aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm-project/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm-project/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp')
-rw-r--r--contrib/llvm-project/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp11687
1 files changed, 11687 insertions, 0 deletions
diff --git a/contrib/llvm-project/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp b/contrib/llvm-project/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp
new file mode 100644
index 000000000000..140c97ccd90b
--- /dev/null
+++ b/contrib/llvm-project/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp
@@ -0,0 +1,11687 @@
+//===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This implements the TargetLowering class.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/CodeGen/TargetLowering.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/Analysis/VectorUtils.h"
+#include "llvm/CodeGen/CallingConvLower.h"
+#include "llvm/CodeGen/CodeGenCommonISel.h"
+#include "llvm/CodeGen/MachineFrameInfo.h"
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/MachineJumpTableInfo.h"
+#include "llvm/CodeGen/MachineModuleInfoImpls.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/CodeGen/SelectionDAG.h"
+#include "llvm/CodeGen/TargetRegisterInfo.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/GlobalVariable.h"
+#include "llvm/IR/LLVMContext.h"
+#include "llvm/MC/MCAsmInfo.h"
+#include "llvm/MC/MCExpr.h"
+#include "llvm/Support/DivisionByConstantInfo.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/KnownBits.h"
+#include "llvm/Support/MathExtras.h"
+#include "llvm/Target/TargetMachine.h"
+#include <cctype>
+using namespace llvm;
+
+/// NOTE: The TargetMachine owns TLOF.
+TargetLowering::TargetLowering(const TargetMachine &tm)
+ : TargetLoweringBase(tm) {}
+
+const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
+ return nullptr;
+}
+
+bool TargetLowering::isPositionIndependent() const {
+ return getTargetMachine().isPositionIndependent();
+}
+
+/// Check whether a given call node is in tail position within its function. If
+/// so, it sets Chain to the input chain of the tail call.
+bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node,
+ SDValue &Chain) const {
+ const Function &F = DAG.getMachineFunction().getFunction();
+
+ // First, check if tail calls have been disabled in this function.
+ if (F.getFnAttribute("disable-tail-calls").getValueAsBool())
+ return false;
+
+ // Conservatively require the attributes of the call to match those of
+ // the return. Ignore following attributes because they don't affect the
+ // call sequence.
+ AttrBuilder CallerAttrs(F.getContext(), F.getAttributes().getRetAttrs());
+ for (const auto &Attr :
+ {Attribute::Alignment, Attribute::Dereferenceable,
+ Attribute::DereferenceableOrNull, Attribute::NoAlias,
+ Attribute::NonNull, Attribute::NoUndef, Attribute::Range})
+ CallerAttrs.removeAttribute(Attr);
+
+ if (CallerAttrs.hasAttributes())
+ return false;
+
+ // It's not safe to eliminate the sign / zero extension of the return value.
+ if (CallerAttrs.contains(Attribute::ZExt) ||
+ CallerAttrs.contains(Attribute::SExt))
+ return false;
+
+ // Check if the only use is a function return node.
+ return isUsedByReturnOnly(Node, Chain);
+}
+
+bool TargetLowering::parametersInCSRMatch(const MachineRegisterInfo &MRI,
+ const uint32_t *CallerPreservedMask,
+ const SmallVectorImpl<CCValAssign> &ArgLocs,
+ const SmallVectorImpl<SDValue> &OutVals) const {
+ for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
+ const CCValAssign &ArgLoc = ArgLocs[I];
+ if (!ArgLoc.isRegLoc())
+ continue;
+ MCRegister Reg = ArgLoc.getLocReg();
+ // Only look at callee saved registers.
+ if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg))
+ continue;
+ // Check that we pass the value used for the caller.
+ // (We look for a CopyFromReg reading a virtual register that is used
+ // for the function live-in value of register Reg)
+ SDValue Value = OutVals[I];
+ if (Value->getOpcode() == ISD::AssertZext)
+ Value = Value.getOperand(0);
+ if (Value->getOpcode() != ISD::CopyFromReg)
+ return false;
+ Register ArgReg = cast<RegisterSDNode>(Value->getOperand(1))->getReg();
+ if (MRI.getLiveInPhysReg(ArgReg) != Reg)
+ return false;
+ }
+ return true;
+}
+
+/// Set CallLoweringInfo attribute flags based on a call instruction
+/// and called function attributes.
+void TargetLoweringBase::ArgListEntry::setAttributes(const CallBase *Call,
+ unsigned ArgIdx) {
+ IsSExt = Call->paramHasAttr(ArgIdx, Attribute::SExt);
+ IsZExt = Call->paramHasAttr(ArgIdx, Attribute::ZExt);
+ IsInReg = Call->paramHasAttr(ArgIdx, Attribute::InReg);
+ IsSRet = Call->paramHasAttr(ArgIdx, Attribute::StructRet);
+ IsNest = Call->paramHasAttr(ArgIdx, Attribute::Nest);
+ IsByVal = Call->paramHasAttr(ArgIdx, Attribute::ByVal);
+ IsPreallocated = Call->paramHasAttr(ArgIdx, Attribute::Preallocated);
+ IsInAlloca = Call->paramHasAttr(ArgIdx, Attribute::InAlloca);
+ IsReturned = Call->paramHasAttr(ArgIdx, Attribute::Returned);
+ IsSwiftSelf = Call->paramHasAttr(ArgIdx, Attribute::SwiftSelf);
+ IsSwiftAsync = Call->paramHasAttr(ArgIdx, Attribute::SwiftAsync);
+ IsSwiftError = Call->paramHasAttr(ArgIdx, Attribute::SwiftError);
+ Alignment = Call->getParamStackAlign(ArgIdx);
+ IndirectType = nullptr;
+ assert(IsByVal + IsPreallocated + IsInAlloca + IsSRet <= 1 &&
+ "multiple ABI attributes?");
+ if (IsByVal) {
+ IndirectType = Call->getParamByValType(ArgIdx);
+ if (!Alignment)
+ Alignment = Call->getParamAlign(ArgIdx);
+ }
+ if (IsPreallocated)
+ IndirectType = Call->getParamPreallocatedType(ArgIdx);
+ if (IsInAlloca)
+ IndirectType = Call->getParamInAllocaType(ArgIdx);
+ if (IsSRet)
+ IndirectType = Call->getParamStructRetType(ArgIdx);
+}
+
+/// Generate a libcall taking the given operands as arguments and returning a
+/// result of type RetVT.
+std::pair<SDValue, SDValue>
+TargetLowering::makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT,
+ ArrayRef<SDValue> Ops,
+ MakeLibCallOptions CallOptions,
+ const SDLoc &dl,
+ SDValue InChain) const {
+ if (!InChain)
+ InChain = DAG.getEntryNode();
+
+ TargetLowering::ArgListTy Args;
+ Args.reserve(Ops.size());
+
+ TargetLowering::ArgListEntry Entry;
+ for (unsigned i = 0; i < Ops.size(); ++i) {
+ SDValue NewOp = Ops[i];
+ Entry.Node = NewOp;
+ Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext());
+ Entry.IsSExt = shouldSignExtendTypeInLibCall(NewOp.getValueType(),
+ CallOptions.IsSExt);
+ Entry.IsZExt = !Entry.IsSExt;
+
+ if (CallOptions.IsSoften &&
+ !shouldExtendTypeInLibCall(CallOptions.OpsVTBeforeSoften[i])) {
+ Entry.IsSExt = Entry.IsZExt = false;
+ }
+ Args.push_back(Entry);
+ }
+
+ if (LC == RTLIB::UNKNOWN_LIBCALL)
+ report_fatal_error("Unsupported library call operation!");
+ SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC),
+ getPointerTy(DAG.getDataLayout()));
+
+ Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
+ TargetLowering::CallLoweringInfo CLI(DAG);
+ bool signExtend = shouldSignExtendTypeInLibCall(RetVT, CallOptions.IsSExt);
+ bool zeroExtend = !signExtend;
+
+ if (CallOptions.IsSoften &&
+ !shouldExtendTypeInLibCall(CallOptions.RetVTBeforeSoften)) {
+ signExtend = zeroExtend = false;
+ }
+
+ CLI.setDebugLoc(dl)
+ .setChain(InChain)
+ .setLibCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args))
+ .setNoReturn(CallOptions.DoesNotReturn)
+ .setDiscardResult(!CallOptions.IsReturnValueUsed)
+ .setIsPostTypeLegalization(CallOptions.IsPostTypeLegalization)
+ .setSExtResult(signExtend)
+ .setZExtResult(zeroExtend);
+ return LowerCallTo(CLI);
+}
+
+bool TargetLowering::findOptimalMemOpLowering(
+ std::vector<EVT> &MemOps, unsigned Limit, const MemOp &Op, unsigned DstAS,
+ unsigned SrcAS, const AttributeList &FuncAttributes) const {
+ if (Limit != ~unsigned(0) && Op.isMemcpyWithFixedDstAlign() &&
+ Op.getSrcAlign() < Op.getDstAlign())
+ return false;
+
+ EVT VT = getOptimalMemOpType(Op, FuncAttributes);
+
+ if (VT == MVT::Other) {
+ // Use the largest integer type whose alignment constraints are satisfied.
+ // We only need to check DstAlign here as SrcAlign is always greater or
+ // equal to DstAlign (or zero).
+ VT = MVT::LAST_INTEGER_VALUETYPE;
+ if (Op.isFixedDstAlign())
+ while (Op.getDstAlign() < (VT.getSizeInBits() / 8) &&
+ !allowsMisalignedMemoryAccesses(VT, DstAS, Op.getDstAlign()))
+ VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
+ assert(VT.isInteger());
+
+ // Find the largest legal integer type.
+ MVT LVT = MVT::LAST_INTEGER_VALUETYPE;
+ while (!isTypeLegal(LVT))
+ LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1);
+ assert(LVT.isInteger());
+
+ // If the type we've chosen is larger than the largest legal integer type
+ // then use that instead.
+ if (VT.bitsGT(LVT))
+ VT = LVT;
+ }
+
+ unsigned NumMemOps = 0;
+ uint64_t Size = Op.size();
+ while (Size) {
+ unsigned VTSize = VT.getSizeInBits() / 8;
+ while (VTSize > Size) {
+ // For now, only use non-vector load / store's for the left-over pieces.
+ EVT NewVT = VT;
+ unsigned NewVTSize;
+
+ bool Found = false;
+ if (VT.isVector() || VT.isFloatingPoint()) {
+ NewVT = (VT.getSizeInBits() > 64) ? MVT::i64 : MVT::i32;
+ if (isOperationLegalOrCustom(ISD::STORE, NewVT) &&
+ isSafeMemOpType(NewVT.getSimpleVT()))
+ Found = true;
+ else if (NewVT == MVT::i64 &&
+ isOperationLegalOrCustom(ISD::STORE, MVT::f64) &&
+ isSafeMemOpType(MVT::f64)) {
+ // i64 is usually not legal on 32-bit targets, but f64 may be.
+ NewVT = MVT::f64;
+ Found = true;
+ }
+ }
+
+ if (!Found) {
+ do {
+ NewVT = (MVT::SimpleValueType)(NewVT.getSimpleVT().SimpleTy - 1);
+ if (NewVT == MVT::i8)
+ break;
+ } while (!isSafeMemOpType(NewVT.getSimpleVT()));
+ }
+ NewVTSize = NewVT.getSizeInBits() / 8;
+
+ // If the new VT cannot cover all of the remaining bits, then consider
+ // issuing a (or a pair of) unaligned and overlapping load / store.
+ unsigned Fast;
+ if (NumMemOps && Op.allowOverlap() && NewVTSize < Size &&
+ allowsMisalignedMemoryAccesses(
+ VT, DstAS, Op.isFixedDstAlign() ? Op.getDstAlign() : Align(1),
+ MachineMemOperand::MONone, &Fast) &&
+ Fast)
+ VTSize = Size;
+ else {
+ VT = NewVT;
+ VTSize = NewVTSize;
+ }
+ }
+
+ if (++NumMemOps > Limit)
+ return false;
+
+ MemOps.push_back(VT);
+ Size -= VTSize;
+ }
+
+ return true;
+}
+
+/// Soften the operands of a comparison. This code is shared among BR_CC,
+/// SELECT_CC, and SETCC handlers.
+void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT,
+ SDValue &NewLHS, SDValue &NewRHS,
+ ISD::CondCode &CCCode,
+ const SDLoc &dl, const SDValue OldLHS,
+ const SDValue OldRHS) const {
+ SDValue Chain;
+ return softenSetCCOperands(DAG, VT, NewLHS, NewRHS, CCCode, dl, OldLHS,
+ OldRHS, Chain);
+}
+
+void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT,
+ SDValue &NewLHS, SDValue &NewRHS,
+ ISD::CondCode &CCCode,
+ const SDLoc &dl, const SDValue OldLHS,
+ const SDValue OldRHS,
+ SDValue &Chain,
+ bool IsSignaling) const {
+ // FIXME: Currently we cannot really respect all IEEE predicates due to libgcc
+ // not supporting it. We can update this code when libgcc provides such
+ // functions.
+
+ assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128)
+ && "Unsupported setcc type!");
+
+ // Expand into one or more soft-fp libcall(s).
+ RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL;
+ bool ShouldInvertCC = false;
+ switch (CCCode) {
+ case ISD::SETEQ:
+ case ISD::SETOEQ:
+ LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
+ (VT == MVT::f64) ? RTLIB::OEQ_F64 :
+ (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
+ break;
+ case ISD::SETNE:
+ case ISD::SETUNE:
+ LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 :
+ (VT == MVT::f64) ? RTLIB::UNE_F64 :
+ (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128;
+ break;
+ case ISD::SETGE:
+ case ISD::SETOGE:
+ LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
+ (VT == MVT::f64) ? RTLIB::OGE_F64 :
+ (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
+ break;
+ case ISD::SETLT:
+ case ISD::SETOLT:
+ LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
+ (VT == MVT::f64) ? RTLIB::OLT_F64 :
+ (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
+ break;
+ case ISD::SETLE:
+ case ISD::SETOLE:
+ LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
+ (VT == MVT::f64) ? RTLIB::OLE_F64 :
+ (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
+ break;
+ case ISD::SETGT:
+ case ISD::SETOGT:
+ LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
+ (VT == MVT::f64) ? RTLIB::OGT_F64 :
+ (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
+ break;
+ case ISD::SETO:
+ ShouldInvertCC = true;
+ [[fallthrough]];
+ case ISD::SETUO:
+ LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
+ (VT == MVT::f64) ? RTLIB::UO_F64 :
+ (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
+ break;
+ case ISD::SETONE:
+ // SETONE = O && UNE
+ ShouldInvertCC = true;
+ [[fallthrough]];
+ case ISD::SETUEQ:
+ LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
+ (VT == MVT::f64) ? RTLIB::UO_F64 :
+ (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
+ LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
+ (VT == MVT::f64) ? RTLIB::OEQ_F64 :
+ (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
+ break;
+ default:
+ // Invert CC for unordered comparisons
+ ShouldInvertCC = true;
+ switch (CCCode) {
+ case ISD::SETULT:
+ LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
+ (VT == MVT::f64) ? RTLIB::OGE_F64 :
+ (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
+ break;
+ case ISD::SETULE:
+ LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
+ (VT == MVT::f64) ? RTLIB::OGT_F64 :
+ (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
+ break;
+ case ISD::SETUGT:
+ LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
+ (VT == MVT::f64) ? RTLIB::OLE_F64 :
+ (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
+ break;
+ case ISD::SETUGE:
+ LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
+ (VT == MVT::f64) ? RTLIB::OLT_F64 :
+ (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
+ break;
+ default: llvm_unreachable("Do not know how to soften this setcc!");
+ }
+ }
+
+ // Use the target specific return value for comparison lib calls.
+ EVT RetVT = getCmpLibcallReturnType();
+ SDValue Ops[2] = {NewLHS, NewRHS};
+ TargetLowering::MakeLibCallOptions CallOptions;
+ EVT OpsVT[2] = { OldLHS.getValueType(),
+ OldRHS.getValueType() };
+ CallOptions.setTypeListBeforeSoften(OpsVT, RetVT, true);
+ auto Call = makeLibCall(DAG, LC1, RetVT, Ops, CallOptions, dl, Chain);
+ NewLHS = Call.first;
+ NewRHS = DAG.getConstant(0, dl, RetVT);
+
+ CCCode = getCmpLibcallCC(LC1);
+ if (ShouldInvertCC) {
+ assert(RetVT.isInteger());
+ CCCode = getSetCCInverse(CCCode, RetVT);
+ }
+
+ if (LC2 == RTLIB::UNKNOWN_LIBCALL) {
+ // Update Chain.
+ Chain = Call.second;
+ } else {
+ EVT SetCCVT =
+ getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT);
+ SDValue Tmp = DAG.getSetCC(dl, SetCCVT, NewLHS, NewRHS, CCCode);
+ auto Call2 = makeLibCall(DAG, LC2, RetVT, Ops, CallOptions, dl, Chain);
+ CCCode = getCmpLibcallCC(LC2);
+ if (ShouldInvertCC)
+ CCCode = getSetCCInverse(CCCode, RetVT);
+ NewLHS = DAG.getSetCC(dl, SetCCVT, Call2.first, NewRHS, CCCode);
+ if (Chain)
+ Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Call.second,
+ Call2.second);
+ NewLHS = DAG.getNode(ShouldInvertCC ? ISD::AND : ISD::OR, dl,
+ Tmp.getValueType(), Tmp, NewLHS);
+ NewRHS = SDValue();
+ }
+}
+
+/// Return the entry encoding for a jump table in the current function. The
+/// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum.
+unsigned TargetLowering::getJumpTableEncoding() const {
+ // In non-pic modes, just use the address of a block.
+ if (!isPositionIndependent())
+ return MachineJumpTableInfo::EK_BlockAddress;
+
+ // In PIC mode, if the target supports a GPRel32 directive, use it.
+ if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr)
+ return MachineJumpTableInfo::EK_GPRel32BlockAddress;
+
+ // Otherwise, use a label difference.
+ return MachineJumpTableInfo::EK_LabelDifference32;
+}
+
+SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table,
+ SelectionDAG &DAG) const {
+ // If our PIC model is GP relative, use the global offset table as the base.
+ unsigned JTEncoding = getJumpTableEncoding();
+
+ if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) ||
+ (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress))
+ return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(DAG.getDataLayout()));
+
+ return Table;
+}
+
+/// This returns the relocation base for the given PIC jumptable, the same as
+/// getPICJumpTableRelocBase, but as an MCExpr.
+const MCExpr *
+TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
+ unsigned JTI,MCContext &Ctx) const{
+ // The normal PIC reloc base is the label at the start of the jump table.
+ return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx);
+}
+
+SDValue TargetLowering::expandIndirectJTBranch(const SDLoc &dl, SDValue Value,
+ SDValue Addr, int JTI,
+ SelectionDAG &DAG) const {
+ SDValue Chain = Value;
+ // Jump table debug info is only needed if CodeView is enabled.
+ if (DAG.getTarget().getTargetTriple().isOSBinFormatCOFF()) {
+ Chain = DAG.getJumpTableDebugInfo(JTI, Chain, dl);
+ }
+ return DAG.getNode(ISD::BRIND, dl, MVT::Other, Chain, Addr);
+}
+
+bool
+TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
+ const TargetMachine &TM = getTargetMachine();
+ const GlobalValue *GV = GA->getGlobal();
+
+ // If the address is not even local to this DSO we will have to load it from
+ // a got and then add the offset.
+ if (!TM.shouldAssumeDSOLocal(GV))
+ return false;
+
+ // If the code is position independent we will have to add a base register.
+ if (isPositionIndependent())
+ return false;
+
+ // Otherwise we can do it.
+ return true;
+}
+
+//===----------------------------------------------------------------------===//
+// Optimization Methods
+//===----------------------------------------------------------------------===//
+
+/// If the specified instruction has a constant integer operand and there are
+/// bits set in that constant that are not demanded, then clear those bits and
+/// return true.
+bool TargetLowering::ShrinkDemandedConstant(SDValue Op,
+ const APInt &DemandedBits,
+ const APInt &DemandedElts,
+ TargetLoweringOpt &TLO) const {
+ SDLoc DL(Op);
+ unsigned Opcode = Op.getOpcode();
+
+ // Early-out if we've ended up calling an undemanded node, leave this to
+ // constant folding.
+ if (DemandedBits.isZero() || DemandedElts.isZero())
+ return false;
+
+ // Do target-specific constant optimization.
+ if (targetShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
+ return TLO.New.getNode();
+
+ // FIXME: ISD::SELECT, ISD::SELECT_CC
+ switch (Opcode) {
+ default:
+ break;
+ case ISD::XOR:
+ case ISD::AND:
+ case ISD::OR: {
+ auto *Op1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
+ if (!Op1C || Op1C->isOpaque())
+ return false;
+
+ // If this is a 'not' op, don't touch it because that's a canonical form.
+ const APInt &C = Op1C->getAPIntValue();
+ if (Opcode == ISD::XOR && DemandedBits.isSubsetOf(C))
+ return false;
+
+ if (!C.isSubsetOf(DemandedBits)) {
+ EVT VT = Op.getValueType();
+ SDValue NewC = TLO.DAG.getConstant(DemandedBits & C, DL, VT);
+ SDValue NewOp = TLO.DAG.getNode(Opcode, DL, VT, Op.getOperand(0), NewC,
+ Op->getFlags());
+ return TLO.CombineTo(Op, NewOp);
+ }
+
+ break;
+ }
+ }
+
+ return false;
+}
+
+bool TargetLowering::ShrinkDemandedConstant(SDValue Op,
+ const APInt &DemandedBits,
+ TargetLoweringOpt &TLO) const {
+ EVT VT = Op.getValueType();
+ APInt DemandedElts = VT.isVector()
+ ? APInt::getAllOnes(VT.getVectorNumElements())
+ : APInt(1, 1);
+ return ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO);
+}
+
+/// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free.
+/// This uses isTruncateFree/isZExtFree and ANY_EXTEND for the widening cast,
+/// but it could be generalized for targets with other types of implicit
+/// widening casts.
+bool TargetLowering::ShrinkDemandedOp(SDValue Op, unsigned BitWidth,
+ const APInt &DemandedBits,
+ TargetLoweringOpt &TLO) const {
+ assert(Op.getNumOperands() == 2 &&
+ "ShrinkDemandedOp only supports binary operators!");
+ assert(Op.getNode()->getNumValues() == 1 &&
+ "ShrinkDemandedOp only supports nodes with one result!");
+
+ EVT VT = Op.getValueType();
+ SelectionDAG &DAG = TLO.DAG;
+ SDLoc dl(Op);
+
+ // Early return, as this function cannot handle vector types.
+ if (VT.isVector())
+ return false;
+
+ assert(Op.getOperand(0).getValueType().getScalarSizeInBits() == BitWidth &&
+ Op.getOperand(1).getValueType().getScalarSizeInBits() == BitWidth &&
+ "ShrinkDemandedOp only supports operands that have the same size!");
+
+ // Don't do this if the node has another user, which may require the
+ // full value.
+ if (!Op.getNode()->hasOneUse())
+ return false;
+
+ // Search for the smallest integer type with free casts to and from
+ // Op's type. For expedience, just check power-of-2 integer types.
+ const TargetLowering &TLI = DAG.getTargetLoweringInfo();
+ unsigned DemandedSize = DemandedBits.getActiveBits();
+ for (unsigned SmallVTBits = llvm::bit_ceil(DemandedSize);
+ SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) {
+ EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits);
+ if (TLI.isTruncateFree(VT, SmallVT) && TLI.isZExtFree(SmallVT, VT)) {
+ // We found a type with free casts.
+ SDValue X = DAG.getNode(
+ Op.getOpcode(), dl, SmallVT,
+ DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(0)),
+ DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(1)));
+ assert(DemandedSize <= SmallVTBits && "Narrowed below demanded bits?");
+ SDValue Z = DAG.getNode(ISD::ANY_EXTEND, dl, VT, X);
+ return TLO.CombineTo(Op, Z);
+ }
+ }
+ return false;
+}
+
+bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
+ DAGCombinerInfo &DCI) const {
+ SelectionDAG &DAG = DCI.DAG;
+ TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
+ !DCI.isBeforeLegalizeOps());
+ KnownBits Known;
+
+ bool Simplified = SimplifyDemandedBits(Op, DemandedBits, Known, TLO);
+ if (Simplified) {
+ DCI.AddToWorklist(Op.getNode());
+ DCI.CommitTargetLoweringOpt(TLO);
+ }
+ return Simplified;
+}
+
+bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
+ const APInt &DemandedElts,
+ DAGCombinerInfo &DCI) const {
+ SelectionDAG &DAG = DCI.DAG;
+ TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
+ !DCI.isBeforeLegalizeOps());
+ KnownBits Known;
+
+ bool Simplified =
+ SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO);
+ if (Simplified) {
+ DCI.AddToWorklist(Op.getNode());
+ DCI.CommitTargetLoweringOpt(TLO);
+ }
+ return Simplified;
+}
+
+bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
+ KnownBits &Known,
+ TargetLoweringOpt &TLO,
+ unsigned Depth,
+ bool AssumeSingleUse) const {
+ EVT VT = Op.getValueType();
+
+ // Since the number of lanes in a scalable vector is unknown at compile time,
+ // we track one bit which is implicitly broadcast to all lanes. This means
+ // that all lanes in a scalable vector are considered demanded.
+ APInt DemandedElts = VT.isFixedLengthVector()
+ ? APInt::getAllOnes(VT.getVectorNumElements())
+ : APInt(1, 1);
+ return SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO, Depth,
+ AssumeSingleUse);
+}
+
+// TODO: Under what circumstances can we create nodes? Constant folding?
+SDValue TargetLowering::SimplifyMultipleUseDemandedBits(
+ SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
+ SelectionDAG &DAG, unsigned Depth) const {
+ EVT VT = Op.getValueType();
+
+ // Limit search depth.
+ if (Depth >= SelectionDAG::MaxRecursionDepth)
+ return SDValue();
+
+ // Ignore UNDEFs.
+ if (Op.isUndef())
+ return SDValue();
+
+ // Not demanding any bits/elts from Op.
+ if (DemandedBits == 0 || DemandedElts == 0)
+ return DAG.getUNDEF(VT);
+
+ bool IsLE = DAG.getDataLayout().isLittleEndian();
+ unsigned NumElts = DemandedElts.getBitWidth();
+ unsigned BitWidth = DemandedBits.getBitWidth();
+ KnownBits LHSKnown, RHSKnown;
+ switch (Op.getOpcode()) {
+ case ISD::BITCAST: {
+ if (VT.isScalableVector())
+ return SDValue();
+
+ SDValue Src = peekThroughBitcasts(Op.getOperand(0));
+ EVT SrcVT = Src.getValueType();
+ EVT DstVT = Op.getValueType();
+ if (SrcVT == DstVT)
+ return Src;
+
+ unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits();
+ unsigned NumDstEltBits = DstVT.getScalarSizeInBits();
+ if (NumSrcEltBits == NumDstEltBits)
+ if (SDValue V = SimplifyMultipleUseDemandedBits(
+ Src, DemandedBits, DemandedElts, DAG, Depth + 1))
+ return DAG.getBitcast(DstVT, V);
+
+ if (SrcVT.isVector() && (NumDstEltBits % NumSrcEltBits) == 0) {
+ unsigned Scale = NumDstEltBits / NumSrcEltBits;
+ unsigned NumSrcElts = SrcVT.getVectorNumElements();
+ APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits);
+ APInt DemandedSrcElts = APInt::getZero(NumSrcElts);
+ for (unsigned i = 0; i != Scale; ++i) {
+ unsigned EltOffset = IsLE ? i : (Scale - 1 - i);
+ unsigned BitOffset = EltOffset * NumSrcEltBits;
+ APInt Sub = DemandedBits.extractBits(NumSrcEltBits, BitOffset);
+ if (!Sub.isZero()) {
+ DemandedSrcBits |= Sub;
+ for (unsigned j = 0; j != NumElts; ++j)
+ if (DemandedElts[j])
+ DemandedSrcElts.setBit((j * Scale) + i);
+ }
+ }
+
+ if (SDValue V = SimplifyMultipleUseDemandedBits(
+ Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1))
+ return DAG.getBitcast(DstVT, V);
+ }
+
+ // TODO - bigendian once we have test coverage.
+ if (IsLE && (NumSrcEltBits % NumDstEltBits) == 0) {
+ unsigned Scale = NumSrcEltBits / NumDstEltBits;
+ unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
+ APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits);
+ APInt DemandedSrcElts = APInt::getZero(NumSrcElts);
+ for (unsigned i = 0; i != NumElts; ++i)
+ if (DemandedElts[i]) {
+ unsigned Offset = (i % Scale) * NumDstEltBits;
+ DemandedSrcBits.insertBits(DemandedBits, Offset);
+ DemandedSrcElts.setBit(i / Scale);
+ }
+
+ if (SDValue V = SimplifyMultipleUseDemandedBits(
+ Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1))
+ return DAG.getBitcast(DstVT, V);
+ }
+
+ break;
+ }
+ case ISD::FREEZE: {
+ SDValue N0 = Op.getOperand(0);
+ if (DAG.isGuaranteedNotToBeUndefOrPoison(N0, DemandedElts,
+ /*PoisonOnly=*/false))
+ return N0;
+ break;
+ }
+ case ISD::AND: {
+ LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
+ RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
+
+ // If all of the demanded bits are known 1 on one side, return the other.
+ // These bits cannot contribute to the result of the 'and' in this
+ // context.
+ if (DemandedBits.isSubsetOf(LHSKnown.Zero | RHSKnown.One))
+ return Op.getOperand(0);
+ if (DemandedBits.isSubsetOf(RHSKnown.Zero | LHSKnown.One))
+ return Op.getOperand(1);
+ break;
+ }
+ case ISD::OR: {
+ LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
+ RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
+
+ // If all of the demanded bits are known zero on one side, return the
+ // other. These bits cannot contribute to the result of the 'or' in this
+ // context.
+ if (DemandedBits.isSubsetOf(LHSKnown.One | RHSKnown.Zero))
+ return Op.getOperand(0);
+ if (DemandedBits.isSubsetOf(RHSKnown.One | LHSKnown.Zero))
+ return Op.getOperand(1);
+ break;
+ }
+ case ISD::XOR: {
+ LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
+ RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
+
+ // If all of the demanded bits are known zero on one side, return the
+ // other.
+ if (DemandedBits.isSubsetOf(RHSKnown.Zero))
+ return Op.getOperand(0);
+ if (DemandedBits.isSubsetOf(LHSKnown.Zero))
+ return Op.getOperand(1);
+ break;
+ }
+ case ISD::SHL: {
+ // If we are only demanding sign bits then we can use the shift source
+ // directly.
+ if (std::optional<uint64_t> MaxSA =
+ DAG.getValidMaximumShiftAmount(Op, DemandedElts, Depth + 1)) {
+ SDValue Op0 = Op.getOperand(0);
+ unsigned ShAmt = *MaxSA;
+ unsigned NumSignBits =
+ DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1);
+ unsigned UpperDemandedBits = BitWidth - DemandedBits.countr_zero();
+ if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits))
+ return Op0;
+ }
+ break;
+ }
+ case ISD::SETCC: {
+ SDValue Op0 = Op.getOperand(0);
+ SDValue Op1 = Op.getOperand(1);
+ ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
+ // If (1) we only need the sign-bit, (2) the setcc operands are the same
+ // width as the setcc result, and (3) the result of a setcc conforms to 0 or
+ // -1, we may be able to bypass the setcc.
+ if (DemandedBits.isSignMask() &&
+ Op0.getScalarValueSizeInBits() == BitWidth &&
+ getBooleanContents(Op0.getValueType()) ==
+ BooleanContent::ZeroOrNegativeOneBooleanContent) {
+ // If we're testing X < 0, then this compare isn't needed - just use X!
+ // FIXME: We're limiting to integer types here, but this should also work
+ // if we don't care about FP signed-zero. The use of SETLT with FP means
+ // that we don't care about NaNs.
+ if (CC == ISD::SETLT && Op1.getValueType().isInteger() &&
+ (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode())))
+ return Op0;
+ }
+ break;
+ }
+ case ISD::SIGN_EXTEND_INREG: {
+ // If none of the extended bits are demanded, eliminate the sextinreg.
+ SDValue Op0 = Op.getOperand(0);
+ EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
+ unsigned ExBits = ExVT.getScalarSizeInBits();
+ if (DemandedBits.getActiveBits() <= ExBits &&
+ shouldRemoveRedundantExtend(Op))
+ return Op0;
+ // If the input is already sign extended, just drop the extension.
+ unsigned NumSignBits = DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1);
+ if (NumSignBits >= (BitWidth - ExBits + 1))
+ return Op0;
+ break;
+ }
+ case ISD::ANY_EXTEND_VECTOR_INREG:
+ case ISD::SIGN_EXTEND_VECTOR_INREG:
+ case ISD::ZERO_EXTEND_VECTOR_INREG: {
+ if (VT.isScalableVector())
+ return SDValue();
+
+ // If we only want the lowest element and none of extended bits, then we can
+ // return the bitcasted source vector.
+ SDValue Src = Op.getOperand(0);
+ EVT SrcVT = Src.getValueType();
+ EVT DstVT = Op.getValueType();
+ if (IsLE && DemandedElts == 1 &&
+ DstVT.getSizeInBits() == SrcVT.getSizeInBits() &&
+ DemandedBits.getActiveBits() <= SrcVT.getScalarSizeInBits()) {
+ return DAG.getBitcast(DstVT, Src);
+ }
+ break;
+ }
+ case ISD::INSERT_VECTOR_ELT: {
+ if (VT.isScalableVector())
+ return SDValue();
+
+ // If we don't demand the inserted element, return the base vector.
+ SDValue Vec = Op.getOperand(0);
+ auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
+ EVT VecVT = Vec.getValueType();
+ if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements()) &&
+ !DemandedElts[CIdx->getZExtValue()])
+ return Vec;
+ break;
+ }
+ case ISD::INSERT_SUBVECTOR: {
+ if (VT.isScalableVector())
+ return SDValue();
+
+ SDValue Vec = Op.getOperand(0);
+ SDValue Sub = Op.getOperand(1);
+ uint64_t Idx = Op.getConstantOperandVal(2);
+ unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
+ APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
+ // If we don't demand the inserted subvector, return the base vector.
+ if (DemandedSubElts == 0)
+ return Vec;
+ break;
+ }
+ case ISD::VECTOR_SHUFFLE: {
+ assert(!VT.isScalableVector());
+ ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
+
+ // If all the demanded elts are from one operand and are inline,
+ // then we can use the operand directly.
+ bool AllUndef = true, IdentityLHS = true, IdentityRHS = true;
+ for (unsigned i = 0; i != NumElts; ++i) {
+ int M = ShuffleMask[i];
+ if (M < 0 || !DemandedElts[i])
+ continue;
+ AllUndef = false;
+ IdentityLHS &= (M == (int)i);
+ IdentityRHS &= ((M - NumElts) == i);
+ }
+
+ if (AllUndef)
+ return DAG.getUNDEF(Op.getValueType());
+ if (IdentityLHS)
+ return Op.getOperand(0);
+ if (IdentityRHS)
+ return Op.getOperand(1);
+ break;
+ }
+ default:
+ // TODO: Probably okay to remove after audit; here to reduce change size
+ // in initial enablement patch for scalable vectors
+ if (VT.isScalableVector())
+ return SDValue();
+
+ if (Op.getOpcode() >= ISD::BUILTIN_OP_END)
+ if (SDValue V = SimplifyMultipleUseDemandedBitsForTargetNode(
+ Op, DemandedBits, DemandedElts, DAG, Depth))
+ return V;
+ break;
+ }
+ return SDValue();
+}
+
+SDValue TargetLowering::SimplifyMultipleUseDemandedBits(
+ SDValue Op, const APInt &DemandedBits, SelectionDAG &DAG,
+ unsigned Depth) const {
+ EVT VT = Op.getValueType();
+ // Since the number of lanes in a scalable vector is unknown at compile time,
+ // we track one bit which is implicitly broadcast to all lanes. This means
+ // that all lanes in a scalable vector are considered demanded.
+ APInt DemandedElts = VT.isFixedLengthVector()
+ ? APInt::getAllOnes(VT.getVectorNumElements())
+ : APInt(1, 1);
+ return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG,
+ Depth);
+}
+
+SDValue TargetLowering::SimplifyMultipleUseDemandedVectorElts(
+ SDValue Op, const APInt &DemandedElts, SelectionDAG &DAG,
+ unsigned Depth) const {
+ APInt DemandedBits = APInt::getAllOnes(Op.getScalarValueSizeInBits());
+ return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG,
+ Depth);
+}
+
+// Attempt to form ext(avgfloor(A, B)) from shr(add(ext(A), ext(B)), 1).
+// or to form ext(avgceil(A, B)) from shr(add(ext(A), ext(B), 1), 1).
+static SDValue combineShiftToAVG(SDValue Op,
+ TargetLowering::TargetLoweringOpt &TLO,
+ const TargetLowering &TLI,
+ const APInt &DemandedBits,
+ const APInt &DemandedElts, unsigned Depth) {
+ assert((Op.getOpcode() == ISD::SRL || Op.getOpcode() == ISD::SRA) &&
+ "SRL or SRA node is required here!");
+ // Is the right shift using an immediate value of 1?
+ ConstantSDNode *N1C = isConstOrConstSplat(Op.getOperand(1), DemandedElts);
+ if (!N1C || !N1C->isOne())
+ return SDValue();
+
+ // We are looking for an avgfloor
+ // add(ext, ext)
+ // or one of these as a avgceil
+ // add(add(ext, ext), 1)
+ // add(add(ext, 1), ext)
+ // add(ext, add(ext, 1))
+ SDValue Add = Op.getOperand(0);
+ if (Add.getOpcode() != ISD::ADD)
+ return SDValue();
+
+ SDValue ExtOpA = Add.getOperand(0);
+ SDValue ExtOpB = Add.getOperand(1);
+ SDValue Add2;
+ auto MatchOperands = [&](SDValue Op1, SDValue Op2, SDValue Op3, SDValue A) {
+ ConstantSDNode *ConstOp;
+ if ((ConstOp = isConstOrConstSplat(Op2, DemandedElts)) &&
+ ConstOp->isOne()) {
+ ExtOpA = Op1;
+ ExtOpB = Op3;
+ Add2 = A;
+ return true;
+ }
+ if ((ConstOp = isConstOrConstSplat(Op3, DemandedElts)) &&
+ ConstOp->isOne()) {
+ ExtOpA = Op1;
+ ExtOpB = Op2;
+ Add2 = A;
+ return true;
+ }
+ return false;
+ };
+ bool IsCeil =
+ (ExtOpA.getOpcode() == ISD::ADD &&
+ MatchOperands(ExtOpA.getOperand(0), ExtOpA.getOperand(1), ExtOpB, ExtOpA)) ||
+ (ExtOpB.getOpcode() == ISD::ADD &&
+ MatchOperands(ExtOpB.getOperand(0), ExtOpB.getOperand(1), ExtOpA, ExtOpB));
+
+ // If the shift is signed (sra):
+ // - Needs >= 2 sign bit for both operands.
+ // - Needs >= 2 zero bits.
+ // If the shift is unsigned (srl):
+ // - Needs >= 1 zero bit for both operands.
+ // - Needs 1 demanded bit zero and >= 2 sign bits.
+ SelectionDAG &DAG = TLO.DAG;
+ unsigned ShiftOpc = Op.getOpcode();
+ bool IsSigned = false;
+ unsigned KnownBits;
+ unsigned NumSignedA = DAG.ComputeNumSignBits(ExtOpA, DemandedElts, Depth);
+ unsigned NumSignedB = DAG.ComputeNumSignBits(ExtOpB, DemandedElts, Depth);
+ unsigned NumSigned = std::min(NumSignedA, NumSignedB) - 1;
+ unsigned NumZeroA =
+ DAG.computeKnownBits(ExtOpA, DemandedElts, Depth).countMinLeadingZeros();
+ unsigned NumZeroB =
+ DAG.computeKnownBits(ExtOpB, DemandedElts, Depth).countMinLeadingZeros();
+ unsigned NumZero = std::min(NumZeroA, NumZeroB);
+
+ switch (ShiftOpc) {
+ default:
+ llvm_unreachable("Unexpected ShiftOpc in combineShiftToAVG");
+ case ISD::SRA: {
+ if (NumZero >= 2 && NumSigned < NumZero) {
+ IsSigned = false;
+ KnownBits = NumZero;
+ break;
+ }
+ if (NumSigned >= 1) {
+ IsSigned = true;
+ KnownBits = NumSigned;
+ break;
+ }
+ return SDValue();
+ }
+ case ISD::SRL: {
+ if (NumZero >= 1 && NumSigned < NumZero) {
+ IsSigned = false;
+ KnownBits = NumZero;
+ break;
+ }
+ if (NumSigned >= 1 && DemandedBits.isSignBitClear()) {
+ IsSigned = true;
+ KnownBits = NumSigned;
+ break;
+ }
+ return SDValue();
+ }
+ }
+
+ unsigned AVGOpc = IsCeil ? (IsSigned ? ISD::AVGCEILS : ISD::AVGCEILU)
+ : (IsSigned ? ISD::AVGFLOORS : ISD::AVGFLOORU);
+
+ // Find the smallest power-2 type that is legal for this vector size and
+ // operation, given the original type size and the number of known sign/zero
+ // bits.
+ EVT VT = Op.getValueType();
+ unsigned MinWidth =
+ std::max<unsigned>(VT.getScalarSizeInBits() - KnownBits, 8);
+ EVT NVT = EVT::getIntegerVT(*DAG.getContext(), llvm::bit_ceil(MinWidth));
+ if (NVT.getScalarSizeInBits() > VT.getScalarSizeInBits())
+ return SDValue();
+ if (VT.isVector())
+ NVT = EVT::getVectorVT(*DAG.getContext(), NVT, VT.getVectorElementCount());
+ if (TLO.LegalTypes() && !TLI.isOperationLegal(AVGOpc, NVT)) {
+ // If we could not transform, and (both) adds are nuw/nsw, we can use the
+ // larger type size to do the transform.
+ if (TLO.LegalOperations() && !TLI.isOperationLegal(AVGOpc, VT))
+ return SDValue();
+ if (DAG.willNotOverflowAdd(IsSigned, Add.getOperand(0),
+ Add.getOperand(1)) &&
+ (!Add2 || DAG.willNotOverflowAdd(IsSigned, Add2.getOperand(0),
+ Add2.getOperand(1))))
+ NVT = VT;
+ else
+ return SDValue();
+ }
+
+ // Don't create a AVGFLOOR node with a scalar constant unless its legal as
+ // this is likely to stop other folds (reassociation, value tracking etc.)
+ if (!IsCeil && !TLI.isOperationLegal(AVGOpc, NVT) &&
+ (isa<ConstantSDNode>(ExtOpA) || isa<ConstantSDNode>(ExtOpB)))
+ return SDValue();
+
+ SDLoc DL(Op);
+ SDValue ResultAVG =
+ DAG.getNode(AVGOpc, DL, NVT, DAG.getExtOrTrunc(IsSigned, ExtOpA, DL, NVT),
+ DAG.getExtOrTrunc(IsSigned, ExtOpB, DL, NVT));
+ return DAG.getExtOrTrunc(IsSigned, ResultAVG, DL, VT);
+}
+
+/// Look at Op. At this point, we know that only the OriginalDemandedBits of the
+/// result of Op are ever used downstream. If we can use this information to
+/// simplify Op, create a new simplified DAG node and return true, returning the
+/// original and new nodes in Old and New. Otherwise, analyze the expression and
+/// return a mask of Known bits for the expression (used to simplify the
+/// caller). The Known bits may only be accurate for those bits in the
+/// OriginalDemandedBits and OriginalDemandedElts.
+bool TargetLowering::SimplifyDemandedBits(
+ SDValue Op, const APInt &OriginalDemandedBits,
+ const APInt &OriginalDemandedElts, KnownBits &Known, TargetLoweringOpt &TLO,
+ unsigned Depth, bool AssumeSingleUse) const {
+ unsigned BitWidth = OriginalDemandedBits.getBitWidth();
+ assert(Op.getScalarValueSizeInBits() == BitWidth &&
+ "Mask size mismatches value type size!");
+
+ // Don't know anything.
+ Known = KnownBits(BitWidth);
+
+ EVT VT = Op.getValueType();
+ bool IsLE = TLO.DAG.getDataLayout().isLittleEndian();
+ unsigned NumElts = OriginalDemandedElts.getBitWidth();
+ assert((!VT.isFixedLengthVector() || NumElts == VT.getVectorNumElements()) &&
+ "Unexpected vector size");
+
+ APInt DemandedBits = OriginalDemandedBits;
+ APInt DemandedElts = OriginalDemandedElts;
+ SDLoc dl(Op);
+
+ // Undef operand.
+ if (Op.isUndef())
+ return false;
+
+ // We can't simplify target constants.
+ if (Op.getOpcode() == ISD::TargetConstant)
+ return false;
+
+ if (Op.getOpcode() == ISD::Constant) {
+ // We know all of the bits for a constant!
+ Known = KnownBits::makeConstant(Op->getAsAPIntVal());
+ return false;
+ }
+
+ if (Op.getOpcode() == ISD::ConstantFP) {
+ // We know all of the bits for a floating point constant!
+ Known = KnownBits::makeConstant(
+ cast<ConstantFPSDNode>(Op)->getValueAPF().bitcastToAPInt());
+ return false;
+ }
+
+ // Other users may use these bits.
+ bool HasMultiUse = false;
+ if (!AssumeSingleUse && !Op.getNode()->hasOneUse()) {
+ if (Depth >= SelectionDAG::MaxRecursionDepth) {
+ // Limit search depth.
+ return false;
+ }
+ // Allow multiple uses, just set the DemandedBits/Elts to all bits.
+ DemandedBits = APInt::getAllOnes(BitWidth);
+ DemandedElts = APInt::getAllOnes(NumElts);
+ HasMultiUse = true;
+ } else if (OriginalDemandedBits == 0 || OriginalDemandedElts == 0) {
+ // Not demanding any bits/elts from Op.
+ return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
+ } else if (Depth >= SelectionDAG::MaxRecursionDepth) {
+ // Limit search depth.
+ return false;
+ }
+
+ KnownBits Known2;
+ switch (Op.getOpcode()) {
+ case ISD::SCALAR_TO_VECTOR: {
+ if (VT.isScalableVector())
+ return false;
+ if (!DemandedElts[0])
+ return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
+
+ KnownBits SrcKnown;
+ SDValue Src = Op.getOperand(0);
+ unsigned SrcBitWidth = Src.getScalarValueSizeInBits();
+ APInt SrcDemandedBits = DemandedBits.zext(SrcBitWidth);
+ if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcKnown, TLO, Depth + 1))
+ return true;
+
+ // Upper elements are undef, so only get the knownbits if we just demand
+ // the bottom element.
+ if (DemandedElts == 1)
+ Known = SrcKnown.anyextOrTrunc(BitWidth);
+ break;
+ }
+ case ISD::BUILD_VECTOR:
+ // Collect the known bits that are shared by every demanded element.
+ // TODO: Call SimplifyDemandedBits for non-constant demanded elements.
+ Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
+ return false; // Don't fall through, will infinitely loop.
+ case ISD::SPLAT_VECTOR: {
+ SDValue Scl = Op.getOperand(0);
+ APInt DemandedSclBits = DemandedBits.zextOrTrunc(Scl.getValueSizeInBits());
+ KnownBits KnownScl;
+ if (SimplifyDemandedBits(Scl, DemandedSclBits, KnownScl, TLO, Depth + 1))
+ return true;
+
+ // Implicitly truncate the bits to match the official semantics of
+ // SPLAT_VECTOR.
+ Known = KnownScl.trunc(BitWidth);
+ break;
+ }
+ case ISD::LOAD: {
+ auto *LD = cast<LoadSDNode>(Op);
+ if (getTargetConstantFromLoad(LD)) {
+ Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
+ return false; // Don't fall through, will infinitely loop.
+ }
+ if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) {
+ // If this is a ZEXTLoad and we are looking at the loaded value.
+ EVT MemVT = LD->getMemoryVT();
+ unsigned MemBits = MemVT.getScalarSizeInBits();
+ Known.Zero.setBitsFrom(MemBits);
+ return false; // Don't fall through, will infinitely loop.
+ }
+ break;
+ }
+ case ISD::INSERT_VECTOR_ELT: {
+ if (VT.isScalableVector())
+ return false;
+ SDValue Vec = Op.getOperand(0);
+ SDValue Scl = Op.getOperand(1);
+ auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
+ EVT VecVT = Vec.getValueType();
+
+ // If index isn't constant, assume we need all vector elements AND the
+ // inserted element.
+ APInt DemandedVecElts(DemandedElts);
+ if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements())) {
+ unsigned Idx = CIdx->getZExtValue();
+ DemandedVecElts.clearBit(Idx);
+
+ // Inserted element is not required.
+ if (!DemandedElts[Idx])
+ return TLO.CombineTo(Op, Vec);
+ }
+
+ KnownBits KnownScl;
+ unsigned NumSclBits = Scl.getScalarValueSizeInBits();
+ APInt DemandedSclBits = DemandedBits.zextOrTrunc(NumSclBits);
+ if (SimplifyDemandedBits(Scl, DemandedSclBits, KnownScl, TLO, Depth + 1))
+ return true;
+
+ Known = KnownScl.anyextOrTrunc(BitWidth);
+
+ KnownBits KnownVec;
+ if (SimplifyDemandedBits(Vec, DemandedBits, DemandedVecElts, KnownVec, TLO,
+ Depth + 1))
+ return true;
+
+ if (!!DemandedVecElts)
+ Known = Known.intersectWith(KnownVec);
+
+ return false;
+ }
+ case ISD::INSERT_SUBVECTOR: {
+ if (VT.isScalableVector())
+ return false;
+ // Demand any elements from the subvector and the remainder from the src its
+ // inserted into.
+ SDValue Src = Op.getOperand(0);
+ SDValue Sub = Op.getOperand(1);
+ uint64_t Idx = Op.getConstantOperandVal(2);
+ unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
+ APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
+ APInt DemandedSrcElts = DemandedElts;
+ DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx);
+
+ KnownBits KnownSub, KnownSrc;
+ if (SimplifyDemandedBits(Sub, DemandedBits, DemandedSubElts, KnownSub, TLO,
+ Depth + 1))
+ return true;
+ if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, KnownSrc, TLO,
+ Depth + 1))
+ return true;
+
+ Known.Zero.setAllBits();
+ Known.One.setAllBits();
+ if (!!DemandedSubElts)
+ Known = Known.intersectWith(KnownSub);
+ if (!!DemandedSrcElts)
+ Known = Known.intersectWith(KnownSrc);
+
+ // Attempt to avoid multi-use src if we don't need anything from it.
+ if (!DemandedBits.isAllOnes() || !DemandedSubElts.isAllOnes() ||
+ !DemandedSrcElts.isAllOnes()) {
+ SDValue NewSub = SimplifyMultipleUseDemandedBits(
+ Sub, DemandedBits, DemandedSubElts, TLO.DAG, Depth + 1);
+ SDValue NewSrc = SimplifyMultipleUseDemandedBits(
+ Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1);
+ if (NewSub || NewSrc) {
+ NewSub = NewSub ? NewSub : Sub;
+ NewSrc = NewSrc ? NewSrc : Src;
+ SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc, NewSub,
+ Op.getOperand(2));
+ return TLO.CombineTo(Op, NewOp);
+ }
+ }
+ break;
+ }
+ case ISD::EXTRACT_SUBVECTOR: {
+ if (VT.isScalableVector())
+ return false;
+ // Offset the demanded elts by the subvector index.
+ SDValue Src = Op.getOperand(0);
+ if (Src.getValueType().isScalableVector())
+ break;
+ uint64_t Idx = Op.getConstantOperandVal(1);
+ unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
+ APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts).shl(Idx);
+
+ if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, Known, TLO,
+ Depth + 1))
+ return true;
+
+ // Attempt to avoid multi-use src if we don't need anything from it.
+ if (!DemandedBits.isAllOnes() || !DemandedSrcElts.isAllOnes()) {
+ SDValue DemandedSrc = SimplifyMultipleUseDemandedBits(
+ Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1);
+ if (DemandedSrc) {
+ SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc,
+ Op.getOperand(1));
+ return TLO.CombineTo(Op, NewOp);
+ }
+ }
+ break;
+ }
+ case ISD::CONCAT_VECTORS: {
+ if (VT.isScalableVector())
+ return false;
+ Known.Zero.setAllBits();
+ Known.One.setAllBits();
+ EVT SubVT = Op.getOperand(0).getValueType();
+ unsigned NumSubVecs = Op.getNumOperands();
+ unsigned NumSubElts = SubVT.getVectorNumElements();
+ for (unsigned i = 0; i != NumSubVecs; ++i) {
+ APInt DemandedSubElts =
+ DemandedElts.extractBits(NumSubElts, i * NumSubElts);
+ if (SimplifyDemandedBits(Op.getOperand(i), DemandedBits, DemandedSubElts,
+ Known2, TLO, Depth + 1))
+ return true;
+ // Known bits are shared by every demanded subvector element.
+ if (!!DemandedSubElts)
+ Known = Known.intersectWith(Known2);
+ }
+ break;
+ }
+ case ISD::VECTOR_SHUFFLE: {
+ assert(!VT.isScalableVector());
+ ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
+
+ // Collect demanded elements from shuffle operands..
+ APInt DemandedLHS, DemandedRHS;
+ if (!getShuffleDemandedElts(NumElts, ShuffleMask, DemandedElts, DemandedLHS,
+ DemandedRHS))
+ break;
+
+ if (!!DemandedLHS || !!DemandedRHS) {
+ SDValue Op0 = Op.getOperand(0);
+ SDValue Op1 = Op.getOperand(1);
+
+ Known.Zero.setAllBits();
+ Known.One.setAllBits();
+ if (!!DemandedLHS) {
+ if (SimplifyDemandedBits(Op0, DemandedBits, DemandedLHS, Known2, TLO,
+ Depth + 1))
+ return true;
+ Known = Known.intersectWith(Known2);
+ }
+ if (!!DemandedRHS) {
+ if (SimplifyDemandedBits(Op1, DemandedBits, DemandedRHS, Known2, TLO,
+ Depth + 1))
+ return true;
+ Known = Known.intersectWith(Known2);
+ }
+
+ // Attempt to avoid multi-use ops if we don't need anything from them.
+ SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
+ Op0, DemandedBits, DemandedLHS, TLO.DAG, Depth + 1);
+ SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
+ Op1, DemandedBits, DemandedRHS, TLO.DAG, Depth + 1);
+ if (DemandedOp0 || DemandedOp1) {
+ Op0 = DemandedOp0 ? DemandedOp0 : Op0;
+ Op1 = DemandedOp1 ? DemandedOp1 : Op1;
+ SDValue NewOp = TLO.DAG.getVectorShuffle(VT, dl, Op0, Op1, ShuffleMask);
+ return TLO.CombineTo(Op, NewOp);
+ }
+ }
+ break;
+ }
+ case ISD::AND: {
+ SDValue Op0 = Op.getOperand(0);
+ SDValue Op1 = Op.getOperand(1);
+
+ // If the RHS is a constant, check to see if the LHS would be zero without
+ // using the bits from the RHS. Below, we use knowledge about the RHS to
+ // simplify the LHS, here we're using information from the LHS to simplify
+ // the RHS.
+ if (ConstantSDNode *RHSC = isConstOrConstSplat(Op1, DemandedElts)) {
+ // Do not increment Depth here; that can cause an infinite loop.
+ KnownBits LHSKnown = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth);
+ // If the LHS already has zeros where RHSC does, this 'and' is dead.
+ if ((LHSKnown.Zero & DemandedBits) ==
+ (~RHSC->getAPIntValue() & DemandedBits))
+ return TLO.CombineTo(Op, Op0);
+
+ // If any of the set bits in the RHS are known zero on the LHS, shrink
+ // the constant.
+ if (ShrinkDemandedConstant(Op, ~LHSKnown.Zero & DemandedBits,
+ DemandedElts, TLO))
+ return true;
+
+ // Bitwise-not (xor X, -1) is a special case: we don't usually shrink its
+ // constant, but if this 'and' is only clearing bits that were just set by
+ // the xor, then this 'and' can be eliminated by shrinking the mask of
+ // the xor. For example, for a 32-bit X:
+ // and (xor (srl X, 31), -1), 1 --> xor (srl X, 31), 1
+ if (isBitwiseNot(Op0) && Op0.hasOneUse() &&
+ LHSKnown.One == ~RHSC->getAPIntValue()) {
+ SDValue Xor = TLO.DAG.getNode(ISD::XOR, dl, VT, Op0.getOperand(0), Op1);
+ return TLO.CombineTo(Op, Xor);
+ }
+ }
+
+ // AND(INSERT_SUBVECTOR(C,X,I),M) -> INSERT_SUBVECTOR(AND(C,M),X,I)
+ // iff 'C' is Undef/Constant and AND(X,M) == X (for DemandedBits).
+ if (Op0.getOpcode() == ISD::INSERT_SUBVECTOR && !VT.isScalableVector() &&
+ (Op0.getOperand(0).isUndef() ||
+ ISD::isBuildVectorOfConstantSDNodes(Op0.getOperand(0).getNode())) &&
+ Op0->hasOneUse()) {
+ unsigned NumSubElts =
+ Op0.getOperand(1).getValueType().getVectorNumElements();
+ unsigned SubIdx = Op0.getConstantOperandVal(2);
+ APInt DemandedSub =
+ APInt::getBitsSet(NumElts, SubIdx, SubIdx + NumSubElts);
+ KnownBits KnownSubMask =
+ TLO.DAG.computeKnownBits(Op1, DemandedSub & DemandedElts, Depth + 1);
+ if (DemandedBits.isSubsetOf(KnownSubMask.One)) {
+ SDValue NewAnd =
+ TLO.DAG.getNode(ISD::AND, dl, VT, Op0.getOperand(0), Op1);
+ SDValue NewInsert =
+ TLO.DAG.getNode(ISD::INSERT_SUBVECTOR, dl, VT, NewAnd,
+ Op0.getOperand(1), Op0.getOperand(2));
+ return TLO.CombineTo(Op, NewInsert);
+ }
+ }
+
+ if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
+ Depth + 1))
+ return true;
+ if (SimplifyDemandedBits(Op0, ~Known.Zero & DemandedBits, DemandedElts,
+ Known2, TLO, Depth + 1))
+ return true;
+
+ // If all of the demanded bits are known one on one side, return the other.
+ // These bits cannot contribute to the result of the 'and'.
+ if (DemandedBits.isSubsetOf(Known2.Zero | Known.One))
+ return TLO.CombineTo(Op, Op0);
+ if (DemandedBits.isSubsetOf(Known.Zero | Known2.One))
+ return TLO.CombineTo(Op, Op1);
+ // If all of the demanded bits in the inputs are known zeros, return zero.
+ if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero))
+ return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, VT));
+ // If the RHS is a constant, see if we can simplify it.
+ if (ShrinkDemandedConstant(Op, ~Known2.Zero & DemandedBits, DemandedElts,
+ TLO))
+ return true;
+ // If the operation can be done in a smaller type, do so.
+ if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
+ return true;
+
+ // Attempt to avoid multi-use ops if we don't need anything from them.
+ if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) {
+ SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
+ Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
+ SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
+ Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
+ if (DemandedOp0 || DemandedOp1) {
+ Op0 = DemandedOp0 ? DemandedOp0 : Op0;
+ Op1 = DemandedOp1 ? DemandedOp1 : Op1;
+ SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
+ return TLO.CombineTo(Op, NewOp);
+ }
+ }
+
+ Known &= Known2;
+ break;
+ }
+ case ISD::OR: {
+ SDValue Op0 = Op.getOperand(0);
+ SDValue Op1 = Op.getOperand(1);
+ SDNodeFlags Flags = Op.getNode()->getFlags();
+ if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
+ Depth + 1)) {
+ if (Flags.hasDisjoint()) {
+ Flags.setDisjoint(false);
+ Op->setFlags(Flags);
+ }
+ return true;
+ }
+
+ if (SimplifyDemandedBits(Op0, ~Known.One & DemandedBits, DemandedElts,
+ Known2, TLO, Depth + 1)) {
+ if (Flags.hasDisjoint()) {
+ Flags.setDisjoint(false);
+ Op->setFlags(Flags);
+ }
+ return true;
+ }
+
+ // If all of the demanded bits are known zero on one side, return the other.
+ // These bits cannot contribute to the result of the 'or'.
+ if (DemandedBits.isSubsetOf(Known2.One | Known.Zero))
+ return TLO.CombineTo(Op, Op0);
+ if (DemandedBits.isSubsetOf(Known.One | Known2.Zero))
+ return TLO.CombineTo(Op, Op1);
+ // If the RHS is a constant, see if we can simplify it.
+ if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
+ return true;
+ // If the operation can be done in a smaller type, do so.
+ if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
+ return true;
+
+ // Attempt to avoid multi-use ops if we don't need anything from them.
+ if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) {
+ SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
+ Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
+ SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
+ Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
+ if (DemandedOp0 || DemandedOp1) {
+ Op0 = DemandedOp0 ? DemandedOp0 : Op0;
+ Op1 = DemandedOp1 ? DemandedOp1 : Op1;
+ SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
+ return TLO.CombineTo(Op, NewOp);
+ }
+ }
+
+ // (or (and X, C1), (and (or X, Y), C2)) -> (or (and X, C1|C2), (and Y, C2))
+ // TODO: Use SimplifyMultipleUseDemandedBits to peek through masks.
+ if (Op0.getOpcode() == ISD::AND && Op1.getOpcode() == ISD::AND &&
+ Op0->hasOneUse() && Op1->hasOneUse()) {
+ // Attempt to match all commutations - m_c_Or would've been useful!
+ for (int I = 0; I != 2; ++I) {
+ SDValue X = Op.getOperand(I).getOperand(0);
+ SDValue C1 = Op.getOperand(I).getOperand(1);
+ SDValue Alt = Op.getOperand(1 - I).getOperand(0);
+ SDValue C2 = Op.getOperand(1 - I).getOperand(1);
+ if (Alt.getOpcode() == ISD::OR) {
+ for (int J = 0; J != 2; ++J) {
+ if (X == Alt.getOperand(J)) {
+ SDValue Y = Alt.getOperand(1 - J);
+ if (SDValue C12 = TLO.DAG.FoldConstantArithmetic(ISD::OR, dl, VT,
+ {C1, C2})) {
+ SDValue MaskX = TLO.DAG.getNode(ISD::AND, dl, VT, X, C12);
+ SDValue MaskY = TLO.DAG.getNode(ISD::AND, dl, VT, Y, C2);
+ return TLO.CombineTo(
+ Op, TLO.DAG.getNode(ISD::OR, dl, VT, MaskX, MaskY));
+ }
+ }
+ }
+ }
+ }
+ }
+
+ Known |= Known2;
+ break;
+ }
+ case ISD::XOR: {
+ SDValue Op0 = Op.getOperand(0);
+ SDValue Op1 = Op.getOperand(1);
+
+ if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
+ Depth + 1))
+ return true;
+ if (SimplifyDemandedBits(Op0, DemandedBits, DemandedElts, Known2, TLO,
+ Depth + 1))
+ return true;
+
+ // If all of the demanded bits are known zero on one side, return the other.
+ // These bits cannot contribute to the result of the 'xor'.
+ if (DemandedBits.isSubsetOf(Known.Zero))
+ return TLO.CombineTo(Op, Op0);
+ if (DemandedBits.isSubsetOf(Known2.Zero))
+ return TLO.CombineTo(Op, Op1);
+ // If the operation can be done in a smaller type, do so.
+ if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
+ return true;
+
+ // If all of the unknown bits are known to be zero on one side or the other
+ // turn this into an *inclusive* or.
+ // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
+ if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero))
+ return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, VT, Op0, Op1));
+
+ ConstantSDNode *C = isConstOrConstSplat(Op1, DemandedElts);
+ if (C) {
+ // If one side is a constant, and all of the set bits in the constant are
+ // also known set on the other side, turn this into an AND, as we know
+ // the bits will be cleared.
+ // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
+ // NB: it is okay if more bits are known than are requested
+ if (C->getAPIntValue() == Known2.One) {
+ SDValue ANDC =
+ TLO.DAG.getConstant(~C->getAPIntValue() & DemandedBits, dl, VT);
+ return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, Op0, ANDC));
+ }
+
+ // If the RHS is a constant, see if we can change it. Don't alter a -1
+ // constant because that's a 'not' op, and that is better for combining
+ // and codegen.
+ if (!C->isAllOnes() && DemandedBits.isSubsetOf(C->getAPIntValue())) {
+ // We're flipping all demanded bits. Flip the undemanded bits too.
+ SDValue New = TLO.DAG.getNOT(dl, Op0, VT);
+ return TLO.CombineTo(Op, New);
+ }
+
+ unsigned Op0Opcode = Op0.getOpcode();
+ if ((Op0Opcode == ISD::SRL || Op0Opcode == ISD::SHL) && Op0.hasOneUse()) {
+ if (ConstantSDNode *ShiftC =
+ isConstOrConstSplat(Op0.getOperand(1), DemandedElts)) {
+ // Don't crash on an oversized shift. We can not guarantee that a
+ // bogus shift has been simplified to undef.
+ if (ShiftC->getAPIntValue().ult(BitWidth)) {
+ uint64_t ShiftAmt = ShiftC->getZExtValue();
+ APInt Ones = APInt::getAllOnes(BitWidth);
+ Ones = Op0Opcode == ISD::SHL ? Ones.shl(ShiftAmt)
+ : Ones.lshr(ShiftAmt);
+ const TargetLowering &TLI = TLO.DAG.getTargetLoweringInfo();
+ if ((DemandedBits & C->getAPIntValue()) == (DemandedBits & Ones) &&
+ TLI.isDesirableToCommuteXorWithShift(Op.getNode())) {
+ // If the xor constant is a demanded mask, do a 'not' before the
+ // shift:
+ // xor (X << ShiftC), XorC --> (not X) << ShiftC
+ // xor (X >> ShiftC), XorC --> (not X) >> ShiftC
+ SDValue Not = TLO.DAG.getNOT(dl, Op0.getOperand(0), VT);
+ return TLO.CombineTo(Op, TLO.DAG.getNode(Op0Opcode, dl, VT, Not,
+ Op0.getOperand(1)));
+ }
+ }
+ }
+ }
+ }
+
+ // If we can't turn this into a 'not', try to shrink the constant.
+ if (!C || !C->isAllOnes())
+ if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
+ return true;
+
+ // Attempt to avoid multi-use ops if we don't need anything from them.
+ if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) {
+ SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
+ Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
+ SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
+ Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
+ if (DemandedOp0 || DemandedOp1) {
+ Op0 = DemandedOp0 ? DemandedOp0 : Op0;
+ Op1 = DemandedOp1 ? DemandedOp1 : Op1;
+ SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
+ return TLO.CombineTo(Op, NewOp);
+ }
+ }
+
+ Known ^= Known2;
+ break;
+ }
+ case ISD::SELECT:
+ if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, DemandedElts,
+ Known, TLO, Depth + 1))
+ return true;
+ if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, DemandedElts,
+ Known2, TLO, Depth + 1))
+ return true;
+
+ // If the operands are constants, see if we can simplify them.
+ if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
+ return true;
+
+ // Only known if known in both the LHS and RHS.
+ Known = Known.intersectWith(Known2);
+ break;
+ case ISD::VSELECT:
+ if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, DemandedElts,
+ Known, TLO, Depth + 1))
+ return true;
+ if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, DemandedElts,
+ Known2, TLO, Depth + 1))
+ return true;
+
+ // Only known if known in both the LHS and RHS.
+ Known = Known.intersectWith(Known2);
+ break;
+ case ISD::SELECT_CC:
+ if (SimplifyDemandedBits(Op.getOperand(3), DemandedBits, DemandedElts,
+ Known, TLO, Depth + 1))
+ return true;
+ if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, DemandedElts,
+ Known2, TLO, Depth + 1))
+ return true;
+
+ // If the operands are constants, see if we can simplify them.
+ if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
+ return true;
+
+ // Only known if known in both the LHS and RHS.
+ Known = Known.intersectWith(Known2);
+ break;
+ case ISD::SETCC: {
+ SDValue Op0 = Op.getOperand(0);
+ SDValue Op1 = Op.getOperand(1);
+ ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
+ // If (1) we only need the sign-bit, (2) the setcc operands are the same
+ // width as the setcc result, and (3) the result of a setcc conforms to 0 or
+ // -1, we may be able to bypass the setcc.
+ if (DemandedBits.isSignMask() &&
+ Op0.getScalarValueSizeInBits() == BitWidth &&
+ getBooleanContents(Op0.getValueType()) ==
+ BooleanContent::ZeroOrNegativeOneBooleanContent) {
+ // If we're testing X < 0, then this compare isn't needed - just use X!
+ // FIXME: We're limiting to integer types here, but this should also work
+ // if we don't care about FP signed-zero. The use of SETLT with FP means
+ // that we don't care about NaNs.
+ if (CC == ISD::SETLT && Op1.getValueType().isInteger() &&
+ (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode())))
+ return TLO.CombineTo(Op, Op0);
+
+ // TODO: Should we check for other forms of sign-bit comparisons?
+ // Examples: X <= -1, X >= 0
+ }
+ if (getBooleanContents(Op0.getValueType()) ==
+ TargetLowering::ZeroOrOneBooleanContent &&
+ BitWidth > 1)
+ Known.Zero.setBitsFrom(1);
+ break;
+ }
+ case ISD::SHL: {
+ SDValue Op0 = Op.getOperand(0);
+ SDValue Op1 = Op.getOperand(1);
+ EVT ShiftVT = Op1.getValueType();
+
+ if (std::optional<uint64_t> KnownSA =
+ TLO.DAG.getValidShiftAmount(Op, DemandedElts, Depth + 1)) {
+ unsigned ShAmt = *KnownSA;
+ if (ShAmt == 0)
+ return TLO.CombineTo(Op, Op0);
+
+ // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
+ // single shift. We can do this if the bottom bits (which are shifted
+ // out) are never demanded.
+ // TODO - support non-uniform vector amounts.
+ if (Op0.getOpcode() == ISD::SRL) {
+ if (!DemandedBits.intersects(APInt::getLowBitsSet(BitWidth, ShAmt))) {
+ if (std::optional<uint64_t> InnerSA =
+ TLO.DAG.getValidShiftAmount(Op0, DemandedElts, Depth + 2)) {
+ unsigned C1 = *InnerSA;
+ unsigned Opc = ISD::SHL;
+ int Diff = ShAmt - C1;
+ if (Diff < 0) {
+ Diff = -Diff;
+ Opc = ISD::SRL;
+ }
+ SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT);
+ return TLO.CombineTo(
+ Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA));
+ }
+ }
+ }
+
+ // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits
+ // are not demanded. This will likely allow the anyext to be folded away.
+ // TODO - support non-uniform vector amounts.
+ if (Op0.getOpcode() == ISD::ANY_EXTEND) {
+ SDValue InnerOp = Op0.getOperand(0);
+ EVT InnerVT = InnerOp.getValueType();
+ unsigned InnerBits = InnerVT.getScalarSizeInBits();
+ if (ShAmt < InnerBits && DemandedBits.getActiveBits() <= InnerBits &&
+ isTypeDesirableForOp(ISD::SHL, InnerVT)) {
+ SDValue NarrowShl = TLO.DAG.getNode(
+ ISD::SHL, dl, InnerVT, InnerOp,
+ TLO.DAG.getShiftAmountConstant(ShAmt, InnerVT, dl));
+ return TLO.CombineTo(
+ Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, NarrowShl));
+ }
+
+ // Repeat the SHL optimization above in cases where an extension
+ // intervenes: (shl (anyext (shr x, c1)), c2) to
+ // (shl (anyext x), c2-c1). This requires that the bottom c1 bits
+ // aren't demanded (as above) and that the shifted upper c1 bits of
+ // x aren't demanded.
+ // TODO - support non-uniform vector amounts.
+ if (InnerOp.getOpcode() == ISD::SRL && Op0.hasOneUse() &&
+ InnerOp.hasOneUse()) {
+ if (std::optional<uint64_t> SA2 = TLO.DAG.getValidShiftAmount(
+ InnerOp, DemandedElts, Depth + 2)) {
+ unsigned InnerShAmt = *SA2;
+ if (InnerShAmt < ShAmt && InnerShAmt < InnerBits &&
+ DemandedBits.getActiveBits() <=
+ (InnerBits - InnerShAmt + ShAmt) &&
+ DemandedBits.countr_zero() >= ShAmt) {
+ SDValue NewSA =
+ TLO.DAG.getConstant(ShAmt - InnerShAmt, dl, ShiftVT);
+ SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT,
+ InnerOp.getOperand(0));
+ return TLO.CombineTo(
+ Op, TLO.DAG.getNode(ISD::SHL, dl, VT, NewExt, NewSA));
+ }
+ }
+ }
+ }
+
+ APInt InDemandedMask = DemandedBits.lshr(ShAmt);
+ if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
+ Depth + 1)) {
+ SDNodeFlags Flags = Op.getNode()->getFlags();
+ if (Flags.hasNoSignedWrap() || Flags.hasNoUnsignedWrap()) {
+ // Disable the nsw and nuw flags. We can no longer guarantee that we
+ // won't wrap after simplification.
+ Flags.setNoSignedWrap(false);
+ Flags.setNoUnsignedWrap(false);
+ Op->setFlags(Flags);
+ }
+ return true;
+ }
+ Known.Zero <<= ShAmt;
+ Known.One <<= ShAmt;
+ // low bits known zero.
+ Known.Zero.setLowBits(ShAmt);
+
+ // Attempt to avoid multi-use ops if we don't need anything from them.
+ if (!InDemandedMask.isAllOnes() || !DemandedElts.isAllOnes()) {
+ SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
+ Op0, InDemandedMask, DemandedElts, TLO.DAG, Depth + 1);
+ if (DemandedOp0) {
+ SDValue NewOp = TLO.DAG.getNode(ISD::SHL, dl, VT, DemandedOp0, Op1);
+ return TLO.CombineTo(Op, NewOp);
+ }
+ }
+
+ // TODO: Can we merge this fold with the one below?
+ // Try shrinking the operation as long as the shift amount will still be
+ // in range.
+ if (ShAmt < DemandedBits.getActiveBits() && !VT.isVector() &&
+ Op.getNode()->hasOneUse()) {
+ // Search for the smallest integer type with free casts to and from
+ // Op's type. For expedience, just check power-of-2 integer types.
+ unsigned DemandedSize = DemandedBits.getActiveBits();
+ for (unsigned SmallVTBits = llvm::bit_ceil(DemandedSize);
+ SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) {
+ EVT SmallVT = EVT::getIntegerVT(*TLO.DAG.getContext(), SmallVTBits);
+ if (isNarrowingProfitable(VT, SmallVT) &&
+ isTypeDesirableForOp(ISD::SHL, SmallVT) &&
+ isTruncateFree(VT, SmallVT) && isZExtFree(SmallVT, VT) &&
+ (!TLO.LegalOperations() || isOperationLegal(ISD::SHL, SmallVT))) {
+ assert(DemandedSize <= SmallVTBits &&
+ "Narrowed below demanded bits?");
+ // We found a type with free casts.
+ SDValue NarrowShl = TLO.DAG.getNode(
+ ISD::SHL, dl, SmallVT,
+ TLO.DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(0)),
+ TLO.DAG.getShiftAmountConstant(ShAmt, SmallVT, dl));
+ return TLO.CombineTo(
+ Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, NarrowShl));
+ }
+ }
+ }
+
+ // Narrow shift to lower half - similar to ShrinkDemandedOp.
+ // (shl i64:x, K) -> (i64 zero_extend (shl (i32 (trunc i64:x)), K))
+ // Only do this if we demand the upper half so the knownbits are correct.
+ unsigned HalfWidth = BitWidth / 2;
+ if ((BitWidth % 2) == 0 && !VT.isVector() && ShAmt < HalfWidth &&
+ DemandedBits.countLeadingOnes() >= HalfWidth) {
+ EVT HalfVT = EVT::getIntegerVT(*TLO.DAG.getContext(), HalfWidth);
+ if (isNarrowingProfitable(VT, HalfVT) &&
+ isTypeDesirableForOp(ISD::SHL, HalfVT) &&
+ isTruncateFree(VT, HalfVT) && isZExtFree(HalfVT, VT) &&
+ (!TLO.LegalOperations() || isOperationLegal(ISD::SHL, HalfVT))) {
+ // If we're demanding the upper bits at all, we must ensure
+ // that the upper bits of the shift result are known to be zero,
+ // which is equivalent to the narrow shift being NUW.
+ if (bool IsNUW = (Known.countMinLeadingZeros() >= HalfWidth)) {
+ bool IsNSW = Known.countMinSignBits() > HalfWidth;
+ SDNodeFlags Flags;
+ Flags.setNoSignedWrap(IsNSW);
+ Flags.setNoUnsignedWrap(IsNUW);
+ SDValue NewOp = TLO.DAG.getNode(ISD::TRUNCATE, dl, HalfVT, Op0);
+ SDValue NewShiftAmt =
+ TLO.DAG.getShiftAmountConstant(ShAmt, HalfVT, dl);
+ SDValue NewShift = TLO.DAG.getNode(ISD::SHL, dl, HalfVT, NewOp,
+ NewShiftAmt, Flags);
+ SDValue NewExt =
+ TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, NewShift);
+ return TLO.CombineTo(Op, NewExt);
+ }
+ }
+ }
+ } else {
+ // This is a variable shift, so we can't shift the demand mask by a known
+ // amount. But if we are not demanding high bits, then we are not
+ // demanding those bits from the pre-shifted operand either.
+ if (unsigned CTLZ = DemandedBits.countl_zero()) {
+ APInt DemandedFromOp(APInt::getLowBitsSet(BitWidth, BitWidth - CTLZ));
+ if (SimplifyDemandedBits(Op0, DemandedFromOp, DemandedElts, Known, TLO,
+ Depth + 1)) {
+ SDNodeFlags Flags = Op.getNode()->getFlags();
+ if (Flags.hasNoSignedWrap() || Flags.hasNoUnsignedWrap()) {
+ // Disable the nsw and nuw flags. We can no longer guarantee that we
+ // won't wrap after simplification.
+ Flags.setNoSignedWrap(false);
+ Flags.setNoUnsignedWrap(false);
+ Op->setFlags(Flags);
+ }
+ return true;
+ }
+ Known.resetAll();
+ }
+ }
+
+ // If we are only demanding sign bits then we can use the shift source
+ // directly.
+ if (std::optional<uint64_t> MaxSA =
+ TLO.DAG.getValidMaximumShiftAmount(Op, DemandedElts, Depth + 1)) {
+ unsigned ShAmt = *MaxSA;
+ unsigned NumSignBits =
+ TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1);
+ unsigned UpperDemandedBits = BitWidth - DemandedBits.countr_zero();
+ if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits))
+ return TLO.CombineTo(Op, Op0);
+ }
+ break;
+ }
+ case ISD::SRL: {
+ SDValue Op0 = Op.getOperand(0);
+ SDValue Op1 = Op.getOperand(1);
+ EVT ShiftVT = Op1.getValueType();
+
+ if (std::optional<uint64_t> KnownSA =
+ TLO.DAG.getValidShiftAmount(Op, DemandedElts, Depth + 1)) {
+ unsigned ShAmt = *KnownSA;
+ if (ShAmt == 0)
+ return TLO.CombineTo(Op, Op0);
+
+ // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
+ // single shift. We can do this if the top bits (which are shifted out)
+ // are never demanded.
+ // TODO - support non-uniform vector amounts.
+ if (Op0.getOpcode() == ISD::SHL) {
+ if (!DemandedBits.intersects(APInt::getHighBitsSet(BitWidth, ShAmt))) {
+ if (std::optional<uint64_t> InnerSA =
+ TLO.DAG.getValidShiftAmount(Op0, DemandedElts, Depth + 2)) {
+ unsigned C1 = *InnerSA;
+ unsigned Opc = ISD::SRL;
+ int Diff = ShAmt - C1;
+ if (Diff < 0) {
+ Diff = -Diff;
+ Opc = ISD::SHL;
+ }
+ SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT);
+ return TLO.CombineTo(
+ Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA));
+ }
+ }
+ }
+
+ APInt InDemandedMask = (DemandedBits << ShAmt);
+
+ // If the shift is exact, then it does demand the low bits (and knows that
+ // they are zero).
+ if (Op->getFlags().hasExact())
+ InDemandedMask.setLowBits(ShAmt);
+
+ // Narrow shift to lower half - similar to ShrinkDemandedOp.
+ // (srl i64:x, K) -> (i64 zero_extend (srl (i32 (trunc i64:x)), K))
+ if ((BitWidth % 2) == 0 && !VT.isVector()) {
+ APInt HiBits = APInt::getHighBitsSet(BitWidth, BitWidth / 2);
+ EVT HalfVT = EVT::getIntegerVT(*TLO.DAG.getContext(), BitWidth / 2);
+ if (isNarrowingProfitable(VT, HalfVT) &&
+ isTypeDesirableForOp(ISD::SRL, HalfVT) &&
+ isTruncateFree(VT, HalfVT) && isZExtFree(HalfVT, VT) &&
+ (!TLO.LegalOperations() || isOperationLegal(ISD::SRL, HalfVT)) &&
+ ((InDemandedMask.countLeadingZeros() >= (BitWidth / 2)) ||
+ TLO.DAG.MaskedValueIsZero(Op0, HiBits))) {
+ SDValue NewOp = TLO.DAG.getNode(ISD::TRUNCATE, dl, HalfVT, Op0);
+ SDValue NewShiftAmt =
+ TLO.DAG.getShiftAmountConstant(ShAmt, HalfVT, dl);
+ SDValue NewShift =
+ TLO.DAG.getNode(ISD::SRL, dl, HalfVT, NewOp, NewShiftAmt);
+ return TLO.CombineTo(
+ Op, TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, NewShift));
+ }
+ }
+
+ // Compute the new bits that are at the top now.
+ if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
+ Depth + 1))
+ return true;
+ Known.Zero.lshrInPlace(ShAmt);
+ Known.One.lshrInPlace(ShAmt);
+ // High bits known zero.
+ Known.Zero.setHighBits(ShAmt);
+
+ // Attempt to avoid multi-use ops if we don't need anything from them.
+ if (!InDemandedMask.isAllOnes() || !DemandedElts.isAllOnes()) {
+ SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
+ Op0, InDemandedMask, DemandedElts, TLO.DAG, Depth + 1);
+ if (DemandedOp0) {
+ SDValue NewOp = TLO.DAG.getNode(ISD::SRL, dl, VT, DemandedOp0, Op1);
+ return TLO.CombineTo(Op, NewOp);
+ }
+ }
+ } else {
+ // Use generic knownbits computation as it has support for non-uniform
+ // shift amounts.
+ Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
+ }
+
+ // Try to match AVG patterns (after shift simplification).
+ if (SDValue AVG = combineShiftToAVG(Op, TLO, *this, DemandedBits,
+ DemandedElts, Depth + 1))
+ return TLO.CombineTo(Op, AVG);
+
+ break;
+ }
+ case ISD::SRA: {
+ SDValue Op0 = Op.getOperand(0);
+ SDValue Op1 = Op.getOperand(1);
+ EVT ShiftVT = Op1.getValueType();
+
+ // If we only want bits that already match the signbit then we don't need
+ // to shift.
+ unsigned NumHiDemandedBits = BitWidth - DemandedBits.countr_zero();
+ if (TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1) >=
+ NumHiDemandedBits)
+ return TLO.CombineTo(Op, Op0);
+
+ // If this is an arithmetic shift right and only the low-bit is set, we can
+ // always convert this into a logical shr, even if the shift amount is
+ // variable. The low bit of the shift cannot be an input sign bit unless
+ // the shift amount is >= the size of the datatype, which is undefined.
+ if (DemandedBits.isOne())
+ return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1));
+
+ if (std::optional<uint64_t> KnownSA =
+ TLO.DAG.getValidShiftAmount(Op, DemandedElts, Depth + 1)) {
+ unsigned ShAmt = *KnownSA;
+ if (ShAmt == 0)
+ return TLO.CombineTo(Op, Op0);
+
+ // fold (sra (shl x, c1), c1) -> sext_inreg for some c1 and target
+ // supports sext_inreg.
+ if (Op0.getOpcode() == ISD::SHL) {
+ if (std::optional<uint64_t> InnerSA =
+ TLO.DAG.getValidShiftAmount(Op0, DemandedElts, Depth + 2)) {
+ unsigned LowBits = BitWidth - ShAmt;
+ EVT ExtVT = EVT::getIntegerVT(*TLO.DAG.getContext(), LowBits);
+ if (VT.isVector())
+ ExtVT = EVT::getVectorVT(*TLO.DAG.getContext(), ExtVT,
+ VT.getVectorElementCount());
+
+ if (*InnerSA == ShAmt) {
+ if (!TLO.LegalOperations() ||
+ getOperationAction(ISD::SIGN_EXTEND_INREG, ExtVT) == Legal)
+ return TLO.CombineTo(
+ Op, TLO.DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, VT,
+ Op0.getOperand(0),
+ TLO.DAG.getValueType(ExtVT)));
+
+ // Even if we can't convert to sext_inreg, we might be able to
+ // remove this shift pair if the input is already sign extended.
+ unsigned NumSignBits =
+ TLO.DAG.ComputeNumSignBits(Op0.getOperand(0), DemandedElts);
+ if (NumSignBits > ShAmt)
+ return TLO.CombineTo(Op, Op0.getOperand(0));
+ }
+ }
+ }
+
+ APInt InDemandedMask = (DemandedBits << ShAmt);
+
+ // If the shift is exact, then it does demand the low bits (and knows that
+ // they are zero).
+ if (Op->getFlags().hasExact())
+ InDemandedMask.setLowBits(ShAmt);
+
+ // If any of the demanded bits are produced by the sign extension, we also
+ // demand the input sign bit.
+ if (DemandedBits.countl_zero() < ShAmt)
+ InDemandedMask.setSignBit();
+
+ if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
+ Depth + 1))
+ return true;
+ Known.Zero.lshrInPlace(ShAmt);
+ Known.One.lshrInPlace(ShAmt);
+
+ // If the input sign bit is known to be zero, or if none of the top bits
+ // are demanded, turn this into an unsigned shift right.
+ if (Known.Zero[BitWidth - ShAmt - 1] ||
+ DemandedBits.countl_zero() >= ShAmt) {
+ SDNodeFlags Flags;
+ Flags.setExact(Op->getFlags().hasExact());
+ return TLO.CombineTo(
+ Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1, Flags));
+ }
+
+ int Log2 = DemandedBits.exactLogBase2();
+ if (Log2 >= 0) {
+ // The bit must come from the sign.
+ SDValue NewSA = TLO.DAG.getConstant(BitWidth - 1 - Log2, dl, ShiftVT);
+ return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, NewSA));
+ }
+
+ if (Known.One[BitWidth - ShAmt - 1])
+ // New bits are known one.
+ Known.One.setHighBits(ShAmt);
+
+ // Attempt to avoid multi-use ops if we don't need anything from them.
+ if (!InDemandedMask.isAllOnes() || !DemandedElts.isAllOnes()) {
+ SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
+ Op0, InDemandedMask, DemandedElts, TLO.DAG, Depth + 1);
+ if (DemandedOp0) {
+ SDValue NewOp = TLO.DAG.getNode(ISD::SRA, dl, VT, DemandedOp0, Op1);
+ return TLO.CombineTo(Op, NewOp);
+ }
+ }
+ }
+
+ // Try to match AVG patterns (after shift simplification).
+ if (SDValue AVG = combineShiftToAVG(Op, TLO, *this, DemandedBits,
+ DemandedElts, Depth + 1))
+ return TLO.CombineTo(Op, AVG);
+
+ break;
+ }
+ case ISD::FSHL:
+ case ISD::FSHR: {
+ SDValue Op0 = Op.getOperand(0);
+ SDValue Op1 = Op.getOperand(1);
+ SDValue Op2 = Op.getOperand(2);
+ bool IsFSHL = (Op.getOpcode() == ISD::FSHL);
+
+ if (ConstantSDNode *SA = isConstOrConstSplat(Op2, DemandedElts)) {
+ unsigned Amt = SA->getAPIntValue().urem(BitWidth);
+
+ // For fshl, 0-shift returns the 1st arg.
+ // For fshr, 0-shift returns the 2nd arg.
+ if (Amt == 0) {
+ if (SimplifyDemandedBits(IsFSHL ? Op0 : Op1, DemandedBits, DemandedElts,
+ Known, TLO, Depth + 1))
+ return true;
+ break;
+ }
+
+ // fshl: (Op0 << Amt) | (Op1 >> (BW - Amt))
+ // fshr: (Op0 << (BW - Amt)) | (Op1 >> Amt)
+ APInt Demanded0 = DemandedBits.lshr(IsFSHL ? Amt : (BitWidth - Amt));
+ APInt Demanded1 = DemandedBits << (IsFSHL ? (BitWidth - Amt) : Amt);
+ if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO,
+ Depth + 1))
+ return true;
+ if (SimplifyDemandedBits(Op1, Demanded1, DemandedElts, Known, TLO,
+ Depth + 1))
+ return true;
+
+ Known2.One <<= (IsFSHL ? Amt : (BitWidth - Amt));
+ Known2.Zero <<= (IsFSHL ? Amt : (BitWidth - Amt));
+ Known.One.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt);
+ Known.Zero.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt);
+ Known = Known.unionWith(Known2);
+
+ // Attempt to avoid multi-use ops if we don't need anything from them.
+ if (!Demanded0.isAllOnes() || !Demanded1.isAllOnes() ||
+ !DemandedElts.isAllOnes()) {
+ SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
+ Op0, Demanded0, DemandedElts, TLO.DAG, Depth + 1);
+ SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
+ Op1, Demanded1, DemandedElts, TLO.DAG, Depth + 1);
+ if (DemandedOp0 || DemandedOp1) {
+ DemandedOp0 = DemandedOp0 ? DemandedOp0 : Op0;
+ DemandedOp1 = DemandedOp1 ? DemandedOp1 : Op1;
+ SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedOp0,
+ DemandedOp1, Op2);
+ return TLO.CombineTo(Op, NewOp);
+ }
+ }
+ }
+
+ // For pow-2 bitwidths we only demand the bottom modulo amt bits.
+ if (isPowerOf2_32(BitWidth)) {
+ APInt DemandedAmtBits(Op2.getScalarValueSizeInBits(), BitWidth - 1);
+ if (SimplifyDemandedBits(Op2, DemandedAmtBits, DemandedElts,
+ Known2, TLO, Depth + 1))
+ return true;
+ }
+ break;
+ }
+ case ISD::ROTL:
+ case ISD::ROTR: {
+ SDValue Op0 = Op.getOperand(0);
+ SDValue Op1 = Op.getOperand(1);
+ bool IsROTL = (Op.getOpcode() == ISD::ROTL);
+
+ // If we're rotating an 0/-1 value, then it stays an 0/-1 value.
+ if (BitWidth == TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1))
+ return TLO.CombineTo(Op, Op0);
+
+ if (ConstantSDNode *SA = isConstOrConstSplat(Op1, DemandedElts)) {
+ unsigned Amt = SA->getAPIntValue().urem(BitWidth);
+ unsigned RevAmt = BitWidth - Amt;
+
+ // rotl: (Op0 << Amt) | (Op0 >> (BW - Amt))
+ // rotr: (Op0 << (BW - Amt)) | (Op0 >> Amt)
+ APInt Demanded0 = DemandedBits.rotr(IsROTL ? Amt : RevAmt);
+ if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO,
+ Depth + 1))
+ return true;
+
+ // rot*(x, 0) --> x
+ if (Amt == 0)
+ return TLO.CombineTo(Op, Op0);
+
+ // See if we don't demand either half of the rotated bits.
+ if ((!TLO.LegalOperations() || isOperationLegal(ISD::SHL, VT)) &&
+ DemandedBits.countr_zero() >= (IsROTL ? Amt : RevAmt)) {
+ Op1 = TLO.DAG.getConstant(IsROTL ? Amt : RevAmt, dl, Op1.getValueType());
+ return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, Op1));
+ }
+ if ((!TLO.LegalOperations() || isOperationLegal(ISD::SRL, VT)) &&
+ DemandedBits.countl_zero() >= (IsROTL ? RevAmt : Amt)) {
+ Op1 = TLO.DAG.getConstant(IsROTL ? RevAmt : Amt, dl, Op1.getValueType());
+ return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1));
+ }
+ }
+
+ // For pow-2 bitwidths we only demand the bottom modulo amt bits.
+ if (isPowerOf2_32(BitWidth)) {
+ APInt DemandedAmtBits(Op1.getScalarValueSizeInBits(), BitWidth - 1);
+ if (SimplifyDemandedBits(Op1, DemandedAmtBits, DemandedElts, Known2, TLO,
+ Depth + 1))
+ return true;
+ }
+ break;
+ }
+ case ISD::SMIN:
+ case ISD::SMAX:
+ case ISD::UMIN:
+ case ISD::UMAX: {
+ unsigned Opc = Op.getOpcode();
+ SDValue Op0 = Op.getOperand(0);
+ SDValue Op1 = Op.getOperand(1);
+
+ // If we're only demanding signbits, then we can simplify to OR/AND node.
+ unsigned BitOp =
+ (Opc == ISD::SMIN || Opc == ISD::UMAX) ? ISD::OR : ISD::AND;
+ unsigned NumSignBits =
+ std::min(TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1),
+ TLO.DAG.ComputeNumSignBits(Op1, DemandedElts, Depth + 1));
+ unsigned NumDemandedUpperBits = BitWidth - DemandedBits.countr_zero();
+ if (NumSignBits >= NumDemandedUpperBits)
+ return TLO.CombineTo(Op, TLO.DAG.getNode(BitOp, SDLoc(Op), VT, Op0, Op1));
+
+ // Check if one arg is always less/greater than (or equal) to the other arg.
+ KnownBits Known0 = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth + 1);
+ KnownBits Known1 = TLO.DAG.computeKnownBits(Op1, DemandedElts, Depth + 1);
+ switch (Opc) {
+ case ISD::SMIN:
+ if (std::optional<bool> IsSLE = KnownBits::sle(Known0, Known1))
+ return TLO.CombineTo(Op, *IsSLE ? Op0 : Op1);
+ if (std::optional<bool> IsSLT = KnownBits::slt(Known0, Known1))
+ return TLO.CombineTo(Op, *IsSLT ? Op0 : Op1);
+ Known = KnownBits::smin(Known0, Known1);
+ break;
+ case ISD::SMAX:
+ if (std::optional<bool> IsSGE = KnownBits::sge(Known0, Known1))
+ return TLO.CombineTo(Op, *IsSGE ? Op0 : Op1);
+ if (std::optional<bool> IsSGT = KnownBits::sgt(Known0, Known1))
+ return TLO.CombineTo(Op, *IsSGT ? Op0 : Op1);
+ Known = KnownBits::smax(Known0, Known1);
+ break;
+ case ISD::UMIN:
+ if (std::optional<bool> IsULE = KnownBits::ule(Known0, Known1))
+ return TLO.CombineTo(Op, *IsULE ? Op0 : Op1);
+ if (std::optional<bool> IsULT = KnownBits::ult(Known0, Known1))
+ return TLO.CombineTo(Op, *IsULT ? Op0 : Op1);
+ Known = KnownBits::umin(Known0, Known1);
+ break;
+ case ISD::UMAX:
+ if (std::optional<bool> IsUGE = KnownBits::uge(Known0, Known1))
+ return TLO.CombineTo(Op, *IsUGE ? Op0 : Op1);
+ if (std::optional<bool> IsUGT = KnownBits::ugt(Known0, Known1))
+ return TLO.CombineTo(Op, *IsUGT ? Op0 : Op1);
+ Known = KnownBits::umax(Known0, Known1);
+ break;
+ }
+ break;
+ }
+ case ISD::BITREVERSE: {
+ SDValue Src = Op.getOperand(0);
+ APInt DemandedSrcBits = DemandedBits.reverseBits();
+ if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO,
+ Depth + 1))
+ return true;
+ Known.One = Known2.One.reverseBits();
+ Known.Zero = Known2.Zero.reverseBits();
+ break;
+ }
+ case ISD::BSWAP: {
+ SDValue Src = Op.getOperand(0);
+
+ // If the only bits demanded come from one byte of the bswap result,
+ // just shift the input byte into position to eliminate the bswap.
+ unsigned NLZ = DemandedBits.countl_zero();
+ unsigned NTZ = DemandedBits.countr_zero();
+
+ // Round NTZ down to the next byte. If we have 11 trailing zeros, then
+ // we need all the bits down to bit 8. Likewise, round NLZ. If we
+ // have 14 leading zeros, round to 8.
+ NLZ = alignDown(NLZ, 8);
+ NTZ = alignDown(NTZ, 8);
+ // If we need exactly one byte, we can do this transformation.
+ if (BitWidth - NLZ - NTZ == 8) {
+ // Replace this with either a left or right shift to get the byte into
+ // the right place.
+ unsigned ShiftOpcode = NLZ > NTZ ? ISD::SRL : ISD::SHL;
+ if (!TLO.LegalOperations() || isOperationLegal(ShiftOpcode, VT)) {
+ unsigned ShiftAmount = NLZ > NTZ ? NLZ - NTZ : NTZ - NLZ;
+ SDValue ShAmt = TLO.DAG.getShiftAmountConstant(ShiftAmount, VT, dl);
+ SDValue NewOp = TLO.DAG.getNode(ShiftOpcode, dl, VT, Src, ShAmt);
+ return TLO.CombineTo(Op, NewOp);
+ }
+ }
+
+ APInt DemandedSrcBits = DemandedBits.byteSwap();
+ if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO,
+ Depth + 1))
+ return true;
+ Known.One = Known2.One.byteSwap();
+ Known.Zero = Known2.Zero.byteSwap();
+ break;
+ }
+ case ISD::CTPOP: {
+ // If only 1 bit is demanded, replace with PARITY as long as we're before
+ // op legalization.
+ // FIXME: Limit to scalars for now.
+ if (DemandedBits.isOne() && !TLO.LegalOps && !VT.isVector())
+ return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::PARITY, dl, VT,
+ Op.getOperand(0)));
+
+ Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
+ break;
+ }
+ case ISD::SIGN_EXTEND_INREG: {
+ SDValue Op0 = Op.getOperand(0);
+ EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
+ unsigned ExVTBits = ExVT.getScalarSizeInBits();
+
+ // If we only care about the highest bit, don't bother shifting right.
+ if (DemandedBits.isSignMask()) {
+ unsigned MinSignedBits =
+ TLO.DAG.ComputeMaxSignificantBits(Op0, DemandedElts, Depth + 1);
+ bool AlreadySignExtended = ExVTBits >= MinSignedBits;
+ // However if the input is already sign extended we expect the sign
+ // extension to be dropped altogether later and do not simplify.
+ if (!AlreadySignExtended) {
+ // Compute the correct shift amount type, which must be getShiftAmountTy
+ // for scalar types after legalization.
+ SDValue ShiftAmt =
+ TLO.DAG.getShiftAmountConstant(BitWidth - ExVTBits, VT, dl);
+ return TLO.CombineTo(Op,
+ TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, ShiftAmt));
+ }
+ }
+
+ // If none of the extended bits are demanded, eliminate the sextinreg.
+ if (DemandedBits.getActiveBits() <= ExVTBits)
+ return TLO.CombineTo(Op, Op0);
+
+ APInt InputDemandedBits = DemandedBits.getLoBits(ExVTBits);
+
+ // Since the sign extended bits are demanded, we know that the sign
+ // bit is demanded.
+ InputDemandedBits.setBit(ExVTBits - 1);
+
+ if (SimplifyDemandedBits(Op0, InputDemandedBits, DemandedElts, Known, TLO,
+ Depth + 1))
+ return true;
+
+ // If the sign bit of the input is known set or clear, then we know the
+ // top bits of the result.
+
+ // If the input sign bit is known zero, convert this into a zero extension.
+ if (Known.Zero[ExVTBits - 1])
+ return TLO.CombineTo(Op, TLO.DAG.getZeroExtendInReg(Op0, dl, ExVT));
+
+ APInt Mask = APInt::getLowBitsSet(BitWidth, ExVTBits);
+ if (Known.One[ExVTBits - 1]) { // Input sign bit known set
+ Known.One.setBitsFrom(ExVTBits);
+ Known.Zero &= Mask;
+ } else { // Input sign bit unknown
+ Known.Zero &= Mask;
+ Known.One &= Mask;
+ }
+ break;
+ }
+ case ISD::BUILD_PAIR: {
+ EVT HalfVT = Op.getOperand(0).getValueType();
+ unsigned HalfBitWidth = HalfVT.getScalarSizeInBits();
+
+ APInt MaskLo = DemandedBits.getLoBits(HalfBitWidth).trunc(HalfBitWidth);
+ APInt MaskHi = DemandedBits.getHiBits(HalfBitWidth).trunc(HalfBitWidth);
+
+ KnownBits KnownLo, KnownHi;
+
+ if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownLo, TLO, Depth + 1))
+ return true;
+
+ if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownHi, TLO, Depth + 1))
+ return true;
+
+ Known = KnownHi.concat(KnownLo);
+ break;
+ }
+ case ISD::ZERO_EXTEND_VECTOR_INREG:
+ if (VT.isScalableVector())
+ return false;
+ [[fallthrough]];
+ case ISD::ZERO_EXTEND: {
+ SDValue Src = Op.getOperand(0);
+ EVT SrcVT = Src.getValueType();
+ unsigned InBits = SrcVT.getScalarSizeInBits();
+ unsigned InElts = SrcVT.isFixedLengthVector() ? SrcVT.getVectorNumElements() : 1;
+ bool IsVecInReg = Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG;
+
+ // If none of the top bits are demanded, convert this into an any_extend.
+ if (DemandedBits.getActiveBits() <= InBits) {
+ // If we only need the non-extended bits of the bottom element
+ // then we can just bitcast to the result.
+ if (IsLE && IsVecInReg && DemandedElts == 1 &&
+ VT.getSizeInBits() == SrcVT.getSizeInBits())
+ return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
+
+ unsigned Opc =
+ IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND;
+ if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
+ return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
+ }
+
+ SDNodeFlags Flags = Op->getFlags();
+ APInt InDemandedBits = DemandedBits.trunc(InBits);
+ APInt InDemandedElts = DemandedElts.zext(InElts);
+ if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
+ Depth + 1)) {
+ if (Flags.hasNonNeg()) {
+ Flags.setNonNeg(false);
+ Op->setFlags(Flags);
+ }
+ return true;
+ }
+ assert(Known.getBitWidth() == InBits && "Src width has changed?");
+ Known = Known.zext(BitWidth);
+
+ // Attempt to avoid multi-use ops if we don't need anything from them.
+ if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
+ Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1))
+ return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc));
+ break;
+ }
+ case ISD::SIGN_EXTEND_VECTOR_INREG:
+ if (VT.isScalableVector())
+ return false;
+ [[fallthrough]];
+ case ISD::SIGN_EXTEND: {
+ SDValue Src = Op.getOperand(0);
+ EVT SrcVT = Src.getValueType();
+ unsigned InBits = SrcVT.getScalarSizeInBits();
+ unsigned InElts = SrcVT.isFixedLengthVector() ? SrcVT.getVectorNumElements() : 1;
+ bool IsVecInReg = Op.getOpcode() == ISD::SIGN_EXTEND_VECTOR_INREG;
+
+ APInt InDemandedElts = DemandedElts.zext(InElts);
+ APInt InDemandedBits = DemandedBits.trunc(InBits);
+
+ // Since some of the sign extended bits are demanded, we know that the sign
+ // bit is demanded.
+ InDemandedBits.setBit(InBits - 1);
+
+ // If none of the top bits are demanded, convert this into an any_extend.
+ if (DemandedBits.getActiveBits() <= InBits) {
+ // If we only need the non-extended bits of the bottom element
+ // then we can just bitcast to the result.
+ if (IsLE && IsVecInReg && DemandedElts == 1 &&
+ VT.getSizeInBits() == SrcVT.getSizeInBits())
+ return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
+
+ // Don't lose an all signbits 0/-1 splat on targets with 0/-1 booleans.
+ if (getBooleanContents(VT) != ZeroOrNegativeOneBooleanContent ||
+ TLO.DAG.ComputeNumSignBits(Src, InDemandedElts, Depth + 1) !=
+ InBits) {
+ unsigned Opc =
+ IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND;
+ if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
+ return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
+ }
+ }
+
+ if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
+ Depth + 1))
+ return true;
+ assert(Known.getBitWidth() == InBits && "Src width has changed?");
+
+ // If the sign bit is known one, the top bits match.
+ Known = Known.sext(BitWidth);
+
+ // If the sign bit is known zero, convert this to a zero extend.
+ if (Known.isNonNegative()) {
+ unsigned Opc =
+ IsVecInReg ? ISD::ZERO_EXTEND_VECTOR_INREG : ISD::ZERO_EXTEND;
+ if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) {
+ SDNodeFlags Flags;
+ if (!IsVecInReg)
+ Flags.setNonNeg(true);
+ return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src, Flags));
+ }
+ }
+
+ // Attempt to avoid multi-use ops if we don't need anything from them.
+ if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
+ Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1))
+ return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc));
+ break;
+ }
+ case ISD::ANY_EXTEND_VECTOR_INREG:
+ if (VT.isScalableVector())
+ return false;
+ [[fallthrough]];
+ case ISD::ANY_EXTEND: {
+ SDValue Src = Op.getOperand(0);
+ EVT SrcVT = Src.getValueType();
+ unsigned InBits = SrcVT.getScalarSizeInBits();
+ unsigned InElts = SrcVT.isFixedLengthVector() ? SrcVT.getVectorNumElements() : 1;
+ bool IsVecInReg = Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG;
+
+ // If we only need the bottom element then we can just bitcast.
+ // TODO: Handle ANY_EXTEND?
+ if (IsLE && IsVecInReg && DemandedElts == 1 &&
+ VT.getSizeInBits() == SrcVT.getSizeInBits())
+ return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
+
+ APInt InDemandedBits = DemandedBits.trunc(InBits);
+ APInt InDemandedElts = DemandedElts.zext(InElts);
+ if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
+ Depth + 1))
+ return true;
+ assert(Known.getBitWidth() == InBits && "Src width has changed?");
+ Known = Known.anyext(BitWidth);
+
+ // Attempt to avoid multi-use ops if we don't need anything from them.
+ if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
+ Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1))
+ return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc));
+ break;
+ }
+ case ISD::TRUNCATE: {
+ SDValue Src = Op.getOperand(0);
+
+ // Simplify the input, using demanded bit information, and compute the known
+ // zero/one bits live out.
+ unsigned OperandBitWidth = Src.getScalarValueSizeInBits();
+ APInt TruncMask = DemandedBits.zext(OperandBitWidth);
+ if (SimplifyDemandedBits(Src, TruncMask, DemandedElts, Known, TLO,
+ Depth + 1))
+ return true;
+ Known = Known.trunc(BitWidth);
+
+ // Attempt to avoid multi-use ops if we don't need anything from them.
+ if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
+ Src, TruncMask, DemandedElts, TLO.DAG, Depth + 1))
+ return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, NewSrc));
+
+ // If the input is only used by this truncate, see if we can shrink it based
+ // on the known demanded bits.
+ switch (Src.getOpcode()) {
+ default:
+ break;
+ case ISD::SRL:
+ // Shrink SRL by a constant if none of the high bits shifted in are
+ // demanded.
+ if (TLO.LegalTypes() && !isTypeDesirableForOp(ISD::SRL, VT))
+ // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is
+ // undesirable.
+ break;
+
+ if (Src.getNode()->hasOneUse()) {
+ if (isTruncateFree(Src, VT) &&
+ !isTruncateFree(Src.getValueType(), VT)) {
+ // If truncate is only free at trunc(srl), do not turn it into
+ // srl(trunc). The check is done by first check the truncate is free
+ // at Src's opcode(srl), then check the truncate is not done by
+ // referencing sub-register. In test, if both trunc(srl) and
+ // srl(trunc)'s trunc are free, srl(trunc) performs better. If only
+ // trunc(srl)'s trunc is free, trunc(srl) is better.
+ break;
+ }
+
+ std::optional<uint64_t> ShAmtC =
+ TLO.DAG.getValidShiftAmount(Src, DemandedElts, Depth + 2);
+ if (!ShAmtC || *ShAmtC >= BitWidth)
+ break;
+ uint64_t ShVal = *ShAmtC;
+
+ APInt HighBits =
+ APInt::getHighBitsSet(OperandBitWidth, OperandBitWidth - BitWidth);
+ HighBits.lshrInPlace(ShVal);
+ HighBits = HighBits.trunc(BitWidth);
+ if (!(HighBits & DemandedBits)) {
+ // None of the shifted in bits are needed. Add a truncate of the
+ // shift input, then shift it.
+ SDValue NewShAmt = TLO.DAG.getShiftAmountConstant(ShVal, VT, dl);
+ SDValue NewTrunc =
+ TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, Src.getOperand(0));
+ return TLO.CombineTo(
+ Op, TLO.DAG.getNode(ISD::SRL, dl, VT, NewTrunc, NewShAmt));
+ }
+ }
+ break;
+ }
+
+ break;
+ }
+ case ISD::AssertZext: {
+ // AssertZext demands all of the high bits, plus any of the low bits
+ // demanded by its users.
+ EVT ZVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
+ APInt InMask = APInt::getLowBitsSet(BitWidth, ZVT.getSizeInBits());
+ if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | DemandedBits, Known,
+ TLO, Depth + 1))
+ return true;
+
+ Known.Zero |= ~InMask;
+ Known.One &= (~Known.Zero);
+ break;
+ }
+ case ISD::EXTRACT_VECTOR_ELT: {
+ SDValue Src = Op.getOperand(0);
+ SDValue Idx = Op.getOperand(1);
+ ElementCount SrcEltCnt = Src.getValueType().getVectorElementCount();
+ unsigned EltBitWidth = Src.getScalarValueSizeInBits();
+
+ if (SrcEltCnt.isScalable())
+ return false;
+
+ // Demand the bits from every vector element without a constant index.
+ unsigned NumSrcElts = SrcEltCnt.getFixedValue();
+ APInt DemandedSrcElts = APInt::getAllOnes(NumSrcElts);
+ if (auto *CIdx = dyn_cast<ConstantSDNode>(Idx))
+ if (CIdx->getAPIntValue().ult(NumSrcElts))
+ DemandedSrcElts = APInt::getOneBitSet(NumSrcElts, CIdx->getZExtValue());
+
+ // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know
+ // anything about the extended bits.
+ APInt DemandedSrcBits = DemandedBits;
+ if (BitWidth > EltBitWidth)
+ DemandedSrcBits = DemandedSrcBits.trunc(EltBitWidth);
+
+ if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, Known2, TLO,
+ Depth + 1))
+ return true;
+
+ // Attempt to avoid multi-use ops if we don't need anything from them.
+ if (!DemandedSrcBits.isAllOnes() || !DemandedSrcElts.isAllOnes()) {
+ if (SDValue DemandedSrc = SimplifyMultipleUseDemandedBits(
+ Src, DemandedSrcBits, DemandedSrcElts, TLO.DAG, Depth + 1)) {
+ SDValue NewOp =
+ TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc, Idx);
+ return TLO.CombineTo(Op, NewOp);
+ }
+ }
+
+ Known = Known2;
+ if (BitWidth > EltBitWidth)
+ Known = Known.anyext(BitWidth);
+ break;
+ }
+ case ISD::BITCAST: {
+ if (VT.isScalableVector())
+ return false;
+ SDValue Src = Op.getOperand(0);
+ EVT SrcVT = Src.getValueType();
+ unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits();
+
+ // If this is an FP->Int bitcast and if the sign bit is the only
+ // thing demanded, turn this into a FGETSIGN.
+ if (!TLO.LegalOperations() && !VT.isVector() && !SrcVT.isVector() &&
+ DemandedBits == APInt::getSignMask(Op.getValueSizeInBits()) &&
+ SrcVT.isFloatingPoint()) {
+ bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, VT);
+ bool i32Legal = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32);
+ if ((OpVTLegal || i32Legal) && VT.isSimple() && SrcVT != MVT::f16 &&
+ SrcVT != MVT::f128) {
+ // Cannot eliminate/lower SHL for f128 yet.
+ EVT Ty = OpVTLegal ? VT : MVT::i32;
+ // Make a FGETSIGN + SHL to move the sign bit into the appropriate
+ // place. We expect the SHL to be eliminated by other optimizations.
+ SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Src);
+ unsigned OpVTSizeInBits = Op.getValueSizeInBits();
+ if (!OpVTLegal && OpVTSizeInBits > 32)
+ Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Sign);
+ unsigned ShVal = Op.getValueSizeInBits() - 1;
+ SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, VT);
+ return TLO.CombineTo(Op,
+ TLO.DAG.getNode(ISD::SHL, dl, VT, Sign, ShAmt));
+ }
+ }
+
+ // Bitcast from a vector using SimplifyDemanded Bits/VectorElts.
+ // Demand the elt/bit if any of the original elts/bits are demanded.
+ if (SrcVT.isVector() && (BitWidth % NumSrcEltBits) == 0) {
+ unsigned Scale = BitWidth / NumSrcEltBits;
+ unsigned NumSrcElts = SrcVT.getVectorNumElements();
+ APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits);
+ APInt DemandedSrcElts = APInt::getZero(NumSrcElts);
+ for (unsigned i = 0; i != Scale; ++i) {
+ unsigned EltOffset = IsLE ? i : (Scale - 1 - i);
+ unsigned BitOffset = EltOffset * NumSrcEltBits;
+ APInt Sub = DemandedBits.extractBits(NumSrcEltBits, BitOffset);
+ if (!Sub.isZero()) {
+ DemandedSrcBits |= Sub;
+ for (unsigned j = 0; j != NumElts; ++j)
+ if (DemandedElts[j])
+ DemandedSrcElts.setBit((j * Scale) + i);
+ }
+ }
+
+ APInt KnownSrcUndef, KnownSrcZero;
+ if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef,
+ KnownSrcZero, TLO, Depth + 1))
+ return true;
+
+ KnownBits KnownSrcBits;
+ if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts,
+ KnownSrcBits, TLO, Depth + 1))
+ return true;
+ } else if (IsLE && (NumSrcEltBits % BitWidth) == 0) {
+ // TODO - bigendian once we have test coverage.
+ unsigned Scale = NumSrcEltBits / BitWidth;
+ unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
+ APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits);
+ APInt DemandedSrcElts = APInt::getZero(NumSrcElts);
+ for (unsigned i = 0; i != NumElts; ++i)
+ if (DemandedElts[i]) {
+ unsigned Offset = (i % Scale) * BitWidth;
+ DemandedSrcBits.insertBits(DemandedBits, Offset);
+ DemandedSrcElts.setBit(i / Scale);
+ }
+
+ if (SrcVT.isVector()) {
+ APInt KnownSrcUndef, KnownSrcZero;
+ if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef,
+ KnownSrcZero, TLO, Depth + 1))
+ return true;
+ }
+
+ KnownBits KnownSrcBits;
+ if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts,
+ KnownSrcBits, TLO, Depth + 1))
+ return true;
+
+ // Attempt to avoid multi-use ops if we don't need anything from them.
+ if (!DemandedSrcBits.isAllOnes() || !DemandedSrcElts.isAllOnes()) {
+ if (SDValue DemandedSrc = SimplifyMultipleUseDemandedBits(
+ Src, DemandedSrcBits, DemandedSrcElts, TLO.DAG, Depth + 1)) {
+ SDValue NewOp = TLO.DAG.getBitcast(VT, DemandedSrc);
+ return TLO.CombineTo(Op, NewOp);
+ }
+ }
+ }
+
+ // If this is a bitcast, let computeKnownBits handle it. Only do this on a
+ // recursive call where Known may be useful to the caller.
+ if (Depth > 0) {
+ Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
+ return false;
+ }
+ break;
+ }
+ case ISD::MUL:
+ if (DemandedBits.isPowerOf2()) {
+ // The LSB of X*Y is set only if (X & 1) == 1 and (Y & 1) == 1.
+ // If we demand exactly one bit N and we have "X * (C' << N)" where C' is
+ // odd (has LSB set), then the left-shifted low bit of X is the answer.
+ unsigned CTZ = DemandedBits.countr_zero();
+ ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(1), DemandedElts);
+ if (C && C->getAPIntValue().countr_zero() == CTZ) {
+ SDValue AmtC = TLO.DAG.getShiftAmountConstant(CTZ, VT, dl);
+ SDValue Shl = TLO.DAG.getNode(ISD::SHL, dl, VT, Op.getOperand(0), AmtC);
+ return TLO.CombineTo(Op, Shl);
+ }
+ }
+ // For a squared value "X * X", the bottom 2 bits are 0 and X[0] because:
+ // X * X is odd iff X is odd.
+ // 'Quadratic Reciprocity': X * X -> 0 for bit[1]
+ if (Op.getOperand(0) == Op.getOperand(1) && DemandedBits.ult(4)) {
+ SDValue One = TLO.DAG.getConstant(1, dl, VT);
+ SDValue And1 = TLO.DAG.getNode(ISD::AND, dl, VT, Op.getOperand(0), One);
+ return TLO.CombineTo(Op, And1);
+ }
+ [[fallthrough]];
+ case ISD::ADD:
+ case ISD::SUB: {
+ // Add, Sub, and Mul don't demand any bits in positions beyond that
+ // of the highest bit demanded of them.
+ SDValue Op0 = Op.getOperand(0), Op1 = Op.getOperand(1);
+ SDNodeFlags Flags = Op.getNode()->getFlags();
+ unsigned DemandedBitsLZ = DemandedBits.countl_zero();
+ APInt LoMask = APInt::getLowBitsSet(BitWidth, BitWidth - DemandedBitsLZ);
+ KnownBits KnownOp0, KnownOp1;
+ auto GetDemandedBitsLHSMask = [&](APInt Demanded,
+ const KnownBits &KnownRHS) {
+ if (Op.getOpcode() == ISD::MUL)
+ Demanded.clearHighBits(KnownRHS.countMinTrailingZeros());
+ return Demanded;
+ };
+ if (SimplifyDemandedBits(Op1, LoMask, DemandedElts, KnownOp1, TLO,
+ Depth + 1) ||
+ SimplifyDemandedBits(Op0, GetDemandedBitsLHSMask(LoMask, KnownOp1),
+ DemandedElts, KnownOp0, TLO, Depth + 1) ||
+ // See if the operation should be performed at a smaller bit width.
+ ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) {
+ if (Flags.hasNoSignedWrap() || Flags.hasNoUnsignedWrap()) {
+ // Disable the nsw and nuw flags. We can no longer guarantee that we
+ // won't wrap after simplification.
+ Flags.setNoSignedWrap(false);
+ Flags.setNoUnsignedWrap(false);
+ Op->setFlags(Flags);
+ }
+ return true;
+ }
+
+ // neg x with only low bit demanded is simply x.
+ if (Op.getOpcode() == ISD::SUB && DemandedBits.isOne() &&
+ isNullConstant(Op0))
+ return TLO.CombineTo(Op, Op1);
+
+ // Attempt to avoid multi-use ops if we don't need anything from them.
+ if (!LoMask.isAllOnes() || !DemandedElts.isAllOnes()) {
+ SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
+ Op0, LoMask, DemandedElts, TLO.DAG, Depth + 1);
+ SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
+ Op1, LoMask, DemandedElts, TLO.DAG, Depth + 1);
+ if (DemandedOp0 || DemandedOp1) {
+ Flags.setNoSignedWrap(false);
+ Flags.setNoUnsignedWrap(false);
+ Op0 = DemandedOp0 ? DemandedOp0 : Op0;
+ Op1 = DemandedOp1 ? DemandedOp1 : Op1;
+ SDValue NewOp =
+ TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags);
+ return TLO.CombineTo(Op, NewOp);
+ }
+ }
+
+ // If we have a constant operand, we may be able to turn it into -1 if we
+ // do not demand the high bits. This can make the constant smaller to
+ // encode, allow more general folding, or match specialized instruction
+ // patterns (eg, 'blsr' on x86). Don't bother changing 1 to -1 because that
+ // is probably not useful (and could be detrimental).
+ ConstantSDNode *C = isConstOrConstSplat(Op1);
+ APInt HighMask = APInt::getHighBitsSet(BitWidth, DemandedBitsLZ);
+ if (C && !C->isAllOnes() && !C->isOne() &&
+ (C->getAPIntValue() | HighMask).isAllOnes()) {
+ SDValue Neg1 = TLO.DAG.getAllOnesConstant(dl, VT);
+ // Disable the nsw and nuw flags. We can no longer guarantee that we
+ // won't wrap after simplification.
+ Flags.setNoSignedWrap(false);
+ Flags.setNoUnsignedWrap(false);
+ SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Neg1, Flags);
+ return TLO.CombineTo(Op, NewOp);
+ }
+
+ // Match a multiply with a disguised negated-power-of-2 and convert to a
+ // an equivalent shift-left amount.
+ // Example: (X * MulC) + Op1 --> Op1 - (X << log2(-MulC))
+ auto getShiftLeftAmt = [&HighMask](SDValue Mul) -> unsigned {
+ if (Mul.getOpcode() != ISD::MUL || !Mul.hasOneUse())
+ return 0;
+
+ // Don't touch opaque constants. Also, ignore zero and power-of-2
+ // multiplies. Those will get folded later.
+ ConstantSDNode *MulC = isConstOrConstSplat(Mul.getOperand(1));
+ if (MulC && !MulC->isOpaque() && !MulC->isZero() &&
+ !MulC->getAPIntValue().isPowerOf2()) {
+ APInt UnmaskedC = MulC->getAPIntValue() | HighMask;
+ if (UnmaskedC.isNegatedPowerOf2())
+ return (-UnmaskedC).logBase2();
+ }
+ return 0;
+ };
+
+ auto foldMul = [&](ISD::NodeType NT, SDValue X, SDValue Y,
+ unsigned ShlAmt) {
+ SDValue ShlAmtC = TLO.DAG.getShiftAmountConstant(ShlAmt, VT, dl);
+ SDValue Shl = TLO.DAG.getNode(ISD::SHL, dl, VT, X, ShlAmtC);
+ SDValue Res = TLO.DAG.getNode(NT, dl, VT, Y, Shl);
+ return TLO.CombineTo(Op, Res);
+ };
+
+ if (isOperationLegalOrCustom(ISD::SHL, VT)) {
+ if (Op.getOpcode() == ISD::ADD) {
+ // (X * MulC) + Op1 --> Op1 - (X << log2(-MulC))
+ if (unsigned ShAmt = getShiftLeftAmt(Op0))
+ return foldMul(ISD::SUB, Op0.getOperand(0), Op1, ShAmt);
+ // Op0 + (X * MulC) --> Op0 - (X << log2(-MulC))
+ if (unsigned ShAmt = getShiftLeftAmt(Op1))
+ return foldMul(ISD::SUB, Op1.getOperand(0), Op0, ShAmt);
+ }
+ if (Op.getOpcode() == ISD::SUB) {
+ // Op0 - (X * MulC) --> Op0 + (X << log2(-MulC))
+ if (unsigned ShAmt = getShiftLeftAmt(Op1))
+ return foldMul(ISD::ADD, Op1.getOperand(0), Op0, ShAmt);
+ }
+ }
+
+ if (Op.getOpcode() == ISD::MUL) {
+ Known = KnownBits::mul(KnownOp0, KnownOp1);
+ } else { // Op.getOpcode() is either ISD::ADD or ISD::SUB.
+ Known = KnownBits::computeForAddSub(
+ Op.getOpcode() == ISD::ADD, Flags.hasNoSignedWrap(),
+ Flags.hasNoUnsignedWrap(), KnownOp0, KnownOp1);
+ }
+ break;
+ }
+ default:
+ // We also ask the target about intrinsics (which could be specific to it).
+ if (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
+ Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN) {
+ // TODO: Probably okay to remove after audit; here to reduce change size
+ // in initial enablement patch for scalable vectors
+ if (Op.getValueType().isScalableVector())
+ break;
+ if (SimplifyDemandedBitsForTargetNode(Op, DemandedBits, DemandedElts,
+ Known, TLO, Depth))
+ return true;
+ break;
+ }
+
+ // Just use computeKnownBits to compute output bits.
+ Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
+ break;
+ }
+
+ // If we know the value of all of the demanded bits, return this as a
+ // constant.
+ if (!isTargetCanonicalConstantNode(Op) &&
+ DemandedBits.isSubsetOf(Known.Zero | Known.One)) {
+ // Avoid folding to a constant if any OpaqueConstant is involved.
+ const SDNode *N = Op.getNode();
+ for (SDNode *Op :
+ llvm::make_range(SDNodeIterator::begin(N), SDNodeIterator::end(N))) {
+ if (auto *C = dyn_cast<ConstantSDNode>(Op))
+ if (C->isOpaque())
+ return false;
+ }
+ if (VT.isInteger())
+ return TLO.CombineTo(Op, TLO.DAG.getConstant(Known.One, dl, VT));
+ if (VT.isFloatingPoint())
+ return TLO.CombineTo(
+ Op,
+ TLO.DAG.getConstantFP(
+ APFloat(TLO.DAG.EVTToAPFloatSemantics(VT), Known.One), dl, VT));
+ }
+
+ // A multi use 'all demanded elts' simplify failed to find any knownbits.
+ // Try again just for the original demanded elts.
+ // Ensure we do this AFTER constant folding above.
+ if (HasMultiUse && Known.isUnknown() && !OriginalDemandedElts.isAllOnes())
+ Known = TLO.DAG.computeKnownBits(Op, OriginalDemandedElts, Depth);
+
+ return false;
+}
+
+bool TargetLowering::SimplifyDemandedVectorElts(SDValue Op,
+ const APInt &DemandedElts,
+ DAGCombinerInfo &DCI) const {
+ SelectionDAG &DAG = DCI.DAG;
+ TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
+ !DCI.isBeforeLegalizeOps());
+
+ APInt KnownUndef, KnownZero;
+ bool Simplified =
+ SimplifyDemandedVectorElts(Op, DemandedElts, KnownUndef, KnownZero, TLO);
+ if (Simplified) {
+ DCI.AddToWorklist(Op.getNode());
+ DCI.CommitTargetLoweringOpt(TLO);
+ }
+
+ return Simplified;
+}
+
+/// Given a vector binary operation and known undefined elements for each input
+/// operand, compute whether each element of the output is undefined.
+static APInt getKnownUndefForVectorBinop(SDValue BO, SelectionDAG &DAG,
+ const APInt &UndefOp0,
+ const APInt &UndefOp1) {
+ EVT VT = BO.getValueType();
+ assert(DAG.getTargetLoweringInfo().isBinOp(BO.getOpcode()) && VT.isVector() &&
+ "Vector binop only");
+
+ EVT EltVT = VT.getVectorElementType();
+ unsigned NumElts = VT.isFixedLengthVector() ? VT.getVectorNumElements() : 1;
+ assert(UndefOp0.getBitWidth() == NumElts &&
+ UndefOp1.getBitWidth() == NumElts && "Bad type for undef analysis");
+
+ auto getUndefOrConstantElt = [&](SDValue V, unsigned Index,
+ const APInt &UndefVals) {
+ if (UndefVals[Index])
+ return DAG.getUNDEF(EltVT);
+
+ if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) {
+ // Try hard to make sure that the getNode() call is not creating temporary
+ // nodes. Ignore opaque integers because they do not constant fold.
+ SDValue Elt = BV->getOperand(Index);
+ auto *C = dyn_cast<ConstantSDNode>(Elt);
+ if (isa<ConstantFPSDNode>(Elt) || Elt.isUndef() || (C && !C->isOpaque()))
+ return Elt;
+ }
+
+ return SDValue();
+ };
+
+ APInt KnownUndef = APInt::getZero(NumElts);
+ for (unsigned i = 0; i != NumElts; ++i) {
+ // If both inputs for this element are either constant or undef and match
+ // the element type, compute the constant/undef result for this element of
+ // the vector.
+ // TODO: Ideally we would use FoldConstantArithmetic() here, but that does
+ // not handle FP constants. The code within getNode() should be refactored
+ // to avoid the danger of creating a bogus temporary node here.
+ SDValue C0 = getUndefOrConstantElt(BO.getOperand(0), i, UndefOp0);
+ SDValue C1 = getUndefOrConstantElt(BO.getOperand(1), i, UndefOp1);
+ if (C0 && C1 && C0.getValueType() == EltVT && C1.getValueType() == EltVT)
+ if (DAG.getNode(BO.getOpcode(), SDLoc(BO), EltVT, C0, C1).isUndef())
+ KnownUndef.setBit(i);
+ }
+ return KnownUndef;
+}
+
+bool TargetLowering::SimplifyDemandedVectorElts(
+ SDValue Op, const APInt &OriginalDemandedElts, APInt &KnownUndef,
+ APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth,
+ bool AssumeSingleUse) const {
+ EVT VT = Op.getValueType();
+ unsigned Opcode = Op.getOpcode();
+ APInt DemandedElts = OriginalDemandedElts;
+ unsigned NumElts = DemandedElts.getBitWidth();
+ assert(VT.isVector() && "Expected vector op");
+
+ KnownUndef = KnownZero = APInt::getZero(NumElts);
+
+ const TargetLowering &TLI = TLO.DAG.getTargetLoweringInfo();
+ if (!TLI.shouldSimplifyDemandedVectorElts(Op, TLO))
+ return false;
+
+ // TODO: For now we assume we know nothing about scalable vectors.
+ if (VT.isScalableVector())
+ return false;
+
+ assert(VT.getVectorNumElements() == NumElts &&
+ "Mask size mismatches value type element count!");
+
+ // Undef operand.
+ if (Op.isUndef()) {
+ KnownUndef.setAllBits();
+ return false;
+ }
+
+ // If Op has other users, assume that all elements are needed.
+ if (!AssumeSingleUse && !Op.getNode()->hasOneUse())
+ DemandedElts.setAllBits();
+
+ // Not demanding any elements from Op.
+ if (DemandedElts == 0) {
+ KnownUndef.setAllBits();
+ return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
+ }
+
+ // Limit search depth.
+ if (Depth >= SelectionDAG::MaxRecursionDepth)
+ return false;
+
+ SDLoc DL(Op);
+ unsigned EltSizeInBits = VT.getScalarSizeInBits();
+ bool IsLE = TLO.DAG.getDataLayout().isLittleEndian();
+
+ // Helper for demanding the specified elements and all the bits of both binary
+ // operands.
+ auto SimplifyDemandedVectorEltsBinOp = [&](SDValue Op0, SDValue Op1) {
+ SDValue NewOp0 = SimplifyMultipleUseDemandedVectorElts(Op0, DemandedElts,
+ TLO.DAG, Depth + 1);
+ SDValue NewOp1 = SimplifyMultipleUseDemandedVectorElts(Op1, DemandedElts,
+ TLO.DAG, Depth + 1);
+ if (NewOp0 || NewOp1) {
+ SDValue NewOp =
+ TLO.DAG.getNode(Opcode, SDLoc(Op), VT, NewOp0 ? NewOp0 : Op0,
+ NewOp1 ? NewOp1 : Op1, Op->getFlags());
+ return TLO.CombineTo(Op, NewOp);
+ }
+ return false;
+ };
+
+ switch (Opcode) {
+ case ISD::SCALAR_TO_VECTOR: {
+ if (!DemandedElts[0]) {
+ KnownUndef.setAllBits();
+ return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
+ }
+ SDValue ScalarSrc = Op.getOperand(0);
+ if (ScalarSrc.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
+ SDValue Src = ScalarSrc.getOperand(0);
+ SDValue Idx = ScalarSrc.getOperand(1);
+ EVT SrcVT = Src.getValueType();
+
+ ElementCount SrcEltCnt = SrcVT.getVectorElementCount();
+
+ if (SrcEltCnt.isScalable())
+ return false;
+
+ unsigned NumSrcElts = SrcEltCnt.getFixedValue();
+ if (isNullConstant(Idx)) {
+ APInt SrcDemandedElts = APInt::getOneBitSet(NumSrcElts, 0);
+ APInt SrcUndef = KnownUndef.zextOrTrunc(NumSrcElts);
+ APInt SrcZero = KnownZero.zextOrTrunc(NumSrcElts);
+ if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
+ TLO, Depth + 1))
+ return true;
+ }
+ }
+ KnownUndef.setHighBits(NumElts - 1);
+ break;
+ }
+ case ISD::BITCAST: {
+ SDValue Src = Op.getOperand(0);
+ EVT SrcVT = Src.getValueType();
+
+ // We only handle vectors here.
+ // TODO - investigate calling SimplifyDemandedBits/ComputeKnownBits?
+ if (!SrcVT.isVector())
+ break;
+
+ // Fast handling of 'identity' bitcasts.
+ unsigned NumSrcElts = SrcVT.getVectorNumElements();
+ if (NumSrcElts == NumElts)
+ return SimplifyDemandedVectorElts(Src, DemandedElts, KnownUndef,
+ KnownZero, TLO, Depth + 1);
+
+ APInt SrcDemandedElts, SrcZero, SrcUndef;
+
+ // Bitcast from 'large element' src vector to 'small element' vector, we
+ // must demand a source element if any DemandedElt maps to it.
+ if ((NumElts % NumSrcElts) == 0) {
+ unsigned Scale = NumElts / NumSrcElts;
+ SrcDemandedElts = APIntOps::ScaleBitMask(DemandedElts, NumSrcElts);
+ if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
+ TLO, Depth + 1))
+ return true;
+
+ // Try calling SimplifyDemandedBits, converting demanded elts to the bits
+ // of the large element.
+ // TODO - bigendian once we have test coverage.
+ if (IsLE) {
+ unsigned SrcEltSizeInBits = SrcVT.getScalarSizeInBits();
+ APInt SrcDemandedBits = APInt::getZero(SrcEltSizeInBits);
+ for (unsigned i = 0; i != NumElts; ++i)
+ if (DemandedElts[i]) {
+ unsigned Ofs = (i % Scale) * EltSizeInBits;
+ SrcDemandedBits.setBits(Ofs, Ofs + EltSizeInBits);
+ }
+
+ KnownBits Known;
+ if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcDemandedElts, Known,
+ TLO, Depth + 1))
+ return true;
+
+ // The bitcast has split each wide element into a number of
+ // narrow subelements. We have just computed the Known bits
+ // for wide elements. See if element splitting results in
+ // some subelements being zero. Only for demanded elements!
+ for (unsigned SubElt = 0; SubElt != Scale; ++SubElt) {
+ if (!Known.Zero.extractBits(EltSizeInBits, SubElt * EltSizeInBits)
+ .isAllOnes())
+ continue;
+ for (unsigned SrcElt = 0; SrcElt != NumSrcElts; ++SrcElt) {
+ unsigned Elt = Scale * SrcElt + SubElt;
+ if (DemandedElts[Elt])
+ KnownZero.setBit(Elt);
+ }
+ }
+ }
+
+ // If the src element is zero/undef then all the output elements will be -
+ // only demanded elements are guaranteed to be correct.
+ for (unsigned i = 0; i != NumSrcElts; ++i) {
+ if (SrcDemandedElts[i]) {
+ if (SrcZero[i])
+ KnownZero.setBits(i * Scale, (i + 1) * Scale);
+ if (SrcUndef[i])
+ KnownUndef.setBits(i * Scale, (i + 1) * Scale);
+ }
+ }
+ }
+
+ // Bitcast from 'small element' src vector to 'large element' vector, we
+ // demand all smaller source elements covered by the larger demanded element
+ // of this vector.
+ if ((NumSrcElts % NumElts) == 0) {
+ unsigned Scale = NumSrcElts / NumElts;
+ SrcDemandedElts = APIntOps::ScaleBitMask(DemandedElts, NumSrcElts);
+ if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
+ TLO, Depth + 1))
+ return true;
+
+ // If all the src elements covering an output element are zero/undef, then
+ // the output element will be as well, assuming it was demanded.
+ for (unsigned i = 0; i != NumElts; ++i) {
+ if (DemandedElts[i]) {
+ if (SrcZero.extractBits(Scale, i * Scale).isAllOnes())
+ KnownZero.setBit(i);
+ if (SrcUndef.extractBits(Scale, i * Scale).isAllOnes())
+ KnownUndef.setBit(i);
+ }
+ }
+ }
+ break;
+ }
+ case ISD::FREEZE: {
+ SDValue N0 = Op.getOperand(0);
+ if (TLO.DAG.isGuaranteedNotToBeUndefOrPoison(N0, DemandedElts,
+ /*PoisonOnly=*/false))
+ return TLO.CombineTo(Op, N0);
+
+ // TODO: Replace this with the general fold from DAGCombiner::visitFREEZE
+ // freeze(op(x, ...)) -> op(freeze(x), ...).
+ if (N0.getOpcode() == ISD::SCALAR_TO_VECTOR && DemandedElts == 1)
+ return TLO.CombineTo(
+ Op, TLO.DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VT,
+ TLO.DAG.getFreeze(N0.getOperand(0))));
+ break;
+ }
+ case ISD::BUILD_VECTOR: {
+ // Check all elements and simplify any unused elements with UNDEF.
+ if (!DemandedElts.isAllOnes()) {
+ // Don't simplify BROADCASTS.
+ if (llvm::any_of(Op->op_values(),
+ [&](SDValue Elt) { return Op.getOperand(0) != Elt; })) {
+ SmallVector<SDValue, 32> Ops(Op->op_begin(), Op->op_end());
+ bool Updated = false;
+ for (unsigned i = 0; i != NumElts; ++i) {
+ if (!DemandedElts[i] && !Ops[i].isUndef()) {
+ Ops[i] = TLO.DAG.getUNDEF(Ops[0].getValueType());
+ KnownUndef.setBit(i);
+ Updated = true;
+ }
+ }
+ if (Updated)
+ return TLO.CombineTo(Op, TLO.DAG.getBuildVector(VT, DL, Ops));
+ }
+ }
+ for (unsigned i = 0; i != NumElts; ++i) {
+ SDValue SrcOp = Op.getOperand(i);
+ if (SrcOp.isUndef()) {
+ KnownUndef.setBit(i);
+ } else if (EltSizeInBits == SrcOp.getScalarValueSizeInBits() &&
+ (isNullConstant(SrcOp) || isNullFPConstant(SrcOp))) {
+ KnownZero.setBit(i);
+ }
+ }
+ break;
+ }
+ case ISD::CONCAT_VECTORS: {
+ EVT SubVT = Op.getOperand(0).getValueType();
+ unsigned NumSubVecs = Op.getNumOperands();
+ unsigned NumSubElts = SubVT.getVectorNumElements();
+ for (unsigned i = 0; i != NumSubVecs; ++i) {
+ SDValue SubOp = Op.getOperand(i);
+ APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts);
+ APInt SubUndef, SubZero;
+ if (SimplifyDemandedVectorElts(SubOp, SubElts, SubUndef, SubZero, TLO,
+ Depth + 1))
+ return true;
+ KnownUndef.insertBits(SubUndef, i * NumSubElts);
+ KnownZero.insertBits(SubZero, i * NumSubElts);
+ }
+
+ // Attempt to avoid multi-use ops if we don't need anything from them.
+ if (!DemandedElts.isAllOnes()) {
+ bool FoundNewSub = false;
+ SmallVector<SDValue, 2> DemandedSubOps;
+ for (unsigned i = 0; i != NumSubVecs; ++i) {
+ SDValue SubOp = Op.getOperand(i);
+ APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts);
+ SDValue NewSubOp = SimplifyMultipleUseDemandedVectorElts(
+ SubOp, SubElts, TLO.DAG, Depth + 1);
+ DemandedSubOps.push_back(NewSubOp ? NewSubOp : SubOp);
+ FoundNewSub = NewSubOp ? true : FoundNewSub;
+ }
+ if (FoundNewSub) {
+ SDValue NewOp =
+ TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, DemandedSubOps);
+ return TLO.CombineTo(Op, NewOp);
+ }
+ }
+ break;
+ }
+ case ISD::INSERT_SUBVECTOR: {
+ // Demand any elements from the subvector and the remainder from the src its
+ // inserted into.
+ SDValue Src = Op.getOperand(0);
+ SDValue Sub = Op.getOperand(1);
+ uint64_t Idx = Op.getConstantOperandVal(2);
+ unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
+ APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
+ APInt DemandedSrcElts = DemandedElts;
+ DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx);
+
+ APInt SubUndef, SubZero;
+ if (SimplifyDemandedVectorElts(Sub, DemandedSubElts, SubUndef, SubZero, TLO,
+ Depth + 1))
+ return true;
+
+ // If none of the src operand elements are demanded, replace it with undef.
+ if (!DemandedSrcElts && !Src.isUndef())
+ return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT,
+ TLO.DAG.getUNDEF(VT), Sub,
+ Op.getOperand(2)));
+
+ if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownUndef, KnownZero,
+ TLO, Depth + 1))
+ return true;
+ KnownUndef.insertBits(SubUndef, Idx);
+ KnownZero.insertBits(SubZero, Idx);
+
+ // Attempt to avoid multi-use ops if we don't need anything from them.
+ if (!DemandedSrcElts.isAllOnes() || !DemandedSubElts.isAllOnes()) {
+ SDValue NewSrc = SimplifyMultipleUseDemandedVectorElts(
+ Src, DemandedSrcElts, TLO.DAG, Depth + 1);
+ SDValue NewSub = SimplifyMultipleUseDemandedVectorElts(
+ Sub, DemandedSubElts, TLO.DAG, Depth + 1);
+ if (NewSrc || NewSub) {
+ NewSrc = NewSrc ? NewSrc : Src;
+ NewSub = NewSub ? NewSub : Sub;
+ SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc,
+ NewSub, Op.getOperand(2));
+ return TLO.CombineTo(Op, NewOp);
+ }
+ }
+ break;
+ }
+ case ISD::EXTRACT_SUBVECTOR: {
+ // Offset the demanded elts by the subvector index.
+ SDValue Src = Op.getOperand(0);
+ if (Src.getValueType().isScalableVector())
+ break;
+ uint64_t Idx = Op.getConstantOperandVal(1);
+ unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
+ APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts).shl(Idx);
+
+ APInt SrcUndef, SrcZero;
+ if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO,
+ Depth + 1))
+ return true;
+ KnownUndef = SrcUndef.extractBits(NumElts, Idx);
+ KnownZero = SrcZero.extractBits(NumElts, Idx);
+
+ // Attempt to avoid multi-use ops if we don't need anything from them.
+ if (!DemandedElts.isAllOnes()) {
+ SDValue NewSrc = SimplifyMultipleUseDemandedVectorElts(
+ Src, DemandedSrcElts, TLO.DAG, Depth + 1);
+ if (NewSrc) {
+ SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc,
+ Op.getOperand(1));
+ return TLO.CombineTo(Op, NewOp);
+ }
+ }
+ break;
+ }
+ case ISD::INSERT_VECTOR_ELT: {
+ SDValue Vec = Op.getOperand(0);
+ SDValue Scl = Op.getOperand(1);
+ auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
+
+ // For a legal, constant insertion index, if we don't need this insertion
+ // then strip it, else remove it from the demanded elts.
+ if (CIdx && CIdx->getAPIntValue().ult(NumElts)) {
+ unsigned Idx = CIdx->getZExtValue();
+ if (!DemandedElts[Idx])
+ return TLO.CombineTo(Op, Vec);
+
+ APInt DemandedVecElts(DemandedElts);
+ DemandedVecElts.clearBit(Idx);
+ if (SimplifyDemandedVectorElts(Vec, DemandedVecElts, KnownUndef,
+ KnownZero, TLO, Depth + 1))
+ return true;
+
+ KnownUndef.setBitVal(Idx, Scl.isUndef());
+
+ KnownZero.setBitVal(Idx, isNullConstant(Scl) || isNullFPConstant(Scl));
+ break;
+ }
+
+ APInt VecUndef, VecZero;
+ if (SimplifyDemandedVectorElts(Vec, DemandedElts, VecUndef, VecZero, TLO,
+ Depth + 1))
+ return true;
+ // Without knowing the insertion index we can't set KnownUndef/KnownZero.
+ break;
+ }
+ case ISD::VSELECT: {
+ SDValue Sel = Op.getOperand(0);
+ SDValue LHS = Op.getOperand(1);
+ SDValue RHS = Op.getOperand(2);
+
+ // Try to transform the select condition based on the current demanded
+ // elements.
+ APInt UndefSel, ZeroSel;
+ if (SimplifyDemandedVectorElts(Sel, DemandedElts, UndefSel, ZeroSel, TLO,
+ Depth + 1))
+ return true;
+
+ // See if we can simplify either vselect operand.
+ APInt DemandedLHS(DemandedElts);
+ APInt DemandedRHS(DemandedElts);
+ APInt UndefLHS, ZeroLHS;
+ APInt UndefRHS, ZeroRHS;
+ if (SimplifyDemandedVectorElts(LHS, DemandedLHS, UndefLHS, ZeroLHS, TLO,
+ Depth + 1))
+ return true;
+ if (SimplifyDemandedVectorElts(RHS, DemandedRHS, UndefRHS, ZeroRHS, TLO,
+ Depth + 1))
+ return true;
+
+ KnownUndef = UndefLHS & UndefRHS;
+ KnownZero = ZeroLHS & ZeroRHS;
+
+ // If we know that the selected element is always zero, we don't need the
+ // select value element.
+ APInt DemandedSel = DemandedElts & ~KnownZero;
+ if (DemandedSel != DemandedElts)
+ if (SimplifyDemandedVectorElts(Sel, DemandedSel, UndefSel, ZeroSel, TLO,
+ Depth + 1))
+ return true;
+
+ break;
+ }
+ case ISD::VECTOR_SHUFFLE: {
+ SDValue LHS = Op.getOperand(0);
+ SDValue RHS = Op.getOperand(1);
+ ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
+
+ // Collect demanded elements from shuffle operands..
+ APInt DemandedLHS(NumElts, 0);
+ APInt DemandedRHS(NumElts, 0);
+ for (unsigned i = 0; i != NumElts; ++i) {
+ int M = ShuffleMask[i];
+ if (M < 0 || !DemandedElts[i])
+ continue;
+ assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range");
+ if (M < (int)NumElts)
+ DemandedLHS.setBit(M);
+ else
+ DemandedRHS.setBit(M - NumElts);
+ }
+
+ // See if we can simplify either shuffle operand.
+ APInt UndefLHS, ZeroLHS;
+ APInt UndefRHS, ZeroRHS;
+ if (SimplifyDemandedVectorElts(LHS, DemandedLHS, UndefLHS, ZeroLHS, TLO,
+ Depth + 1))
+ return true;
+ if (SimplifyDemandedVectorElts(RHS, DemandedRHS, UndefRHS, ZeroRHS, TLO,
+ Depth + 1))
+ return true;
+
+ // Simplify mask using undef elements from LHS/RHS.
+ bool Updated = false;
+ bool IdentityLHS = true, IdentityRHS = true;
+ SmallVector<int, 32> NewMask(ShuffleMask);
+ for (unsigned i = 0; i != NumElts; ++i) {
+ int &M = NewMask[i];
+ if (M < 0)
+ continue;
+ if (!DemandedElts[i] || (M < (int)NumElts && UndefLHS[M]) ||
+ (M >= (int)NumElts && UndefRHS[M - NumElts])) {
+ Updated = true;
+ M = -1;
+ }
+ IdentityLHS &= (M < 0) || (M == (int)i);
+ IdentityRHS &= (M < 0) || ((M - NumElts) == i);
+ }
+
+ // Update legal shuffle masks based on demanded elements if it won't reduce
+ // to Identity which can cause premature removal of the shuffle mask.
+ if (Updated && !IdentityLHS && !IdentityRHS && !TLO.LegalOps) {
+ SDValue LegalShuffle =
+ buildLegalVectorShuffle(VT, DL, LHS, RHS, NewMask, TLO.DAG);
+ if (LegalShuffle)
+ return TLO.CombineTo(Op, LegalShuffle);
+ }
+
+ // Propagate undef/zero elements from LHS/RHS.
+ for (unsigned i = 0; i != NumElts; ++i) {
+ int M = ShuffleMask[i];
+ if (M < 0) {
+ KnownUndef.setBit(i);
+ } else if (M < (int)NumElts) {
+ if (UndefLHS[M])
+ KnownUndef.setBit(i);
+ if (ZeroLHS[M])
+ KnownZero.setBit(i);
+ } else {
+ if (UndefRHS[M - NumElts])
+ KnownUndef.setBit(i);
+ if (ZeroRHS[M - NumElts])
+ KnownZero.setBit(i);
+ }
+ }
+ break;
+ }
+ case ISD::ANY_EXTEND_VECTOR_INREG:
+ case ISD::SIGN_EXTEND_VECTOR_INREG:
+ case ISD::ZERO_EXTEND_VECTOR_INREG: {
+ APInt SrcUndef, SrcZero;
+ SDValue Src = Op.getOperand(0);
+ unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
+ APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts);
+ if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO,
+ Depth + 1))
+ return true;
+ KnownZero = SrcZero.zextOrTrunc(NumElts);
+ KnownUndef = SrcUndef.zextOrTrunc(NumElts);
+
+ if (IsLE && Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG &&
+ Op.getValueSizeInBits() == Src.getValueSizeInBits() &&
+ DemandedSrcElts == 1) {
+ // aext - if we just need the bottom element then we can bitcast.
+ return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
+ }
+
+ if (Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG) {
+ // zext(undef) upper bits are guaranteed to be zero.
+ if (DemandedElts.isSubsetOf(KnownUndef))
+ return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT));
+ KnownUndef.clearAllBits();
+
+ // zext - if we just need the bottom element then we can mask:
+ // zext(and(x,c)) -> and(x,c') iff the zext is the only user of the and.
+ if (IsLE && DemandedSrcElts == 1 && Src.getOpcode() == ISD::AND &&
+ Op->isOnlyUserOf(Src.getNode()) &&
+ Op.getValueSizeInBits() == Src.getValueSizeInBits()) {
+ SDLoc DL(Op);
+ EVT SrcVT = Src.getValueType();
+ EVT SrcSVT = SrcVT.getScalarType();
+ SmallVector<SDValue> MaskElts;
+ MaskElts.push_back(TLO.DAG.getAllOnesConstant(DL, SrcSVT));
+ MaskElts.append(NumSrcElts - 1, TLO.DAG.getConstant(0, DL, SrcSVT));
+ SDValue Mask = TLO.DAG.getBuildVector(SrcVT, DL, MaskElts);
+ if (SDValue Fold = TLO.DAG.FoldConstantArithmetic(
+ ISD::AND, DL, SrcVT, {Src.getOperand(1), Mask})) {
+ Fold = TLO.DAG.getNode(ISD::AND, DL, SrcVT, Src.getOperand(0), Fold);
+ return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Fold));
+ }
+ }
+ }
+ break;
+ }
+
+ // TODO: There are more binop opcodes that could be handled here - MIN,
+ // MAX, saturated math, etc.
+ case ISD::ADD: {
+ SDValue Op0 = Op.getOperand(0);
+ SDValue Op1 = Op.getOperand(1);
+ if (Op0 == Op1 && Op->isOnlyUserOf(Op0.getNode())) {
+ APInt UndefLHS, ZeroLHS;
+ if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO,
+ Depth + 1, /*AssumeSingleUse*/ true))
+ return true;
+ }
+ [[fallthrough]];
+ }
+ case ISD::AVGCEILS:
+ case ISD::AVGCEILU:
+ case ISD::AVGFLOORS:
+ case ISD::AVGFLOORU:
+ case ISD::OR:
+ case ISD::XOR:
+ case ISD::SUB:
+ case ISD::FADD:
+ case ISD::FSUB:
+ case ISD::FMUL:
+ case ISD::FDIV:
+ case ISD::FREM: {
+ SDValue Op0 = Op.getOperand(0);
+ SDValue Op1 = Op.getOperand(1);
+
+ APInt UndefRHS, ZeroRHS;
+ if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO,
+ Depth + 1))
+ return true;
+ APInt UndefLHS, ZeroLHS;
+ if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO,
+ Depth + 1))
+ return true;
+
+ KnownZero = ZeroLHS & ZeroRHS;
+ KnownUndef = getKnownUndefForVectorBinop(Op, TLO.DAG, UndefLHS, UndefRHS);
+
+ // Attempt to avoid multi-use ops if we don't need anything from them.
+ // TODO - use KnownUndef to relax the demandedelts?
+ if (!DemandedElts.isAllOnes())
+ if (SimplifyDemandedVectorEltsBinOp(Op0, Op1))
+ return true;
+ break;
+ }
+ case ISD::SHL:
+ case ISD::SRL:
+ case ISD::SRA:
+ case ISD::ROTL:
+ case ISD::ROTR: {
+ SDValue Op0 = Op.getOperand(0);
+ SDValue Op1 = Op.getOperand(1);
+
+ APInt UndefRHS, ZeroRHS;
+ if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO,
+ Depth + 1))
+ return true;
+ APInt UndefLHS, ZeroLHS;
+ if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO,
+ Depth + 1))
+ return true;
+
+ KnownZero = ZeroLHS;
+ KnownUndef = UndefLHS & UndefRHS; // TODO: use getKnownUndefForVectorBinop?
+
+ // Attempt to avoid multi-use ops if we don't need anything from them.
+ // TODO - use KnownUndef to relax the demandedelts?
+ if (!DemandedElts.isAllOnes())
+ if (SimplifyDemandedVectorEltsBinOp(Op0, Op1))
+ return true;
+ break;
+ }
+ case ISD::MUL:
+ case ISD::MULHU:
+ case ISD::MULHS:
+ case ISD::AND: {
+ SDValue Op0 = Op.getOperand(0);
+ SDValue Op1 = Op.getOperand(1);
+
+ APInt SrcUndef, SrcZero;
+ if (SimplifyDemandedVectorElts(Op1, DemandedElts, SrcUndef, SrcZero, TLO,
+ Depth + 1))
+ return true;
+ // If we know that a demanded element was zero in Op1 we don't need to
+ // demand it in Op0 - its guaranteed to be zero.
+ APInt DemandedElts0 = DemandedElts & ~SrcZero;
+ if (SimplifyDemandedVectorElts(Op0, DemandedElts0, KnownUndef, KnownZero,
+ TLO, Depth + 1))
+ return true;
+
+ KnownUndef &= DemandedElts0;
+ KnownZero &= DemandedElts0;
+
+ // If every element pair has a zero/undef then just fold to zero.
+ // fold (and x, undef) -> 0 / (and x, 0) -> 0
+ // fold (mul x, undef) -> 0 / (mul x, 0) -> 0
+ if (DemandedElts.isSubsetOf(SrcZero | KnownZero | SrcUndef | KnownUndef))
+ return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT));
+
+ // If either side has a zero element, then the result element is zero, even
+ // if the other is an UNDEF.
+ // TODO: Extend getKnownUndefForVectorBinop to also deal with known zeros
+ // and then handle 'and' nodes with the rest of the binop opcodes.
+ KnownZero |= SrcZero;
+ KnownUndef &= SrcUndef;
+ KnownUndef &= ~KnownZero;
+
+ // Attempt to avoid multi-use ops if we don't need anything from them.
+ if (!DemandedElts.isAllOnes())
+ if (SimplifyDemandedVectorEltsBinOp(Op0, Op1))
+ return true;
+ break;
+ }
+ case ISD::TRUNCATE:
+ case ISD::SIGN_EXTEND:
+ case ISD::ZERO_EXTEND:
+ if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef,
+ KnownZero, TLO, Depth + 1))
+ return true;
+
+ if (Op.getOpcode() == ISD::ZERO_EXTEND) {
+ // zext(undef) upper bits are guaranteed to be zero.
+ if (DemandedElts.isSubsetOf(KnownUndef))
+ return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT));
+ KnownUndef.clearAllBits();
+ }
+ break;
+ default: {
+ if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
+ if (SimplifyDemandedVectorEltsForTargetNode(Op, DemandedElts, KnownUndef,
+ KnownZero, TLO, Depth))
+ return true;
+ } else {
+ KnownBits Known;
+ APInt DemandedBits = APInt::getAllOnes(EltSizeInBits);
+ if (SimplifyDemandedBits(Op, DemandedBits, OriginalDemandedElts, Known,
+ TLO, Depth, AssumeSingleUse))
+ return true;
+ }
+ break;
+ }
+ }
+ assert((KnownUndef & KnownZero) == 0 && "Elements flagged as undef AND zero");
+
+ // Constant fold all undef cases.
+ // TODO: Handle zero cases as well.
+ if (DemandedElts.isSubsetOf(KnownUndef))
+ return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
+
+ return false;
+}
+
+/// Determine which of the bits specified in Mask are known to be either zero or
+/// one and return them in the Known.
+void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
+ KnownBits &Known,
+ const APInt &DemandedElts,
+ const SelectionDAG &DAG,
+ unsigned Depth) const {
+ assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
+ Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
+ Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
+ Op.getOpcode() == ISD::INTRINSIC_VOID) &&
+ "Should use MaskedValueIsZero if you don't know whether Op"
+ " is a target node!");
+ Known.resetAll();
+}
+
+void TargetLowering::computeKnownBitsForTargetInstr(
+ GISelKnownBits &Analysis, Register R, KnownBits &Known,
+ const APInt &DemandedElts, const MachineRegisterInfo &MRI,
+ unsigned Depth) const {
+ Known.resetAll();
+}
+
+void TargetLowering::computeKnownBitsForFrameIndex(
+ const int FrameIdx, KnownBits &Known, const MachineFunction &MF) const {
+ // The low bits are known zero if the pointer is aligned.
+ Known.Zero.setLowBits(Log2(MF.getFrameInfo().getObjectAlign(FrameIdx)));
+}
+
+Align TargetLowering::computeKnownAlignForTargetInstr(
+ GISelKnownBits &Analysis, Register R, const MachineRegisterInfo &MRI,
+ unsigned Depth) const {
+ return Align(1);
+}
+
+/// This method can be implemented by targets that want to expose additional
+/// information about sign bits to the DAG Combiner.
+unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
+ const APInt &,
+ const SelectionDAG &,
+ unsigned Depth) const {
+ assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
+ Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
+ Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
+ Op.getOpcode() == ISD::INTRINSIC_VOID) &&
+ "Should use ComputeNumSignBits if you don't know whether Op"
+ " is a target node!");
+ return 1;
+}
+
+unsigned TargetLowering::computeNumSignBitsForTargetInstr(
+ GISelKnownBits &Analysis, Register R, const APInt &DemandedElts,
+ const MachineRegisterInfo &MRI, unsigned Depth) const {
+ return 1;
+}
+
+bool TargetLowering::SimplifyDemandedVectorEltsForTargetNode(
+ SDValue Op, const APInt &DemandedElts, APInt &KnownUndef, APInt &KnownZero,
+ TargetLoweringOpt &TLO, unsigned Depth) const {
+ assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
+ Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
+ Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
+ Op.getOpcode() == ISD::INTRINSIC_VOID) &&
+ "Should use SimplifyDemandedVectorElts if you don't know whether Op"
+ " is a target node!");
+ return false;
+}
+
+bool TargetLowering::SimplifyDemandedBitsForTargetNode(
+ SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
+ KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth) const {
+ assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
+ Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
+ Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
+ Op.getOpcode() == ISD::INTRINSIC_VOID) &&
+ "Should use SimplifyDemandedBits if you don't know whether Op"
+ " is a target node!");
+ computeKnownBitsForTargetNode(Op, Known, DemandedElts, TLO.DAG, Depth);
+ return false;
+}
+
+SDValue TargetLowering::SimplifyMultipleUseDemandedBitsForTargetNode(
+ SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
+ SelectionDAG &DAG, unsigned Depth) const {
+ assert(
+ (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
+ Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
+ Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
+ Op.getOpcode() == ISD::INTRINSIC_VOID) &&
+ "Should use SimplifyMultipleUseDemandedBits if you don't know whether Op"
+ " is a target node!");
+ return SDValue();
+}
+
+SDValue
+TargetLowering::buildLegalVectorShuffle(EVT VT, const SDLoc &DL, SDValue N0,
+ SDValue N1, MutableArrayRef<int> Mask,
+ SelectionDAG &DAG) const {
+ bool LegalMask = isShuffleMaskLegal(Mask, VT);
+ if (!LegalMask) {
+ std::swap(N0, N1);
+ ShuffleVectorSDNode::commuteMask(Mask);
+ LegalMask = isShuffleMaskLegal(Mask, VT);
+ }
+
+ if (!LegalMask)
+ return SDValue();
+
+ return DAG.getVectorShuffle(VT, DL, N0, N1, Mask);
+}
+
+const Constant *TargetLowering::getTargetConstantFromLoad(LoadSDNode*) const {
+ return nullptr;
+}
+
+bool TargetLowering::isGuaranteedNotToBeUndefOrPoisonForTargetNode(
+ SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG,
+ bool PoisonOnly, unsigned Depth) const {
+ assert(
+ (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
+ Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
+ Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
+ Op.getOpcode() == ISD::INTRINSIC_VOID) &&
+ "Should use isGuaranteedNotToBeUndefOrPoison if you don't know whether Op"
+ " is a target node!");
+
+ // If Op can't create undef/poison and none of its operands are undef/poison
+ // then Op is never undef/poison.
+ return !canCreateUndefOrPoisonForTargetNode(Op, DemandedElts, DAG, PoisonOnly,
+ /*ConsiderFlags*/ true, Depth) &&
+ all_of(Op->ops(), [&](SDValue V) {
+ return DAG.isGuaranteedNotToBeUndefOrPoison(V, PoisonOnly,
+ Depth + 1);
+ });
+}
+
+bool TargetLowering::canCreateUndefOrPoisonForTargetNode(
+ SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG,
+ bool PoisonOnly, bool ConsiderFlags, unsigned Depth) const {
+ assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
+ Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
+ Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
+ Op.getOpcode() == ISD::INTRINSIC_VOID) &&
+ "Should use canCreateUndefOrPoison if you don't know whether Op"
+ " is a target node!");
+ // Be conservative and return true.
+ return true;
+}
+
+bool TargetLowering::isKnownNeverNaNForTargetNode(SDValue Op,
+ const SelectionDAG &DAG,
+ bool SNaN,
+ unsigned Depth) const {
+ assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
+ Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
+ Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
+ Op.getOpcode() == ISD::INTRINSIC_VOID) &&
+ "Should use isKnownNeverNaN if you don't know whether Op"
+ " is a target node!");
+ return false;
+}
+
+bool TargetLowering::isSplatValueForTargetNode(SDValue Op,
+ const APInt &DemandedElts,
+ APInt &UndefElts,
+ const SelectionDAG &DAG,
+ unsigned Depth) const {
+ assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
+ Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
+ Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
+ Op.getOpcode() == ISD::INTRINSIC_VOID) &&
+ "Should use isSplatValue if you don't know whether Op"
+ " is a target node!");
+ return false;
+}
+
+// FIXME: Ideally, this would use ISD::isConstantSplatVector(), but that must
+// work with truncating build vectors and vectors with elements of less than
+// 8 bits.
+bool TargetLowering::isConstTrueVal(SDValue N) const {
+ if (!N)
+ return false;
+
+ unsigned EltWidth;
+ APInt CVal;
+ if (ConstantSDNode *CN = isConstOrConstSplat(N, /*AllowUndefs=*/false,
+ /*AllowTruncation=*/true)) {
+ CVal = CN->getAPIntValue();
+ EltWidth = N.getValueType().getScalarSizeInBits();
+ } else
+ return false;
+
+ // If this is a truncating splat, truncate the splat value.
+ // Otherwise, we may fail to match the expected values below.
+ if (EltWidth < CVal.getBitWidth())
+ CVal = CVal.trunc(EltWidth);
+
+ switch (getBooleanContents(N.getValueType())) {
+ case UndefinedBooleanContent:
+ return CVal[0];
+ case ZeroOrOneBooleanContent:
+ return CVal.isOne();
+ case ZeroOrNegativeOneBooleanContent:
+ return CVal.isAllOnes();
+ }
+
+ llvm_unreachable("Invalid boolean contents");
+}
+
+bool TargetLowering::isConstFalseVal(SDValue N) const {
+ if (!N)
+ return false;
+
+ const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N);
+ if (!CN) {
+ const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N);
+ if (!BV)
+ return false;
+
+ // Only interested in constant splats, we don't care about undef
+ // elements in identifying boolean constants and getConstantSplatNode
+ // returns NULL if all ops are undef;
+ CN = BV->getConstantSplatNode();
+ if (!CN)
+ return false;
+ }
+
+ if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent)
+ return !CN->getAPIntValue()[0];
+
+ return CN->isZero();
+}
+
+bool TargetLowering::isExtendedTrueVal(const ConstantSDNode *N, EVT VT,
+ bool SExt) const {
+ if (VT == MVT::i1)
+ return N->isOne();
+
+ TargetLowering::BooleanContent Cnt = getBooleanContents(VT);
+ switch (Cnt) {
+ case TargetLowering::ZeroOrOneBooleanContent:
+ // An extended value of 1 is always true, unless its original type is i1,
+ // in which case it will be sign extended to -1.
+ return (N->isOne() && !SExt) || (SExt && (N->getValueType(0) != MVT::i1));
+ case TargetLowering::UndefinedBooleanContent:
+ case TargetLowering::ZeroOrNegativeOneBooleanContent:
+ return N->isAllOnes() && SExt;
+ }
+ llvm_unreachable("Unexpected enumeration.");
+}
+
+/// This helper function of SimplifySetCC tries to optimize the comparison when
+/// either operand of the SetCC node is a bitwise-and instruction.
+SDValue TargetLowering::foldSetCCWithAnd(EVT VT, SDValue N0, SDValue N1,
+ ISD::CondCode Cond, const SDLoc &DL,
+ DAGCombinerInfo &DCI) const {
+ if (N1.getOpcode() == ISD::AND && N0.getOpcode() != ISD::AND)
+ std::swap(N0, N1);
+
+ SelectionDAG &DAG = DCI.DAG;
+ EVT OpVT = N0.getValueType();
+ if (N0.getOpcode() != ISD::AND || !OpVT.isInteger() ||
+ (Cond != ISD::SETEQ && Cond != ISD::SETNE))
+ return SDValue();
+
+ // (X & Y) != 0 --> zextOrTrunc(X & Y)
+ // iff everything but LSB is known zero:
+ if (Cond == ISD::SETNE && isNullConstant(N1) &&
+ (getBooleanContents(OpVT) == TargetLowering::UndefinedBooleanContent ||
+ getBooleanContents(OpVT) == TargetLowering::ZeroOrOneBooleanContent)) {
+ unsigned NumEltBits = OpVT.getScalarSizeInBits();
+ APInt UpperBits = APInt::getHighBitsSet(NumEltBits, NumEltBits - 1);
+ if (DAG.MaskedValueIsZero(N0, UpperBits))
+ return DAG.getBoolExtOrTrunc(N0, DL, VT, OpVT);
+ }
+
+ // Try to eliminate a power-of-2 mask constant by converting to a signbit
+ // test in a narrow type that we can truncate to with no cost. Examples:
+ // (i32 X & 32768) == 0 --> (trunc X to i16) >= 0
+ // (i32 X & 32768) != 0 --> (trunc X to i16) < 0
+ // TODO: This conservatively checks for type legality on the source and
+ // destination types. That may inhibit optimizations, but it also
+ // allows setcc->shift transforms that may be more beneficial.
+ auto *AndC = dyn_cast<ConstantSDNode>(N0.getOperand(1));
+ if (AndC && isNullConstant(N1) && AndC->getAPIntValue().isPowerOf2() &&
+ isTypeLegal(OpVT) && N0.hasOneUse()) {
+ EVT NarrowVT = EVT::getIntegerVT(*DAG.getContext(),
+ AndC->getAPIntValue().getActiveBits());
+ if (isTruncateFree(OpVT, NarrowVT) && isTypeLegal(NarrowVT)) {
+ SDValue Trunc = DAG.getZExtOrTrunc(N0.getOperand(0), DL, NarrowVT);
+ SDValue Zero = DAG.getConstant(0, DL, NarrowVT);
+ return DAG.getSetCC(DL, VT, Trunc, Zero,
+ Cond == ISD::SETEQ ? ISD::SETGE : ISD::SETLT);
+ }
+ }
+
+ // Match these patterns in any of their permutations:
+ // (X & Y) == Y
+ // (X & Y) != Y
+ SDValue X, Y;
+ if (N0.getOperand(0) == N1) {
+ X = N0.getOperand(1);
+ Y = N0.getOperand(0);
+ } else if (N0.getOperand(1) == N1) {
+ X = N0.getOperand(0);
+ Y = N0.getOperand(1);
+ } else {
+ return SDValue();
+ }
+
+ // TODO: We should invert (X & Y) eq/ne 0 -> (X & Y) ne/eq Y if
+ // `isXAndYEqZeroPreferableToXAndYEqY` is false. This is a bit difficult as
+ // its liable to create and infinite loop.
+ SDValue Zero = DAG.getConstant(0, DL, OpVT);
+ if (isXAndYEqZeroPreferableToXAndYEqY(Cond, OpVT) &&
+ DAG.isKnownToBeAPowerOfTwo(Y)) {
+ // Simplify X & Y == Y to X & Y != 0 if Y has exactly one bit set.
+ // Note that where Y is variable and is known to have at most one bit set
+ // (for example, if it is Z & 1) we cannot do this; the expressions are not
+ // equivalent when Y == 0.
+ assert(OpVT.isInteger());
+ Cond = ISD::getSetCCInverse(Cond, OpVT);
+ if (DCI.isBeforeLegalizeOps() ||
+ isCondCodeLegal(Cond, N0.getSimpleValueType()))
+ return DAG.getSetCC(DL, VT, N0, Zero, Cond);
+ } else if (N0.hasOneUse() && hasAndNotCompare(Y)) {
+ // If the target supports an 'and-not' or 'and-complement' logic operation,
+ // try to use that to make a comparison operation more efficient.
+ // But don't do this transform if the mask is a single bit because there are
+ // more efficient ways to deal with that case (for example, 'bt' on x86 or
+ // 'rlwinm' on PPC).
+
+ // Bail out if the compare operand that we want to turn into a zero is
+ // already a zero (otherwise, infinite loop).
+ if (isNullConstant(Y))
+ return SDValue();
+
+ // Transform this into: ~X & Y == 0.
+ SDValue NotX = DAG.getNOT(SDLoc(X), X, OpVT);
+ SDValue NewAnd = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, NotX, Y);
+ return DAG.getSetCC(DL, VT, NewAnd, Zero, Cond);
+ }
+
+ return SDValue();
+}
+
+/// There are multiple IR patterns that could be checking whether certain
+/// truncation of a signed number would be lossy or not. The pattern which is
+/// best at IR level, may not lower optimally. Thus, we want to unfold it.
+/// We are looking for the following pattern: (KeptBits is a constant)
+/// (add %x, (1 << (KeptBits-1))) srccond (1 << KeptBits)
+/// KeptBits won't be bitwidth(x), that will be constant-folded to true/false.
+/// KeptBits also can't be 1, that would have been folded to %x dstcond 0
+/// We will unfold it into the natural trunc+sext pattern:
+/// ((%x << C) a>> C) dstcond %x
+/// Where C = bitwidth(x) - KeptBits and C u< bitwidth(x)
+SDValue TargetLowering::optimizeSetCCOfSignedTruncationCheck(
+ EVT SCCVT, SDValue N0, SDValue N1, ISD::CondCode Cond, DAGCombinerInfo &DCI,
+ const SDLoc &DL) const {
+ // We must be comparing with a constant.
+ ConstantSDNode *C1;
+ if (!(C1 = dyn_cast<ConstantSDNode>(N1)))
+ return SDValue();
+
+ // N0 should be: add %x, (1 << (KeptBits-1))
+ if (N0->getOpcode() != ISD::ADD)
+ return SDValue();
+
+ // And we must be 'add'ing a constant.
+ ConstantSDNode *C01;
+ if (!(C01 = dyn_cast<ConstantSDNode>(N0->getOperand(1))))
+ return SDValue();
+
+ SDValue X = N0->getOperand(0);
+ EVT XVT = X.getValueType();
+
+ // Validate constants ...
+
+ APInt I1 = C1->getAPIntValue();
+
+ ISD::CondCode NewCond;
+ if (Cond == ISD::CondCode::SETULT) {
+ NewCond = ISD::CondCode::SETEQ;
+ } else if (Cond == ISD::CondCode::SETULE) {
+ NewCond = ISD::CondCode::SETEQ;
+ // But need to 'canonicalize' the constant.
+ I1 += 1;
+ } else if (Cond == ISD::CondCode::SETUGT) {
+ NewCond = ISD::CondCode::SETNE;
+ // But need to 'canonicalize' the constant.
+ I1 += 1;
+ } else if (Cond == ISD::CondCode::SETUGE) {
+ NewCond = ISD::CondCode::SETNE;
+ } else
+ return SDValue();
+
+ APInt I01 = C01->getAPIntValue();
+
+ auto checkConstants = [&I1, &I01]() -> bool {
+ // Both of them must be power-of-two, and the constant from setcc is bigger.
+ return I1.ugt(I01) && I1.isPowerOf2() && I01.isPowerOf2();
+ };
+
+ if (checkConstants()) {
+ // Great, e.g. got icmp ult i16 (add i16 %x, 128), 256
+ } else {
+ // What if we invert constants? (and the target predicate)
+ I1.negate();
+ I01.negate();
+ assert(XVT.isInteger());
+ NewCond = getSetCCInverse(NewCond, XVT);
+ if (!checkConstants())
+ return SDValue();
+ // Great, e.g. got icmp uge i16 (add i16 %x, -128), -256
+ }
+
+ // They are power-of-two, so which bit is set?
+ const unsigned KeptBits = I1.logBase2();
+ const unsigned KeptBitsMinusOne = I01.logBase2();
+
+ // Magic!
+ if (KeptBits != (KeptBitsMinusOne + 1))
+ return SDValue();
+ assert(KeptBits > 0 && KeptBits < XVT.getSizeInBits() && "unreachable");
+
+ // We don't want to do this in every single case.
+ SelectionDAG &DAG = DCI.DAG;
+ if (!DAG.getTargetLoweringInfo().shouldTransformSignedTruncationCheck(
+ XVT, KeptBits))
+ return SDValue();
+
+ // Unfold into: sext_inreg(%x) cond %x
+ // Where 'cond' will be either 'eq' or 'ne'.
+ SDValue SExtInReg = DAG.getNode(
+ ISD::SIGN_EXTEND_INREG, DL, XVT, X,
+ DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(), KeptBits)));
+ return DAG.getSetCC(DL, SCCVT, SExtInReg, X, NewCond);
+}
+
+// (X & (C l>>/<< Y)) ==/!= 0 --> ((X <</l>> Y) & C) ==/!= 0
+SDValue TargetLowering::optimizeSetCCByHoistingAndByConstFromLogicalShift(
+ EVT SCCVT, SDValue N0, SDValue N1C, ISD::CondCode Cond,
+ DAGCombinerInfo &DCI, const SDLoc &DL) const {
+ assert(isConstOrConstSplat(N1C) && isConstOrConstSplat(N1C)->isZero() &&
+ "Should be a comparison with 0.");
+ assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
+ "Valid only for [in]equality comparisons.");
+
+ unsigned NewShiftOpcode;
+ SDValue X, C, Y;
+
+ SelectionDAG &DAG = DCI.DAG;
+ const TargetLowering &TLI = DAG.getTargetLoweringInfo();
+
+ // Look for '(C l>>/<< Y)'.
+ auto Match = [&NewShiftOpcode, &X, &C, &Y, &TLI, &DAG](SDValue V) {
+ // The shift should be one-use.
+ if (!V.hasOneUse())
+ return false;
+ unsigned OldShiftOpcode = V.getOpcode();
+ switch (OldShiftOpcode) {
+ case ISD::SHL:
+ NewShiftOpcode = ISD::SRL;
+ break;
+ case ISD::SRL:
+ NewShiftOpcode = ISD::SHL;
+ break;
+ default:
+ return false; // must be a logical shift.
+ }
+ // We should be shifting a constant.
+ // FIXME: best to use isConstantOrConstantVector().
+ C = V.getOperand(0);
+ ConstantSDNode *CC =
+ isConstOrConstSplat(C, /*AllowUndefs=*/true, /*AllowTruncation=*/true);
+ if (!CC)
+ return false;
+ Y = V.getOperand(1);
+
+ ConstantSDNode *XC =
+ isConstOrConstSplat(X, /*AllowUndefs=*/true, /*AllowTruncation=*/true);
+ return TLI.shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd(
+ X, XC, CC, Y, OldShiftOpcode, NewShiftOpcode, DAG);
+ };
+
+ // LHS of comparison should be an one-use 'and'.
+ if (N0.getOpcode() != ISD::AND || !N0.hasOneUse())
+ return SDValue();
+
+ X = N0.getOperand(0);
+ SDValue Mask = N0.getOperand(1);
+
+ // 'and' is commutative!
+ if (!Match(Mask)) {
+ std::swap(X, Mask);
+ if (!Match(Mask))
+ return SDValue();
+ }
+
+ EVT VT = X.getValueType();
+
+ // Produce:
+ // ((X 'OppositeShiftOpcode' Y) & C) Cond 0
+ SDValue T0 = DAG.getNode(NewShiftOpcode, DL, VT, X, Y);
+ SDValue T1 = DAG.getNode(ISD::AND, DL, VT, T0, C);
+ SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, N1C, Cond);
+ return T2;
+}
+
+/// Try to fold an equality comparison with a {add/sub/xor} binary operation as
+/// the 1st operand (N0). Callers are expected to swap the N0/N1 parameters to
+/// handle the commuted versions of these patterns.
+SDValue TargetLowering::foldSetCCWithBinOp(EVT VT, SDValue N0, SDValue N1,
+ ISD::CondCode Cond, const SDLoc &DL,
+ DAGCombinerInfo &DCI) const {
+ unsigned BOpcode = N0.getOpcode();
+ assert((BOpcode == ISD::ADD || BOpcode == ISD::SUB || BOpcode == ISD::XOR) &&
+ "Unexpected binop");
+ assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && "Unexpected condcode");
+
+ // (X + Y) == X --> Y == 0
+ // (X - Y) == X --> Y == 0
+ // (X ^ Y) == X --> Y == 0
+ SelectionDAG &DAG = DCI.DAG;
+ EVT OpVT = N0.getValueType();
+ SDValue X = N0.getOperand(0);
+ SDValue Y = N0.getOperand(1);
+ if (X == N1)
+ return DAG.getSetCC(DL, VT, Y, DAG.getConstant(0, DL, OpVT), Cond);
+
+ if (Y != N1)
+ return SDValue();
+
+ // (X + Y) == Y --> X == 0
+ // (X ^ Y) == Y --> X == 0
+ if (BOpcode == ISD::ADD || BOpcode == ISD::XOR)
+ return DAG.getSetCC(DL, VT, X, DAG.getConstant(0, DL, OpVT), Cond);
+
+ // The shift would not be valid if the operands are boolean (i1).
+ if (!N0.hasOneUse() || OpVT.getScalarSizeInBits() == 1)
+ return SDValue();
+
+ // (X - Y) == Y --> X == Y << 1
+ SDValue One = DAG.getShiftAmountConstant(1, OpVT, DL);
+ SDValue YShl1 = DAG.getNode(ISD::SHL, DL, N1.getValueType(), Y, One);
+ if (!DCI.isCalledByLegalizer())
+ DCI.AddToWorklist(YShl1.getNode());
+ return DAG.getSetCC(DL, VT, X, YShl1, Cond);
+}
+
+static SDValue simplifySetCCWithCTPOP(const TargetLowering &TLI, EVT VT,
+ SDValue N0, const APInt &C1,
+ ISD::CondCode Cond, const SDLoc &dl,
+ SelectionDAG &DAG) {
+ // Look through truncs that don't change the value of a ctpop.
+ // FIXME: Add vector support? Need to be careful with setcc result type below.
+ SDValue CTPOP = N0;
+ if (N0.getOpcode() == ISD::TRUNCATE && N0.hasOneUse() && !VT.isVector() &&
+ N0.getScalarValueSizeInBits() > Log2_32(N0.getOperand(0).getScalarValueSizeInBits()))
+ CTPOP = N0.getOperand(0);
+
+ if (CTPOP.getOpcode() != ISD::CTPOP || !CTPOP.hasOneUse())
+ return SDValue();
+
+ EVT CTVT = CTPOP.getValueType();
+ SDValue CTOp = CTPOP.getOperand(0);
+
+ // Expand a power-of-2-or-zero comparison based on ctpop:
+ // (ctpop x) u< 2 -> (x & x-1) == 0
+ // (ctpop x) u> 1 -> (x & x-1) != 0
+ if (Cond == ISD::SETULT || Cond == ISD::SETUGT) {
+ // Keep the CTPOP if it is a cheap vector op.
+ if (CTVT.isVector() && TLI.isCtpopFast(CTVT))
+ return SDValue();
+
+ unsigned CostLimit = TLI.getCustomCtpopCost(CTVT, Cond);
+ if (C1.ugt(CostLimit + (Cond == ISD::SETULT)))
+ return SDValue();
+ if (C1 == 0 && (Cond == ISD::SETULT))
+ return SDValue(); // This is handled elsewhere.
+
+ unsigned Passes = C1.getLimitedValue() - (Cond == ISD::SETULT);
+
+ SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT);
+ SDValue Result = CTOp;
+ for (unsigned i = 0; i < Passes; i++) {
+ SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, Result, NegOne);
+ Result = DAG.getNode(ISD::AND, dl, CTVT, Result, Add);
+ }
+ ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE;
+ return DAG.getSetCC(dl, VT, Result, DAG.getConstant(0, dl, CTVT), CC);
+ }
+
+ // Expand a power-of-2 comparison based on ctpop
+ if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && C1 == 1) {
+ // Keep the CTPOP if it is cheap.
+ if (TLI.isCtpopFast(CTVT))
+ return SDValue();
+
+ SDValue Zero = DAG.getConstant(0, dl, CTVT);
+ SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT);
+ assert(CTVT.isInteger());
+ SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, CTOp, NegOne);
+
+ // Its not uncommon for known-never-zero X to exist in (ctpop X) eq/ne 1, so
+ // check before emitting a potentially unnecessary op.
+ if (DAG.isKnownNeverZero(CTOp)) {
+ // (ctpop x) == 1 --> (x & x-1) == 0
+ // (ctpop x) != 1 --> (x & x-1) != 0
+ SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Add);
+ SDValue RHS = DAG.getSetCC(dl, VT, And, Zero, Cond);
+ return RHS;
+ }
+
+ // (ctpop x) == 1 --> (x ^ x-1) > x-1
+ // (ctpop x) != 1 --> (x ^ x-1) <= x-1
+ SDValue Xor = DAG.getNode(ISD::XOR, dl, CTVT, CTOp, Add);
+ ISD::CondCode CmpCond = Cond == ISD::SETEQ ? ISD::SETUGT : ISD::SETULE;
+ return DAG.getSetCC(dl, VT, Xor, Add, CmpCond);
+ }
+
+ return SDValue();
+}
+
+static SDValue foldSetCCWithRotate(EVT VT, SDValue N0, SDValue N1,
+ ISD::CondCode Cond, const SDLoc &dl,
+ SelectionDAG &DAG) {
+ if (Cond != ISD::SETEQ && Cond != ISD::SETNE)
+ return SDValue();
+
+ auto *C1 = isConstOrConstSplat(N1, /* AllowUndefs */ true);
+ if (!C1 || !(C1->isZero() || C1->isAllOnes()))
+ return SDValue();
+
+ auto getRotateSource = [](SDValue X) {
+ if (X.getOpcode() == ISD::ROTL || X.getOpcode() == ISD::ROTR)
+ return X.getOperand(0);
+ return SDValue();
+ };
+
+ // Peek through a rotated value compared against 0 or -1:
+ // (rot X, Y) == 0/-1 --> X == 0/-1
+ // (rot X, Y) != 0/-1 --> X != 0/-1
+ if (SDValue R = getRotateSource(N0))
+ return DAG.getSetCC(dl, VT, R, N1, Cond);
+
+ // Peek through an 'or' of a rotated value compared against 0:
+ // or (rot X, Y), Z ==/!= 0 --> (or X, Z) ==/!= 0
+ // or Z, (rot X, Y) ==/!= 0 --> (or X, Z) ==/!= 0
+ //
+ // TODO: Add the 'and' with -1 sibling.
+ // TODO: Recurse through a series of 'or' ops to find the rotate.
+ EVT OpVT = N0.getValueType();
+ if (N0.hasOneUse() && N0.getOpcode() == ISD::OR && C1->isZero()) {
+ if (SDValue R = getRotateSource(N0.getOperand(0))) {
+ SDValue NewOr = DAG.getNode(ISD::OR, dl, OpVT, R, N0.getOperand(1));
+ return DAG.getSetCC(dl, VT, NewOr, N1, Cond);
+ }
+ if (SDValue R = getRotateSource(N0.getOperand(1))) {
+ SDValue NewOr = DAG.getNode(ISD::OR, dl, OpVT, R, N0.getOperand(0));
+ return DAG.getSetCC(dl, VT, NewOr, N1, Cond);
+ }
+ }
+
+ return SDValue();
+}
+
+static SDValue foldSetCCWithFunnelShift(EVT VT, SDValue N0, SDValue N1,
+ ISD::CondCode Cond, const SDLoc &dl,
+ SelectionDAG &DAG) {
+ // If we are testing for all-bits-clear, we might be able to do that with
+ // less shifting since bit-order does not matter.
+ if (Cond != ISD::SETEQ && Cond != ISD::SETNE)
+ return SDValue();
+
+ auto *C1 = isConstOrConstSplat(N1, /* AllowUndefs */ true);
+ if (!C1 || !C1->isZero())
+ return SDValue();
+
+ if (!N0.hasOneUse() ||
+ (N0.getOpcode() != ISD::FSHL && N0.getOpcode() != ISD::FSHR))
+ return SDValue();
+
+ unsigned BitWidth = N0.getScalarValueSizeInBits();
+ auto *ShAmtC = isConstOrConstSplat(N0.getOperand(2));
+ if (!ShAmtC || ShAmtC->getAPIntValue().uge(BitWidth))
+ return SDValue();
+
+ // Canonicalize fshr as fshl to reduce pattern-matching.
+ unsigned ShAmt = ShAmtC->getZExtValue();
+ if (N0.getOpcode() == ISD::FSHR)
+ ShAmt = BitWidth - ShAmt;
+
+ // Match an 'or' with a specific operand 'Other' in either commuted variant.
+ SDValue X, Y;
+ auto matchOr = [&X, &Y](SDValue Or, SDValue Other) {
+ if (Or.getOpcode() != ISD::OR || !Or.hasOneUse())
+ return false;
+ if (Or.getOperand(0) == Other) {
+ X = Or.getOperand(0);
+ Y = Or.getOperand(1);
+ return true;
+ }
+ if (Or.getOperand(1) == Other) {
+ X = Or.getOperand(1);
+ Y = Or.getOperand(0);
+ return true;
+ }
+ return false;
+ };
+
+ EVT OpVT = N0.getValueType();
+ EVT ShAmtVT = N0.getOperand(2).getValueType();
+ SDValue F0 = N0.getOperand(0);
+ SDValue F1 = N0.getOperand(1);
+ if (matchOr(F0, F1)) {
+ // fshl (or X, Y), X, C ==/!= 0 --> or (shl Y, C), X ==/!= 0
+ SDValue NewShAmt = DAG.getConstant(ShAmt, dl, ShAmtVT);
+ SDValue Shift = DAG.getNode(ISD::SHL, dl, OpVT, Y, NewShAmt);
+ SDValue NewOr = DAG.getNode(ISD::OR, dl, OpVT, Shift, X);
+ return DAG.getSetCC(dl, VT, NewOr, N1, Cond);
+ }
+ if (matchOr(F1, F0)) {
+ // fshl X, (or X, Y), C ==/!= 0 --> or (srl Y, BW-C), X ==/!= 0
+ SDValue NewShAmt = DAG.getConstant(BitWidth - ShAmt, dl, ShAmtVT);
+ SDValue Shift = DAG.getNode(ISD::SRL, dl, OpVT, Y, NewShAmt);
+ SDValue NewOr = DAG.getNode(ISD::OR, dl, OpVT, Shift, X);
+ return DAG.getSetCC(dl, VT, NewOr, N1, Cond);
+ }
+
+ return SDValue();
+}
+
+/// Try to simplify a setcc built with the specified operands and cc. If it is
+/// unable to simplify it, return a null SDValue.
+SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
+ ISD::CondCode Cond, bool foldBooleans,
+ DAGCombinerInfo &DCI,
+ const SDLoc &dl) const {
+ SelectionDAG &DAG = DCI.DAG;
+ const DataLayout &Layout = DAG.getDataLayout();
+ EVT OpVT = N0.getValueType();
+ AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
+
+ // Constant fold or commute setcc.
+ if (SDValue Fold = DAG.FoldSetCC(VT, N0, N1, Cond, dl))
+ return Fold;
+
+ bool N0ConstOrSplat =
+ isConstOrConstSplat(N0, /*AllowUndefs*/ false, /*AllowTruncate*/ true);
+ bool N1ConstOrSplat =
+ isConstOrConstSplat(N1, /*AllowUndefs*/ false, /*AllowTruncate*/ true);
+
+ // Canonicalize toward having the constant on the RHS.
+ // TODO: Handle non-splat vector constants. All undef causes trouble.
+ // FIXME: We can't yet fold constant scalable vector splats, so avoid an
+ // infinite loop here when we encounter one.
+ ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond);
+ if (N0ConstOrSplat && !N1ConstOrSplat &&
+ (DCI.isBeforeLegalizeOps() ||
+ isCondCodeLegal(SwappedCC, N0.getSimpleValueType())))
+ return DAG.getSetCC(dl, VT, N1, N0, SwappedCC);
+
+ // If we have a subtract with the same 2 non-constant operands as this setcc
+ // -- but in reverse order -- then try to commute the operands of this setcc
+ // to match. A matching pair of setcc (cmp) and sub may be combined into 1
+ // instruction on some targets.
+ if (!N0ConstOrSplat && !N1ConstOrSplat &&
+ (DCI.isBeforeLegalizeOps() ||
+ isCondCodeLegal(SwappedCC, N0.getSimpleValueType())) &&
+ DAG.doesNodeExist(ISD::SUB, DAG.getVTList(OpVT), {N1, N0}) &&
+ !DAG.doesNodeExist(ISD::SUB, DAG.getVTList(OpVT), {N0, N1}))
+ return DAG.getSetCC(dl, VT, N1, N0, SwappedCC);
+
+ if (SDValue V = foldSetCCWithRotate(VT, N0, N1, Cond, dl, DAG))
+ return V;
+
+ if (SDValue V = foldSetCCWithFunnelShift(VT, N0, N1, Cond, dl, DAG))
+ return V;
+
+ if (auto *N1C = isConstOrConstSplat(N1)) {
+ const APInt &C1 = N1C->getAPIntValue();
+
+ // Optimize some CTPOP cases.
+ if (SDValue V = simplifySetCCWithCTPOP(*this, VT, N0, C1, Cond, dl, DAG))
+ return V;
+
+ // For equality to 0 of a no-wrap multiply, decompose and test each op:
+ // X * Y == 0 --> (X == 0) || (Y == 0)
+ // X * Y != 0 --> (X != 0) && (Y != 0)
+ // TODO: This bails out if minsize is set, but if the target doesn't have a
+ // single instruction multiply for this type, it would likely be
+ // smaller to decompose.
+ if (C1.isZero() && (Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
+ N0.getOpcode() == ISD::MUL && N0.hasOneUse() &&
+ (N0->getFlags().hasNoUnsignedWrap() ||
+ N0->getFlags().hasNoSignedWrap()) &&
+ !Attr.hasFnAttr(Attribute::MinSize)) {
+ SDValue IsXZero = DAG.getSetCC(dl, VT, N0.getOperand(0), N1, Cond);
+ SDValue IsYZero = DAG.getSetCC(dl, VT, N0.getOperand(1), N1, Cond);
+ unsigned LogicOp = Cond == ISD::SETEQ ? ISD::OR : ISD::AND;
+ return DAG.getNode(LogicOp, dl, VT, IsXZero, IsYZero);
+ }
+
+ // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
+ // equality comparison, then we're just comparing whether X itself is
+ // zero.
+ if (N0.getOpcode() == ISD::SRL && (C1.isZero() || C1.isOne()) &&
+ N0.getOperand(0).getOpcode() == ISD::CTLZ &&
+ llvm::has_single_bit<uint32_t>(N0.getScalarValueSizeInBits())) {
+ if (ConstantSDNode *ShAmt = isConstOrConstSplat(N0.getOperand(1))) {
+ if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
+ ShAmt->getAPIntValue() == Log2_32(N0.getScalarValueSizeInBits())) {
+ if ((C1 == 0) == (Cond == ISD::SETEQ)) {
+ // (srl (ctlz x), 5) == 0 -> X != 0
+ // (srl (ctlz x), 5) != 1 -> X != 0
+ Cond = ISD::SETNE;
+ } else {
+ // (srl (ctlz x), 5) != 0 -> X == 0
+ // (srl (ctlz x), 5) == 1 -> X == 0
+ Cond = ISD::SETEQ;
+ }
+ SDValue Zero = DAG.getConstant(0, dl, N0.getValueType());
+ return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0), Zero,
+ Cond);
+ }
+ }
+ }
+ }
+
+ // FIXME: Support vectors.
+ if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
+ const APInt &C1 = N1C->getAPIntValue();
+
+ // (zext x) == C --> x == (trunc C)
+ // (sext x) == C --> x == (trunc C)
+ if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
+ DCI.isBeforeLegalize() && N0->hasOneUse()) {
+ unsigned MinBits = N0.getValueSizeInBits();
+ SDValue PreExt;
+ bool Signed = false;
+ if (N0->getOpcode() == ISD::ZERO_EXTEND) {
+ // ZExt
+ MinBits = N0->getOperand(0).getValueSizeInBits();
+ PreExt = N0->getOperand(0);
+ } else if (N0->getOpcode() == ISD::AND) {
+ // DAGCombine turns costly ZExts into ANDs
+ if (auto *C = dyn_cast<ConstantSDNode>(N0->getOperand(1)))
+ if ((C->getAPIntValue()+1).isPowerOf2()) {
+ MinBits = C->getAPIntValue().countr_one();
+ PreExt = N0->getOperand(0);
+ }
+ } else if (N0->getOpcode() == ISD::SIGN_EXTEND) {
+ // SExt
+ MinBits = N0->getOperand(0).getValueSizeInBits();
+ PreExt = N0->getOperand(0);
+ Signed = true;
+ } else if (auto *LN0 = dyn_cast<LoadSDNode>(N0)) {
+ // ZEXTLOAD / SEXTLOAD
+ if (LN0->getExtensionType() == ISD::ZEXTLOAD) {
+ MinBits = LN0->getMemoryVT().getSizeInBits();
+ PreExt = N0;
+ } else if (LN0->getExtensionType() == ISD::SEXTLOAD) {
+ Signed = true;
+ MinBits = LN0->getMemoryVT().getSizeInBits();
+ PreExt = N0;
+ }
+ }
+
+ // Figure out how many bits we need to preserve this constant.
+ unsigned ReqdBits = Signed ? C1.getSignificantBits() : C1.getActiveBits();
+
+ // Make sure we're not losing bits from the constant.
+ if (MinBits > 0 &&
+ MinBits < C1.getBitWidth() &&
+ MinBits >= ReqdBits) {
+ EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits);
+ if (isTypeDesirableForOp(ISD::SETCC, MinVT)) {
+ // Will get folded away.
+ SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt);
+ if (MinBits == 1 && C1 == 1)
+ // Invert the condition.
+ return DAG.getSetCC(dl, VT, Trunc, DAG.getConstant(0, dl, MVT::i1),
+ Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
+ SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT);
+ return DAG.getSetCC(dl, VT, Trunc, C, Cond);
+ }
+
+ // If truncating the setcc operands is not desirable, we can still
+ // simplify the expression in some cases:
+ // setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc)
+ // setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc))
+ // setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc))
+ // setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc)
+ // setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc))
+ // setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc)
+ SDValue TopSetCC = N0->getOperand(0);
+ unsigned N0Opc = N0->getOpcode();
+ bool SExt = (N0Opc == ISD::SIGN_EXTEND);
+ if (TopSetCC.getValueType() == MVT::i1 && VT == MVT::i1 &&
+ TopSetCC.getOpcode() == ISD::SETCC &&
+ (N0Opc == ISD::ZERO_EXTEND || N0Opc == ISD::SIGN_EXTEND) &&
+ (isConstFalseVal(N1) ||
+ isExtendedTrueVal(N1C, N0->getValueType(0), SExt))) {
+
+ bool Inverse = (N1C->isZero() && Cond == ISD::SETEQ) ||
+ (!N1C->isZero() && Cond == ISD::SETNE);
+
+ if (!Inverse)
+ return TopSetCC;
+
+ ISD::CondCode InvCond = ISD::getSetCCInverse(
+ cast<CondCodeSDNode>(TopSetCC.getOperand(2))->get(),
+ TopSetCC.getOperand(0).getValueType());
+ return DAG.getSetCC(dl, VT, TopSetCC.getOperand(0),
+ TopSetCC.getOperand(1),
+ InvCond);
+ }
+ }
+ }
+
+ // If the LHS is '(and load, const)', the RHS is 0, the test is for
+ // equality or unsigned, and all 1 bits of the const are in the same
+ // partial word, see if we can shorten the load.
+ if (DCI.isBeforeLegalize() &&
+ !ISD::isSignedIntSetCC(Cond) &&
+ N0.getOpcode() == ISD::AND && C1 == 0 &&
+ N0.getNode()->hasOneUse() &&
+ isa<LoadSDNode>(N0.getOperand(0)) &&
+ N0.getOperand(0).getNode()->hasOneUse() &&
+ isa<ConstantSDNode>(N0.getOperand(1))) {
+ auto *Lod = cast<LoadSDNode>(N0.getOperand(0));
+ APInt bestMask;
+ unsigned bestWidth = 0, bestOffset = 0;
+ if (Lod->isSimple() && Lod->isUnindexed() &&
+ (Lod->getMemoryVT().isByteSized() ||
+ isPaddedAtMostSignificantBitsWhenStored(Lod->getMemoryVT()))) {
+ unsigned memWidth = Lod->getMemoryVT().getStoreSizeInBits();
+ unsigned origWidth = N0.getValueSizeInBits();
+ unsigned maskWidth = origWidth;
+ // We can narrow (e.g.) 16-bit extending loads on 32-bit target to
+ // 8 bits, but have to be careful...
+ if (Lod->getExtensionType() != ISD::NON_EXTLOAD)
+ origWidth = Lod->getMemoryVT().getSizeInBits();
+ const APInt &Mask = N0.getConstantOperandAPInt(1);
+ // Only consider power-of-2 widths (and at least one byte) as candiates
+ // for the narrowed load.
+ for (unsigned width = 8; width < origWidth; width *= 2) {
+ EVT newVT = EVT::getIntegerVT(*DAG.getContext(), width);
+ if (!shouldReduceLoadWidth(Lod, ISD::NON_EXTLOAD, newVT))
+ continue;
+ APInt newMask = APInt::getLowBitsSet(maskWidth, width);
+ // Avoid accessing any padding here for now (we could use memWidth
+ // instead of origWidth here otherwise).
+ unsigned maxOffset = origWidth - width;
+ for (unsigned offset = 0; offset <= maxOffset; offset += 8) {
+ if (Mask.isSubsetOf(newMask)) {
+ unsigned ptrOffset =
+ Layout.isLittleEndian() ? offset : memWidth - width - offset;
+ unsigned IsFast = 0;
+ Align NewAlign = commonAlignment(Lod->getAlign(), ptrOffset / 8);
+ if (allowsMemoryAccess(
+ *DAG.getContext(), Layout, newVT, Lod->getAddressSpace(),
+ NewAlign, Lod->getMemOperand()->getFlags(), &IsFast) &&
+ IsFast) {
+ bestOffset = ptrOffset / 8;
+ bestMask = Mask.lshr(offset);
+ bestWidth = width;
+ break;
+ }
+ }
+ newMask <<= 8;
+ }
+ if (bestWidth)
+ break;
+ }
+ }
+ if (bestWidth) {
+ EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth);
+ SDValue Ptr = Lod->getBasePtr();
+ if (bestOffset != 0)
+ Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::getFixed(bestOffset));
+ SDValue NewLoad =
+ DAG.getLoad(newVT, dl, Lod->getChain(), Ptr,
+ Lod->getPointerInfo().getWithOffset(bestOffset),
+ Lod->getOriginalAlign());
+ SDValue And =
+ DAG.getNode(ISD::AND, dl, newVT, NewLoad,
+ DAG.getConstant(bestMask.trunc(bestWidth), dl, newVT));
+ return DAG.getSetCC(dl, VT, And, DAG.getConstant(0LL, dl, newVT), Cond);
+ }
+ }
+
+ // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
+ if (N0.getOpcode() == ISD::ZERO_EXTEND) {
+ unsigned InSize = N0.getOperand(0).getValueSizeInBits();
+
+ // If the comparison constant has bits in the upper part, the
+ // zero-extended value could never match.
+ if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(),
+ C1.getBitWidth() - InSize))) {
+ switch (Cond) {
+ case ISD::SETUGT:
+ case ISD::SETUGE:
+ case ISD::SETEQ:
+ return DAG.getConstant(0, dl, VT);
+ case ISD::SETULT:
+ case ISD::SETULE:
+ case ISD::SETNE:
+ return DAG.getConstant(1, dl, VT);
+ case ISD::SETGT:
+ case ISD::SETGE:
+ // True if the sign bit of C1 is set.
+ return DAG.getConstant(C1.isNegative(), dl, VT);
+ case ISD::SETLT:
+ case ISD::SETLE:
+ // True if the sign bit of C1 isn't set.
+ return DAG.getConstant(C1.isNonNegative(), dl, VT);
+ default:
+ break;
+ }
+ }
+
+ // Otherwise, we can perform the comparison with the low bits.
+ switch (Cond) {
+ case ISD::SETEQ:
+ case ISD::SETNE:
+ case ISD::SETUGT:
+ case ISD::SETUGE:
+ case ISD::SETULT:
+ case ISD::SETULE: {
+ EVT newVT = N0.getOperand(0).getValueType();
+ if (DCI.isBeforeLegalizeOps() ||
+ (isOperationLegal(ISD::SETCC, newVT) &&
+ isCondCodeLegal(Cond, newVT.getSimpleVT()))) {
+ EVT NewSetCCVT = getSetCCResultType(Layout, *DAG.getContext(), newVT);
+ SDValue NewConst = DAG.getConstant(C1.trunc(InSize), dl, newVT);
+
+ SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0),
+ NewConst, Cond);
+ return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType());
+ }
+ break;
+ }
+ default:
+ break; // todo, be more careful with signed comparisons
+ }
+ } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
+ (Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
+ !isSExtCheaperThanZExt(cast<VTSDNode>(N0.getOperand(1))->getVT(),
+ OpVT)) {
+ EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT();
+ unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits();
+ EVT ExtDstTy = N0.getValueType();
+ unsigned ExtDstTyBits = ExtDstTy.getSizeInBits();
+
+ // If the constant doesn't fit into the number of bits for the source of
+ // the sign extension, it is impossible for both sides to be equal.
+ if (C1.getSignificantBits() > ExtSrcTyBits)
+ return DAG.getBoolConstant(Cond == ISD::SETNE, dl, VT, OpVT);
+
+ assert(ExtDstTy == N0.getOperand(0).getValueType() &&
+ ExtDstTy != ExtSrcTy && "Unexpected types!");
+ APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits);
+ SDValue ZextOp = DAG.getNode(ISD::AND, dl, ExtDstTy, N0.getOperand(0),
+ DAG.getConstant(Imm, dl, ExtDstTy));
+ if (!DCI.isCalledByLegalizer())
+ DCI.AddToWorklist(ZextOp.getNode());
+ // Otherwise, make this a use of a zext.
+ return DAG.getSetCC(dl, VT, ZextOp,
+ DAG.getConstant(C1 & Imm, dl, ExtDstTy), Cond);
+ } else if ((N1C->isZero() || N1C->isOne()) &&
+ (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
+ // SETCC (X), [0|1], [EQ|NE] -> X if X is known 0/1. i1 types are
+ // excluded as they are handled below whilst checking for foldBooleans.
+ if ((N0.getOpcode() == ISD::SETCC || VT.getScalarType() != MVT::i1) &&
+ isTypeLegal(VT) && VT.bitsLE(N0.getValueType()) &&
+ (N0.getValueType() == MVT::i1 ||
+ getBooleanContents(N0.getValueType()) == ZeroOrOneBooleanContent) &&
+ DAG.MaskedValueIsZero(
+ N0, APInt::getBitsSetFrom(N0.getValueSizeInBits(), 1))) {
+ bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (!N1C->isOne());
+ if (TrueWhenTrue)
+ return DAG.getNode(ISD::TRUNCATE, dl, VT, N0);
+ // Invert the condition.
+ if (N0.getOpcode() == ISD::SETCC) {
+ ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
+ CC = ISD::getSetCCInverse(CC, N0.getOperand(0).getValueType());
+ if (DCI.isBeforeLegalizeOps() ||
+ isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType()))
+ return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC);
+ }
+ }
+
+ if ((N0.getOpcode() == ISD::XOR ||
+ (N0.getOpcode() == ISD::AND &&
+ N0.getOperand(0).getOpcode() == ISD::XOR &&
+ N0.getOperand(1) == N0.getOperand(0).getOperand(1))) &&
+ isOneConstant(N0.getOperand(1))) {
+ // If this is (X^1) == 0/1, swap the RHS and eliminate the xor. We
+ // can only do this if the top bits are known zero.
+ unsigned BitWidth = N0.getValueSizeInBits();
+ if (DAG.MaskedValueIsZero(N0,
+ APInt::getHighBitsSet(BitWidth,
+ BitWidth-1))) {
+ // Okay, get the un-inverted input value.
+ SDValue Val;
+ if (N0.getOpcode() == ISD::XOR) {
+ Val = N0.getOperand(0);
+ } else {
+ assert(N0.getOpcode() == ISD::AND &&
+ N0.getOperand(0).getOpcode() == ISD::XOR);
+ // ((X^1)&1)^1 -> X & 1
+ Val = DAG.getNode(ISD::AND, dl, N0.getValueType(),
+ N0.getOperand(0).getOperand(0),
+ N0.getOperand(1));
+ }
+
+ return DAG.getSetCC(dl, VT, Val, N1,
+ Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
+ }
+ } else if (N1C->isOne()) {
+ SDValue Op0 = N0;
+ if (Op0.getOpcode() == ISD::TRUNCATE)
+ Op0 = Op0.getOperand(0);
+
+ if ((Op0.getOpcode() == ISD::XOR) &&
+ Op0.getOperand(0).getOpcode() == ISD::SETCC &&
+ Op0.getOperand(1).getOpcode() == ISD::SETCC) {
+ SDValue XorLHS = Op0.getOperand(0);
+ SDValue XorRHS = Op0.getOperand(1);
+ // Ensure that the input setccs return an i1 type or 0/1 value.
+ if (Op0.getValueType() == MVT::i1 ||
+ (getBooleanContents(XorLHS.getOperand(0).getValueType()) ==
+ ZeroOrOneBooleanContent &&
+ getBooleanContents(XorRHS.getOperand(0).getValueType()) ==
+ ZeroOrOneBooleanContent)) {
+ // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc)
+ Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ;
+ return DAG.getSetCC(dl, VT, XorLHS, XorRHS, Cond);
+ }
+ }
+ if (Op0.getOpcode() == ISD::AND && isOneConstant(Op0.getOperand(1))) {
+ // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0.
+ if (Op0.getValueType().bitsGT(VT))
+ Op0 = DAG.getNode(ISD::AND, dl, VT,
+ DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)),
+ DAG.getConstant(1, dl, VT));
+ else if (Op0.getValueType().bitsLT(VT))
+ Op0 = DAG.getNode(ISD::AND, dl, VT,
+ DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)),
+ DAG.getConstant(1, dl, VT));
+
+ return DAG.getSetCC(dl, VT, Op0,
+ DAG.getConstant(0, dl, Op0.getValueType()),
+ Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
+ }
+ if (Op0.getOpcode() == ISD::AssertZext &&
+ cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1)
+ return DAG.getSetCC(dl, VT, Op0,
+ DAG.getConstant(0, dl, Op0.getValueType()),
+ Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
+ }
+ }
+
+ // Given:
+ // icmp eq/ne (urem %x, %y), 0
+ // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem':
+ // icmp eq/ne %x, 0
+ if (N0.getOpcode() == ISD::UREM && N1C->isZero() &&
+ (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
+ KnownBits XKnown = DAG.computeKnownBits(N0.getOperand(0));
+ KnownBits YKnown = DAG.computeKnownBits(N0.getOperand(1));
+ if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2)
+ return DAG.getSetCC(dl, VT, N0.getOperand(0), N1, Cond);
+ }
+
+ // Fold set_cc seteq (ashr X, BW-1), -1 -> set_cc setlt X, 0
+ // and set_cc setne (ashr X, BW-1), -1 -> set_cc setge X, 0
+ if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
+ N0.getOpcode() == ISD::SRA && isa<ConstantSDNode>(N0.getOperand(1)) &&
+ N0.getConstantOperandAPInt(1) == OpVT.getScalarSizeInBits() - 1 &&
+ N1C && N1C->isAllOnes()) {
+ return DAG.getSetCC(dl, VT, N0.getOperand(0),
+ DAG.getConstant(0, dl, OpVT),
+ Cond == ISD::SETEQ ? ISD::SETLT : ISD::SETGE);
+ }
+
+ if (SDValue V =
+ optimizeSetCCOfSignedTruncationCheck(VT, N0, N1, Cond, DCI, dl))
+ return V;
+ }
+
+ // These simplifications apply to splat vectors as well.
+ // TODO: Handle more splat vector cases.
+ if (auto *N1C = isConstOrConstSplat(N1)) {
+ const APInt &C1 = N1C->getAPIntValue();
+
+ APInt MinVal, MaxVal;
+ unsigned OperandBitSize = N1C->getValueType(0).getScalarSizeInBits();
+ if (ISD::isSignedIntSetCC(Cond)) {
+ MinVal = APInt::getSignedMinValue(OperandBitSize);
+ MaxVal = APInt::getSignedMaxValue(OperandBitSize);
+ } else {
+ MinVal = APInt::getMinValue(OperandBitSize);
+ MaxVal = APInt::getMaxValue(OperandBitSize);
+ }
+
+ // Canonicalize GE/LE comparisons to use GT/LT comparisons.
+ if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
+ // X >= MIN --> true
+ if (C1 == MinVal)
+ return DAG.getBoolConstant(true, dl, VT, OpVT);
+
+ if (!VT.isVector()) { // TODO: Support this for vectors.
+ // X >= C0 --> X > (C0 - 1)
+ APInt C = C1 - 1;
+ ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT;
+ if ((DCI.isBeforeLegalizeOps() ||
+ isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
+ (!N1C->isOpaque() || (C.getBitWidth() <= 64 &&
+ isLegalICmpImmediate(C.getSExtValue())))) {
+ return DAG.getSetCC(dl, VT, N0,
+ DAG.getConstant(C, dl, N1.getValueType()),
+ NewCC);
+ }
+ }
+ }
+
+ if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
+ // X <= MAX --> true
+ if (C1 == MaxVal)
+ return DAG.getBoolConstant(true, dl, VT, OpVT);
+
+ // X <= C0 --> X < (C0 + 1)
+ if (!VT.isVector()) { // TODO: Support this for vectors.
+ APInt C = C1 + 1;
+ ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT;
+ if ((DCI.isBeforeLegalizeOps() ||
+ isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
+ (!N1C->isOpaque() || (C.getBitWidth() <= 64 &&
+ isLegalICmpImmediate(C.getSExtValue())))) {
+ return DAG.getSetCC(dl, VT, N0,
+ DAG.getConstant(C, dl, N1.getValueType()),
+ NewCC);
+ }
+ }
+ }
+
+ if (Cond == ISD::SETLT || Cond == ISD::SETULT) {
+ if (C1 == MinVal)
+ return DAG.getBoolConstant(false, dl, VT, OpVT); // X < MIN --> false
+
+ // TODO: Support this for vectors after legalize ops.
+ if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
+ // Canonicalize setlt X, Max --> setne X, Max
+ if (C1 == MaxVal)
+ return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
+
+ // If we have setult X, 1, turn it into seteq X, 0
+ if (C1 == MinVal+1)
+ return DAG.getSetCC(dl, VT, N0,
+ DAG.getConstant(MinVal, dl, N0.getValueType()),
+ ISD::SETEQ);
+ }
+ }
+
+ if (Cond == ISD::SETGT || Cond == ISD::SETUGT) {
+ if (C1 == MaxVal)
+ return DAG.getBoolConstant(false, dl, VT, OpVT); // X > MAX --> false
+
+ // TODO: Support this for vectors after legalize ops.
+ if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
+ // Canonicalize setgt X, Min --> setne X, Min
+ if (C1 == MinVal)
+ return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
+
+ // If we have setugt X, Max-1, turn it into seteq X, Max
+ if (C1 == MaxVal-1)
+ return DAG.getSetCC(dl, VT, N0,
+ DAG.getConstant(MaxVal, dl, N0.getValueType()),
+ ISD::SETEQ);
+ }
+ }
+
+ if (Cond == ISD::SETEQ || Cond == ISD::SETNE) {
+ // (X & (C l>>/<< Y)) ==/!= 0 --> ((X <</l>> Y) & C) ==/!= 0
+ if (C1.isZero())
+ if (SDValue CC = optimizeSetCCByHoistingAndByConstFromLogicalShift(
+ VT, N0, N1, Cond, DCI, dl))
+ return CC;
+
+ // For all/any comparisons, replace or(x,shl(y,bw/2)) with and/or(x,y).
+ // For example, when high 32-bits of i64 X are known clear:
+ // all bits clear: (X | (Y<<32)) == 0 --> (X | Y) == 0
+ // all bits set: (X | (Y<<32)) == -1 --> (X & Y) == -1
+ bool CmpZero = N1C->isZero();
+ bool CmpNegOne = N1C->isAllOnes();
+ if ((CmpZero || CmpNegOne) && N0.hasOneUse()) {
+ // Match or(lo,shl(hi,bw/2)) pattern.
+ auto IsConcat = [&](SDValue V, SDValue &Lo, SDValue &Hi) {
+ unsigned EltBits = V.getScalarValueSizeInBits();
+ if (V.getOpcode() != ISD::OR || (EltBits % 2) != 0)
+ return false;
+ SDValue LHS = V.getOperand(0);
+ SDValue RHS = V.getOperand(1);
+ APInt HiBits = APInt::getHighBitsSet(EltBits, EltBits / 2);
+ // Unshifted element must have zero upperbits.
+ if (RHS.getOpcode() == ISD::SHL &&
+ isa<ConstantSDNode>(RHS.getOperand(1)) &&
+ RHS.getConstantOperandAPInt(1) == (EltBits / 2) &&
+ DAG.MaskedValueIsZero(LHS, HiBits)) {
+ Lo = LHS;
+ Hi = RHS.getOperand(0);
+ return true;
+ }
+ if (LHS.getOpcode() == ISD::SHL &&
+ isa<ConstantSDNode>(LHS.getOperand(1)) &&
+ LHS.getConstantOperandAPInt(1) == (EltBits / 2) &&
+ DAG.MaskedValueIsZero(RHS, HiBits)) {
+ Lo = RHS;
+ Hi = LHS.getOperand(0);
+ return true;
+ }
+ return false;
+ };
+
+ auto MergeConcat = [&](SDValue Lo, SDValue Hi) {
+ unsigned EltBits = N0.getScalarValueSizeInBits();
+ unsigned HalfBits = EltBits / 2;
+ APInt HiBits = APInt::getHighBitsSet(EltBits, HalfBits);
+ SDValue LoBits = DAG.getConstant(~HiBits, dl, OpVT);
+ SDValue HiMask = DAG.getNode(ISD::AND, dl, OpVT, Hi, LoBits);
+ SDValue NewN0 =
+ DAG.getNode(CmpZero ? ISD::OR : ISD::AND, dl, OpVT, Lo, HiMask);
+ SDValue NewN1 = CmpZero ? DAG.getConstant(0, dl, OpVT) : LoBits;
+ return DAG.getSetCC(dl, VT, NewN0, NewN1, Cond);
+ };
+
+ SDValue Lo, Hi;
+ if (IsConcat(N0, Lo, Hi))
+ return MergeConcat(Lo, Hi);
+
+ if (N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR) {
+ SDValue Lo0, Lo1, Hi0, Hi1;
+ if (IsConcat(N0.getOperand(0), Lo0, Hi0) &&
+ IsConcat(N0.getOperand(1), Lo1, Hi1)) {
+ return MergeConcat(DAG.getNode(N0.getOpcode(), dl, OpVT, Lo0, Lo1),
+ DAG.getNode(N0.getOpcode(), dl, OpVT, Hi0, Hi1));
+ }
+ }
+ }
+ }
+
+ // If we have "setcc X, C0", check to see if we can shrink the immediate
+ // by changing cc.
+ // TODO: Support this for vectors after legalize ops.
+ if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
+ // SETUGT X, SINTMAX -> SETLT X, 0
+ // SETUGE X, SINTMIN -> SETLT X, 0
+ if ((Cond == ISD::SETUGT && C1.isMaxSignedValue()) ||
+ (Cond == ISD::SETUGE && C1.isMinSignedValue()))
+ return DAG.getSetCC(dl, VT, N0,
+ DAG.getConstant(0, dl, N1.getValueType()),
+ ISD::SETLT);
+
+ // SETULT X, SINTMIN -> SETGT X, -1
+ // SETULE X, SINTMAX -> SETGT X, -1
+ if ((Cond == ISD::SETULT && C1.isMinSignedValue()) ||
+ (Cond == ISD::SETULE && C1.isMaxSignedValue()))
+ return DAG.getSetCC(dl, VT, N0,
+ DAG.getAllOnesConstant(dl, N1.getValueType()),
+ ISD::SETGT);
+ }
+ }
+
+ // Back to non-vector simplifications.
+ // TODO: Can we do these for vector splats?
+ if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
+ const TargetLowering &TLI = DAG.getTargetLoweringInfo();
+ const APInt &C1 = N1C->getAPIntValue();
+ EVT ShValTy = N0.getValueType();
+
+ // Fold bit comparisons when we can. This will result in an
+ // incorrect value when boolean false is negative one, unless
+ // the bitsize is 1 in which case the false value is the same
+ // in practice regardless of the representation.
+ if ((VT.getSizeInBits() == 1 ||
+ getBooleanContents(N0.getValueType()) == ZeroOrOneBooleanContent) &&
+ (Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
+ (VT == ShValTy || (isTypeLegal(VT) && VT.bitsLE(ShValTy))) &&
+ N0.getOpcode() == ISD::AND) {
+ if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
+ if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0 --> (X & 8) >> 3
+ // Perform the xform if the AND RHS is a single bit.
+ unsigned ShCt = AndRHS->getAPIntValue().logBase2();
+ if (AndRHS->getAPIntValue().isPowerOf2() &&
+ !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) {
+ return DAG.getNode(
+ ISD::TRUNCATE, dl, VT,
+ DAG.getNode(ISD::SRL, dl, ShValTy, N0,
+ DAG.getShiftAmountConstant(ShCt, ShValTy, dl)));
+ }
+ } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) {
+ // (X & 8) == 8 --> (X & 8) >> 3
+ // Perform the xform if C1 is a single bit.
+ unsigned ShCt = C1.logBase2();
+ if (C1.isPowerOf2() &&
+ !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) {
+ return DAG.getNode(
+ ISD::TRUNCATE, dl, VT,
+ DAG.getNode(ISD::SRL, dl, ShValTy, N0,
+ DAG.getShiftAmountConstant(ShCt, ShValTy, dl)));
+ }
+ }
+ }
+ }
+
+ if (C1.getSignificantBits() <= 64 &&
+ !isLegalICmpImmediate(C1.getSExtValue())) {
+ // (X & -256) == 256 -> (X >> 8) == 1
+ if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
+ N0.getOpcode() == ISD::AND && N0.hasOneUse()) {
+ if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
+ const APInt &AndRHSC = AndRHS->getAPIntValue();
+ if (AndRHSC.isNegatedPowerOf2() && (AndRHSC & C1) == C1) {
+ unsigned ShiftBits = AndRHSC.countr_zero();
+ if (!TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) {
+ SDValue Shift = DAG.getNode(
+ ISD::SRL, dl, ShValTy, N0.getOperand(0),
+ DAG.getShiftAmountConstant(ShiftBits, ShValTy, dl));
+ SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), dl, ShValTy);
+ return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond);
+ }
+ }
+ }
+ } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE ||
+ Cond == ISD::SETULE || Cond == ISD::SETUGT) {
+ bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT);
+ // X < 0x100000000 -> (X >> 32) < 1
+ // X >= 0x100000000 -> (X >> 32) >= 1
+ // X <= 0x0ffffffff -> (X >> 32) < 1
+ // X > 0x0ffffffff -> (X >> 32) >= 1
+ unsigned ShiftBits;
+ APInt NewC = C1;
+ ISD::CondCode NewCond = Cond;
+ if (AdjOne) {
+ ShiftBits = C1.countr_one();
+ NewC = NewC + 1;
+ NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
+ } else {
+ ShiftBits = C1.countr_zero();
+ }
+ NewC.lshrInPlace(ShiftBits);
+ if (ShiftBits && NewC.getSignificantBits() <= 64 &&
+ isLegalICmpImmediate(NewC.getSExtValue()) &&
+ !TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) {
+ SDValue Shift =
+ DAG.getNode(ISD::SRL, dl, ShValTy, N0,
+ DAG.getShiftAmountConstant(ShiftBits, ShValTy, dl));
+ SDValue CmpRHS = DAG.getConstant(NewC, dl, ShValTy);
+ return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond);
+ }
+ }
+ }
+ }
+
+ if (!isa<ConstantFPSDNode>(N0) && isa<ConstantFPSDNode>(N1)) {
+ auto *CFP = cast<ConstantFPSDNode>(N1);
+ assert(!CFP->getValueAPF().isNaN() && "Unexpected NaN value");
+
+ // Otherwise, we know the RHS is not a NaN. Simplify the node to drop the
+ // constant if knowing that the operand is non-nan is enough. We prefer to
+ // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to
+ // materialize 0.0.
+ if (Cond == ISD::SETO || Cond == ISD::SETUO)
+ return DAG.getSetCC(dl, VT, N0, N0, Cond);
+
+ // setcc (fneg x), C -> setcc swap(pred) x, -C
+ if (N0.getOpcode() == ISD::FNEG) {
+ ISD::CondCode SwapCond = ISD::getSetCCSwappedOperands(Cond);
+ if (DCI.isBeforeLegalizeOps() ||
+ isCondCodeLegal(SwapCond, N0.getSimpleValueType())) {
+ SDValue NegN1 = DAG.getNode(ISD::FNEG, dl, N0.getValueType(), N1);
+ return DAG.getSetCC(dl, VT, N0.getOperand(0), NegN1, SwapCond);
+ }
+ }
+
+ // setueq/setoeq X, (fabs Inf) -> is_fpclass X, fcInf
+ if (isOperationLegalOrCustom(ISD::IS_FPCLASS, N0.getValueType()) &&
+ !isFPImmLegal(CFP->getValueAPF(), CFP->getValueType(0))) {
+ bool IsFabs = N0.getOpcode() == ISD::FABS;
+ SDValue Op = IsFabs ? N0.getOperand(0) : N0;
+ if ((Cond == ISD::SETOEQ || Cond == ISD::SETUEQ) && CFP->isInfinity()) {
+ FPClassTest Flag = CFP->isNegative() ? (IsFabs ? fcNone : fcNegInf)
+ : (IsFabs ? fcInf : fcPosInf);
+ if (Cond == ISD::SETUEQ)
+ Flag |= fcNan;
+ return DAG.getNode(ISD::IS_FPCLASS, dl, VT, Op,
+ DAG.getTargetConstant(Flag, dl, MVT::i32));
+ }
+ }
+
+ // If the condition is not legal, see if we can find an equivalent one
+ // which is legal.
+ if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) {
+ // If the comparison was an awkward floating-point == or != and one of
+ // the comparison operands is infinity or negative infinity, convert the
+ // condition to a less-awkward <= or >=.
+ if (CFP->getValueAPF().isInfinity()) {
+ bool IsNegInf = CFP->getValueAPF().isNegative();
+ ISD::CondCode NewCond = ISD::SETCC_INVALID;
+ switch (Cond) {
+ case ISD::SETOEQ: NewCond = IsNegInf ? ISD::SETOLE : ISD::SETOGE; break;
+ case ISD::SETUEQ: NewCond = IsNegInf ? ISD::SETULE : ISD::SETUGE; break;
+ case ISD::SETUNE: NewCond = IsNegInf ? ISD::SETUGT : ISD::SETULT; break;
+ case ISD::SETONE: NewCond = IsNegInf ? ISD::SETOGT : ISD::SETOLT; break;
+ default: break;
+ }
+ if (NewCond != ISD::SETCC_INVALID &&
+ isCondCodeLegal(NewCond, N0.getSimpleValueType()))
+ return DAG.getSetCC(dl, VT, N0, N1, NewCond);
+ }
+ }
+ }
+
+ if (N0 == N1) {
+ // The sext(setcc()) => setcc() optimization relies on the appropriate
+ // constant being emitted.
+ assert(!N0.getValueType().isInteger() &&
+ "Integer types should be handled by FoldSetCC");
+
+ bool EqTrue = ISD::isTrueWhenEqual(Cond);
+ unsigned UOF = ISD::getUnorderedFlavor(Cond);
+ if (UOF == 2) // FP operators that are undefined on NaNs.
+ return DAG.getBoolConstant(EqTrue, dl, VT, OpVT);
+ if (UOF == unsigned(EqTrue))
+ return DAG.getBoolConstant(EqTrue, dl, VT, OpVT);
+ // Otherwise, we can't fold it. However, we can simplify it to SETUO/SETO
+ // if it is not already.
+ ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO;
+ if (NewCond != Cond &&
+ (DCI.isBeforeLegalizeOps() ||
+ isCondCodeLegal(NewCond, N0.getSimpleValueType())))
+ return DAG.getSetCC(dl, VT, N0, N1, NewCond);
+ }
+
+ // ~X > ~Y --> Y > X
+ // ~X < ~Y --> Y < X
+ // ~X < C --> X > ~C
+ // ~X > C --> X < ~C
+ if ((isSignedIntSetCC(Cond) || isUnsignedIntSetCC(Cond)) &&
+ N0.getValueType().isInteger()) {
+ if (isBitwiseNot(N0)) {
+ if (isBitwiseNot(N1))
+ return DAG.getSetCC(dl, VT, N1.getOperand(0), N0.getOperand(0), Cond);
+
+ if (DAG.isConstantIntBuildVectorOrConstantInt(N1) &&
+ !DAG.isConstantIntBuildVectorOrConstantInt(N0.getOperand(0))) {
+ SDValue Not = DAG.getNOT(dl, N1, OpVT);
+ return DAG.getSetCC(dl, VT, Not, N0.getOperand(0), Cond);
+ }
+ }
+ }
+
+ if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
+ N0.getValueType().isInteger()) {
+ if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB ||
+ N0.getOpcode() == ISD::XOR) {
+ // Simplify (X+Y) == (X+Z) --> Y == Z
+ if (N0.getOpcode() == N1.getOpcode()) {
+ if (N0.getOperand(0) == N1.getOperand(0))
+ return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond);
+ if (N0.getOperand(1) == N1.getOperand(1))
+ return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond);
+ if (isCommutativeBinOp(N0.getOpcode())) {
+ // If X op Y == Y op X, try other combinations.
+ if (N0.getOperand(0) == N1.getOperand(1))
+ return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0),
+ Cond);
+ if (N0.getOperand(1) == N1.getOperand(0))
+ return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1),
+ Cond);
+ }
+ }
+
+ // If RHS is a legal immediate value for a compare instruction, we need
+ // to be careful about increasing register pressure needlessly.
+ bool LegalRHSImm = false;
+
+ if (auto *RHSC = dyn_cast<ConstantSDNode>(N1)) {
+ if (auto *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
+ // Turn (X+C1) == C2 --> X == C2-C1
+ if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse())
+ return DAG.getSetCC(
+ dl, VT, N0.getOperand(0),
+ DAG.getConstant(RHSC->getAPIntValue() - LHSR->getAPIntValue(),
+ dl, N0.getValueType()),
+ Cond);
+
+ // Turn (X^C1) == C2 --> X == C1^C2
+ if (N0.getOpcode() == ISD::XOR && N0.getNode()->hasOneUse())
+ return DAG.getSetCC(
+ dl, VT, N0.getOperand(0),
+ DAG.getConstant(LHSR->getAPIntValue() ^ RHSC->getAPIntValue(),
+ dl, N0.getValueType()),
+ Cond);
+ }
+
+ // Turn (C1-X) == C2 --> X == C1-C2
+ if (auto *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0)))
+ if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse())
+ return DAG.getSetCC(
+ dl, VT, N0.getOperand(1),
+ DAG.getConstant(SUBC->getAPIntValue() - RHSC->getAPIntValue(),
+ dl, N0.getValueType()),
+ Cond);
+
+ // Could RHSC fold directly into a compare?
+ if (RHSC->getValueType(0).getSizeInBits() <= 64)
+ LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue());
+ }
+
+ // (X+Y) == X --> Y == 0 and similar folds.
+ // Don't do this if X is an immediate that can fold into a cmp
+ // instruction and X+Y has other uses. It could be an induction variable
+ // chain, and the transform would increase register pressure.
+ if (!LegalRHSImm || N0.hasOneUse())
+ if (SDValue V = foldSetCCWithBinOp(VT, N0, N1, Cond, dl, DCI))
+ return V;
+ }
+
+ if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
+ N1.getOpcode() == ISD::XOR)
+ if (SDValue V = foldSetCCWithBinOp(VT, N1, N0, Cond, dl, DCI))
+ return V;
+
+ if (SDValue V = foldSetCCWithAnd(VT, N0, N1, Cond, dl, DCI))
+ return V;
+ }
+
+ // Fold remainder of division by a constant.
+ if ((N0.getOpcode() == ISD::UREM || N0.getOpcode() == ISD::SREM) &&
+ N0.hasOneUse() && (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
+ // When division is cheap or optimizing for minimum size,
+ // fall through to DIVREM creation by skipping this fold.
+ if (!isIntDivCheap(VT, Attr) && !Attr.hasFnAttr(Attribute::MinSize)) {
+ if (N0.getOpcode() == ISD::UREM) {
+ if (SDValue Folded = buildUREMEqFold(VT, N0, N1, Cond, DCI, dl))
+ return Folded;
+ } else if (N0.getOpcode() == ISD::SREM) {
+ if (SDValue Folded = buildSREMEqFold(VT, N0, N1, Cond, DCI, dl))
+ return Folded;
+ }
+ }
+ }
+
+ // Fold away ALL boolean setcc's.
+ if (N0.getValueType().getScalarType() == MVT::i1 && foldBooleans) {
+ SDValue Temp;
+ switch (Cond) {
+ default: llvm_unreachable("Unknown integer setcc!");
+ case ISD::SETEQ: // X == Y -> ~(X^Y)
+ Temp = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1);
+ N0 = DAG.getNOT(dl, Temp, OpVT);
+ if (!DCI.isCalledByLegalizer())
+ DCI.AddToWorklist(Temp.getNode());
+ break;
+ case ISD::SETNE: // X != Y --> (X^Y)
+ N0 = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1);
+ break;
+ case ISD::SETGT: // X >s Y --> X == 0 & Y == 1 --> ~X & Y
+ case ISD::SETULT: // X <u Y --> X == 0 & Y == 1 --> ~X & Y
+ Temp = DAG.getNOT(dl, N0, OpVT);
+ N0 = DAG.getNode(ISD::AND, dl, OpVT, N1, Temp);
+ if (!DCI.isCalledByLegalizer())
+ DCI.AddToWorklist(Temp.getNode());
+ break;
+ case ISD::SETLT: // X <s Y --> X == 1 & Y == 0 --> ~Y & X
+ case ISD::SETUGT: // X >u Y --> X == 1 & Y == 0 --> ~Y & X
+ Temp = DAG.getNOT(dl, N1, OpVT);
+ N0 = DAG.getNode(ISD::AND, dl, OpVT, N0, Temp);
+ if (!DCI.isCalledByLegalizer())
+ DCI.AddToWorklist(Temp.getNode());
+ break;
+ case ISD::SETULE: // X <=u Y --> X == 0 | Y == 1 --> ~X | Y
+ case ISD::SETGE: // X >=s Y --> X == 0 | Y == 1 --> ~X | Y
+ Temp = DAG.getNOT(dl, N0, OpVT);
+ N0 = DAG.getNode(ISD::OR, dl, OpVT, N1, Temp);
+ if (!DCI.isCalledByLegalizer())
+ DCI.AddToWorklist(Temp.getNode());
+ break;
+ case ISD::SETUGE: // X >=u Y --> X == 1 | Y == 0 --> ~Y | X
+ case ISD::SETLE: // X <=s Y --> X == 1 | Y == 0 --> ~Y | X
+ Temp = DAG.getNOT(dl, N1, OpVT);
+ N0 = DAG.getNode(ISD::OR, dl, OpVT, N0, Temp);
+ break;
+ }
+ if (VT.getScalarType() != MVT::i1) {
+ if (!DCI.isCalledByLegalizer())
+ DCI.AddToWorklist(N0.getNode());
+ // FIXME: If running after legalize, we probably can't do this.
+ ISD::NodeType ExtendCode = getExtendForContent(getBooleanContents(OpVT));
+ N0 = DAG.getNode(ExtendCode, dl, VT, N0);
+ }
+ return N0;
+ }
+
+ // Could not fold it.
+ return SDValue();
+}
+
+/// Returns true (and the GlobalValue and the offset) if the node is a
+/// GlobalAddress + offset.
+bool TargetLowering::isGAPlusOffset(SDNode *WN, const GlobalValue *&GA,
+ int64_t &Offset) const {
+
+ SDNode *N = unwrapAddress(SDValue(WN, 0)).getNode();
+
+ if (auto *GASD = dyn_cast<GlobalAddressSDNode>(N)) {
+ GA = GASD->getGlobal();
+ Offset += GASD->getOffset();
+ return true;
+ }
+
+ if (N->getOpcode() == ISD::ADD) {
+ SDValue N1 = N->getOperand(0);
+ SDValue N2 = N->getOperand(1);
+ if (isGAPlusOffset(N1.getNode(), GA, Offset)) {
+ if (auto *V = dyn_cast<ConstantSDNode>(N2)) {
+ Offset += V->getSExtValue();
+ return true;
+ }
+ } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) {
+ if (auto *V = dyn_cast<ConstantSDNode>(N1)) {
+ Offset += V->getSExtValue();
+ return true;
+ }
+ }
+ }
+
+ return false;
+}
+
+SDValue TargetLowering::PerformDAGCombine(SDNode *N,
+ DAGCombinerInfo &DCI) const {
+ // Default implementation: no optimization.
+ return SDValue();
+}
+
+//===----------------------------------------------------------------------===//
+// Inline Assembler Implementation Methods
+//===----------------------------------------------------------------------===//
+
+TargetLowering::ConstraintType
+TargetLowering::getConstraintType(StringRef Constraint) const {
+ unsigned S = Constraint.size();
+
+ if (S == 1) {
+ switch (Constraint[0]) {
+ default: break;
+ case 'r':
+ return C_RegisterClass;
+ case 'm': // memory
+ case 'o': // offsetable
+ case 'V': // not offsetable
+ return C_Memory;
+ case 'p': // Address.
+ return C_Address;
+ case 'n': // Simple Integer
+ case 'E': // Floating Point Constant
+ case 'F': // Floating Point Constant
+ return C_Immediate;
+ case 'i': // Simple Integer or Relocatable Constant
+ case 's': // Relocatable Constant
+ case 'X': // Allow ANY value.
+ case 'I': // Target registers.
+ case 'J':
+ case 'K':
+ case 'L':
+ case 'M':
+ case 'N':
+ case 'O':
+ case 'P':
+ case '<':
+ case '>':
+ return C_Other;
+ }
+ }
+
+ if (S > 1 && Constraint[0] == '{' && Constraint[S - 1] == '}') {
+ if (S == 8 && Constraint.substr(1, 6) == "memory") // "{memory}"
+ return C_Memory;
+ return C_Register;
+ }
+ return C_Unknown;
+}
+
+/// Try to replace an X constraint, which matches anything, with another that
+/// has more specific requirements based on the type of the corresponding
+/// operand.
+const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const {
+ if (ConstraintVT.isInteger())
+ return "r";
+ if (ConstraintVT.isFloatingPoint())
+ return "f"; // works for many targets
+ return nullptr;
+}
+
+SDValue TargetLowering::LowerAsmOutputForConstraint(
+ SDValue &Chain, SDValue &Glue, const SDLoc &DL,
+ const AsmOperandInfo &OpInfo, SelectionDAG &DAG) const {
+ return SDValue();
+}
+
+/// Lower the specified operand into the Ops vector.
+/// If it is invalid, don't add anything to Ops.
+void TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
+ StringRef Constraint,
+ std::vector<SDValue> &Ops,
+ SelectionDAG &DAG) const {
+
+ if (Constraint.size() > 1)
+ return;
+
+ char ConstraintLetter = Constraint[0];
+ switch (ConstraintLetter) {
+ default: break;
+ case 'X': // Allows any operand
+ case 'i': // Simple Integer or Relocatable Constant
+ case 'n': // Simple Integer
+ case 's': { // Relocatable Constant
+
+ ConstantSDNode *C;
+ uint64_t Offset = 0;
+
+ // Match (GA) or (C) or (GA+C) or (GA-C) or ((GA+C)+C) or (((GA+C)+C)+C),
+ // etc., since getelementpointer is variadic. We can't use
+ // SelectionDAG::FoldSymbolOffset because it expects the GA to be accessible
+ // while in this case the GA may be furthest from the root node which is
+ // likely an ISD::ADD.
+ while (true) {
+ if ((C = dyn_cast<ConstantSDNode>(Op)) && ConstraintLetter != 's') {
+ // gcc prints these as sign extended. Sign extend value to 64 bits
+ // now; without this it would get ZExt'd later in
+ // ScheduleDAGSDNodes::EmitNode, which is very generic.
+ bool IsBool = C->getConstantIntValue()->getBitWidth() == 1;
+ BooleanContent BCont = getBooleanContents(MVT::i64);
+ ISD::NodeType ExtOpc =
+ IsBool ? getExtendForContent(BCont) : ISD::SIGN_EXTEND;
+ int64_t ExtVal =
+ ExtOpc == ISD::ZERO_EXTEND ? C->getZExtValue() : C->getSExtValue();
+ Ops.push_back(
+ DAG.getTargetConstant(Offset + ExtVal, SDLoc(C), MVT::i64));
+ return;
+ }
+ if (ConstraintLetter != 'n') {
+ if (const auto *GA = dyn_cast<GlobalAddressSDNode>(Op)) {
+ Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op),
+ GA->getValueType(0),
+ Offset + GA->getOffset()));
+ return;
+ }
+ if (const auto *BA = dyn_cast<BlockAddressSDNode>(Op)) {
+ Ops.push_back(DAG.getTargetBlockAddress(
+ BA->getBlockAddress(), BA->getValueType(0),
+ Offset + BA->getOffset(), BA->getTargetFlags()));
+ return;
+ }
+ if (isa<BasicBlockSDNode>(Op)) {
+ Ops.push_back(Op);
+ return;
+ }
+ }
+ const unsigned OpCode = Op.getOpcode();
+ if (OpCode == ISD::ADD || OpCode == ISD::SUB) {
+ if ((C = dyn_cast<ConstantSDNode>(Op.getOperand(0))))
+ Op = Op.getOperand(1);
+ // Subtraction is not commutative.
+ else if (OpCode == ISD::ADD &&
+ (C = dyn_cast<ConstantSDNode>(Op.getOperand(1))))
+ Op = Op.getOperand(0);
+ else
+ return;
+ Offset += (OpCode == ISD::ADD ? 1 : -1) * C->getSExtValue();
+ continue;
+ }
+ return;
+ }
+ break;
+ }
+ }
+}
+
+void TargetLowering::CollectTargetIntrinsicOperands(
+ const CallInst &I, SmallVectorImpl<SDValue> &Ops, SelectionDAG &DAG) const {
+}
+
+std::pair<unsigned, const TargetRegisterClass *>
+TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI,
+ StringRef Constraint,
+ MVT VT) const {
+ if (!Constraint.starts_with("{"))
+ return std::make_pair(0u, static_cast<TargetRegisterClass *>(nullptr));
+ assert(*(Constraint.end() - 1) == '}' && "Not a brace enclosed constraint?");
+
+ // Remove the braces from around the name.
+ StringRef RegName(Constraint.data() + 1, Constraint.size() - 2);
+
+ std::pair<unsigned, const TargetRegisterClass *> R =
+ std::make_pair(0u, static_cast<const TargetRegisterClass *>(nullptr));
+
+ // Figure out which register class contains this reg.
+ for (const TargetRegisterClass *RC : RI->regclasses()) {
+ // If none of the value types for this register class are valid, we
+ // can't use it. For example, 64-bit reg classes on 32-bit targets.
+ if (!isLegalRC(*RI, *RC))
+ continue;
+
+ for (const MCPhysReg &PR : *RC) {
+ if (RegName.equals_insensitive(RI->getRegAsmName(PR))) {
+ std::pair<unsigned, const TargetRegisterClass *> S =
+ std::make_pair(PR, RC);
+
+ // If this register class has the requested value type, return it,
+ // otherwise keep searching and return the first class found
+ // if no other is found which explicitly has the requested type.
+ if (RI->isTypeLegalForClass(*RC, VT))
+ return S;
+ if (!R.second)
+ R = S;
+ }
+ }
+ }
+
+ return R;
+}
+
+//===----------------------------------------------------------------------===//
+// Constraint Selection.
+
+/// Return true of this is an input operand that is a matching constraint like
+/// "4".
+bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const {
+ assert(!ConstraintCode.empty() && "No known constraint!");
+ return isdigit(static_cast<unsigned char>(ConstraintCode[0]));
+}
+
+/// If this is an input matching constraint, this method returns the output
+/// operand it matches.
+unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const {
+ assert(!ConstraintCode.empty() && "No known constraint!");
+ return atoi(ConstraintCode.c_str());
+}
+
+/// Split up the constraint string from the inline assembly value into the
+/// specific constraints and their prefixes, and also tie in the associated
+/// operand values.
+/// If this returns an empty vector, and if the constraint string itself
+/// isn't empty, there was an error parsing.
+TargetLowering::AsmOperandInfoVector
+TargetLowering::ParseConstraints(const DataLayout &DL,
+ const TargetRegisterInfo *TRI,
+ const CallBase &Call) const {
+ /// Information about all of the constraints.
+ AsmOperandInfoVector ConstraintOperands;
+ const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
+ unsigned maCount = 0; // Largest number of multiple alternative constraints.
+
+ // Do a prepass over the constraints, canonicalizing them, and building up the
+ // ConstraintOperands list.
+ unsigned ArgNo = 0; // ArgNo - The argument of the CallInst.
+ unsigned ResNo = 0; // ResNo - The result number of the next output.
+ unsigned LabelNo = 0; // LabelNo - CallBr indirect dest number.
+
+ for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) {
+ ConstraintOperands.emplace_back(std::move(CI));
+ AsmOperandInfo &OpInfo = ConstraintOperands.back();
+
+ // Update multiple alternative constraint count.
+ if (OpInfo.multipleAlternatives.size() > maCount)
+ maCount = OpInfo.multipleAlternatives.size();
+
+ OpInfo.ConstraintVT = MVT::Other;
+
+ // Compute the value type for each operand.
+ switch (OpInfo.Type) {
+ case InlineAsm::isOutput:
+ // Indirect outputs just consume an argument.
+ if (OpInfo.isIndirect) {
+ OpInfo.CallOperandVal = Call.getArgOperand(ArgNo);
+ break;
+ }
+
+ // The return value of the call is this value. As such, there is no
+ // corresponding argument.
+ assert(!Call.getType()->isVoidTy() && "Bad inline asm!");
+ if (auto *STy = dyn_cast<StructType>(Call.getType())) {
+ OpInfo.ConstraintVT =
+ getSimpleValueType(DL, STy->getElementType(ResNo));
+ } else {
+ assert(ResNo == 0 && "Asm only has one result!");
+ OpInfo.ConstraintVT =
+ getAsmOperandValueType(DL, Call.getType()).getSimpleVT();
+ }
+ ++ResNo;
+ break;
+ case InlineAsm::isInput:
+ OpInfo.CallOperandVal = Call.getArgOperand(ArgNo);
+ break;
+ case InlineAsm::isLabel:
+ OpInfo.CallOperandVal = cast<CallBrInst>(&Call)->getIndirectDest(LabelNo);
+ ++LabelNo;
+ continue;
+ case InlineAsm::isClobber:
+ // Nothing to do.
+ break;
+ }
+
+ if (OpInfo.CallOperandVal) {
+ llvm::Type *OpTy = OpInfo.CallOperandVal->getType();
+ if (OpInfo.isIndirect) {
+ OpTy = Call.getParamElementType(ArgNo);
+ assert(OpTy && "Indirect operand must have elementtype attribute");
+ }
+
+ // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
+ if (StructType *STy = dyn_cast<StructType>(OpTy))
+ if (STy->getNumElements() == 1)
+ OpTy = STy->getElementType(0);
+
+ // If OpTy is not a single value, it may be a struct/union that we
+ // can tile with integers.
+ if (!OpTy->isSingleValueType() && OpTy->isSized()) {
+ unsigned BitSize = DL.getTypeSizeInBits(OpTy);
+ switch (BitSize) {
+ default: break;
+ case 1:
+ case 8:
+ case 16:
+ case 32:
+ case 64:
+ case 128:
+ OpTy = IntegerType::get(OpTy->getContext(), BitSize);
+ break;
+ }
+ }
+
+ EVT VT = getAsmOperandValueType(DL, OpTy, true);
+ OpInfo.ConstraintVT = VT.isSimple() ? VT.getSimpleVT() : MVT::Other;
+ ArgNo++;
+ }
+ }
+
+ // If we have multiple alternative constraints, select the best alternative.
+ if (!ConstraintOperands.empty()) {
+ if (maCount) {
+ unsigned bestMAIndex = 0;
+ int bestWeight = -1;
+ // weight: -1 = invalid match, and 0 = so-so match to 5 = good match.
+ int weight = -1;
+ unsigned maIndex;
+ // Compute the sums of the weights for each alternative, keeping track
+ // of the best (highest weight) one so far.
+ for (maIndex = 0; maIndex < maCount; ++maIndex) {
+ int weightSum = 0;
+ for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
+ cIndex != eIndex; ++cIndex) {
+ AsmOperandInfo &OpInfo = ConstraintOperands[cIndex];
+ if (OpInfo.Type == InlineAsm::isClobber)
+ continue;
+
+ // If this is an output operand with a matching input operand,
+ // look up the matching input. If their types mismatch, e.g. one
+ // is an integer, the other is floating point, or their sizes are
+ // different, flag it as an maCantMatch.
+ if (OpInfo.hasMatchingInput()) {
+ AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
+ if (OpInfo.ConstraintVT != Input.ConstraintVT) {
+ if ((OpInfo.ConstraintVT.isInteger() !=
+ Input.ConstraintVT.isInteger()) ||
+ (OpInfo.ConstraintVT.getSizeInBits() !=
+ Input.ConstraintVT.getSizeInBits())) {
+ weightSum = -1; // Can't match.
+ break;
+ }
+ }
+ }
+ weight = getMultipleConstraintMatchWeight(OpInfo, maIndex);
+ if (weight == -1) {
+ weightSum = -1;
+ break;
+ }
+ weightSum += weight;
+ }
+ // Update best.
+ if (weightSum > bestWeight) {
+ bestWeight = weightSum;
+ bestMAIndex = maIndex;
+ }
+ }
+
+ // Now select chosen alternative in each constraint.
+ for (AsmOperandInfo &cInfo : ConstraintOperands)
+ if (cInfo.Type != InlineAsm::isClobber)
+ cInfo.selectAlternative(bestMAIndex);
+ }
+ }
+
+ // Check and hook up tied operands, choose constraint code to use.
+ for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
+ cIndex != eIndex; ++cIndex) {
+ AsmOperandInfo &OpInfo = ConstraintOperands[cIndex];
+
+ // If this is an output operand with a matching input operand, look up the
+ // matching input. If their types mismatch, e.g. one is an integer, the
+ // other is floating point, or their sizes are different, flag it as an
+ // error.
+ if (OpInfo.hasMatchingInput()) {
+ AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
+
+ if (OpInfo.ConstraintVT != Input.ConstraintVT) {
+ std::pair<unsigned, const TargetRegisterClass *> MatchRC =
+ getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
+ OpInfo.ConstraintVT);
+ std::pair<unsigned, const TargetRegisterClass *> InputRC =
+ getRegForInlineAsmConstraint(TRI, Input.ConstraintCode,
+ Input.ConstraintVT);
+ if ((OpInfo.ConstraintVT.isInteger() !=
+ Input.ConstraintVT.isInteger()) ||
+ (MatchRC.second != InputRC.second)) {
+ report_fatal_error("Unsupported asm: input constraint"
+ " with a matching output constraint of"
+ " incompatible type!");
+ }
+ }
+ }
+ }
+
+ return ConstraintOperands;
+}
+
+/// Return a number indicating our preference for chosing a type of constraint
+/// over another, for the purpose of sorting them. Immediates are almost always
+/// preferrable (when they can be emitted). A higher return value means a
+/// stronger preference for one constraint type relative to another.
+/// FIXME: We should prefer registers over memory but doing so may lead to
+/// unrecoverable register exhaustion later.
+/// https://github.com/llvm/llvm-project/issues/20571
+static unsigned getConstraintPiority(TargetLowering::ConstraintType CT) {
+ switch (CT) {
+ case TargetLowering::C_Immediate:
+ case TargetLowering::C_Other:
+ return 4;
+ case TargetLowering::C_Memory:
+ case TargetLowering::C_Address:
+ return 3;
+ case TargetLowering::C_RegisterClass:
+ return 2;
+ case TargetLowering::C_Register:
+ return 1;
+ case TargetLowering::C_Unknown:
+ return 0;
+ }
+ llvm_unreachable("Invalid constraint type");
+}
+
+/// Examine constraint type and operand type and determine a weight value.
+/// This object must already have been set up with the operand type
+/// and the current alternative constraint selected.
+TargetLowering::ConstraintWeight
+ TargetLowering::getMultipleConstraintMatchWeight(
+ AsmOperandInfo &info, int maIndex) const {
+ InlineAsm::ConstraintCodeVector *rCodes;
+ if (maIndex >= (int)info.multipleAlternatives.size())
+ rCodes = &info.Codes;
+ else
+ rCodes = &info.multipleAlternatives[maIndex].Codes;
+ ConstraintWeight BestWeight = CW_Invalid;
+
+ // Loop over the options, keeping track of the most general one.
+ for (const std::string &rCode : *rCodes) {
+ ConstraintWeight weight =
+ getSingleConstraintMatchWeight(info, rCode.c_str());
+ if (weight > BestWeight)
+ BestWeight = weight;
+ }
+
+ return BestWeight;
+}
+
+/// Examine constraint type and operand type and determine a weight value.
+/// This object must already have been set up with the operand type
+/// and the current alternative constraint selected.
+TargetLowering::ConstraintWeight
+ TargetLowering::getSingleConstraintMatchWeight(
+ AsmOperandInfo &info, const char *constraint) const {
+ ConstraintWeight weight = CW_Invalid;
+ Value *CallOperandVal = info.CallOperandVal;
+ // If we don't have a value, we can't do a match,
+ // but allow it at the lowest weight.
+ if (!CallOperandVal)
+ return CW_Default;
+ // Look at the constraint type.
+ switch (*constraint) {
+ case 'i': // immediate integer.
+ case 'n': // immediate integer with a known value.
+ if (isa<ConstantInt>(CallOperandVal))
+ weight = CW_Constant;
+ break;
+ case 's': // non-explicit intregal immediate.
+ if (isa<GlobalValue>(CallOperandVal))
+ weight = CW_Constant;
+ break;
+ case 'E': // immediate float if host format.
+ case 'F': // immediate float.
+ if (isa<ConstantFP>(CallOperandVal))
+ weight = CW_Constant;
+ break;
+ case '<': // memory operand with autodecrement.
+ case '>': // memory operand with autoincrement.
+ case 'm': // memory operand.
+ case 'o': // offsettable memory operand
+ case 'V': // non-offsettable memory operand
+ weight = CW_Memory;
+ break;
+ case 'r': // general register.
+ case 'g': // general register, memory operand or immediate integer.
+ // note: Clang converts "g" to "imr".
+ if (CallOperandVal->getType()->isIntegerTy())
+ weight = CW_Register;
+ break;
+ case 'X': // any operand.
+ default:
+ weight = CW_Default;
+ break;
+ }
+ return weight;
+}
+
+/// If there are multiple different constraints that we could pick for this
+/// operand (e.g. "imr") try to pick the 'best' one.
+/// This is somewhat tricky: constraints (TargetLowering::ConstraintType) fall
+/// into seven classes:
+/// Register -> one specific register
+/// RegisterClass -> a group of regs
+/// Memory -> memory
+/// Address -> a symbolic memory reference
+/// Immediate -> immediate values
+/// Other -> magic values (such as "Flag Output Operands")
+/// Unknown -> something we don't recognize yet and can't handle
+/// Ideally, we would pick the most specific constraint possible: if we have
+/// something that fits into a register, we would pick it. The problem here
+/// is that if we have something that could either be in a register or in
+/// memory that use of the register could cause selection of *other*
+/// operands to fail: they might only succeed if we pick memory. Because of
+/// this the heuristic we use is:
+///
+/// 1) If there is an 'other' constraint, and if the operand is valid for
+/// that constraint, use it. This makes us take advantage of 'i'
+/// constraints when available.
+/// 2) Otherwise, pick the most general constraint present. This prefers
+/// 'm' over 'r', for example.
+///
+TargetLowering::ConstraintGroup TargetLowering::getConstraintPreferences(
+ TargetLowering::AsmOperandInfo &OpInfo) const {
+ ConstraintGroup Ret;
+
+ Ret.reserve(OpInfo.Codes.size());
+ for (StringRef Code : OpInfo.Codes) {
+ TargetLowering::ConstraintType CType = getConstraintType(Code);
+
+ // Indirect 'other' or 'immediate' constraints are not allowed.
+ if (OpInfo.isIndirect && !(CType == TargetLowering::C_Memory ||
+ CType == TargetLowering::C_Register ||
+ CType == TargetLowering::C_RegisterClass))
+ continue;
+
+ // Things with matching constraints can only be registers, per gcc
+ // documentation. This mainly affects "g" constraints.
+ if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput())
+ continue;
+
+ Ret.emplace_back(Code, CType);
+ }
+
+ std::stable_sort(
+ Ret.begin(), Ret.end(), [](ConstraintPair a, ConstraintPair b) {
+ return getConstraintPiority(a.second) > getConstraintPiority(b.second);
+ });
+
+ return Ret;
+}
+
+/// If we have an immediate, see if we can lower it. Return true if we can,
+/// false otherwise.
+static bool lowerImmediateIfPossible(TargetLowering::ConstraintPair &P,
+ SDValue Op, SelectionDAG *DAG,
+ const TargetLowering &TLI) {
+
+ assert((P.second == TargetLowering::C_Other ||
+ P.second == TargetLowering::C_Immediate) &&
+ "need immediate or other");
+
+ if (!Op.getNode())
+ return false;
+
+ std::vector<SDValue> ResultOps;
+ TLI.LowerAsmOperandForConstraint(Op, P.first, ResultOps, *DAG);
+ return !ResultOps.empty();
+}
+
+/// Determines the constraint code and constraint type to use for the specific
+/// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType.
+void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo,
+ SDValue Op,
+ SelectionDAG *DAG) const {
+ assert(!OpInfo.Codes.empty() && "Must have at least one constraint");
+
+ // Single-letter constraints ('r') are very common.
+ if (OpInfo.Codes.size() == 1) {
+ OpInfo.ConstraintCode = OpInfo.Codes[0];
+ OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
+ } else {
+ ConstraintGroup G = getConstraintPreferences(OpInfo);
+ if (G.empty())
+ return;
+
+ unsigned BestIdx = 0;
+ for (const unsigned E = G.size();
+ BestIdx < E && (G[BestIdx].second == TargetLowering::C_Other ||
+ G[BestIdx].second == TargetLowering::C_Immediate);
+ ++BestIdx) {
+ if (lowerImmediateIfPossible(G[BestIdx], Op, DAG, *this))
+ break;
+ // If we're out of constraints, just pick the first one.
+ if (BestIdx + 1 == E) {
+ BestIdx = 0;
+ break;
+ }
+ }
+
+ OpInfo.ConstraintCode = G[BestIdx].first;
+ OpInfo.ConstraintType = G[BestIdx].second;
+ }
+
+ // 'X' matches anything.
+ if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) {
+ // Constants are handled elsewhere. For Functions, the type here is the
+ // type of the result, which is not what we want to look at; leave them
+ // alone.
+ Value *v = OpInfo.CallOperandVal;
+ if (isa<ConstantInt>(v) || isa<Function>(v)) {
+ return;
+ }
+
+ if (isa<BasicBlock>(v) || isa<BlockAddress>(v)) {
+ OpInfo.ConstraintCode = "i";
+ return;
+ }
+
+ // Otherwise, try to resolve it to something we know about by looking at
+ // the actual operand type.
+ if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) {
+ OpInfo.ConstraintCode = Repl;
+ OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
+ }
+ }
+}
+
+/// Given an exact SDIV by a constant, create a multiplication
+/// with the multiplicative inverse of the constant.
+/// Ref: "Hacker's Delight" by Henry Warren, 2nd Edition, p. 242
+static SDValue BuildExactSDIV(const TargetLowering &TLI, SDNode *N,
+ const SDLoc &dl, SelectionDAG &DAG,
+ SmallVectorImpl<SDNode *> &Created) {
+ SDValue Op0 = N->getOperand(0);
+ SDValue Op1 = N->getOperand(1);
+ EVT VT = N->getValueType(0);
+ EVT SVT = VT.getScalarType();
+ EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout());
+ EVT ShSVT = ShVT.getScalarType();
+
+ bool UseSRA = false;
+ SmallVector<SDValue, 16> Shifts, Factors;
+
+ auto BuildSDIVPattern = [&](ConstantSDNode *C) {
+ if (C->isZero())
+ return false;
+ APInt Divisor = C->getAPIntValue();
+ unsigned Shift = Divisor.countr_zero();
+ if (Shift) {
+ Divisor.ashrInPlace(Shift);
+ UseSRA = true;
+ }
+ APInt Factor = Divisor.multiplicativeInverse();
+ Shifts.push_back(DAG.getConstant(Shift, dl, ShSVT));
+ Factors.push_back(DAG.getConstant(Factor, dl, SVT));
+ return true;
+ };
+
+ // Collect all magic values from the build vector.
+ if (!ISD::matchUnaryPredicate(Op1, BuildSDIVPattern))
+ return SDValue();
+
+ SDValue Shift, Factor;
+ if (Op1.getOpcode() == ISD::BUILD_VECTOR) {
+ Shift = DAG.getBuildVector(ShVT, dl, Shifts);
+ Factor = DAG.getBuildVector(VT, dl, Factors);
+ } else if (Op1.getOpcode() == ISD::SPLAT_VECTOR) {
+ assert(Shifts.size() == 1 && Factors.size() == 1 &&
+ "Expected matchUnaryPredicate to return one element for scalable "
+ "vectors");
+ Shift = DAG.getSplatVector(ShVT, dl, Shifts[0]);
+ Factor = DAG.getSplatVector(VT, dl, Factors[0]);
+ } else {
+ assert(isa<ConstantSDNode>(Op1) && "Expected a constant");
+ Shift = Shifts[0];
+ Factor = Factors[0];
+ }
+
+ SDValue Res = Op0;
+ if (UseSRA) {
+ SDNodeFlags Flags;
+ Flags.setExact(true);
+ Res = DAG.getNode(ISD::SRA, dl, VT, Res, Shift, Flags);
+ Created.push_back(Res.getNode());
+ }
+
+ return DAG.getNode(ISD::MUL, dl, VT, Res, Factor);
+}
+
+/// Given an exact UDIV by a constant, create a multiplication
+/// with the multiplicative inverse of the constant.
+/// Ref: "Hacker's Delight" by Henry Warren, 2nd Edition, p. 242
+static SDValue BuildExactUDIV(const TargetLowering &TLI, SDNode *N,
+ const SDLoc &dl, SelectionDAG &DAG,
+ SmallVectorImpl<SDNode *> &Created) {
+ EVT VT = N->getValueType(0);
+ EVT SVT = VT.getScalarType();
+ EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout());
+ EVT ShSVT = ShVT.getScalarType();
+
+ bool UseSRL = false;
+ SmallVector<SDValue, 16> Shifts, Factors;
+
+ auto BuildUDIVPattern = [&](ConstantSDNode *C) {
+ if (C->isZero())
+ return false;
+ APInt Divisor = C->getAPIntValue();
+ unsigned Shift = Divisor.countr_zero();
+ if (Shift) {
+ Divisor.lshrInPlace(Shift);
+ UseSRL = true;
+ }
+ // Calculate the multiplicative inverse modulo BW.
+ APInt Factor = Divisor.multiplicativeInverse();
+ Shifts.push_back(DAG.getConstant(Shift, dl, ShSVT));
+ Factors.push_back(DAG.getConstant(Factor, dl, SVT));
+ return true;
+ };
+
+ SDValue Op1 = N->getOperand(1);
+
+ // Collect all magic values from the build vector.
+ if (!ISD::matchUnaryPredicate(Op1, BuildUDIVPattern))
+ return SDValue();
+
+ SDValue Shift, Factor;
+ if (Op1.getOpcode() == ISD::BUILD_VECTOR) {
+ Shift = DAG.getBuildVector(ShVT, dl, Shifts);
+ Factor = DAG.getBuildVector(VT, dl, Factors);
+ } else if (Op1.getOpcode() == ISD::SPLAT_VECTOR) {
+ assert(Shifts.size() == 1 && Factors.size() == 1 &&
+ "Expected matchUnaryPredicate to return one element for scalable "
+ "vectors");
+ Shift = DAG.getSplatVector(ShVT, dl, Shifts[0]);
+ Factor = DAG.getSplatVector(VT, dl, Factors[0]);
+ } else {
+ assert(isa<ConstantSDNode>(Op1) && "Expected a constant");
+ Shift = Shifts[0];
+ Factor = Factors[0];
+ }
+
+ SDValue Res = N->getOperand(0);
+ if (UseSRL) {
+ SDNodeFlags Flags;
+ Flags.setExact(true);
+ Res = DAG.getNode(ISD::SRL, dl, VT, Res, Shift, Flags);
+ Created.push_back(Res.getNode());
+ }
+
+ return DAG.getNode(ISD::MUL, dl, VT, Res, Factor);
+}
+
+SDValue TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
+ SelectionDAG &DAG,
+ SmallVectorImpl<SDNode *> &Created) const {
+ AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
+ const TargetLowering &TLI = DAG.getTargetLoweringInfo();
+ if (TLI.isIntDivCheap(N->getValueType(0), Attr))
+ return SDValue(N, 0); // Lower SDIV as SDIV
+ return SDValue();
+}
+
+SDValue
+TargetLowering::BuildSREMPow2(SDNode *N, const APInt &Divisor,
+ SelectionDAG &DAG,
+ SmallVectorImpl<SDNode *> &Created) const {
+ AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
+ const TargetLowering &TLI = DAG.getTargetLoweringInfo();
+ if (TLI.isIntDivCheap(N->getValueType(0), Attr))
+ return SDValue(N, 0); // Lower SREM as SREM
+ return SDValue();
+}
+
+/// Build sdiv by power-of-2 with conditional move instructions
+/// Ref: "Hacker's Delight" by Henry Warren 10-1
+/// If conditional move/branch is preferred, we lower sdiv x, +/-2**k into:
+/// bgez x, label
+/// add x, x, 2**k-1
+/// label:
+/// sra res, x, k
+/// neg res, res (when the divisor is negative)
+SDValue TargetLowering::buildSDIVPow2WithCMov(
+ SDNode *N, const APInt &Divisor, SelectionDAG &DAG,
+ SmallVectorImpl<SDNode *> &Created) const {
+ unsigned Lg2 = Divisor.countr_zero();
+ EVT VT = N->getValueType(0);
+
+ SDLoc DL(N);
+ SDValue N0 = N->getOperand(0);
+ SDValue Zero = DAG.getConstant(0, DL, VT);
+ APInt Lg2Mask = APInt::getLowBitsSet(VT.getSizeInBits(), Lg2);
+ SDValue Pow2MinusOne = DAG.getConstant(Lg2Mask, DL, VT);
+
+ // If N0 is negative, we need to add (Pow2 - 1) to it before shifting right.
+ EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
+ SDValue Cmp = DAG.getSetCC(DL, CCVT, N0, Zero, ISD::SETLT);
+ SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N0, Pow2MinusOne);
+ SDValue CMov = DAG.getNode(ISD::SELECT, DL, VT, Cmp, Add, N0);
+
+ Created.push_back(Cmp.getNode());
+ Created.push_back(Add.getNode());
+ Created.push_back(CMov.getNode());
+
+ // Divide by pow2.
+ SDValue SRA =
+ DAG.getNode(ISD::SRA, DL, VT, CMov, DAG.getConstant(Lg2, DL, VT));
+
+ // If we're dividing by a positive value, we're done. Otherwise, we must
+ // negate the result.
+ if (Divisor.isNonNegative())
+ return SRA;
+
+ Created.push_back(SRA.getNode());
+ return DAG.getNode(ISD::SUB, DL, VT, Zero, SRA);
+}
+
+/// Given an ISD::SDIV node expressing a divide by constant,
+/// return a DAG expression to select that will generate the same value by
+/// multiplying by a magic number.
+/// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
+SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG,
+ bool IsAfterLegalization,
+ SmallVectorImpl<SDNode *> &Created) const {
+ SDLoc dl(N);
+ EVT VT = N->getValueType(0);
+ EVT SVT = VT.getScalarType();
+ EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
+ EVT ShSVT = ShVT.getScalarType();
+ unsigned EltBits = VT.getScalarSizeInBits();
+ EVT MulVT;
+
+ // Check to see if we can do this.
+ // FIXME: We should be more aggressive here.
+ if (!isTypeLegal(VT)) {
+ // Limit this to simple scalars for now.
+ if (VT.isVector() || !VT.isSimple())
+ return SDValue();
+
+ // If this type will be promoted to a large enough type with a legal
+ // multiply operation, we can go ahead and do this transform.
+ if (getTypeAction(VT.getSimpleVT()) != TypePromoteInteger)
+ return SDValue();
+
+ MulVT = getTypeToTransformTo(*DAG.getContext(), VT);
+ if (MulVT.getSizeInBits() < (2 * EltBits) ||
+ !isOperationLegal(ISD::MUL, MulVT))
+ return SDValue();
+ }
+
+ // If the sdiv has an 'exact' bit we can use a simpler lowering.
+ if (N->getFlags().hasExact())
+ return BuildExactSDIV(*this, N, dl, DAG, Created);
+
+ SmallVector<SDValue, 16> MagicFactors, Factors, Shifts, ShiftMasks;
+
+ auto BuildSDIVPattern = [&](ConstantSDNode *C) {
+ if (C->isZero())
+ return false;
+
+ const APInt &Divisor = C->getAPIntValue();
+ SignedDivisionByConstantInfo magics = SignedDivisionByConstantInfo::get(Divisor);
+ int NumeratorFactor = 0;
+ int ShiftMask = -1;
+
+ if (Divisor.isOne() || Divisor.isAllOnes()) {
+ // If d is +1/-1, we just multiply the numerator by +1/-1.
+ NumeratorFactor = Divisor.getSExtValue();
+ magics.Magic = 0;
+ magics.ShiftAmount = 0;
+ ShiftMask = 0;
+ } else if (Divisor.isStrictlyPositive() && magics.Magic.isNegative()) {
+ // If d > 0 and m < 0, add the numerator.
+ NumeratorFactor = 1;
+ } else if (Divisor.isNegative() && magics.Magic.isStrictlyPositive()) {
+ // If d < 0 and m > 0, subtract the numerator.
+ NumeratorFactor = -1;
+ }
+
+ MagicFactors.push_back(DAG.getConstant(magics.Magic, dl, SVT));
+ Factors.push_back(DAG.getConstant(NumeratorFactor, dl, SVT));
+ Shifts.push_back(DAG.getConstant(magics.ShiftAmount, dl, ShSVT));
+ ShiftMasks.push_back(DAG.getConstant(ShiftMask, dl, SVT));
+ return true;
+ };
+
+ SDValue N0 = N->getOperand(0);
+ SDValue N1 = N->getOperand(1);
+
+ // Collect the shifts / magic values from each element.
+ if (!ISD::matchUnaryPredicate(N1, BuildSDIVPattern))
+ return SDValue();
+
+ SDValue MagicFactor, Factor, Shift, ShiftMask;
+ if (N1.getOpcode() == ISD::BUILD_VECTOR) {
+ MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors);
+ Factor = DAG.getBuildVector(VT, dl, Factors);
+ Shift = DAG.getBuildVector(ShVT, dl, Shifts);
+ ShiftMask = DAG.getBuildVector(VT, dl, ShiftMasks);
+ } else if (N1.getOpcode() == ISD::SPLAT_VECTOR) {
+ assert(MagicFactors.size() == 1 && Factors.size() == 1 &&
+ Shifts.size() == 1 && ShiftMasks.size() == 1 &&
+ "Expected matchUnaryPredicate to return one element for scalable "
+ "vectors");
+ MagicFactor = DAG.getSplatVector(VT, dl, MagicFactors[0]);
+ Factor = DAG.getSplatVector(VT, dl, Factors[0]);
+ Shift = DAG.getSplatVector(ShVT, dl, Shifts[0]);
+ ShiftMask = DAG.getSplatVector(VT, dl, ShiftMasks[0]);
+ } else {
+ assert(isa<ConstantSDNode>(N1) && "Expected a constant");
+ MagicFactor = MagicFactors[0];
+ Factor = Factors[0];
+ Shift = Shifts[0];
+ ShiftMask = ShiftMasks[0];
+ }
+
+ // Multiply the numerator (operand 0) by the magic value.
+ // FIXME: We should support doing a MUL in a wider type.
+ auto GetMULHS = [&](SDValue X, SDValue Y) {
+ // If the type isn't legal, use a wider mul of the type calculated
+ // earlier.
+ if (!isTypeLegal(VT)) {
+ X = DAG.getNode(ISD::SIGN_EXTEND, dl, MulVT, X);
+ Y = DAG.getNode(ISD::SIGN_EXTEND, dl, MulVT, Y);
+ Y = DAG.getNode(ISD::MUL, dl, MulVT, X, Y);
+ Y = DAG.getNode(ISD::SRL, dl, MulVT, Y,
+ DAG.getShiftAmountConstant(EltBits, MulVT, dl));
+ return DAG.getNode(ISD::TRUNCATE, dl, VT, Y);
+ }
+
+ if (isOperationLegalOrCustom(ISD::MULHS, VT, IsAfterLegalization))
+ return DAG.getNode(ISD::MULHS, dl, VT, X, Y);
+ if (isOperationLegalOrCustom(ISD::SMUL_LOHI, VT, IsAfterLegalization)) {
+ SDValue LoHi =
+ DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y);
+ return SDValue(LoHi.getNode(), 1);
+ }
+ // If type twice as wide legal, widen and use a mul plus a shift.
+ unsigned Size = VT.getScalarSizeInBits();
+ EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), Size * 2);
+ if (VT.isVector())
+ WideVT = EVT::getVectorVT(*DAG.getContext(), WideVT,
+ VT.getVectorElementCount());
+ if (isOperationLegalOrCustom(ISD::MUL, WideVT)) {
+ X = DAG.getNode(ISD::SIGN_EXTEND, dl, WideVT, X);
+ Y = DAG.getNode(ISD::SIGN_EXTEND, dl, WideVT, Y);
+ Y = DAG.getNode(ISD::MUL, dl, WideVT, X, Y);
+ Y = DAG.getNode(ISD::SRL, dl, WideVT, Y,
+ DAG.getShiftAmountConstant(EltBits, WideVT, dl));
+ return DAG.getNode(ISD::TRUNCATE, dl, VT, Y);
+ }
+ return SDValue();
+ };
+
+ SDValue Q = GetMULHS(N0, MagicFactor);
+ if (!Q)
+ return SDValue();
+
+ Created.push_back(Q.getNode());
+
+ // (Optionally) Add/subtract the numerator using Factor.
+ Factor = DAG.getNode(ISD::MUL, dl, VT, N0, Factor);
+ Created.push_back(Factor.getNode());
+ Q = DAG.getNode(ISD::ADD, dl, VT, Q, Factor);
+ Created.push_back(Q.getNode());
+
+ // Shift right algebraic by shift value.
+ Q = DAG.getNode(ISD::SRA, dl, VT, Q, Shift);
+ Created.push_back(Q.getNode());
+
+ // Extract the sign bit, mask it and add it to the quotient.
+ SDValue SignShift = DAG.getConstant(EltBits - 1, dl, ShVT);
+ SDValue T = DAG.getNode(ISD::SRL, dl, VT, Q, SignShift);
+ Created.push_back(T.getNode());
+ T = DAG.getNode(ISD::AND, dl, VT, T, ShiftMask);
+ Created.push_back(T.getNode());
+ return DAG.getNode(ISD::ADD, dl, VT, Q, T);
+}
+
+/// Given an ISD::UDIV node expressing a divide by constant,
+/// return a DAG expression to select that will generate the same value by
+/// multiplying by a magic number.
+/// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
+SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG,
+ bool IsAfterLegalization,
+ SmallVectorImpl<SDNode *> &Created) const {
+ SDLoc dl(N);
+ EVT VT = N->getValueType(0);
+ EVT SVT = VT.getScalarType();
+ EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
+ EVT ShSVT = ShVT.getScalarType();
+ unsigned EltBits = VT.getScalarSizeInBits();
+ EVT MulVT;
+
+ // Check to see if we can do this.
+ // FIXME: We should be more aggressive here.
+ if (!isTypeLegal(VT)) {
+ // Limit this to simple scalars for now.
+ if (VT.isVector() || !VT.isSimple())
+ return SDValue();
+
+ // If this type will be promoted to a large enough type with a legal
+ // multiply operation, we can go ahead and do this transform.
+ if (getTypeAction(VT.getSimpleVT()) != TypePromoteInteger)
+ return SDValue();
+
+ MulVT = getTypeToTransformTo(*DAG.getContext(), VT);
+ if (MulVT.getSizeInBits() < (2 * EltBits) ||
+ !isOperationLegal(ISD::MUL, MulVT))
+ return SDValue();
+ }
+
+ // If the udiv has an 'exact' bit we can use a simpler lowering.
+ if (N->getFlags().hasExact())
+ return BuildExactUDIV(*this, N, dl, DAG, Created);
+
+ SDValue N0 = N->getOperand(0);
+ SDValue N1 = N->getOperand(1);
+
+ // Try to use leading zeros of the dividend to reduce the multiplier and
+ // avoid expensive fixups.
+ unsigned KnownLeadingZeros = DAG.computeKnownBits(N0).countMinLeadingZeros();
+
+ bool UseNPQ = false, UsePreShift = false, UsePostShift = false;
+ SmallVector<SDValue, 16> PreShifts, PostShifts, MagicFactors, NPQFactors;
+
+ auto BuildUDIVPattern = [&](ConstantSDNode *C) {
+ if (C->isZero())
+ return false;
+ const APInt& Divisor = C->getAPIntValue();
+
+ SDValue PreShift, MagicFactor, NPQFactor, PostShift;
+
+ // Magic algorithm doesn't work for division by 1. We need to emit a select
+ // at the end.
+ if (Divisor.isOne()) {
+ PreShift = PostShift = DAG.getUNDEF(ShSVT);
+ MagicFactor = NPQFactor = DAG.getUNDEF(SVT);
+ } else {
+ UnsignedDivisionByConstantInfo magics =
+ UnsignedDivisionByConstantInfo::get(
+ Divisor, std::min(KnownLeadingZeros, Divisor.countl_zero()));
+
+ MagicFactor = DAG.getConstant(magics.Magic, dl, SVT);
+
+ assert(magics.PreShift < Divisor.getBitWidth() &&
+ "We shouldn't generate an undefined shift!");
+ assert(magics.PostShift < Divisor.getBitWidth() &&
+ "We shouldn't generate an undefined shift!");
+ assert((!magics.IsAdd || magics.PreShift == 0) &&
+ "Unexpected pre-shift");
+ PreShift = DAG.getConstant(magics.PreShift, dl, ShSVT);
+ PostShift = DAG.getConstant(magics.PostShift, dl, ShSVT);
+ NPQFactor = DAG.getConstant(
+ magics.IsAdd ? APInt::getOneBitSet(EltBits, EltBits - 1)
+ : APInt::getZero(EltBits),
+ dl, SVT);
+ UseNPQ |= magics.IsAdd;
+ UsePreShift |= magics.PreShift != 0;
+ UsePostShift |= magics.PostShift != 0;
+ }
+
+ PreShifts.push_back(PreShift);
+ MagicFactors.push_back(MagicFactor);
+ NPQFactors.push_back(NPQFactor);
+ PostShifts.push_back(PostShift);
+ return true;
+ };
+
+ // Collect the shifts/magic values from each element.
+ if (!ISD::matchUnaryPredicate(N1, BuildUDIVPattern))
+ return SDValue();
+
+ SDValue PreShift, PostShift, MagicFactor, NPQFactor;
+ if (N1.getOpcode() == ISD::BUILD_VECTOR) {
+ PreShift = DAG.getBuildVector(ShVT, dl, PreShifts);
+ MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors);
+ NPQFactor = DAG.getBuildVector(VT, dl, NPQFactors);
+ PostShift = DAG.getBuildVector(ShVT, dl, PostShifts);
+ } else if (N1.getOpcode() == ISD::SPLAT_VECTOR) {
+ assert(PreShifts.size() == 1 && MagicFactors.size() == 1 &&
+ NPQFactors.size() == 1 && PostShifts.size() == 1 &&
+ "Expected matchUnaryPredicate to return one for scalable vectors");
+ PreShift = DAG.getSplatVector(ShVT, dl, PreShifts[0]);
+ MagicFactor = DAG.getSplatVector(VT, dl, MagicFactors[0]);
+ NPQFactor = DAG.getSplatVector(VT, dl, NPQFactors[0]);
+ PostShift = DAG.getSplatVector(ShVT, dl, PostShifts[0]);
+ } else {
+ assert(isa<ConstantSDNode>(N1) && "Expected a constant");
+ PreShift = PreShifts[0];
+ MagicFactor = MagicFactors[0];
+ PostShift = PostShifts[0];
+ }
+
+ SDValue Q = N0;
+ if (UsePreShift) {
+ Q = DAG.getNode(ISD::SRL, dl, VT, Q, PreShift);
+ Created.push_back(Q.getNode());
+ }
+
+ // FIXME: We should support doing a MUL in a wider type.
+ auto GetMULHU = [&](SDValue X, SDValue Y) {
+ // If the type isn't legal, use a wider mul of the type calculated
+ // earlier.
+ if (!isTypeLegal(VT)) {
+ X = DAG.getNode(ISD::ZERO_EXTEND, dl, MulVT, X);
+ Y = DAG.getNode(ISD::ZERO_EXTEND, dl, MulVT, Y);
+ Y = DAG.getNode(ISD::MUL, dl, MulVT, X, Y);
+ Y = DAG.getNode(ISD::SRL, dl, MulVT, Y,
+ DAG.getShiftAmountConstant(EltBits, MulVT, dl));
+ return DAG.getNode(ISD::TRUNCATE, dl, VT, Y);
+ }
+
+ if (isOperationLegalOrCustom(ISD::MULHU, VT, IsAfterLegalization))
+ return DAG.getNode(ISD::MULHU, dl, VT, X, Y);
+ if (isOperationLegalOrCustom(ISD::UMUL_LOHI, VT, IsAfterLegalization)) {
+ SDValue LoHi =
+ DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y);
+ return SDValue(LoHi.getNode(), 1);
+ }
+ // If type twice as wide legal, widen and use a mul plus a shift.
+ unsigned Size = VT.getScalarSizeInBits();
+ EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), Size * 2);
+ if (VT.isVector())
+ WideVT = EVT::getVectorVT(*DAG.getContext(), WideVT,
+ VT.getVectorElementCount());
+ if (isOperationLegalOrCustom(ISD::MUL, WideVT)) {
+ X = DAG.getNode(ISD::ZERO_EXTEND, dl, WideVT, X);
+ Y = DAG.getNode(ISD::ZERO_EXTEND, dl, WideVT, Y);
+ Y = DAG.getNode(ISD::MUL, dl, WideVT, X, Y);
+ Y = DAG.getNode(ISD::SRL, dl, WideVT, Y,
+ DAG.getShiftAmountConstant(EltBits, WideVT, dl));
+ return DAG.getNode(ISD::TRUNCATE, dl, VT, Y);
+ }
+ return SDValue(); // No mulhu or equivalent
+ };
+
+ // Multiply the numerator (operand 0) by the magic value.
+ Q = GetMULHU(Q, MagicFactor);
+ if (!Q)
+ return SDValue();
+
+ Created.push_back(Q.getNode());
+
+ if (UseNPQ) {
+ SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N0, Q);
+ Created.push_back(NPQ.getNode());
+
+ // For vectors we might have a mix of non-NPQ/NPQ paths, so use
+ // MULHU to act as a SRL-by-1 for NPQ, else multiply by zero.
+ if (VT.isVector())
+ NPQ = GetMULHU(NPQ, NPQFactor);
+ else
+ NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ, DAG.getConstant(1, dl, ShVT));
+
+ Created.push_back(NPQ.getNode());
+
+ Q = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q);
+ Created.push_back(Q.getNode());
+ }
+
+ if (UsePostShift) {
+ Q = DAG.getNode(ISD::SRL, dl, VT, Q, PostShift);
+ Created.push_back(Q.getNode());
+ }
+
+ EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
+
+ SDValue One = DAG.getConstant(1, dl, VT);
+ SDValue IsOne = DAG.getSetCC(dl, SetCCVT, N1, One, ISD::SETEQ);
+ return DAG.getSelect(dl, VT, IsOne, N0, Q);
+}
+
+/// If all values in Values that *don't* match the predicate are same 'splat'
+/// value, then replace all values with that splat value.
+/// Else, if AlternativeReplacement was provided, then replace all values that
+/// do match predicate with AlternativeReplacement value.
+static void
+turnVectorIntoSplatVector(MutableArrayRef<SDValue> Values,
+ std::function<bool(SDValue)> Predicate,
+ SDValue AlternativeReplacement = SDValue()) {
+ SDValue Replacement;
+ // Is there a value for which the Predicate does *NOT* match? What is it?
+ auto SplatValue = llvm::find_if_not(Values, Predicate);
+ if (SplatValue != Values.end()) {
+ // Does Values consist only of SplatValue's and values matching Predicate?
+ if (llvm::all_of(Values, [Predicate, SplatValue](SDValue Value) {
+ return Value == *SplatValue || Predicate(Value);
+ })) // Then we shall replace values matching predicate with SplatValue.
+ Replacement = *SplatValue;
+ }
+ if (!Replacement) {
+ // Oops, we did not find the "baseline" splat value.
+ if (!AlternativeReplacement)
+ return; // Nothing to do.
+ // Let's replace with provided value then.
+ Replacement = AlternativeReplacement;
+ }
+ std::replace_if(Values.begin(), Values.end(), Predicate, Replacement);
+}
+
+/// Given an ISD::UREM used only by an ISD::SETEQ or ISD::SETNE
+/// where the divisor is constant and the comparison target is zero,
+/// return a DAG expression that will generate the same comparison result
+/// using only multiplications, additions and shifts/rotations.
+/// Ref: "Hacker's Delight" 10-17.
+SDValue TargetLowering::buildUREMEqFold(EVT SETCCVT, SDValue REMNode,
+ SDValue CompTargetNode,
+ ISD::CondCode Cond,
+ DAGCombinerInfo &DCI,
+ const SDLoc &DL) const {
+ SmallVector<SDNode *, 5> Built;
+ if (SDValue Folded = prepareUREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond,
+ DCI, DL, Built)) {
+ for (SDNode *N : Built)
+ DCI.AddToWorklist(N);
+ return Folded;
+ }
+
+ return SDValue();
+}
+
+SDValue
+TargetLowering::prepareUREMEqFold(EVT SETCCVT, SDValue REMNode,
+ SDValue CompTargetNode, ISD::CondCode Cond,
+ DAGCombinerInfo &DCI, const SDLoc &DL,
+ SmallVectorImpl<SDNode *> &Created) const {
+ // fold (seteq/ne (urem N, D), 0) -> (setule/ugt (rotr (mul N, P), K), Q)
+ // - D must be constant, with D = D0 * 2^K where D0 is odd
+ // - P is the multiplicative inverse of D0 modulo 2^W
+ // - Q = floor(((2^W) - 1) / D)
+ // where W is the width of the common type of N and D.
+ assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
+ "Only applicable for (in)equality comparisons.");
+
+ SelectionDAG &DAG = DCI.DAG;
+
+ EVT VT = REMNode.getValueType();
+ EVT SVT = VT.getScalarType();
+ EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
+ EVT ShSVT = ShVT.getScalarType();
+
+ // If MUL is unavailable, we cannot proceed in any case.
+ if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::MUL, VT))
+ return SDValue();
+
+ bool ComparingWithAllZeros = true;
+ bool AllComparisonsWithNonZerosAreTautological = true;
+ bool HadTautologicalLanes = false;
+ bool AllLanesAreTautological = true;
+ bool HadEvenDivisor = false;
+ bool AllDivisorsArePowerOfTwo = true;
+ bool HadTautologicalInvertedLanes = false;
+ SmallVector<SDValue, 16> PAmts, KAmts, QAmts, IAmts;
+
+ auto BuildUREMPattern = [&](ConstantSDNode *CDiv, ConstantSDNode *CCmp) {
+ // Division by 0 is UB. Leave it to be constant-folded elsewhere.
+ if (CDiv->isZero())
+ return false;
+
+ const APInt &D = CDiv->getAPIntValue();
+ const APInt &Cmp = CCmp->getAPIntValue();
+
+ ComparingWithAllZeros &= Cmp.isZero();
+
+ // x u% C1` is *always* less than C1. So given `x u% C1 == C2`,
+ // if C2 is not less than C1, the comparison is always false.
+ // But we will only be able to produce the comparison that will give the
+ // opposive tautological answer. So this lane would need to be fixed up.
+ bool TautologicalInvertedLane = D.ule(Cmp);
+ HadTautologicalInvertedLanes |= TautologicalInvertedLane;
+
+ // If all lanes are tautological (either all divisors are ones, or divisor
+ // is not greater than the constant we are comparing with),
+ // we will prefer to avoid the fold.
+ bool TautologicalLane = D.isOne() || TautologicalInvertedLane;
+ HadTautologicalLanes |= TautologicalLane;
+ AllLanesAreTautological &= TautologicalLane;
+
+ // If we are comparing with non-zero, we need'll need to subtract said
+ // comparison value from the LHS. But there is no point in doing that if
+ // every lane where we are comparing with non-zero is tautological..
+ if (!Cmp.isZero())
+ AllComparisonsWithNonZerosAreTautological &= TautologicalLane;
+
+ // Decompose D into D0 * 2^K
+ unsigned K = D.countr_zero();
+ assert((!D.isOne() || (K == 0)) && "For divisor '1' we won't rotate.");
+ APInt D0 = D.lshr(K);
+
+ // D is even if it has trailing zeros.
+ HadEvenDivisor |= (K != 0);
+ // D is a power-of-two if D0 is one.
+ // If all divisors are power-of-two, we will prefer to avoid the fold.
+ AllDivisorsArePowerOfTwo &= D0.isOne();
+
+ // P = inv(D0, 2^W)
+ // 2^W requires W + 1 bits, so we have to extend and then truncate.
+ unsigned W = D.getBitWidth();
+ APInt P = D0.multiplicativeInverse();
+ assert((D0 * P).isOne() && "Multiplicative inverse basic check failed.");
+
+ // Q = floor((2^W - 1) u/ D)
+ // R = ((2^W - 1) u% D)
+ APInt Q, R;
+ APInt::udivrem(APInt::getAllOnes(W), D, Q, R);
+
+ // If we are comparing with zero, then that comparison constant is okay,
+ // else it may need to be one less than that.
+ if (Cmp.ugt(R))
+ Q -= 1;
+
+ assert(APInt::getAllOnes(ShSVT.getSizeInBits()).ugt(K) &&
+ "We are expecting that K is always less than all-ones for ShSVT");
+
+ // If the lane is tautological the result can be constant-folded.
+ if (TautologicalLane) {
+ // Set P and K amount to a bogus values so we can try to splat them.
+ P = 0;
+ K = -1;
+ // And ensure that comparison constant is tautological,
+ // it will always compare true/false.
+ Q = -1;
+ }
+
+ PAmts.push_back(DAG.getConstant(P, DL, SVT));
+ KAmts.push_back(
+ DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT));
+ QAmts.push_back(DAG.getConstant(Q, DL, SVT));
+ return true;
+ };
+
+ SDValue N = REMNode.getOperand(0);
+ SDValue D = REMNode.getOperand(1);
+
+ // Collect the values from each element.
+ if (!ISD::matchBinaryPredicate(D, CompTargetNode, BuildUREMPattern))
+ return SDValue();
+
+ // If all lanes are tautological, the result can be constant-folded.
+ if (AllLanesAreTautological)
+ return SDValue();
+
+ // If this is a urem by a powers-of-two, avoid the fold since it can be
+ // best implemented as a bit test.
+ if (AllDivisorsArePowerOfTwo)
+ return SDValue();
+
+ SDValue PVal, KVal, QVal;
+ if (D.getOpcode() == ISD::BUILD_VECTOR) {
+ if (HadTautologicalLanes) {
+ // Try to turn PAmts into a splat, since we don't care about the values
+ // that are currently '0'. If we can't, just keep '0'`s.
+ turnVectorIntoSplatVector(PAmts, isNullConstant);
+ // Try to turn KAmts into a splat, since we don't care about the values
+ // that are currently '-1'. If we can't, change them to '0'`s.
+ turnVectorIntoSplatVector(KAmts, isAllOnesConstant,
+ DAG.getConstant(0, DL, ShSVT));
+ }
+
+ PVal = DAG.getBuildVector(VT, DL, PAmts);
+ KVal = DAG.getBuildVector(ShVT, DL, KAmts);
+ QVal = DAG.getBuildVector(VT, DL, QAmts);
+ } else if (D.getOpcode() == ISD::SPLAT_VECTOR) {
+ assert(PAmts.size() == 1 && KAmts.size() == 1 && QAmts.size() == 1 &&
+ "Expected matchBinaryPredicate to return one element for "
+ "SPLAT_VECTORs");
+ PVal = DAG.getSplatVector(VT, DL, PAmts[0]);
+ KVal = DAG.getSplatVector(ShVT, DL, KAmts[0]);
+ QVal = DAG.getSplatVector(VT, DL, QAmts[0]);
+ } else {
+ PVal = PAmts[0];
+ KVal = KAmts[0];
+ QVal = QAmts[0];
+ }
+
+ if (!ComparingWithAllZeros && !AllComparisonsWithNonZerosAreTautological) {
+ if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::SUB, VT))
+ return SDValue(); // FIXME: Could/should use `ISD::ADD`?
+ assert(CompTargetNode.getValueType() == N.getValueType() &&
+ "Expecting that the types on LHS and RHS of comparisons match.");
+ N = DAG.getNode(ISD::SUB, DL, VT, N, CompTargetNode);
+ }
+
+ // (mul N, P)
+ SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal);
+ Created.push_back(Op0.getNode());
+
+ // Rotate right only if any divisor was even. We avoid rotates for all-odd
+ // divisors as a performance improvement, since rotating by 0 is a no-op.
+ if (HadEvenDivisor) {
+ // We need ROTR to do this.
+ if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ROTR, VT))
+ return SDValue();
+ // UREM: (rotr (mul N, P), K)
+ Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal);
+ Created.push_back(Op0.getNode());
+ }
+
+ // UREM: (setule/setugt (rotr (mul N, P), K), Q)
+ SDValue NewCC =
+ DAG.getSetCC(DL, SETCCVT, Op0, QVal,
+ ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT));
+ if (!HadTautologicalInvertedLanes)
+ return NewCC;
+
+ // If any lanes previously compared always-false, the NewCC will give
+ // always-true result for them, so we need to fixup those lanes.
+ // Or the other way around for inequality predicate.
+ assert(VT.isVector() && "Can/should only get here for vectors.");
+ Created.push_back(NewCC.getNode());
+
+ // x u% C1` is *always* less than C1. So given `x u% C1 == C2`,
+ // if C2 is not less than C1, the comparison is always false.
+ // But we have produced the comparison that will give the
+ // opposive tautological answer. So these lanes would need to be fixed up.
+ SDValue TautologicalInvertedChannels =
+ DAG.getSetCC(DL, SETCCVT, D, CompTargetNode, ISD::SETULE);
+ Created.push_back(TautologicalInvertedChannels.getNode());
+
+ // NOTE: we avoid letting illegal types through even if we're before legalize
+ // ops – legalization has a hard time producing good code for this.
+ if (isOperationLegalOrCustom(ISD::VSELECT, SETCCVT)) {
+ // If we have a vector select, let's replace the comparison results in the
+ // affected lanes with the correct tautological result.
+ SDValue Replacement = DAG.getBoolConstant(Cond == ISD::SETEQ ? false : true,
+ DL, SETCCVT, SETCCVT);
+ return DAG.getNode(ISD::VSELECT, DL, SETCCVT, TautologicalInvertedChannels,
+ Replacement, NewCC);
+ }
+
+ // Else, we can just invert the comparison result in the appropriate lanes.
+ //
+ // NOTE: see the note above VSELECT above.
+ if (isOperationLegalOrCustom(ISD::XOR, SETCCVT))
+ return DAG.getNode(ISD::XOR, DL, SETCCVT, NewCC,
+ TautologicalInvertedChannels);
+
+ return SDValue(); // Don't know how to lower.
+}
+
+/// Given an ISD::SREM used only by an ISD::SETEQ or ISD::SETNE
+/// where the divisor is constant and the comparison target is zero,
+/// return a DAG expression that will generate the same comparison result
+/// using only multiplications, additions and shifts/rotations.
+/// Ref: "Hacker's Delight" 10-17.
+SDValue TargetLowering::buildSREMEqFold(EVT SETCCVT, SDValue REMNode,
+ SDValue CompTargetNode,
+ ISD::CondCode Cond,
+ DAGCombinerInfo &DCI,
+ const SDLoc &DL) const {
+ SmallVector<SDNode *, 7> Built;
+ if (SDValue Folded = prepareSREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond,
+ DCI, DL, Built)) {
+ assert(Built.size() <= 7 && "Max size prediction failed.");
+ for (SDNode *N : Built)
+ DCI.AddToWorklist(N);
+ return Folded;
+ }
+
+ return SDValue();
+}
+
+SDValue
+TargetLowering::prepareSREMEqFold(EVT SETCCVT, SDValue REMNode,
+ SDValue CompTargetNode, ISD::CondCode Cond,
+ DAGCombinerInfo &DCI, const SDLoc &DL,
+ SmallVectorImpl<SDNode *> &Created) const {
+ // Derived from Hacker's Delight, 2nd Edition, by Hank Warren. Section 10-17.
+ // Fold:
+ // (seteq/ne (srem N, D), 0)
+ // To:
+ // (setule/ugt (rotr (add (mul N, P), A), K), Q)
+ //
+ // - D must be constant, with D = D0 * 2^K where D0 is odd
+ // - P is the multiplicative inverse of D0 modulo 2^W
+ // - A = bitwiseand(floor((2^(W - 1) - 1) / D0), (-(2^k)))
+ // - Q = floor((2 * A) / (2^K))
+ // where W is the width of the common type of N and D.
+ //
+ // When D is a power of two (and thus D0 is 1), the normal
+ // formula for A and Q don't apply, because the derivation
+ // depends on D not dividing 2^(W-1), and thus theorem ZRS
+ // does not apply. This specifically fails when N = INT_MIN.
+ //
+ // Instead, for power-of-two D, we use:
+ // - A = 2^(W-1)
+ // |-> Order-preserving map from [-2^(W-1), 2^(W-1) - 1] to [0,2^W - 1])
+ // - Q = 2^(W-K) - 1
+ // |-> Test that the top K bits are zero after rotation
+ assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
+ "Only applicable for (in)equality comparisons.");
+
+ SelectionDAG &DAG = DCI.DAG;
+
+ EVT VT = REMNode.getValueType();
+ EVT SVT = VT.getScalarType();
+ EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
+ EVT ShSVT = ShVT.getScalarType();
+
+ // If we are after ops legalization, and MUL is unavailable, we can not
+ // proceed.
+ if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::MUL, VT))
+ return SDValue();
+
+ // TODO: Could support comparing with non-zero too.
+ ConstantSDNode *CompTarget = isConstOrConstSplat(CompTargetNode);
+ if (!CompTarget || !CompTarget->isZero())
+ return SDValue();
+
+ bool HadIntMinDivisor = false;
+ bool HadOneDivisor = false;
+ bool AllDivisorsAreOnes = true;
+ bool HadEvenDivisor = false;
+ bool NeedToApplyOffset = false;
+ bool AllDivisorsArePowerOfTwo = true;
+ SmallVector<SDValue, 16> PAmts, AAmts, KAmts, QAmts;
+
+ auto BuildSREMPattern = [&](ConstantSDNode *C) {
+ // Division by 0 is UB. Leave it to be constant-folded elsewhere.
+ if (C->isZero())
+ return false;
+
+ // FIXME: we don't fold `rem %X, -C` to `rem %X, C` in DAGCombine.
+
+ // WARNING: this fold is only valid for positive divisors!
+ APInt D = C->getAPIntValue();
+ if (D.isNegative())
+ D.negate(); // `rem %X, -C` is equivalent to `rem %X, C`
+
+ HadIntMinDivisor |= D.isMinSignedValue();
+
+ // If all divisors are ones, we will prefer to avoid the fold.
+ HadOneDivisor |= D.isOne();
+ AllDivisorsAreOnes &= D.isOne();
+
+ // Decompose D into D0 * 2^K
+ unsigned K = D.countr_zero();
+ assert((!D.isOne() || (K == 0)) && "For divisor '1' we won't rotate.");
+ APInt D0 = D.lshr(K);
+
+ if (!D.isMinSignedValue()) {
+ // D is even if it has trailing zeros; unless it's INT_MIN, in which case
+ // we don't care about this lane in this fold, we'll special-handle it.
+ HadEvenDivisor |= (K != 0);
+ }
+
+ // D is a power-of-two if D0 is one. This includes INT_MIN.
+ // If all divisors are power-of-two, we will prefer to avoid the fold.
+ AllDivisorsArePowerOfTwo &= D0.isOne();
+
+ // P = inv(D0, 2^W)
+ // 2^W requires W + 1 bits, so we have to extend and then truncate.
+ unsigned W = D.getBitWidth();
+ APInt P = D0.multiplicativeInverse();
+ assert((D0 * P).isOne() && "Multiplicative inverse basic check failed.");
+
+ // A = floor((2^(W - 1) - 1) / D0) & -2^K
+ APInt A = APInt::getSignedMaxValue(W).udiv(D0);
+ A.clearLowBits(K);
+
+ if (!D.isMinSignedValue()) {
+ // If divisor INT_MIN, then we don't care about this lane in this fold,
+ // we'll special-handle it.
+ NeedToApplyOffset |= A != 0;
+ }
+
+ // Q = floor((2 * A) / (2^K))
+ APInt Q = (2 * A).udiv(APInt::getOneBitSet(W, K));
+
+ assert(APInt::getAllOnes(SVT.getSizeInBits()).ugt(A) &&
+ "We are expecting that A is always less than all-ones for SVT");
+ assert(APInt::getAllOnes(ShSVT.getSizeInBits()).ugt(K) &&
+ "We are expecting that K is always less than all-ones for ShSVT");
+
+ // If D was a power of two, apply the alternate constant derivation.
+ if (D0.isOne()) {
+ // A = 2^(W-1)
+ A = APInt::getSignedMinValue(W);
+ // - Q = 2^(W-K) - 1
+ Q = APInt::getAllOnes(W - K).zext(W);
+ }
+
+ // If the divisor is 1 the result can be constant-folded. Likewise, we
+ // don't care about INT_MIN lanes, those can be set to undef if appropriate.
+ if (D.isOne()) {
+ // Set P, A and K to a bogus values so we can try to splat them.
+ P = 0;
+ A = -1;
+ K = -1;
+
+ // x ?% 1 == 0 <--> true <--> x u<= -1
+ Q = -1;
+ }
+
+ PAmts.push_back(DAG.getConstant(P, DL, SVT));
+ AAmts.push_back(DAG.getConstant(A, DL, SVT));
+ KAmts.push_back(
+ DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT));
+ QAmts.push_back(DAG.getConstant(Q, DL, SVT));
+ return true;
+ };
+
+ SDValue N = REMNode.getOperand(0);
+ SDValue D = REMNode.getOperand(1);
+
+ // Collect the values from each element.
+ if (!ISD::matchUnaryPredicate(D, BuildSREMPattern))
+ return SDValue();
+
+ // If this is a srem by a one, avoid the fold since it can be constant-folded.
+ if (AllDivisorsAreOnes)
+ return SDValue();
+
+ // If this is a srem by a powers-of-two (including INT_MIN), avoid the fold
+ // since it can be best implemented as a bit test.
+ if (AllDivisorsArePowerOfTwo)
+ return SDValue();
+
+ SDValue PVal, AVal, KVal, QVal;
+ if (D.getOpcode() == ISD::BUILD_VECTOR) {
+ if (HadOneDivisor) {
+ // Try to turn PAmts into a splat, since we don't care about the values
+ // that are currently '0'. If we can't, just keep '0'`s.
+ turnVectorIntoSplatVector(PAmts, isNullConstant);
+ // Try to turn AAmts into a splat, since we don't care about the
+ // values that are currently '-1'. If we can't, change them to '0'`s.
+ turnVectorIntoSplatVector(AAmts, isAllOnesConstant,
+ DAG.getConstant(0, DL, SVT));
+ // Try to turn KAmts into a splat, since we don't care about the values
+ // that are currently '-1'. If we can't, change them to '0'`s.
+ turnVectorIntoSplatVector(KAmts, isAllOnesConstant,
+ DAG.getConstant(0, DL, ShSVT));
+ }
+
+ PVal = DAG.getBuildVector(VT, DL, PAmts);
+ AVal = DAG.getBuildVector(VT, DL, AAmts);
+ KVal = DAG.getBuildVector(ShVT, DL, KAmts);
+ QVal = DAG.getBuildVector(VT, DL, QAmts);
+ } else if (D.getOpcode() == ISD::SPLAT_VECTOR) {
+ assert(PAmts.size() == 1 && AAmts.size() == 1 && KAmts.size() == 1 &&
+ QAmts.size() == 1 &&
+ "Expected matchUnaryPredicate to return one element for scalable "
+ "vectors");
+ PVal = DAG.getSplatVector(VT, DL, PAmts[0]);
+ AVal = DAG.getSplatVector(VT, DL, AAmts[0]);
+ KVal = DAG.getSplatVector(ShVT, DL, KAmts[0]);
+ QVal = DAG.getSplatVector(VT, DL, QAmts[0]);
+ } else {
+ assert(isa<ConstantSDNode>(D) && "Expected a constant");
+ PVal = PAmts[0];
+ AVal = AAmts[0];
+ KVal = KAmts[0];
+ QVal = QAmts[0];
+ }
+
+ // (mul N, P)
+ SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal);
+ Created.push_back(Op0.getNode());
+
+ if (NeedToApplyOffset) {
+ // We need ADD to do this.
+ if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ADD, VT))
+ return SDValue();
+
+ // (add (mul N, P), A)
+ Op0 = DAG.getNode(ISD::ADD, DL, VT, Op0, AVal);
+ Created.push_back(Op0.getNode());
+ }
+
+ // Rotate right only if any divisor was even. We avoid rotates for all-odd
+ // divisors as a performance improvement, since rotating by 0 is a no-op.
+ if (HadEvenDivisor) {
+ // We need ROTR to do this.
+ if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ROTR, VT))
+ return SDValue();
+ // SREM: (rotr (add (mul N, P), A), K)
+ Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal);
+ Created.push_back(Op0.getNode());
+ }
+
+ // SREM: (setule/setugt (rotr (add (mul N, P), A), K), Q)
+ SDValue Fold =
+ DAG.getSetCC(DL, SETCCVT, Op0, QVal,
+ ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT));
+
+ // If we didn't have lanes with INT_MIN divisor, then we're done.
+ if (!HadIntMinDivisor)
+ return Fold;
+
+ // That fold is only valid for positive divisors. Which effectively means,
+ // it is invalid for INT_MIN divisors. So if we have such a lane,
+ // we must fix-up results for said lanes.
+ assert(VT.isVector() && "Can/should only get here for vectors.");
+
+ // NOTE: we avoid letting illegal types through even if we're before legalize
+ // ops – legalization has a hard time producing good code for the code that
+ // follows.
+ if (!isOperationLegalOrCustom(ISD::SETCC, SETCCVT) ||
+ !isOperationLegalOrCustom(ISD::AND, VT) ||
+ !isCondCodeLegalOrCustom(Cond, VT.getSimpleVT()) ||
+ !isOperationLegalOrCustom(ISD::VSELECT, SETCCVT))
+ return SDValue();
+
+ Created.push_back(Fold.getNode());
+
+ SDValue IntMin = DAG.getConstant(
+ APInt::getSignedMinValue(SVT.getScalarSizeInBits()), DL, VT);
+ SDValue IntMax = DAG.getConstant(
+ APInt::getSignedMaxValue(SVT.getScalarSizeInBits()), DL, VT);
+ SDValue Zero =
+ DAG.getConstant(APInt::getZero(SVT.getScalarSizeInBits()), DL, VT);
+
+ // Which lanes had INT_MIN divisors? Divisor is constant, so const-folded.
+ SDValue DivisorIsIntMin = DAG.getSetCC(DL, SETCCVT, D, IntMin, ISD::SETEQ);
+ Created.push_back(DivisorIsIntMin.getNode());
+
+ // (N s% INT_MIN) ==/!= 0 <--> (N & INT_MAX) ==/!= 0
+ SDValue Masked = DAG.getNode(ISD::AND, DL, VT, N, IntMax);
+ Created.push_back(Masked.getNode());
+ SDValue MaskedIsZero = DAG.getSetCC(DL, SETCCVT, Masked, Zero, Cond);
+ Created.push_back(MaskedIsZero.getNode());
+
+ // To produce final result we need to blend 2 vectors: 'SetCC' and
+ // 'MaskedIsZero'. If the divisor for channel was *NOT* INT_MIN, we pick
+ // from 'Fold', else pick from 'MaskedIsZero'. Since 'DivisorIsIntMin' is
+ // constant-folded, select can get lowered to a shuffle with constant mask.
+ SDValue Blended = DAG.getNode(ISD::VSELECT, DL, SETCCVT, DivisorIsIntMin,
+ MaskedIsZero, Fold);
+
+ return Blended;
+}
+
+bool TargetLowering::
+verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const {
+ if (!isa<ConstantSDNode>(Op.getOperand(0))) {
+ DAG.getContext()->emitError("argument to '__builtin_return_address' must "
+ "be a constant integer");
+ return true;
+ }
+
+ return false;
+}
+
+SDValue TargetLowering::getSqrtInputTest(SDValue Op, SelectionDAG &DAG,
+ const DenormalMode &Mode) const {
+ SDLoc DL(Op);
+ EVT VT = Op.getValueType();
+ EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
+ SDValue FPZero = DAG.getConstantFP(0.0, DL, VT);
+
+ // This is specifically a check for the handling of denormal inputs, not the
+ // result.
+ if (Mode.Input == DenormalMode::PreserveSign ||
+ Mode.Input == DenormalMode::PositiveZero) {
+ // Test = X == 0.0
+ return DAG.getSetCC(DL, CCVT, Op, FPZero, ISD::SETEQ);
+ }
+
+ // Testing it with denormal inputs to avoid wrong estimate.
+ //
+ // Test = fabs(X) < SmallestNormal
+ const fltSemantics &FltSem = DAG.EVTToAPFloatSemantics(VT);
+ APFloat SmallestNorm = APFloat::getSmallestNormalized(FltSem);
+ SDValue NormC = DAG.getConstantFP(SmallestNorm, DL, VT);
+ SDValue Fabs = DAG.getNode(ISD::FABS, DL, VT, Op);
+ return DAG.getSetCC(DL, CCVT, Fabs, NormC, ISD::SETLT);
+}
+
+SDValue TargetLowering::getNegatedExpression(SDValue Op, SelectionDAG &DAG,
+ bool LegalOps, bool OptForSize,
+ NegatibleCost &Cost,
+ unsigned Depth) const {
+ // fneg is removable even if it has multiple uses.
+ if (Op.getOpcode() == ISD::FNEG || Op.getOpcode() == ISD::VP_FNEG) {
+ Cost = NegatibleCost::Cheaper;
+ return Op.getOperand(0);
+ }
+
+ // Don't recurse exponentially.
+ if (Depth > SelectionDAG::MaxRecursionDepth)
+ return SDValue();
+
+ // Pre-increment recursion depth for use in recursive calls.
+ ++Depth;
+ const SDNodeFlags Flags = Op->getFlags();
+ const TargetOptions &Options = DAG.getTarget().Options;
+ EVT VT = Op.getValueType();
+ unsigned Opcode = Op.getOpcode();
+
+ // Don't allow anything with multiple uses unless we know it is free.
+ if (!Op.hasOneUse() && Opcode != ISD::ConstantFP) {
+ bool IsFreeExtend = Opcode == ISD::FP_EXTEND &&
+ isFPExtFree(VT, Op.getOperand(0).getValueType());
+ if (!IsFreeExtend)
+ return SDValue();
+ }
+
+ auto RemoveDeadNode = [&](SDValue N) {
+ if (N && N.getNode()->use_empty())
+ DAG.RemoveDeadNode(N.getNode());
+ };
+
+ SDLoc DL(Op);
+
+ // Because getNegatedExpression can delete nodes we need a handle to keep
+ // temporary nodes alive in case the recursion manages to create an identical
+ // node.
+ std::list<HandleSDNode> Handles;
+
+ switch (Opcode) {
+ case ISD::ConstantFP: {
+ // Don't invert constant FP values after legalization unless the target says
+ // the negated constant is legal.
+ bool IsOpLegal =
+ isOperationLegal(ISD::ConstantFP, VT) ||
+ isFPImmLegal(neg(cast<ConstantFPSDNode>(Op)->getValueAPF()), VT,
+ OptForSize);
+
+ if (LegalOps && !IsOpLegal)
+ break;
+
+ APFloat V = cast<ConstantFPSDNode>(Op)->getValueAPF();
+ V.changeSign();
+ SDValue CFP = DAG.getConstantFP(V, DL, VT);
+
+ // If we already have the use of the negated floating constant, it is free
+ // to negate it even it has multiple uses.
+ if (!Op.hasOneUse() && CFP.use_empty())
+ break;
+ Cost = NegatibleCost::Neutral;
+ return CFP;
+ }
+ case ISD::BUILD_VECTOR: {
+ // Only permit BUILD_VECTOR of constants.
+ if (llvm::any_of(Op->op_values(), [&](SDValue N) {
+ return !N.isUndef() && !isa<ConstantFPSDNode>(N);
+ }))
+ break;
+
+ bool IsOpLegal =
+ (isOperationLegal(ISD::ConstantFP, VT) &&
+ isOperationLegal(ISD::BUILD_VECTOR, VT)) ||
+ llvm::all_of(Op->op_values(), [&](SDValue N) {
+ return N.isUndef() ||
+ isFPImmLegal(neg(cast<ConstantFPSDNode>(N)->getValueAPF()), VT,
+ OptForSize);
+ });
+
+ if (LegalOps && !IsOpLegal)
+ break;
+
+ SmallVector<SDValue, 4> Ops;
+ for (SDValue C : Op->op_values()) {
+ if (C.isUndef()) {
+ Ops.push_back(C);
+ continue;
+ }
+ APFloat V = cast<ConstantFPSDNode>(C)->getValueAPF();
+ V.changeSign();
+ Ops.push_back(DAG.getConstantFP(V, DL, C.getValueType()));
+ }
+ Cost = NegatibleCost::Neutral;
+ return DAG.getBuildVector(VT, DL, Ops);
+ }
+ case ISD::FADD: {
+ if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
+ break;
+
+ // After operation legalization, it might not be legal to create new FSUBs.
+ if (LegalOps && !isOperationLegalOrCustom(ISD::FSUB, VT))
+ break;
+ SDValue X = Op.getOperand(0), Y = Op.getOperand(1);
+
+ // fold (fneg (fadd X, Y)) -> (fsub (fneg X), Y)
+ NegatibleCost CostX = NegatibleCost::Expensive;
+ SDValue NegX =
+ getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth);
+ // Prevent this node from being deleted by the next call.
+ if (NegX)
+ Handles.emplace_back(NegX);
+
+ // fold (fneg (fadd X, Y)) -> (fsub (fneg Y), X)
+ NegatibleCost CostY = NegatibleCost::Expensive;
+ SDValue NegY =
+ getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth);
+
+ // We're done with the handles.
+ Handles.clear();
+
+ // Negate the X if its cost is less or equal than Y.
+ if (NegX && (CostX <= CostY)) {
+ Cost = CostX;
+ SDValue N = DAG.getNode(ISD::FSUB, DL, VT, NegX, Y, Flags);
+ if (NegY != N)
+ RemoveDeadNode(NegY);
+ return N;
+ }
+
+ // Negate the Y if it is not expensive.
+ if (NegY) {
+ Cost = CostY;
+ SDValue N = DAG.getNode(ISD::FSUB, DL, VT, NegY, X, Flags);
+ if (NegX != N)
+ RemoveDeadNode(NegX);
+ return N;
+ }
+ break;
+ }
+ case ISD::FSUB: {
+ // We can't turn -(A-B) into B-A when we honor signed zeros.
+ if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
+ break;
+
+ SDValue X = Op.getOperand(0), Y = Op.getOperand(1);
+ // fold (fneg (fsub 0, Y)) -> Y
+ if (ConstantFPSDNode *C = isConstOrConstSplatFP(X, /*AllowUndefs*/ true))
+ if (C->isZero()) {
+ Cost = NegatibleCost::Cheaper;
+ return Y;
+ }
+
+ // fold (fneg (fsub X, Y)) -> (fsub Y, X)
+ Cost = NegatibleCost::Neutral;
+ return DAG.getNode(ISD::FSUB, DL, VT, Y, X, Flags);
+ }
+ case ISD::FMUL:
+ case ISD::FDIV: {
+ SDValue X = Op.getOperand(0), Y = Op.getOperand(1);
+
+ // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y)
+ NegatibleCost CostX = NegatibleCost::Expensive;
+ SDValue NegX =
+ getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth);
+ // Prevent this node from being deleted by the next call.
+ if (NegX)
+ Handles.emplace_back(NegX);
+
+ // fold (fneg (fmul X, Y)) -> (fmul X, (fneg Y))
+ NegatibleCost CostY = NegatibleCost::Expensive;
+ SDValue NegY =
+ getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth);
+
+ // We're done with the handles.
+ Handles.clear();
+
+ // Negate the X if its cost is less or equal than Y.
+ if (NegX && (CostX <= CostY)) {
+ Cost = CostX;
+ SDValue N = DAG.getNode(Opcode, DL, VT, NegX, Y, Flags);
+ if (NegY != N)
+ RemoveDeadNode(NegY);
+ return N;
+ }
+
+ // Ignore X * 2.0 because that is expected to be canonicalized to X + X.
+ if (auto *C = isConstOrConstSplatFP(Op.getOperand(1)))
+ if (C->isExactlyValue(2.0) && Op.getOpcode() == ISD::FMUL)
+ break;
+
+ // Negate the Y if it is not expensive.
+ if (NegY) {
+ Cost = CostY;
+ SDValue N = DAG.getNode(Opcode, DL, VT, X, NegY, Flags);
+ if (NegX != N)
+ RemoveDeadNode(NegX);
+ return N;
+ }
+ break;
+ }
+ case ISD::FMA:
+ case ISD::FMAD: {
+ if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
+ break;
+
+ SDValue X = Op.getOperand(0), Y = Op.getOperand(1), Z = Op.getOperand(2);
+ NegatibleCost CostZ = NegatibleCost::Expensive;
+ SDValue NegZ =
+ getNegatedExpression(Z, DAG, LegalOps, OptForSize, CostZ, Depth);
+ // Give up if fail to negate the Z.
+ if (!NegZ)
+ break;
+
+ // Prevent this node from being deleted by the next two calls.
+ Handles.emplace_back(NegZ);
+
+ // fold (fneg (fma X, Y, Z)) -> (fma (fneg X), Y, (fneg Z))
+ NegatibleCost CostX = NegatibleCost::Expensive;
+ SDValue NegX =
+ getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth);
+ // Prevent this node from being deleted by the next call.
+ if (NegX)
+ Handles.emplace_back(NegX);
+
+ // fold (fneg (fma X, Y, Z)) -> (fma X, (fneg Y), (fneg Z))
+ NegatibleCost CostY = NegatibleCost::Expensive;
+ SDValue NegY =
+ getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth);
+
+ // We're done with the handles.
+ Handles.clear();
+
+ // Negate the X if its cost is less or equal than Y.
+ if (NegX && (CostX <= CostY)) {
+ Cost = std::min(CostX, CostZ);
+ SDValue N = DAG.getNode(Opcode, DL, VT, NegX, Y, NegZ, Flags);
+ if (NegY != N)
+ RemoveDeadNode(NegY);
+ return N;
+ }
+
+ // Negate the Y if it is not expensive.
+ if (NegY) {
+ Cost = std::min(CostY, CostZ);
+ SDValue N = DAG.getNode(Opcode, DL, VT, X, NegY, NegZ, Flags);
+ if (NegX != N)
+ RemoveDeadNode(NegX);
+ return N;
+ }
+ break;
+ }
+
+ case ISD::FP_EXTEND:
+ case ISD::FSIN:
+ if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps,
+ OptForSize, Cost, Depth))
+ return DAG.getNode(Opcode, DL, VT, NegV);
+ break;
+ case ISD::FP_ROUND:
+ if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps,
+ OptForSize, Cost, Depth))
+ return DAG.getNode(ISD::FP_ROUND, DL, VT, NegV, Op.getOperand(1));
+ break;
+ case ISD::SELECT:
+ case ISD::VSELECT: {
+ // fold (fneg (select C, LHS, RHS)) -> (select C, (fneg LHS), (fneg RHS))
+ // iff at least one cost is cheaper and the other is neutral/cheaper
+ SDValue LHS = Op.getOperand(1);
+ NegatibleCost CostLHS = NegatibleCost::Expensive;
+ SDValue NegLHS =
+ getNegatedExpression(LHS, DAG, LegalOps, OptForSize, CostLHS, Depth);
+ if (!NegLHS || CostLHS > NegatibleCost::Neutral) {
+ RemoveDeadNode(NegLHS);
+ break;
+ }
+
+ // Prevent this node from being deleted by the next call.
+ Handles.emplace_back(NegLHS);
+
+ SDValue RHS = Op.getOperand(2);
+ NegatibleCost CostRHS = NegatibleCost::Expensive;
+ SDValue NegRHS =
+ getNegatedExpression(RHS, DAG, LegalOps, OptForSize, CostRHS, Depth);
+
+ // We're done with the handles.
+ Handles.clear();
+
+ if (!NegRHS || CostRHS > NegatibleCost::Neutral ||
+ (CostLHS != NegatibleCost::Cheaper &&
+ CostRHS != NegatibleCost::Cheaper)) {
+ RemoveDeadNode(NegLHS);
+ RemoveDeadNode(NegRHS);
+ break;
+ }
+
+ Cost = std::min(CostLHS, CostRHS);
+ return DAG.getSelect(DL, VT, Op.getOperand(0), NegLHS, NegRHS);
+ }
+ }
+
+ return SDValue();
+}
+
+//===----------------------------------------------------------------------===//
+// Legalization Utilities
+//===----------------------------------------------------------------------===//
+
+bool TargetLowering::expandMUL_LOHI(unsigned Opcode, EVT VT, const SDLoc &dl,
+ SDValue LHS, SDValue RHS,
+ SmallVectorImpl<SDValue> &Result,
+ EVT HiLoVT, SelectionDAG &DAG,
+ MulExpansionKind Kind, SDValue LL,
+ SDValue LH, SDValue RL, SDValue RH) const {
+ assert(Opcode == ISD::MUL || Opcode == ISD::UMUL_LOHI ||
+ Opcode == ISD::SMUL_LOHI);
+
+ bool HasMULHS = (Kind == MulExpansionKind::Always) ||
+ isOperationLegalOrCustom(ISD::MULHS, HiLoVT);
+ bool HasMULHU = (Kind == MulExpansionKind::Always) ||
+ isOperationLegalOrCustom(ISD::MULHU, HiLoVT);
+ bool HasSMUL_LOHI = (Kind == MulExpansionKind::Always) ||
+ isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT);
+ bool HasUMUL_LOHI = (Kind == MulExpansionKind::Always) ||
+ isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT);
+
+ if (!HasMULHU && !HasMULHS && !HasUMUL_LOHI && !HasSMUL_LOHI)
+ return false;
+
+ unsigned OuterBitSize = VT.getScalarSizeInBits();
+ unsigned InnerBitSize = HiLoVT.getScalarSizeInBits();
+
+ // LL, LH, RL, and RH must be either all NULL or all set to a value.
+ assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) ||
+ (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode()));
+
+ SDVTList VTs = DAG.getVTList(HiLoVT, HiLoVT);
+ auto MakeMUL_LOHI = [&](SDValue L, SDValue R, SDValue &Lo, SDValue &Hi,
+ bool Signed) -> bool {
+ if ((Signed && HasSMUL_LOHI) || (!Signed && HasUMUL_LOHI)) {
+ Lo = DAG.getNode(Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI, dl, VTs, L, R);
+ Hi = SDValue(Lo.getNode(), 1);
+ return true;
+ }
+ if ((Signed && HasMULHS) || (!Signed && HasMULHU)) {
+ Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, L, R);
+ Hi = DAG.getNode(Signed ? ISD::MULHS : ISD::MULHU, dl, HiLoVT, L, R);
+ return true;
+ }
+ return false;
+ };
+
+ SDValue Lo, Hi;
+
+ if (!LL.getNode() && !RL.getNode() &&
+ isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
+ LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LHS);
+ RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RHS);
+ }
+
+ if (!LL.getNode())
+ return false;
+
+ APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize);
+ if (DAG.MaskedValueIsZero(LHS, HighMask) &&
+ DAG.MaskedValueIsZero(RHS, HighMask)) {
+ // The inputs are both zero-extended.
+ if (MakeMUL_LOHI(LL, RL, Lo, Hi, false)) {
+ Result.push_back(Lo);
+ Result.push_back(Hi);
+ if (Opcode != ISD::MUL) {
+ SDValue Zero = DAG.getConstant(0, dl, HiLoVT);
+ Result.push_back(Zero);
+ Result.push_back(Zero);
+ }
+ return true;
+ }
+ }
+
+ if (!VT.isVector() && Opcode == ISD::MUL &&
+ DAG.ComputeMaxSignificantBits(LHS) <= InnerBitSize &&
+ DAG.ComputeMaxSignificantBits(RHS) <= InnerBitSize) {
+ // The input values are both sign-extended.
+ // TODO non-MUL case?
+ if (MakeMUL_LOHI(LL, RL, Lo, Hi, true)) {
+ Result.push_back(Lo);
+ Result.push_back(Hi);
+ return true;
+ }
+ }
+
+ unsigned ShiftAmount = OuterBitSize - InnerBitSize;
+ SDValue Shift = DAG.getShiftAmountConstant(ShiftAmount, VT, dl);
+
+ if (!LH.getNode() && !RH.getNode() &&
+ isOperationLegalOrCustom(ISD::SRL, VT) &&
+ isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
+ LH = DAG.getNode(ISD::SRL, dl, VT, LHS, Shift);
+ LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH);
+ RH = DAG.getNode(ISD::SRL, dl, VT, RHS, Shift);
+ RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH);
+ }
+
+ if (!LH.getNode())
+ return false;
+
+ if (!MakeMUL_LOHI(LL, RL, Lo, Hi, false))
+ return false;
+
+ Result.push_back(Lo);
+
+ if (Opcode == ISD::MUL) {
+ RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH);
+ LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL);
+ Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH);
+ Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH);
+ Result.push_back(Hi);
+ return true;
+ }
+
+ // Compute the full width result.
+ auto Merge = [&](SDValue Lo, SDValue Hi) -> SDValue {
+ Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo);
+ Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi);
+ Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift);
+ return DAG.getNode(ISD::OR, dl, VT, Lo, Hi);
+ };
+
+ SDValue Next = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi);
+ if (!MakeMUL_LOHI(LL, RH, Lo, Hi, false))
+ return false;
+
+ // This is effectively the add part of a multiply-add of half-sized operands,
+ // so it cannot overflow.
+ Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi));
+
+ if (!MakeMUL_LOHI(LH, RL, Lo, Hi, false))
+ return false;
+
+ SDValue Zero = DAG.getConstant(0, dl, HiLoVT);
+ EVT BoolType = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
+
+ bool UseGlue = (isOperationLegalOrCustom(ISD::ADDC, VT) &&
+ isOperationLegalOrCustom(ISD::ADDE, VT));
+ if (UseGlue)
+ Next = DAG.getNode(ISD::ADDC, dl, DAG.getVTList(VT, MVT::Glue), Next,
+ Merge(Lo, Hi));
+ else
+ Next = DAG.getNode(ISD::UADDO_CARRY, dl, DAG.getVTList(VT, BoolType), Next,
+ Merge(Lo, Hi), DAG.getConstant(0, dl, BoolType));
+
+ SDValue Carry = Next.getValue(1);
+ Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
+ Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift);
+
+ if (!MakeMUL_LOHI(LH, RH, Lo, Hi, Opcode == ISD::SMUL_LOHI))
+ return false;
+
+ if (UseGlue)
+ Hi = DAG.getNode(ISD::ADDE, dl, DAG.getVTList(HiLoVT, MVT::Glue), Hi, Zero,
+ Carry);
+ else
+ Hi = DAG.getNode(ISD::UADDO_CARRY, dl, DAG.getVTList(HiLoVT, BoolType), Hi,
+ Zero, Carry);
+
+ Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi));
+
+ if (Opcode == ISD::SMUL_LOHI) {
+ SDValue NextSub = DAG.getNode(ISD::SUB, dl, VT, Next,
+ DAG.getNode(ISD::ZERO_EXTEND, dl, VT, RL));
+ Next = DAG.getSelectCC(dl, LH, Zero, NextSub, Next, ISD::SETLT);
+
+ NextSub = DAG.getNode(ISD::SUB, dl, VT, Next,
+ DAG.getNode(ISD::ZERO_EXTEND, dl, VT, LL));
+ Next = DAG.getSelectCC(dl, RH, Zero, NextSub, Next, ISD::SETLT);
+ }
+
+ Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
+ Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift);
+ Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
+ return true;
+}
+
+bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT,
+ SelectionDAG &DAG, MulExpansionKind Kind,
+ SDValue LL, SDValue LH, SDValue RL,
+ SDValue RH) const {
+ SmallVector<SDValue, 2> Result;
+ bool Ok = expandMUL_LOHI(N->getOpcode(), N->getValueType(0), SDLoc(N),
+ N->getOperand(0), N->getOperand(1), Result, HiLoVT,
+ DAG, Kind, LL, LH, RL, RH);
+ if (Ok) {
+ assert(Result.size() == 2);
+ Lo = Result[0];
+ Hi = Result[1];
+ }
+ return Ok;
+}
+
+// Optimize unsigned division or remainder by constants for types twice as large
+// as a legal VT.
+//
+// If (1 << (BitWidth / 2)) % Constant == 1, then the remainder
+// can be computed
+// as:
+// Sum += __builtin_uadd_overflow(Lo, High, &Sum);
+// Remainder = Sum % Constant
+// This is based on "Remainder by Summing Digits" from Hacker's Delight.
+//
+// For division, we can compute the remainder using the algorithm described
+// above, subtract it from the dividend to get an exact multiple of Constant.
+// Then multiply that exact multiply by the multiplicative inverse modulo
+// (1 << (BitWidth / 2)) to get the quotient.
+
+// If Constant is even, we can shift right the dividend and the divisor by the
+// number of trailing zeros in Constant before applying the remainder algorithm.
+// If we're after the quotient, we can subtract this value from the shifted
+// dividend and multiply by the multiplicative inverse of the shifted divisor.
+// If we want the remainder, we shift the value left by the number of trailing
+// zeros and add the bits that were shifted out of the dividend.
+bool TargetLowering::expandDIVREMByConstant(SDNode *N,
+ SmallVectorImpl<SDValue> &Result,
+ EVT HiLoVT, SelectionDAG &DAG,
+ SDValue LL, SDValue LH) const {
+ unsigned Opcode = N->getOpcode();
+ EVT VT = N->getValueType(0);
+
+ // TODO: Support signed division/remainder.
+ if (Opcode == ISD::SREM || Opcode == ISD::SDIV || Opcode == ISD::SDIVREM)
+ return false;
+ assert(
+ (Opcode == ISD::UREM || Opcode == ISD::UDIV || Opcode == ISD::UDIVREM) &&
+ "Unexpected opcode");
+
+ auto *CN = dyn_cast<ConstantSDNode>(N->getOperand(1));
+ if (!CN)
+ return false;
+
+ APInt Divisor = CN->getAPIntValue();
+ unsigned BitWidth = Divisor.getBitWidth();
+ unsigned HBitWidth = BitWidth / 2;
+ assert(VT.getScalarSizeInBits() == BitWidth &&
+ HiLoVT.getScalarSizeInBits() == HBitWidth && "Unexpected VTs");
+
+ // Divisor needs to less than (1 << HBitWidth).
+ APInt HalfMaxPlus1 = APInt::getOneBitSet(BitWidth, HBitWidth);
+ if (Divisor.uge(HalfMaxPlus1))
+ return false;
+
+ // We depend on the UREM by constant optimization in DAGCombiner that requires
+ // high multiply.
+ if (!isOperationLegalOrCustom(ISD::MULHU, HiLoVT) &&
+ !isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT))
+ return false;
+
+ // Don't expand if optimizing for size.
+ if (DAG.shouldOptForSize())
+ return false;
+
+ // Early out for 0 or 1 divisors.
+ if (Divisor.ule(1))
+ return false;
+
+ // If the divisor is even, shift it until it becomes odd.
+ unsigned TrailingZeros = 0;
+ if (!Divisor[0]) {
+ TrailingZeros = Divisor.countr_zero();
+ Divisor.lshrInPlace(TrailingZeros);
+ }
+
+ SDLoc dl(N);
+ SDValue Sum;
+ SDValue PartialRem;
+
+ // If (1 << HBitWidth) % divisor == 1, we can add the two halves together and
+ // then add in the carry.
+ // TODO: If we can't split it in half, we might be able to split into 3 or
+ // more pieces using a smaller bit width.
+ if (HalfMaxPlus1.urem(Divisor).isOne()) {
+ assert(!LL == !LH && "Expected both input halves or no input halves!");
+ if (!LL)
+ std::tie(LL, LH) = DAG.SplitScalar(N->getOperand(0), dl, HiLoVT, HiLoVT);
+
+ // Shift the input by the number of TrailingZeros in the divisor. The
+ // shifted out bits will be added to the remainder later.
+ if (TrailingZeros) {
+ // Save the shifted off bits if we need the remainder.
+ if (Opcode != ISD::UDIV) {
+ APInt Mask = APInt::getLowBitsSet(HBitWidth, TrailingZeros);
+ PartialRem = DAG.getNode(ISD::AND, dl, HiLoVT, LL,
+ DAG.getConstant(Mask, dl, HiLoVT));
+ }
+
+ LL = DAG.getNode(
+ ISD::OR, dl, HiLoVT,
+ DAG.getNode(ISD::SRL, dl, HiLoVT, LL,
+ DAG.getShiftAmountConstant(TrailingZeros, HiLoVT, dl)),
+ DAG.getNode(ISD::SHL, dl, HiLoVT, LH,
+ DAG.getShiftAmountConstant(HBitWidth - TrailingZeros,
+ HiLoVT, dl)));
+ LH = DAG.getNode(ISD::SRL, dl, HiLoVT, LH,
+ DAG.getShiftAmountConstant(TrailingZeros, HiLoVT, dl));
+ }
+
+ // Use uaddo_carry if we can, otherwise use a compare to detect overflow.
+ EVT SetCCType =
+ getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), HiLoVT);
+ if (isOperationLegalOrCustom(ISD::UADDO_CARRY, HiLoVT)) {
+ SDVTList VTList = DAG.getVTList(HiLoVT, SetCCType);
+ Sum = DAG.getNode(ISD::UADDO, dl, VTList, LL, LH);
+ Sum = DAG.getNode(ISD::UADDO_CARRY, dl, VTList, Sum,
+ DAG.getConstant(0, dl, HiLoVT), Sum.getValue(1));
+ } else {
+ Sum = DAG.getNode(ISD::ADD, dl, HiLoVT, LL, LH);
+ SDValue Carry = DAG.getSetCC(dl, SetCCType, Sum, LL, ISD::SETULT);
+ // If the boolean for the target is 0 or 1, we can add the setcc result
+ // directly.
+ if (getBooleanContents(HiLoVT) ==
+ TargetLoweringBase::ZeroOrOneBooleanContent)
+ Carry = DAG.getZExtOrTrunc(Carry, dl, HiLoVT);
+ else
+ Carry = DAG.getSelect(dl, HiLoVT, Carry, DAG.getConstant(1, dl, HiLoVT),
+ DAG.getConstant(0, dl, HiLoVT));
+ Sum = DAG.getNode(ISD::ADD, dl, HiLoVT, Sum, Carry);
+ }
+ }
+
+ // If we didn't find a sum, we can't do the expansion.
+ if (!Sum)
+ return false;
+
+ // Perform a HiLoVT urem on the Sum using truncated divisor.
+ SDValue RemL =
+ DAG.getNode(ISD::UREM, dl, HiLoVT, Sum,
+ DAG.getConstant(Divisor.trunc(HBitWidth), dl, HiLoVT));
+ SDValue RemH = DAG.getConstant(0, dl, HiLoVT);
+
+ if (Opcode != ISD::UREM) {
+ // Subtract the remainder from the shifted dividend.
+ SDValue Dividend = DAG.getNode(ISD::BUILD_PAIR, dl, VT, LL, LH);
+ SDValue Rem = DAG.getNode(ISD::BUILD_PAIR, dl, VT, RemL, RemH);
+
+ Dividend = DAG.getNode(ISD::SUB, dl, VT, Dividend, Rem);
+
+ // Multiply by the multiplicative inverse of the divisor modulo
+ // (1 << BitWidth).
+ APInt MulFactor = Divisor.multiplicativeInverse();
+
+ SDValue Quotient = DAG.getNode(ISD::MUL, dl, VT, Dividend,
+ DAG.getConstant(MulFactor, dl, VT));
+
+ // Split the quotient into low and high parts.
+ SDValue QuotL, QuotH;
+ std::tie(QuotL, QuotH) = DAG.SplitScalar(Quotient, dl, HiLoVT, HiLoVT);
+ Result.push_back(QuotL);
+ Result.push_back(QuotH);
+ }
+
+ if (Opcode != ISD::UDIV) {
+ // If we shifted the input, shift the remainder left and add the bits we
+ // shifted off the input.
+ if (TrailingZeros) {
+ APInt Mask = APInt::getLowBitsSet(HBitWidth, TrailingZeros);
+ RemL = DAG.getNode(ISD::SHL, dl, HiLoVT, RemL,
+ DAG.getShiftAmountConstant(TrailingZeros, HiLoVT, dl));
+ RemL = DAG.getNode(ISD::ADD, dl, HiLoVT, RemL, PartialRem);
+ }
+ Result.push_back(RemL);
+ Result.push_back(DAG.getConstant(0, dl, HiLoVT));
+ }
+
+ return true;
+}
+
+// Check that (every element of) Z is undef or not an exact multiple of BW.
+static bool isNonZeroModBitWidthOrUndef(SDValue Z, unsigned BW) {
+ return ISD::matchUnaryPredicate(
+ Z,
+ [=](ConstantSDNode *C) { return !C || C->getAPIntValue().urem(BW) != 0; },
+ true);
+}
+
+static SDValue expandVPFunnelShift(SDNode *Node, SelectionDAG &DAG) {
+ EVT VT = Node->getValueType(0);
+ SDValue ShX, ShY;
+ SDValue ShAmt, InvShAmt;
+ SDValue X = Node->getOperand(0);
+ SDValue Y = Node->getOperand(1);
+ SDValue Z = Node->getOperand(2);
+ SDValue Mask = Node->getOperand(3);
+ SDValue VL = Node->getOperand(4);
+
+ unsigned BW = VT.getScalarSizeInBits();
+ bool IsFSHL = Node->getOpcode() == ISD::VP_FSHL;
+ SDLoc DL(SDValue(Node, 0));
+
+ EVT ShVT = Z.getValueType();
+ if (isNonZeroModBitWidthOrUndef(Z, BW)) {
+ // fshl: X << C | Y >> (BW - C)
+ // fshr: X << (BW - C) | Y >> C
+ // where C = Z % BW is not zero
+ SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT);
+ ShAmt = DAG.getNode(ISD::VP_UREM, DL, ShVT, Z, BitWidthC, Mask, VL);
+ InvShAmt = DAG.getNode(ISD::VP_SUB, DL, ShVT, BitWidthC, ShAmt, Mask, VL);
+ ShX = DAG.getNode(ISD::VP_SHL, DL, VT, X, IsFSHL ? ShAmt : InvShAmt, Mask,
+ VL);
+ ShY = DAG.getNode(ISD::VP_SRL, DL, VT, Y, IsFSHL ? InvShAmt : ShAmt, Mask,
+ VL);
+ } else {
+ // fshl: X << (Z % BW) | Y >> 1 >> (BW - 1 - (Z % BW))
+ // fshr: X << 1 << (BW - 1 - (Z % BW)) | Y >> (Z % BW)
+ SDValue BitMask = DAG.getConstant(BW - 1, DL, ShVT);
+ if (isPowerOf2_32(BW)) {
+ // Z % BW -> Z & (BW - 1)
+ ShAmt = DAG.getNode(ISD::VP_AND, DL, ShVT, Z, BitMask, Mask, VL);
+ // (BW - 1) - (Z % BW) -> ~Z & (BW - 1)
+ SDValue NotZ = DAG.getNode(ISD::VP_XOR, DL, ShVT, Z,
+ DAG.getAllOnesConstant(DL, ShVT), Mask, VL);
+ InvShAmt = DAG.getNode(ISD::VP_AND, DL, ShVT, NotZ, BitMask, Mask, VL);
+ } else {
+ SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT);
+ ShAmt = DAG.getNode(ISD::VP_UREM, DL, ShVT, Z, BitWidthC, Mask, VL);
+ InvShAmt = DAG.getNode(ISD::VP_SUB, DL, ShVT, BitMask, ShAmt, Mask, VL);
+ }
+
+ SDValue One = DAG.getConstant(1, DL, ShVT);
+ if (IsFSHL) {
+ ShX = DAG.getNode(ISD::VP_SHL, DL, VT, X, ShAmt, Mask, VL);
+ SDValue ShY1 = DAG.getNode(ISD::VP_SRL, DL, VT, Y, One, Mask, VL);
+ ShY = DAG.getNode(ISD::VP_SRL, DL, VT, ShY1, InvShAmt, Mask, VL);
+ } else {
+ SDValue ShX1 = DAG.getNode(ISD::VP_SHL, DL, VT, X, One, Mask, VL);
+ ShX = DAG.getNode(ISD::VP_SHL, DL, VT, ShX1, InvShAmt, Mask, VL);
+ ShY = DAG.getNode(ISD::VP_SRL, DL, VT, Y, ShAmt, Mask, VL);
+ }
+ }
+ return DAG.getNode(ISD::VP_OR, DL, VT, ShX, ShY, Mask, VL);
+}
+
+SDValue TargetLowering::expandFunnelShift(SDNode *Node,
+ SelectionDAG &DAG) const {
+ if (Node->isVPOpcode())
+ return expandVPFunnelShift(Node, DAG);
+
+ EVT VT = Node->getValueType(0);
+
+ if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) ||
+ !isOperationLegalOrCustom(ISD::SRL, VT) ||
+ !isOperationLegalOrCustom(ISD::SUB, VT) ||
+ !isOperationLegalOrCustomOrPromote(ISD::OR, VT)))
+ return SDValue();
+
+ SDValue X = Node->getOperand(0);
+ SDValue Y = Node->getOperand(1);
+ SDValue Z = Node->getOperand(2);
+
+ unsigned BW = VT.getScalarSizeInBits();
+ bool IsFSHL = Node->getOpcode() == ISD::FSHL;
+ SDLoc DL(SDValue(Node, 0));
+
+ EVT ShVT = Z.getValueType();
+
+ // If a funnel shift in the other direction is more supported, use it.
+ unsigned RevOpcode = IsFSHL ? ISD::FSHR : ISD::FSHL;
+ if (!isOperationLegalOrCustom(Node->getOpcode(), VT) &&
+ isOperationLegalOrCustom(RevOpcode, VT) && isPowerOf2_32(BW)) {
+ if (isNonZeroModBitWidthOrUndef(Z, BW)) {
+ // fshl X, Y, Z -> fshr X, Y, -Z
+ // fshr X, Y, Z -> fshl X, Y, -Z
+ SDValue Zero = DAG.getConstant(0, DL, ShVT);
+ Z = DAG.getNode(ISD::SUB, DL, VT, Zero, Z);
+ } else {
+ // fshl X, Y, Z -> fshr (srl X, 1), (fshr X, Y, 1), ~Z
+ // fshr X, Y, Z -> fshl (fshl X, Y, 1), (shl Y, 1), ~Z
+ SDValue One = DAG.getConstant(1, DL, ShVT);
+ if (IsFSHL) {
+ Y = DAG.getNode(RevOpcode, DL, VT, X, Y, One);
+ X = DAG.getNode(ISD::SRL, DL, VT, X, One);
+ } else {
+ X = DAG.getNode(RevOpcode, DL, VT, X, Y, One);
+ Y = DAG.getNode(ISD::SHL, DL, VT, Y, One);
+ }
+ Z = DAG.getNOT(DL, Z, ShVT);
+ }
+ return DAG.getNode(RevOpcode, DL, VT, X, Y, Z);
+ }
+
+ SDValue ShX, ShY;
+ SDValue ShAmt, InvShAmt;
+ if (isNonZeroModBitWidthOrUndef(Z, BW)) {
+ // fshl: X << C | Y >> (BW - C)
+ // fshr: X << (BW - C) | Y >> C
+ // where C = Z % BW is not zero
+ SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT);
+ ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC);
+ InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, ShAmt);
+ ShX = DAG.getNode(ISD::SHL, DL, VT, X, IsFSHL ? ShAmt : InvShAmt);
+ ShY = DAG.getNode(ISD::SRL, DL, VT, Y, IsFSHL ? InvShAmt : ShAmt);
+ } else {
+ // fshl: X << (Z % BW) | Y >> 1 >> (BW - 1 - (Z % BW))
+ // fshr: X << 1 << (BW - 1 - (Z % BW)) | Y >> (Z % BW)
+ SDValue Mask = DAG.getConstant(BW - 1, DL, ShVT);
+ if (isPowerOf2_32(BW)) {
+ // Z % BW -> Z & (BW - 1)
+ ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Z, Mask);
+ // (BW - 1) - (Z % BW) -> ~Z & (BW - 1)
+ InvShAmt = DAG.getNode(ISD::AND, DL, ShVT, DAG.getNOT(DL, Z, ShVT), Mask);
+ } else {
+ SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT);
+ ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC);
+ InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, Mask, ShAmt);
+ }
+
+ SDValue One = DAG.getConstant(1, DL, ShVT);
+ if (IsFSHL) {
+ ShX = DAG.getNode(ISD::SHL, DL, VT, X, ShAmt);
+ SDValue ShY1 = DAG.getNode(ISD::SRL, DL, VT, Y, One);
+ ShY = DAG.getNode(ISD::SRL, DL, VT, ShY1, InvShAmt);
+ } else {
+ SDValue ShX1 = DAG.getNode(ISD::SHL, DL, VT, X, One);
+ ShX = DAG.getNode(ISD::SHL, DL, VT, ShX1, InvShAmt);
+ ShY = DAG.getNode(ISD::SRL, DL, VT, Y, ShAmt);
+ }
+ }
+ return DAG.getNode(ISD::OR, DL, VT, ShX, ShY);
+}
+
+// TODO: Merge with expandFunnelShift.
+SDValue TargetLowering::expandROT(SDNode *Node, bool AllowVectorOps,
+ SelectionDAG &DAG) const {
+ EVT VT = Node->getValueType(0);
+ unsigned EltSizeInBits = VT.getScalarSizeInBits();
+ bool IsLeft = Node->getOpcode() == ISD::ROTL;
+ SDValue Op0 = Node->getOperand(0);
+ SDValue Op1 = Node->getOperand(1);
+ SDLoc DL(SDValue(Node, 0));
+
+ EVT ShVT = Op1.getValueType();
+ SDValue Zero = DAG.getConstant(0, DL, ShVT);
+
+ // If a rotate in the other direction is more supported, use it.
+ unsigned RevRot = IsLeft ? ISD::ROTR : ISD::ROTL;
+ if (!isOperationLegalOrCustom(Node->getOpcode(), VT) &&
+ isOperationLegalOrCustom(RevRot, VT) && isPowerOf2_32(EltSizeInBits)) {
+ SDValue Sub = DAG.getNode(ISD::SUB, DL, ShVT, Zero, Op1);
+ return DAG.getNode(RevRot, DL, VT, Op0, Sub);
+ }
+
+ if (!AllowVectorOps && VT.isVector() &&
+ (!isOperationLegalOrCustom(ISD::SHL, VT) ||
+ !isOperationLegalOrCustom(ISD::SRL, VT) ||
+ !isOperationLegalOrCustom(ISD::SUB, VT) ||
+ !isOperationLegalOrCustomOrPromote(ISD::OR, VT) ||
+ !isOperationLegalOrCustomOrPromote(ISD::AND, VT)))
+ return SDValue();
+
+ unsigned ShOpc = IsLeft ? ISD::SHL : ISD::SRL;
+ unsigned HsOpc = IsLeft ? ISD::SRL : ISD::SHL;
+ SDValue BitWidthMinusOneC = DAG.getConstant(EltSizeInBits - 1, DL, ShVT);
+ SDValue ShVal;
+ SDValue HsVal;
+ if (isPowerOf2_32(EltSizeInBits)) {
+ // (rotl x, c) -> x << (c & (w - 1)) | x >> (-c & (w - 1))
+ // (rotr x, c) -> x >> (c & (w - 1)) | x << (-c & (w - 1))
+ SDValue NegOp1 = DAG.getNode(ISD::SUB, DL, ShVT, Zero, Op1);
+ SDValue ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Op1, BitWidthMinusOneC);
+ ShVal = DAG.getNode(ShOpc, DL, VT, Op0, ShAmt);
+ SDValue HsAmt = DAG.getNode(ISD::AND, DL, ShVT, NegOp1, BitWidthMinusOneC);
+ HsVal = DAG.getNode(HsOpc, DL, VT, Op0, HsAmt);
+ } else {
+ // (rotl x, c) -> x << (c % w) | x >> 1 >> (w - 1 - (c % w))
+ // (rotr x, c) -> x >> (c % w) | x << 1 << (w - 1 - (c % w))
+ SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT);
+ SDValue ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Op1, BitWidthC);
+ ShVal = DAG.getNode(ShOpc, DL, VT, Op0, ShAmt);
+ SDValue HsAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthMinusOneC, ShAmt);
+ SDValue One = DAG.getConstant(1, DL, ShVT);
+ HsVal =
+ DAG.getNode(HsOpc, DL, VT, DAG.getNode(HsOpc, DL, VT, Op0, One), HsAmt);
+ }
+ return DAG.getNode(ISD::OR, DL, VT, ShVal, HsVal);
+}
+
+void TargetLowering::expandShiftParts(SDNode *Node, SDValue &Lo, SDValue &Hi,
+ SelectionDAG &DAG) const {
+ assert(Node->getNumOperands() == 3 && "Not a double-shift!");
+ EVT VT = Node->getValueType(0);
+ unsigned VTBits = VT.getScalarSizeInBits();
+ assert(isPowerOf2_32(VTBits) && "Power-of-two integer type expected");
+
+ bool IsSHL = Node->getOpcode() == ISD::SHL_PARTS;
+ bool IsSRA = Node->getOpcode() == ISD::SRA_PARTS;
+ SDValue ShOpLo = Node->getOperand(0);
+ SDValue ShOpHi = Node->getOperand(1);
+ SDValue ShAmt = Node->getOperand(2);
+ EVT ShAmtVT = ShAmt.getValueType();
+ EVT ShAmtCCVT =
+ getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), ShAmtVT);
+ SDLoc dl(Node);
+
+ // ISD::FSHL and ISD::FSHR have defined overflow behavior but ISD::SHL and
+ // ISD::SRA/L nodes haven't. Insert an AND to be safe, it's usually optimized
+ // away during isel.
+ SDValue SafeShAmt = DAG.getNode(ISD::AND, dl, ShAmtVT, ShAmt,
+ DAG.getConstant(VTBits - 1, dl, ShAmtVT));
+ SDValue Tmp1 = IsSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi,
+ DAG.getConstant(VTBits - 1, dl, ShAmtVT))
+ : DAG.getConstant(0, dl, VT);
+
+ SDValue Tmp2, Tmp3;
+ if (IsSHL) {
+ Tmp2 = DAG.getNode(ISD::FSHL, dl, VT, ShOpHi, ShOpLo, ShAmt);
+ Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, SafeShAmt);
+ } else {
+ Tmp2 = DAG.getNode(ISD::FSHR, dl, VT, ShOpHi, ShOpLo, ShAmt);
+ Tmp3 = DAG.getNode(IsSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, SafeShAmt);
+ }
+
+ // If the shift amount is larger or equal than the width of a part we don't
+ // use the result from the FSHL/FSHR. Insert a test and select the appropriate
+ // values for large shift amounts.
+ SDValue AndNode = DAG.getNode(ISD::AND, dl, ShAmtVT, ShAmt,
+ DAG.getConstant(VTBits, dl, ShAmtVT));
+ SDValue Cond = DAG.getSetCC(dl, ShAmtCCVT, AndNode,
+ DAG.getConstant(0, dl, ShAmtVT), ISD::SETNE);
+
+ if (IsSHL) {
+ Hi = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp3, Tmp2);
+ Lo = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp1, Tmp3);
+ } else {
+ Lo = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp3, Tmp2);
+ Hi = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp1, Tmp3);
+ }
+}
+
+bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result,
+ SelectionDAG &DAG) const {
+ unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0;
+ SDValue Src = Node->getOperand(OpNo);
+ EVT SrcVT = Src.getValueType();
+ EVT DstVT = Node->getValueType(0);
+ SDLoc dl(SDValue(Node, 0));
+
+ // FIXME: Only f32 to i64 conversions are supported.
+ if (SrcVT != MVT::f32 || DstVT != MVT::i64)
+ return false;
+
+ if (Node->isStrictFPOpcode())
+ // When a NaN is converted to an integer a trap is allowed. We can't
+ // use this expansion here because it would eliminate that trap. Other
+ // traps are also allowed and cannot be eliminated. See
+ // IEEE 754-2008 sec 5.8.
+ return false;
+
+ // Expand f32 -> i64 conversion
+ // This algorithm comes from compiler-rt's implementation of fixsfdi:
+ // https://github.com/llvm/llvm-project/blob/main/compiler-rt/lib/builtins/fixsfdi.c
+ unsigned SrcEltBits = SrcVT.getScalarSizeInBits();
+ EVT IntVT = SrcVT.changeTypeToInteger();
+ EVT IntShVT = getShiftAmountTy(IntVT, DAG.getDataLayout());
+
+ SDValue ExponentMask = DAG.getConstant(0x7F800000, dl, IntVT);
+ SDValue ExponentLoBit = DAG.getConstant(23, dl, IntVT);
+ SDValue Bias = DAG.getConstant(127, dl, IntVT);
+ SDValue SignMask = DAG.getConstant(APInt::getSignMask(SrcEltBits), dl, IntVT);
+ SDValue SignLowBit = DAG.getConstant(SrcEltBits - 1, dl, IntVT);
+ SDValue MantissaMask = DAG.getConstant(0x007FFFFF, dl, IntVT);
+
+ SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Src);
+
+ SDValue ExponentBits = DAG.getNode(
+ ISD::SRL, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask),
+ DAG.getZExtOrTrunc(ExponentLoBit, dl, IntShVT));
+ SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias);
+
+ SDValue Sign = DAG.getNode(ISD::SRA, dl, IntVT,
+ DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask),
+ DAG.getZExtOrTrunc(SignLowBit, dl, IntShVT));
+ Sign = DAG.getSExtOrTrunc(Sign, dl, DstVT);
+
+ SDValue R = DAG.getNode(ISD::OR, dl, IntVT,
+ DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask),
+ DAG.getConstant(0x00800000, dl, IntVT));
+
+ R = DAG.getZExtOrTrunc(R, dl, DstVT);
+
+ R = DAG.getSelectCC(
+ dl, Exponent, ExponentLoBit,
+ DAG.getNode(ISD::SHL, dl, DstVT, R,
+ DAG.getZExtOrTrunc(
+ DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit),
+ dl, IntShVT)),
+ DAG.getNode(ISD::SRL, dl, DstVT, R,
+ DAG.getZExtOrTrunc(
+ DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent),
+ dl, IntShVT)),
+ ISD::SETGT);
+
+ SDValue Ret = DAG.getNode(ISD::SUB, dl, DstVT,
+ DAG.getNode(ISD::XOR, dl, DstVT, R, Sign), Sign);
+
+ Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, dl, IntVT),
+ DAG.getConstant(0, dl, DstVT), Ret, ISD::SETLT);
+ return true;
+}
+
+bool TargetLowering::expandFP_TO_UINT(SDNode *Node, SDValue &Result,
+ SDValue &Chain,
+ SelectionDAG &DAG) const {
+ SDLoc dl(SDValue(Node, 0));
+ unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0;
+ SDValue Src = Node->getOperand(OpNo);
+
+ EVT SrcVT = Src.getValueType();
+ EVT DstVT = Node->getValueType(0);
+ EVT SetCCVT =
+ getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT);
+ EVT DstSetCCVT =
+ getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), DstVT);
+
+ // Only expand vector types if we have the appropriate vector bit operations.
+ unsigned SIntOpcode = Node->isStrictFPOpcode() ? ISD::STRICT_FP_TO_SINT :
+ ISD::FP_TO_SINT;
+ if (DstVT.isVector() && (!isOperationLegalOrCustom(SIntOpcode, DstVT) ||
+ !isOperationLegalOrCustomOrPromote(ISD::XOR, SrcVT)))
+ return false;
+
+ // If the maximum float value is smaller then the signed integer range,
+ // the destination signmask can't be represented by the float, so we can
+ // just use FP_TO_SINT directly.
+ const fltSemantics &APFSem = DAG.EVTToAPFloatSemantics(SrcVT);
+ APFloat APF(APFSem, APInt::getZero(SrcVT.getScalarSizeInBits()));
+ APInt SignMask = APInt::getSignMask(DstVT.getScalarSizeInBits());
+ if (APFloat::opOverflow &
+ APF.convertFromAPInt(SignMask, false, APFloat::rmNearestTiesToEven)) {
+ if (Node->isStrictFPOpcode()) {
+ Result = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other },
+ { Node->getOperand(0), Src });
+ Chain = Result.getValue(1);
+ } else
+ Result = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src);
+ return true;
+ }
+
+ // Don't expand it if there isn't cheap fsub instruction.
+ if (!isOperationLegalOrCustom(
+ Node->isStrictFPOpcode() ? ISD::STRICT_FSUB : ISD::FSUB, SrcVT))
+ return false;
+
+ SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT);
+ SDValue Sel;
+
+ if (Node->isStrictFPOpcode()) {
+ Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT,
+ Node->getOperand(0), /*IsSignaling*/ true);
+ Chain = Sel.getValue(1);
+ } else {
+ Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT);
+ }
+
+ bool Strict = Node->isStrictFPOpcode() ||
+ shouldUseStrictFP_TO_INT(SrcVT, DstVT, /*IsSigned*/ false);
+
+ if (Strict) {
+ // Expand based on maximum range of FP_TO_SINT, if the value exceeds the
+ // signmask then offset (the result of which should be fully representable).
+ // Sel = Src < 0x8000000000000000
+ // FltOfs = select Sel, 0, 0x8000000000000000
+ // IntOfs = select Sel, 0, 0x8000000000000000
+ // Result = fp_to_sint(Src - FltOfs) ^ IntOfs
+
+ // TODO: Should any fast-math-flags be set for the FSUB?
+ SDValue FltOfs = DAG.getSelect(dl, SrcVT, Sel,
+ DAG.getConstantFP(0.0, dl, SrcVT), Cst);
+ Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT);
+ SDValue IntOfs = DAG.getSelect(dl, DstVT, Sel,
+ DAG.getConstant(0, dl, DstVT),
+ DAG.getConstant(SignMask, dl, DstVT));
+ SDValue SInt;
+ if (Node->isStrictFPOpcode()) {
+ SDValue Val = DAG.getNode(ISD::STRICT_FSUB, dl, { SrcVT, MVT::Other },
+ { Chain, Src, FltOfs });
+ SInt = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other },
+ { Val.getValue(1), Val });
+ Chain = SInt.getValue(1);
+ } else {
+ SDValue Val = DAG.getNode(ISD::FSUB, dl, SrcVT, Src, FltOfs);
+ SInt = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Val);
+ }
+ Result = DAG.getNode(ISD::XOR, dl, DstVT, SInt, IntOfs);
+ } else {
+ // Expand based on maximum range of FP_TO_SINT:
+ // True = fp_to_sint(Src)
+ // False = 0x8000000000000000 + fp_to_sint(Src - 0x8000000000000000)
+ // Result = select (Src < 0x8000000000000000), True, False
+
+ SDValue True = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src);
+ // TODO: Should any fast-math-flags be set for the FSUB?
+ SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT,
+ DAG.getNode(ISD::FSUB, dl, SrcVT, Src, Cst));
+ False = DAG.getNode(ISD::XOR, dl, DstVT, False,
+ DAG.getConstant(SignMask, dl, DstVT));
+ Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT);
+ Result = DAG.getSelect(dl, DstVT, Sel, True, False);
+ }
+ return true;
+}
+
+bool TargetLowering::expandUINT_TO_FP(SDNode *Node, SDValue &Result,
+ SDValue &Chain,
+ SelectionDAG &DAG) const {
+ // This transform is not correct for converting 0 when rounding mode is set
+ // to round toward negative infinity which will produce -0.0. So disable under
+ // strictfp.
+ if (Node->isStrictFPOpcode())
+ return false;
+
+ SDValue Src = Node->getOperand(0);
+ EVT SrcVT = Src.getValueType();
+ EVT DstVT = Node->getValueType(0);
+
+ if (SrcVT.getScalarType() != MVT::i64 || DstVT.getScalarType() != MVT::f64)
+ return false;
+
+ // Only expand vector types if we have the appropriate vector bit operations.
+ if (SrcVT.isVector() && (!isOperationLegalOrCustom(ISD::SRL, SrcVT) ||
+ !isOperationLegalOrCustom(ISD::FADD, DstVT) ||
+ !isOperationLegalOrCustom(ISD::FSUB, DstVT) ||
+ !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) ||
+ !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT)))
+ return false;
+
+ SDLoc dl(SDValue(Node, 0));
+ EVT ShiftVT = getShiftAmountTy(SrcVT, DAG.getDataLayout());
+
+ // Implementation of unsigned i64 to f64 following the algorithm in
+ // __floatundidf in compiler_rt. This implementation performs rounding
+ // correctly in all rounding modes with the exception of converting 0
+ // when rounding toward negative infinity. In that case the fsub will produce
+ // -0.0. This will be added to +0.0 and produce -0.0 which is incorrect.
+ SDValue TwoP52 = DAG.getConstant(UINT64_C(0x4330000000000000), dl, SrcVT);
+ SDValue TwoP84PlusTwoP52 = DAG.getConstantFP(
+ llvm::bit_cast<double>(UINT64_C(0x4530000000100000)), dl, DstVT);
+ SDValue TwoP84 = DAG.getConstant(UINT64_C(0x4530000000000000), dl, SrcVT);
+ SDValue LoMask = DAG.getConstant(UINT64_C(0x00000000FFFFFFFF), dl, SrcVT);
+ SDValue HiShift = DAG.getConstant(32, dl, ShiftVT);
+
+ SDValue Lo = DAG.getNode(ISD::AND, dl, SrcVT, Src, LoMask);
+ SDValue Hi = DAG.getNode(ISD::SRL, dl, SrcVT, Src, HiShift);
+ SDValue LoOr = DAG.getNode(ISD::OR, dl, SrcVT, Lo, TwoP52);
+ SDValue HiOr = DAG.getNode(ISD::OR, dl, SrcVT, Hi, TwoP84);
+ SDValue LoFlt = DAG.getBitcast(DstVT, LoOr);
+ SDValue HiFlt = DAG.getBitcast(DstVT, HiOr);
+ SDValue HiSub =
+ DAG.getNode(ISD::FSUB, dl, DstVT, HiFlt, TwoP84PlusTwoP52);
+ Result = DAG.getNode(ISD::FADD, dl, DstVT, LoFlt, HiSub);
+ return true;
+}
+
+SDValue
+TargetLowering::createSelectForFMINNUM_FMAXNUM(SDNode *Node,
+ SelectionDAG &DAG) const {
+ unsigned Opcode = Node->getOpcode();
+ assert((Opcode == ISD::FMINNUM || Opcode == ISD::FMAXNUM ||
+ Opcode == ISD::STRICT_FMINNUM || Opcode == ISD::STRICT_FMAXNUM) &&
+ "Wrong opcode");
+
+ if (Node->getFlags().hasNoNaNs()) {
+ ISD::CondCode Pred = Opcode == ISD::FMINNUM ? ISD::SETLT : ISD::SETGT;
+ SDValue Op1 = Node->getOperand(0);
+ SDValue Op2 = Node->getOperand(1);
+ SDValue SelCC = DAG.getSelectCC(SDLoc(Node), Op1, Op2, Op1, Op2, Pred);
+ // Copy FMF flags, but always set the no-signed-zeros flag
+ // as this is implied by the FMINNUM/FMAXNUM semantics.
+ SDNodeFlags Flags = Node->getFlags();
+ Flags.setNoSignedZeros(true);
+ SelCC->setFlags(Flags);
+ return SelCC;
+ }
+
+ return SDValue();
+}
+
+SDValue TargetLowering::expandFMINNUM_FMAXNUM(SDNode *Node,
+ SelectionDAG &DAG) const {
+ SDLoc dl(Node);
+ unsigned NewOp = Node->getOpcode() == ISD::FMINNUM ?
+ ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE;
+ EVT VT = Node->getValueType(0);
+
+ if (VT.isScalableVector())
+ report_fatal_error(
+ "Expanding fminnum/fmaxnum for scalable vectors is undefined.");
+
+ if (isOperationLegalOrCustom(NewOp, VT)) {
+ SDValue Quiet0 = Node->getOperand(0);
+ SDValue Quiet1 = Node->getOperand(1);
+
+ if (!Node->getFlags().hasNoNaNs()) {
+ // Insert canonicalizes if it's possible we need to quiet to get correct
+ // sNaN behavior.
+ if (!DAG.isKnownNeverSNaN(Quiet0)) {
+ Quiet0 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet0,
+ Node->getFlags());
+ }
+ if (!DAG.isKnownNeverSNaN(Quiet1)) {
+ Quiet1 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet1,
+ Node->getFlags());
+ }
+ }
+
+ return DAG.getNode(NewOp, dl, VT, Quiet0, Quiet1, Node->getFlags());
+ }
+
+ // If the target has FMINIMUM/FMAXIMUM but not FMINNUM/FMAXNUM use that
+ // instead if there are no NaNs and there can't be an incompatible zero
+ // compare: at least one operand isn't +/-0, or there are no signed-zeros.
+ if ((Node->getFlags().hasNoNaNs() ||
+ (DAG.isKnownNeverNaN(Node->getOperand(0)) &&
+ DAG.isKnownNeverNaN(Node->getOperand(1)))) &&
+ (Node->getFlags().hasNoSignedZeros() ||
+ DAG.isKnownNeverZeroFloat(Node->getOperand(0)) ||
+ DAG.isKnownNeverZeroFloat(Node->getOperand(1)))) {
+ unsigned IEEE2018Op =
+ Node->getOpcode() == ISD::FMINNUM ? ISD::FMINIMUM : ISD::FMAXIMUM;
+ if (isOperationLegalOrCustom(IEEE2018Op, VT))
+ return DAG.getNode(IEEE2018Op, dl, VT, Node->getOperand(0),
+ Node->getOperand(1), Node->getFlags());
+ }
+
+ if (SDValue SelCC = createSelectForFMINNUM_FMAXNUM(Node, DAG))
+ return SelCC;
+
+ return SDValue();
+}
+
+SDValue TargetLowering::expandFMINIMUM_FMAXIMUM(SDNode *N,
+ SelectionDAG &DAG) const {
+ SDLoc DL(N);
+ SDValue LHS = N->getOperand(0);
+ SDValue RHS = N->getOperand(1);
+ unsigned Opc = N->getOpcode();
+ EVT VT = N->getValueType(0);
+ EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
+ bool IsMax = Opc == ISD::FMAXIMUM;
+ SDNodeFlags Flags = N->getFlags();
+
+ // First, implement comparison not propagating NaN. If no native fmin or fmax
+ // available, use plain select with setcc instead.
+ SDValue MinMax;
+ unsigned CompOpcIeee = IsMax ? ISD::FMAXNUM_IEEE : ISD::FMINNUM_IEEE;
+ unsigned CompOpc = IsMax ? ISD::FMAXNUM : ISD::FMINNUM;
+
+ // FIXME: We should probably define fminnum/fmaxnum variants with correct
+ // signed zero behavior.
+ bool MinMaxMustRespectOrderedZero = false;
+
+ if (isOperationLegalOrCustom(CompOpcIeee, VT)) {
+ MinMax = DAG.getNode(CompOpcIeee, DL, VT, LHS, RHS, Flags);
+ MinMaxMustRespectOrderedZero = true;
+ } else if (isOperationLegalOrCustom(CompOpc, VT)) {
+ MinMax = DAG.getNode(CompOpc, DL, VT, LHS, RHS, Flags);
+ } else {
+ if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT))
+ return DAG.UnrollVectorOp(N);
+
+ // NaN (if exists) will be propagated later, so orderness doesn't matter.
+ SDValue Compare =
+ DAG.getSetCC(DL, CCVT, LHS, RHS, IsMax ? ISD::SETGT : ISD::SETLT);
+ MinMax = DAG.getSelect(DL, VT, Compare, LHS, RHS, Flags);
+ }
+
+ // Propagate any NaN of both operands
+ if (!N->getFlags().hasNoNaNs() &&
+ (!DAG.isKnownNeverNaN(RHS) || !DAG.isKnownNeverNaN(LHS))) {
+ ConstantFP *FPNaN = ConstantFP::get(
+ *DAG.getContext(), APFloat::getNaN(DAG.EVTToAPFloatSemantics(VT)));
+ MinMax = DAG.getSelect(DL, VT, DAG.getSetCC(DL, CCVT, LHS, RHS, ISD::SETUO),
+ DAG.getConstantFP(*FPNaN, DL, VT), MinMax, Flags);
+ }
+
+ // fminimum/fmaximum requires -0.0 less than +0.0
+ if (!MinMaxMustRespectOrderedZero && !N->getFlags().hasNoSignedZeros() &&
+ !DAG.isKnownNeverZeroFloat(RHS) && !DAG.isKnownNeverZeroFloat(LHS)) {
+ SDValue IsZero = DAG.getSetCC(DL, CCVT, MinMax,
+ DAG.getConstantFP(0.0, DL, VT), ISD::SETEQ);
+ SDValue TestZero =
+ DAG.getTargetConstant(IsMax ? fcPosZero : fcNegZero, DL, MVT::i32);
+ SDValue LCmp = DAG.getSelect(
+ DL, VT, DAG.getNode(ISD::IS_FPCLASS, DL, CCVT, LHS, TestZero), LHS,
+ MinMax, Flags);
+ SDValue RCmp = DAG.getSelect(
+ DL, VT, DAG.getNode(ISD::IS_FPCLASS, DL, CCVT, RHS, TestZero), RHS,
+ LCmp, Flags);
+ MinMax = DAG.getSelect(DL, VT, IsZero, RCmp, MinMax, Flags);
+ }
+
+ return MinMax;
+}
+
+/// Returns a true value if if this FPClassTest can be performed with an ordered
+/// fcmp to 0, and a false value if it's an unordered fcmp to 0. Returns
+/// std::nullopt if it cannot be performed as a compare with 0.
+static std::optional<bool> isFCmpEqualZero(FPClassTest Test,
+ const fltSemantics &Semantics,
+ const MachineFunction &MF) {
+ FPClassTest OrderedMask = Test & ~fcNan;
+ FPClassTest NanTest = Test & fcNan;
+ bool IsOrdered = NanTest == fcNone;
+ bool IsUnordered = NanTest == fcNan;
+
+ // Skip cases that are testing for only a qnan or snan.
+ if (!IsOrdered && !IsUnordered)
+ return std::nullopt;
+
+ if (OrderedMask == fcZero &&
+ MF.getDenormalMode(Semantics).Input == DenormalMode::IEEE)
+ return IsOrdered;
+ if (OrderedMask == (fcZero | fcSubnormal) &&
+ MF.getDenormalMode(Semantics).inputsAreZero())
+ return IsOrdered;
+ return std::nullopt;
+}
+
+SDValue TargetLowering::expandIS_FPCLASS(EVT ResultVT, SDValue Op,
+ FPClassTest Test, SDNodeFlags Flags,
+ const SDLoc &DL,
+ SelectionDAG &DAG) const {
+ EVT OperandVT = Op.getValueType();
+ assert(OperandVT.isFloatingPoint());
+
+ // Degenerated cases.
+ if (Test == fcNone)
+ return DAG.getBoolConstant(false, DL, ResultVT, OperandVT);
+ if ((Test & fcAllFlags) == fcAllFlags)
+ return DAG.getBoolConstant(true, DL, ResultVT, OperandVT);
+
+ // PPC double double is a pair of doubles, of which the higher part determines
+ // the value class.
+ if (OperandVT == MVT::ppcf128) {
+ Op = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::f64, Op,
+ DAG.getConstant(1, DL, MVT::i32));
+ OperandVT = MVT::f64;
+ }
+
+ // Some checks may be represented as inversion of simpler check, for example
+ // "inf|normal|subnormal|zero" => !"nan".
+ bool IsInverted = false;
+ if (FPClassTest InvertedCheck = invertFPClassTestIfSimpler(Test)) {
+ IsInverted = true;
+ Test = InvertedCheck;
+ }
+
+ // Floating-point type properties.
+ EVT ScalarFloatVT = OperandVT.getScalarType();
+ const Type *FloatTy = ScalarFloatVT.getTypeForEVT(*DAG.getContext());
+ const llvm::fltSemantics &Semantics = FloatTy->getFltSemantics();
+ bool IsF80 = (ScalarFloatVT == MVT::f80);
+
+ // Some checks can be implemented using float comparisons, if floating point
+ // exceptions are ignored.
+ if (Flags.hasNoFPExcept() &&
+ isOperationLegalOrCustom(ISD::SETCC, OperandVT.getScalarType())) {
+ ISD::CondCode OrderedCmpOpcode = IsInverted ? ISD::SETUNE : ISD::SETOEQ;
+ ISD::CondCode UnorderedCmpOpcode = IsInverted ? ISD::SETONE : ISD::SETUEQ;
+
+ if (std::optional<bool> IsCmp0 =
+ isFCmpEqualZero(Test, Semantics, DAG.getMachineFunction());
+ IsCmp0 && (isCondCodeLegalOrCustom(
+ *IsCmp0 ? OrderedCmpOpcode : UnorderedCmpOpcode,
+ OperandVT.getScalarType().getSimpleVT()))) {
+
+ // If denormals could be implicitly treated as 0, this is not equivalent
+ // to a compare with 0 since it will also be true for denormals.
+ return DAG.getSetCC(DL, ResultVT, Op,
+ DAG.getConstantFP(0.0, DL, OperandVT),
+ *IsCmp0 ? OrderedCmpOpcode : UnorderedCmpOpcode);
+ }
+
+ if (Test == fcNan &&
+ isCondCodeLegalOrCustom(IsInverted ? ISD::SETO : ISD::SETUO,
+ OperandVT.getScalarType().getSimpleVT())) {
+ return DAG.getSetCC(DL, ResultVT, Op, Op,
+ IsInverted ? ISD::SETO : ISD::SETUO);
+ }
+
+ if (Test == fcInf &&
+ isCondCodeLegalOrCustom(IsInverted ? ISD::SETUNE : ISD::SETOEQ,
+ OperandVT.getScalarType().getSimpleVT()) &&
+ isOperationLegalOrCustom(ISD::FABS, OperandVT.getScalarType())) {
+ // isinf(x) --> fabs(x) == inf
+ SDValue Abs = DAG.getNode(ISD::FABS, DL, OperandVT, Op);
+ SDValue Inf =
+ DAG.getConstantFP(APFloat::getInf(Semantics), DL, OperandVT);
+ return DAG.getSetCC(DL, ResultVT, Abs, Inf,
+ IsInverted ? ISD::SETUNE : ISD::SETOEQ);
+ }
+ }
+
+ // In the general case use integer operations.
+ unsigned BitSize = OperandVT.getScalarSizeInBits();
+ EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), BitSize);
+ if (OperandVT.isVector())
+ IntVT = EVT::getVectorVT(*DAG.getContext(), IntVT,
+ OperandVT.getVectorElementCount());
+ SDValue OpAsInt = DAG.getBitcast(IntVT, Op);
+
+ // Various masks.
+ APInt SignBit = APInt::getSignMask(BitSize);
+ APInt ValueMask = APInt::getSignedMaxValue(BitSize); // All bits but sign.
+ APInt Inf = APFloat::getInf(Semantics).bitcastToAPInt(); // Exp and int bit.
+ const unsigned ExplicitIntBitInF80 = 63;
+ APInt ExpMask = Inf;
+ if (IsF80)
+ ExpMask.clearBit(ExplicitIntBitInF80);
+ APInt AllOneMantissa = APFloat::getLargest(Semantics).bitcastToAPInt() & ~Inf;
+ APInt QNaNBitMask =
+ APInt::getOneBitSet(BitSize, AllOneMantissa.getActiveBits() - 1);
+ APInt InvertionMask = APInt::getAllOnes(ResultVT.getScalarSizeInBits());
+
+ SDValue ValueMaskV = DAG.getConstant(ValueMask, DL, IntVT);
+ SDValue SignBitV = DAG.getConstant(SignBit, DL, IntVT);
+ SDValue ExpMaskV = DAG.getConstant(ExpMask, DL, IntVT);
+ SDValue ZeroV = DAG.getConstant(0, DL, IntVT);
+ SDValue InfV = DAG.getConstant(Inf, DL, IntVT);
+ SDValue ResultInvertionMask = DAG.getConstant(InvertionMask, DL, ResultVT);
+
+ SDValue Res;
+ const auto appendResult = [&](SDValue PartialRes) {
+ if (PartialRes) {
+ if (Res)
+ Res = DAG.getNode(ISD::OR, DL, ResultVT, Res, PartialRes);
+ else
+ Res = PartialRes;
+ }
+ };
+
+ SDValue IntBitIsSetV; // Explicit integer bit in f80 mantissa is set.
+ const auto getIntBitIsSet = [&]() -> SDValue {
+ if (!IntBitIsSetV) {
+ APInt IntBitMask(BitSize, 0);
+ IntBitMask.setBit(ExplicitIntBitInF80);
+ SDValue IntBitMaskV = DAG.getConstant(IntBitMask, DL, IntVT);
+ SDValue IntBitV = DAG.getNode(ISD::AND, DL, IntVT, OpAsInt, IntBitMaskV);
+ IntBitIsSetV = DAG.getSetCC(DL, ResultVT, IntBitV, ZeroV, ISD::SETNE);
+ }
+ return IntBitIsSetV;
+ };
+
+ // Split the value into sign bit and absolute value.
+ SDValue AbsV = DAG.getNode(ISD::AND, DL, IntVT, OpAsInt, ValueMaskV);
+ SDValue SignV = DAG.getSetCC(DL, ResultVT, OpAsInt,
+ DAG.getConstant(0.0, DL, IntVT), ISD::SETLT);
+
+ // Tests that involve more than one class should be processed first.
+ SDValue PartialRes;
+
+ if (IsF80)
+ ; // Detect finite numbers of f80 by checking individual classes because
+ // they have different settings of the explicit integer bit.
+ else if ((Test & fcFinite) == fcFinite) {
+ // finite(V) ==> abs(V) < exp_mask
+ PartialRes = DAG.getSetCC(DL, ResultVT, AbsV, ExpMaskV, ISD::SETLT);
+ Test &= ~fcFinite;
+ } else if ((Test & fcFinite) == fcPosFinite) {
+ // finite(V) && V > 0 ==> V < exp_mask
+ PartialRes = DAG.getSetCC(DL, ResultVT, OpAsInt, ExpMaskV, ISD::SETULT);
+ Test &= ~fcPosFinite;
+ } else if ((Test & fcFinite) == fcNegFinite) {
+ // finite(V) && V < 0 ==> abs(V) < exp_mask && signbit == 1
+ PartialRes = DAG.getSetCC(DL, ResultVT, AbsV, ExpMaskV, ISD::SETLT);
+ PartialRes = DAG.getNode(ISD::AND, DL, ResultVT, PartialRes, SignV);
+ Test &= ~fcNegFinite;
+ }
+ appendResult(PartialRes);
+
+ if (FPClassTest PartialCheck = Test & (fcZero | fcSubnormal)) {
+ // fcZero | fcSubnormal => test all exponent bits are 0
+ // TODO: Handle sign bit specific cases
+ if (PartialCheck == (fcZero | fcSubnormal)) {
+ SDValue ExpBits = DAG.getNode(ISD::AND, DL, IntVT, OpAsInt, ExpMaskV);
+ SDValue ExpIsZero =
+ DAG.getSetCC(DL, ResultVT, ExpBits, ZeroV, ISD::SETEQ);
+ appendResult(ExpIsZero);
+ Test &= ~PartialCheck & fcAllFlags;
+ }
+ }
+
+ // Check for individual classes.
+
+ if (unsigned PartialCheck = Test & fcZero) {
+ if (PartialCheck == fcPosZero)
+ PartialRes = DAG.getSetCC(DL, ResultVT, OpAsInt, ZeroV, ISD::SETEQ);
+ else if (PartialCheck == fcZero)
+ PartialRes = DAG.getSetCC(DL, ResultVT, AbsV, ZeroV, ISD::SETEQ);
+ else // ISD::fcNegZero
+ PartialRes = DAG.getSetCC(DL, ResultVT, OpAsInt, SignBitV, ISD::SETEQ);
+ appendResult(PartialRes);
+ }
+
+ if (unsigned PartialCheck = Test & fcSubnormal) {
+ // issubnormal(V) ==> unsigned(abs(V) - 1) < (all mantissa bits set)
+ // issubnormal(V) && V>0 ==> unsigned(V - 1) < (all mantissa bits set)
+ SDValue V = (PartialCheck == fcPosSubnormal) ? OpAsInt : AbsV;
+ SDValue MantissaV = DAG.getConstant(AllOneMantissa, DL, IntVT);
+ SDValue VMinusOneV =
+ DAG.getNode(ISD::SUB, DL, IntVT, V, DAG.getConstant(1, DL, IntVT));
+ PartialRes = DAG.getSetCC(DL, ResultVT, VMinusOneV, MantissaV, ISD::SETULT);
+ if (PartialCheck == fcNegSubnormal)
+ PartialRes = DAG.getNode(ISD::AND, DL, ResultVT, PartialRes, SignV);
+ appendResult(PartialRes);
+ }
+
+ if (unsigned PartialCheck = Test & fcInf) {
+ if (PartialCheck == fcPosInf)
+ PartialRes = DAG.getSetCC(DL, ResultVT, OpAsInt, InfV, ISD::SETEQ);
+ else if (PartialCheck == fcInf)
+ PartialRes = DAG.getSetCC(DL, ResultVT, AbsV, InfV, ISD::SETEQ);
+ else { // ISD::fcNegInf
+ APInt NegInf = APFloat::getInf(Semantics, true).bitcastToAPInt();
+ SDValue NegInfV = DAG.getConstant(NegInf, DL, IntVT);
+ PartialRes = DAG.getSetCC(DL, ResultVT, OpAsInt, NegInfV, ISD::SETEQ);
+ }
+ appendResult(PartialRes);
+ }
+
+ if (unsigned PartialCheck = Test & fcNan) {
+ APInt InfWithQnanBit = Inf | QNaNBitMask;
+ SDValue InfWithQnanBitV = DAG.getConstant(InfWithQnanBit, DL, IntVT);
+ if (PartialCheck == fcNan) {
+ // isnan(V) ==> abs(V) > int(inf)
+ PartialRes = DAG.getSetCC(DL, ResultVT, AbsV, InfV, ISD::SETGT);
+ if (IsF80) {
+ // Recognize unsupported values as NaNs for compatibility with glibc.
+ // In them (exp(V)==0) == int_bit.
+ SDValue ExpBits = DAG.getNode(ISD::AND, DL, IntVT, AbsV, ExpMaskV);
+ SDValue ExpIsZero =
+ DAG.getSetCC(DL, ResultVT, ExpBits, ZeroV, ISD::SETEQ);
+ SDValue IsPseudo =
+ DAG.getSetCC(DL, ResultVT, getIntBitIsSet(), ExpIsZero, ISD::SETEQ);
+ PartialRes = DAG.getNode(ISD::OR, DL, ResultVT, PartialRes, IsPseudo);
+ }
+ } else if (PartialCheck == fcQNan) {
+ // isquiet(V) ==> abs(V) >= (unsigned(Inf) | quiet_bit)
+ PartialRes =
+ DAG.getSetCC(DL, ResultVT, AbsV, InfWithQnanBitV, ISD::SETGE);
+ } else { // ISD::fcSNan
+ // issignaling(V) ==> abs(V) > unsigned(Inf) &&
+ // abs(V) < (unsigned(Inf) | quiet_bit)
+ SDValue IsNan = DAG.getSetCC(DL, ResultVT, AbsV, InfV, ISD::SETGT);
+ SDValue IsNotQnan =
+ DAG.getSetCC(DL, ResultVT, AbsV, InfWithQnanBitV, ISD::SETLT);
+ PartialRes = DAG.getNode(ISD::AND, DL, ResultVT, IsNan, IsNotQnan);
+ }
+ appendResult(PartialRes);
+ }
+
+ if (unsigned PartialCheck = Test & fcNormal) {
+ // isnormal(V) ==> (0 < exp < max_exp) ==> (unsigned(exp-1) < (max_exp-1))
+ APInt ExpLSB = ExpMask & ~(ExpMask.shl(1));
+ SDValue ExpLSBV = DAG.getConstant(ExpLSB, DL, IntVT);
+ SDValue ExpMinus1 = DAG.getNode(ISD::SUB, DL, IntVT, AbsV, ExpLSBV);
+ APInt ExpLimit = ExpMask - ExpLSB;
+ SDValue ExpLimitV = DAG.getConstant(ExpLimit, DL, IntVT);
+ PartialRes = DAG.getSetCC(DL, ResultVT, ExpMinus1, ExpLimitV, ISD::SETULT);
+ if (PartialCheck == fcNegNormal)
+ PartialRes = DAG.getNode(ISD::AND, DL, ResultVT, PartialRes, SignV);
+ else if (PartialCheck == fcPosNormal) {
+ SDValue PosSignV =
+ DAG.getNode(ISD::XOR, DL, ResultVT, SignV, ResultInvertionMask);
+ PartialRes = DAG.getNode(ISD::AND, DL, ResultVT, PartialRes, PosSignV);
+ }
+ if (IsF80)
+ PartialRes =
+ DAG.getNode(ISD::AND, DL, ResultVT, PartialRes, getIntBitIsSet());
+ appendResult(PartialRes);
+ }
+
+ if (!Res)
+ return DAG.getConstant(IsInverted, DL, ResultVT);
+ if (IsInverted)
+ Res = DAG.getNode(ISD::XOR, DL, ResultVT, Res, ResultInvertionMask);
+ return Res;
+}
+
+// Only expand vector types if we have the appropriate vector bit operations.
+static bool canExpandVectorCTPOP(const TargetLowering &TLI, EVT VT) {
+ assert(VT.isVector() && "Expected vector type");
+ unsigned Len = VT.getScalarSizeInBits();
+ return TLI.isOperationLegalOrCustom(ISD::ADD, VT) &&
+ TLI.isOperationLegalOrCustom(ISD::SUB, VT) &&
+ TLI.isOperationLegalOrCustom(ISD::SRL, VT) &&
+ (Len == 8 || TLI.isOperationLegalOrCustom(ISD::MUL, VT)) &&
+ TLI.isOperationLegalOrCustomOrPromote(ISD::AND, VT);
+}
+
+SDValue TargetLowering::expandCTPOP(SDNode *Node, SelectionDAG &DAG) const {
+ SDLoc dl(Node);
+ EVT VT = Node->getValueType(0);
+ EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
+ SDValue Op = Node->getOperand(0);
+ unsigned Len = VT.getScalarSizeInBits();
+ assert(VT.isInteger() && "CTPOP not implemented for this type.");
+
+ // TODO: Add support for irregular type lengths.
+ if (!(Len <= 128 && Len % 8 == 0))
+ return SDValue();
+
+ // Only expand vector types if we have the appropriate vector bit operations.
+ if (VT.isVector() && !canExpandVectorCTPOP(*this, VT))
+ return SDValue();
+
+ // This is the "best" algorithm from
+ // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel
+ SDValue Mask55 =
+ DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), dl, VT);
+ SDValue Mask33 =
+ DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), dl, VT);
+ SDValue Mask0F =
+ DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), dl, VT);
+
+ // v = v - ((v >> 1) & 0x55555555...)
+ Op = DAG.getNode(ISD::SUB, dl, VT, Op,
+ DAG.getNode(ISD::AND, dl, VT,
+ DAG.getNode(ISD::SRL, dl, VT, Op,
+ DAG.getConstant(1, dl, ShVT)),
+ Mask55));
+ // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...)
+ Op = DAG.getNode(ISD::ADD, dl, VT, DAG.getNode(ISD::AND, dl, VT, Op, Mask33),
+ DAG.getNode(ISD::AND, dl, VT,
+ DAG.getNode(ISD::SRL, dl, VT, Op,
+ DAG.getConstant(2, dl, ShVT)),
+ Mask33));
+ // v = (v + (v >> 4)) & 0x0F0F0F0F...
+ Op = DAG.getNode(ISD::AND, dl, VT,
+ DAG.getNode(ISD::ADD, dl, VT, Op,
+ DAG.getNode(ISD::SRL, dl, VT, Op,
+ DAG.getConstant(4, dl, ShVT))),
+ Mask0F);
+
+ if (Len <= 8)
+ return Op;
+
+ // Avoid the multiply if we only have 2 bytes to add.
+ // TODO: Only doing this for scalars because vectors weren't as obviously
+ // improved.
+ if (Len == 16 && !VT.isVector()) {
+ // v = (v + (v >> 8)) & 0x00FF;
+ return DAG.getNode(ISD::AND, dl, VT,
+ DAG.getNode(ISD::ADD, dl, VT, Op,
+ DAG.getNode(ISD::SRL, dl, VT, Op,
+ DAG.getConstant(8, dl, ShVT))),
+ DAG.getConstant(0xFF, dl, VT));
+ }
+
+ // v = (v * 0x01010101...) >> (Len - 8)
+ SDValue V;
+ if (isOperationLegalOrCustomOrPromote(
+ ISD::MUL, getTypeToTransformTo(*DAG.getContext(), VT))) {
+ SDValue Mask01 =
+ DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)), dl, VT);
+ V = DAG.getNode(ISD::MUL, dl, VT, Op, Mask01);
+ } else {
+ V = Op;
+ for (unsigned Shift = 8; Shift < Len; Shift *= 2) {
+ SDValue ShiftC = DAG.getShiftAmountConstant(Shift, VT, dl);
+ V = DAG.getNode(ISD::ADD, dl, VT, V,
+ DAG.getNode(ISD::SHL, dl, VT, V, ShiftC));
+ }
+ }
+ return DAG.getNode(ISD::SRL, dl, VT, V, DAG.getConstant(Len - 8, dl, ShVT));
+}
+
+SDValue TargetLowering::expandVPCTPOP(SDNode *Node, SelectionDAG &DAG) const {
+ SDLoc dl(Node);
+ EVT VT = Node->getValueType(0);
+ EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
+ SDValue Op = Node->getOperand(0);
+ SDValue Mask = Node->getOperand(1);
+ SDValue VL = Node->getOperand(2);
+ unsigned Len = VT.getScalarSizeInBits();
+ assert(VT.isInteger() && "VP_CTPOP not implemented for this type.");
+
+ // TODO: Add support for irregular type lengths.
+ if (!(Len <= 128 && Len % 8 == 0))
+ return SDValue();
+
+ // This is same algorithm of expandCTPOP from
+ // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel
+ SDValue Mask55 =
+ DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), dl, VT);
+ SDValue Mask33 =
+ DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), dl, VT);
+ SDValue Mask0F =
+ DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), dl, VT);
+
+ SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5;
+
+ // v = v - ((v >> 1) & 0x55555555...)
+ Tmp1 = DAG.getNode(ISD::VP_AND, dl, VT,
+ DAG.getNode(ISD::VP_SRL, dl, VT, Op,
+ DAG.getConstant(1, dl, ShVT), Mask, VL),
+ Mask55, Mask, VL);
+ Op = DAG.getNode(ISD::VP_SUB, dl, VT, Op, Tmp1, Mask, VL);
+
+ // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...)
+ Tmp2 = DAG.getNode(ISD::VP_AND, dl, VT, Op, Mask33, Mask, VL);
+ Tmp3 = DAG.getNode(ISD::VP_AND, dl, VT,
+ DAG.getNode(ISD::VP_SRL, dl, VT, Op,
+ DAG.getConstant(2, dl, ShVT), Mask, VL),
+ Mask33, Mask, VL);
+ Op = DAG.getNode(ISD::VP_ADD, dl, VT, Tmp2, Tmp3, Mask, VL);
+
+ // v = (v + (v >> 4)) & 0x0F0F0F0F...
+ Tmp4 = DAG.getNode(ISD::VP_SRL, dl, VT, Op, DAG.getConstant(4, dl, ShVT),
+ Mask, VL),
+ Tmp5 = DAG.getNode(ISD::VP_ADD, dl, VT, Op, Tmp4, Mask, VL);
+ Op = DAG.getNode(ISD::VP_AND, dl, VT, Tmp5, Mask0F, Mask, VL);
+
+ if (Len <= 8)
+ return Op;
+
+ // v = (v * 0x01010101...) >> (Len - 8)
+ SDValue V;
+ if (isOperationLegalOrCustomOrPromote(
+ ISD::VP_MUL, getTypeToTransformTo(*DAG.getContext(), VT))) {
+ SDValue Mask01 =
+ DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)), dl, VT);
+ V = DAG.getNode(ISD::VP_MUL, dl, VT, Op, Mask01, Mask, VL);
+ } else {
+ V = Op;
+ for (unsigned Shift = 8; Shift < Len; Shift *= 2) {
+ SDValue ShiftC = DAG.getShiftAmountConstant(Shift, VT, dl);
+ V = DAG.getNode(ISD::VP_ADD, dl, VT, V,
+ DAG.getNode(ISD::VP_SHL, dl, VT, V, ShiftC, Mask, VL),
+ Mask, VL);
+ }
+ }
+ return DAG.getNode(ISD::VP_SRL, dl, VT, V, DAG.getConstant(Len - 8, dl, ShVT),
+ Mask, VL);
+}
+
+SDValue TargetLowering::expandCTLZ(SDNode *Node, SelectionDAG &DAG) const {
+ SDLoc dl(Node);
+ EVT VT = Node->getValueType(0);
+ EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
+ SDValue Op = Node->getOperand(0);
+ unsigned NumBitsPerElt = VT.getScalarSizeInBits();
+
+ // If the non-ZERO_UNDEF version is supported we can use that instead.
+ if (Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF &&
+ isOperationLegalOrCustom(ISD::CTLZ, VT))
+ return DAG.getNode(ISD::CTLZ, dl, VT, Op);
+
+ // If the ZERO_UNDEF version is supported use that and handle the zero case.
+ if (isOperationLegalOrCustom(ISD::CTLZ_ZERO_UNDEF, VT)) {
+ EVT SetCCVT =
+ getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
+ SDValue CTLZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, dl, VT, Op);
+ SDValue Zero = DAG.getConstant(0, dl, VT);
+ SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ);
+ return DAG.getSelect(dl, VT, SrcIsZero,
+ DAG.getConstant(NumBitsPerElt, dl, VT), CTLZ);
+ }
+
+ // Only expand vector types if we have the appropriate vector bit operations.
+ // This includes the operations needed to expand CTPOP if it isn't supported.
+ if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) ||
+ (!isOperationLegalOrCustom(ISD::CTPOP, VT) &&
+ !canExpandVectorCTPOP(*this, VT)) ||
+ !isOperationLegalOrCustom(ISD::SRL, VT) ||
+ !isOperationLegalOrCustomOrPromote(ISD::OR, VT)))
+ return SDValue();
+
+ // for now, we do this:
+ // x = x | (x >> 1);
+ // x = x | (x >> 2);
+ // ...
+ // x = x | (x >>16);
+ // x = x | (x >>32); // for 64-bit input
+ // return popcount(~x);
+ //
+ // Ref: "Hacker's Delight" by Henry Warren
+ for (unsigned i = 0; (1U << i) < NumBitsPerElt; ++i) {
+ SDValue Tmp = DAG.getConstant(1ULL << i, dl, ShVT);
+ Op = DAG.getNode(ISD::OR, dl, VT, Op,
+ DAG.getNode(ISD::SRL, dl, VT, Op, Tmp));
+ }
+ Op = DAG.getNOT(dl, Op, VT);
+ return DAG.getNode(ISD::CTPOP, dl, VT, Op);
+}
+
+SDValue TargetLowering::expandVPCTLZ(SDNode *Node, SelectionDAG &DAG) const {
+ SDLoc dl(Node);
+ EVT VT = Node->getValueType(0);
+ EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
+ SDValue Op = Node->getOperand(0);
+ SDValue Mask = Node->getOperand(1);
+ SDValue VL = Node->getOperand(2);
+ unsigned NumBitsPerElt = VT.getScalarSizeInBits();
+
+ // do this:
+ // x = x | (x >> 1);
+ // x = x | (x >> 2);
+ // ...
+ // x = x | (x >>16);
+ // x = x | (x >>32); // for 64-bit input
+ // return popcount(~x);
+ for (unsigned i = 0; (1U << i) < NumBitsPerElt; ++i) {
+ SDValue Tmp = DAG.getConstant(1ULL << i, dl, ShVT);
+ Op = DAG.getNode(ISD::VP_OR, dl, VT, Op,
+ DAG.getNode(ISD::VP_SRL, dl, VT, Op, Tmp, Mask, VL), Mask,
+ VL);
+ }
+ Op = DAG.getNode(ISD::VP_XOR, dl, VT, Op, DAG.getConstant(-1, dl, VT), Mask,
+ VL);
+ return DAG.getNode(ISD::VP_CTPOP, dl, VT, Op, Mask, VL);
+}
+
+SDValue TargetLowering::CTTZTableLookup(SDNode *Node, SelectionDAG &DAG,
+ const SDLoc &DL, EVT VT, SDValue Op,
+ unsigned BitWidth) const {
+ if (BitWidth != 32 && BitWidth != 64)
+ return SDValue();
+ APInt DeBruijn = BitWidth == 32 ? APInt(32, 0x077CB531U)
+ : APInt(64, 0x0218A392CD3D5DBFULL);
+ const DataLayout &TD = DAG.getDataLayout();
+ MachinePointerInfo PtrInfo =
+ MachinePointerInfo::getConstantPool(DAG.getMachineFunction());
+ unsigned ShiftAmt = BitWidth - Log2_32(BitWidth);
+ SDValue Neg = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Op);
+ SDValue Lookup = DAG.getNode(
+ ISD::SRL, DL, VT,
+ DAG.getNode(ISD::MUL, DL, VT, DAG.getNode(ISD::AND, DL, VT, Op, Neg),
+ DAG.getConstant(DeBruijn, DL, VT)),
+ DAG.getConstant(ShiftAmt, DL, VT));
+ Lookup = DAG.getSExtOrTrunc(Lookup, DL, getPointerTy(TD));
+
+ SmallVector<uint8_t> Table(BitWidth, 0);
+ for (unsigned i = 0; i < BitWidth; i++) {
+ APInt Shl = DeBruijn.shl(i);
+ APInt Lshr = Shl.lshr(ShiftAmt);
+ Table[Lshr.getZExtValue()] = i;
+ }
+
+ // Create a ConstantArray in Constant Pool
+ auto *CA = ConstantDataArray::get(*DAG.getContext(), Table);
+ SDValue CPIdx = DAG.getConstantPool(CA, getPointerTy(TD),
+ TD.getPrefTypeAlign(CA->getType()));
+ SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, DL, VT, DAG.getEntryNode(),
+ DAG.getMemBasePlusOffset(CPIdx, Lookup, DL),
+ PtrInfo, MVT::i8);
+ if (Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF)
+ return ExtLoad;
+
+ EVT SetCCVT =
+ getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
+ SDValue Zero = DAG.getConstant(0, DL, VT);
+ SDValue SrcIsZero = DAG.getSetCC(DL, SetCCVT, Op, Zero, ISD::SETEQ);
+ return DAG.getSelect(DL, VT, SrcIsZero,
+ DAG.getConstant(BitWidth, DL, VT), ExtLoad);
+}
+
+SDValue TargetLowering::expandCTTZ(SDNode *Node, SelectionDAG &DAG) const {
+ SDLoc dl(Node);
+ EVT VT = Node->getValueType(0);
+ SDValue Op = Node->getOperand(0);
+ unsigned NumBitsPerElt = VT.getScalarSizeInBits();
+
+ // If the non-ZERO_UNDEF version is supported we can use that instead.
+ if (Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF &&
+ isOperationLegalOrCustom(ISD::CTTZ, VT))
+ return DAG.getNode(ISD::CTTZ, dl, VT, Op);
+
+ // If the ZERO_UNDEF version is supported use that and handle the zero case.
+ if (isOperationLegalOrCustom(ISD::CTTZ_ZERO_UNDEF, VT)) {
+ EVT SetCCVT =
+ getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
+ SDValue CTTZ = DAG.getNode(ISD::CTTZ_ZERO_UNDEF, dl, VT, Op);
+ SDValue Zero = DAG.getConstant(0, dl, VT);
+ SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ);
+ return DAG.getSelect(dl, VT, SrcIsZero,
+ DAG.getConstant(NumBitsPerElt, dl, VT), CTTZ);
+ }
+
+ // Only expand vector types if we have the appropriate vector bit operations.
+ // This includes the operations needed to expand CTPOP if it isn't supported.
+ if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) ||
+ (!isOperationLegalOrCustom(ISD::CTPOP, VT) &&
+ !isOperationLegalOrCustom(ISD::CTLZ, VT) &&
+ !canExpandVectorCTPOP(*this, VT)) ||
+ !isOperationLegalOrCustom(ISD::SUB, VT) ||
+ !isOperationLegalOrCustomOrPromote(ISD::AND, VT) ||
+ !isOperationLegalOrCustomOrPromote(ISD::XOR, VT)))
+ return SDValue();
+
+ // Emit Table Lookup if ISD::CTLZ and ISD::CTPOP are not legal.
+ if (!VT.isVector() && isOperationExpand(ISD::CTPOP, VT) &&
+ !isOperationLegal(ISD::CTLZ, VT))
+ if (SDValue V = CTTZTableLookup(Node, DAG, dl, VT, Op, NumBitsPerElt))
+ return V;
+
+ // for now, we use: { return popcount(~x & (x - 1)); }
+ // unless the target has ctlz but not ctpop, in which case we use:
+ // { return 32 - nlz(~x & (x-1)); }
+ // Ref: "Hacker's Delight" by Henry Warren
+ SDValue Tmp = DAG.getNode(
+ ISD::AND, dl, VT, DAG.getNOT(dl, Op, VT),
+ DAG.getNode(ISD::SUB, dl, VT, Op, DAG.getConstant(1, dl, VT)));
+
+ // If ISD::CTLZ is legal and CTPOP isn't, then do that instead.
+ if (isOperationLegal(ISD::CTLZ, VT) && !isOperationLegal(ISD::CTPOP, VT)) {
+ return DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(NumBitsPerElt, dl, VT),
+ DAG.getNode(ISD::CTLZ, dl, VT, Tmp));
+ }
+
+ return DAG.getNode(ISD::CTPOP, dl, VT, Tmp);
+}
+
+SDValue TargetLowering::expandVPCTTZ(SDNode *Node, SelectionDAG &DAG) const {
+ SDValue Op = Node->getOperand(0);
+ SDValue Mask = Node->getOperand(1);
+ SDValue VL = Node->getOperand(2);
+ SDLoc dl(Node);
+ EVT VT = Node->getValueType(0);
+
+ // Same as the vector part of expandCTTZ, use: popcount(~x & (x - 1))
+ SDValue Not = DAG.getNode(ISD::VP_XOR, dl, VT, Op,
+ DAG.getConstant(-1, dl, VT), Mask, VL);
+ SDValue MinusOne = DAG.getNode(ISD::VP_SUB, dl, VT, Op,
+ DAG.getConstant(1, dl, VT), Mask, VL);
+ SDValue Tmp = DAG.getNode(ISD::VP_AND, dl, VT, Not, MinusOne, Mask, VL);
+ return DAG.getNode(ISD::VP_CTPOP, dl, VT, Tmp, Mask, VL);
+}
+
+SDValue TargetLowering::expandVPCTTZElements(SDNode *N,
+ SelectionDAG &DAG) const {
+ // %cond = to_bool_vec %source
+ // %splat = splat /*val=*/VL
+ // %tz = step_vector
+ // %v = vp.select %cond, /*true=*/tz, /*false=*/%splat
+ // %r = vp.reduce.umin %v
+ SDLoc DL(N);
+ SDValue Source = N->getOperand(0);
+ SDValue Mask = N->getOperand(1);
+ SDValue EVL = N->getOperand(2);
+ EVT SrcVT = Source.getValueType();
+ EVT ResVT = N->getValueType(0);
+ EVT ResVecVT =
+ EVT::getVectorVT(*DAG.getContext(), ResVT, SrcVT.getVectorElementCount());
+
+ // Convert to boolean vector.
+ if (SrcVT.getScalarType() != MVT::i1) {
+ SDValue AllZero = DAG.getConstant(0, DL, SrcVT);
+ SrcVT = EVT::getVectorVT(*DAG.getContext(), MVT::i1,
+ SrcVT.getVectorElementCount());
+ Source = DAG.getNode(ISD::VP_SETCC, DL, SrcVT, Source, AllZero,
+ DAG.getCondCode(ISD::SETNE), Mask, EVL);
+ }
+
+ SDValue ExtEVL = DAG.getZExtOrTrunc(EVL, DL, ResVT);
+ SDValue Splat = DAG.getSplat(ResVecVT, DL, ExtEVL);
+ SDValue StepVec = DAG.getStepVector(DL, ResVecVT);
+ SDValue Select =
+ DAG.getNode(ISD::VP_SELECT, DL, ResVecVT, Source, StepVec, Splat, EVL);
+ return DAG.getNode(ISD::VP_REDUCE_UMIN, DL, ResVT, ExtEVL, Select, Mask, EVL);
+}
+
+SDValue TargetLowering::expandABS(SDNode *N, SelectionDAG &DAG,
+ bool IsNegative) const {
+ SDLoc dl(N);
+ EVT VT = N->getValueType(0);
+ SDValue Op = N->getOperand(0);
+
+ // abs(x) -> smax(x,sub(0,x))
+ if (!IsNegative && isOperationLegal(ISD::SUB, VT) &&
+ isOperationLegal(ISD::SMAX, VT)) {
+ SDValue Zero = DAG.getConstant(0, dl, VT);
+ Op = DAG.getFreeze(Op);
+ return DAG.getNode(ISD::SMAX, dl, VT, Op,
+ DAG.getNode(ISD::SUB, dl, VT, Zero, Op));
+ }
+
+ // abs(x) -> umin(x,sub(0,x))
+ if (!IsNegative && isOperationLegal(ISD::SUB, VT) &&
+ isOperationLegal(ISD::UMIN, VT)) {
+ SDValue Zero = DAG.getConstant(0, dl, VT);
+ Op = DAG.getFreeze(Op);
+ return DAG.getNode(ISD::UMIN, dl, VT, Op,
+ DAG.getNode(ISD::SUB, dl, VT, Zero, Op));
+ }
+
+ // 0 - abs(x) -> smin(x, sub(0,x))
+ if (IsNegative && isOperationLegal(ISD::SUB, VT) &&
+ isOperationLegal(ISD::SMIN, VT)) {
+ SDValue Zero = DAG.getConstant(0, dl, VT);
+ Op = DAG.getFreeze(Op);
+ return DAG.getNode(ISD::SMIN, dl, VT, Op,
+ DAG.getNode(ISD::SUB, dl, VT, Zero, Op));
+ }
+
+ // Only expand vector types if we have the appropriate vector operations.
+ if (VT.isVector() &&
+ (!isOperationLegalOrCustom(ISD::SRA, VT) ||
+ (!IsNegative && !isOperationLegalOrCustom(ISD::ADD, VT)) ||
+ (IsNegative && !isOperationLegalOrCustom(ISD::SUB, VT)) ||
+ !isOperationLegalOrCustomOrPromote(ISD::XOR, VT)))
+ return SDValue();
+
+ Op = DAG.getFreeze(Op);
+ SDValue Shift = DAG.getNode(
+ ISD::SRA, dl, VT, Op,
+ DAG.getShiftAmountConstant(VT.getScalarSizeInBits() - 1, VT, dl));
+ SDValue Xor = DAG.getNode(ISD::XOR, dl, VT, Op, Shift);
+
+ // abs(x) -> Y = sra (X, size(X)-1); sub (xor (X, Y), Y)
+ if (!IsNegative)
+ return DAG.getNode(ISD::SUB, dl, VT, Xor, Shift);
+
+ // 0 - abs(x) -> Y = sra (X, size(X)-1); sub (Y, xor (X, Y))
+ return DAG.getNode(ISD::SUB, dl, VT, Shift, Xor);
+}
+
+SDValue TargetLowering::expandABD(SDNode *N, SelectionDAG &DAG) const {
+ SDLoc dl(N);
+ EVT VT = N->getValueType(0);
+ SDValue LHS = DAG.getFreeze(N->getOperand(0));
+ SDValue RHS = DAG.getFreeze(N->getOperand(1));
+ bool IsSigned = N->getOpcode() == ISD::ABDS;
+
+ // abds(lhs, rhs) -> sub(smax(lhs,rhs), smin(lhs,rhs))
+ // abdu(lhs, rhs) -> sub(umax(lhs,rhs), umin(lhs,rhs))
+ unsigned MaxOpc = IsSigned ? ISD::SMAX : ISD::UMAX;
+ unsigned MinOpc = IsSigned ? ISD::SMIN : ISD::UMIN;
+ if (isOperationLegal(MaxOpc, VT) && isOperationLegal(MinOpc, VT)) {
+ SDValue Max = DAG.getNode(MaxOpc, dl, VT, LHS, RHS);
+ SDValue Min = DAG.getNode(MinOpc, dl, VT, LHS, RHS);
+ return DAG.getNode(ISD::SUB, dl, VT, Max, Min);
+ }
+
+ // abdu(lhs, rhs) -> or(usubsat(lhs,rhs), usubsat(rhs,lhs))
+ if (!IsSigned && isOperationLegal(ISD::USUBSAT, VT))
+ return DAG.getNode(ISD::OR, dl, VT,
+ DAG.getNode(ISD::USUBSAT, dl, VT, LHS, RHS),
+ DAG.getNode(ISD::USUBSAT, dl, VT, RHS, LHS));
+
+ EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
+ ISD::CondCode CC = IsSigned ? ISD::CondCode::SETGT : ISD::CondCode::SETUGT;
+ SDValue Cmp = DAG.getSetCC(dl, CCVT, LHS, RHS, CC);
+
+ // Branchless expansion iff cmp result is allbits:
+ // abds(lhs, rhs) -> sub(sgt(lhs, rhs), xor(sgt(lhs, rhs), sub(lhs, rhs)))
+ // abdu(lhs, rhs) -> sub(ugt(lhs, rhs), xor(ugt(lhs, rhs), sub(lhs, rhs)))
+ if (CCVT == VT && getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) {
+ SDValue Diff = DAG.getNode(ISD::SUB, dl, VT, LHS, RHS);
+ SDValue Xor = DAG.getNode(ISD::XOR, dl, VT, Diff, Cmp);
+ return DAG.getNode(ISD::SUB, dl, VT, Cmp, Xor);
+ }
+
+ // abds(lhs, rhs) -> select(sgt(lhs,rhs), sub(lhs,rhs), sub(rhs,lhs))
+ // abdu(lhs, rhs) -> select(ugt(lhs,rhs), sub(lhs,rhs), sub(rhs,lhs))
+ return DAG.getSelect(dl, VT, Cmp, DAG.getNode(ISD::SUB, dl, VT, LHS, RHS),
+ DAG.getNode(ISD::SUB, dl, VT, RHS, LHS));
+}
+
+SDValue TargetLowering::expandAVG(SDNode *N, SelectionDAG &DAG) const {
+ SDLoc dl(N);
+ EVT VT = N->getValueType(0);
+ SDValue LHS = N->getOperand(0);
+ SDValue RHS = N->getOperand(1);
+
+ unsigned Opc = N->getOpcode();
+ bool IsFloor = Opc == ISD::AVGFLOORS || Opc == ISD::AVGFLOORU;
+ bool IsSigned = Opc == ISD::AVGCEILS || Opc == ISD::AVGFLOORS;
+ unsigned SumOpc = IsFloor ? ISD::ADD : ISD::SUB;
+ unsigned SignOpc = IsFloor ? ISD::AND : ISD::OR;
+ unsigned ShiftOpc = IsSigned ? ISD::SRA : ISD::SRL;
+ unsigned ExtOpc = IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
+ assert((Opc == ISD::AVGFLOORS || Opc == ISD::AVGCEILS ||
+ Opc == ISD::AVGFLOORU || Opc == ISD::AVGCEILU) &&
+ "Unknown AVG node");
+
+ // If the operands are already extended, we can add+shift.
+ bool IsExt =
+ (IsSigned && DAG.ComputeNumSignBits(LHS) >= 2 &&
+ DAG.ComputeNumSignBits(RHS) >= 2) ||
+ (!IsSigned && DAG.computeKnownBits(LHS).countMinLeadingZeros() >= 1 &&
+ DAG.computeKnownBits(RHS).countMinLeadingZeros() >= 1);
+ if (IsExt) {
+ SDValue Sum = DAG.getNode(ISD::ADD, dl, VT, LHS, RHS);
+ if (!IsFloor)
+ Sum = DAG.getNode(ISD::ADD, dl, VT, Sum, DAG.getConstant(1, dl, VT));
+ return DAG.getNode(ShiftOpc, dl, VT, Sum,
+ DAG.getShiftAmountConstant(1, VT, dl));
+ }
+
+ // For scalars, see if we can efficiently extend/truncate to use add+shift.
+ if (VT.isScalarInteger()) {
+ unsigned BW = VT.getScalarSizeInBits();
+ EVT ExtVT = VT.getIntegerVT(*DAG.getContext(), 2 * BW);
+ if (isTypeLegal(ExtVT) && isTruncateFree(ExtVT, VT)) {
+ LHS = DAG.getNode(ExtOpc, dl, ExtVT, LHS);
+ RHS = DAG.getNode(ExtOpc, dl, ExtVT, RHS);
+ SDValue Avg = DAG.getNode(ISD::ADD, dl, ExtVT, LHS, RHS);
+ if (!IsFloor)
+ Avg = DAG.getNode(ISD::ADD, dl, ExtVT, Avg,
+ DAG.getConstant(1, dl, ExtVT));
+ // Just use SRL as we will be truncating away the extended sign bits.
+ Avg = DAG.getNode(ISD::SRL, dl, ExtVT, Avg,
+ DAG.getShiftAmountConstant(1, ExtVT, dl));
+ return DAG.getNode(ISD::TRUNCATE, dl, VT, Avg);
+ }
+ }
+
+ // avgceils(lhs, rhs) -> sub(or(lhs,rhs),ashr(xor(lhs,rhs),1))
+ // avgceilu(lhs, rhs) -> sub(or(lhs,rhs),lshr(xor(lhs,rhs),1))
+ // avgfloors(lhs, rhs) -> add(and(lhs,rhs),ashr(xor(lhs,rhs),1))
+ // avgflooru(lhs, rhs) -> add(and(lhs,rhs),lshr(xor(lhs,rhs),1))
+ LHS = DAG.getFreeze(LHS);
+ RHS = DAG.getFreeze(RHS);
+ SDValue Sign = DAG.getNode(SignOpc, dl, VT, LHS, RHS);
+ SDValue Xor = DAG.getNode(ISD::XOR, dl, VT, LHS, RHS);
+ SDValue Shift =
+ DAG.getNode(ShiftOpc, dl, VT, Xor, DAG.getShiftAmountConstant(1, VT, dl));
+ return DAG.getNode(SumOpc, dl, VT, Sign, Shift);
+}
+
+SDValue TargetLowering::expandBSWAP(SDNode *N, SelectionDAG &DAG) const {
+ SDLoc dl(N);
+ EVT VT = N->getValueType(0);
+ SDValue Op = N->getOperand(0);
+
+ if (!VT.isSimple())
+ return SDValue();
+
+ EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout());
+ SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8;
+ switch (VT.getSimpleVT().getScalarType().SimpleTy) {
+ default:
+ return SDValue();
+ case MVT::i16:
+ // Use a rotate by 8. This can be further expanded if necessary.
+ return DAG.getNode(ISD::ROTL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
+ case MVT::i32:
+ Tmp4 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
+ Tmp3 = DAG.getNode(ISD::AND, dl, VT, Op,
+ DAG.getConstant(0xFF00, dl, VT));
+ Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(8, dl, SHVT));
+ Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
+ Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(0xFF00, dl, VT));
+ Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
+ Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
+ Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
+ return DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
+ case MVT::i64:
+ Tmp8 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(56, dl, SHVT));
+ Tmp7 = DAG.getNode(ISD::AND, dl, VT, Op,
+ DAG.getConstant(255ULL<<8, dl, VT));
+ Tmp7 = DAG.getNode(ISD::SHL, dl, VT, Tmp7, DAG.getConstant(40, dl, SHVT));
+ Tmp6 = DAG.getNode(ISD::AND, dl, VT, Op,
+ DAG.getConstant(255ULL<<16, dl, VT));
+ Tmp6 = DAG.getNode(ISD::SHL, dl, VT, Tmp6, DAG.getConstant(24, dl, SHVT));
+ Tmp5 = DAG.getNode(ISD::AND, dl, VT, Op,
+ DAG.getConstant(255ULL<<24, dl, VT));
+ Tmp5 = DAG.getNode(ISD::SHL, dl, VT, Tmp5, DAG.getConstant(8, dl, SHVT));
+ Tmp4 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
+ Tmp4 = DAG.getNode(ISD::AND, dl, VT, Tmp4,
+ DAG.getConstant(255ULL<<24, dl, VT));
+ Tmp3 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
+ Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3,
+ DAG.getConstant(255ULL<<16, dl, VT));
+ Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(40, dl, SHVT));
+ Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2,
+ DAG.getConstant(255ULL<<8, dl, VT));
+ Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(56, dl, SHVT));
+ Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp7);
+ Tmp6 = DAG.getNode(ISD::OR, dl, VT, Tmp6, Tmp5);
+ Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
+ Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
+ Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp6);
+ Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
+ return DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp4);
+ }
+}
+
+SDValue TargetLowering::expandVPBSWAP(SDNode *N, SelectionDAG &DAG) const {
+ SDLoc dl(N);
+ EVT VT = N->getValueType(0);
+ SDValue Op = N->getOperand(0);
+ SDValue Mask = N->getOperand(1);
+ SDValue EVL = N->getOperand(2);
+
+ if (!VT.isSimple())
+ return SDValue();
+
+ EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout());
+ SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8;
+ switch (VT.getSimpleVT().getScalarType().SimpleTy) {
+ default:
+ return SDValue();
+ case MVT::i16:
+ Tmp1 = DAG.getNode(ISD::VP_SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT),
+ Mask, EVL);
+ Tmp2 = DAG.getNode(ISD::VP_SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT),
+ Mask, EVL);
+ return DAG.getNode(ISD::VP_OR, dl, VT, Tmp1, Tmp2, Mask, EVL);
+ case MVT::i32:
+ Tmp4 = DAG.getNode(ISD::VP_SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT),
+ Mask, EVL);
+ Tmp3 = DAG.getNode(ISD::VP_AND, dl, VT, Op, DAG.getConstant(0xFF00, dl, VT),
+ Mask, EVL);
+ Tmp3 = DAG.getNode(ISD::VP_SHL, dl, VT, Tmp3, DAG.getConstant(8, dl, SHVT),
+ Mask, EVL);
+ Tmp2 = DAG.getNode(ISD::VP_SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT),
+ Mask, EVL);
+ Tmp2 = DAG.getNode(ISD::VP_AND, dl, VT, Tmp2,
+ DAG.getConstant(0xFF00, dl, VT), Mask, EVL);
+ Tmp1 = DAG.getNode(ISD::VP_SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT),
+ Mask, EVL);
+ Tmp4 = DAG.getNode(ISD::VP_OR, dl, VT, Tmp4, Tmp3, Mask, EVL);
+ Tmp2 = DAG.getNode(ISD::VP_OR, dl, VT, Tmp2, Tmp1, Mask, EVL);
+ return DAG.getNode(ISD::VP_OR, dl, VT, Tmp4, Tmp2, Mask, EVL);
+ case MVT::i64:
+ Tmp8 = DAG.getNode(ISD::VP_SHL, dl, VT, Op, DAG.getConstant(56, dl, SHVT),
+ Mask, EVL);
+ Tmp7 = DAG.getNode(ISD::VP_AND, dl, VT, Op,
+ DAG.getConstant(255ULL << 8, dl, VT), Mask, EVL);
+ Tmp7 = DAG.getNode(ISD::VP_SHL, dl, VT, Tmp7, DAG.getConstant(40, dl, SHVT),
+ Mask, EVL);
+ Tmp6 = DAG.getNode(ISD::VP_AND, dl, VT, Op,
+ DAG.getConstant(255ULL << 16, dl, VT), Mask, EVL);
+ Tmp6 = DAG.getNode(ISD::VP_SHL, dl, VT, Tmp6, DAG.getConstant(24, dl, SHVT),
+ Mask, EVL);
+ Tmp5 = DAG.getNode(ISD::VP_AND, dl, VT, Op,
+ DAG.getConstant(255ULL << 24, dl, VT), Mask, EVL);
+ Tmp5 = DAG.getNode(ISD::VP_SHL, dl, VT, Tmp5, DAG.getConstant(8, dl, SHVT),
+ Mask, EVL);
+ Tmp4 = DAG.getNode(ISD::VP_SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT),
+ Mask, EVL);
+ Tmp4 = DAG.getNode(ISD::VP_AND, dl, VT, Tmp4,
+ DAG.getConstant(255ULL << 24, dl, VT), Mask, EVL);
+ Tmp3 = DAG.getNode(ISD::VP_SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT),
+ Mask, EVL);
+ Tmp3 = DAG.getNode(ISD::VP_AND, dl, VT, Tmp3,
+ DAG.getConstant(255ULL << 16, dl, VT), Mask, EVL);
+ Tmp2 = DAG.getNode(ISD::VP_SRL, dl, VT, Op, DAG.getConstant(40, dl, SHVT),
+ Mask, EVL);
+ Tmp2 = DAG.getNode(ISD::VP_AND, dl, VT, Tmp2,
+ DAG.getConstant(255ULL << 8, dl, VT), Mask, EVL);
+ Tmp1 = DAG.getNode(ISD::VP_SRL, dl, VT, Op, DAG.getConstant(56, dl, SHVT),
+ Mask, EVL);
+ Tmp8 = DAG.getNode(ISD::VP_OR, dl, VT, Tmp8, Tmp7, Mask, EVL);
+ Tmp6 = DAG.getNode(ISD::VP_OR, dl, VT, Tmp6, Tmp5, Mask, EVL);
+ Tmp4 = DAG.getNode(ISD::VP_OR, dl, VT, Tmp4, Tmp3, Mask, EVL);
+ Tmp2 = DAG.getNode(ISD::VP_OR, dl, VT, Tmp2, Tmp1, Mask, EVL);
+ Tmp8 = DAG.getNode(ISD::VP_OR, dl, VT, Tmp8, Tmp6, Mask, EVL);
+ Tmp4 = DAG.getNode(ISD::VP_OR, dl, VT, Tmp4, Tmp2, Mask, EVL);
+ return DAG.getNode(ISD::VP_OR, dl, VT, Tmp8, Tmp4, Mask, EVL);
+ }
+}
+
+SDValue TargetLowering::expandBITREVERSE(SDNode *N, SelectionDAG &DAG) const {
+ SDLoc dl(N);
+ EVT VT = N->getValueType(0);
+ SDValue Op = N->getOperand(0);
+ EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout());
+ unsigned Sz = VT.getScalarSizeInBits();
+
+ SDValue Tmp, Tmp2, Tmp3;
+
+ // If we can, perform BSWAP first and then the mask+swap the i4, then i2
+ // and finally the i1 pairs.
+ // TODO: We can easily support i4/i2 legal types if any target ever does.
+ if (Sz >= 8 && isPowerOf2_32(Sz)) {
+ // Create the masks - repeating the pattern every byte.
+ APInt Mask4 = APInt::getSplat(Sz, APInt(8, 0x0F));
+ APInt Mask2 = APInt::getSplat(Sz, APInt(8, 0x33));
+ APInt Mask1 = APInt::getSplat(Sz, APInt(8, 0x55));
+
+ // BSWAP if the type is wider than a single byte.
+ Tmp = (Sz > 8 ? DAG.getNode(ISD::BSWAP, dl, VT, Op) : Op);
+
+ // swap i4: ((V >> 4) & 0x0F) | ((V & 0x0F) << 4)
+ Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(4, dl, SHVT));
+ Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask4, dl, VT));
+ Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask4, dl, VT));
+ Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(4, dl, SHVT));
+ Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
+
+ // swap i2: ((V >> 2) & 0x33) | ((V & 0x33) << 2)
+ Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(2, dl, SHVT));
+ Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask2, dl, VT));
+ Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask2, dl, VT));
+ Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(2, dl, SHVT));
+ Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
+
+ // swap i1: ((V >> 1) & 0x55) | ((V & 0x55) << 1)
+ Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(1, dl, SHVT));
+ Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask1, dl, VT));
+ Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask1, dl, VT));
+ Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(1, dl, SHVT));
+ Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
+ return Tmp;
+ }
+
+ Tmp = DAG.getConstant(0, dl, VT);
+ for (unsigned I = 0, J = Sz-1; I < Sz; ++I, --J) {
+ if (I < J)
+ Tmp2 =
+ DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(J - I, dl, SHVT));
+ else
+ Tmp2 =
+ DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(I - J, dl, SHVT));
+
+ APInt Shift = APInt::getOneBitSet(Sz, J);
+ Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Shift, dl, VT));
+ Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp, Tmp2);
+ }
+
+ return Tmp;
+}
+
+SDValue TargetLowering::expandVPBITREVERSE(SDNode *N, SelectionDAG &DAG) const {
+ assert(N->getOpcode() == ISD::VP_BITREVERSE);
+
+ SDLoc dl(N);
+ EVT VT = N->getValueType(0);
+ SDValue Op = N->getOperand(0);
+ SDValue Mask = N->getOperand(1);
+ SDValue EVL = N->getOperand(2);
+ EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout());
+ unsigned Sz = VT.getScalarSizeInBits();
+
+ SDValue Tmp, Tmp2, Tmp3;
+
+ // If we can, perform BSWAP first and then the mask+swap the i4, then i2
+ // and finally the i1 pairs.
+ // TODO: We can easily support i4/i2 legal types if any target ever does.
+ if (Sz >= 8 && isPowerOf2_32(Sz)) {
+ // Create the masks - repeating the pattern every byte.
+ APInt Mask4 = APInt::getSplat(Sz, APInt(8, 0x0F));
+ APInt Mask2 = APInt::getSplat(Sz, APInt(8, 0x33));
+ APInt Mask1 = APInt::getSplat(Sz, APInt(8, 0x55));
+
+ // BSWAP if the type is wider than a single byte.
+ Tmp = (Sz > 8 ? DAG.getNode(ISD::VP_BSWAP, dl, VT, Op, Mask, EVL) : Op);
+
+ // swap i4: ((V >> 4) & 0x0F) | ((V & 0x0F) << 4)
+ Tmp2 = DAG.getNode(ISD::VP_SRL, dl, VT, Tmp, DAG.getConstant(4, dl, SHVT),
+ Mask, EVL);
+ Tmp2 = DAG.getNode(ISD::VP_AND, dl, VT, Tmp2,
+ DAG.getConstant(Mask4, dl, VT), Mask, EVL);
+ Tmp3 = DAG.getNode(ISD::VP_AND, dl, VT, Tmp, DAG.getConstant(Mask4, dl, VT),
+ Mask, EVL);
+ Tmp3 = DAG.getNode(ISD::VP_SHL, dl, VT, Tmp3, DAG.getConstant(4, dl, SHVT),
+ Mask, EVL);
+ Tmp = DAG.getNode(ISD::VP_OR, dl, VT, Tmp2, Tmp3, Mask, EVL);
+
+ // swap i2: ((V >> 2) & 0x33) | ((V & 0x33) << 2)
+ Tmp2 = DAG.getNode(ISD::VP_SRL, dl, VT, Tmp, DAG.getConstant(2, dl, SHVT),
+ Mask, EVL);
+ Tmp2 = DAG.getNode(ISD::VP_AND, dl, VT, Tmp2,
+ DAG.getConstant(Mask2, dl, VT), Mask, EVL);
+ Tmp3 = DAG.getNode(ISD::VP_AND, dl, VT, Tmp, DAG.getConstant(Mask2, dl, VT),
+ Mask, EVL);
+ Tmp3 = DAG.getNode(ISD::VP_SHL, dl, VT, Tmp3, DAG.getConstant(2, dl, SHVT),
+ Mask, EVL);
+ Tmp = DAG.getNode(ISD::VP_OR, dl, VT, Tmp2, Tmp3, Mask, EVL);
+
+ // swap i1: ((V >> 1) & 0x55) | ((V & 0x55) << 1)
+ Tmp2 = DAG.getNode(ISD::VP_SRL, dl, VT, Tmp, DAG.getConstant(1, dl, SHVT),
+ Mask, EVL);
+ Tmp2 = DAG.getNode(ISD::VP_AND, dl, VT, Tmp2,
+ DAG.getConstant(Mask1, dl, VT), Mask, EVL);
+ Tmp3 = DAG.getNode(ISD::VP_AND, dl, VT, Tmp, DAG.getConstant(Mask1, dl, VT),
+ Mask, EVL);
+ Tmp3 = DAG.getNode(ISD::VP_SHL, dl, VT, Tmp3, DAG.getConstant(1, dl, SHVT),
+ Mask, EVL);
+ Tmp = DAG.getNode(ISD::VP_OR, dl, VT, Tmp2, Tmp3, Mask, EVL);
+ return Tmp;
+ }
+ return SDValue();
+}
+
+std::pair<SDValue, SDValue>
+TargetLowering::scalarizeVectorLoad(LoadSDNode *LD,
+ SelectionDAG &DAG) const {
+ SDLoc SL(LD);
+ SDValue Chain = LD->getChain();
+ SDValue BasePTR = LD->getBasePtr();
+ EVT SrcVT = LD->getMemoryVT();
+ EVT DstVT = LD->getValueType(0);
+ ISD::LoadExtType ExtType = LD->getExtensionType();
+
+ if (SrcVT.isScalableVector())
+ report_fatal_error("Cannot scalarize scalable vector loads");
+
+ unsigned NumElem = SrcVT.getVectorNumElements();
+
+ EVT SrcEltVT = SrcVT.getScalarType();
+ EVT DstEltVT = DstVT.getScalarType();
+
+ // A vector must always be stored in memory as-is, i.e. without any padding
+ // between the elements, since various code depend on it, e.g. in the
+ // handling of a bitcast of a vector type to int, which may be done with a
+ // vector store followed by an integer load. A vector that does not have
+ // elements that are byte-sized must therefore be stored as an integer
+ // built out of the extracted vector elements.
+ if (!SrcEltVT.isByteSized()) {
+ unsigned NumLoadBits = SrcVT.getStoreSizeInBits();
+ EVT LoadVT = EVT::getIntegerVT(*DAG.getContext(), NumLoadBits);
+
+ unsigned NumSrcBits = SrcVT.getSizeInBits();
+ EVT SrcIntVT = EVT::getIntegerVT(*DAG.getContext(), NumSrcBits);
+
+ unsigned SrcEltBits = SrcEltVT.getSizeInBits();
+ SDValue SrcEltBitMask = DAG.getConstant(
+ APInt::getLowBitsSet(NumLoadBits, SrcEltBits), SL, LoadVT);
+
+ // Load the whole vector and avoid masking off the top bits as it makes
+ // the codegen worse.
+ SDValue Load =
+ DAG.getExtLoad(ISD::EXTLOAD, SL, LoadVT, Chain, BasePTR,
+ LD->getPointerInfo(), SrcIntVT, LD->getOriginalAlign(),
+ LD->getMemOperand()->getFlags(), LD->getAAInfo());
+
+ SmallVector<SDValue, 8> Vals;
+ for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
+ unsigned ShiftIntoIdx =
+ (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx);
+ SDValue ShiftAmount = DAG.getShiftAmountConstant(
+ ShiftIntoIdx * SrcEltVT.getSizeInBits(), LoadVT, SL);
+ SDValue ShiftedElt = DAG.getNode(ISD::SRL, SL, LoadVT, Load, ShiftAmount);
+ SDValue Elt =
+ DAG.getNode(ISD::AND, SL, LoadVT, ShiftedElt, SrcEltBitMask);
+ SDValue Scalar = DAG.getNode(ISD::TRUNCATE, SL, SrcEltVT, Elt);
+
+ if (ExtType != ISD::NON_EXTLOAD) {
+ unsigned ExtendOp = ISD::getExtForLoadExtType(false, ExtType);
+ Scalar = DAG.getNode(ExtendOp, SL, DstEltVT, Scalar);
+ }
+
+ Vals.push_back(Scalar);
+ }
+
+ SDValue Value = DAG.getBuildVector(DstVT, SL, Vals);
+ return std::make_pair(Value, Load.getValue(1));
+ }
+
+ unsigned Stride = SrcEltVT.getSizeInBits() / 8;
+ assert(SrcEltVT.isByteSized());
+
+ SmallVector<SDValue, 8> Vals;
+ SmallVector<SDValue, 8> LoadChains;
+
+ for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
+ SDValue ScalarLoad =
+ DAG.getExtLoad(ExtType, SL, DstEltVT, Chain, BasePTR,
+ LD->getPointerInfo().getWithOffset(Idx * Stride),
+ SrcEltVT, LD->getOriginalAlign(),
+ LD->getMemOperand()->getFlags(), LD->getAAInfo());
+
+ BasePTR = DAG.getObjectPtrOffset(SL, BasePTR, TypeSize::getFixed(Stride));
+
+ Vals.push_back(ScalarLoad.getValue(0));
+ LoadChains.push_back(ScalarLoad.getValue(1));
+ }
+
+ SDValue NewChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoadChains);
+ SDValue Value = DAG.getBuildVector(DstVT, SL, Vals);
+
+ return std::make_pair(Value, NewChain);
+}
+
+SDValue TargetLowering::scalarizeVectorStore(StoreSDNode *ST,
+ SelectionDAG &DAG) const {
+ SDLoc SL(ST);
+
+ SDValue Chain = ST->getChain();
+ SDValue BasePtr = ST->getBasePtr();
+ SDValue Value = ST->getValue();
+ EVT StVT = ST->getMemoryVT();
+
+ if (StVT.isScalableVector())
+ report_fatal_error("Cannot scalarize scalable vector stores");
+
+ // The type of the data we want to save
+ EVT RegVT = Value.getValueType();
+ EVT RegSclVT = RegVT.getScalarType();
+
+ // The type of data as saved in memory.
+ EVT MemSclVT = StVT.getScalarType();
+
+ unsigned NumElem = StVT.getVectorNumElements();
+
+ // A vector must always be stored in memory as-is, i.e. without any padding
+ // between the elements, since various code depend on it, e.g. in the
+ // handling of a bitcast of a vector type to int, which may be done with a
+ // vector store followed by an integer load. A vector that does not have
+ // elements that are byte-sized must therefore be stored as an integer
+ // built out of the extracted vector elements.
+ if (!MemSclVT.isByteSized()) {
+ unsigned NumBits = StVT.getSizeInBits();
+ EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), NumBits);
+
+ SDValue CurrVal = DAG.getConstant(0, SL, IntVT);
+
+ for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
+ SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value,
+ DAG.getVectorIdxConstant(Idx, SL));
+ SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MemSclVT, Elt);
+ SDValue ExtElt = DAG.getNode(ISD::ZERO_EXTEND, SL, IntVT, Trunc);
+ unsigned ShiftIntoIdx =
+ (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx);
+ SDValue ShiftAmount =
+ DAG.getConstant(ShiftIntoIdx * MemSclVT.getSizeInBits(), SL, IntVT);
+ SDValue ShiftedElt =
+ DAG.getNode(ISD::SHL, SL, IntVT, ExtElt, ShiftAmount);
+ CurrVal = DAG.getNode(ISD::OR, SL, IntVT, CurrVal, ShiftedElt);
+ }
+
+ return DAG.getStore(Chain, SL, CurrVal, BasePtr, ST->getPointerInfo(),
+ ST->getOriginalAlign(), ST->getMemOperand()->getFlags(),
+ ST->getAAInfo());
+ }
+
+ // Store Stride in bytes
+ unsigned Stride = MemSclVT.getSizeInBits() / 8;
+ assert(Stride && "Zero stride!");
+ // Extract each of the elements from the original vector and save them into
+ // memory individually.
+ SmallVector<SDValue, 8> Stores;
+ for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
+ SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value,
+ DAG.getVectorIdxConstant(Idx, SL));
+
+ SDValue Ptr =
+ DAG.getObjectPtrOffset(SL, BasePtr, TypeSize::getFixed(Idx * Stride));
+
+ // This scalar TruncStore may be illegal, but we legalize it later.
+ SDValue Store = DAG.getTruncStore(
+ Chain, SL, Elt, Ptr, ST->getPointerInfo().getWithOffset(Idx * Stride),
+ MemSclVT, ST->getOriginalAlign(), ST->getMemOperand()->getFlags(),
+ ST->getAAInfo());
+
+ Stores.push_back(Store);
+ }
+
+ return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Stores);
+}
+
+std::pair<SDValue, SDValue>
+TargetLowering::expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const {
+ assert(LD->getAddressingMode() == ISD::UNINDEXED &&
+ "unaligned indexed loads not implemented!");
+ SDValue Chain = LD->getChain();
+ SDValue Ptr = LD->getBasePtr();
+ EVT VT = LD->getValueType(0);
+ EVT LoadedVT = LD->getMemoryVT();
+ SDLoc dl(LD);
+ auto &MF = DAG.getMachineFunction();
+
+ if (VT.isFloatingPoint() || VT.isVector()) {
+ EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits());
+ if (isTypeLegal(intVT) && isTypeLegal(LoadedVT)) {
+ if (!isOperationLegalOrCustom(ISD::LOAD, intVT) &&
+ LoadedVT.isVector()) {
+ // Scalarize the load and let the individual components be handled.
+ return scalarizeVectorLoad(LD, DAG);
+ }
+
+ // Expand to a (misaligned) integer load of the same size,
+ // then bitconvert to floating point or vector.
+ SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr,
+ LD->getMemOperand());
+ SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad);
+ if (LoadedVT != VT)
+ Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND :
+ ISD::ANY_EXTEND, dl, VT, Result);
+
+ return std::make_pair(Result, newLoad.getValue(1));
+ }
+
+ // Copy the value to a (aligned) stack slot using (unaligned) integer
+ // loads and stores, then do a (aligned) load from the stack slot.
+ MVT RegVT = getRegisterType(*DAG.getContext(), intVT);
+ unsigned LoadedBytes = LoadedVT.getStoreSize();
+ unsigned RegBytes = RegVT.getSizeInBits() / 8;
+ unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes;
+
+ // Make sure the stack slot is also aligned for the register type.
+ SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT);
+ auto FrameIndex = cast<FrameIndexSDNode>(StackBase.getNode())->getIndex();
+ SmallVector<SDValue, 8> Stores;
+ SDValue StackPtr = StackBase;
+ unsigned Offset = 0;
+
+ EVT PtrVT = Ptr.getValueType();
+ EVT StackPtrVT = StackPtr.getValueType();
+
+ SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
+ SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
+
+ // Do all but one copies using the full register width.
+ for (unsigned i = 1; i < NumRegs; i++) {
+ // Load one integer register's worth from the original location.
+ SDValue Load = DAG.getLoad(
+ RegVT, dl, Chain, Ptr, LD->getPointerInfo().getWithOffset(Offset),
+ LD->getOriginalAlign(), LD->getMemOperand()->getFlags(),
+ LD->getAAInfo());
+ // Follow the load with a store to the stack slot. Remember the store.
+ Stores.push_back(DAG.getStore(
+ Load.getValue(1), dl, Load, StackPtr,
+ MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset)));
+ // Increment the pointers.
+ Offset += RegBytes;
+
+ Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement);
+ StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement);
+ }
+
+ // The last copy may be partial. Do an extending load.
+ EVT MemVT = EVT::getIntegerVT(*DAG.getContext(),
+ 8 * (LoadedBytes - Offset));
+ SDValue Load =
+ DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr,
+ LD->getPointerInfo().getWithOffset(Offset), MemVT,
+ LD->getOriginalAlign(), LD->getMemOperand()->getFlags(),
+ LD->getAAInfo());
+ // Follow the load with a store to the stack slot. Remember the store.
+ // On big-endian machines this requires a truncating store to ensure
+ // that the bits end up in the right place.
+ Stores.push_back(DAG.getTruncStore(
+ Load.getValue(1), dl, Load, StackPtr,
+ MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), MemVT));
+
+ // The order of the stores doesn't matter - say it with a TokenFactor.
+ SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
+
+ // Finally, perform the original load only redirected to the stack slot.
+ Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase,
+ MachinePointerInfo::getFixedStack(MF, FrameIndex, 0),
+ LoadedVT);
+
+ // Callers expect a MERGE_VALUES node.
+ return std::make_pair(Load, TF);
+ }
+
+ assert(LoadedVT.isInteger() && !LoadedVT.isVector() &&
+ "Unaligned load of unsupported type.");
+
+ // Compute the new VT that is half the size of the old one. This is an
+ // integer MVT.
+ unsigned NumBits = LoadedVT.getSizeInBits();
+ EVT NewLoadedVT;
+ NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2);
+ NumBits >>= 1;
+
+ Align Alignment = LD->getOriginalAlign();
+ unsigned IncrementSize = NumBits / 8;
+ ISD::LoadExtType HiExtType = LD->getExtensionType();
+
+ // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD.
+ if (HiExtType == ISD::NON_EXTLOAD)
+ HiExtType = ISD::ZEXTLOAD;
+
+ // Load the value in two parts
+ SDValue Lo, Hi;
+ if (DAG.getDataLayout().isLittleEndian()) {
+ Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(),
+ NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
+ LD->getAAInfo());
+
+ Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::getFixed(IncrementSize));
+ Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr,
+ LD->getPointerInfo().getWithOffset(IncrementSize),
+ NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
+ LD->getAAInfo());
+ } else {
+ Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(),
+ NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
+ LD->getAAInfo());
+
+ Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::getFixed(IncrementSize));
+ Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr,
+ LD->getPointerInfo().getWithOffset(IncrementSize),
+ NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
+ LD->getAAInfo());
+ }
+
+ // aggregate the two parts
+ SDValue ShiftAmount = DAG.getShiftAmountConstant(NumBits, VT, dl);
+ SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount);
+ Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo);
+
+ SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
+ Hi.getValue(1));
+
+ return std::make_pair(Result, TF);
+}
+
+SDValue TargetLowering::expandUnalignedStore(StoreSDNode *ST,
+ SelectionDAG &DAG) const {
+ assert(ST->getAddressingMode() == ISD::UNINDEXED &&
+ "unaligned indexed stores not implemented!");
+ SDValue Chain = ST->getChain();
+ SDValue Ptr = ST->getBasePtr();
+ SDValue Val = ST->getValue();
+ EVT VT = Val.getValueType();
+ Align Alignment = ST->getOriginalAlign();
+ auto &MF = DAG.getMachineFunction();
+ EVT StoreMemVT = ST->getMemoryVT();
+
+ SDLoc dl(ST);
+ if (StoreMemVT.isFloatingPoint() || StoreMemVT.isVector()) {
+ EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
+ if (isTypeLegal(intVT)) {
+ if (!isOperationLegalOrCustom(ISD::STORE, intVT) &&
+ StoreMemVT.isVector()) {
+ // Scalarize the store and let the individual components be handled.
+ SDValue Result = scalarizeVectorStore(ST, DAG);
+ return Result;
+ }
+ // Expand to a bitconvert of the value to the integer type of the
+ // same size, then a (misaligned) int store.
+ // FIXME: Does not handle truncating floating point stores!
+ SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val);
+ Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(),
+ Alignment, ST->getMemOperand()->getFlags());
+ return Result;
+ }
+ // Do a (aligned) store to a stack slot, then copy from the stack slot
+ // to the final destination using (unaligned) integer loads and stores.
+ MVT RegVT = getRegisterType(
+ *DAG.getContext(),
+ EVT::getIntegerVT(*DAG.getContext(), StoreMemVT.getSizeInBits()));
+ EVT PtrVT = Ptr.getValueType();
+ unsigned StoredBytes = StoreMemVT.getStoreSize();
+ unsigned RegBytes = RegVT.getSizeInBits() / 8;
+ unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes;
+
+ // Make sure the stack slot is also aligned for the register type.
+ SDValue StackPtr = DAG.CreateStackTemporary(StoreMemVT, RegVT);
+ auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
+
+ // Perform the original store, only redirected to the stack slot.
+ SDValue Store = DAG.getTruncStore(
+ Chain, dl, Val, StackPtr,
+ MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), StoreMemVT);
+
+ EVT StackPtrVT = StackPtr.getValueType();
+
+ SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
+ SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
+ SmallVector<SDValue, 8> Stores;
+ unsigned Offset = 0;
+
+ // Do all but one copies using the full register width.
+ for (unsigned i = 1; i < NumRegs; i++) {
+ // Load one integer register's worth from the stack slot.
+ SDValue Load = DAG.getLoad(
+ RegVT, dl, Store, StackPtr,
+ MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset));
+ // Store it to the final location. Remember the store.
+ Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr,
+ ST->getPointerInfo().getWithOffset(Offset),
+ ST->getOriginalAlign(),
+ ST->getMemOperand()->getFlags()));
+ // Increment the pointers.
+ Offset += RegBytes;
+ StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement);
+ Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement);
+ }
+
+ // The last store may be partial. Do a truncating store. On big-endian
+ // machines this requires an extending load from the stack slot to ensure
+ // that the bits are in the right place.
+ EVT LoadMemVT =
+ EVT::getIntegerVT(*DAG.getContext(), 8 * (StoredBytes - Offset));
+
+ // Load from the stack slot.
+ SDValue Load = DAG.getExtLoad(
+ ISD::EXTLOAD, dl, RegVT, Store, StackPtr,
+ MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), LoadMemVT);
+
+ Stores.push_back(
+ DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr,
+ ST->getPointerInfo().getWithOffset(Offset), LoadMemVT,
+ ST->getOriginalAlign(),
+ ST->getMemOperand()->getFlags(), ST->getAAInfo()));
+ // The order of the stores doesn't matter - say it with a TokenFactor.
+ SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
+ return Result;
+ }
+
+ assert(StoreMemVT.isInteger() && !StoreMemVT.isVector() &&
+ "Unaligned store of unknown type.");
+ // Get the half-size VT
+ EVT NewStoredVT = StoreMemVT.getHalfSizedIntegerVT(*DAG.getContext());
+ unsigned NumBits = NewStoredVT.getFixedSizeInBits();
+ unsigned IncrementSize = NumBits / 8;
+
+ // Divide the stored value in two parts.
+ SDValue ShiftAmount =
+ DAG.getShiftAmountConstant(NumBits, Val.getValueType(), dl);
+ SDValue Lo = Val;
+ // If Val is a constant, replace the upper bits with 0. The SRL will constant
+ // fold and not use the upper bits. A smaller constant may be easier to
+ // materialize.
+ if (auto *C = dyn_cast<ConstantSDNode>(Lo); C && !C->isOpaque())
+ Lo = DAG.getNode(
+ ISD::AND, dl, VT, Lo,
+ DAG.getConstant(APInt::getLowBitsSet(VT.getSizeInBits(), NumBits), dl,
+ VT));
+ SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount);
+
+ // Store the two parts
+ SDValue Store1, Store2;
+ Store1 = DAG.getTruncStore(Chain, dl,
+ DAG.getDataLayout().isLittleEndian() ? Lo : Hi,
+ Ptr, ST->getPointerInfo(), NewStoredVT, Alignment,
+ ST->getMemOperand()->getFlags());
+
+ Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::getFixed(IncrementSize));
+ Store2 = DAG.getTruncStore(
+ Chain, dl, DAG.getDataLayout().isLittleEndian() ? Hi : Lo, Ptr,
+ ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT, Alignment,
+ ST->getMemOperand()->getFlags(), ST->getAAInfo());
+
+ SDValue Result =
+ DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2);
+ return Result;
+}
+
+SDValue
+TargetLowering::IncrementMemoryAddress(SDValue Addr, SDValue Mask,
+ const SDLoc &DL, EVT DataVT,
+ SelectionDAG &DAG,
+ bool IsCompressedMemory) const {
+ SDValue Increment;
+ EVT AddrVT = Addr.getValueType();
+ EVT MaskVT = Mask.getValueType();
+ assert(DataVT.getVectorElementCount() == MaskVT.getVectorElementCount() &&
+ "Incompatible types of Data and Mask");
+ if (IsCompressedMemory) {
+ if (DataVT.isScalableVector())
+ report_fatal_error(
+ "Cannot currently handle compressed memory with scalable vectors");
+ // Incrementing the pointer according to number of '1's in the mask.
+ EVT MaskIntVT = EVT::getIntegerVT(*DAG.getContext(), MaskVT.getSizeInBits());
+ SDValue MaskInIntReg = DAG.getBitcast(MaskIntVT, Mask);
+ if (MaskIntVT.getSizeInBits() < 32) {
+ MaskInIntReg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, MaskInIntReg);
+ MaskIntVT = MVT::i32;
+ }
+
+ // Count '1's with POPCNT.
+ Increment = DAG.getNode(ISD::CTPOP, DL, MaskIntVT, MaskInIntReg);
+ Increment = DAG.getZExtOrTrunc(Increment, DL, AddrVT);
+ // Scale is an element size in bytes.
+ SDValue Scale = DAG.getConstant(DataVT.getScalarSizeInBits() / 8, DL,
+ AddrVT);
+ Increment = DAG.getNode(ISD::MUL, DL, AddrVT, Increment, Scale);
+ } else if (DataVT.isScalableVector()) {
+ Increment = DAG.getVScale(DL, AddrVT,
+ APInt(AddrVT.getFixedSizeInBits(),
+ DataVT.getStoreSize().getKnownMinValue()));
+ } else
+ Increment = DAG.getConstant(DataVT.getStoreSize(), DL, AddrVT);
+
+ return DAG.getNode(ISD::ADD, DL, AddrVT, Addr, Increment);
+}
+
+static SDValue clampDynamicVectorIndex(SelectionDAG &DAG, SDValue Idx,
+ EVT VecVT, const SDLoc &dl,
+ ElementCount SubEC) {
+ assert(!(SubEC.isScalable() && VecVT.isFixedLengthVector()) &&
+ "Cannot index a scalable vector within a fixed-width vector");
+
+ unsigned NElts = VecVT.getVectorMinNumElements();
+ unsigned NumSubElts = SubEC.getKnownMinValue();
+ EVT IdxVT = Idx.getValueType();
+
+ if (VecVT.isScalableVector() && !SubEC.isScalable()) {
+ // If this is a constant index and we know the value plus the number of the
+ // elements in the subvector minus one is less than the minimum number of
+ // elements then it's safe to return Idx.
+ if (auto *IdxCst = dyn_cast<ConstantSDNode>(Idx))
+ if (IdxCst->getZExtValue() + (NumSubElts - 1) < NElts)
+ return Idx;
+ SDValue VS =
+ DAG.getVScale(dl, IdxVT, APInt(IdxVT.getFixedSizeInBits(), NElts));
+ unsigned SubOpcode = NumSubElts <= NElts ? ISD::SUB : ISD::USUBSAT;
+ SDValue Sub = DAG.getNode(SubOpcode, dl, IdxVT, VS,
+ DAG.getConstant(NumSubElts, dl, IdxVT));
+ return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx, Sub);
+ }
+ if (isPowerOf2_32(NElts) && NumSubElts == 1) {
+ APInt Imm = APInt::getLowBitsSet(IdxVT.getSizeInBits(), Log2_32(NElts));
+ return DAG.getNode(ISD::AND, dl, IdxVT, Idx,
+ DAG.getConstant(Imm, dl, IdxVT));
+ }
+ unsigned MaxIndex = NumSubElts < NElts ? NElts - NumSubElts : 0;
+ return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx,
+ DAG.getConstant(MaxIndex, dl, IdxVT));
+}
+
+SDValue TargetLowering::getVectorElementPointer(SelectionDAG &DAG,
+ SDValue VecPtr, EVT VecVT,
+ SDValue Index) const {
+ return getVectorSubVecPointer(
+ DAG, VecPtr, VecVT,
+ EVT::getVectorVT(*DAG.getContext(), VecVT.getVectorElementType(), 1),
+ Index);
+}
+
+SDValue TargetLowering::getVectorSubVecPointer(SelectionDAG &DAG,
+ SDValue VecPtr, EVT VecVT,
+ EVT SubVecVT,
+ SDValue Index) const {
+ SDLoc dl(Index);
+ // Make sure the index type is big enough to compute in.
+ Index = DAG.getZExtOrTrunc(Index, dl, VecPtr.getValueType());
+
+ EVT EltVT = VecVT.getVectorElementType();
+
+ // Calculate the element offset and add it to the pointer.
+ unsigned EltSize = EltVT.getFixedSizeInBits() / 8; // FIXME: should be ABI size.
+ assert(EltSize * 8 == EltVT.getFixedSizeInBits() &&
+ "Converting bits to bytes lost precision");
+ assert(SubVecVT.getVectorElementType() == EltVT &&
+ "Sub-vector must be a vector with matching element type");
+ Index = clampDynamicVectorIndex(DAG, Index, VecVT, dl,
+ SubVecVT.getVectorElementCount());
+
+ EVT IdxVT = Index.getValueType();
+ if (SubVecVT.isScalableVector())
+ Index =
+ DAG.getNode(ISD::MUL, dl, IdxVT, Index,
+ DAG.getVScale(dl, IdxVT, APInt(IdxVT.getSizeInBits(), 1)));
+
+ Index = DAG.getNode(ISD::MUL, dl, IdxVT, Index,
+ DAG.getConstant(EltSize, dl, IdxVT));
+ return DAG.getMemBasePlusOffset(VecPtr, Index, dl);
+}
+
+//===----------------------------------------------------------------------===//
+// Implementation of Emulated TLS Model
+//===----------------------------------------------------------------------===//
+
+SDValue TargetLowering::LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA,
+ SelectionDAG &DAG) const {
+ // Access to address of TLS varialbe xyz is lowered to a function call:
+ // __emutls_get_address( address of global variable named "__emutls_v.xyz" )
+ EVT PtrVT = getPointerTy(DAG.getDataLayout());
+ PointerType *VoidPtrType = PointerType::get(*DAG.getContext(), 0);
+ SDLoc dl(GA);
+
+ ArgListTy Args;
+ ArgListEntry Entry;
+ std::string NameString = ("__emutls_v." + GA->getGlobal()->getName()).str();
+ Module *VariableModule = const_cast<Module*>(GA->getGlobal()->getParent());
+ StringRef EmuTlsVarName(NameString);
+ GlobalVariable *EmuTlsVar = VariableModule->getNamedGlobal(EmuTlsVarName);
+ assert(EmuTlsVar && "Cannot find EmuTlsVar ");
+ Entry.Node = DAG.getGlobalAddress(EmuTlsVar, dl, PtrVT);
+ Entry.Ty = VoidPtrType;
+ Args.push_back(Entry);
+
+ SDValue EmuTlsGetAddr = DAG.getExternalSymbol("__emutls_get_address", PtrVT);
+
+ TargetLowering::CallLoweringInfo CLI(DAG);
+ CLI.setDebugLoc(dl).setChain(DAG.getEntryNode());
+ CLI.setLibCallee(CallingConv::C, VoidPtrType, EmuTlsGetAddr, std::move(Args));
+ std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
+
+ // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
+ // At last for X86 targets, maybe good for other targets too?
+ MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
+ MFI.setAdjustsStack(true); // Is this only for X86 target?
+ MFI.setHasCalls(true);
+
+ assert((GA->getOffset() == 0) &&
+ "Emulated TLS must have zero offset in GlobalAddressSDNode");
+ return CallResult.first;
+}
+
+SDValue TargetLowering::lowerCmpEqZeroToCtlzSrl(SDValue Op,
+ SelectionDAG &DAG) const {
+ assert((Op->getOpcode() == ISD::SETCC) && "Input has to be a SETCC node.");
+ if (!isCtlzFast())
+ return SDValue();
+ ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
+ SDLoc dl(Op);
+ if (isNullConstant(Op.getOperand(1)) && CC == ISD::SETEQ) {
+ EVT VT = Op.getOperand(0).getValueType();
+ SDValue Zext = Op.getOperand(0);
+ if (VT.bitsLT(MVT::i32)) {
+ VT = MVT::i32;
+ Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0));
+ }
+ unsigned Log2b = Log2_32(VT.getSizeInBits());
+ SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext);
+ SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz,
+ DAG.getConstant(Log2b, dl, MVT::i32));
+ return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc);
+ }
+ return SDValue();
+}
+
+SDValue TargetLowering::expandIntMINMAX(SDNode *Node, SelectionDAG &DAG) const {
+ SDValue Op0 = Node->getOperand(0);
+ SDValue Op1 = Node->getOperand(1);
+ EVT VT = Op0.getValueType();
+ EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
+ unsigned Opcode = Node->getOpcode();
+ SDLoc DL(Node);
+
+ // umax(x,1) --> sub(x,cmpeq(x,0)) iff cmp result is allbits
+ if (Opcode == ISD::UMAX && llvm::isOneOrOneSplat(Op1, true) && BoolVT == VT &&
+ getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) {
+ Op0 = DAG.getFreeze(Op0);
+ SDValue Zero = DAG.getConstant(0, DL, VT);
+ return DAG.getNode(ISD::SUB, DL, VT, Op0,
+ DAG.getSetCC(DL, VT, Op0, Zero, ISD::SETEQ));
+ }
+
+ // umin(x,y) -> sub(x,usubsat(x,y))
+ // TODO: Missing freeze(Op0)?
+ if (Opcode == ISD::UMIN && isOperationLegal(ISD::SUB, VT) &&
+ isOperationLegal(ISD::USUBSAT, VT)) {
+ return DAG.getNode(ISD::SUB, DL, VT, Op0,
+ DAG.getNode(ISD::USUBSAT, DL, VT, Op0, Op1));
+ }
+
+ // umax(x,y) -> add(x,usubsat(y,x))
+ // TODO: Missing freeze(Op0)?
+ if (Opcode == ISD::UMAX && isOperationLegal(ISD::ADD, VT) &&
+ isOperationLegal(ISD::USUBSAT, VT)) {
+ return DAG.getNode(ISD::ADD, DL, VT, Op0,
+ DAG.getNode(ISD::USUBSAT, DL, VT, Op1, Op0));
+ }
+
+ // FIXME: Should really try to split the vector in case it's legal on a
+ // subvector.
+ if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT))
+ return DAG.UnrollVectorOp(Node);
+
+ // Attempt to find an existing SETCC node that we can reuse.
+ // TODO: Do we need a generic doesSETCCNodeExist?
+ // TODO: Missing freeze(Op0)/freeze(Op1)?
+ auto buildMinMax = [&](ISD::CondCode PrefCC, ISD::CondCode AltCC,
+ ISD::CondCode PrefCommuteCC,
+ ISD::CondCode AltCommuteCC) {
+ SDVTList BoolVTList = DAG.getVTList(BoolVT);
+ for (ISD::CondCode CC : {PrefCC, AltCC}) {
+ if (DAG.doesNodeExist(ISD::SETCC, BoolVTList,
+ {Op0, Op1, DAG.getCondCode(CC)})) {
+ SDValue Cond = DAG.getSetCC(DL, BoolVT, Op0, Op1, CC);
+ return DAG.getSelect(DL, VT, Cond, Op0, Op1);
+ }
+ }
+ for (ISD::CondCode CC : {PrefCommuteCC, AltCommuteCC}) {
+ if (DAG.doesNodeExist(ISD::SETCC, BoolVTList,
+ {Op0, Op1, DAG.getCondCode(CC)})) {
+ SDValue Cond = DAG.getSetCC(DL, BoolVT, Op0, Op1, CC);
+ return DAG.getSelect(DL, VT, Cond, Op1, Op0);
+ }
+ }
+ SDValue Cond = DAG.getSetCC(DL, BoolVT, Op0, Op1, PrefCC);
+ return DAG.getSelect(DL, VT, Cond, Op0, Op1);
+ };
+
+ // Expand Y = MAX(A, B) -> Y = (A > B) ? A : B
+ // -> Y = (A < B) ? B : A
+ // -> Y = (A >= B) ? A : B
+ // -> Y = (A <= B) ? B : A
+ switch (Opcode) {
+ case ISD::SMAX:
+ return buildMinMax(ISD::SETGT, ISD::SETGE, ISD::SETLT, ISD::SETLE);
+ case ISD::SMIN:
+ return buildMinMax(ISD::SETLT, ISD::SETLE, ISD::SETGT, ISD::SETGE);
+ case ISD::UMAX:
+ return buildMinMax(ISD::SETUGT, ISD::SETUGE, ISD::SETULT, ISD::SETULE);
+ case ISD::UMIN:
+ return buildMinMax(ISD::SETULT, ISD::SETULE, ISD::SETUGT, ISD::SETUGE);
+ }
+
+ llvm_unreachable("How did we get here?");
+}
+
+SDValue TargetLowering::expandAddSubSat(SDNode *Node, SelectionDAG &DAG) const {
+ unsigned Opcode = Node->getOpcode();
+ SDValue LHS = Node->getOperand(0);
+ SDValue RHS = Node->getOperand(1);
+ EVT VT = LHS.getValueType();
+ SDLoc dl(Node);
+
+ assert(VT == RHS.getValueType() && "Expected operands to be the same type");
+ assert(VT.isInteger() && "Expected operands to be integers");
+
+ // usub.sat(a, b) -> umax(a, b) - b
+ if (Opcode == ISD::USUBSAT && isOperationLegal(ISD::UMAX, VT)) {
+ SDValue Max = DAG.getNode(ISD::UMAX, dl, VT, LHS, RHS);
+ return DAG.getNode(ISD::SUB, dl, VT, Max, RHS);
+ }
+
+ // uadd.sat(a, b) -> umin(a, ~b) + b
+ if (Opcode == ISD::UADDSAT && isOperationLegal(ISD::UMIN, VT)) {
+ SDValue InvRHS = DAG.getNOT(dl, RHS, VT);
+ SDValue Min = DAG.getNode(ISD::UMIN, dl, VT, LHS, InvRHS);
+ return DAG.getNode(ISD::ADD, dl, VT, Min, RHS);
+ }
+
+ unsigned OverflowOp;
+ switch (Opcode) {
+ case ISD::SADDSAT:
+ OverflowOp = ISD::SADDO;
+ break;
+ case ISD::UADDSAT:
+ OverflowOp = ISD::UADDO;
+ break;
+ case ISD::SSUBSAT:
+ OverflowOp = ISD::SSUBO;
+ break;
+ case ISD::USUBSAT:
+ OverflowOp = ISD::USUBO;
+ break;
+ default:
+ llvm_unreachable("Expected method to receive signed or unsigned saturation "
+ "addition or subtraction node.");
+ }
+
+ // FIXME: Should really try to split the vector in case it's legal on a
+ // subvector.
+ if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT))
+ return DAG.UnrollVectorOp(Node);
+
+ unsigned BitWidth = LHS.getScalarValueSizeInBits();
+ EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
+ SDValue Result = DAG.getNode(OverflowOp, dl, DAG.getVTList(VT, BoolVT), LHS, RHS);
+ SDValue SumDiff = Result.getValue(0);
+ SDValue Overflow = Result.getValue(1);
+ SDValue Zero = DAG.getConstant(0, dl, VT);
+ SDValue AllOnes = DAG.getAllOnesConstant(dl, VT);
+
+ if (Opcode == ISD::UADDSAT) {
+ if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) {
+ // (LHS + RHS) | OverflowMask
+ SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT);
+ return DAG.getNode(ISD::OR, dl, VT, SumDiff, OverflowMask);
+ }
+ // Overflow ? 0xffff.... : (LHS + RHS)
+ return DAG.getSelect(dl, VT, Overflow, AllOnes, SumDiff);
+ }
+
+ if (Opcode == ISD::USUBSAT) {
+ if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) {
+ // (LHS - RHS) & ~OverflowMask
+ SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT);
+ SDValue Not = DAG.getNOT(dl, OverflowMask, VT);
+ return DAG.getNode(ISD::AND, dl, VT, SumDiff, Not);
+ }
+ // Overflow ? 0 : (LHS - RHS)
+ return DAG.getSelect(dl, VT, Overflow, Zero, SumDiff);
+ }
+
+ if (Opcode == ISD::SADDSAT || Opcode == ISD::SSUBSAT) {
+ APInt MinVal = APInt::getSignedMinValue(BitWidth);
+ APInt MaxVal = APInt::getSignedMaxValue(BitWidth);
+
+ KnownBits KnownLHS = DAG.computeKnownBits(LHS);
+ KnownBits KnownRHS = DAG.computeKnownBits(RHS);
+
+ // If either of the operand signs are known, then they are guaranteed to
+ // only saturate in one direction. If non-negative they will saturate
+ // towards SIGNED_MAX, if negative they will saturate towards SIGNED_MIN.
+ //
+ // In the case of ISD::SSUBSAT, 'x - y' is equivalent to 'x + (-y)', so the
+ // sign of 'y' has to be flipped.
+
+ bool LHSIsNonNegative = KnownLHS.isNonNegative();
+ bool RHSIsNonNegative = Opcode == ISD::SADDSAT ? KnownRHS.isNonNegative()
+ : KnownRHS.isNegative();
+ if (LHSIsNonNegative || RHSIsNonNegative) {
+ SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
+ return DAG.getSelect(dl, VT, Overflow, SatMax, SumDiff);
+ }
+
+ bool LHSIsNegative = KnownLHS.isNegative();
+ bool RHSIsNegative = Opcode == ISD::SADDSAT ? KnownRHS.isNegative()
+ : KnownRHS.isNonNegative();
+ if (LHSIsNegative || RHSIsNegative) {
+ SDValue SatMin = DAG.getConstant(MinVal, dl, VT);
+ return DAG.getSelect(dl, VT, Overflow, SatMin, SumDiff);
+ }
+ }
+
+ // Overflow ? (SumDiff >> BW) ^ MinVal : SumDiff
+ APInt MinVal = APInt::getSignedMinValue(BitWidth);
+ SDValue SatMin = DAG.getConstant(MinVal, dl, VT);
+ SDValue Shift = DAG.getNode(ISD::SRA, dl, VT, SumDiff,
+ DAG.getConstant(BitWidth - 1, dl, VT));
+ Result = DAG.getNode(ISD::XOR, dl, VT, Shift, SatMin);
+ return DAG.getSelect(dl, VT, Overflow, Result, SumDiff);
+}
+
+SDValue TargetLowering::expandCMP(SDNode *Node, SelectionDAG &DAG) const {
+ unsigned Opcode = Node->getOpcode();
+ SDValue LHS = Node->getOperand(0);
+ SDValue RHS = Node->getOperand(1);
+ EVT VT = LHS.getValueType();
+ EVT ResVT = Node->getValueType(0);
+ EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
+ SDLoc dl(Node);
+
+ auto LTPredicate = (Opcode == ISD::UCMP ? ISD::SETULT : ISD::SETLT);
+ auto GTPredicate = (Opcode == ISD::UCMP ? ISD::SETUGT : ISD::SETGT);
+ SDValue IsLT = DAG.getSetCC(dl, BoolVT, LHS, RHS, LTPredicate);
+ SDValue IsGT = DAG.getSetCC(dl, BoolVT, LHS, RHS, GTPredicate);
+
+ // We can't perform arithmetic on i1 values. Extending them would
+ // probably result in worse codegen, so let's just use two selects instead.
+ // Some targets are also just better off using selects rather than subtraction
+ // because one of the conditions can be merged with one of the selects.
+ // And finally, if we don't know the contents of high bits of a boolean value
+ // we can't perform any arithmetic either.
+ if (shouldExpandCmpUsingSelects() || BoolVT.getScalarSizeInBits() == 1 ||
+ getBooleanContents(BoolVT) == UndefinedBooleanContent) {
+ SDValue SelectZeroOrOne =
+ DAG.getSelect(dl, ResVT, IsGT, DAG.getConstant(1, dl, ResVT),
+ DAG.getConstant(0, dl, ResVT));
+ return DAG.getSelect(dl, ResVT, IsLT, DAG.getConstant(-1, dl, ResVT),
+ SelectZeroOrOne);
+ }
+
+ if (getBooleanContents(BoolVT) == ZeroOrNegativeOneBooleanContent)
+ std::swap(IsGT, IsLT);
+ return DAG.getSExtOrTrunc(DAG.getNode(ISD::SUB, dl, BoolVT, IsGT, IsLT), dl,
+ ResVT);
+}
+
+SDValue TargetLowering::expandShlSat(SDNode *Node, SelectionDAG &DAG) const {
+ unsigned Opcode = Node->getOpcode();
+ bool IsSigned = Opcode == ISD::SSHLSAT;
+ SDValue LHS = Node->getOperand(0);
+ SDValue RHS = Node->getOperand(1);
+ EVT VT = LHS.getValueType();
+ SDLoc dl(Node);
+
+ assert((Node->getOpcode() == ISD::SSHLSAT ||
+ Node->getOpcode() == ISD::USHLSAT) &&
+ "Expected a SHLSAT opcode");
+ assert(VT == RHS.getValueType() && "Expected operands to be the same type");
+ assert(VT.isInteger() && "Expected operands to be integers");
+
+ if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT))
+ return DAG.UnrollVectorOp(Node);
+
+ // If LHS != (LHS << RHS) >> RHS, we have overflow and must saturate.
+
+ unsigned BW = VT.getScalarSizeInBits();
+ EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
+ SDValue Result = DAG.getNode(ISD::SHL, dl, VT, LHS, RHS);
+ SDValue Orig =
+ DAG.getNode(IsSigned ? ISD::SRA : ISD::SRL, dl, VT, Result, RHS);
+
+ SDValue SatVal;
+ if (IsSigned) {
+ SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(BW), dl, VT);
+ SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(BW), dl, VT);
+ SDValue Cond =
+ DAG.getSetCC(dl, BoolVT, LHS, DAG.getConstant(0, dl, VT), ISD::SETLT);
+ SatVal = DAG.getSelect(dl, VT, Cond, SatMin, SatMax);
+ } else {
+ SatVal = DAG.getConstant(APInt::getMaxValue(BW), dl, VT);
+ }
+ SDValue Cond = DAG.getSetCC(dl, BoolVT, LHS, Orig, ISD::SETNE);
+ return DAG.getSelect(dl, VT, Cond, SatVal, Result);
+}
+
+void TargetLowering::forceExpandWideMUL(SelectionDAG &DAG, const SDLoc &dl,
+ bool Signed, EVT WideVT,
+ const SDValue LL, const SDValue LH,
+ const SDValue RL, const SDValue RH,
+ SDValue &Lo, SDValue &Hi) const {
+ // We can fall back to a libcall with an illegal type for the MUL if we
+ // have a libcall big enough.
+ // Also, we can fall back to a division in some cases, but that's a big
+ // performance hit in the general case.
+ RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
+ if (WideVT == MVT::i16)
+ LC = RTLIB::MUL_I16;
+ else if (WideVT == MVT::i32)
+ LC = RTLIB::MUL_I32;
+ else if (WideVT == MVT::i64)
+ LC = RTLIB::MUL_I64;
+ else if (WideVT == MVT::i128)
+ LC = RTLIB::MUL_I128;
+
+ if (LC == RTLIB::UNKNOWN_LIBCALL || !getLibcallName(LC)) {
+ // We'll expand the multiplication by brute force because we have no other
+ // options. This is a trivially-generalized version of the code from
+ // Hacker's Delight (itself derived from Knuth's Algorithm M from section
+ // 4.3.1).
+ EVT VT = LL.getValueType();
+ unsigned Bits = VT.getSizeInBits();
+ unsigned HalfBits = Bits >> 1;
+ SDValue Mask =
+ DAG.getConstant(APInt::getLowBitsSet(Bits, HalfBits), dl, VT);
+ SDValue LLL = DAG.getNode(ISD::AND, dl, VT, LL, Mask);
+ SDValue RLL = DAG.getNode(ISD::AND, dl, VT, RL, Mask);
+
+ SDValue T = DAG.getNode(ISD::MUL, dl, VT, LLL, RLL);
+ SDValue TL = DAG.getNode(ISD::AND, dl, VT, T, Mask);
+
+ SDValue Shift = DAG.getShiftAmountConstant(HalfBits, VT, dl);
+ SDValue TH = DAG.getNode(ISD::SRL, dl, VT, T, Shift);
+ SDValue LLH = DAG.getNode(ISD::SRL, dl, VT, LL, Shift);
+ SDValue RLH = DAG.getNode(ISD::SRL, dl, VT, RL, Shift);
+
+ SDValue U = DAG.getNode(ISD::ADD, dl, VT,
+ DAG.getNode(ISD::MUL, dl, VT, LLH, RLL), TH);
+ SDValue UL = DAG.getNode(ISD::AND, dl, VT, U, Mask);
+ SDValue UH = DAG.getNode(ISD::SRL, dl, VT, U, Shift);
+
+ SDValue V = DAG.getNode(ISD::ADD, dl, VT,
+ DAG.getNode(ISD::MUL, dl, VT, LLL, RLH), UL);
+ SDValue VH = DAG.getNode(ISD::SRL, dl, VT, V, Shift);
+
+ SDValue W =
+ DAG.getNode(ISD::ADD, dl, VT, DAG.getNode(ISD::MUL, dl, VT, LLH, RLH),
+ DAG.getNode(ISD::ADD, dl, VT, UH, VH));
+ Lo = DAG.getNode(ISD::ADD, dl, VT, TL,
+ DAG.getNode(ISD::SHL, dl, VT, V, Shift));
+
+ Hi = DAG.getNode(ISD::ADD, dl, VT, W,
+ DAG.getNode(ISD::ADD, dl, VT,
+ DAG.getNode(ISD::MUL, dl, VT, RH, LL),
+ DAG.getNode(ISD::MUL, dl, VT, RL, LH)));
+ } else {
+ // Attempt a libcall.
+ SDValue Ret;
+ TargetLowering::MakeLibCallOptions CallOptions;
+ CallOptions.setSExt(Signed);
+ CallOptions.setIsPostTypeLegalization(true);
+ if (shouldSplitFunctionArgumentsAsLittleEndian(DAG.getDataLayout())) {
+ // Halves of WideVT are packed into registers in different order
+ // depending on platform endianness. This is usually handled by
+ // the C calling convention, but we can't defer to it in
+ // the legalizer.
+ SDValue Args[] = {LL, LH, RL, RH};
+ Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first;
+ } else {
+ SDValue Args[] = {LH, LL, RH, RL};
+ Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first;
+ }
+ assert(Ret.getOpcode() == ISD::MERGE_VALUES &&
+ "Ret value is a collection of constituent nodes holding result.");
+ if (DAG.getDataLayout().isLittleEndian()) {
+ // Same as above.
+ Lo = Ret.getOperand(0);
+ Hi = Ret.getOperand(1);
+ } else {
+ Lo = Ret.getOperand(1);
+ Hi = Ret.getOperand(0);
+ }
+ }
+}
+
+void TargetLowering::forceExpandWideMUL(SelectionDAG &DAG, const SDLoc &dl,
+ bool Signed, const SDValue LHS,
+ const SDValue RHS, SDValue &Lo,
+ SDValue &Hi) const {
+ EVT VT = LHS.getValueType();
+ assert(RHS.getValueType() == VT && "Mismatching operand types");
+
+ SDValue HiLHS;
+ SDValue HiRHS;
+ if (Signed) {
+ // The high part is obtained by SRA'ing all but one of the bits of low
+ // part.
+ unsigned LoSize = VT.getFixedSizeInBits();
+ HiLHS = DAG.getNode(
+ ISD::SRA, dl, VT, LHS,
+ DAG.getConstant(LoSize - 1, dl, getPointerTy(DAG.getDataLayout())));
+ HiRHS = DAG.getNode(
+ ISD::SRA, dl, VT, RHS,
+ DAG.getConstant(LoSize - 1, dl, getPointerTy(DAG.getDataLayout())));
+ } else {
+ HiLHS = DAG.getConstant(0, dl, VT);
+ HiRHS = DAG.getConstant(0, dl, VT);
+ }
+ EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits() * 2);
+ forceExpandWideMUL(DAG, dl, Signed, WideVT, LHS, HiLHS, RHS, HiRHS, Lo, Hi);
+}
+
+SDValue
+TargetLowering::expandFixedPointMul(SDNode *Node, SelectionDAG &DAG) const {
+ assert((Node->getOpcode() == ISD::SMULFIX ||
+ Node->getOpcode() == ISD::UMULFIX ||
+ Node->getOpcode() == ISD::SMULFIXSAT ||
+ Node->getOpcode() == ISD::UMULFIXSAT) &&
+ "Expected a fixed point multiplication opcode");
+
+ SDLoc dl(Node);
+ SDValue LHS = Node->getOperand(0);
+ SDValue RHS = Node->getOperand(1);
+ EVT VT = LHS.getValueType();
+ unsigned Scale = Node->getConstantOperandVal(2);
+ bool Saturating = (Node->getOpcode() == ISD::SMULFIXSAT ||
+ Node->getOpcode() == ISD::UMULFIXSAT);
+ bool Signed = (Node->getOpcode() == ISD::SMULFIX ||
+ Node->getOpcode() == ISD::SMULFIXSAT);
+ EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
+ unsigned VTSize = VT.getScalarSizeInBits();
+
+ if (!Scale) {
+ // [us]mul.fix(a, b, 0) -> mul(a, b)
+ if (!Saturating) {
+ if (isOperationLegalOrCustom(ISD::MUL, VT))
+ return DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
+ } else if (Signed && isOperationLegalOrCustom(ISD::SMULO, VT)) {
+ SDValue Result =
+ DAG.getNode(ISD::SMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS);
+ SDValue Product = Result.getValue(0);
+ SDValue Overflow = Result.getValue(1);
+ SDValue Zero = DAG.getConstant(0, dl, VT);
+
+ APInt MinVal = APInt::getSignedMinValue(VTSize);
+ APInt MaxVal = APInt::getSignedMaxValue(VTSize);
+ SDValue SatMin = DAG.getConstant(MinVal, dl, VT);
+ SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
+ // Xor the inputs, if resulting sign bit is 0 the product will be
+ // positive, else negative.
+ SDValue Xor = DAG.getNode(ISD::XOR, dl, VT, LHS, RHS);
+ SDValue ProdNeg = DAG.getSetCC(dl, BoolVT, Xor, Zero, ISD::SETLT);
+ Result = DAG.getSelect(dl, VT, ProdNeg, SatMin, SatMax);
+ return DAG.getSelect(dl, VT, Overflow, Result, Product);
+ } else if (!Signed && isOperationLegalOrCustom(ISD::UMULO, VT)) {
+ SDValue Result =
+ DAG.getNode(ISD::UMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS);
+ SDValue Product = Result.getValue(0);
+ SDValue Overflow = Result.getValue(1);
+
+ APInt MaxVal = APInt::getMaxValue(VTSize);
+ SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
+ return DAG.getSelect(dl, VT, Overflow, SatMax, Product);
+ }
+ }
+
+ assert(((Signed && Scale < VTSize) || (!Signed && Scale <= VTSize)) &&
+ "Expected scale to be less than the number of bits if signed or at "
+ "most the number of bits if unsigned.");
+ assert(LHS.getValueType() == RHS.getValueType() &&
+ "Expected both operands to be the same type");
+
+ // Get the upper and lower bits of the result.
+ SDValue Lo, Hi;
+ unsigned LoHiOp = Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI;
+ unsigned HiOp = Signed ? ISD::MULHS : ISD::MULHU;
+ EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VTSize * 2);
+ if (isOperationLegalOrCustom(LoHiOp, VT)) {
+ SDValue Result = DAG.getNode(LoHiOp, dl, DAG.getVTList(VT, VT), LHS, RHS);
+ Lo = Result.getValue(0);
+ Hi = Result.getValue(1);
+ } else if (isOperationLegalOrCustom(HiOp, VT)) {
+ Lo = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
+ Hi = DAG.getNode(HiOp, dl, VT, LHS, RHS);
+ } else if (isOperationLegalOrCustom(ISD::MUL, WideVT)) {
+ // Try for a multiplication using a wider type.
+ unsigned Ext = Signed ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
+ SDValue LHSExt = DAG.getNode(Ext, dl, WideVT, LHS);
+ SDValue RHSExt = DAG.getNode(Ext, dl, WideVT, RHS);
+ SDValue Res = DAG.getNode(ISD::MUL, dl, WideVT, LHSExt, RHSExt);
+ Lo = DAG.getNode(ISD::TRUNCATE, dl, VT, Res);
+ SDValue Shifted =
+ DAG.getNode(ISD::SRA, dl, WideVT, Res,
+ DAG.getShiftAmountConstant(VTSize, WideVT, dl));
+ Hi = DAG.getNode(ISD::TRUNCATE, dl, VT, Shifted);
+ } else if (VT.isVector()) {
+ return SDValue();
+ } else {
+ forceExpandWideMUL(DAG, dl, Signed, LHS, RHS, Lo, Hi);
+ }
+
+ if (Scale == VTSize)
+ // Result is just the top half since we'd be shifting by the width of the
+ // operand. Overflow impossible so this works for both UMULFIX and
+ // UMULFIXSAT.
+ return Hi;
+
+ // The result will need to be shifted right by the scale since both operands
+ // are scaled. The result is given to us in 2 halves, so we only want part of
+ // both in the result.
+ SDValue Result = DAG.getNode(ISD::FSHR, dl, VT, Hi, Lo,
+ DAG.getShiftAmountConstant(Scale, VT, dl));
+ if (!Saturating)
+ return Result;
+
+ if (!Signed) {
+ // Unsigned overflow happened if the upper (VTSize - Scale) bits (of the
+ // widened multiplication) aren't all zeroes.
+
+ // Saturate to max if ((Hi >> Scale) != 0),
+ // which is the same as if (Hi > ((1 << Scale) - 1))
+ APInt MaxVal = APInt::getMaxValue(VTSize);
+ SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale),
+ dl, VT);
+ Result = DAG.getSelectCC(dl, Hi, LowMask,
+ DAG.getConstant(MaxVal, dl, VT), Result,
+ ISD::SETUGT);
+
+ return Result;
+ }
+
+ // Signed overflow happened if the upper (VTSize - Scale + 1) bits (of the
+ // widened multiplication) aren't all ones or all zeroes.
+
+ SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(VTSize), dl, VT);
+ SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(VTSize), dl, VT);
+
+ if (Scale == 0) {
+ SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, Lo,
+ DAG.getShiftAmountConstant(VTSize - 1, VT, dl));
+ SDValue Overflow = DAG.getSetCC(dl, BoolVT, Hi, Sign, ISD::SETNE);
+ // Saturated to SatMin if wide product is negative, and SatMax if wide
+ // product is positive ...
+ SDValue Zero = DAG.getConstant(0, dl, VT);
+ SDValue ResultIfOverflow = DAG.getSelectCC(dl, Hi, Zero, SatMin, SatMax,
+ ISD::SETLT);
+ // ... but only if we overflowed.
+ return DAG.getSelect(dl, VT, Overflow, ResultIfOverflow, Result);
+ }
+
+ // We handled Scale==0 above so all the bits to examine is in Hi.
+
+ // Saturate to max if ((Hi >> (Scale - 1)) > 0),
+ // which is the same as if (Hi > (1 << (Scale - 1)) - 1)
+ SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale - 1),
+ dl, VT);
+ Result = DAG.getSelectCC(dl, Hi, LowMask, SatMax, Result, ISD::SETGT);
+ // Saturate to min if (Hi >> (Scale - 1)) < -1),
+ // which is the same as if (HI < (-1 << (Scale - 1))
+ SDValue HighMask =
+ DAG.getConstant(APInt::getHighBitsSet(VTSize, VTSize - Scale + 1),
+ dl, VT);
+ Result = DAG.getSelectCC(dl, Hi, HighMask, SatMin, Result, ISD::SETLT);
+ return Result;
+}
+
+SDValue
+TargetLowering::expandFixedPointDiv(unsigned Opcode, const SDLoc &dl,
+ SDValue LHS, SDValue RHS,
+ unsigned Scale, SelectionDAG &DAG) const {
+ assert((Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT ||
+ Opcode == ISD::UDIVFIX || Opcode == ISD::UDIVFIXSAT) &&
+ "Expected a fixed point division opcode");
+
+ EVT VT = LHS.getValueType();
+ bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT;
+ bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT;
+ EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
+
+ // If there is enough room in the type to upscale the LHS or downscale the
+ // RHS before the division, we can perform it in this type without having to
+ // resize. For signed operations, the LHS headroom is the number of
+ // redundant sign bits, and for unsigned ones it is the number of zeroes.
+ // The headroom for the RHS is the number of trailing zeroes.
+ unsigned LHSLead = Signed ? DAG.ComputeNumSignBits(LHS) - 1
+ : DAG.computeKnownBits(LHS).countMinLeadingZeros();
+ unsigned RHSTrail = DAG.computeKnownBits(RHS).countMinTrailingZeros();
+
+ // For signed saturating operations, we need to be able to detect true integer
+ // division overflow; that is, when you have MIN / -EPS. However, this
+ // is undefined behavior and if we emit divisions that could take such
+ // values it may cause undesired behavior (arithmetic exceptions on x86, for
+ // example).
+ // Avoid this by requiring an extra bit so that we never get this case.
+ // FIXME: This is a bit unfortunate as it means that for an 8-bit 7-scale
+ // signed saturating division, we need to emit a whopping 32-bit division.
+ if (LHSLead + RHSTrail < Scale + (unsigned)(Saturating && Signed))
+ return SDValue();
+
+ unsigned LHSShift = std::min(LHSLead, Scale);
+ unsigned RHSShift = Scale - LHSShift;
+
+ // At this point, we know that if we shift the LHS up by LHSShift and the
+ // RHS down by RHSShift, we can emit a regular division with a final scaling
+ // factor of Scale.
+
+ if (LHSShift)
+ LHS = DAG.getNode(ISD::SHL, dl, VT, LHS,
+ DAG.getShiftAmountConstant(LHSShift, VT, dl));
+ if (RHSShift)
+ RHS = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, dl, VT, RHS,
+ DAG.getShiftAmountConstant(RHSShift, VT, dl));
+
+ SDValue Quot;
+ if (Signed) {
+ // For signed operations, if the resulting quotient is negative and the
+ // remainder is nonzero, subtract 1 from the quotient to round towards
+ // negative infinity.
+ SDValue Rem;
+ // FIXME: Ideally we would always produce an SDIVREM here, but if the
+ // type isn't legal, SDIVREM cannot be expanded. There is no reason why
+ // we couldn't just form a libcall, but the type legalizer doesn't do it.
+ if (isTypeLegal(VT) &&
+ isOperationLegalOrCustom(ISD::SDIVREM, VT)) {
+ Quot = DAG.getNode(ISD::SDIVREM, dl,
+ DAG.getVTList(VT, VT),
+ LHS, RHS);
+ Rem = Quot.getValue(1);
+ Quot = Quot.getValue(0);
+ } else {
+ Quot = DAG.getNode(ISD::SDIV, dl, VT,
+ LHS, RHS);
+ Rem = DAG.getNode(ISD::SREM, dl, VT,
+ LHS, RHS);
+ }
+ SDValue Zero = DAG.getConstant(0, dl, VT);
+ SDValue RemNonZero = DAG.getSetCC(dl, BoolVT, Rem, Zero, ISD::SETNE);
+ SDValue LHSNeg = DAG.getSetCC(dl, BoolVT, LHS, Zero, ISD::SETLT);
+ SDValue RHSNeg = DAG.getSetCC(dl, BoolVT, RHS, Zero, ISD::SETLT);
+ SDValue QuotNeg = DAG.getNode(ISD::XOR, dl, BoolVT, LHSNeg, RHSNeg);
+ SDValue Sub1 = DAG.getNode(ISD::SUB, dl, VT, Quot,
+ DAG.getConstant(1, dl, VT));
+ Quot = DAG.getSelect(dl, VT,
+ DAG.getNode(ISD::AND, dl, BoolVT, RemNonZero, QuotNeg),
+ Sub1, Quot);
+ } else
+ Quot = DAG.getNode(ISD::UDIV, dl, VT,
+ LHS, RHS);
+
+ return Quot;
+}
+
+void TargetLowering::expandUADDSUBO(
+ SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const {
+ SDLoc dl(Node);
+ SDValue LHS = Node->getOperand(0);
+ SDValue RHS = Node->getOperand(1);
+ bool IsAdd = Node->getOpcode() == ISD::UADDO;
+
+ // If UADDO_CARRY/SUBO_CARRY is legal, use that instead.
+ unsigned OpcCarry = IsAdd ? ISD::UADDO_CARRY : ISD::USUBO_CARRY;
+ if (isOperationLegalOrCustom(OpcCarry, Node->getValueType(0))) {
+ SDValue CarryIn = DAG.getConstant(0, dl, Node->getValueType(1));
+ SDValue NodeCarry = DAG.getNode(OpcCarry, dl, Node->getVTList(),
+ { LHS, RHS, CarryIn });
+ Result = SDValue(NodeCarry.getNode(), 0);
+ Overflow = SDValue(NodeCarry.getNode(), 1);
+ return;
+ }
+
+ Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl,
+ LHS.getValueType(), LHS, RHS);
+
+ EVT ResultType = Node->getValueType(1);
+ EVT SetCCType = getSetCCResultType(
+ DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0));
+ SDValue SetCC;
+ if (IsAdd && isOneConstant(RHS)) {
+ // Special case: uaddo X, 1 overflowed if X+1 is 0. This potential reduces
+ // the live range of X. We assume comparing with 0 is cheap.
+ // The general case (X + C) < C is not necessarily beneficial. Although we
+ // reduce the live range of X, we may introduce the materialization of
+ // constant C.
+ SetCC =
+ DAG.getSetCC(dl, SetCCType, Result,
+ DAG.getConstant(0, dl, Node->getValueType(0)), ISD::SETEQ);
+ } else if (IsAdd && isAllOnesConstant(RHS)) {
+ // Special case: uaddo X, -1 overflows if X != 0.
+ SetCC =
+ DAG.getSetCC(dl, SetCCType, LHS,
+ DAG.getConstant(0, dl, Node->getValueType(0)), ISD::SETNE);
+ } else {
+ ISD::CondCode CC = IsAdd ? ISD::SETULT : ISD::SETUGT;
+ SetCC = DAG.getSetCC(dl, SetCCType, Result, LHS, CC);
+ }
+ Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType);
+}
+
+void TargetLowering::expandSADDSUBO(
+ SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const {
+ SDLoc dl(Node);
+ SDValue LHS = Node->getOperand(0);
+ SDValue RHS = Node->getOperand(1);
+ bool IsAdd = Node->getOpcode() == ISD::SADDO;
+
+ Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl,
+ LHS.getValueType(), LHS, RHS);
+
+ EVT ResultType = Node->getValueType(1);
+ EVT OType = getSetCCResultType(
+ DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0));
+
+ // If SADDSAT/SSUBSAT is legal, compare results to detect overflow.
+ unsigned OpcSat = IsAdd ? ISD::SADDSAT : ISD::SSUBSAT;
+ if (isOperationLegal(OpcSat, LHS.getValueType())) {
+ SDValue Sat = DAG.getNode(OpcSat, dl, LHS.getValueType(), LHS, RHS);
+ SDValue SetCC = DAG.getSetCC(dl, OType, Result, Sat, ISD::SETNE);
+ Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType);
+ return;
+ }
+
+ SDValue Zero = DAG.getConstant(0, dl, LHS.getValueType());
+
+ // For an addition, the result should be less than one of the operands (LHS)
+ // if and only if the other operand (RHS) is negative, otherwise there will
+ // be overflow.
+ // For a subtraction, the result should be less than one of the operands
+ // (LHS) if and only if the other operand (RHS) is (non-zero) positive,
+ // otherwise there will be overflow.
+ SDValue ResultLowerThanLHS = DAG.getSetCC(dl, OType, Result, LHS, ISD::SETLT);
+ SDValue ConditionRHS =
+ DAG.getSetCC(dl, OType, RHS, Zero, IsAdd ? ISD::SETLT : ISD::SETGT);
+
+ Overflow = DAG.getBoolExtOrTrunc(
+ DAG.getNode(ISD::XOR, dl, OType, ConditionRHS, ResultLowerThanLHS), dl,
+ ResultType, ResultType);
+}
+
+bool TargetLowering::expandMULO(SDNode *Node, SDValue &Result,
+ SDValue &Overflow, SelectionDAG &DAG) const {
+ SDLoc dl(Node);
+ EVT VT = Node->getValueType(0);
+ EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
+ SDValue LHS = Node->getOperand(0);
+ SDValue RHS = Node->getOperand(1);
+ bool isSigned = Node->getOpcode() == ISD::SMULO;
+
+ // For power-of-two multiplications we can use a simpler shift expansion.
+ if (ConstantSDNode *RHSC = isConstOrConstSplat(RHS)) {
+ const APInt &C = RHSC->getAPIntValue();
+ // mulo(X, 1 << S) -> { X << S, (X << S) >> S != X }
+ if (C.isPowerOf2()) {
+ // smulo(x, signed_min) is same as umulo(x, signed_min).
+ bool UseArithShift = isSigned && !C.isMinSignedValue();
+ SDValue ShiftAmt = DAG.getShiftAmountConstant(C.logBase2(), VT, dl);
+ Result = DAG.getNode(ISD::SHL, dl, VT, LHS, ShiftAmt);
+ Overflow = DAG.getSetCC(dl, SetCCVT,
+ DAG.getNode(UseArithShift ? ISD::SRA : ISD::SRL,
+ dl, VT, Result, ShiftAmt),
+ LHS, ISD::SETNE);
+ return true;
+ }
+ }
+
+ EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getScalarSizeInBits() * 2);
+ if (VT.isVector())
+ WideVT =
+ EVT::getVectorVT(*DAG.getContext(), WideVT, VT.getVectorElementCount());
+
+ SDValue BottomHalf;
+ SDValue TopHalf;
+ static const unsigned Ops[2][3] =
+ { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND },
+ { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }};
+ if (isOperationLegalOrCustom(Ops[isSigned][0], VT)) {
+ BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
+ TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS);
+ } else if (isOperationLegalOrCustom(Ops[isSigned][1], VT)) {
+ BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS,
+ RHS);
+ TopHalf = BottomHalf.getValue(1);
+ } else if (isTypeLegal(WideVT)) {
+ LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS);
+ RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS);
+ SDValue Mul = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS);
+ BottomHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, Mul);
+ SDValue ShiftAmt =
+ DAG.getShiftAmountConstant(VT.getScalarSizeInBits(), WideVT, dl);
+ TopHalf = DAG.getNode(ISD::TRUNCATE, dl, VT,
+ DAG.getNode(ISD::SRL, dl, WideVT, Mul, ShiftAmt));
+ } else {
+ if (VT.isVector())
+ return false;
+
+ forceExpandWideMUL(DAG, dl, isSigned, LHS, RHS, BottomHalf, TopHalf);
+ }
+
+ Result = BottomHalf;
+ if (isSigned) {
+ SDValue ShiftAmt = DAG.getShiftAmountConstant(
+ VT.getScalarSizeInBits() - 1, BottomHalf.getValueType(), dl);
+ SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, ShiftAmt);
+ Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, Sign, ISD::SETNE);
+ } else {
+ Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf,
+ DAG.getConstant(0, dl, VT), ISD::SETNE);
+ }
+
+ // Truncate the result if SetCC returns a larger type than needed.
+ EVT RType = Node->getValueType(1);
+ if (RType.bitsLT(Overflow.getValueType()))
+ Overflow = DAG.getNode(ISD::TRUNCATE, dl, RType, Overflow);
+
+ assert(RType.getSizeInBits() == Overflow.getValueSizeInBits() &&
+ "Unexpected result type for S/UMULO legalization");
+ return true;
+}
+
+SDValue TargetLowering::expandVecReduce(SDNode *Node, SelectionDAG &DAG) const {
+ SDLoc dl(Node);
+ unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Node->getOpcode());
+ SDValue Op = Node->getOperand(0);
+ EVT VT = Op.getValueType();
+
+ if (VT.isScalableVector())
+ report_fatal_error(
+ "Expanding reductions for scalable vectors is undefined.");
+
+ // Try to use a shuffle reduction for power of two vectors.
+ if (VT.isPow2VectorType()) {
+ while (VT.getVectorNumElements() > 1) {
+ EVT HalfVT = VT.getHalfNumVectorElementsVT(*DAG.getContext());
+ if (!isOperationLegalOrCustom(BaseOpcode, HalfVT))
+ break;
+
+ SDValue Lo, Hi;
+ std::tie(Lo, Hi) = DAG.SplitVector(Op, dl);
+ Op = DAG.getNode(BaseOpcode, dl, HalfVT, Lo, Hi, Node->getFlags());
+ VT = HalfVT;
+ }
+ }
+
+ EVT EltVT = VT.getVectorElementType();
+ unsigned NumElts = VT.getVectorNumElements();
+
+ SmallVector<SDValue, 8> Ops;
+ DAG.ExtractVectorElements(Op, Ops, 0, NumElts);
+
+ SDValue Res = Ops[0];
+ for (unsigned i = 1; i < NumElts; i++)
+ Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Node->getFlags());
+
+ // Result type may be wider than element type.
+ if (EltVT != Node->getValueType(0))
+ Res = DAG.getNode(ISD::ANY_EXTEND, dl, Node->getValueType(0), Res);
+ return Res;
+}
+
+SDValue TargetLowering::expandVecReduceSeq(SDNode *Node, SelectionDAG &DAG) const {
+ SDLoc dl(Node);
+ SDValue AccOp = Node->getOperand(0);
+ SDValue VecOp = Node->getOperand(1);
+ SDNodeFlags Flags = Node->getFlags();
+
+ EVT VT = VecOp.getValueType();
+ EVT EltVT = VT.getVectorElementType();
+
+ if (VT.isScalableVector())
+ report_fatal_error(
+ "Expanding reductions for scalable vectors is undefined.");
+
+ unsigned NumElts = VT.getVectorNumElements();
+
+ SmallVector<SDValue, 8> Ops;
+ DAG.ExtractVectorElements(VecOp, Ops, 0, NumElts);
+
+ unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Node->getOpcode());
+
+ SDValue Res = AccOp;
+ for (unsigned i = 0; i < NumElts; i++)
+ Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Flags);
+
+ return Res;
+}
+
+bool TargetLowering::expandREM(SDNode *Node, SDValue &Result,
+ SelectionDAG &DAG) const {
+ EVT VT = Node->getValueType(0);
+ SDLoc dl(Node);
+ bool isSigned = Node->getOpcode() == ISD::SREM;
+ unsigned DivOpc = isSigned ? ISD::SDIV : ISD::UDIV;
+ unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
+ SDValue Dividend = Node->getOperand(0);
+ SDValue Divisor = Node->getOperand(1);
+ if (isOperationLegalOrCustom(DivRemOpc, VT)) {
+ SDVTList VTs = DAG.getVTList(VT, VT);
+ Result = DAG.getNode(DivRemOpc, dl, VTs, Dividend, Divisor).getValue(1);
+ return true;
+ }
+ if (isOperationLegalOrCustom(DivOpc, VT)) {
+ // X % Y -> X-X/Y*Y
+ SDValue Divide = DAG.getNode(DivOpc, dl, VT, Dividend, Divisor);
+ SDValue Mul = DAG.getNode(ISD::MUL, dl, VT, Divide, Divisor);
+ Result = DAG.getNode(ISD::SUB, dl, VT, Dividend, Mul);
+ return true;
+ }
+ return false;
+}
+
+SDValue TargetLowering::expandFP_TO_INT_SAT(SDNode *Node,
+ SelectionDAG &DAG) const {
+ bool IsSigned = Node->getOpcode() == ISD::FP_TO_SINT_SAT;
+ SDLoc dl(SDValue(Node, 0));
+ SDValue Src = Node->getOperand(0);
+
+ // DstVT is the result type, while SatVT is the size to which we saturate
+ EVT SrcVT = Src.getValueType();
+ EVT DstVT = Node->getValueType(0);
+
+ EVT SatVT = cast<VTSDNode>(Node->getOperand(1))->getVT();
+ unsigned SatWidth = SatVT.getScalarSizeInBits();
+ unsigned DstWidth = DstVT.getScalarSizeInBits();
+ assert(SatWidth <= DstWidth &&
+ "Expected saturation width smaller than result width");
+
+ // Determine minimum and maximum integer values and their corresponding
+ // floating-point values.
+ APInt MinInt, MaxInt;
+ if (IsSigned) {
+ MinInt = APInt::getSignedMinValue(SatWidth).sext(DstWidth);
+ MaxInt = APInt::getSignedMaxValue(SatWidth).sext(DstWidth);
+ } else {
+ MinInt = APInt::getMinValue(SatWidth).zext(DstWidth);
+ MaxInt = APInt::getMaxValue(SatWidth).zext(DstWidth);
+ }
+
+ // We cannot risk emitting FP_TO_XINT nodes with a source VT of [b]f16, as
+ // libcall emission cannot handle this. Large result types will fail.
+ if (SrcVT == MVT::f16 || SrcVT == MVT::bf16) {
+ Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, Src);
+ SrcVT = Src.getValueType();
+ }
+
+ APFloat MinFloat(DAG.EVTToAPFloatSemantics(SrcVT));
+ APFloat MaxFloat(DAG.EVTToAPFloatSemantics(SrcVT));
+
+ APFloat::opStatus MinStatus =
+ MinFloat.convertFromAPInt(MinInt, IsSigned, APFloat::rmTowardZero);
+ APFloat::opStatus MaxStatus =
+ MaxFloat.convertFromAPInt(MaxInt, IsSigned, APFloat::rmTowardZero);
+ bool AreExactFloatBounds = !(MinStatus & APFloat::opStatus::opInexact) &&
+ !(MaxStatus & APFloat::opStatus::opInexact);
+
+ SDValue MinFloatNode = DAG.getConstantFP(MinFloat, dl, SrcVT);
+ SDValue MaxFloatNode = DAG.getConstantFP(MaxFloat, dl, SrcVT);
+
+ // If the integer bounds are exactly representable as floats and min/max are
+ // legal, emit a min+max+fptoi sequence. Otherwise we have to use a sequence
+ // of comparisons and selects.
+ bool MinMaxLegal = isOperationLegal(ISD::FMINNUM, SrcVT) &&
+ isOperationLegal(ISD::FMAXNUM, SrcVT);
+ if (AreExactFloatBounds && MinMaxLegal) {
+ SDValue Clamped = Src;
+
+ // Clamp Src by MinFloat from below. If Src is NaN the result is MinFloat.
+ Clamped = DAG.getNode(ISD::FMAXNUM, dl, SrcVT, Clamped, MinFloatNode);
+ // Clamp by MaxFloat from above. NaN cannot occur.
+ Clamped = DAG.getNode(ISD::FMINNUM, dl, SrcVT, Clamped, MaxFloatNode);
+ // Convert clamped value to integer.
+ SDValue FpToInt = DAG.getNode(IsSigned ? ISD::FP_TO_SINT : ISD::FP_TO_UINT,
+ dl, DstVT, Clamped);
+
+ // In the unsigned case we're done, because we mapped NaN to MinFloat,
+ // which will cast to zero.
+ if (!IsSigned)
+ return FpToInt;
+
+ // Otherwise, select 0 if Src is NaN.
+ SDValue ZeroInt = DAG.getConstant(0, dl, DstVT);
+ EVT SetCCVT =
+ getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT);
+ SDValue IsNan = DAG.getSetCC(dl, SetCCVT, Src, Src, ISD::CondCode::SETUO);
+ return DAG.getSelect(dl, DstVT, IsNan, ZeroInt, FpToInt);
+ }
+
+ SDValue MinIntNode = DAG.getConstant(MinInt, dl, DstVT);
+ SDValue MaxIntNode = DAG.getConstant(MaxInt, dl, DstVT);
+
+ // Result of direct conversion. The assumption here is that the operation is
+ // non-trapping and it's fine to apply it to an out-of-range value if we
+ // select it away later.
+ SDValue FpToInt =
+ DAG.getNode(IsSigned ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, dl, DstVT, Src);
+
+ SDValue Select = FpToInt;
+
+ EVT SetCCVT =
+ getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT);
+
+ // If Src ULT MinFloat, select MinInt. In particular, this also selects
+ // MinInt if Src is NaN.
+ SDValue ULT = DAG.getSetCC(dl, SetCCVT, Src, MinFloatNode, ISD::SETULT);
+ Select = DAG.getSelect(dl, DstVT, ULT, MinIntNode, Select);
+ // If Src OGT MaxFloat, select MaxInt.
+ SDValue OGT = DAG.getSetCC(dl, SetCCVT, Src, MaxFloatNode, ISD::SETOGT);
+ Select = DAG.getSelect(dl, DstVT, OGT, MaxIntNode, Select);
+
+ // In the unsigned case we are done, because we mapped NaN to MinInt, which
+ // is already zero.
+ if (!IsSigned)
+ return Select;
+
+ // Otherwise, select 0 if Src is NaN.
+ SDValue ZeroInt = DAG.getConstant(0, dl, DstVT);
+ SDValue IsNan = DAG.getSetCC(dl, SetCCVT, Src, Src, ISD::CondCode::SETUO);
+ return DAG.getSelect(dl, DstVT, IsNan, ZeroInt, Select);
+}
+
+SDValue TargetLowering::expandRoundInexactToOdd(EVT ResultVT, SDValue Op,
+ const SDLoc &dl,
+ SelectionDAG &DAG) const {
+ EVT OperandVT = Op.getValueType();
+ if (OperandVT.getScalarType() == ResultVT.getScalarType())
+ return Op;
+ EVT ResultIntVT = ResultVT.changeTypeToInteger();
+ // We are rounding binary64/binary128 -> binary32 -> bfloat16. This
+ // can induce double-rounding which may alter the results. We can
+ // correct for this using a trick explained in: Boldo, Sylvie, and
+ // Guillaume Melquiond. "When double rounding is odd." 17th IMACS
+ // World Congress. 2005.
+ unsigned BitSize = OperandVT.getScalarSizeInBits();
+ EVT WideIntVT = OperandVT.changeTypeToInteger();
+ SDValue OpAsInt = DAG.getBitcast(WideIntVT, Op);
+ SDValue SignBit =
+ DAG.getNode(ISD::AND, dl, WideIntVT, OpAsInt,
+ DAG.getConstant(APInt::getSignMask(BitSize), dl, WideIntVT));
+ SDValue AbsWide;
+ if (isOperationLegalOrCustom(ISD::FABS, OperandVT)) {
+ AbsWide = DAG.getNode(ISD::FABS, dl, OperandVT, Op);
+ } else {
+ SDValue ClearedSign = DAG.getNode(
+ ISD::AND, dl, WideIntVT, OpAsInt,
+ DAG.getConstant(APInt::getSignedMaxValue(BitSize), dl, WideIntVT));
+ AbsWide = DAG.getBitcast(OperandVT, ClearedSign);
+ }
+ SDValue AbsNarrow = DAG.getFPExtendOrRound(AbsWide, dl, ResultVT);
+ SDValue AbsNarrowAsWide = DAG.getFPExtendOrRound(AbsNarrow, dl, OperandVT);
+
+ // We can keep the narrow value as-is if narrowing was exact (no
+ // rounding error), the wide value was NaN (the narrow value is also
+ // NaN and should be preserved) or if we rounded to the odd value.
+ SDValue NarrowBits = DAG.getNode(ISD::BITCAST, dl, ResultIntVT, AbsNarrow);
+ SDValue One = DAG.getConstant(1, dl, ResultIntVT);
+ SDValue NegativeOne = DAG.getAllOnesConstant(dl, ResultIntVT);
+ SDValue And = DAG.getNode(ISD::AND, dl, ResultIntVT, NarrowBits, One);
+ EVT ResultIntVTCCVT = getSetCCResultType(
+ DAG.getDataLayout(), *DAG.getContext(), And.getValueType());
+ SDValue Zero = DAG.getConstant(0, dl, ResultIntVT);
+ // The result is already odd so we don't need to do anything.
+ SDValue AlreadyOdd = DAG.getSetCC(dl, ResultIntVTCCVT, And, Zero, ISD::SETNE);
+
+ EVT WideSetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
+ AbsWide.getValueType());
+ // We keep results which are exact, odd or NaN.
+ SDValue KeepNarrow =
+ DAG.getSetCC(dl, WideSetCCVT, AbsWide, AbsNarrowAsWide, ISD::SETUEQ);
+ KeepNarrow = DAG.getNode(ISD::OR, dl, WideSetCCVT, KeepNarrow, AlreadyOdd);
+ // We morally performed a round-down if AbsNarrow is smaller than
+ // AbsWide.
+ SDValue NarrowIsRd =
+ DAG.getSetCC(dl, WideSetCCVT, AbsWide, AbsNarrowAsWide, ISD::SETOGT);
+ // If the narrow value is odd or exact, pick it.
+ // Otherwise, narrow is even and corresponds to either the rounded-up
+ // or rounded-down value. If narrow is the rounded-down value, we want
+ // the rounded-up value as it will be odd.
+ SDValue Adjust = DAG.getSelect(dl, ResultIntVT, NarrowIsRd, One, NegativeOne);
+ SDValue Adjusted = DAG.getNode(ISD::ADD, dl, ResultIntVT, NarrowBits, Adjust);
+ Op = DAG.getSelect(dl, ResultIntVT, KeepNarrow, NarrowBits, Adjusted);
+ int ShiftAmount = BitSize - ResultVT.getScalarSizeInBits();
+ SDValue ShiftCnst = DAG.getShiftAmountConstant(ShiftAmount, WideIntVT, dl);
+ SignBit = DAG.getNode(ISD::SRL, dl, WideIntVT, SignBit, ShiftCnst);
+ SignBit = DAG.getNode(ISD::TRUNCATE, dl, ResultIntVT, SignBit);
+ Op = DAG.getNode(ISD::OR, dl, ResultIntVT, Op, SignBit);
+ return DAG.getNode(ISD::BITCAST, dl, ResultVT, Op);
+}
+
+SDValue TargetLowering::expandFP_ROUND(SDNode *Node, SelectionDAG &DAG) const {
+ assert(Node->getOpcode() == ISD::FP_ROUND && "Unexpected opcode!");
+ SDValue Op = Node->getOperand(0);
+ EVT VT = Node->getValueType(0);
+ SDLoc dl(Node);
+ if (VT.getScalarType() == MVT::bf16) {
+ if (Node->getConstantOperandVal(1) == 1) {
+ return DAG.getNode(ISD::FP_TO_BF16, dl, VT, Node->getOperand(0));
+ }
+ EVT OperandVT = Op.getValueType();
+ SDValue IsNaN = DAG.getSetCC(
+ dl,
+ getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), OperandVT),
+ Op, Op, ISD::SETUO);
+
+ // We are rounding binary64/binary128 -> binary32 -> bfloat16. This
+ // can induce double-rounding which may alter the results. We can
+ // correct for this using a trick explained in: Boldo, Sylvie, and
+ // Guillaume Melquiond. "When double rounding is odd." 17th IMACS
+ // World Congress. 2005.
+ EVT F32 = VT.isVector() ? VT.changeVectorElementType(MVT::f32) : MVT::f32;
+ EVT I32 = F32.changeTypeToInteger();
+ Op = expandRoundInexactToOdd(F32, Op, dl, DAG);
+ Op = DAG.getNode(ISD::BITCAST, dl, I32, Op);
+
+ // Conversions should set NaN's quiet bit. This also prevents NaNs from
+ // turning into infinities.
+ SDValue NaN =
+ DAG.getNode(ISD::OR, dl, I32, Op, DAG.getConstant(0x400000, dl, I32));
+
+ // Factor in the contribution of the low 16 bits.
+ SDValue One = DAG.getConstant(1, dl, I32);
+ SDValue Lsb = DAG.getNode(ISD::SRL, dl, I32, Op,
+ DAG.getShiftAmountConstant(16, I32, dl));
+ Lsb = DAG.getNode(ISD::AND, dl, I32, Lsb, One);
+ SDValue RoundingBias =
+ DAG.getNode(ISD::ADD, dl, I32, DAG.getConstant(0x7fff, dl, I32), Lsb);
+ SDValue Add = DAG.getNode(ISD::ADD, dl, I32, Op, RoundingBias);
+
+ // Don't round if we had a NaN, we don't want to turn 0x7fffffff into
+ // 0x80000000.
+ Op = DAG.getSelect(dl, I32, IsNaN, NaN, Add);
+
+ // Now that we have rounded, shift the bits into position.
+ Op = DAG.getNode(ISD::SRL, dl, I32, Op,
+ DAG.getShiftAmountConstant(16, I32, dl));
+ Op = DAG.getNode(ISD::BITCAST, dl, I32, Op);
+ EVT I16 = I32.isVector() ? I32.changeVectorElementType(MVT::i16) : MVT::i16;
+ Op = DAG.getNode(ISD::TRUNCATE, dl, I16, Op);
+ return DAG.getNode(ISD::BITCAST, dl, VT, Op);
+ }
+ return SDValue();
+}
+
+SDValue TargetLowering::expandVectorSplice(SDNode *Node,
+ SelectionDAG &DAG) const {
+ assert(Node->getOpcode() == ISD::VECTOR_SPLICE && "Unexpected opcode!");
+ assert(Node->getValueType(0).isScalableVector() &&
+ "Fixed length vector types expected to use SHUFFLE_VECTOR!");
+
+ EVT VT = Node->getValueType(0);
+ SDValue V1 = Node->getOperand(0);
+ SDValue V2 = Node->getOperand(1);
+ int64_t Imm = cast<ConstantSDNode>(Node->getOperand(2))->getSExtValue();
+ SDLoc DL(Node);
+
+ // Expand through memory thusly:
+ // Alloca CONCAT_VECTORS_TYPES(V1, V2) Ptr
+ // Store V1, Ptr
+ // Store V2, Ptr + sizeof(V1)
+ // If (Imm < 0)
+ // TrailingElts = -Imm
+ // Ptr = Ptr + sizeof(V1) - (TrailingElts * sizeof(VT.Elt))
+ // else
+ // Ptr = Ptr + (Imm * sizeof(VT.Elt))
+ // Res = Load Ptr
+
+ Align Alignment = DAG.getReducedAlign(VT, /*UseABI=*/false);
+
+ EVT MemVT = EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(),
+ VT.getVectorElementCount() * 2);
+ SDValue StackPtr = DAG.CreateStackTemporary(MemVT.getStoreSize(), Alignment);
+ EVT PtrVT = StackPtr.getValueType();
+ auto &MF = DAG.getMachineFunction();
+ auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
+ auto PtrInfo = MachinePointerInfo::getFixedStack(MF, FrameIndex);
+
+ // Store the lo part of CONCAT_VECTORS(V1, V2)
+ SDValue StoreV1 = DAG.getStore(DAG.getEntryNode(), DL, V1, StackPtr, PtrInfo);
+ // Store the hi part of CONCAT_VECTORS(V1, V2)
+ SDValue OffsetToV2 = DAG.getVScale(
+ DL, PtrVT,
+ APInt(PtrVT.getFixedSizeInBits(), VT.getStoreSize().getKnownMinValue()));
+ SDValue StackPtr2 = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, OffsetToV2);
+ SDValue StoreV2 = DAG.getStore(StoreV1, DL, V2, StackPtr2, PtrInfo);
+
+ if (Imm >= 0) {
+ // Load back the required element. getVectorElementPointer takes care of
+ // clamping the index if it's out-of-bounds.
+ StackPtr = getVectorElementPointer(DAG, StackPtr, VT, Node->getOperand(2));
+ // Load the spliced result
+ return DAG.getLoad(VT, DL, StoreV2, StackPtr,
+ MachinePointerInfo::getUnknownStack(MF));
+ }
+
+ uint64_t TrailingElts = -Imm;
+
+ // NOTE: TrailingElts must be clamped so as not to read outside of V1:V2.
+ TypeSize EltByteSize = VT.getVectorElementType().getStoreSize();
+ SDValue TrailingBytes =
+ DAG.getConstant(TrailingElts * EltByteSize, DL, PtrVT);
+
+ if (TrailingElts > VT.getVectorMinNumElements()) {
+ SDValue VLBytes =
+ DAG.getVScale(DL, PtrVT,
+ APInt(PtrVT.getFixedSizeInBits(),
+ VT.getStoreSize().getKnownMinValue()));
+ TrailingBytes = DAG.getNode(ISD::UMIN, DL, PtrVT, TrailingBytes, VLBytes);
+ }
+
+ // Calculate the start address of the spliced result.
+ StackPtr2 = DAG.getNode(ISD::SUB, DL, PtrVT, StackPtr2, TrailingBytes);
+
+ // Load the spliced result
+ return DAG.getLoad(VT, DL, StoreV2, StackPtr2,
+ MachinePointerInfo::getUnknownStack(MF));
+}
+
+SDValue TargetLowering::expandVECTOR_COMPRESS(SDNode *Node,
+ SelectionDAG &DAG) const {
+ SDLoc DL(Node);
+ SDValue Vec = Node->getOperand(0);
+ SDValue Mask = Node->getOperand(1);
+ SDValue Passthru = Node->getOperand(2);
+
+ EVT VecVT = Vec.getValueType();
+ EVT ScalarVT = VecVT.getScalarType();
+ EVT MaskVT = Mask.getValueType();
+ EVT MaskScalarVT = MaskVT.getScalarType();
+
+ // Needs to be handled by targets that have scalable vector types.
+ if (VecVT.isScalableVector())
+ report_fatal_error("Cannot expand masked_compress for scalable vectors.");
+
+ SDValue StackPtr = DAG.CreateStackTemporary(
+ VecVT.getStoreSize(), DAG.getReducedAlign(VecVT, /*UseABI=*/false));
+ int FI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
+ MachinePointerInfo PtrInfo =
+ MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI);
+
+ MVT PositionVT = getVectorIdxTy(DAG.getDataLayout());
+ SDValue Chain = DAG.getEntryNode();
+ SDValue OutPos = DAG.getConstant(0, DL, PositionVT);
+
+ bool HasPassthru = !Passthru.isUndef();
+
+ // If we have a passthru vector, store it on the stack, overwrite the matching
+ // positions and then re-write the last element that was potentially
+ // overwritten even though mask[i] = false.
+ if (HasPassthru)
+ Chain = DAG.getStore(Chain, DL, Passthru, StackPtr, PtrInfo);
+
+ SDValue LastWriteVal;
+ APInt PassthruSplatVal;
+ bool IsSplatPassthru =
+ ISD::isConstantSplatVector(Passthru.getNode(), PassthruSplatVal);
+
+ if (IsSplatPassthru) {
+ // As we do not know which position we wrote to last, we cannot simply
+ // access that index from the passthru vector. So we first check if passthru
+ // is a splat vector, to use any element ...
+ LastWriteVal = DAG.getConstant(PassthruSplatVal, DL, ScalarVT);
+ } else if (HasPassthru) {
+ // ... if it is not a splat vector, we need to get the passthru value at
+ // position = popcount(mask) and re-load it from the stack before it is
+ // overwritten in the loop below.
+ SDValue Popcount = DAG.getNode(
+ ISD::TRUNCATE, DL, MaskVT.changeVectorElementType(MVT::i1), Mask);
+ Popcount = DAG.getNode(ISD::ZERO_EXTEND, DL,
+ MaskVT.changeVectorElementType(ScalarVT), Popcount);
+ Popcount = DAG.getNode(ISD::VECREDUCE_ADD, DL, ScalarVT, Popcount);
+ SDValue LastElmtPtr =
+ getVectorElementPointer(DAG, StackPtr, VecVT, Popcount);
+ LastWriteVal = DAG.getLoad(
+ ScalarVT, DL, Chain, LastElmtPtr,
+ MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()));
+ Chain = LastWriteVal.getValue(1);
+ }
+
+ unsigned NumElms = VecVT.getVectorNumElements();
+ for (unsigned I = 0; I < NumElms; I++) {
+ SDValue Idx = DAG.getVectorIdxConstant(I, DL);
+
+ SDValue ValI = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ScalarVT, Vec, Idx);
+ SDValue OutPtr = getVectorElementPointer(DAG, StackPtr, VecVT, OutPos);
+ Chain = DAG.getStore(
+ Chain, DL, ValI, OutPtr,
+ MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()));
+
+ // Get the mask value and add it to the current output position. This
+ // either increments by 1 if MaskI is true or adds 0 otherwise.
+ // Freeze in case we have poison/undef mask entries.
+ SDValue MaskI = DAG.getFreeze(
+ DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MaskScalarVT, Mask, Idx));
+ MaskI = DAG.getFreeze(MaskI);
+ MaskI = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, MaskI);
+ MaskI = DAG.getNode(ISD::ZERO_EXTEND, DL, PositionVT, MaskI);
+ OutPos = DAG.getNode(ISD::ADD, DL, PositionVT, OutPos, MaskI);
+
+ if (HasPassthru && I == NumElms - 1) {
+ SDValue EndOfVector =
+ DAG.getConstant(VecVT.getVectorNumElements() - 1, DL, PositionVT);
+ SDValue AllLanesSelected =
+ DAG.getSetCC(DL, MVT::i1, OutPos, EndOfVector, ISD::CondCode::SETUGT);
+ OutPos = DAG.getNode(ISD::UMIN, DL, PositionVT, OutPos, EndOfVector);
+ OutPtr = getVectorElementPointer(DAG, StackPtr, VecVT, OutPos);
+
+ // Re-write the last ValI if all lanes were selected. Otherwise,
+ // overwrite the last write it with the passthru value.
+ LastWriteVal =
+ DAG.getSelect(DL, ScalarVT, AllLanesSelected, ValI, LastWriteVal);
+ Chain = DAG.getStore(
+ Chain, DL, LastWriteVal, OutPtr,
+ MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()));
+ }
+ }
+
+ return DAG.getLoad(VecVT, DL, Chain, StackPtr, PtrInfo);
+}
+
+bool TargetLowering::LegalizeSetCCCondCode(SelectionDAG &DAG, EVT VT,
+ SDValue &LHS, SDValue &RHS,
+ SDValue &CC, SDValue Mask,
+ SDValue EVL, bool &NeedInvert,
+ const SDLoc &dl, SDValue &Chain,
+ bool IsSignaling) const {
+ const TargetLowering &TLI = DAG.getTargetLoweringInfo();
+ MVT OpVT = LHS.getSimpleValueType();
+ ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get();
+ NeedInvert = false;
+ assert(!EVL == !Mask && "VP Mask and EVL must either both be set or unset");
+ bool IsNonVP = !EVL;
+ switch (TLI.getCondCodeAction(CCCode, OpVT)) {
+ default:
+ llvm_unreachable("Unknown condition code action!");
+ case TargetLowering::Legal:
+ // Nothing to do.
+ break;
+ case TargetLowering::Expand: {
+ ISD::CondCode InvCC = ISD::getSetCCSwappedOperands(CCCode);
+ if (TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) {
+ std::swap(LHS, RHS);
+ CC = DAG.getCondCode(InvCC);
+ return true;
+ }
+ // Swapping operands didn't work. Try inverting the condition.
+ bool NeedSwap = false;
+ InvCC = getSetCCInverse(CCCode, OpVT);
+ if (!TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) {
+ // If inverting the condition is not enough, try swapping operands
+ // on top of it.
+ InvCC = ISD::getSetCCSwappedOperands(InvCC);
+ NeedSwap = true;
+ }
+ if (TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) {
+ CC = DAG.getCondCode(InvCC);
+ NeedInvert = true;
+ if (NeedSwap)
+ std::swap(LHS, RHS);
+ return true;
+ }
+
+ ISD::CondCode CC1 = ISD::SETCC_INVALID, CC2 = ISD::SETCC_INVALID;
+ unsigned Opc = 0;
+ switch (CCCode) {
+ default:
+ llvm_unreachable("Don't know how to expand this condition!");
+ case ISD::SETUO:
+ if (TLI.isCondCodeLegal(ISD::SETUNE, OpVT)) {
+ CC1 = ISD::SETUNE;
+ CC2 = ISD::SETUNE;
+ Opc = ISD::OR;
+ break;
+ }
+ assert(TLI.isCondCodeLegal(ISD::SETOEQ, OpVT) &&
+ "If SETUE is expanded, SETOEQ or SETUNE must be legal!");
+ NeedInvert = true;
+ [[fallthrough]];
+ case ISD::SETO:
+ assert(TLI.isCondCodeLegal(ISD::SETOEQ, OpVT) &&
+ "If SETO is expanded, SETOEQ must be legal!");
+ CC1 = ISD::SETOEQ;
+ CC2 = ISD::SETOEQ;
+ Opc = ISD::AND;
+ break;
+ case ISD::SETONE:
+ case ISD::SETUEQ:
+ // If the SETUO or SETO CC isn't legal, we might be able to use
+ // SETOGT || SETOLT, inverting the result for SETUEQ. We only need one
+ // of SETOGT/SETOLT to be legal, the other can be emulated by swapping
+ // the operands.
+ CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO;
+ if (!TLI.isCondCodeLegal(CC2, OpVT) &&
+ (TLI.isCondCodeLegal(ISD::SETOGT, OpVT) ||
+ TLI.isCondCodeLegal(ISD::SETOLT, OpVT))) {
+ CC1 = ISD::SETOGT;
+ CC2 = ISD::SETOLT;
+ Opc = ISD::OR;
+ NeedInvert = ((unsigned)CCCode & 0x8U);
+ break;
+ }
+ [[fallthrough]];
+ case ISD::SETOEQ:
+ case ISD::SETOGT:
+ case ISD::SETOGE:
+ case ISD::SETOLT:
+ case ISD::SETOLE:
+ case ISD::SETUNE:
+ case ISD::SETUGT:
+ case ISD::SETUGE:
+ case ISD::SETULT:
+ case ISD::SETULE:
+ // If we are floating point, assign and break, otherwise fall through.
+ if (!OpVT.isInteger()) {
+ // We can use the 4th bit to tell if we are the unordered
+ // or ordered version of the opcode.
+ CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO;
+ Opc = ((unsigned)CCCode & 0x8U) ? ISD::OR : ISD::AND;
+ CC1 = (ISD::CondCode)(((int)CCCode & 0x7) | 0x10);
+ break;
+ }
+ // Fallthrough if we are unsigned integer.
+ [[fallthrough]];
+ case ISD::SETLE:
+ case ISD::SETGT:
+ case ISD::SETGE:
+ case ISD::SETLT:
+ case ISD::SETNE:
+ case ISD::SETEQ:
+ // If all combinations of inverting the condition and swapping operands
+ // didn't work then we have no means to expand the condition.
+ llvm_unreachable("Don't know how to expand this condition!");
+ }
+
+ SDValue SetCC1, SetCC2;
+ if (CCCode != ISD::SETO && CCCode != ISD::SETUO) {
+ // If we aren't the ordered or unorder operation,
+ // then the pattern is (LHS CC1 RHS) Opc (LHS CC2 RHS).
+ if (IsNonVP) {
+ SetCC1 = DAG.getSetCC(dl, VT, LHS, RHS, CC1, Chain, IsSignaling);
+ SetCC2 = DAG.getSetCC(dl, VT, LHS, RHS, CC2, Chain, IsSignaling);
+ } else {
+ SetCC1 = DAG.getSetCCVP(dl, VT, LHS, RHS, CC1, Mask, EVL);
+ SetCC2 = DAG.getSetCCVP(dl, VT, LHS, RHS, CC2, Mask, EVL);
+ }
+ } else {
+ // Otherwise, the pattern is (LHS CC1 LHS) Opc (RHS CC2 RHS)
+ if (IsNonVP) {
+ SetCC1 = DAG.getSetCC(dl, VT, LHS, LHS, CC1, Chain, IsSignaling);
+ SetCC2 = DAG.getSetCC(dl, VT, RHS, RHS, CC2, Chain, IsSignaling);
+ } else {
+ SetCC1 = DAG.getSetCCVP(dl, VT, LHS, LHS, CC1, Mask, EVL);
+ SetCC2 = DAG.getSetCCVP(dl, VT, RHS, RHS, CC2, Mask, EVL);
+ }
+ }
+ if (Chain)
+ Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, SetCC1.getValue(1),
+ SetCC2.getValue(1));
+ if (IsNonVP)
+ LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2);
+ else {
+ // Transform the binary opcode to the VP equivalent.
+ assert((Opc == ISD::OR || Opc == ISD::AND) && "Unexpected opcode");
+ Opc = Opc == ISD::OR ? ISD::VP_OR : ISD::VP_AND;
+ LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2, Mask, EVL);
+ }
+ RHS = SDValue();
+ CC = SDValue();
+ return true;
+ }
+ }
+ return false;
+}