diff options
Diffstat (limited to 'contrib/llvm-project/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp')
| -rw-r--r-- | contrib/llvm-project/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp | 11687 |
1 files changed, 11687 insertions, 0 deletions
diff --git a/contrib/llvm-project/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp b/contrib/llvm-project/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp new file mode 100644 index 000000000000..140c97ccd90b --- /dev/null +++ b/contrib/llvm-project/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp @@ -0,0 +1,11687 @@ +//===-- TargetLowering.cpp - Implement the TargetLowering class -----------===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// This implements the TargetLowering class. +// +//===----------------------------------------------------------------------===// + +#include "llvm/CodeGen/TargetLowering.h" +#include "llvm/ADT/STLExtras.h" +#include "llvm/Analysis/VectorUtils.h" +#include "llvm/CodeGen/CallingConvLower.h" +#include "llvm/CodeGen/CodeGenCommonISel.h" +#include "llvm/CodeGen/MachineFrameInfo.h" +#include "llvm/CodeGen/MachineFunction.h" +#include "llvm/CodeGen/MachineJumpTableInfo.h" +#include "llvm/CodeGen/MachineModuleInfoImpls.h" +#include "llvm/CodeGen/MachineRegisterInfo.h" +#include "llvm/CodeGen/SelectionDAG.h" +#include "llvm/CodeGen/TargetRegisterInfo.h" +#include "llvm/IR/DataLayout.h" +#include "llvm/IR/DerivedTypes.h" +#include "llvm/IR/GlobalVariable.h" +#include "llvm/IR/LLVMContext.h" +#include "llvm/MC/MCAsmInfo.h" +#include "llvm/MC/MCExpr.h" +#include "llvm/Support/DivisionByConstantInfo.h" +#include "llvm/Support/ErrorHandling.h" +#include "llvm/Support/KnownBits.h" +#include "llvm/Support/MathExtras.h" +#include "llvm/Target/TargetMachine.h" +#include <cctype> +using namespace llvm; + +/// NOTE: The TargetMachine owns TLOF. +TargetLowering::TargetLowering(const TargetMachine &tm) + : TargetLoweringBase(tm) {} + +const char *TargetLowering::getTargetNodeName(unsigned Opcode) const { + return nullptr; +} + +bool TargetLowering::isPositionIndependent() const { + return getTargetMachine().isPositionIndependent(); +} + +/// Check whether a given call node is in tail position within its function. If +/// so, it sets Chain to the input chain of the tail call. +bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node, + SDValue &Chain) const { + const Function &F = DAG.getMachineFunction().getFunction(); + + // First, check if tail calls have been disabled in this function. + if (F.getFnAttribute("disable-tail-calls").getValueAsBool()) + return false; + + // Conservatively require the attributes of the call to match those of + // the return. Ignore following attributes because they don't affect the + // call sequence. + AttrBuilder CallerAttrs(F.getContext(), F.getAttributes().getRetAttrs()); + for (const auto &Attr : + {Attribute::Alignment, Attribute::Dereferenceable, + Attribute::DereferenceableOrNull, Attribute::NoAlias, + Attribute::NonNull, Attribute::NoUndef, Attribute::Range}) + CallerAttrs.removeAttribute(Attr); + + if (CallerAttrs.hasAttributes()) + return false; + + // It's not safe to eliminate the sign / zero extension of the return value. + if (CallerAttrs.contains(Attribute::ZExt) || + CallerAttrs.contains(Attribute::SExt)) + return false; + + // Check if the only use is a function return node. + return isUsedByReturnOnly(Node, Chain); +} + +bool TargetLowering::parametersInCSRMatch(const MachineRegisterInfo &MRI, + const uint32_t *CallerPreservedMask, + const SmallVectorImpl<CCValAssign> &ArgLocs, + const SmallVectorImpl<SDValue> &OutVals) const { + for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { + const CCValAssign &ArgLoc = ArgLocs[I]; + if (!ArgLoc.isRegLoc()) + continue; + MCRegister Reg = ArgLoc.getLocReg(); + // Only look at callee saved registers. + if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg)) + continue; + // Check that we pass the value used for the caller. + // (We look for a CopyFromReg reading a virtual register that is used + // for the function live-in value of register Reg) + SDValue Value = OutVals[I]; + if (Value->getOpcode() == ISD::AssertZext) + Value = Value.getOperand(0); + if (Value->getOpcode() != ISD::CopyFromReg) + return false; + Register ArgReg = cast<RegisterSDNode>(Value->getOperand(1))->getReg(); + if (MRI.getLiveInPhysReg(ArgReg) != Reg) + return false; + } + return true; +} + +/// Set CallLoweringInfo attribute flags based on a call instruction +/// and called function attributes. +void TargetLoweringBase::ArgListEntry::setAttributes(const CallBase *Call, + unsigned ArgIdx) { + IsSExt = Call->paramHasAttr(ArgIdx, Attribute::SExt); + IsZExt = Call->paramHasAttr(ArgIdx, Attribute::ZExt); + IsInReg = Call->paramHasAttr(ArgIdx, Attribute::InReg); + IsSRet = Call->paramHasAttr(ArgIdx, Attribute::StructRet); + IsNest = Call->paramHasAttr(ArgIdx, Attribute::Nest); + IsByVal = Call->paramHasAttr(ArgIdx, Attribute::ByVal); + IsPreallocated = Call->paramHasAttr(ArgIdx, Attribute::Preallocated); + IsInAlloca = Call->paramHasAttr(ArgIdx, Attribute::InAlloca); + IsReturned = Call->paramHasAttr(ArgIdx, Attribute::Returned); + IsSwiftSelf = Call->paramHasAttr(ArgIdx, Attribute::SwiftSelf); + IsSwiftAsync = Call->paramHasAttr(ArgIdx, Attribute::SwiftAsync); + IsSwiftError = Call->paramHasAttr(ArgIdx, Attribute::SwiftError); + Alignment = Call->getParamStackAlign(ArgIdx); + IndirectType = nullptr; + assert(IsByVal + IsPreallocated + IsInAlloca + IsSRet <= 1 && + "multiple ABI attributes?"); + if (IsByVal) { + IndirectType = Call->getParamByValType(ArgIdx); + if (!Alignment) + Alignment = Call->getParamAlign(ArgIdx); + } + if (IsPreallocated) + IndirectType = Call->getParamPreallocatedType(ArgIdx); + if (IsInAlloca) + IndirectType = Call->getParamInAllocaType(ArgIdx); + if (IsSRet) + IndirectType = Call->getParamStructRetType(ArgIdx); +} + +/// Generate a libcall taking the given operands as arguments and returning a +/// result of type RetVT. +std::pair<SDValue, SDValue> +TargetLowering::makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT, + ArrayRef<SDValue> Ops, + MakeLibCallOptions CallOptions, + const SDLoc &dl, + SDValue InChain) const { + if (!InChain) + InChain = DAG.getEntryNode(); + + TargetLowering::ArgListTy Args; + Args.reserve(Ops.size()); + + TargetLowering::ArgListEntry Entry; + for (unsigned i = 0; i < Ops.size(); ++i) { + SDValue NewOp = Ops[i]; + Entry.Node = NewOp; + Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext()); + Entry.IsSExt = shouldSignExtendTypeInLibCall(NewOp.getValueType(), + CallOptions.IsSExt); + Entry.IsZExt = !Entry.IsSExt; + + if (CallOptions.IsSoften && + !shouldExtendTypeInLibCall(CallOptions.OpsVTBeforeSoften[i])) { + Entry.IsSExt = Entry.IsZExt = false; + } + Args.push_back(Entry); + } + + if (LC == RTLIB::UNKNOWN_LIBCALL) + report_fatal_error("Unsupported library call operation!"); + SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC), + getPointerTy(DAG.getDataLayout())); + + Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); + TargetLowering::CallLoweringInfo CLI(DAG); + bool signExtend = shouldSignExtendTypeInLibCall(RetVT, CallOptions.IsSExt); + bool zeroExtend = !signExtend; + + if (CallOptions.IsSoften && + !shouldExtendTypeInLibCall(CallOptions.RetVTBeforeSoften)) { + signExtend = zeroExtend = false; + } + + CLI.setDebugLoc(dl) + .setChain(InChain) + .setLibCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args)) + .setNoReturn(CallOptions.DoesNotReturn) + .setDiscardResult(!CallOptions.IsReturnValueUsed) + .setIsPostTypeLegalization(CallOptions.IsPostTypeLegalization) + .setSExtResult(signExtend) + .setZExtResult(zeroExtend); + return LowerCallTo(CLI); +} + +bool TargetLowering::findOptimalMemOpLowering( + std::vector<EVT> &MemOps, unsigned Limit, const MemOp &Op, unsigned DstAS, + unsigned SrcAS, const AttributeList &FuncAttributes) const { + if (Limit != ~unsigned(0) && Op.isMemcpyWithFixedDstAlign() && + Op.getSrcAlign() < Op.getDstAlign()) + return false; + + EVT VT = getOptimalMemOpType(Op, FuncAttributes); + + if (VT == MVT::Other) { + // Use the largest integer type whose alignment constraints are satisfied. + // We only need to check DstAlign here as SrcAlign is always greater or + // equal to DstAlign (or zero). + VT = MVT::LAST_INTEGER_VALUETYPE; + if (Op.isFixedDstAlign()) + while (Op.getDstAlign() < (VT.getSizeInBits() / 8) && + !allowsMisalignedMemoryAccesses(VT, DstAS, Op.getDstAlign())) + VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1); + assert(VT.isInteger()); + + // Find the largest legal integer type. + MVT LVT = MVT::LAST_INTEGER_VALUETYPE; + while (!isTypeLegal(LVT)) + LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1); + assert(LVT.isInteger()); + + // If the type we've chosen is larger than the largest legal integer type + // then use that instead. + if (VT.bitsGT(LVT)) + VT = LVT; + } + + unsigned NumMemOps = 0; + uint64_t Size = Op.size(); + while (Size) { + unsigned VTSize = VT.getSizeInBits() / 8; + while (VTSize > Size) { + // For now, only use non-vector load / store's for the left-over pieces. + EVT NewVT = VT; + unsigned NewVTSize; + + bool Found = false; + if (VT.isVector() || VT.isFloatingPoint()) { + NewVT = (VT.getSizeInBits() > 64) ? MVT::i64 : MVT::i32; + if (isOperationLegalOrCustom(ISD::STORE, NewVT) && + isSafeMemOpType(NewVT.getSimpleVT())) + Found = true; + else if (NewVT == MVT::i64 && + isOperationLegalOrCustom(ISD::STORE, MVT::f64) && + isSafeMemOpType(MVT::f64)) { + // i64 is usually not legal on 32-bit targets, but f64 may be. + NewVT = MVT::f64; + Found = true; + } + } + + if (!Found) { + do { + NewVT = (MVT::SimpleValueType)(NewVT.getSimpleVT().SimpleTy - 1); + if (NewVT == MVT::i8) + break; + } while (!isSafeMemOpType(NewVT.getSimpleVT())); + } + NewVTSize = NewVT.getSizeInBits() / 8; + + // If the new VT cannot cover all of the remaining bits, then consider + // issuing a (or a pair of) unaligned and overlapping load / store. + unsigned Fast; + if (NumMemOps && Op.allowOverlap() && NewVTSize < Size && + allowsMisalignedMemoryAccesses( + VT, DstAS, Op.isFixedDstAlign() ? Op.getDstAlign() : Align(1), + MachineMemOperand::MONone, &Fast) && + Fast) + VTSize = Size; + else { + VT = NewVT; + VTSize = NewVTSize; + } + } + + if (++NumMemOps > Limit) + return false; + + MemOps.push_back(VT); + Size -= VTSize; + } + + return true; +} + +/// Soften the operands of a comparison. This code is shared among BR_CC, +/// SELECT_CC, and SETCC handlers. +void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT, + SDValue &NewLHS, SDValue &NewRHS, + ISD::CondCode &CCCode, + const SDLoc &dl, const SDValue OldLHS, + const SDValue OldRHS) const { + SDValue Chain; + return softenSetCCOperands(DAG, VT, NewLHS, NewRHS, CCCode, dl, OldLHS, + OldRHS, Chain); +} + +void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT, + SDValue &NewLHS, SDValue &NewRHS, + ISD::CondCode &CCCode, + const SDLoc &dl, const SDValue OldLHS, + const SDValue OldRHS, + SDValue &Chain, + bool IsSignaling) const { + // FIXME: Currently we cannot really respect all IEEE predicates due to libgcc + // not supporting it. We can update this code when libgcc provides such + // functions. + + assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128) + && "Unsupported setcc type!"); + + // Expand into one or more soft-fp libcall(s). + RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL; + bool ShouldInvertCC = false; + switch (CCCode) { + case ISD::SETEQ: + case ISD::SETOEQ: + LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : + (VT == MVT::f64) ? RTLIB::OEQ_F64 : + (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128; + break; + case ISD::SETNE: + case ISD::SETUNE: + LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 : + (VT == MVT::f64) ? RTLIB::UNE_F64 : + (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128; + break; + case ISD::SETGE: + case ISD::SETOGE: + LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : + (VT == MVT::f64) ? RTLIB::OGE_F64 : + (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128; + break; + case ISD::SETLT: + case ISD::SETOLT: + LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : + (VT == MVT::f64) ? RTLIB::OLT_F64 : + (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; + break; + case ISD::SETLE: + case ISD::SETOLE: + LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : + (VT == MVT::f64) ? RTLIB::OLE_F64 : + (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128; + break; + case ISD::SETGT: + case ISD::SETOGT: + LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : + (VT == MVT::f64) ? RTLIB::OGT_F64 : + (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; + break; + case ISD::SETO: + ShouldInvertCC = true; + [[fallthrough]]; + case ISD::SETUO: + LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : + (VT == MVT::f64) ? RTLIB::UO_F64 : + (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128; + break; + case ISD::SETONE: + // SETONE = O && UNE + ShouldInvertCC = true; + [[fallthrough]]; + case ISD::SETUEQ: + LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : + (VT == MVT::f64) ? RTLIB::UO_F64 : + (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128; + LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : + (VT == MVT::f64) ? RTLIB::OEQ_F64 : + (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128; + break; + default: + // Invert CC for unordered comparisons + ShouldInvertCC = true; + switch (CCCode) { + case ISD::SETULT: + LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : + (VT == MVT::f64) ? RTLIB::OGE_F64 : + (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128; + break; + case ISD::SETULE: + LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : + (VT == MVT::f64) ? RTLIB::OGT_F64 : + (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; + break; + case ISD::SETUGT: + LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : + (VT == MVT::f64) ? RTLIB::OLE_F64 : + (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128; + break; + case ISD::SETUGE: + LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : + (VT == MVT::f64) ? RTLIB::OLT_F64 : + (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; + break; + default: llvm_unreachable("Do not know how to soften this setcc!"); + } + } + + // Use the target specific return value for comparison lib calls. + EVT RetVT = getCmpLibcallReturnType(); + SDValue Ops[2] = {NewLHS, NewRHS}; + TargetLowering::MakeLibCallOptions CallOptions; + EVT OpsVT[2] = { OldLHS.getValueType(), + OldRHS.getValueType() }; + CallOptions.setTypeListBeforeSoften(OpsVT, RetVT, true); + auto Call = makeLibCall(DAG, LC1, RetVT, Ops, CallOptions, dl, Chain); + NewLHS = Call.first; + NewRHS = DAG.getConstant(0, dl, RetVT); + + CCCode = getCmpLibcallCC(LC1); + if (ShouldInvertCC) { + assert(RetVT.isInteger()); + CCCode = getSetCCInverse(CCCode, RetVT); + } + + if (LC2 == RTLIB::UNKNOWN_LIBCALL) { + // Update Chain. + Chain = Call.second; + } else { + EVT SetCCVT = + getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT); + SDValue Tmp = DAG.getSetCC(dl, SetCCVT, NewLHS, NewRHS, CCCode); + auto Call2 = makeLibCall(DAG, LC2, RetVT, Ops, CallOptions, dl, Chain); + CCCode = getCmpLibcallCC(LC2); + if (ShouldInvertCC) + CCCode = getSetCCInverse(CCCode, RetVT); + NewLHS = DAG.getSetCC(dl, SetCCVT, Call2.first, NewRHS, CCCode); + if (Chain) + Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Call.second, + Call2.second); + NewLHS = DAG.getNode(ShouldInvertCC ? ISD::AND : ISD::OR, dl, + Tmp.getValueType(), Tmp, NewLHS); + NewRHS = SDValue(); + } +} + +/// Return the entry encoding for a jump table in the current function. The +/// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum. +unsigned TargetLowering::getJumpTableEncoding() const { + // In non-pic modes, just use the address of a block. + if (!isPositionIndependent()) + return MachineJumpTableInfo::EK_BlockAddress; + + // In PIC mode, if the target supports a GPRel32 directive, use it. + if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr) + return MachineJumpTableInfo::EK_GPRel32BlockAddress; + + // Otherwise, use a label difference. + return MachineJumpTableInfo::EK_LabelDifference32; +} + +SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table, + SelectionDAG &DAG) const { + // If our PIC model is GP relative, use the global offset table as the base. + unsigned JTEncoding = getJumpTableEncoding(); + + if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) || + (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress)) + return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(DAG.getDataLayout())); + + return Table; +} + +/// This returns the relocation base for the given PIC jumptable, the same as +/// getPICJumpTableRelocBase, but as an MCExpr. +const MCExpr * +TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF, + unsigned JTI,MCContext &Ctx) const{ + // The normal PIC reloc base is the label at the start of the jump table. + return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx); +} + +SDValue TargetLowering::expandIndirectJTBranch(const SDLoc &dl, SDValue Value, + SDValue Addr, int JTI, + SelectionDAG &DAG) const { + SDValue Chain = Value; + // Jump table debug info is only needed if CodeView is enabled. + if (DAG.getTarget().getTargetTriple().isOSBinFormatCOFF()) { + Chain = DAG.getJumpTableDebugInfo(JTI, Chain, dl); + } + return DAG.getNode(ISD::BRIND, dl, MVT::Other, Chain, Addr); +} + +bool +TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { + const TargetMachine &TM = getTargetMachine(); + const GlobalValue *GV = GA->getGlobal(); + + // If the address is not even local to this DSO we will have to load it from + // a got and then add the offset. + if (!TM.shouldAssumeDSOLocal(GV)) + return false; + + // If the code is position independent we will have to add a base register. + if (isPositionIndependent()) + return false; + + // Otherwise we can do it. + return true; +} + +//===----------------------------------------------------------------------===// +// Optimization Methods +//===----------------------------------------------------------------------===// + +/// If the specified instruction has a constant integer operand and there are +/// bits set in that constant that are not demanded, then clear those bits and +/// return true. +bool TargetLowering::ShrinkDemandedConstant(SDValue Op, + const APInt &DemandedBits, + const APInt &DemandedElts, + TargetLoweringOpt &TLO) const { + SDLoc DL(Op); + unsigned Opcode = Op.getOpcode(); + + // Early-out if we've ended up calling an undemanded node, leave this to + // constant folding. + if (DemandedBits.isZero() || DemandedElts.isZero()) + return false; + + // Do target-specific constant optimization. + if (targetShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) + return TLO.New.getNode(); + + // FIXME: ISD::SELECT, ISD::SELECT_CC + switch (Opcode) { + default: + break; + case ISD::XOR: + case ISD::AND: + case ISD::OR: { + auto *Op1C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); + if (!Op1C || Op1C->isOpaque()) + return false; + + // If this is a 'not' op, don't touch it because that's a canonical form. + const APInt &C = Op1C->getAPIntValue(); + if (Opcode == ISD::XOR && DemandedBits.isSubsetOf(C)) + return false; + + if (!C.isSubsetOf(DemandedBits)) { + EVT VT = Op.getValueType(); + SDValue NewC = TLO.DAG.getConstant(DemandedBits & C, DL, VT); + SDValue NewOp = TLO.DAG.getNode(Opcode, DL, VT, Op.getOperand(0), NewC, + Op->getFlags()); + return TLO.CombineTo(Op, NewOp); + } + + break; + } + } + + return false; +} + +bool TargetLowering::ShrinkDemandedConstant(SDValue Op, + const APInt &DemandedBits, + TargetLoweringOpt &TLO) const { + EVT VT = Op.getValueType(); + APInt DemandedElts = VT.isVector() + ? APInt::getAllOnes(VT.getVectorNumElements()) + : APInt(1, 1); + return ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO); +} + +/// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free. +/// This uses isTruncateFree/isZExtFree and ANY_EXTEND for the widening cast, +/// but it could be generalized for targets with other types of implicit +/// widening casts. +bool TargetLowering::ShrinkDemandedOp(SDValue Op, unsigned BitWidth, + const APInt &DemandedBits, + TargetLoweringOpt &TLO) const { + assert(Op.getNumOperands() == 2 && + "ShrinkDemandedOp only supports binary operators!"); + assert(Op.getNode()->getNumValues() == 1 && + "ShrinkDemandedOp only supports nodes with one result!"); + + EVT VT = Op.getValueType(); + SelectionDAG &DAG = TLO.DAG; + SDLoc dl(Op); + + // Early return, as this function cannot handle vector types. + if (VT.isVector()) + return false; + + assert(Op.getOperand(0).getValueType().getScalarSizeInBits() == BitWidth && + Op.getOperand(1).getValueType().getScalarSizeInBits() == BitWidth && + "ShrinkDemandedOp only supports operands that have the same size!"); + + // Don't do this if the node has another user, which may require the + // full value. + if (!Op.getNode()->hasOneUse()) + return false; + + // Search for the smallest integer type with free casts to and from + // Op's type. For expedience, just check power-of-2 integer types. + const TargetLowering &TLI = DAG.getTargetLoweringInfo(); + unsigned DemandedSize = DemandedBits.getActiveBits(); + for (unsigned SmallVTBits = llvm::bit_ceil(DemandedSize); + SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) { + EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits); + if (TLI.isTruncateFree(VT, SmallVT) && TLI.isZExtFree(SmallVT, VT)) { + // We found a type with free casts. + SDValue X = DAG.getNode( + Op.getOpcode(), dl, SmallVT, + DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(0)), + DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(1))); + assert(DemandedSize <= SmallVTBits && "Narrowed below demanded bits?"); + SDValue Z = DAG.getNode(ISD::ANY_EXTEND, dl, VT, X); + return TLO.CombineTo(Op, Z); + } + } + return false; +} + +bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, + DAGCombinerInfo &DCI) const { + SelectionDAG &DAG = DCI.DAG; + TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), + !DCI.isBeforeLegalizeOps()); + KnownBits Known; + + bool Simplified = SimplifyDemandedBits(Op, DemandedBits, Known, TLO); + if (Simplified) { + DCI.AddToWorklist(Op.getNode()); + DCI.CommitTargetLoweringOpt(TLO); + } + return Simplified; +} + +bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, + const APInt &DemandedElts, + DAGCombinerInfo &DCI) const { + SelectionDAG &DAG = DCI.DAG; + TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), + !DCI.isBeforeLegalizeOps()); + KnownBits Known; + + bool Simplified = + SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO); + if (Simplified) { + DCI.AddToWorklist(Op.getNode()); + DCI.CommitTargetLoweringOpt(TLO); + } + return Simplified; +} + +bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, + KnownBits &Known, + TargetLoweringOpt &TLO, + unsigned Depth, + bool AssumeSingleUse) const { + EVT VT = Op.getValueType(); + + // Since the number of lanes in a scalable vector is unknown at compile time, + // we track one bit which is implicitly broadcast to all lanes. This means + // that all lanes in a scalable vector are considered demanded. + APInt DemandedElts = VT.isFixedLengthVector() + ? APInt::getAllOnes(VT.getVectorNumElements()) + : APInt(1, 1); + return SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO, Depth, + AssumeSingleUse); +} + +// TODO: Under what circumstances can we create nodes? Constant folding? +SDValue TargetLowering::SimplifyMultipleUseDemandedBits( + SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, + SelectionDAG &DAG, unsigned Depth) const { + EVT VT = Op.getValueType(); + + // Limit search depth. + if (Depth >= SelectionDAG::MaxRecursionDepth) + return SDValue(); + + // Ignore UNDEFs. + if (Op.isUndef()) + return SDValue(); + + // Not demanding any bits/elts from Op. + if (DemandedBits == 0 || DemandedElts == 0) + return DAG.getUNDEF(VT); + + bool IsLE = DAG.getDataLayout().isLittleEndian(); + unsigned NumElts = DemandedElts.getBitWidth(); + unsigned BitWidth = DemandedBits.getBitWidth(); + KnownBits LHSKnown, RHSKnown; + switch (Op.getOpcode()) { + case ISD::BITCAST: { + if (VT.isScalableVector()) + return SDValue(); + + SDValue Src = peekThroughBitcasts(Op.getOperand(0)); + EVT SrcVT = Src.getValueType(); + EVT DstVT = Op.getValueType(); + if (SrcVT == DstVT) + return Src; + + unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits(); + unsigned NumDstEltBits = DstVT.getScalarSizeInBits(); + if (NumSrcEltBits == NumDstEltBits) + if (SDValue V = SimplifyMultipleUseDemandedBits( + Src, DemandedBits, DemandedElts, DAG, Depth + 1)) + return DAG.getBitcast(DstVT, V); + + if (SrcVT.isVector() && (NumDstEltBits % NumSrcEltBits) == 0) { + unsigned Scale = NumDstEltBits / NumSrcEltBits; + unsigned NumSrcElts = SrcVT.getVectorNumElements(); + APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits); + APInt DemandedSrcElts = APInt::getZero(NumSrcElts); + for (unsigned i = 0; i != Scale; ++i) { + unsigned EltOffset = IsLE ? i : (Scale - 1 - i); + unsigned BitOffset = EltOffset * NumSrcEltBits; + APInt Sub = DemandedBits.extractBits(NumSrcEltBits, BitOffset); + if (!Sub.isZero()) { + DemandedSrcBits |= Sub; + for (unsigned j = 0; j != NumElts; ++j) + if (DemandedElts[j]) + DemandedSrcElts.setBit((j * Scale) + i); + } + } + + if (SDValue V = SimplifyMultipleUseDemandedBits( + Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1)) + return DAG.getBitcast(DstVT, V); + } + + // TODO - bigendian once we have test coverage. + if (IsLE && (NumSrcEltBits % NumDstEltBits) == 0) { + unsigned Scale = NumSrcEltBits / NumDstEltBits; + unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; + APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits); + APInt DemandedSrcElts = APInt::getZero(NumSrcElts); + for (unsigned i = 0; i != NumElts; ++i) + if (DemandedElts[i]) { + unsigned Offset = (i % Scale) * NumDstEltBits; + DemandedSrcBits.insertBits(DemandedBits, Offset); + DemandedSrcElts.setBit(i / Scale); + } + + if (SDValue V = SimplifyMultipleUseDemandedBits( + Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1)) + return DAG.getBitcast(DstVT, V); + } + + break; + } + case ISD::FREEZE: { + SDValue N0 = Op.getOperand(0); + if (DAG.isGuaranteedNotToBeUndefOrPoison(N0, DemandedElts, + /*PoisonOnly=*/false)) + return N0; + break; + } + case ISD::AND: { + LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); + RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); + + // If all of the demanded bits are known 1 on one side, return the other. + // These bits cannot contribute to the result of the 'and' in this + // context. + if (DemandedBits.isSubsetOf(LHSKnown.Zero | RHSKnown.One)) + return Op.getOperand(0); + if (DemandedBits.isSubsetOf(RHSKnown.Zero | LHSKnown.One)) + return Op.getOperand(1); + break; + } + case ISD::OR: { + LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); + RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); + + // If all of the demanded bits are known zero on one side, return the + // other. These bits cannot contribute to the result of the 'or' in this + // context. + if (DemandedBits.isSubsetOf(LHSKnown.One | RHSKnown.Zero)) + return Op.getOperand(0); + if (DemandedBits.isSubsetOf(RHSKnown.One | LHSKnown.Zero)) + return Op.getOperand(1); + break; + } + case ISD::XOR: { + LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); + RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); + + // If all of the demanded bits are known zero on one side, return the + // other. + if (DemandedBits.isSubsetOf(RHSKnown.Zero)) + return Op.getOperand(0); + if (DemandedBits.isSubsetOf(LHSKnown.Zero)) + return Op.getOperand(1); + break; + } + case ISD::SHL: { + // If we are only demanding sign bits then we can use the shift source + // directly. + if (std::optional<uint64_t> MaxSA = + DAG.getValidMaximumShiftAmount(Op, DemandedElts, Depth + 1)) { + SDValue Op0 = Op.getOperand(0); + unsigned ShAmt = *MaxSA; + unsigned NumSignBits = + DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1); + unsigned UpperDemandedBits = BitWidth - DemandedBits.countr_zero(); + if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits)) + return Op0; + } + break; + } + case ISD::SETCC: { + SDValue Op0 = Op.getOperand(0); + SDValue Op1 = Op.getOperand(1); + ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); + // If (1) we only need the sign-bit, (2) the setcc operands are the same + // width as the setcc result, and (3) the result of a setcc conforms to 0 or + // -1, we may be able to bypass the setcc. + if (DemandedBits.isSignMask() && + Op0.getScalarValueSizeInBits() == BitWidth && + getBooleanContents(Op0.getValueType()) == + BooleanContent::ZeroOrNegativeOneBooleanContent) { + // If we're testing X < 0, then this compare isn't needed - just use X! + // FIXME: We're limiting to integer types here, but this should also work + // if we don't care about FP signed-zero. The use of SETLT with FP means + // that we don't care about NaNs. + if (CC == ISD::SETLT && Op1.getValueType().isInteger() && + (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode()))) + return Op0; + } + break; + } + case ISD::SIGN_EXTEND_INREG: { + // If none of the extended bits are demanded, eliminate the sextinreg. + SDValue Op0 = Op.getOperand(0); + EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); + unsigned ExBits = ExVT.getScalarSizeInBits(); + if (DemandedBits.getActiveBits() <= ExBits && + shouldRemoveRedundantExtend(Op)) + return Op0; + // If the input is already sign extended, just drop the extension. + unsigned NumSignBits = DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1); + if (NumSignBits >= (BitWidth - ExBits + 1)) + return Op0; + break; + } + case ISD::ANY_EXTEND_VECTOR_INREG: + case ISD::SIGN_EXTEND_VECTOR_INREG: + case ISD::ZERO_EXTEND_VECTOR_INREG: { + if (VT.isScalableVector()) + return SDValue(); + + // If we only want the lowest element and none of extended bits, then we can + // return the bitcasted source vector. + SDValue Src = Op.getOperand(0); + EVT SrcVT = Src.getValueType(); + EVT DstVT = Op.getValueType(); + if (IsLE && DemandedElts == 1 && + DstVT.getSizeInBits() == SrcVT.getSizeInBits() && + DemandedBits.getActiveBits() <= SrcVT.getScalarSizeInBits()) { + return DAG.getBitcast(DstVT, Src); + } + break; + } + case ISD::INSERT_VECTOR_ELT: { + if (VT.isScalableVector()) + return SDValue(); + + // If we don't demand the inserted element, return the base vector. + SDValue Vec = Op.getOperand(0); + auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); + EVT VecVT = Vec.getValueType(); + if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements()) && + !DemandedElts[CIdx->getZExtValue()]) + return Vec; + break; + } + case ISD::INSERT_SUBVECTOR: { + if (VT.isScalableVector()) + return SDValue(); + + SDValue Vec = Op.getOperand(0); + SDValue Sub = Op.getOperand(1); + uint64_t Idx = Op.getConstantOperandVal(2); + unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); + APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); + // If we don't demand the inserted subvector, return the base vector. + if (DemandedSubElts == 0) + return Vec; + break; + } + case ISD::VECTOR_SHUFFLE: { + assert(!VT.isScalableVector()); + ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); + + // If all the demanded elts are from one operand and are inline, + // then we can use the operand directly. + bool AllUndef = true, IdentityLHS = true, IdentityRHS = true; + for (unsigned i = 0; i != NumElts; ++i) { + int M = ShuffleMask[i]; + if (M < 0 || !DemandedElts[i]) + continue; + AllUndef = false; + IdentityLHS &= (M == (int)i); + IdentityRHS &= ((M - NumElts) == i); + } + + if (AllUndef) + return DAG.getUNDEF(Op.getValueType()); + if (IdentityLHS) + return Op.getOperand(0); + if (IdentityRHS) + return Op.getOperand(1); + break; + } + default: + // TODO: Probably okay to remove after audit; here to reduce change size + // in initial enablement patch for scalable vectors + if (VT.isScalableVector()) + return SDValue(); + + if (Op.getOpcode() >= ISD::BUILTIN_OP_END) + if (SDValue V = SimplifyMultipleUseDemandedBitsForTargetNode( + Op, DemandedBits, DemandedElts, DAG, Depth)) + return V; + break; + } + return SDValue(); +} + +SDValue TargetLowering::SimplifyMultipleUseDemandedBits( + SDValue Op, const APInt &DemandedBits, SelectionDAG &DAG, + unsigned Depth) const { + EVT VT = Op.getValueType(); + // Since the number of lanes in a scalable vector is unknown at compile time, + // we track one bit which is implicitly broadcast to all lanes. This means + // that all lanes in a scalable vector are considered demanded. + APInt DemandedElts = VT.isFixedLengthVector() + ? APInt::getAllOnes(VT.getVectorNumElements()) + : APInt(1, 1); + return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG, + Depth); +} + +SDValue TargetLowering::SimplifyMultipleUseDemandedVectorElts( + SDValue Op, const APInt &DemandedElts, SelectionDAG &DAG, + unsigned Depth) const { + APInt DemandedBits = APInt::getAllOnes(Op.getScalarValueSizeInBits()); + return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG, + Depth); +} + +// Attempt to form ext(avgfloor(A, B)) from shr(add(ext(A), ext(B)), 1). +// or to form ext(avgceil(A, B)) from shr(add(ext(A), ext(B), 1), 1). +static SDValue combineShiftToAVG(SDValue Op, + TargetLowering::TargetLoweringOpt &TLO, + const TargetLowering &TLI, + const APInt &DemandedBits, + const APInt &DemandedElts, unsigned Depth) { + assert((Op.getOpcode() == ISD::SRL || Op.getOpcode() == ISD::SRA) && + "SRL or SRA node is required here!"); + // Is the right shift using an immediate value of 1? + ConstantSDNode *N1C = isConstOrConstSplat(Op.getOperand(1), DemandedElts); + if (!N1C || !N1C->isOne()) + return SDValue(); + + // We are looking for an avgfloor + // add(ext, ext) + // or one of these as a avgceil + // add(add(ext, ext), 1) + // add(add(ext, 1), ext) + // add(ext, add(ext, 1)) + SDValue Add = Op.getOperand(0); + if (Add.getOpcode() != ISD::ADD) + return SDValue(); + + SDValue ExtOpA = Add.getOperand(0); + SDValue ExtOpB = Add.getOperand(1); + SDValue Add2; + auto MatchOperands = [&](SDValue Op1, SDValue Op2, SDValue Op3, SDValue A) { + ConstantSDNode *ConstOp; + if ((ConstOp = isConstOrConstSplat(Op2, DemandedElts)) && + ConstOp->isOne()) { + ExtOpA = Op1; + ExtOpB = Op3; + Add2 = A; + return true; + } + if ((ConstOp = isConstOrConstSplat(Op3, DemandedElts)) && + ConstOp->isOne()) { + ExtOpA = Op1; + ExtOpB = Op2; + Add2 = A; + return true; + } + return false; + }; + bool IsCeil = + (ExtOpA.getOpcode() == ISD::ADD && + MatchOperands(ExtOpA.getOperand(0), ExtOpA.getOperand(1), ExtOpB, ExtOpA)) || + (ExtOpB.getOpcode() == ISD::ADD && + MatchOperands(ExtOpB.getOperand(0), ExtOpB.getOperand(1), ExtOpA, ExtOpB)); + + // If the shift is signed (sra): + // - Needs >= 2 sign bit for both operands. + // - Needs >= 2 zero bits. + // If the shift is unsigned (srl): + // - Needs >= 1 zero bit for both operands. + // - Needs 1 demanded bit zero and >= 2 sign bits. + SelectionDAG &DAG = TLO.DAG; + unsigned ShiftOpc = Op.getOpcode(); + bool IsSigned = false; + unsigned KnownBits; + unsigned NumSignedA = DAG.ComputeNumSignBits(ExtOpA, DemandedElts, Depth); + unsigned NumSignedB = DAG.ComputeNumSignBits(ExtOpB, DemandedElts, Depth); + unsigned NumSigned = std::min(NumSignedA, NumSignedB) - 1; + unsigned NumZeroA = + DAG.computeKnownBits(ExtOpA, DemandedElts, Depth).countMinLeadingZeros(); + unsigned NumZeroB = + DAG.computeKnownBits(ExtOpB, DemandedElts, Depth).countMinLeadingZeros(); + unsigned NumZero = std::min(NumZeroA, NumZeroB); + + switch (ShiftOpc) { + default: + llvm_unreachable("Unexpected ShiftOpc in combineShiftToAVG"); + case ISD::SRA: { + if (NumZero >= 2 && NumSigned < NumZero) { + IsSigned = false; + KnownBits = NumZero; + break; + } + if (NumSigned >= 1) { + IsSigned = true; + KnownBits = NumSigned; + break; + } + return SDValue(); + } + case ISD::SRL: { + if (NumZero >= 1 && NumSigned < NumZero) { + IsSigned = false; + KnownBits = NumZero; + break; + } + if (NumSigned >= 1 && DemandedBits.isSignBitClear()) { + IsSigned = true; + KnownBits = NumSigned; + break; + } + return SDValue(); + } + } + + unsigned AVGOpc = IsCeil ? (IsSigned ? ISD::AVGCEILS : ISD::AVGCEILU) + : (IsSigned ? ISD::AVGFLOORS : ISD::AVGFLOORU); + + // Find the smallest power-2 type that is legal for this vector size and + // operation, given the original type size and the number of known sign/zero + // bits. + EVT VT = Op.getValueType(); + unsigned MinWidth = + std::max<unsigned>(VT.getScalarSizeInBits() - KnownBits, 8); + EVT NVT = EVT::getIntegerVT(*DAG.getContext(), llvm::bit_ceil(MinWidth)); + if (NVT.getScalarSizeInBits() > VT.getScalarSizeInBits()) + return SDValue(); + if (VT.isVector()) + NVT = EVT::getVectorVT(*DAG.getContext(), NVT, VT.getVectorElementCount()); + if (TLO.LegalTypes() && !TLI.isOperationLegal(AVGOpc, NVT)) { + // If we could not transform, and (both) adds are nuw/nsw, we can use the + // larger type size to do the transform. + if (TLO.LegalOperations() && !TLI.isOperationLegal(AVGOpc, VT)) + return SDValue(); + if (DAG.willNotOverflowAdd(IsSigned, Add.getOperand(0), + Add.getOperand(1)) && + (!Add2 || DAG.willNotOverflowAdd(IsSigned, Add2.getOperand(0), + Add2.getOperand(1)))) + NVT = VT; + else + return SDValue(); + } + + // Don't create a AVGFLOOR node with a scalar constant unless its legal as + // this is likely to stop other folds (reassociation, value tracking etc.) + if (!IsCeil && !TLI.isOperationLegal(AVGOpc, NVT) && + (isa<ConstantSDNode>(ExtOpA) || isa<ConstantSDNode>(ExtOpB))) + return SDValue(); + + SDLoc DL(Op); + SDValue ResultAVG = + DAG.getNode(AVGOpc, DL, NVT, DAG.getExtOrTrunc(IsSigned, ExtOpA, DL, NVT), + DAG.getExtOrTrunc(IsSigned, ExtOpB, DL, NVT)); + return DAG.getExtOrTrunc(IsSigned, ResultAVG, DL, VT); +} + +/// Look at Op. At this point, we know that only the OriginalDemandedBits of the +/// result of Op are ever used downstream. If we can use this information to +/// simplify Op, create a new simplified DAG node and return true, returning the +/// original and new nodes in Old and New. Otherwise, analyze the expression and +/// return a mask of Known bits for the expression (used to simplify the +/// caller). The Known bits may only be accurate for those bits in the +/// OriginalDemandedBits and OriginalDemandedElts. +bool TargetLowering::SimplifyDemandedBits( + SDValue Op, const APInt &OriginalDemandedBits, + const APInt &OriginalDemandedElts, KnownBits &Known, TargetLoweringOpt &TLO, + unsigned Depth, bool AssumeSingleUse) const { + unsigned BitWidth = OriginalDemandedBits.getBitWidth(); + assert(Op.getScalarValueSizeInBits() == BitWidth && + "Mask size mismatches value type size!"); + + // Don't know anything. + Known = KnownBits(BitWidth); + + EVT VT = Op.getValueType(); + bool IsLE = TLO.DAG.getDataLayout().isLittleEndian(); + unsigned NumElts = OriginalDemandedElts.getBitWidth(); + assert((!VT.isFixedLengthVector() || NumElts == VT.getVectorNumElements()) && + "Unexpected vector size"); + + APInt DemandedBits = OriginalDemandedBits; + APInt DemandedElts = OriginalDemandedElts; + SDLoc dl(Op); + + // Undef operand. + if (Op.isUndef()) + return false; + + // We can't simplify target constants. + if (Op.getOpcode() == ISD::TargetConstant) + return false; + + if (Op.getOpcode() == ISD::Constant) { + // We know all of the bits for a constant! + Known = KnownBits::makeConstant(Op->getAsAPIntVal()); + return false; + } + + if (Op.getOpcode() == ISD::ConstantFP) { + // We know all of the bits for a floating point constant! + Known = KnownBits::makeConstant( + cast<ConstantFPSDNode>(Op)->getValueAPF().bitcastToAPInt()); + return false; + } + + // Other users may use these bits. + bool HasMultiUse = false; + if (!AssumeSingleUse && !Op.getNode()->hasOneUse()) { + if (Depth >= SelectionDAG::MaxRecursionDepth) { + // Limit search depth. + return false; + } + // Allow multiple uses, just set the DemandedBits/Elts to all bits. + DemandedBits = APInt::getAllOnes(BitWidth); + DemandedElts = APInt::getAllOnes(NumElts); + HasMultiUse = true; + } else if (OriginalDemandedBits == 0 || OriginalDemandedElts == 0) { + // Not demanding any bits/elts from Op. + return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); + } else if (Depth >= SelectionDAG::MaxRecursionDepth) { + // Limit search depth. + return false; + } + + KnownBits Known2; + switch (Op.getOpcode()) { + case ISD::SCALAR_TO_VECTOR: { + if (VT.isScalableVector()) + return false; + if (!DemandedElts[0]) + return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); + + KnownBits SrcKnown; + SDValue Src = Op.getOperand(0); + unsigned SrcBitWidth = Src.getScalarValueSizeInBits(); + APInt SrcDemandedBits = DemandedBits.zext(SrcBitWidth); + if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcKnown, TLO, Depth + 1)) + return true; + + // Upper elements are undef, so only get the knownbits if we just demand + // the bottom element. + if (DemandedElts == 1) + Known = SrcKnown.anyextOrTrunc(BitWidth); + break; + } + case ISD::BUILD_VECTOR: + // Collect the known bits that are shared by every demanded element. + // TODO: Call SimplifyDemandedBits for non-constant demanded elements. + Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); + return false; // Don't fall through, will infinitely loop. + case ISD::SPLAT_VECTOR: { + SDValue Scl = Op.getOperand(0); + APInt DemandedSclBits = DemandedBits.zextOrTrunc(Scl.getValueSizeInBits()); + KnownBits KnownScl; + if (SimplifyDemandedBits(Scl, DemandedSclBits, KnownScl, TLO, Depth + 1)) + return true; + + // Implicitly truncate the bits to match the official semantics of + // SPLAT_VECTOR. + Known = KnownScl.trunc(BitWidth); + break; + } + case ISD::LOAD: { + auto *LD = cast<LoadSDNode>(Op); + if (getTargetConstantFromLoad(LD)) { + Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); + return false; // Don't fall through, will infinitely loop. + } + if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) { + // If this is a ZEXTLoad and we are looking at the loaded value. + EVT MemVT = LD->getMemoryVT(); + unsigned MemBits = MemVT.getScalarSizeInBits(); + Known.Zero.setBitsFrom(MemBits); + return false; // Don't fall through, will infinitely loop. + } + break; + } + case ISD::INSERT_VECTOR_ELT: { + if (VT.isScalableVector()) + return false; + SDValue Vec = Op.getOperand(0); + SDValue Scl = Op.getOperand(1); + auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); + EVT VecVT = Vec.getValueType(); + + // If index isn't constant, assume we need all vector elements AND the + // inserted element. + APInt DemandedVecElts(DemandedElts); + if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements())) { + unsigned Idx = CIdx->getZExtValue(); + DemandedVecElts.clearBit(Idx); + + // Inserted element is not required. + if (!DemandedElts[Idx]) + return TLO.CombineTo(Op, Vec); + } + + KnownBits KnownScl; + unsigned NumSclBits = Scl.getScalarValueSizeInBits(); + APInt DemandedSclBits = DemandedBits.zextOrTrunc(NumSclBits); + if (SimplifyDemandedBits(Scl, DemandedSclBits, KnownScl, TLO, Depth + 1)) + return true; + + Known = KnownScl.anyextOrTrunc(BitWidth); + + KnownBits KnownVec; + if (SimplifyDemandedBits(Vec, DemandedBits, DemandedVecElts, KnownVec, TLO, + Depth + 1)) + return true; + + if (!!DemandedVecElts) + Known = Known.intersectWith(KnownVec); + + return false; + } + case ISD::INSERT_SUBVECTOR: { + if (VT.isScalableVector()) + return false; + // Demand any elements from the subvector and the remainder from the src its + // inserted into. + SDValue Src = Op.getOperand(0); + SDValue Sub = Op.getOperand(1); + uint64_t Idx = Op.getConstantOperandVal(2); + unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); + APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); + APInt DemandedSrcElts = DemandedElts; + DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx); + + KnownBits KnownSub, KnownSrc; + if (SimplifyDemandedBits(Sub, DemandedBits, DemandedSubElts, KnownSub, TLO, + Depth + 1)) + return true; + if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, KnownSrc, TLO, + Depth + 1)) + return true; + + Known.Zero.setAllBits(); + Known.One.setAllBits(); + if (!!DemandedSubElts) + Known = Known.intersectWith(KnownSub); + if (!!DemandedSrcElts) + Known = Known.intersectWith(KnownSrc); + + // Attempt to avoid multi-use src if we don't need anything from it. + if (!DemandedBits.isAllOnes() || !DemandedSubElts.isAllOnes() || + !DemandedSrcElts.isAllOnes()) { + SDValue NewSub = SimplifyMultipleUseDemandedBits( + Sub, DemandedBits, DemandedSubElts, TLO.DAG, Depth + 1); + SDValue NewSrc = SimplifyMultipleUseDemandedBits( + Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1); + if (NewSub || NewSrc) { + NewSub = NewSub ? NewSub : Sub; + NewSrc = NewSrc ? NewSrc : Src; + SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc, NewSub, + Op.getOperand(2)); + return TLO.CombineTo(Op, NewOp); + } + } + break; + } + case ISD::EXTRACT_SUBVECTOR: { + if (VT.isScalableVector()) + return false; + // Offset the demanded elts by the subvector index. + SDValue Src = Op.getOperand(0); + if (Src.getValueType().isScalableVector()) + break; + uint64_t Idx = Op.getConstantOperandVal(1); + unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); + APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts).shl(Idx); + + if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, Known, TLO, + Depth + 1)) + return true; + + // Attempt to avoid multi-use src if we don't need anything from it. + if (!DemandedBits.isAllOnes() || !DemandedSrcElts.isAllOnes()) { + SDValue DemandedSrc = SimplifyMultipleUseDemandedBits( + Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1); + if (DemandedSrc) { + SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc, + Op.getOperand(1)); + return TLO.CombineTo(Op, NewOp); + } + } + break; + } + case ISD::CONCAT_VECTORS: { + if (VT.isScalableVector()) + return false; + Known.Zero.setAllBits(); + Known.One.setAllBits(); + EVT SubVT = Op.getOperand(0).getValueType(); + unsigned NumSubVecs = Op.getNumOperands(); + unsigned NumSubElts = SubVT.getVectorNumElements(); + for (unsigned i = 0; i != NumSubVecs; ++i) { + APInt DemandedSubElts = + DemandedElts.extractBits(NumSubElts, i * NumSubElts); + if (SimplifyDemandedBits(Op.getOperand(i), DemandedBits, DemandedSubElts, + Known2, TLO, Depth + 1)) + return true; + // Known bits are shared by every demanded subvector element. + if (!!DemandedSubElts) + Known = Known.intersectWith(Known2); + } + break; + } + case ISD::VECTOR_SHUFFLE: { + assert(!VT.isScalableVector()); + ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); + + // Collect demanded elements from shuffle operands.. + APInt DemandedLHS, DemandedRHS; + if (!getShuffleDemandedElts(NumElts, ShuffleMask, DemandedElts, DemandedLHS, + DemandedRHS)) + break; + + if (!!DemandedLHS || !!DemandedRHS) { + SDValue Op0 = Op.getOperand(0); + SDValue Op1 = Op.getOperand(1); + + Known.Zero.setAllBits(); + Known.One.setAllBits(); + if (!!DemandedLHS) { + if (SimplifyDemandedBits(Op0, DemandedBits, DemandedLHS, Known2, TLO, + Depth + 1)) + return true; + Known = Known.intersectWith(Known2); + } + if (!!DemandedRHS) { + if (SimplifyDemandedBits(Op1, DemandedBits, DemandedRHS, Known2, TLO, + Depth + 1)) + return true; + Known = Known.intersectWith(Known2); + } + + // Attempt to avoid multi-use ops if we don't need anything from them. + SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( + Op0, DemandedBits, DemandedLHS, TLO.DAG, Depth + 1); + SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( + Op1, DemandedBits, DemandedRHS, TLO.DAG, Depth + 1); + if (DemandedOp0 || DemandedOp1) { + Op0 = DemandedOp0 ? DemandedOp0 : Op0; + Op1 = DemandedOp1 ? DemandedOp1 : Op1; + SDValue NewOp = TLO.DAG.getVectorShuffle(VT, dl, Op0, Op1, ShuffleMask); + return TLO.CombineTo(Op, NewOp); + } + } + break; + } + case ISD::AND: { + SDValue Op0 = Op.getOperand(0); + SDValue Op1 = Op.getOperand(1); + + // If the RHS is a constant, check to see if the LHS would be zero without + // using the bits from the RHS. Below, we use knowledge about the RHS to + // simplify the LHS, here we're using information from the LHS to simplify + // the RHS. + if (ConstantSDNode *RHSC = isConstOrConstSplat(Op1, DemandedElts)) { + // Do not increment Depth here; that can cause an infinite loop. + KnownBits LHSKnown = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth); + // If the LHS already has zeros where RHSC does, this 'and' is dead. + if ((LHSKnown.Zero & DemandedBits) == + (~RHSC->getAPIntValue() & DemandedBits)) + return TLO.CombineTo(Op, Op0); + + // If any of the set bits in the RHS are known zero on the LHS, shrink + // the constant. + if (ShrinkDemandedConstant(Op, ~LHSKnown.Zero & DemandedBits, + DemandedElts, TLO)) + return true; + + // Bitwise-not (xor X, -1) is a special case: we don't usually shrink its + // constant, but if this 'and' is only clearing bits that were just set by + // the xor, then this 'and' can be eliminated by shrinking the mask of + // the xor. For example, for a 32-bit X: + // and (xor (srl X, 31), -1), 1 --> xor (srl X, 31), 1 + if (isBitwiseNot(Op0) && Op0.hasOneUse() && + LHSKnown.One == ~RHSC->getAPIntValue()) { + SDValue Xor = TLO.DAG.getNode(ISD::XOR, dl, VT, Op0.getOperand(0), Op1); + return TLO.CombineTo(Op, Xor); + } + } + + // AND(INSERT_SUBVECTOR(C,X,I),M) -> INSERT_SUBVECTOR(AND(C,M),X,I) + // iff 'C' is Undef/Constant and AND(X,M) == X (for DemandedBits). + if (Op0.getOpcode() == ISD::INSERT_SUBVECTOR && !VT.isScalableVector() && + (Op0.getOperand(0).isUndef() || + ISD::isBuildVectorOfConstantSDNodes(Op0.getOperand(0).getNode())) && + Op0->hasOneUse()) { + unsigned NumSubElts = + Op0.getOperand(1).getValueType().getVectorNumElements(); + unsigned SubIdx = Op0.getConstantOperandVal(2); + APInt DemandedSub = + APInt::getBitsSet(NumElts, SubIdx, SubIdx + NumSubElts); + KnownBits KnownSubMask = + TLO.DAG.computeKnownBits(Op1, DemandedSub & DemandedElts, Depth + 1); + if (DemandedBits.isSubsetOf(KnownSubMask.One)) { + SDValue NewAnd = + TLO.DAG.getNode(ISD::AND, dl, VT, Op0.getOperand(0), Op1); + SDValue NewInsert = + TLO.DAG.getNode(ISD::INSERT_SUBVECTOR, dl, VT, NewAnd, + Op0.getOperand(1), Op0.getOperand(2)); + return TLO.CombineTo(Op, NewInsert); + } + } + + if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, + Depth + 1)) + return true; + if (SimplifyDemandedBits(Op0, ~Known.Zero & DemandedBits, DemandedElts, + Known2, TLO, Depth + 1)) + return true; + + // If all of the demanded bits are known one on one side, return the other. + // These bits cannot contribute to the result of the 'and'. + if (DemandedBits.isSubsetOf(Known2.Zero | Known.One)) + return TLO.CombineTo(Op, Op0); + if (DemandedBits.isSubsetOf(Known.Zero | Known2.One)) + return TLO.CombineTo(Op, Op1); + // If all of the demanded bits in the inputs are known zeros, return zero. + if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero)) + return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, VT)); + // If the RHS is a constant, see if we can simplify it. + if (ShrinkDemandedConstant(Op, ~Known2.Zero & DemandedBits, DemandedElts, + TLO)) + return true; + // If the operation can be done in a smaller type, do so. + if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) + return true; + + // Attempt to avoid multi-use ops if we don't need anything from them. + if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) { + SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( + Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); + SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( + Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); + if (DemandedOp0 || DemandedOp1) { + Op0 = DemandedOp0 ? DemandedOp0 : Op0; + Op1 = DemandedOp1 ? DemandedOp1 : Op1; + SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1); + return TLO.CombineTo(Op, NewOp); + } + } + + Known &= Known2; + break; + } + case ISD::OR: { + SDValue Op0 = Op.getOperand(0); + SDValue Op1 = Op.getOperand(1); + SDNodeFlags Flags = Op.getNode()->getFlags(); + if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, + Depth + 1)) { + if (Flags.hasDisjoint()) { + Flags.setDisjoint(false); + Op->setFlags(Flags); + } + return true; + } + + if (SimplifyDemandedBits(Op0, ~Known.One & DemandedBits, DemandedElts, + Known2, TLO, Depth + 1)) { + if (Flags.hasDisjoint()) { + Flags.setDisjoint(false); + Op->setFlags(Flags); + } + return true; + } + + // If all of the demanded bits are known zero on one side, return the other. + // These bits cannot contribute to the result of the 'or'. + if (DemandedBits.isSubsetOf(Known2.One | Known.Zero)) + return TLO.CombineTo(Op, Op0); + if (DemandedBits.isSubsetOf(Known.One | Known2.Zero)) + return TLO.CombineTo(Op, Op1); + // If the RHS is a constant, see if we can simplify it. + if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) + return true; + // If the operation can be done in a smaller type, do so. + if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) + return true; + + // Attempt to avoid multi-use ops if we don't need anything from them. + if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) { + SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( + Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); + SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( + Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); + if (DemandedOp0 || DemandedOp1) { + Op0 = DemandedOp0 ? DemandedOp0 : Op0; + Op1 = DemandedOp1 ? DemandedOp1 : Op1; + SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1); + return TLO.CombineTo(Op, NewOp); + } + } + + // (or (and X, C1), (and (or X, Y), C2)) -> (or (and X, C1|C2), (and Y, C2)) + // TODO: Use SimplifyMultipleUseDemandedBits to peek through masks. + if (Op0.getOpcode() == ISD::AND && Op1.getOpcode() == ISD::AND && + Op0->hasOneUse() && Op1->hasOneUse()) { + // Attempt to match all commutations - m_c_Or would've been useful! + for (int I = 0; I != 2; ++I) { + SDValue X = Op.getOperand(I).getOperand(0); + SDValue C1 = Op.getOperand(I).getOperand(1); + SDValue Alt = Op.getOperand(1 - I).getOperand(0); + SDValue C2 = Op.getOperand(1 - I).getOperand(1); + if (Alt.getOpcode() == ISD::OR) { + for (int J = 0; J != 2; ++J) { + if (X == Alt.getOperand(J)) { + SDValue Y = Alt.getOperand(1 - J); + if (SDValue C12 = TLO.DAG.FoldConstantArithmetic(ISD::OR, dl, VT, + {C1, C2})) { + SDValue MaskX = TLO.DAG.getNode(ISD::AND, dl, VT, X, C12); + SDValue MaskY = TLO.DAG.getNode(ISD::AND, dl, VT, Y, C2); + return TLO.CombineTo( + Op, TLO.DAG.getNode(ISD::OR, dl, VT, MaskX, MaskY)); + } + } + } + } + } + } + + Known |= Known2; + break; + } + case ISD::XOR: { + SDValue Op0 = Op.getOperand(0); + SDValue Op1 = Op.getOperand(1); + + if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, + Depth + 1)) + return true; + if (SimplifyDemandedBits(Op0, DemandedBits, DemandedElts, Known2, TLO, + Depth + 1)) + return true; + + // If all of the demanded bits are known zero on one side, return the other. + // These bits cannot contribute to the result of the 'xor'. + if (DemandedBits.isSubsetOf(Known.Zero)) + return TLO.CombineTo(Op, Op0); + if (DemandedBits.isSubsetOf(Known2.Zero)) + return TLO.CombineTo(Op, Op1); + // If the operation can be done in a smaller type, do so. + if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) + return true; + + // If all of the unknown bits are known to be zero on one side or the other + // turn this into an *inclusive* or. + // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0 + if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero)) + return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, VT, Op0, Op1)); + + ConstantSDNode *C = isConstOrConstSplat(Op1, DemandedElts); + if (C) { + // If one side is a constant, and all of the set bits in the constant are + // also known set on the other side, turn this into an AND, as we know + // the bits will be cleared. + // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2 + // NB: it is okay if more bits are known than are requested + if (C->getAPIntValue() == Known2.One) { + SDValue ANDC = + TLO.DAG.getConstant(~C->getAPIntValue() & DemandedBits, dl, VT); + return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, Op0, ANDC)); + } + + // If the RHS is a constant, see if we can change it. Don't alter a -1 + // constant because that's a 'not' op, and that is better for combining + // and codegen. + if (!C->isAllOnes() && DemandedBits.isSubsetOf(C->getAPIntValue())) { + // We're flipping all demanded bits. Flip the undemanded bits too. + SDValue New = TLO.DAG.getNOT(dl, Op0, VT); + return TLO.CombineTo(Op, New); + } + + unsigned Op0Opcode = Op0.getOpcode(); + if ((Op0Opcode == ISD::SRL || Op0Opcode == ISD::SHL) && Op0.hasOneUse()) { + if (ConstantSDNode *ShiftC = + isConstOrConstSplat(Op0.getOperand(1), DemandedElts)) { + // Don't crash on an oversized shift. We can not guarantee that a + // bogus shift has been simplified to undef. + if (ShiftC->getAPIntValue().ult(BitWidth)) { + uint64_t ShiftAmt = ShiftC->getZExtValue(); + APInt Ones = APInt::getAllOnes(BitWidth); + Ones = Op0Opcode == ISD::SHL ? Ones.shl(ShiftAmt) + : Ones.lshr(ShiftAmt); + const TargetLowering &TLI = TLO.DAG.getTargetLoweringInfo(); + if ((DemandedBits & C->getAPIntValue()) == (DemandedBits & Ones) && + TLI.isDesirableToCommuteXorWithShift(Op.getNode())) { + // If the xor constant is a demanded mask, do a 'not' before the + // shift: + // xor (X << ShiftC), XorC --> (not X) << ShiftC + // xor (X >> ShiftC), XorC --> (not X) >> ShiftC + SDValue Not = TLO.DAG.getNOT(dl, Op0.getOperand(0), VT); + return TLO.CombineTo(Op, TLO.DAG.getNode(Op0Opcode, dl, VT, Not, + Op0.getOperand(1))); + } + } + } + } + } + + // If we can't turn this into a 'not', try to shrink the constant. + if (!C || !C->isAllOnes()) + if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) + return true; + + // Attempt to avoid multi-use ops if we don't need anything from them. + if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) { + SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( + Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); + SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( + Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); + if (DemandedOp0 || DemandedOp1) { + Op0 = DemandedOp0 ? DemandedOp0 : Op0; + Op1 = DemandedOp1 ? DemandedOp1 : Op1; + SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1); + return TLO.CombineTo(Op, NewOp); + } + } + + Known ^= Known2; + break; + } + case ISD::SELECT: + if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, DemandedElts, + Known, TLO, Depth + 1)) + return true; + if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, DemandedElts, + Known2, TLO, Depth + 1)) + return true; + + // If the operands are constants, see if we can simplify them. + if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) + return true; + + // Only known if known in both the LHS and RHS. + Known = Known.intersectWith(Known2); + break; + case ISD::VSELECT: + if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, DemandedElts, + Known, TLO, Depth + 1)) + return true; + if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, DemandedElts, + Known2, TLO, Depth + 1)) + return true; + + // Only known if known in both the LHS and RHS. + Known = Known.intersectWith(Known2); + break; + case ISD::SELECT_CC: + if (SimplifyDemandedBits(Op.getOperand(3), DemandedBits, DemandedElts, + Known, TLO, Depth + 1)) + return true; + if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, DemandedElts, + Known2, TLO, Depth + 1)) + return true; + + // If the operands are constants, see if we can simplify them. + if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) + return true; + + // Only known if known in both the LHS and RHS. + Known = Known.intersectWith(Known2); + break; + case ISD::SETCC: { + SDValue Op0 = Op.getOperand(0); + SDValue Op1 = Op.getOperand(1); + ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); + // If (1) we only need the sign-bit, (2) the setcc operands are the same + // width as the setcc result, and (3) the result of a setcc conforms to 0 or + // -1, we may be able to bypass the setcc. + if (DemandedBits.isSignMask() && + Op0.getScalarValueSizeInBits() == BitWidth && + getBooleanContents(Op0.getValueType()) == + BooleanContent::ZeroOrNegativeOneBooleanContent) { + // If we're testing X < 0, then this compare isn't needed - just use X! + // FIXME: We're limiting to integer types here, but this should also work + // if we don't care about FP signed-zero. The use of SETLT with FP means + // that we don't care about NaNs. + if (CC == ISD::SETLT && Op1.getValueType().isInteger() && + (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode()))) + return TLO.CombineTo(Op, Op0); + + // TODO: Should we check for other forms of sign-bit comparisons? + // Examples: X <= -1, X >= 0 + } + if (getBooleanContents(Op0.getValueType()) == + TargetLowering::ZeroOrOneBooleanContent && + BitWidth > 1) + Known.Zero.setBitsFrom(1); + break; + } + case ISD::SHL: { + SDValue Op0 = Op.getOperand(0); + SDValue Op1 = Op.getOperand(1); + EVT ShiftVT = Op1.getValueType(); + + if (std::optional<uint64_t> KnownSA = + TLO.DAG.getValidShiftAmount(Op, DemandedElts, Depth + 1)) { + unsigned ShAmt = *KnownSA; + if (ShAmt == 0) + return TLO.CombineTo(Op, Op0); + + // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a + // single shift. We can do this if the bottom bits (which are shifted + // out) are never demanded. + // TODO - support non-uniform vector amounts. + if (Op0.getOpcode() == ISD::SRL) { + if (!DemandedBits.intersects(APInt::getLowBitsSet(BitWidth, ShAmt))) { + if (std::optional<uint64_t> InnerSA = + TLO.DAG.getValidShiftAmount(Op0, DemandedElts, Depth + 2)) { + unsigned C1 = *InnerSA; + unsigned Opc = ISD::SHL; + int Diff = ShAmt - C1; + if (Diff < 0) { + Diff = -Diff; + Opc = ISD::SRL; + } + SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT); + return TLO.CombineTo( + Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA)); + } + } + } + + // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits + // are not demanded. This will likely allow the anyext to be folded away. + // TODO - support non-uniform vector amounts. + if (Op0.getOpcode() == ISD::ANY_EXTEND) { + SDValue InnerOp = Op0.getOperand(0); + EVT InnerVT = InnerOp.getValueType(); + unsigned InnerBits = InnerVT.getScalarSizeInBits(); + if (ShAmt < InnerBits && DemandedBits.getActiveBits() <= InnerBits && + isTypeDesirableForOp(ISD::SHL, InnerVT)) { + SDValue NarrowShl = TLO.DAG.getNode( + ISD::SHL, dl, InnerVT, InnerOp, + TLO.DAG.getShiftAmountConstant(ShAmt, InnerVT, dl)); + return TLO.CombineTo( + Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, NarrowShl)); + } + + // Repeat the SHL optimization above in cases where an extension + // intervenes: (shl (anyext (shr x, c1)), c2) to + // (shl (anyext x), c2-c1). This requires that the bottom c1 bits + // aren't demanded (as above) and that the shifted upper c1 bits of + // x aren't demanded. + // TODO - support non-uniform vector amounts. + if (InnerOp.getOpcode() == ISD::SRL && Op0.hasOneUse() && + InnerOp.hasOneUse()) { + if (std::optional<uint64_t> SA2 = TLO.DAG.getValidShiftAmount( + InnerOp, DemandedElts, Depth + 2)) { + unsigned InnerShAmt = *SA2; + if (InnerShAmt < ShAmt && InnerShAmt < InnerBits && + DemandedBits.getActiveBits() <= + (InnerBits - InnerShAmt + ShAmt) && + DemandedBits.countr_zero() >= ShAmt) { + SDValue NewSA = + TLO.DAG.getConstant(ShAmt - InnerShAmt, dl, ShiftVT); + SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, + InnerOp.getOperand(0)); + return TLO.CombineTo( + Op, TLO.DAG.getNode(ISD::SHL, dl, VT, NewExt, NewSA)); + } + } + } + } + + APInt InDemandedMask = DemandedBits.lshr(ShAmt); + if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, + Depth + 1)) { + SDNodeFlags Flags = Op.getNode()->getFlags(); + if (Flags.hasNoSignedWrap() || Flags.hasNoUnsignedWrap()) { + // Disable the nsw and nuw flags. We can no longer guarantee that we + // won't wrap after simplification. + Flags.setNoSignedWrap(false); + Flags.setNoUnsignedWrap(false); + Op->setFlags(Flags); + } + return true; + } + Known.Zero <<= ShAmt; + Known.One <<= ShAmt; + // low bits known zero. + Known.Zero.setLowBits(ShAmt); + + // Attempt to avoid multi-use ops if we don't need anything from them. + if (!InDemandedMask.isAllOnes() || !DemandedElts.isAllOnes()) { + SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( + Op0, InDemandedMask, DemandedElts, TLO.DAG, Depth + 1); + if (DemandedOp0) { + SDValue NewOp = TLO.DAG.getNode(ISD::SHL, dl, VT, DemandedOp0, Op1); + return TLO.CombineTo(Op, NewOp); + } + } + + // TODO: Can we merge this fold with the one below? + // Try shrinking the operation as long as the shift amount will still be + // in range. + if (ShAmt < DemandedBits.getActiveBits() && !VT.isVector() && + Op.getNode()->hasOneUse()) { + // Search for the smallest integer type with free casts to and from + // Op's type. For expedience, just check power-of-2 integer types. + unsigned DemandedSize = DemandedBits.getActiveBits(); + for (unsigned SmallVTBits = llvm::bit_ceil(DemandedSize); + SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) { + EVT SmallVT = EVT::getIntegerVT(*TLO.DAG.getContext(), SmallVTBits); + if (isNarrowingProfitable(VT, SmallVT) && + isTypeDesirableForOp(ISD::SHL, SmallVT) && + isTruncateFree(VT, SmallVT) && isZExtFree(SmallVT, VT) && + (!TLO.LegalOperations() || isOperationLegal(ISD::SHL, SmallVT))) { + assert(DemandedSize <= SmallVTBits && + "Narrowed below demanded bits?"); + // We found a type with free casts. + SDValue NarrowShl = TLO.DAG.getNode( + ISD::SHL, dl, SmallVT, + TLO.DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(0)), + TLO.DAG.getShiftAmountConstant(ShAmt, SmallVT, dl)); + return TLO.CombineTo( + Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, NarrowShl)); + } + } + } + + // Narrow shift to lower half - similar to ShrinkDemandedOp. + // (shl i64:x, K) -> (i64 zero_extend (shl (i32 (trunc i64:x)), K)) + // Only do this if we demand the upper half so the knownbits are correct. + unsigned HalfWidth = BitWidth / 2; + if ((BitWidth % 2) == 0 && !VT.isVector() && ShAmt < HalfWidth && + DemandedBits.countLeadingOnes() >= HalfWidth) { + EVT HalfVT = EVT::getIntegerVT(*TLO.DAG.getContext(), HalfWidth); + if (isNarrowingProfitable(VT, HalfVT) && + isTypeDesirableForOp(ISD::SHL, HalfVT) && + isTruncateFree(VT, HalfVT) && isZExtFree(HalfVT, VT) && + (!TLO.LegalOperations() || isOperationLegal(ISD::SHL, HalfVT))) { + // If we're demanding the upper bits at all, we must ensure + // that the upper bits of the shift result are known to be zero, + // which is equivalent to the narrow shift being NUW. + if (bool IsNUW = (Known.countMinLeadingZeros() >= HalfWidth)) { + bool IsNSW = Known.countMinSignBits() > HalfWidth; + SDNodeFlags Flags; + Flags.setNoSignedWrap(IsNSW); + Flags.setNoUnsignedWrap(IsNUW); + SDValue NewOp = TLO.DAG.getNode(ISD::TRUNCATE, dl, HalfVT, Op0); + SDValue NewShiftAmt = + TLO.DAG.getShiftAmountConstant(ShAmt, HalfVT, dl); + SDValue NewShift = TLO.DAG.getNode(ISD::SHL, dl, HalfVT, NewOp, + NewShiftAmt, Flags); + SDValue NewExt = + TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, NewShift); + return TLO.CombineTo(Op, NewExt); + } + } + } + } else { + // This is a variable shift, so we can't shift the demand mask by a known + // amount. But if we are not demanding high bits, then we are not + // demanding those bits from the pre-shifted operand either. + if (unsigned CTLZ = DemandedBits.countl_zero()) { + APInt DemandedFromOp(APInt::getLowBitsSet(BitWidth, BitWidth - CTLZ)); + if (SimplifyDemandedBits(Op0, DemandedFromOp, DemandedElts, Known, TLO, + Depth + 1)) { + SDNodeFlags Flags = Op.getNode()->getFlags(); + if (Flags.hasNoSignedWrap() || Flags.hasNoUnsignedWrap()) { + // Disable the nsw and nuw flags. We can no longer guarantee that we + // won't wrap after simplification. + Flags.setNoSignedWrap(false); + Flags.setNoUnsignedWrap(false); + Op->setFlags(Flags); + } + return true; + } + Known.resetAll(); + } + } + + // If we are only demanding sign bits then we can use the shift source + // directly. + if (std::optional<uint64_t> MaxSA = + TLO.DAG.getValidMaximumShiftAmount(Op, DemandedElts, Depth + 1)) { + unsigned ShAmt = *MaxSA; + unsigned NumSignBits = + TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1); + unsigned UpperDemandedBits = BitWidth - DemandedBits.countr_zero(); + if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits)) + return TLO.CombineTo(Op, Op0); + } + break; + } + case ISD::SRL: { + SDValue Op0 = Op.getOperand(0); + SDValue Op1 = Op.getOperand(1); + EVT ShiftVT = Op1.getValueType(); + + if (std::optional<uint64_t> KnownSA = + TLO.DAG.getValidShiftAmount(Op, DemandedElts, Depth + 1)) { + unsigned ShAmt = *KnownSA; + if (ShAmt == 0) + return TLO.CombineTo(Op, Op0); + + // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a + // single shift. We can do this if the top bits (which are shifted out) + // are never demanded. + // TODO - support non-uniform vector amounts. + if (Op0.getOpcode() == ISD::SHL) { + if (!DemandedBits.intersects(APInt::getHighBitsSet(BitWidth, ShAmt))) { + if (std::optional<uint64_t> InnerSA = + TLO.DAG.getValidShiftAmount(Op0, DemandedElts, Depth + 2)) { + unsigned C1 = *InnerSA; + unsigned Opc = ISD::SRL; + int Diff = ShAmt - C1; + if (Diff < 0) { + Diff = -Diff; + Opc = ISD::SHL; + } + SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT); + return TLO.CombineTo( + Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA)); + } + } + } + + APInt InDemandedMask = (DemandedBits << ShAmt); + + // If the shift is exact, then it does demand the low bits (and knows that + // they are zero). + if (Op->getFlags().hasExact()) + InDemandedMask.setLowBits(ShAmt); + + // Narrow shift to lower half - similar to ShrinkDemandedOp. + // (srl i64:x, K) -> (i64 zero_extend (srl (i32 (trunc i64:x)), K)) + if ((BitWidth % 2) == 0 && !VT.isVector()) { + APInt HiBits = APInt::getHighBitsSet(BitWidth, BitWidth / 2); + EVT HalfVT = EVT::getIntegerVT(*TLO.DAG.getContext(), BitWidth / 2); + if (isNarrowingProfitable(VT, HalfVT) && + isTypeDesirableForOp(ISD::SRL, HalfVT) && + isTruncateFree(VT, HalfVT) && isZExtFree(HalfVT, VT) && + (!TLO.LegalOperations() || isOperationLegal(ISD::SRL, HalfVT)) && + ((InDemandedMask.countLeadingZeros() >= (BitWidth / 2)) || + TLO.DAG.MaskedValueIsZero(Op0, HiBits))) { + SDValue NewOp = TLO.DAG.getNode(ISD::TRUNCATE, dl, HalfVT, Op0); + SDValue NewShiftAmt = + TLO.DAG.getShiftAmountConstant(ShAmt, HalfVT, dl); + SDValue NewShift = + TLO.DAG.getNode(ISD::SRL, dl, HalfVT, NewOp, NewShiftAmt); + return TLO.CombineTo( + Op, TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, NewShift)); + } + } + + // Compute the new bits that are at the top now. + if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, + Depth + 1)) + return true; + Known.Zero.lshrInPlace(ShAmt); + Known.One.lshrInPlace(ShAmt); + // High bits known zero. + Known.Zero.setHighBits(ShAmt); + + // Attempt to avoid multi-use ops if we don't need anything from them. + if (!InDemandedMask.isAllOnes() || !DemandedElts.isAllOnes()) { + SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( + Op0, InDemandedMask, DemandedElts, TLO.DAG, Depth + 1); + if (DemandedOp0) { + SDValue NewOp = TLO.DAG.getNode(ISD::SRL, dl, VT, DemandedOp0, Op1); + return TLO.CombineTo(Op, NewOp); + } + } + } else { + // Use generic knownbits computation as it has support for non-uniform + // shift amounts. + Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); + } + + // Try to match AVG patterns (after shift simplification). + if (SDValue AVG = combineShiftToAVG(Op, TLO, *this, DemandedBits, + DemandedElts, Depth + 1)) + return TLO.CombineTo(Op, AVG); + + break; + } + case ISD::SRA: { + SDValue Op0 = Op.getOperand(0); + SDValue Op1 = Op.getOperand(1); + EVT ShiftVT = Op1.getValueType(); + + // If we only want bits that already match the signbit then we don't need + // to shift. + unsigned NumHiDemandedBits = BitWidth - DemandedBits.countr_zero(); + if (TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1) >= + NumHiDemandedBits) + return TLO.CombineTo(Op, Op0); + + // If this is an arithmetic shift right and only the low-bit is set, we can + // always convert this into a logical shr, even if the shift amount is + // variable. The low bit of the shift cannot be an input sign bit unless + // the shift amount is >= the size of the datatype, which is undefined. + if (DemandedBits.isOne()) + return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1)); + + if (std::optional<uint64_t> KnownSA = + TLO.DAG.getValidShiftAmount(Op, DemandedElts, Depth + 1)) { + unsigned ShAmt = *KnownSA; + if (ShAmt == 0) + return TLO.CombineTo(Op, Op0); + + // fold (sra (shl x, c1), c1) -> sext_inreg for some c1 and target + // supports sext_inreg. + if (Op0.getOpcode() == ISD::SHL) { + if (std::optional<uint64_t> InnerSA = + TLO.DAG.getValidShiftAmount(Op0, DemandedElts, Depth + 2)) { + unsigned LowBits = BitWidth - ShAmt; + EVT ExtVT = EVT::getIntegerVT(*TLO.DAG.getContext(), LowBits); + if (VT.isVector()) + ExtVT = EVT::getVectorVT(*TLO.DAG.getContext(), ExtVT, + VT.getVectorElementCount()); + + if (*InnerSA == ShAmt) { + if (!TLO.LegalOperations() || + getOperationAction(ISD::SIGN_EXTEND_INREG, ExtVT) == Legal) + return TLO.CombineTo( + Op, TLO.DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, VT, + Op0.getOperand(0), + TLO.DAG.getValueType(ExtVT))); + + // Even if we can't convert to sext_inreg, we might be able to + // remove this shift pair if the input is already sign extended. + unsigned NumSignBits = + TLO.DAG.ComputeNumSignBits(Op0.getOperand(0), DemandedElts); + if (NumSignBits > ShAmt) + return TLO.CombineTo(Op, Op0.getOperand(0)); + } + } + } + + APInt InDemandedMask = (DemandedBits << ShAmt); + + // If the shift is exact, then it does demand the low bits (and knows that + // they are zero). + if (Op->getFlags().hasExact()) + InDemandedMask.setLowBits(ShAmt); + + // If any of the demanded bits are produced by the sign extension, we also + // demand the input sign bit. + if (DemandedBits.countl_zero() < ShAmt) + InDemandedMask.setSignBit(); + + if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, + Depth + 1)) + return true; + Known.Zero.lshrInPlace(ShAmt); + Known.One.lshrInPlace(ShAmt); + + // If the input sign bit is known to be zero, or if none of the top bits + // are demanded, turn this into an unsigned shift right. + if (Known.Zero[BitWidth - ShAmt - 1] || + DemandedBits.countl_zero() >= ShAmt) { + SDNodeFlags Flags; + Flags.setExact(Op->getFlags().hasExact()); + return TLO.CombineTo( + Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1, Flags)); + } + + int Log2 = DemandedBits.exactLogBase2(); + if (Log2 >= 0) { + // The bit must come from the sign. + SDValue NewSA = TLO.DAG.getConstant(BitWidth - 1 - Log2, dl, ShiftVT); + return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, NewSA)); + } + + if (Known.One[BitWidth - ShAmt - 1]) + // New bits are known one. + Known.One.setHighBits(ShAmt); + + // Attempt to avoid multi-use ops if we don't need anything from them. + if (!InDemandedMask.isAllOnes() || !DemandedElts.isAllOnes()) { + SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( + Op0, InDemandedMask, DemandedElts, TLO.DAG, Depth + 1); + if (DemandedOp0) { + SDValue NewOp = TLO.DAG.getNode(ISD::SRA, dl, VT, DemandedOp0, Op1); + return TLO.CombineTo(Op, NewOp); + } + } + } + + // Try to match AVG patterns (after shift simplification). + if (SDValue AVG = combineShiftToAVG(Op, TLO, *this, DemandedBits, + DemandedElts, Depth + 1)) + return TLO.CombineTo(Op, AVG); + + break; + } + case ISD::FSHL: + case ISD::FSHR: { + SDValue Op0 = Op.getOperand(0); + SDValue Op1 = Op.getOperand(1); + SDValue Op2 = Op.getOperand(2); + bool IsFSHL = (Op.getOpcode() == ISD::FSHL); + + if (ConstantSDNode *SA = isConstOrConstSplat(Op2, DemandedElts)) { + unsigned Amt = SA->getAPIntValue().urem(BitWidth); + + // For fshl, 0-shift returns the 1st arg. + // For fshr, 0-shift returns the 2nd arg. + if (Amt == 0) { + if (SimplifyDemandedBits(IsFSHL ? Op0 : Op1, DemandedBits, DemandedElts, + Known, TLO, Depth + 1)) + return true; + break; + } + + // fshl: (Op0 << Amt) | (Op1 >> (BW - Amt)) + // fshr: (Op0 << (BW - Amt)) | (Op1 >> Amt) + APInt Demanded0 = DemandedBits.lshr(IsFSHL ? Amt : (BitWidth - Amt)); + APInt Demanded1 = DemandedBits << (IsFSHL ? (BitWidth - Amt) : Amt); + if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO, + Depth + 1)) + return true; + if (SimplifyDemandedBits(Op1, Demanded1, DemandedElts, Known, TLO, + Depth + 1)) + return true; + + Known2.One <<= (IsFSHL ? Amt : (BitWidth - Amt)); + Known2.Zero <<= (IsFSHL ? Amt : (BitWidth - Amt)); + Known.One.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt); + Known.Zero.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt); + Known = Known.unionWith(Known2); + + // Attempt to avoid multi-use ops if we don't need anything from them. + if (!Demanded0.isAllOnes() || !Demanded1.isAllOnes() || + !DemandedElts.isAllOnes()) { + SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( + Op0, Demanded0, DemandedElts, TLO.DAG, Depth + 1); + SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( + Op1, Demanded1, DemandedElts, TLO.DAG, Depth + 1); + if (DemandedOp0 || DemandedOp1) { + DemandedOp0 = DemandedOp0 ? DemandedOp0 : Op0; + DemandedOp1 = DemandedOp1 ? DemandedOp1 : Op1; + SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedOp0, + DemandedOp1, Op2); + return TLO.CombineTo(Op, NewOp); + } + } + } + + // For pow-2 bitwidths we only demand the bottom modulo amt bits. + if (isPowerOf2_32(BitWidth)) { + APInt DemandedAmtBits(Op2.getScalarValueSizeInBits(), BitWidth - 1); + if (SimplifyDemandedBits(Op2, DemandedAmtBits, DemandedElts, + Known2, TLO, Depth + 1)) + return true; + } + break; + } + case ISD::ROTL: + case ISD::ROTR: { + SDValue Op0 = Op.getOperand(0); + SDValue Op1 = Op.getOperand(1); + bool IsROTL = (Op.getOpcode() == ISD::ROTL); + + // If we're rotating an 0/-1 value, then it stays an 0/-1 value. + if (BitWidth == TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1)) + return TLO.CombineTo(Op, Op0); + + if (ConstantSDNode *SA = isConstOrConstSplat(Op1, DemandedElts)) { + unsigned Amt = SA->getAPIntValue().urem(BitWidth); + unsigned RevAmt = BitWidth - Amt; + + // rotl: (Op0 << Amt) | (Op0 >> (BW - Amt)) + // rotr: (Op0 << (BW - Amt)) | (Op0 >> Amt) + APInt Demanded0 = DemandedBits.rotr(IsROTL ? Amt : RevAmt); + if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO, + Depth + 1)) + return true; + + // rot*(x, 0) --> x + if (Amt == 0) + return TLO.CombineTo(Op, Op0); + + // See if we don't demand either half of the rotated bits. + if ((!TLO.LegalOperations() || isOperationLegal(ISD::SHL, VT)) && + DemandedBits.countr_zero() >= (IsROTL ? Amt : RevAmt)) { + Op1 = TLO.DAG.getConstant(IsROTL ? Amt : RevAmt, dl, Op1.getValueType()); + return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, Op1)); + } + if ((!TLO.LegalOperations() || isOperationLegal(ISD::SRL, VT)) && + DemandedBits.countl_zero() >= (IsROTL ? RevAmt : Amt)) { + Op1 = TLO.DAG.getConstant(IsROTL ? RevAmt : Amt, dl, Op1.getValueType()); + return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1)); + } + } + + // For pow-2 bitwidths we only demand the bottom modulo amt bits. + if (isPowerOf2_32(BitWidth)) { + APInt DemandedAmtBits(Op1.getScalarValueSizeInBits(), BitWidth - 1); + if (SimplifyDemandedBits(Op1, DemandedAmtBits, DemandedElts, Known2, TLO, + Depth + 1)) + return true; + } + break; + } + case ISD::SMIN: + case ISD::SMAX: + case ISD::UMIN: + case ISD::UMAX: { + unsigned Opc = Op.getOpcode(); + SDValue Op0 = Op.getOperand(0); + SDValue Op1 = Op.getOperand(1); + + // If we're only demanding signbits, then we can simplify to OR/AND node. + unsigned BitOp = + (Opc == ISD::SMIN || Opc == ISD::UMAX) ? ISD::OR : ISD::AND; + unsigned NumSignBits = + std::min(TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1), + TLO.DAG.ComputeNumSignBits(Op1, DemandedElts, Depth + 1)); + unsigned NumDemandedUpperBits = BitWidth - DemandedBits.countr_zero(); + if (NumSignBits >= NumDemandedUpperBits) + return TLO.CombineTo(Op, TLO.DAG.getNode(BitOp, SDLoc(Op), VT, Op0, Op1)); + + // Check if one arg is always less/greater than (or equal) to the other arg. + KnownBits Known0 = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth + 1); + KnownBits Known1 = TLO.DAG.computeKnownBits(Op1, DemandedElts, Depth + 1); + switch (Opc) { + case ISD::SMIN: + if (std::optional<bool> IsSLE = KnownBits::sle(Known0, Known1)) + return TLO.CombineTo(Op, *IsSLE ? Op0 : Op1); + if (std::optional<bool> IsSLT = KnownBits::slt(Known0, Known1)) + return TLO.CombineTo(Op, *IsSLT ? Op0 : Op1); + Known = KnownBits::smin(Known0, Known1); + break; + case ISD::SMAX: + if (std::optional<bool> IsSGE = KnownBits::sge(Known0, Known1)) + return TLO.CombineTo(Op, *IsSGE ? Op0 : Op1); + if (std::optional<bool> IsSGT = KnownBits::sgt(Known0, Known1)) + return TLO.CombineTo(Op, *IsSGT ? Op0 : Op1); + Known = KnownBits::smax(Known0, Known1); + break; + case ISD::UMIN: + if (std::optional<bool> IsULE = KnownBits::ule(Known0, Known1)) + return TLO.CombineTo(Op, *IsULE ? Op0 : Op1); + if (std::optional<bool> IsULT = KnownBits::ult(Known0, Known1)) + return TLO.CombineTo(Op, *IsULT ? Op0 : Op1); + Known = KnownBits::umin(Known0, Known1); + break; + case ISD::UMAX: + if (std::optional<bool> IsUGE = KnownBits::uge(Known0, Known1)) + return TLO.CombineTo(Op, *IsUGE ? Op0 : Op1); + if (std::optional<bool> IsUGT = KnownBits::ugt(Known0, Known1)) + return TLO.CombineTo(Op, *IsUGT ? Op0 : Op1); + Known = KnownBits::umax(Known0, Known1); + break; + } + break; + } + case ISD::BITREVERSE: { + SDValue Src = Op.getOperand(0); + APInt DemandedSrcBits = DemandedBits.reverseBits(); + if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO, + Depth + 1)) + return true; + Known.One = Known2.One.reverseBits(); + Known.Zero = Known2.Zero.reverseBits(); + break; + } + case ISD::BSWAP: { + SDValue Src = Op.getOperand(0); + + // If the only bits demanded come from one byte of the bswap result, + // just shift the input byte into position to eliminate the bswap. + unsigned NLZ = DemandedBits.countl_zero(); + unsigned NTZ = DemandedBits.countr_zero(); + + // Round NTZ down to the next byte. If we have 11 trailing zeros, then + // we need all the bits down to bit 8. Likewise, round NLZ. If we + // have 14 leading zeros, round to 8. + NLZ = alignDown(NLZ, 8); + NTZ = alignDown(NTZ, 8); + // If we need exactly one byte, we can do this transformation. + if (BitWidth - NLZ - NTZ == 8) { + // Replace this with either a left or right shift to get the byte into + // the right place. + unsigned ShiftOpcode = NLZ > NTZ ? ISD::SRL : ISD::SHL; + if (!TLO.LegalOperations() || isOperationLegal(ShiftOpcode, VT)) { + unsigned ShiftAmount = NLZ > NTZ ? NLZ - NTZ : NTZ - NLZ; + SDValue ShAmt = TLO.DAG.getShiftAmountConstant(ShiftAmount, VT, dl); + SDValue NewOp = TLO.DAG.getNode(ShiftOpcode, dl, VT, Src, ShAmt); + return TLO.CombineTo(Op, NewOp); + } + } + + APInt DemandedSrcBits = DemandedBits.byteSwap(); + if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO, + Depth + 1)) + return true; + Known.One = Known2.One.byteSwap(); + Known.Zero = Known2.Zero.byteSwap(); + break; + } + case ISD::CTPOP: { + // If only 1 bit is demanded, replace with PARITY as long as we're before + // op legalization. + // FIXME: Limit to scalars for now. + if (DemandedBits.isOne() && !TLO.LegalOps && !VT.isVector()) + return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::PARITY, dl, VT, + Op.getOperand(0))); + + Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); + break; + } + case ISD::SIGN_EXTEND_INREG: { + SDValue Op0 = Op.getOperand(0); + EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); + unsigned ExVTBits = ExVT.getScalarSizeInBits(); + + // If we only care about the highest bit, don't bother shifting right. + if (DemandedBits.isSignMask()) { + unsigned MinSignedBits = + TLO.DAG.ComputeMaxSignificantBits(Op0, DemandedElts, Depth + 1); + bool AlreadySignExtended = ExVTBits >= MinSignedBits; + // However if the input is already sign extended we expect the sign + // extension to be dropped altogether later and do not simplify. + if (!AlreadySignExtended) { + // Compute the correct shift amount type, which must be getShiftAmountTy + // for scalar types after legalization. + SDValue ShiftAmt = + TLO.DAG.getShiftAmountConstant(BitWidth - ExVTBits, VT, dl); + return TLO.CombineTo(Op, + TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, ShiftAmt)); + } + } + + // If none of the extended bits are demanded, eliminate the sextinreg. + if (DemandedBits.getActiveBits() <= ExVTBits) + return TLO.CombineTo(Op, Op0); + + APInt InputDemandedBits = DemandedBits.getLoBits(ExVTBits); + + // Since the sign extended bits are demanded, we know that the sign + // bit is demanded. + InputDemandedBits.setBit(ExVTBits - 1); + + if (SimplifyDemandedBits(Op0, InputDemandedBits, DemandedElts, Known, TLO, + Depth + 1)) + return true; + + // If the sign bit of the input is known set or clear, then we know the + // top bits of the result. + + // If the input sign bit is known zero, convert this into a zero extension. + if (Known.Zero[ExVTBits - 1]) + return TLO.CombineTo(Op, TLO.DAG.getZeroExtendInReg(Op0, dl, ExVT)); + + APInt Mask = APInt::getLowBitsSet(BitWidth, ExVTBits); + if (Known.One[ExVTBits - 1]) { // Input sign bit known set + Known.One.setBitsFrom(ExVTBits); + Known.Zero &= Mask; + } else { // Input sign bit unknown + Known.Zero &= Mask; + Known.One &= Mask; + } + break; + } + case ISD::BUILD_PAIR: { + EVT HalfVT = Op.getOperand(0).getValueType(); + unsigned HalfBitWidth = HalfVT.getScalarSizeInBits(); + + APInt MaskLo = DemandedBits.getLoBits(HalfBitWidth).trunc(HalfBitWidth); + APInt MaskHi = DemandedBits.getHiBits(HalfBitWidth).trunc(HalfBitWidth); + + KnownBits KnownLo, KnownHi; + + if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownLo, TLO, Depth + 1)) + return true; + + if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownHi, TLO, Depth + 1)) + return true; + + Known = KnownHi.concat(KnownLo); + break; + } + case ISD::ZERO_EXTEND_VECTOR_INREG: + if (VT.isScalableVector()) + return false; + [[fallthrough]]; + case ISD::ZERO_EXTEND: { + SDValue Src = Op.getOperand(0); + EVT SrcVT = Src.getValueType(); + unsigned InBits = SrcVT.getScalarSizeInBits(); + unsigned InElts = SrcVT.isFixedLengthVector() ? SrcVT.getVectorNumElements() : 1; + bool IsVecInReg = Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG; + + // If none of the top bits are demanded, convert this into an any_extend. + if (DemandedBits.getActiveBits() <= InBits) { + // If we only need the non-extended bits of the bottom element + // then we can just bitcast to the result. + if (IsLE && IsVecInReg && DemandedElts == 1 && + VT.getSizeInBits() == SrcVT.getSizeInBits()) + return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); + + unsigned Opc = + IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND; + if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) + return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src)); + } + + SDNodeFlags Flags = Op->getFlags(); + APInt InDemandedBits = DemandedBits.trunc(InBits); + APInt InDemandedElts = DemandedElts.zext(InElts); + if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO, + Depth + 1)) { + if (Flags.hasNonNeg()) { + Flags.setNonNeg(false); + Op->setFlags(Flags); + } + return true; + } + assert(Known.getBitWidth() == InBits && "Src width has changed?"); + Known = Known.zext(BitWidth); + + // Attempt to avoid multi-use ops if we don't need anything from them. + if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( + Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1)) + return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc)); + break; + } + case ISD::SIGN_EXTEND_VECTOR_INREG: + if (VT.isScalableVector()) + return false; + [[fallthrough]]; + case ISD::SIGN_EXTEND: { + SDValue Src = Op.getOperand(0); + EVT SrcVT = Src.getValueType(); + unsigned InBits = SrcVT.getScalarSizeInBits(); + unsigned InElts = SrcVT.isFixedLengthVector() ? SrcVT.getVectorNumElements() : 1; + bool IsVecInReg = Op.getOpcode() == ISD::SIGN_EXTEND_VECTOR_INREG; + + APInt InDemandedElts = DemandedElts.zext(InElts); + APInt InDemandedBits = DemandedBits.trunc(InBits); + + // Since some of the sign extended bits are demanded, we know that the sign + // bit is demanded. + InDemandedBits.setBit(InBits - 1); + + // If none of the top bits are demanded, convert this into an any_extend. + if (DemandedBits.getActiveBits() <= InBits) { + // If we only need the non-extended bits of the bottom element + // then we can just bitcast to the result. + if (IsLE && IsVecInReg && DemandedElts == 1 && + VT.getSizeInBits() == SrcVT.getSizeInBits()) + return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); + + // Don't lose an all signbits 0/-1 splat on targets with 0/-1 booleans. + if (getBooleanContents(VT) != ZeroOrNegativeOneBooleanContent || + TLO.DAG.ComputeNumSignBits(Src, InDemandedElts, Depth + 1) != + InBits) { + unsigned Opc = + IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND; + if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) + return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src)); + } + } + + if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO, + Depth + 1)) + return true; + assert(Known.getBitWidth() == InBits && "Src width has changed?"); + + // If the sign bit is known one, the top bits match. + Known = Known.sext(BitWidth); + + // If the sign bit is known zero, convert this to a zero extend. + if (Known.isNonNegative()) { + unsigned Opc = + IsVecInReg ? ISD::ZERO_EXTEND_VECTOR_INREG : ISD::ZERO_EXTEND; + if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) { + SDNodeFlags Flags; + if (!IsVecInReg) + Flags.setNonNeg(true); + return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src, Flags)); + } + } + + // Attempt to avoid multi-use ops if we don't need anything from them. + if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( + Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1)) + return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc)); + break; + } + case ISD::ANY_EXTEND_VECTOR_INREG: + if (VT.isScalableVector()) + return false; + [[fallthrough]]; + case ISD::ANY_EXTEND: { + SDValue Src = Op.getOperand(0); + EVT SrcVT = Src.getValueType(); + unsigned InBits = SrcVT.getScalarSizeInBits(); + unsigned InElts = SrcVT.isFixedLengthVector() ? SrcVT.getVectorNumElements() : 1; + bool IsVecInReg = Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG; + + // If we only need the bottom element then we can just bitcast. + // TODO: Handle ANY_EXTEND? + if (IsLE && IsVecInReg && DemandedElts == 1 && + VT.getSizeInBits() == SrcVT.getSizeInBits()) + return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); + + APInt InDemandedBits = DemandedBits.trunc(InBits); + APInt InDemandedElts = DemandedElts.zext(InElts); + if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO, + Depth + 1)) + return true; + assert(Known.getBitWidth() == InBits && "Src width has changed?"); + Known = Known.anyext(BitWidth); + + // Attempt to avoid multi-use ops if we don't need anything from them. + if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( + Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1)) + return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc)); + break; + } + case ISD::TRUNCATE: { + SDValue Src = Op.getOperand(0); + + // Simplify the input, using demanded bit information, and compute the known + // zero/one bits live out. + unsigned OperandBitWidth = Src.getScalarValueSizeInBits(); + APInt TruncMask = DemandedBits.zext(OperandBitWidth); + if (SimplifyDemandedBits(Src, TruncMask, DemandedElts, Known, TLO, + Depth + 1)) + return true; + Known = Known.trunc(BitWidth); + + // Attempt to avoid multi-use ops if we don't need anything from them. + if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( + Src, TruncMask, DemandedElts, TLO.DAG, Depth + 1)) + return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, NewSrc)); + + // If the input is only used by this truncate, see if we can shrink it based + // on the known demanded bits. + switch (Src.getOpcode()) { + default: + break; + case ISD::SRL: + // Shrink SRL by a constant if none of the high bits shifted in are + // demanded. + if (TLO.LegalTypes() && !isTypeDesirableForOp(ISD::SRL, VT)) + // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is + // undesirable. + break; + + if (Src.getNode()->hasOneUse()) { + if (isTruncateFree(Src, VT) && + !isTruncateFree(Src.getValueType(), VT)) { + // If truncate is only free at trunc(srl), do not turn it into + // srl(trunc). The check is done by first check the truncate is free + // at Src's opcode(srl), then check the truncate is not done by + // referencing sub-register. In test, if both trunc(srl) and + // srl(trunc)'s trunc are free, srl(trunc) performs better. If only + // trunc(srl)'s trunc is free, trunc(srl) is better. + break; + } + + std::optional<uint64_t> ShAmtC = + TLO.DAG.getValidShiftAmount(Src, DemandedElts, Depth + 2); + if (!ShAmtC || *ShAmtC >= BitWidth) + break; + uint64_t ShVal = *ShAmtC; + + APInt HighBits = + APInt::getHighBitsSet(OperandBitWidth, OperandBitWidth - BitWidth); + HighBits.lshrInPlace(ShVal); + HighBits = HighBits.trunc(BitWidth); + if (!(HighBits & DemandedBits)) { + // None of the shifted in bits are needed. Add a truncate of the + // shift input, then shift it. + SDValue NewShAmt = TLO.DAG.getShiftAmountConstant(ShVal, VT, dl); + SDValue NewTrunc = + TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, Src.getOperand(0)); + return TLO.CombineTo( + Op, TLO.DAG.getNode(ISD::SRL, dl, VT, NewTrunc, NewShAmt)); + } + } + break; + } + + break; + } + case ISD::AssertZext: { + // AssertZext demands all of the high bits, plus any of the low bits + // demanded by its users. + EVT ZVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); + APInt InMask = APInt::getLowBitsSet(BitWidth, ZVT.getSizeInBits()); + if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | DemandedBits, Known, + TLO, Depth + 1)) + return true; + + Known.Zero |= ~InMask; + Known.One &= (~Known.Zero); + break; + } + case ISD::EXTRACT_VECTOR_ELT: { + SDValue Src = Op.getOperand(0); + SDValue Idx = Op.getOperand(1); + ElementCount SrcEltCnt = Src.getValueType().getVectorElementCount(); + unsigned EltBitWidth = Src.getScalarValueSizeInBits(); + + if (SrcEltCnt.isScalable()) + return false; + + // Demand the bits from every vector element without a constant index. + unsigned NumSrcElts = SrcEltCnt.getFixedValue(); + APInt DemandedSrcElts = APInt::getAllOnes(NumSrcElts); + if (auto *CIdx = dyn_cast<ConstantSDNode>(Idx)) + if (CIdx->getAPIntValue().ult(NumSrcElts)) + DemandedSrcElts = APInt::getOneBitSet(NumSrcElts, CIdx->getZExtValue()); + + // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know + // anything about the extended bits. + APInt DemandedSrcBits = DemandedBits; + if (BitWidth > EltBitWidth) + DemandedSrcBits = DemandedSrcBits.trunc(EltBitWidth); + + if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, Known2, TLO, + Depth + 1)) + return true; + + // Attempt to avoid multi-use ops if we don't need anything from them. + if (!DemandedSrcBits.isAllOnes() || !DemandedSrcElts.isAllOnes()) { + if (SDValue DemandedSrc = SimplifyMultipleUseDemandedBits( + Src, DemandedSrcBits, DemandedSrcElts, TLO.DAG, Depth + 1)) { + SDValue NewOp = + TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc, Idx); + return TLO.CombineTo(Op, NewOp); + } + } + + Known = Known2; + if (BitWidth > EltBitWidth) + Known = Known.anyext(BitWidth); + break; + } + case ISD::BITCAST: { + if (VT.isScalableVector()) + return false; + SDValue Src = Op.getOperand(0); + EVT SrcVT = Src.getValueType(); + unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits(); + + // If this is an FP->Int bitcast and if the sign bit is the only + // thing demanded, turn this into a FGETSIGN. + if (!TLO.LegalOperations() && !VT.isVector() && !SrcVT.isVector() && + DemandedBits == APInt::getSignMask(Op.getValueSizeInBits()) && + SrcVT.isFloatingPoint()) { + bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, VT); + bool i32Legal = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32); + if ((OpVTLegal || i32Legal) && VT.isSimple() && SrcVT != MVT::f16 && + SrcVT != MVT::f128) { + // Cannot eliminate/lower SHL for f128 yet. + EVT Ty = OpVTLegal ? VT : MVT::i32; + // Make a FGETSIGN + SHL to move the sign bit into the appropriate + // place. We expect the SHL to be eliminated by other optimizations. + SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Src); + unsigned OpVTSizeInBits = Op.getValueSizeInBits(); + if (!OpVTLegal && OpVTSizeInBits > 32) + Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Sign); + unsigned ShVal = Op.getValueSizeInBits() - 1; + SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, VT); + return TLO.CombineTo(Op, + TLO.DAG.getNode(ISD::SHL, dl, VT, Sign, ShAmt)); + } + } + + // Bitcast from a vector using SimplifyDemanded Bits/VectorElts. + // Demand the elt/bit if any of the original elts/bits are demanded. + if (SrcVT.isVector() && (BitWidth % NumSrcEltBits) == 0) { + unsigned Scale = BitWidth / NumSrcEltBits; + unsigned NumSrcElts = SrcVT.getVectorNumElements(); + APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits); + APInt DemandedSrcElts = APInt::getZero(NumSrcElts); + for (unsigned i = 0; i != Scale; ++i) { + unsigned EltOffset = IsLE ? i : (Scale - 1 - i); + unsigned BitOffset = EltOffset * NumSrcEltBits; + APInt Sub = DemandedBits.extractBits(NumSrcEltBits, BitOffset); + if (!Sub.isZero()) { + DemandedSrcBits |= Sub; + for (unsigned j = 0; j != NumElts; ++j) + if (DemandedElts[j]) + DemandedSrcElts.setBit((j * Scale) + i); + } + } + + APInt KnownSrcUndef, KnownSrcZero; + if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef, + KnownSrcZero, TLO, Depth + 1)) + return true; + + KnownBits KnownSrcBits; + if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, + KnownSrcBits, TLO, Depth + 1)) + return true; + } else if (IsLE && (NumSrcEltBits % BitWidth) == 0) { + // TODO - bigendian once we have test coverage. + unsigned Scale = NumSrcEltBits / BitWidth; + unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; + APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits); + APInt DemandedSrcElts = APInt::getZero(NumSrcElts); + for (unsigned i = 0; i != NumElts; ++i) + if (DemandedElts[i]) { + unsigned Offset = (i % Scale) * BitWidth; + DemandedSrcBits.insertBits(DemandedBits, Offset); + DemandedSrcElts.setBit(i / Scale); + } + + if (SrcVT.isVector()) { + APInt KnownSrcUndef, KnownSrcZero; + if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef, + KnownSrcZero, TLO, Depth + 1)) + return true; + } + + KnownBits KnownSrcBits; + if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, + KnownSrcBits, TLO, Depth + 1)) + return true; + + // Attempt to avoid multi-use ops if we don't need anything from them. + if (!DemandedSrcBits.isAllOnes() || !DemandedSrcElts.isAllOnes()) { + if (SDValue DemandedSrc = SimplifyMultipleUseDemandedBits( + Src, DemandedSrcBits, DemandedSrcElts, TLO.DAG, Depth + 1)) { + SDValue NewOp = TLO.DAG.getBitcast(VT, DemandedSrc); + return TLO.CombineTo(Op, NewOp); + } + } + } + + // If this is a bitcast, let computeKnownBits handle it. Only do this on a + // recursive call where Known may be useful to the caller. + if (Depth > 0) { + Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); + return false; + } + break; + } + case ISD::MUL: + if (DemandedBits.isPowerOf2()) { + // The LSB of X*Y is set only if (X & 1) == 1 and (Y & 1) == 1. + // If we demand exactly one bit N and we have "X * (C' << N)" where C' is + // odd (has LSB set), then the left-shifted low bit of X is the answer. + unsigned CTZ = DemandedBits.countr_zero(); + ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(1), DemandedElts); + if (C && C->getAPIntValue().countr_zero() == CTZ) { + SDValue AmtC = TLO.DAG.getShiftAmountConstant(CTZ, VT, dl); + SDValue Shl = TLO.DAG.getNode(ISD::SHL, dl, VT, Op.getOperand(0), AmtC); + return TLO.CombineTo(Op, Shl); + } + } + // For a squared value "X * X", the bottom 2 bits are 0 and X[0] because: + // X * X is odd iff X is odd. + // 'Quadratic Reciprocity': X * X -> 0 for bit[1] + if (Op.getOperand(0) == Op.getOperand(1) && DemandedBits.ult(4)) { + SDValue One = TLO.DAG.getConstant(1, dl, VT); + SDValue And1 = TLO.DAG.getNode(ISD::AND, dl, VT, Op.getOperand(0), One); + return TLO.CombineTo(Op, And1); + } + [[fallthrough]]; + case ISD::ADD: + case ISD::SUB: { + // Add, Sub, and Mul don't demand any bits in positions beyond that + // of the highest bit demanded of them. + SDValue Op0 = Op.getOperand(0), Op1 = Op.getOperand(1); + SDNodeFlags Flags = Op.getNode()->getFlags(); + unsigned DemandedBitsLZ = DemandedBits.countl_zero(); + APInt LoMask = APInt::getLowBitsSet(BitWidth, BitWidth - DemandedBitsLZ); + KnownBits KnownOp0, KnownOp1; + auto GetDemandedBitsLHSMask = [&](APInt Demanded, + const KnownBits &KnownRHS) { + if (Op.getOpcode() == ISD::MUL) + Demanded.clearHighBits(KnownRHS.countMinTrailingZeros()); + return Demanded; + }; + if (SimplifyDemandedBits(Op1, LoMask, DemandedElts, KnownOp1, TLO, + Depth + 1) || + SimplifyDemandedBits(Op0, GetDemandedBitsLHSMask(LoMask, KnownOp1), + DemandedElts, KnownOp0, TLO, Depth + 1) || + // See if the operation should be performed at a smaller bit width. + ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) { + if (Flags.hasNoSignedWrap() || Flags.hasNoUnsignedWrap()) { + // Disable the nsw and nuw flags. We can no longer guarantee that we + // won't wrap after simplification. + Flags.setNoSignedWrap(false); + Flags.setNoUnsignedWrap(false); + Op->setFlags(Flags); + } + return true; + } + + // neg x with only low bit demanded is simply x. + if (Op.getOpcode() == ISD::SUB && DemandedBits.isOne() && + isNullConstant(Op0)) + return TLO.CombineTo(Op, Op1); + + // Attempt to avoid multi-use ops if we don't need anything from them. + if (!LoMask.isAllOnes() || !DemandedElts.isAllOnes()) { + SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( + Op0, LoMask, DemandedElts, TLO.DAG, Depth + 1); + SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( + Op1, LoMask, DemandedElts, TLO.DAG, Depth + 1); + if (DemandedOp0 || DemandedOp1) { + Flags.setNoSignedWrap(false); + Flags.setNoUnsignedWrap(false); + Op0 = DemandedOp0 ? DemandedOp0 : Op0; + Op1 = DemandedOp1 ? DemandedOp1 : Op1; + SDValue NewOp = + TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags); + return TLO.CombineTo(Op, NewOp); + } + } + + // If we have a constant operand, we may be able to turn it into -1 if we + // do not demand the high bits. This can make the constant smaller to + // encode, allow more general folding, or match specialized instruction + // patterns (eg, 'blsr' on x86). Don't bother changing 1 to -1 because that + // is probably not useful (and could be detrimental). + ConstantSDNode *C = isConstOrConstSplat(Op1); + APInt HighMask = APInt::getHighBitsSet(BitWidth, DemandedBitsLZ); + if (C && !C->isAllOnes() && !C->isOne() && + (C->getAPIntValue() | HighMask).isAllOnes()) { + SDValue Neg1 = TLO.DAG.getAllOnesConstant(dl, VT); + // Disable the nsw and nuw flags. We can no longer guarantee that we + // won't wrap after simplification. + Flags.setNoSignedWrap(false); + Flags.setNoUnsignedWrap(false); + SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Neg1, Flags); + return TLO.CombineTo(Op, NewOp); + } + + // Match a multiply with a disguised negated-power-of-2 and convert to a + // an equivalent shift-left amount. + // Example: (X * MulC) + Op1 --> Op1 - (X << log2(-MulC)) + auto getShiftLeftAmt = [&HighMask](SDValue Mul) -> unsigned { + if (Mul.getOpcode() != ISD::MUL || !Mul.hasOneUse()) + return 0; + + // Don't touch opaque constants. Also, ignore zero and power-of-2 + // multiplies. Those will get folded later. + ConstantSDNode *MulC = isConstOrConstSplat(Mul.getOperand(1)); + if (MulC && !MulC->isOpaque() && !MulC->isZero() && + !MulC->getAPIntValue().isPowerOf2()) { + APInt UnmaskedC = MulC->getAPIntValue() | HighMask; + if (UnmaskedC.isNegatedPowerOf2()) + return (-UnmaskedC).logBase2(); + } + return 0; + }; + + auto foldMul = [&](ISD::NodeType NT, SDValue X, SDValue Y, + unsigned ShlAmt) { + SDValue ShlAmtC = TLO.DAG.getShiftAmountConstant(ShlAmt, VT, dl); + SDValue Shl = TLO.DAG.getNode(ISD::SHL, dl, VT, X, ShlAmtC); + SDValue Res = TLO.DAG.getNode(NT, dl, VT, Y, Shl); + return TLO.CombineTo(Op, Res); + }; + + if (isOperationLegalOrCustom(ISD::SHL, VT)) { + if (Op.getOpcode() == ISD::ADD) { + // (X * MulC) + Op1 --> Op1 - (X << log2(-MulC)) + if (unsigned ShAmt = getShiftLeftAmt(Op0)) + return foldMul(ISD::SUB, Op0.getOperand(0), Op1, ShAmt); + // Op0 + (X * MulC) --> Op0 - (X << log2(-MulC)) + if (unsigned ShAmt = getShiftLeftAmt(Op1)) + return foldMul(ISD::SUB, Op1.getOperand(0), Op0, ShAmt); + } + if (Op.getOpcode() == ISD::SUB) { + // Op0 - (X * MulC) --> Op0 + (X << log2(-MulC)) + if (unsigned ShAmt = getShiftLeftAmt(Op1)) + return foldMul(ISD::ADD, Op1.getOperand(0), Op0, ShAmt); + } + } + + if (Op.getOpcode() == ISD::MUL) { + Known = KnownBits::mul(KnownOp0, KnownOp1); + } else { // Op.getOpcode() is either ISD::ADD or ISD::SUB. + Known = KnownBits::computeForAddSub( + Op.getOpcode() == ISD::ADD, Flags.hasNoSignedWrap(), + Flags.hasNoUnsignedWrap(), KnownOp0, KnownOp1); + } + break; + } + default: + // We also ask the target about intrinsics (which could be specific to it). + if (Op.getOpcode() >= ISD::BUILTIN_OP_END || + Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN) { + // TODO: Probably okay to remove after audit; here to reduce change size + // in initial enablement patch for scalable vectors + if (Op.getValueType().isScalableVector()) + break; + if (SimplifyDemandedBitsForTargetNode(Op, DemandedBits, DemandedElts, + Known, TLO, Depth)) + return true; + break; + } + + // Just use computeKnownBits to compute output bits. + Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); + break; + } + + // If we know the value of all of the demanded bits, return this as a + // constant. + if (!isTargetCanonicalConstantNode(Op) && + DemandedBits.isSubsetOf(Known.Zero | Known.One)) { + // Avoid folding to a constant if any OpaqueConstant is involved. + const SDNode *N = Op.getNode(); + for (SDNode *Op : + llvm::make_range(SDNodeIterator::begin(N), SDNodeIterator::end(N))) { + if (auto *C = dyn_cast<ConstantSDNode>(Op)) + if (C->isOpaque()) + return false; + } + if (VT.isInteger()) + return TLO.CombineTo(Op, TLO.DAG.getConstant(Known.One, dl, VT)); + if (VT.isFloatingPoint()) + return TLO.CombineTo( + Op, + TLO.DAG.getConstantFP( + APFloat(TLO.DAG.EVTToAPFloatSemantics(VT), Known.One), dl, VT)); + } + + // A multi use 'all demanded elts' simplify failed to find any knownbits. + // Try again just for the original demanded elts. + // Ensure we do this AFTER constant folding above. + if (HasMultiUse && Known.isUnknown() && !OriginalDemandedElts.isAllOnes()) + Known = TLO.DAG.computeKnownBits(Op, OriginalDemandedElts, Depth); + + return false; +} + +bool TargetLowering::SimplifyDemandedVectorElts(SDValue Op, + const APInt &DemandedElts, + DAGCombinerInfo &DCI) const { + SelectionDAG &DAG = DCI.DAG; + TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), + !DCI.isBeforeLegalizeOps()); + + APInt KnownUndef, KnownZero; + bool Simplified = + SimplifyDemandedVectorElts(Op, DemandedElts, KnownUndef, KnownZero, TLO); + if (Simplified) { + DCI.AddToWorklist(Op.getNode()); + DCI.CommitTargetLoweringOpt(TLO); + } + + return Simplified; +} + +/// Given a vector binary operation and known undefined elements for each input +/// operand, compute whether each element of the output is undefined. +static APInt getKnownUndefForVectorBinop(SDValue BO, SelectionDAG &DAG, + const APInt &UndefOp0, + const APInt &UndefOp1) { + EVT VT = BO.getValueType(); + assert(DAG.getTargetLoweringInfo().isBinOp(BO.getOpcode()) && VT.isVector() && + "Vector binop only"); + + EVT EltVT = VT.getVectorElementType(); + unsigned NumElts = VT.isFixedLengthVector() ? VT.getVectorNumElements() : 1; + assert(UndefOp0.getBitWidth() == NumElts && + UndefOp1.getBitWidth() == NumElts && "Bad type for undef analysis"); + + auto getUndefOrConstantElt = [&](SDValue V, unsigned Index, + const APInt &UndefVals) { + if (UndefVals[Index]) + return DAG.getUNDEF(EltVT); + + if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) { + // Try hard to make sure that the getNode() call is not creating temporary + // nodes. Ignore opaque integers because they do not constant fold. + SDValue Elt = BV->getOperand(Index); + auto *C = dyn_cast<ConstantSDNode>(Elt); + if (isa<ConstantFPSDNode>(Elt) || Elt.isUndef() || (C && !C->isOpaque())) + return Elt; + } + + return SDValue(); + }; + + APInt KnownUndef = APInt::getZero(NumElts); + for (unsigned i = 0; i != NumElts; ++i) { + // If both inputs for this element are either constant or undef and match + // the element type, compute the constant/undef result for this element of + // the vector. + // TODO: Ideally we would use FoldConstantArithmetic() here, but that does + // not handle FP constants. The code within getNode() should be refactored + // to avoid the danger of creating a bogus temporary node here. + SDValue C0 = getUndefOrConstantElt(BO.getOperand(0), i, UndefOp0); + SDValue C1 = getUndefOrConstantElt(BO.getOperand(1), i, UndefOp1); + if (C0 && C1 && C0.getValueType() == EltVT && C1.getValueType() == EltVT) + if (DAG.getNode(BO.getOpcode(), SDLoc(BO), EltVT, C0, C1).isUndef()) + KnownUndef.setBit(i); + } + return KnownUndef; +} + +bool TargetLowering::SimplifyDemandedVectorElts( + SDValue Op, const APInt &OriginalDemandedElts, APInt &KnownUndef, + APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth, + bool AssumeSingleUse) const { + EVT VT = Op.getValueType(); + unsigned Opcode = Op.getOpcode(); + APInt DemandedElts = OriginalDemandedElts; + unsigned NumElts = DemandedElts.getBitWidth(); + assert(VT.isVector() && "Expected vector op"); + + KnownUndef = KnownZero = APInt::getZero(NumElts); + + const TargetLowering &TLI = TLO.DAG.getTargetLoweringInfo(); + if (!TLI.shouldSimplifyDemandedVectorElts(Op, TLO)) + return false; + + // TODO: For now we assume we know nothing about scalable vectors. + if (VT.isScalableVector()) + return false; + + assert(VT.getVectorNumElements() == NumElts && + "Mask size mismatches value type element count!"); + + // Undef operand. + if (Op.isUndef()) { + KnownUndef.setAllBits(); + return false; + } + + // If Op has other users, assume that all elements are needed. + if (!AssumeSingleUse && !Op.getNode()->hasOneUse()) + DemandedElts.setAllBits(); + + // Not demanding any elements from Op. + if (DemandedElts == 0) { + KnownUndef.setAllBits(); + return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); + } + + // Limit search depth. + if (Depth >= SelectionDAG::MaxRecursionDepth) + return false; + + SDLoc DL(Op); + unsigned EltSizeInBits = VT.getScalarSizeInBits(); + bool IsLE = TLO.DAG.getDataLayout().isLittleEndian(); + + // Helper for demanding the specified elements and all the bits of both binary + // operands. + auto SimplifyDemandedVectorEltsBinOp = [&](SDValue Op0, SDValue Op1) { + SDValue NewOp0 = SimplifyMultipleUseDemandedVectorElts(Op0, DemandedElts, + TLO.DAG, Depth + 1); + SDValue NewOp1 = SimplifyMultipleUseDemandedVectorElts(Op1, DemandedElts, + TLO.DAG, Depth + 1); + if (NewOp0 || NewOp1) { + SDValue NewOp = + TLO.DAG.getNode(Opcode, SDLoc(Op), VT, NewOp0 ? NewOp0 : Op0, + NewOp1 ? NewOp1 : Op1, Op->getFlags()); + return TLO.CombineTo(Op, NewOp); + } + return false; + }; + + switch (Opcode) { + case ISD::SCALAR_TO_VECTOR: { + if (!DemandedElts[0]) { + KnownUndef.setAllBits(); + return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); + } + SDValue ScalarSrc = Op.getOperand(0); + if (ScalarSrc.getOpcode() == ISD::EXTRACT_VECTOR_ELT) { + SDValue Src = ScalarSrc.getOperand(0); + SDValue Idx = ScalarSrc.getOperand(1); + EVT SrcVT = Src.getValueType(); + + ElementCount SrcEltCnt = SrcVT.getVectorElementCount(); + + if (SrcEltCnt.isScalable()) + return false; + + unsigned NumSrcElts = SrcEltCnt.getFixedValue(); + if (isNullConstant(Idx)) { + APInt SrcDemandedElts = APInt::getOneBitSet(NumSrcElts, 0); + APInt SrcUndef = KnownUndef.zextOrTrunc(NumSrcElts); + APInt SrcZero = KnownZero.zextOrTrunc(NumSrcElts); + if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero, + TLO, Depth + 1)) + return true; + } + } + KnownUndef.setHighBits(NumElts - 1); + break; + } + case ISD::BITCAST: { + SDValue Src = Op.getOperand(0); + EVT SrcVT = Src.getValueType(); + + // We only handle vectors here. + // TODO - investigate calling SimplifyDemandedBits/ComputeKnownBits? + if (!SrcVT.isVector()) + break; + + // Fast handling of 'identity' bitcasts. + unsigned NumSrcElts = SrcVT.getVectorNumElements(); + if (NumSrcElts == NumElts) + return SimplifyDemandedVectorElts(Src, DemandedElts, KnownUndef, + KnownZero, TLO, Depth + 1); + + APInt SrcDemandedElts, SrcZero, SrcUndef; + + // Bitcast from 'large element' src vector to 'small element' vector, we + // must demand a source element if any DemandedElt maps to it. + if ((NumElts % NumSrcElts) == 0) { + unsigned Scale = NumElts / NumSrcElts; + SrcDemandedElts = APIntOps::ScaleBitMask(DemandedElts, NumSrcElts); + if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero, + TLO, Depth + 1)) + return true; + + // Try calling SimplifyDemandedBits, converting demanded elts to the bits + // of the large element. + // TODO - bigendian once we have test coverage. + if (IsLE) { + unsigned SrcEltSizeInBits = SrcVT.getScalarSizeInBits(); + APInt SrcDemandedBits = APInt::getZero(SrcEltSizeInBits); + for (unsigned i = 0; i != NumElts; ++i) + if (DemandedElts[i]) { + unsigned Ofs = (i % Scale) * EltSizeInBits; + SrcDemandedBits.setBits(Ofs, Ofs + EltSizeInBits); + } + + KnownBits Known; + if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcDemandedElts, Known, + TLO, Depth + 1)) + return true; + + // The bitcast has split each wide element into a number of + // narrow subelements. We have just computed the Known bits + // for wide elements. See if element splitting results in + // some subelements being zero. Only for demanded elements! + for (unsigned SubElt = 0; SubElt != Scale; ++SubElt) { + if (!Known.Zero.extractBits(EltSizeInBits, SubElt * EltSizeInBits) + .isAllOnes()) + continue; + for (unsigned SrcElt = 0; SrcElt != NumSrcElts; ++SrcElt) { + unsigned Elt = Scale * SrcElt + SubElt; + if (DemandedElts[Elt]) + KnownZero.setBit(Elt); + } + } + } + + // If the src element is zero/undef then all the output elements will be - + // only demanded elements are guaranteed to be correct. + for (unsigned i = 0; i != NumSrcElts; ++i) { + if (SrcDemandedElts[i]) { + if (SrcZero[i]) + KnownZero.setBits(i * Scale, (i + 1) * Scale); + if (SrcUndef[i]) + KnownUndef.setBits(i * Scale, (i + 1) * Scale); + } + } + } + + // Bitcast from 'small element' src vector to 'large element' vector, we + // demand all smaller source elements covered by the larger demanded element + // of this vector. + if ((NumSrcElts % NumElts) == 0) { + unsigned Scale = NumSrcElts / NumElts; + SrcDemandedElts = APIntOps::ScaleBitMask(DemandedElts, NumSrcElts); + if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero, + TLO, Depth + 1)) + return true; + + // If all the src elements covering an output element are zero/undef, then + // the output element will be as well, assuming it was demanded. + for (unsigned i = 0; i != NumElts; ++i) { + if (DemandedElts[i]) { + if (SrcZero.extractBits(Scale, i * Scale).isAllOnes()) + KnownZero.setBit(i); + if (SrcUndef.extractBits(Scale, i * Scale).isAllOnes()) + KnownUndef.setBit(i); + } + } + } + break; + } + case ISD::FREEZE: { + SDValue N0 = Op.getOperand(0); + if (TLO.DAG.isGuaranteedNotToBeUndefOrPoison(N0, DemandedElts, + /*PoisonOnly=*/false)) + return TLO.CombineTo(Op, N0); + + // TODO: Replace this with the general fold from DAGCombiner::visitFREEZE + // freeze(op(x, ...)) -> op(freeze(x), ...). + if (N0.getOpcode() == ISD::SCALAR_TO_VECTOR && DemandedElts == 1) + return TLO.CombineTo( + Op, TLO.DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VT, + TLO.DAG.getFreeze(N0.getOperand(0)))); + break; + } + case ISD::BUILD_VECTOR: { + // Check all elements and simplify any unused elements with UNDEF. + if (!DemandedElts.isAllOnes()) { + // Don't simplify BROADCASTS. + if (llvm::any_of(Op->op_values(), + [&](SDValue Elt) { return Op.getOperand(0) != Elt; })) { + SmallVector<SDValue, 32> Ops(Op->op_begin(), Op->op_end()); + bool Updated = false; + for (unsigned i = 0; i != NumElts; ++i) { + if (!DemandedElts[i] && !Ops[i].isUndef()) { + Ops[i] = TLO.DAG.getUNDEF(Ops[0].getValueType()); + KnownUndef.setBit(i); + Updated = true; + } + } + if (Updated) + return TLO.CombineTo(Op, TLO.DAG.getBuildVector(VT, DL, Ops)); + } + } + for (unsigned i = 0; i != NumElts; ++i) { + SDValue SrcOp = Op.getOperand(i); + if (SrcOp.isUndef()) { + KnownUndef.setBit(i); + } else if (EltSizeInBits == SrcOp.getScalarValueSizeInBits() && + (isNullConstant(SrcOp) || isNullFPConstant(SrcOp))) { + KnownZero.setBit(i); + } + } + break; + } + case ISD::CONCAT_VECTORS: { + EVT SubVT = Op.getOperand(0).getValueType(); + unsigned NumSubVecs = Op.getNumOperands(); + unsigned NumSubElts = SubVT.getVectorNumElements(); + for (unsigned i = 0; i != NumSubVecs; ++i) { + SDValue SubOp = Op.getOperand(i); + APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts); + APInt SubUndef, SubZero; + if (SimplifyDemandedVectorElts(SubOp, SubElts, SubUndef, SubZero, TLO, + Depth + 1)) + return true; + KnownUndef.insertBits(SubUndef, i * NumSubElts); + KnownZero.insertBits(SubZero, i * NumSubElts); + } + + // Attempt to avoid multi-use ops if we don't need anything from them. + if (!DemandedElts.isAllOnes()) { + bool FoundNewSub = false; + SmallVector<SDValue, 2> DemandedSubOps; + for (unsigned i = 0; i != NumSubVecs; ++i) { + SDValue SubOp = Op.getOperand(i); + APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts); + SDValue NewSubOp = SimplifyMultipleUseDemandedVectorElts( + SubOp, SubElts, TLO.DAG, Depth + 1); + DemandedSubOps.push_back(NewSubOp ? NewSubOp : SubOp); + FoundNewSub = NewSubOp ? true : FoundNewSub; + } + if (FoundNewSub) { + SDValue NewOp = + TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, DemandedSubOps); + return TLO.CombineTo(Op, NewOp); + } + } + break; + } + case ISD::INSERT_SUBVECTOR: { + // Demand any elements from the subvector and the remainder from the src its + // inserted into. + SDValue Src = Op.getOperand(0); + SDValue Sub = Op.getOperand(1); + uint64_t Idx = Op.getConstantOperandVal(2); + unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); + APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); + APInt DemandedSrcElts = DemandedElts; + DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx); + + APInt SubUndef, SubZero; + if (SimplifyDemandedVectorElts(Sub, DemandedSubElts, SubUndef, SubZero, TLO, + Depth + 1)) + return true; + + // If none of the src operand elements are demanded, replace it with undef. + if (!DemandedSrcElts && !Src.isUndef()) + return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, + TLO.DAG.getUNDEF(VT), Sub, + Op.getOperand(2))); + + if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownUndef, KnownZero, + TLO, Depth + 1)) + return true; + KnownUndef.insertBits(SubUndef, Idx); + KnownZero.insertBits(SubZero, Idx); + + // Attempt to avoid multi-use ops if we don't need anything from them. + if (!DemandedSrcElts.isAllOnes() || !DemandedSubElts.isAllOnes()) { + SDValue NewSrc = SimplifyMultipleUseDemandedVectorElts( + Src, DemandedSrcElts, TLO.DAG, Depth + 1); + SDValue NewSub = SimplifyMultipleUseDemandedVectorElts( + Sub, DemandedSubElts, TLO.DAG, Depth + 1); + if (NewSrc || NewSub) { + NewSrc = NewSrc ? NewSrc : Src; + NewSub = NewSub ? NewSub : Sub; + SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc, + NewSub, Op.getOperand(2)); + return TLO.CombineTo(Op, NewOp); + } + } + break; + } + case ISD::EXTRACT_SUBVECTOR: { + // Offset the demanded elts by the subvector index. + SDValue Src = Op.getOperand(0); + if (Src.getValueType().isScalableVector()) + break; + uint64_t Idx = Op.getConstantOperandVal(1); + unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); + APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts).shl(Idx); + + APInt SrcUndef, SrcZero; + if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO, + Depth + 1)) + return true; + KnownUndef = SrcUndef.extractBits(NumElts, Idx); + KnownZero = SrcZero.extractBits(NumElts, Idx); + + // Attempt to avoid multi-use ops if we don't need anything from them. + if (!DemandedElts.isAllOnes()) { + SDValue NewSrc = SimplifyMultipleUseDemandedVectorElts( + Src, DemandedSrcElts, TLO.DAG, Depth + 1); + if (NewSrc) { + SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc, + Op.getOperand(1)); + return TLO.CombineTo(Op, NewOp); + } + } + break; + } + case ISD::INSERT_VECTOR_ELT: { + SDValue Vec = Op.getOperand(0); + SDValue Scl = Op.getOperand(1); + auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); + + // For a legal, constant insertion index, if we don't need this insertion + // then strip it, else remove it from the demanded elts. + if (CIdx && CIdx->getAPIntValue().ult(NumElts)) { + unsigned Idx = CIdx->getZExtValue(); + if (!DemandedElts[Idx]) + return TLO.CombineTo(Op, Vec); + + APInt DemandedVecElts(DemandedElts); + DemandedVecElts.clearBit(Idx); + if (SimplifyDemandedVectorElts(Vec, DemandedVecElts, KnownUndef, + KnownZero, TLO, Depth + 1)) + return true; + + KnownUndef.setBitVal(Idx, Scl.isUndef()); + + KnownZero.setBitVal(Idx, isNullConstant(Scl) || isNullFPConstant(Scl)); + break; + } + + APInt VecUndef, VecZero; + if (SimplifyDemandedVectorElts(Vec, DemandedElts, VecUndef, VecZero, TLO, + Depth + 1)) + return true; + // Without knowing the insertion index we can't set KnownUndef/KnownZero. + break; + } + case ISD::VSELECT: { + SDValue Sel = Op.getOperand(0); + SDValue LHS = Op.getOperand(1); + SDValue RHS = Op.getOperand(2); + + // Try to transform the select condition based on the current demanded + // elements. + APInt UndefSel, ZeroSel; + if (SimplifyDemandedVectorElts(Sel, DemandedElts, UndefSel, ZeroSel, TLO, + Depth + 1)) + return true; + + // See if we can simplify either vselect operand. + APInt DemandedLHS(DemandedElts); + APInt DemandedRHS(DemandedElts); + APInt UndefLHS, ZeroLHS; + APInt UndefRHS, ZeroRHS; + if (SimplifyDemandedVectorElts(LHS, DemandedLHS, UndefLHS, ZeroLHS, TLO, + Depth + 1)) + return true; + if (SimplifyDemandedVectorElts(RHS, DemandedRHS, UndefRHS, ZeroRHS, TLO, + Depth + 1)) + return true; + + KnownUndef = UndefLHS & UndefRHS; + KnownZero = ZeroLHS & ZeroRHS; + + // If we know that the selected element is always zero, we don't need the + // select value element. + APInt DemandedSel = DemandedElts & ~KnownZero; + if (DemandedSel != DemandedElts) + if (SimplifyDemandedVectorElts(Sel, DemandedSel, UndefSel, ZeroSel, TLO, + Depth + 1)) + return true; + + break; + } + case ISD::VECTOR_SHUFFLE: { + SDValue LHS = Op.getOperand(0); + SDValue RHS = Op.getOperand(1); + ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); + + // Collect demanded elements from shuffle operands.. + APInt DemandedLHS(NumElts, 0); + APInt DemandedRHS(NumElts, 0); + for (unsigned i = 0; i != NumElts; ++i) { + int M = ShuffleMask[i]; + if (M < 0 || !DemandedElts[i]) + continue; + assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range"); + if (M < (int)NumElts) + DemandedLHS.setBit(M); + else + DemandedRHS.setBit(M - NumElts); + } + + // See if we can simplify either shuffle operand. + APInt UndefLHS, ZeroLHS; + APInt UndefRHS, ZeroRHS; + if (SimplifyDemandedVectorElts(LHS, DemandedLHS, UndefLHS, ZeroLHS, TLO, + Depth + 1)) + return true; + if (SimplifyDemandedVectorElts(RHS, DemandedRHS, UndefRHS, ZeroRHS, TLO, + Depth + 1)) + return true; + + // Simplify mask using undef elements from LHS/RHS. + bool Updated = false; + bool IdentityLHS = true, IdentityRHS = true; + SmallVector<int, 32> NewMask(ShuffleMask); + for (unsigned i = 0; i != NumElts; ++i) { + int &M = NewMask[i]; + if (M < 0) + continue; + if (!DemandedElts[i] || (M < (int)NumElts && UndefLHS[M]) || + (M >= (int)NumElts && UndefRHS[M - NumElts])) { + Updated = true; + M = -1; + } + IdentityLHS &= (M < 0) || (M == (int)i); + IdentityRHS &= (M < 0) || ((M - NumElts) == i); + } + + // Update legal shuffle masks based on demanded elements if it won't reduce + // to Identity which can cause premature removal of the shuffle mask. + if (Updated && !IdentityLHS && !IdentityRHS && !TLO.LegalOps) { + SDValue LegalShuffle = + buildLegalVectorShuffle(VT, DL, LHS, RHS, NewMask, TLO.DAG); + if (LegalShuffle) + return TLO.CombineTo(Op, LegalShuffle); + } + + // Propagate undef/zero elements from LHS/RHS. + for (unsigned i = 0; i != NumElts; ++i) { + int M = ShuffleMask[i]; + if (M < 0) { + KnownUndef.setBit(i); + } else if (M < (int)NumElts) { + if (UndefLHS[M]) + KnownUndef.setBit(i); + if (ZeroLHS[M]) + KnownZero.setBit(i); + } else { + if (UndefRHS[M - NumElts]) + KnownUndef.setBit(i); + if (ZeroRHS[M - NumElts]) + KnownZero.setBit(i); + } + } + break; + } + case ISD::ANY_EXTEND_VECTOR_INREG: + case ISD::SIGN_EXTEND_VECTOR_INREG: + case ISD::ZERO_EXTEND_VECTOR_INREG: { + APInt SrcUndef, SrcZero; + SDValue Src = Op.getOperand(0); + unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); + APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts); + if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO, + Depth + 1)) + return true; + KnownZero = SrcZero.zextOrTrunc(NumElts); + KnownUndef = SrcUndef.zextOrTrunc(NumElts); + + if (IsLE && Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG && + Op.getValueSizeInBits() == Src.getValueSizeInBits() && + DemandedSrcElts == 1) { + // aext - if we just need the bottom element then we can bitcast. + return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); + } + + if (Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG) { + // zext(undef) upper bits are guaranteed to be zero. + if (DemandedElts.isSubsetOf(KnownUndef)) + return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT)); + KnownUndef.clearAllBits(); + + // zext - if we just need the bottom element then we can mask: + // zext(and(x,c)) -> and(x,c') iff the zext is the only user of the and. + if (IsLE && DemandedSrcElts == 1 && Src.getOpcode() == ISD::AND && + Op->isOnlyUserOf(Src.getNode()) && + Op.getValueSizeInBits() == Src.getValueSizeInBits()) { + SDLoc DL(Op); + EVT SrcVT = Src.getValueType(); + EVT SrcSVT = SrcVT.getScalarType(); + SmallVector<SDValue> MaskElts; + MaskElts.push_back(TLO.DAG.getAllOnesConstant(DL, SrcSVT)); + MaskElts.append(NumSrcElts - 1, TLO.DAG.getConstant(0, DL, SrcSVT)); + SDValue Mask = TLO.DAG.getBuildVector(SrcVT, DL, MaskElts); + if (SDValue Fold = TLO.DAG.FoldConstantArithmetic( + ISD::AND, DL, SrcVT, {Src.getOperand(1), Mask})) { + Fold = TLO.DAG.getNode(ISD::AND, DL, SrcVT, Src.getOperand(0), Fold); + return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Fold)); + } + } + } + break; + } + + // TODO: There are more binop opcodes that could be handled here - MIN, + // MAX, saturated math, etc. + case ISD::ADD: { + SDValue Op0 = Op.getOperand(0); + SDValue Op1 = Op.getOperand(1); + if (Op0 == Op1 && Op->isOnlyUserOf(Op0.getNode())) { + APInt UndefLHS, ZeroLHS; + if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO, + Depth + 1, /*AssumeSingleUse*/ true)) + return true; + } + [[fallthrough]]; + } + case ISD::AVGCEILS: + case ISD::AVGCEILU: + case ISD::AVGFLOORS: + case ISD::AVGFLOORU: + case ISD::OR: + case ISD::XOR: + case ISD::SUB: + case ISD::FADD: + case ISD::FSUB: + case ISD::FMUL: + case ISD::FDIV: + case ISD::FREM: { + SDValue Op0 = Op.getOperand(0); + SDValue Op1 = Op.getOperand(1); + + APInt UndefRHS, ZeroRHS; + if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO, + Depth + 1)) + return true; + APInt UndefLHS, ZeroLHS; + if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO, + Depth + 1)) + return true; + + KnownZero = ZeroLHS & ZeroRHS; + KnownUndef = getKnownUndefForVectorBinop(Op, TLO.DAG, UndefLHS, UndefRHS); + + // Attempt to avoid multi-use ops if we don't need anything from them. + // TODO - use KnownUndef to relax the demandedelts? + if (!DemandedElts.isAllOnes()) + if (SimplifyDemandedVectorEltsBinOp(Op0, Op1)) + return true; + break; + } + case ISD::SHL: + case ISD::SRL: + case ISD::SRA: + case ISD::ROTL: + case ISD::ROTR: { + SDValue Op0 = Op.getOperand(0); + SDValue Op1 = Op.getOperand(1); + + APInt UndefRHS, ZeroRHS; + if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO, + Depth + 1)) + return true; + APInt UndefLHS, ZeroLHS; + if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO, + Depth + 1)) + return true; + + KnownZero = ZeroLHS; + KnownUndef = UndefLHS & UndefRHS; // TODO: use getKnownUndefForVectorBinop? + + // Attempt to avoid multi-use ops if we don't need anything from them. + // TODO - use KnownUndef to relax the demandedelts? + if (!DemandedElts.isAllOnes()) + if (SimplifyDemandedVectorEltsBinOp(Op0, Op1)) + return true; + break; + } + case ISD::MUL: + case ISD::MULHU: + case ISD::MULHS: + case ISD::AND: { + SDValue Op0 = Op.getOperand(0); + SDValue Op1 = Op.getOperand(1); + + APInt SrcUndef, SrcZero; + if (SimplifyDemandedVectorElts(Op1, DemandedElts, SrcUndef, SrcZero, TLO, + Depth + 1)) + return true; + // If we know that a demanded element was zero in Op1 we don't need to + // demand it in Op0 - its guaranteed to be zero. + APInt DemandedElts0 = DemandedElts & ~SrcZero; + if (SimplifyDemandedVectorElts(Op0, DemandedElts0, KnownUndef, KnownZero, + TLO, Depth + 1)) + return true; + + KnownUndef &= DemandedElts0; + KnownZero &= DemandedElts0; + + // If every element pair has a zero/undef then just fold to zero. + // fold (and x, undef) -> 0 / (and x, 0) -> 0 + // fold (mul x, undef) -> 0 / (mul x, 0) -> 0 + if (DemandedElts.isSubsetOf(SrcZero | KnownZero | SrcUndef | KnownUndef)) + return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT)); + + // If either side has a zero element, then the result element is zero, even + // if the other is an UNDEF. + // TODO: Extend getKnownUndefForVectorBinop to also deal with known zeros + // and then handle 'and' nodes with the rest of the binop opcodes. + KnownZero |= SrcZero; + KnownUndef &= SrcUndef; + KnownUndef &= ~KnownZero; + + // Attempt to avoid multi-use ops if we don't need anything from them. + if (!DemandedElts.isAllOnes()) + if (SimplifyDemandedVectorEltsBinOp(Op0, Op1)) + return true; + break; + } + case ISD::TRUNCATE: + case ISD::SIGN_EXTEND: + case ISD::ZERO_EXTEND: + if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef, + KnownZero, TLO, Depth + 1)) + return true; + + if (Op.getOpcode() == ISD::ZERO_EXTEND) { + // zext(undef) upper bits are guaranteed to be zero. + if (DemandedElts.isSubsetOf(KnownUndef)) + return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT)); + KnownUndef.clearAllBits(); + } + break; + default: { + if (Op.getOpcode() >= ISD::BUILTIN_OP_END) { + if (SimplifyDemandedVectorEltsForTargetNode(Op, DemandedElts, KnownUndef, + KnownZero, TLO, Depth)) + return true; + } else { + KnownBits Known; + APInt DemandedBits = APInt::getAllOnes(EltSizeInBits); + if (SimplifyDemandedBits(Op, DemandedBits, OriginalDemandedElts, Known, + TLO, Depth, AssumeSingleUse)) + return true; + } + break; + } + } + assert((KnownUndef & KnownZero) == 0 && "Elements flagged as undef AND zero"); + + // Constant fold all undef cases. + // TODO: Handle zero cases as well. + if (DemandedElts.isSubsetOf(KnownUndef)) + return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); + + return false; +} + +/// Determine which of the bits specified in Mask are known to be either zero or +/// one and return them in the Known. +void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op, + KnownBits &Known, + const APInt &DemandedElts, + const SelectionDAG &DAG, + unsigned Depth) const { + assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || + Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || + Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || + Op.getOpcode() == ISD::INTRINSIC_VOID) && + "Should use MaskedValueIsZero if you don't know whether Op" + " is a target node!"); + Known.resetAll(); +} + +void TargetLowering::computeKnownBitsForTargetInstr( + GISelKnownBits &Analysis, Register R, KnownBits &Known, + const APInt &DemandedElts, const MachineRegisterInfo &MRI, + unsigned Depth) const { + Known.resetAll(); +} + +void TargetLowering::computeKnownBitsForFrameIndex( + const int FrameIdx, KnownBits &Known, const MachineFunction &MF) const { + // The low bits are known zero if the pointer is aligned. + Known.Zero.setLowBits(Log2(MF.getFrameInfo().getObjectAlign(FrameIdx))); +} + +Align TargetLowering::computeKnownAlignForTargetInstr( + GISelKnownBits &Analysis, Register R, const MachineRegisterInfo &MRI, + unsigned Depth) const { + return Align(1); +} + +/// This method can be implemented by targets that want to expose additional +/// information about sign bits to the DAG Combiner. +unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op, + const APInt &, + const SelectionDAG &, + unsigned Depth) const { + assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || + Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || + Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || + Op.getOpcode() == ISD::INTRINSIC_VOID) && + "Should use ComputeNumSignBits if you don't know whether Op" + " is a target node!"); + return 1; +} + +unsigned TargetLowering::computeNumSignBitsForTargetInstr( + GISelKnownBits &Analysis, Register R, const APInt &DemandedElts, + const MachineRegisterInfo &MRI, unsigned Depth) const { + return 1; +} + +bool TargetLowering::SimplifyDemandedVectorEltsForTargetNode( + SDValue Op, const APInt &DemandedElts, APInt &KnownUndef, APInt &KnownZero, + TargetLoweringOpt &TLO, unsigned Depth) const { + assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || + Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || + Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || + Op.getOpcode() == ISD::INTRINSIC_VOID) && + "Should use SimplifyDemandedVectorElts if you don't know whether Op" + " is a target node!"); + return false; +} + +bool TargetLowering::SimplifyDemandedBitsForTargetNode( + SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, + KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth) const { + assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || + Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || + Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || + Op.getOpcode() == ISD::INTRINSIC_VOID) && + "Should use SimplifyDemandedBits if you don't know whether Op" + " is a target node!"); + computeKnownBitsForTargetNode(Op, Known, DemandedElts, TLO.DAG, Depth); + return false; +} + +SDValue TargetLowering::SimplifyMultipleUseDemandedBitsForTargetNode( + SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, + SelectionDAG &DAG, unsigned Depth) const { + assert( + (Op.getOpcode() >= ISD::BUILTIN_OP_END || + Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || + Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || + Op.getOpcode() == ISD::INTRINSIC_VOID) && + "Should use SimplifyMultipleUseDemandedBits if you don't know whether Op" + " is a target node!"); + return SDValue(); +} + +SDValue +TargetLowering::buildLegalVectorShuffle(EVT VT, const SDLoc &DL, SDValue N0, + SDValue N1, MutableArrayRef<int> Mask, + SelectionDAG &DAG) const { + bool LegalMask = isShuffleMaskLegal(Mask, VT); + if (!LegalMask) { + std::swap(N0, N1); + ShuffleVectorSDNode::commuteMask(Mask); + LegalMask = isShuffleMaskLegal(Mask, VT); + } + + if (!LegalMask) + return SDValue(); + + return DAG.getVectorShuffle(VT, DL, N0, N1, Mask); +} + +const Constant *TargetLowering::getTargetConstantFromLoad(LoadSDNode*) const { + return nullptr; +} + +bool TargetLowering::isGuaranteedNotToBeUndefOrPoisonForTargetNode( + SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, + bool PoisonOnly, unsigned Depth) const { + assert( + (Op.getOpcode() >= ISD::BUILTIN_OP_END || + Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || + Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || + Op.getOpcode() == ISD::INTRINSIC_VOID) && + "Should use isGuaranteedNotToBeUndefOrPoison if you don't know whether Op" + " is a target node!"); + + // If Op can't create undef/poison and none of its operands are undef/poison + // then Op is never undef/poison. + return !canCreateUndefOrPoisonForTargetNode(Op, DemandedElts, DAG, PoisonOnly, + /*ConsiderFlags*/ true, Depth) && + all_of(Op->ops(), [&](SDValue V) { + return DAG.isGuaranteedNotToBeUndefOrPoison(V, PoisonOnly, + Depth + 1); + }); +} + +bool TargetLowering::canCreateUndefOrPoisonForTargetNode( + SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, + bool PoisonOnly, bool ConsiderFlags, unsigned Depth) const { + assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || + Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || + Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || + Op.getOpcode() == ISD::INTRINSIC_VOID) && + "Should use canCreateUndefOrPoison if you don't know whether Op" + " is a target node!"); + // Be conservative and return true. + return true; +} + +bool TargetLowering::isKnownNeverNaNForTargetNode(SDValue Op, + const SelectionDAG &DAG, + bool SNaN, + unsigned Depth) const { + assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || + Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || + Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || + Op.getOpcode() == ISD::INTRINSIC_VOID) && + "Should use isKnownNeverNaN if you don't know whether Op" + " is a target node!"); + return false; +} + +bool TargetLowering::isSplatValueForTargetNode(SDValue Op, + const APInt &DemandedElts, + APInt &UndefElts, + const SelectionDAG &DAG, + unsigned Depth) const { + assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || + Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || + Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || + Op.getOpcode() == ISD::INTRINSIC_VOID) && + "Should use isSplatValue if you don't know whether Op" + " is a target node!"); + return false; +} + +// FIXME: Ideally, this would use ISD::isConstantSplatVector(), but that must +// work with truncating build vectors and vectors with elements of less than +// 8 bits. +bool TargetLowering::isConstTrueVal(SDValue N) const { + if (!N) + return false; + + unsigned EltWidth; + APInt CVal; + if (ConstantSDNode *CN = isConstOrConstSplat(N, /*AllowUndefs=*/false, + /*AllowTruncation=*/true)) { + CVal = CN->getAPIntValue(); + EltWidth = N.getValueType().getScalarSizeInBits(); + } else + return false; + + // If this is a truncating splat, truncate the splat value. + // Otherwise, we may fail to match the expected values below. + if (EltWidth < CVal.getBitWidth()) + CVal = CVal.trunc(EltWidth); + + switch (getBooleanContents(N.getValueType())) { + case UndefinedBooleanContent: + return CVal[0]; + case ZeroOrOneBooleanContent: + return CVal.isOne(); + case ZeroOrNegativeOneBooleanContent: + return CVal.isAllOnes(); + } + + llvm_unreachable("Invalid boolean contents"); +} + +bool TargetLowering::isConstFalseVal(SDValue N) const { + if (!N) + return false; + + const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N); + if (!CN) { + const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N); + if (!BV) + return false; + + // Only interested in constant splats, we don't care about undef + // elements in identifying boolean constants and getConstantSplatNode + // returns NULL if all ops are undef; + CN = BV->getConstantSplatNode(); + if (!CN) + return false; + } + + if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent) + return !CN->getAPIntValue()[0]; + + return CN->isZero(); +} + +bool TargetLowering::isExtendedTrueVal(const ConstantSDNode *N, EVT VT, + bool SExt) const { + if (VT == MVT::i1) + return N->isOne(); + + TargetLowering::BooleanContent Cnt = getBooleanContents(VT); + switch (Cnt) { + case TargetLowering::ZeroOrOneBooleanContent: + // An extended value of 1 is always true, unless its original type is i1, + // in which case it will be sign extended to -1. + return (N->isOne() && !SExt) || (SExt && (N->getValueType(0) != MVT::i1)); + case TargetLowering::UndefinedBooleanContent: + case TargetLowering::ZeroOrNegativeOneBooleanContent: + return N->isAllOnes() && SExt; + } + llvm_unreachable("Unexpected enumeration."); +} + +/// This helper function of SimplifySetCC tries to optimize the comparison when +/// either operand of the SetCC node is a bitwise-and instruction. +SDValue TargetLowering::foldSetCCWithAnd(EVT VT, SDValue N0, SDValue N1, + ISD::CondCode Cond, const SDLoc &DL, + DAGCombinerInfo &DCI) const { + if (N1.getOpcode() == ISD::AND && N0.getOpcode() != ISD::AND) + std::swap(N0, N1); + + SelectionDAG &DAG = DCI.DAG; + EVT OpVT = N0.getValueType(); + if (N0.getOpcode() != ISD::AND || !OpVT.isInteger() || + (Cond != ISD::SETEQ && Cond != ISD::SETNE)) + return SDValue(); + + // (X & Y) != 0 --> zextOrTrunc(X & Y) + // iff everything but LSB is known zero: + if (Cond == ISD::SETNE && isNullConstant(N1) && + (getBooleanContents(OpVT) == TargetLowering::UndefinedBooleanContent || + getBooleanContents(OpVT) == TargetLowering::ZeroOrOneBooleanContent)) { + unsigned NumEltBits = OpVT.getScalarSizeInBits(); + APInt UpperBits = APInt::getHighBitsSet(NumEltBits, NumEltBits - 1); + if (DAG.MaskedValueIsZero(N0, UpperBits)) + return DAG.getBoolExtOrTrunc(N0, DL, VT, OpVT); + } + + // Try to eliminate a power-of-2 mask constant by converting to a signbit + // test in a narrow type that we can truncate to with no cost. Examples: + // (i32 X & 32768) == 0 --> (trunc X to i16) >= 0 + // (i32 X & 32768) != 0 --> (trunc X to i16) < 0 + // TODO: This conservatively checks for type legality on the source and + // destination types. That may inhibit optimizations, but it also + // allows setcc->shift transforms that may be more beneficial. + auto *AndC = dyn_cast<ConstantSDNode>(N0.getOperand(1)); + if (AndC && isNullConstant(N1) && AndC->getAPIntValue().isPowerOf2() && + isTypeLegal(OpVT) && N0.hasOneUse()) { + EVT NarrowVT = EVT::getIntegerVT(*DAG.getContext(), + AndC->getAPIntValue().getActiveBits()); + if (isTruncateFree(OpVT, NarrowVT) && isTypeLegal(NarrowVT)) { + SDValue Trunc = DAG.getZExtOrTrunc(N0.getOperand(0), DL, NarrowVT); + SDValue Zero = DAG.getConstant(0, DL, NarrowVT); + return DAG.getSetCC(DL, VT, Trunc, Zero, + Cond == ISD::SETEQ ? ISD::SETGE : ISD::SETLT); + } + } + + // Match these patterns in any of their permutations: + // (X & Y) == Y + // (X & Y) != Y + SDValue X, Y; + if (N0.getOperand(0) == N1) { + X = N0.getOperand(1); + Y = N0.getOperand(0); + } else if (N0.getOperand(1) == N1) { + X = N0.getOperand(0); + Y = N0.getOperand(1); + } else { + return SDValue(); + } + + // TODO: We should invert (X & Y) eq/ne 0 -> (X & Y) ne/eq Y if + // `isXAndYEqZeroPreferableToXAndYEqY` is false. This is a bit difficult as + // its liable to create and infinite loop. + SDValue Zero = DAG.getConstant(0, DL, OpVT); + if (isXAndYEqZeroPreferableToXAndYEqY(Cond, OpVT) && + DAG.isKnownToBeAPowerOfTwo(Y)) { + // Simplify X & Y == Y to X & Y != 0 if Y has exactly one bit set. + // Note that where Y is variable and is known to have at most one bit set + // (for example, if it is Z & 1) we cannot do this; the expressions are not + // equivalent when Y == 0. + assert(OpVT.isInteger()); + Cond = ISD::getSetCCInverse(Cond, OpVT); + if (DCI.isBeforeLegalizeOps() || + isCondCodeLegal(Cond, N0.getSimpleValueType())) + return DAG.getSetCC(DL, VT, N0, Zero, Cond); + } else if (N0.hasOneUse() && hasAndNotCompare(Y)) { + // If the target supports an 'and-not' or 'and-complement' logic operation, + // try to use that to make a comparison operation more efficient. + // But don't do this transform if the mask is a single bit because there are + // more efficient ways to deal with that case (for example, 'bt' on x86 or + // 'rlwinm' on PPC). + + // Bail out if the compare operand that we want to turn into a zero is + // already a zero (otherwise, infinite loop). + if (isNullConstant(Y)) + return SDValue(); + + // Transform this into: ~X & Y == 0. + SDValue NotX = DAG.getNOT(SDLoc(X), X, OpVT); + SDValue NewAnd = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, NotX, Y); + return DAG.getSetCC(DL, VT, NewAnd, Zero, Cond); + } + + return SDValue(); +} + +/// There are multiple IR patterns that could be checking whether certain +/// truncation of a signed number would be lossy or not. The pattern which is +/// best at IR level, may not lower optimally. Thus, we want to unfold it. +/// We are looking for the following pattern: (KeptBits is a constant) +/// (add %x, (1 << (KeptBits-1))) srccond (1 << KeptBits) +/// KeptBits won't be bitwidth(x), that will be constant-folded to true/false. +/// KeptBits also can't be 1, that would have been folded to %x dstcond 0 +/// We will unfold it into the natural trunc+sext pattern: +/// ((%x << C) a>> C) dstcond %x +/// Where C = bitwidth(x) - KeptBits and C u< bitwidth(x) +SDValue TargetLowering::optimizeSetCCOfSignedTruncationCheck( + EVT SCCVT, SDValue N0, SDValue N1, ISD::CondCode Cond, DAGCombinerInfo &DCI, + const SDLoc &DL) const { + // We must be comparing with a constant. + ConstantSDNode *C1; + if (!(C1 = dyn_cast<ConstantSDNode>(N1))) + return SDValue(); + + // N0 should be: add %x, (1 << (KeptBits-1)) + if (N0->getOpcode() != ISD::ADD) + return SDValue(); + + // And we must be 'add'ing a constant. + ConstantSDNode *C01; + if (!(C01 = dyn_cast<ConstantSDNode>(N0->getOperand(1)))) + return SDValue(); + + SDValue X = N0->getOperand(0); + EVT XVT = X.getValueType(); + + // Validate constants ... + + APInt I1 = C1->getAPIntValue(); + + ISD::CondCode NewCond; + if (Cond == ISD::CondCode::SETULT) { + NewCond = ISD::CondCode::SETEQ; + } else if (Cond == ISD::CondCode::SETULE) { + NewCond = ISD::CondCode::SETEQ; + // But need to 'canonicalize' the constant. + I1 += 1; + } else if (Cond == ISD::CondCode::SETUGT) { + NewCond = ISD::CondCode::SETNE; + // But need to 'canonicalize' the constant. + I1 += 1; + } else if (Cond == ISD::CondCode::SETUGE) { + NewCond = ISD::CondCode::SETNE; + } else + return SDValue(); + + APInt I01 = C01->getAPIntValue(); + + auto checkConstants = [&I1, &I01]() -> bool { + // Both of them must be power-of-two, and the constant from setcc is bigger. + return I1.ugt(I01) && I1.isPowerOf2() && I01.isPowerOf2(); + }; + + if (checkConstants()) { + // Great, e.g. got icmp ult i16 (add i16 %x, 128), 256 + } else { + // What if we invert constants? (and the target predicate) + I1.negate(); + I01.negate(); + assert(XVT.isInteger()); + NewCond = getSetCCInverse(NewCond, XVT); + if (!checkConstants()) + return SDValue(); + // Great, e.g. got icmp uge i16 (add i16 %x, -128), -256 + } + + // They are power-of-two, so which bit is set? + const unsigned KeptBits = I1.logBase2(); + const unsigned KeptBitsMinusOne = I01.logBase2(); + + // Magic! + if (KeptBits != (KeptBitsMinusOne + 1)) + return SDValue(); + assert(KeptBits > 0 && KeptBits < XVT.getSizeInBits() && "unreachable"); + + // We don't want to do this in every single case. + SelectionDAG &DAG = DCI.DAG; + if (!DAG.getTargetLoweringInfo().shouldTransformSignedTruncationCheck( + XVT, KeptBits)) + return SDValue(); + + // Unfold into: sext_inreg(%x) cond %x + // Where 'cond' will be either 'eq' or 'ne'. + SDValue SExtInReg = DAG.getNode( + ISD::SIGN_EXTEND_INREG, DL, XVT, X, + DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(), KeptBits))); + return DAG.getSetCC(DL, SCCVT, SExtInReg, X, NewCond); +} + +// (X & (C l>>/<< Y)) ==/!= 0 --> ((X <</l>> Y) & C) ==/!= 0 +SDValue TargetLowering::optimizeSetCCByHoistingAndByConstFromLogicalShift( + EVT SCCVT, SDValue N0, SDValue N1C, ISD::CondCode Cond, + DAGCombinerInfo &DCI, const SDLoc &DL) const { + assert(isConstOrConstSplat(N1C) && isConstOrConstSplat(N1C)->isZero() && + "Should be a comparison with 0."); + assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && + "Valid only for [in]equality comparisons."); + + unsigned NewShiftOpcode; + SDValue X, C, Y; + + SelectionDAG &DAG = DCI.DAG; + const TargetLowering &TLI = DAG.getTargetLoweringInfo(); + + // Look for '(C l>>/<< Y)'. + auto Match = [&NewShiftOpcode, &X, &C, &Y, &TLI, &DAG](SDValue V) { + // The shift should be one-use. + if (!V.hasOneUse()) + return false; + unsigned OldShiftOpcode = V.getOpcode(); + switch (OldShiftOpcode) { + case ISD::SHL: + NewShiftOpcode = ISD::SRL; + break; + case ISD::SRL: + NewShiftOpcode = ISD::SHL; + break; + default: + return false; // must be a logical shift. + } + // We should be shifting a constant. + // FIXME: best to use isConstantOrConstantVector(). + C = V.getOperand(0); + ConstantSDNode *CC = + isConstOrConstSplat(C, /*AllowUndefs=*/true, /*AllowTruncation=*/true); + if (!CC) + return false; + Y = V.getOperand(1); + + ConstantSDNode *XC = + isConstOrConstSplat(X, /*AllowUndefs=*/true, /*AllowTruncation=*/true); + return TLI.shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd( + X, XC, CC, Y, OldShiftOpcode, NewShiftOpcode, DAG); + }; + + // LHS of comparison should be an one-use 'and'. + if (N0.getOpcode() != ISD::AND || !N0.hasOneUse()) + return SDValue(); + + X = N0.getOperand(0); + SDValue Mask = N0.getOperand(1); + + // 'and' is commutative! + if (!Match(Mask)) { + std::swap(X, Mask); + if (!Match(Mask)) + return SDValue(); + } + + EVT VT = X.getValueType(); + + // Produce: + // ((X 'OppositeShiftOpcode' Y) & C) Cond 0 + SDValue T0 = DAG.getNode(NewShiftOpcode, DL, VT, X, Y); + SDValue T1 = DAG.getNode(ISD::AND, DL, VT, T0, C); + SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, N1C, Cond); + return T2; +} + +/// Try to fold an equality comparison with a {add/sub/xor} binary operation as +/// the 1st operand (N0). Callers are expected to swap the N0/N1 parameters to +/// handle the commuted versions of these patterns. +SDValue TargetLowering::foldSetCCWithBinOp(EVT VT, SDValue N0, SDValue N1, + ISD::CondCode Cond, const SDLoc &DL, + DAGCombinerInfo &DCI) const { + unsigned BOpcode = N0.getOpcode(); + assert((BOpcode == ISD::ADD || BOpcode == ISD::SUB || BOpcode == ISD::XOR) && + "Unexpected binop"); + assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && "Unexpected condcode"); + + // (X + Y) == X --> Y == 0 + // (X - Y) == X --> Y == 0 + // (X ^ Y) == X --> Y == 0 + SelectionDAG &DAG = DCI.DAG; + EVT OpVT = N0.getValueType(); + SDValue X = N0.getOperand(0); + SDValue Y = N0.getOperand(1); + if (X == N1) + return DAG.getSetCC(DL, VT, Y, DAG.getConstant(0, DL, OpVT), Cond); + + if (Y != N1) + return SDValue(); + + // (X + Y) == Y --> X == 0 + // (X ^ Y) == Y --> X == 0 + if (BOpcode == ISD::ADD || BOpcode == ISD::XOR) + return DAG.getSetCC(DL, VT, X, DAG.getConstant(0, DL, OpVT), Cond); + + // The shift would not be valid if the operands are boolean (i1). + if (!N0.hasOneUse() || OpVT.getScalarSizeInBits() == 1) + return SDValue(); + + // (X - Y) == Y --> X == Y << 1 + SDValue One = DAG.getShiftAmountConstant(1, OpVT, DL); + SDValue YShl1 = DAG.getNode(ISD::SHL, DL, N1.getValueType(), Y, One); + if (!DCI.isCalledByLegalizer()) + DCI.AddToWorklist(YShl1.getNode()); + return DAG.getSetCC(DL, VT, X, YShl1, Cond); +} + +static SDValue simplifySetCCWithCTPOP(const TargetLowering &TLI, EVT VT, + SDValue N0, const APInt &C1, + ISD::CondCode Cond, const SDLoc &dl, + SelectionDAG &DAG) { + // Look through truncs that don't change the value of a ctpop. + // FIXME: Add vector support? Need to be careful with setcc result type below. + SDValue CTPOP = N0; + if (N0.getOpcode() == ISD::TRUNCATE && N0.hasOneUse() && !VT.isVector() && + N0.getScalarValueSizeInBits() > Log2_32(N0.getOperand(0).getScalarValueSizeInBits())) + CTPOP = N0.getOperand(0); + + if (CTPOP.getOpcode() != ISD::CTPOP || !CTPOP.hasOneUse()) + return SDValue(); + + EVT CTVT = CTPOP.getValueType(); + SDValue CTOp = CTPOP.getOperand(0); + + // Expand a power-of-2-or-zero comparison based on ctpop: + // (ctpop x) u< 2 -> (x & x-1) == 0 + // (ctpop x) u> 1 -> (x & x-1) != 0 + if (Cond == ISD::SETULT || Cond == ISD::SETUGT) { + // Keep the CTPOP if it is a cheap vector op. + if (CTVT.isVector() && TLI.isCtpopFast(CTVT)) + return SDValue(); + + unsigned CostLimit = TLI.getCustomCtpopCost(CTVT, Cond); + if (C1.ugt(CostLimit + (Cond == ISD::SETULT))) + return SDValue(); + if (C1 == 0 && (Cond == ISD::SETULT)) + return SDValue(); // This is handled elsewhere. + + unsigned Passes = C1.getLimitedValue() - (Cond == ISD::SETULT); + + SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT); + SDValue Result = CTOp; + for (unsigned i = 0; i < Passes; i++) { + SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, Result, NegOne); + Result = DAG.getNode(ISD::AND, dl, CTVT, Result, Add); + } + ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE; + return DAG.getSetCC(dl, VT, Result, DAG.getConstant(0, dl, CTVT), CC); + } + + // Expand a power-of-2 comparison based on ctpop + if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && C1 == 1) { + // Keep the CTPOP if it is cheap. + if (TLI.isCtpopFast(CTVT)) + return SDValue(); + + SDValue Zero = DAG.getConstant(0, dl, CTVT); + SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT); + assert(CTVT.isInteger()); + SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, CTOp, NegOne); + + // Its not uncommon for known-never-zero X to exist in (ctpop X) eq/ne 1, so + // check before emitting a potentially unnecessary op. + if (DAG.isKnownNeverZero(CTOp)) { + // (ctpop x) == 1 --> (x & x-1) == 0 + // (ctpop x) != 1 --> (x & x-1) != 0 + SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Add); + SDValue RHS = DAG.getSetCC(dl, VT, And, Zero, Cond); + return RHS; + } + + // (ctpop x) == 1 --> (x ^ x-1) > x-1 + // (ctpop x) != 1 --> (x ^ x-1) <= x-1 + SDValue Xor = DAG.getNode(ISD::XOR, dl, CTVT, CTOp, Add); + ISD::CondCode CmpCond = Cond == ISD::SETEQ ? ISD::SETUGT : ISD::SETULE; + return DAG.getSetCC(dl, VT, Xor, Add, CmpCond); + } + + return SDValue(); +} + +static SDValue foldSetCCWithRotate(EVT VT, SDValue N0, SDValue N1, + ISD::CondCode Cond, const SDLoc &dl, + SelectionDAG &DAG) { + if (Cond != ISD::SETEQ && Cond != ISD::SETNE) + return SDValue(); + + auto *C1 = isConstOrConstSplat(N1, /* AllowUndefs */ true); + if (!C1 || !(C1->isZero() || C1->isAllOnes())) + return SDValue(); + + auto getRotateSource = [](SDValue X) { + if (X.getOpcode() == ISD::ROTL || X.getOpcode() == ISD::ROTR) + return X.getOperand(0); + return SDValue(); + }; + + // Peek through a rotated value compared against 0 or -1: + // (rot X, Y) == 0/-1 --> X == 0/-1 + // (rot X, Y) != 0/-1 --> X != 0/-1 + if (SDValue R = getRotateSource(N0)) + return DAG.getSetCC(dl, VT, R, N1, Cond); + + // Peek through an 'or' of a rotated value compared against 0: + // or (rot X, Y), Z ==/!= 0 --> (or X, Z) ==/!= 0 + // or Z, (rot X, Y) ==/!= 0 --> (or X, Z) ==/!= 0 + // + // TODO: Add the 'and' with -1 sibling. + // TODO: Recurse through a series of 'or' ops to find the rotate. + EVT OpVT = N0.getValueType(); + if (N0.hasOneUse() && N0.getOpcode() == ISD::OR && C1->isZero()) { + if (SDValue R = getRotateSource(N0.getOperand(0))) { + SDValue NewOr = DAG.getNode(ISD::OR, dl, OpVT, R, N0.getOperand(1)); + return DAG.getSetCC(dl, VT, NewOr, N1, Cond); + } + if (SDValue R = getRotateSource(N0.getOperand(1))) { + SDValue NewOr = DAG.getNode(ISD::OR, dl, OpVT, R, N0.getOperand(0)); + return DAG.getSetCC(dl, VT, NewOr, N1, Cond); + } + } + + return SDValue(); +} + +static SDValue foldSetCCWithFunnelShift(EVT VT, SDValue N0, SDValue N1, + ISD::CondCode Cond, const SDLoc &dl, + SelectionDAG &DAG) { + // If we are testing for all-bits-clear, we might be able to do that with + // less shifting since bit-order does not matter. + if (Cond != ISD::SETEQ && Cond != ISD::SETNE) + return SDValue(); + + auto *C1 = isConstOrConstSplat(N1, /* AllowUndefs */ true); + if (!C1 || !C1->isZero()) + return SDValue(); + + if (!N0.hasOneUse() || + (N0.getOpcode() != ISD::FSHL && N0.getOpcode() != ISD::FSHR)) + return SDValue(); + + unsigned BitWidth = N0.getScalarValueSizeInBits(); + auto *ShAmtC = isConstOrConstSplat(N0.getOperand(2)); + if (!ShAmtC || ShAmtC->getAPIntValue().uge(BitWidth)) + return SDValue(); + + // Canonicalize fshr as fshl to reduce pattern-matching. + unsigned ShAmt = ShAmtC->getZExtValue(); + if (N0.getOpcode() == ISD::FSHR) + ShAmt = BitWidth - ShAmt; + + // Match an 'or' with a specific operand 'Other' in either commuted variant. + SDValue X, Y; + auto matchOr = [&X, &Y](SDValue Or, SDValue Other) { + if (Or.getOpcode() != ISD::OR || !Or.hasOneUse()) + return false; + if (Or.getOperand(0) == Other) { + X = Or.getOperand(0); + Y = Or.getOperand(1); + return true; + } + if (Or.getOperand(1) == Other) { + X = Or.getOperand(1); + Y = Or.getOperand(0); + return true; + } + return false; + }; + + EVT OpVT = N0.getValueType(); + EVT ShAmtVT = N0.getOperand(2).getValueType(); + SDValue F0 = N0.getOperand(0); + SDValue F1 = N0.getOperand(1); + if (matchOr(F0, F1)) { + // fshl (or X, Y), X, C ==/!= 0 --> or (shl Y, C), X ==/!= 0 + SDValue NewShAmt = DAG.getConstant(ShAmt, dl, ShAmtVT); + SDValue Shift = DAG.getNode(ISD::SHL, dl, OpVT, Y, NewShAmt); + SDValue NewOr = DAG.getNode(ISD::OR, dl, OpVT, Shift, X); + return DAG.getSetCC(dl, VT, NewOr, N1, Cond); + } + if (matchOr(F1, F0)) { + // fshl X, (or X, Y), C ==/!= 0 --> or (srl Y, BW-C), X ==/!= 0 + SDValue NewShAmt = DAG.getConstant(BitWidth - ShAmt, dl, ShAmtVT); + SDValue Shift = DAG.getNode(ISD::SRL, dl, OpVT, Y, NewShAmt); + SDValue NewOr = DAG.getNode(ISD::OR, dl, OpVT, Shift, X); + return DAG.getSetCC(dl, VT, NewOr, N1, Cond); + } + + return SDValue(); +} + +/// Try to simplify a setcc built with the specified operands and cc. If it is +/// unable to simplify it, return a null SDValue. +SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1, + ISD::CondCode Cond, bool foldBooleans, + DAGCombinerInfo &DCI, + const SDLoc &dl) const { + SelectionDAG &DAG = DCI.DAG; + const DataLayout &Layout = DAG.getDataLayout(); + EVT OpVT = N0.getValueType(); + AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); + + // Constant fold or commute setcc. + if (SDValue Fold = DAG.FoldSetCC(VT, N0, N1, Cond, dl)) + return Fold; + + bool N0ConstOrSplat = + isConstOrConstSplat(N0, /*AllowUndefs*/ false, /*AllowTruncate*/ true); + bool N1ConstOrSplat = + isConstOrConstSplat(N1, /*AllowUndefs*/ false, /*AllowTruncate*/ true); + + // Canonicalize toward having the constant on the RHS. + // TODO: Handle non-splat vector constants. All undef causes trouble. + // FIXME: We can't yet fold constant scalable vector splats, so avoid an + // infinite loop here when we encounter one. + ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond); + if (N0ConstOrSplat && !N1ConstOrSplat && + (DCI.isBeforeLegalizeOps() || + isCondCodeLegal(SwappedCC, N0.getSimpleValueType()))) + return DAG.getSetCC(dl, VT, N1, N0, SwappedCC); + + // If we have a subtract with the same 2 non-constant operands as this setcc + // -- but in reverse order -- then try to commute the operands of this setcc + // to match. A matching pair of setcc (cmp) and sub may be combined into 1 + // instruction on some targets. + if (!N0ConstOrSplat && !N1ConstOrSplat && + (DCI.isBeforeLegalizeOps() || + isCondCodeLegal(SwappedCC, N0.getSimpleValueType())) && + DAG.doesNodeExist(ISD::SUB, DAG.getVTList(OpVT), {N1, N0}) && + !DAG.doesNodeExist(ISD::SUB, DAG.getVTList(OpVT), {N0, N1})) + return DAG.getSetCC(dl, VT, N1, N0, SwappedCC); + + if (SDValue V = foldSetCCWithRotate(VT, N0, N1, Cond, dl, DAG)) + return V; + + if (SDValue V = foldSetCCWithFunnelShift(VT, N0, N1, Cond, dl, DAG)) + return V; + + if (auto *N1C = isConstOrConstSplat(N1)) { + const APInt &C1 = N1C->getAPIntValue(); + + // Optimize some CTPOP cases. + if (SDValue V = simplifySetCCWithCTPOP(*this, VT, N0, C1, Cond, dl, DAG)) + return V; + + // For equality to 0 of a no-wrap multiply, decompose and test each op: + // X * Y == 0 --> (X == 0) || (Y == 0) + // X * Y != 0 --> (X != 0) && (Y != 0) + // TODO: This bails out if minsize is set, but if the target doesn't have a + // single instruction multiply for this type, it would likely be + // smaller to decompose. + if (C1.isZero() && (Cond == ISD::SETEQ || Cond == ISD::SETNE) && + N0.getOpcode() == ISD::MUL && N0.hasOneUse() && + (N0->getFlags().hasNoUnsignedWrap() || + N0->getFlags().hasNoSignedWrap()) && + !Attr.hasFnAttr(Attribute::MinSize)) { + SDValue IsXZero = DAG.getSetCC(dl, VT, N0.getOperand(0), N1, Cond); + SDValue IsYZero = DAG.getSetCC(dl, VT, N0.getOperand(1), N1, Cond); + unsigned LogicOp = Cond == ISD::SETEQ ? ISD::OR : ISD::AND; + return DAG.getNode(LogicOp, dl, VT, IsXZero, IsYZero); + } + + // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an + // equality comparison, then we're just comparing whether X itself is + // zero. + if (N0.getOpcode() == ISD::SRL && (C1.isZero() || C1.isOne()) && + N0.getOperand(0).getOpcode() == ISD::CTLZ && + llvm::has_single_bit<uint32_t>(N0.getScalarValueSizeInBits())) { + if (ConstantSDNode *ShAmt = isConstOrConstSplat(N0.getOperand(1))) { + if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && + ShAmt->getAPIntValue() == Log2_32(N0.getScalarValueSizeInBits())) { + if ((C1 == 0) == (Cond == ISD::SETEQ)) { + // (srl (ctlz x), 5) == 0 -> X != 0 + // (srl (ctlz x), 5) != 1 -> X != 0 + Cond = ISD::SETNE; + } else { + // (srl (ctlz x), 5) != 0 -> X == 0 + // (srl (ctlz x), 5) == 1 -> X == 0 + Cond = ISD::SETEQ; + } + SDValue Zero = DAG.getConstant(0, dl, N0.getValueType()); + return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0), Zero, + Cond); + } + } + } + } + + // FIXME: Support vectors. + if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) { + const APInt &C1 = N1C->getAPIntValue(); + + // (zext x) == C --> x == (trunc C) + // (sext x) == C --> x == (trunc C) + if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && + DCI.isBeforeLegalize() && N0->hasOneUse()) { + unsigned MinBits = N0.getValueSizeInBits(); + SDValue PreExt; + bool Signed = false; + if (N0->getOpcode() == ISD::ZERO_EXTEND) { + // ZExt + MinBits = N0->getOperand(0).getValueSizeInBits(); + PreExt = N0->getOperand(0); + } else if (N0->getOpcode() == ISD::AND) { + // DAGCombine turns costly ZExts into ANDs + if (auto *C = dyn_cast<ConstantSDNode>(N0->getOperand(1))) + if ((C->getAPIntValue()+1).isPowerOf2()) { + MinBits = C->getAPIntValue().countr_one(); + PreExt = N0->getOperand(0); + } + } else if (N0->getOpcode() == ISD::SIGN_EXTEND) { + // SExt + MinBits = N0->getOperand(0).getValueSizeInBits(); + PreExt = N0->getOperand(0); + Signed = true; + } else if (auto *LN0 = dyn_cast<LoadSDNode>(N0)) { + // ZEXTLOAD / SEXTLOAD + if (LN0->getExtensionType() == ISD::ZEXTLOAD) { + MinBits = LN0->getMemoryVT().getSizeInBits(); + PreExt = N0; + } else if (LN0->getExtensionType() == ISD::SEXTLOAD) { + Signed = true; + MinBits = LN0->getMemoryVT().getSizeInBits(); + PreExt = N0; + } + } + + // Figure out how many bits we need to preserve this constant. + unsigned ReqdBits = Signed ? C1.getSignificantBits() : C1.getActiveBits(); + + // Make sure we're not losing bits from the constant. + if (MinBits > 0 && + MinBits < C1.getBitWidth() && + MinBits >= ReqdBits) { + EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits); + if (isTypeDesirableForOp(ISD::SETCC, MinVT)) { + // Will get folded away. + SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt); + if (MinBits == 1 && C1 == 1) + // Invert the condition. + return DAG.getSetCC(dl, VT, Trunc, DAG.getConstant(0, dl, MVT::i1), + Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); + SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT); + return DAG.getSetCC(dl, VT, Trunc, C, Cond); + } + + // If truncating the setcc operands is not desirable, we can still + // simplify the expression in some cases: + // setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc) + // setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc)) + // setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc)) + // setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc) + // setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc)) + // setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc) + SDValue TopSetCC = N0->getOperand(0); + unsigned N0Opc = N0->getOpcode(); + bool SExt = (N0Opc == ISD::SIGN_EXTEND); + if (TopSetCC.getValueType() == MVT::i1 && VT == MVT::i1 && + TopSetCC.getOpcode() == ISD::SETCC && + (N0Opc == ISD::ZERO_EXTEND || N0Opc == ISD::SIGN_EXTEND) && + (isConstFalseVal(N1) || + isExtendedTrueVal(N1C, N0->getValueType(0), SExt))) { + + bool Inverse = (N1C->isZero() && Cond == ISD::SETEQ) || + (!N1C->isZero() && Cond == ISD::SETNE); + + if (!Inverse) + return TopSetCC; + + ISD::CondCode InvCond = ISD::getSetCCInverse( + cast<CondCodeSDNode>(TopSetCC.getOperand(2))->get(), + TopSetCC.getOperand(0).getValueType()); + return DAG.getSetCC(dl, VT, TopSetCC.getOperand(0), + TopSetCC.getOperand(1), + InvCond); + } + } + } + + // If the LHS is '(and load, const)', the RHS is 0, the test is for + // equality or unsigned, and all 1 bits of the const are in the same + // partial word, see if we can shorten the load. + if (DCI.isBeforeLegalize() && + !ISD::isSignedIntSetCC(Cond) && + N0.getOpcode() == ISD::AND && C1 == 0 && + N0.getNode()->hasOneUse() && + isa<LoadSDNode>(N0.getOperand(0)) && + N0.getOperand(0).getNode()->hasOneUse() && + isa<ConstantSDNode>(N0.getOperand(1))) { + auto *Lod = cast<LoadSDNode>(N0.getOperand(0)); + APInt bestMask; + unsigned bestWidth = 0, bestOffset = 0; + if (Lod->isSimple() && Lod->isUnindexed() && + (Lod->getMemoryVT().isByteSized() || + isPaddedAtMostSignificantBitsWhenStored(Lod->getMemoryVT()))) { + unsigned memWidth = Lod->getMemoryVT().getStoreSizeInBits(); + unsigned origWidth = N0.getValueSizeInBits(); + unsigned maskWidth = origWidth; + // We can narrow (e.g.) 16-bit extending loads on 32-bit target to + // 8 bits, but have to be careful... + if (Lod->getExtensionType() != ISD::NON_EXTLOAD) + origWidth = Lod->getMemoryVT().getSizeInBits(); + const APInt &Mask = N0.getConstantOperandAPInt(1); + // Only consider power-of-2 widths (and at least one byte) as candiates + // for the narrowed load. + for (unsigned width = 8; width < origWidth; width *= 2) { + EVT newVT = EVT::getIntegerVT(*DAG.getContext(), width); + if (!shouldReduceLoadWidth(Lod, ISD::NON_EXTLOAD, newVT)) + continue; + APInt newMask = APInt::getLowBitsSet(maskWidth, width); + // Avoid accessing any padding here for now (we could use memWidth + // instead of origWidth here otherwise). + unsigned maxOffset = origWidth - width; + for (unsigned offset = 0; offset <= maxOffset; offset += 8) { + if (Mask.isSubsetOf(newMask)) { + unsigned ptrOffset = + Layout.isLittleEndian() ? offset : memWidth - width - offset; + unsigned IsFast = 0; + Align NewAlign = commonAlignment(Lod->getAlign(), ptrOffset / 8); + if (allowsMemoryAccess( + *DAG.getContext(), Layout, newVT, Lod->getAddressSpace(), + NewAlign, Lod->getMemOperand()->getFlags(), &IsFast) && + IsFast) { + bestOffset = ptrOffset / 8; + bestMask = Mask.lshr(offset); + bestWidth = width; + break; + } + } + newMask <<= 8; + } + if (bestWidth) + break; + } + } + if (bestWidth) { + EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth); + SDValue Ptr = Lod->getBasePtr(); + if (bestOffset != 0) + Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::getFixed(bestOffset)); + SDValue NewLoad = + DAG.getLoad(newVT, dl, Lod->getChain(), Ptr, + Lod->getPointerInfo().getWithOffset(bestOffset), + Lod->getOriginalAlign()); + SDValue And = + DAG.getNode(ISD::AND, dl, newVT, NewLoad, + DAG.getConstant(bestMask.trunc(bestWidth), dl, newVT)); + return DAG.getSetCC(dl, VT, And, DAG.getConstant(0LL, dl, newVT), Cond); + } + } + + // If the LHS is a ZERO_EXTEND, perform the comparison on the input. + if (N0.getOpcode() == ISD::ZERO_EXTEND) { + unsigned InSize = N0.getOperand(0).getValueSizeInBits(); + + // If the comparison constant has bits in the upper part, the + // zero-extended value could never match. + if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(), + C1.getBitWidth() - InSize))) { + switch (Cond) { + case ISD::SETUGT: + case ISD::SETUGE: + case ISD::SETEQ: + return DAG.getConstant(0, dl, VT); + case ISD::SETULT: + case ISD::SETULE: + case ISD::SETNE: + return DAG.getConstant(1, dl, VT); + case ISD::SETGT: + case ISD::SETGE: + // True if the sign bit of C1 is set. + return DAG.getConstant(C1.isNegative(), dl, VT); + case ISD::SETLT: + case ISD::SETLE: + // True if the sign bit of C1 isn't set. + return DAG.getConstant(C1.isNonNegative(), dl, VT); + default: + break; + } + } + + // Otherwise, we can perform the comparison with the low bits. + switch (Cond) { + case ISD::SETEQ: + case ISD::SETNE: + case ISD::SETUGT: + case ISD::SETUGE: + case ISD::SETULT: + case ISD::SETULE: { + EVT newVT = N0.getOperand(0).getValueType(); + if (DCI.isBeforeLegalizeOps() || + (isOperationLegal(ISD::SETCC, newVT) && + isCondCodeLegal(Cond, newVT.getSimpleVT()))) { + EVT NewSetCCVT = getSetCCResultType(Layout, *DAG.getContext(), newVT); + SDValue NewConst = DAG.getConstant(C1.trunc(InSize), dl, newVT); + + SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0), + NewConst, Cond); + return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType()); + } + break; + } + default: + break; // todo, be more careful with signed comparisons + } + } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG && + (Cond == ISD::SETEQ || Cond == ISD::SETNE) && + !isSExtCheaperThanZExt(cast<VTSDNode>(N0.getOperand(1))->getVT(), + OpVT)) { + EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT(); + unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits(); + EVT ExtDstTy = N0.getValueType(); + unsigned ExtDstTyBits = ExtDstTy.getSizeInBits(); + + // If the constant doesn't fit into the number of bits for the source of + // the sign extension, it is impossible for both sides to be equal. + if (C1.getSignificantBits() > ExtSrcTyBits) + return DAG.getBoolConstant(Cond == ISD::SETNE, dl, VT, OpVT); + + assert(ExtDstTy == N0.getOperand(0).getValueType() && + ExtDstTy != ExtSrcTy && "Unexpected types!"); + APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits); + SDValue ZextOp = DAG.getNode(ISD::AND, dl, ExtDstTy, N0.getOperand(0), + DAG.getConstant(Imm, dl, ExtDstTy)); + if (!DCI.isCalledByLegalizer()) + DCI.AddToWorklist(ZextOp.getNode()); + // Otherwise, make this a use of a zext. + return DAG.getSetCC(dl, VT, ZextOp, + DAG.getConstant(C1 & Imm, dl, ExtDstTy), Cond); + } else if ((N1C->isZero() || N1C->isOne()) && + (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { + // SETCC (X), [0|1], [EQ|NE] -> X if X is known 0/1. i1 types are + // excluded as they are handled below whilst checking for foldBooleans. + if ((N0.getOpcode() == ISD::SETCC || VT.getScalarType() != MVT::i1) && + isTypeLegal(VT) && VT.bitsLE(N0.getValueType()) && + (N0.getValueType() == MVT::i1 || + getBooleanContents(N0.getValueType()) == ZeroOrOneBooleanContent) && + DAG.MaskedValueIsZero( + N0, APInt::getBitsSetFrom(N0.getValueSizeInBits(), 1))) { + bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (!N1C->isOne()); + if (TrueWhenTrue) + return DAG.getNode(ISD::TRUNCATE, dl, VT, N0); + // Invert the condition. + if (N0.getOpcode() == ISD::SETCC) { + ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get(); + CC = ISD::getSetCCInverse(CC, N0.getOperand(0).getValueType()); + if (DCI.isBeforeLegalizeOps() || + isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType())) + return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC); + } + } + + if ((N0.getOpcode() == ISD::XOR || + (N0.getOpcode() == ISD::AND && + N0.getOperand(0).getOpcode() == ISD::XOR && + N0.getOperand(1) == N0.getOperand(0).getOperand(1))) && + isOneConstant(N0.getOperand(1))) { + // If this is (X^1) == 0/1, swap the RHS and eliminate the xor. We + // can only do this if the top bits are known zero. + unsigned BitWidth = N0.getValueSizeInBits(); + if (DAG.MaskedValueIsZero(N0, + APInt::getHighBitsSet(BitWidth, + BitWidth-1))) { + // Okay, get the un-inverted input value. + SDValue Val; + if (N0.getOpcode() == ISD::XOR) { + Val = N0.getOperand(0); + } else { + assert(N0.getOpcode() == ISD::AND && + N0.getOperand(0).getOpcode() == ISD::XOR); + // ((X^1)&1)^1 -> X & 1 + Val = DAG.getNode(ISD::AND, dl, N0.getValueType(), + N0.getOperand(0).getOperand(0), + N0.getOperand(1)); + } + + return DAG.getSetCC(dl, VT, Val, N1, + Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); + } + } else if (N1C->isOne()) { + SDValue Op0 = N0; + if (Op0.getOpcode() == ISD::TRUNCATE) + Op0 = Op0.getOperand(0); + + if ((Op0.getOpcode() == ISD::XOR) && + Op0.getOperand(0).getOpcode() == ISD::SETCC && + Op0.getOperand(1).getOpcode() == ISD::SETCC) { + SDValue XorLHS = Op0.getOperand(0); + SDValue XorRHS = Op0.getOperand(1); + // Ensure that the input setccs return an i1 type or 0/1 value. + if (Op0.getValueType() == MVT::i1 || + (getBooleanContents(XorLHS.getOperand(0).getValueType()) == + ZeroOrOneBooleanContent && + getBooleanContents(XorRHS.getOperand(0).getValueType()) == + ZeroOrOneBooleanContent)) { + // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc) + Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ; + return DAG.getSetCC(dl, VT, XorLHS, XorRHS, Cond); + } + } + if (Op0.getOpcode() == ISD::AND && isOneConstant(Op0.getOperand(1))) { + // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0. + if (Op0.getValueType().bitsGT(VT)) + Op0 = DAG.getNode(ISD::AND, dl, VT, + DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)), + DAG.getConstant(1, dl, VT)); + else if (Op0.getValueType().bitsLT(VT)) + Op0 = DAG.getNode(ISD::AND, dl, VT, + DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)), + DAG.getConstant(1, dl, VT)); + + return DAG.getSetCC(dl, VT, Op0, + DAG.getConstant(0, dl, Op0.getValueType()), + Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); + } + if (Op0.getOpcode() == ISD::AssertZext && + cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1) + return DAG.getSetCC(dl, VT, Op0, + DAG.getConstant(0, dl, Op0.getValueType()), + Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); + } + } + + // Given: + // icmp eq/ne (urem %x, %y), 0 + // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem': + // icmp eq/ne %x, 0 + if (N0.getOpcode() == ISD::UREM && N1C->isZero() && + (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { + KnownBits XKnown = DAG.computeKnownBits(N0.getOperand(0)); + KnownBits YKnown = DAG.computeKnownBits(N0.getOperand(1)); + if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2) + return DAG.getSetCC(dl, VT, N0.getOperand(0), N1, Cond); + } + + // Fold set_cc seteq (ashr X, BW-1), -1 -> set_cc setlt X, 0 + // and set_cc setne (ashr X, BW-1), -1 -> set_cc setge X, 0 + if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && + N0.getOpcode() == ISD::SRA && isa<ConstantSDNode>(N0.getOperand(1)) && + N0.getConstantOperandAPInt(1) == OpVT.getScalarSizeInBits() - 1 && + N1C && N1C->isAllOnes()) { + return DAG.getSetCC(dl, VT, N0.getOperand(0), + DAG.getConstant(0, dl, OpVT), + Cond == ISD::SETEQ ? ISD::SETLT : ISD::SETGE); + } + + if (SDValue V = + optimizeSetCCOfSignedTruncationCheck(VT, N0, N1, Cond, DCI, dl)) + return V; + } + + // These simplifications apply to splat vectors as well. + // TODO: Handle more splat vector cases. + if (auto *N1C = isConstOrConstSplat(N1)) { + const APInt &C1 = N1C->getAPIntValue(); + + APInt MinVal, MaxVal; + unsigned OperandBitSize = N1C->getValueType(0).getScalarSizeInBits(); + if (ISD::isSignedIntSetCC(Cond)) { + MinVal = APInt::getSignedMinValue(OperandBitSize); + MaxVal = APInt::getSignedMaxValue(OperandBitSize); + } else { + MinVal = APInt::getMinValue(OperandBitSize); + MaxVal = APInt::getMaxValue(OperandBitSize); + } + + // Canonicalize GE/LE comparisons to use GT/LT comparisons. + if (Cond == ISD::SETGE || Cond == ISD::SETUGE) { + // X >= MIN --> true + if (C1 == MinVal) + return DAG.getBoolConstant(true, dl, VT, OpVT); + + if (!VT.isVector()) { // TODO: Support this for vectors. + // X >= C0 --> X > (C0 - 1) + APInt C = C1 - 1; + ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT; + if ((DCI.isBeforeLegalizeOps() || + isCondCodeLegal(NewCC, VT.getSimpleVT())) && + (!N1C->isOpaque() || (C.getBitWidth() <= 64 && + isLegalICmpImmediate(C.getSExtValue())))) { + return DAG.getSetCC(dl, VT, N0, + DAG.getConstant(C, dl, N1.getValueType()), + NewCC); + } + } + } + + if (Cond == ISD::SETLE || Cond == ISD::SETULE) { + // X <= MAX --> true + if (C1 == MaxVal) + return DAG.getBoolConstant(true, dl, VT, OpVT); + + // X <= C0 --> X < (C0 + 1) + if (!VT.isVector()) { // TODO: Support this for vectors. + APInt C = C1 + 1; + ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT; + if ((DCI.isBeforeLegalizeOps() || + isCondCodeLegal(NewCC, VT.getSimpleVT())) && + (!N1C->isOpaque() || (C.getBitWidth() <= 64 && + isLegalICmpImmediate(C.getSExtValue())))) { + return DAG.getSetCC(dl, VT, N0, + DAG.getConstant(C, dl, N1.getValueType()), + NewCC); + } + } + } + + if (Cond == ISD::SETLT || Cond == ISD::SETULT) { + if (C1 == MinVal) + return DAG.getBoolConstant(false, dl, VT, OpVT); // X < MIN --> false + + // TODO: Support this for vectors after legalize ops. + if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { + // Canonicalize setlt X, Max --> setne X, Max + if (C1 == MaxVal) + return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); + + // If we have setult X, 1, turn it into seteq X, 0 + if (C1 == MinVal+1) + return DAG.getSetCC(dl, VT, N0, + DAG.getConstant(MinVal, dl, N0.getValueType()), + ISD::SETEQ); + } + } + + if (Cond == ISD::SETGT || Cond == ISD::SETUGT) { + if (C1 == MaxVal) + return DAG.getBoolConstant(false, dl, VT, OpVT); // X > MAX --> false + + // TODO: Support this for vectors after legalize ops. + if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { + // Canonicalize setgt X, Min --> setne X, Min + if (C1 == MinVal) + return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); + + // If we have setugt X, Max-1, turn it into seteq X, Max + if (C1 == MaxVal-1) + return DAG.getSetCC(dl, VT, N0, + DAG.getConstant(MaxVal, dl, N0.getValueType()), + ISD::SETEQ); + } + } + + if (Cond == ISD::SETEQ || Cond == ISD::SETNE) { + // (X & (C l>>/<< Y)) ==/!= 0 --> ((X <</l>> Y) & C) ==/!= 0 + if (C1.isZero()) + if (SDValue CC = optimizeSetCCByHoistingAndByConstFromLogicalShift( + VT, N0, N1, Cond, DCI, dl)) + return CC; + + // For all/any comparisons, replace or(x,shl(y,bw/2)) with and/or(x,y). + // For example, when high 32-bits of i64 X are known clear: + // all bits clear: (X | (Y<<32)) == 0 --> (X | Y) == 0 + // all bits set: (X | (Y<<32)) == -1 --> (X & Y) == -1 + bool CmpZero = N1C->isZero(); + bool CmpNegOne = N1C->isAllOnes(); + if ((CmpZero || CmpNegOne) && N0.hasOneUse()) { + // Match or(lo,shl(hi,bw/2)) pattern. + auto IsConcat = [&](SDValue V, SDValue &Lo, SDValue &Hi) { + unsigned EltBits = V.getScalarValueSizeInBits(); + if (V.getOpcode() != ISD::OR || (EltBits % 2) != 0) + return false; + SDValue LHS = V.getOperand(0); + SDValue RHS = V.getOperand(1); + APInt HiBits = APInt::getHighBitsSet(EltBits, EltBits / 2); + // Unshifted element must have zero upperbits. + if (RHS.getOpcode() == ISD::SHL && + isa<ConstantSDNode>(RHS.getOperand(1)) && + RHS.getConstantOperandAPInt(1) == (EltBits / 2) && + DAG.MaskedValueIsZero(LHS, HiBits)) { + Lo = LHS; + Hi = RHS.getOperand(0); + return true; + } + if (LHS.getOpcode() == ISD::SHL && + isa<ConstantSDNode>(LHS.getOperand(1)) && + LHS.getConstantOperandAPInt(1) == (EltBits / 2) && + DAG.MaskedValueIsZero(RHS, HiBits)) { + Lo = RHS; + Hi = LHS.getOperand(0); + return true; + } + return false; + }; + + auto MergeConcat = [&](SDValue Lo, SDValue Hi) { + unsigned EltBits = N0.getScalarValueSizeInBits(); + unsigned HalfBits = EltBits / 2; + APInt HiBits = APInt::getHighBitsSet(EltBits, HalfBits); + SDValue LoBits = DAG.getConstant(~HiBits, dl, OpVT); + SDValue HiMask = DAG.getNode(ISD::AND, dl, OpVT, Hi, LoBits); + SDValue NewN0 = + DAG.getNode(CmpZero ? ISD::OR : ISD::AND, dl, OpVT, Lo, HiMask); + SDValue NewN1 = CmpZero ? DAG.getConstant(0, dl, OpVT) : LoBits; + return DAG.getSetCC(dl, VT, NewN0, NewN1, Cond); + }; + + SDValue Lo, Hi; + if (IsConcat(N0, Lo, Hi)) + return MergeConcat(Lo, Hi); + + if (N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR) { + SDValue Lo0, Lo1, Hi0, Hi1; + if (IsConcat(N0.getOperand(0), Lo0, Hi0) && + IsConcat(N0.getOperand(1), Lo1, Hi1)) { + return MergeConcat(DAG.getNode(N0.getOpcode(), dl, OpVT, Lo0, Lo1), + DAG.getNode(N0.getOpcode(), dl, OpVT, Hi0, Hi1)); + } + } + } + } + + // If we have "setcc X, C0", check to see if we can shrink the immediate + // by changing cc. + // TODO: Support this for vectors after legalize ops. + if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { + // SETUGT X, SINTMAX -> SETLT X, 0 + // SETUGE X, SINTMIN -> SETLT X, 0 + if ((Cond == ISD::SETUGT && C1.isMaxSignedValue()) || + (Cond == ISD::SETUGE && C1.isMinSignedValue())) + return DAG.getSetCC(dl, VT, N0, + DAG.getConstant(0, dl, N1.getValueType()), + ISD::SETLT); + + // SETULT X, SINTMIN -> SETGT X, -1 + // SETULE X, SINTMAX -> SETGT X, -1 + if ((Cond == ISD::SETULT && C1.isMinSignedValue()) || + (Cond == ISD::SETULE && C1.isMaxSignedValue())) + return DAG.getSetCC(dl, VT, N0, + DAG.getAllOnesConstant(dl, N1.getValueType()), + ISD::SETGT); + } + } + + // Back to non-vector simplifications. + // TODO: Can we do these for vector splats? + if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) { + const TargetLowering &TLI = DAG.getTargetLoweringInfo(); + const APInt &C1 = N1C->getAPIntValue(); + EVT ShValTy = N0.getValueType(); + + // Fold bit comparisons when we can. This will result in an + // incorrect value when boolean false is negative one, unless + // the bitsize is 1 in which case the false value is the same + // in practice regardless of the representation. + if ((VT.getSizeInBits() == 1 || + getBooleanContents(N0.getValueType()) == ZeroOrOneBooleanContent) && + (Cond == ISD::SETEQ || Cond == ISD::SETNE) && + (VT == ShValTy || (isTypeLegal(VT) && VT.bitsLE(ShValTy))) && + N0.getOpcode() == ISD::AND) { + if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { + if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0 --> (X & 8) >> 3 + // Perform the xform if the AND RHS is a single bit. + unsigned ShCt = AndRHS->getAPIntValue().logBase2(); + if (AndRHS->getAPIntValue().isPowerOf2() && + !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) { + return DAG.getNode( + ISD::TRUNCATE, dl, VT, + DAG.getNode(ISD::SRL, dl, ShValTy, N0, + DAG.getShiftAmountConstant(ShCt, ShValTy, dl))); + } + } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) { + // (X & 8) == 8 --> (X & 8) >> 3 + // Perform the xform if C1 is a single bit. + unsigned ShCt = C1.logBase2(); + if (C1.isPowerOf2() && + !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) { + return DAG.getNode( + ISD::TRUNCATE, dl, VT, + DAG.getNode(ISD::SRL, dl, ShValTy, N0, + DAG.getShiftAmountConstant(ShCt, ShValTy, dl))); + } + } + } + } + + if (C1.getSignificantBits() <= 64 && + !isLegalICmpImmediate(C1.getSExtValue())) { + // (X & -256) == 256 -> (X >> 8) == 1 + if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && + N0.getOpcode() == ISD::AND && N0.hasOneUse()) { + if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { + const APInt &AndRHSC = AndRHS->getAPIntValue(); + if (AndRHSC.isNegatedPowerOf2() && (AndRHSC & C1) == C1) { + unsigned ShiftBits = AndRHSC.countr_zero(); + if (!TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) { + SDValue Shift = DAG.getNode( + ISD::SRL, dl, ShValTy, N0.getOperand(0), + DAG.getShiftAmountConstant(ShiftBits, ShValTy, dl)); + SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), dl, ShValTy); + return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond); + } + } + } + } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE || + Cond == ISD::SETULE || Cond == ISD::SETUGT) { + bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT); + // X < 0x100000000 -> (X >> 32) < 1 + // X >= 0x100000000 -> (X >> 32) >= 1 + // X <= 0x0ffffffff -> (X >> 32) < 1 + // X > 0x0ffffffff -> (X >> 32) >= 1 + unsigned ShiftBits; + APInt NewC = C1; + ISD::CondCode NewCond = Cond; + if (AdjOne) { + ShiftBits = C1.countr_one(); + NewC = NewC + 1; + NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE; + } else { + ShiftBits = C1.countr_zero(); + } + NewC.lshrInPlace(ShiftBits); + if (ShiftBits && NewC.getSignificantBits() <= 64 && + isLegalICmpImmediate(NewC.getSExtValue()) && + !TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) { + SDValue Shift = + DAG.getNode(ISD::SRL, dl, ShValTy, N0, + DAG.getShiftAmountConstant(ShiftBits, ShValTy, dl)); + SDValue CmpRHS = DAG.getConstant(NewC, dl, ShValTy); + return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond); + } + } + } + } + + if (!isa<ConstantFPSDNode>(N0) && isa<ConstantFPSDNode>(N1)) { + auto *CFP = cast<ConstantFPSDNode>(N1); + assert(!CFP->getValueAPF().isNaN() && "Unexpected NaN value"); + + // Otherwise, we know the RHS is not a NaN. Simplify the node to drop the + // constant if knowing that the operand is non-nan is enough. We prefer to + // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to + // materialize 0.0. + if (Cond == ISD::SETO || Cond == ISD::SETUO) + return DAG.getSetCC(dl, VT, N0, N0, Cond); + + // setcc (fneg x), C -> setcc swap(pred) x, -C + if (N0.getOpcode() == ISD::FNEG) { + ISD::CondCode SwapCond = ISD::getSetCCSwappedOperands(Cond); + if (DCI.isBeforeLegalizeOps() || + isCondCodeLegal(SwapCond, N0.getSimpleValueType())) { + SDValue NegN1 = DAG.getNode(ISD::FNEG, dl, N0.getValueType(), N1); + return DAG.getSetCC(dl, VT, N0.getOperand(0), NegN1, SwapCond); + } + } + + // setueq/setoeq X, (fabs Inf) -> is_fpclass X, fcInf + if (isOperationLegalOrCustom(ISD::IS_FPCLASS, N0.getValueType()) && + !isFPImmLegal(CFP->getValueAPF(), CFP->getValueType(0))) { + bool IsFabs = N0.getOpcode() == ISD::FABS; + SDValue Op = IsFabs ? N0.getOperand(0) : N0; + if ((Cond == ISD::SETOEQ || Cond == ISD::SETUEQ) && CFP->isInfinity()) { + FPClassTest Flag = CFP->isNegative() ? (IsFabs ? fcNone : fcNegInf) + : (IsFabs ? fcInf : fcPosInf); + if (Cond == ISD::SETUEQ) + Flag |= fcNan; + return DAG.getNode(ISD::IS_FPCLASS, dl, VT, Op, + DAG.getTargetConstant(Flag, dl, MVT::i32)); + } + } + + // If the condition is not legal, see if we can find an equivalent one + // which is legal. + if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) { + // If the comparison was an awkward floating-point == or != and one of + // the comparison operands is infinity or negative infinity, convert the + // condition to a less-awkward <= or >=. + if (CFP->getValueAPF().isInfinity()) { + bool IsNegInf = CFP->getValueAPF().isNegative(); + ISD::CondCode NewCond = ISD::SETCC_INVALID; + switch (Cond) { + case ISD::SETOEQ: NewCond = IsNegInf ? ISD::SETOLE : ISD::SETOGE; break; + case ISD::SETUEQ: NewCond = IsNegInf ? ISD::SETULE : ISD::SETUGE; break; + case ISD::SETUNE: NewCond = IsNegInf ? ISD::SETUGT : ISD::SETULT; break; + case ISD::SETONE: NewCond = IsNegInf ? ISD::SETOGT : ISD::SETOLT; break; + default: break; + } + if (NewCond != ISD::SETCC_INVALID && + isCondCodeLegal(NewCond, N0.getSimpleValueType())) + return DAG.getSetCC(dl, VT, N0, N1, NewCond); + } + } + } + + if (N0 == N1) { + // The sext(setcc()) => setcc() optimization relies on the appropriate + // constant being emitted. + assert(!N0.getValueType().isInteger() && + "Integer types should be handled by FoldSetCC"); + + bool EqTrue = ISD::isTrueWhenEqual(Cond); + unsigned UOF = ISD::getUnorderedFlavor(Cond); + if (UOF == 2) // FP operators that are undefined on NaNs. + return DAG.getBoolConstant(EqTrue, dl, VT, OpVT); + if (UOF == unsigned(EqTrue)) + return DAG.getBoolConstant(EqTrue, dl, VT, OpVT); + // Otherwise, we can't fold it. However, we can simplify it to SETUO/SETO + // if it is not already. + ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO; + if (NewCond != Cond && + (DCI.isBeforeLegalizeOps() || + isCondCodeLegal(NewCond, N0.getSimpleValueType()))) + return DAG.getSetCC(dl, VT, N0, N1, NewCond); + } + + // ~X > ~Y --> Y > X + // ~X < ~Y --> Y < X + // ~X < C --> X > ~C + // ~X > C --> X < ~C + if ((isSignedIntSetCC(Cond) || isUnsignedIntSetCC(Cond)) && + N0.getValueType().isInteger()) { + if (isBitwiseNot(N0)) { + if (isBitwiseNot(N1)) + return DAG.getSetCC(dl, VT, N1.getOperand(0), N0.getOperand(0), Cond); + + if (DAG.isConstantIntBuildVectorOrConstantInt(N1) && + !DAG.isConstantIntBuildVectorOrConstantInt(N0.getOperand(0))) { + SDValue Not = DAG.getNOT(dl, N1, OpVT); + return DAG.getSetCC(dl, VT, Not, N0.getOperand(0), Cond); + } + } + } + + if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && + N0.getValueType().isInteger()) { + if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB || + N0.getOpcode() == ISD::XOR) { + // Simplify (X+Y) == (X+Z) --> Y == Z + if (N0.getOpcode() == N1.getOpcode()) { + if (N0.getOperand(0) == N1.getOperand(0)) + return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond); + if (N0.getOperand(1) == N1.getOperand(1)) + return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond); + if (isCommutativeBinOp(N0.getOpcode())) { + // If X op Y == Y op X, try other combinations. + if (N0.getOperand(0) == N1.getOperand(1)) + return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0), + Cond); + if (N0.getOperand(1) == N1.getOperand(0)) + return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1), + Cond); + } + } + + // If RHS is a legal immediate value for a compare instruction, we need + // to be careful about increasing register pressure needlessly. + bool LegalRHSImm = false; + + if (auto *RHSC = dyn_cast<ConstantSDNode>(N1)) { + if (auto *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { + // Turn (X+C1) == C2 --> X == C2-C1 + if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) + return DAG.getSetCC( + dl, VT, N0.getOperand(0), + DAG.getConstant(RHSC->getAPIntValue() - LHSR->getAPIntValue(), + dl, N0.getValueType()), + Cond); + + // Turn (X^C1) == C2 --> X == C1^C2 + if (N0.getOpcode() == ISD::XOR && N0.getNode()->hasOneUse()) + return DAG.getSetCC( + dl, VT, N0.getOperand(0), + DAG.getConstant(LHSR->getAPIntValue() ^ RHSC->getAPIntValue(), + dl, N0.getValueType()), + Cond); + } + + // Turn (C1-X) == C2 --> X == C1-C2 + if (auto *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) + if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) + return DAG.getSetCC( + dl, VT, N0.getOperand(1), + DAG.getConstant(SUBC->getAPIntValue() - RHSC->getAPIntValue(), + dl, N0.getValueType()), + Cond); + + // Could RHSC fold directly into a compare? + if (RHSC->getValueType(0).getSizeInBits() <= 64) + LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue()); + } + + // (X+Y) == X --> Y == 0 and similar folds. + // Don't do this if X is an immediate that can fold into a cmp + // instruction and X+Y has other uses. It could be an induction variable + // chain, and the transform would increase register pressure. + if (!LegalRHSImm || N0.hasOneUse()) + if (SDValue V = foldSetCCWithBinOp(VT, N0, N1, Cond, dl, DCI)) + return V; + } + + if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB || + N1.getOpcode() == ISD::XOR) + if (SDValue V = foldSetCCWithBinOp(VT, N1, N0, Cond, dl, DCI)) + return V; + + if (SDValue V = foldSetCCWithAnd(VT, N0, N1, Cond, dl, DCI)) + return V; + } + + // Fold remainder of division by a constant. + if ((N0.getOpcode() == ISD::UREM || N0.getOpcode() == ISD::SREM) && + N0.hasOneUse() && (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { + // When division is cheap or optimizing for minimum size, + // fall through to DIVREM creation by skipping this fold. + if (!isIntDivCheap(VT, Attr) && !Attr.hasFnAttr(Attribute::MinSize)) { + if (N0.getOpcode() == ISD::UREM) { + if (SDValue Folded = buildUREMEqFold(VT, N0, N1, Cond, DCI, dl)) + return Folded; + } else if (N0.getOpcode() == ISD::SREM) { + if (SDValue Folded = buildSREMEqFold(VT, N0, N1, Cond, DCI, dl)) + return Folded; + } + } + } + + // Fold away ALL boolean setcc's. + if (N0.getValueType().getScalarType() == MVT::i1 && foldBooleans) { + SDValue Temp; + switch (Cond) { + default: llvm_unreachable("Unknown integer setcc!"); + case ISD::SETEQ: // X == Y -> ~(X^Y) + Temp = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1); + N0 = DAG.getNOT(dl, Temp, OpVT); + if (!DCI.isCalledByLegalizer()) + DCI.AddToWorklist(Temp.getNode()); + break; + case ISD::SETNE: // X != Y --> (X^Y) + N0 = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1); + break; + case ISD::SETGT: // X >s Y --> X == 0 & Y == 1 --> ~X & Y + case ISD::SETULT: // X <u Y --> X == 0 & Y == 1 --> ~X & Y + Temp = DAG.getNOT(dl, N0, OpVT); + N0 = DAG.getNode(ISD::AND, dl, OpVT, N1, Temp); + if (!DCI.isCalledByLegalizer()) + DCI.AddToWorklist(Temp.getNode()); + break; + case ISD::SETLT: // X <s Y --> X == 1 & Y == 0 --> ~Y & X + case ISD::SETUGT: // X >u Y --> X == 1 & Y == 0 --> ~Y & X + Temp = DAG.getNOT(dl, N1, OpVT); + N0 = DAG.getNode(ISD::AND, dl, OpVT, N0, Temp); + if (!DCI.isCalledByLegalizer()) + DCI.AddToWorklist(Temp.getNode()); + break; + case ISD::SETULE: // X <=u Y --> X == 0 | Y == 1 --> ~X | Y + case ISD::SETGE: // X >=s Y --> X == 0 | Y == 1 --> ~X | Y + Temp = DAG.getNOT(dl, N0, OpVT); + N0 = DAG.getNode(ISD::OR, dl, OpVT, N1, Temp); + if (!DCI.isCalledByLegalizer()) + DCI.AddToWorklist(Temp.getNode()); + break; + case ISD::SETUGE: // X >=u Y --> X == 1 | Y == 0 --> ~Y | X + case ISD::SETLE: // X <=s Y --> X == 1 | Y == 0 --> ~Y | X + Temp = DAG.getNOT(dl, N1, OpVT); + N0 = DAG.getNode(ISD::OR, dl, OpVT, N0, Temp); + break; + } + if (VT.getScalarType() != MVT::i1) { + if (!DCI.isCalledByLegalizer()) + DCI.AddToWorklist(N0.getNode()); + // FIXME: If running after legalize, we probably can't do this. + ISD::NodeType ExtendCode = getExtendForContent(getBooleanContents(OpVT)); + N0 = DAG.getNode(ExtendCode, dl, VT, N0); + } + return N0; + } + + // Could not fold it. + return SDValue(); +} + +/// Returns true (and the GlobalValue and the offset) if the node is a +/// GlobalAddress + offset. +bool TargetLowering::isGAPlusOffset(SDNode *WN, const GlobalValue *&GA, + int64_t &Offset) const { + + SDNode *N = unwrapAddress(SDValue(WN, 0)).getNode(); + + if (auto *GASD = dyn_cast<GlobalAddressSDNode>(N)) { + GA = GASD->getGlobal(); + Offset += GASD->getOffset(); + return true; + } + + if (N->getOpcode() == ISD::ADD) { + SDValue N1 = N->getOperand(0); + SDValue N2 = N->getOperand(1); + if (isGAPlusOffset(N1.getNode(), GA, Offset)) { + if (auto *V = dyn_cast<ConstantSDNode>(N2)) { + Offset += V->getSExtValue(); + return true; + } + } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) { + if (auto *V = dyn_cast<ConstantSDNode>(N1)) { + Offset += V->getSExtValue(); + return true; + } + } + } + + return false; +} + +SDValue TargetLowering::PerformDAGCombine(SDNode *N, + DAGCombinerInfo &DCI) const { + // Default implementation: no optimization. + return SDValue(); +} + +//===----------------------------------------------------------------------===// +// Inline Assembler Implementation Methods +//===----------------------------------------------------------------------===// + +TargetLowering::ConstraintType +TargetLowering::getConstraintType(StringRef Constraint) const { + unsigned S = Constraint.size(); + + if (S == 1) { + switch (Constraint[0]) { + default: break; + case 'r': + return C_RegisterClass; + case 'm': // memory + case 'o': // offsetable + case 'V': // not offsetable + return C_Memory; + case 'p': // Address. + return C_Address; + case 'n': // Simple Integer + case 'E': // Floating Point Constant + case 'F': // Floating Point Constant + return C_Immediate; + case 'i': // Simple Integer or Relocatable Constant + case 's': // Relocatable Constant + case 'X': // Allow ANY value. + case 'I': // Target registers. + case 'J': + case 'K': + case 'L': + case 'M': + case 'N': + case 'O': + case 'P': + case '<': + case '>': + return C_Other; + } + } + + if (S > 1 && Constraint[0] == '{' && Constraint[S - 1] == '}') { + if (S == 8 && Constraint.substr(1, 6) == "memory") // "{memory}" + return C_Memory; + return C_Register; + } + return C_Unknown; +} + +/// Try to replace an X constraint, which matches anything, with another that +/// has more specific requirements based on the type of the corresponding +/// operand. +const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const { + if (ConstraintVT.isInteger()) + return "r"; + if (ConstraintVT.isFloatingPoint()) + return "f"; // works for many targets + return nullptr; +} + +SDValue TargetLowering::LowerAsmOutputForConstraint( + SDValue &Chain, SDValue &Glue, const SDLoc &DL, + const AsmOperandInfo &OpInfo, SelectionDAG &DAG) const { + return SDValue(); +} + +/// Lower the specified operand into the Ops vector. +/// If it is invalid, don't add anything to Ops. +void TargetLowering::LowerAsmOperandForConstraint(SDValue Op, + StringRef Constraint, + std::vector<SDValue> &Ops, + SelectionDAG &DAG) const { + + if (Constraint.size() > 1) + return; + + char ConstraintLetter = Constraint[0]; + switch (ConstraintLetter) { + default: break; + case 'X': // Allows any operand + case 'i': // Simple Integer or Relocatable Constant + case 'n': // Simple Integer + case 's': { // Relocatable Constant + + ConstantSDNode *C; + uint64_t Offset = 0; + + // Match (GA) or (C) or (GA+C) or (GA-C) or ((GA+C)+C) or (((GA+C)+C)+C), + // etc., since getelementpointer is variadic. We can't use + // SelectionDAG::FoldSymbolOffset because it expects the GA to be accessible + // while in this case the GA may be furthest from the root node which is + // likely an ISD::ADD. + while (true) { + if ((C = dyn_cast<ConstantSDNode>(Op)) && ConstraintLetter != 's') { + // gcc prints these as sign extended. Sign extend value to 64 bits + // now; without this it would get ZExt'd later in + // ScheduleDAGSDNodes::EmitNode, which is very generic. + bool IsBool = C->getConstantIntValue()->getBitWidth() == 1; + BooleanContent BCont = getBooleanContents(MVT::i64); + ISD::NodeType ExtOpc = + IsBool ? getExtendForContent(BCont) : ISD::SIGN_EXTEND; + int64_t ExtVal = + ExtOpc == ISD::ZERO_EXTEND ? C->getZExtValue() : C->getSExtValue(); + Ops.push_back( + DAG.getTargetConstant(Offset + ExtVal, SDLoc(C), MVT::i64)); + return; + } + if (ConstraintLetter != 'n') { + if (const auto *GA = dyn_cast<GlobalAddressSDNode>(Op)) { + Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op), + GA->getValueType(0), + Offset + GA->getOffset())); + return; + } + if (const auto *BA = dyn_cast<BlockAddressSDNode>(Op)) { + Ops.push_back(DAG.getTargetBlockAddress( + BA->getBlockAddress(), BA->getValueType(0), + Offset + BA->getOffset(), BA->getTargetFlags())); + return; + } + if (isa<BasicBlockSDNode>(Op)) { + Ops.push_back(Op); + return; + } + } + const unsigned OpCode = Op.getOpcode(); + if (OpCode == ISD::ADD || OpCode == ISD::SUB) { + if ((C = dyn_cast<ConstantSDNode>(Op.getOperand(0)))) + Op = Op.getOperand(1); + // Subtraction is not commutative. + else if (OpCode == ISD::ADD && + (C = dyn_cast<ConstantSDNode>(Op.getOperand(1)))) + Op = Op.getOperand(0); + else + return; + Offset += (OpCode == ISD::ADD ? 1 : -1) * C->getSExtValue(); + continue; + } + return; + } + break; + } + } +} + +void TargetLowering::CollectTargetIntrinsicOperands( + const CallInst &I, SmallVectorImpl<SDValue> &Ops, SelectionDAG &DAG) const { +} + +std::pair<unsigned, const TargetRegisterClass *> +TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI, + StringRef Constraint, + MVT VT) const { + if (!Constraint.starts_with("{")) + return std::make_pair(0u, static_cast<TargetRegisterClass *>(nullptr)); + assert(*(Constraint.end() - 1) == '}' && "Not a brace enclosed constraint?"); + + // Remove the braces from around the name. + StringRef RegName(Constraint.data() + 1, Constraint.size() - 2); + + std::pair<unsigned, const TargetRegisterClass *> R = + std::make_pair(0u, static_cast<const TargetRegisterClass *>(nullptr)); + + // Figure out which register class contains this reg. + for (const TargetRegisterClass *RC : RI->regclasses()) { + // If none of the value types for this register class are valid, we + // can't use it. For example, 64-bit reg classes on 32-bit targets. + if (!isLegalRC(*RI, *RC)) + continue; + + for (const MCPhysReg &PR : *RC) { + if (RegName.equals_insensitive(RI->getRegAsmName(PR))) { + std::pair<unsigned, const TargetRegisterClass *> S = + std::make_pair(PR, RC); + + // If this register class has the requested value type, return it, + // otherwise keep searching and return the first class found + // if no other is found which explicitly has the requested type. + if (RI->isTypeLegalForClass(*RC, VT)) + return S; + if (!R.second) + R = S; + } + } + } + + return R; +} + +//===----------------------------------------------------------------------===// +// Constraint Selection. + +/// Return true of this is an input operand that is a matching constraint like +/// "4". +bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const { + assert(!ConstraintCode.empty() && "No known constraint!"); + return isdigit(static_cast<unsigned char>(ConstraintCode[0])); +} + +/// If this is an input matching constraint, this method returns the output +/// operand it matches. +unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const { + assert(!ConstraintCode.empty() && "No known constraint!"); + return atoi(ConstraintCode.c_str()); +} + +/// Split up the constraint string from the inline assembly value into the +/// specific constraints and their prefixes, and also tie in the associated +/// operand values. +/// If this returns an empty vector, and if the constraint string itself +/// isn't empty, there was an error parsing. +TargetLowering::AsmOperandInfoVector +TargetLowering::ParseConstraints(const DataLayout &DL, + const TargetRegisterInfo *TRI, + const CallBase &Call) const { + /// Information about all of the constraints. + AsmOperandInfoVector ConstraintOperands; + const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand()); + unsigned maCount = 0; // Largest number of multiple alternative constraints. + + // Do a prepass over the constraints, canonicalizing them, and building up the + // ConstraintOperands list. + unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. + unsigned ResNo = 0; // ResNo - The result number of the next output. + unsigned LabelNo = 0; // LabelNo - CallBr indirect dest number. + + for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) { + ConstraintOperands.emplace_back(std::move(CI)); + AsmOperandInfo &OpInfo = ConstraintOperands.back(); + + // Update multiple alternative constraint count. + if (OpInfo.multipleAlternatives.size() > maCount) + maCount = OpInfo.multipleAlternatives.size(); + + OpInfo.ConstraintVT = MVT::Other; + + // Compute the value type for each operand. + switch (OpInfo.Type) { + case InlineAsm::isOutput: + // Indirect outputs just consume an argument. + if (OpInfo.isIndirect) { + OpInfo.CallOperandVal = Call.getArgOperand(ArgNo); + break; + } + + // The return value of the call is this value. As such, there is no + // corresponding argument. + assert(!Call.getType()->isVoidTy() && "Bad inline asm!"); + if (auto *STy = dyn_cast<StructType>(Call.getType())) { + OpInfo.ConstraintVT = + getSimpleValueType(DL, STy->getElementType(ResNo)); + } else { + assert(ResNo == 0 && "Asm only has one result!"); + OpInfo.ConstraintVT = + getAsmOperandValueType(DL, Call.getType()).getSimpleVT(); + } + ++ResNo; + break; + case InlineAsm::isInput: + OpInfo.CallOperandVal = Call.getArgOperand(ArgNo); + break; + case InlineAsm::isLabel: + OpInfo.CallOperandVal = cast<CallBrInst>(&Call)->getIndirectDest(LabelNo); + ++LabelNo; + continue; + case InlineAsm::isClobber: + // Nothing to do. + break; + } + + if (OpInfo.CallOperandVal) { + llvm::Type *OpTy = OpInfo.CallOperandVal->getType(); + if (OpInfo.isIndirect) { + OpTy = Call.getParamElementType(ArgNo); + assert(OpTy && "Indirect operand must have elementtype attribute"); + } + + // Look for vector wrapped in a struct. e.g. { <16 x i8> }. + if (StructType *STy = dyn_cast<StructType>(OpTy)) + if (STy->getNumElements() == 1) + OpTy = STy->getElementType(0); + + // If OpTy is not a single value, it may be a struct/union that we + // can tile with integers. + if (!OpTy->isSingleValueType() && OpTy->isSized()) { + unsigned BitSize = DL.getTypeSizeInBits(OpTy); + switch (BitSize) { + default: break; + case 1: + case 8: + case 16: + case 32: + case 64: + case 128: + OpTy = IntegerType::get(OpTy->getContext(), BitSize); + break; + } + } + + EVT VT = getAsmOperandValueType(DL, OpTy, true); + OpInfo.ConstraintVT = VT.isSimple() ? VT.getSimpleVT() : MVT::Other; + ArgNo++; + } + } + + // If we have multiple alternative constraints, select the best alternative. + if (!ConstraintOperands.empty()) { + if (maCount) { + unsigned bestMAIndex = 0; + int bestWeight = -1; + // weight: -1 = invalid match, and 0 = so-so match to 5 = good match. + int weight = -1; + unsigned maIndex; + // Compute the sums of the weights for each alternative, keeping track + // of the best (highest weight) one so far. + for (maIndex = 0; maIndex < maCount; ++maIndex) { + int weightSum = 0; + for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); + cIndex != eIndex; ++cIndex) { + AsmOperandInfo &OpInfo = ConstraintOperands[cIndex]; + if (OpInfo.Type == InlineAsm::isClobber) + continue; + + // If this is an output operand with a matching input operand, + // look up the matching input. If their types mismatch, e.g. one + // is an integer, the other is floating point, or their sizes are + // different, flag it as an maCantMatch. + if (OpInfo.hasMatchingInput()) { + AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; + if (OpInfo.ConstraintVT != Input.ConstraintVT) { + if ((OpInfo.ConstraintVT.isInteger() != + Input.ConstraintVT.isInteger()) || + (OpInfo.ConstraintVT.getSizeInBits() != + Input.ConstraintVT.getSizeInBits())) { + weightSum = -1; // Can't match. + break; + } + } + } + weight = getMultipleConstraintMatchWeight(OpInfo, maIndex); + if (weight == -1) { + weightSum = -1; + break; + } + weightSum += weight; + } + // Update best. + if (weightSum > bestWeight) { + bestWeight = weightSum; + bestMAIndex = maIndex; + } + } + + // Now select chosen alternative in each constraint. + for (AsmOperandInfo &cInfo : ConstraintOperands) + if (cInfo.Type != InlineAsm::isClobber) + cInfo.selectAlternative(bestMAIndex); + } + } + + // Check and hook up tied operands, choose constraint code to use. + for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); + cIndex != eIndex; ++cIndex) { + AsmOperandInfo &OpInfo = ConstraintOperands[cIndex]; + + // If this is an output operand with a matching input operand, look up the + // matching input. If their types mismatch, e.g. one is an integer, the + // other is floating point, or their sizes are different, flag it as an + // error. + if (OpInfo.hasMatchingInput()) { + AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; + + if (OpInfo.ConstraintVT != Input.ConstraintVT) { + std::pair<unsigned, const TargetRegisterClass *> MatchRC = + getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, + OpInfo.ConstraintVT); + std::pair<unsigned, const TargetRegisterClass *> InputRC = + getRegForInlineAsmConstraint(TRI, Input.ConstraintCode, + Input.ConstraintVT); + if ((OpInfo.ConstraintVT.isInteger() != + Input.ConstraintVT.isInteger()) || + (MatchRC.second != InputRC.second)) { + report_fatal_error("Unsupported asm: input constraint" + " with a matching output constraint of" + " incompatible type!"); + } + } + } + } + + return ConstraintOperands; +} + +/// Return a number indicating our preference for chosing a type of constraint +/// over another, for the purpose of sorting them. Immediates are almost always +/// preferrable (when they can be emitted). A higher return value means a +/// stronger preference for one constraint type relative to another. +/// FIXME: We should prefer registers over memory but doing so may lead to +/// unrecoverable register exhaustion later. +/// https://github.com/llvm/llvm-project/issues/20571 +static unsigned getConstraintPiority(TargetLowering::ConstraintType CT) { + switch (CT) { + case TargetLowering::C_Immediate: + case TargetLowering::C_Other: + return 4; + case TargetLowering::C_Memory: + case TargetLowering::C_Address: + return 3; + case TargetLowering::C_RegisterClass: + return 2; + case TargetLowering::C_Register: + return 1; + case TargetLowering::C_Unknown: + return 0; + } + llvm_unreachable("Invalid constraint type"); +} + +/// Examine constraint type and operand type and determine a weight value. +/// This object must already have been set up with the operand type +/// and the current alternative constraint selected. +TargetLowering::ConstraintWeight + TargetLowering::getMultipleConstraintMatchWeight( + AsmOperandInfo &info, int maIndex) const { + InlineAsm::ConstraintCodeVector *rCodes; + if (maIndex >= (int)info.multipleAlternatives.size()) + rCodes = &info.Codes; + else + rCodes = &info.multipleAlternatives[maIndex].Codes; + ConstraintWeight BestWeight = CW_Invalid; + + // Loop over the options, keeping track of the most general one. + for (const std::string &rCode : *rCodes) { + ConstraintWeight weight = + getSingleConstraintMatchWeight(info, rCode.c_str()); + if (weight > BestWeight) + BestWeight = weight; + } + + return BestWeight; +} + +/// Examine constraint type and operand type and determine a weight value. +/// This object must already have been set up with the operand type +/// and the current alternative constraint selected. +TargetLowering::ConstraintWeight + TargetLowering::getSingleConstraintMatchWeight( + AsmOperandInfo &info, const char *constraint) const { + ConstraintWeight weight = CW_Invalid; + Value *CallOperandVal = info.CallOperandVal; + // If we don't have a value, we can't do a match, + // but allow it at the lowest weight. + if (!CallOperandVal) + return CW_Default; + // Look at the constraint type. + switch (*constraint) { + case 'i': // immediate integer. + case 'n': // immediate integer with a known value. + if (isa<ConstantInt>(CallOperandVal)) + weight = CW_Constant; + break; + case 's': // non-explicit intregal immediate. + if (isa<GlobalValue>(CallOperandVal)) + weight = CW_Constant; + break; + case 'E': // immediate float if host format. + case 'F': // immediate float. + if (isa<ConstantFP>(CallOperandVal)) + weight = CW_Constant; + break; + case '<': // memory operand with autodecrement. + case '>': // memory operand with autoincrement. + case 'm': // memory operand. + case 'o': // offsettable memory operand + case 'V': // non-offsettable memory operand + weight = CW_Memory; + break; + case 'r': // general register. + case 'g': // general register, memory operand or immediate integer. + // note: Clang converts "g" to "imr". + if (CallOperandVal->getType()->isIntegerTy()) + weight = CW_Register; + break; + case 'X': // any operand. + default: + weight = CW_Default; + break; + } + return weight; +} + +/// If there are multiple different constraints that we could pick for this +/// operand (e.g. "imr") try to pick the 'best' one. +/// This is somewhat tricky: constraints (TargetLowering::ConstraintType) fall +/// into seven classes: +/// Register -> one specific register +/// RegisterClass -> a group of regs +/// Memory -> memory +/// Address -> a symbolic memory reference +/// Immediate -> immediate values +/// Other -> magic values (such as "Flag Output Operands") +/// Unknown -> something we don't recognize yet and can't handle +/// Ideally, we would pick the most specific constraint possible: if we have +/// something that fits into a register, we would pick it. The problem here +/// is that if we have something that could either be in a register or in +/// memory that use of the register could cause selection of *other* +/// operands to fail: they might only succeed if we pick memory. Because of +/// this the heuristic we use is: +/// +/// 1) If there is an 'other' constraint, and if the operand is valid for +/// that constraint, use it. This makes us take advantage of 'i' +/// constraints when available. +/// 2) Otherwise, pick the most general constraint present. This prefers +/// 'm' over 'r', for example. +/// +TargetLowering::ConstraintGroup TargetLowering::getConstraintPreferences( + TargetLowering::AsmOperandInfo &OpInfo) const { + ConstraintGroup Ret; + + Ret.reserve(OpInfo.Codes.size()); + for (StringRef Code : OpInfo.Codes) { + TargetLowering::ConstraintType CType = getConstraintType(Code); + + // Indirect 'other' or 'immediate' constraints are not allowed. + if (OpInfo.isIndirect && !(CType == TargetLowering::C_Memory || + CType == TargetLowering::C_Register || + CType == TargetLowering::C_RegisterClass)) + continue; + + // Things with matching constraints can only be registers, per gcc + // documentation. This mainly affects "g" constraints. + if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput()) + continue; + + Ret.emplace_back(Code, CType); + } + + std::stable_sort( + Ret.begin(), Ret.end(), [](ConstraintPair a, ConstraintPair b) { + return getConstraintPiority(a.second) > getConstraintPiority(b.second); + }); + + return Ret; +} + +/// If we have an immediate, see if we can lower it. Return true if we can, +/// false otherwise. +static bool lowerImmediateIfPossible(TargetLowering::ConstraintPair &P, + SDValue Op, SelectionDAG *DAG, + const TargetLowering &TLI) { + + assert((P.second == TargetLowering::C_Other || + P.second == TargetLowering::C_Immediate) && + "need immediate or other"); + + if (!Op.getNode()) + return false; + + std::vector<SDValue> ResultOps; + TLI.LowerAsmOperandForConstraint(Op, P.first, ResultOps, *DAG); + return !ResultOps.empty(); +} + +/// Determines the constraint code and constraint type to use for the specific +/// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType. +void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo, + SDValue Op, + SelectionDAG *DAG) const { + assert(!OpInfo.Codes.empty() && "Must have at least one constraint"); + + // Single-letter constraints ('r') are very common. + if (OpInfo.Codes.size() == 1) { + OpInfo.ConstraintCode = OpInfo.Codes[0]; + OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); + } else { + ConstraintGroup G = getConstraintPreferences(OpInfo); + if (G.empty()) + return; + + unsigned BestIdx = 0; + for (const unsigned E = G.size(); + BestIdx < E && (G[BestIdx].second == TargetLowering::C_Other || + G[BestIdx].second == TargetLowering::C_Immediate); + ++BestIdx) { + if (lowerImmediateIfPossible(G[BestIdx], Op, DAG, *this)) + break; + // If we're out of constraints, just pick the first one. + if (BestIdx + 1 == E) { + BestIdx = 0; + break; + } + } + + OpInfo.ConstraintCode = G[BestIdx].first; + OpInfo.ConstraintType = G[BestIdx].second; + } + + // 'X' matches anything. + if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) { + // Constants are handled elsewhere. For Functions, the type here is the + // type of the result, which is not what we want to look at; leave them + // alone. + Value *v = OpInfo.CallOperandVal; + if (isa<ConstantInt>(v) || isa<Function>(v)) { + return; + } + + if (isa<BasicBlock>(v) || isa<BlockAddress>(v)) { + OpInfo.ConstraintCode = "i"; + return; + } + + // Otherwise, try to resolve it to something we know about by looking at + // the actual operand type. + if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) { + OpInfo.ConstraintCode = Repl; + OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); + } + } +} + +/// Given an exact SDIV by a constant, create a multiplication +/// with the multiplicative inverse of the constant. +/// Ref: "Hacker's Delight" by Henry Warren, 2nd Edition, p. 242 +static SDValue BuildExactSDIV(const TargetLowering &TLI, SDNode *N, + const SDLoc &dl, SelectionDAG &DAG, + SmallVectorImpl<SDNode *> &Created) { + SDValue Op0 = N->getOperand(0); + SDValue Op1 = N->getOperand(1); + EVT VT = N->getValueType(0); + EVT SVT = VT.getScalarType(); + EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); + EVT ShSVT = ShVT.getScalarType(); + + bool UseSRA = false; + SmallVector<SDValue, 16> Shifts, Factors; + + auto BuildSDIVPattern = [&](ConstantSDNode *C) { + if (C->isZero()) + return false; + APInt Divisor = C->getAPIntValue(); + unsigned Shift = Divisor.countr_zero(); + if (Shift) { + Divisor.ashrInPlace(Shift); + UseSRA = true; + } + APInt Factor = Divisor.multiplicativeInverse(); + Shifts.push_back(DAG.getConstant(Shift, dl, ShSVT)); + Factors.push_back(DAG.getConstant(Factor, dl, SVT)); + return true; + }; + + // Collect all magic values from the build vector. + if (!ISD::matchUnaryPredicate(Op1, BuildSDIVPattern)) + return SDValue(); + + SDValue Shift, Factor; + if (Op1.getOpcode() == ISD::BUILD_VECTOR) { + Shift = DAG.getBuildVector(ShVT, dl, Shifts); + Factor = DAG.getBuildVector(VT, dl, Factors); + } else if (Op1.getOpcode() == ISD::SPLAT_VECTOR) { + assert(Shifts.size() == 1 && Factors.size() == 1 && + "Expected matchUnaryPredicate to return one element for scalable " + "vectors"); + Shift = DAG.getSplatVector(ShVT, dl, Shifts[0]); + Factor = DAG.getSplatVector(VT, dl, Factors[0]); + } else { + assert(isa<ConstantSDNode>(Op1) && "Expected a constant"); + Shift = Shifts[0]; + Factor = Factors[0]; + } + + SDValue Res = Op0; + if (UseSRA) { + SDNodeFlags Flags; + Flags.setExact(true); + Res = DAG.getNode(ISD::SRA, dl, VT, Res, Shift, Flags); + Created.push_back(Res.getNode()); + } + + return DAG.getNode(ISD::MUL, dl, VT, Res, Factor); +} + +/// Given an exact UDIV by a constant, create a multiplication +/// with the multiplicative inverse of the constant. +/// Ref: "Hacker's Delight" by Henry Warren, 2nd Edition, p. 242 +static SDValue BuildExactUDIV(const TargetLowering &TLI, SDNode *N, + const SDLoc &dl, SelectionDAG &DAG, + SmallVectorImpl<SDNode *> &Created) { + EVT VT = N->getValueType(0); + EVT SVT = VT.getScalarType(); + EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); + EVT ShSVT = ShVT.getScalarType(); + + bool UseSRL = false; + SmallVector<SDValue, 16> Shifts, Factors; + + auto BuildUDIVPattern = [&](ConstantSDNode *C) { + if (C->isZero()) + return false; + APInt Divisor = C->getAPIntValue(); + unsigned Shift = Divisor.countr_zero(); + if (Shift) { + Divisor.lshrInPlace(Shift); + UseSRL = true; + } + // Calculate the multiplicative inverse modulo BW. + APInt Factor = Divisor.multiplicativeInverse(); + Shifts.push_back(DAG.getConstant(Shift, dl, ShSVT)); + Factors.push_back(DAG.getConstant(Factor, dl, SVT)); + return true; + }; + + SDValue Op1 = N->getOperand(1); + + // Collect all magic values from the build vector. + if (!ISD::matchUnaryPredicate(Op1, BuildUDIVPattern)) + return SDValue(); + + SDValue Shift, Factor; + if (Op1.getOpcode() == ISD::BUILD_VECTOR) { + Shift = DAG.getBuildVector(ShVT, dl, Shifts); + Factor = DAG.getBuildVector(VT, dl, Factors); + } else if (Op1.getOpcode() == ISD::SPLAT_VECTOR) { + assert(Shifts.size() == 1 && Factors.size() == 1 && + "Expected matchUnaryPredicate to return one element for scalable " + "vectors"); + Shift = DAG.getSplatVector(ShVT, dl, Shifts[0]); + Factor = DAG.getSplatVector(VT, dl, Factors[0]); + } else { + assert(isa<ConstantSDNode>(Op1) && "Expected a constant"); + Shift = Shifts[0]; + Factor = Factors[0]; + } + + SDValue Res = N->getOperand(0); + if (UseSRL) { + SDNodeFlags Flags; + Flags.setExact(true); + Res = DAG.getNode(ISD::SRL, dl, VT, Res, Shift, Flags); + Created.push_back(Res.getNode()); + } + + return DAG.getNode(ISD::MUL, dl, VT, Res, Factor); +} + +SDValue TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor, + SelectionDAG &DAG, + SmallVectorImpl<SDNode *> &Created) const { + AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); + const TargetLowering &TLI = DAG.getTargetLoweringInfo(); + if (TLI.isIntDivCheap(N->getValueType(0), Attr)) + return SDValue(N, 0); // Lower SDIV as SDIV + return SDValue(); +} + +SDValue +TargetLowering::BuildSREMPow2(SDNode *N, const APInt &Divisor, + SelectionDAG &DAG, + SmallVectorImpl<SDNode *> &Created) const { + AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); + const TargetLowering &TLI = DAG.getTargetLoweringInfo(); + if (TLI.isIntDivCheap(N->getValueType(0), Attr)) + return SDValue(N, 0); // Lower SREM as SREM + return SDValue(); +} + +/// Build sdiv by power-of-2 with conditional move instructions +/// Ref: "Hacker's Delight" by Henry Warren 10-1 +/// If conditional move/branch is preferred, we lower sdiv x, +/-2**k into: +/// bgez x, label +/// add x, x, 2**k-1 +/// label: +/// sra res, x, k +/// neg res, res (when the divisor is negative) +SDValue TargetLowering::buildSDIVPow2WithCMov( + SDNode *N, const APInt &Divisor, SelectionDAG &DAG, + SmallVectorImpl<SDNode *> &Created) const { + unsigned Lg2 = Divisor.countr_zero(); + EVT VT = N->getValueType(0); + + SDLoc DL(N); + SDValue N0 = N->getOperand(0); + SDValue Zero = DAG.getConstant(0, DL, VT); + APInt Lg2Mask = APInt::getLowBitsSet(VT.getSizeInBits(), Lg2); + SDValue Pow2MinusOne = DAG.getConstant(Lg2Mask, DL, VT); + + // If N0 is negative, we need to add (Pow2 - 1) to it before shifting right. + EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); + SDValue Cmp = DAG.getSetCC(DL, CCVT, N0, Zero, ISD::SETLT); + SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N0, Pow2MinusOne); + SDValue CMov = DAG.getNode(ISD::SELECT, DL, VT, Cmp, Add, N0); + + Created.push_back(Cmp.getNode()); + Created.push_back(Add.getNode()); + Created.push_back(CMov.getNode()); + + // Divide by pow2. + SDValue SRA = + DAG.getNode(ISD::SRA, DL, VT, CMov, DAG.getConstant(Lg2, DL, VT)); + + // If we're dividing by a positive value, we're done. Otherwise, we must + // negate the result. + if (Divisor.isNonNegative()) + return SRA; + + Created.push_back(SRA.getNode()); + return DAG.getNode(ISD::SUB, DL, VT, Zero, SRA); +} + +/// Given an ISD::SDIV node expressing a divide by constant, +/// return a DAG expression to select that will generate the same value by +/// multiplying by a magic number. +/// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". +SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG, + bool IsAfterLegalization, + SmallVectorImpl<SDNode *> &Created) const { + SDLoc dl(N); + EVT VT = N->getValueType(0); + EVT SVT = VT.getScalarType(); + EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); + EVT ShSVT = ShVT.getScalarType(); + unsigned EltBits = VT.getScalarSizeInBits(); + EVT MulVT; + + // Check to see if we can do this. + // FIXME: We should be more aggressive here. + if (!isTypeLegal(VT)) { + // Limit this to simple scalars for now. + if (VT.isVector() || !VT.isSimple()) + return SDValue(); + + // If this type will be promoted to a large enough type with a legal + // multiply operation, we can go ahead and do this transform. + if (getTypeAction(VT.getSimpleVT()) != TypePromoteInteger) + return SDValue(); + + MulVT = getTypeToTransformTo(*DAG.getContext(), VT); + if (MulVT.getSizeInBits() < (2 * EltBits) || + !isOperationLegal(ISD::MUL, MulVT)) + return SDValue(); + } + + // If the sdiv has an 'exact' bit we can use a simpler lowering. + if (N->getFlags().hasExact()) + return BuildExactSDIV(*this, N, dl, DAG, Created); + + SmallVector<SDValue, 16> MagicFactors, Factors, Shifts, ShiftMasks; + + auto BuildSDIVPattern = [&](ConstantSDNode *C) { + if (C->isZero()) + return false; + + const APInt &Divisor = C->getAPIntValue(); + SignedDivisionByConstantInfo magics = SignedDivisionByConstantInfo::get(Divisor); + int NumeratorFactor = 0; + int ShiftMask = -1; + + if (Divisor.isOne() || Divisor.isAllOnes()) { + // If d is +1/-1, we just multiply the numerator by +1/-1. + NumeratorFactor = Divisor.getSExtValue(); + magics.Magic = 0; + magics.ShiftAmount = 0; + ShiftMask = 0; + } else if (Divisor.isStrictlyPositive() && magics.Magic.isNegative()) { + // If d > 0 and m < 0, add the numerator. + NumeratorFactor = 1; + } else if (Divisor.isNegative() && magics.Magic.isStrictlyPositive()) { + // If d < 0 and m > 0, subtract the numerator. + NumeratorFactor = -1; + } + + MagicFactors.push_back(DAG.getConstant(magics.Magic, dl, SVT)); + Factors.push_back(DAG.getConstant(NumeratorFactor, dl, SVT)); + Shifts.push_back(DAG.getConstant(magics.ShiftAmount, dl, ShSVT)); + ShiftMasks.push_back(DAG.getConstant(ShiftMask, dl, SVT)); + return true; + }; + + SDValue N0 = N->getOperand(0); + SDValue N1 = N->getOperand(1); + + // Collect the shifts / magic values from each element. + if (!ISD::matchUnaryPredicate(N1, BuildSDIVPattern)) + return SDValue(); + + SDValue MagicFactor, Factor, Shift, ShiftMask; + if (N1.getOpcode() == ISD::BUILD_VECTOR) { + MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors); + Factor = DAG.getBuildVector(VT, dl, Factors); + Shift = DAG.getBuildVector(ShVT, dl, Shifts); + ShiftMask = DAG.getBuildVector(VT, dl, ShiftMasks); + } else if (N1.getOpcode() == ISD::SPLAT_VECTOR) { + assert(MagicFactors.size() == 1 && Factors.size() == 1 && + Shifts.size() == 1 && ShiftMasks.size() == 1 && + "Expected matchUnaryPredicate to return one element for scalable " + "vectors"); + MagicFactor = DAG.getSplatVector(VT, dl, MagicFactors[0]); + Factor = DAG.getSplatVector(VT, dl, Factors[0]); + Shift = DAG.getSplatVector(ShVT, dl, Shifts[0]); + ShiftMask = DAG.getSplatVector(VT, dl, ShiftMasks[0]); + } else { + assert(isa<ConstantSDNode>(N1) && "Expected a constant"); + MagicFactor = MagicFactors[0]; + Factor = Factors[0]; + Shift = Shifts[0]; + ShiftMask = ShiftMasks[0]; + } + + // Multiply the numerator (operand 0) by the magic value. + // FIXME: We should support doing a MUL in a wider type. + auto GetMULHS = [&](SDValue X, SDValue Y) { + // If the type isn't legal, use a wider mul of the type calculated + // earlier. + if (!isTypeLegal(VT)) { + X = DAG.getNode(ISD::SIGN_EXTEND, dl, MulVT, X); + Y = DAG.getNode(ISD::SIGN_EXTEND, dl, MulVT, Y); + Y = DAG.getNode(ISD::MUL, dl, MulVT, X, Y); + Y = DAG.getNode(ISD::SRL, dl, MulVT, Y, + DAG.getShiftAmountConstant(EltBits, MulVT, dl)); + return DAG.getNode(ISD::TRUNCATE, dl, VT, Y); + } + + if (isOperationLegalOrCustom(ISD::MULHS, VT, IsAfterLegalization)) + return DAG.getNode(ISD::MULHS, dl, VT, X, Y); + if (isOperationLegalOrCustom(ISD::SMUL_LOHI, VT, IsAfterLegalization)) { + SDValue LoHi = + DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y); + return SDValue(LoHi.getNode(), 1); + } + // If type twice as wide legal, widen and use a mul plus a shift. + unsigned Size = VT.getScalarSizeInBits(); + EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), Size * 2); + if (VT.isVector()) + WideVT = EVT::getVectorVT(*DAG.getContext(), WideVT, + VT.getVectorElementCount()); + if (isOperationLegalOrCustom(ISD::MUL, WideVT)) { + X = DAG.getNode(ISD::SIGN_EXTEND, dl, WideVT, X); + Y = DAG.getNode(ISD::SIGN_EXTEND, dl, WideVT, Y); + Y = DAG.getNode(ISD::MUL, dl, WideVT, X, Y); + Y = DAG.getNode(ISD::SRL, dl, WideVT, Y, + DAG.getShiftAmountConstant(EltBits, WideVT, dl)); + return DAG.getNode(ISD::TRUNCATE, dl, VT, Y); + } + return SDValue(); + }; + + SDValue Q = GetMULHS(N0, MagicFactor); + if (!Q) + return SDValue(); + + Created.push_back(Q.getNode()); + + // (Optionally) Add/subtract the numerator using Factor. + Factor = DAG.getNode(ISD::MUL, dl, VT, N0, Factor); + Created.push_back(Factor.getNode()); + Q = DAG.getNode(ISD::ADD, dl, VT, Q, Factor); + Created.push_back(Q.getNode()); + + // Shift right algebraic by shift value. + Q = DAG.getNode(ISD::SRA, dl, VT, Q, Shift); + Created.push_back(Q.getNode()); + + // Extract the sign bit, mask it and add it to the quotient. + SDValue SignShift = DAG.getConstant(EltBits - 1, dl, ShVT); + SDValue T = DAG.getNode(ISD::SRL, dl, VT, Q, SignShift); + Created.push_back(T.getNode()); + T = DAG.getNode(ISD::AND, dl, VT, T, ShiftMask); + Created.push_back(T.getNode()); + return DAG.getNode(ISD::ADD, dl, VT, Q, T); +} + +/// Given an ISD::UDIV node expressing a divide by constant, +/// return a DAG expression to select that will generate the same value by +/// multiplying by a magic number. +/// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". +SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG, + bool IsAfterLegalization, + SmallVectorImpl<SDNode *> &Created) const { + SDLoc dl(N); + EVT VT = N->getValueType(0); + EVT SVT = VT.getScalarType(); + EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); + EVT ShSVT = ShVT.getScalarType(); + unsigned EltBits = VT.getScalarSizeInBits(); + EVT MulVT; + + // Check to see if we can do this. + // FIXME: We should be more aggressive here. + if (!isTypeLegal(VT)) { + // Limit this to simple scalars for now. + if (VT.isVector() || !VT.isSimple()) + return SDValue(); + + // If this type will be promoted to a large enough type with a legal + // multiply operation, we can go ahead and do this transform. + if (getTypeAction(VT.getSimpleVT()) != TypePromoteInteger) + return SDValue(); + + MulVT = getTypeToTransformTo(*DAG.getContext(), VT); + if (MulVT.getSizeInBits() < (2 * EltBits) || + !isOperationLegal(ISD::MUL, MulVT)) + return SDValue(); + } + + // If the udiv has an 'exact' bit we can use a simpler lowering. + if (N->getFlags().hasExact()) + return BuildExactUDIV(*this, N, dl, DAG, Created); + + SDValue N0 = N->getOperand(0); + SDValue N1 = N->getOperand(1); + + // Try to use leading zeros of the dividend to reduce the multiplier and + // avoid expensive fixups. + unsigned KnownLeadingZeros = DAG.computeKnownBits(N0).countMinLeadingZeros(); + + bool UseNPQ = false, UsePreShift = false, UsePostShift = false; + SmallVector<SDValue, 16> PreShifts, PostShifts, MagicFactors, NPQFactors; + + auto BuildUDIVPattern = [&](ConstantSDNode *C) { + if (C->isZero()) + return false; + const APInt& Divisor = C->getAPIntValue(); + + SDValue PreShift, MagicFactor, NPQFactor, PostShift; + + // Magic algorithm doesn't work for division by 1. We need to emit a select + // at the end. + if (Divisor.isOne()) { + PreShift = PostShift = DAG.getUNDEF(ShSVT); + MagicFactor = NPQFactor = DAG.getUNDEF(SVT); + } else { + UnsignedDivisionByConstantInfo magics = + UnsignedDivisionByConstantInfo::get( + Divisor, std::min(KnownLeadingZeros, Divisor.countl_zero())); + + MagicFactor = DAG.getConstant(magics.Magic, dl, SVT); + + assert(magics.PreShift < Divisor.getBitWidth() && + "We shouldn't generate an undefined shift!"); + assert(magics.PostShift < Divisor.getBitWidth() && + "We shouldn't generate an undefined shift!"); + assert((!magics.IsAdd || magics.PreShift == 0) && + "Unexpected pre-shift"); + PreShift = DAG.getConstant(magics.PreShift, dl, ShSVT); + PostShift = DAG.getConstant(magics.PostShift, dl, ShSVT); + NPQFactor = DAG.getConstant( + magics.IsAdd ? APInt::getOneBitSet(EltBits, EltBits - 1) + : APInt::getZero(EltBits), + dl, SVT); + UseNPQ |= magics.IsAdd; + UsePreShift |= magics.PreShift != 0; + UsePostShift |= magics.PostShift != 0; + } + + PreShifts.push_back(PreShift); + MagicFactors.push_back(MagicFactor); + NPQFactors.push_back(NPQFactor); + PostShifts.push_back(PostShift); + return true; + }; + + // Collect the shifts/magic values from each element. + if (!ISD::matchUnaryPredicate(N1, BuildUDIVPattern)) + return SDValue(); + + SDValue PreShift, PostShift, MagicFactor, NPQFactor; + if (N1.getOpcode() == ISD::BUILD_VECTOR) { + PreShift = DAG.getBuildVector(ShVT, dl, PreShifts); + MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors); + NPQFactor = DAG.getBuildVector(VT, dl, NPQFactors); + PostShift = DAG.getBuildVector(ShVT, dl, PostShifts); + } else if (N1.getOpcode() == ISD::SPLAT_VECTOR) { + assert(PreShifts.size() == 1 && MagicFactors.size() == 1 && + NPQFactors.size() == 1 && PostShifts.size() == 1 && + "Expected matchUnaryPredicate to return one for scalable vectors"); + PreShift = DAG.getSplatVector(ShVT, dl, PreShifts[0]); + MagicFactor = DAG.getSplatVector(VT, dl, MagicFactors[0]); + NPQFactor = DAG.getSplatVector(VT, dl, NPQFactors[0]); + PostShift = DAG.getSplatVector(ShVT, dl, PostShifts[0]); + } else { + assert(isa<ConstantSDNode>(N1) && "Expected a constant"); + PreShift = PreShifts[0]; + MagicFactor = MagicFactors[0]; + PostShift = PostShifts[0]; + } + + SDValue Q = N0; + if (UsePreShift) { + Q = DAG.getNode(ISD::SRL, dl, VT, Q, PreShift); + Created.push_back(Q.getNode()); + } + + // FIXME: We should support doing a MUL in a wider type. + auto GetMULHU = [&](SDValue X, SDValue Y) { + // If the type isn't legal, use a wider mul of the type calculated + // earlier. + if (!isTypeLegal(VT)) { + X = DAG.getNode(ISD::ZERO_EXTEND, dl, MulVT, X); + Y = DAG.getNode(ISD::ZERO_EXTEND, dl, MulVT, Y); + Y = DAG.getNode(ISD::MUL, dl, MulVT, X, Y); + Y = DAG.getNode(ISD::SRL, dl, MulVT, Y, + DAG.getShiftAmountConstant(EltBits, MulVT, dl)); + return DAG.getNode(ISD::TRUNCATE, dl, VT, Y); + } + + if (isOperationLegalOrCustom(ISD::MULHU, VT, IsAfterLegalization)) + return DAG.getNode(ISD::MULHU, dl, VT, X, Y); + if (isOperationLegalOrCustom(ISD::UMUL_LOHI, VT, IsAfterLegalization)) { + SDValue LoHi = + DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y); + return SDValue(LoHi.getNode(), 1); + } + // If type twice as wide legal, widen and use a mul plus a shift. + unsigned Size = VT.getScalarSizeInBits(); + EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), Size * 2); + if (VT.isVector()) + WideVT = EVT::getVectorVT(*DAG.getContext(), WideVT, + VT.getVectorElementCount()); + if (isOperationLegalOrCustom(ISD::MUL, WideVT)) { + X = DAG.getNode(ISD::ZERO_EXTEND, dl, WideVT, X); + Y = DAG.getNode(ISD::ZERO_EXTEND, dl, WideVT, Y); + Y = DAG.getNode(ISD::MUL, dl, WideVT, X, Y); + Y = DAG.getNode(ISD::SRL, dl, WideVT, Y, + DAG.getShiftAmountConstant(EltBits, WideVT, dl)); + return DAG.getNode(ISD::TRUNCATE, dl, VT, Y); + } + return SDValue(); // No mulhu or equivalent + }; + + // Multiply the numerator (operand 0) by the magic value. + Q = GetMULHU(Q, MagicFactor); + if (!Q) + return SDValue(); + + Created.push_back(Q.getNode()); + + if (UseNPQ) { + SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N0, Q); + Created.push_back(NPQ.getNode()); + + // For vectors we might have a mix of non-NPQ/NPQ paths, so use + // MULHU to act as a SRL-by-1 for NPQ, else multiply by zero. + if (VT.isVector()) + NPQ = GetMULHU(NPQ, NPQFactor); + else + NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ, DAG.getConstant(1, dl, ShVT)); + + Created.push_back(NPQ.getNode()); + + Q = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q); + Created.push_back(Q.getNode()); + } + + if (UsePostShift) { + Q = DAG.getNode(ISD::SRL, dl, VT, Q, PostShift); + Created.push_back(Q.getNode()); + } + + EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); + + SDValue One = DAG.getConstant(1, dl, VT); + SDValue IsOne = DAG.getSetCC(dl, SetCCVT, N1, One, ISD::SETEQ); + return DAG.getSelect(dl, VT, IsOne, N0, Q); +} + +/// If all values in Values that *don't* match the predicate are same 'splat' +/// value, then replace all values with that splat value. +/// Else, if AlternativeReplacement was provided, then replace all values that +/// do match predicate with AlternativeReplacement value. +static void +turnVectorIntoSplatVector(MutableArrayRef<SDValue> Values, + std::function<bool(SDValue)> Predicate, + SDValue AlternativeReplacement = SDValue()) { + SDValue Replacement; + // Is there a value for which the Predicate does *NOT* match? What is it? + auto SplatValue = llvm::find_if_not(Values, Predicate); + if (SplatValue != Values.end()) { + // Does Values consist only of SplatValue's and values matching Predicate? + if (llvm::all_of(Values, [Predicate, SplatValue](SDValue Value) { + return Value == *SplatValue || Predicate(Value); + })) // Then we shall replace values matching predicate with SplatValue. + Replacement = *SplatValue; + } + if (!Replacement) { + // Oops, we did not find the "baseline" splat value. + if (!AlternativeReplacement) + return; // Nothing to do. + // Let's replace with provided value then. + Replacement = AlternativeReplacement; + } + std::replace_if(Values.begin(), Values.end(), Predicate, Replacement); +} + +/// Given an ISD::UREM used only by an ISD::SETEQ or ISD::SETNE +/// where the divisor is constant and the comparison target is zero, +/// return a DAG expression that will generate the same comparison result +/// using only multiplications, additions and shifts/rotations. +/// Ref: "Hacker's Delight" 10-17. +SDValue TargetLowering::buildUREMEqFold(EVT SETCCVT, SDValue REMNode, + SDValue CompTargetNode, + ISD::CondCode Cond, + DAGCombinerInfo &DCI, + const SDLoc &DL) const { + SmallVector<SDNode *, 5> Built; + if (SDValue Folded = prepareUREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond, + DCI, DL, Built)) { + for (SDNode *N : Built) + DCI.AddToWorklist(N); + return Folded; + } + + return SDValue(); +} + +SDValue +TargetLowering::prepareUREMEqFold(EVT SETCCVT, SDValue REMNode, + SDValue CompTargetNode, ISD::CondCode Cond, + DAGCombinerInfo &DCI, const SDLoc &DL, + SmallVectorImpl<SDNode *> &Created) const { + // fold (seteq/ne (urem N, D), 0) -> (setule/ugt (rotr (mul N, P), K), Q) + // - D must be constant, with D = D0 * 2^K where D0 is odd + // - P is the multiplicative inverse of D0 modulo 2^W + // - Q = floor(((2^W) - 1) / D) + // where W is the width of the common type of N and D. + assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && + "Only applicable for (in)equality comparisons."); + + SelectionDAG &DAG = DCI.DAG; + + EVT VT = REMNode.getValueType(); + EVT SVT = VT.getScalarType(); + EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); + EVT ShSVT = ShVT.getScalarType(); + + // If MUL is unavailable, we cannot proceed in any case. + if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::MUL, VT)) + return SDValue(); + + bool ComparingWithAllZeros = true; + bool AllComparisonsWithNonZerosAreTautological = true; + bool HadTautologicalLanes = false; + bool AllLanesAreTautological = true; + bool HadEvenDivisor = false; + bool AllDivisorsArePowerOfTwo = true; + bool HadTautologicalInvertedLanes = false; + SmallVector<SDValue, 16> PAmts, KAmts, QAmts, IAmts; + + auto BuildUREMPattern = [&](ConstantSDNode *CDiv, ConstantSDNode *CCmp) { + // Division by 0 is UB. Leave it to be constant-folded elsewhere. + if (CDiv->isZero()) + return false; + + const APInt &D = CDiv->getAPIntValue(); + const APInt &Cmp = CCmp->getAPIntValue(); + + ComparingWithAllZeros &= Cmp.isZero(); + + // x u% C1` is *always* less than C1. So given `x u% C1 == C2`, + // if C2 is not less than C1, the comparison is always false. + // But we will only be able to produce the comparison that will give the + // opposive tautological answer. So this lane would need to be fixed up. + bool TautologicalInvertedLane = D.ule(Cmp); + HadTautologicalInvertedLanes |= TautologicalInvertedLane; + + // If all lanes are tautological (either all divisors are ones, or divisor + // is not greater than the constant we are comparing with), + // we will prefer to avoid the fold. + bool TautologicalLane = D.isOne() || TautologicalInvertedLane; + HadTautologicalLanes |= TautologicalLane; + AllLanesAreTautological &= TautologicalLane; + + // If we are comparing with non-zero, we need'll need to subtract said + // comparison value from the LHS. But there is no point in doing that if + // every lane where we are comparing with non-zero is tautological.. + if (!Cmp.isZero()) + AllComparisonsWithNonZerosAreTautological &= TautologicalLane; + + // Decompose D into D0 * 2^K + unsigned K = D.countr_zero(); + assert((!D.isOne() || (K == 0)) && "For divisor '1' we won't rotate."); + APInt D0 = D.lshr(K); + + // D is even if it has trailing zeros. + HadEvenDivisor |= (K != 0); + // D is a power-of-two if D0 is one. + // If all divisors are power-of-two, we will prefer to avoid the fold. + AllDivisorsArePowerOfTwo &= D0.isOne(); + + // P = inv(D0, 2^W) + // 2^W requires W + 1 bits, so we have to extend and then truncate. + unsigned W = D.getBitWidth(); + APInt P = D0.multiplicativeInverse(); + assert((D0 * P).isOne() && "Multiplicative inverse basic check failed."); + + // Q = floor((2^W - 1) u/ D) + // R = ((2^W - 1) u% D) + APInt Q, R; + APInt::udivrem(APInt::getAllOnes(W), D, Q, R); + + // If we are comparing with zero, then that comparison constant is okay, + // else it may need to be one less than that. + if (Cmp.ugt(R)) + Q -= 1; + + assert(APInt::getAllOnes(ShSVT.getSizeInBits()).ugt(K) && + "We are expecting that K is always less than all-ones for ShSVT"); + + // If the lane is tautological the result can be constant-folded. + if (TautologicalLane) { + // Set P and K amount to a bogus values so we can try to splat them. + P = 0; + K = -1; + // And ensure that comparison constant is tautological, + // it will always compare true/false. + Q = -1; + } + + PAmts.push_back(DAG.getConstant(P, DL, SVT)); + KAmts.push_back( + DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT)); + QAmts.push_back(DAG.getConstant(Q, DL, SVT)); + return true; + }; + + SDValue N = REMNode.getOperand(0); + SDValue D = REMNode.getOperand(1); + + // Collect the values from each element. + if (!ISD::matchBinaryPredicate(D, CompTargetNode, BuildUREMPattern)) + return SDValue(); + + // If all lanes are tautological, the result can be constant-folded. + if (AllLanesAreTautological) + return SDValue(); + + // If this is a urem by a powers-of-two, avoid the fold since it can be + // best implemented as a bit test. + if (AllDivisorsArePowerOfTwo) + return SDValue(); + + SDValue PVal, KVal, QVal; + if (D.getOpcode() == ISD::BUILD_VECTOR) { + if (HadTautologicalLanes) { + // Try to turn PAmts into a splat, since we don't care about the values + // that are currently '0'. If we can't, just keep '0'`s. + turnVectorIntoSplatVector(PAmts, isNullConstant); + // Try to turn KAmts into a splat, since we don't care about the values + // that are currently '-1'. If we can't, change them to '0'`s. + turnVectorIntoSplatVector(KAmts, isAllOnesConstant, + DAG.getConstant(0, DL, ShSVT)); + } + + PVal = DAG.getBuildVector(VT, DL, PAmts); + KVal = DAG.getBuildVector(ShVT, DL, KAmts); + QVal = DAG.getBuildVector(VT, DL, QAmts); + } else if (D.getOpcode() == ISD::SPLAT_VECTOR) { + assert(PAmts.size() == 1 && KAmts.size() == 1 && QAmts.size() == 1 && + "Expected matchBinaryPredicate to return one element for " + "SPLAT_VECTORs"); + PVal = DAG.getSplatVector(VT, DL, PAmts[0]); + KVal = DAG.getSplatVector(ShVT, DL, KAmts[0]); + QVal = DAG.getSplatVector(VT, DL, QAmts[0]); + } else { + PVal = PAmts[0]; + KVal = KAmts[0]; + QVal = QAmts[0]; + } + + if (!ComparingWithAllZeros && !AllComparisonsWithNonZerosAreTautological) { + if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::SUB, VT)) + return SDValue(); // FIXME: Could/should use `ISD::ADD`? + assert(CompTargetNode.getValueType() == N.getValueType() && + "Expecting that the types on LHS and RHS of comparisons match."); + N = DAG.getNode(ISD::SUB, DL, VT, N, CompTargetNode); + } + + // (mul N, P) + SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal); + Created.push_back(Op0.getNode()); + + // Rotate right only if any divisor was even. We avoid rotates for all-odd + // divisors as a performance improvement, since rotating by 0 is a no-op. + if (HadEvenDivisor) { + // We need ROTR to do this. + if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ROTR, VT)) + return SDValue(); + // UREM: (rotr (mul N, P), K) + Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal); + Created.push_back(Op0.getNode()); + } + + // UREM: (setule/setugt (rotr (mul N, P), K), Q) + SDValue NewCC = + DAG.getSetCC(DL, SETCCVT, Op0, QVal, + ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT)); + if (!HadTautologicalInvertedLanes) + return NewCC; + + // If any lanes previously compared always-false, the NewCC will give + // always-true result for them, so we need to fixup those lanes. + // Or the other way around for inequality predicate. + assert(VT.isVector() && "Can/should only get here for vectors."); + Created.push_back(NewCC.getNode()); + + // x u% C1` is *always* less than C1. So given `x u% C1 == C2`, + // if C2 is not less than C1, the comparison is always false. + // But we have produced the comparison that will give the + // opposive tautological answer. So these lanes would need to be fixed up. + SDValue TautologicalInvertedChannels = + DAG.getSetCC(DL, SETCCVT, D, CompTargetNode, ISD::SETULE); + Created.push_back(TautologicalInvertedChannels.getNode()); + + // NOTE: we avoid letting illegal types through even if we're before legalize + // ops – legalization has a hard time producing good code for this. + if (isOperationLegalOrCustom(ISD::VSELECT, SETCCVT)) { + // If we have a vector select, let's replace the comparison results in the + // affected lanes with the correct tautological result. + SDValue Replacement = DAG.getBoolConstant(Cond == ISD::SETEQ ? false : true, + DL, SETCCVT, SETCCVT); + return DAG.getNode(ISD::VSELECT, DL, SETCCVT, TautologicalInvertedChannels, + Replacement, NewCC); + } + + // Else, we can just invert the comparison result in the appropriate lanes. + // + // NOTE: see the note above VSELECT above. + if (isOperationLegalOrCustom(ISD::XOR, SETCCVT)) + return DAG.getNode(ISD::XOR, DL, SETCCVT, NewCC, + TautologicalInvertedChannels); + + return SDValue(); // Don't know how to lower. +} + +/// Given an ISD::SREM used only by an ISD::SETEQ or ISD::SETNE +/// where the divisor is constant and the comparison target is zero, +/// return a DAG expression that will generate the same comparison result +/// using only multiplications, additions and shifts/rotations. +/// Ref: "Hacker's Delight" 10-17. +SDValue TargetLowering::buildSREMEqFold(EVT SETCCVT, SDValue REMNode, + SDValue CompTargetNode, + ISD::CondCode Cond, + DAGCombinerInfo &DCI, + const SDLoc &DL) const { + SmallVector<SDNode *, 7> Built; + if (SDValue Folded = prepareSREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond, + DCI, DL, Built)) { + assert(Built.size() <= 7 && "Max size prediction failed."); + for (SDNode *N : Built) + DCI.AddToWorklist(N); + return Folded; + } + + return SDValue(); +} + +SDValue +TargetLowering::prepareSREMEqFold(EVT SETCCVT, SDValue REMNode, + SDValue CompTargetNode, ISD::CondCode Cond, + DAGCombinerInfo &DCI, const SDLoc &DL, + SmallVectorImpl<SDNode *> &Created) const { + // Derived from Hacker's Delight, 2nd Edition, by Hank Warren. Section 10-17. + // Fold: + // (seteq/ne (srem N, D), 0) + // To: + // (setule/ugt (rotr (add (mul N, P), A), K), Q) + // + // - D must be constant, with D = D0 * 2^K where D0 is odd + // - P is the multiplicative inverse of D0 modulo 2^W + // - A = bitwiseand(floor((2^(W - 1) - 1) / D0), (-(2^k))) + // - Q = floor((2 * A) / (2^K)) + // where W is the width of the common type of N and D. + // + // When D is a power of two (and thus D0 is 1), the normal + // formula for A and Q don't apply, because the derivation + // depends on D not dividing 2^(W-1), and thus theorem ZRS + // does not apply. This specifically fails when N = INT_MIN. + // + // Instead, for power-of-two D, we use: + // - A = 2^(W-1) + // |-> Order-preserving map from [-2^(W-1), 2^(W-1) - 1] to [0,2^W - 1]) + // - Q = 2^(W-K) - 1 + // |-> Test that the top K bits are zero after rotation + assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && + "Only applicable for (in)equality comparisons."); + + SelectionDAG &DAG = DCI.DAG; + + EVT VT = REMNode.getValueType(); + EVT SVT = VT.getScalarType(); + EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); + EVT ShSVT = ShVT.getScalarType(); + + // If we are after ops legalization, and MUL is unavailable, we can not + // proceed. + if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::MUL, VT)) + return SDValue(); + + // TODO: Could support comparing with non-zero too. + ConstantSDNode *CompTarget = isConstOrConstSplat(CompTargetNode); + if (!CompTarget || !CompTarget->isZero()) + return SDValue(); + + bool HadIntMinDivisor = false; + bool HadOneDivisor = false; + bool AllDivisorsAreOnes = true; + bool HadEvenDivisor = false; + bool NeedToApplyOffset = false; + bool AllDivisorsArePowerOfTwo = true; + SmallVector<SDValue, 16> PAmts, AAmts, KAmts, QAmts; + + auto BuildSREMPattern = [&](ConstantSDNode *C) { + // Division by 0 is UB. Leave it to be constant-folded elsewhere. + if (C->isZero()) + return false; + + // FIXME: we don't fold `rem %X, -C` to `rem %X, C` in DAGCombine. + + // WARNING: this fold is only valid for positive divisors! + APInt D = C->getAPIntValue(); + if (D.isNegative()) + D.negate(); // `rem %X, -C` is equivalent to `rem %X, C` + + HadIntMinDivisor |= D.isMinSignedValue(); + + // If all divisors are ones, we will prefer to avoid the fold. + HadOneDivisor |= D.isOne(); + AllDivisorsAreOnes &= D.isOne(); + + // Decompose D into D0 * 2^K + unsigned K = D.countr_zero(); + assert((!D.isOne() || (K == 0)) && "For divisor '1' we won't rotate."); + APInt D0 = D.lshr(K); + + if (!D.isMinSignedValue()) { + // D is even if it has trailing zeros; unless it's INT_MIN, in which case + // we don't care about this lane in this fold, we'll special-handle it. + HadEvenDivisor |= (K != 0); + } + + // D is a power-of-two if D0 is one. This includes INT_MIN. + // If all divisors are power-of-two, we will prefer to avoid the fold. + AllDivisorsArePowerOfTwo &= D0.isOne(); + + // P = inv(D0, 2^W) + // 2^W requires W + 1 bits, so we have to extend and then truncate. + unsigned W = D.getBitWidth(); + APInt P = D0.multiplicativeInverse(); + assert((D0 * P).isOne() && "Multiplicative inverse basic check failed."); + + // A = floor((2^(W - 1) - 1) / D0) & -2^K + APInt A = APInt::getSignedMaxValue(W).udiv(D0); + A.clearLowBits(K); + + if (!D.isMinSignedValue()) { + // If divisor INT_MIN, then we don't care about this lane in this fold, + // we'll special-handle it. + NeedToApplyOffset |= A != 0; + } + + // Q = floor((2 * A) / (2^K)) + APInt Q = (2 * A).udiv(APInt::getOneBitSet(W, K)); + + assert(APInt::getAllOnes(SVT.getSizeInBits()).ugt(A) && + "We are expecting that A is always less than all-ones for SVT"); + assert(APInt::getAllOnes(ShSVT.getSizeInBits()).ugt(K) && + "We are expecting that K is always less than all-ones for ShSVT"); + + // If D was a power of two, apply the alternate constant derivation. + if (D0.isOne()) { + // A = 2^(W-1) + A = APInt::getSignedMinValue(W); + // - Q = 2^(W-K) - 1 + Q = APInt::getAllOnes(W - K).zext(W); + } + + // If the divisor is 1 the result can be constant-folded. Likewise, we + // don't care about INT_MIN lanes, those can be set to undef if appropriate. + if (D.isOne()) { + // Set P, A and K to a bogus values so we can try to splat them. + P = 0; + A = -1; + K = -1; + + // x ?% 1 == 0 <--> true <--> x u<= -1 + Q = -1; + } + + PAmts.push_back(DAG.getConstant(P, DL, SVT)); + AAmts.push_back(DAG.getConstant(A, DL, SVT)); + KAmts.push_back( + DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT)); + QAmts.push_back(DAG.getConstant(Q, DL, SVT)); + return true; + }; + + SDValue N = REMNode.getOperand(0); + SDValue D = REMNode.getOperand(1); + + // Collect the values from each element. + if (!ISD::matchUnaryPredicate(D, BuildSREMPattern)) + return SDValue(); + + // If this is a srem by a one, avoid the fold since it can be constant-folded. + if (AllDivisorsAreOnes) + return SDValue(); + + // If this is a srem by a powers-of-two (including INT_MIN), avoid the fold + // since it can be best implemented as a bit test. + if (AllDivisorsArePowerOfTwo) + return SDValue(); + + SDValue PVal, AVal, KVal, QVal; + if (D.getOpcode() == ISD::BUILD_VECTOR) { + if (HadOneDivisor) { + // Try to turn PAmts into a splat, since we don't care about the values + // that are currently '0'. If we can't, just keep '0'`s. + turnVectorIntoSplatVector(PAmts, isNullConstant); + // Try to turn AAmts into a splat, since we don't care about the + // values that are currently '-1'. If we can't, change them to '0'`s. + turnVectorIntoSplatVector(AAmts, isAllOnesConstant, + DAG.getConstant(0, DL, SVT)); + // Try to turn KAmts into a splat, since we don't care about the values + // that are currently '-1'. If we can't, change them to '0'`s. + turnVectorIntoSplatVector(KAmts, isAllOnesConstant, + DAG.getConstant(0, DL, ShSVT)); + } + + PVal = DAG.getBuildVector(VT, DL, PAmts); + AVal = DAG.getBuildVector(VT, DL, AAmts); + KVal = DAG.getBuildVector(ShVT, DL, KAmts); + QVal = DAG.getBuildVector(VT, DL, QAmts); + } else if (D.getOpcode() == ISD::SPLAT_VECTOR) { + assert(PAmts.size() == 1 && AAmts.size() == 1 && KAmts.size() == 1 && + QAmts.size() == 1 && + "Expected matchUnaryPredicate to return one element for scalable " + "vectors"); + PVal = DAG.getSplatVector(VT, DL, PAmts[0]); + AVal = DAG.getSplatVector(VT, DL, AAmts[0]); + KVal = DAG.getSplatVector(ShVT, DL, KAmts[0]); + QVal = DAG.getSplatVector(VT, DL, QAmts[0]); + } else { + assert(isa<ConstantSDNode>(D) && "Expected a constant"); + PVal = PAmts[0]; + AVal = AAmts[0]; + KVal = KAmts[0]; + QVal = QAmts[0]; + } + + // (mul N, P) + SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal); + Created.push_back(Op0.getNode()); + + if (NeedToApplyOffset) { + // We need ADD to do this. + if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ADD, VT)) + return SDValue(); + + // (add (mul N, P), A) + Op0 = DAG.getNode(ISD::ADD, DL, VT, Op0, AVal); + Created.push_back(Op0.getNode()); + } + + // Rotate right only if any divisor was even. We avoid rotates for all-odd + // divisors as a performance improvement, since rotating by 0 is a no-op. + if (HadEvenDivisor) { + // We need ROTR to do this. + if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ROTR, VT)) + return SDValue(); + // SREM: (rotr (add (mul N, P), A), K) + Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal); + Created.push_back(Op0.getNode()); + } + + // SREM: (setule/setugt (rotr (add (mul N, P), A), K), Q) + SDValue Fold = + DAG.getSetCC(DL, SETCCVT, Op0, QVal, + ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT)); + + // If we didn't have lanes with INT_MIN divisor, then we're done. + if (!HadIntMinDivisor) + return Fold; + + // That fold is only valid for positive divisors. Which effectively means, + // it is invalid for INT_MIN divisors. So if we have such a lane, + // we must fix-up results for said lanes. + assert(VT.isVector() && "Can/should only get here for vectors."); + + // NOTE: we avoid letting illegal types through even if we're before legalize + // ops – legalization has a hard time producing good code for the code that + // follows. + if (!isOperationLegalOrCustom(ISD::SETCC, SETCCVT) || + !isOperationLegalOrCustom(ISD::AND, VT) || + !isCondCodeLegalOrCustom(Cond, VT.getSimpleVT()) || + !isOperationLegalOrCustom(ISD::VSELECT, SETCCVT)) + return SDValue(); + + Created.push_back(Fold.getNode()); + + SDValue IntMin = DAG.getConstant( + APInt::getSignedMinValue(SVT.getScalarSizeInBits()), DL, VT); + SDValue IntMax = DAG.getConstant( + APInt::getSignedMaxValue(SVT.getScalarSizeInBits()), DL, VT); + SDValue Zero = + DAG.getConstant(APInt::getZero(SVT.getScalarSizeInBits()), DL, VT); + + // Which lanes had INT_MIN divisors? Divisor is constant, so const-folded. + SDValue DivisorIsIntMin = DAG.getSetCC(DL, SETCCVT, D, IntMin, ISD::SETEQ); + Created.push_back(DivisorIsIntMin.getNode()); + + // (N s% INT_MIN) ==/!= 0 <--> (N & INT_MAX) ==/!= 0 + SDValue Masked = DAG.getNode(ISD::AND, DL, VT, N, IntMax); + Created.push_back(Masked.getNode()); + SDValue MaskedIsZero = DAG.getSetCC(DL, SETCCVT, Masked, Zero, Cond); + Created.push_back(MaskedIsZero.getNode()); + + // To produce final result we need to blend 2 vectors: 'SetCC' and + // 'MaskedIsZero'. If the divisor for channel was *NOT* INT_MIN, we pick + // from 'Fold', else pick from 'MaskedIsZero'. Since 'DivisorIsIntMin' is + // constant-folded, select can get lowered to a shuffle with constant mask. + SDValue Blended = DAG.getNode(ISD::VSELECT, DL, SETCCVT, DivisorIsIntMin, + MaskedIsZero, Fold); + + return Blended; +} + +bool TargetLowering:: +verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const { + if (!isa<ConstantSDNode>(Op.getOperand(0))) { + DAG.getContext()->emitError("argument to '__builtin_return_address' must " + "be a constant integer"); + return true; + } + + return false; +} + +SDValue TargetLowering::getSqrtInputTest(SDValue Op, SelectionDAG &DAG, + const DenormalMode &Mode) const { + SDLoc DL(Op); + EVT VT = Op.getValueType(); + EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); + SDValue FPZero = DAG.getConstantFP(0.0, DL, VT); + + // This is specifically a check for the handling of denormal inputs, not the + // result. + if (Mode.Input == DenormalMode::PreserveSign || + Mode.Input == DenormalMode::PositiveZero) { + // Test = X == 0.0 + return DAG.getSetCC(DL, CCVT, Op, FPZero, ISD::SETEQ); + } + + // Testing it with denormal inputs to avoid wrong estimate. + // + // Test = fabs(X) < SmallestNormal + const fltSemantics &FltSem = DAG.EVTToAPFloatSemantics(VT); + APFloat SmallestNorm = APFloat::getSmallestNormalized(FltSem); + SDValue NormC = DAG.getConstantFP(SmallestNorm, DL, VT); + SDValue Fabs = DAG.getNode(ISD::FABS, DL, VT, Op); + return DAG.getSetCC(DL, CCVT, Fabs, NormC, ISD::SETLT); +} + +SDValue TargetLowering::getNegatedExpression(SDValue Op, SelectionDAG &DAG, + bool LegalOps, bool OptForSize, + NegatibleCost &Cost, + unsigned Depth) const { + // fneg is removable even if it has multiple uses. + if (Op.getOpcode() == ISD::FNEG || Op.getOpcode() == ISD::VP_FNEG) { + Cost = NegatibleCost::Cheaper; + return Op.getOperand(0); + } + + // Don't recurse exponentially. + if (Depth > SelectionDAG::MaxRecursionDepth) + return SDValue(); + + // Pre-increment recursion depth for use in recursive calls. + ++Depth; + const SDNodeFlags Flags = Op->getFlags(); + const TargetOptions &Options = DAG.getTarget().Options; + EVT VT = Op.getValueType(); + unsigned Opcode = Op.getOpcode(); + + // Don't allow anything with multiple uses unless we know it is free. + if (!Op.hasOneUse() && Opcode != ISD::ConstantFP) { + bool IsFreeExtend = Opcode == ISD::FP_EXTEND && + isFPExtFree(VT, Op.getOperand(0).getValueType()); + if (!IsFreeExtend) + return SDValue(); + } + + auto RemoveDeadNode = [&](SDValue N) { + if (N && N.getNode()->use_empty()) + DAG.RemoveDeadNode(N.getNode()); + }; + + SDLoc DL(Op); + + // Because getNegatedExpression can delete nodes we need a handle to keep + // temporary nodes alive in case the recursion manages to create an identical + // node. + std::list<HandleSDNode> Handles; + + switch (Opcode) { + case ISD::ConstantFP: { + // Don't invert constant FP values after legalization unless the target says + // the negated constant is legal. + bool IsOpLegal = + isOperationLegal(ISD::ConstantFP, VT) || + isFPImmLegal(neg(cast<ConstantFPSDNode>(Op)->getValueAPF()), VT, + OptForSize); + + if (LegalOps && !IsOpLegal) + break; + + APFloat V = cast<ConstantFPSDNode>(Op)->getValueAPF(); + V.changeSign(); + SDValue CFP = DAG.getConstantFP(V, DL, VT); + + // If we already have the use of the negated floating constant, it is free + // to negate it even it has multiple uses. + if (!Op.hasOneUse() && CFP.use_empty()) + break; + Cost = NegatibleCost::Neutral; + return CFP; + } + case ISD::BUILD_VECTOR: { + // Only permit BUILD_VECTOR of constants. + if (llvm::any_of(Op->op_values(), [&](SDValue N) { + return !N.isUndef() && !isa<ConstantFPSDNode>(N); + })) + break; + + bool IsOpLegal = + (isOperationLegal(ISD::ConstantFP, VT) && + isOperationLegal(ISD::BUILD_VECTOR, VT)) || + llvm::all_of(Op->op_values(), [&](SDValue N) { + return N.isUndef() || + isFPImmLegal(neg(cast<ConstantFPSDNode>(N)->getValueAPF()), VT, + OptForSize); + }); + + if (LegalOps && !IsOpLegal) + break; + + SmallVector<SDValue, 4> Ops; + for (SDValue C : Op->op_values()) { + if (C.isUndef()) { + Ops.push_back(C); + continue; + } + APFloat V = cast<ConstantFPSDNode>(C)->getValueAPF(); + V.changeSign(); + Ops.push_back(DAG.getConstantFP(V, DL, C.getValueType())); + } + Cost = NegatibleCost::Neutral; + return DAG.getBuildVector(VT, DL, Ops); + } + case ISD::FADD: { + if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros()) + break; + + // After operation legalization, it might not be legal to create new FSUBs. + if (LegalOps && !isOperationLegalOrCustom(ISD::FSUB, VT)) + break; + SDValue X = Op.getOperand(0), Y = Op.getOperand(1); + + // fold (fneg (fadd X, Y)) -> (fsub (fneg X), Y) + NegatibleCost CostX = NegatibleCost::Expensive; + SDValue NegX = + getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth); + // Prevent this node from being deleted by the next call. + if (NegX) + Handles.emplace_back(NegX); + + // fold (fneg (fadd X, Y)) -> (fsub (fneg Y), X) + NegatibleCost CostY = NegatibleCost::Expensive; + SDValue NegY = + getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth); + + // We're done with the handles. + Handles.clear(); + + // Negate the X if its cost is less or equal than Y. + if (NegX && (CostX <= CostY)) { + Cost = CostX; + SDValue N = DAG.getNode(ISD::FSUB, DL, VT, NegX, Y, Flags); + if (NegY != N) + RemoveDeadNode(NegY); + return N; + } + + // Negate the Y if it is not expensive. + if (NegY) { + Cost = CostY; + SDValue N = DAG.getNode(ISD::FSUB, DL, VT, NegY, X, Flags); + if (NegX != N) + RemoveDeadNode(NegX); + return N; + } + break; + } + case ISD::FSUB: { + // We can't turn -(A-B) into B-A when we honor signed zeros. + if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros()) + break; + + SDValue X = Op.getOperand(0), Y = Op.getOperand(1); + // fold (fneg (fsub 0, Y)) -> Y + if (ConstantFPSDNode *C = isConstOrConstSplatFP(X, /*AllowUndefs*/ true)) + if (C->isZero()) { + Cost = NegatibleCost::Cheaper; + return Y; + } + + // fold (fneg (fsub X, Y)) -> (fsub Y, X) + Cost = NegatibleCost::Neutral; + return DAG.getNode(ISD::FSUB, DL, VT, Y, X, Flags); + } + case ISD::FMUL: + case ISD::FDIV: { + SDValue X = Op.getOperand(0), Y = Op.getOperand(1); + + // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y) + NegatibleCost CostX = NegatibleCost::Expensive; + SDValue NegX = + getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth); + // Prevent this node from being deleted by the next call. + if (NegX) + Handles.emplace_back(NegX); + + // fold (fneg (fmul X, Y)) -> (fmul X, (fneg Y)) + NegatibleCost CostY = NegatibleCost::Expensive; + SDValue NegY = + getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth); + + // We're done with the handles. + Handles.clear(); + + // Negate the X if its cost is less or equal than Y. + if (NegX && (CostX <= CostY)) { + Cost = CostX; + SDValue N = DAG.getNode(Opcode, DL, VT, NegX, Y, Flags); + if (NegY != N) + RemoveDeadNode(NegY); + return N; + } + + // Ignore X * 2.0 because that is expected to be canonicalized to X + X. + if (auto *C = isConstOrConstSplatFP(Op.getOperand(1))) + if (C->isExactlyValue(2.0) && Op.getOpcode() == ISD::FMUL) + break; + + // Negate the Y if it is not expensive. + if (NegY) { + Cost = CostY; + SDValue N = DAG.getNode(Opcode, DL, VT, X, NegY, Flags); + if (NegX != N) + RemoveDeadNode(NegX); + return N; + } + break; + } + case ISD::FMA: + case ISD::FMAD: { + if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros()) + break; + + SDValue X = Op.getOperand(0), Y = Op.getOperand(1), Z = Op.getOperand(2); + NegatibleCost CostZ = NegatibleCost::Expensive; + SDValue NegZ = + getNegatedExpression(Z, DAG, LegalOps, OptForSize, CostZ, Depth); + // Give up if fail to negate the Z. + if (!NegZ) + break; + + // Prevent this node from being deleted by the next two calls. + Handles.emplace_back(NegZ); + + // fold (fneg (fma X, Y, Z)) -> (fma (fneg X), Y, (fneg Z)) + NegatibleCost CostX = NegatibleCost::Expensive; + SDValue NegX = + getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth); + // Prevent this node from being deleted by the next call. + if (NegX) + Handles.emplace_back(NegX); + + // fold (fneg (fma X, Y, Z)) -> (fma X, (fneg Y), (fneg Z)) + NegatibleCost CostY = NegatibleCost::Expensive; + SDValue NegY = + getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth); + + // We're done with the handles. + Handles.clear(); + + // Negate the X if its cost is less or equal than Y. + if (NegX && (CostX <= CostY)) { + Cost = std::min(CostX, CostZ); + SDValue N = DAG.getNode(Opcode, DL, VT, NegX, Y, NegZ, Flags); + if (NegY != N) + RemoveDeadNode(NegY); + return N; + } + + // Negate the Y if it is not expensive. + if (NegY) { + Cost = std::min(CostY, CostZ); + SDValue N = DAG.getNode(Opcode, DL, VT, X, NegY, NegZ, Flags); + if (NegX != N) + RemoveDeadNode(NegX); + return N; + } + break; + } + + case ISD::FP_EXTEND: + case ISD::FSIN: + if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps, + OptForSize, Cost, Depth)) + return DAG.getNode(Opcode, DL, VT, NegV); + break; + case ISD::FP_ROUND: + if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps, + OptForSize, Cost, Depth)) + return DAG.getNode(ISD::FP_ROUND, DL, VT, NegV, Op.getOperand(1)); + break; + case ISD::SELECT: + case ISD::VSELECT: { + // fold (fneg (select C, LHS, RHS)) -> (select C, (fneg LHS), (fneg RHS)) + // iff at least one cost is cheaper and the other is neutral/cheaper + SDValue LHS = Op.getOperand(1); + NegatibleCost CostLHS = NegatibleCost::Expensive; + SDValue NegLHS = + getNegatedExpression(LHS, DAG, LegalOps, OptForSize, CostLHS, Depth); + if (!NegLHS || CostLHS > NegatibleCost::Neutral) { + RemoveDeadNode(NegLHS); + break; + } + + // Prevent this node from being deleted by the next call. + Handles.emplace_back(NegLHS); + + SDValue RHS = Op.getOperand(2); + NegatibleCost CostRHS = NegatibleCost::Expensive; + SDValue NegRHS = + getNegatedExpression(RHS, DAG, LegalOps, OptForSize, CostRHS, Depth); + + // We're done with the handles. + Handles.clear(); + + if (!NegRHS || CostRHS > NegatibleCost::Neutral || + (CostLHS != NegatibleCost::Cheaper && + CostRHS != NegatibleCost::Cheaper)) { + RemoveDeadNode(NegLHS); + RemoveDeadNode(NegRHS); + break; + } + + Cost = std::min(CostLHS, CostRHS); + return DAG.getSelect(DL, VT, Op.getOperand(0), NegLHS, NegRHS); + } + } + + return SDValue(); +} + +//===----------------------------------------------------------------------===// +// Legalization Utilities +//===----------------------------------------------------------------------===// + +bool TargetLowering::expandMUL_LOHI(unsigned Opcode, EVT VT, const SDLoc &dl, + SDValue LHS, SDValue RHS, + SmallVectorImpl<SDValue> &Result, + EVT HiLoVT, SelectionDAG &DAG, + MulExpansionKind Kind, SDValue LL, + SDValue LH, SDValue RL, SDValue RH) const { + assert(Opcode == ISD::MUL || Opcode == ISD::UMUL_LOHI || + Opcode == ISD::SMUL_LOHI); + + bool HasMULHS = (Kind == MulExpansionKind::Always) || + isOperationLegalOrCustom(ISD::MULHS, HiLoVT); + bool HasMULHU = (Kind == MulExpansionKind::Always) || + isOperationLegalOrCustom(ISD::MULHU, HiLoVT); + bool HasSMUL_LOHI = (Kind == MulExpansionKind::Always) || + isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT); + bool HasUMUL_LOHI = (Kind == MulExpansionKind::Always) || + isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT); + + if (!HasMULHU && !HasMULHS && !HasUMUL_LOHI && !HasSMUL_LOHI) + return false; + + unsigned OuterBitSize = VT.getScalarSizeInBits(); + unsigned InnerBitSize = HiLoVT.getScalarSizeInBits(); + + // LL, LH, RL, and RH must be either all NULL or all set to a value. + assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) || + (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode())); + + SDVTList VTs = DAG.getVTList(HiLoVT, HiLoVT); + auto MakeMUL_LOHI = [&](SDValue L, SDValue R, SDValue &Lo, SDValue &Hi, + bool Signed) -> bool { + if ((Signed && HasSMUL_LOHI) || (!Signed && HasUMUL_LOHI)) { + Lo = DAG.getNode(Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI, dl, VTs, L, R); + Hi = SDValue(Lo.getNode(), 1); + return true; + } + if ((Signed && HasMULHS) || (!Signed && HasMULHU)) { + Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, L, R); + Hi = DAG.getNode(Signed ? ISD::MULHS : ISD::MULHU, dl, HiLoVT, L, R); + return true; + } + return false; + }; + + SDValue Lo, Hi; + + if (!LL.getNode() && !RL.getNode() && + isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) { + LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LHS); + RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RHS); + } + + if (!LL.getNode()) + return false; + + APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize); + if (DAG.MaskedValueIsZero(LHS, HighMask) && + DAG.MaskedValueIsZero(RHS, HighMask)) { + // The inputs are both zero-extended. + if (MakeMUL_LOHI(LL, RL, Lo, Hi, false)) { + Result.push_back(Lo); + Result.push_back(Hi); + if (Opcode != ISD::MUL) { + SDValue Zero = DAG.getConstant(0, dl, HiLoVT); + Result.push_back(Zero); + Result.push_back(Zero); + } + return true; + } + } + + if (!VT.isVector() && Opcode == ISD::MUL && + DAG.ComputeMaxSignificantBits(LHS) <= InnerBitSize && + DAG.ComputeMaxSignificantBits(RHS) <= InnerBitSize) { + // The input values are both sign-extended. + // TODO non-MUL case? + if (MakeMUL_LOHI(LL, RL, Lo, Hi, true)) { + Result.push_back(Lo); + Result.push_back(Hi); + return true; + } + } + + unsigned ShiftAmount = OuterBitSize - InnerBitSize; + SDValue Shift = DAG.getShiftAmountConstant(ShiftAmount, VT, dl); + + if (!LH.getNode() && !RH.getNode() && + isOperationLegalOrCustom(ISD::SRL, VT) && + isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) { + LH = DAG.getNode(ISD::SRL, dl, VT, LHS, Shift); + LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH); + RH = DAG.getNode(ISD::SRL, dl, VT, RHS, Shift); + RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH); + } + + if (!LH.getNode()) + return false; + + if (!MakeMUL_LOHI(LL, RL, Lo, Hi, false)) + return false; + + Result.push_back(Lo); + + if (Opcode == ISD::MUL) { + RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH); + LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL); + Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH); + Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH); + Result.push_back(Hi); + return true; + } + + // Compute the full width result. + auto Merge = [&](SDValue Lo, SDValue Hi) -> SDValue { + Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo); + Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi); + Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift); + return DAG.getNode(ISD::OR, dl, VT, Lo, Hi); + }; + + SDValue Next = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi); + if (!MakeMUL_LOHI(LL, RH, Lo, Hi, false)) + return false; + + // This is effectively the add part of a multiply-add of half-sized operands, + // so it cannot overflow. + Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi)); + + if (!MakeMUL_LOHI(LH, RL, Lo, Hi, false)) + return false; + + SDValue Zero = DAG.getConstant(0, dl, HiLoVT); + EVT BoolType = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); + + bool UseGlue = (isOperationLegalOrCustom(ISD::ADDC, VT) && + isOperationLegalOrCustom(ISD::ADDE, VT)); + if (UseGlue) + Next = DAG.getNode(ISD::ADDC, dl, DAG.getVTList(VT, MVT::Glue), Next, + Merge(Lo, Hi)); + else + Next = DAG.getNode(ISD::UADDO_CARRY, dl, DAG.getVTList(VT, BoolType), Next, + Merge(Lo, Hi), DAG.getConstant(0, dl, BoolType)); + + SDValue Carry = Next.getValue(1); + Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); + Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift); + + if (!MakeMUL_LOHI(LH, RH, Lo, Hi, Opcode == ISD::SMUL_LOHI)) + return false; + + if (UseGlue) + Hi = DAG.getNode(ISD::ADDE, dl, DAG.getVTList(HiLoVT, MVT::Glue), Hi, Zero, + Carry); + else + Hi = DAG.getNode(ISD::UADDO_CARRY, dl, DAG.getVTList(HiLoVT, BoolType), Hi, + Zero, Carry); + + Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi)); + + if (Opcode == ISD::SMUL_LOHI) { + SDValue NextSub = DAG.getNode(ISD::SUB, dl, VT, Next, + DAG.getNode(ISD::ZERO_EXTEND, dl, VT, RL)); + Next = DAG.getSelectCC(dl, LH, Zero, NextSub, Next, ISD::SETLT); + + NextSub = DAG.getNode(ISD::SUB, dl, VT, Next, + DAG.getNode(ISD::ZERO_EXTEND, dl, VT, LL)); + Next = DAG.getSelectCC(dl, RH, Zero, NextSub, Next, ISD::SETLT); + } + + Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); + Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift); + Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); + return true; +} + +bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT, + SelectionDAG &DAG, MulExpansionKind Kind, + SDValue LL, SDValue LH, SDValue RL, + SDValue RH) const { + SmallVector<SDValue, 2> Result; + bool Ok = expandMUL_LOHI(N->getOpcode(), N->getValueType(0), SDLoc(N), + N->getOperand(0), N->getOperand(1), Result, HiLoVT, + DAG, Kind, LL, LH, RL, RH); + if (Ok) { + assert(Result.size() == 2); + Lo = Result[0]; + Hi = Result[1]; + } + return Ok; +} + +// Optimize unsigned division or remainder by constants for types twice as large +// as a legal VT. +// +// If (1 << (BitWidth / 2)) % Constant == 1, then the remainder +// can be computed +// as: +// Sum += __builtin_uadd_overflow(Lo, High, &Sum); +// Remainder = Sum % Constant +// This is based on "Remainder by Summing Digits" from Hacker's Delight. +// +// For division, we can compute the remainder using the algorithm described +// above, subtract it from the dividend to get an exact multiple of Constant. +// Then multiply that exact multiply by the multiplicative inverse modulo +// (1 << (BitWidth / 2)) to get the quotient. + +// If Constant is even, we can shift right the dividend and the divisor by the +// number of trailing zeros in Constant before applying the remainder algorithm. +// If we're after the quotient, we can subtract this value from the shifted +// dividend and multiply by the multiplicative inverse of the shifted divisor. +// If we want the remainder, we shift the value left by the number of trailing +// zeros and add the bits that were shifted out of the dividend. +bool TargetLowering::expandDIVREMByConstant(SDNode *N, + SmallVectorImpl<SDValue> &Result, + EVT HiLoVT, SelectionDAG &DAG, + SDValue LL, SDValue LH) const { + unsigned Opcode = N->getOpcode(); + EVT VT = N->getValueType(0); + + // TODO: Support signed division/remainder. + if (Opcode == ISD::SREM || Opcode == ISD::SDIV || Opcode == ISD::SDIVREM) + return false; + assert( + (Opcode == ISD::UREM || Opcode == ISD::UDIV || Opcode == ISD::UDIVREM) && + "Unexpected opcode"); + + auto *CN = dyn_cast<ConstantSDNode>(N->getOperand(1)); + if (!CN) + return false; + + APInt Divisor = CN->getAPIntValue(); + unsigned BitWidth = Divisor.getBitWidth(); + unsigned HBitWidth = BitWidth / 2; + assert(VT.getScalarSizeInBits() == BitWidth && + HiLoVT.getScalarSizeInBits() == HBitWidth && "Unexpected VTs"); + + // Divisor needs to less than (1 << HBitWidth). + APInt HalfMaxPlus1 = APInt::getOneBitSet(BitWidth, HBitWidth); + if (Divisor.uge(HalfMaxPlus1)) + return false; + + // We depend on the UREM by constant optimization in DAGCombiner that requires + // high multiply. + if (!isOperationLegalOrCustom(ISD::MULHU, HiLoVT) && + !isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT)) + return false; + + // Don't expand if optimizing for size. + if (DAG.shouldOptForSize()) + return false; + + // Early out for 0 or 1 divisors. + if (Divisor.ule(1)) + return false; + + // If the divisor is even, shift it until it becomes odd. + unsigned TrailingZeros = 0; + if (!Divisor[0]) { + TrailingZeros = Divisor.countr_zero(); + Divisor.lshrInPlace(TrailingZeros); + } + + SDLoc dl(N); + SDValue Sum; + SDValue PartialRem; + + // If (1 << HBitWidth) % divisor == 1, we can add the two halves together and + // then add in the carry. + // TODO: If we can't split it in half, we might be able to split into 3 or + // more pieces using a smaller bit width. + if (HalfMaxPlus1.urem(Divisor).isOne()) { + assert(!LL == !LH && "Expected both input halves or no input halves!"); + if (!LL) + std::tie(LL, LH) = DAG.SplitScalar(N->getOperand(0), dl, HiLoVT, HiLoVT); + + // Shift the input by the number of TrailingZeros in the divisor. The + // shifted out bits will be added to the remainder later. + if (TrailingZeros) { + // Save the shifted off bits if we need the remainder. + if (Opcode != ISD::UDIV) { + APInt Mask = APInt::getLowBitsSet(HBitWidth, TrailingZeros); + PartialRem = DAG.getNode(ISD::AND, dl, HiLoVT, LL, + DAG.getConstant(Mask, dl, HiLoVT)); + } + + LL = DAG.getNode( + ISD::OR, dl, HiLoVT, + DAG.getNode(ISD::SRL, dl, HiLoVT, LL, + DAG.getShiftAmountConstant(TrailingZeros, HiLoVT, dl)), + DAG.getNode(ISD::SHL, dl, HiLoVT, LH, + DAG.getShiftAmountConstant(HBitWidth - TrailingZeros, + HiLoVT, dl))); + LH = DAG.getNode(ISD::SRL, dl, HiLoVT, LH, + DAG.getShiftAmountConstant(TrailingZeros, HiLoVT, dl)); + } + + // Use uaddo_carry if we can, otherwise use a compare to detect overflow. + EVT SetCCType = + getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), HiLoVT); + if (isOperationLegalOrCustom(ISD::UADDO_CARRY, HiLoVT)) { + SDVTList VTList = DAG.getVTList(HiLoVT, SetCCType); + Sum = DAG.getNode(ISD::UADDO, dl, VTList, LL, LH); + Sum = DAG.getNode(ISD::UADDO_CARRY, dl, VTList, Sum, + DAG.getConstant(0, dl, HiLoVT), Sum.getValue(1)); + } else { + Sum = DAG.getNode(ISD::ADD, dl, HiLoVT, LL, LH); + SDValue Carry = DAG.getSetCC(dl, SetCCType, Sum, LL, ISD::SETULT); + // If the boolean for the target is 0 or 1, we can add the setcc result + // directly. + if (getBooleanContents(HiLoVT) == + TargetLoweringBase::ZeroOrOneBooleanContent) + Carry = DAG.getZExtOrTrunc(Carry, dl, HiLoVT); + else + Carry = DAG.getSelect(dl, HiLoVT, Carry, DAG.getConstant(1, dl, HiLoVT), + DAG.getConstant(0, dl, HiLoVT)); + Sum = DAG.getNode(ISD::ADD, dl, HiLoVT, Sum, Carry); + } + } + + // If we didn't find a sum, we can't do the expansion. + if (!Sum) + return false; + + // Perform a HiLoVT urem on the Sum using truncated divisor. + SDValue RemL = + DAG.getNode(ISD::UREM, dl, HiLoVT, Sum, + DAG.getConstant(Divisor.trunc(HBitWidth), dl, HiLoVT)); + SDValue RemH = DAG.getConstant(0, dl, HiLoVT); + + if (Opcode != ISD::UREM) { + // Subtract the remainder from the shifted dividend. + SDValue Dividend = DAG.getNode(ISD::BUILD_PAIR, dl, VT, LL, LH); + SDValue Rem = DAG.getNode(ISD::BUILD_PAIR, dl, VT, RemL, RemH); + + Dividend = DAG.getNode(ISD::SUB, dl, VT, Dividend, Rem); + + // Multiply by the multiplicative inverse of the divisor modulo + // (1 << BitWidth). + APInt MulFactor = Divisor.multiplicativeInverse(); + + SDValue Quotient = DAG.getNode(ISD::MUL, dl, VT, Dividend, + DAG.getConstant(MulFactor, dl, VT)); + + // Split the quotient into low and high parts. + SDValue QuotL, QuotH; + std::tie(QuotL, QuotH) = DAG.SplitScalar(Quotient, dl, HiLoVT, HiLoVT); + Result.push_back(QuotL); + Result.push_back(QuotH); + } + + if (Opcode != ISD::UDIV) { + // If we shifted the input, shift the remainder left and add the bits we + // shifted off the input. + if (TrailingZeros) { + APInt Mask = APInt::getLowBitsSet(HBitWidth, TrailingZeros); + RemL = DAG.getNode(ISD::SHL, dl, HiLoVT, RemL, + DAG.getShiftAmountConstant(TrailingZeros, HiLoVT, dl)); + RemL = DAG.getNode(ISD::ADD, dl, HiLoVT, RemL, PartialRem); + } + Result.push_back(RemL); + Result.push_back(DAG.getConstant(0, dl, HiLoVT)); + } + + return true; +} + +// Check that (every element of) Z is undef or not an exact multiple of BW. +static bool isNonZeroModBitWidthOrUndef(SDValue Z, unsigned BW) { + return ISD::matchUnaryPredicate( + Z, + [=](ConstantSDNode *C) { return !C || C->getAPIntValue().urem(BW) != 0; }, + true); +} + +static SDValue expandVPFunnelShift(SDNode *Node, SelectionDAG &DAG) { + EVT VT = Node->getValueType(0); + SDValue ShX, ShY; + SDValue ShAmt, InvShAmt; + SDValue X = Node->getOperand(0); + SDValue Y = Node->getOperand(1); + SDValue Z = Node->getOperand(2); + SDValue Mask = Node->getOperand(3); + SDValue VL = Node->getOperand(4); + + unsigned BW = VT.getScalarSizeInBits(); + bool IsFSHL = Node->getOpcode() == ISD::VP_FSHL; + SDLoc DL(SDValue(Node, 0)); + + EVT ShVT = Z.getValueType(); + if (isNonZeroModBitWidthOrUndef(Z, BW)) { + // fshl: X << C | Y >> (BW - C) + // fshr: X << (BW - C) | Y >> C + // where C = Z % BW is not zero + SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT); + ShAmt = DAG.getNode(ISD::VP_UREM, DL, ShVT, Z, BitWidthC, Mask, VL); + InvShAmt = DAG.getNode(ISD::VP_SUB, DL, ShVT, BitWidthC, ShAmt, Mask, VL); + ShX = DAG.getNode(ISD::VP_SHL, DL, VT, X, IsFSHL ? ShAmt : InvShAmt, Mask, + VL); + ShY = DAG.getNode(ISD::VP_SRL, DL, VT, Y, IsFSHL ? InvShAmt : ShAmt, Mask, + VL); + } else { + // fshl: X << (Z % BW) | Y >> 1 >> (BW - 1 - (Z % BW)) + // fshr: X << 1 << (BW - 1 - (Z % BW)) | Y >> (Z % BW) + SDValue BitMask = DAG.getConstant(BW - 1, DL, ShVT); + if (isPowerOf2_32(BW)) { + // Z % BW -> Z & (BW - 1) + ShAmt = DAG.getNode(ISD::VP_AND, DL, ShVT, Z, BitMask, Mask, VL); + // (BW - 1) - (Z % BW) -> ~Z & (BW - 1) + SDValue NotZ = DAG.getNode(ISD::VP_XOR, DL, ShVT, Z, + DAG.getAllOnesConstant(DL, ShVT), Mask, VL); + InvShAmt = DAG.getNode(ISD::VP_AND, DL, ShVT, NotZ, BitMask, Mask, VL); + } else { + SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT); + ShAmt = DAG.getNode(ISD::VP_UREM, DL, ShVT, Z, BitWidthC, Mask, VL); + InvShAmt = DAG.getNode(ISD::VP_SUB, DL, ShVT, BitMask, ShAmt, Mask, VL); + } + + SDValue One = DAG.getConstant(1, DL, ShVT); + if (IsFSHL) { + ShX = DAG.getNode(ISD::VP_SHL, DL, VT, X, ShAmt, Mask, VL); + SDValue ShY1 = DAG.getNode(ISD::VP_SRL, DL, VT, Y, One, Mask, VL); + ShY = DAG.getNode(ISD::VP_SRL, DL, VT, ShY1, InvShAmt, Mask, VL); + } else { + SDValue ShX1 = DAG.getNode(ISD::VP_SHL, DL, VT, X, One, Mask, VL); + ShX = DAG.getNode(ISD::VP_SHL, DL, VT, ShX1, InvShAmt, Mask, VL); + ShY = DAG.getNode(ISD::VP_SRL, DL, VT, Y, ShAmt, Mask, VL); + } + } + return DAG.getNode(ISD::VP_OR, DL, VT, ShX, ShY, Mask, VL); +} + +SDValue TargetLowering::expandFunnelShift(SDNode *Node, + SelectionDAG &DAG) const { + if (Node->isVPOpcode()) + return expandVPFunnelShift(Node, DAG); + + EVT VT = Node->getValueType(0); + + if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) || + !isOperationLegalOrCustom(ISD::SRL, VT) || + !isOperationLegalOrCustom(ISD::SUB, VT) || + !isOperationLegalOrCustomOrPromote(ISD::OR, VT))) + return SDValue(); + + SDValue X = Node->getOperand(0); + SDValue Y = Node->getOperand(1); + SDValue Z = Node->getOperand(2); + + unsigned BW = VT.getScalarSizeInBits(); + bool IsFSHL = Node->getOpcode() == ISD::FSHL; + SDLoc DL(SDValue(Node, 0)); + + EVT ShVT = Z.getValueType(); + + // If a funnel shift in the other direction is more supported, use it. + unsigned RevOpcode = IsFSHL ? ISD::FSHR : ISD::FSHL; + if (!isOperationLegalOrCustom(Node->getOpcode(), VT) && + isOperationLegalOrCustom(RevOpcode, VT) && isPowerOf2_32(BW)) { + if (isNonZeroModBitWidthOrUndef(Z, BW)) { + // fshl X, Y, Z -> fshr X, Y, -Z + // fshr X, Y, Z -> fshl X, Y, -Z + SDValue Zero = DAG.getConstant(0, DL, ShVT); + Z = DAG.getNode(ISD::SUB, DL, VT, Zero, Z); + } else { + // fshl X, Y, Z -> fshr (srl X, 1), (fshr X, Y, 1), ~Z + // fshr X, Y, Z -> fshl (fshl X, Y, 1), (shl Y, 1), ~Z + SDValue One = DAG.getConstant(1, DL, ShVT); + if (IsFSHL) { + Y = DAG.getNode(RevOpcode, DL, VT, X, Y, One); + X = DAG.getNode(ISD::SRL, DL, VT, X, One); + } else { + X = DAG.getNode(RevOpcode, DL, VT, X, Y, One); + Y = DAG.getNode(ISD::SHL, DL, VT, Y, One); + } + Z = DAG.getNOT(DL, Z, ShVT); + } + return DAG.getNode(RevOpcode, DL, VT, X, Y, Z); + } + + SDValue ShX, ShY; + SDValue ShAmt, InvShAmt; + if (isNonZeroModBitWidthOrUndef(Z, BW)) { + // fshl: X << C | Y >> (BW - C) + // fshr: X << (BW - C) | Y >> C + // where C = Z % BW is not zero + SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT); + ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC); + InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, ShAmt); + ShX = DAG.getNode(ISD::SHL, DL, VT, X, IsFSHL ? ShAmt : InvShAmt); + ShY = DAG.getNode(ISD::SRL, DL, VT, Y, IsFSHL ? InvShAmt : ShAmt); + } else { + // fshl: X << (Z % BW) | Y >> 1 >> (BW - 1 - (Z % BW)) + // fshr: X << 1 << (BW - 1 - (Z % BW)) | Y >> (Z % BW) + SDValue Mask = DAG.getConstant(BW - 1, DL, ShVT); + if (isPowerOf2_32(BW)) { + // Z % BW -> Z & (BW - 1) + ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Z, Mask); + // (BW - 1) - (Z % BW) -> ~Z & (BW - 1) + InvShAmt = DAG.getNode(ISD::AND, DL, ShVT, DAG.getNOT(DL, Z, ShVT), Mask); + } else { + SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT); + ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC); + InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, Mask, ShAmt); + } + + SDValue One = DAG.getConstant(1, DL, ShVT); + if (IsFSHL) { + ShX = DAG.getNode(ISD::SHL, DL, VT, X, ShAmt); + SDValue ShY1 = DAG.getNode(ISD::SRL, DL, VT, Y, One); + ShY = DAG.getNode(ISD::SRL, DL, VT, ShY1, InvShAmt); + } else { + SDValue ShX1 = DAG.getNode(ISD::SHL, DL, VT, X, One); + ShX = DAG.getNode(ISD::SHL, DL, VT, ShX1, InvShAmt); + ShY = DAG.getNode(ISD::SRL, DL, VT, Y, ShAmt); + } + } + return DAG.getNode(ISD::OR, DL, VT, ShX, ShY); +} + +// TODO: Merge with expandFunnelShift. +SDValue TargetLowering::expandROT(SDNode *Node, bool AllowVectorOps, + SelectionDAG &DAG) const { + EVT VT = Node->getValueType(0); + unsigned EltSizeInBits = VT.getScalarSizeInBits(); + bool IsLeft = Node->getOpcode() == ISD::ROTL; + SDValue Op0 = Node->getOperand(0); + SDValue Op1 = Node->getOperand(1); + SDLoc DL(SDValue(Node, 0)); + + EVT ShVT = Op1.getValueType(); + SDValue Zero = DAG.getConstant(0, DL, ShVT); + + // If a rotate in the other direction is more supported, use it. + unsigned RevRot = IsLeft ? ISD::ROTR : ISD::ROTL; + if (!isOperationLegalOrCustom(Node->getOpcode(), VT) && + isOperationLegalOrCustom(RevRot, VT) && isPowerOf2_32(EltSizeInBits)) { + SDValue Sub = DAG.getNode(ISD::SUB, DL, ShVT, Zero, Op1); + return DAG.getNode(RevRot, DL, VT, Op0, Sub); + } + + if (!AllowVectorOps && VT.isVector() && + (!isOperationLegalOrCustom(ISD::SHL, VT) || + !isOperationLegalOrCustom(ISD::SRL, VT) || + !isOperationLegalOrCustom(ISD::SUB, VT) || + !isOperationLegalOrCustomOrPromote(ISD::OR, VT) || + !isOperationLegalOrCustomOrPromote(ISD::AND, VT))) + return SDValue(); + + unsigned ShOpc = IsLeft ? ISD::SHL : ISD::SRL; + unsigned HsOpc = IsLeft ? ISD::SRL : ISD::SHL; + SDValue BitWidthMinusOneC = DAG.getConstant(EltSizeInBits - 1, DL, ShVT); + SDValue ShVal; + SDValue HsVal; + if (isPowerOf2_32(EltSizeInBits)) { + // (rotl x, c) -> x << (c & (w - 1)) | x >> (-c & (w - 1)) + // (rotr x, c) -> x >> (c & (w - 1)) | x << (-c & (w - 1)) + SDValue NegOp1 = DAG.getNode(ISD::SUB, DL, ShVT, Zero, Op1); + SDValue ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Op1, BitWidthMinusOneC); + ShVal = DAG.getNode(ShOpc, DL, VT, Op0, ShAmt); + SDValue HsAmt = DAG.getNode(ISD::AND, DL, ShVT, NegOp1, BitWidthMinusOneC); + HsVal = DAG.getNode(HsOpc, DL, VT, Op0, HsAmt); + } else { + // (rotl x, c) -> x << (c % w) | x >> 1 >> (w - 1 - (c % w)) + // (rotr x, c) -> x >> (c % w) | x << 1 << (w - 1 - (c % w)) + SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT); + SDValue ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Op1, BitWidthC); + ShVal = DAG.getNode(ShOpc, DL, VT, Op0, ShAmt); + SDValue HsAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthMinusOneC, ShAmt); + SDValue One = DAG.getConstant(1, DL, ShVT); + HsVal = + DAG.getNode(HsOpc, DL, VT, DAG.getNode(HsOpc, DL, VT, Op0, One), HsAmt); + } + return DAG.getNode(ISD::OR, DL, VT, ShVal, HsVal); +} + +void TargetLowering::expandShiftParts(SDNode *Node, SDValue &Lo, SDValue &Hi, + SelectionDAG &DAG) const { + assert(Node->getNumOperands() == 3 && "Not a double-shift!"); + EVT VT = Node->getValueType(0); + unsigned VTBits = VT.getScalarSizeInBits(); + assert(isPowerOf2_32(VTBits) && "Power-of-two integer type expected"); + + bool IsSHL = Node->getOpcode() == ISD::SHL_PARTS; + bool IsSRA = Node->getOpcode() == ISD::SRA_PARTS; + SDValue ShOpLo = Node->getOperand(0); + SDValue ShOpHi = Node->getOperand(1); + SDValue ShAmt = Node->getOperand(2); + EVT ShAmtVT = ShAmt.getValueType(); + EVT ShAmtCCVT = + getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), ShAmtVT); + SDLoc dl(Node); + + // ISD::FSHL and ISD::FSHR have defined overflow behavior but ISD::SHL and + // ISD::SRA/L nodes haven't. Insert an AND to be safe, it's usually optimized + // away during isel. + SDValue SafeShAmt = DAG.getNode(ISD::AND, dl, ShAmtVT, ShAmt, + DAG.getConstant(VTBits - 1, dl, ShAmtVT)); + SDValue Tmp1 = IsSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi, + DAG.getConstant(VTBits - 1, dl, ShAmtVT)) + : DAG.getConstant(0, dl, VT); + + SDValue Tmp2, Tmp3; + if (IsSHL) { + Tmp2 = DAG.getNode(ISD::FSHL, dl, VT, ShOpHi, ShOpLo, ShAmt); + Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, SafeShAmt); + } else { + Tmp2 = DAG.getNode(ISD::FSHR, dl, VT, ShOpHi, ShOpLo, ShAmt); + Tmp3 = DAG.getNode(IsSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, SafeShAmt); + } + + // If the shift amount is larger or equal than the width of a part we don't + // use the result from the FSHL/FSHR. Insert a test and select the appropriate + // values for large shift amounts. + SDValue AndNode = DAG.getNode(ISD::AND, dl, ShAmtVT, ShAmt, + DAG.getConstant(VTBits, dl, ShAmtVT)); + SDValue Cond = DAG.getSetCC(dl, ShAmtCCVT, AndNode, + DAG.getConstant(0, dl, ShAmtVT), ISD::SETNE); + + if (IsSHL) { + Hi = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp3, Tmp2); + Lo = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp1, Tmp3); + } else { + Lo = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp3, Tmp2); + Hi = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp1, Tmp3); + } +} + +bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result, + SelectionDAG &DAG) const { + unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0; + SDValue Src = Node->getOperand(OpNo); + EVT SrcVT = Src.getValueType(); + EVT DstVT = Node->getValueType(0); + SDLoc dl(SDValue(Node, 0)); + + // FIXME: Only f32 to i64 conversions are supported. + if (SrcVT != MVT::f32 || DstVT != MVT::i64) + return false; + + if (Node->isStrictFPOpcode()) + // When a NaN is converted to an integer a trap is allowed. We can't + // use this expansion here because it would eliminate that trap. Other + // traps are also allowed and cannot be eliminated. See + // IEEE 754-2008 sec 5.8. + return false; + + // Expand f32 -> i64 conversion + // This algorithm comes from compiler-rt's implementation of fixsfdi: + // https://github.com/llvm/llvm-project/blob/main/compiler-rt/lib/builtins/fixsfdi.c + unsigned SrcEltBits = SrcVT.getScalarSizeInBits(); + EVT IntVT = SrcVT.changeTypeToInteger(); + EVT IntShVT = getShiftAmountTy(IntVT, DAG.getDataLayout()); + + SDValue ExponentMask = DAG.getConstant(0x7F800000, dl, IntVT); + SDValue ExponentLoBit = DAG.getConstant(23, dl, IntVT); + SDValue Bias = DAG.getConstant(127, dl, IntVT); + SDValue SignMask = DAG.getConstant(APInt::getSignMask(SrcEltBits), dl, IntVT); + SDValue SignLowBit = DAG.getConstant(SrcEltBits - 1, dl, IntVT); + SDValue MantissaMask = DAG.getConstant(0x007FFFFF, dl, IntVT); + + SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Src); + + SDValue ExponentBits = DAG.getNode( + ISD::SRL, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask), + DAG.getZExtOrTrunc(ExponentLoBit, dl, IntShVT)); + SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias); + + SDValue Sign = DAG.getNode(ISD::SRA, dl, IntVT, + DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask), + DAG.getZExtOrTrunc(SignLowBit, dl, IntShVT)); + Sign = DAG.getSExtOrTrunc(Sign, dl, DstVT); + + SDValue R = DAG.getNode(ISD::OR, dl, IntVT, + DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask), + DAG.getConstant(0x00800000, dl, IntVT)); + + R = DAG.getZExtOrTrunc(R, dl, DstVT); + + R = DAG.getSelectCC( + dl, Exponent, ExponentLoBit, + DAG.getNode(ISD::SHL, dl, DstVT, R, + DAG.getZExtOrTrunc( + DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit), + dl, IntShVT)), + DAG.getNode(ISD::SRL, dl, DstVT, R, + DAG.getZExtOrTrunc( + DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent), + dl, IntShVT)), + ISD::SETGT); + + SDValue Ret = DAG.getNode(ISD::SUB, dl, DstVT, + DAG.getNode(ISD::XOR, dl, DstVT, R, Sign), Sign); + + Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, dl, IntVT), + DAG.getConstant(0, dl, DstVT), Ret, ISD::SETLT); + return true; +} + +bool TargetLowering::expandFP_TO_UINT(SDNode *Node, SDValue &Result, + SDValue &Chain, + SelectionDAG &DAG) const { + SDLoc dl(SDValue(Node, 0)); + unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0; + SDValue Src = Node->getOperand(OpNo); + + EVT SrcVT = Src.getValueType(); + EVT DstVT = Node->getValueType(0); + EVT SetCCVT = + getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT); + EVT DstSetCCVT = + getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), DstVT); + + // Only expand vector types if we have the appropriate vector bit operations. + unsigned SIntOpcode = Node->isStrictFPOpcode() ? ISD::STRICT_FP_TO_SINT : + ISD::FP_TO_SINT; + if (DstVT.isVector() && (!isOperationLegalOrCustom(SIntOpcode, DstVT) || + !isOperationLegalOrCustomOrPromote(ISD::XOR, SrcVT))) + return false; + + // If the maximum float value is smaller then the signed integer range, + // the destination signmask can't be represented by the float, so we can + // just use FP_TO_SINT directly. + const fltSemantics &APFSem = DAG.EVTToAPFloatSemantics(SrcVT); + APFloat APF(APFSem, APInt::getZero(SrcVT.getScalarSizeInBits())); + APInt SignMask = APInt::getSignMask(DstVT.getScalarSizeInBits()); + if (APFloat::opOverflow & + APF.convertFromAPInt(SignMask, false, APFloat::rmNearestTiesToEven)) { + if (Node->isStrictFPOpcode()) { + Result = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other }, + { Node->getOperand(0), Src }); + Chain = Result.getValue(1); + } else + Result = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src); + return true; + } + + // Don't expand it if there isn't cheap fsub instruction. + if (!isOperationLegalOrCustom( + Node->isStrictFPOpcode() ? ISD::STRICT_FSUB : ISD::FSUB, SrcVT)) + return false; + + SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT); + SDValue Sel; + + if (Node->isStrictFPOpcode()) { + Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT, + Node->getOperand(0), /*IsSignaling*/ true); + Chain = Sel.getValue(1); + } else { + Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT); + } + + bool Strict = Node->isStrictFPOpcode() || + shouldUseStrictFP_TO_INT(SrcVT, DstVT, /*IsSigned*/ false); + + if (Strict) { + // Expand based on maximum range of FP_TO_SINT, if the value exceeds the + // signmask then offset (the result of which should be fully representable). + // Sel = Src < 0x8000000000000000 + // FltOfs = select Sel, 0, 0x8000000000000000 + // IntOfs = select Sel, 0, 0x8000000000000000 + // Result = fp_to_sint(Src - FltOfs) ^ IntOfs + + // TODO: Should any fast-math-flags be set for the FSUB? + SDValue FltOfs = DAG.getSelect(dl, SrcVT, Sel, + DAG.getConstantFP(0.0, dl, SrcVT), Cst); + Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT); + SDValue IntOfs = DAG.getSelect(dl, DstVT, Sel, + DAG.getConstant(0, dl, DstVT), + DAG.getConstant(SignMask, dl, DstVT)); + SDValue SInt; + if (Node->isStrictFPOpcode()) { + SDValue Val = DAG.getNode(ISD::STRICT_FSUB, dl, { SrcVT, MVT::Other }, + { Chain, Src, FltOfs }); + SInt = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other }, + { Val.getValue(1), Val }); + Chain = SInt.getValue(1); + } else { + SDValue Val = DAG.getNode(ISD::FSUB, dl, SrcVT, Src, FltOfs); + SInt = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Val); + } + Result = DAG.getNode(ISD::XOR, dl, DstVT, SInt, IntOfs); + } else { + // Expand based on maximum range of FP_TO_SINT: + // True = fp_to_sint(Src) + // False = 0x8000000000000000 + fp_to_sint(Src - 0x8000000000000000) + // Result = select (Src < 0x8000000000000000), True, False + + SDValue True = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src); + // TODO: Should any fast-math-flags be set for the FSUB? + SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, + DAG.getNode(ISD::FSUB, dl, SrcVT, Src, Cst)); + False = DAG.getNode(ISD::XOR, dl, DstVT, False, + DAG.getConstant(SignMask, dl, DstVT)); + Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT); + Result = DAG.getSelect(dl, DstVT, Sel, True, False); + } + return true; +} + +bool TargetLowering::expandUINT_TO_FP(SDNode *Node, SDValue &Result, + SDValue &Chain, + SelectionDAG &DAG) const { + // This transform is not correct for converting 0 when rounding mode is set + // to round toward negative infinity which will produce -0.0. So disable under + // strictfp. + if (Node->isStrictFPOpcode()) + return false; + + SDValue Src = Node->getOperand(0); + EVT SrcVT = Src.getValueType(); + EVT DstVT = Node->getValueType(0); + + if (SrcVT.getScalarType() != MVT::i64 || DstVT.getScalarType() != MVT::f64) + return false; + + // Only expand vector types if we have the appropriate vector bit operations. + if (SrcVT.isVector() && (!isOperationLegalOrCustom(ISD::SRL, SrcVT) || + !isOperationLegalOrCustom(ISD::FADD, DstVT) || + !isOperationLegalOrCustom(ISD::FSUB, DstVT) || + !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) || + !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT))) + return false; + + SDLoc dl(SDValue(Node, 0)); + EVT ShiftVT = getShiftAmountTy(SrcVT, DAG.getDataLayout()); + + // Implementation of unsigned i64 to f64 following the algorithm in + // __floatundidf in compiler_rt. This implementation performs rounding + // correctly in all rounding modes with the exception of converting 0 + // when rounding toward negative infinity. In that case the fsub will produce + // -0.0. This will be added to +0.0 and produce -0.0 which is incorrect. + SDValue TwoP52 = DAG.getConstant(UINT64_C(0x4330000000000000), dl, SrcVT); + SDValue TwoP84PlusTwoP52 = DAG.getConstantFP( + llvm::bit_cast<double>(UINT64_C(0x4530000000100000)), dl, DstVT); + SDValue TwoP84 = DAG.getConstant(UINT64_C(0x4530000000000000), dl, SrcVT); + SDValue LoMask = DAG.getConstant(UINT64_C(0x00000000FFFFFFFF), dl, SrcVT); + SDValue HiShift = DAG.getConstant(32, dl, ShiftVT); + + SDValue Lo = DAG.getNode(ISD::AND, dl, SrcVT, Src, LoMask); + SDValue Hi = DAG.getNode(ISD::SRL, dl, SrcVT, Src, HiShift); + SDValue LoOr = DAG.getNode(ISD::OR, dl, SrcVT, Lo, TwoP52); + SDValue HiOr = DAG.getNode(ISD::OR, dl, SrcVT, Hi, TwoP84); + SDValue LoFlt = DAG.getBitcast(DstVT, LoOr); + SDValue HiFlt = DAG.getBitcast(DstVT, HiOr); + SDValue HiSub = + DAG.getNode(ISD::FSUB, dl, DstVT, HiFlt, TwoP84PlusTwoP52); + Result = DAG.getNode(ISD::FADD, dl, DstVT, LoFlt, HiSub); + return true; +} + +SDValue +TargetLowering::createSelectForFMINNUM_FMAXNUM(SDNode *Node, + SelectionDAG &DAG) const { + unsigned Opcode = Node->getOpcode(); + assert((Opcode == ISD::FMINNUM || Opcode == ISD::FMAXNUM || + Opcode == ISD::STRICT_FMINNUM || Opcode == ISD::STRICT_FMAXNUM) && + "Wrong opcode"); + + if (Node->getFlags().hasNoNaNs()) { + ISD::CondCode Pred = Opcode == ISD::FMINNUM ? ISD::SETLT : ISD::SETGT; + SDValue Op1 = Node->getOperand(0); + SDValue Op2 = Node->getOperand(1); + SDValue SelCC = DAG.getSelectCC(SDLoc(Node), Op1, Op2, Op1, Op2, Pred); + // Copy FMF flags, but always set the no-signed-zeros flag + // as this is implied by the FMINNUM/FMAXNUM semantics. + SDNodeFlags Flags = Node->getFlags(); + Flags.setNoSignedZeros(true); + SelCC->setFlags(Flags); + return SelCC; + } + + return SDValue(); +} + +SDValue TargetLowering::expandFMINNUM_FMAXNUM(SDNode *Node, + SelectionDAG &DAG) const { + SDLoc dl(Node); + unsigned NewOp = Node->getOpcode() == ISD::FMINNUM ? + ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE; + EVT VT = Node->getValueType(0); + + if (VT.isScalableVector()) + report_fatal_error( + "Expanding fminnum/fmaxnum for scalable vectors is undefined."); + + if (isOperationLegalOrCustom(NewOp, VT)) { + SDValue Quiet0 = Node->getOperand(0); + SDValue Quiet1 = Node->getOperand(1); + + if (!Node->getFlags().hasNoNaNs()) { + // Insert canonicalizes if it's possible we need to quiet to get correct + // sNaN behavior. + if (!DAG.isKnownNeverSNaN(Quiet0)) { + Quiet0 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet0, + Node->getFlags()); + } + if (!DAG.isKnownNeverSNaN(Quiet1)) { + Quiet1 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet1, + Node->getFlags()); + } + } + + return DAG.getNode(NewOp, dl, VT, Quiet0, Quiet1, Node->getFlags()); + } + + // If the target has FMINIMUM/FMAXIMUM but not FMINNUM/FMAXNUM use that + // instead if there are no NaNs and there can't be an incompatible zero + // compare: at least one operand isn't +/-0, or there are no signed-zeros. + if ((Node->getFlags().hasNoNaNs() || + (DAG.isKnownNeverNaN(Node->getOperand(0)) && + DAG.isKnownNeverNaN(Node->getOperand(1)))) && + (Node->getFlags().hasNoSignedZeros() || + DAG.isKnownNeverZeroFloat(Node->getOperand(0)) || + DAG.isKnownNeverZeroFloat(Node->getOperand(1)))) { + unsigned IEEE2018Op = + Node->getOpcode() == ISD::FMINNUM ? ISD::FMINIMUM : ISD::FMAXIMUM; + if (isOperationLegalOrCustom(IEEE2018Op, VT)) + return DAG.getNode(IEEE2018Op, dl, VT, Node->getOperand(0), + Node->getOperand(1), Node->getFlags()); + } + + if (SDValue SelCC = createSelectForFMINNUM_FMAXNUM(Node, DAG)) + return SelCC; + + return SDValue(); +} + +SDValue TargetLowering::expandFMINIMUM_FMAXIMUM(SDNode *N, + SelectionDAG &DAG) const { + SDLoc DL(N); + SDValue LHS = N->getOperand(0); + SDValue RHS = N->getOperand(1); + unsigned Opc = N->getOpcode(); + EVT VT = N->getValueType(0); + EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); + bool IsMax = Opc == ISD::FMAXIMUM; + SDNodeFlags Flags = N->getFlags(); + + // First, implement comparison not propagating NaN. If no native fmin or fmax + // available, use plain select with setcc instead. + SDValue MinMax; + unsigned CompOpcIeee = IsMax ? ISD::FMAXNUM_IEEE : ISD::FMINNUM_IEEE; + unsigned CompOpc = IsMax ? ISD::FMAXNUM : ISD::FMINNUM; + + // FIXME: We should probably define fminnum/fmaxnum variants with correct + // signed zero behavior. + bool MinMaxMustRespectOrderedZero = false; + + if (isOperationLegalOrCustom(CompOpcIeee, VT)) { + MinMax = DAG.getNode(CompOpcIeee, DL, VT, LHS, RHS, Flags); + MinMaxMustRespectOrderedZero = true; + } else if (isOperationLegalOrCustom(CompOpc, VT)) { + MinMax = DAG.getNode(CompOpc, DL, VT, LHS, RHS, Flags); + } else { + if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT)) + return DAG.UnrollVectorOp(N); + + // NaN (if exists) will be propagated later, so orderness doesn't matter. + SDValue Compare = + DAG.getSetCC(DL, CCVT, LHS, RHS, IsMax ? ISD::SETGT : ISD::SETLT); + MinMax = DAG.getSelect(DL, VT, Compare, LHS, RHS, Flags); + } + + // Propagate any NaN of both operands + if (!N->getFlags().hasNoNaNs() && + (!DAG.isKnownNeverNaN(RHS) || !DAG.isKnownNeverNaN(LHS))) { + ConstantFP *FPNaN = ConstantFP::get( + *DAG.getContext(), APFloat::getNaN(DAG.EVTToAPFloatSemantics(VT))); + MinMax = DAG.getSelect(DL, VT, DAG.getSetCC(DL, CCVT, LHS, RHS, ISD::SETUO), + DAG.getConstantFP(*FPNaN, DL, VT), MinMax, Flags); + } + + // fminimum/fmaximum requires -0.0 less than +0.0 + if (!MinMaxMustRespectOrderedZero && !N->getFlags().hasNoSignedZeros() && + !DAG.isKnownNeverZeroFloat(RHS) && !DAG.isKnownNeverZeroFloat(LHS)) { + SDValue IsZero = DAG.getSetCC(DL, CCVT, MinMax, + DAG.getConstantFP(0.0, DL, VT), ISD::SETEQ); + SDValue TestZero = + DAG.getTargetConstant(IsMax ? fcPosZero : fcNegZero, DL, MVT::i32); + SDValue LCmp = DAG.getSelect( + DL, VT, DAG.getNode(ISD::IS_FPCLASS, DL, CCVT, LHS, TestZero), LHS, + MinMax, Flags); + SDValue RCmp = DAG.getSelect( + DL, VT, DAG.getNode(ISD::IS_FPCLASS, DL, CCVT, RHS, TestZero), RHS, + LCmp, Flags); + MinMax = DAG.getSelect(DL, VT, IsZero, RCmp, MinMax, Flags); + } + + return MinMax; +} + +/// Returns a true value if if this FPClassTest can be performed with an ordered +/// fcmp to 0, and a false value if it's an unordered fcmp to 0. Returns +/// std::nullopt if it cannot be performed as a compare with 0. +static std::optional<bool> isFCmpEqualZero(FPClassTest Test, + const fltSemantics &Semantics, + const MachineFunction &MF) { + FPClassTest OrderedMask = Test & ~fcNan; + FPClassTest NanTest = Test & fcNan; + bool IsOrdered = NanTest == fcNone; + bool IsUnordered = NanTest == fcNan; + + // Skip cases that are testing for only a qnan or snan. + if (!IsOrdered && !IsUnordered) + return std::nullopt; + + if (OrderedMask == fcZero && + MF.getDenormalMode(Semantics).Input == DenormalMode::IEEE) + return IsOrdered; + if (OrderedMask == (fcZero | fcSubnormal) && + MF.getDenormalMode(Semantics).inputsAreZero()) + return IsOrdered; + return std::nullopt; +} + +SDValue TargetLowering::expandIS_FPCLASS(EVT ResultVT, SDValue Op, + FPClassTest Test, SDNodeFlags Flags, + const SDLoc &DL, + SelectionDAG &DAG) const { + EVT OperandVT = Op.getValueType(); + assert(OperandVT.isFloatingPoint()); + + // Degenerated cases. + if (Test == fcNone) + return DAG.getBoolConstant(false, DL, ResultVT, OperandVT); + if ((Test & fcAllFlags) == fcAllFlags) + return DAG.getBoolConstant(true, DL, ResultVT, OperandVT); + + // PPC double double is a pair of doubles, of which the higher part determines + // the value class. + if (OperandVT == MVT::ppcf128) { + Op = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::f64, Op, + DAG.getConstant(1, DL, MVT::i32)); + OperandVT = MVT::f64; + } + + // Some checks may be represented as inversion of simpler check, for example + // "inf|normal|subnormal|zero" => !"nan". + bool IsInverted = false; + if (FPClassTest InvertedCheck = invertFPClassTestIfSimpler(Test)) { + IsInverted = true; + Test = InvertedCheck; + } + + // Floating-point type properties. + EVT ScalarFloatVT = OperandVT.getScalarType(); + const Type *FloatTy = ScalarFloatVT.getTypeForEVT(*DAG.getContext()); + const llvm::fltSemantics &Semantics = FloatTy->getFltSemantics(); + bool IsF80 = (ScalarFloatVT == MVT::f80); + + // Some checks can be implemented using float comparisons, if floating point + // exceptions are ignored. + if (Flags.hasNoFPExcept() && + isOperationLegalOrCustom(ISD::SETCC, OperandVT.getScalarType())) { + ISD::CondCode OrderedCmpOpcode = IsInverted ? ISD::SETUNE : ISD::SETOEQ; + ISD::CondCode UnorderedCmpOpcode = IsInverted ? ISD::SETONE : ISD::SETUEQ; + + if (std::optional<bool> IsCmp0 = + isFCmpEqualZero(Test, Semantics, DAG.getMachineFunction()); + IsCmp0 && (isCondCodeLegalOrCustom( + *IsCmp0 ? OrderedCmpOpcode : UnorderedCmpOpcode, + OperandVT.getScalarType().getSimpleVT()))) { + + // If denormals could be implicitly treated as 0, this is not equivalent + // to a compare with 0 since it will also be true for denormals. + return DAG.getSetCC(DL, ResultVT, Op, + DAG.getConstantFP(0.0, DL, OperandVT), + *IsCmp0 ? OrderedCmpOpcode : UnorderedCmpOpcode); + } + + if (Test == fcNan && + isCondCodeLegalOrCustom(IsInverted ? ISD::SETO : ISD::SETUO, + OperandVT.getScalarType().getSimpleVT())) { + return DAG.getSetCC(DL, ResultVT, Op, Op, + IsInverted ? ISD::SETO : ISD::SETUO); + } + + if (Test == fcInf && + isCondCodeLegalOrCustom(IsInverted ? ISD::SETUNE : ISD::SETOEQ, + OperandVT.getScalarType().getSimpleVT()) && + isOperationLegalOrCustom(ISD::FABS, OperandVT.getScalarType())) { + // isinf(x) --> fabs(x) == inf + SDValue Abs = DAG.getNode(ISD::FABS, DL, OperandVT, Op); + SDValue Inf = + DAG.getConstantFP(APFloat::getInf(Semantics), DL, OperandVT); + return DAG.getSetCC(DL, ResultVT, Abs, Inf, + IsInverted ? ISD::SETUNE : ISD::SETOEQ); + } + } + + // In the general case use integer operations. + unsigned BitSize = OperandVT.getScalarSizeInBits(); + EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), BitSize); + if (OperandVT.isVector()) + IntVT = EVT::getVectorVT(*DAG.getContext(), IntVT, + OperandVT.getVectorElementCount()); + SDValue OpAsInt = DAG.getBitcast(IntVT, Op); + + // Various masks. + APInt SignBit = APInt::getSignMask(BitSize); + APInt ValueMask = APInt::getSignedMaxValue(BitSize); // All bits but sign. + APInt Inf = APFloat::getInf(Semantics).bitcastToAPInt(); // Exp and int bit. + const unsigned ExplicitIntBitInF80 = 63; + APInt ExpMask = Inf; + if (IsF80) + ExpMask.clearBit(ExplicitIntBitInF80); + APInt AllOneMantissa = APFloat::getLargest(Semantics).bitcastToAPInt() & ~Inf; + APInt QNaNBitMask = + APInt::getOneBitSet(BitSize, AllOneMantissa.getActiveBits() - 1); + APInt InvertionMask = APInt::getAllOnes(ResultVT.getScalarSizeInBits()); + + SDValue ValueMaskV = DAG.getConstant(ValueMask, DL, IntVT); + SDValue SignBitV = DAG.getConstant(SignBit, DL, IntVT); + SDValue ExpMaskV = DAG.getConstant(ExpMask, DL, IntVT); + SDValue ZeroV = DAG.getConstant(0, DL, IntVT); + SDValue InfV = DAG.getConstant(Inf, DL, IntVT); + SDValue ResultInvertionMask = DAG.getConstant(InvertionMask, DL, ResultVT); + + SDValue Res; + const auto appendResult = [&](SDValue PartialRes) { + if (PartialRes) { + if (Res) + Res = DAG.getNode(ISD::OR, DL, ResultVT, Res, PartialRes); + else + Res = PartialRes; + } + }; + + SDValue IntBitIsSetV; // Explicit integer bit in f80 mantissa is set. + const auto getIntBitIsSet = [&]() -> SDValue { + if (!IntBitIsSetV) { + APInt IntBitMask(BitSize, 0); + IntBitMask.setBit(ExplicitIntBitInF80); + SDValue IntBitMaskV = DAG.getConstant(IntBitMask, DL, IntVT); + SDValue IntBitV = DAG.getNode(ISD::AND, DL, IntVT, OpAsInt, IntBitMaskV); + IntBitIsSetV = DAG.getSetCC(DL, ResultVT, IntBitV, ZeroV, ISD::SETNE); + } + return IntBitIsSetV; + }; + + // Split the value into sign bit and absolute value. + SDValue AbsV = DAG.getNode(ISD::AND, DL, IntVT, OpAsInt, ValueMaskV); + SDValue SignV = DAG.getSetCC(DL, ResultVT, OpAsInt, + DAG.getConstant(0.0, DL, IntVT), ISD::SETLT); + + // Tests that involve more than one class should be processed first. + SDValue PartialRes; + + if (IsF80) + ; // Detect finite numbers of f80 by checking individual classes because + // they have different settings of the explicit integer bit. + else if ((Test & fcFinite) == fcFinite) { + // finite(V) ==> abs(V) < exp_mask + PartialRes = DAG.getSetCC(DL, ResultVT, AbsV, ExpMaskV, ISD::SETLT); + Test &= ~fcFinite; + } else if ((Test & fcFinite) == fcPosFinite) { + // finite(V) && V > 0 ==> V < exp_mask + PartialRes = DAG.getSetCC(DL, ResultVT, OpAsInt, ExpMaskV, ISD::SETULT); + Test &= ~fcPosFinite; + } else if ((Test & fcFinite) == fcNegFinite) { + // finite(V) && V < 0 ==> abs(V) < exp_mask && signbit == 1 + PartialRes = DAG.getSetCC(DL, ResultVT, AbsV, ExpMaskV, ISD::SETLT); + PartialRes = DAG.getNode(ISD::AND, DL, ResultVT, PartialRes, SignV); + Test &= ~fcNegFinite; + } + appendResult(PartialRes); + + if (FPClassTest PartialCheck = Test & (fcZero | fcSubnormal)) { + // fcZero | fcSubnormal => test all exponent bits are 0 + // TODO: Handle sign bit specific cases + if (PartialCheck == (fcZero | fcSubnormal)) { + SDValue ExpBits = DAG.getNode(ISD::AND, DL, IntVT, OpAsInt, ExpMaskV); + SDValue ExpIsZero = + DAG.getSetCC(DL, ResultVT, ExpBits, ZeroV, ISD::SETEQ); + appendResult(ExpIsZero); + Test &= ~PartialCheck & fcAllFlags; + } + } + + // Check for individual classes. + + if (unsigned PartialCheck = Test & fcZero) { + if (PartialCheck == fcPosZero) + PartialRes = DAG.getSetCC(DL, ResultVT, OpAsInt, ZeroV, ISD::SETEQ); + else if (PartialCheck == fcZero) + PartialRes = DAG.getSetCC(DL, ResultVT, AbsV, ZeroV, ISD::SETEQ); + else // ISD::fcNegZero + PartialRes = DAG.getSetCC(DL, ResultVT, OpAsInt, SignBitV, ISD::SETEQ); + appendResult(PartialRes); + } + + if (unsigned PartialCheck = Test & fcSubnormal) { + // issubnormal(V) ==> unsigned(abs(V) - 1) < (all mantissa bits set) + // issubnormal(V) && V>0 ==> unsigned(V - 1) < (all mantissa bits set) + SDValue V = (PartialCheck == fcPosSubnormal) ? OpAsInt : AbsV; + SDValue MantissaV = DAG.getConstant(AllOneMantissa, DL, IntVT); + SDValue VMinusOneV = + DAG.getNode(ISD::SUB, DL, IntVT, V, DAG.getConstant(1, DL, IntVT)); + PartialRes = DAG.getSetCC(DL, ResultVT, VMinusOneV, MantissaV, ISD::SETULT); + if (PartialCheck == fcNegSubnormal) + PartialRes = DAG.getNode(ISD::AND, DL, ResultVT, PartialRes, SignV); + appendResult(PartialRes); + } + + if (unsigned PartialCheck = Test & fcInf) { + if (PartialCheck == fcPosInf) + PartialRes = DAG.getSetCC(DL, ResultVT, OpAsInt, InfV, ISD::SETEQ); + else if (PartialCheck == fcInf) + PartialRes = DAG.getSetCC(DL, ResultVT, AbsV, InfV, ISD::SETEQ); + else { // ISD::fcNegInf + APInt NegInf = APFloat::getInf(Semantics, true).bitcastToAPInt(); + SDValue NegInfV = DAG.getConstant(NegInf, DL, IntVT); + PartialRes = DAG.getSetCC(DL, ResultVT, OpAsInt, NegInfV, ISD::SETEQ); + } + appendResult(PartialRes); + } + + if (unsigned PartialCheck = Test & fcNan) { + APInt InfWithQnanBit = Inf | QNaNBitMask; + SDValue InfWithQnanBitV = DAG.getConstant(InfWithQnanBit, DL, IntVT); + if (PartialCheck == fcNan) { + // isnan(V) ==> abs(V) > int(inf) + PartialRes = DAG.getSetCC(DL, ResultVT, AbsV, InfV, ISD::SETGT); + if (IsF80) { + // Recognize unsupported values as NaNs for compatibility with glibc. + // In them (exp(V)==0) == int_bit. + SDValue ExpBits = DAG.getNode(ISD::AND, DL, IntVT, AbsV, ExpMaskV); + SDValue ExpIsZero = + DAG.getSetCC(DL, ResultVT, ExpBits, ZeroV, ISD::SETEQ); + SDValue IsPseudo = + DAG.getSetCC(DL, ResultVT, getIntBitIsSet(), ExpIsZero, ISD::SETEQ); + PartialRes = DAG.getNode(ISD::OR, DL, ResultVT, PartialRes, IsPseudo); + } + } else if (PartialCheck == fcQNan) { + // isquiet(V) ==> abs(V) >= (unsigned(Inf) | quiet_bit) + PartialRes = + DAG.getSetCC(DL, ResultVT, AbsV, InfWithQnanBitV, ISD::SETGE); + } else { // ISD::fcSNan + // issignaling(V) ==> abs(V) > unsigned(Inf) && + // abs(V) < (unsigned(Inf) | quiet_bit) + SDValue IsNan = DAG.getSetCC(DL, ResultVT, AbsV, InfV, ISD::SETGT); + SDValue IsNotQnan = + DAG.getSetCC(DL, ResultVT, AbsV, InfWithQnanBitV, ISD::SETLT); + PartialRes = DAG.getNode(ISD::AND, DL, ResultVT, IsNan, IsNotQnan); + } + appendResult(PartialRes); + } + + if (unsigned PartialCheck = Test & fcNormal) { + // isnormal(V) ==> (0 < exp < max_exp) ==> (unsigned(exp-1) < (max_exp-1)) + APInt ExpLSB = ExpMask & ~(ExpMask.shl(1)); + SDValue ExpLSBV = DAG.getConstant(ExpLSB, DL, IntVT); + SDValue ExpMinus1 = DAG.getNode(ISD::SUB, DL, IntVT, AbsV, ExpLSBV); + APInt ExpLimit = ExpMask - ExpLSB; + SDValue ExpLimitV = DAG.getConstant(ExpLimit, DL, IntVT); + PartialRes = DAG.getSetCC(DL, ResultVT, ExpMinus1, ExpLimitV, ISD::SETULT); + if (PartialCheck == fcNegNormal) + PartialRes = DAG.getNode(ISD::AND, DL, ResultVT, PartialRes, SignV); + else if (PartialCheck == fcPosNormal) { + SDValue PosSignV = + DAG.getNode(ISD::XOR, DL, ResultVT, SignV, ResultInvertionMask); + PartialRes = DAG.getNode(ISD::AND, DL, ResultVT, PartialRes, PosSignV); + } + if (IsF80) + PartialRes = + DAG.getNode(ISD::AND, DL, ResultVT, PartialRes, getIntBitIsSet()); + appendResult(PartialRes); + } + + if (!Res) + return DAG.getConstant(IsInverted, DL, ResultVT); + if (IsInverted) + Res = DAG.getNode(ISD::XOR, DL, ResultVT, Res, ResultInvertionMask); + return Res; +} + +// Only expand vector types if we have the appropriate vector bit operations. +static bool canExpandVectorCTPOP(const TargetLowering &TLI, EVT VT) { + assert(VT.isVector() && "Expected vector type"); + unsigned Len = VT.getScalarSizeInBits(); + return TLI.isOperationLegalOrCustom(ISD::ADD, VT) && + TLI.isOperationLegalOrCustom(ISD::SUB, VT) && + TLI.isOperationLegalOrCustom(ISD::SRL, VT) && + (Len == 8 || TLI.isOperationLegalOrCustom(ISD::MUL, VT)) && + TLI.isOperationLegalOrCustomOrPromote(ISD::AND, VT); +} + +SDValue TargetLowering::expandCTPOP(SDNode *Node, SelectionDAG &DAG) const { + SDLoc dl(Node); + EVT VT = Node->getValueType(0); + EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); + SDValue Op = Node->getOperand(0); + unsigned Len = VT.getScalarSizeInBits(); + assert(VT.isInteger() && "CTPOP not implemented for this type."); + + // TODO: Add support for irregular type lengths. + if (!(Len <= 128 && Len % 8 == 0)) + return SDValue(); + + // Only expand vector types if we have the appropriate vector bit operations. + if (VT.isVector() && !canExpandVectorCTPOP(*this, VT)) + return SDValue(); + + // This is the "best" algorithm from + // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel + SDValue Mask55 = + DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), dl, VT); + SDValue Mask33 = + DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), dl, VT); + SDValue Mask0F = + DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), dl, VT); + + // v = v - ((v >> 1) & 0x55555555...) + Op = DAG.getNode(ISD::SUB, dl, VT, Op, + DAG.getNode(ISD::AND, dl, VT, + DAG.getNode(ISD::SRL, dl, VT, Op, + DAG.getConstant(1, dl, ShVT)), + Mask55)); + // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...) + Op = DAG.getNode(ISD::ADD, dl, VT, DAG.getNode(ISD::AND, dl, VT, Op, Mask33), + DAG.getNode(ISD::AND, dl, VT, + DAG.getNode(ISD::SRL, dl, VT, Op, + DAG.getConstant(2, dl, ShVT)), + Mask33)); + // v = (v + (v >> 4)) & 0x0F0F0F0F... + Op = DAG.getNode(ISD::AND, dl, VT, + DAG.getNode(ISD::ADD, dl, VT, Op, + DAG.getNode(ISD::SRL, dl, VT, Op, + DAG.getConstant(4, dl, ShVT))), + Mask0F); + + if (Len <= 8) + return Op; + + // Avoid the multiply if we only have 2 bytes to add. + // TODO: Only doing this for scalars because vectors weren't as obviously + // improved. + if (Len == 16 && !VT.isVector()) { + // v = (v + (v >> 8)) & 0x00FF; + return DAG.getNode(ISD::AND, dl, VT, + DAG.getNode(ISD::ADD, dl, VT, Op, + DAG.getNode(ISD::SRL, dl, VT, Op, + DAG.getConstant(8, dl, ShVT))), + DAG.getConstant(0xFF, dl, VT)); + } + + // v = (v * 0x01010101...) >> (Len - 8) + SDValue V; + if (isOperationLegalOrCustomOrPromote( + ISD::MUL, getTypeToTransformTo(*DAG.getContext(), VT))) { + SDValue Mask01 = + DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)), dl, VT); + V = DAG.getNode(ISD::MUL, dl, VT, Op, Mask01); + } else { + V = Op; + for (unsigned Shift = 8; Shift < Len; Shift *= 2) { + SDValue ShiftC = DAG.getShiftAmountConstant(Shift, VT, dl); + V = DAG.getNode(ISD::ADD, dl, VT, V, + DAG.getNode(ISD::SHL, dl, VT, V, ShiftC)); + } + } + return DAG.getNode(ISD::SRL, dl, VT, V, DAG.getConstant(Len - 8, dl, ShVT)); +} + +SDValue TargetLowering::expandVPCTPOP(SDNode *Node, SelectionDAG &DAG) const { + SDLoc dl(Node); + EVT VT = Node->getValueType(0); + EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); + SDValue Op = Node->getOperand(0); + SDValue Mask = Node->getOperand(1); + SDValue VL = Node->getOperand(2); + unsigned Len = VT.getScalarSizeInBits(); + assert(VT.isInteger() && "VP_CTPOP not implemented for this type."); + + // TODO: Add support for irregular type lengths. + if (!(Len <= 128 && Len % 8 == 0)) + return SDValue(); + + // This is same algorithm of expandCTPOP from + // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel + SDValue Mask55 = + DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), dl, VT); + SDValue Mask33 = + DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), dl, VT); + SDValue Mask0F = + DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), dl, VT); + + SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5; + + // v = v - ((v >> 1) & 0x55555555...) + Tmp1 = DAG.getNode(ISD::VP_AND, dl, VT, + DAG.getNode(ISD::VP_SRL, dl, VT, Op, + DAG.getConstant(1, dl, ShVT), Mask, VL), + Mask55, Mask, VL); + Op = DAG.getNode(ISD::VP_SUB, dl, VT, Op, Tmp1, Mask, VL); + + // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...) + Tmp2 = DAG.getNode(ISD::VP_AND, dl, VT, Op, Mask33, Mask, VL); + Tmp3 = DAG.getNode(ISD::VP_AND, dl, VT, + DAG.getNode(ISD::VP_SRL, dl, VT, Op, + DAG.getConstant(2, dl, ShVT), Mask, VL), + Mask33, Mask, VL); + Op = DAG.getNode(ISD::VP_ADD, dl, VT, Tmp2, Tmp3, Mask, VL); + + // v = (v + (v >> 4)) & 0x0F0F0F0F... + Tmp4 = DAG.getNode(ISD::VP_SRL, dl, VT, Op, DAG.getConstant(4, dl, ShVT), + Mask, VL), + Tmp5 = DAG.getNode(ISD::VP_ADD, dl, VT, Op, Tmp4, Mask, VL); + Op = DAG.getNode(ISD::VP_AND, dl, VT, Tmp5, Mask0F, Mask, VL); + + if (Len <= 8) + return Op; + + // v = (v * 0x01010101...) >> (Len - 8) + SDValue V; + if (isOperationLegalOrCustomOrPromote( + ISD::VP_MUL, getTypeToTransformTo(*DAG.getContext(), VT))) { + SDValue Mask01 = + DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)), dl, VT); + V = DAG.getNode(ISD::VP_MUL, dl, VT, Op, Mask01, Mask, VL); + } else { + V = Op; + for (unsigned Shift = 8; Shift < Len; Shift *= 2) { + SDValue ShiftC = DAG.getShiftAmountConstant(Shift, VT, dl); + V = DAG.getNode(ISD::VP_ADD, dl, VT, V, + DAG.getNode(ISD::VP_SHL, dl, VT, V, ShiftC, Mask, VL), + Mask, VL); + } + } + return DAG.getNode(ISD::VP_SRL, dl, VT, V, DAG.getConstant(Len - 8, dl, ShVT), + Mask, VL); +} + +SDValue TargetLowering::expandCTLZ(SDNode *Node, SelectionDAG &DAG) const { + SDLoc dl(Node); + EVT VT = Node->getValueType(0); + EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); + SDValue Op = Node->getOperand(0); + unsigned NumBitsPerElt = VT.getScalarSizeInBits(); + + // If the non-ZERO_UNDEF version is supported we can use that instead. + if (Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF && + isOperationLegalOrCustom(ISD::CTLZ, VT)) + return DAG.getNode(ISD::CTLZ, dl, VT, Op); + + // If the ZERO_UNDEF version is supported use that and handle the zero case. + if (isOperationLegalOrCustom(ISD::CTLZ_ZERO_UNDEF, VT)) { + EVT SetCCVT = + getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); + SDValue CTLZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, dl, VT, Op); + SDValue Zero = DAG.getConstant(0, dl, VT); + SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ); + return DAG.getSelect(dl, VT, SrcIsZero, + DAG.getConstant(NumBitsPerElt, dl, VT), CTLZ); + } + + // Only expand vector types if we have the appropriate vector bit operations. + // This includes the operations needed to expand CTPOP if it isn't supported. + if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) || + (!isOperationLegalOrCustom(ISD::CTPOP, VT) && + !canExpandVectorCTPOP(*this, VT)) || + !isOperationLegalOrCustom(ISD::SRL, VT) || + !isOperationLegalOrCustomOrPromote(ISD::OR, VT))) + return SDValue(); + + // for now, we do this: + // x = x | (x >> 1); + // x = x | (x >> 2); + // ... + // x = x | (x >>16); + // x = x | (x >>32); // for 64-bit input + // return popcount(~x); + // + // Ref: "Hacker's Delight" by Henry Warren + for (unsigned i = 0; (1U << i) < NumBitsPerElt; ++i) { + SDValue Tmp = DAG.getConstant(1ULL << i, dl, ShVT); + Op = DAG.getNode(ISD::OR, dl, VT, Op, + DAG.getNode(ISD::SRL, dl, VT, Op, Tmp)); + } + Op = DAG.getNOT(dl, Op, VT); + return DAG.getNode(ISD::CTPOP, dl, VT, Op); +} + +SDValue TargetLowering::expandVPCTLZ(SDNode *Node, SelectionDAG &DAG) const { + SDLoc dl(Node); + EVT VT = Node->getValueType(0); + EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); + SDValue Op = Node->getOperand(0); + SDValue Mask = Node->getOperand(1); + SDValue VL = Node->getOperand(2); + unsigned NumBitsPerElt = VT.getScalarSizeInBits(); + + // do this: + // x = x | (x >> 1); + // x = x | (x >> 2); + // ... + // x = x | (x >>16); + // x = x | (x >>32); // for 64-bit input + // return popcount(~x); + for (unsigned i = 0; (1U << i) < NumBitsPerElt; ++i) { + SDValue Tmp = DAG.getConstant(1ULL << i, dl, ShVT); + Op = DAG.getNode(ISD::VP_OR, dl, VT, Op, + DAG.getNode(ISD::VP_SRL, dl, VT, Op, Tmp, Mask, VL), Mask, + VL); + } + Op = DAG.getNode(ISD::VP_XOR, dl, VT, Op, DAG.getConstant(-1, dl, VT), Mask, + VL); + return DAG.getNode(ISD::VP_CTPOP, dl, VT, Op, Mask, VL); +} + +SDValue TargetLowering::CTTZTableLookup(SDNode *Node, SelectionDAG &DAG, + const SDLoc &DL, EVT VT, SDValue Op, + unsigned BitWidth) const { + if (BitWidth != 32 && BitWidth != 64) + return SDValue(); + APInt DeBruijn = BitWidth == 32 ? APInt(32, 0x077CB531U) + : APInt(64, 0x0218A392CD3D5DBFULL); + const DataLayout &TD = DAG.getDataLayout(); + MachinePointerInfo PtrInfo = + MachinePointerInfo::getConstantPool(DAG.getMachineFunction()); + unsigned ShiftAmt = BitWidth - Log2_32(BitWidth); + SDValue Neg = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Op); + SDValue Lookup = DAG.getNode( + ISD::SRL, DL, VT, + DAG.getNode(ISD::MUL, DL, VT, DAG.getNode(ISD::AND, DL, VT, Op, Neg), + DAG.getConstant(DeBruijn, DL, VT)), + DAG.getConstant(ShiftAmt, DL, VT)); + Lookup = DAG.getSExtOrTrunc(Lookup, DL, getPointerTy(TD)); + + SmallVector<uint8_t> Table(BitWidth, 0); + for (unsigned i = 0; i < BitWidth; i++) { + APInt Shl = DeBruijn.shl(i); + APInt Lshr = Shl.lshr(ShiftAmt); + Table[Lshr.getZExtValue()] = i; + } + + // Create a ConstantArray in Constant Pool + auto *CA = ConstantDataArray::get(*DAG.getContext(), Table); + SDValue CPIdx = DAG.getConstantPool(CA, getPointerTy(TD), + TD.getPrefTypeAlign(CA->getType())); + SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, DL, VT, DAG.getEntryNode(), + DAG.getMemBasePlusOffset(CPIdx, Lookup, DL), + PtrInfo, MVT::i8); + if (Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF) + return ExtLoad; + + EVT SetCCVT = + getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); + SDValue Zero = DAG.getConstant(0, DL, VT); + SDValue SrcIsZero = DAG.getSetCC(DL, SetCCVT, Op, Zero, ISD::SETEQ); + return DAG.getSelect(DL, VT, SrcIsZero, + DAG.getConstant(BitWidth, DL, VT), ExtLoad); +} + +SDValue TargetLowering::expandCTTZ(SDNode *Node, SelectionDAG &DAG) const { + SDLoc dl(Node); + EVT VT = Node->getValueType(0); + SDValue Op = Node->getOperand(0); + unsigned NumBitsPerElt = VT.getScalarSizeInBits(); + + // If the non-ZERO_UNDEF version is supported we can use that instead. + if (Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF && + isOperationLegalOrCustom(ISD::CTTZ, VT)) + return DAG.getNode(ISD::CTTZ, dl, VT, Op); + + // If the ZERO_UNDEF version is supported use that and handle the zero case. + if (isOperationLegalOrCustom(ISD::CTTZ_ZERO_UNDEF, VT)) { + EVT SetCCVT = + getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); + SDValue CTTZ = DAG.getNode(ISD::CTTZ_ZERO_UNDEF, dl, VT, Op); + SDValue Zero = DAG.getConstant(0, dl, VT); + SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ); + return DAG.getSelect(dl, VT, SrcIsZero, + DAG.getConstant(NumBitsPerElt, dl, VT), CTTZ); + } + + // Only expand vector types if we have the appropriate vector bit operations. + // This includes the operations needed to expand CTPOP if it isn't supported. + if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) || + (!isOperationLegalOrCustom(ISD::CTPOP, VT) && + !isOperationLegalOrCustom(ISD::CTLZ, VT) && + !canExpandVectorCTPOP(*this, VT)) || + !isOperationLegalOrCustom(ISD::SUB, VT) || + !isOperationLegalOrCustomOrPromote(ISD::AND, VT) || + !isOperationLegalOrCustomOrPromote(ISD::XOR, VT))) + return SDValue(); + + // Emit Table Lookup if ISD::CTLZ and ISD::CTPOP are not legal. + if (!VT.isVector() && isOperationExpand(ISD::CTPOP, VT) && + !isOperationLegal(ISD::CTLZ, VT)) + if (SDValue V = CTTZTableLookup(Node, DAG, dl, VT, Op, NumBitsPerElt)) + return V; + + // for now, we use: { return popcount(~x & (x - 1)); } + // unless the target has ctlz but not ctpop, in which case we use: + // { return 32 - nlz(~x & (x-1)); } + // Ref: "Hacker's Delight" by Henry Warren + SDValue Tmp = DAG.getNode( + ISD::AND, dl, VT, DAG.getNOT(dl, Op, VT), + DAG.getNode(ISD::SUB, dl, VT, Op, DAG.getConstant(1, dl, VT))); + + // If ISD::CTLZ is legal and CTPOP isn't, then do that instead. + if (isOperationLegal(ISD::CTLZ, VT) && !isOperationLegal(ISD::CTPOP, VT)) { + return DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(NumBitsPerElt, dl, VT), + DAG.getNode(ISD::CTLZ, dl, VT, Tmp)); + } + + return DAG.getNode(ISD::CTPOP, dl, VT, Tmp); +} + +SDValue TargetLowering::expandVPCTTZ(SDNode *Node, SelectionDAG &DAG) const { + SDValue Op = Node->getOperand(0); + SDValue Mask = Node->getOperand(1); + SDValue VL = Node->getOperand(2); + SDLoc dl(Node); + EVT VT = Node->getValueType(0); + + // Same as the vector part of expandCTTZ, use: popcount(~x & (x - 1)) + SDValue Not = DAG.getNode(ISD::VP_XOR, dl, VT, Op, + DAG.getConstant(-1, dl, VT), Mask, VL); + SDValue MinusOne = DAG.getNode(ISD::VP_SUB, dl, VT, Op, + DAG.getConstant(1, dl, VT), Mask, VL); + SDValue Tmp = DAG.getNode(ISD::VP_AND, dl, VT, Not, MinusOne, Mask, VL); + return DAG.getNode(ISD::VP_CTPOP, dl, VT, Tmp, Mask, VL); +} + +SDValue TargetLowering::expandVPCTTZElements(SDNode *N, + SelectionDAG &DAG) const { + // %cond = to_bool_vec %source + // %splat = splat /*val=*/VL + // %tz = step_vector + // %v = vp.select %cond, /*true=*/tz, /*false=*/%splat + // %r = vp.reduce.umin %v + SDLoc DL(N); + SDValue Source = N->getOperand(0); + SDValue Mask = N->getOperand(1); + SDValue EVL = N->getOperand(2); + EVT SrcVT = Source.getValueType(); + EVT ResVT = N->getValueType(0); + EVT ResVecVT = + EVT::getVectorVT(*DAG.getContext(), ResVT, SrcVT.getVectorElementCount()); + + // Convert to boolean vector. + if (SrcVT.getScalarType() != MVT::i1) { + SDValue AllZero = DAG.getConstant(0, DL, SrcVT); + SrcVT = EVT::getVectorVT(*DAG.getContext(), MVT::i1, + SrcVT.getVectorElementCount()); + Source = DAG.getNode(ISD::VP_SETCC, DL, SrcVT, Source, AllZero, + DAG.getCondCode(ISD::SETNE), Mask, EVL); + } + + SDValue ExtEVL = DAG.getZExtOrTrunc(EVL, DL, ResVT); + SDValue Splat = DAG.getSplat(ResVecVT, DL, ExtEVL); + SDValue StepVec = DAG.getStepVector(DL, ResVecVT); + SDValue Select = + DAG.getNode(ISD::VP_SELECT, DL, ResVecVT, Source, StepVec, Splat, EVL); + return DAG.getNode(ISD::VP_REDUCE_UMIN, DL, ResVT, ExtEVL, Select, Mask, EVL); +} + +SDValue TargetLowering::expandABS(SDNode *N, SelectionDAG &DAG, + bool IsNegative) const { + SDLoc dl(N); + EVT VT = N->getValueType(0); + SDValue Op = N->getOperand(0); + + // abs(x) -> smax(x,sub(0,x)) + if (!IsNegative && isOperationLegal(ISD::SUB, VT) && + isOperationLegal(ISD::SMAX, VT)) { + SDValue Zero = DAG.getConstant(0, dl, VT); + Op = DAG.getFreeze(Op); + return DAG.getNode(ISD::SMAX, dl, VT, Op, + DAG.getNode(ISD::SUB, dl, VT, Zero, Op)); + } + + // abs(x) -> umin(x,sub(0,x)) + if (!IsNegative && isOperationLegal(ISD::SUB, VT) && + isOperationLegal(ISD::UMIN, VT)) { + SDValue Zero = DAG.getConstant(0, dl, VT); + Op = DAG.getFreeze(Op); + return DAG.getNode(ISD::UMIN, dl, VT, Op, + DAG.getNode(ISD::SUB, dl, VT, Zero, Op)); + } + + // 0 - abs(x) -> smin(x, sub(0,x)) + if (IsNegative && isOperationLegal(ISD::SUB, VT) && + isOperationLegal(ISD::SMIN, VT)) { + SDValue Zero = DAG.getConstant(0, dl, VT); + Op = DAG.getFreeze(Op); + return DAG.getNode(ISD::SMIN, dl, VT, Op, + DAG.getNode(ISD::SUB, dl, VT, Zero, Op)); + } + + // Only expand vector types if we have the appropriate vector operations. + if (VT.isVector() && + (!isOperationLegalOrCustom(ISD::SRA, VT) || + (!IsNegative && !isOperationLegalOrCustom(ISD::ADD, VT)) || + (IsNegative && !isOperationLegalOrCustom(ISD::SUB, VT)) || + !isOperationLegalOrCustomOrPromote(ISD::XOR, VT))) + return SDValue(); + + Op = DAG.getFreeze(Op); + SDValue Shift = DAG.getNode( + ISD::SRA, dl, VT, Op, + DAG.getShiftAmountConstant(VT.getScalarSizeInBits() - 1, VT, dl)); + SDValue Xor = DAG.getNode(ISD::XOR, dl, VT, Op, Shift); + + // abs(x) -> Y = sra (X, size(X)-1); sub (xor (X, Y), Y) + if (!IsNegative) + return DAG.getNode(ISD::SUB, dl, VT, Xor, Shift); + + // 0 - abs(x) -> Y = sra (X, size(X)-1); sub (Y, xor (X, Y)) + return DAG.getNode(ISD::SUB, dl, VT, Shift, Xor); +} + +SDValue TargetLowering::expandABD(SDNode *N, SelectionDAG &DAG) const { + SDLoc dl(N); + EVT VT = N->getValueType(0); + SDValue LHS = DAG.getFreeze(N->getOperand(0)); + SDValue RHS = DAG.getFreeze(N->getOperand(1)); + bool IsSigned = N->getOpcode() == ISD::ABDS; + + // abds(lhs, rhs) -> sub(smax(lhs,rhs), smin(lhs,rhs)) + // abdu(lhs, rhs) -> sub(umax(lhs,rhs), umin(lhs,rhs)) + unsigned MaxOpc = IsSigned ? ISD::SMAX : ISD::UMAX; + unsigned MinOpc = IsSigned ? ISD::SMIN : ISD::UMIN; + if (isOperationLegal(MaxOpc, VT) && isOperationLegal(MinOpc, VT)) { + SDValue Max = DAG.getNode(MaxOpc, dl, VT, LHS, RHS); + SDValue Min = DAG.getNode(MinOpc, dl, VT, LHS, RHS); + return DAG.getNode(ISD::SUB, dl, VT, Max, Min); + } + + // abdu(lhs, rhs) -> or(usubsat(lhs,rhs), usubsat(rhs,lhs)) + if (!IsSigned && isOperationLegal(ISD::USUBSAT, VT)) + return DAG.getNode(ISD::OR, dl, VT, + DAG.getNode(ISD::USUBSAT, dl, VT, LHS, RHS), + DAG.getNode(ISD::USUBSAT, dl, VT, RHS, LHS)); + + EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); + ISD::CondCode CC = IsSigned ? ISD::CondCode::SETGT : ISD::CondCode::SETUGT; + SDValue Cmp = DAG.getSetCC(dl, CCVT, LHS, RHS, CC); + + // Branchless expansion iff cmp result is allbits: + // abds(lhs, rhs) -> sub(sgt(lhs, rhs), xor(sgt(lhs, rhs), sub(lhs, rhs))) + // abdu(lhs, rhs) -> sub(ugt(lhs, rhs), xor(ugt(lhs, rhs), sub(lhs, rhs))) + if (CCVT == VT && getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) { + SDValue Diff = DAG.getNode(ISD::SUB, dl, VT, LHS, RHS); + SDValue Xor = DAG.getNode(ISD::XOR, dl, VT, Diff, Cmp); + return DAG.getNode(ISD::SUB, dl, VT, Cmp, Xor); + } + + // abds(lhs, rhs) -> select(sgt(lhs,rhs), sub(lhs,rhs), sub(rhs,lhs)) + // abdu(lhs, rhs) -> select(ugt(lhs,rhs), sub(lhs,rhs), sub(rhs,lhs)) + return DAG.getSelect(dl, VT, Cmp, DAG.getNode(ISD::SUB, dl, VT, LHS, RHS), + DAG.getNode(ISD::SUB, dl, VT, RHS, LHS)); +} + +SDValue TargetLowering::expandAVG(SDNode *N, SelectionDAG &DAG) const { + SDLoc dl(N); + EVT VT = N->getValueType(0); + SDValue LHS = N->getOperand(0); + SDValue RHS = N->getOperand(1); + + unsigned Opc = N->getOpcode(); + bool IsFloor = Opc == ISD::AVGFLOORS || Opc == ISD::AVGFLOORU; + bool IsSigned = Opc == ISD::AVGCEILS || Opc == ISD::AVGFLOORS; + unsigned SumOpc = IsFloor ? ISD::ADD : ISD::SUB; + unsigned SignOpc = IsFloor ? ISD::AND : ISD::OR; + unsigned ShiftOpc = IsSigned ? ISD::SRA : ISD::SRL; + unsigned ExtOpc = IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; + assert((Opc == ISD::AVGFLOORS || Opc == ISD::AVGCEILS || + Opc == ISD::AVGFLOORU || Opc == ISD::AVGCEILU) && + "Unknown AVG node"); + + // If the operands are already extended, we can add+shift. + bool IsExt = + (IsSigned && DAG.ComputeNumSignBits(LHS) >= 2 && + DAG.ComputeNumSignBits(RHS) >= 2) || + (!IsSigned && DAG.computeKnownBits(LHS).countMinLeadingZeros() >= 1 && + DAG.computeKnownBits(RHS).countMinLeadingZeros() >= 1); + if (IsExt) { + SDValue Sum = DAG.getNode(ISD::ADD, dl, VT, LHS, RHS); + if (!IsFloor) + Sum = DAG.getNode(ISD::ADD, dl, VT, Sum, DAG.getConstant(1, dl, VT)); + return DAG.getNode(ShiftOpc, dl, VT, Sum, + DAG.getShiftAmountConstant(1, VT, dl)); + } + + // For scalars, see if we can efficiently extend/truncate to use add+shift. + if (VT.isScalarInteger()) { + unsigned BW = VT.getScalarSizeInBits(); + EVT ExtVT = VT.getIntegerVT(*DAG.getContext(), 2 * BW); + if (isTypeLegal(ExtVT) && isTruncateFree(ExtVT, VT)) { + LHS = DAG.getNode(ExtOpc, dl, ExtVT, LHS); + RHS = DAG.getNode(ExtOpc, dl, ExtVT, RHS); + SDValue Avg = DAG.getNode(ISD::ADD, dl, ExtVT, LHS, RHS); + if (!IsFloor) + Avg = DAG.getNode(ISD::ADD, dl, ExtVT, Avg, + DAG.getConstant(1, dl, ExtVT)); + // Just use SRL as we will be truncating away the extended sign bits. + Avg = DAG.getNode(ISD::SRL, dl, ExtVT, Avg, + DAG.getShiftAmountConstant(1, ExtVT, dl)); + return DAG.getNode(ISD::TRUNCATE, dl, VT, Avg); + } + } + + // avgceils(lhs, rhs) -> sub(or(lhs,rhs),ashr(xor(lhs,rhs),1)) + // avgceilu(lhs, rhs) -> sub(or(lhs,rhs),lshr(xor(lhs,rhs),1)) + // avgfloors(lhs, rhs) -> add(and(lhs,rhs),ashr(xor(lhs,rhs),1)) + // avgflooru(lhs, rhs) -> add(and(lhs,rhs),lshr(xor(lhs,rhs),1)) + LHS = DAG.getFreeze(LHS); + RHS = DAG.getFreeze(RHS); + SDValue Sign = DAG.getNode(SignOpc, dl, VT, LHS, RHS); + SDValue Xor = DAG.getNode(ISD::XOR, dl, VT, LHS, RHS); + SDValue Shift = + DAG.getNode(ShiftOpc, dl, VT, Xor, DAG.getShiftAmountConstant(1, VT, dl)); + return DAG.getNode(SumOpc, dl, VT, Sign, Shift); +} + +SDValue TargetLowering::expandBSWAP(SDNode *N, SelectionDAG &DAG) const { + SDLoc dl(N); + EVT VT = N->getValueType(0); + SDValue Op = N->getOperand(0); + + if (!VT.isSimple()) + return SDValue(); + + EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout()); + SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8; + switch (VT.getSimpleVT().getScalarType().SimpleTy) { + default: + return SDValue(); + case MVT::i16: + // Use a rotate by 8. This can be further expanded if necessary. + return DAG.getNode(ISD::ROTL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); + case MVT::i32: + Tmp4 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); + Tmp3 = DAG.getNode(ISD::AND, dl, VT, Op, + DAG.getConstant(0xFF00, dl, VT)); + Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(8, dl, SHVT)); + Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); + Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(0xFF00, dl, VT)); + Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); + Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3); + Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1); + return DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2); + case MVT::i64: + Tmp8 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(56, dl, SHVT)); + Tmp7 = DAG.getNode(ISD::AND, dl, VT, Op, + DAG.getConstant(255ULL<<8, dl, VT)); + Tmp7 = DAG.getNode(ISD::SHL, dl, VT, Tmp7, DAG.getConstant(40, dl, SHVT)); + Tmp6 = DAG.getNode(ISD::AND, dl, VT, Op, + DAG.getConstant(255ULL<<16, dl, VT)); + Tmp6 = DAG.getNode(ISD::SHL, dl, VT, Tmp6, DAG.getConstant(24, dl, SHVT)); + Tmp5 = DAG.getNode(ISD::AND, dl, VT, Op, + DAG.getConstant(255ULL<<24, dl, VT)); + Tmp5 = DAG.getNode(ISD::SHL, dl, VT, Tmp5, DAG.getConstant(8, dl, SHVT)); + Tmp4 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); + Tmp4 = DAG.getNode(ISD::AND, dl, VT, Tmp4, + DAG.getConstant(255ULL<<24, dl, VT)); + Tmp3 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); + Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, + DAG.getConstant(255ULL<<16, dl, VT)); + Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(40, dl, SHVT)); + Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, + DAG.getConstant(255ULL<<8, dl, VT)); + Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(56, dl, SHVT)); + Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp7); + Tmp6 = DAG.getNode(ISD::OR, dl, VT, Tmp6, Tmp5); + Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3); + Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1); + Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp6); + Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2); + return DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp4); + } +} + +SDValue TargetLowering::expandVPBSWAP(SDNode *N, SelectionDAG &DAG) const { + SDLoc dl(N); + EVT VT = N->getValueType(0); + SDValue Op = N->getOperand(0); + SDValue Mask = N->getOperand(1); + SDValue EVL = N->getOperand(2); + + if (!VT.isSimple()) + return SDValue(); + + EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout()); + SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8; + switch (VT.getSimpleVT().getScalarType().SimpleTy) { + default: + return SDValue(); + case MVT::i16: + Tmp1 = DAG.getNode(ISD::VP_SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT), + Mask, EVL); + Tmp2 = DAG.getNode(ISD::VP_SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT), + Mask, EVL); + return DAG.getNode(ISD::VP_OR, dl, VT, Tmp1, Tmp2, Mask, EVL); + case MVT::i32: + Tmp4 = DAG.getNode(ISD::VP_SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT), + Mask, EVL); + Tmp3 = DAG.getNode(ISD::VP_AND, dl, VT, Op, DAG.getConstant(0xFF00, dl, VT), + Mask, EVL); + Tmp3 = DAG.getNode(ISD::VP_SHL, dl, VT, Tmp3, DAG.getConstant(8, dl, SHVT), + Mask, EVL); + Tmp2 = DAG.getNode(ISD::VP_SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT), + Mask, EVL); + Tmp2 = DAG.getNode(ISD::VP_AND, dl, VT, Tmp2, + DAG.getConstant(0xFF00, dl, VT), Mask, EVL); + Tmp1 = DAG.getNode(ISD::VP_SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT), + Mask, EVL); + Tmp4 = DAG.getNode(ISD::VP_OR, dl, VT, Tmp4, Tmp3, Mask, EVL); + Tmp2 = DAG.getNode(ISD::VP_OR, dl, VT, Tmp2, Tmp1, Mask, EVL); + return DAG.getNode(ISD::VP_OR, dl, VT, Tmp4, Tmp2, Mask, EVL); + case MVT::i64: + Tmp8 = DAG.getNode(ISD::VP_SHL, dl, VT, Op, DAG.getConstant(56, dl, SHVT), + Mask, EVL); + Tmp7 = DAG.getNode(ISD::VP_AND, dl, VT, Op, + DAG.getConstant(255ULL << 8, dl, VT), Mask, EVL); + Tmp7 = DAG.getNode(ISD::VP_SHL, dl, VT, Tmp7, DAG.getConstant(40, dl, SHVT), + Mask, EVL); + Tmp6 = DAG.getNode(ISD::VP_AND, dl, VT, Op, + DAG.getConstant(255ULL << 16, dl, VT), Mask, EVL); + Tmp6 = DAG.getNode(ISD::VP_SHL, dl, VT, Tmp6, DAG.getConstant(24, dl, SHVT), + Mask, EVL); + Tmp5 = DAG.getNode(ISD::VP_AND, dl, VT, Op, + DAG.getConstant(255ULL << 24, dl, VT), Mask, EVL); + Tmp5 = DAG.getNode(ISD::VP_SHL, dl, VT, Tmp5, DAG.getConstant(8, dl, SHVT), + Mask, EVL); + Tmp4 = DAG.getNode(ISD::VP_SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT), + Mask, EVL); + Tmp4 = DAG.getNode(ISD::VP_AND, dl, VT, Tmp4, + DAG.getConstant(255ULL << 24, dl, VT), Mask, EVL); + Tmp3 = DAG.getNode(ISD::VP_SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT), + Mask, EVL); + Tmp3 = DAG.getNode(ISD::VP_AND, dl, VT, Tmp3, + DAG.getConstant(255ULL << 16, dl, VT), Mask, EVL); + Tmp2 = DAG.getNode(ISD::VP_SRL, dl, VT, Op, DAG.getConstant(40, dl, SHVT), + Mask, EVL); + Tmp2 = DAG.getNode(ISD::VP_AND, dl, VT, Tmp2, + DAG.getConstant(255ULL << 8, dl, VT), Mask, EVL); + Tmp1 = DAG.getNode(ISD::VP_SRL, dl, VT, Op, DAG.getConstant(56, dl, SHVT), + Mask, EVL); + Tmp8 = DAG.getNode(ISD::VP_OR, dl, VT, Tmp8, Tmp7, Mask, EVL); + Tmp6 = DAG.getNode(ISD::VP_OR, dl, VT, Tmp6, Tmp5, Mask, EVL); + Tmp4 = DAG.getNode(ISD::VP_OR, dl, VT, Tmp4, Tmp3, Mask, EVL); + Tmp2 = DAG.getNode(ISD::VP_OR, dl, VT, Tmp2, Tmp1, Mask, EVL); + Tmp8 = DAG.getNode(ISD::VP_OR, dl, VT, Tmp8, Tmp6, Mask, EVL); + Tmp4 = DAG.getNode(ISD::VP_OR, dl, VT, Tmp4, Tmp2, Mask, EVL); + return DAG.getNode(ISD::VP_OR, dl, VT, Tmp8, Tmp4, Mask, EVL); + } +} + +SDValue TargetLowering::expandBITREVERSE(SDNode *N, SelectionDAG &DAG) const { + SDLoc dl(N); + EVT VT = N->getValueType(0); + SDValue Op = N->getOperand(0); + EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout()); + unsigned Sz = VT.getScalarSizeInBits(); + + SDValue Tmp, Tmp2, Tmp3; + + // If we can, perform BSWAP first and then the mask+swap the i4, then i2 + // and finally the i1 pairs. + // TODO: We can easily support i4/i2 legal types if any target ever does. + if (Sz >= 8 && isPowerOf2_32(Sz)) { + // Create the masks - repeating the pattern every byte. + APInt Mask4 = APInt::getSplat(Sz, APInt(8, 0x0F)); + APInt Mask2 = APInt::getSplat(Sz, APInt(8, 0x33)); + APInt Mask1 = APInt::getSplat(Sz, APInt(8, 0x55)); + + // BSWAP if the type is wider than a single byte. + Tmp = (Sz > 8 ? DAG.getNode(ISD::BSWAP, dl, VT, Op) : Op); + + // swap i4: ((V >> 4) & 0x0F) | ((V & 0x0F) << 4) + Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(4, dl, SHVT)); + Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask4, dl, VT)); + Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask4, dl, VT)); + Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(4, dl, SHVT)); + Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); + + // swap i2: ((V >> 2) & 0x33) | ((V & 0x33) << 2) + Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(2, dl, SHVT)); + Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask2, dl, VT)); + Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask2, dl, VT)); + Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(2, dl, SHVT)); + Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); + + // swap i1: ((V >> 1) & 0x55) | ((V & 0x55) << 1) + Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(1, dl, SHVT)); + Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask1, dl, VT)); + Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask1, dl, VT)); + Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(1, dl, SHVT)); + Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); + return Tmp; + } + + Tmp = DAG.getConstant(0, dl, VT); + for (unsigned I = 0, J = Sz-1; I < Sz; ++I, --J) { + if (I < J) + Tmp2 = + DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(J - I, dl, SHVT)); + else + Tmp2 = + DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(I - J, dl, SHVT)); + + APInt Shift = APInt::getOneBitSet(Sz, J); + Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Shift, dl, VT)); + Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp, Tmp2); + } + + return Tmp; +} + +SDValue TargetLowering::expandVPBITREVERSE(SDNode *N, SelectionDAG &DAG) const { + assert(N->getOpcode() == ISD::VP_BITREVERSE); + + SDLoc dl(N); + EVT VT = N->getValueType(0); + SDValue Op = N->getOperand(0); + SDValue Mask = N->getOperand(1); + SDValue EVL = N->getOperand(2); + EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout()); + unsigned Sz = VT.getScalarSizeInBits(); + + SDValue Tmp, Tmp2, Tmp3; + + // If we can, perform BSWAP first and then the mask+swap the i4, then i2 + // and finally the i1 pairs. + // TODO: We can easily support i4/i2 legal types if any target ever does. + if (Sz >= 8 && isPowerOf2_32(Sz)) { + // Create the masks - repeating the pattern every byte. + APInt Mask4 = APInt::getSplat(Sz, APInt(8, 0x0F)); + APInt Mask2 = APInt::getSplat(Sz, APInt(8, 0x33)); + APInt Mask1 = APInt::getSplat(Sz, APInt(8, 0x55)); + + // BSWAP if the type is wider than a single byte. + Tmp = (Sz > 8 ? DAG.getNode(ISD::VP_BSWAP, dl, VT, Op, Mask, EVL) : Op); + + // swap i4: ((V >> 4) & 0x0F) | ((V & 0x0F) << 4) + Tmp2 = DAG.getNode(ISD::VP_SRL, dl, VT, Tmp, DAG.getConstant(4, dl, SHVT), + Mask, EVL); + Tmp2 = DAG.getNode(ISD::VP_AND, dl, VT, Tmp2, + DAG.getConstant(Mask4, dl, VT), Mask, EVL); + Tmp3 = DAG.getNode(ISD::VP_AND, dl, VT, Tmp, DAG.getConstant(Mask4, dl, VT), + Mask, EVL); + Tmp3 = DAG.getNode(ISD::VP_SHL, dl, VT, Tmp3, DAG.getConstant(4, dl, SHVT), + Mask, EVL); + Tmp = DAG.getNode(ISD::VP_OR, dl, VT, Tmp2, Tmp3, Mask, EVL); + + // swap i2: ((V >> 2) & 0x33) | ((V & 0x33) << 2) + Tmp2 = DAG.getNode(ISD::VP_SRL, dl, VT, Tmp, DAG.getConstant(2, dl, SHVT), + Mask, EVL); + Tmp2 = DAG.getNode(ISD::VP_AND, dl, VT, Tmp2, + DAG.getConstant(Mask2, dl, VT), Mask, EVL); + Tmp3 = DAG.getNode(ISD::VP_AND, dl, VT, Tmp, DAG.getConstant(Mask2, dl, VT), + Mask, EVL); + Tmp3 = DAG.getNode(ISD::VP_SHL, dl, VT, Tmp3, DAG.getConstant(2, dl, SHVT), + Mask, EVL); + Tmp = DAG.getNode(ISD::VP_OR, dl, VT, Tmp2, Tmp3, Mask, EVL); + + // swap i1: ((V >> 1) & 0x55) | ((V & 0x55) << 1) + Tmp2 = DAG.getNode(ISD::VP_SRL, dl, VT, Tmp, DAG.getConstant(1, dl, SHVT), + Mask, EVL); + Tmp2 = DAG.getNode(ISD::VP_AND, dl, VT, Tmp2, + DAG.getConstant(Mask1, dl, VT), Mask, EVL); + Tmp3 = DAG.getNode(ISD::VP_AND, dl, VT, Tmp, DAG.getConstant(Mask1, dl, VT), + Mask, EVL); + Tmp3 = DAG.getNode(ISD::VP_SHL, dl, VT, Tmp3, DAG.getConstant(1, dl, SHVT), + Mask, EVL); + Tmp = DAG.getNode(ISD::VP_OR, dl, VT, Tmp2, Tmp3, Mask, EVL); + return Tmp; + } + return SDValue(); +} + +std::pair<SDValue, SDValue> +TargetLowering::scalarizeVectorLoad(LoadSDNode *LD, + SelectionDAG &DAG) const { + SDLoc SL(LD); + SDValue Chain = LD->getChain(); + SDValue BasePTR = LD->getBasePtr(); + EVT SrcVT = LD->getMemoryVT(); + EVT DstVT = LD->getValueType(0); + ISD::LoadExtType ExtType = LD->getExtensionType(); + + if (SrcVT.isScalableVector()) + report_fatal_error("Cannot scalarize scalable vector loads"); + + unsigned NumElem = SrcVT.getVectorNumElements(); + + EVT SrcEltVT = SrcVT.getScalarType(); + EVT DstEltVT = DstVT.getScalarType(); + + // A vector must always be stored in memory as-is, i.e. without any padding + // between the elements, since various code depend on it, e.g. in the + // handling of a bitcast of a vector type to int, which may be done with a + // vector store followed by an integer load. A vector that does not have + // elements that are byte-sized must therefore be stored as an integer + // built out of the extracted vector elements. + if (!SrcEltVT.isByteSized()) { + unsigned NumLoadBits = SrcVT.getStoreSizeInBits(); + EVT LoadVT = EVT::getIntegerVT(*DAG.getContext(), NumLoadBits); + + unsigned NumSrcBits = SrcVT.getSizeInBits(); + EVT SrcIntVT = EVT::getIntegerVT(*DAG.getContext(), NumSrcBits); + + unsigned SrcEltBits = SrcEltVT.getSizeInBits(); + SDValue SrcEltBitMask = DAG.getConstant( + APInt::getLowBitsSet(NumLoadBits, SrcEltBits), SL, LoadVT); + + // Load the whole vector and avoid masking off the top bits as it makes + // the codegen worse. + SDValue Load = + DAG.getExtLoad(ISD::EXTLOAD, SL, LoadVT, Chain, BasePTR, + LD->getPointerInfo(), SrcIntVT, LD->getOriginalAlign(), + LD->getMemOperand()->getFlags(), LD->getAAInfo()); + + SmallVector<SDValue, 8> Vals; + for (unsigned Idx = 0; Idx < NumElem; ++Idx) { + unsigned ShiftIntoIdx = + (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx); + SDValue ShiftAmount = DAG.getShiftAmountConstant( + ShiftIntoIdx * SrcEltVT.getSizeInBits(), LoadVT, SL); + SDValue ShiftedElt = DAG.getNode(ISD::SRL, SL, LoadVT, Load, ShiftAmount); + SDValue Elt = + DAG.getNode(ISD::AND, SL, LoadVT, ShiftedElt, SrcEltBitMask); + SDValue Scalar = DAG.getNode(ISD::TRUNCATE, SL, SrcEltVT, Elt); + + if (ExtType != ISD::NON_EXTLOAD) { + unsigned ExtendOp = ISD::getExtForLoadExtType(false, ExtType); + Scalar = DAG.getNode(ExtendOp, SL, DstEltVT, Scalar); + } + + Vals.push_back(Scalar); + } + + SDValue Value = DAG.getBuildVector(DstVT, SL, Vals); + return std::make_pair(Value, Load.getValue(1)); + } + + unsigned Stride = SrcEltVT.getSizeInBits() / 8; + assert(SrcEltVT.isByteSized()); + + SmallVector<SDValue, 8> Vals; + SmallVector<SDValue, 8> LoadChains; + + for (unsigned Idx = 0; Idx < NumElem; ++Idx) { + SDValue ScalarLoad = + DAG.getExtLoad(ExtType, SL, DstEltVT, Chain, BasePTR, + LD->getPointerInfo().getWithOffset(Idx * Stride), + SrcEltVT, LD->getOriginalAlign(), + LD->getMemOperand()->getFlags(), LD->getAAInfo()); + + BasePTR = DAG.getObjectPtrOffset(SL, BasePTR, TypeSize::getFixed(Stride)); + + Vals.push_back(ScalarLoad.getValue(0)); + LoadChains.push_back(ScalarLoad.getValue(1)); + } + + SDValue NewChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoadChains); + SDValue Value = DAG.getBuildVector(DstVT, SL, Vals); + + return std::make_pair(Value, NewChain); +} + +SDValue TargetLowering::scalarizeVectorStore(StoreSDNode *ST, + SelectionDAG &DAG) const { + SDLoc SL(ST); + + SDValue Chain = ST->getChain(); + SDValue BasePtr = ST->getBasePtr(); + SDValue Value = ST->getValue(); + EVT StVT = ST->getMemoryVT(); + + if (StVT.isScalableVector()) + report_fatal_error("Cannot scalarize scalable vector stores"); + + // The type of the data we want to save + EVT RegVT = Value.getValueType(); + EVT RegSclVT = RegVT.getScalarType(); + + // The type of data as saved in memory. + EVT MemSclVT = StVT.getScalarType(); + + unsigned NumElem = StVT.getVectorNumElements(); + + // A vector must always be stored in memory as-is, i.e. without any padding + // between the elements, since various code depend on it, e.g. in the + // handling of a bitcast of a vector type to int, which may be done with a + // vector store followed by an integer load. A vector that does not have + // elements that are byte-sized must therefore be stored as an integer + // built out of the extracted vector elements. + if (!MemSclVT.isByteSized()) { + unsigned NumBits = StVT.getSizeInBits(); + EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), NumBits); + + SDValue CurrVal = DAG.getConstant(0, SL, IntVT); + + for (unsigned Idx = 0; Idx < NumElem; ++Idx) { + SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value, + DAG.getVectorIdxConstant(Idx, SL)); + SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MemSclVT, Elt); + SDValue ExtElt = DAG.getNode(ISD::ZERO_EXTEND, SL, IntVT, Trunc); + unsigned ShiftIntoIdx = + (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx); + SDValue ShiftAmount = + DAG.getConstant(ShiftIntoIdx * MemSclVT.getSizeInBits(), SL, IntVT); + SDValue ShiftedElt = + DAG.getNode(ISD::SHL, SL, IntVT, ExtElt, ShiftAmount); + CurrVal = DAG.getNode(ISD::OR, SL, IntVT, CurrVal, ShiftedElt); + } + + return DAG.getStore(Chain, SL, CurrVal, BasePtr, ST->getPointerInfo(), + ST->getOriginalAlign(), ST->getMemOperand()->getFlags(), + ST->getAAInfo()); + } + + // Store Stride in bytes + unsigned Stride = MemSclVT.getSizeInBits() / 8; + assert(Stride && "Zero stride!"); + // Extract each of the elements from the original vector and save them into + // memory individually. + SmallVector<SDValue, 8> Stores; + for (unsigned Idx = 0; Idx < NumElem; ++Idx) { + SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value, + DAG.getVectorIdxConstant(Idx, SL)); + + SDValue Ptr = + DAG.getObjectPtrOffset(SL, BasePtr, TypeSize::getFixed(Idx * Stride)); + + // This scalar TruncStore may be illegal, but we legalize it later. + SDValue Store = DAG.getTruncStore( + Chain, SL, Elt, Ptr, ST->getPointerInfo().getWithOffset(Idx * Stride), + MemSclVT, ST->getOriginalAlign(), ST->getMemOperand()->getFlags(), + ST->getAAInfo()); + + Stores.push_back(Store); + } + + return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Stores); +} + +std::pair<SDValue, SDValue> +TargetLowering::expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const { + assert(LD->getAddressingMode() == ISD::UNINDEXED && + "unaligned indexed loads not implemented!"); + SDValue Chain = LD->getChain(); + SDValue Ptr = LD->getBasePtr(); + EVT VT = LD->getValueType(0); + EVT LoadedVT = LD->getMemoryVT(); + SDLoc dl(LD); + auto &MF = DAG.getMachineFunction(); + + if (VT.isFloatingPoint() || VT.isVector()) { + EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits()); + if (isTypeLegal(intVT) && isTypeLegal(LoadedVT)) { + if (!isOperationLegalOrCustom(ISD::LOAD, intVT) && + LoadedVT.isVector()) { + // Scalarize the load and let the individual components be handled. + return scalarizeVectorLoad(LD, DAG); + } + + // Expand to a (misaligned) integer load of the same size, + // then bitconvert to floating point or vector. + SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr, + LD->getMemOperand()); + SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad); + if (LoadedVT != VT) + Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND : + ISD::ANY_EXTEND, dl, VT, Result); + + return std::make_pair(Result, newLoad.getValue(1)); + } + + // Copy the value to a (aligned) stack slot using (unaligned) integer + // loads and stores, then do a (aligned) load from the stack slot. + MVT RegVT = getRegisterType(*DAG.getContext(), intVT); + unsigned LoadedBytes = LoadedVT.getStoreSize(); + unsigned RegBytes = RegVT.getSizeInBits() / 8; + unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes; + + // Make sure the stack slot is also aligned for the register type. + SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT); + auto FrameIndex = cast<FrameIndexSDNode>(StackBase.getNode())->getIndex(); + SmallVector<SDValue, 8> Stores; + SDValue StackPtr = StackBase; + unsigned Offset = 0; + + EVT PtrVT = Ptr.getValueType(); + EVT StackPtrVT = StackPtr.getValueType(); + + SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT); + SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT); + + // Do all but one copies using the full register width. + for (unsigned i = 1; i < NumRegs; i++) { + // Load one integer register's worth from the original location. + SDValue Load = DAG.getLoad( + RegVT, dl, Chain, Ptr, LD->getPointerInfo().getWithOffset(Offset), + LD->getOriginalAlign(), LD->getMemOperand()->getFlags(), + LD->getAAInfo()); + // Follow the load with a store to the stack slot. Remember the store. + Stores.push_back(DAG.getStore( + Load.getValue(1), dl, Load, StackPtr, + MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset))); + // Increment the pointers. + Offset += RegBytes; + + Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement); + StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement); + } + + // The last copy may be partial. Do an extending load. + EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), + 8 * (LoadedBytes - Offset)); + SDValue Load = + DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr, + LD->getPointerInfo().getWithOffset(Offset), MemVT, + LD->getOriginalAlign(), LD->getMemOperand()->getFlags(), + LD->getAAInfo()); + // Follow the load with a store to the stack slot. Remember the store. + // On big-endian machines this requires a truncating store to ensure + // that the bits end up in the right place. + Stores.push_back(DAG.getTruncStore( + Load.getValue(1), dl, Load, StackPtr, + MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), MemVT)); + + // The order of the stores doesn't matter - say it with a TokenFactor. + SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); + + // Finally, perform the original load only redirected to the stack slot. + Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase, + MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), + LoadedVT); + + // Callers expect a MERGE_VALUES node. + return std::make_pair(Load, TF); + } + + assert(LoadedVT.isInteger() && !LoadedVT.isVector() && + "Unaligned load of unsupported type."); + + // Compute the new VT that is half the size of the old one. This is an + // integer MVT. + unsigned NumBits = LoadedVT.getSizeInBits(); + EVT NewLoadedVT; + NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2); + NumBits >>= 1; + + Align Alignment = LD->getOriginalAlign(); + unsigned IncrementSize = NumBits / 8; + ISD::LoadExtType HiExtType = LD->getExtensionType(); + + // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD. + if (HiExtType == ISD::NON_EXTLOAD) + HiExtType = ISD::ZEXTLOAD; + + // Load the value in two parts + SDValue Lo, Hi; + if (DAG.getDataLayout().isLittleEndian()) { + Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(), + NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), + LD->getAAInfo()); + + Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::getFixed(IncrementSize)); + Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, + LD->getPointerInfo().getWithOffset(IncrementSize), + NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), + LD->getAAInfo()); + } else { + Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(), + NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), + LD->getAAInfo()); + + Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::getFixed(IncrementSize)); + Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, + LD->getPointerInfo().getWithOffset(IncrementSize), + NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), + LD->getAAInfo()); + } + + // aggregate the two parts + SDValue ShiftAmount = DAG.getShiftAmountConstant(NumBits, VT, dl); + SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount); + Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo); + + SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), + Hi.getValue(1)); + + return std::make_pair(Result, TF); +} + +SDValue TargetLowering::expandUnalignedStore(StoreSDNode *ST, + SelectionDAG &DAG) const { + assert(ST->getAddressingMode() == ISD::UNINDEXED && + "unaligned indexed stores not implemented!"); + SDValue Chain = ST->getChain(); + SDValue Ptr = ST->getBasePtr(); + SDValue Val = ST->getValue(); + EVT VT = Val.getValueType(); + Align Alignment = ST->getOriginalAlign(); + auto &MF = DAG.getMachineFunction(); + EVT StoreMemVT = ST->getMemoryVT(); + + SDLoc dl(ST); + if (StoreMemVT.isFloatingPoint() || StoreMemVT.isVector()) { + EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits()); + if (isTypeLegal(intVT)) { + if (!isOperationLegalOrCustom(ISD::STORE, intVT) && + StoreMemVT.isVector()) { + // Scalarize the store and let the individual components be handled. + SDValue Result = scalarizeVectorStore(ST, DAG); + return Result; + } + // Expand to a bitconvert of the value to the integer type of the + // same size, then a (misaligned) int store. + // FIXME: Does not handle truncating floating point stores! + SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val); + Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(), + Alignment, ST->getMemOperand()->getFlags()); + return Result; + } + // Do a (aligned) store to a stack slot, then copy from the stack slot + // to the final destination using (unaligned) integer loads and stores. + MVT RegVT = getRegisterType( + *DAG.getContext(), + EVT::getIntegerVT(*DAG.getContext(), StoreMemVT.getSizeInBits())); + EVT PtrVT = Ptr.getValueType(); + unsigned StoredBytes = StoreMemVT.getStoreSize(); + unsigned RegBytes = RegVT.getSizeInBits() / 8; + unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes; + + // Make sure the stack slot is also aligned for the register type. + SDValue StackPtr = DAG.CreateStackTemporary(StoreMemVT, RegVT); + auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); + + // Perform the original store, only redirected to the stack slot. + SDValue Store = DAG.getTruncStore( + Chain, dl, Val, StackPtr, + MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), StoreMemVT); + + EVT StackPtrVT = StackPtr.getValueType(); + + SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT); + SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT); + SmallVector<SDValue, 8> Stores; + unsigned Offset = 0; + + // Do all but one copies using the full register width. + for (unsigned i = 1; i < NumRegs; i++) { + // Load one integer register's worth from the stack slot. + SDValue Load = DAG.getLoad( + RegVT, dl, Store, StackPtr, + MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset)); + // Store it to the final location. Remember the store. + Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr, + ST->getPointerInfo().getWithOffset(Offset), + ST->getOriginalAlign(), + ST->getMemOperand()->getFlags())); + // Increment the pointers. + Offset += RegBytes; + StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement); + Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement); + } + + // The last store may be partial. Do a truncating store. On big-endian + // machines this requires an extending load from the stack slot to ensure + // that the bits are in the right place. + EVT LoadMemVT = + EVT::getIntegerVT(*DAG.getContext(), 8 * (StoredBytes - Offset)); + + // Load from the stack slot. + SDValue Load = DAG.getExtLoad( + ISD::EXTLOAD, dl, RegVT, Store, StackPtr, + MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), LoadMemVT); + + Stores.push_back( + DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr, + ST->getPointerInfo().getWithOffset(Offset), LoadMemVT, + ST->getOriginalAlign(), + ST->getMemOperand()->getFlags(), ST->getAAInfo())); + // The order of the stores doesn't matter - say it with a TokenFactor. + SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); + return Result; + } + + assert(StoreMemVT.isInteger() && !StoreMemVT.isVector() && + "Unaligned store of unknown type."); + // Get the half-size VT + EVT NewStoredVT = StoreMemVT.getHalfSizedIntegerVT(*DAG.getContext()); + unsigned NumBits = NewStoredVT.getFixedSizeInBits(); + unsigned IncrementSize = NumBits / 8; + + // Divide the stored value in two parts. + SDValue ShiftAmount = + DAG.getShiftAmountConstant(NumBits, Val.getValueType(), dl); + SDValue Lo = Val; + // If Val is a constant, replace the upper bits with 0. The SRL will constant + // fold and not use the upper bits. A smaller constant may be easier to + // materialize. + if (auto *C = dyn_cast<ConstantSDNode>(Lo); C && !C->isOpaque()) + Lo = DAG.getNode( + ISD::AND, dl, VT, Lo, + DAG.getConstant(APInt::getLowBitsSet(VT.getSizeInBits(), NumBits), dl, + VT)); + SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount); + + // Store the two parts + SDValue Store1, Store2; + Store1 = DAG.getTruncStore(Chain, dl, + DAG.getDataLayout().isLittleEndian() ? Lo : Hi, + Ptr, ST->getPointerInfo(), NewStoredVT, Alignment, + ST->getMemOperand()->getFlags()); + + Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::getFixed(IncrementSize)); + Store2 = DAG.getTruncStore( + Chain, dl, DAG.getDataLayout().isLittleEndian() ? Hi : Lo, Ptr, + ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT, Alignment, + ST->getMemOperand()->getFlags(), ST->getAAInfo()); + + SDValue Result = + DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2); + return Result; +} + +SDValue +TargetLowering::IncrementMemoryAddress(SDValue Addr, SDValue Mask, + const SDLoc &DL, EVT DataVT, + SelectionDAG &DAG, + bool IsCompressedMemory) const { + SDValue Increment; + EVT AddrVT = Addr.getValueType(); + EVT MaskVT = Mask.getValueType(); + assert(DataVT.getVectorElementCount() == MaskVT.getVectorElementCount() && + "Incompatible types of Data and Mask"); + if (IsCompressedMemory) { + if (DataVT.isScalableVector()) + report_fatal_error( + "Cannot currently handle compressed memory with scalable vectors"); + // Incrementing the pointer according to number of '1's in the mask. + EVT MaskIntVT = EVT::getIntegerVT(*DAG.getContext(), MaskVT.getSizeInBits()); + SDValue MaskInIntReg = DAG.getBitcast(MaskIntVT, Mask); + if (MaskIntVT.getSizeInBits() < 32) { + MaskInIntReg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, MaskInIntReg); + MaskIntVT = MVT::i32; + } + + // Count '1's with POPCNT. + Increment = DAG.getNode(ISD::CTPOP, DL, MaskIntVT, MaskInIntReg); + Increment = DAG.getZExtOrTrunc(Increment, DL, AddrVT); + // Scale is an element size in bytes. + SDValue Scale = DAG.getConstant(DataVT.getScalarSizeInBits() / 8, DL, + AddrVT); + Increment = DAG.getNode(ISD::MUL, DL, AddrVT, Increment, Scale); + } else if (DataVT.isScalableVector()) { + Increment = DAG.getVScale(DL, AddrVT, + APInt(AddrVT.getFixedSizeInBits(), + DataVT.getStoreSize().getKnownMinValue())); + } else + Increment = DAG.getConstant(DataVT.getStoreSize(), DL, AddrVT); + + return DAG.getNode(ISD::ADD, DL, AddrVT, Addr, Increment); +} + +static SDValue clampDynamicVectorIndex(SelectionDAG &DAG, SDValue Idx, + EVT VecVT, const SDLoc &dl, + ElementCount SubEC) { + assert(!(SubEC.isScalable() && VecVT.isFixedLengthVector()) && + "Cannot index a scalable vector within a fixed-width vector"); + + unsigned NElts = VecVT.getVectorMinNumElements(); + unsigned NumSubElts = SubEC.getKnownMinValue(); + EVT IdxVT = Idx.getValueType(); + + if (VecVT.isScalableVector() && !SubEC.isScalable()) { + // If this is a constant index and we know the value plus the number of the + // elements in the subvector minus one is less than the minimum number of + // elements then it's safe to return Idx. + if (auto *IdxCst = dyn_cast<ConstantSDNode>(Idx)) + if (IdxCst->getZExtValue() + (NumSubElts - 1) < NElts) + return Idx; + SDValue VS = + DAG.getVScale(dl, IdxVT, APInt(IdxVT.getFixedSizeInBits(), NElts)); + unsigned SubOpcode = NumSubElts <= NElts ? ISD::SUB : ISD::USUBSAT; + SDValue Sub = DAG.getNode(SubOpcode, dl, IdxVT, VS, + DAG.getConstant(NumSubElts, dl, IdxVT)); + return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx, Sub); + } + if (isPowerOf2_32(NElts) && NumSubElts == 1) { + APInt Imm = APInt::getLowBitsSet(IdxVT.getSizeInBits(), Log2_32(NElts)); + return DAG.getNode(ISD::AND, dl, IdxVT, Idx, + DAG.getConstant(Imm, dl, IdxVT)); + } + unsigned MaxIndex = NumSubElts < NElts ? NElts - NumSubElts : 0; + return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx, + DAG.getConstant(MaxIndex, dl, IdxVT)); +} + +SDValue TargetLowering::getVectorElementPointer(SelectionDAG &DAG, + SDValue VecPtr, EVT VecVT, + SDValue Index) const { + return getVectorSubVecPointer( + DAG, VecPtr, VecVT, + EVT::getVectorVT(*DAG.getContext(), VecVT.getVectorElementType(), 1), + Index); +} + +SDValue TargetLowering::getVectorSubVecPointer(SelectionDAG &DAG, + SDValue VecPtr, EVT VecVT, + EVT SubVecVT, + SDValue Index) const { + SDLoc dl(Index); + // Make sure the index type is big enough to compute in. + Index = DAG.getZExtOrTrunc(Index, dl, VecPtr.getValueType()); + + EVT EltVT = VecVT.getVectorElementType(); + + // Calculate the element offset and add it to the pointer. + unsigned EltSize = EltVT.getFixedSizeInBits() / 8; // FIXME: should be ABI size. + assert(EltSize * 8 == EltVT.getFixedSizeInBits() && + "Converting bits to bytes lost precision"); + assert(SubVecVT.getVectorElementType() == EltVT && + "Sub-vector must be a vector with matching element type"); + Index = clampDynamicVectorIndex(DAG, Index, VecVT, dl, + SubVecVT.getVectorElementCount()); + + EVT IdxVT = Index.getValueType(); + if (SubVecVT.isScalableVector()) + Index = + DAG.getNode(ISD::MUL, dl, IdxVT, Index, + DAG.getVScale(dl, IdxVT, APInt(IdxVT.getSizeInBits(), 1))); + + Index = DAG.getNode(ISD::MUL, dl, IdxVT, Index, + DAG.getConstant(EltSize, dl, IdxVT)); + return DAG.getMemBasePlusOffset(VecPtr, Index, dl); +} + +//===----------------------------------------------------------------------===// +// Implementation of Emulated TLS Model +//===----------------------------------------------------------------------===// + +SDValue TargetLowering::LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA, + SelectionDAG &DAG) const { + // Access to address of TLS varialbe xyz is lowered to a function call: + // __emutls_get_address( address of global variable named "__emutls_v.xyz" ) + EVT PtrVT = getPointerTy(DAG.getDataLayout()); + PointerType *VoidPtrType = PointerType::get(*DAG.getContext(), 0); + SDLoc dl(GA); + + ArgListTy Args; + ArgListEntry Entry; + std::string NameString = ("__emutls_v." + GA->getGlobal()->getName()).str(); + Module *VariableModule = const_cast<Module*>(GA->getGlobal()->getParent()); + StringRef EmuTlsVarName(NameString); + GlobalVariable *EmuTlsVar = VariableModule->getNamedGlobal(EmuTlsVarName); + assert(EmuTlsVar && "Cannot find EmuTlsVar "); + Entry.Node = DAG.getGlobalAddress(EmuTlsVar, dl, PtrVT); + Entry.Ty = VoidPtrType; + Args.push_back(Entry); + + SDValue EmuTlsGetAddr = DAG.getExternalSymbol("__emutls_get_address", PtrVT); + + TargetLowering::CallLoweringInfo CLI(DAG); + CLI.setDebugLoc(dl).setChain(DAG.getEntryNode()); + CLI.setLibCallee(CallingConv::C, VoidPtrType, EmuTlsGetAddr, std::move(Args)); + std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); + + // TLSADDR will be codegen'ed as call. Inform MFI that function has calls. + // At last for X86 targets, maybe good for other targets too? + MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); + MFI.setAdjustsStack(true); // Is this only for X86 target? + MFI.setHasCalls(true); + + assert((GA->getOffset() == 0) && + "Emulated TLS must have zero offset in GlobalAddressSDNode"); + return CallResult.first; +} + +SDValue TargetLowering::lowerCmpEqZeroToCtlzSrl(SDValue Op, + SelectionDAG &DAG) const { + assert((Op->getOpcode() == ISD::SETCC) && "Input has to be a SETCC node."); + if (!isCtlzFast()) + return SDValue(); + ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); + SDLoc dl(Op); + if (isNullConstant(Op.getOperand(1)) && CC == ISD::SETEQ) { + EVT VT = Op.getOperand(0).getValueType(); + SDValue Zext = Op.getOperand(0); + if (VT.bitsLT(MVT::i32)) { + VT = MVT::i32; + Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0)); + } + unsigned Log2b = Log2_32(VT.getSizeInBits()); + SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext); + SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz, + DAG.getConstant(Log2b, dl, MVT::i32)); + return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc); + } + return SDValue(); +} + +SDValue TargetLowering::expandIntMINMAX(SDNode *Node, SelectionDAG &DAG) const { + SDValue Op0 = Node->getOperand(0); + SDValue Op1 = Node->getOperand(1); + EVT VT = Op0.getValueType(); + EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); + unsigned Opcode = Node->getOpcode(); + SDLoc DL(Node); + + // umax(x,1) --> sub(x,cmpeq(x,0)) iff cmp result is allbits + if (Opcode == ISD::UMAX && llvm::isOneOrOneSplat(Op1, true) && BoolVT == VT && + getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) { + Op0 = DAG.getFreeze(Op0); + SDValue Zero = DAG.getConstant(0, DL, VT); + return DAG.getNode(ISD::SUB, DL, VT, Op0, + DAG.getSetCC(DL, VT, Op0, Zero, ISD::SETEQ)); + } + + // umin(x,y) -> sub(x,usubsat(x,y)) + // TODO: Missing freeze(Op0)? + if (Opcode == ISD::UMIN && isOperationLegal(ISD::SUB, VT) && + isOperationLegal(ISD::USUBSAT, VT)) { + return DAG.getNode(ISD::SUB, DL, VT, Op0, + DAG.getNode(ISD::USUBSAT, DL, VT, Op0, Op1)); + } + + // umax(x,y) -> add(x,usubsat(y,x)) + // TODO: Missing freeze(Op0)? + if (Opcode == ISD::UMAX && isOperationLegal(ISD::ADD, VT) && + isOperationLegal(ISD::USUBSAT, VT)) { + return DAG.getNode(ISD::ADD, DL, VT, Op0, + DAG.getNode(ISD::USUBSAT, DL, VT, Op1, Op0)); + } + + // FIXME: Should really try to split the vector in case it's legal on a + // subvector. + if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT)) + return DAG.UnrollVectorOp(Node); + + // Attempt to find an existing SETCC node that we can reuse. + // TODO: Do we need a generic doesSETCCNodeExist? + // TODO: Missing freeze(Op0)/freeze(Op1)? + auto buildMinMax = [&](ISD::CondCode PrefCC, ISD::CondCode AltCC, + ISD::CondCode PrefCommuteCC, + ISD::CondCode AltCommuteCC) { + SDVTList BoolVTList = DAG.getVTList(BoolVT); + for (ISD::CondCode CC : {PrefCC, AltCC}) { + if (DAG.doesNodeExist(ISD::SETCC, BoolVTList, + {Op0, Op1, DAG.getCondCode(CC)})) { + SDValue Cond = DAG.getSetCC(DL, BoolVT, Op0, Op1, CC); + return DAG.getSelect(DL, VT, Cond, Op0, Op1); + } + } + for (ISD::CondCode CC : {PrefCommuteCC, AltCommuteCC}) { + if (DAG.doesNodeExist(ISD::SETCC, BoolVTList, + {Op0, Op1, DAG.getCondCode(CC)})) { + SDValue Cond = DAG.getSetCC(DL, BoolVT, Op0, Op1, CC); + return DAG.getSelect(DL, VT, Cond, Op1, Op0); + } + } + SDValue Cond = DAG.getSetCC(DL, BoolVT, Op0, Op1, PrefCC); + return DAG.getSelect(DL, VT, Cond, Op0, Op1); + }; + + // Expand Y = MAX(A, B) -> Y = (A > B) ? A : B + // -> Y = (A < B) ? B : A + // -> Y = (A >= B) ? A : B + // -> Y = (A <= B) ? B : A + switch (Opcode) { + case ISD::SMAX: + return buildMinMax(ISD::SETGT, ISD::SETGE, ISD::SETLT, ISD::SETLE); + case ISD::SMIN: + return buildMinMax(ISD::SETLT, ISD::SETLE, ISD::SETGT, ISD::SETGE); + case ISD::UMAX: + return buildMinMax(ISD::SETUGT, ISD::SETUGE, ISD::SETULT, ISD::SETULE); + case ISD::UMIN: + return buildMinMax(ISD::SETULT, ISD::SETULE, ISD::SETUGT, ISD::SETUGE); + } + + llvm_unreachable("How did we get here?"); +} + +SDValue TargetLowering::expandAddSubSat(SDNode *Node, SelectionDAG &DAG) const { + unsigned Opcode = Node->getOpcode(); + SDValue LHS = Node->getOperand(0); + SDValue RHS = Node->getOperand(1); + EVT VT = LHS.getValueType(); + SDLoc dl(Node); + + assert(VT == RHS.getValueType() && "Expected operands to be the same type"); + assert(VT.isInteger() && "Expected operands to be integers"); + + // usub.sat(a, b) -> umax(a, b) - b + if (Opcode == ISD::USUBSAT && isOperationLegal(ISD::UMAX, VT)) { + SDValue Max = DAG.getNode(ISD::UMAX, dl, VT, LHS, RHS); + return DAG.getNode(ISD::SUB, dl, VT, Max, RHS); + } + + // uadd.sat(a, b) -> umin(a, ~b) + b + if (Opcode == ISD::UADDSAT && isOperationLegal(ISD::UMIN, VT)) { + SDValue InvRHS = DAG.getNOT(dl, RHS, VT); + SDValue Min = DAG.getNode(ISD::UMIN, dl, VT, LHS, InvRHS); + return DAG.getNode(ISD::ADD, dl, VT, Min, RHS); + } + + unsigned OverflowOp; + switch (Opcode) { + case ISD::SADDSAT: + OverflowOp = ISD::SADDO; + break; + case ISD::UADDSAT: + OverflowOp = ISD::UADDO; + break; + case ISD::SSUBSAT: + OverflowOp = ISD::SSUBO; + break; + case ISD::USUBSAT: + OverflowOp = ISD::USUBO; + break; + default: + llvm_unreachable("Expected method to receive signed or unsigned saturation " + "addition or subtraction node."); + } + + // FIXME: Should really try to split the vector in case it's legal on a + // subvector. + if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT)) + return DAG.UnrollVectorOp(Node); + + unsigned BitWidth = LHS.getScalarValueSizeInBits(); + EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); + SDValue Result = DAG.getNode(OverflowOp, dl, DAG.getVTList(VT, BoolVT), LHS, RHS); + SDValue SumDiff = Result.getValue(0); + SDValue Overflow = Result.getValue(1); + SDValue Zero = DAG.getConstant(0, dl, VT); + SDValue AllOnes = DAG.getAllOnesConstant(dl, VT); + + if (Opcode == ISD::UADDSAT) { + if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) { + // (LHS + RHS) | OverflowMask + SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT); + return DAG.getNode(ISD::OR, dl, VT, SumDiff, OverflowMask); + } + // Overflow ? 0xffff.... : (LHS + RHS) + return DAG.getSelect(dl, VT, Overflow, AllOnes, SumDiff); + } + + if (Opcode == ISD::USUBSAT) { + if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) { + // (LHS - RHS) & ~OverflowMask + SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT); + SDValue Not = DAG.getNOT(dl, OverflowMask, VT); + return DAG.getNode(ISD::AND, dl, VT, SumDiff, Not); + } + // Overflow ? 0 : (LHS - RHS) + return DAG.getSelect(dl, VT, Overflow, Zero, SumDiff); + } + + if (Opcode == ISD::SADDSAT || Opcode == ISD::SSUBSAT) { + APInt MinVal = APInt::getSignedMinValue(BitWidth); + APInt MaxVal = APInt::getSignedMaxValue(BitWidth); + + KnownBits KnownLHS = DAG.computeKnownBits(LHS); + KnownBits KnownRHS = DAG.computeKnownBits(RHS); + + // If either of the operand signs are known, then they are guaranteed to + // only saturate in one direction. If non-negative they will saturate + // towards SIGNED_MAX, if negative they will saturate towards SIGNED_MIN. + // + // In the case of ISD::SSUBSAT, 'x - y' is equivalent to 'x + (-y)', so the + // sign of 'y' has to be flipped. + + bool LHSIsNonNegative = KnownLHS.isNonNegative(); + bool RHSIsNonNegative = Opcode == ISD::SADDSAT ? KnownRHS.isNonNegative() + : KnownRHS.isNegative(); + if (LHSIsNonNegative || RHSIsNonNegative) { + SDValue SatMax = DAG.getConstant(MaxVal, dl, VT); + return DAG.getSelect(dl, VT, Overflow, SatMax, SumDiff); + } + + bool LHSIsNegative = KnownLHS.isNegative(); + bool RHSIsNegative = Opcode == ISD::SADDSAT ? KnownRHS.isNegative() + : KnownRHS.isNonNegative(); + if (LHSIsNegative || RHSIsNegative) { + SDValue SatMin = DAG.getConstant(MinVal, dl, VT); + return DAG.getSelect(dl, VT, Overflow, SatMin, SumDiff); + } + } + + // Overflow ? (SumDiff >> BW) ^ MinVal : SumDiff + APInt MinVal = APInt::getSignedMinValue(BitWidth); + SDValue SatMin = DAG.getConstant(MinVal, dl, VT); + SDValue Shift = DAG.getNode(ISD::SRA, dl, VT, SumDiff, + DAG.getConstant(BitWidth - 1, dl, VT)); + Result = DAG.getNode(ISD::XOR, dl, VT, Shift, SatMin); + return DAG.getSelect(dl, VT, Overflow, Result, SumDiff); +} + +SDValue TargetLowering::expandCMP(SDNode *Node, SelectionDAG &DAG) const { + unsigned Opcode = Node->getOpcode(); + SDValue LHS = Node->getOperand(0); + SDValue RHS = Node->getOperand(1); + EVT VT = LHS.getValueType(); + EVT ResVT = Node->getValueType(0); + EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); + SDLoc dl(Node); + + auto LTPredicate = (Opcode == ISD::UCMP ? ISD::SETULT : ISD::SETLT); + auto GTPredicate = (Opcode == ISD::UCMP ? ISD::SETUGT : ISD::SETGT); + SDValue IsLT = DAG.getSetCC(dl, BoolVT, LHS, RHS, LTPredicate); + SDValue IsGT = DAG.getSetCC(dl, BoolVT, LHS, RHS, GTPredicate); + + // We can't perform arithmetic on i1 values. Extending them would + // probably result in worse codegen, so let's just use two selects instead. + // Some targets are also just better off using selects rather than subtraction + // because one of the conditions can be merged with one of the selects. + // And finally, if we don't know the contents of high bits of a boolean value + // we can't perform any arithmetic either. + if (shouldExpandCmpUsingSelects() || BoolVT.getScalarSizeInBits() == 1 || + getBooleanContents(BoolVT) == UndefinedBooleanContent) { + SDValue SelectZeroOrOne = + DAG.getSelect(dl, ResVT, IsGT, DAG.getConstant(1, dl, ResVT), + DAG.getConstant(0, dl, ResVT)); + return DAG.getSelect(dl, ResVT, IsLT, DAG.getConstant(-1, dl, ResVT), + SelectZeroOrOne); + } + + if (getBooleanContents(BoolVT) == ZeroOrNegativeOneBooleanContent) + std::swap(IsGT, IsLT); + return DAG.getSExtOrTrunc(DAG.getNode(ISD::SUB, dl, BoolVT, IsGT, IsLT), dl, + ResVT); +} + +SDValue TargetLowering::expandShlSat(SDNode *Node, SelectionDAG &DAG) const { + unsigned Opcode = Node->getOpcode(); + bool IsSigned = Opcode == ISD::SSHLSAT; + SDValue LHS = Node->getOperand(0); + SDValue RHS = Node->getOperand(1); + EVT VT = LHS.getValueType(); + SDLoc dl(Node); + + assert((Node->getOpcode() == ISD::SSHLSAT || + Node->getOpcode() == ISD::USHLSAT) && + "Expected a SHLSAT opcode"); + assert(VT == RHS.getValueType() && "Expected operands to be the same type"); + assert(VT.isInteger() && "Expected operands to be integers"); + + if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT)) + return DAG.UnrollVectorOp(Node); + + // If LHS != (LHS << RHS) >> RHS, we have overflow and must saturate. + + unsigned BW = VT.getScalarSizeInBits(); + EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); + SDValue Result = DAG.getNode(ISD::SHL, dl, VT, LHS, RHS); + SDValue Orig = + DAG.getNode(IsSigned ? ISD::SRA : ISD::SRL, dl, VT, Result, RHS); + + SDValue SatVal; + if (IsSigned) { + SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(BW), dl, VT); + SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(BW), dl, VT); + SDValue Cond = + DAG.getSetCC(dl, BoolVT, LHS, DAG.getConstant(0, dl, VT), ISD::SETLT); + SatVal = DAG.getSelect(dl, VT, Cond, SatMin, SatMax); + } else { + SatVal = DAG.getConstant(APInt::getMaxValue(BW), dl, VT); + } + SDValue Cond = DAG.getSetCC(dl, BoolVT, LHS, Orig, ISD::SETNE); + return DAG.getSelect(dl, VT, Cond, SatVal, Result); +} + +void TargetLowering::forceExpandWideMUL(SelectionDAG &DAG, const SDLoc &dl, + bool Signed, EVT WideVT, + const SDValue LL, const SDValue LH, + const SDValue RL, const SDValue RH, + SDValue &Lo, SDValue &Hi) const { + // We can fall back to a libcall with an illegal type for the MUL if we + // have a libcall big enough. + // Also, we can fall back to a division in some cases, but that's a big + // performance hit in the general case. + RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; + if (WideVT == MVT::i16) + LC = RTLIB::MUL_I16; + else if (WideVT == MVT::i32) + LC = RTLIB::MUL_I32; + else if (WideVT == MVT::i64) + LC = RTLIB::MUL_I64; + else if (WideVT == MVT::i128) + LC = RTLIB::MUL_I128; + + if (LC == RTLIB::UNKNOWN_LIBCALL || !getLibcallName(LC)) { + // We'll expand the multiplication by brute force because we have no other + // options. This is a trivially-generalized version of the code from + // Hacker's Delight (itself derived from Knuth's Algorithm M from section + // 4.3.1). + EVT VT = LL.getValueType(); + unsigned Bits = VT.getSizeInBits(); + unsigned HalfBits = Bits >> 1; + SDValue Mask = + DAG.getConstant(APInt::getLowBitsSet(Bits, HalfBits), dl, VT); + SDValue LLL = DAG.getNode(ISD::AND, dl, VT, LL, Mask); + SDValue RLL = DAG.getNode(ISD::AND, dl, VT, RL, Mask); + + SDValue T = DAG.getNode(ISD::MUL, dl, VT, LLL, RLL); + SDValue TL = DAG.getNode(ISD::AND, dl, VT, T, Mask); + + SDValue Shift = DAG.getShiftAmountConstant(HalfBits, VT, dl); + SDValue TH = DAG.getNode(ISD::SRL, dl, VT, T, Shift); + SDValue LLH = DAG.getNode(ISD::SRL, dl, VT, LL, Shift); + SDValue RLH = DAG.getNode(ISD::SRL, dl, VT, RL, Shift); + + SDValue U = DAG.getNode(ISD::ADD, dl, VT, + DAG.getNode(ISD::MUL, dl, VT, LLH, RLL), TH); + SDValue UL = DAG.getNode(ISD::AND, dl, VT, U, Mask); + SDValue UH = DAG.getNode(ISD::SRL, dl, VT, U, Shift); + + SDValue V = DAG.getNode(ISD::ADD, dl, VT, + DAG.getNode(ISD::MUL, dl, VT, LLL, RLH), UL); + SDValue VH = DAG.getNode(ISD::SRL, dl, VT, V, Shift); + + SDValue W = + DAG.getNode(ISD::ADD, dl, VT, DAG.getNode(ISD::MUL, dl, VT, LLH, RLH), + DAG.getNode(ISD::ADD, dl, VT, UH, VH)); + Lo = DAG.getNode(ISD::ADD, dl, VT, TL, + DAG.getNode(ISD::SHL, dl, VT, V, Shift)); + + Hi = DAG.getNode(ISD::ADD, dl, VT, W, + DAG.getNode(ISD::ADD, dl, VT, + DAG.getNode(ISD::MUL, dl, VT, RH, LL), + DAG.getNode(ISD::MUL, dl, VT, RL, LH))); + } else { + // Attempt a libcall. + SDValue Ret; + TargetLowering::MakeLibCallOptions CallOptions; + CallOptions.setSExt(Signed); + CallOptions.setIsPostTypeLegalization(true); + if (shouldSplitFunctionArgumentsAsLittleEndian(DAG.getDataLayout())) { + // Halves of WideVT are packed into registers in different order + // depending on platform endianness. This is usually handled by + // the C calling convention, but we can't defer to it in + // the legalizer. + SDValue Args[] = {LL, LH, RL, RH}; + Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first; + } else { + SDValue Args[] = {LH, LL, RH, RL}; + Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first; + } + assert(Ret.getOpcode() == ISD::MERGE_VALUES && + "Ret value is a collection of constituent nodes holding result."); + if (DAG.getDataLayout().isLittleEndian()) { + // Same as above. + Lo = Ret.getOperand(0); + Hi = Ret.getOperand(1); + } else { + Lo = Ret.getOperand(1); + Hi = Ret.getOperand(0); + } + } +} + +void TargetLowering::forceExpandWideMUL(SelectionDAG &DAG, const SDLoc &dl, + bool Signed, const SDValue LHS, + const SDValue RHS, SDValue &Lo, + SDValue &Hi) const { + EVT VT = LHS.getValueType(); + assert(RHS.getValueType() == VT && "Mismatching operand types"); + + SDValue HiLHS; + SDValue HiRHS; + if (Signed) { + // The high part is obtained by SRA'ing all but one of the bits of low + // part. + unsigned LoSize = VT.getFixedSizeInBits(); + HiLHS = DAG.getNode( + ISD::SRA, dl, VT, LHS, + DAG.getConstant(LoSize - 1, dl, getPointerTy(DAG.getDataLayout()))); + HiRHS = DAG.getNode( + ISD::SRA, dl, VT, RHS, + DAG.getConstant(LoSize - 1, dl, getPointerTy(DAG.getDataLayout()))); + } else { + HiLHS = DAG.getConstant(0, dl, VT); + HiRHS = DAG.getConstant(0, dl, VT); + } + EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits() * 2); + forceExpandWideMUL(DAG, dl, Signed, WideVT, LHS, HiLHS, RHS, HiRHS, Lo, Hi); +} + +SDValue +TargetLowering::expandFixedPointMul(SDNode *Node, SelectionDAG &DAG) const { + assert((Node->getOpcode() == ISD::SMULFIX || + Node->getOpcode() == ISD::UMULFIX || + Node->getOpcode() == ISD::SMULFIXSAT || + Node->getOpcode() == ISD::UMULFIXSAT) && + "Expected a fixed point multiplication opcode"); + + SDLoc dl(Node); + SDValue LHS = Node->getOperand(0); + SDValue RHS = Node->getOperand(1); + EVT VT = LHS.getValueType(); + unsigned Scale = Node->getConstantOperandVal(2); + bool Saturating = (Node->getOpcode() == ISD::SMULFIXSAT || + Node->getOpcode() == ISD::UMULFIXSAT); + bool Signed = (Node->getOpcode() == ISD::SMULFIX || + Node->getOpcode() == ISD::SMULFIXSAT); + EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); + unsigned VTSize = VT.getScalarSizeInBits(); + + if (!Scale) { + // [us]mul.fix(a, b, 0) -> mul(a, b) + if (!Saturating) { + if (isOperationLegalOrCustom(ISD::MUL, VT)) + return DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); + } else if (Signed && isOperationLegalOrCustom(ISD::SMULO, VT)) { + SDValue Result = + DAG.getNode(ISD::SMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS); + SDValue Product = Result.getValue(0); + SDValue Overflow = Result.getValue(1); + SDValue Zero = DAG.getConstant(0, dl, VT); + + APInt MinVal = APInt::getSignedMinValue(VTSize); + APInt MaxVal = APInt::getSignedMaxValue(VTSize); + SDValue SatMin = DAG.getConstant(MinVal, dl, VT); + SDValue SatMax = DAG.getConstant(MaxVal, dl, VT); + // Xor the inputs, if resulting sign bit is 0 the product will be + // positive, else negative. + SDValue Xor = DAG.getNode(ISD::XOR, dl, VT, LHS, RHS); + SDValue ProdNeg = DAG.getSetCC(dl, BoolVT, Xor, Zero, ISD::SETLT); + Result = DAG.getSelect(dl, VT, ProdNeg, SatMin, SatMax); + return DAG.getSelect(dl, VT, Overflow, Result, Product); + } else if (!Signed && isOperationLegalOrCustom(ISD::UMULO, VT)) { + SDValue Result = + DAG.getNode(ISD::UMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS); + SDValue Product = Result.getValue(0); + SDValue Overflow = Result.getValue(1); + + APInt MaxVal = APInt::getMaxValue(VTSize); + SDValue SatMax = DAG.getConstant(MaxVal, dl, VT); + return DAG.getSelect(dl, VT, Overflow, SatMax, Product); + } + } + + assert(((Signed && Scale < VTSize) || (!Signed && Scale <= VTSize)) && + "Expected scale to be less than the number of bits if signed or at " + "most the number of bits if unsigned."); + assert(LHS.getValueType() == RHS.getValueType() && + "Expected both operands to be the same type"); + + // Get the upper and lower bits of the result. + SDValue Lo, Hi; + unsigned LoHiOp = Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI; + unsigned HiOp = Signed ? ISD::MULHS : ISD::MULHU; + EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VTSize * 2); + if (isOperationLegalOrCustom(LoHiOp, VT)) { + SDValue Result = DAG.getNode(LoHiOp, dl, DAG.getVTList(VT, VT), LHS, RHS); + Lo = Result.getValue(0); + Hi = Result.getValue(1); + } else if (isOperationLegalOrCustom(HiOp, VT)) { + Lo = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); + Hi = DAG.getNode(HiOp, dl, VT, LHS, RHS); + } else if (isOperationLegalOrCustom(ISD::MUL, WideVT)) { + // Try for a multiplication using a wider type. + unsigned Ext = Signed ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; + SDValue LHSExt = DAG.getNode(Ext, dl, WideVT, LHS); + SDValue RHSExt = DAG.getNode(Ext, dl, WideVT, RHS); + SDValue Res = DAG.getNode(ISD::MUL, dl, WideVT, LHSExt, RHSExt); + Lo = DAG.getNode(ISD::TRUNCATE, dl, VT, Res); + SDValue Shifted = + DAG.getNode(ISD::SRA, dl, WideVT, Res, + DAG.getShiftAmountConstant(VTSize, WideVT, dl)); + Hi = DAG.getNode(ISD::TRUNCATE, dl, VT, Shifted); + } else if (VT.isVector()) { + return SDValue(); + } else { + forceExpandWideMUL(DAG, dl, Signed, LHS, RHS, Lo, Hi); + } + + if (Scale == VTSize) + // Result is just the top half since we'd be shifting by the width of the + // operand. Overflow impossible so this works for both UMULFIX and + // UMULFIXSAT. + return Hi; + + // The result will need to be shifted right by the scale since both operands + // are scaled. The result is given to us in 2 halves, so we only want part of + // both in the result. + SDValue Result = DAG.getNode(ISD::FSHR, dl, VT, Hi, Lo, + DAG.getShiftAmountConstant(Scale, VT, dl)); + if (!Saturating) + return Result; + + if (!Signed) { + // Unsigned overflow happened if the upper (VTSize - Scale) bits (of the + // widened multiplication) aren't all zeroes. + + // Saturate to max if ((Hi >> Scale) != 0), + // which is the same as if (Hi > ((1 << Scale) - 1)) + APInt MaxVal = APInt::getMaxValue(VTSize); + SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale), + dl, VT); + Result = DAG.getSelectCC(dl, Hi, LowMask, + DAG.getConstant(MaxVal, dl, VT), Result, + ISD::SETUGT); + + return Result; + } + + // Signed overflow happened if the upper (VTSize - Scale + 1) bits (of the + // widened multiplication) aren't all ones or all zeroes. + + SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(VTSize), dl, VT); + SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(VTSize), dl, VT); + + if (Scale == 0) { + SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, Lo, + DAG.getShiftAmountConstant(VTSize - 1, VT, dl)); + SDValue Overflow = DAG.getSetCC(dl, BoolVT, Hi, Sign, ISD::SETNE); + // Saturated to SatMin if wide product is negative, and SatMax if wide + // product is positive ... + SDValue Zero = DAG.getConstant(0, dl, VT); + SDValue ResultIfOverflow = DAG.getSelectCC(dl, Hi, Zero, SatMin, SatMax, + ISD::SETLT); + // ... but only if we overflowed. + return DAG.getSelect(dl, VT, Overflow, ResultIfOverflow, Result); + } + + // We handled Scale==0 above so all the bits to examine is in Hi. + + // Saturate to max if ((Hi >> (Scale - 1)) > 0), + // which is the same as if (Hi > (1 << (Scale - 1)) - 1) + SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale - 1), + dl, VT); + Result = DAG.getSelectCC(dl, Hi, LowMask, SatMax, Result, ISD::SETGT); + // Saturate to min if (Hi >> (Scale - 1)) < -1), + // which is the same as if (HI < (-1 << (Scale - 1)) + SDValue HighMask = + DAG.getConstant(APInt::getHighBitsSet(VTSize, VTSize - Scale + 1), + dl, VT); + Result = DAG.getSelectCC(dl, Hi, HighMask, SatMin, Result, ISD::SETLT); + return Result; +} + +SDValue +TargetLowering::expandFixedPointDiv(unsigned Opcode, const SDLoc &dl, + SDValue LHS, SDValue RHS, + unsigned Scale, SelectionDAG &DAG) const { + assert((Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT || + Opcode == ISD::UDIVFIX || Opcode == ISD::UDIVFIXSAT) && + "Expected a fixed point division opcode"); + + EVT VT = LHS.getValueType(); + bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT; + bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT; + EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); + + // If there is enough room in the type to upscale the LHS or downscale the + // RHS before the division, we can perform it in this type without having to + // resize. For signed operations, the LHS headroom is the number of + // redundant sign bits, and for unsigned ones it is the number of zeroes. + // The headroom for the RHS is the number of trailing zeroes. + unsigned LHSLead = Signed ? DAG.ComputeNumSignBits(LHS) - 1 + : DAG.computeKnownBits(LHS).countMinLeadingZeros(); + unsigned RHSTrail = DAG.computeKnownBits(RHS).countMinTrailingZeros(); + + // For signed saturating operations, we need to be able to detect true integer + // division overflow; that is, when you have MIN / -EPS. However, this + // is undefined behavior and if we emit divisions that could take such + // values it may cause undesired behavior (arithmetic exceptions on x86, for + // example). + // Avoid this by requiring an extra bit so that we never get this case. + // FIXME: This is a bit unfortunate as it means that for an 8-bit 7-scale + // signed saturating division, we need to emit a whopping 32-bit division. + if (LHSLead + RHSTrail < Scale + (unsigned)(Saturating && Signed)) + return SDValue(); + + unsigned LHSShift = std::min(LHSLead, Scale); + unsigned RHSShift = Scale - LHSShift; + + // At this point, we know that if we shift the LHS up by LHSShift and the + // RHS down by RHSShift, we can emit a regular division with a final scaling + // factor of Scale. + + if (LHSShift) + LHS = DAG.getNode(ISD::SHL, dl, VT, LHS, + DAG.getShiftAmountConstant(LHSShift, VT, dl)); + if (RHSShift) + RHS = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, dl, VT, RHS, + DAG.getShiftAmountConstant(RHSShift, VT, dl)); + + SDValue Quot; + if (Signed) { + // For signed operations, if the resulting quotient is negative and the + // remainder is nonzero, subtract 1 from the quotient to round towards + // negative infinity. + SDValue Rem; + // FIXME: Ideally we would always produce an SDIVREM here, but if the + // type isn't legal, SDIVREM cannot be expanded. There is no reason why + // we couldn't just form a libcall, but the type legalizer doesn't do it. + if (isTypeLegal(VT) && + isOperationLegalOrCustom(ISD::SDIVREM, VT)) { + Quot = DAG.getNode(ISD::SDIVREM, dl, + DAG.getVTList(VT, VT), + LHS, RHS); + Rem = Quot.getValue(1); + Quot = Quot.getValue(0); + } else { + Quot = DAG.getNode(ISD::SDIV, dl, VT, + LHS, RHS); + Rem = DAG.getNode(ISD::SREM, dl, VT, + LHS, RHS); + } + SDValue Zero = DAG.getConstant(0, dl, VT); + SDValue RemNonZero = DAG.getSetCC(dl, BoolVT, Rem, Zero, ISD::SETNE); + SDValue LHSNeg = DAG.getSetCC(dl, BoolVT, LHS, Zero, ISD::SETLT); + SDValue RHSNeg = DAG.getSetCC(dl, BoolVT, RHS, Zero, ISD::SETLT); + SDValue QuotNeg = DAG.getNode(ISD::XOR, dl, BoolVT, LHSNeg, RHSNeg); + SDValue Sub1 = DAG.getNode(ISD::SUB, dl, VT, Quot, + DAG.getConstant(1, dl, VT)); + Quot = DAG.getSelect(dl, VT, + DAG.getNode(ISD::AND, dl, BoolVT, RemNonZero, QuotNeg), + Sub1, Quot); + } else + Quot = DAG.getNode(ISD::UDIV, dl, VT, + LHS, RHS); + + return Quot; +} + +void TargetLowering::expandUADDSUBO( + SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const { + SDLoc dl(Node); + SDValue LHS = Node->getOperand(0); + SDValue RHS = Node->getOperand(1); + bool IsAdd = Node->getOpcode() == ISD::UADDO; + + // If UADDO_CARRY/SUBO_CARRY is legal, use that instead. + unsigned OpcCarry = IsAdd ? ISD::UADDO_CARRY : ISD::USUBO_CARRY; + if (isOperationLegalOrCustom(OpcCarry, Node->getValueType(0))) { + SDValue CarryIn = DAG.getConstant(0, dl, Node->getValueType(1)); + SDValue NodeCarry = DAG.getNode(OpcCarry, dl, Node->getVTList(), + { LHS, RHS, CarryIn }); + Result = SDValue(NodeCarry.getNode(), 0); + Overflow = SDValue(NodeCarry.getNode(), 1); + return; + } + + Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl, + LHS.getValueType(), LHS, RHS); + + EVT ResultType = Node->getValueType(1); + EVT SetCCType = getSetCCResultType( + DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0)); + SDValue SetCC; + if (IsAdd && isOneConstant(RHS)) { + // Special case: uaddo X, 1 overflowed if X+1 is 0. This potential reduces + // the live range of X. We assume comparing with 0 is cheap. + // The general case (X + C) < C is not necessarily beneficial. Although we + // reduce the live range of X, we may introduce the materialization of + // constant C. + SetCC = + DAG.getSetCC(dl, SetCCType, Result, + DAG.getConstant(0, dl, Node->getValueType(0)), ISD::SETEQ); + } else if (IsAdd && isAllOnesConstant(RHS)) { + // Special case: uaddo X, -1 overflows if X != 0. + SetCC = + DAG.getSetCC(dl, SetCCType, LHS, + DAG.getConstant(0, dl, Node->getValueType(0)), ISD::SETNE); + } else { + ISD::CondCode CC = IsAdd ? ISD::SETULT : ISD::SETUGT; + SetCC = DAG.getSetCC(dl, SetCCType, Result, LHS, CC); + } + Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType); +} + +void TargetLowering::expandSADDSUBO( + SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const { + SDLoc dl(Node); + SDValue LHS = Node->getOperand(0); + SDValue RHS = Node->getOperand(1); + bool IsAdd = Node->getOpcode() == ISD::SADDO; + + Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl, + LHS.getValueType(), LHS, RHS); + + EVT ResultType = Node->getValueType(1); + EVT OType = getSetCCResultType( + DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0)); + + // If SADDSAT/SSUBSAT is legal, compare results to detect overflow. + unsigned OpcSat = IsAdd ? ISD::SADDSAT : ISD::SSUBSAT; + if (isOperationLegal(OpcSat, LHS.getValueType())) { + SDValue Sat = DAG.getNode(OpcSat, dl, LHS.getValueType(), LHS, RHS); + SDValue SetCC = DAG.getSetCC(dl, OType, Result, Sat, ISD::SETNE); + Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType); + return; + } + + SDValue Zero = DAG.getConstant(0, dl, LHS.getValueType()); + + // For an addition, the result should be less than one of the operands (LHS) + // if and only if the other operand (RHS) is negative, otherwise there will + // be overflow. + // For a subtraction, the result should be less than one of the operands + // (LHS) if and only if the other operand (RHS) is (non-zero) positive, + // otherwise there will be overflow. + SDValue ResultLowerThanLHS = DAG.getSetCC(dl, OType, Result, LHS, ISD::SETLT); + SDValue ConditionRHS = + DAG.getSetCC(dl, OType, RHS, Zero, IsAdd ? ISD::SETLT : ISD::SETGT); + + Overflow = DAG.getBoolExtOrTrunc( + DAG.getNode(ISD::XOR, dl, OType, ConditionRHS, ResultLowerThanLHS), dl, + ResultType, ResultType); +} + +bool TargetLowering::expandMULO(SDNode *Node, SDValue &Result, + SDValue &Overflow, SelectionDAG &DAG) const { + SDLoc dl(Node); + EVT VT = Node->getValueType(0); + EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); + SDValue LHS = Node->getOperand(0); + SDValue RHS = Node->getOperand(1); + bool isSigned = Node->getOpcode() == ISD::SMULO; + + // For power-of-two multiplications we can use a simpler shift expansion. + if (ConstantSDNode *RHSC = isConstOrConstSplat(RHS)) { + const APInt &C = RHSC->getAPIntValue(); + // mulo(X, 1 << S) -> { X << S, (X << S) >> S != X } + if (C.isPowerOf2()) { + // smulo(x, signed_min) is same as umulo(x, signed_min). + bool UseArithShift = isSigned && !C.isMinSignedValue(); + SDValue ShiftAmt = DAG.getShiftAmountConstant(C.logBase2(), VT, dl); + Result = DAG.getNode(ISD::SHL, dl, VT, LHS, ShiftAmt); + Overflow = DAG.getSetCC(dl, SetCCVT, + DAG.getNode(UseArithShift ? ISD::SRA : ISD::SRL, + dl, VT, Result, ShiftAmt), + LHS, ISD::SETNE); + return true; + } + } + + EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getScalarSizeInBits() * 2); + if (VT.isVector()) + WideVT = + EVT::getVectorVT(*DAG.getContext(), WideVT, VT.getVectorElementCount()); + + SDValue BottomHalf; + SDValue TopHalf; + static const unsigned Ops[2][3] = + { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND }, + { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }}; + if (isOperationLegalOrCustom(Ops[isSigned][0], VT)) { + BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); + TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS); + } else if (isOperationLegalOrCustom(Ops[isSigned][1], VT)) { + BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS, + RHS); + TopHalf = BottomHalf.getValue(1); + } else if (isTypeLegal(WideVT)) { + LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS); + RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS); + SDValue Mul = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS); + BottomHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, Mul); + SDValue ShiftAmt = + DAG.getShiftAmountConstant(VT.getScalarSizeInBits(), WideVT, dl); + TopHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, + DAG.getNode(ISD::SRL, dl, WideVT, Mul, ShiftAmt)); + } else { + if (VT.isVector()) + return false; + + forceExpandWideMUL(DAG, dl, isSigned, LHS, RHS, BottomHalf, TopHalf); + } + + Result = BottomHalf; + if (isSigned) { + SDValue ShiftAmt = DAG.getShiftAmountConstant( + VT.getScalarSizeInBits() - 1, BottomHalf.getValueType(), dl); + SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, ShiftAmt); + Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, Sign, ISD::SETNE); + } else { + Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, + DAG.getConstant(0, dl, VT), ISD::SETNE); + } + + // Truncate the result if SetCC returns a larger type than needed. + EVT RType = Node->getValueType(1); + if (RType.bitsLT(Overflow.getValueType())) + Overflow = DAG.getNode(ISD::TRUNCATE, dl, RType, Overflow); + + assert(RType.getSizeInBits() == Overflow.getValueSizeInBits() && + "Unexpected result type for S/UMULO legalization"); + return true; +} + +SDValue TargetLowering::expandVecReduce(SDNode *Node, SelectionDAG &DAG) const { + SDLoc dl(Node); + unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Node->getOpcode()); + SDValue Op = Node->getOperand(0); + EVT VT = Op.getValueType(); + + if (VT.isScalableVector()) + report_fatal_error( + "Expanding reductions for scalable vectors is undefined."); + + // Try to use a shuffle reduction for power of two vectors. + if (VT.isPow2VectorType()) { + while (VT.getVectorNumElements() > 1) { + EVT HalfVT = VT.getHalfNumVectorElementsVT(*DAG.getContext()); + if (!isOperationLegalOrCustom(BaseOpcode, HalfVT)) + break; + + SDValue Lo, Hi; + std::tie(Lo, Hi) = DAG.SplitVector(Op, dl); + Op = DAG.getNode(BaseOpcode, dl, HalfVT, Lo, Hi, Node->getFlags()); + VT = HalfVT; + } + } + + EVT EltVT = VT.getVectorElementType(); + unsigned NumElts = VT.getVectorNumElements(); + + SmallVector<SDValue, 8> Ops; + DAG.ExtractVectorElements(Op, Ops, 0, NumElts); + + SDValue Res = Ops[0]; + for (unsigned i = 1; i < NumElts; i++) + Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Node->getFlags()); + + // Result type may be wider than element type. + if (EltVT != Node->getValueType(0)) + Res = DAG.getNode(ISD::ANY_EXTEND, dl, Node->getValueType(0), Res); + return Res; +} + +SDValue TargetLowering::expandVecReduceSeq(SDNode *Node, SelectionDAG &DAG) const { + SDLoc dl(Node); + SDValue AccOp = Node->getOperand(0); + SDValue VecOp = Node->getOperand(1); + SDNodeFlags Flags = Node->getFlags(); + + EVT VT = VecOp.getValueType(); + EVT EltVT = VT.getVectorElementType(); + + if (VT.isScalableVector()) + report_fatal_error( + "Expanding reductions for scalable vectors is undefined."); + + unsigned NumElts = VT.getVectorNumElements(); + + SmallVector<SDValue, 8> Ops; + DAG.ExtractVectorElements(VecOp, Ops, 0, NumElts); + + unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Node->getOpcode()); + + SDValue Res = AccOp; + for (unsigned i = 0; i < NumElts; i++) + Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Flags); + + return Res; +} + +bool TargetLowering::expandREM(SDNode *Node, SDValue &Result, + SelectionDAG &DAG) const { + EVT VT = Node->getValueType(0); + SDLoc dl(Node); + bool isSigned = Node->getOpcode() == ISD::SREM; + unsigned DivOpc = isSigned ? ISD::SDIV : ISD::UDIV; + unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM; + SDValue Dividend = Node->getOperand(0); + SDValue Divisor = Node->getOperand(1); + if (isOperationLegalOrCustom(DivRemOpc, VT)) { + SDVTList VTs = DAG.getVTList(VT, VT); + Result = DAG.getNode(DivRemOpc, dl, VTs, Dividend, Divisor).getValue(1); + return true; + } + if (isOperationLegalOrCustom(DivOpc, VT)) { + // X % Y -> X-X/Y*Y + SDValue Divide = DAG.getNode(DivOpc, dl, VT, Dividend, Divisor); + SDValue Mul = DAG.getNode(ISD::MUL, dl, VT, Divide, Divisor); + Result = DAG.getNode(ISD::SUB, dl, VT, Dividend, Mul); + return true; + } + return false; +} + +SDValue TargetLowering::expandFP_TO_INT_SAT(SDNode *Node, + SelectionDAG &DAG) const { + bool IsSigned = Node->getOpcode() == ISD::FP_TO_SINT_SAT; + SDLoc dl(SDValue(Node, 0)); + SDValue Src = Node->getOperand(0); + + // DstVT is the result type, while SatVT is the size to which we saturate + EVT SrcVT = Src.getValueType(); + EVT DstVT = Node->getValueType(0); + + EVT SatVT = cast<VTSDNode>(Node->getOperand(1))->getVT(); + unsigned SatWidth = SatVT.getScalarSizeInBits(); + unsigned DstWidth = DstVT.getScalarSizeInBits(); + assert(SatWidth <= DstWidth && + "Expected saturation width smaller than result width"); + + // Determine minimum and maximum integer values and their corresponding + // floating-point values. + APInt MinInt, MaxInt; + if (IsSigned) { + MinInt = APInt::getSignedMinValue(SatWidth).sext(DstWidth); + MaxInt = APInt::getSignedMaxValue(SatWidth).sext(DstWidth); + } else { + MinInt = APInt::getMinValue(SatWidth).zext(DstWidth); + MaxInt = APInt::getMaxValue(SatWidth).zext(DstWidth); + } + + // We cannot risk emitting FP_TO_XINT nodes with a source VT of [b]f16, as + // libcall emission cannot handle this. Large result types will fail. + if (SrcVT == MVT::f16 || SrcVT == MVT::bf16) { + Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, Src); + SrcVT = Src.getValueType(); + } + + APFloat MinFloat(DAG.EVTToAPFloatSemantics(SrcVT)); + APFloat MaxFloat(DAG.EVTToAPFloatSemantics(SrcVT)); + + APFloat::opStatus MinStatus = + MinFloat.convertFromAPInt(MinInt, IsSigned, APFloat::rmTowardZero); + APFloat::opStatus MaxStatus = + MaxFloat.convertFromAPInt(MaxInt, IsSigned, APFloat::rmTowardZero); + bool AreExactFloatBounds = !(MinStatus & APFloat::opStatus::opInexact) && + !(MaxStatus & APFloat::opStatus::opInexact); + + SDValue MinFloatNode = DAG.getConstantFP(MinFloat, dl, SrcVT); + SDValue MaxFloatNode = DAG.getConstantFP(MaxFloat, dl, SrcVT); + + // If the integer bounds are exactly representable as floats and min/max are + // legal, emit a min+max+fptoi sequence. Otherwise we have to use a sequence + // of comparisons and selects. + bool MinMaxLegal = isOperationLegal(ISD::FMINNUM, SrcVT) && + isOperationLegal(ISD::FMAXNUM, SrcVT); + if (AreExactFloatBounds && MinMaxLegal) { + SDValue Clamped = Src; + + // Clamp Src by MinFloat from below. If Src is NaN the result is MinFloat. + Clamped = DAG.getNode(ISD::FMAXNUM, dl, SrcVT, Clamped, MinFloatNode); + // Clamp by MaxFloat from above. NaN cannot occur. + Clamped = DAG.getNode(ISD::FMINNUM, dl, SrcVT, Clamped, MaxFloatNode); + // Convert clamped value to integer. + SDValue FpToInt = DAG.getNode(IsSigned ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, + dl, DstVT, Clamped); + + // In the unsigned case we're done, because we mapped NaN to MinFloat, + // which will cast to zero. + if (!IsSigned) + return FpToInt; + + // Otherwise, select 0 if Src is NaN. + SDValue ZeroInt = DAG.getConstant(0, dl, DstVT); + EVT SetCCVT = + getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT); + SDValue IsNan = DAG.getSetCC(dl, SetCCVT, Src, Src, ISD::CondCode::SETUO); + return DAG.getSelect(dl, DstVT, IsNan, ZeroInt, FpToInt); + } + + SDValue MinIntNode = DAG.getConstant(MinInt, dl, DstVT); + SDValue MaxIntNode = DAG.getConstant(MaxInt, dl, DstVT); + + // Result of direct conversion. The assumption here is that the operation is + // non-trapping and it's fine to apply it to an out-of-range value if we + // select it away later. + SDValue FpToInt = + DAG.getNode(IsSigned ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, dl, DstVT, Src); + + SDValue Select = FpToInt; + + EVT SetCCVT = + getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT); + + // If Src ULT MinFloat, select MinInt. In particular, this also selects + // MinInt if Src is NaN. + SDValue ULT = DAG.getSetCC(dl, SetCCVT, Src, MinFloatNode, ISD::SETULT); + Select = DAG.getSelect(dl, DstVT, ULT, MinIntNode, Select); + // If Src OGT MaxFloat, select MaxInt. + SDValue OGT = DAG.getSetCC(dl, SetCCVT, Src, MaxFloatNode, ISD::SETOGT); + Select = DAG.getSelect(dl, DstVT, OGT, MaxIntNode, Select); + + // In the unsigned case we are done, because we mapped NaN to MinInt, which + // is already zero. + if (!IsSigned) + return Select; + + // Otherwise, select 0 if Src is NaN. + SDValue ZeroInt = DAG.getConstant(0, dl, DstVT); + SDValue IsNan = DAG.getSetCC(dl, SetCCVT, Src, Src, ISD::CondCode::SETUO); + return DAG.getSelect(dl, DstVT, IsNan, ZeroInt, Select); +} + +SDValue TargetLowering::expandRoundInexactToOdd(EVT ResultVT, SDValue Op, + const SDLoc &dl, + SelectionDAG &DAG) const { + EVT OperandVT = Op.getValueType(); + if (OperandVT.getScalarType() == ResultVT.getScalarType()) + return Op; + EVT ResultIntVT = ResultVT.changeTypeToInteger(); + // We are rounding binary64/binary128 -> binary32 -> bfloat16. This + // can induce double-rounding which may alter the results. We can + // correct for this using a trick explained in: Boldo, Sylvie, and + // Guillaume Melquiond. "When double rounding is odd." 17th IMACS + // World Congress. 2005. + unsigned BitSize = OperandVT.getScalarSizeInBits(); + EVT WideIntVT = OperandVT.changeTypeToInteger(); + SDValue OpAsInt = DAG.getBitcast(WideIntVT, Op); + SDValue SignBit = + DAG.getNode(ISD::AND, dl, WideIntVT, OpAsInt, + DAG.getConstant(APInt::getSignMask(BitSize), dl, WideIntVT)); + SDValue AbsWide; + if (isOperationLegalOrCustom(ISD::FABS, OperandVT)) { + AbsWide = DAG.getNode(ISD::FABS, dl, OperandVT, Op); + } else { + SDValue ClearedSign = DAG.getNode( + ISD::AND, dl, WideIntVT, OpAsInt, + DAG.getConstant(APInt::getSignedMaxValue(BitSize), dl, WideIntVT)); + AbsWide = DAG.getBitcast(OperandVT, ClearedSign); + } + SDValue AbsNarrow = DAG.getFPExtendOrRound(AbsWide, dl, ResultVT); + SDValue AbsNarrowAsWide = DAG.getFPExtendOrRound(AbsNarrow, dl, OperandVT); + + // We can keep the narrow value as-is if narrowing was exact (no + // rounding error), the wide value was NaN (the narrow value is also + // NaN and should be preserved) or if we rounded to the odd value. + SDValue NarrowBits = DAG.getNode(ISD::BITCAST, dl, ResultIntVT, AbsNarrow); + SDValue One = DAG.getConstant(1, dl, ResultIntVT); + SDValue NegativeOne = DAG.getAllOnesConstant(dl, ResultIntVT); + SDValue And = DAG.getNode(ISD::AND, dl, ResultIntVT, NarrowBits, One); + EVT ResultIntVTCCVT = getSetCCResultType( + DAG.getDataLayout(), *DAG.getContext(), And.getValueType()); + SDValue Zero = DAG.getConstant(0, dl, ResultIntVT); + // The result is already odd so we don't need to do anything. + SDValue AlreadyOdd = DAG.getSetCC(dl, ResultIntVTCCVT, And, Zero, ISD::SETNE); + + EVT WideSetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), + AbsWide.getValueType()); + // We keep results which are exact, odd or NaN. + SDValue KeepNarrow = + DAG.getSetCC(dl, WideSetCCVT, AbsWide, AbsNarrowAsWide, ISD::SETUEQ); + KeepNarrow = DAG.getNode(ISD::OR, dl, WideSetCCVT, KeepNarrow, AlreadyOdd); + // We morally performed a round-down if AbsNarrow is smaller than + // AbsWide. + SDValue NarrowIsRd = + DAG.getSetCC(dl, WideSetCCVT, AbsWide, AbsNarrowAsWide, ISD::SETOGT); + // If the narrow value is odd or exact, pick it. + // Otherwise, narrow is even and corresponds to either the rounded-up + // or rounded-down value. If narrow is the rounded-down value, we want + // the rounded-up value as it will be odd. + SDValue Adjust = DAG.getSelect(dl, ResultIntVT, NarrowIsRd, One, NegativeOne); + SDValue Adjusted = DAG.getNode(ISD::ADD, dl, ResultIntVT, NarrowBits, Adjust); + Op = DAG.getSelect(dl, ResultIntVT, KeepNarrow, NarrowBits, Adjusted); + int ShiftAmount = BitSize - ResultVT.getScalarSizeInBits(); + SDValue ShiftCnst = DAG.getShiftAmountConstant(ShiftAmount, WideIntVT, dl); + SignBit = DAG.getNode(ISD::SRL, dl, WideIntVT, SignBit, ShiftCnst); + SignBit = DAG.getNode(ISD::TRUNCATE, dl, ResultIntVT, SignBit); + Op = DAG.getNode(ISD::OR, dl, ResultIntVT, Op, SignBit); + return DAG.getNode(ISD::BITCAST, dl, ResultVT, Op); +} + +SDValue TargetLowering::expandFP_ROUND(SDNode *Node, SelectionDAG &DAG) const { + assert(Node->getOpcode() == ISD::FP_ROUND && "Unexpected opcode!"); + SDValue Op = Node->getOperand(0); + EVT VT = Node->getValueType(0); + SDLoc dl(Node); + if (VT.getScalarType() == MVT::bf16) { + if (Node->getConstantOperandVal(1) == 1) { + return DAG.getNode(ISD::FP_TO_BF16, dl, VT, Node->getOperand(0)); + } + EVT OperandVT = Op.getValueType(); + SDValue IsNaN = DAG.getSetCC( + dl, + getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), OperandVT), + Op, Op, ISD::SETUO); + + // We are rounding binary64/binary128 -> binary32 -> bfloat16. This + // can induce double-rounding which may alter the results. We can + // correct for this using a trick explained in: Boldo, Sylvie, and + // Guillaume Melquiond. "When double rounding is odd." 17th IMACS + // World Congress. 2005. + EVT F32 = VT.isVector() ? VT.changeVectorElementType(MVT::f32) : MVT::f32; + EVT I32 = F32.changeTypeToInteger(); + Op = expandRoundInexactToOdd(F32, Op, dl, DAG); + Op = DAG.getNode(ISD::BITCAST, dl, I32, Op); + + // Conversions should set NaN's quiet bit. This also prevents NaNs from + // turning into infinities. + SDValue NaN = + DAG.getNode(ISD::OR, dl, I32, Op, DAG.getConstant(0x400000, dl, I32)); + + // Factor in the contribution of the low 16 bits. + SDValue One = DAG.getConstant(1, dl, I32); + SDValue Lsb = DAG.getNode(ISD::SRL, dl, I32, Op, + DAG.getShiftAmountConstant(16, I32, dl)); + Lsb = DAG.getNode(ISD::AND, dl, I32, Lsb, One); + SDValue RoundingBias = + DAG.getNode(ISD::ADD, dl, I32, DAG.getConstant(0x7fff, dl, I32), Lsb); + SDValue Add = DAG.getNode(ISD::ADD, dl, I32, Op, RoundingBias); + + // Don't round if we had a NaN, we don't want to turn 0x7fffffff into + // 0x80000000. + Op = DAG.getSelect(dl, I32, IsNaN, NaN, Add); + + // Now that we have rounded, shift the bits into position. + Op = DAG.getNode(ISD::SRL, dl, I32, Op, + DAG.getShiftAmountConstant(16, I32, dl)); + Op = DAG.getNode(ISD::BITCAST, dl, I32, Op); + EVT I16 = I32.isVector() ? I32.changeVectorElementType(MVT::i16) : MVT::i16; + Op = DAG.getNode(ISD::TRUNCATE, dl, I16, Op); + return DAG.getNode(ISD::BITCAST, dl, VT, Op); + } + return SDValue(); +} + +SDValue TargetLowering::expandVectorSplice(SDNode *Node, + SelectionDAG &DAG) const { + assert(Node->getOpcode() == ISD::VECTOR_SPLICE && "Unexpected opcode!"); + assert(Node->getValueType(0).isScalableVector() && + "Fixed length vector types expected to use SHUFFLE_VECTOR!"); + + EVT VT = Node->getValueType(0); + SDValue V1 = Node->getOperand(0); + SDValue V2 = Node->getOperand(1); + int64_t Imm = cast<ConstantSDNode>(Node->getOperand(2))->getSExtValue(); + SDLoc DL(Node); + + // Expand through memory thusly: + // Alloca CONCAT_VECTORS_TYPES(V1, V2) Ptr + // Store V1, Ptr + // Store V2, Ptr + sizeof(V1) + // If (Imm < 0) + // TrailingElts = -Imm + // Ptr = Ptr + sizeof(V1) - (TrailingElts * sizeof(VT.Elt)) + // else + // Ptr = Ptr + (Imm * sizeof(VT.Elt)) + // Res = Load Ptr + + Align Alignment = DAG.getReducedAlign(VT, /*UseABI=*/false); + + EVT MemVT = EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(), + VT.getVectorElementCount() * 2); + SDValue StackPtr = DAG.CreateStackTemporary(MemVT.getStoreSize(), Alignment); + EVT PtrVT = StackPtr.getValueType(); + auto &MF = DAG.getMachineFunction(); + auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); + auto PtrInfo = MachinePointerInfo::getFixedStack(MF, FrameIndex); + + // Store the lo part of CONCAT_VECTORS(V1, V2) + SDValue StoreV1 = DAG.getStore(DAG.getEntryNode(), DL, V1, StackPtr, PtrInfo); + // Store the hi part of CONCAT_VECTORS(V1, V2) + SDValue OffsetToV2 = DAG.getVScale( + DL, PtrVT, + APInt(PtrVT.getFixedSizeInBits(), VT.getStoreSize().getKnownMinValue())); + SDValue StackPtr2 = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, OffsetToV2); + SDValue StoreV2 = DAG.getStore(StoreV1, DL, V2, StackPtr2, PtrInfo); + + if (Imm >= 0) { + // Load back the required element. getVectorElementPointer takes care of + // clamping the index if it's out-of-bounds. + StackPtr = getVectorElementPointer(DAG, StackPtr, VT, Node->getOperand(2)); + // Load the spliced result + return DAG.getLoad(VT, DL, StoreV2, StackPtr, + MachinePointerInfo::getUnknownStack(MF)); + } + + uint64_t TrailingElts = -Imm; + + // NOTE: TrailingElts must be clamped so as not to read outside of V1:V2. + TypeSize EltByteSize = VT.getVectorElementType().getStoreSize(); + SDValue TrailingBytes = + DAG.getConstant(TrailingElts * EltByteSize, DL, PtrVT); + + if (TrailingElts > VT.getVectorMinNumElements()) { + SDValue VLBytes = + DAG.getVScale(DL, PtrVT, + APInt(PtrVT.getFixedSizeInBits(), + VT.getStoreSize().getKnownMinValue())); + TrailingBytes = DAG.getNode(ISD::UMIN, DL, PtrVT, TrailingBytes, VLBytes); + } + + // Calculate the start address of the spliced result. + StackPtr2 = DAG.getNode(ISD::SUB, DL, PtrVT, StackPtr2, TrailingBytes); + + // Load the spliced result + return DAG.getLoad(VT, DL, StoreV2, StackPtr2, + MachinePointerInfo::getUnknownStack(MF)); +} + +SDValue TargetLowering::expandVECTOR_COMPRESS(SDNode *Node, + SelectionDAG &DAG) const { + SDLoc DL(Node); + SDValue Vec = Node->getOperand(0); + SDValue Mask = Node->getOperand(1); + SDValue Passthru = Node->getOperand(2); + + EVT VecVT = Vec.getValueType(); + EVT ScalarVT = VecVT.getScalarType(); + EVT MaskVT = Mask.getValueType(); + EVT MaskScalarVT = MaskVT.getScalarType(); + + // Needs to be handled by targets that have scalable vector types. + if (VecVT.isScalableVector()) + report_fatal_error("Cannot expand masked_compress for scalable vectors."); + + SDValue StackPtr = DAG.CreateStackTemporary( + VecVT.getStoreSize(), DAG.getReducedAlign(VecVT, /*UseABI=*/false)); + int FI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); + MachinePointerInfo PtrInfo = + MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI); + + MVT PositionVT = getVectorIdxTy(DAG.getDataLayout()); + SDValue Chain = DAG.getEntryNode(); + SDValue OutPos = DAG.getConstant(0, DL, PositionVT); + + bool HasPassthru = !Passthru.isUndef(); + + // If we have a passthru vector, store it on the stack, overwrite the matching + // positions and then re-write the last element that was potentially + // overwritten even though mask[i] = false. + if (HasPassthru) + Chain = DAG.getStore(Chain, DL, Passthru, StackPtr, PtrInfo); + + SDValue LastWriteVal; + APInt PassthruSplatVal; + bool IsSplatPassthru = + ISD::isConstantSplatVector(Passthru.getNode(), PassthruSplatVal); + + if (IsSplatPassthru) { + // As we do not know which position we wrote to last, we cannot simply + // access that index from the passthru vector. So we first check if passthru + // is a splat vector, to use any element ... + LastWriteVal = DAG.getConstant(PassthruSplatVal, DL, ScalarVT); + } else if (HasPassthru) { + // ... if it is not a splat vector, we need to get the passthru value at + // position = popcount(mask) and re-load it from the stack before it is + // overwritten in the loop below. + SDValue Popcount = DAG.getNode( + ISD::TRUNCATE, DL, MaskVT.changeVectorElementType(MVT::i1), Mask); + Popcount = DAG.getNode(ISD::ZERO_EXTEND, DL, + MaskVT.changeVectorElementType(ScalarVT), Popcount); + Popcount = DAG.getNode(ISD::VECREDUCE_ADD, DL, ScalarVT, Popcount); + SDValue LastElmtPtr = + getVectorElementPointer(DAG, StackPtr, VecVT, Popcount); + LastWriteVal = DAG.getLoad( + ScalarVT, DL, Chain, LastElmtPtr, + MachinePointerInfo::getUnknownStack(DAG.getMachineFunction())); + Chain = LastWriteVal.getValue(1); + } + + unsigned NumElms = VecVT.getVectorNumElements(); + for (unsigned I = 0; I < NumElms; I++) { + SDValue Idx = DAG.getVectorIdxConstant(I, DL); + + SDValue ValI = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ScalarVT, Vec, Idx); + SDValue OutPtr = getVectorElementPointer(DAG, StackPtr, VecVT, OutPos); + Chain = DAG.getStore( + Chain, DL, ValI, OutPtr, + MachinePointerInfo::getUnknownStack(DAG.getMachineFunction())); + + // Get the mask value and add it to the current output position. This + // either increments by 1 if MaskI is true or adds 0 otherwise. + // Freeze in case we have poison/undef mask entries. + SDValue MaskI = DAG.getFreeze( + DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MaskScalarVT, Mask, Idx)); + MaskI = DAG.getFreeze(MaskI); + MaskI = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, MaskI); + MaskI = DAG.getNode(ISD::ZERO_EXTEND, DL, PositionVT, MaskI); + OutPos = DAG.getNode(ISD::ADD, DL, PositionVT, OutPos, MaskI); + + if (HasPassthru && I == NumElms - 1) { + SDValue EndOfVector = + DAG.getConstant(VecVT.getVectorNumElements() - 1, DL, PositionVT); + SDValue AllLanesSelected = + DAG.getSetCC(DL, MVT::i1, OutPos, EndOfVector, ISD::CondCode::SETUGT); + OutPos = DAG.getNode(ISD::UMIN, DL, PositionVT, OutPos, EndOfVector); + OutPtr = getVectorElementPointer(DAG, StackPtr, VecVT, OutPos); + + // Re-write the last ValI if all lanes were selected. Otherwise, + // overwrite the last write it with the passthru value. + LastWriteVal = + DAG.getSelect(DL, ScalarVT, AllLanesSelected, ValI, LastWriteVal); + Chain = DAG.getStore( + Chain, DL, LastWriteVal, OutPtr, + MachinePointerInfo::getUnknownStack(DAG.getMachineFunction())); + } + } + + return DAG.getLoad(VecVT, DL, Chain, StackPtr, PtrInfo); +} + +bool TargetLowering::LegalizeSetCCCondCode(SelectionDAG &DAG, EVT VT, + SDValue &LHS, SDValue &RHS, + SDValue &CC, SDValue Mask, + SDValue EVL, bool &NeedInvert, + const SDLoc &dl, SDValue &Chain, + bool IsSignaling) const { + const TargetLowering &TLI = DAG.getTargetLoweringInfo(); + MVT OpVT = LHS.getSimpleValueType(); + ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get(); + NeedInvert = false; + assert(!EVL == !Mask && "VP Mask and EVL must either both be set or unset"); + bool IsNonVP = !EVL; + switch (TLI.getCondCodeAction(CCCode, OpVT)) { + default: + llvm_unreachable("Unknown condition code action!"); + case TargetLowering::Legal: + // Nothing to do. + break; + case TargetLowering::Expand: { + ISD::CondCode InvCC = ISD::getSetCCSwappedOperands(CCCode); + if (TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) { + std::swap(LHS, RHS); + CC = DAG.getCondCode(InvCC); + return true; + } + // Swapping operands didn't work. Try inverting the condition. + bool NeedSwap = false; + InvCC = getSetCCInverse(CCCode, OpVT); + if (!TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) { + // If inverting the condition is not enough, try swapping operands + // on top of it. + InvCC = ISD::getSetCCSwappedOperands(InvCC); + NeedSwap = true; + } + if (TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) { + CC = DAG.getCondCode(InvCC); + NeedInvert = true; + if (NeedSwap) + std::swap(LHS, RHS); + return true; + } + + ISD::CondCode CC1 = ISD::SETCC_INVALID, CC2 = ISD::SETCC_INVALID; + unsigned Opc = 0; + switch (CCCode) { + default: + llvm_unreachable("Don't know how to expand this condition!"); + case ISD::SETUO: + if (TLI.isCondCodeLegal(ISD::SETUNE, OpVT)) { + CC1 = ISD::SETUNE; + CC2 = ISD::SETUNE; + Opc = ISD::OR; + break; + } + assert(TLI.isCondCodeLegal(ISD::SETOEQ, OpVT) && + "If SETUE is expanded, SETOEQ or SETUNE must be legal!"); + NeedInvert = true; + [[fallthrough]]; + case ISD::SETO: + assert(TLI.isCondCodeLegal(ISD::SETOEQ, OpVT) && + "If SETO is expanded, SETOEQ must be legal!"); + CC1 = ISD::SETOEQ; + CC2 = ISD::SETOEQ; + Opc = ISD::AND; + break; + case ISD::SETONE: + case ISD::SETUEQ: + // If the SETUO or SETO CC isn't legal, we might be able to use + // SETOGT || SETOLT, inverting the result for SETUEQ. We only need one + // of SETOGT/SETOLT to be legal, the other can be emulated by swapping + // the operands. + CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO; + if (!TLI.isCondCodeLegal(CC2, OpVT) && + (TLI.isCondCodeLegal(ISD::SETOGT, OpVT) || + TLI.isCondCodeLegal(ISD::SETOLT, OpVT))) { + CC1 = ISD::SETOGT; + CC2 = ISD::SETOLT; + Opc = ISD::OR; + NeedInvert = ((unsigned)CCCode & 0x8U); + break; + } + [[fallthrough]]; + case ISD::SETOEQ: + case ISD::SETOGT: + case ISD::SETOGE: + case ISD::SETOLT: + case ISD::SETOLE: + case ISD::SETUNE: + case ISD::SETUGT: + case ISD::SETUGE: + case ISD::SETULT: + case ISD::SETULE: + // If we are floating point, assign and break, otherwise fall through. + if (!OpVT.isInteger()) { + // We can use the 4th bit to tell if we are the unordered + // or ordered version of the opcode. + CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO; + Opc = ((unsigned)CCCode & 0x8U) ? ISD::OR : ISD::AND; + CC1 = (ISD::CondCode)(((int)CCCode & 0x7) | 0x10); + break; + } + // Fallthrough if we are unsigned integer. + [[fallthrough]]; + case ISD::SETLE: + case ISD::SETGT: + case ISD::SETGE: + case ISD::SETLT: + case ISD::SETNE: + case ISD::SETEQ: + // If all combinations of inverting the condition and swapping operands + // didn't work then we have no means to expand the condition. + llvm_unreachable("Don't know how to expand this condition!"); + } + + SDValue SetCC1, SetCC2; + if (CCCode != ISD::SETO && CCCode != ISD::SETUO) { + // If we aren't the ordered or unorder operation, + // then the pattern is (LHS CC1 RHS) Opc (LHS CC2 RHS). + if (IsNonVP) { + SetCC1 = DAG.getSetCC(dl, VT, LHS, RHS, CC1, Chain, IsSignaling); + SetCC2 = DAG.getSetCC(dl, VT, LHS, RHS, CC2, Chain, IsSignaling); + } else { + SetCC1 = DAG.getSetCCVP(dl, VT, LHS, RHS, CC1, Mask, EVL); + SetCC2 = DAG.getSetCCVP(dl, VT, LHS, RHS, CC2, Mask, EVL); + } + } else { + // Otherwise, the pattern is (LHS CC1 LHS) Opc (RHS CC2 RHS) + if (IsNonVP) { + SetCC1 = DAG.getSetCC(dl, VT, LHS, LHS, CC1, Chain, IsSignaling); + SetCC2 = DAG.getSetCC(dl, VT, RHS, RHS, CC2, Chain, IsSignaling); + } else { + SetCC1 = DAG.getSetCCVP(dl, VT, LHS, LHS, CC1, Mask, EVL); + SetCC2 = DAG.getSetCCVP(dl, VT, RHS, RHS, CC2, Mask, EVL); + } + } + if (Chain) + Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, SetCC1.getValue(1), + SetCC2.getValue(1)); + if (IsNonVP) + LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2); + else { + // Transform the binary opcode to the VP equivalent. + assert((Opc == ISD::OR || Opc == ISD::AND) && "Unexpected opcode"); + Opc = Opc == ISD::OR ? ISD::VP_OR : ISD::VP_AND; + LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2, Mask, EVL); + } + RHS = SDValue(); + CC = SDValue(); + return true; + } + } + return false; +} |
