; + } + + friend inline bool operator==(const DbgVariableValue &LHS, + const DbgVariableValue &RHS) { + if (std::tie(LHS.LocNoCount, LHS.WasIndirect, LHS.WasList, + LHS.Expression) != + std::tie(RHS.LocNoCount, RHS.WasIndirect, RHS.WasList, RHS.Expression)) + return false; + return std::equal(LHS.loc_nos_begin(), LHS.loc_nos_end(), + RHS.loc_nos_begin()); + } + + friend inline bool operator!=(const DbgVariableValue &LHS, + const DbgVariableValue &RHS) { + return !(LHS == RHS); + } + + unsigned *loc_nos_begin() { return LocNos.get(); } + const unsigned *loc_nos_begin() const { return LocNos.get(); } + unsigned *loc_nos_end() { return LocNos.get() + LocNoCount; } + const unsigned *loc_nos_end() const { return LocNos.get() + LocNoCount; } + ArrayRef<unsigned> loc_nos() const { + return ArrayRef<unsigned>(LocNos.get(), LocNoCount); + } + +private: + // IntervalMap requires the value object to be very small, to the extent + // that we do not have enough room for an std::vector. Using a C-style array + // (with a unique_ptr wrapper for convenience) allows us to optimize for this + // specific case by packing the array size into only 6 bits (it is highly + // unlikely that any debug value will need 64+ locations). + std::unique_ptr<unsigned[]> LocNos; + uint8_t LocNoCount : 6; + bool WasIndirect : 1; + bool WasList : 1; + const DIExpression *Expression = nullptr; +}; +} // namespace + +/// Map of where a user value is live to that value. +using LocMap = IntervalMap<SlotIndex, DbgVariableValue, 4>; + +/// Map of stack slot offsets for spilled locations. +/// Non-spilled locations are not added to the map. +using SpillOffsetMap = DenseMap<unsigned, unsigned>; + +/// Cache to save the location where it can be used as the starting +/// position as input for calling MachineBasicBlock::SkipPHIsLabelsAndDebug. +/// This is to prevent MachineBasicBlock::SkipPHIsLabelsAndDebug from +/// repeatedly searching the same set of PHIs/Labels/Debug instructions +/// if it is called many times for the same block. +using BlockSkipInstsMap = + DenseMap<MachineBasicBlock *, MachineBasicBlock::iterator>; + +namespace { + +class LDVImpl; + +/// A user value is a part of a debug info user variable. +/// +/// A DBG_VALUE instruction notes that (a sub-register of) a virtual register +/// holds part of a user variable. The part is identified by a byte offset. +/// +/// UserValues are grouped into equivalence classes for easier searching. Two +/// user values are related if they are held by the same virtual register. The +/// equivalence class is the transitive closure of that relation. +class UserValue { + const DILocalVariable *Variable; ///< The debug info variable we are part of. + /// The part of the variable we describe. + const std::optional<DIExpression::FragmentInfo> Fragment; + DebugLoc dl; ///< The debug location for the variable. This is + ///< used by dwarf writer to find lexical scope. + UserValue *leader; ///< Equivalence class leader. + UserValue *next = nullptr; ///< Next value in equivalence class, or null. + + /// Numbered locations referenced by locmap. + SmallVector<MachineOperand, 4> locations; + + /// Map of slot indices where this value is live. + LocMap locInts; + + /// Set of interval start indexes that have been trimmed to the + /// lexical scope. + SmallSet<SlotIndex, 2> trimmedDefs; + + /// Insert a DBG_VALUE into MBB at Idx for DbgValue. + void insertDebugValue(MachineBasicBlock *MBB, SlotIndex StartIdx, + SlotIndex StopIdx, DbgVariableValue DbgValue, + ArrayRef<bool> LocSpills, + ArrayRef<unsigned> SpillOffsets, LiveIntervals &LIS, + const TargetInstrInfo &TII, + const TargetRegisterInfo &TRI, + BlockSkipInstsMap &BBSkipInstsMap); + + /// Replace OldLocNo ranges with NewRegs ranges where NewRegs + /// is live. Returns true if any changes were made. + bool splitLocation(unsigned OldLocNo, ArrayRef<Register> NewRegs, + LiveIntervals &LIS); + +public: + /// Create a new UserValue. + UserValue(const DILocalVariable *var, + std::optional<DIExpression::FragmentInfo> Fragment, DebugLoc L, + LocMap::Allocator &alloc) + : Variable(var), Fragment(Fragment), dl(std::move(L)), leader(this), + locInts(alloc) {} + + /// Get the leader of this value's equivalence class. + UserValue *getLeader() { + UserValue *l = leader; + while (l != l->leader) + l = l->leader; + return leader = l; + } + + /// Return the next UserValue in the equivalence class. + UserValue *getNext() const { return next; } + + /// Merge equivalence classes. + static UserValue *merge(UserValue *L1, UserValue *L2) { + L2 = L2->getLeader(); + if (!L1) + return L2; + L1 = L1->getLeader(); + if (L1 == L2) + return L1; + // Splice L2 before L1's members. + UserValue *End = L2; + while (End->next) { + End->leader = L1; + End = End->next; + } + End->leader = L1; + End->next = L1->next; + L1->next = L2; + return L1; + } + + /// Return the location number that matches Loc. + /// + /// For undef values we always return location number UndefLocNo without + /// inserting anything in locations. Since locations is a vector and the + /// location number is the position in the vector and UndefLocNo is ~0, + /// we would need a very big vector to put the value at the right position. + unsigned getLocationNo(const MachineOperand &LocMO) { + if (LocMO.isReg()) { + if (LocMO.getReg() == 0) + return UndefLocNo; + // For register locations we dont care about use/def and other flags. + for (unsigned i = 0, e = locations.size(); i != e; ++i) + if (locations[i].isReg() && + locations[i].getReg() == LocMO.getReg() && + locations[i].getSubReg() == LocMO.getSubReg()) + return i; + } else + for (unsigned i = 0, e = locations.size(); i != e; ++i) + if (LocMO.isIdenticalTo(locations[i])) + return i; + locations.push_back(LocMO); + // We are storing a MachineOperand outside a MachineInstr. + locations.back().clearParent(); + // Don't store def operands. + if (locations.back().isReg()) { + if (locations.back().isDef()) + locations.back().setIsDead(false); + locations.back().setIsUse(); + } + return locations.size() - 1; + } + + /// Remove (recycle) a location number. If \p LocNo still is used by the + /// locInts nothing is done. + void removeLocationIfUnused(unsigned LocNo) { + // Bail out if LocNo still is used. + for (LocMap::const_iterator I = locInts.begin(); I.valid(); ++I) { + const DbgVariableValue &DbgValue = I.value(); + if (DbgValue.containsLocNo(LocNo)) + return; + } + // Remove the entry in the locations vector, and adjust all references to + // location numbers above the removed entry. + locations.erase(locations.begin() + LocNo); + for (LocMap::iterator I = locInts.begin(); I.valid(); ++I) { + const DbgVariableValue &DbgValue = I.value(); + if (DbgValue.hasLocNoGreaterThan(LocNo)) + I.setValueUnchecked(DbgValue.decrementLocNosAfterPivot(LocNo)); + } + } + + /// Ensure that all virtual register locations are mapped. + void mapVirtRegs(LDVImpl *LDV); + + /// Add a definition point to this user value. + void addDef(SlotIndex Idx, ArrayRef<MachineOperand> LocMOs, bool IsIndirect, + bool IsList, const DIExpression &Expr) { + SmallVector<unsigned> Locs; + for (const MachineOperand &Op : LocMOs) + Locs.push_back(getLocationNo(Op)); + DbgVariableValue DbgValue(Locs, IsIndirect, IsList, Expr); + // Add a singular (Idx,Idx) -> value mapping. + LocMap::iterator I = locInts.find(Idx); + if (!I.valid() || I.start() != Idx) + I.insert(Idx, Idx.getNextSlot(), std::move(DbgValue)); + else + // A later DBG_VALUE at the same SlotIndex overrides the old location. + I.setValue(std::move(DbgValue)); + } + + /// Extend the current definition as far as possible down. + /// + /// Stop when meeting an existing def or when leaving the live + /// range of VNI. End points where VNI is no longer live are added to Kills. + /// + /// We only propagate DBG_VALUES locally here. LiveDebugValues performs a + /// data-flow analysis to propagate them beyond basic block boundaries. + /// + /// \param Idx Starting point for the definition. + /// \param DbgValue value to propagate. + /// \param LiveIntervalInfo For each location number key in this map, + /// restricts liveness to where the LiveRange has the value equal to the\ + /// VNInfo. + /// \param [out] Kills Append end points of VNI's live range to Kills. + /// \param LIS Live intervals analysis. + void + extendDef(SlotIndex Idx, DbgVariableValue DbgValue, + SmallDenseMap<unsigned, std::pair<LiveRange *, const VNInfo *>> + &LiveIntervalInfo, + std::optional<std::pair<SlotIndex, SmallVector<unsigned>>> &Kills, + LiveIntervals &LIS); + + /// The value in LI may be copies to other registers. Determine if + /// any of the copies are available at the kill points, and add defs if + /// possible. + /// + /// \param DbgValue Location number of LI->reg, and DIExpression. + /// \param LocIntervals Scan for copies of the value for each location in the + /// corresponding LiveInterval->reg. + /// \param KilledAt The point where the range of DbgValue could be extended. + /// \param [in,out] NewDefs Append (Idx, DbgValue) of inserted defs here. + void addDefsFromCopies( + DbgVariableValue DbgValue, + SmallVectorImpl<std::pair<unsigned, LiveInterval *>> &LocIntervals, + SlotIndex KilledAt, + SmallVectorImpl<std::pair<SlotIndex, DbgVariableValue>> &NewDefs, + MachineRegisterInfo &MRI, LiveIntervals &LIS); + + /// Compute the live intervals of all locations after collecting all their + /// def points. + void computeIntervals(MachineRegisterInfo &MRI, const TargetRegisterInfo &TRI, + LiveIntervals &LIS, LexicalScopes &LS); + + /// Replace OldReg ranges with NewRegs ranges where NewRegs is + /// live. Returns true if any changes were made. + bool splitRegister(Register OldReg, ArrayRef<Register> NewRegs, + LiveIntervals &LIS); + + /// Rewrite virtual register locations according to the provided virtual + /// register map. Record the stack slot offsets for the locations that + /// were spilled. + void rewriteLocations(VirtRegMap &VRM, const MachineFunction &MF, + const TargetInstrInfo &TII, + const TargetRegisterInfo &TRI, + SpillOffsetMap &SpillOffsets); + + /// Recreate DBG_VALUE instruction from data structures. + void emitDebugValues(VirtRegMap *VRM, LiveIntervals &LIS, + const TargetInstrInfo &TII, + const TargetRegisterInfo &TRI, + const SpillOffsetMap &SpillOffsets, + BlockSkipInstsMap &BBSkipInstsMap); + + /// Return DebugLoc of this UserValue. + const DebugLoc &getDebugLoc() { return dl; } + + void print(raw_ostream &, const TargetRegisterInfo *); +}; + +/// A user label is a part of a debug info user label. +class UserLabel { + const DILabel *Label; ///< The debug info label we are part of. + DebugLoc dl; ///< The debug location for the label. This is + ///< used by dwarf writer to find lexical scope. + SlotIndex loc; ///< Slot used by the debug label. + + /// Insert a DBG_LABEL into MBB at Idx. + void insertDebugLabel(MachineBasicBlock *MBB, SlotIndex Idx, + LiveIntervals &LIS, const TargetInstrInfo &TII, + BlockSkipInstsMap &BBSkipInstsMap); + +public: + /// Create a new UserLabel. + UserLabel(const DILabel *label, DebugLoc L, SlotIndex Idx) + : Label(label), dl(std::move(L)), loc(Idx) {} + + /// Does this UserLabel match the parameters? + bool matches(const DILabel *L, const DILocation *IA, + const SlotIndex Index) const { + return Label == L && dl->getInlinedAt() == IA && loc == Index; + } + + /// Recreate DBG_LABEL instruction from data structures. + void emitDebugLabel(LiveIntervals &LIS, const TargetInstrInfo &TII, + BlockSkipInstsMap &BBSkipInstsMap); + + /// Return DebugLoc of this UserLabel. + const DebugLoc &getDebugLoc() { return dl; } + + void print(raw_ostream &, const TargetRegisterInfo *); +}; + +/// Implementation of the LiveDebugVariables pass. +class LDVImpl { + LiveDebugVariables &pass; + LocMap::Allocator allocator; + MachineFunction *MF = nullptr; + LiveIntervals *LIS; + const TargetRegisterInfo *TRI; + + /// Position and VReg of a PHI instruction during register allocation. + struct PHIValPos { + SlotIndex SI; /// Slot where this PHI occurs. + Register Reg; /// VReg this PHI occurs in. + unsigned SubReg; /// Qualifiying subregister for Reg. + }; + + /// Map from debug instruction number to PHI position during allocation. + std::map<unsigned, PHIValPos> PHIValToPos; + /// Index of, for each VReg, which debug instruction numbers and corresponding + /// PHIs are sensitive to splitting. Each VReg may have multiple PHI defs, + /// at different positions. + DenseMap<Register, std::vector<unsigned>> RegToPHIIdx; + + /// Record for any debug instructions unlinked from their blocks during + /// regalloc. Stores the instr and it's location, so that they can be + /// re-inserted after regalloc is over. + struct InstrPos { + MachineInstr *MI; ///< Debug instruction, unlinked from it's block. + SlotIndex Idx; ///< Slot position where MI should be re-inserted. + MachineBasicBlock *MBB; ///< Block that MI was in. + }; + + /// Collection of stored debug instructions, preserved until after regalloc. + SmallVector<InstrPos, 32> StashedDebugInstrs; + + /// Whether emitDebugValues is called. + bool EmitDone = false; + + /// Whether the machine function is modified during the pass. + bool ModifiedMF = false; + + /// All allocated UserValue instances. + SmallVector<std::unique_ptr<UserValue>, 8> userValues; + + /// All allocated UserLabel instances. + SmallVector<std::unique_ptr<UserLabel>, 2> userLabels; + + /// Map virtual register to eq class leader. + using VRMap = DenseMap<unsigned, UserValue *>; + VRMap virtRegToEqClass; + + /// Map to find existing UserValue instances. + using UVMap = DenseMap<DebugVariable, UserValue *>; + UVMap userVarMap; + + /// Find or create a UserValue. + UserValue *getUserValue(const DILocalVariable *Var, + std::optional<DIExpression::FragmentInfo> Fragment, + const DebugLoc &DL); + + /// Find the EC leader for VirtReg or null. + UserValue *lookupVirtReg(Register VirtReg); + + /// Add DBG_VALUE instruction to our maps. + /// + /// \param MI DBG_VALUE instruction + /// \param Idx Last valid SLotIndex before instruction. + /// + /// \returns True if the DBG_VALUE instruction should be deleted. + bool handleDebugValue(MachineInstr &MI, SlotIndex Idx); + + /// Track variable location debug instructions while using the instruction + /// referencing implementation. Such debug instructions do not need to be + /// updated during regalloc because they identify instructions rather than + /// register locations. However, they needs to be removed from the + /// MachineFunction during regalloc, then re-inserted later, to avoid + /// disrupting the allocator. + /// + /// \param MI Any DBG_VALUE / DBG_INSTR_REF / DBG_PHI instruction + /// \param Idx Last valid SlotIndex before instruction + /// + /// \returns Iterator to continue processing from after unlinking. + MachineBasicBlock::iterator handleDebugInstr(MachineInstr &MI, SlotIndex Idx); + + /// Add DBG_LABEL instruction to UserLabel. + /// + /// \param MI DBG_LABEL instruction + /// \param Idx Last valid SlotIndex before instruction. + /// + /// \returns True if the DBG_LABEL instruction should be deleted. + bool handleDebugLabel(MachineInstr &MI, SlotIndex Idx); + + /// Collect and erase all DBG_VALUE instructions, adding a UserValue def + /// for each instruction. + /// + /// \param mf MachineFunction to be scanned. + /// \param InstrRef Whether to operate in instruction referencing mode. If + /// true, most of LiveDebugVariables doesn't run. + /// + /// \returns True if any debug values were found. + bool collectDebugValues(MachineFunction &mf, bool InstrRef); + + /// Compute the live intervals of all user values after collecting all + /// their def points. + void computeIntervals(); + +public: + LDVImpl(LiveDebugVariables *ps) : pass(*ps) {} + + bool runOnMachineFunction(MachineFunction &mf, bool InstrRef); + + /// Release all memory. + void clear() { + MF = nullptr; + PHIValToPos.clear(); + RegToPHIIdx.clear(); + StashedDebugInstrs.clear(); + userValues.clear(); + userLabels.clear(); + virtRegToEqClass.clear(); + userVarMap.clear(); + // Make sure we call emitDebugValues if the machine function was modified. + assert((!ModifiedMF || EmitDone) && + "Dbg values are not emitted in LDV"); + EmitDone = false; + ModifiedMF = false; + } + + /// Map virtual register to an equivalence class. + void mapVirtReg(Register VirtReg, UserValue *EC); + + /// Replace any PHI referring to OldReg with its corresponding NewReg, if + /// present. + void splitPHIRegister(Register OldReg, ArrayRef<Register> NewRegs); + + /// Replace all references to OldReg with NewRegs. + void splitRegister(Register OldReg, ArrayRef<Register> NewRegs); + + /// Recreate DBG_VALUE instruction from data structures. + void emitDebugValues(VirtRegMap *VRM); + + void print(raw_ostream&); +}; + +} // end anonymous namespace + +#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) +static void printDebugLoc(const DebugLoc &DL, raw_ostream &CommentOS, + const LLVMContext &Ctx) { + if (!DL) + return; + + auto *Scope = cast<DIScope>(DL.getScope()); + // Omit the directory, because it's likely to be long and uninteresting. + CommentOS << Scope->getFilename(); + CommentOS << ':' << DL.getLine(); + if (DL.getCol() != 0) + CommentOS << ':' << DL.getCol(); + + DebugLoc InlinedAtDL = DL.getInlinedAt(); + if (!InlinedAtDL) + return; + + CommentOS << " @[ "; + printDebugLoc(InlinedAtDL, CommentOS, Ctx); + CommentOS << " ]"; +} + +static void printExtendedName(raw_ostream &OS, const DINode *Node, + const DILocation *DL) { + const LLVMContext &Ctx = Node->getContext(); + StringRef Res; + unsigned Line = 0; + if (const auto *V = dyn_cast<const DILocalVariable>(Node)) { + Res = V->getName(); + Line = V->getLine(); + } else if (const auto *L = dyn_cast<const DILabel>(Node)) { + Res = L->getName(); + Line = L->getLine(); + } + + if (!Res.empty()) + OS << Res << "," << Line; + auto *InlinedAt = DL ? DL->getInlinedAt() : nullptr; + if (InlinedAt) { + if (DebugLoc InlinedAtDL = InlinedAt) { + OS << " @["; + printDebugLoc(InlinedAtDL, OS, Ctx); + OS << "]"; + } + } +} + +void UserValue::print(raw_ostream &OS, const TargetRegisterInfo *TRI) { + OS << "!\""; + printExtendedName(OS, Variable, dl); + + OS << "\"\t"; + for (LocMap::const_iterator I = locInts.begin(); I.valid(); ++I) { + OS << " [" << I.start() << ';' << I.stop() << "):"; + if (I.value().isUndef()) + OS << " undef"; + else { + I.value().printLocNos(OS); + if (I.value().getWasIndirect()) + OS << " ind"; + else if (I.value().getWasList()) + OS << " list"; + } + } + for (unsigned i = 0, e = locations.size(); i != e; ++i) { + OS << " Loc" << i << '='; + locations[i].print(OS, TRI); + } + OS << '\n'; +} + +void UserLabel::print(raw_ostream &OS, const TargetRegisterInfo *TRI) { + OS << "!\""; + printExtendedName(OS, Label, dl); + + OS << "\"\t"; + OS << loc; + OS << '\n'; +} + +void LDVImpl::print(raw_ostream &OS) { + OS << "********** DEBUG VARIABLES **********\n"; + for (auto &userValue : userValues) + userValue->print(OS, TRI); + OS << "********** DEBUG LABELS **********\n"; + for (auto &userLabel : userLabels) + userLabel->print(OS, TRI); +} +#endif + +void UserValue::mapVirtRegs(LDVImpl *LDV) { + for (unsigned i = 0, e = locations.size(); i != e; ++i) + if (locations[i].isReg() && locations[i].getReg().isVirtual()) + LDV->mapVirtReg(locations[i].getReg(), this); +} + +UserValue * +LDVImpl::getUserValue(const DILocalVariable *Var, + std::optional<DIExpression::FragmentInfo> Fragment, + const DebugLoc &DL) { + // FIXME: Handle partially overlapping fragments. See + // https://reviews.llvm.org/D70121#1849741. + DebugVariable ID(Var, Fragment, DL->getInlinedAt()); + UserValue *&UV = userVarMap[ID]; + if (!UV) { + userValues.push_back( + std::make_unique<UserValue>(Var, Fragment, DL, allocator)); + UV = userValues.back().get(); + } + return UV; +} + +void LDVImpl::mapVirtReg(Register VirtReg, UserValue *EC) { + assert(VirtReg.isVirtual() && "Only map VirtRegs"); + UserValue *&Leader = virtRegToEqClass[VirtReg]; + Leader = UserValue::merge(Leader, EC); +} + +UserValue *LDVImpl::lookupVirtReg(Register VirtReg) { + if (UserValue *UV = virtRegToEqClass.lookup(VirtReg)) + return UV->getLeader(); + return nullptr; +} + +bool LDVImpl::handleDebugValue(MachineInstr &MI, SlotIndex Idx) { + // DBG_VALUE loc, offset, variable, expr + // DBG_VALUE_LIST variable, expr, locs... + if (!MI.isDebugValue()) { + LLVM_DEBUG(dbgs() << "Can't handle non-DBG_VALUE*: " << MI); + return false; + } + if (!MI.getDebugVariableOp().isMetadata()) { + LLVM_DEBUG(dbgs() << "Can't handle DBG_VALUE* with invalid variable: " + << MI); + return false; + } + if (MI.isNonListDebugValue() && + (MI.getNumOperands() != 4 || + !(MI.getDebugOffset().isImm() || MI.getDebugOffset().isReg()))) { + LLVM_DEBUG(dbgs() << "Can't handle malformed DBG_VALUE: " << MI); + return false; + } + + // Detect invalid DBG_VALUE instructions, with a debug-use of a virtual + // register that hasn't been defined yet. If we do not remove those here, then + // the re-insertion of the DBG_VALUE instruction after register allocation + // will be incorrect. + bool Discard = false; + for (const MachineOperand &Op : MI.debug_operands()) { + if (Op.isReg() && Op.getReg().isVirtual()) { + const Register Reg = Op.getReg(); + if (!LIS->hasInterval(Reg)) { + // The DBG_VALUE is described by a virtual register that does not have a + // live interval. Discard the DBG_VALUE. + Discard = true; + LLVM_DEBUG(dbgs() << "Discarding debug info (no LIS interval): " << Idx + << " " << MI); + } else { + // The DBG_VALUE is only valid if either Reg is live out from Idx, or + // Reg is defined dead at Idx (where Idx is the slot index for the + // instruction preceding the DBG_VALUE). + const LiveInterval &LI = LIS->getInterval(Reg); + LiveQueryResult LRQ = LI.Query(Idx); + if (!LRQ.valueOutOrDead()) { + // We have found a DBG_VALUE with the value in a virtual register that + // is not live. Discard the DBG_VALUE. + Discard = true; + LLVM_DEBUG(dbgs() << "Discarding debug info (reg not live): " << Idx + << " " << MI); + } + } + } + } + + // Get or create the UserValue for (variable,offset) here. + bool IsIndirect = MI.isDebugOffsetImm(); + if (IsIndirect) + assert(MI.getDebugOffset().getImm() == 0 && + "DBG_VALUE with nonzero offset"); + bool IsList = MI.isDebugValueList(); + const DILocalVariable *Var = MI.getDebugVariable(); + const DIExpression *Expr = MI.getDebugExpression(); + UserValue *UV = getUserValue(Var, Expr->getFragmentInfo(), MI.getDebugLoc()); + if (!Discard) + UV->addDef(Idx, + ArrayRef<MachineOperand>(MI.debug_operands().begin(), + MI.debug_operands().end()), + IsIndirect, IsList, *Expr); + else { + MachineOperand MO = MachineOperand::CreateReg(0U, false); + MO.setIsDebug(); + // We should still pass a list the same size as MI.debug_operands() even if + // all MOs are undef, so that DbgVariableValue can correctly adjust the + // expression while removing the duplicated undefs. + SmallVector<MachineOperand, 4> UndefMOs(MI.getNumDebugOperands(), MO); + UV->addDef(Idx, UndefMOs, false, IsList, *Expr); + } + return true; +} + +MachineBasicBlock::iterator LDVImpl::handleDebugInstr(MachineInstr &MI, + SlotIndex Idx) { + assert(MI.isDebugValueLike() || MI.isDebugPHI()); + + // In instruction referencing mode, there should be no DBG_VALUE instructions + // that refer to virtual registers. They might still refer to constants. + if (MI.isDebugValueLike()) + assert(none_of(MI.debug_operands(), + [](const MachineOperand &MO) { + return MO.isReg() && MO.getReg().isVirtual(); + }) && + "MIs should not refer to Virtual Registers in InstrRef mode."); + + // Unlink the instruction, store it in the debug instructions collection. + auto NextInst = std::next(MI.getIterator()); + auto *MBB = MI.getParent(); + MI.removeFromParent(); + StashedDebugInstrs.push_back({&MI, Idx, MBB}); + return NextInst; +} + +bool LDVImpl::handleDebugLabel(MachineInstr &MI, SlotIndex Idx) { + // DBG_LABEL label + if (MI.getNumOperands() != 1 || !MI.getOperand(0).isMetadata()) { + LLVM_DEBUG(dbgs() << "Can't handle " << MI); + return false; + } + + // Get or create the UserLabel for label here. + const DILabel *Label = MI.getDebugLabel(); + const DebugLoc &DL = MI.getDebugLoc(); + bool Found = false; + for (auto const &L : userLabels) { + if (L->matches(Label, DL->getInlinedAt(), Idx)) { + Found = true; + break; + } + } + if (!Found) + userLabels.push_back(std::make_unique<UserLabel>(Label, DL, Idx)); + + return true; +} + +bool LDVImpl::collectDebugValues(MachineFunction &mf, bool InstrRef) { + bool Changed = false; + for (MachineBasicBlock &MBB : mf) { + for (MachineBasicBlock::iterator MBBI = MBB.begin(), MBBE = MBB.end(); + MBBI != MBBE;) { + // Use the first debug instruction in the sequence to get a SlotIndex + // for following consecutive debug instructions. + if (!MBBI->isDebugOrPseudoInstr()) { + ++MBBI; + continue; + } + // Debug instructions has no slot index. Use the previous + // non-debug instruction's SlotIndex as its SlotIndex. + SlotIndex Idx = + MBBI == MBB.begin() + ? LIS->getMBBStartIdx(&MBB) + : LIS->getInstructionIndex(*std::prev(MBBI)).getRegSlot(); + // Handle consecutive debug instructions with the same slot index. + do { + // In instruction referencing mode, pass each instr to handleDebugInstr + // to be unlinked. Ignore DBG_VALUE_LISTs -- they refer to vregs, and + // need to go through the normal live interval splitting process. + if (InstrRef && (MBBI->isNonListDebugValue() || MBBI->isDebugPHI() || + MBBI->isDebugRef())) { + MBBI = handleDebugInstr(*MBBI, Idx); + Changed = true; + // In normal debug mode, use the dedicated DBG_VALUE / DBG_LABEL handler + // to track things through register allocation, and erase the instr. + } else if ((MBBI->isDebugValue() && handleDebugValue(*MBBI, Idx)) || + (MBBI->isDebugLabel() && handleDebugLabel(*MBBI, Idx))) { + MBBI = MBB.erase(MBBI); + Changed = true; + } else + ++MBBI; + } while (MBBI != MBBE && MBBI->isDebugOrPseudoInstr()); + } + } + return Changed; +} + +void UserValue::extendDef( + SlotIndex Idx, DbgVariableValue DbgValue, + SmallDenseMap<unsigned, std::pair<LiveRange *, const VNInfo *>> + &LiveIntervalInfo, + std::optional<std::pair<SlotIndex, SmallVector<unsigned>>> &Kills, + LiveIntervals &LIS) { + SlotIndex Start = Idx; + MachineBasicBlock *MBB = LIS.getMBBFromIndex(Start); + SlotIndex Stop = LIS.getMBBEndIdx(MBB); + LocMap::iterator I = locInts.find(Start); + + // Limit to the intersection of the VNIs' live ranges. + for (auto &LII : LiveIntervalInfo) { + LiveRange *LR = LII.second.first; + assert(LR && LII.second.second && "Missing range info for Idx."); + LiveInterval::Segment *Segment = LR->getSegmentContaining(Start); + assert(Segment && Segment->valno == LII.second.second && + "Invalid VNInfo for Idx given?"); + if (Segment->end < Stop) { + Stop = Segment->end; + Kills = {Stop, {LII.first}}; + } else if (Segment->end == Stop && Kills) { + // If multiple locations end at the same place, track all of them in + // Kills. + Kills->second.push_back(LII.first); + } + } + + // There could already be a short def at Start. + if (I.valid() && I.start() <= Start) { + // Stop when meeting a different location or an already extended interval. + Start = Start.getNextSlot(); + if (I.value() != DbgValue || I.stop() != Start) { + // Clear `Kills`, as we have a new def available. + Kills = std::nullopt; + return; + } + // This is a one-slot placeholder. Just skip it. + ++I; + } + + // Limited by the next def. + if (I.valid() && I.start() < Stop) { + Stop = I.start(); + // Clear `Kills`, as we have a new def available. + Kills = std::nullopt; + } + + if (Start < Stop) { + DbgVariableValue ExtDbgValue(DbgValue); + I.insert(Start, Stop, std::move(ExtDbgValue)); + } +} + +void UserValue::addDefsFromCopies( + DbgVariableValue DbgValue, + SmallVectorImpl<std::pair<unsigned, LiveInterval *>> &LocIntervals, + SlotIndex KilledAt, + SmallVectorImpl<std::pair<SlotIndex, DbgVariableValue>> &NewDefs, + MachineRegisterInfo &MRI, LiveIntervals &LIS) { + // Don't track copies from physregs, there are too many uses. + if (any_of(LocIntervals, + [](auto LocI) { return !LocI.second->reg().isVirtual(); })) + return; + + // Collect all the (vreg, valno) pairs that are copies of LI. + SmallDenseMap<unsigned, + SmallVector<std::pair<LiveInterval *, const VNInfo *>, 4>> + CopyValues; + for (auto &LocInterval : LocIntervals) { + unsigned LocNo = LocInterval.first; + LiveInterval *LI = LocInterval.second; + for (MachineOperand &MO : MRI.use_nodbg_operands(LI->reg())) { + MachineInstr *MI = MO.getParent(); + // Copies of the full value. + if (MO.getSubReg() || !MI->isCopy()) + continue; + Register DstReg = MI->getOperand(0).getReg(); + + // Don't follow copies to physregs. These are usually setting up call + // arguments, and the argument registers are always call clobbered. We are + // better off in the source register which could be a callee-saved + // register, or it could be spilled. + if (!DstReg.isVirtual()) + continue; + + // Is the value extended to reach this copy? If not, another def may be + // blocking it, or we are looking at a wrong value of LI. + SlotIndex Idx = LIS.getInstructionIndex(*MI); + LocMap::iterator I = locInts.find(Idx.getRegSlot(true)); + if (!I.valid() || I.value() != DbgValue) + continue; + + if (!LIS.hasInterval(DstReg)) + continue; + LiveInterval *DstLI = &LIS.getInterval(DstReg); + const VNInfo *DstVNI = DstLI->getVNInfoAt(Idx.getRegSlot()); + assert(DstVNI && DstVNI->def == Idx.getRegSlot() && "Bad copy value"); + CopyValues[LocNo].push_back(std::make_pair(DstLI, DstVNI)); + } + } + + if (CopyValues.empty()) + return; + +#if !defined(NDEBUG) + for (auto &LocInterval : LocIntervals) + LLVM_DEBUG(dbgs() << "Got " << CopyValues[LocInterval.first].size() + << " copies of " << *LocInterval.second << '\n'); +#endif + + // Try to add defs of the copied values for the kill point. Check that there + // isn't already a def at Idx. + LocMap::iterator I = locInts.find(KilledAt); + if (I.valid() && I.start() <= KilledAt) + return; + DbgVariableValue NewValue(DbgValue); + for (auto &LocInterval : LocIntervals) { + unsigned LocNo = LocInterval.first; + bool FoundCopy = false; + for (auto &LIAndVNI : CopyValues[LocNo]) { + LiveInterval *DstLI = LIAndVNI.first; + const VNInfo *DstVNI = LIAndVNI.second; + if (DstLI->getVNInfoAt(KilledAt) != DstVNI) + continue; + LLVM_DEBUG(dbgs() << "Kill at " << KilledAt << " covered by valno #" + << DstVNI->id << " in " << *DstLI << '\n'); + MachineInstr *CopyMI = LIS.getInstructionFromIndex(DstVNI->def); + assert(CopyMI && CopyMI->isCopy() && "Bad copy value"); + unsigned NewLocNo = getLocationNo(CopyMI->getOperand(0)); + NewValue = NewValue.changeLocNo(LocNo, NewLocNo); + FoundCopy = true; + break; + } + // If there are any killed locations we can't find a copy for, we can't + // extend the variable value. + if (!FoundCopy) + return; + } + I.insert(KilledAt, KilledAt.getNextSlot(), NewValue); + NewDefs.push_back(std::make_pair(KilledAt, NewValue)); +} + +void UserValue::computeIntervals(MachineRegisterInfo &MRI, + const TargetRegisterInfo &TRI, + LiveIntervals &LIS, LexicalScopes &LS) { + SmallVector<std::pair<SlotIndex, DbgVariableValue>, 16> Defs; + + // Collect all defs to be extended (Skipping undefs). + for (LocMap::const_iterator I = locInts.begin(); I.valid(); ++I) + if (!I.value().isUndef()) + Defs.push_back(std::make_pair(I.start(), I.value())); + + // Extend all defs, and possibly add new ones along the way. + for (unsigned i = 0; i != Defs.size(); ++i) { + SlotIndex Idx = Defs[i].first; + DbgVariableValue DbgValue = Defs[i].second; + SmallDenseMap<unsigned, std::pair<LiveRange *, const VNInfo *>> LIs; + SmallVector<const VNInfo *, 4> VNIs; + bool ShouldExtendDef = false; + for (unsigned LocNo : DbgValue.loc_nos()) { + const MachineOperand &LocMO = locations[LocNo]; + if (!LocMO.isReg() || !LocMO.getReg().isVirtual()) { + ShouldExtendDef |= !LocMO.isReg(); + continue; + } + ShouldExtendDef = true; + LiveInterval *LI = nullptr; + const VNInfo *VNI = nullptr; + if (LIS.hasInterval(LocMO.getReg())) { + LI = &LIS.getInterval(LocMO.getReg()); + VNI = LI->getVNInfoAt(Idx); + } + if (LI && VNI) + LIs[LocNo] = {LI, VNI}; + } + if (ShouldExtendDef) { + std::optional<std::pair<SlotIndex, SmallVector<unsigned>>> Kills; + extendDef(Idx, DbgValue, LIs, Kills, LIS); + + if (Kills) { + SmallVector<std::pair<unsigned, LiveInterval *>, 2> KilledLocIntervals; + bool AnySubreg = false; + for (unsigned LocNo : Kills->second) { + const MachineOperand &LocMO = this->locations[LocNo]; + if (LocMO.getSubReg()) { + AnySubreg = true; + break; + } + LiveInterval *LI = &LIS.getInterval(LocMO.getReg()); + KilledLocIntervals.push_back({LocNo, LI}); + } + + // FIXME: Handle sub-registers in addDefsFromCopies. The problem is that + // if the original location for example is %vreg0:sub_hi, and we find a + // full register copy in addDefsFromCopies (at the moment it only + // handles full register copies), then we must add the sub1 sub-register + // index to the new location. However, that is only possible if the new + // virtual register is of the same regclass (or if there is an + // equivalent sub-register in that regclass). For now, simply skip + // handling copies if a sub-register is involved. + if (!AnySubreg) + addDefsFromCopies(DbgValue, KilledLocIntervals, Kills->first, Defs, + MRI, LIS); + } + } + + // For physregs, we only mark the start slot idx. DwarfDebug will see it + // as if the DBG_VALUE is valid up until the end of the basic block, or + // the next def of the physical register. So we do not need to extend the + // range. It might actually happen that the DBG_VALUE is the last use of + // the physical register (e.g. if this is an unused input argument to a + // function). + } + + // The computed intervals may extend beyond the range of the debug + // location's lexical scope. In this case, splitting of an interval + // can result in an interval outside of the scope being created, + // causing extra unnecessary DBG_VALUEs to be emitted. To prevent + // this, trim the intervals to the lexical scope in the case of inlined + // variables, since heavy inlining may cause production of dramatically big + // number of DBG_VALUEs to be generated. + if (!dl.getInlinedAt()) + return; + + LexicalScope *Scope = LS.findLexicalScope(dl); + if (!Scope) + return; + + SlotIndex PrevEnd; + LocMap::iterator I = locInts.begin(); + + // Iterate over the lexical scope ranges. Each time round the loop + // we check the intervals for overlap with the end of the previous + // range and the start of the next. The first range is handled as + // a special case where there is no PrevEnd. + for (const InsnRange &Range : Scope->getRanges()) { + SlotIndex RStart = LIS.getInstructionIndex(*Range.first); + SlotIndex REnd = LIS.getInstructionIndex(*Range.second); + + // Variable locations at the first instruction of a block should be + // based on the block's SlotIndex, not the first instruction's index. + if (Range.first == Range.first->getParent()->begin()) + RStart = LIS.getSlotIndexes()->getIndexBefore(*Range.first); + + // At the start of each iteration I has been advanced so that + // I.stop() >= PrevEnd. Check for overlap. + if (PrevEnd && I.start() < PrevEnd) { + SlotIndex IStop = I.stop(); + DbgVariableValue DbgValue = I.value(); + + // Stop overlaps previous end - trim the end of the interval to + // the scope range. + I.setStopUnchecked(PrevEnd); + ++I; + + // If the interval also overlaps the start of the "next" (i.e. + // current) range create a new interval for the remainder (which + // may be further trimmed). + if (RStart < IStop) + I.insert(RStart, IStop, DbgValue); + } + + // Advance I so that I.stop() >= RStart, and check for overlap. + I.advanceTo(RStart); + if (!I.valid()) + return; + + if (I.start() < RStart) { + // Interval start overlaps range - trim to the scope range. + I.setStartUnchecked(RStart); + // Remember that this interval was trimmed. + trimmedDefs.insert(RStart); + } + + // The end of a lexical scope range is the last instruction in the + // range. To convert to an interval we need the index of the + // instruction after it. + REnd = REnd.getNextIndex(); + + // Advance I to first interval outside current range. + I.advanceTo(REnd); + if (!I.valid()) + return; + + PrevEnd = REnd; + } + + // Check for overlap with end of final range. + if (PrevEnd && I.start() < PrevEnd) + I.setStopUnchecked(PrevEnd); +} + +void LDVImpl::computeIntervals() { + LexicalScopes LS; + LS.initialize(*MF); + + for (unsigned i = 0, e = userValues.size(); i != e; ++i) { + userValues[i]->computeIntervals(MF->getRegInfo(), *TRI, *LIS, LS); + userValues[i]->mapVirtRegs(this); + } +} + +bool LDVImpl::runOnMachineFunction(MachineFunction &mf, bool InstrRef) { + clear(); + MF = &mf; + LIS = &pass.getAnalysis<LiveIntervals>(); + TRI = mf.getSubtarget().getRegisterInfo(); + LLVM_DEBUG(dbgs() << "********** COMPUTING LIVE DEBUG VARIABLES: " + << mf.getName() << " **********\n"); + + bool Changed = collectDebugValues(mf, InstrRef); + computeIntervals(); + LLVM_DEBUG(print(dbgs())); + + // Collect the set of VReg / SlotIndexs where PHIs occur; index the sensitive + // VRegs too, for when we're notified of a range split. + SlotIndexes *Slots = LIS->getSlotIndexes(); + for (const auto &PHIIt : MF->DebugPHIPositions) { + const MachineFunction::DebugPHIRegallocPos &Position = PHIIt.second; + MachineBasicBlock *MBB = Position.MBB; + Register Reg = Position.Reg; + unsigned SubReg = Position.SubReg; + SlotIndex SI = Slots->getMBBStartIdx(MBB); + PHIValPos VP = {SI, Reg, SubReg}; + PHIValToPos.insert(std::make_pair(PHIIt.first, VP)); + RegToPHIIdx[Reg].push_back(PHIIt.first); + } + + ModifiedMF = Changed; + return Changed; +} + +static void removeDebugInstrs(MachineFunction &mf) { + for (MachineBasicBlock &MBB : mf) { + for (MachineInstr &MI : llvm::make_early_inc_range(MBB)) + if (MI.isDebugInstr()) + MBB.erase(&MI); + } +} + +bool LiveDebugVariables::runOnMachineFunction(MachineFunction &mf) { + if (!EnableLDV) + return false; + if (!mf.getFunction().getSubprogram()) { + removeDebugInstrs(mf); + return false; + } + + // Have we been asked to track variable locations using instruction + // referencing? + bool InstrRef = mf.useDebugInstrRef(); + + if (!pImpl) + pImpl = new LDVImpl(this); + return static_cast<LDVImpl *>(pImpl)->runOnMachineFunction(mf, InstrRef); +} + +void LiveDebugVariables::releaseMemory() { + if (pImpl) + static_cast<LDVImpl*>(pImpl)->clear(); +} + +LiveDebugVariables::~LiveDebugVariables() { + if (pImpl) + delete static_cast<LDVImpl*>(pImpl); +} + +//===----------------------------------------------------------------------===// +// Live Range Splitting +//===----------------------------------------------------------------------===// + +bool +UserValue::splitLocation(unsigned OldLocNo, ArrayRef<Register> NewRegs, + LiveIntervals& LIS) { + LLVM_DEBUG({ + dbgs() << "Splitting Loc" << OldLocNo << '\t'; + print(dbgs(), nullptr); + }); + bool DidChange = false; + LocMap::iterator LocMapI; + LocMapI.setMap(locInts); + for (Register NewReg : NewRegs) { + LiveInterval *LI = &LIS.getInterval(NewReg); + if (LI->empty()) + continue; + + // Don't allocate the new LocNo until it is needed. + unsigned NewLocNo = UndefLocNo; + + // Iterate over the overlaps between locInts and LI. + LocMapI.find(LI->beginIndex()); + if (!LocMapI.valid()) + continue; + LiveInterval::iterator LII = LI->advanceTo(LI->begin(), LocMapI.start()); + LiveInterval::iterator LIE = LI->end(); + while (LocMapI.valid() && LII != LIE) { + // At this point, we know that LocMapI.stop() > LII->start. + LII = LI->advanceTo(LII, LocMapI.start()); + if (LII == LIE) + break; + + // Now LII->end > LocMapI.start(). Do we have an overlap? + if (LocMapI.value().containsLocNo(OldLocNo) && + LII->start < LocMapI.stop()) { + // Overlapping correct location. Allocate NewLocNo now. + if (NewLocNo == UndefLocNo) { + MachineOperand MO = MachineOperand::CreateReg(LI->reg(), false); + MO.setSubReg(locations[OldLocNo].getSubReg()); + NewLocNo = getLocationNo(MO); + DidChange = true; + } + + SlotIndex LStart = LocMapI.start(); + SlotIndex LStop = LocMapI.stop(); + DbgVariableValue OldDbgValue = LocMapI.value(); + + // Trim LocMapI down to the LII overlap. + if (LStart < LII->start) + LocMapI.setStartUnchecked(LII->start); + if (LStop > LII->end) + LocMapI.setStopUnchecked(LII->end); + + // Change the value in the overlap. This may trigger coalescing. + LocMapI.setValue(OldDbgValue.changeLocNo(OldLocNo, NewLocNo)); + + // Re-insert any removed OldDbgValue ranges. + if (LStart < LocMapI.start()) { + LocMapI.insert(LStart, LocMapI.start(), OldDbgValue); + ++LocMapI; + assert(LocMapI.valid() && "Unexpected coalescing"); + } + if (LStop > LocMapI.stop()) { + ++LocMapI; + LocMapI.insert(LII->end, LStop, OldDbgValue); + --LocMapI; + } + } + + // Advance to the next overlap. + if (LII->end < LocMapI.stop()) { + if (++LII == LIE) + break; + LocMapI.advanceTo(LII->start); + } else { + ++LocMapI; + if (!LocMapI.valid()) + break; + LII = LI->advanceTo(LII, LocMapI.start()); + } + } + } + + // Finally, remove OldLocNo unless it is still used by some interval in the + // locInts map. One case when OldLocNo still is in use is when the register + // has been spilled. In such situations the spilled register is kept as a + // location until rewriteLocations is called (VirtRegMap is mapping the old + // register to the spill slot). So for a while we can have locations that map + // to virtual registers that have been removed from both the MachineFunction + // and from LiveIntervals. + // + // We may also just be using the location for a value with a different + // expression. + removeLocationIfUnused(OldLocNo); + + LLVM_DEBUG({ + dbgs() << "Split result: \t"; + print(dbgs(), nullptr); + }); + return DidChange; +} + +bool +UserValue::splitRegister(Register OldReg, ArrayRef<Register> NewRegs, + LiveIntervals &LIS) { + bool DidChange = false; + // Split locations referring to OldReg. Iterate backwards so splitLocation can + // safely erase unused locations. + for (unsigned i = locations.size(); i ; --i) { + unsigned LocNo = i-1; + const MachineOperand *Loc = &locations[LocNo]; + if (!Loc->isReg() || Loc->getReg() != OldReg) + continue; + DidChange |= splitLocation(LocNo, NewRegs, LIS); + } + return DidChange; +} + +void LDVImpl::splitPHIRegister(Register OldReg, ArrayRef<Register> NewRegs) { + auto RegIt = RegToPHIIdx.find(OldReg); + if (RegIt == RegToPHIIdx.end()) + return; + + std::vector<std::pair<Register, unsigned>> NewRegIdxes; + // Iterate over all the debug instruction numbers affected by this split. + for (unsigned InstrID : RegIt->second) { + auto PHIIt = PHIValToPos.find(InstrID); + assert(PHIIt != PHIValToPos.end()); + const SlotIndex &Slot = PHIIt->second.SI; + assert(OldReg == PHIIt->second.Reg); + + // Find the new register that covers this position. + for (auto NewReg : NewRegs) { + const LiveInterval &LI = LIS->getInterval(NewReg); + auto LII = LI.find(Slot); + if (LII != LI.end() && LII->start <= Slot) { + // This new register covers this PHI position, record this for indexing. + NewRegIdxes.push_back(std::make_pair(NewReg, InstrID)); + // Record that this value lives in a different VReg now. + PHIIt->second.Reg = NewReg; + break; + } + } + + // If we do not find a new register covering this PHI, then register + // allocation has dropped its location, for example because it's not live. + // The old VReg will not be mapped to a physreg, and the instruction + // number will have been optimized out. + } + + // Re-create register index using the new register numbers. + RegToPHIIdx.erase(RegIt); + for (auto &RegAndInstr : NewRegIdxes) + RegToPHIIdx[RegAndInstr.first].push_back(RegAndInstr.second); +} + +void LDVImpl::splitRegister(Register OldReg, ArrayRef<Register> NewRegs) { + // Consider whether this split range affects any PHI locations. + splitPHIRegister(OldReg, NewRegs); + + // Check whether any intervals mapped by a DBG_VALUE were split and need + // updating. + bool DidChange = false; + for (UserValue *UV = lookupVirtReg(OldReg); UV; UV = UV->getNext()) + DidChange |= UV->splitRegister(OldReg, NewRegs, *LIS); + + if (!DidChange) + return; + + // Map all of the new virtual registers. + UserValue *UV = lookupVirtReg(OldReg); + for (Register NewReg : NewRegs) + mapVirtReg(NewReg, UV); +} + +void LiveDebugVariables:: +splitRegister(Register OldReg, ArrayRef<Register> NewRegs, LiveIntervals &LIS) { + if (pImpl) + static_cast<LDVImpl*>(pImpl)->splitRegister(OldReg, NewRegs); +} + +void UserValue::rewriteLocations(VirtRegMap &VRM, const MachineFunction &MF, + const TargetInstrInfo &TII, + const TargetRegisterInfo &TRI, + SpillOffsetMap &SpillOffsets) { + // Build a set of new locations with new numbers so we can coalesce our + // IntervalMap if two vreg intervals collapse to the same physical location. + // Use MapVector instead of SetVector because MapVector::insert returns the + // position of the previously or newly inserted element. The boolean value + // tracks if the location was produced by a spill. + // FIXME: This will be problematic if we ever support direct and indirect + // frame index locations, i.e. expressing both variables in memory and + // 'int x, *px = &x'. The "spilled" bit must become part of the location. + MapVector<MachineOperand, std::pair<bool, unsigned>> NewLocations; + SmallVector<unsigned, 4> LocNoMap(locations.size()); + for (unsigned I = 0, E = locations.size(); I != E; ++I) { + bool Spilled = false; + unsigned SpillOffset = 0; + MachineOperand Loc = locations[I]; + // Only virtual registers are rewritten. + if (Loc.isReg() && Loc.getReg() && Loc.getReg().isVirtual()) { + Register VirtReg = Loc.getReg(); + if (VRM.isAssignedReg(VirtReg) && + Register::isPhysicalRegister(VRM.getPhys(VirtReg))) { + // This can create a %noreg operand in rare cases when the sub-register + // index is no longer available. That means the user value is in a + // non-existent sub-register, and %noreg is exactly what we want. + Loc.substPhysReg(VRM.getPhys(VirtReg), TRI); + } else if (VRM.getStackSlot(VirtReg) != VirtRegMap::NO_STACK_SLOT) { + // Retrieve the stack slot offset. + unsigned SpillSize; + const MachineRegisterInfo &MRI = MF.getRegInfo(); + const TargetRegisterClass *TRC = MRI.getRegClass(VirtReg); + bool Success = TII.getStackSlotRange(TRC, Loc.getSubReg(), SpillSize, + SpillOffset, MF); + + // FIXME: Invalidate the location if the offset couldn't be calculated. + (void)Success; + + Loc = MachineOperand::CreateFI(VRM.getStackSlot(VirtReg)); + Spilled = true; + } else { + Loc.setReg(0); + Loc.setSubReg(0); + } + } + + // Insert this location if it doesn't already exist and record a mapping + // from the old number to the new number. + auto InsertResult = NewLocations.insert({Loc, {Spilled, SpillOffset}}); + unsigned NewLocNo = std::distance(NewLocations.begin(), InsertResult.first); + LocNoMap[I] = NewLocNo; + } + + // Rewrite the locations and record the stack slot offsets for spills. + locations.clear(); + SpillOffsets.clear(); + for (auto &Pair : NewLocations) { + bool Spilled; + unsigned SpillOffset; + std::tie(Spilled, SpillOffset) = Pair.second; + locations.push_back(Pair.first); + if (Spilled) { + unsigned NewLocNo = std::distance(&*NewLocations.begin(), &Pair); + SpillOffsets[NewLocNo] = SpillOffset; + } + } + + // Update the interval map, but only coalesce left, since intervals to the + // right use the old location numbers. This should merge two contiguous + // DBG_VALUE intervals with different vregs that were allocated to the same + // physical register. + for (LocMap::iterator I = locInts.begin(); I.valid(); ++I) { + I.setValueUnchecked(I.value().remapLocNos(LocNoMap)); + I.setStart(I.start()); + } +} + +/// Find an iterator for inserting a DBG_VALUE instruction. +static MachineBasicBlock::iterator +findInsertLocation(MachineBasicBlock *MBB, SlotIndex Idx, LiveIntervals &LIS, + BlockSkipInstsMap &BBSkipInstsMap) { + SlotIndex Start = LIS.getMBBStartIdx(MBB); + Idx = Idx.getBaseIndex(); + + // Try to find an insert location by going backwards from Idx. + MachineInstr *MI; + while (!(MI = LIS.getInstructionFromIndex(Idx))) { + // We've reached the beginning of MBB. + if (Idx == Start) { + // Retrieve the last PHI/Label/Debug location found when calling + // SkipPHIsLabelsAndDebug last time. Start searching from there. + // + // Note the iterator kept in BBSkipInstsMap is one step back based + // on the iterator returned by SkipPHIsLabelsAndDebug last time. + // One exception is when SkipPHIsLabelsAndDebug returns MBB->begin(), + // BBSkipInstsMap won't save it. This is to consider the case that + // new instructions may be inserted at the beginning of MBB after + // last call of SkipPHIsLabelsAndDebug. If we save MBB->begin() in + // BBSkipInstsMap, after new non-phi/non-label/non-debug instructions + // are inserted at the beginning of the MBB, the iterator in + // BBSkipInstsMap won't point to the beginning of the MBB anymore. + // Therefore The next search in SkipPHIsLabelsAndDebug will skip those + // newly added instructions and that is unwanted. + MachineBasicBlock::iterator BeginIt; + auto MapIt = BBSkipInstsMap.find(MBB); + if (MapIt == BBSkipInstsMap.end()) + BeginIt = MBB->begin(); + else + BeginIt = std::next(MapIt->second); + auto I = MBB->SkipPHIsLabelsAndDebug(BeginIt); + if (I != BeginIt) + BBSkipInstsMap[MBB] = std::prev(I); + return I; + } + Idx = Idx.getPrevIndex(); + } + + // Don't insert anything after the first terminator, though. + return MI->isTerminator() ? MBB->getFirstTerminator() : + std::next(MachineBasicBlock::iterator(MI)); +} + +/// Find an iterator for inserting the next DBG_VALUE instruction +/// (or end if no more insert locations found). +static MachineBasicBlock::iterator +findNextInsertLocation(MachineBasicBlock *MBB, MachineBasicBlock::iterator I, + SlotIndex StopIdx, ArrayRef<MachineOperand> LocMOs, + LiveIntervals &LIS, const TargetRegisterInfo &TRI) { + SmallVector<Register, 4> Regs; + for (const MachineOperand &LocMO : LocMOs) + if (LocMO.isReg()) + Regs.push_back(LocMO.getReg()); + if (Regs.empty()) + return MBB->instr_end(); + + // Find the next instruction in the MBB that define the register Reg. + while (I != MBB->end() && !I->isTerminator()) { + if (!LIS.isNotInMIMap(*I) && + SlotIndex::isEarlierEqualInstr(StopIdx, LIS.getInstructionIndex(*I))) + break; + if (any_of(Regs, [&I, &TRI](Register &Reg) { + return I->definesRegister(Reg, &TRI); + })) + // The insert location is directly after the instruction/bundle. + return std::next(I); + ++I; + } + return MBB->end(); +} + +void UserValue::insertDebugValue(MachineBasicBlock *MBB, SlotIndex StartIdx, + SlotIndex StopIdx, DbgVariableValue DbgValue, + ArrayRef<bool> LocSpills, + ArrayRef<unsigned> SpillOffsets, + LiveIntervals &LIS, const TargetInstrInfo &TII, + const TargetRegisterInfo &TRI, + BlockSkipInstsMap &BBSkipInstsMap) { + SlotIndex MBBEndIdx = LIS.getMBBEndIdx(&*MBB); + // Only search within the current MBB. + StopIdx = (MBBEndIdx < StopIdx) ? MBBEndIdx : StopIdx; + MachineBasicBlock::iterator I = + findInsertLocation(MBB, StartIdx, LIS, BBSkipInstsMap); + // Undef values don't exist in locations so create new "noreg" register MOs + // for them. See getLocationNo(). + SmallVector<MachineOperand, 8> MOs; + if (DbgValue.isUndef()) { + MOs.assign(DbgValue.loc_nos().size(), + MachineOperand::CreateReg( + /* Reg */ 0, /* isDef */ false, /* isImp */ false, + /* isKill */ false, /* isDead */ false, + /* isUndef */ false, /* isEarlyClobber */ false, + /* SubReg */ 0, /* isDebug */ true)); + } else { + for (unsigned LocNo : DbgValue.loc_nos()) + MOs.push_back(locations[LocNo]); + } + + ++NumInsertedDebugValues; + + assert(cast<DILocalVariable>(Variable) + ->isValidLocationForIntrinsic(getDebugLoc()) && + "Expected inlined-at fields to agree"); + + // If the location was spilled, the new DBG_VALUE will be indirect. If the + // original DBG_VALUE was indirect, we need to add DW_OP_deref to indicate + // that the original virtual register was a pointer. Also, add the stack slot + // offset for the spilled register to the expression. + const DIExpression *Expr = DbgValue.getExpression(); + bool IsIndirect = DbgValue.getWasIndirect(); + bool IsList = DbgValue.getWasList(); + for (unsigned I = 0, E = LocSpills.size(); I != E; ++I) { + if (LocSpills[I]) { + if (!IsList) { + uint8_t DIExprFlags = DIExpression::ApplyOffset; + if (IsIndirect) + DIExprFlags |= DIExpression::DerefAfter; + Expr = DIExpression::prepend(Expr, DIExprFlags, SpillOffsets[I]); + IsIndirect = true; + } else { + SmallVector<uint64_t, 4> Ops; + DIExpression::appendOffset(Ops, SpillOffsets[I]); + Ops.push_back(dwarf::DW_OP_deref); + Expr = DIExpression::appendOpsToArg(Expr, Ops, I); + } + } + + assert((!LocSpills[I] || MOs[I].isFI()) && + "a spilled location must be a frame index"); + } + + unsigned DbgValueOpcode = + IsList ? TargetOpcode::DBG_VALUE_LIST : TargetOpcode::DBG_VALUE; + do { + BuildMI(*MBB, I, getDebugLoc(), TII.get(DbgValueOpcode), IsIndirect, MOs, + Variable, Expr); + + // Continue and insert DBG_VALUES after every redefinition of a register + // associated with the debug value within the range + I = findNextInsertLocation(MBB, I, StopIdx, MOs, LIS, TRI); + } while (I != MBB->end()); +} + +void UserLabel::insertDebugLabel(MachineBasicBlock *MBB, SlotIndex Idx, + LiveIntervals &LIS, const TargetInstrInfo &TII, + BlockSkipInstsMap &BBSkipInstsMap) { + MachineBasicBlock::iterator I = + findInsertLocation(MBB, Idx, LIS, BBSkipInstsMap); + ++NumInsertedDebugLabels; + BuildMI(*MBB, I, getDebugLoc(), TII.get(TargetOpcode::DBG_LABEL)) + .addMetadata(Label); +} + +void UserValue::emitDebugValues(VirtRegMap *VRM, LiveIntervals &LIS, + const TargetInstrInfo &TII, + const TargetRegisterInfo &TRI, + const SpillOffsetMap &SpillOffsets, + BlockSkipInstsMap &BBSkipInstsMap) { + MachineFunction::iterator MFEnd = VRM->getMachineFunction().end(); + + for (LocMap::const_iterator I = locInts.begin(); I.valid();) { + SlotIndex Start = I.start(); + SlotIndex Stop = I.stop(); + DbgVariableValue DbgValue = I.value(); + + SmallVector<bool> SpilledLocs; + SmallVector<unsigned> LocSpillOffsets; + for (unsigned LocNo : DbgValue.loc_nos()) { + auto SpillIt = + !DbgValue.isUndef() ? SpillOffsets.find(LocNo) : SpillOffsets.end(); + bool Spilled = SpillIt != SpillOffsets.end(); + SpilledLocs.push_back(Spilled); + LocSpillOffsets.push_back(Spilled ? SpillIt->second : 0); + } + + // If the interval start was trimmed to the lexical scope insert the + // DBG_VALUE at the previous index (otherwise it appears after the + // first instruction in the range). + if (trimmedDefs.count(Start)) + Start = Start.getPrevIndex(); + + LLVM_DEBUG(auto &dbg = dbgs(); dbg << "\t[" << Start << ';' << Stop << "):"; + DbgValue.printLocNos(dbg)); + MachineFunction::iterator MBB = LIS.getMBBFromIndex(Start)->getIterator(); + SlotIndex MBBEnd = LIS.getMBBEndIdx(&*MBB); + + LLVM_DEBUG(dbgs() << ' ' << printMBBReference(*MBB) << '-' << MBBEnd); + insertDebugValue(&*MBB, Start, Stop, DbgValue, SpilledLocs, LocSpillOffsets, + LIS, TII, TRI, BBSkipInstsMap); + // This interval may span multiple basic blocks. + // Insert a DBG_VALUE into each one. + while (Stop > MBBEnd) { + // Move to the next block. + Start = MBBEnd; + if (++MBB == MFEnd) + break; + MBBEnd = LIS.getMBBEndIdx(&*MBB); + LLVM_DEBUG(dbgs() << ' ' << printMBBReference(*MBB) << '-' << MBBEnd); + insertDebugValue(&*MBB, Start, Stop, DbgValue, SpilledLocs, + LocSpillOffsets, LIS, TII, TRI, BBSkipInstsMap); + } + LLVM_DEBUG(dbgs() << '\n'); + if (MBB == MFEnd) + break; + + ++I; + } +} + +void UserLabel::emitDebugLabel(LiveIntervals &LIS, const TargetInstrInfo &TII, + BlockSkipInstsMap &BBSkipInstsMap) { + LLVM_DEBUG(dbgs() << "\t" << loc); + MachineFunction::iterator MBB = LIS.getMBBFromIndex(loc)->getIterator(); + + LLVM_DEBUG(dbgs() << ' ' << printMBBReference(*MBB)); + insertDebugLabel(&*MBB, loc, LIS, TII, BBSkipInstsMap); + + LLVM_DEBUG(dbgs() << '\n'); +} + +void LDVImpl::emitDebugValues(VirtRegMap *VRM) { + LLVM_DEBUG(dbgs() << "********** EMITTING LIVE DEBUG VARIABLES **********\n"); + if (!MF) + return; + + BlockSkipInstsMap BBSkipInstsMap; + const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); + SpillOffsetMap SpillOffsets; + for (auto &userValue : userValues) { + LLVM_DEBUG(userValue->print(dbgs(), TRI)); + userValue->rewriteLocations(*VRM, *MF, *TII, *TRI, SpillOffsets); + userValue->emitDebugValues(VRM, *LIS, *TII, *TRI, SpillOffsets, + BBSkipInstsMap); + } + LLVM_DEBUG(dbgs() << "********** EMITTING LIVE DEBUG LABELS **********\n"); + for (auto &userLabel : userLabels) { + LLVM_DEBUG(userLabel->print(dbgs(), TRI)); + userLabel->emitDebugLabel(*LIS, *TII, BBSkipInstsMap); + } + + LLVM_DEBUG(dbgs() << "********** EMITTING DEBUG PHIS **********\n"); + + auto Slots = LIS->getSlotIndexes(); + for (auto &It : PHIValToPos) { + // For each ex-PHI, identify its physreg location or stack slot, and emit + // a DBG_PHI for it. + unsigned InstNum = It.first; + auto Slot = It.second.SI; + Register Reg = It.second.Reg; + unsigned SubReg = It.second.SubReg; + + MachineBasicBlock *OrigMBB = Slots->getMBBFromIndex(Slot); + if (VRM->isAssignedReg(Reg) && + Register::isPhysicalRegister(VRM->getPhys(Reg))) { + unsigned PhysReg = VRM->getPhys(Reg); + if (SubReg != 0) + PhysReg = TRI->getSubReg(PhysReg, SubReg); + + auto Builder = BuildMI(*OrigMBB, OrigMBB->begin(), DebugLoc(), + TII->get(TargetOpcode::DBG_PHI)); + Builder.addReg(PhysReg); + Builder.addImm(InstNum); + } else if (VRM->getStackSlot(Reg) != VirtRegMap::NO_STACK_SLOT) { + const MachineRegisterInfo &MRI = MF->getRegInfo(); + const TargetRegisterClass *TRC = MRI.getRegClass(Reg); + unsigned SpillSize, SpillOffset; + + unsigned regSizeInBits = TRI->getRegSizeInBits(*TRC); + if (SubReg) + regSizeInBits = TRI->getSubRegIdxSize(SubReg); + + // Test whether this location is legal with the given subreg. If the + // subregister has a nonzero offset, drop this location, it's too complex + // to describe. (TODO: future work). + bool Success = + TII->getStackSlotRange(TRC, SubReg, SpillSize, SpillOffset, *MF); + + if (Success && SpillOffset == 0) { + auto Builder = BuildMI(*OrigMBB, OrigMBB->begin(), DebugLoc(), + TII->get(TargetOpcode::DBG_PHI)); + Builder.addFrameIndex(VRM->getStackSlot(Reg)); + Builder.addImm(InstNum); + // Record how large the original value is. The stack slot might be + // merged and altered during optimisation, but we will want to know how + // large the value is, at this DBG_PHI. + Builder.addImm(regSizeInBits); + } + + LLVM_DEBUG( + if (SpillOffset != 0) { + dbgs() << "DBG_PHI for Vreg " << Reg << " subreg " << SubReg << + " has nonzero offset\n"; + } + ); + } + // If there was no mapping for a value ID, it's optimized out. Create no + // DBG_PHI, and any variables using this value will become optimized out. + } + MF->DebugPHIPositions.clear(); + + LLVM_DEBUG(dbgs() << "********** EMITTING INSTR REFERENCES **********\n"); + + // Re-insert any debug instrs back in the position they were. We must + // re-insert in the same order to ensure that debug instructions don't swap, + // which could re-order assignments. Do so in a batch -- once we find the + // insert position, insert all instructions at the same SlotIdx. They are + // guaranteed to appear in-sequence in StashedDebugInstrs because we insert + // them in order. + for (auto *StashIt = StashedDebugInstrs.begin(); + StashIt != StashedDebugInstrs.end(); ++StashIt) { + SlotIndex Idx = StashIt->Idx; + MachineBasicBlock *MBB = StashIt->MBB; + MachineInstr *MI = StashIt->MI; + + auto EmitInstsHere = [this, &StashIt, MBB, Idx, + MI](MachineBasicBlock::iterator InsertPos) { + // Insert this debug instruction. + MBB->insert(InsertPos, MI); + + // Look at subsequent stashed debug instructions: if they're at the same + // index, insert those too. + auto NextItem = std::next(StashIt); + while (NextItem != StashedDebugInstrs.end() && NextItem->Idx == Idx) { + assert(NextItem->MBB == MBB && "Instrs with same slot index should be" + "in the same block"); + MBB->insert(InsertPos, NextItem->MI); + StashIt = NextItem; + NextItem = std::next(StashIt); + }; + }; + + // Start block index: find the first non-debug instr in the block, and + // insert before it. + if (Idx == Slots->getMBBStartIdx(MBB)) { + MachineBasicBlock::iterator InsertPos = + findInsertLocation(MBB, Idx, *LIS, BBSkipInstsMap); + EmitInstsHere(InsertPos); + continue; + } + + if (MachineInstr *Pos = Slots->getInstructionFromIndex(Idx)) { + // Insert at the end of any debug instructions. + auto PostDebug = std::next(Pos->getIterator()); + PostDebug = skipDebugInstructionsForward(PostDebug, MBB->instr_end()); + EmitInstsHere(PostDebug); + } else { + // Insert position disappeared; walk forwards through slots until we + // find a new one. + SlotIndex End = Slots->getMBBEndIdx(MBB); + for (; Idx < End; Idx = Slots->getNextNonNullIndex(Idx)) { + Pos = Slots->getInstructionFromIndex(Idx); + if (Pos) { + EmitInstsHere(Pos->getIterator()); + break; + } + } + + // We have reached the end of the block and didn't find anywhere to + // insert! It's not safe to discard any debug instructions; place them + // in front of the first terminator, or in front of end(). + if (Idx >= End) { + auto TermIt = MBB->getFirstTerminator(); + EmitInstsHere(TermIt); + } + } + } + + EmitDone = true; + BBSkipInstsMap.clear(); +} + +void LiveDebugVariables::emitDebugValues(VirtRegMap *VRM) { + if (pImpl) + static_cast<LDVImpl*>(pImpl)->emitDebugValues(VRM); +} + +#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) +LLVM_DUMP_METHOD void LiveDebugVariables::dump() const { + if (pImpl) + static_cast<LDVImpl*>(pImpl)->print(dbgs()); +} +#endif |