aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm-project/llvm/lib/CodeGen/MachineSink.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm-project/llvm/lib/CodeGen/MachineSink.cpp')
-rw-r--r--contrib/llvm-project/llvm/lib/CodeGen/MachineSink.cpp2139
1 files changed, 2139 insertions, 0 deletions
diff --git a/contrib/llvm-project/llvm/lib/CodeGen/MachineSink.cpp b/contrib/llvm-project/llvm/lib/CodeGen/MachineSink.cpp
new file mode 100644
index 000000000000..e7e8f6026834
--- /dev/null
+++ b/contrib/llvm-project/llvm/lib/CodeGen/MachineSink.cpp
@@ -0,0 +1,2139 @@
+//===- MachineSink.cpp - Sinking for machine instructions -----------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This pass moves instructions into successor blocks when possible, so that
+// they aren't executed on paths where their results aren't needed.
+//
+// This pass is not intended to be a replacement or a complete alternative
+// for an LLVM-IR-level sinking pass. It is only designed to sink simple
+// constructs that are not exposed before lowering and instruction selection.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/ADT/DenseSet.h"
+#include "llvm/ADT/DepthFirstIterator.h"
+#include "llvm/ADT/MapVector.h"
+#include "llvm/ADT/PointerIntPair.h"
+#include "llvm/ADT/PostOrderIterator.h"
+#include "llvm/ADT/SetVector.h"
+#include "llvm/ADT/SmallSet.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/Analysis/AliasAnalysis.h"
+#include "llvm/Analysis/CFG.h"
+#include "llvm/CodeGen/MachineBasicBlock.h"
+#include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
+#include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
+#include "llvm/CodeGen/MachineCycleAnalysis.h"
+#include "llvm/CodeGen/MachineDominators.h"
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/MachineFunctionPass.h"
+#include "llvm/CodeGen/MachineInstr.h"
+#include "llvm/CodeGen/MachineLoopInfo.h"
+#include "llvm/CodeGen/MachineOperand.h"
+#include "llvm/CodeGen/MachinePostDominators.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/CodeGen/RegisterClassInfo.h"
+#include "llvm/CodeGen/RegisterPressure.h"
+#include "llvm/CodeGen/TargetInstrInfo.h"
+#include "llvm/CodeGen/TargetPassConfig.h"
+#include "llvm/CodeGen/TargetRegisterInfo.h"
+#include "llvm/CodeGen/TargetSubtargetInfo.h"
+#include "llvm/IR/BasicBlock.h"
+#include "llvm/IR/DebugInfoMetadata.h"
+#include "llvm/IR/LLVMContext.h"
+#include "llvm/InitializePasses.h"
+#include "llvm/MC/MCRegisterInfo.h"
+#include "llvm/Pass.h"
+#include "llvm/Support/BranchProbability.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/raw_ostream.h"
+#include <algorithm>
+#include <cassert>
+#include <cstdint>
+#include <utility>
+#include <vector>
+
+using namespace llvm;
+
+#define DEBUG_TYPE "machine-sink"
+
+static cl::opt<bool>
+SplitEdges("machine-sink-split",
+ cl::desc("Split critical edges during machine sinking"),
+ cl::init(true), cl::Hidden);
+
+static cl::opt<bool>
+UseBlockFreqInfo("machine-sink-bfi",
+ cl::desc("Use block frequency info to find successors to sink"),
+ cl::init(true), cl::Hidden);
+
+static cl::opt<unsigned> SplitEdgeProbabilityThreshold(
+ "machine-sink-split-probability-threshold",
+ cl::desc(
+ "Percentage threshold for splitting single-instruction critical edge. "
+ "If the branch threshold is higher than this threshold, we allow "
+ "speculative execution of up to 1 instruction to avoid branching to "
+ "splitted critical edge"),
+ cl::init(40), cl::Hidden);
+
+static cl::opt<unsigned> SinkLoadInstsPerBlockThreshold(
+ "machine-sink-load-instrs-threshold",
+ cl::desc("Do not try to find alias store for a load if there is a in-path "
+ "block whose instruction number is higher than this threshold."),
+ cl::init(2000), cl::Hidden);
+
+static cl::opt<unsigned> SinkLoadBlocksThreshold(
+ "machine-sink-load-blocks-threshold",
+ cl::desc("Do not try to find alias store for a load if the block number in "
+ "the straight line is higher than this threshold."),
+ cl::init(20), cl::Hidden);
+
+static cl::opt<bool>
+ SinkInstsIntoCycle("sink-insts-to-avoid-spills",
+ cl::desc("Sink instructions into cycles to avoid "
+ "register spills"),
+ cl::init(false), cl::Hidden);
+
+static cl::opt<unsigned> SinkIntoCycleLimit(
+ "machine-sink-cycle-limit",
+ cl::desc("The maximum number of instructions considered for cycle sinking."),
+ cl::init(50), cl::Hidden);
+
+STATISTIC(NumSunk, "Number of machine instructions sunk");
+STATISTIC(NumCycleSunk, "Number of machine instructions sunk into a cycle");
+STATISTIC(NumSplit, "Number of critical edges split");
+STATISTIC(NumCoalesces, "Number of copies coalesced");
+STATISTIC(NumPostRACopySink, "Number of copies sunk after RA");
+
+namespace {
+
+ class MachineSinking : public MachineFunctionPass {
+ const TargetSubtargetInfo *STI = nullptr;
+ const TargetInstrInfo *TII = nullptr;
+ const TargetRegisterInfo *TRI = nullptr;
+ MachineRegisterInfo *MRI = nullptr; // Machine register information
+ MachineDominatorTree *DT = nullptr; // Machine dominator tree
+ MachinePostDominatorTree *PDT = nullptr; // Machine post dominator tree
+ MachineCycleInfo *CI = nullptr;
+ MachineBlockFrequencyInfo *MBFI = nullptr;
+ const MachineBranchProbabilityInfo *MBPI = nullptr;
+ AliasAnalysis *AA = nullptr;
+ RegisterClassInfo RegClassInfo;
+
+ // Remember which edges have been considered for breaking.
+ SmallSet<std::pair<MachineBasicBlock*, MachineBasicBlock*>, 8>
+ CEBCandidates;
+ // Remember which edges we are about to split.
+ // This is different from CEBCandidates since those edges
+ // will be split.
+ SetVector<std::pair<MachineBasicBlock *, MachineBasicBlock *>> ToSplit;
+
+ DenseSet<Register> RegsToClearKillFlags;
+
+ using AllSuccsCache =
+ DenseMap<MachineBasicBlock *, SmallVector<MachineBasicBlock *, 4>>;
+
+ /// DBG_VALUE pointer and flag. The flag is true if this DBG_VALUE is
+ /// post-dominated by another DBG_VALUE of the same variable location.
+ /// This is necessary to detect sequences such as:
+ /// %0 = someinst
+ /// DBG_VALUE %0, !123, !DIExpression()
+ /// %1 = anotherinst
+ /// DBG_VALUE %1, !123, !DIExpression()
+ /// Where if %0 were to sink, the DBG_VAUE should not sink with it, as that
+ /// would re-order assignments.
+ using SeenDbgUser = PointerIntPair<MachineInstr *, 1>;
+
+ /// Record of DBG_VALUE uses of vregs in a block, so that we can identify
+ /// debug instructions to sink.
+ SmallDenseMap<unsigned, TinyPtrVector<SeenDbgUser>> SeenDbgUsers;
+
+ /// Record of debug variables that have had their locations set in the
+ /// current block.
+ DenseSet<DebugVariable> SeenDbgVars;
+
+ DenseMap<std::pair<MachineBasicBlock *, MachineBasicBlock *>, bool>
+ HasStoreCache;
+
+ DenseMap<std::pair<MachineBasicBlock *, MachineBasicBlock *>,
+ SmallVector<MachineInstr *>>
+ StoreInstrCache;
+
+ /// Cached BB's register pressure.
+ DenseMap<const MachineBasicBlock *, std::vector<unsigned>>
+ CachedRegisterPressure;
+
+ bool EnableSinkAndFold;
+
+ public:
+ static char ID; // Pass identification
+
+ MachineSinking() : MachineFunctionPass(ID) {
+ initializeMachineSinkingPass(*PassRegistry::getPassRegistry());
+ }
+
+ bool runOnMachineFunction(MachineFunction &MF) override;
+
+ void getAnalysisUsage(AnalysisUsage &AU) const override {
+ MachineFunctionPass::getAnalysisUsage(AU);
+ AU.addRequired<AAResultsWrapperPass>();
+ AU.addRequired<MachineDominatorTree>();
+ AU.addRequired<MachinePostDominatorTree>();
+ AU.addRequired<MachineCycleInfoWrapperPass>();
+ AU.addRequired<MachineBranchProbabilityInfo>();
+ AU.addPreserved<MachineCycleInfoWrapperPass>();
+ AU.addPreserved<MachineLoopInfo>();
+ if (UseBlockFreqInfo)
+ AU.addRequired<MachineBlockFrequencyInfo>();
+ AU.addRequired<TargetPassConfig>();
+ }
+
+ void releaseMemory() override {
+ CEBCandidates.clear();
+ }
+
+ private:
+ bool ProcessBlock(MachineBasicBlock &MBB);
+ void ProcessDbgInst(MachineInstr &MI);
+ bool isWorthBreakingCriticalEdge(MachineInstr &MI,
+ MachineBasicBlock *From,
+ MachineBasicBlock *To);
+
+ bool hasStoreBetween(MachineBasicBlock *From, MachineBasicBlock *To,
+ MachineInstr &MI);
+
+ /// Postpone the splitting of the given critical
+ /// edge (\p From, \p To).
+ ///
+ /// We do not split the edges on the fly. Indeed, this invalidates
+ /// the dominance information and thus triggers a lot of updates
+ /// of that information underneath.
+ /// Instead, we postpone all the splits after each iteration of
+ /// the main loop. That way, the information is at least valid
+ /// for the lifetime of an iteration.
+ ///
+ /// \return True if the edge is marked as toSplit, false otherwise.
+ /// False can be returned if, for instance, this is not profitable.
+ bool PostponeSplitCriticalEdge(MachineInstr &MI,
+ MachineBasicBlock *From,
+ MachineBasicBlock *To,
+ bool BreakPHIEdge);
+ bool SinkInstruction(MachineInstr &MI, bool &SawStore,
+ AllSuccsCache &AllSuccessors);
+
+ /// If we sink a COPY inst, some debug users of it's destination may no
+ /// longer be dominated by the COPY, and will eventually be dropped.
+ /// This is easily rectified by forwarding the non-dominated debug uses
+ /// to the copy source.
+ void SalvageUnsunkDebugUsersOfCopy(MachineInstr &,
+ MachineBasicBlock *TargetBlock);
+ bool AllUsesDominatedByBlock(Register Reg, MachineBasicBlock *MBB,
+ MachineBasicBlock *DefMBB, bool &BreakPHIEdge,
+ bool &LocalUse) const;
+ MachineBasicBlock *FindSuccToSinkTo(MachineInstr &MI, MachineBasicBlock *MBB,
+ bool &BreakPHIEdge, AllSuccsCache &AllSuccessors);
+
+ void FindCycleSinkCandidates(MachineCycle *Cycle, MachineBasicBlock *BB,
+ SmallVectorImpl<MachineInstr *> &Candidates);
+ bool SinkIntoCycle(MachineCycle *Cycle, MachineInstr &I);
+
+ bool isProfitableToSinkTo(Register Reg, MachineInstr &MI,
+ MachineBasicBlock *MBB,
+ MachineBasicBlock *SuccToSinkTo,
+ AllSuccsCache &AllSuccessors);
+
+ bool PerformTrivialForwardCoalescing(MachineInstr &MI,
+ MachineBasicBlock *MBB);
+
+ bool PerformSinkAndFold(MachineInstr &MI, MachineBasicBlock *MBB);
+
+ SmallVector<MachineBasicBlock *, 4> &
+ GetAllSortedSuccessors(MachineInstr &MI, MachineBasicBlock *MBB,
+ AllSuccsCache &AllSuccessors) const;
+
+ std::vector<unsigned> &getBBRegisterPressure(const MachineBasicBlock &MBB);
+
+ bool registerPressureSetExceedsLimit(unsigned NRegs,
+ const TargetRegisterClass *RC,
+ const MachineBasicBlock &MBB);
+ };
+
+} // end anonymous namespace
+
+char MachineSinking::ID = 0;
+
+char &llvm::MachineSinkingID = MachineSinking::ID;
+
+INITIALIZE_PASS_BEGIN(MachineSinking, DEBUG_TYPE,
+ "Machine code sinking", false, false)
+INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
+INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
+INITIALIZE_PASS_DEPENDENCY(MachineCycleInfoWrapperPass)
+INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
+INITIALIZE_PASS_END(MachineSinking, DEBUG_TYPE,
+ "Machine code sinking", false, false)
+
+/// Return true if a target defined block prologue instruction interferes
+/// with a sink candidate.
+static bool blockPrologueInterferes(const MachineBasicBlock *BB,
+ MachineBasicBlock::const_iterator End,
+ const MachineInstr &MI,
+ const TargetRegisterInfo *TRI,
+ const TargetInstrInfo *TII,
+ const MachineRegisterInfo *MRI) {
+ for (MachineBasicBlock::const_iterator PI = BB->getFirstNonPHI(); PI != End;
+ ++PI) {
+ // Only check target defined prologue instructions
+ if (!TII->isBasicBlockPrologue(*PI))
+ continue;
+ for (auto &MO : MI.operands()) {
+ if (!MO.isReg())
+ continue;
+ Register Reg = MO.getReg();
+ if (!Reg)
+ continue;
+ if (MO.isUse()) {
+ if (Reg.isPhysical() &&
+ (TII->isIgnorableUse(MO) || (MRI && MRI->isConstantPhysReg(Reg))))
+ continue;
+ if (PI->modifiesRegister(Reg, TRI))
+ return true;
+ } else {
+ if (PI->readsRegister(Reg, TRI))
+ return true;
+ // Check for interference with non-dead defs
+ auto *DefOp = PI->findRegisterDefOperand(Reg, false, true, TRI);
+ if (DefOp && !DefOp->isDead())
+ return true;
+ }
+ }
+ }
+
+ return false;
+}
+
+bool MachineSinking::PerformTrivialForwardCoalescing(MachineInstr &MI,
+ MachineBasicBlock *MBB) {
+ if (!MI.isCopy())
+ return false;
+
+ Register SrcReg = MI.getOperand(1).getReg();
+ Register DstReg = MI.getOperand(0).getReg();
+ if (!SrcReg.isVirtual() || !DstReg.isVirtual() ||
+ !MRI->hasOneNonDBGUse(SrcReg))
+ return false;
+
+ const TargetRegisterClass *SRC = MRI->getRegClass(SrcReg);
+ const TargetRegisterClass *DRC = MRI->getRegClass(DstReg);
+ if (SRC != DRC)
+ return false;
+
+ MachineInstr *DefMI = MRI->getVRegDef(SrcReg);
+ if (DefMI->isCopyLike())
+ return false;
+ LLVM_DEBUG(dbgs() << "Coalescing: " << *DefMI);
+ LLVM_DEBUG(dbgs() << "*** to: " << MI);
+ MRI->replaceRegWith(DstReg, SrcReg);
+ MI.eraseFromParent();
+
+ // Conservatively, clear any kill flags, since it's possible that they are no
+ // longer correct.
+ MRI->clearKillFlags(SrcReg);
+
+ ++NumCoalesces;
+ return true;
+}
+
+bool MachineSinking::PerformSinkAndFold(MachineInstr &MI,
+ MachineBasicBlock *MBB) {
+ if (MI.isCopy() || MI.mayLoadOrStore() ||
+ MI.getOpcode() == TargetOpcode::REG_SEQUENCE)
+ return false;
+
+ // Don't sink instructions that the target prefers not to sink.
+ if (!TII->shouldSink(MI))
+ return false;
+
+ // Check if it's safe to move the instruction.
+ bool SawStore = true;
+ if (!MI.isSafeToMove(AA, SawStore))
+ return false;
+
+ // Convergent operations may not be made control-dependent on additional
+ // values.
+ if (MI.isConvergent())
+ return false;
+
+ // Don't sink defs/uses of hard registers or if the instruction defines more
+ // than one register.
+ // Don't sink more than two register uses - it'll cover most of the cases and
+ // greatly simplifies the register pressure checks.
+ Register DefReg;
+ Register UsedRegA, UsedRegB;
+ for (const MachineOperand &MO : MI.operands()) {
+ if (MO.isImm() || MO.isRegMask() || MO.isRegLiveOut() || MO.isMetadata() ||
+ MO.isMCSymbol() || MO.isDbgInstrRef() || MO.isCFIIndex() ||
+ MO.isIntrinsicID() || MO.isPredicate() || MO.isShuffleMask())
+ continue;
+ if (!MO.isReg())
+ return false;
+
+ Register Reg = MO.getReg();
+ if (Reg == 0)
+ continue;
+
+ if (Reg.isVirtual()) {
+ if (MO.isDef()) {
+ if (DefReg)
+ return false;
+ DefReg = Reg;
+ continue;
+ }
+
+ if (UsedRegA == 0)
+ UsedRegA = Reg;
+ else if (UsedRegB == 0)
+ UsedRegB = Reg;
+ else
+ return false;
+ continue;
+ }
+
+ if (Reg.isPhysical() &&
+ (MRI->isConstantPhysReg(Reg) || TII->isIgnorableUse(MO)))
+ continue;
+
+ return false;
+ }
+
+ // Scan uses of the destination register. Every use, except the last, must be
+ // a copy, with a chain of copies terminating with either a copy into a hard
+ // register, or a load/store instruction where the use is part of the
+ // address (*not* the stored value).
+ using SinkInfo = std::pair<MachineInstr *, ExtAddrMode>;
+ SmallVector<SinkInfo> SinkInto;
+ SmallVector<Register> Worklist;
+
+ const TargetRegisterClass *RC = MRI->getRegClass(DefReg);
+ const TargetRegisterClass *RCA =
+ UsedRegA == 0 ? nullptr : MRI->getRegClass(UsedRegA);
+ const TargetRegisterClass *RCB =
+ UsedRegB == 0 ? nullptr : MRI->getRegClass(UsedRegB);
+
+ Worklist.push_back(DefReg);
+ while (!Worklist.empty()) {
+ Register Reg = Worklist.pop_back_val();
+
+ for (MachineOperand &MO : MRI->use_nodbg_operands(Reg)) {
+ ExtAddrMode MaybeAM;
+ MachineInstr &UseInst = *MO.getParent();
+ if (UseInst.isCopy()) {
+ Register DstReg;
+ if (const MachineOperand &O = UseInst.getOperand(0); O.isReg())
+ DstReg = O.getReg();
+ if (DstReg == 0)
+ return false;
+ if (DstReg.isVirtual()) {
+ Worklist.push_back(DstReg);
+ continue;
+ }
+ // If we are going to replace a copy, the original instruction must be
+ // as cheap as a copy.
+ if (!TII->isAsCheapAsAMove(MI))
+ return false;
+ // The hard register must be in the register class of the original
+ // instruction's destination register.
+ if (!RC->contains(DstReg))
+ return false;
+ } else if (UseInst.mayLoadOrStore()) {
+ ExtAddrMode AM;
+ if (!TII->canFoldIntoAddrMode(UseInst, Reg, MI, AM))
+ return false;
+ MaybeAM = AM;
+ } else {
+ return false;
+ }
+
+ if (UseInst.getParent() != MI.getParent()) {
+ // If the register class of the register we are replacing is a superset
+ // of any of the register classes of the operands of the materialized
+ // instruction don't consider that live range extended.
+ const TargetRegisterClass *RCS = MRI->getRegClass(Reg);
+ if (RCA && RCA->hasSuperClassEq(RCS))
+ RCA = nullptr;
+ else if (RCB && RCB->hasSuperClassEq(RCS))
+ RCB = nullptr;
+ if (RCA || RCB) {
+ if (RCA == nullptr) {
+ RCA = RCB;
+ RCB = nullptr;
+ }
+
+ unsigned NRegs = !!RCA + !!RCB;
+ if (RCA == RCB)
+ RCB = nullptr;
+
+ // Check we don't exceed register pressure at the destination.
+ const MachineBasicBlock &MBB = *UseInst.getParent();
+ if (RCB == nullptr) {
+ if (registerPressureSetExceedsLimit(NRegs, RCA, MBB))
+ return false;
+ } else if (registerPressureSetExceedsLimit(1, RCA, MBB) ||
+ registerPressureSetExceedsLimit(1, RCB, MBB)) {
+ return false;
+ }
+ }
+ }
+
+ SinkInto.emplace_back(&UseInst, MaybeAM);
+ }
+ }
+
+ if (SinkInto.empty())
+ return false;
+
+ // Now we know we can fold the instruction in all its users.
+ for (auto &[SinkDst, MaybeAM] : SinkInto) {
+ MachineInstr *New = nullptr;
+ LLVM_DEBUG(dbgs() << "Sinking copy of"; MI.dump(); dbgs() << "into";
+ SinkDst->dump());
+ if (SinkDst->isCopy()) {
+ // TODO: After performing the sink-and-fold, the original instruction is
+ // deleted. Its value is still available (in a hard register), so if there
+ // are debug instructions which refer to the (now deleted) virtual
+ // register they could be updated to refer to the hard register, in
+ // principle. However, it's not clear how to do that, moreover in some
+ // cases the debug instructions may need to be replicated proportionally
+ // to the number of the COPY instructions replaced and in some extreme
+ // cases we can end up with quadratic increase in the number of debug
+ // instructions.
+
+ // Sink a copy of the instruction, replacing a COPY instruction.
+ MachineBasicBlock::iterator InsertPt = SinkDst->getIterator();
+ Register DstReg = SinkDst->getOperand(0).getReg();
+ TII->reMaterialize(*SinkDst->getParent(), InsertPt, DstReg, 0, MI, *TRI);
+ New = &*std::prev(InsertPt);
+ if (!New->getDebugLoc())
+ New->setDebugLoc(SinkDst->getDebugLoc());
+
+ // The operand registers of the "sunk" instruction have their live range
+ // extended and their kill flags may no longer be correct. Conservatively
+ // clear the kill flags.
+ if (UsedRegA)
+ MRI->clearKillFlags(UsedRegA);
+ if (UsedRegB)
+ MRI->clearKillFlags(UsedRegB);
+ } else {
+ // Fold instruction into the addressing mode of a memory instruction.
+ New = TII->emitLdStWithAddr(*SinkDst, MaybeAM);
+
+ // The registers of the addressing mode may have their live range extended
+ // and their kill flags may no longer be correct. Conservatively clear the
+ // kill flags.
+ if (Register R = MaybeAM.BaseReg; R.isValid() && R.isVirtual())
+ MRI->clearKillFlags(R);
+ if (Register R = MaybeAM.ScaledReg; R.isValid() && R.isVirtual())
+ MRI->clearKillFlags(R);
+ }
+ LLVM_DEBUG(dbgs() << "yielding"; New->dump());
+ // Clear the StoreInstrCache, since we may invalidate it by erasing.
+ if (SinkDst->mayStore() && !SinkDst->hasOrderedMemoryRef())
+ StoreInstrCache.clear();
+ SinkDst->eraseFromParent();
+ }
+
+ // Collect operands that need to be cleaned up because the registers no longer
+ // exist (in COPYs and debug instructions). We cannot delete instructions or
+ // clear operands while traversing register uses.
+ SmallVector<MachineOperand *> Cleanup;
+ Worklist.push_back(DefReg);
+ while (!Worklist.empty()) {
+ Register Reg = Worklist.pop_back_val();
+ for (MachineOperand &MO : MRI->use_operands(Reg)) {
+ MachineInstr *U = MO.getParent();
+ assert((U->isCopy() || U->isDebugInstr()) &&
+ "Only debug uses and copies must remain");
+ if (U->isCopy())
+ Worklist.push_back(U->getOperand(0).getReg());
+ Cleanup.push_back(&MO);
+ }
+ }
+
+ // Delete the dead COPYs and clear operands in debug instructions
+ for (MachineOperand *MO : Cleanup) {
+ MachineInstr *I = MO->getParent();
+ if (I->isCopy()) {
+ I->eraseFromParent();
+ } else {
+ MO->setReg(0);
+ MO->setSubReg(0);
+ }
+ }
+
+ MI.eraseFromParent();
+ return true;
+}
+
+/// AllUsesDominatedByBlock - Return true if all uses of the specified register
+/// occur in blocks dominated by the specified block. If any use is in the
+/// definition block, then return false since it is never legal to move def
+/// after uses.
+bool MachineSinking::AllUsesDominatedByBlock(Register Reg,
+ MachineBasicBlock *MBB,
+ MachineBasicBlock *DefMBB,
+ bool &BreakPHIEdge,
+ bool &LocalUse) const {
+ assert(Reg.isVirtual() && "Only makes sense for vregs");
+
+ // Ignore debug uses because debug info doesn't affect the code.
+ if (MRI->use_nodbg_empty(Reg))
+ return true;
+
+ // BreakPHIEdge is true if all the uses are in the successor MBB being sunken
+ // into and they are all PHI nodes. In this case, machine-sink must break
+ // the critical edge first. e.g.
+ //
+ // %bb.1:
+ // Predecessors according to CFG: %bb.0
+ // ...
+ // %def = DEC64_32r %x, implicit-def dead %eflags
+ // ...
+ // JE_4 <%bb.37>, implicit %eflags
+ // Successors according to CFG: %bb.37 %bb.2
+ //
+ // %bb.2:
+ // %p = PHI %y, %bb.0, %def, %bb.1
+ if (all_of(MRI->use_nodbg_operands(Reg), [&](MachineOperand &MO) {
+ MachineInstr *UseInst = MO.getParent();
+ unsigned OpNo = MO.getOperandNo();
+ MachineBasicBlock *UseBlock = UseInst->getParent();
+ return UseBlock == MBB && UseInst->isPHI() &&
+ UseInst->getOperand(OpNo + 1).getMBB() == DefMBB;
+ })) {
+ BreakPHIEdge = true;
+ return true;
+ }
+
+ for (MachineOperand &MO : MRI->use_nodbg_operands(Reg)) {
+ // Determine the block of the use.
+ MachineInstr *UseInst = MO.getParent();
+ unsigned OpNo = &MO - &UseInst->getOperand(0);
+ MachineBasicBlock *UseBlock = UseInst->getParent();
+ if (UseInst->isPHI()) {
+ // PHI nodes use the operand in the predecessor block, not the block with
+ // the PHI.
+ UseBlock = UseInst->getOperand(OpNo+1).getMBB();
+ } else if (UseBlock == DefMBB) {
+ LocalUse = true;
+ return false;
+ }
+
+ // Check that it dominates.
+ if (!DT->dominates(MBB, UseBlock))
+ return false;
+ }
+
+ return true;
+}
+
+/// Return true if this machine instruction loads from global offset table or
+/// constant pool.
+static bool mayLoadFromGOTOrConstantPool(MachineInstr &MI) {
+ assert(MI.mayLoad() && "Expected MI that loads!");
+
+ // If we lost memory operands, conservatively assume that the instruction
+ // reads from everything..
+ if (MI.memoperands_empty())
+ return true;
+
+ for (MachineMemOperand *MemOp : MI.memoperands())
+ if (const PseudoSourceValue *PSV = MemOp->getPseudoValue())
+ if (PSV->isGOT() || PSV->isConstantPool())
+ return true;
+
+ return false;
+}
+
+void MachineSinking::FindCycleSinkCandidates(
+ MachineCycle *Cycle, MachineBasicBlock *BB,
+ SmallVectorImpl<MachineInstr *> &Candidates) {
+ for (auto &MI : *BB) {
+ LLVM_DEBUG(dbgs() << "CycleSink: Analysing candidate: " << MI);
+ if (!TII->shouldSink(MI)) {
+ LLVM_DEBUG(dbgs() << "CycleSink: Instruction not a candidate for this "
+ "target\n");
+ continue;
+ }
+ if (!isCycleInvariant(Cycle, MI)) {
+ LLVM_DEBUG(dbgs() << "CycleSink: Instruction is not cycle invariant\n");
+ continue;
+ }
+ bool DontMoveAcrossStore = true;
+ if (!MI.isSafeToMove(AA, DontMoveAcrossStore)) {
+ LLVM_DEBUG(dbgs() << "CycleSink: Instruction not safe to move.\n");
+ continue;
+ }
+ if (MI.mayLoad() && !mayLoadFromGOTOrConstantPool(MI)) {
+ LLVM_DEBUG(dbgs() << "CycleSink: Dont sink GOT or constant pool loads\n");
+ continue;
+ }
+ if (MI.isConvergent())
+ continue;
+
+ const MachineOperand &MO = MI.getOperand(0);
+ if (!MO.isReg() || !MO.getReg() || !MO.isDef())
+ continue;
+ if (!MRI->hasOneDef(MO.getReg()))
+ continue;
+
+ LLVM_DEBUG(dbgs() << "CycleSink: Instruction added as candidate.\n");
+ Candidates.push_back(&MI);
+ }
+}
+
+bool MachineSinking::runOnMachineFunction(MachineFunction &MF) {
+ if (skipFunction(MF.getFunction()))
+ return false;
+
+ LLVM_DEBUG(dbgs() << "******** Machine Sinking ********\n");
+
+ STI = &MF.getSubtarget();
+ TII = STI->getInstrInfo();
+ TRI = STI->getRegisterInfo();
+ MRI = &MF.getRegInfo();
+ DT = &getAnalysis<MachineDominatorTree>();
+ PDT = &getAnalysis<MachinePostDominatorTree>();
+ CI = &getAnalysis<MachineCycleInfoWrapperPass>().getCycleInfo();
+ MBFI = UseBlockFreqInfo ? &getAnalysis<MachineBlockFrequencyInfo>() : nullptr;
+ MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
+ AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
+ RegClassInfo.runOnMachineFunction(MF);
+ TargetPassConfig *PassConfig = &getAnalysis<TargetPassConfig>();
+ EnableSinkAndFold = PassConfig->getEnableSinkAndFold();
+
+ bool EverMadeChange = false;
+
+ while (true) {
+ bool MadeChange = false;
+
+ // Process all basic blocks.
+ CEBCandidates.clear();
+ ToSplit.clear();
+ for (auto &MBB: MF)
+ MadeChange |= ProcessBlock(MBB);
+
+ // If we have anything we marked as toSplit, split it now.
+ for (const auto &Pair : ToSplit) {
+ auto NewSucc = Pair.first->SplitCriticalEdge(Pair.second, *this);
+ if (NewSucc != nullptr) {
+ LLVM_DEBUG(dbgs() << " *** Splitting critical edge: "
+ << printMBBReference(*Pair.first) << " -- "
+ << printMBBReference(*NewSucc) << " -- "
+ << printMBBReference(*Pair.second) << '\n');
+ if (MBFI)
+ MBFI->onEdgeSplit(*Pair.first, *NewSucc, *MBPI);
+
+ MadeChange = true;
+ ++NumSplit;
+ CI->splitCriticalEdge(Pair.first, Pair.second, NewSucc);
+ } else
+ LLVM_DEBUG(dbgs() << " *** Not legal to break critical edge\n");
+ }
+ // If this iteration over the code changed anything, keep iterating.
+ if (!MadeChange) break;
+ EverMadeChange = true;
+ }
+
+ if (SinkInstsIntoCycle) {
+ SmallVector<MachineCycle *, 8> Cycles(CI->toplevel_begin(),
+ CI->toplevel_end());
+ for (auto *Cycle : Cycles) {
+ MachineBasicBlock *Preheader = Cycle->getCyclePreheader();
+ if (!Preheader) {
+ LLVM_DEBUG(dbgs() << "CycleSink: Can't find preheader\n");
+ continue;
+ }
+ SmallVector<MachineInstr *, 8> Candidates;
+ FindCycleSinkCandidates(Cycle, Preheader, Candidates);
+
+ // Walk the candidates in reverse order so that we start with the use
+ // of a def-use chain, if there is any.
+ // TODO: Sort the candidates using a cost-model.
+ unsigned i = 0;
+ for (MachineInstr *I : llvm::reverse(Candidates)) {
+ if (i++ == SinkIntoCycleLimit) {
+ LLVM_DEBUG(dbgs() << "CycleSink: Limit reached of instructions to "
+ "be analysed.");
+ break;
+ }
+
+ if (!SinkIntoCycle(Cycle, *I))
+ break;
+ EverMadeChange = true;
+ ++NumCycleSunk;
+ }
+ }
+ }
+
+ HasStoreCache.clear();
+ StoreInstrCache.clear();
+
+ // Now clear any kill flags for recorded registers.
+ for (auto I : RegsToClearKillFlags)
+ MRI->clearKillFlags(I);
+ RegsToClearKillFlags.clear();
+
+ return EverMadeChange;
+}
+
+bool MachineSinking::ProcessBlock(MachineBasicBlock &MBB) {
+ if ((!EnableSinkAndFold && MBB.succ_size() <= 1) || MBB.empty())
+ return false;
+
+ // Don't bother sinking code out of unreachable blocks. In addition to being
+ // unprofitable, it can also lead to infinite looping, because in an
+ // unreachable cycle there may be nowhere to stop.
+ if (!DT->isReachableFromEntry(&MBB)) return false;
+
+ bool MadeChange = false;
+
+ // Cache all successors, sorted by frequency info and cycle depth.
+ AllSuccsCache AllSuccessors;
+
+ // Walk the basic block bottom-up. Remember if we saw a store.
+ MachineBasicBlock::iterator I = MBB.end();
+ --I;
+ bool ProcessedBegin, SawStore = false;
+ do {
+ MachineInstr &MI = *I; // The instruction to sink.
+
+ // Predecrement I (if it's not begin) so that it isn't invalidated by
+ // sinking.
+ ProcessedBegin = I == MBB.begin();
+ if (!ProcessedBegin)
+ --I;
+
+ if (MI.isDebugOrPseudoInstr()) {
+ if (MI.isDebugValue())
+ ProcessDbgInst(MI);
+ continue;
+ }
+
+ if (EnableSinkAndFold && PerformSinkAndFold(MI, &MBB)) {
+ MadeChange = true;
+ continue;
+ }
+
+ // Can't sink anything out of a block that has less than two successors.
+ if (MBB.succ_size() <= 1)
+ continue;
+
+ if (PerformTrivialForwardCoalescing(MI, &MBB)) {
+ MadeChange = true;
+ continue;
+ }
+
+ if (SinkInstruction(MI, SawStore, AllSuccessors)) {
+ ++NumSunk;
+ MadeChange = true;
+ }
+
+ // If we just processed the first instruction in the block, we're done.
+ } while (!ProcessedBegin);
+
+ SeenDbgUsers.clear();
+ SeenDbgVars.clear();
+ // recalculate the bb register pressure after sinking one BB.
+ CachedRegisterPressure.clear();
+ return MadeChange;
+}
+
+void MachineSinking::ProcessDbgInst(MachineInstr &MI) {
+ // When we see DBG_VALUEs for registers, record any vreg it reads, so that
+ // we know what to sink if the vreg def sinks.
+ assert(MI.isDebugValue() && "Expected DBG_VALUE for processing");
+
+ DebugVariable Var(MI.getDebugVariable(), MI.getDebugExpression(),
+ MI.getDebugLoc()->getInlinedAt());
+ bool SeenBefore = SeenDbgVars.contains(Var);
+
+ for (MachineOperand &MO : MI.debug_operands()) {
+ if (MO.isReg() && MO.getReg().isVirtual())
+ SeenDbgUsers[MO.getReg()].push_back(SeenDbgUser(&MI, SeenBefore));
+ }
+
+ // Record the variable for any DBG_VALUE, to avoid re-ordering any of them.
+ SeenDbgVars.insert(Var);
+}
+
+bool MachineSinking::isWorthBreakingCriticalEdge(MachineInstr &MI,
+ MachineBasicBlock *From,
+ MachineBasicBlock *To) {
+ // FIXME: Need much better heuristics.
+
+ // If the pass has already considered breaking this edge (during this pass
+ // through the function), then let's go ahead and break it. This means
+ // sinking multiple "cheap" instructions into the same block.
+ if (!CEBCandidates.insert(std::make_pair(From, To)).second)
+ return true;
+
+ if (!MI.isCopy() && !TII->isAsCheapAsAMove(MI))
+ return true;
+
+ if (From->isSuccessor(To) && MBPI->getEdgeProbability(From, To) <=
+ BranchProbability(SplitEdgeProbabilityThreshold, 100))
+ return true;
+
+ // MI is cheap, we probably don't want to break the critical edge for it.
+ // However, if this would allow some definitions of its source operands
+ // to be sunk then it's probably worth it.
+ for (const MachineOperand &MO : MI.all_uses()) {
+ Register Reg = MO.getReg();
+ if (Reg == 0)
+ continue;
+
+ // We don't move live definitions of physical registers,
+ // so sinking their uses won't enable any opportunities.
+ if (Reg.isPhysical())
+ continue;
+
+ // If this instruction is the only user of a virtual register,
+ // check if breaking the edge will enable sinking
+ // both this instruction and the defining instruction.
+ if (MRI->hasOneNonDBGUse(Reg)) {
+ // If the definition resides in same MBB,
+ // claim it's likely we can sink these together.
+ // If definition resides elsewhere, we aren't
+ // blocking it from being sunk so don't break the edge.
+ MachineInstr *DefMI = MRI->getVRegDef(Reg);
+ if (DefMI->getParent() == MI.getParent())
+ return true;
+ }
+ }
+
+ return false;
+}
+
+bool MachineSinking::PostponeSplitCriticalEdge(MachineInstr &MI,
+ MachineBasicBlock *FromBB,
+ MachineBasicBlock *ToBB,
+ bool BreakPHIEdge) {
+ if (!isWorthBreakingCriticalEdge(MI, FromBB, ToBB))
+ return false;
+
+ // Avoid breaking back edge. From == To means backedge for single BB cycle.
+ if (!SplitEdges || FromBB == ToBB)
+ return false;
+
+ MachineCycle *FromCycle = CI->getCycle(FromBB);
+ MachineCycle *ToCycle = CI->getCycle(ToBB);
+
+ // Check for backedges of more "complex" cycles.
+ if (FromCycle == ToCycle && FromCycle &&
+ (!FromCycle->isReducible() || FromCycle->getHeader() == ToBB))
+ return false;
+
+ // It's not always legal to break critical edges and sink the computation
+ // to the edge.
+ //
+ // %bb.1:
+ // v1024
+ // Beq %bb.3
+ // <fallthrough>
+ // %bb.2:
+ // ... no uses of v1024
+ // <fallthrough>
+ // %bb.3:
+ // ...
+ // = v1024
+ //
+ // If %bb.1 -> %bb.3 edge is broken and computation of v1024 is inserted:
+ //
+ // %bb.1:
+ // ...
+ // Bne %bb.2
+ // %bb.4:
+ // v1024 =
+ // B %bb.3
+ // %bb.2:
+ // ... no uses of v1024
+ // <fallthrough>
+ // %bb.3:
+ // ...
+ // = v1024
+ //
+ // This is incorrect since v1024 is not computed along the %bb.1->%bb.2->%bb.3
+ // flow. We need to ensure the new basic block where the computation is
+ // sunk to dominates all the uses.
+ // It's only legal to break critical edge and sink the computation to the
+ // new block if all the predecessors of "To", except for "From", are
+ // not dominated by "From". Given SSA property, this means these
+ // predecessors are dominated by "To".
+ //
+ // There is no need to do this check if all the uses are PHI nodes. PHI
+ // sources are only defined on the specific predecessor edges.
+ if (!BreakPHIEdge) {
+ for (MachineBasicBlock *Pred : ToBB->predecessors())
+ if (Pred != FromBB && !DT->dominates(ToBB, Pred))
+ return false;
+ }
+
+ ToSplit.insert(std::make_pair(FromBB, ToBB));
+
+ return true;
+}
+
+std::vector<unsigned> &
+MachineSinking::getBBRegisterPressure(const MachineBasicBlock &MBB) {
+ // Currently to save compiling time, MBB's register pressure will not change
+ // in one ProcessBlock iteration because of CachedRegisterPressure. but MBB's
+ // register pressure is changed after sinking any instructions into it.
+ // FIXME: need a accurate and cheap register pressure estiminate model here.
+ auto RP = CachedRegisterPressure.find(&MBB);
+ if (RP != CachedRegisterPressure.end())
+ return RP->second;
+
+ RegionPressure Pressure;
+ RegPressureTracker RPTracker(Pressure);
+
+ // Initialize the register pressure tracker.
+ RPTracker.init(MBB.getParent(), &RegClassInfo, nullptr, &MBB, MBB.end(),
+ /*TrackLaneMasks*/ false, /*TrackUntiedDefs=*/true);
+
+ for (MachineBasicBlock::const_iterator MII = MBB.instr_end(),
+ MIE = MBB.instr_begin();
+ MII != MIE; --MII) {
+ const MachineInstr &MI = *std::prev(MII);
+ if (MI.isDebugInstr() || MI.isPseudoProbe())
+ continue;
+ RegisterOperands RegOpers;
+ RegOpers.collect(MI, *TRI, *MRI, false, false);
+ RPTracker.recedeSkipDebugValues();
+ assert(&*RPTracker.getPos() == &MI && "RPTracker sync error!");
+ RPTracker.recede(RegOpers);
+ }
+
+ RPTracker.closeRegion();
+ auto It = CachedRegisterPressure.insert(
+ std::make_pair(&MBB, RPTracker.getPressure().MaxSetPressure));
+ return It.first->second;
+}
+
+bool MachineSinking::registerPressureSetExceedsLimit(
+ unsigned NRegs, const TargetRegisterClass *RC,
+ const MachineBasicBlock &MBB) {
+ unsigned Weight = NRegs * TRI->getRegClassWeight(RC).RegWeight;
+ const int *PS = TRI->getRegClassPressureSets(RC);
+ std::vector<unsigned> BBRegisterPressure = getBBRegisterPressure(MBB);
+ for (; *PS != -1; PS++)
+ if (Weight + BBRegisterPressure[*PS] >=
+ TRI->getRegPressureSetLimit(*MBB.getParent(), *PS))
+ return true;
+ return false;
+}
+
+/// isProfitableToSinkTo - Return true if it is profitable to sink MI.
+bool MachineSinking::isProfitableToSinkTo(Register Reg, MachineInstr &MI,
+ MachineBasicBlock *MBB,
+ MachineBasicBlock *SuccToSinkTo,
+ AllSuccsCache &AllSuccessors) {
+ assert (SuccToSinkTo && "Invalid SinkTo Candidate BB");
+
+ if (MBB == SuccToSinkTo)
+ return false;
+
+ // It is profitable if SuccToSinkTo does not post dominate current block.
+ if (!PDT->dominates(SuccToSinkTo, MBB))
+ return true;
+
+ // It is profitable to sink an instruction from a deeper cycle to a shallower
+ // cycle, even if the latter post-dominates the former (PR21115).
+ if (CI->getCycleDepth(MBB) > CI->getCycleDepth(SuccToSinkTo))
+ return true;
+
+ // Check if only use in post dominated block is PHI instruction.
+ bool NonPHIUse = false;
+ for (MachineInstr &UseInst : MRI->use_nodbg_instructions(Reg)) {
+ MachineBasicBlock *UseBlock = UseInst.getParent();
+ if (UseBlock == SuccToSinkTo && !UseInst.isPHI())
+ NonPHIUse = true;
+ }
+ if (!NonPHIUse)
+ return true;
+
+ // If SuccToSinkTo post dominates then also it may be profitable if MI
+ // can further profitably sinked into another block in next round.
+ bool BreakPHIEdge = false;
+ // FIXME - If finding successor is compile time expensive then cache results.
+ if (MachineBasicBlock *MBB2 =
+ FindSuccToSinkTo(MI, SuccToSinkTo, BreakPHIEdge, AllSuccessors))
+ return isProfitableToSinkTo(Reg, MI, SuccToSinkTo, MBB2, AllSuccessors);
+
+ MachineCycle *MCycle = CI->getCycle(MBB);
+
+ // If the instruction is not inside a cycle, it is not profitable to sink MI to
+ // a post dominate block SuccToSinkTo.
+ if (!MCycle)
+ return false;
+
+ // If this instruction is inside a Cycle and sinking this instruction can make
+ // more registers live range shorten, it is still prifitable.
+ for (const MachineOperand &MO : MI.operands()) {
+ // Ignore non-register operands.
+ if (!MO.isReg())
+ continue;
+ Register Reg = MO.getReg();
+ if (Reg == 0)
+ continue;
+
+ if (Reg.isPhysical()) {
+ // Don't handle non-constant and non-ignorable physical register uses.
+ if (MO.isUse() && !MRI->isConstantPhysReg(Reg) && !TII->isIgnorableUse(MO))
+ return false;
+ continue;
+ }
+
+ // Users for the defs are all dominated by SuccToSinkTo.
+ if (MO.isDef()) {
+ // This def register's live range is shortened after sinking.
+ bool LocalUse = false;
+ if (!AllUsesDominatedByBlock(Reg, SuccToSinkTo, MBB, BreakPHIEdge,
+ LocalUse))
+ return false;
+ } else {
+ MachineInstr *DefMI = MRI->getVRegDef(Reg);
+ if (!DefMI)
+ continue;
+ MachineCycle *Cycle = CI->getCycle(DefMI->getParent());
+ // DefMI is defined outside of cycle. There should be no live range
+ // impact for this operand. Defination outside of cycle means:
+ // 1: defination is outside of cycle.
+ // 2: defination is in this cycle, but it is a PHI in the cycle header.
+ if (Cycle != MCycle || (DefMI->isPHI() && Cycle && Cycle->isReducible() &&
+ Cycle->getHeader() == DefMI->getParent()))
+ continue;
+ // The DefMI is defined inside the cycle.
+ // If sinking this operand makes some register pressure set exceed limit,
+ // it is not profitable.
+ if (registerPressureSetExceedsLimit(1, MRI->getRegClass(Reg),
+ *SuccToSinkTo)) {
+ LLVM_DEBUG(dbgs() << "register pressure exceed limit, not profitable.");
+ return false;
+ }
+ }
+ }
+
+ // If MI is in cycle and all its operands are alive across the whole cycle or
+ // if no operand sinking make register pressure set exceed limit, it is
+ // profitable to sink MI.
+ return true;
+}
+
+/// Get the sorted sequence of successors for this MachineBasicBlock, possibly
+/// computing it if it was not already cached.
+SmallVector<MachineBasicBlock *, 4> &
+MachineSinking::GetAllSortedSuccessors(MachineInstr &MI, MachineBasicBlock *MBB,
+ AllSuccsCache &AllSuccessors) const {
+ // Do we have the sorted successors in cache ?
+ auto Succs = AllSuccessors.find(MBB);
+ if (Succs != AllSuccessors.end())
+ return Succs->second;
+
+ SmallVector<MachineBasicBlock *, 4> AllSuccs(MBB->successors());
+
+ // Handle cases where sinking can happen but where the sink point isn't a
+ // successor. For example:
+ //
+ // x = computation
+ // if () {} else {}
+ // use x
+ //
+ for (MachineDomTreeNode *DTChild : DT->getNode(MBB)->children()) {
+ // DomTree children of MBB that have MBB as immediate dominator are added.
+ if (DTChild->getIDom()->getBlock() == MI.getParent() &&
+ // Skip MBBs already added to the AllSuccs vector above.
+ !MBB->isSuccessor(DTChild->getBlock()))
+ AllSuccs.push_back(DTChild->getBlock());
+ }
+
+ // Sort Successors according to their cycle depth or block frequency info.
+ llvm::stable_sort(
+ AllSuccs, [this](const MachineBasicBlock *L, const MachineBasicBlock *R) {
+ uint64_t LHSFreq = MBFI ? MBFI->getBlockFreq(L).getFrequency() : 0;
+ uint64_t RHSFreq = MBFI ? MBFI->getBlockFreq(R).getFrequency() : 0;
+ bool HasBlockFreq = LHSFreq != 0 || RHSFreq != 0;
+ return HasBlockFreq ? LHSFreq < RHSFreq
+ : CI->getCycleDepth(L) < CI->getCycleDepth(R);
+ });
+
+ auto it = AllSuccessors.insert(std::make_pair(MBB, AllSuccs));
+
+ return it.first->second;
+}
+
+/// FindSuccToSinkTo - Find a successor to sink this instruction to.
+MachineBasicBlock *
+MachineSinking::FindSuccToSinkTo(MachineInstr &MI, MachineBasicBlock *MBB,
+ bool &BreakPHIEdge,
+ AllSuccsCache &AllSuccessors) {
+ assert (MBB && "Invalid MachineBasicBlock!");
+
+ // loop over all the operands of the specified instruction. If there is
+ // anything we can't handle, bail out.
+
+ // SuccToSinkTo - This is the successor to sink this instruction to, once we
+ // decide.
+ MachineBasicBlock *SuccToSinkTo = nullptr;
+ for (const MachineOperand &MO : MI.operands()) {
+ if (!MO.isReg()) continue; // Ignore non-register operands.
+
+ Register Reg = MO.getReg();
+ if (Reg == 0) continue;
+
+ if (Reg.isPhysical()) {
+ if (MO.isUse()) {
+ // If the physreg has no defs anywhere, it's just an ambient register
+ // and we can freely move its uses. Alternatively, if it's allocatable,
+ // it could get allocated to something with a def during allocation.
+ if (!MRI->isConstantPhysReg(Reg) && !TII->isIgnorableUse(MO))
+ return nullptr;
+ } else if (!MO.isDead()) {
+ // A def that isn't dead. We can't move it.
+ return nullptr;
+ }
+ } else {
+ // Virtual register uses are always safe to sink.
+ if (MO.isUse()) continue;
+
+ // If it's not safe to move defs of the register class, then abort.
+ if (!TII->isSafeToMoveRegClassDefs(MRI->getRegClass(Reg)))
+ return nullptr;
+
+ // Virtual register defs can only be sunk if all their uses are in blocks
+ // dominated by one of the successors.
+ if (SuccToSinkTo) {
+ // If a previous operand picked a block to sink to, then this operand
+ // must be sinkable to the same block.
+ bool LocalUse = false;
+ if (!AllUsesDominatedByBlock(Reg, SuccToSinkTo, MBB,
+ BreakPHIEdge, LocalUse))
+ return nullptr;
+
+ continue;
+ }
+
+ // Otherwise, we should look at all the successors and decide which one
+ // we should sink to. If we have reliable block frequency information
+ // (frequency != 0) available, give successors with smaller frequencies
+ // higher priority, otherwise prioritize smaller cycle depths.
+ for (MachineBasicBlock *SuccBlock :
+ GetAllSortedSuccessors(MI, MBB, AllSuccessors)) {
+ bool LocalUse = false;
+ if (AllUsesDominatedByBlock(Reg, SuccBlock, MBB,
+ BreakPHIEdge, LocalUse)) {
+ SuccToSinkTo = SuccBlock;
+ break;
+ }
+ if (LocalUse)
+ // Def is used locally, it's never safe to move this def.
+ return nullptr;
+ }
+
+ // If we couldn't find a block to sink to, ignore this instruction.
+ if (!SuccToSinkTo)
+ return nullptr;
+ if (!isProfitableToSinkTo(Reg, MI, MBB, SuccToSinkTo, AllSuccessors))
+ return nullptr;
+ }
+ }
+
+ // It is not possible to sink an instruction into its own block. This can
+ // happen with cycles.
+ if (MBB == SuccToSinkTo)
+ return nullptr;
+
+ // It's not safe to sink instructions to EH landing pad. Control flow into
+ // landing pad is implicitly defined.
+ if (SuccToSinkTo && SuccToSinkTo->isEHPad())
+ return nullptr;
+
+ // It ought to be okay to sink instructions into an INLINEASM_BR target, but
+ // only if we make sure that MI occurs _before_ an INLINEASM_BR instruction in
+ // the source block (which this code does not yet do). So for now, forbid
+ // doing so.
+ if (SuccToSinkTo && SuccToSinkTo->isInlineAsmBrIndirectTarget())
+ return nullptr;
+
+ if (SuccToSinkTo && !TII->isSafeToSink(MI, SuccToSinkTo, CI))
+ return nullptr;
+
+ return SuccToSinkTo;
+}
+
+/// Return true if MI is likely to be usable as a memory operation by the
+/// implicit null check optimization.
+///
+/// This is a "best effort" heuristic, and should not be relied upon for
+/// correctness. This returning true does not guarantee that the implicit null
+/// check optimization is legal over MI, and this returning false does not
+/// guarantee MI cannot possibly be used to do a null check.
+static bool SinkingPreventsImplicitNullCheck(MachineInstr &MI,
+ const TargetInstrInfo *TII,
+ const TargetRegisterInfo *TRI) {
+ using MachineBranchPredicate = TargetInstrInfo::MachineBranchPredicate;
+
+ auto *MBB = MI.getParent();
+ if (MBB->pred_size() != 1)
+ return false;
+
+ auto *PredMBB = *MBB->pred_begin();
+ auto *PredBB = PredMBB->getBasicBlock();
+
+ // Frontends that don't use implicit null checks have no reason to emit
+ // branches with make.implicit metadata, and this function should always
+ // return false for them.
+ if (!PredBB ||
+ !PredBB->getTerminator()->getMetadata(LLVMContext::MD_make_implicit))
+ return false;
+
+ const MachineOperand *BaseOp;
+ int64_t Offset;
+ bool OffsetIsScalable;
+ if (!TII->getMemOperandWithOffset(MI, BaseOp, Offset, OffsetIsScalable, TRI))
+ return false;
+
+ if (!BaseOp->isReg())
+ return false;
+
+ if (!(MI.mayLoad() && !MI.isPredicable()))
+ return false;
+
+ MachineBranchPredicate MBP;
+ if (TII->analyzeBranchPredicate(*PredMBB, MBP, false))
+ return false;
+
+ return MBP.LHS.isReg() && MBP.RHS.isImm() && MBP.RHS.getImm() == 0 &&
+ (MBP.Predicate == MachineBranchPredicate::PRED_NE ||
+ MBP.Predicate == MachineBranchPredicate::PRED_EQ) &&
+ MBP.LHS.getReg() == BaseOp->getReg();
+}
+
+/// If the sunk instruction is a copy, try to forward the copy instead of
+/// leaving an 'undef' DBG_VALUE in the original location. Don't do this if
+/// there's any subregister weirdness involved. Returns true if copy
+/// propagation occurred.
+static bool attemptDebugCopyProp(MachineInstr &SinkInst, MachineInstr &DbgMI,
+ Register Reg) {
+ const MachineRegisterInfo &MRI = SinkInst.getMF()->getRegInfo();
+ const TargetInstrInfo &TII = *SinkInst.getMF()->getSubtarget().getInstrInfo();
+
+ // Copy DBG_VALUE operand and set the original to undef. We then check to
+ // see whether this is something that can be copy-forwarded. If it isn't,
+ // continue around the loop.
+
+ const MachineOperand *SrcMO = nullptr, *DstMO = nullptr;
+ auto CopyOperands = TII.isCopyInstr(SinkInst);
+ if (!CopyOperands)
+ return false;
+ SrcMO = CopyOperands->Source;
+ DstMO = CopyOperands->Destination;
+
+ // Check validity of forwarding this copy.
+ bool PostRA = MRI.getNumVirtRegs() == 0;
+
+ // Trying to forward between physical and virtual registers is too hard.
+ if (Reg.isVirtual() != SrcMO->getReg().isVirtual())
+ return false;
+
+ // Only try virtual register copy-forwarding before regalloc, and physical
+ // register copy-forwarding after regalloc.
+ bool arePhysRegs = !Reg.isVirtual();
+ if (arePhysRegs != PostRA)
+ return false;
+
+ // Pre-regalloc, only forward if all subregisters agree (or there are no
+ // subregs at all). More analysis might recover some forwardable copies.
+ if (!PostRA)
+ for (auto &DbgMO : DbgMI.getDebugOperandsForReg(Reg))
+ if (DbgMO.getSubReg() != SrcMO->getSubReg() ||
+ DbgMO.getSubReg() != DstMO->getSubReg())
+ return false;
+
+ // Post-regalloc, we may be sinking a DBG_VALUE of a sub or super-register
+ // of this copy. Only forward the copy if the DBG_VALUE operand exactly
+ // matches the copy destination.
+ if (PostRA && Reg != DstMO->getReg())
+ return false;
+
+ for (auto &DbgMO : DbgMI.getDebugOperandsForReg(Reg)) {
+ DbgMO.setReg(SrcMO->getReg());
+ DbgMO.setSubReg(SrcMO->getSubReg());
+ }
+ return true;
+}
+
+using MIRegs = std::pair<MachineInstr *, SmallVector<unsigned, 2>>;
+/// Sink an instruction and its associated debug instructions.
+static void performSink(MachineInstr &MI, MachineBasicBlock &SuccToSinkTo,
+ MachineBasicBlock::iterator InsertPos,
+ ArrayRef<MIRegs> DbgValuesToSink) {
+ // If we cannot find a location to use (merge with), then we erase the debug
+ // location to prevent debug-info driven tools from potentially reporting
+ // wrong location information.
+ if (!SuccToSinkTo.empty() && InsertPos != SuccToSinkTo.end())
+ MI.setDebugLoc(DILocation::getMergedLocation(MI.getDebugLoc(),
+ InsertPos->getDebugLoc()));
+ else
+ MI.setDebugLoc(DebugLoc());
+
+ // Move the instruction.
+ MachineBasicBlock *ParentBlock = MI.getParent();
+ SuccToSinkTo.splice(InsertPos, ParentBlock, MI,
+ ++MachineBasicBlock::iterator(MI));
+
+ // Sink a copy of debug users to the insert position. Mark the original
+ // DBG_VALUE location as 'undef', indicating that any earlier variable
+ // location should be terminated as we've optimised away the value at this
+ // point.
+ for (const auto &DbgValueToSink : DbgValuesToSink) {
+ MachineInstr *DbgMI = DbgValueToSink.first;
+ MachineInstr *NewDbgMI = DbgMI->getMF()->CloneMachineInstr(DbgMI);
+ SuccToSinkTo.insert(InsertPos, NewDbgMI);
+
+ bool PropagatedAllSunkOps = true;
+ for (unsigned Reg : DbgValueToSink.second) {
+ if (DbgMI->hasDebugOperandForReg(Reg)) {
+ if (!attemptDebugCopyProp(MI, *DbgMI, Reg)) {
+ PropagatedAllSunkOps = false;
+ break;
+ }
+ }
+ }
+ if (!PropagatedAllSunkOps)
+ DbgMI->setDebugValueUndef();
+ }
+}
+
+/// hasStoreBetween - check if there is store betweeen straight line blocks From
+/// and To.
+bool MachineSinking::hasStoreBetween(MachineBasicBlock *From,
+ MachineBasicBlock *To, MachineInstr &MI) {
+ // Make sure From and To are in straight line which means From dominates To
+ // and To post dominates From.
+ if (!DT->dominates(From, To) || !PDT->dominates(To, From))
+ return true;
+
+ auto BlockPair = std::make_pair(From, To);
+
+ // Does these two blocks pair be queried before and have a definite cached
+ // result?
+ if (auto It = HasStoreCache.find(BlockPair); It != HasStoreCache.end())
+ return It->second;
+
+ if (auto It = StoreInstrCache.find(BlockPair); It != StoreInstrCache.end())
+ return llvm::any_of(It->second, [&](MachineInstr *I) {
+ return I->mayAlias(AA, MI, false);
+ });
+
+ bool SawStore = false;
+ bool HasAliasedStore = false;
+ DenseSet<MachineBasicBlock *> HandledBlocks;
+ DenseSet<MachineBasicBlock *> HandledDomBlocks;
+ // Go through all reachable blocks from From.
+ for (MachineBasicBlock *BB : depth_first(From)) {
+ // We insert the instruction at the start of block To, so no need to worry
+ // about stores inside To.
+ // Store in block From should be already considered when just enter function
+ // SinkInstruction.
+ if (BB == To || BB == From)
+ continue;
+
+ // We already handle this BB in previous iteration.
+ if (HandledBlocks.count(BB))
+ continue;
+
+ HandledBlocks.insert(BB);
+ // To post dominates BB, it must be a path from block From.
+ if (PDT->dominates(To, BB)) {
+ if (!HandledDomBlocks.count(BB))
+ HandledDomBlocks.insert(BB);
+
+ // If this BB is too big or the block number in straight line between From
+ // and To is too big, stop searching to save compiling time.
+ if (BB->sizeWithoutDebugLargerThan(SinkLoadInstsPerBlockThreshold) ||
+ HandledDomBlocks.size() > SinkLoadBlocksThreshold) {
+ for (auto *DomBB : HandledDomBlocks) {
+ if (DomBB != BB && DT->dominates(DomBB, BB))
+ HasStoreCache[std::make_pair(DomBB, To)] = true;
+ else if(DomBB != BB && DT->dominates(BB, DomBB))
+ HasStoreCache[std::make_pair(From, DomBB)] = true;
+ }
+ HasStoreCache[BlockPair] = true;
+ return true;
+ }
+
+ for (MachineInstr &I : *BB) {
+ // Treat as alias conservatively for a call or an ordered memory
+ // operation.
+ if (I.isCall() || I.hasOrderedMemoryRef()) {
+ for (auto *DomBB : HandledDomBlocks) {
+ if (DomBB != BB && DT->dominates(DomBB, BB))
+ HasStoreCache[std::make_pair(DomBB, To)] = true;
+ else if(DomBB != BB && DT->dominates(BB, DomBB))
+ HasStoreCache[std::make_pair(From, DomBB)] = true;
+ }
+ HasStoreCache[BlockPair] = true;
+ return true;
+ }
+
+ if (I.mayStore()) {
+ SawStore = true;
+ // We still have chance to sink MI if all stores between are not
+ // aliased to MI.
+ // Cache all store instructions, so that we don't need to go through
+ // all From reachable blocks for next load instruction.
+ if (I.mayAlias(AA, MI, false))
+ HasAliasedStore = true;
+ StoreInstrCache[BlockPair].push_back(&I);
+ }
+ }
+ }
+ }
+ // If there is no store at all, cache the result.
+ if (!SawStore)
+ HasStoreCache[BlockPair] = false;
+ return HasAliasedStore;
+}
+
+/// Sink instructions into cycles if profitable. This especially tries to
+/// prevent register spills caused by register pressure if there is little to no
+/// overhead moving instructions into cycles.
+bool MachineSinking::SinkIntoCycle(MachineCycle *Cycle, MachineInstr &I) {
+ LLVM_DEBUG(dbgs() << "CycleSink: Finding sink block for: " << I);
+ MachineBasicBlock *Preheader = Cycle->getCyclePreheader();
+ assert(Preheader && "Cycle sink needs a preheader block");
+ MachineBasicBlock *SinkBlock = nullptr;
+ bool CanSink = true;
+ const MachineOperand &MO = I.getOperand(0);
+
+ for (MachineInstr &MI : MRI->use_instructions(MO.getReg())) {
+ LLVM_DEBUG(dbgs() << "CycleSink: Analysing use: " << MI);
+ if (!Cycle->contains(MI.getParent())) {
+ LLVM_DEBUG(dbgs() << "CycleSink: Use not in cycle, can't sink.\n");
+ CanSink = false;
+ break;
+ }
+
+ // FIXME: Come up with a proper cost model that estimates whether sinking
+ // the instruction (and thus possibly executing it on every cycle
+ // iteration) is more expensive than a register.
+ // For now assumes that copies are cheap and thus almost always worth it.
+ if (!MI.isCopy()) {
+ LLVM_DEBUG(dbgs() << "CycleSink: Use is not a copy\n");
+ CanSink = false;
+ break;
+ }
+ if (!SinkBlock) {
+ SinkBlock = MI.getParent();
+ LLVM_DEBUG(dbgs() << "CycleSink: Setting sink block to: "
+ << printMBBReference(*SinkBlock) << "\n");
+ continue;
+ }
+ SinkBlock = DT->findNearestCommonDominator(SinkBlock, MI.getParent());
+ if (!SinkBlock) {
+ LLVM_DEBUG(dbgs() << "CycleSink: Can't find nearest dominator\n");
+ CanSink = false;
+ break;
+ }
+ LLVM_DEBUG(dbgs() << "CycleSink: Setting nearest common dom block: " <<
+ printMBBReference(*SinkBlock) << "\n");
+ }
+
+ if (!CanSink) {
+ LLVM_DEBUG(dbgs() << "CycleSink: Can't sink instruction.\n");
+ return false;
+ }
+ if (!SinkBlock) {
+ LLVM_DEBUG(dbgs() << "CycleSink: Not sinking, can't find sink block.\n");
+ return false;
+ }
+ if (SinkBlock == Preheader) {
+ LLVM_DEBUG(
+ dbgs() << "CycleSink: Not sinking, sink block is the preheader\n");
+ return false;
+ }
+ if (SinkBlock->sizeWithoutDebugLargerThan(SinkLoadInstsPerBlockThreshold)) {
+ LLVM_DEBUG(
+ dbgs() << "CycleSink: Not Sinking, block too large to analyse.\n");
+ return false;
+ }
+
+ LLVM_DEBUG(dbgs() << "CycleSink: Sinking instruction!\n");
+ SinkBlock->splice(SinkBlock->SkipPHIsAndLabels(SinkBlock->begin()), Preheader,
+ I);
+
+ // Conservatively clear any kill flags on uses of sunk instruction
+ for (MachineOperand &MO : I.operands()) {
+ if (MO.isReg() && MO.readsReg())
+ RegsToClearKillFlags.insert(MO.getReg());
+ }
+
+ // The instruction is moved from its basic block, so do not retain the
+ // debug information.
+ assert(!I.isDebugInstr() && "Should not sink debug inst");
+ I.setDebugLoc(DebugLoc());
+ return true;
+}
+
+/// SinkInstruction - Determine whether it is safe to sink the specified machine
+/// instruction out of its current block into a successor.
+bool MachineSinking::SinkInstruction(MachineInstr &MI, bool &SawStore,
+ AllSuccsCache &AllSuccessors) {
+ // Don't sink instructions that the target prefers not to sink.
+ if (!TII->shouldSink(MI))
+ return false;
+
+ // Check if it's safe to move the instruction.
+ if (!MI.isSafeToMove(AA, SawStore))
+ return false;
+
+ // Convergent operations may not be made control-dependent on additional
+ // values.
+ if (MI.isConvergent())
+ return false;
+
+ // Don't break implicit null checks. This is a performance heuristic, and not
+ // required for correctness.
+ if (SinkingPreventsImplicitNullCheck(MI, TII, TRI))
+ return false;
+
+ // FIXME: This should include support for sinking instructions within the
+ // block they are currently in to shorten the live ranges. We often get
+ // instructions sunk into the top of a large block, but it would be better to
+ // also sink them down before their first use in the block. This xform has to
+ // be careful not to *increase* register pressure though, e.g. sinking
+ // "x = y + z" down if it kills y and z would increase the live ranges of y
+ // and z and only shrink the live range of x.
+
+ bool BreakPHIEdge = false;
+ MachineBasicBlock *ParentBlock = MI.getParent();
+ MachineBasicBlock *SuccToSinkTo =
+ FindSuccToSinkTo(MI, ParentBlock, BreakPHIEdge, AllSuccessors);
+
+ // If there are no outputs, it must have side-effects.
+ if (!SuccToSinkTo)
+ return false;
+
+ // If the instruction to move defines a dead physical register which is live
+ // when leaving the basic block, don't move it because it could turn into a
+ // "zombie" define of that preg. E.g., EFLAGS.
+ for (const MachineOperand &MO : MI.all_defs()) {
+ Register Reg = MO.getReg();
+ if (Reg == 0 || !Reg.isPhysical())
+ continue;
+ if (SuccToSinkTo->isLiveIn(Reg))
+ return false;
+ }
+
+ LLVM_DEBUG(dbgs() << "Sink instr " << MI << "\tinto block " << *SuccToSinkTo);
+
+ // If the block has multiple predecessors, this is a critical edge.
+ // Decide if we can sink along it or need to break the edge.
+ if (SuccToSinkTo->pred_size() > 1) {
+ // We cannot sink a load across a critical edge - there may be stores in
+ // other code paths.
+ bool TryBreak = false;
+ bool Store =
+ MI.mayLoad() ? hasStoreBetween(ParentBlock, SuccToSinkTo, MI) : true;
+ if (!MI.isSafeToMove(AA, Store)) {
+ LLVM_DEBUG(dbgs() << " *** NOTE: Won't sink load along critical edge.\n");
+ TryBreak = true;
+ }
+
+ // We don't want to sink across a critical edge if we don't dominate the
+ // successor. We could be introducing calculations to new code paths.
+ if (!TryBreak && !DT->dominates(ParentBlock, SuccToSinkTo)) {
+ LLVM_DEBUG(dbgs() << " *** NOTE: Critical edge found\n");
+ TryBreak = true;
+ }
+
+ // Don't sink instructions into a cycle.
+ if (!TryBreak && CI->getCycle(SuccToSinkTo) &&
+ (!CI->getCycle(SuccToSinkTo)->isReducible() ||
+ CI->getCycle(SuccToSinkTo)->getHeader() == SuccToSinkTo)) {
+ LLVM_DEBUG(dbgs() << " *** NOTE: cycle header found\n");
+ TryBreak = true;
+ }
+
+ // Otherwise we are OK with sinking along a critical edge.
+ if (!TryBreak)
+ LLVM_DEBUG(dbgs() << "Sinking along critical edge.\n");
+ else {
+ // Mark this edge as to be split.
+ // If the edge can actually be split, the next iteration of the main loop
+ // will sink MI in the newly created block.
+ bool Status =
+ PostponeSplitCriticalEdge(MI, ParentBlock, SuccToSinkTo, BreakPHIEdge);
+ if (!Status)
+ LLVM_DEBUG(dbgs() << " *** PUNTING: Not legal or profitable to "
+ "break critical edge\n");
+ // The instruction will not be sunk this time.
+ return false;
+ }
+ }
+
+ if (BreakPHIEdge) {
+ // BreakPHIEdge is true if all the uses are in the successor MBB being
+ // sunken into and they are all PHI nodes. In this case, machine-sink must
+ // break the critical edge first.
+ bool Status = PostponeSplitCriticalEdge(MI, ParentBlock,
+ SuccToSinkTo, BreakPHIEdge);
+ if (!Status)
+ LLVM_DEBUG(dbgs() << " *** PUNTING: Not legal or profitable to "
+ "break critical edge\n");
+ // The instruction will not be sunk this time.
+ return false;
+ }
+
+ // Determine where to insert into. Skip phi nodes.
+ MachineBasicBlock::iterator InsertPos =
+ SuccToSinkTo->SkipPHIsAndLabels(SuccToSinkTo->begin());
+ if (blockPrologueInterferes(SuccToSinkTo, InsertPos, MI, TRI, TII, MRI)) {
+ LLVM_DEBUG(dbgs() << " *** Not sinking: prologue interference\n");
+ return false;
+ }
+
+ // Collect debug users of any vreg that this inst defines.
+ SmallVector<MIRegs, 4> DbgUsersToSink;
+ for (auto &MO : MI.all_defs()) {
+ if (!MO.getReg().isVirtual())
+ continue;
+ if (!SeenDbgUsers.count(MO.getReg()))
+ continue;
+
+ // Sink any users that don't pass any other DBG_VALUEs for this variable.
+ auto &Users = SeenDbgUsers[MO.getReg()];
+ for (auto &User : Users) {
+ MachineInstr *DbgMI = User.getPointer();
+ if (User.getInt()) {
+ // This DBG_VALUE would re-order assignments. If we can't copy-propagate
+ // it, it can't be recovered. Set it undef.
+ if (!attemptDebugCopyProp(MI, *DbgMI, MO.getReg()))
+ DbgMI->setDebugValueUndef();
+ } else {
+ DbgUsersToSink.push_back(
+ {DbgMI, SmallVector<unsigned, 2>(1, MO.getReg())});
+ }
+ }
+ }
+
+ // After sinking, some debug users may not be dominated any more. If possible,
+ // copy-propagate their operands. As it's expensive, don't do this if there's
+ // no debuginfo in the program.
+ if (MI.getMF()->getFunction().getSubprogram() && MI.isCopy())
+ SalvageUnsunkDebugUsersOfCopy(MI, SuccToSinkTo);
+
+ performSink(MI, *SuccToSinkTo, InsertPos, DbgUsersToSink);
+
+ // Conservatively, clear any kill flags, since it's possible that they are no
+ // longer correct.
+ // Note that we have to clear the kill flags for any register this instruction
+ // uses as we may sink over another instruction which currently kills the
+ // used registers.
+ for (MachineOperand &MO : MI.all_uses())
+ RegsToClearKillFlags.insert(MO.getReg()); // Remember to clear kill flags.
+
+ return true;
+}
+
+void MachineSinking::SalvageUnsunkDebugUsersOfCopy(
+ MachineInstr &MI, MachineBasicBlock *TargetBlock) {
+ assert(MI.isCopy());
+ assert(MI.getOperand(1).isReg());
+
+ // Enumerate all users of vreg operands that are def'd. Skip those that will
+ // be sunk. For the rest, if they are not dominated by the block we will sink
+ // MI into, propagate the copy source to them.
+ SmallVector<MachineInstr *, 4> DbgDefUsers;
+ SmallVector<Register, 4> DbgUseRegs;
+ const MachineRegisterInfo &MRI = MI.getMF()->getRegInfo();
+ for (auto &MO : MI.all_defs()) {
+ if (!MO.getReg().isVirtual())
+ continue;
+ DbgUseRegs.push_back(MO.getReg());
+ for (auto &User : MRI.use_instructions(MO.getReg())) {
+ if (!User.isDebugValue() || DT->dominates(TargetBlock, User.getParent()))
+ continue;
+
+ // If is in same block, will either sink or be use-before-def.
+ if (User.getParent() == MI.getParent())
+ continue;
+
+ assert(User.hasDebugOperandForReg(MO.getReg()) &&
+ "DBG_VALUE user of vreg, but has no operand for it?");
+ DbgDefUsers.push_back(&User);
+ }
+ }
+
+ // Point the users of this copy that are no longer dominated, at the source
+ // of the copy.
+ for (auto *User : DbgDefUsers) {
+ for (auto &Reg : DbgUseRegs) {
+ for (auto &DbgOp : User->getDebugOperandsForReg(Reg)) {
+ DbgOp.setReg(MI.getOperand(1).getReg());
+ DbgOp.setSubReg(MI.getOperand(1).getSubReg());
+ }
+ }
+ }
+}
+
+//===----------------------------------------------------------------------===//
+// This pass is not intended to be a replacement or a complete alternative
+// for the pre-ra machine sink pass. It is only designed to sink COPY
+// instructions which should be handled after RA.
+//
+// This pass sinks COPY instructions into a successor block, if the COPY is not
+// used in the current block and the COPY is live-in to a single successor
+// (i.e., doesn't require the COPY to be duplicated). This avoids executing the
+// copy on paths where their results aren't needed. This also exposes
+// additional opportunites for dead copy elimination and shrink wrapping.
+//
+// These copies were either not handled by or are inserted after the MachineSink
+// pass. As an example of the former case, the MachineSink pass cannot sink
+// COPY instructions with allocatable source registers; for AArch64 these type
+// of copy instructions are frequently used to move function parameters (PhyReg)
+// into virtual registers in the entry block.
+//
+// For the machine IR below, this pass will sink %w19 in the entry into its
+// successor (%bb.1) because %w19 is only live-in in %bb.1.
+// %bb.0:
+// %wzr = SUBSWri %w1, 1
+// %w19 = COPY %w0
+// Bcc 11, %bb.2
+// %bb.1:
+// Live Ins: %w19
+// BL @fun
+// %w0 = ADDWrr %w0, %w19
+// RET %w0
+// %bb.2:
+// %w0 = COPY %wzr
+// RET %w0
+// As we sink %w19 (CSR in AArch64) into %bb.1, the shrink-wrapping pass will be
+// able to see %bb.0 as a candidate.
+//===----------------------------------------------------------------------===//
+namespace {
+
+class PostRAMachineSinking : public MachineFunctionPass {
+public:
+ bool runOnMachineFunction(MachineFunction &MF) override;
+
+ static char ID;
+ PostRAMachineSinking() : MachineFunctionPass(ID) {}
+ StringRef getPassName() const override { return "PostRA Machine Sink"; }
+
+ void getAnalysisUsage(AnalysisUsage &AU) const override {
+ AU.setPreservesCFG();
+ MachineFunctionPass::getAnalysisUsage(AU);
+ }
+
+ MachineFunctionProperties getRequiredProperties() const override {
+ return MachineFunctionProperties().set(
+ MachineFunctionProperties::Property::NoVRegs);
+ }
+
+private:
+ /// Track which register units have been modified and used.
+ LiveRegUnits ModifiedRegUnits, UsedRegUnits;
+
+ /// Track DBG_VALUEs of (unmodified) register units. Each DBG_VALUE has an
+ /// entry in this map for each unit it touches. The DBG_VALUE's entry
+ /// consists of a pointer to the instruction itself, and a vector of registers
+ /// referred to by the instruction that overlap the key register unit.
+ DenseMap<unsigned, SmallVector<MIRegs, 2>> SeenDbgInstrs;
+
+ /// Sink Copy instructions unused in the same block close to their uses in
+ /// successors.
+ bool tryToSinkCopy(MachineBasicBlock &BB, MachineFunction &MF,
+ const TargetRegisterInfo *TRI, const TargetInstrInfo *TII);
+};
+} // namespace
+
+char PostRAMachineSinking::ID = 0;
+char &llvm::PostRAMachineSinkingID = PostRAMachineSinking::ID;
+
+INITIALIZE_PASS(PostRAMachineSinking, "postra-machine-sink",
+ "PostRA Machine Sink", false, false)
+
+static bool aliasWithRegsInLiveIn(MachineBasicBlock &MBB, unsigned Reg,
+ const TargetRegisterInfo *TRI) {
+ LiveRegUnits LiveInRegUnits(*TRI);
+ LiveInRegUnits.addLiveIns(MBB);
+ return !LiveInRegUnits.available(Reg);
+}
+
+static MachineBasicBlock *
+getSingleLiveInSuccBB(MachineBasicBlock &CurBB,
+ const SmallPtrSetImpl<MachineBasicBlock *> &SinkableBBs,
+ unsigned Reg, const TargetRegisterInfo *TRI) {
+ // Try to find a single sinkable successor in which Reg is live-in.
+ MachineBasicBlock *BB = nullptr;
+ for (auto *SI : SinkableBBs) {
+ if (aliasWithRegsInLiveIn(*SI, Reg, TRI)) {
+ // If BB is set here, Reg is live-in to at least two sinkable successors,
+ // so quit.
+ if (BB)
+ return nullptr;
+ BB = SI;
+ }
+ }
+ // Reg is not live-in to any sinkable successors.
+ if (!BB)
+ return nullptr;
+
+ // Check if any register aliased with Reg is live-in in other successors.
+ for (auto *SI : CurBB.successors()) {
+ if (!SinkableBBs.count(SI) && aliasWithRegsInLiveIn(*SI, Reg, TRI))
+ return nullptr;
+ }
+ return BB;
+}
+
+static MachineBasicBlock *
+getSingleLiveInSuccBB(MachineBasicBlock &CurBB,
+ const SmallPtrSetImpl<MachineBasicBlock *> &SinkableBBs,
+ ArrayRef<unsigned> DefedRegsInCopy,
+ const TargetRegisterInfo *TRI) {
+ MachineBasicBlock *SingleBB = nullptr;
+ for (auto DefReg : DefedRegsInCopy) {
+ MachineBasicBlock *BB =
+ getSingleLiveInSuccBB(CurBB, SinkableBBs, DefReg, TRI);
+ if (!BB || (SingleBB && SingleBB != BB))
+ return nullptr;
+ SingleBB = BB;
+ }
+ return SingleBB;
+}
+
+static void clearKillFlags(MachineInstr *MI, MachineBasicBlock &CurBB,
+ SmallVectorImpl<unsigned> &UsedOpsInCopy,
+ LiveRegUnits &UsedRegUnits,
+ const TargetRegisterInfo *TRI) {
+ for (auto U : UsedOpsInCopy) {
+ MachineOperand &MO = MI->getOperand(U);
+ Register SrcReg = MO.getReg();
+ if (!UsedRegUnits.available(SrcReg)) {
+ MachineBasicBlock::iterator NI = std::next(MI->getIterator());
+ for (MachineInstr &UI : make_range(NI, CurBB.end())) {
+ if (UI.killsRegister(SrcReg, TRI)) {
+ UI.clearRegisterKills(SrcReg, TRI);
+ MO.setIsKill(true);
+ break;
+ }
+ }
+ }
+ }
+}
+
+static void updateLiveIn(MachineInstr *MI, MachineBasicBlock *SuccBB,
+ SmallVectorImpl<unsigned> &UsedOpsInCopy,
+ SmallVectorImpl<unsigned> &DefedRegsInCopy) {
+ MachineFunction &MF = *SuccBB->getParent();
+ const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
+ for (unsigned DefReg : DefedRegsInCopy)
+ for (MCPhysReg S : TRI->subregs_inclusive(DefReg))
+ SuccBB->removeLiveIn(S);
+ for (auto U : UsedOpsInCopy) {
+ Register SrcReg = MI->getOperand(U).getReg();
+ LaneBitmask Mask;
+ for (MCRegUnitMaskIterator S(SrcReg, TRI); S.isValid(); ++S)
+ Mask |= (*S).second;
+ SuccBB->addLiveIn(SrcReg, Mask);
+ }
+ SuccBB->sortUniqueLiveIns();
+}
+
+static bool hasRegisterDependency(MachineInstr *MI,
+ SmallVectorImpl<unsigned> &UsedOpsInCopy,
+ SmallVectorImpl<unsigned> &DefedRegsInCopy,
+ LiveRegUnits &ModifiedRegUnits,
+ LiveRegUnits &UsedRegUnits) {
+ bool HasRegDependency = false;
+ for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
+ MachineOperand &MO = MI->getOperand(i);
+ if (!MO.isReg())
+ continue;
+ Register Reg = MO.getReg();
+ if (!Reg)
+ continue;
+ if (MO.isDef()) {
+ if (!ModifiedRegUnits.available(Reg) || !UsedRegUnits.available(Reg)) {
+ HasRegDependency = true;
+ break;
+ }
+ DefedRegsInCopy.push_back(Reg);
+
+ // FIXME: instead of isUse(), readsReg() would be a better fix here,
+ // For example, we can ignore modifications in reg with undef. However,
+ // it's not perfectly clear if skipping the internal read is safe in all
+ // other targets.
+ } else if (MO.isUse()) {
+ if (!ModifiedRegUnits.available(Reg)) {
+ HasRegDependency = true;
+ break;
+ }
+ UsedOpsInCopy.push_back(i);
+ }
+ }
+ return HasRegDependency;
+}
+
+bool PostRAMachineSinking::tryToSinkCopy(MachineBasicBlock &CurBB,
+ MachineFunction &MF,
+ const TargetRegisterInfo *TRI,
+ const TargetInstrInfo *TII) {
+ SmallPtrSet<MachineBasicBlock *, 2> SinkableBBs;
+ // FIXME: For now, we sink only to a successor which has a single predecessor
+ // so that we can directly sink COPY instructions to the successor without
+ // adding any new block or branch instruction.
+ for (MachineBasicBlock *SI : CurBB.successors())
+ if (!SI->livein_empty() && SI->pred_size() == 1)
+ SinkableBBs.insert(SI);
+
+ if (SinkableBBs.empty())
+ return false;
+
+ bool Changed = false;
+
+ // Track which registers have been modified and used between the end of the
+ // block and the current instruction.
+ ModifiedRegUnits.clear();
+ UsedRegUnits.clear();
+ SeenDbgInstrs.clear();
+
+ for (MachineInstr &MI : llvm::make_early_inc_range(llvm::reverse(CurBB))) {
+ // Track the operand index for use in Copy.
+ SmallVector<unsigned, 2> UsedOpsInCopy;
+ // Track the register number defed in Copy.
+ SmallVector<unsigned, 2> DefedRegsInCopy;
+
+ // We must sink this DBG_VALUE if its operand is sunk. To avoid searching
+ // for DBG_VALUEs later, record them when they're encountered.
+ if (MI.isDebugValue() && !MI.isDebugRef()) {
+ SmallDenseMap<MCRegister, SmallVector<unsigned, 2>, 4> MIUnits;
+ bool IsValid = true;
+ for (MachineOperand &MO : MI.debug_operands()) {
+ if (MO.isReg() && MO.getReg().isPhysical()) {
+ // Bail if we can already tell the sink would be rejected, rather
+ // than needlessly accumulating lots of DBG_VALUEs.
+ if (hasRegisterDependency(&MI, UsedOpsInCopy, DefedRegsInCopy,
+ ModifiedRegUnits, UsedRegUnits)) {
+ IsValid = false;
+ break;
+ }
+
+ // Record debug use of each reg unit.
+ for (MCRegUnit Unit : TRI->regunits(MO.getReg()))
+ MIUnits[Unit].push_back(MO.getReg());
+ }
+ }
+ if (IsValid) {
+ for (auto &RegOps : MIUnits)
+ SeenDbgInstrs[RegOps.first].emplace_back(&MI,
+ std::move(RegOps.second));
+ }
+ continue;
+ }
+
+ if (MI.isDebugOrPseudoInstr())
+ continue;
+
+ // Do not move any instruction across function call.
+ if (MI.isCall())
+ return false;
+
+ if (!MI.isCopy() || !MI.getOperand(0).isRenamable()) {
+ LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits, UsedRegUnits,
+ TRI);
+ continue;
+ }
+
+ // Don't sink the COPY if it would violate a register dependency.
+ if (hasRegisterDependency(&MI, UsedOpsInCopy, DefedRegsInCopy,
+ ModifiedRegUnits, UsedRegUnits)) {
+ LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits, UsedRegUnits,
+ TRI);
+ continue;
+ }
+ assert((!UsedOpsInCopy.empty() && !DefedRegsInCopy.empty()) &&
+ "Unexpect SrcReg or DefReg");
+ MachineBasicBlock *SuccBB =
+ getSingleLiveInSuccBB(CurBB, SinkableBBs, DefedRegsInCopy, TRI);
+ // Don't sink if we cannot find a single sinkable successor in which Reg
+ // is live-in.
+ if (!SuccBB) {
+ LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits, UsedRegUnits,
+ TRI);
+ continue;
+ }
+ assert((SuccBB->pred_size() == 1 && *SuccBB->pred_begin() == &CurBB) &&
+ "Unexpected predecessor");
+
+ // Collect DBG_VALUEs that must sink with this copy. We've previously
+ // recorded which reg units that DBG_VALUEs read, if this instruction
+ // writes any of those units then the corresponding DBG_VALUEs must sink.
+ MapVector<MachineInstr *, MIRegs::second_type> DbgValsToSinkMap;
+ for (auto &MO : MI.all_defs()) {
+ for (MCRegUnit Unit : TRI->regunits(MO.getReg())) {
+ for (const auto &MIRegs : SeenDbgInstrs.lookup(Unit)) {
+ auto &Regs = DbgValsToSinkMap[MIRegs.first];
+ for (unsigned Reg : MIRegs.second)
+ Regs.push_back(Reg);
+ }
+ }
+ }
+ auto DbgValsToSink = DbgValsToSinkMap.takeVector();
+
+ LLVM_DEBUG(dbgs() << "Sink instr " << MI << "\tinto block " << *SuccBB);
+
+ MachineBasicBlock::iterator InsertPos =
+ SuccBB->SkipPHIsAndLabels(SuccBB->begin());
+ if (blockPrologueInterferes(SuccBB, InsertPos, MI, TRI, TII, nullptr)) {
+ LLVM_DEBUG(
+ dbgs() << " *** Not sinking: prologue interference\n");
+ continue;
+ }
+
+ // Clear the kill flag if SrcReg is killed between MI and the end of the
+ // block.
+ clearKillFlags(&MI, CurBB, UsedOpsInCopy, UsedRegUnits, TRI);
+ performSink(MI, *SuccBB, InsertPos, DbgValsToSink);
+ updateLiveIn(&MI, SuccBB, UsedOpsInCopy, DefedRegsInCopy);
+
+ Changed = true;
+ ++NumPostRACopySink;
+ }
+ return Changed;
+}
+
+bool PostRAMachineSinking::runOnMachineFunction(MachineFunction &MF) {
+ if (skipFunction(MF.getFunction()))
+ return false;
+
+ bool Changed = false;
+ const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
+ const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
+
+ ModifiedRegUnits.init(*TRI);
+ UsedRegUnits.init(*TRI);
+ for (auto &BB : MF)
+ Changed |= tryToSinkCopy(BB, MF, TRI, TII);
+
+ return Changed;
+}