aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm-project/llvm/lib/CodeGen/MachineSink.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm-project/llvm/lib/CodeGen/MachineSink.cpp')
-rw-r--r--contrib/llvm-project/llvm/lib/CodeGen/MachineSink.cpp1408
1 files changed, 1408 insertions, 0 deletions
diff --git a/contrib/llvm-project/llvm/lib/CodeGen/MachineSink.cpp b/contrib/llvm-project/llvm/lib/CodeGen/MachineSink.cpp
new file mode 100644
index 000000000000..5f958bbc31b7
--- /dev/null
+++ b/contrib/llvm-project/llvm/lib/CodeGen/MachineSink.cpp
@@ -0,0 +1,1408 @@
+//===- MachineSink.cpp - Sinking for machine instructions -----------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This pass moves instructions into successor blocks when possible, so that
+// they aren't executed on paths where their results aren't needed.
+//
+// This pass is not intended to be a replacement or a complete alternative
+// for an LLVM-IR-level sinking pass. It is only designed to sink simple
+// constructs that are not exposed before lowering and instruction selection.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/ADT/DenseSet.h"
+#include "llvm/ADT/PointerIntPair.h"
+#include "llvm/ADT/SetVector.h"
+#include "llvm/ADT/SmallSet.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/SparseBitVector.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/Analysis/AliasAnalysis.h"
+#include "llvm/CodeGen/MachineBasicBlock.h"
+#include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
+#include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
+#include "llvm/CodeGen/MachineDominators.h"
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/MachineFunctionPass.h"
+#include "llvm/CodeGen/MachineInstr.h"
+#include "llvm/CodeGen/MachineLoopInfo.h"
+#include "llvm/CodeGen/MachineOperand.h"
+#include "llvm/CodeGen/MachinePostDominators.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/CodeGen/TargetInstrInfo.h"
+#include "llvm/CodeGen/TargetRegisterInfo.h"
+#include "llvm/CodeGen/TargetSubtargetInfo.h"
+#include "llvm/IR/BasicBlock.h"
+#include "llvm/IR/DebugInfoMetadata.h"
+#include "llvm/IR/LLVMContext.h"
+#include "llvm/InitializePasses.h"
+#include "llvm/MC/MCRegisterInfo.h"
+#include "llvm/Pass.h"
+#include "llvm/Support/BranchProbability.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/raw_ostream.h"
+#include <algorithm>
+#include <cassert>
+#include <cstdint>
+#include <map>
+#include <utility>
+#include <vector>
+
+using namespace llvm;
+
+#define DEBUG_TYPE "machine-sink"
+
+static cl::opt<bool>
+SplitEdges("machine-sink-split",
+ cl::desc("Split critical edges during machine sinking"),
+ cl::init(true), cl::Hidden);
+
+static cl::opt<bool>
+UseBlockFreqInfo("machine-sink-bfi",
+ cl::desc("Use block frequency info to find successors to sink"),
+ cl::init(true), cl::Hidden);
+
+static cl::opt<unsigned> SplitEdgeProbabilityThreshold(
+ "machine-sink-split-probability-threshold",
+ cl::desc(
+ "Percentage threshold for splitting single-instruction critical edge. "
+ "If the branch threshold is higher than this threshold, we allow "
+ "speculative execution of up to 1 instruction to avoid branching to "
+ "splitted critical edge"),
+ cl::init(40), cl::Hidden);
+
+STATISTIC(NumSunk, "Number of machine instructions sunk");
+STATISTIC(NumSplit, "Number of critical edges split");
+STATISTIC(NumCoalesces, "Number of copies coalesced");
+STATISTIC(NumPostRACopySink, "Number of copies sunk after RA");
+
+namespace {
+
+ class MachineSinking : public MachineFunctionPass {
+ const TargetInstrInfo *TII;
+ const TargetRegisterInfo *TRI;
+ MachineRegisterInfo *MRI; // Machine register information
+ MachineDominatorTree *DT; // Machine dominator tree
+ MachinePostDominatorTree *PDT; // Machine post dominator tree
+ MachineLoopInfo *LI;
+ MachineBlockFrequencyInfo *MBFI;
+ const MachineBranchProbabilityInfo *MBPI;
+ AliasAnalysis *AA;
+
+ // Remember which edges have been considered for breaking.
+ SmallSet<std::pair<MachineBasicBlock*, MachineBasicBlock*>, 8>
+ CEBCandidates;
+ // Remember which edges we are about to split.
+ // This is different from CEBCandidates since those edges
+ // will be split.
+ SetVector<std::pair<MachineBasicBlock *, MachineBasicBlock *>> ToSplit;
+
+ SparseBitVector<> RegsToClearKillFlags;
+
+ using AllSuccsCache =
+ std::map<MachineBasicBlock *, SmallVector<MachineBasicBlock *, 4>>;
+
+ /// DBG_VALUE pointer and flag. The flag is true if this DBG_VALUE is
+ /// post-dominated by another DBG_VALUE of the same variable location.
+ /// This is necessary to detect sequences such as:
+ /// %0 = someinst
+ /// DBG_VALUE %0, !123, !DIExpression()
+ /// %1 = anotherinst
+ /// DBG_VALUE %1, !123, !DIExpression()
+ /// Where if %0 were to sink, the DBG_VAUE should not sink with it, as that
+ /// would re-order assignments.
+ using SeenDbgUser = PointerIntPair<MachineInstr *, 1>;
+
+ /// Record of DBG_VALUE uses of vregs in a block, so that we can identify
+ /// debug instructions to sink.
+ SmallDenseMap<unsigned, TinyPtrVector<SeenDbgUser>> SeenDbgUsers;
+
+ /// Record of debug variables that have had their locations set in the
+ /// current block.
+ DenseSet<DebugVariable> SeenDbgVars;
+
+ public:
+ static char ID; // Pass identification
+
+ MachineSinking() : MachineFunctionPass(ID) {
+ initializeMachineSinkingPass(*PassRegistry::getPassRegistry());
+ }
+
+ bool runOnMachineFunction(MachineFunction &MF) override;
+
+ void getAnalysisUsage(AnalysisUsage &AU) const override {
+ MachineFunctionPass::getAnalysisUsage(AU);
+ AU.addRequired<AAResultsWrapperPass>();
+ AU.addRequired<MachineDominatorTree>();
+ AU.addRequired<MachinePostDominatorTree>();
+ AU.addRequired<MachineLoopInfo>();
+ AU.addRequired<MachineBranchProbabilityInfo>();
+ AU.addPreserved<MachineLoopInfo>();
+ if (UseBlockFreqInfo)
+ AU.addRequired<MachineBlockFrequencyInfo>();
+ }
+
+ void releaseMemory() override {
+ CEBCandidates.clear();
+ }
+
+ private:
+ bool ProcessBlock(MachineBasicBlock &MBB);
+ void ProcessDbgInst(MachineInstr &MI);
+ bool isWorthBreakingCriticalEdge(MachineInstr &MI,
+ MachineBasicBlock *From,
+ MachineBasicBlock *To);
+
+ /// Postpone the splitting of the given critical
+ /// edge (\p From, \p To).
+ ///
+ /// We do not split the edges on the fly. Indeed, this invalidates
+ /// the dominance information and thus triggers a lot of updates
+ /// of that information underneath.
+ /// Instead, we postpone all the splits after each iteration of
+ /// the main loop. That way, the information is at least valid
+ /// for the lifetime of an iteration.
+ ///
+ /// \return True if the edge is marked as toSplit, false otherwise.
+ /// False can be returned if, for instance, this is not profitable.
+ bool PostponeSplitCriticalEdge(MachineInstr &MI,
+ MachineBasicBlock *From,
+ MachineBasicBlock *To,
+ bool BreakPHIEdge);
+ bool SinkInstruction(MachineInstr &MI, bool &SawStore,
+ AllSuccsCache &AllSuccessors);
+
+ /// If we sink a COPY inst, some debug users of it's destination may no
+ /// longer be dominated by the COPY, and will eventually be dropped.
+ /// This is easily rectified by forwarding the non-dominated debug uses
+ /// to the copy source.
+ void SalvageUnsunkDebugUsersOfCopy(MachineInstr &,
+ MachineBasicBlock *TargetBlock);
+ bool AllUsesDominatedByBlock(unsigned Reg, MachineBasicBlock *MBB,
+ MachineBasicBlock *DefMBB,
+ bool &BreakPHIEdge, bool &LocalUse) const;
+ MachineBasicBlock *FindSuccToSinkTo(MachineInstr &MI, MachineBasicBlock *MBB,
+ bool &BreakPHIEdge, AllSuccsCache &AllSuccessors);
+ bool isProfitableToSinkTo(unsigned Reg, MachineInstr &MI,
+ MachineBasicBlock *MBB,
+ MachineBasicBlock *SuccToSinkTo,
+ AllSuccsCache &AllSuccessors);
+
+ bool PerformTrivialForwardCoalescing(MachineInstr &MI,
+ MachineBasicBlock *MBB);
+
+ SmallVector<MachineBasicBlock *, 4> &
+ GetAllSortedSuccessors(MachineInstr &MI, MachineBasicBlock *MBB,
+ AllSuccsCache &AllSuccessors) const;
+ };
+
+} // end anonymous namespace
+
+char MachineSinking::ID = 0;
+
+char &llvm::MachineSinkingID = MachineSinking::ID;
+
+INITIALIZE_PASS_BEGIN(MachineSinking, DEBUG_TYPE,
+ "Machine code sinking", false, false)
+INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
+INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
+INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
+INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
+INITIALIZE_PASS_END(MachineSinking, DEBUG_TYPE,
+ "Machine code sinking", false, false)
+
+bool MachineSinking::PerformTrivialForwardCoalescing(MachineInstr &MI,
+ MachineBasicBlock *MBB) {
+ if (!MI.isCopy())
+ return false;
+
+ Register SrcReg = MI.getOperand(1).getReg();
+ Register DstReg = MI.getOperand(0).getReg();
+ if (!Register::isVirtualRegister(SrcReg) ||
+ !Register::isVirtualRegister(DstReg) || !MRI->hasOneNonDBGUse(SrcReg))
+ return false;
+
+ const TargetRegisterClass *SRC = MRI->getRegClass(SrcReg);
+ const TargetRegisterClass *DRC = MRI->getRegClass(DstReg);
+ if (SRC != DRC)
+ return false;
+
+ MachineInstr *DefMI = MRI->getVRegDef(SrcReg);
+ if (DefMI->isCopyLike())
+ return false;
+ LLVM_DEBUG(dbgs() << "Coalescing: " << *DefMI);
+ LLVM_DEBUG(dbgs() << "*** to: " << MI);
+ MRI->replaceRegWith(DstReg, SrcReg);
+ MI.eraseFromParent();
+
+ // Conservatively, clear any kill flags, since it's possible that they are no
+ // longer correct.
+ MRI->clearKillFlags(SrcReg);
+
+ ++NumCoalesces;
+ return true;
+}
+
+/// AllUsesDominatedByBlock - Return true if all uses of the specified register
+/// occur in blocks dominated by the specified block. If any use is in the
+/// definition block, then return false since it is never legal to move def
+/// after uses.
+bool
+MachineSinking::AllUsesDominatedByBlock(unsigned Reg,
+ MachineBasicBlock *MBB,
+ MachineBasicBlock *DefMBB,
+ bool &BreakPHIEdge,
+ bool &LocalUse) const {
+ assert(Register::isVirtualRegister(Reg) && "Only makes sense for vregs");
+
+ // Ignore debug uses because debug info doesn't affect the code.
+ if (MRI->use_nodbg_empty(Reg))
+ return true;
+
+ // BreakPHIEdge is true if all the uses are in the successor MBB being sunken
+ // into and they are all PHI nodes. In this case, machine-sink must break
+ // the critical edge first. e.g.
+ //
+ // %bb.1:
+ // Predecessors according to CFG: %bb.0
+ // ...
+ // %def = DEC64_32r %x, implicit-def dead %eflags
+ // ...
+ // JE_4 <%bb.37>, implicit %eflags
+ // Successors according to CFG: %bb.37 %bb.2
+ //
+ // %bb.2:
+ // %p = PHI %y, %bb.0, %def, %bb.1
+ if (all_of(MRI->use_nodbg_operands(Reg), [&](MachineOperand &MO) {
+ MachineInstr *UseInst = MO.getParent();
+ unsigned OpNo = UseInst->getOperandNo(&MO);
+ MachineBasicBlock *UseBlock = UseInst->getParent();
+ return UseBlock == MBB && UseInst->isPHI() &&
+ UseInst->getOperand(OpNo + 1).getMBB() == DefMBB;
+ })) {
+ BreakPHIEdge = true;
+ return true;
+ }
+
+ for (MachineOperand &MO : MRI->use_nodbg_operands(Reg)) {
+ // Determine the block of the use.
+ MachineInstr *UseInst = MO.getParent();
+ unsigned OpNo = &MO - &UseInst->getOperand(0);
+ MachineBasicBlock *UseBlock = UseInst->getParent();
+ if (UseInst->isPHI()) {
+ // PHI nodes use the operand in the predecessor block, not the block with
+ // the PHI.
+ UseBlock = UseInst->getOperand(OpNo+1).getMBB();
+ } else if (UseBlock == DefMBB) {
+ LocalUse = true;
+ return false;
+ }
+
+ // Check that it dominates.
+ if (!DT->dominates(MBB, UseBlock))
+ return false;
+ }
+
+ return true;
+}
+
+bool MachineSinking::runOnMachineFunction(MachineFunction &MF) {
+ if (skipFunction(MF.getFunction()))
+ return false;
+
+ LLVM_DEBUG(dbgs() << "******** Machine Sinking ********\n");
+
+ TII = MF.getSubtarget().getInstrInfo();
+ TRI = MF.getSubtarget().getRegisterInfo();
+ MRI = &MF.getRegInfo();
+ DT = &getAnalysis<MachineDominatorTree>();
+ PDT = &getAnalysis<MachinePostDominatorTree>();
+ LI = &getAnalysis<MachineLoopInfo>();
+ MBFI = UseBlockFreqInfo ? &getAnalysis<MachineBlockFrequencyInfo>() : nullptr;
+ MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
+ AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
+
+ bool EverMadeChange = false;
+
+ while (true) {
+ bool MadeChange = false;
+
+ // Process all basic blocks.
+ CEBCandidates.clear();
+ ToSplit.clear();
+ for (auto &MBB: MF)
+ MadeChange |= ProcessBlock(MBB);
+
+ // If we have anything we marked as toSplit, split it now.
+ for (auto &Pair : ToSplit) {
+ auto NewSucc = Pair.first->SplitCriticalEdge(Pair.second, *this);
+ if (NewSucc != nullptr) {
+ LLVM_DEBUG(dbgs() << " *** Splitting critical edge: "
+ << printMBBReference(*Pair.first) << " -- "
+ << printMBBReference(*NewSucc) << " -- "
+ << printMBBReference(*Pair.second) << '\n');
+ if (MBFI) {
+ auto NewSuccFreq = MBFI->getBlockFreq(Pair.first) *
+ MBPI->getEdgeProbability(Pair.first, NewSucc);
+ MBFI->setBlockFreq(NewSucc, NewSuccFreq.getFrequency());
+ }
+ MadeChange = true;
+ ++NumSplit;
+ } else
+ LLVM_DEBUG(dbgs() << " *** Not legal to break critical edge\n");
+ }
+ // If this iteration over the code changed anything, keep iterating.
+ if (!MadeChange) break;
+ EverMadeChange = true;
+ }
+
+ // Now clear any kill flags for recorded registers.
+ for (auto I : RegsToClearKillFlags)
+ MRI->clearKillFlags(I);
+ RegsToClearKillFlags.clear();
+
+ return EverMadeChange;
+}
+
+bool MachineSinking::ProcessBlock(MachineBasicBlock &MBB) {
+ // Can't sink anything out of a block that has less than two successors.
+ if (MBB.succ_size() <= 1 || MBB.empty()) return false;
+
+ // Don't bother sinking code out of unreachable blocks. In addition to being
+ // unprofitable, it can also lead to infinite looping, because in an
+ // unreachable loop there may be nowhere to stop.
+ if (!DT->isReachableFromEntry(&MBB)) return false;
+
+ bool MadeChange = false;
+
+ // Cache all successors, sorted by frequency info and loop depth.
+ AllSuccsCache AllSuccessors;
+
+ // Walk the basic block bottom-up. Remember if we saw a store.
+ MachineBasicBlock::iterator I = MBB.end();
+ --I;
+ bool ProcessedBegin, SawStore = false;
+ do {
+ MachineInstr &MI = *I; // The instruction to sink.
+
+ // Predecrement I (if it's not begin) so that it isn't invalidated by
+ // sinking.
+ ProcessedBegin = I == MBB.begin();
+ if (!ProcessedBegin)
+ --I;
+
+ if (MI.isDebugInstr()) {
+ if (MI.isDebugValue())
+ ProcessDbgInst(MI);
+ continue;
+ }
+
+ bool Joined = PerformTrivialForwardCoalescing(MI, &MBB);
+ if (Joined) {
+ MadeChange = true;
+ continue;
+ }
+
+ if (SinkInstruction(MI, SawStore, AllSuccessors)) {
+ ++NumSunk;
+ MadeChange = true;
+ }
+
+ // If we just processed the first instruction in the block, we're done.
+ } while (!ProcessedBegin);
+
+ SeenDbgUsers.clear();
+ SeenDbgVars.clear();
+
+ return MadeChange;
+}
+
+void MachineSinking::ProcessDbgInst(MachineInstr &MI) {
+ // When we see DBG_VALUEs for registers, record any vreg it reads, so that
+ // we know what to sink if the vreg def sinks.
+ assert(MI.isDebugValue() && "Expected DBG_VALUE for processing");
+
+ DebugVariable Var(MI.getDebugVariable(), MI.getDebugExpression(),
+ MI.getDebugLoc()->getInlinedAt());
+ bool SeenBefore = SeenDbgVars.count(Var) != 0;
+
+ MachineOperand &MO = MI.getDebugOperand(0);
+ if (MO.isReg() && MO.getReg().isVirtual())
+ SeenDbgUsers[MO.getReg()].push_back(SeenDbgUser(&MI, SeenBefore));
+
+ // Record the variable for any DBG_VALUE, to avoid re-ordering any of them.
+ SeenDbgVars.insert(Var);
+}
+
+bool MachineSinking::isWorthBreakingCriticalEdge(MachineInstr &MI,
+ MachineBasicBlock *From,
+ MachineBasicBlock *To) {
+ // FIXME: Need much better heuristics.
+
+ // If the pass has already considered breaking this edge (during this pass
+ // through the function), then let's go ahead and break it. This means
+ // sinking multiple "cheap" instructions into the same block.
+ if (!CEBCandidates.insert(std::make_pair(From, To)).second)
+ return true;
+
+ if (!MI.isCopy() && !TII->isAsCheapAsAMove(MI))
+ return true;
+
+ if (From->isSuccessor(To) && MBPI->getEdgeProbability(From, To) <=
+ BranchProbability(SplitEdgeProbabilityThreshold, 100))
+ return true;
+
+ // MI is cheap, we probably don't want to break the critical edge for it.
+ // However, if this would allow some definitions of its source operands
+ // to be sunk then it's probably worth it.
+ for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
+ const MachineOperand &MO = MI.getOperand(i);
+ if (!MO.isReg() || !MO.isUse())
+ continue;
+ Register Reg = MO.getReg();
+ if (Reg == 0)
+ continue;
+
+ // We don't move live definitions of physical registers,
+ // so sinking their uses won't enable any opportunities.
+ if (Register::isPhysicalRegister(Reg))
+ continue;
+
+ // If this instruction is the only user of a virtual register,
+ // check if breaking the edge will enable sinking
+ // both this instruction and the defining instruction.
+ if (MRI->hasOneNonDBGUse(Reg)) {
+ // If the definition resides in same MBB,
+ // claim it's likely we can sink these together.
+ // If definition resides elsewhere, we aren't
+ // blocking it from being sunk so don't break the edge.
+ MachineInstr *DefMI = MRI->getVRegDef(Reg);
+ if (DefMI->getParent() == MI.getParent())
+ return true;
+ }
+ }
+
+ return false;
+}
+
+bool MachineSinking::PostponeSplitCriticalEdge(MachineInstr &MI,
+ MachineBasicBlock *FromBB,
+ MachineBasicBlock *ToBB,
+ bool BreakPHIEdge) {
+ if (!isWorthBreakingCriticalEdge(MI, FromBB, ToBB))
+ return false;
+
+ // Avoid breaking back edge. From == To means backedge for single BB loop.
+ if (!SplitEdges || FromBB == ToBB)
+ return false;
+
+ // Check for backedges of more "complex" loops.
+ if (LI->getLoopFor(FromBB) == LI->getLoopFor(ToBB) &&
+ LI->isLoopHeader(ToBB))
+ return false;
+
+ // It's not always legal to break critical edges and sink the computation
+ // to the edge.
+ //
+ // %bb.1:
+ // v1024
+ // Beq %bb.3
+ // <fallthrough>
+ // %bb.2:
+ // ... no uses of v1024
+ // <fallthrough>
+ // %bb.3:
+ // ...
+ // = v1024
+ //
+ // If %bb.1 -> %bb.3 edge is broken and computation of v1024 is inserted:
+ //
+ // %bb.1:
+ // ...
+ // Bne %bb.2
+ // %bb.4:
+ // v1024 =
+ // B %bb.3
+ // %bb.2:
+ // ... no uses of v1024
+ // <fallthrough>
+ // %bb.3:
+ // ...
+ // = v1024
+ //
+ // This is incorrect since v1024 is not computed along the %bb.1->%bb.2->%bb.3
+ // flow. We need to ensure the new basic block where the computation is
+ // sunk to dominates all the uses.
+ // It's only legal to break critical edge and sink the computation to the
+ // new block if all the predecessors of "To", except for "From", are
+ // not dominated by "From". Given SSA property, this means these
+ // predecessors are dominated by "To".
+ //
+ // There is no need to do this check if all the uses are PHI nodes. PHI
+ // sources are only defined on the specific predecessor edges.
+ if (!BreakPHIEdge) {
+ for (MachineBasicBlock::pred_iterator PI = ToBB->pred_begin(),
+ E = ToBB->pred_end(); PI != E; ++PI) {
+ if (*PI == FromBB)
+ continue;
+ if (!DT->dominates(ToBB, *PI))
+ return false;
+ }
+ }
+
+ ToSplit.insert(std::make_pair(FromBB, ToBB));
+
+ return true;
+}
+
+/// isProfitableToSinkTo - Return true if it is profitable to sink MI.
+bool MachineSinking::isProfitableToSinkTo(unsigned Reg, MachineInstr &MI,
+ MachineBasicBlock *MBB,
+ MachineBasicBlock *SuccToSinkTo,
+ AllSuccsCache &AllSuccessors) {
+ assert (SuccToSinkTo && "Invalid SinkTo Candidate BB");
+
+ if (MBB == SuccToSinkTo)
+ return false;
+
+ // It is profitable if SuccToSinkTo does not post dominate current block.
+ if (!PDT->dominates(SuccToSinkTo, MBB))
+ return true;
+
+ // It is profitable to sink an instruction from a deeper loop to a shallower
+ // loop, even if the latter post-dominates the former (PR21115).
+ if (LI->getLoopDepth(MBB) > LI->getLoopDepth(SuccToSinkTo))
+ return true;
+
+ // Check if only use in post dominated block is PHI instruction.
+ bool NonPHIUse = false;
+ for (MachineInstr &UseInst : MRI->use_nodbg_instructions(Reg)) {
+ MachineBasicBlock *UseBlock = UseInst.getParent();
+ if (UseBlock == SuccToSinkTo && !UseInst.isPHI())
+ NonPHIUse = true;
+ }
+ if (!NonPHIUse)
+ return true;
+
+ // If SuccToSinkTo post dominates then also it may be profitable if MI
+ // can further profitably sinked into another block in next round.
+ bool BreakPHIEdge = false;
+ // FIXME - If finding successor is compile time expensive then cache results.
+ if (MachineBasicBlock *MBB2 =
+ FindSuccToSinkTo(MI, SuccToSinkTo, BreakPHIEdge, AllSuccessors))
+ return isProfitableToSinkTo(Reg, MI, SuccToSinkTo, MBB2, AllSuccessors);
+
+ // If SuccToSinkTo is final destination and it is a post dominator of current
+ // block then it is not profitable to sink MI into SuccToSinkTo block.
+ return false;
+}
+
+/// Get the sorted sequence of successors for this MachineBasicBlock, possibly
+/// computing it if it was not already cached.
+SmallVector<MachineBasicBlock *, 4> &
+MachineSinking::GetAllSortedSuccessors(MachineInstr &MI, MachineBasicBlock *MBB,
+ AllSuccsCache &AllSuccessors) const {
+ // Do we have the sorted successors in cache ?
+ auto Succs = AllSuccessors.find(MBB);
+ if (Succs != AllSuccessors.end())
+ return Succs->second;
+
+ SmallVector<MachineBasicBlock *, 4> AllSuccs(MBB->succ_begin(),
+ MBB->succ_end());
+
+ // Handle cases where sinking can happen but where the sink point isn't a
+ // successor. For example:
+ //
+ // x = computation
+ // if () {} else {}
+ // use x
+ //
+ for (MachineDomTreeNode *DTChild : DT->getNode(MBB)->children()) {
+ // DomTree children of MBB that have MBB as immediate dominator are added.
+ if (DTChild->getIDom()->getBlock() == MI.getParent() &&
+ // Skip MBBs already added to the AllSuccs vector above.
+ !MBB->isSuccessor(DTChild->getBlock()))
+ AllSuccs.push_back(DTChild->getBlock());
+ }
+
+ // Sort Successors according to their loop depth or block frequency info.
+ llvm::stable_sort(
+ AllSuccs, [this](const MachineBasicBlock *L, const MachineBasicBlock *R) {
+ uint64_t LHSFreq = MBFI ? MBFI->getBlockFreq(L).getFrequency() : 0;
+ uint64_t RHSFreq = MBFI ? MBFI->getBlockFreq(R).getFrequency() : 0;
+ bool HasBlockFreq = LHSFreq != 0 && RHSFreq != 0;
+ return HasBlockFreq ? LHSFreq < RHSFreq
+ : LI->getLoopDepth(L) < LI->getLoopDepth(R);
+ });
+
+ auto it = AllSuccessors.insert(std::make_pair(MBB, AllSuccs));
+
+ return it.first->second;
+}
+
+/// FindSuccToSinkTo - Find a successor to sink this instruction to.
+MachineBasicBlock *
+MachineSinking::FindSuccToSinkTo(MachineInstr &MI, MachineBasicBlock *MBB,
+ bool &BreakPHIEdge,
+ AllSuccsCache &AllSuccessors) {
+ assert (MBB && "Invalid MachineBasicBlock!");
+
+ // Loop over all the operands of the specified instruction. If there is
+ // anything we can't handle, bail out.
+
+ // SuccToSinkTo - This is the successor to sink this instruction to, once we
+ // decide.
+ MachineBasicBlock *SuccToSinkTo = nullptr;
+ for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
+ const MachineOperand &MO = MI.getOperand(i);
+ if (!MO.isReg()) continue; // Ignore non-register operands.
+
+ Register Reg = MO.getReg();
+ if (Reg == 0) continue;
+
+ if (Register::isPhysicalRegister(Reg)) {
+ if (MO.isUse()) {
+ // If the physreg has no defs anywhere, it's just an ambient register
+ // and we can freely move its uses. Alternatively, if it's allocatable,
+ // it could get allocated to something with a def during allocation.
+ if (!MRI->isConstantPhysReg(Reg))
+ return nullptr;
+ } else if (!MO.isDead()) {
+ // A def that isn't dead. We can't move it.
+ return nullptr;
+ }
+ } else {
+ // Virtual register uses are always safe to sink.
+ if (MO.isUse()) continue;
+
+ // If it's not safe to move defs of the register class, then abort.
+ if (!TII->isSafeToMoveRegClassDefs(MRI->getRegClass(Reg)))
+ return nullptr;
+
+ // Virtual register defs can only be sunk if all their uses are in blocks
+ // dominated by one of the successors.
+ if (SuccToSinkTo) {
+ // If a previous operand picked a block to sink to, then this operand
+ // must be sinkable to the same block.
+ bool LocalUse = false;
+ if (!AllUsesDominatedByBlock(Reg, SuccToSinkTo, MBB,
+ BreakPHIEdge, LocalUse))
+ return nullptr;
+
+ continue;
+ }
+
+ // Otherwise, we should look at all the successors and decide which one
+ // we should sink to. If we have reliable block frequency information
+ // (frequency != 0) available, give successors with smaller frequencies
+ // higher priority, otherwise prioritize smaller loop depths.
+ for (MachineBasicBlock *SuccBlock :
+ GetAllSortedSuccessors(MI, MBB, AllSuccessors)) {
+ bool LocalUse = false;
+ if (AllUsesDominatedByBlock(Reg, SuccBlock, MBB,
+ BreakPHIEdge, LocalUse)) {
+ SuccToSinkTo = SuccBlock;
+ break;
+ }
+ if (LocalUse)
+ // Def is used locally, it's never safe to move this def.
+ return nullptr;
+ }
+
+ // If we couldn't find a block to sink to, ignore this instruction.
+ if (!SuccToSinkTo)
+ return nullptr;
+ if (!isProfitableToSinkTo(Reg, MI, MBB, SuccToSinkTo, AllSuccessors))
+ return nullptr;
+ }
+ }
+
+ // It is not possible to sink an instruction into its own block. This can
+ // happen with loops.
+ if (MBB == SuccToSinkTo)
+ return nullptr;
+
+ // It's not safe to sink instructions to EH landing pad. Control flow into
+ // landing pad is implicitly defined.
+ if (SuccToSinkTo && SuccToSinkTo->isEHPad())
+ return nullptr;
+
+ // It ought to be okay to sink instructions into an INLINEASM_BR target, but
+ // only if we make sure that MI occurs _before_ an INLINEASM_BR instruction in
+ // the source block (which this code does not yet do). So for now, forbid
+ // doing so.
+ if (SuccToSinkTo && SuccToSinkTo->isInlineAsmBrIndirectTarget())
+ return nullptr;
+
+ return SuccToSinkTo;
+}
+
+/// Return true if MI is likely to be usable as a memory operation by the
+/// implicit null check optimization.
+///
+/// This is a "best effort" heuristic, and should not be relied upon for
+/// correctness. This returning true does not guarantee that the implicit null
+/// check optimization is legal over MI, and this returning false does not
+/// guarantee MI cannot possibly be used to do a null check.
+static bool SinkingPreventsImplicitNullCheck(MachineInstr &MI,
+ const TargetInstrInfo *TII,
+ const TargetRegisterInfo *TRI) {
+ using MachineBranchPredicate = TargetInstrInfo::MachineBranchPredicate;
+
+ auto *MBB = MI.getParent();
+ if (MBB->pred_size() != 1)
+ return false;
+
+ auto *PredMBB = *MBB->pred_begin();
+ auto *PredBB = PredMBB->getBasicBlock();
+
+ // Frontends that don't use implicit null checks have no reason to emit
+ // branches with make.implicit metadata, and this function should always
+ // return false for them.
+ if (!PredBB ||
+ !PredBB->getTerminator()->getMetadata(LLVMContext::MD_make_implicit))
+ return false;
+
+ const MachineOperand *BaseOp;
+ int64_t Offset;
+ bool OffsetIsScalable;
+ if (!TII->getMemOperandWithOffset(MI, BaseOp, Offset, OffsetIsScalable, TRI))
+ return false;
+
+ if (!BaseOp->isReg())
+ return false;
+
+ if (!(MI.mayLoad() && !MI.isPredicable()))
+ return false;
+
+ MachineBranchPredicate MBP;
+ if (TII->analyzeBranchPredicate(*PredMBB, MBP, false))
+ return false;
+
+ return MBP.LHS.isReg() && MBP.RHS.isImm() && MBP.RHS.getImm() == 0 &&
+ (MBP.Predicate == MachineBranchPredicate::PRED_NE ||
+ MBP.Predicate == MachineBranchPredicate::PRED_EQ) &&
+ MBP.LHS.getReg() == BaseOp->getReg();
+}
+
+/// If the sunk instruction is a copy, try to forward the copy instead of
+/// leaving an 'undef' DBG_VALUE in the original location. Don't do this if
+/// there's any subregister weirdness involved. Returns true if copy
+/// propagation occurred.
+static bool attemptDebugCopyProp(MachineInstr &SinkInst, MachineInstr &DbgMI) {
+ const MachineRegisterInfo &MRI = SinkInst.getMF()->getRegInfo();
+ const TargetInstrInfo &TII = *SinkInst.getMF()->getSubtarget().getInstrInfo();
+
+ // Copy DBG_VALUE operand and set the original to undef. We then check to
+ // see whether this is something that can be copy-forwarded. If it isn't,
+ // continue around the loop.
+ MachineOperand &DbgMO = DbgMI.getDebugOperand(0);
+
+ const MachineOperand *SrcMO = nullptr, *DstMO = nullptr;
+ auto CopyOperands = TII.isCopyInstr(SinkInst);
+ if (!CopyOperands)
+ return false;
+ SrcMO = CopyOperands->Source;
+ DstMO = CopyOperands->Destination;
+
+ // Check validity of forwarding this copy.
+ bool PostRA = MRI.getNumVirtRegs() == 0;
+
+ // Trying to forward between physical and virtual registers is too hard.
+ if (DbgMO.getReg().isVirtual() != SrcMO->getReg().isVirtual())
+ return false;
+
+ // Only try virtual register copy-forwarding before regalloc, and physical
+ // register copy-forwarding after regalloc.
+ bool arePhysRegs = !DbgMO.getReg().isVirtual();
+ if (arePhysRegs != PostRA)
+ return false;
+
+ // Pre-regalloc, only forward if all subregisters agree (or there are no
+ // subregs at all). More analysis might recover some forwardable copies.
+ if (!PostRA && (DbgMO.getSubReg() != SrcMO->getSubReg() ||
+ DbgMO.getSubReg() != DstMO->getSubReg()))
+ return false;
+
+ // Post-regalloc, we may be sinking a DBG_VALUE of a sub or super-register
+ // of this copy. Only forward the copy if the DBG_VALUE operand exactly
+ // matches the copy destination.
+ if (PostRA && DbgMO.getReg() != DstMO->getReg())
+ return false;
+
+ DbgMO.setReg(SrcMO->getReg());
+ DbgMO.setSubReg(SrcMO->getSubReg());
+ return true;
+}
+
+/// Sink an instruction and its associated debug instructions.
+static void performSink(MachineInstr &MI, MachineBasicBlock &SuccToSinkTo,
+ MachineBasicBlock::iterator InsertPos,
+ SmallVectorImpl<MachineInstr *> &DbgValuesToSink) {
+
+ // If we cannot find a location to use (merge with), then we erase the debug
+ // location to prevent debug-info driven tools from potentially reporting
+ // wrong location information.
+ if (!SuccToSinkTo.empty() && InsertPos != SuccToSinkTo.end())
+ MI.setDebugLoc(DILocation::getMergedLocation(MI.getDebugLoc(),
+ InsertPos->getDebugLoc()));
+ else
+ MI.setDebugLoc(DebugLoc());
+
+ // Move the instruction.
+ MachineBasicBlock *ParentBlock = MI.getParent();
+ SuccToSinkTo.splice(InsertPos, ParentBlock, MI,
+ ++MachineBasicBlock::iterator(MI));
+
+ // Sink a copy of debug users to the insert position. Mark the original
+ // DBG_VALUE location as 'undef', indicating that any earlier variable
+ // location should be terminated as we've optimised away the value at this
+ // point.
+ for (SmallVectorImpl<MachineInstr *>::iterator DBI = DbgValuesToSink.begin(),
+ DBE = DbgValuesToSink.end();
+ DBI != DBE; ++DBI) {
+ MachineInstr *DbgMI = *DBI;
+ MachineInstr *NewDbgMI = DbgMI->getMF()->CloneMachineInstr(*DBI);
+ SuccToSinkTo.insert(InsertPos, NewDbgMI);
+
+ if (!attemptDebugCopyProp(MI, *DbgMI))
+ DbgMI->setDebugValueUndef();
+ }
+}
+
+/// SinkInstruction - Determine whether it is safe to sink the specified machine
+/// instruction out of its current block into a successor.
+bool MachineSinking::SinkInstruction(MachineInstr &MI, bool &SawStore,
+ AllSuccsCache &AllSuccessors) {
+ // Don't sink instructions that the target prefers not to sink.
+ if (!TII->shouldSink(MI))
+ return false;
+
+ // Check if it's safe to move the instruction.
+ if (!MI.isSafeToMove(AA, SawStore))
+ return false;
+
+ // Convergent operations may not be made control-dependent on additional
+ // values.
+ if (MI.isConvergent())
+ return false;
+
+ // Don't break implicit null checks. This is a performance heuristic, and not
+ // required for correctness.
+ if (SinkingPreventsImplicitNullCheck(MI, TII, TRI))
+ return false;
+
+ // FIXME: This should include support for sinking instructions within the
+ // block they are currently in to shorten the live ranges. We often get
+ // instructions sunk into the top of a large block, but it would be better to
+ // also sink them down before their first use in the block. This xform has to
+ // be careful not to *increase* register pressure though, e.g. sinking
+ // "x = y + z" down if it kills y and z would increase the live ranges of y
+ // and z and only shrink the live range of x.
+
+ bool BreakPHIEdge = false;
+ MachineBasicBlock *ParentBlock = MI.getParent();
+ MachineBasicBlock *SuccToSinkTo =
+ FindSuccToSinkTo(MI, ParentBlock, BreakPHIEdge, AllSuccessors);
+
+ // If there are no outputs, it must have side-effects.
+ if (!SuccToSinkTo)
+ return false;
+
+ // If the instruction to move defines a dead physical register which is live
+ // when leaving the basic block, don't move it because it could turn into a
+ // "zombie" define of that preg. E.g., EFLAGS. (<rdar://problem/8030636>)
+ for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) {
+ const MachineOperand &MO = MI.getOperand(I);
+ if (!MO.isReg()) continue;
+ Register Reg = MO.getReg();
+ if (Reg == 0 || !Register::isPhysicalRegister(Reg))
+ continue;
+ if (SuccToSinkTo->isLiveIn(Reg))
+ return false;
+ }
+
+ LLVM_DEBUG(dbgs() << "Sink instr " << MI << "\tinto block " << *SuccToSinkTo);
+
+ // If the block has multiple predecessors, this is a critical edge.
+ // Decide if we can sink along it or need to break the edge.
+ if (SuccToSinkTo->pred_size() > 1) {
+ // We cannot sink a load across a critical edge - there may be stores in
+ // other code paths.
+ bool TryBreak = false;
+ bool store = true;
+ if (!MI.isSafeToMove(AA, store)) {
+ LLVM_DEBUG(dbgs() << " *** NOTE: Won't sink load along critical edge.\n");
+ TryBreak = true;
+ }
+
+ // We don't want to sink across a critical edge if we don't dominate the
+ // successor. We could be introducing calculations to new code paths.
+ if (!TryBreak && !DT->dominates(ParentBlock, SuccToSinkTo)) {
+ LLVM_DEBUG(dbgs() << " *** NOTE: Critical edge found\n");
+ TryBreak = true;
+ }
+
+ // Don't sink instructions into a loop.
+ if (!TryBreak && LI->isLoopHeader(SuccToSinkTo)) {
+ LLVM_DEBUG(dbgs() << " *** NOTE: Loop header found\n");
+ TryBreak = true;
+ }
+
+ // Otherwise we are OK with sinking along a critical edge.
+ if (!TryBreak)
+ LLVM_DEBUG(dbgs() << "Sinking along critical edge.\n");
+ else {
+ // Mark this edge as to be split.
+ // If the edge can actually be split, the next iteration of the main loop
+ // will sink MI in the newly created block.
+ bool Status =
+ PostponeSplitCriticalEdge(MI, ParentBlock, SuccToSinkTo, BreakPHIEdge);
+ if (!Status)
+ LLVM_DEBUG(dbgs() << " *** PUNTING: Not legal or profitable to "
+ "break critical edge\n");
+ // The instruction will not be sunk this time.
+ return false;
+ }
+ }
+
+ if (BreakPHIEdge) {
+ // BreakPHIEdge is true if all the uses are in the successor MBB being
+ // sunken into and they are all PHI nodes. In this case, machine-sink must
+ // break the critical edge first.
+ bool Status = PostponeSplitCriticalEdge(MI, ParentBlock,
+ SuccToSinkTo, BreakPHIEdge);
+ if (!Status)
+ LLVM_DEBUG(dbgs() << " *** PUNTING: Not legal or profitable to "
+ "break critical edge\n");
+ // The instruction will not be sunk this time.
+ return false;
+ }
+
+ // Determine where to insert into. Skip phi nodes.
+ MachineBasicBlock::iterator InsertPos = SuccToSinkTo->begin();
+ while (InsertPos != SuccToSinkTo->end() && InsertPos->isPHI())
+ ++InsertPos;
+
+ // Collect debug users of any vreg that this inst defines.
+ SmallVector<MachineInstr *, 4> DbgUsersToSink;
+ for (auto &MO : MI.operands()) {
+ if (!MO.isReg() || !MO.isDef() || !MO.getReg().isVirtual())
+ continue;
+ if (!SeenDbgUsers.count(MO.getReg()))
+ continue;
+
+ // Sink any users that don't pass any other DBG_VALUEs for this variable.
+ auto &Users = SeenDbgUsers[MO.getReg()];
+ for (auto &User : Users) {
+ MachineInstr *DbgMI = User.getPointer();
+ if (User.getInt()) {
+ // This DBG_VALUE would re-order assignments. If we can't copy-propagate
+ // it, it can't be recovered. Set it undef.
+ if (!attemptDebugCopyProp(MI, *DbgMI))
+ DbgMI->setDebugValueUndef();
+ } else {
+ DbgUsersToSink.push_back(DbgMI);
+ }
+ }
+ }
+
+ // After sinking, some debug users may not be dominated any more. If possible,
+ // copy-propagate their operands. As it's expensive, don't do this if there's
+ // no debuginfo in the program.
+ if (MI.getMF()->getFunction().getSubprogram() && MI.isCopy())
+ SalvageUnsunkDebugUsersOfCopy(MI, SuccToSinkTo);
+
+ performSink(MI, *SuccToSinkTo, InsertPos, DbgUsersToSink);
+
+ // Conservatively, clear any kill flags, since it's possible that they are no
+ // longer correct.
+ // Note that we have to clear the kill flags for any register this instruction
+ // uses as we may sink over another instruction which currently kills the
+ // used registers.
+ for (MachineOperand &MO : MI.operands()) {
+ if (MO.isReg() && MO.isUse())
+ RegsToClearKillFlags.set(MO.getReg()); // Remember to clear kill flags.
+ }
+
+ return true;
+}
+
+void MachineSinking::SalvageUnsunkDebugUsersOfCopy(
+ MachineInstr &MI, MachineBasicBlock *TargetBlock) {
+ assert(MI.isCopy());
+ assert(MI.getOperand(1).isReg());
+
+ // Enumerate all users of vreg operands that are def'd. Skip those that will
+ // be sunk. For the rest, if they are not dominated by the block we will sink
+ // MI into, propagate the copy source to them.
+ SmallVector<MachineInstr *, 4> DbgDefUsers;
+ const MachineRegisterInfo &MRI = MI.getMF()->getRegInfo();
+ for (auto &MO : MI.operands()) {
+ if (!MO.isReg() || !MO.isDef() || !MO.getReg().isVirtual())
+ continue;
+ for (auto &User : MRI.use_instructions(MO.getReg())) {
+ if (!User.isDebugValue() || DT->dominates(TargetBlock, User.getParent()))
+ continue;
+
+ // If is in same block, will either sink or be use-before-def.
+ if (User.getParent() == MI.getParent())
+ continue;
+
+ assert(User.getDebugOperand(0).isReg() &&
+ "DBG_VALUE user of vreg, but non reg operand?");
+ DbgDefUsers.push_back(&User);
+ }
+ }
+
+ // Point the users of this copy that are no longer dominated, at the source
+ // of the copy.
+ for (auto *User : DbgDefUsers) {
+ User->getDebugOperand(0).setReg(MI.getOperand(1).getReg());
+ User->getDebugOperand(0).setSubReg(MI.getOperand(1).getSubReg());
+ }
+}
+
+//===----------------------------------------------------------------------===//
+// This pass is not intended to be a replacement or a complete alternative
+// for the pre-ra machine sink pass. It is only designed to sink COPY
+// instructions which should be handled after RA.
+//
+// This pass sinks COPY instructions into a successor block, if the COPY is not
+// used in the current block and the COPY is live-in to a single successor
+// (i.e., doesn't require the COPY to be duplicated). This avoids executing the
+// copy on paths where their results aren't needed. This also exposes
+// additional opportunites for dead copy elimination and shrink wrapping.
+//
+// These copies were either not handled by or are inserted after the MachineSink
+// pass. As an example of the former case, the MachineSink pass cannot sink
+// COPY instructions with allocatable source registers; for AArch64 these type
+// of copy instructions are frequently used to move function parameters (PhyReg)
+// into virtual registers in the entry block.
+//
+// For the machine IR below, this pass will sink %w19 in the entry into its
+// successor (%bb.1) because %w19 is only live-in in %bb.1.
+// %bb.0:
+// %wzr = SUBSWri %w1, 1
+// %w19 = COPY %w0
+// Bcc 11, %bb.2
+// %bb.1:
+// Live Ins: %w19
+// BL @fun
+// %w0 = ADDWrr %w0, %w19
+// RET %w0
+// %bb.2:
+// %w0 = COPY %wzr
+// RET %w0
+// As we sink %w19 (CSR in AArch64) into %bb.1, the shrink-wrapping pass will be
+// able to see %bb.0 as a candidate.
+//===----------------------------------------------------------------------===//
+namespace {
+
+class PostRAMachineSinking : public MachineFunctionPass {
+public:
+ bool runOnMachineFunction(MachineFunction &MF) override;
+
+ static char ID;
+ PostRAMachineSinking() : MachineFunctionPass(ID) {}
+ StringRef getPassName() const override { return "PostRA Machine Sink"; }
+
+ void getAnalysisUsage(AnalysisUsage &AU) const override {
+ AU.setPreservesCFG();
+ MachineFunctionPass::getAnalysisUsage(AU);
+ }
+
+ MachineFunctionProperties getRequiredProperties() const override {
+ return MachineFunctionProperties().set(
+ MachineFunctionProperties::Property::NoVRegs);
+ }
+
+private:
+ /// Track which register units have been modified and used.
+ LiveRegUnits ModifiedRegUnits, UsedRegUnits;
+
+ /// Track DBG_VALUEs of (unmodified) register units. Each DBG_VALUE has an
+ /// entry in this map for each unit it touches.
+ DenseMap<unsigned, TinyPtrVector<MachineInstr *>> SeenDbgInstrs;
+
+ /// Sink Copy instructions unused in the same block close to their uses in
+ /// successors.
+ bool tryToSinkCopy(MachineBasicBlock &BB, MachineFunction &MF,
+ const TargetRegisterInfo *TRI, const TargetInstrInfo *TII);
+};
+} // namespace
+
+char PostRAMachineSinking::ID = 0;
+char &llvm::PostRAMachineSinkingID = PostRAMachineSinking::ID;
+
+INITIALIZE_PASS(PostRAMachineSinking, "postra-machine-sink",
+ "PostRA Machine Sink", false, false)
+
+static bool aliasWithRegsInLiveIn(MachineBasicBlock &MBB, unsigned Reg,
+ const TargetRegisterInfo *TRI) {
+ LiveRegUnits LiveInRegUnits(*TRI);
+ LiveInRegUnits.addLiveIns(MBB);
+ return !LiveInRegUnits.available(Reg);
+}
+
+static MachineBasicBlock *
+getSingleLiveInSuccBB(MachineBasicBlock &CurBB,
+ const SmallPtrSetImpl<MachineBasicBlock *> &SinkableBBs,
+ unsigned Reg, const TargetRegisterInfo *TRI) {
+ // Try to find a single sinkable successor in which Reg is live-in.
+ MachineBasicBlock *BB = nullptr;
+ for (auto *SI : SinkableBBs) {
+ if (aliasWithRegsInLiveIn(*SI, Reg, TRI)) {
+ // If BB is set here, Reg is live-in to at least two sinkable successors,
+ // so quit.
+ if (BB)
+ return nullptr;
+ BB = SI;
+ }
+ }
+ // Reg is not live-in to any sinkable successors.
+ if (!BB)
+ return nullptr;
+
+ // Check if any register aliased with Reg is live-in in other successors.
+ for (auto *SI : CurBB.successors()) {
+ if (!SinkableBBs.count(SI) && aliasWithRegsInLiveIn(*SI, Reg, TRI))
+ return nullptr;
+ }
+ return BB;
+}
+
+static MachineBasicBlock *
+getSingleLiveInSuccBB(MachineBasicBlock &CurBB,
+ const SmallPtrSetImpl<MachineBasicBlock *> &SinkableBBs,
+ ArrayRef<unsigned> DefedRegsInCopy,
+ const TargetRegisterInfo *TRI) {
+ MachineBasicBlock *SingleBB = nullptr;
+ for (auto DefReg : DefedRegsInCopy) {
+ MachineBasicBlock *BB =
+ getSingleLiveInSuccBB(CurBB, SinkableBBs, DefReg, TRI);
+ if (!BB || (SingleBB && SingleBB != BB))
+ return nullptr;
+ SingleBB = BB;
+ }
+ return SingleBB;
+}
+
+static void clearKillFlags(MachineInstr *MI, MachineBasicBlock &CurBB,
+ SmallVectorImpl<unsigned> &UsedOpsInCopy,
+ LiveRegUnits &UsedRegUnits,
+ const TargetRegisterInfo *TRI) {
+ for (auto U : UsedOpsInCopy) {
+ MachineOperand &MO = MI->getOperand(U);
+ Register SrcReg = MO.getReg();
+ if (!UsedRegUnits.available(SrcReg)) {
+ MachineBasicBlock::iterator NI = std::next(MI->getIterator());
+ for (MachineInstr &UI : make_range(NI, CurBB.end())) {
+ if (UI.killsRegister(SrcReg, TRI)) {
+ UI.clearRegisterKills(SrcReg, TRI);
+ MO.setIsKill(true);
+ break;
+ }
+ }
+ }
+ }
+}
+
+static void updateLiveIn(MachineInstr *MI, MachineBasicBlock *SuccBB,
+ SmallVectorImpl<unsigned> &UsedOpsInCopy,
+ SmallVectorImpl<unsigned> &DefedRegsInCopy) {
+ MachineFunction &MF = *SuccBB->getParent();
+ const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
+ for (unsigned DefReg : DefedRegsInCopy)
+ for (MCSubRegIterator S(DefReg, TRI, true); S.isValid(); ++S)
+ SuccBB->removeLiveIn(*S);
+ for (auto U : UsedOpsInCopy) {
+ Register SrcReg = MI->getOperand(U).getReg();
+ LaneBitmask Mask;
+ for (MCRegUnitMaskIterator S(SrcReg, TRI); S.isValid(); ++S) {
+ Mask |= (*S).second;
+ }
+ SuccBB->addLiveIn(SrcReg, Mask.any() ? Mask : LaneBitmask::getAll());
+ }
+ SuccBB->sortUniqueLiveIns();
+}
+
+static bool hasRegisterDependency(MachineInstr *MI,
+ SmallVectorImpl<unsigned> &UsedOpsInCopy,
+ SmallVectorImpl<unsigned> &DefedRegsInCopy,
+ LiveRegUnits &ModifiedRegUnits,
+ LiveRegUnits &UsedRegUnits) {
+ bool HasRegDependency = false;
+ for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
+ MachineOperand &MO = MI->getOperand(i);
+ if (!MO.isReg())
+ continue;
+ Register Reg = MO.getReg();
+ if (!Reg)
+ continue;
+ if (MO.isDef()) {
+ if (!ModifiedRegUnits.available(Reg) || !UsedRegUnits.available(Reg)) {
+ HasRegDependency = true;
+ break;
+ }
+ DefedRegsInCopy.push_back(Reg);
+
+ // FIXME: instead of isUse(), readsReg() would be a better fix here,
+ // For example, we can ignore modifications in reg with undef. However,
+ // it's not perfectly clear if skipping the internal read is safe in all
+ // other targets.
+ } else if (MO.isUse()) {
+ if (!ModifiedRegUnits.available(Reg)) {
+ HasRegDependency = true;
+ break;
+ }
+ UsedOpsInCopy.push_back(i);
+ }
+ }
+ return HasRegDependency;
+}
+
+static SmallSet<unsigned, 4> getRegUnits(unsigned Reg,
+ const TargetRegisterInfo *TRI) {
+ SmallSet<unsigned, 4> RegUnits;
+ for (auto RI = MCRegUnitIterator(Reg, TRI); RI.isValid(); ++RI)
+ RegUnits.insert(*RI);
+ return RegUnits;
+}
+
+bool PostRAMachineSinking::tryToSinkCopy(MachineBasicBlock &CurBB,
+ MachineFunction &MF,
+ const TargetRegisterInfo *TRI,
+ const TargetInstrInfo *TII) {
+ SmallPtrSet<MachineBasicBlock *, 2> SinkableBBs;
+ // FIXME: For now, we sink only to a successor which has a single predecessor
+ // so that we can directly sink COPY instructions to the successor without
+ // adding any new block or branch instruction.
+ for (MachineBasicBlock *SI : CurBB.successors())
+ if (!SI->livein_empty() && SI->pred_size() == 1)
+ SinkableBBs.insert(SI);
+
+ if (SinkableBBs.empty())
+ return false;
+
+ bool Changed = false;
+
+ // Track which registers have been modified and used between the end of the
+ // block and the current instruction.
+ ModifiedRegUnits.clear();
+ UsedRegUnits.clear();
+ SeenDbgInstrs.clear();
+
+ for (auto I = CurBB.rbegin(), E = CurBB.rend(); I != E;) {
+ MachineInstr *MI = &*I;
+ ++I;
+
+ // Track the operand index for use in Copy.
+ SmallVector<unsigned, 2> UsedOpsInCopy;
+ // Track the register number defed in Copy.
+ SmallVector<unsigned, 2> DefedRegsInCopy;
+
+ // We must sink this DBG_VALUE if its operand is sunk. To avoid searching
+ // for DBG_VALUEs later, record them when they're encountered.
+ if (MI->isDebugValue()) {
+ auto &MO = MI->getDebugOperand(0);
+ if (MO.isReg() && Register::isPhysicalRegister(MO.getReg())) {
+ // Bail if we can already tell the sink would be rejected, rather
+ // than needlessly accumulating lots of DBG_VALUEs.
+ if (hasRegisterDependency(MI, UsedOpsInCopy, DefedRegsInCopy,
+ ModifiedRegUnits, UsedRegUnits))
+ continue;
+
+ // Record debug use of each reg unit.
+ SmallSet<unsigned, 4> Units = getRegUnits(MO.getReg(), TRI);
+ for (unsigned Reg : Units)
+ SeenDbgInstrs[Reg].push_back(MI);
+ }
+ continue;
+ }
+
+ if (MI->isDebugInstr())
+ continue;
+
+ // Do not move any instruction across function call.
+ if (MI->isCall())
+ return false;
+
+ if (!MI->isCopy() || !MI->getOperand(0).isRenamable()) {
+ LiveRegUnits::accumulateUsedDefed(*MI, ModifiedRegUnits, UsedRegUnits,
+ TRI);
+ continue;
+ }
+
+ // Don't sink the COPY if it would violate a register dependency.
+ if (hasRegisterDependency(MI, UsedOpsInCopy, DefedRegsInCopy,
+ ModifiedRegUnits, UsedRegUnits)) {
+ LiveRegUnits::accumulateUsedDefed(*MI, ModifiedRegUnits, UsedRegUnits,
+ TRI);
+ continue;
+ }
+ assert((!UsedOpsInCopy.empty() && !DefedRegsInCopy.empty()) &&
+ "Unexpect SrcReg or DefReg");
+ MachineBasicBlock *SuccBB =
+ getSingleLiveInSuccBB(CurBB, SinkableBBs, DefedRegsInCopy, TRI);
+ // Don't sink if we cannot find a single sinkable successor in which Reg
+ // is live-in.
+ if (!SuccBB) {
+ LiveRegUnits::accumulateUsedDefed(*MI, ModifiedRegUnits, UsedRegUnits,
+ TRI);
+ continue;
+ }
+ assert((SuccBB->pred_size() == 1 && *SuccBB->pred_begin() == &CurBB) &&
+ "Unexpected predecessor");
+
+ // Collect DBG_VALUEs that must sink with this copy. We've previously
+ // recorded which reg units that DBG_VALUEs read, if this instruction
+ // writes any of those units then the corresponding DBG_VALUEs must sink.
+ SetVector<MachineInstr *> DbgValsToSinkSet;
+ SmallVector<MachineInstr *, 4> DbgValsToSink;
+ for (auto &MO : MI->operands()) {
+ if (!MO.isReg() || !MO.isDef())
+ continue;
+
+ SmallSet<unsigned, 4> Units = getRegUnits(MO.getReg(), TRI);
+ for (unsigned Reg : Units)
+ for (auto *MI : SeenDbgInstrs.lookup(Reg))
+ DbgValsToSinkSet.insert(MI);
+ }
+ DbgValsToSink.insert(DbgValsToSink.begin(), DbgValsToSinkSet.begin(),
+ DbgValsToSinkSet.end());
+
+ // Clear the kill flag if SrcReg is killed between MI and the end of the
+ // block.
+ clearKillFlags(MI, CurBB, UsedOpsInCopy, UsedRegUnits, TRI);
+ MachineBasicBlock::iterator InsertPos = SuccBB->getFirstNonPHI();
+ performSink(*MI, *SuccBB, InsertPos, DbgValsToSink);
+ updateLiveIn(MI, SuccBB, UsedOpsInCopy, DefedRegsInCopy);
+
+ Changed = true;
+ ++NumPostRACopySink;
+ }
+ return Changed;
+}
+
+bool PostRAMachineSinking::runOnMachineFunction(MachineFunction &MF) {
+ if (skipFunction(MF.getFunction()))
+ return false;
+
+ bool Changed = false;
+ const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
+ const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
+
+ ModifiedRegUnits.init(*TRI);
+ UsedRegUnits.init(*TRI);
+ for (auto &BB : MF)
+ Changed |= tryToSinkCopy(BB, MF, TRI, TII);
+
+ return Changed;
+}