aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm-project/llvm/lib/CodeGen/MachineLICM.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm-project/llvm/lib/CodeGen/MachineLICM.cpp')
-rw-r--r--contrib/llvm-project/llvm/lib/CodeGen/MachineLICM.cpp1528
1 files changed, 1528 insertions, 0 deletions
diff --git a/contrib/llvm-project/llvm/lib/CodeGen/MachineLICM.cpp b/contrib/llvm-project/llvm/lib/CodeGen/MachineLICM.cpp
new file mode 100644
index 000000000000..6a898ff6ef88
--- /dev/null
+++ b/contrib/llvm-project/llvm/lib/CodeGen/MachineLICM.cpp
@@ -0,0 +1,1528 @@
+//===- MachineLICM.cpp - Machine Loop Invariant Code Motion Pass ----------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This pass performs loop invariant code motion on machine instructions. We
+// attempt to remove as much code from the body of a loop as possible.
+//
+// This pass is not intended to be a replacement or a complete alternative
+// for the LLVM-IR-level LICM pass. It is only designed to hoist simple
+// constructs that are not exposed before lowering and instruction selection.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/ADT/BitVector.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/SmallSet.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/Analysis/AliasAnalysis.h"
+#include "llvm/CodeGen/MachineBasicBlock.h"
+#include "llvm/CodeGen/MachineDominators.h"
+#include "llvm/CodeGen/MachineFrameInfo.h"
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/MachineFunctionPass.h"
+#include "llvm/CodeGen/MachineInstr.h"
+#include "llvm/CodeGen/MachineLoopInfo.h"
+#include "llvm/CodeGen/MachineMemOperand.h"
+#include "llvm/CodeGen/MachineOperand.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/CodeGen/PseudoSourceValue.h"
+#include "llvm/CodeGen/TargetInstrInfo.h"
+#include "llvm/CodeGen/TargetLowering.h"
+#include "llvm/CodeGen/TargetRegisterInfo.h"
+#include "llvm/CodeGen/TargetSchedule.h"
+#include "llvm/CodeGen/TargetSubtargetInfo.h"
+#include "llvm/IR/DebugLoc.h"
+#include "llvm/MC/MCInstrDesc.h"
+#include "llvm/MC/MCRegisterInfo.h"
+#include "llvm/Pass.h"
+#include "llvm/Support/Casting.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/raw_ostream.h"
+#include <algorithm>
+#include <cassert>
+#include <limits>
+#include <vector>
+
+using namespace llvm;
+
+#define DEBUG_TYPE "machinelicm"
+
+static cl::opt<bool>
+AvoidSpeculation("avoid-speculation",
+ cl::desc("MachineLICM should avoid speculation"),
+ cl::init(true), cl::Hidden);
+
+static cl::opt<bool>
+HoistCheapInsts("hoist-cheap-insts",
+ cl::desc("MachineLICM should hoist even cheap instructions"),
+ cl::init(false), cl::Hidden);
+
+static cl::opt<bool>
+SinkInstsToAvoidSpills("sink-insts-to-avoid-spills",
+ cl::desc("MachineLICM should sink instructions into "
+ "loops to avoid register spills"),
+ cl::init(false), cl::Hidden);
+static cl::opt<bool>
+HoistConstStores("hoist-const-stores",
+ cl::desc("Hoist invariant stores"),
+ cl::init(true), cl::Hidden);
+
+STATISTIC(NumHoisted,
+ "Number of machine instructions hoisted out of loops");
+STATISTIC(NumLowRP,
+ "Number of instructions hoisted in low reg pressure situation");
+STATISTIC(NumHighLatency,
+ "Number of high latency instructions hoisted");
+STATISTIC(NumCSEed,
+ "Number of hoisted machine instructions CSEed");
+STATISTIC(NumPostRAHoisted,
+ "Number of machine instructions hoisted out of loops post regalloc");
+STATISTIC(NumStoreConst,
+ "Number of stores of const phys reg hoisted out of loops");
+
+namespace {
+
+ class MachineLICMBase : public MachineFunctionPass {
+ const TargetInstrInfo *TII;
+ const TargetLoweringBase *TLI;
+ const TargetRegisterInfo *TRI;
+ const MachineFrameInfo *MFI;
+ MachineRegisterInfo *MRI;
+ TargetSchedModel SchedModel;
+ bool PreRegAlloc;
+
+ // Various analyses that we use...
+ AliasAnalysis *AA; // Alias analysis info.
+ MachineLoopInfo *MLI; // Current MachineLoopInfo
+ MachineDominatorTree *DT; // Machine dominator tree for the cur loop
+
+ // State that is updated as we process loops
+ bool Changed; // True if a loop is changed.
+ bool FirstInLoop; // True if it's the first LICM in the loop.
+ MachineLoop *CurLoop; // The current loop we are working on.
+ MachineBasicBlock *CurPreheader; // The preheader for CurLoop.
+
+ // Exit blocks for CurLoop.
+ SmallVector<MachineBasicBlock *, 8> ExitBlocks;
+
+ bool isExitBlock(const MachineBasicBlock *MBB) const {
+ return is_contained(ExitBlocks, MBB);
+ }
+
+ // Track 'estimated' register pressure.
+ SmallSet<unsigned, 32> RegSeen;
+ SmallVector<unsigned, 8> RegPressure;
+
+ // Register pressure "limit" per register pressure set. If the pressure
+ // is higher than the limit, then it's considered high.
+ SmallVector<unsigned, 8> RegLimit;
+
+ // Register pressure on path leading from loop preheader to current BB.
+ SmallVector<SmallVector<unsigned, 8>, 16> BackTrace;
+
+ // For each opcode, keep a list of potential CSE instructions.
+ DenseMap<unsigned, std::vector<const MachineInstr *>> CSEMap;
+
+ enum {
+ SpeculateFalse = 0,
+ SpeculateTrue = 1,
+ SpeculateUnknown = 2
+ };
+
+ // If a MBB does not dominate loop exiting blocks then it may not safe
+ // to hoist loads from this block.
+ // Tri-state: 0 - false, 1 - true, 2 - unknown
+ unsigned SpeculationState;
+
+ public:
+ MachineLICMBase(char &PassID, bool PreRegAlloc)
+ : MachineFunctionPass(PassID), PreRegAlloc(PreRegAlloc) {}
+
+ bool runOnMachineFunction(MachineFunction &MF) override;
+
+ void getAnalysisUsage(AnalysisUsage &AU) const override {
+ AU.addRequired<MachineLoopInfo>();
+ AU.addRequired<MachineDominatorTree>();
+ AU.addRequired<AAResultsWrapperPass>();
+ AU.addPreserved<MachineLoopInfo>();
+ MachineFunctionPass::getAnalysisUsage(AU);
+ }
+
+ void releaseMemory() override {
+ RegSeen.clear();
+ RegPressure.clear();
+ RegLimit.clear();
+ BackTrace.clear();
+ CSEMap.clear();
+ }
+
+ private:
+ /// Keep track of information about hoisting candidates.
+ struct CandidateInfo {
+ MachineInstr *MI;
+ unsigned Def;
+ int FI;
+
+ CandidateInfo(MachineInstr *mi, unsigned def, int fi)
+ : MI(mi), Def(def), FI(fi) {}
+ };
+
+ void HoistRegionPostRA();
+
+ void HoistPostRA(MachineInstr *MI, unsigned Def);
+
+ void ProcessMI(MachineInstr *MI, BitVector &PhysRegDefs,
+ BitVector &PhysRegClobbers, SmallSet<int, 32> &StoredFIs,
+ SmallVectorImpl<CandidateInfo> &Candidates);
+
+ void AddToLiveIns(unsigned Reg);
+
+ bool IsLICMCandidate(MachineInstr &I);
+
+ bool IsLoopInvariantInst(MachineInstr &I);
+
+ bool HasLoopPHIUse(const MachineInstr *MI) const;
+
+ bool HasHighOperandLatency(MachineInstr &MI, unsigned DefIdx,
+ unsigned Reg) const;
+
+ bool IsCheapInstruction(MachineInstr &MI) const;
+
+ bool CanCauseHighRegPressure(const DenseMap<unsigned, int> &Cost,
+ bool Cheap);
+
+ void UpdateBackTraceRegPressure(const MachineInstr *MI);
+
+ bool IsProfitableToHoist(MachineInstr &MI);
+
+ bool IsGuaranteedToExecute(MachineBasicBlock *BB);
+
+ void EnterScope(MachineBasicBlock *MBB);
+
+ void ExitScope(MachineBasicBlock *MBB);
+
+ void ExitScopeIfDone(
+ MachineDomTreeNode *Node,
+ DenseMap<MachineDomTreeNode *, unsigned> &OpenChildren,
+ DenseMap<MachineDomTreeNode *, MachineDomTreeNode *> &ParentMap);
+
+ void HoistOutOfLoop(MachineDomTreeNode *HeaderN);
+
+ void HoistRegion(MachineDomTreeNode *N, bool IsHeader);
+
+ void SinkIntoLoop();
+
+ void InitRegPressure(MachineBasicBlock *BB);
+
+ DenseMap<unsigned, int> calcRegisterCost(const MachineInstr *MI,
+ bool ConsiderSeen,
+ bool ConsiderUnseenAsDef);
+
+ void UpdateRegPressure(const MachineInstr *MI,
+ bool ConsiderUnseenAsDef = false);
+
+ MachineInstr *ExtractHoistableLoad(MachineInstr *MI);
+
+ const MachineInstr *
+ LookForDuplicate(const MachineInstr *MI,
+ std::vector<const MachineInstr *> &PrevMIs);
+
+ bool EliminateCSE(
+ MachineInstr *MI,
+ DenseMap<unsigned, std::vector<const MachineInstr *>>::iterator &CI);
+
+ bool MayCSE(MachineInstr *MI);
+
+ bool Hoist(MachineInstr *MI, MachineBasicBlock *Preheader);
+
+ void InitCSEMap(MachineBasicBlock *BB);
+
+ MachineBasicBlock *getCurPreheader();
+ };
+
+ class MachineLICM : public MachineLICMBase {
+ public:
+ static char ID;
+ MachineLICM() : MachineLICMBase(ID, false) {
+ initializeMachineLICMPass(*PassRegistry::getPassRegistry());
+ }
+ };
+
+ class EarlyMachineLICM : public MachineLICMBase {
+ public:
+ static char ID;
+ EarlyMachineLICM() : MachineLICMBase(ID, true) {
+ initializeEarlyMachineLICMPass(*PassRegistry::getPassRegistry());
+ }
+ };
+
+} // end anonymous namespace
+
+char MachineLICM::ID;
+char EarlyMachineLICM::ID;
+
+char &llvm::MachineLICMID = MachineLICM::ID;
+char &llvm::EarlyMachineLICMID = EarlyMachineLICM::ID;
+
+INITIALIZE_PASS_BEGIN(MachineLICM, DEBUG_TYPE,
+ "Machine Loop Invariant Code Motion", false, false)
+INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
+INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
+INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
+INITIALIZE_PASS_END(MachineLICM, DEBUG_TYPE,
+ "Machine Loop Invariant Code Motion", false, false)
+
+INITIALIZE_PASS_BEGIN(EarlyMachineLICM, "early-machinelicm",
+ "Early Machine Loop Invariant Code Motion", false, false)
+INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
+INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
+INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
+INITIALIZE_PASS_END(EarlyMachineLICM, "early-machinelicm",
+ "Early Machine Loop Invariant Code Motion", false, false)
+
+/// Test if the given loop is the outer-most loop that has a unique predecessor.
+static bool LoopIsOuterMostWithPredecessor(MachineLoop *CurLoop) {
+ // Check whether this loop even has a unique predecessor.
+ if (!CurLoop->getLoopPredecessor())
+ return false;
+ // Ok, now check to see if any of its outer loops do.
+ for (MachineLoop *L = CurLoop->getParentLoop(); L; L = L->getParentLoop())
+ if (L->getLoopPredecessor())
+ return false;
+ // None of them did, so this is the outermost with a unique predecessor.
+ return true;
+}
+
+bool MachineLICMBase::runOnMachineFunction(MachineFunction &MF) {
+ if (skipFunction(MF.getFunction()))
+ return false;
+
+ Changed = FirstInLoop = false;
+ const TargetSubtargetInfo &ST = MF.getSubtarget();
+ TII = ST.getInstrInfo();
+ TLI = ST.getTargetLowering();
+ TRI = ST.getRegisterInfo();
+ MFI = &MF.getFrameInfo();
+ MRI = &MF.getRegInfo();
+ SchedModel.init(&ST);
+
+ PreRegAlloc = MRI->isSSA();
+
+ if (PreRegAlloc)
+ LLVM_DEBUG(dbgs() << "******** Pre-regalloc Machine LICM: ");
+ else
+ LLVM_DEBUG(dbgs() << "******** Post-regalloc Machine LICM: ");
+ LLVM_DEBUG(dbgs() << MF.getName() << " ********\n");
+
+ if (PreRegAlloc) {
+ // Estimate register pressure during pre-regalloc pass.
+ unsigned NumRPS = TRI->getNumRegPressureSets();
+ RegPressure.resize(NumRPS);
+ std::fill(RegPressure.begin(), RegPressure.end(), 0);
+ RegLimit.resize(NumRPS);
+ for (unsigned i = 0, e = NumRPS; i != e; ++i)
+ RegLimit[i] = TRI->getRegPressureSetLimit(MF, i);
+ }
+
+ // Get our Loop information...
+ MLI = &getAnalysis<MachineLoopInfo>();
+ DT = &getAnalysis<MachineDominatorTree>();
+ AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
+
+ SmallVector<MachineLoop *, 8> Worklist(MLI->begin(), MLI->end());
+ while (!Worklist.empty()) {
+ CurLoop = Worklist.pop_back_val();
+ CurPreheader = nullptr;
+ ExitBlocks.clear();
+
+ // If this is done before regalloc, only visit outer-most preheader-sporting
+ // loops.
+ if (PreRegAlloc && !LoopIsOuterMostWithPredecessor(CurLoop)) {
+ Worklist.append(CurLoop->begin(), CurLoop->end());
+ continue;
+ }
+
+ CurLoop->getExitBlocks(ExitBlocks);
+
+ if (!PreRegAlloc)
+ HoistRegionPostRA();
+ else {
+ // CSEMap is initialized for loop header when the first instruction is
+ // being hoisted.
+ MachineDomTreeNode *N = DT->getNode(CurLoop->getHeader());
+ FirstInLoop = true;
+ HoistOutOfLoop(N);
+ CSEMap.clear();
+
+ if (SinkInstsToAvoidSpills)
+ SinkIntoLoop();
+ }
+ }
+
+ return Changed;
+}
+
+/// Return true if instruction stores to the specified frame.
+static bool InstructionStoresToFI(const MachineInstr *MI, int FI) {
+ // Check mayStore before memory operands so that e.g. DBG_VALUEs will return
+ // true since they have no memory operands.
+ if (!MI->mayStore())
+ return false;
+ // If we lost memory operands, conservatively assume that the instruction
+ // writes to all slots.
+ if (MI->memoperands_empty())
+ return true;
+ for (const MachineMemOperand *MemOp : MI->memoperands()) {
+ if (!MemOp->isStore() || !MemOp->getPseudoValue())
+ continue;
+ if (const FixedStackPseudoSourceValue *Value =
+ dyn_cast<FixedStackPseudoSourceValue>(MemOp->getPseudoValue())) {
+ if (Value->getFrameIndex() == FI)
+ return true;
+ }
+ }
+ return false;
+}
+
+/// Examine the instruction for potentai LICM candidate. Also
+/// gather register def and frame object update information.
+void MachineLICMBase::ProcessMI(MachineInstr *MI,
+ BitVector &PhysRegDefs,
+ BitVector &PhysRegClobbers,
+ SmallSet<int, 32> &StoredFIs,
+ SmallVectorImpl<CandidateInfo> &Candidates) {
+ bool RuledOut = false;
+ bool HasNonInvariantUse = false;
+ unsigned Def = 0;
+ for (const MachineOperand &MO : MI->operands()) {
+ if (MO.isFI()) {
+ // Remember if the instruction stores to the frame index.
+ int FI = MO.getIndex();
+ if (!StoredFIs.count(FI) &&
+ MFI->isSpillSlotObjectIndex(FI) &&
+ InstructionStoresToFI(MI, FI))
+ StoredFIs.insert(FI);
+ HasNonInvariantUse = true;
+ continue;
+ }
+
+ // We can't hoist an instruction defining a physreg that is clobbered in
+ // the loop.
+ if (MO.isRegMask()) {
+ PhysRegClobbers.setBitsNotInMask(MO.getRegMask());
+ continue;
+ }
+
+ if (!MO.isReg())
+ continue;
+ Register Reg = MO.getReg();
+ if (!Reg)
+ continue;
+ assert(Register::isPhysicalRegister(Reg) &&
+ "Not expecting virtual register!");
+
+ if (!MO.isDef()) {
+ if (Reg && (PhysRegDefs.test(Reg) || PhysRegClobbers.test(Reg)))
+ // If it's using a non-loop-invariant register, then it's obviously not
+ // safe to hoist.
+ HasNonInvariantUse = true;
+ continue;
+ }
+
+ if (MO.isImplicit()) {
+ for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI)
+ PhysRegClobbers.set(*AI);
+ if (!MO.isDead())
+ // Non-dead implicit def? This cannot be hoisted.
+ RuledOut = true;
+ // No need to check if a dead implicit def is also defined by
+ // another instruction.
+ continue;
+ }
+
+ // FIXME: For now, avoid instructions with multiple defs, unless
+ // it's a dead implicit def.
+ if (Def)
+ RuledOut = true;
+ else
+ Def = Reg;
+
+ // If we have already seen another instruction that defines the same
+ // register, then this is not safe. Two defs is indicated by setting a
+ // PhysRegClobbers bit.
+ for (MCRegAliasIterator AS(Reg, TRI, true); AS.isValid(); ++AS) {
+ if (PhysRegDefs.test(*AS))
+ PhysRegClobbers.set(*AS);
+ }
+ // Need a second loop because MCRegAliasIterator can visit the same
+ // register twice.
+ for (MCRegAliasIterator AS(Reg, TRI, true); AS.isValid(); ++AS)
+ PhysRegDefs.set(*AS);
+
+ if (PhysRegClobbers.test(Reg))
+ // MI defined register is seen defined by another instruction in
+ // the loop, it cannot be a LICM candidate.
+ RuledOut = true;
+ }
+
+ // Only consider reloads for now and remats which do not have register
+ // operands. FIXME: Consider unfold load folding instructions.
+ if (Def && !RuledOut) {
+ int FI = std::numeric_limits<int>::min();
+ if ((!HasNonInvariantUse && IsLICMCandidate(*MI)) ||
+ (TII->isLoadFromStackSlot(*MI, FI) && MFI->isSpillSlotObjectIndex(FI)))
+ Candidates.push_back(CandidateInfo(MI, Def, FI));
+ }
+}
+
+/// Walk the specified region of the CFG and hoist loop invariants out to the
+/// preheader.
+void MachineLICMBase::HoistRegionPostRA() {
+ MachineBasicBlock *Preheader = getCurPreheader();
+ if (!Preheader)
+ return;
+
+ unsigned NumRegs = TRI->getNumRegs();
+ BitVector PhysRegDefs(NumRegs); // Regs defined once in the loop.
+ BitVector PhysRegClobbers(NumRegs); // Regs defined more than once.
+
+ SmallVector<CandidateInfo, 32> Candidates;
+ SmallSet<int, 32> StoredFIs;
+
+ // Walk the entire region, count number of defs for each register, and
+ // collect potential LICM candidates.
+ for (MachineBasicBlock *BB : CurLoop->getBlocks()) {
+ // If the header of the loop containing this basic block is a landing pad,
+ // then don't try to hoist instructions out of this loop.
+ const MachineLoop *ML = MLI->getLoopFor(BB);
+ if (ML && ML->getHeader()->isEHPad()) continue;
+
+ // Conservatively treat live-in's as an external def.
+ // FIXME: That means a reload that're reused in successor block(s) will not
+ // be LICM'ed.
+ for (const auto &LI : BB->liveins()) {
+ for (MCRegAliasIterator AI(LI.PhysReg, TRI, true); AI.isValid(); ++AI)
+ PhysRegDefs.set(*AI);
+ }
+
+ SpeculationState = SpeculateUnknown;
+ for (MachineInstr &MI : *BB)
+ ProcessMI(&MI, PhysRegDefs, PhysRegClobbers, StoredFIs, Candidates);
+ }
+
+ // Gather the registers read / clobbered by the terminator.
+ BitVector TermRegs(NumRegs);
+ MachineBasicBlock::iterator TI = Preheader->getFirstTerminator();
+ if (TI != Preheader->end()) {
+ for (const MachineOperand &MO : TI->operands()) {
+ if (!MO.isReg())
+ continue;
+ Register Reg = MO.getReg();
+ if (!Reg)
+ continue;
+ for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI)
+ TermRegs.set(*AI);
+ }
+ }
+
+ // Now evaluate whether the potential candidates qualify.
+ // 1. Check if the candidate defined register is defined by another
+ // instruction in the loop.
+ // 2. If the candidate is a load from stack slot (always true for now),
+ // check if the slot is stored anywhere in the loop.
+ // 3. Make sure candidate def should not clobber
+ // registers read by the terminator. Similarly its def should not be
+ // clobbered by the terminator.
+ for (CandidateInfo &Candidate : Candidates) {
+ if (Candidate.FI != std::numeric_limits<int>::min() &&
+ StoredFIs.count(Candidate.FI))
+ continue;
+
+ unsigned Def = Candidate.Def;
+ if (!PhysRegClobbers.test(Def) && !TermRegs.test(Def)) {
+ bool Safe = true;
+ MachineInstr *MI = Candidate.MI;
+ for (const MachineOperand &MO : MI->operands()) {
+ if (!MO.isReg() || MO.isDef() || !MO.getReg())
+ continue;
+ Register Reg = MO.getReg();
+ if (PhysRegDefs.test(Reg) ||
+ PhysRegClobbers.test(Reg)) {
+ // If it's using a non-loop-invariant register, then it's obviously
+ // not safe to hoist.
+ Safe = false;
+ break;
+ }
+ }
+ if (Safe)
+ HoistPostRA(MI, Candidate.Def);
+ }
+ }
+}
+
+/// Add register 'Reg' to the livein sets of BBs in the current loop, and make
+/// sure it is not killed by any instructions in the loop.
+void MachineLICMBase::AddToLiveIns(unsigned Reg) {
+ for (MachineBasicBlock *BB : CurLoop->getBlocks()) {
+ if (!BB->isLiveIn(Reg))
+ BB->addLiveIn(Reg);
+ for (MachineInstr &MI : *BB) {
+ for (MachineOperand &MO : MI.operands()) {
+ if (!MO.isReg() || !MO.getReg() || MO.isDef()) continue;
+ if (MO.getReg() == Reg || TRI->isSuperRegister(Reg, MO.getReg()))
+ MO.setIsKill(false);
+ }
+ }
+ }
+}
+
+/// When an instruction is found to only use loop invariant operands that is
+/// safe to hoist, this instruction is called to do the dirty work.
+void MachineLICMBase::HoistPostRA(MachineInstr *MI, unsigned Def) {
+ MachineBasicBlock *Preheader = getCurPreheader();
+
+ // Now move the instructions to the predecessor, inserting it before any
+ // terminator instructions.
+ LLVM_DEBUG(dbgs() << "Hoisting to " << printMBBReference(*Preheader)
+ << " from " << printMBBReference(*MI->getParent()) << ": "
+ << *MI);
+
+ // Splice the instruction to the preheader.
+ MachineBasicBlock *MBB = MI->getParent();
+ Preheader->splice(Preheader->getFirstTerminator(), MBB, MI);
+
+ // Add register to livein list to all the BBs in the current loop since a
+ // loop invariant must be kept live throughout the whole loop. This is
+ // important to ensure later passes do not scavenge the def register.
+ AddToLiveIns(Def);
+
+ ++NumPostRAHoisted;
+ Changed = true;
+}
+
+/// Check if this mbb is guaranteed to execute. If not then a load from this mbb
+/// may not be safe to hoist.
+bool MachineLICMBase::IsGuaranteedToExecute(MachineBasicBlock *BB) {
+ if (SpeculationState != SpeculateUnknown)
+ return SpeculationState == SpeculateFalse;
+
+ if (BB != CurLoop->getHeader()) {
+ // Check loop exiting blocks.
+ SmallVector<MachineBasicBlock*, 8> CurrentLoopExitingBlocks;
+ CurLoop->getExitingBlocks(CurrentLoopExitingBlocks);
+ for (MachineBasicBlock *CurrentLoopExitingBlock : CurrentLoopExitingBlocks)
+ if (!DT->dominates(BB, CurrentLoopExitingBlock)) {
+ SpeculationState = SpeculateTrue;
+ return false;
+ }
+ }
+
+ SpeculationState = SpeculateFalse;
+ return true;
+}
+
+void MachineLICMBase::EnterScope(MachineBasicBlock *MBB) {
+ LLVM_DEBUG(dbgs() << "Entering " << printMBBReference(*MBB) << '\n');
+
+ // Remember livein register pressure.
+ BackTrace.push_back(RegPressure);
+}
+
+void MachineLICMBase::ExitScope(MachineBasicBlock *MBB) {
+ LLVM_DEBUG(dbgs() << "Exiting " << printMBBReference(*MBB) << '\n');
+ BackTrace.pop_back();
+}
+
+/// Destroy scope for the MBB that corresponds to the given dominator tree node
+/// if its a leaf or all of its children are done. Walk up the dominator tree to
+/// destroy ancestors which are now done.
+void MachineLICMBase::ExitScopeIfDone(MachineDomTreeNode *Node,
+ DenseMap<MachineDomTreeNode*, unsigned> &OpenChildren,
+ DenseMap<MachineDomTreeNode*, MachineDomTreeNode*> &ParentMap) {
+ if (OpenChildren[Node])
+ return;
+
+ // Pop scope.
+ ExitScope(Node->getBlock());
+
+ // Now traverse upwards to pop ancestors whose offsprings are all done.
+ while (MachineDomTreeNode *Parent = ParentMap[Node]) {
+ unsigned Left = --OpenChildren[Parent];
+ if (Left != 0)
+ break;
+ ExitScope(Parent->getBlock());
+ Node = Parent;
+ }
+}
+
+/// Walk the specified loop in the CFG (defined by all blocks dominated by the
+/// specified header block, and that are in the current loop) in depth first
+/// order w.r.t the DominatorTree. This allows us to visit definitions before
+/// uses, allowing us to hoist a loop body in one pass without iteration.
+void MachineLICMBase::HoistOutOfLoop(MachineDomTreeNode *HeaderN) {
+ MachineBasicBlock *Preheader = getCurPreheader();
+ if (!Preheader)
+ return;
+
+ SmallVector<MachineDomTreeNode*, 32> Scopes;
+ SmallVector<MachineDomTreeNode*, 8> WorkList;
+ DenseMap<MachineDomTreeNode*, MachineDomTreeNode*> ParentMap;
+ DenseMap<MachineDomTreeNode*, unsigned> OpenChildren;
+
+ // Perform a DFS walk to determine the order of visit.
+ WorkList.push_back(HeaderN);
+ while (!WorkList.empty()) {
+ MachineDomTreeNode *Node = WorkList.pop_back_val();
+ assert(Node && "Null dominator tree node?");
+ MachineBasicBlock *BB = Node->getBlock();
+
+ // If the header of the loop containing this basic block is a landing pad,
+ // then don't try to hoist instructions out of this loop.
+ const MachineLoop *ML = MLI->getLoopFor(BB);
+ if (ML && ML->getHeader()->isEHPad())
+ continue;
+
+ // If this subregion is not in the top level loop at all, exit.
+ if (!CurLoop->contains(BB))
+ continue;
+
+ Scopes.push_back(Node);
+ const std::vector<MachineDomTreeNode*> &Children = Node->getChildren();
+ unsigned NumChildren = Children.size();
+
+ // Don't hoist things out of a large switch statement. This often causes
+ // code to be hoisted that wasn't going to be executed, and increases
+ // register pressure in a situation where it's likely to matter.
+ if (BB->succ_size() >= 25)
+ NumChildren = 0;
+
+ OpenChildren[Node] = NumChildren;
+ // Add children in reverse order as then the next popped worklist node is
+ // the first child of this node. This means we ultimately traverse the
+ // DOM tree in exactly the same order as if we'd recursed.
+ for (int i = (int)NumChildren-1; i >= 0; --i) {
+ MachineDomTreeNode *Child = Children[i];
+ ParentMap[Child] = Node;
+ WorkList.push_back(Child);
+ }
+ }
+
+ if (Scopes.size() == 0)
+ return;
+
+ // Compute registers which are livein into the loop headers.
+ RegSeen.clear();
+ BackTrace.clear();
+ InitRegPressure(Preheader);
+
+ // Now perform LICM.
+ for (MachineDomTreeNode *Node : Scopes) {
+ MachineBasicBlock *MBB = Node->getBlock();
+
+ EnterScope(MBB);
+
+ // Process the block
+ SpeculationState = SpeculateUnknown;
+ for (MachineBasicBlock::iterator
+ MII = MBB->begin(), E = MBB->end(); MII != E; ) {
+ MachineBasicBlock::iterator NextMII = MII; ++NextMII;
+ MachineInstr *MI = &*MII;
+ if (!Hoist(MI, Preheader))
+ UpdateRegPressure(MI);
+ // If we have hoisted an instruction that may store, it can only be a
+ // constant store.
+ MII = NextMII;
+ }
+
+ // If it's a leaf node, it's done. Traverse upwards to pop ancestors.
+ ExitScopeIfDone(Node, OpenChildren, ParentMap);
+ }
+}
+
+/// Sink instructions into loops if profitable. This especially tries to prevent
+/// register spills caused by register pressure if there is little to no
+/// overhead moving instructions into loops.
+void MachineLICMBase::SinkIntoLoop() {
+ MachineBasicBlock *Preheader = getCurPreheader();
+ if (!Preheader)
+ return;
+
+ SmallVector<MachineInstr *, 8> Candidates;
+ for (MachineBasicBlock::instr_iterator I = Preheader->instr_begin();
+ I != Preheader->instr_end(); ++I) {
+ // We need to ensure that we can safely move this instruction into the loop.
+ // As such, it must not have side-effects, e.g. such as a call has.
+ if (IsLoopInvariantInst(*I) && !HasLoopPHIUse(&*I))
+ Candidates.push_back(&*I);
+ }
+
+ for (MachineInstr *I : Candidates) {
+ const MachineOperand &MO = I->getOperand(0);
+ if (!MO.isDef() || !MO.isReg() || !MO.getReg())
+ continue;
+ if (!MRI->hasOneDef(MO.getReg()))
+ continue;
+ bool CanSink = true;
+ MachineBasicBlock *B = nullptr;
+ for (MachineInstr &MI : MRI->use_instructions(MO.getReg())) {
+ // FIXME: Come up with a proper cost model that estimates whether sinking
+ // the instruction (and thus possibly executing it on every loop
+ // iteration) is more expensive than a register.
+ // For now assumes that copies are cheap and thus almost always worth it.
+ if (!MI.isCopy()) {
+ CanSink = false;
+ break;
+ }
+ if (!B) {
+ B = MI.getParent();
+ continue;
+ }
+ B = DT->findNearestCommonDominator(B, MI.getParent());
+ if (!B) {
+ CanSink = false;
+ break;
+ }
+ }
+ if (!CanSink || !B || B == Preheader)
+ continue;
+ B->splice(B->getFirstNonPHI(), Preheader, I);
+ }
+}
+
+static bool isOperandKill(const MachineOperand &MO, MachineRegisterInfo *MRI) {
+ return MO.isKill() || MRI->hasOneNonDBGUse(MO.getReg());
+}
+
+/// Find all virtual register references that are liveout of the preheader to
+/// initialize the starting "register pressure". Note this does not count live
+/// through (livein but not used) registers.
+void MachineLICMBase::InitRegPressure(MachineBasicBlock *BB) {
+ std::fill(RegPressure.begin(), RegPressure.end(), 0);
+
+ // If the preheader has only a single predecessor and it ends with a
+ // fallthrough or an unconditional branch, then scan its predecessor for live
+ // defs as well. This happens whenever the preheader is created by splitting
+ // the critical edge from the loop predecessor to the loop header.
+ if (BB->pred_size() == 1) {
+ MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
+ SmallVector<MachineOperand, 4> Cond;
+ if (!TII->analyzeBranch(*BB, TBB, FBB, Cond, false) && Cond.empty())
+ InitRegPressure(*BB->pred_begin());
+ }
+
+ for (const MachineInstr &MI : *BB)
+ UpdateRegPressure(&MI, /*ConsiderUnseenAsDef=*/true);
+}
+
+/// Update estimate of register pressure after the specified instruction.
+void MachineLICMBase::UpdateRegPressure(const MachineInstr *MI,
+ bool ConsiderUnseenAsDef) {
+ auto Cost = calcRegisterCost(MI, /*ConsiderSeen=*/true, ConsiderUnseenAsDef);
+ for (const auto &RPIdAndCost : Cost) {
+ unsigned Class = RPIdAndCost.first;
+ if (static_cast<int>(RegPressure[Class]) < -RPIdAndCost.second)
+ RegPressure[Class] = 0;
+ else
+ RegPressure[Class] += RPIdAndCost.second;
+ }
+}
+
+/// Calculate the additional register pressure that the registers used in MI
+/// cause.
+///
+/// If 'ConsiderSeen' is true, updates 'RegSeen' and uses the information to
+/// figure out which usages are live-ins.
+/// FIXME: Figure out a way to consider 'RegSeen' from all code paths.
+DenseMap<unsigned, int>
+MachineLICMBase::calcRegisterCost(const MachineInstr *MI, bool ConsiderSeen,
+ bool ConsiderUnseenAsDef) {
+ DenseMap<unsigned, int> Cost;
+ if (MI->isImplicitDef())
+ return Cost;
+ for (unsigned i = 0, e = MI->getDesc().getNumOperands(); i != e; ++i) {
+ const MachineOperand &MO = MI->getOperand(i);
+ if (!MO.isReg() || MO.isImplicit())
+ continue;
+ Register Reg = MO.getReg();
+ if (!Register::isVirtualRegister(Reg))
+ continue;
+
+ // FIXME: It seems bad to use RegSeen only for some of these calculations.
+ bool isNew = ConsiderSeen ? RegSeen.insert(Reg).second : false;
+ const TargetRegisterClass *RC = MRI->getRegClass(Reg);
+
+ RegClassWeight W = TRI->getRegClassWeight(RC);
+ int RCCost = 0;
+ if (MO.isDef())
+ RCCost = W.RegWeight;
+ else {
+ bool isKill = isOperandKill(MO, MRI);
+ if (isNew && !isKill && ConsiderUnseenAsDef)
+ // Haven't seen this, it must be a livein.
+ RCCost = W.RegWeight;
+ else if (!isNew && isKill)
+ RCCost = -W.RegWeight;
+ }
+ if (RCCost == 0)
+ continue;
+ const int *PS = TRI->getRegClassPressureSets(RC);
+ for (; *PS != -1; ++PS) {
+ if (Cost.find(*PS) == Cost.end())
+ Cost[*PS] = RCCost;
+ else
+ Cost[*PS] += RCCost;
+ }
+ }
+ return Cost;
+}
+
+/// Return true if this machine instruction loads from global offset table or
+/// constant pool.
+static bool mayLoadFromGOTOrConstantPool(MachineInstr &MI) {
+ assert(MI.mayLoad() && "Expected MI that loads!");
+
+ // If we lost memory operands, conservatively assume that the instruction
+ // reads from everything..
+ if (MI.memoperands_empty())
+ return true;
+
+ for (MachineMemOperand *MemOp : MI.memoperands())
+ if (const PseudoSourceValue *PSV = MemOp->getPseudoValue())
+ if (PSV->isGOT() || PSV->isConstantPool())
+ return true;
+
+ return false;
+}
+
+// This function iterates through all the operands of the input store MI and
+// checks that each register operand statisfies isCallerPreservedPhysReg.
+// This means, the value being stored and the address where it is being stored
+// is constant throughout the body of the function (not including prologue and
+// epilogue). When called with an MI that isn't a store, it returns false.
+// A future improvement can be to check if the store registers are constant
+// throughout the loop rather than throughout the funtion.
+static bool isInvariantStore(const MachineInstr &MI,
+ const TargetRegisterInfo *TRI,
+ const MachineRegisterInfo *MRI) {
+
+ bool FoundCallerPresReg = false;
+ if (!MI.mayStore() || MI.hasUnmodeledSideEffects() ||
+ (MI.getNumOperands() == 0))
+ return false;
+
+ // Check that all register operands are caller-preserved physical registers.
+ for (const MachineOperand &MO : MI.operands()) {
+ if (MO.isReg()) {
+ Register Reg = MO.getReg();
+ // If operand is a virtual register, check if it comes from a copy of a
+ // physical register.
+ if (Register::isVirtualRegister(Reg))
+ Reg = TRI->lookThruCopyLike(MO.getReg(), MRI);
+ if (Register::isVirtualRegister(Reg))
+ return false;
+ if (!TRI->isCallerPreservedPhysReg(Reg, *MI.getMF()))
+ return false;
+ else
+ FoundCallerPresReg = true;
+ } else if (!MO.isImm()) {
+ return false;
+ }
+ }
+ return FoundCallerPresReg;
+}
+
+// Return true if the input MI is a copy instruction that feeds an invariant
+// store instruction. This means that the src of the copy has to satisfy
+// isCallerPreservedPhysReg and atleast one of it's users should satisfy
+// isInvariantStore.
+static bool isCopyFeedingInvariantStore(const MachineInstr &MI,
+ const MachineRegisterInfo *MRI,
+ const TargetRegisterInfo *TRI) {
+
+ // FIXME: If targets would like to look through instructions that aren't
+ // pure copies, this can be updated to a query.
+ if (!MI.isCopy())
+ return false;
+
+ const MachineFunction *MF = MI.getMF();
+ // Check that we are copying a constant physical register.
+ Register CopySrcReg = MI.getOperand(1).getReg();
+ if (Register::isVirtualRegister(CopySrcReg))
+ return false;
+
+ if (!TRI->isCallerPreservedPhysReg(CopySrcReg, *MF))
+ return false;
+
+ Register CopyDstReg = MI.getOperand(0).getReg();
+ // Check if any of the uses of the copy are invariant stores.
+ assert(Register::isVirtualRegister(CopyDstReg) &&
+ "copy dst is not a virtual reg");
+
+ for (MachineInstr &UseMI : MRI->use_instructions(CopyDstReg)) {
+ if (UseMI.mayStore() && isInvariantStore(UseMI, TRI, MRI))
+ return true;
+ }
+ return false;
+}
+
+/// Returns true if the instruction may be a suitable candidate for LICM.
+/// e.g. If the instruction is a call, then it's obviously not safe to hoist it.
+bool MachineLICMBase::IsLICMCandidate(MachineInstr &I) {
+ // Check if it's safe to move the instruction.
+ bool DontMoveAcrossStore = true;
+ if ((!I.isSafeToMove(AA, DontMoveAcrossStore)) &&
+ !(HoistConstStores && isInvariantStore(I, TRI, MRI))) {
+ return false;
+ }
+
+ // If it is load then check if it is guaranteed to execute by making sure that
+ // it dominates all exiting blocks. If it doesn't, then there is a path out of
+ // the loop which does not execute this load, so we can't hoist it. Loads
+ // from constant memory are not safe to speculate all the time, for example
+ // indexed load from a jump table.
+ // Stores and side effects are already checked by isSafeToMove.
+ if (I.mayLoad() && !mayLoadFromGOTOrConstantPool(I) &&
+ !IsGuaranteedToExecute(I.getParent()))
+ return false;
+
+ return true;
+}
+
+/// Returns true if the instruction is loop invariant.
+/// I.e., all virtual register operands are defined outside of the loop,
+/// physical registers aren't accessed explicitly, and there are no side
+/// effects that aren't captured by the operands or other flags.
+bool MachineLICMBase::IsLoopInvariantInst(MachineInstr &I) {
+ if (!IsLICMCandidate(I))
+ return false;
+
+ // The instruction is loop invariant if all of its operands are.
+ for (const MachineOperand &MO : I.operands()) {
+ if (!MO.isReg())
+ continue;
+
+ Register Reg = MO.getReg();
+ if (Reg == 0) continue;
+
+ // Don't hoist an instruction that uses or defines a physical register.
+ if (Register::isPhysicalRegister(Reg)) {
+ if (MO.isUse()) {
+ // If the physreg has no defs anywhere, it's just an ambient register
+ // and we can freely move its uses. Alternatively, if it's allocatable,
+ // it could get allocated to something with a def during allocation.
+ // However, if the physreg is known to always be caller saved/restored
+ // then this use is safe to hoist.
+ if (!MRI->isConstantPhysReg(Reg) &&
+ !(TRI->isCallerPreservedPhysReg(Reg, *I.getMF())))
+ return false;
+ // Otherwise it's safe to move.
+ continue;
+ } else if (!MO.isDead()) {
+ // A def that isn't dead. We can't move it.
+ return false;
+ } else if (CurLoop->getHeader()->isLiveIn(Reg)) {
+ // If the reg is live into the loop, we can't hoist an instruction
+ // which would clobber it.
+ return false;
+ }
+ }
+
+ if (!MO.isUse())
+ continue;
+
+ assert(MRI->getVRegDef(Reg) &&
+ "Machine instr not mapped for this vreg?!");
+
+ // If the loop contains the definition of an operand, then the instruction
+ // isn't loop invariant.
+ if (CurLoop->contains(MRI->getVRegDef(Reg)))
+ return false;
+ }
+
+ // If we got this far, the instruction is loop invariant!
+ return true;
+}
+
+/// Return true if the specified instruction is used by a phi node and hoisting
+/// it could cause a copy to be inserted.
+bool MachineLICMBase::HasLoopPHIUse(const MachineInstr *MI) const {
+ SmallVector<const MachineInstr*, 8> Work(1, MI);
+ do {
+ MI = Work.pop_back_val();
+ for (const MachineOperand &MO : MI->operands()) {
+ if (!MO.isReg() || !MO.isDef())
+ continue;
+ Register Reg = MO.getReg();
+ if (!Register::isVirtualRegister(Reg))
+ continue;
+ for (MachineInstr &UseMI : MRI->use_instructions(Reg)) {
+ // A PHI may cause a copy to be inserted.
+ if (UseMI.isPHI()) {
+ // A PHI inside the loop causes a copy because the live range of Reg is
+ // extended across the PHI.
+ if (CurLoop->contains(&UseMI))
+ return true;
+ // A PHI in an exit block can cause a copy to be inserted if the PHI
+ // has multiple predecessors in the loop with different values.
+ // For now, approximate by rejecting all exit blocks.
+ if (isExitBlock(UseMI.getParent()))
+ return true;
+ continue;
+ }
+ // Look past copies as well.
+ if (UseMI.isCopy() && CurLoop->contains(&UseMI))
+ Work.push_back(&UseMI);
+ }
+ }
+ } while (!Work.empty());
+ return false;
+}
+
+/// Compute operand latency between a def of 'Reg' and an use in the current
+/// loop, return true if the target considered it high.
+bool MachineLICMBase::HasHighOperandLatency(MachineInstr &MI,
+ unsigned DefIdx,
+ unsigned Reg) const {
+ if (MRI->use_nodbg_empty(Reg))
+ return false;
+
+ for (MachineInstr &UseMI : MRI->use_nodbg_instructions(Reg)) {
+ if (UseMI.isCopyLike())
+ continue;
+ if (!CurLoop->contains(UseMI.getParent()))
+ continue;
+ for (unsigned i = 0, e = UseMI.getNumOperands(); i != e; ++i) {
+ const MachineOperand &MO = UseMI.getOperand(i);
+ if (!MO.isReg() || !MO.isUse())
+ continue;
+ Register MOReg = MO.getReg();
+ if (MOReg != Reg)
+ continue;
+
+ if (TII->hasHighOperandLatency(SchedModel, MRI, MI, DefIdx, UseMI, i))
+ return true;
+ }
+
+ // Only look at the first in loop use.
+ break;
+ }
+
+ return false;
+}
+
+/// Return true if the instruction is marked "cheap" or the operand latency
+/// between its def and a use is one or less.
+bool MachineLICMBase::IsCheapInstruction(MachineInstr &MI) const {
+ if (TII->isAsCheapAsAMove(MI) || MI.isCopyLike())
+ return true;
+
+ bool isCheap = false;
+ unsigned NumDefs = MI.getDesc().getNumDefs();
+ for (unsigned i = 0, e = MI.getNumOperands(); NumDefs && i != e; ++i) {
+ MachineOperand &DefMO = MI.getOperand(i);
+ if (!DefMO.isReg() || !DefMO.isDef())
+ continue;
+ --NumDefs;
+ Register Reg = DefMO.getReg();
+ if (Register::isPhysicalRegister(Reg))
+ continue;
+
+ if (!TII->hasLowDefLatency(SchedModel, MI, i))
+ return false;
+ isCheap = true;
+ }
+
+ return isCheap;
+}
+
+/// Visit BBs from header to current BB, check if hoisting an instruction of the
+/// given cost matrix can cause high register pressure.
+bool
+MachineLICMBase::CanCauseHighRegPressure(const DenseMap<unsigned, int>& Cost,
+ bool CheapInstr) {
+ for (const auto &RPIdAndCost : Cost) {
+ if (RPIdAndCost.second <= 0)
+ continue;
+
+ unsigned Class = RPIdAndCost.first;
+ int Limit = RegLimit[Class];
+
+ // Don't hoist cheap instructions if they would increase register pressure,
+ // even if we're under the limit.
+ if (CheapInstr && !HoistCheapInsts)
+ return true;
+
+ for (const auto &RP : BackTrace)
+ if (static_cast<int>(RP[Class]) + RPIdAndCost.second >= Limit)
+ return true;
+ }
+
+ return false;
+}
+
+/// Traverse the back trace from header to the current block and update their
+/// register pressures to reflect the effect of hoisting MI from the current
+/// block to the preheader.
+void MachineLICMBase::UpdateBackTraceRegPressure(const MachineInstr *MI) {
+ // First compute the 'cost' of the instruction, i.e. its contribution
+ // to register pressure.
+ auto Cost = calcRegisterCost(MI, /*ConsiderSeen=*/false,
+ /*ConsiderUnseenAsDef=*/false);
+
+ // Update register pressure of blocks from loop header to current block.
+ for (auto &RP : BackTrace)
+ for (const auto &RPIdAndCost : Cost)
+ RP[RPIdAndCost.first] += RPIdAndCost.second;
+}
+
+/// Return true if it is potentially profitable to hoist the given loop
+/// invariant.
+bool MachineLICMBase::IsProfitableToHoist(MachineInstr &MI) {
+ if (MI.isImplicitDef())
+ return true;
+
+ // Besides removing computation from the loop, hoisting an instruction has
+ // these effects:
+ //
+ // - The value defined by the instruction becomes live across the entire
+ // loop. This increases register pressure in the loop.
+ //
+ // - If the value is used by a PHI in the loop, a copy will be required for
+ // lowering the PHI after extending the live range.
+ //
+ // - When hoisting the last use of a value in the loop, that value no longer
+ // needs to be live in the loop. This lowers register pressure in the loop.
+
+ if (HoistConstStores && isCopyFeedingInvariantStore(MI, MRI, TRI))
+ return true;
+
+ bool CheapInstr = IsCheapInstruction(MI);
+ bool CreatesCopy = HasLoopPHIUse(&MI);
+
+ // Don't hoist a cheap instruction if it would create a copy in the loop.
+ if (CheapInstr && CreatesCopy) {
+ LLVM_DEBUG(dbgs() << "Won't hoist cheap instr with loop PHI use: " << MI);
+ return false;
+ }
+
+ // Rematerializable instructions should always be hoisted since the register
+ // allocator can just pull them down again when needed.
+ if (TII->isTriviallyReMaterializable(MI, AA))
+ return true;
+
+ // FIXME: If there are long latency loop-invariant instructions inside the
+ // loop at this point, why didn't the optimizer's LICM hoist them?
+ for (unsigned i = 0, e = MI.getDesc().getNumOperands(); i != e; ++i) {
+ const MachineOperand &MO = MI.getOperand(i);
+ if (!MO.isReg() || MO.isImplicit())
+ continue;
+ Register Reg = MO.getReg();
+ if (!Register::isVirtualRegister(Reg))
+ continue;
+ if (MO.isDef() && HasHighOperandLatency(MI, i, Reg)) {
+ LLVM_DEBUG(dbgs() << "Hoist High Latency: " << MI);
+ ++NumHighLatency;
+ return true;
+ }
+ }
+
+ // Estimate register pressure to determine whether to LICM the instruction.
+ // In low register pressure situation, we can be more aggressive about
+ // hoisting. Also, favors hoisting long latency instructions even in
+ // moderately high pressure situation.
+ // Cheap instructions will only be hoisted if they don't increase register
+ // pressure at all.
+ auto Cost = calcRegisterCost(&MI, /*ConsiderSeen=*/false,
+ /*ConsiderUnseenAsDef=*/false);
+
+ // Visit BBs from header to current BB, if hoisting this doesn't cause
+ // high register pressure, then it's safe to proceed.
+ if (!CanCauseHighRegPressure(Cost, CheapInstr)) {
+ LLVM_DEBUG(dbgs() << "Hoist non-reg-pressure: " << MI);
+ ++NumLowRP;
+ return true;
+ }
+
+ // Don't risk increasing register pressure if it would create copies.
+ if (CreatesCopy) {
+ LLVM_DEBUG(dbgs() << "Won't hoist instr with loop PHI use: " << MI);
+ return false;
+ }
+
+ // Do not "speculate" in high register pressure situation. If an
+ // instruction is not guaranteed to be executed in the loop, it's best to be
+ // conservative.
+ if (AvoidSpeculation &&
+ (!IsGuaranteedToExecute(MI.getParent()) && !MayCSE(&MI))) {
+ LLVM_DEBUG(dbgs() << "Won't speculate: " << MI);
+ return false;
+ }
+
+ // High register pressure situation, only hoist if the instruction is going
+ // to be remat'ed.
+ if (!TII->isTriviallyReMaterializable(MI, AA) &&
+ !MI.isDereferenceableInvariantLoad(AA)) {
+ LLVM_DEBUG(dbgs() << "Can't remat / high reg-pressure: " << MI);
+ return false;
+ }
+
+ return true;
+}
+
+/// Unfold a load from the given machineinstr if the load itself could be
+/// hoisted. Return the unfolded and hoistable load, or null if the load
+/// couldn't be unfolded or if it wouldn't be hoistable.
+MachineInstr *MachineLICMBase::ExtractHoistableLoad(MachineInstr *MI) {
+ // Don't unfold simple loads.
+ if (MI->canFoldAsLoad())
+ return nullptr;
+
+ // If not, we may be able to unfold a load and hoist that.
+ // First test whether the instruction is loading from an amenable
+ // memory location.
+ if (!MI->isDereferenceableInvariantLoad(AA))
+ return nullptr;
+
+ // Next determine the register class for a temporary register.
+ unsigned LoadRegIndex;
+ unsigned NewOpc =
+ TII->getOpcodeAfterMemoryUnfold(MI->getOpcode(),
+ /*UnfoldLoad=*/true,
+ /*UnfoldStore=*/false,
+ &LoadRegIndex);
+ if (NewOpc == 0) return nullptr;
+ const MCInstrDesc &MID = TII->get(NewOpc);
+ MachineFunction &MF = *MI->getMF();
+ const TargetRegisterClass *RC = TII->getRegClass(MID, LoadRegIndex, TRI, MF);
+ // Ok, we're unfolding. Create a temporary register and do the unfold.
+ Register Reg = MRI->createVirtualRegister(RC);
+
+ SmallVector<MachineInstr *, 2> NewMIs;
+ bool Success = TII->unfoldMemoryOperand(MF, *MI, Reg,
+ /*UnfoldLoad=*/true,
+ /*UnfoldStore=*/false, NewMIs);
+ (void)Success;
+ assert(Success &&
+ "unfoldMemoryOperand failed when getOpcodeAfterMemoryUnfold "
+ "succeeded!");
+ assert(NewMIs.size() == 2 &&
+ "Unfolded a load into multiple instructions!");
+ MachineBasicBlock *MBB = MI->getParent();
+ MachineBasicBlock::iterator Pos = MI;
+ MBB->insert(Pos, NewMIs[0]);
+ MBB->insert(Pos, NewMIs[1]);
+ // If unfolding produced a load that wasn't loop-invariant or profitable to
+ // hoist, discard the new instructions and bail.
+ if (!IsLoopInvariantInst(*NewMIs[0]) || !IsProfitableToHoist(*NewMIs[0])) {
+ NewMIs[0]->eraseFromParent();
+ NewMIs[1]->eraseFromParent();
+ return nullptr;
+ }
+
+ // Update register pressure for the unfolded instruction.
+ UpdateRegPressure(NewMIs[1]);
+
+ // Otherwise we successfully unfolded a load that we can hoist.
+ MI->eraseFromParent();
+ return NewMIs[0];
+}
+
+/// Initialize the CSE map with instructions that are in the current loop
+/// preheader that may become duplicates of instructions that are hoisted
+/// out of the loop.
+void MachineLICMBase::InitCSEMap(MachineBasicBlock *BB) {
+ for (MachineInstr &MI : *BB)
+ CSEMap[MI.getOpcode()].push_back(&MI);
+}
+
+/// Find an instruction amount PrevMIs that is a duplicate of MI.
+/// Return this instruction if it's found.
+const MachineInstr*
+MachineLICMBase::LookForDuplicate(const MachineInstr *MI,
+ std::vector<const MachineInstr*> &PrevMIs) {
+ for (const MachineInstr *PrevMI : PrevMIs)
+ if (TII->produceSameValue(*MI, *PrevMI, (PreRegAlloc ? MRI : nullptr)))
+ return PrevMI;
+
+ return nullptr;
+}
+
+/// Given a LICM'ed instruction, look for an instruction on the preheader that
+/// computes the same value. If it's found, do a RAU on with the definition of
+/// the existing instruction rather than hoisting the instruction to the
+/// preheader.
+bool MachineLICMBase::EliminateCSE(MachineInstr *MI,
+ DenseMap<unsigned, std::vector<const MachineInstr *>>::iterator &CI) {
+ // Do not CSE implicit_def so ProcessImplicitDefs can properly propagate
+ // the undef property onto uses.
+ if (CI == CSEMap.end() || MI->isImplicitDef())
+ return false;
+
+ if (const MachineInstr *Dup = LookForDuplicate(MI, CI->second)) {
+ LLVM_DEBUG(dbgs() << "CSEing " << *MI << " with " << *Dup);
+
+ // Replace virtual registers defined by MI by their counterparts defined
+ // by Dup.
+ SmallVector<unsigned, 2> Defs;
+ for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
+ const MachineOperand &MO = MI->getOperand(i);
+
+ // Physical registers may not differ here.
+ assert((!MO.isReg() || MO.getReg() == 0 ||
+ !Register::isPhysicalRegister(MO.getReg()) ||
+ MO.getReg() == Dup->getOperand(i).getReg()) &&
+ "Instructions with different phys regs are not identical!");
+
+ if (MO.isReg() && MO.isDef() &&
+ !Register::isPhysicalRegister(MO.getReg()))
+ Defs.push_back(i);
+ }
+
+ SmallVector<const TargetRegisterClass*, 2> OrigRCs;
+ for (unsigned i = 0, e = Defs.size(); i != e; ++i) {
+ unsigned Idx = Defs[i];
+ Register Reg = MI->getOperand(Idx).getReg();
+ Register DupReg = Dup->getOperand(Idx).getReg();
+ OrigRCs.push_back(MRI->getRegClass(DupReg));
+
+ if (!MRI->constrainRegClass(DupReg, MRI->getRegClass(Reg))) {
+ // Restore old RCs if more than one defs.
+ for (unsigned j = 0; j != i; ++j)
+ MRI->setRegClass(Dup->getOperand(Defs[j]).getReg(), OrigRCs[j]);
+ return false;
+ }
+ }
+
+ for (unsigned Idx : Defs) {
+ Register Reg = MI->getOperand(Idx).getReg();
+ Register DupReg = Dup->getOperand(Idx).getReg();
+ MRI->replaceRegWith(Reg, DupReg);
+ MRI->clearKillFlags(DupReg);
+ }
+
+ MI->eraseFromParent();
+ ++NumCSEed;
+ return true;
+ }
+ return false;
+}
+
+/// Return true if the given instruction will be CSE'd if it's hoisted out of
+/// the loop.
+bool MachineLICMBase::MayCSE(MachineInstr *MI) {
+ unsigned Opcode = MI->getOpcode();
+ DenseMap<unsigned, std::vector<const MachineInstr *>>::iterator
+ CI = CSEMap.find(Opcode);
+ // Do not CSE implicit_def so ProcessImplicitDefs can properly propagate
+ // the undef property onto uses.
+ if (CI == CSEMap.end() || MI->isImplicitDef())
+ return false;
+
+ return LookForDuplicate(MI, CI->second) != nullptr;
+}
+
+/// When an instruction is found to use only loop invariant operands
+/// that are safe to hoist, this instruction is called to do the dirty work.
+/// It returns true if the instruction is hoisted.
+bool MachineLICMBase::Hoist(MachineInstr *MI, MachineBasicBlock *Preheader) {
+ // First check whether we should hoist this instruction.
+ if (!IsLoopInvariantInst(*MI) || !IsProfitableToHoist(*MI)) {
+ // If not, try unfolding a hoistable load.
+ MI = ExtractHoistableLoad(MI);
+ if (!MI) return false;
+ }
+
+ // If we have hoisted an instruction that may store, it can only be a constant
+ // store.
+ if (MI->mayStore())
+ NumStoreConst++;
+
+ // Now move the instructions to the predecessor, inserting it before any
+ // terminator instructions.
+ LLVM_DEBUG({
+ dbgs() << "Hoisting " << *MI;
+ if (MI->getParent()->getBasicBlock())
+ dbgs() << " from " << printMBBReference(*MI->getParent());
+ if (Preheader->getBasicBlock())
+ dbgs() << " to " << printMBBReference(*Preheader);
+ dbgs() << "\n";
+ });
+
+ // If this is the first instruction being hoisted to the preheader,
+ // initialize the CSE map with potential common expressions.
+ if (FirstInLoop) {
+ InitCSEMap(Preheader);
+ FirstInLoop = false;
+ }
+
+ // Look for opportunity to CSE the hoisted instruction.
+ unsigned Opcode = MI->getOpcode();
+ DenseMap<unsigned, std::vector<const MachineInstr *>>::iterator
+ CI = CSEMap.find(Opcode);
+ if (!EliminateCSE(MI, CI)) {
+ // Otherwise, splice the instruction to the preheader.
+ Preheader->splice(Preheader->getFirstTerminator(),MI->getParent(),MI);
+
+ // Since we are moving the instruction out of its basic block, we do not
+ // retain its debug location. Doing so would degrade the debugging
+ // experience and adversely affect the accuracy of profiling information.
+ MI->setDebugLoc(DebugLoc());
+
+ // Update register pressure for BBs from header to this block.
+ UpdateBackTraceRegPressure(MI);
+
+ // Clear the kill flags of any register this instruction defines,
+ // since they may need to be live throughout the entire loop
+ // rather than just live for part of it.
+ for (MachineOperand &MO : MI->operands())
+ if (MO.isReg() && MO.isDef() && !MO.isDead())
+ MRI->clearKillFlags(MO.getReg());
+
+ // Add to the CSE map.
+ if (CI != CSEMap.end())
+ CI->second.push_back(MI);
+ else
+ CSEMap[Opcode].push_back(MI);
+ }
+
+ ++NumHoisted;
+ Changed = true;
+
+ return true;
+}
+
+/// Get the preheader for the current loop, splitting a critical edge if needed.
+MachineBasicBlock *MachineLICMBase::getCurPreheader() {
+ // Determine the block to which to hoist instructions. If we can't find a
+ // suitable loop predecessor, we can't do any hoisting.
+
+ // If we've tried to get a preheader and failed, don't try again.
+ if (CurPreheader == reinterpret_cast<MachineBasicBlock *>(-1))
+ return nullptr;
+
+ if (!CurPreheader) {
+ CurPreheader = CurLoop->getLoopPreheader();
+ if (!CurPreheader) {
+ MachineBasicBlock *Pred = CurLoop->getLoopPredecessor();
+ if (!Pred) {
+ CurPreheader = reinterpret_cast<MachineBasicBlock *>(-1);
+ return nullptr;
+ }
+
+ CurPreheader = Pred->SplitCriticalEdge(CurLoop->getHeader(), *this);
+ if (!CurPreheader) {
+ CurPreheader = reinterpret_cast<MachineBasicBlock *>(-1);
+ return nullptr;
+ }
+ }
+ }
+ return CurPreheader;
+}