aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm-project/llvm/lib/CodeGen/TargetInstrInfo.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm-project/llvm/lib/CodeGen/TargetInstrInfo.cpp')
-rw-r--r--contrib/llvm-project/llvm/lib/CodeGen/TargetInstrInfo.cpp1855
1 files changed, 1855 insertions, 0 deletions
diff --git a/contrib/llvm-project/llvm/lib/CodeGen/TargetInstrInfo.cpp b/contrib/llvm-project/llvm/lib/CodeGen/TargetInstrInfo.cpp
new file mode 100644
index 000000000000..4783742a14ad
--- /dev/null
+++ b/contrib/llvm-project/llvm/lib/CodeGen/TargetInstrInfo.cpp
@@ -0,0 +1,1855 @@
+//===-- TargetInstrInfo.cpp - Target Instruction Information --------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the TargetInstrInfo class.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/CodeGen/TargetInstrInfo.h"
+#include "llvm/ADT/StringExtras.h"
+#include "llvm/BinaryFormat/Dwarf.h"
+#include "llvm/CodeGen/MachineCombinerPattern.h"
+#include "llvm/CodeGen/MachineFrameInfo.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineMemOperand.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/CodeGen/MachineScheduler.h"
+#include "llvm/CodeGen/MachineTraceMetrics.h"
+#include "llvm/CodeGen/PseudoSourceValue.h"
+#include "llvm/CodeGen/ScoreboardHazardRecognizer.h"
+#include "llvm/CodeGen/StackMaps.h"
+#include "llvm/CodeGen/TargetFrameLowering.h"
+#include "llvm/CodeGen/TargetLowering.h"
+#include "llvm/CodeGen/TargetRegisterInfo.h"
+#include "llvm/CodeGen/TargetSchedule.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/DebugInfoMetadata.h"
+#include "llvm/MC/MCAsmInfo.h"
+#include "llvm/MC/MCInstrItineraries.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Target/TargetMachine.h"
+
+using namespace llvm;
+
+static cl::opt<bool> DisableHazardRecognizer(
+ "disable-sched-hazard", cl::Hidden, cl::init(false),
+ cl::desc("Disable hazard detection during preRA scheduling"));
+
+TargetInstrInfo::~TargetInstrInfo() = default;
+
+const TargetRegisterClass*
+TargetInstrInfo::getRegClass(const MCInstrDesc &MCID, unsigned OpNum,
+ const TargetRegisterInfo *TRI,
+ const MachineFunction &MF) const {
+ if (OpNum >= MCID.getNumOperands())
+ return nullptr;
+
+ short RegClass = MCID.operands()[OpNum].RegClass;
+ if (MCID.operands()[OpNum].isLookupPtrRegClass())
+ return TRI->getPointerRegClass(MF, RegClass);
+
+ // Instructions like INSERT_SUBREG do not have fixed register classes.
+ if (RegClass < 0)
+ return nullptr;
+
+ // Otherwise just look it up normally.
+ return TRI->getRegClass(RegClass);
+}
+
+/// insertNoop - Insert a noop into the instruction stream at the specified
+/// point.
+void TargetInstrInfo::insertNoop(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator MI) const {
+ llvm_unreachable("Target didn't implement insertNoop!");
+}
+
+/// insertNoops - Insert noops into the instruction stream at the specified
+/// point.
+void TargetInstrInfo::insertNoops(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator MI,
+ unsigned Quantity) const {
+ for (unsigned i = 0; i < Quantity; ++i)
+ insertNoop(MBB, MI);
+}
+
+static bool isAsmComment(const char *Str, const MCAsmInfo &MAI) {
+ return strncmp(Str, MAI.getCommentString().data(),
+ MAI.getCommentString().size()) == 0;
+}
+
+/// Measure the specified inline asm to determine an approximation of its
+/// length.
+/// Comments (which run till the next SeparatorString or newline) do not
+/// count as an instruction.
+/// Any other non-whitespace text is considered an instruction, with
+/// multiple instructions separated by SeparatorString or newlines.
+/// Variable-length instructions are not handled here; this function
+/// may be overloaded in the target code to do that.
+/// We implement a special case of the .space directive which takes only a
+/// single integer argument in base 10 that is the size in bytes. This is a
+/// restricted form of the GAS directive in that we only interpret
+/// simple--i.e. not a logical or arithmetic expression--size values without
+/// the optional fill value. This is primarily used for creating arbitrary
+/// sized inline asm blocks for testing purposes.
+unsigned TargetInstrInfo::getInlineAsmLength(
+ const char *Str,
+ const MCAsmInfo &MAI, const TargetSubtargetInfo *STI) const {
+ // Count the number of instructions in the asm.
+ bool AtInsnStart = true;
+ unsigned Length = 0;
+ const unsigned MaxInstLength = MAI.getMaxInstLength(STI);
+ for (; *Str; ++Str) {
+ if (*Str == '\n' || strncmp(Str, MAI.getSeparatorString(),
+ strlen(MAI.getSeparatorString())) == 0) {
+ AtInsnStart = true;
+ } else if (isAsmComment(Str, MAI)) {
+ // Stop counting as an instruction after a comment until the next
+ // separator.
+ AtInsnStart = false;
+ }
+
+ if (AtInsnStart && !isSpace(static_cast<unsigned char>(*Str))) {
+ unsigned AddLength = MaxInstLength;
+ if (strncmp(Str, ".space", 6) == 0) {
+ char *EStr;
+ int SpaceSize;
+ SpaceSize = strtol(Str + 6, &EStr, 10);
+ SpaceSize = SpaceSize < 0 ? 0 : SpaceSize;
+ while (*EStr != '\n' && isSpace(static_cast<unsigned char>(*EStr)))
+ ++EStr;
+ if (*EStr == '\0' || *EStr == '\n' ||
+ isAsmComment(EStr, MAI)) // Successfully parsed .space argument
+ AddLength = SpaceSize;
+ }
+ Length += AddLength;
+ AtInsnStart = false;
+ }
+ }
+
+ return Length;
+}
+
+/// ReplaceTailWithBranchTo - Delete the instruction OldInst and everything
+/// after it, replacing it with an unconditional branch to NewDest.
+void
+TargetInstrInfo::ReplaceTailWithBranchTo(MachineBasicBlock::iterator Tail,
+ MachineBasicBlock *NewDest) const {
+ MachineBasicBlock *MBB = Tail->getParent();
+
+ // Remove all the old successors of MBB from the CFG.
+ while (!MBB->succ_empty())
+ MBB->removeSuccessor(MBB->succ_begin());
+
+ // Save off the debug loc before erasing the instruction.
+ DebugLoc DL = Tail->getDebugLoc();
+
+ // Update call site info and remove all the dead instructions
+ // from the end of MBB.
+ while (Tail != MBB->end()) {
+ auto MI = Tail++;
+ if (MI->shouldUpdateCallSiteInfo())
+ MBB->getParent()->eraseCallSiteInfo(&*MI);
+ MBB->erase(MI);
+ }
+
+ // If MBB isn't immediately before MBB, insert a branch to it.
+ if (++MachineFunction::iterator(MBB) != MachineFunction::iterator(NewDest))
+ insertBranch(*MBB, NewDest, nullptr, SmallVector<MachineOperand, 0>(), DL);
+ MBB->addSuccessor(NewDest);
+}
+
+MachineInstr *TargetInstrInfo::commuteInstructionImpl(MachineInstr &MI,
+ bool NewMI, unsigned Idx1,
+ unsigned Idx2) const {
+ const MCInstrDesc &MCID = MI.getDesc();
+ bool HasDef = MCID.getNumDefs();
+ if (HasDef && !MI.getOperand(0).isReg())
+ // No idea how to commute this instruction. Target should implement its own.
+ return nullptr;
+
+ unsigned CommutableOpIdx1 = Idx1; (void)CommutableOpIdx1;
+ unsigned CommutableOpIdx2 = Idx2; (void)CommutableOpIdx2;
+ assert(findCommutedOpIndices(MI, CommutableOpIdx1, CommutableOpIdx2) &&
+ CommutableOpIdx1 == Idx1 && CommutableOpIdx2 == Idx2 &&
+ "TargetInstrInfo::CommuteInstructionImpl(): not commutable operands.");
+ assert(MI.getOperand(Idx1).isReg() && MI.getOperand(Idx2).isReg() &&
+ "This only knows how to commute register operands so far");
+
+ Register Reg0 = HasDef ? MI.getOperand(0).getReg() : Register();
+ Register Reg1 = MI.getOperand(Idx1).getReg();
+ Register Reg2 = MI.getOperand(Idx2).getReg();
+ unsigned SubReg0 = HasDef ? MI.getOperand(0).getSubReg() : 0;
+ unsigned SubReg1 = MI.getOperand(Idx1).getSubReg();
+ unsigned SubReg2 = MI.getOperand(Idx2).getSubReg();
+ bool Reg1IsKill = MI.getOperand(Idx1).isKill();
+ bool Reg2IsKill = MI.getOperand(Idx2).isKill();
+ bool Reg1IsUndef = MI.getOperand(Idx1).isUndef();
+ bool Reg2IsUndef = MI.getOperand(Idx2).isUndef();
+ bool Reg1IsInternal = MI.getOperand(Idx1).isInternalRead();
+ bool Reg2IsInternal = MI.getOperand(Idx2).isInternalRead();
+ // Avoid calling isRenamable for virtual registers since we assert that
+ // renamable property is only queried/set for physical registers.
+ bool Reg1IsRenamable =
+ Reg1.isPhysical() ? MI.getOperand(Idx1).isRenamable() : false;
+ bool Reg2IsRenamable =
+ Reg2.isPhysical() ? MI.getOperand(Idx2).isRenamable() : false;
+ // If destination is tied to either of the commuted source register, then
+ // it must be updated.
+ if (HasDef && Reg0 == Reg1 &&
+ MI.getDesc().getOperandConstraint(Idx1, MCOI::TIED_TO) == 0) {
+ Reg2IsKill = false;
+ Reg0 = Reg2;
+ SubReg0 = SubReg2;
+ } else if (HasDef && Reg0 == Reg2 &&
+ MI.getDesc().getOperandConstraint(Idx2, MCOI::TIED_TO) == 0) {
+ Reg1IsKill = false;
+ Reg0 = Reg1;
+ SubReg0 = SubReg1;
+ }
+
+ MachineInstr *CommutedMI = nullptr;
+ if (NewMI) {
+ // Create a new instruction.
+ MachineFunction &MF = *MI.getMF();
+ CommutedMI = MF.CloneMachineInstr(&MI);
+ } else {
+ CommutedMI = &MI;
+ }
+
+ if (HasDef) {
+ CommutedMI->getOperand(0).setReg(Reg0);
+ CommutedMI->getOperand(0).setSubReg(SubReg0);
+ }
+ CommutedMI->getOperand(Idx2).setReg(Reg1);
+ CommutedMI->getOperand(Idx1).setReg(Reg2);
+ CommutedMI->getOperand(Idx2).setSubReg(SubReg1);
+ CommutedMI->getOperand(Idx1).setSubReg(SubReg2);
+ CommutedMI->getOperand(Idx2).setIsKill(Reg1IsKill);
+ CommutedMI->getOperand(Idx1).setIsKill(Reg2IsKill);
+ CommutedMI->getOperand(Idx2).setIsUndef(Reg1IsUndef);
+ CommutedMI->getOperand(Idx1).setIsUndef(Reg2IsUndef);
+ CommutedMI->getOperand(Idx2).setIsInternalRead(Reg1IsInternal);
+ CommutedMI->getOperand(Idx1).setIsInternalRead(Reg2IsInternal);
+ // Avoid calling setIsRenamable for virtual registers since we assert that
+ // renamable property is only queried/set for physical registers.
+ if (Reg1.isPhysical())
+ CommutedMI->getOperand(Idx2).setIsRenamable(Reg1IsRenamable);
+ if (Reg2.isPhysical())
+ CommutedMI->getOperand(Idx1).setIsRenamable(Reg2IsRenamable);
+ return CommutedMI;
+}
+
+MachineInstr *TargetInstrInfo::commuteInstruction(MachineInstr &MI, bool NewMI,
+ unsigned OpIdx1,
+ unsigned OpIdx2) const {
+ // If OpIdx1 or OpIdx2 is not specified, then this method is free to choose
+ // any commutable operand, which is done in findCommutedOpIndices() method
+ // called below.
+ if ((OpIdx1 == CommuteAnyOperandIndex || OpIdx2 == CommuteAnyOperandIndex) &&
+ !findCommutedOpIndices(MI, OpIdx1, OpIdx2)) {
+ assert(MI.isCommutable() &&
+ "Precondition violation: MI must be commutable.");
+ return nullptr;
+ }
+ return commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2);
+}
+
+bool TargetInstrInfo::fixCommutedOpIndices(unsigned &ResultIdx1,
+ unsigned &ResultIdx2,
+ unsigned CommutableOpIdx1,
+ unsigned CommutableOpIdx2) {
+ if (ResultIdx1 == CommuteAnyOperandIndex &&
+ ResultIdx2 == CommuteAnyOperandIndex) {
+ ResultIdx1 = CommutableOpIdx1;
+ ResultIdx2 = CommutableOpIdx2;
+ } else if (ResultIdx1 == CommuteAnyOperandIndex) {
+ if (ResultIdx2 == CommutableOpIdx1)
+ ResultIdx1 = CommutableOpIdx2;
+ else if (ResultIdx2 == CommutableOpIdx2)
+ ResultIdx1 = CommutableOpIdx1;
+ else
+ return false;
+ } else if (ResultIdx2 == CommuteAnyOperandIndex) {
+ if (ResultIdx1 == CommutableOpIdx1)
+ ResultIdx2 = CommutableOpIdx2;
+ else if (ResultIdx1 == CommutableOpIdx2)
+ ResultIdx2 = CommutableOpIdx1;
+ else
+ return false;
+ } else
+ // Check that the result operand indices match the given commutable
+ // operand indices.
+ return (ResultIdx1 == CommutableOpIdx1 && ResultIdx2 == CommutableOpIdx2) ||
+ (ResultIdx1 == CommutableOpIdx2 && ResultIdx2 == CommutableOpIdx1);
+
+ return true;
+}
+
+bool TargetInstrInfo::findCommutedOpIndices(const MachineInstr &MI,
+ unsigned &SrcOpIdx1,
+ unsigned &SrcOpIdx2) const {
+ assert(!MI.isBundle() &&
+ "TargetInstrInfo::findCommutedOpIndices() can't handle bundles");
+
+ const MCInstrDesc &MCID = MI.getDesc();
+ if (!MCID.isCommutable())
+ return false;
+
+ // This assumes v0 = op v1, v2 and commuting would swap v1 and v2. If this
+ // is not true, then the target must implement this.
+ unsigned CommutableOpIdx1 = MCID.getNumDefs();
+ unsigned CommutableOpIdx2 = CommutableOpIdx1 + 1;
+ if (!fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2,
+ CommutableOpIdx1, CommutableOpIdx2))
+ return false;
+
+ if (!MI.getOperand(SrcOpIdx1).isReg() || !MI.getOperand(SrcOpIdx2).isReg())
+ // No idea.
+ return false;
+ return true;
+}
+
+bool TargetInstrInfo::isUnpredicatedTerminator(const MachineInstr &MI) const {
+ if (!MI.isTerminator()) return false;
+
+ // Conditional branch is a special case.
+ if (MI.isBranch() && !MI.isBarrier())
+ return true;
+ if (!MI.isPredicable())
+ return true;
+ return !isPredicated(MI);
+}
+
+bool TargetInstrInfo::PredicateInstruction(
+ MachineInstr &MI, ArrayRef<MachineOperand> Pred) const {
+ bool MadeChange = false;
+
+ assert(!MI.isBundle() &&
+ "TargetInstrInfo::PredicateInstruction() can't handle bundles");
+
+ const MCInstrDesc &MCID = MI.getDesc();
+ if (!MI.isPredicable())
+ return false;
+
+ for (unsigned j = 0, i = 0, e = MI.getNumOperands(); i != e; ++i) {
+ if (MCID.operands()[i].isPredicate()) {
+ MachineOperand &MO = MI.getOperand(i);
+ if (MO.isReg()) {
+ MO.setReg(Pred[j].getReg());
+ MadeChange = true;
+ } else if (MO.isImm()) {
+ MO.setImm(Pred[j].getImm());
+ MadeChange = true;
+ } else if (MO.isMBB()) {
+ MO.setMBB(Pred[j].getMBB());
+ MadeChange = true;
+ }
+ ++j;
+ }
+ }
+ return MadeChange;
+}
+
+bool TargetInstrInfo::hasLoadFromStackSlot(
+ const MachineInstr &MI,
+ SmallVectorImpl<const MachineMemOperand *> &Accesses) const {
+ size_t StartSize = Accesses.size();
+ for (MachineInstr::mmo_iterator o = MI.memoperands_begin(),
+ oe = MI.memoperands_end();
+ o != oe; ++o) {
+ if ((*o)->isLoad() &&
+ isa_and_nonnull<FixedStackPseudoSourceValue>((*o)->getPseudoValue()))
+ Accesses.push_back(*o);
+ }
+ return Accesses.size() != StartSize;
+}
+
+bool TargetInstrInfo::hasStoreToStackSlot(
+ const MachineInstr &MI,
+ SmallVectorImpl<const MachineMemOperand *> &Accesses) const {
+ size_t StartSize = Accesses.size();
+ for (MachineInstr::mmo_iterator o = MI.memoperands_begin(),
+ oe = MI.memoperands_end();
+ o != oe; ++o) {
+ if ((*o)->isStore() &&
+ isa_and_nonnull<FixedStackPseudoSourceValue>((*o)->getPseudoValue()))
+ Accesses.push_back(*o);
+ }
+ return Accesses.size() != StartSize;
+}
+
+bool TargetInstrInfo::getStackSlotRange(const TargetRegisterClass *RC,
+ unsigned SubIdx, unsigned &Size,
+ unsigned &Offset,
+ const MachineFunction &MF) const {
+ const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
+ if (!SubIdx) {
+ Size = TRI->getSpillSize(*RC);
+ Offset = 0;
+ return true;
+ }
+ unsigned BitSize = TRI->getSubRegIdxSize(SubIdx);
+ // Convert bit size to byte size.
+ if (BitSize % 8)
+ return false;
+
+ int BitOffset = TRI->getSubRegIdxOffset(SubIdx);
+ if (BitOffset < 0 || BitOffset % 8)
+ return false;
+
+ Size = BitSize / 8;
+ Offset = (unsigned)BitOffset / 8;
+
+ assert(TRI->getSpillSize(*RC) >= (Offset + Size) && "bad subregister range");
+
+ if (!MF.getDataLayout().isLittleEndian()) {
+ Offset = TRI->getSpillSize(*RC) - (Offset + Size);
+ }
+ return true;
+}
+
+void TargetInstrInfo::reMaterialize(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator I,
+ Register DestReg, unsigned SubIdx,
+ const MachineInstr &Orig,
+ const TargetRegisterInfo &TRI) const {
+ MachineInstr *MI = MBB.getParent()->CloneMachineInstr(&Orig);
+ MI->substituteRegister(MI->getOperand(0).getReg(), DestReg, SubIdx, TRI);
+ MBB.insert(I, MI);
+}
+
+bool TargetInstrInfo::produceSameValue(const MachineInstr &MI0,
+ const MachineInstr &MI1,
+ const MachineRegisterInfo *MRI) const {
+ return MI0.isIdenticalTo(MI1, MachineInstr::IgnoreVRegDefs);
+}
+
+MachineInstr &
+TargetInstrInfo::duplicate(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator InsertBefore,
+ const MachineInstr &Orig) const {
+ MachineFunction &MF = *MBB.getParent();
+ // CFI instructions are marked as non-duplicable, because Darwin compact
+ // unwind info emission can't handle multiple prologue setups.
+ assert((!Orig.isNotDuplicable() ||
+ (!MF.getTarget().getTargetTriple().isOSDarwin() &&
+ Orig.isCFIInstruction())) &&
+ "Instruction cannot be duplicated");
+
+ return MF.cloneMachineInstrBundle(MBB, InsertBefore, Orig);
+}
+
+// If the COPY instruction in MI can be folded to a stack operation, return
+// the register class to use.
+static const TargetRegisterClass *canFoldCopy(const MachineInstr &MI,
+ const TargetInstrInfo &TII,
+ unsigned FoldIdx) {
+ assert(TII.isCopyInstr(MI) && "MI must be a COPY instruction");
+ if (MI.getNumOperands() != 2)
+ return nullptr;
+ assert(FoldIdx<2 && "FoldIdx refers no nonexistent operand");
+
+ const MachineOperand &FoldOp = MI.getOperand(FoldIdx);
+ const MachineOperand &LiveOp = MI.getOperand(1 - FoldIdx);
+
+ if (FoldOp.getSubReg() || LiveOp.getSubReg())
+ return nullptr;
+
+ Register FoldReg = FoldOp.getReg();
+ Register LiveReg = LiveOp.getReg();
+
+ assert(FoldReg.isVirtual() && "Cannot fold physregs");
+
+ const MachineRegisterInfo &MRI = MI.getMF()->getRegInfo();
+ const TargetRegisterClass *RC = MRI.getRegClass(FoldReg);
+
+ if (LiveOp.getReg().isPhysical())
+ return RC->contains(LiveOp.getReg()) ? RC : nullptr;
+
+ if (RC->hasSubClassEq(MRI.getRegClass(LiveReg)))
+ return RC;
+
+ // FIXME: Allow folding when register classes are memory compatible.
+ return nullptr;
+}
+
+MCInst TargetInstrInfo::getNop() const { llvm_unreachable("Not implemented"); }
+
+std::pair<unsigned, unsigned>
+TargetInstrInfo::getPatchpointUnfoldableRange(const MachineInstr &MI) const {
+ switch (MI.getOpcode()) {
+ case TargetOpcode::STACKMAP:
+ // StackMapLiveValues are foldable
+ return std::make_pair(0, StackMapOpers(&MI).getVarIdx());
+ case TargetOpcode::PATCHPOINT:
+ // For PatchPoint, the call args are not foldable (even if reported in the
+ // stackmap e.g. via anyregcc).
+ return std::make_pair(0, PatchPointOpers(&MI).getVarIdx());
+ case TargetOpcode::STATEPOINT:
+ // For statepoints, fold deopt and gc arguments, but not call arguments.
+ return std::make_pair(MI.getNumDefs(), StatepointOpers(&MI).getVarIdx());
+ default:
+ llvm_unreachable("unexpected stackmap opcode");
+ }
+}
+
+static MachineInstr *foldPatchpoint(MachineFunction &MF, MachineInstr &MI,
+ ArrayRef<unsigned> Ops, int FrameIndex,
+ const TargetInstrInfo &TII) {
+ unsigned StartIdx = 0;
+ unsigned NumDefs = 0;
+ // getPatchpointUnfoldableRange throws guarantee if MI is not a patchpoint.
+ std::tie(NumDefs, StartIdx) = TII.getPatchpointUnfoldableRange(MI);
+
+ unsigned DefToFoldIdx = MI.getNumOperands();
+
+ // Return false if any operands requested for folding are not foldable (not
+ // part of the stackmap's live values).
+ for (unsigned Op : Ops) {
+ if (Op < NumDefs) {
+ assert(DefToFoldIdx == MI.getNumOperands() && "Folding multiple defs");
+ DefToFoldIdx = Op;
+ } else if (Op < StartIdx) {
+ return nullptr;
+ }
+ if (MI.getOperand(Op).isTied())
+ return nullptr;
+ }
+
+ MachineInstr *NewMI =
+ MF.CreateMachineInstr(TII.get(MI.getOpcode()), MI.getDebugLoc(), true);
+ MachineInstrBuilder MIB(MF, NewMI);
+
+ // No need to fold return, the meta data, and function arguments
+ for (unsigned i = 0; i < StartIdx; ++i)
+ if (i != DefToFoldIdx)
+ MIB.add(MI.getOperand(i));
+
+ for (unsigned i = StartIdx, e = MI.getNumOperands(); i < e; ++i) {
+ MachineOperand &MO = MI.getOperand(i);
+ unsigned TiedTo = e;
+ (void)MI.isRegTiedToDefOperand(i, &TiedTo);
+
+ if (is_contained(Ops, i)) {
+ assert(TiedTo == e && "Cannot fold tied operands");
+ unsigned SpillSize;
+ unsigned SpillOffset;
+ // Compute the spill slot size and offset.
+ const TargetRegisterClass *RC =
+ MF.getRegInfo().getRegClass(MO.getReg());
+ bool Valid =
+ TII.getStackSlotRange(RC, MO.getSubReg(), SpillSize, SpillOffset, MF);
+ if (!Valid)
+ report_fatal_error("cannot spill patchpoint subregister operand");
+ MIB.addImm(StackMaps::IndirectMemRefOp);
+ MIB.addImm(SpillSize);
+ MIB.addFrameIndex(FrameIndex);
+ MIB.addImm(SpillOffset);
+ } else {
+ MIB.add(MO);
+ if (TiedTo < e) {
+ assert(TiedTo < NumDefs && "Bad tied operand");
+ if (TiedTo > DefToFoldIdx)
+ --TiedTo;
+ NewMI->tieOperands(TiedTo, NewMI->getNumOperands() - 1);
+ }
+ }
+ }
+ return NewMI;
+}
+
+static void foldInlineAsmMemOperand(MachineInstr *MI, unsigned OpNo, int FI,
+ const TargetInstrInfo &TII) {
+ // If the machine operand is tied, untie it first.
+ if (MI->getOperand(OpNo).isTied()) {
+ unsigned TiedTo = MI->findTiedOperandIdx(OpNo);
+ MI->untieRegOperand(OpNo);
+ // Intentional recursion!
+ foldInlineAsmMemOperand(MI, TiedTo, FI, TII);
+ }
+
+ SmallVector<MachineOperand, 5> NewOps;
+ TII.getFrameIndexOperands(NewOps, FI);
+ assert(!NewOps.empty() && "getFrameIndexOperands didn't create any operands");
+ MI->removeOperand(OpNo);
+ MI->insert(MI->operands_begin() + OpNo, NewOps);
+
+ // Change the previous operand to a MemKind InlineAsm::Flag. The second param
+ // is the per-target number of operands that represent the memory operand
+ // excluding this one (MD). This includes MO.
+ InlineAsm::Flag F(InlineAsm::Kind::Mem, NewOps.size());
+ F.setMemConstraint(InlineAsm::ConstraintCode::m);
+ MachineOperand &MD = MI->getOperand(OpNo - 1);
+ MD.setImm(F);
+}
+
+// Returns nullptr if not possible to fold.
+static MachineInstr *foldInlineAsmMemOperand(MachineInstr &MI,
+ ArrayRef<unsigned> Ops, int FI,
+ const TargetInstrInfo &TII) {
+ assert(MI.isInlineAsm() && "wrong opcode");
+ if (Ops.size() > 1)
+ return nullptr;
+ unsigned Op = Ops[0];
+ assert(Op && "should never be first operand");
+ assert(MI.getOperand(Op).isReg() && "shouldn't be folding non-reg operands");
+
+ if (!MI.mayFoldInlineAsmRegOp(Op))
+ return nullptr;
+
+ MachineInstr &NewMI = TII.duplicate(*MI.getParent(), MI.getIterator(), MI);
+
+ foldInlineAsmMemOperand(&NewMI, Op, FI, TII);
+
+ // Update mayload/maystore metadata, and memoperands.
+ const VirtRegInfo &RI =
+ AnalyzeVirtRegInBundle(MI, MI.getOperand(Op).getReg());
+ MachineOperand &ExtraMO = NewMI.getOperand(InlineAsm::MIOp_ExtraInfo);
+ MachineMemOperand::Flags Flags = MachineMemOperand::MONone;
+ if (RI.Reads) {
+ ExtraMO.setImm(ExtraMO.getImm() | InlineAsm::Extra_MayLoad);
+ Flags |= MachineMemOperand::MOLoad;
+ }
+ if (RI.Writes) {
+ ExtraMO.setImm(ExtraMO.getImm() | InlineAsm::Extra_MayStore);
+ Flags |= MachineMemOperand::MOStore;
+ }
+ MachineFunction *MF = NewMI.getMF();
+ const MachineFrameInfo &MFI = MF->getFrameInfo();
+ MachineMemOperand *MMO = MF->getMachineMemOperand(
+ MachinePointerInfo::getFixedStack(*MF, FI), Flags, MFI.getObjectSize(FI),
+ MFI.getObjectAlign(FI));
+ NewMI.addMemOperand(*MF, MMO);
+
+ return &NewMI;
+}
+
+MachineInstr *TargetInstrInfo::foldMemoryOperand(MachineInstr &MI,
+ ArrayRef<unsigned> Ops, int FI,
+ LiveIntervals *LIS,
+ VirtRegMap *VRM) const {
+ auto Flags = MachineMemOperand::MONone;
+ for (unsigned OpIdx : Ops)
+ Flags |= MI.getOperand(OpIdx).isDef() ? MachineMemOperand::MOStore
+ : MachineMemOperand::MOLoad;
+
+ MachineBasicBlock *MBB = MI.getParent();
+ assert(MBB && "foldMemoryOperand needs an inserted instruction");
+ MachineFunction &MF = *MBB->getParent();
+
+ // If we're not folding a load into a subreg, the size of the load is the
+ // size of the spill slot. But if we are, we need to figure out what the
+ // actual load size is.
+ int64_t MemSize = 0;
+ const MachineFrameInfo &MFI = MF.getFrameInfo();
+ const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
+
+ if (Flags & MachineMemOperand::MOStore) {
+ MemSize = MFI.getObjectSize(FI);
+ } else {
+ for (unsigned OpIdx : Ops) {
+ int64_t OpSize = MFI.getObjectSize(FI);
+
+ if (auto SubReg = MI.getOperand(OpIdx).getSubReg()) {
+ unsigned SubRegSize = TRI->getSubRegIdxSize(SubReg);
+ if (SubRegSize > 0 && !(SubRegSize % 8))
+ OpSize = SubRegSize / 8;
+ }
+
+ MemSize = std::max(MemSize, OpSize);
+ }
+ }
+
+ assert(MemSize && "Did not expect a zero-sized stack slot");
+
+ MachineInstr *NewMI = nullptr;
+
+ if (MI.getOpcode() == TargetOpcode::STACKMAP ||
+ MI.getOpcode() == TargetOpcode::PATCHPOINT ||
+ MI.getOpcode() == TargetOpcode::STATEPOINT) {
+ // Fold stackmap/patchpoint.
+ NewMI = foldPatchpoint(MF, MI, Ops, FI, *this);
+ if (NewMI)
+ MBB->insert(MI, NewMI);
+ } else if (MI.isInlineAsm()) {
+ return foldInlineAsmMemOperand(MI, Ops, FI, *this);
+ } else {
+ // Ask the target to do the actual folding.
+ NewMI = foldMemoryOperandImpl(MF, MI, Ops, MI, FI, LIS, VRM);
+ }
+
+ if (NewMI) {
+ NewMI->setMemRefs(MF, MI.memoperands());
+ // Add a memory operand, foldMemoryOperandImpl doesn't do that.
+ assert((!(Flags & MachineMemOperand::MOStore) ||
+ NewMI->mayStore()) &&
+ "Folded a def to a non-store!");
+ assert((!(Flags & MachineMemOperand::MOLoad) ||
+ NewMI->mayLoad()) &&
+ "Folded a use to a non-load!");
+ assert(MFI.getObjectOffset(FI) != -1);
+ MachineMemOperand *MMO =
+ MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(MF, FI),
+ Flags, MemSize, MFI.getObjectAlign(FI));
+ NewMI->addMemOperand(MF, MMO);
+
+ // The pass "x86 speculative load hardening" always attaches symbols to
+ // call instructions. We need copy it form old instruction.
+ NewMI->cloneInstrSymbols(MF, MI);
+
+ return NewMI;
+ }
+
+ // Straight COPY may fold as load/store.
+ if (!isCopyInstr(MI) || Ops.size() != 1)
+ return nullptr;
+
+ const TargetRegisterClass *RC = canFoldCopy(MI, *this, Ops[0]);
+ if (!RC)
+ return nullptr;
+
+ const MachineOperand &MO = MI.getOperand(1 - Ops[0]);
+ MachineBasicBlock::iterator Pos = MI;
+
+ if (Flags == MachineMemOperand::MOStore)
+ storeRegToStackSlot(*MBB, Pos, MO.getReg(), MO.isKill(), FI, RC, TRI,
+ Register());
+ else
+ loadRegFromStackSlot(*MBB, Pos, MO.getReg(), FI, RC, TRI, Register());
+ return &*--Pos;
+}
+
+MachineInstr *TargetInstrInfo::foldMemoryOperand(MachineInstr &MI,
+ ArrayRef<unsigned> Ops,
+ MachineInstr &LoadMI,
+ LiveIntervals *LIS) const {
+ assert(LoadMI.canFoldAsLoad() && "LoadMI isn't foldable!");
+#ifndef NDEBUG
+ for (unsigned OpIdx : Ops)
+ assert(MI.getOperand(OpIdx).isUse() && "Folding load into def!");
+#endif
+
+ MachineBasicBlock &MBB = *MI.getParent();
+ MachineFunction &MF = *MBB.getParent();
+
+ // Ask the target to do the actual folding.
+ MachineInstr *NewMI = nullptr;
+ int FrameIndex = 0;
+
+ if ((MI.getOpcode() == TargetOpcode::STACKMAP ||
+ MI.getOpcode() == TargetOpcode::PATCHPOINT ||
+ MI.getOpcode() == TargetOpcode::STATEPOINT) &&
+ isLoadFromStackSlot(LoadMI, FrameIndex)) {
+ // Fold stackmap/patchpoint.
+ NewMI = foldPatchpoint(MF, MI, Ops, FrameIndex, *this);
+ if (NewMI)
+ NewMI = &*MBB.insert(MI, NewMI);
+ } else if (MI.isInlineAsm() && isLoadFromStackSlot(LoadMI, FrameIndex)) {
+ return foldInlineAsmMemOperand(MI, Ops, FrameIndex, *this);
+ } else {
+ // Ask the target to do the actual folding.
+ NewMI = foldMemoryOperandImpl(MF, MI, Ops, MI, LoadMI, LIS);
+ }
+
+ if (!NewMI)
+ return nullptr;
+
+ // Copy the memoperands from the load to the folded instruction.
+ if (MI.memoperands_empty()) {
+ NewMI->setMemRefs(MF, LoadMI.memoperands());
+ } else {
+ // Handle the rare case of folding multiple loads.
+ NewMI->setMemRefs(MF, MI.memoperands());
+ for (MachineInstr::mmo_iterator I = LoadMI.memoperands_begin(),
+ E = LoadMI.memoperands_end();
+ I != E; ++I) {
+ NewMI->addMemOperand(MF, *I);
+ }
+ }
+ return NewMI;
+}
+
+/// transferImplicitOperands - MI is a pseudo-instruction, and the lowered
+/// replacement instructions immediately precede it. Copy any implicit
+/// operands from MI to the replacement instruction.
+static void transferImplicitOperands(MachineInstr *MI,
+ const TargetRegisterInfo *TRI) {
+ MachineBasicBlock::iterator CopyMI = MI;
+ --CopyMI;
+
+ Register DstReg = MI->getOperand(0).getReg();
+ for (const MachineOperand &MO : MI->implicit_operands()) {
+ CopyMI->addOperand(MO);
+
+ // Be conservative about preserving kills when subregister defs are
+ // involved. If there was implicit kill of a super-register overlapping the
+ // copy result, we would kill the subregisters previous copies defined.
+
+ if (MO.isKill() && TRI->regsOverlap(DstReg, MO.getReg()))
+ CopyMI->getOperand(CopyMI->getNumOperands() - 1).setIsKill(false);
+ }
+}
+
+void TargetInstrInfo::lowerCopy(MachineInstr *MI,
+ const TargetRegisterInfo *TRI) const {
+ if (MI->allDefsAreDead()) {
+ MI->setDesc(get(TargetOpcode::KILL));
+ return;
+ }
+
+ MachineOperand &DstMO = MI->getOperand(0);
+ MachineOperand &SrcMO = MI->getOperand(1);
+
+ bool IdentityCopy = (SrcMO.getReg() == DstMO.getReg());
+ if (IdentityCopy || SrcMO.isUndef()) {
+ // No need to insert an identity copy instruction, but replace with a KILL
+ // if liveness is changed.
+ if (SrcMO.isUndef() || MI->getNumOperands() > 2) {
+ // We must make sure the super-register gets killed. Replace the
+ // instruction with KILL.
+ MI->setDesc(get(TargetOpcode::KILL));
+ return;
+ }
+ // Vanilla identity copy.
+ MI->eraseFromParent();
+ return;
+ }
+
+ copyPhysReg(*MI->getParent(), MI, MI->getDebugLoc(), DstMO.getReg(),
+ SrcMO.getReg(), SrcMO.isKill());
+
+ if (MI->getNumOperands() > 2)
+ transferImplicitOperands(MI, TRI);
+ MI->eraseFromParent();
+}
+
+bool TargetInstrInfo::hasReassociableOperands(
+ const MachineInstr &Inst, const MachineBasicBlock *MBB) const {
+ const MachineOperand &Op1 = Inst.getOperand(1);
+ const MachineOperand &Op2 = Inst.getOperand(2);
+ const MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
+
+ // We need virtual register definitions for the operands that we will
+ // reassociate.
+ MachineInstr *MI1 = nullptr;
+ MachineInstr *MI2 = nullptr;
+ if (Op1.isReg() && Op1.getReg().isVirtual())
+ MI1 = MRI.getUniqueVRegDef(Op1.getReg());
+ if (Op2.isReg() && Op2.getReg().isVirtual())
+ MI2 = MRI.getUniqueVRegDef(Op2.getReg());
+
+ // And at least one operand must be defined in MBB.
+ return MI1 && MI2 && (MI1->getParent() == MBB || MI2->getParent() == MBB);
+}
+
+bool TargetInstrInfo::areOpcodesEqualOrInverse(unsigned Opcode1,
+ unsigned Opcode2) const {
+ return Opcode1 == Opcode2 || getInverseOpcode(Opcode1) == Opcode2;
+}
+
+bool TargetInstrInfo::hasReassociableSibling(const MachineInstr &Inst,
+ bool &Commuted) const {
+ const MachineBasicBlock *MBB = Inst.getParent();
+ const MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
+ MachineInstr *MI1 = MRI.getUniqueVRegDef(Inst.getOperand(1).getReg());
+ MachineInstr *MI2 = MRI.getUniqueVRegDef(Inst.getOperand(2).getReg());
+ unsigned Opcode = Inst.getOpcode();
+
+ // If only one operand has the same or inverse opcode and it's the second
+ // source operand, the operands must be commuted.
+ Commuted = !areOpcodesEqualOrInverse(Opcode, MI1->getOpcode()) &&
+ areOpcodesEqualOrInverse(Opcode, MI2->getOpcode());
+ if (Commuted)
+ std::swap(MI1, MI2);
+
+ // 1. The previous instruction must be the same type as Inst.
+ // 2. The previous instruction must also be associative/commutative or be the
+ // inverse of such an operation (this can be different even for
+ // instructions with the same opcode if traits like fast-math-flags are
+ // included).
+ // 3. The previous instruction must have virtual register definitions for its
+ // operands in the same basic block as Inst.
+ // 4. The previous instruction's result must only be used by Inst.
+ return areOpcodesEqualOrInverse(Opcode, MI1->getOpcode()) &&
+ (isAssociativeAndCommutative(*MI1) ||
+ isAssociativeAndCommutative(*MI1, /* Invert */ true)) &&
+ hasReassociableOperands(*MI1, MBB) &&
+ MRI.hasOneNonDBGUse(MI1->getOperand(0).getReg());
+}
+
+// 1. The operation must be associative and commutative or be the inverse of
+// such an operation.
+// 2. The instruction must have virtual register definitions for its
+// operands in the same basic block.
+// 3. The instruction must have a reassociable sibling.
+bool TargetInstrInfo::isReassociationCandidate(const MachineInstr &Inst,
+ bool &Commuted) const {
+ return (isAssociativeAndCommutative(Inst) ||
+ isAssociativeAndCommutative(Inst, /* Invert */ true)) &&
+ hasReassociableOperands(Inst, Inst.getParent()) &&
+ hasReassociableSibling(Inst, Commuted);
+}
+
+// The concept of the reassociation pass is that these operations can benefit
+// from this kind of transformation:
+//
+// A = ? op ?
+// B = A op X (Prev)
+// C = B op Y (Root)
+// -->
+// A = ? op ?
+// B = X op Y
+// C = A op B
+//
+// breaking the dependency between A and B, allowing them to be executed in
+// parallel (or back-to-back in a pipeline) instead of depending on each other.
+
+// FIXME: This has the potential to be expensive (compile time) while not
+// improving the code at all. Some ways to limit the overhead:
+// 1. Track successful transforms; bail out if hit rate gets too low.
+// 2. Only enable at -O3 or some other non-default optimization level.
+// 3. Pre-screen pattern candidates here: if an operand of the previous
+// instruction is known to not increase the critical path, then don't match
+// that pattern.
+bool TargetInstrInfo::getMachineCombinerPatterns(
+ MachineInstr &Root, SmallVectorImpl<MachineCombinerPattern> &Patterns,
+ bool DoRegPressureReduce) const {
+ bool Commute;
+ if (isReassociationCandidate(Root, Commute)) {
+ // We found a sequence of instructions that may be suitable for a
+ // reassociation of operands to increase ILP. Specify each commutation
+ // possibility for the Prev instruction in the sequence and let the
+ // machine combiner decide if changing the operands is worthwhile.
+ if (Commute) {
+ Patterns.push_back(MachineCombinerPattern::REASSOC_AX_YB);
+ Patterns.push_back(MachineCombinerPattern::REASSOC_XA_YB);
+ } else {
+ Patterns.push_back(MachineCombinerPattern::REASSOC_AX_BY);
+ Patterns.push_back(MachineCombinerPattern::REASSOC_XA_BY);
+ }
+ return true;
+ }
+
+ return false;
+}
+
+/// Return true when a code sequence can improve loop throughput.
+bool
+TargetInstrInfo::isThroughputPattern(MachineCombinerPattern Pattern) const {
+ return false;
+}
+
+std::pair<unsigned, unsigned>
+TargetInstrInfo::getReassociationOpcodes(MachineCombinerPattern Pattern,
+ const MachineInstr &Root,
+ const MachineInstr &Prev) const {
+ bool AssocCommutRoot = isAssociativeAndCommutative(Root);
+ bool AssocCommutPrev = isAssociativeAndCommutative(Prev);
+
+ // Early exit if both opcodes are associative and commutative. It's a trivial
+ // reassociation when we only change operands order. In this case opcodes are
+ // not required to have inverse versions.
+ if (AssocCommutRoot && AssocCommutPrev) {
+ assert(Root.getOpcode() == Prev.getOpcode() && "Expected to be equal");
+ return std::make_pair(Root.getOpcode(), Root.getOpcode());
+ }
+
+ // At least one instruction is not associative or commutative.
+ // Since we have matched one of the reassociation patterns, we expect that the
+ // instructions' opcodes are equal or one of them is the inversion of the
+ // other.
+ assert(areOpcodesEqualOrInverse(Root.getOpcode(), Prev.getOpcode()) &&
+ "Incorrectly matched pattern");
+ unsigned AssocCommutOpcode = Root.getOpcode();
+ unsigned InverseOpcode = *getInverseOpcode(Root.getOpcode());
+ if (!AssocCommutRoot)
+ std::swap(AssocCommutOpcode, InverseOpcode);
+
+ // The transformation rule (`+` is any associative and commutative binary
+ // operation, `-` is the inverse):
+ // REASSOC_AX_BY:
+ // (A + X) + Y => A + (X + Y)
+ // (A + X) - Y => A + (X - Y)
+ // (A - X) + Y => A - (X - Y)
+ // (A - X) - Y => A - (X + Y)
+ // REASSOC_XA_BY:
+ // (X + A) + Y => (X + Y) + A
+ // (X + A) - Y => (X - Y) + A
+ // (X - A) + Y => (X + Y) - A
+ // (X - A) - Y => (X - Y) - A
+ // REASSOC_AX_YB:
+ // Y + (A + X) => (Y + X) + A
+ // Y - (A + X) => (Y - X) - A
+ // Y + (A - X) => (Y - X) + A
+ // Y - (A - X) => (Y + X) - A
+ // REASSOC_XA_YB:
+ // Y + (X + A) => (Y + X) + A
+ // Y - (X + A) => (Y - X) - A
+ // Y + (X - A) => (Y + X) - A
+ // Y - (X - A) => (Y - X) + A
+ switch (Pattern) {
+ default:
+ llvm_unreachable("Unexpected pattern");
+ case MachineCombinerPattern::REASSOC_AX_BY:
+ if (!AssocCommutRoot && AssocCommutPrev)
+ return {AssocCommutOpcode, InverseOpcode};
+ if (AssocCommutRoot && !AssocCommutPrev)
+ return {InverseOpcode, InverseOpcode};
+ if (!AssocCommutRoot && !AssocCommutPrev)
+ return {InverseOpcode, AssocCommutOpcode};
+ break;
+ case MachineCombinerPattern::REASSOC_XA_BY:
+ if (!AssocCommutRoot && AssocCommutPrev)
+ return {AssocCommutOpcode, InverseOpcode};
+ if (AssocCommutRoot && !AssocCommutPrev)
+ return {InverseOpcode, AssocCommutOpcode};
+ if (!AssocCommutRoot && !AssocCommutPrev)
+ return {InverseOpcode, InverseOpcode};
+ break;
+ case MachineCombinerPattern::REASSOC_AX_YB:
+ if (!AssocCommutRoot && AssocCommutPrev)
+ return {InverseOpcode, InverseOpcode};
+ if (AssocCommutRoot && !AssocCommutPrev)
+ return {AssocCommutOpcode, InverseOpcode};
+ if (!AssocCommutRoot && !AssocCommutPrev)
+ return {InverseOpcode, AssocCommutOpcode};
+ break;
+ case MachineCombinerPattern::REASSOC_XA_YB:
+ if (!AssocCommutRoot && AssocCommutPrev)
+ return {InverseOpcode, InverseOpcode};
+ if (AssocCommutRoot && !AssocCommutPrev)
+ return {InverseOpcode, AssocCommutOpcode};
+ if (!AssocCommutRoot && !AssocCommutPrev)
+ return {AssocCommutOpcode, InverseOpcode};
+ break;
+ }
+ llvm_unreachable("Unhandled combination");
+}
+
+// Return a pair of boolean flags showing if the new root and new prev operands
+// must be swapped. See visual example of the rule in
+// TargetInstrInfo::getReassociationOpcodes.
+static std::pair<bool, bool> mustSwapOperands(MachineCombinerPattern Pattern) {
+ switch (Pattern) {
+ default:
+ llvm_unreachable("Unexpected pattern");
+ case MachineCombinerPattern::REASSOC_AX_BY:
+ return {false, false};
+ case MachineCombinerPattern::REASSOC_XA_BY:
+ return {true, false};
+ case MachineCombinerPattern::REASSOC_AX_YB:
+ return {true, true};
+ case MachineCombinerPattern::REASSOC_XA_YB:
+ return {true, true};
+ }
+}
+
+/// Attempt the reassociation transformation to reduce critical path length.
+/// See the above comments before getMachineCombinerPatterns().
+void TargetInstrInfo::reassociateOps(
+ MachineInstr &Root, MachineInstr &Prev,
+ MachineCombinerPattern Pattern,
+ SmallVectorImpl<MachineInstr *> &InsInstrs,
+ SmallVectorImpl<MachineInstr *> &DelInstrs,
+ DenseMap<unsigned, unsigned> &InstrIdxForVirtReg) const {
+ MachineFunction *MF = Root.getMF();
+ MachineRegisterInfo &MRI = MF->getRegInfo();
+ const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
+ const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
+ const TargetRegisterClass *RC = Root.getRegClassConstraint(0, TII, TRI);
+
+ // This array encodes the operand index for each parameter because the
+ // operands may be commuted. Each row corresponds to a pattern value,
+ // and each column specifies the index of A, B, X, Y.
+ unsigned OpIdx[4][4] = {
+ { 1, 1, 2, 2 },
+ { 1, 2, 2, 1 },
+ { 2, 1, 1, 2 },
+ { 2, 2, 1, 1 }
+ };
+
+ int Row;
+ switch (Pattern) {
+ case MachineCombinerPattern::REASSOC_AX_BY: Row = 0; break;
+ case MachineCombinerPattern::REASSOC_AX_YB: Row = 1; break;
+ case MachineCombinerPattern::REASSOC_XA_BY: Row = 2; break;
+ case MachineCombinerPattern::REASSOC_XA_YB: Row = 3; break;
+ default: llvm_unreachable("unexpected MachineCombinerPattern");
+ }
+
+ MachineOperand &OpA = Prev.getOperand(OpIdx[Row][0]);
+ MachineOperand &OpB = Root.getOperand(OpIdx[Row][1]);
+ MachineOperand &OpX = Prev.getOperand(OpIdx[Row][2]);
+ MachineOperand &OpY = Root.getOperand(OpIdx[Row][3]);
+ MachineOperand &OpC = Root.getOperand(0);
+
+ Register RegA = OpA.getReg();
+ Register RegB = OpB.getReg();
+ Register RegX = OpX.getReg();
+ Register RegY = OpY.getReg();
+ Register RegC = OpC.getReg();
+
+ if (RegA.isVirtual())
+ MRI.constrainRegClass(RegA, RC);
+ if (RegB.isVirtual())
+ MRI.constrainRegClass(RegB, RC);
+ if (RegX.isVirtual())
+ MRI.constrainRegClass(RegX, RC);
+ if (RegY.isVirtual())
+ MRI.constrainRegClass(RegY, RC);
+ if (RegC.isVirtual())
+ MRI.constrainRegClass(RegC, RC);
+
+ // Create a new virtual register for the result of (X op Y) instead of
+ // recycling RegB because the MachineCombiner's computation of the critical
+ // path requires a new register definition rather than an existing one.
+ Register NewVR = MRI.createVirtualRegister(RC);
+ InstrIdxForVirtReg.insert(std::make_pair(NewVR, 0));
+
+ auto [NewRootOpc, NewPrevOpc] = getReassociationOpcodes(Pattern, Root, Prev);
+ bool KillA = OpA.isKill();
+ bool KillX = OpX.isKill();
+ bool KillY = OpY.isKill();
+ bool KillNewVR = true;
+
+ auto [SwapRootOperands, SwapPrevOperands] = mustSwapOperands(Pattern);
+
+ if (SwapPrevOperands) {
+ std::swap(RegX, RegY);
+ std::swap(KillX, KillY);
+ }
+
+ // Create new instructions for insertion.
+ MachineInstrBuilder MIB1 =
+ BuildMI(*MF, MIMetadata(Prev), TII->get(NewPrevOpc), NewVR)
+ .addReg(RegX, getKillRegState(KillX))
+ .addReg(RegY, getKillRegState(KillY));
+
+ if (SwapRootOperands) {
+ std::swap(RegA, NewVR);
+ std::swap(KillA, KillNewVR);
+ }
+
+ MachineInstrBuilder MIB2 =
+ BuildMI(*MF, MIMetadata(Root), TII->get(NewRootOpc), RegC)
+ .addReg(RegA, getKillRegState(KillA))
+ .addReg(NewVR, getKillRegState(KillNewVR));
+
+ // Propagate FP flags from the original instructions.
+ // But clear poison-generating flags because those may not be valid now.
+ // TODO: There should be a helper function for copying only fast-math-flags.
+ uint32_t IntersectedFlags = Root.getFlags() & Prev.getFlags();
+ MIB1->setFlags(IntersectedFlags);
+ MIB1->clearFlag(MachineInstr::MIFlag::NoSWrap);
+ MIB1->clearFlag(MachineInstr::MIFlag::NoUWrap);
+ MIB1->clearFlag(MachineInstr::MIFlag::IsExact);
+
+ MIB2->setFlags(IntersectedFlags);
+ MIB2->clearFlag(MachineInstr::MIFlag::NoSWrap);
+ MIB2->clearFlag(MachineInstr::MIFlag::NoUWrap);
+ MIB2->clearFlag(MachineInstr::MIFlag::IsExact);
+
+ setSpecialOperandAttr(Root, Prev, *MIB1, *MIB2);
+
+ // Record new instructions for insertion and old instructions for deletion.
+ InsInstrs.push_back(MIB1);
+ InsInstrs.push_back(MIB2);
+ DelInstrs.push_back(&Prev);
+ DelInstrs.push_back(&Root);
+
+ // We transformed:
+ // B = A op X (Prev)
+ // C = B op Y (Root)
+ // Into:
+ // B = X op Y (MIB1)
+ // C = A op B (MIB2)
+ // C has the same value as before, B doesn't; as such, keep the debug number
+ // of C but not of B.
+ if (unsigned OldRootNum = Root.peekDebugInstrNum())
+ MIB2.getInstr()->setDebugInstrNum(OldRootNum);
+}
+
+void TargetInstrInfo::genAlternativeCodeSequence(
+ MachineInstr &Root, MachineCombinerPattern Pattern,
+ SmallVectorImpl<MachineInstr *> &InsInstrs,
+ SmallVectorImpl<MachineInstr *> &DelInstrs,
+ DenseMap<unsigned, unsigned> &InstIdxForVirtReg) const {
+ MachineRegisterInfo &MRI = Root.getMF()->getRegInfo();
+
+ // Select the previous instruction in the sequence based on the input pattern.
+ MachineInstr *Prev = nullptr;
+ switch (Pattern) {
+ case MachineCombinerPattern::REASSOC_AX_BY:
+ case MachineCombinerPattern::REASSOC_XA_BY:
+ Prev = MRI.getUniqueVRegDef(Root.getOperand(1).getReg());
+ break;
+ case MachineCombinerPattern::REASSOC_AX_YB:
+ case MachineCombinerPattern::REASSOC_XA_YB:
+ Prev = MRI.getUniqueVRegDef(Root.getOperand(2).getReg());
+ break;
+ default:
+ llvm_unreachable("Unknown pattern for machine combiner");
+ }
+
+ // Don't reassociate if Prev and Root are in different blocks.
+ if (Prev->getParent() != Root.getParent())
+ return;
+
+ reassociateOps(Root, *Prev, Pattern, InsInstrs, DelInstrs, InstIdxForVirtReg);
+}
+
+MachineTraceStrategy TargetInstrInfo::getMachineCombinerTraceStrategy() const {
+ return MachineTraceStrategy::TS_MinInstrCount;
+}
+
+bool TargetInstrInfo::isReallyTriviallyReMaterializable(
+ const MachineInstr &MI) const {
+ const MachineFunction &MF = *MI.getMF();
+ const MachineRegisterInfo &MRI = MF.getRegInfo();
+
+ // Remat clients assume operand 0 is the defined register.
+ if (!MI.getNumOperands() || !MI.getOperand(0).isReg())
+ return false;
+ Register DefReg = MI.getOperand(0).getReg();
+
+ // A sub-register definition can only be rematerialized if the instruction
+ // doesn't read the other parts of the register. Otherwise it is really a
+ // read-modify-write operation on the full virtual register which cannot be
+ // moved safely.
+ if (DefReg.isVirtual() && MI.getOperand(0).getSubReg() &&
+ MI.readsVirtualRegister(DefReg))
+ return false;
+
+ // A load from a fixed stack slot can be rematerialized. This may be
+ // redundant with subsequent checks, but it's target-independent,
+ // simple, and a common case.
+ int FrameIdx = 0;
+ if (isLoadFromStackSlot(MI, FrameIdx) &&
+ MF.getFrameInfo().isImmutableObjectIndex(FrameIdx))
+ return true;
+
+ // Avoid instructions obviously unsafe for remat.
+ if (MI.isNotDuplicable() || MI.mayStore() || MI.mayRaiseFPException() ||
+ MI.hasUnmodeledSideEffects())
+ return false;
+
+ // Don't remat inline asm. We have no idea how expensive it is
+ // even if it's side effect free.
+ if (MI.isInlineAsm())
+ return false;
+
+ // Avoid instructions which load from potentially varying memory.
+ if (MI.mayLoad() && !MI.isDereferenceableInvariantLoad())
+ return false;
+
+ // If any of the registers accessed are non-constant, conservatively assume
+ // the instruction is not rematerializable.
+ for (const MachineOperand &MO : MI.operands()) {
+ if (!MO.isReg()) continue;
+ Register Reg = MO.getReg();
+ if (Reg == 0)
+ continue;
+
+ // Check for a well-behaved physical register.
+ if (Reg.isPhysical()) {
+ if (MO.isUse()) {
+ // If the physreg has no defs anywhere, it's just an ambient register
+ // and we can freely move its uses. Alternatively, if it's allocatable,
+ // it could get allocated to something with a def during allocation.
+ if (!MRI.isConstantPhysReg(Reg))
+ return false;
+ } else {
+ // A physreg def. We can't remat it.
+ return false;
+ }
+ continue;
+ }
+
+ // Only allow one virtual-register def. There may be multiple defs of the
+ // same virtual register, though.
+ if (MO.isDef() && Reg != DefReg)
+ return false;
+
+ // Don't allow any virtual-register uses. Rematting an instruction with
+ // virtual register uses would length the live ranges of the uses, which
+ // is not necessarily a good idea, certainly not "trivial".
+ if (MO.isUse())
+ return false;
+ }
+
+ // Everything checked out.
+ return true;
+}
+
+int TargetInstrInfo::getSPAdjust(const MachineInstr &MI) const {
+ const MachineFunction *MF = MI.getMF();
+ const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering();
+ bool StackGrowsDown =
+ TFI->getStackGrowthDirection() == TargetFrameLowering::StackGrowsDown;
+
+ unsigned FrameSetupOpcode = getCallFrameSetupOpcode();
+ unsigned FrameDestroyOpcode = getCallFrameDestroyOpcode();
+
+ if (!isFrameInstr(MI))
+ return 0;
+
+ int SPAdj = TFI->alignSPAdjust(getFrameSize(MI));
+
+ if ((!StackGrowsDown && MI.getOpcode() == FrameSetupOpcode) ||
+ (StackGrowsDown && MI.getOpcode() == FrameDestroyOpcode))
+ SPAdj = -SPAdj;
+
+ return SPAdj;
+}
+
+/// isSchedulingBoundary - Test if the given instruction should be
+/// considered a scheduling boundary. This primarily includes labels
+/// and terminators.
+bool TargetInstrInfo::isSchedulingBoundary(const MachineInstr &MI,
+ const MachineBasicBlock *MBB,
+ const MachineFunction &MF) const {
+ // Terminators and labels can't be scheduled around.
+ if (MI.isTerminator() || MI.isPosition())
+ return true;
+
+ // INLINEASM_BR can jump to another block
+ if (MI.getOpcode() == TargetOpcode::INLINEASM_BR)
+ return true;
+
+ // Don't attempt to schedule around any instruction that defines
+ // a stack-oriented pointer, as it's unlikely to be profitable. This
+ // saves compile time, because it doesn't require every single
+ // stack slot reference to depend on the instruction that does the
+ // modification.
+ const TargetLowering &TLI = *MF.getSubtarget().getTargetLowering();
+ const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
+ return MI.modifiesRegister(TLI.getStackPointerRegisterToSaveRestore(), TRI);
+}
+
+// Provide a global flag for disabling the PreRA hazard recognizer that targets
+// may choose to honor.
+bool TargetInstrInfo::usePreRAHazardRecognizer() const {
+ return !DisableHazardRecognizer;
+}
+
+// Default implementation of CreateTargetRAHazardRecognizer.
+ScheduleHazardRecognizer *TargetInstrInfo::
+CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI,
+ const ScheduleDAG *DAG) const {
+ // Dummy hazard recognizer allows all instructions to issue.
+ return new ScheduleHazardRecognizer();
+}
+
+// Default implementation of CreateTargetMIHazardRecognizer.
+ScheduleHazardRecognizer *TargetInstrInfo::CreateTargetMIHazardRecognizer(
+ const InstrItineraryData *II, const ScheduleDAGMI *DAG) const {
+ return new ScoreboardHazardRecognizer(II, DAG, "machine-scheduler");
+}
+
+// Default implementation of CreateTargetPostRAHazardRecognizer.
+ScheduleHazardRecognizer *TargetInstrInfo::
+CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II,
+ const ScheduleDAG *DAG) const {
+ return new ScoreboardHazardRecognizer(II, DAG, "post-RA-sched");
+}
+
+// Default implementation of getMemOperandWithOffset.
+bool TargetInstrInfo::getMemOperandWithOffset(
+ const MachineInstr &MI, const MachineOperand *&BaseOp, int64_t &Offset,
+ bool &OffsetIsScalable, const TargetRegisterInfo *TRI) const {
+ SmallVector<const MachineOperand *, 4> BaseOps;
+ unsigned Width;
+ if (!getMemOperandsWithOffsetWidth(MI, BaseOps, Offset, OffsetIsScalable,
+ Width, TRI) ||
+ BaseOps.size() != 1)
+ return false;
+ BaseOp = BaseOps.front();
+ return true;
+}
+
+//===----------------------------------------------------------------------===//
+// SelectionDAG latency interface.
+//===----------------------------------------------------------------------===//
+
+std::optional<unsigned>
+TargetInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
+ SDNode *DefNode, unsigned DefIdx,
+ SDNode *UseNode, unsigned UseIdx) const {
+ if (!ItinData || ItinData->isEmpty())
+ return std::nullopt;
+
+ if (!DefNode->isMachineOpcode())
+ return std::nullopt;
+
+ unsigned DefClass = get(DefNode->getMachineOpcode()).getSchedClass();
+ if (!UseNode->isMachineOpcode())
+ return ItinData->getOperandCycle(DefClass, DefIdx);
+ unsigned UseClass = get(UseNode->getMachineOpcode()).getSchedClass();
+ return ItinData->getOperandLatency(DefClass, DefIdx, UseClass, UseIdx);
+}
+
+unsigned TargetInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
+ SDNode *N) const {
+ if (!ItinData || ItinData->isEmpty())
+ return 1;
+
+ if (!N->isMachineOpcode())
+ return 1;
+
+ return ItinData->getStageLatency(get(N->getMachineOpcode()).getSchedClass());
+}
+
+//===----------------------------------------------------------------------===//
+// MachineInstr latency interface.
+//===----------------------------------------------------------------------===//
+
+unsigned TargetInstrInfo::getNumMicroOps(const InstrItineraryData *ItinData,
+ const MachineInstr &MI) const {
+ if (!ItinData || ItinData->isEmpty())
+ return 1;
+
+ unsigned Class = MI.getDesc().getSchedClass();
+ int UOps = ItinData->Itineraries[Class].NumMicroOps;
+ if (UOps >= 0)
+ return UOps;
+
+ // The # of u-ops is dynamically determined. The specific target should
+ // override this function to return the right number.
+ return 1;
+}
+
+/// Return the default expected latency for a def based on it's opcode.
+unsigned TargetInstrInfo::defaultDefLatency(const MCSchedModel &SchedModel,
+ const MachineInstr &DefMI) const {
+ if (DefMI.isTransient())
+ return 0;
+ if (DefMI.mayLoad())
+ return SchedModel.LoadLatency;
+ if (isHighLatencyDef(DefMI.getOpcode()))
+ return SchedModel.HighLatency;
+ return 1;
+}
+
+unsigned TargetInstrInfo::getPredicationCost(const MachineInstr &) const {
+ return 0;
+}
+
+unsigned TargetInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
+ const MachineInstr &MI,
+ unsigned *PredCost) const {
+ // Default to one cycle for no itinerary. However, an "empty" itinerary may
+ // still have a MinLatency property, which getStageLatency checks.
+ if (!ItinData)
+ return MI.mayLoad() ? 2 : 1;
+
+ return ItinData->getStageLatency(MI.getDesc().getSchedClass());
+}
+
+bool TargetInstrInfo::hasLowDefLatency(const TargetSchedModel &SchedModel,
+ const MachineInstr &DefMI,
+ unsigned DefIdx) const {
+ const InstrItineraryData *ItinData = SchedModel.getInstrItineraries();
+ if (!ItinData || ItinData->isEmpty())
+ return false;
+
+ unsigned DefClass = DefMI.getDesc().getSchedClass();
+ std::optional<unsigned> DefCycle =
+ ItinData->getOperandCycle(DefClass, DefIdx);
+ return DefCycle && DefCycle <= 1U;
+}
+
+bool TargetInstrInfo::isFunctionSafeToSplit(const MachineFunction &MF) const {
+ // TODO: We don't split functions where a section attribute has been set
+ // since the split part may not be placed in a contiguous region. It may also
+ // be more beneficial to augment the linker to ensure contiguous layout of
+ // split functions within the same section as specified by the attribute.
+ if (MF.getFunction().hasSection() ||
+ MF.getFunction().hasFnAttribute("implicit-section-name"))
+ return false;
+
+ // We don't want to proceed further for cold functions
+ // or functions of unknown hotness. Lukewarm functions have no prefix.
+ std::optional<StringRef> SectionPrefix = MF.getFunction().getSectionPrefix();
+ if (SectionPrefix &&
+ (*SectionPrefix == "unlikely" || *SectionPrefix == "unknown")) {
+ return false;
+ }
+
+ return true;
+}
+
+std::optional<ParamLoadedValue>
+TargetInstrInfo::describeLoadedValue(const MachineInstr &MI,
+ Register Reg) const {
+ const MachineFunction *MF = MI.getMF();
+ const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
+ DIExpression *Expr = DIExpression::get(MF->getFunction().getContext(), {});
+ int64_t Offset;
+ bool OffsetIsScalable;
+
+ // To simplify the sub-register handling, verify that we only need to
+ // consider physical registers.
+ assert(MF->getProperties().hasProperty(
+ MachineFunctionProperties::Property::NoVRegs));
+
+ if (auto DestSrc = isCopyInstr(MI)) {
+ Register DestReg = DestSrc->Destination->getReg();
+
+ // If the copy destination is the forwarding reg, describe the forwarding
+ // reg using the copy source as the backup location. Example:
+ //
+ // x0 = MOV x7
+ // call callee(x0) ; x0 described as x7
+ if (Reg == DestReg)
+ return ParamLoadedValue(*DestSrc->Source, Expr);
+
+ // If the target's hook couldn't describe this copy, give up.
+ return std::nullopt;
+ } else if (auto RegImm = isAddImmediate(MI, Reg)) {
+ Register SrcReg = RegImm->Reg;
+ Offset = RegImm->Imm;
+ Expr = DIExpression::prepend(Expr, DIExpression::ApplyOffset, Offset);
+ return ParamLoadedValue(MachineOperand::CreateReg(SrcReg, false), Expr);
+ } else if (MI.hasOneMemOperand()) {
+ // Only describe memory which provably does not escape the function. As
+ // described in llvm.org/PR43343, escaped memory may be clobbered by the
+ // callee (or by another thread).
+ const auto &TII = MF->getSubtarget().getInstrInfo();
+ const MachineFrameInfo &MFI = MF->getFrameInfo();
+ const MachineMemOperand *MMO = MI.memoperands()[0];
+ const PseudoSourceValue *PSV = MMO->getPseudoValue();
+
+ // If the address points to "special" memory (e.g. a spill slot), it's
+ // sufficient to check that it isn't aliased by any high-level IR value.
+ if (!PSV || PSV->mayAlias(&MFI))
+ return std::nullopt;
+
+ const MachineOperand *BaseOp;
+ if (!TII->getMemOperandWithOffset(MI, BaseOp, Offset, OffsetIsScalable,
+ TRI))
+ return std::nullopt;
+
+ // FIXME: Scalable offsets are not yet handled in the offset code below.
+ if (OffsetIsScalable)
+ return std::nullopt;
+
+ // TODO: Can currently only handle mem instructions with a single define.
+ // An example from the x86 target:
+ // ...
+ // DIV64m $rsp, 1, $noreg, 24, $noreg, implicit-def dead $rax, implicit-def $rdx
+ // ...
+ //
+ if (MI.getNumExplicitDefs() != 1)
+ return std::nullopt;
+
+ // TODO: In what way do we need to take Reg into consideration here?
+
+ SmallVector<uint64_t, 8> Ops;
+ DIExpression::appendOffset(Ops, Offset);
+ Ops.push_back(dwarf::DW_OP_deref_size);
+ Ops.push_back(MMO->getSize());
+ Expr = DIExpression::prependOpcodes(Expr, Ops);
+ return ParamLoadedValue(*BaseOp, Expr);
+ }
+
+ return std::nullopt;
+}
+
+// Get the call frame size just before MI.
+unsigned TargetInstrInfo::getCallFrameSizeAt(MachineInstr &MI) const {
+ // Search backwards from MI for the most recent call frame instruction.
+ MachineBasicBlock *MBB = MI.getParent();
+ for (auto &AdjI : reverse(make_range(MBB->instr_begin(), MI.getIterator()))) {
+ if (AdjI.getOpcode() == getCallFrameSetupOpcode())
+ return getFrameTotalSize(AdjI);
+ if (AdjI.getOpcode() == getCallFrameDestroyOpcode())
+ return 0;
+ }
+
+ // If none was found, use the call frame size from the start of the basic
+ // block.
+ return MBB->getCallFrameSize();
+}
+
+/// Both DefMI and UseMI must be valid. By default, call directly to the
+/// itinerary. This may be overriden by the target.
+std::optional<unsigned> TargetInstrInfo::getOperandLatency(
+ const InstrItineraryData *ItinData, const MachineInstr &DefMI,
+ unsigned DefIdx, const MachineInstr &UseMI, unsigned UseIdx) const {
+ unsigned DefClass = DefMI.getDesc().getSchedClass();
+ unsigned UseClass = UseMI.getDesc().getSchedClass();
+ return ItinData->getOperandLatency(DefClass, DefIdx, UseClass, UseIdx);
+}
+
+bool TargetInstrInfo::getRegSequenceInputs(
+ const MachineInstr &MI, unsigned DefIdx,
+ SmallVectorImpl<RegSubRegPairAndIdx> &InputRegs) const {
+ assert((MI.isRegSequence() ||
+ MI.isRegSequenceLike()) && "Instruction do not have the proper type");
+
+ if (!MI.isRegSequence())
+ return getRegSequenceLikeInputs(MI, DefIdx, InputRegs);
+
+ // We are looking at:
+ // Def = REG_SEQUENCE v0, sub0, v1, sub1, ...
+ assert(DefIdx == 0 && "REG_SEQUENCE only has one def");
+ for (unsigned OpIdx = 1, EndOpIdx = MI.getNumOperands(); OpIdx != EndOpIdx;
+ OpIdx += 2) {
+ const MachineOperand &MOReg = MI.getOperand(OpIdx);
+ if (MOReg.isUndef())
+ continue;
+ const MachineOperand &MOSubIdx = MI.getOperand(OpIdx + 1);
+ assert(MOSubIdx.isImm() &&
+ "One of the subindex of the reg_sequence is not an immediate");
+ // Record Reg:SubReg, SubIdx.
+ InputRegs.push_back(RegSubRegPairAndIdx(MOReg.getReg(), MOReg.getSubReg(),
+ (unsigned)MOSubIdx.getImm()));
+ }
+ return true;
+}
+
+bool TargetInstrInfo::getExtractSubregInputs(
+ const MachineInstr &MI, unsigned DefIdx,
+ RegSubRegPairAndIdx &InputReg) const {
+ assert((MI.isExtractSubreg() ||
+ MI.isExtractSubregLike()) && "Instruction do not have the proper type");
+
+ if (!MI.isExtractSubreg())
+ return getExtractSubregLikeInputs(MI, DefIdx, InputReg);
+
+ // We are looking at:
+ // Def = EXTRACT_SUBREG v0.sub1, sub0.
+ assert(DefIdx == 0 && "EXTRACT_SUBREG only has one def");
+ const MachineOperand &MOReg = MI.getOperand(1);
+ if (MOReg.isUndef())
+ return false;
+ const MachineOperand &MOSubIdx = MI.getOperand(2);
+ assert(MOSubIdx.isImm() &&
+ "The subindex of the extract_subreg is not an immediate");
+
+ InputReg.Reg = MOReg.getReg();
+ InputReg.SubReg = MOReg.getSubReg();
+ InputReg.SubIdx = (unsigned)MOSubIdx.getImm();
+ return true;
+}
+
+bool TargetInstrInfo::getInsertSubregInputs(
+ const MachineInstr &MI, unsigned DefIdx,
+ RegSubRegPair &BaseReg, RegSubRegPairAndIdx &InsertedReg) const {
+ assert((MI.isInsertSubreg() ||
+ MI.isInsertSubregLike()) && "Instruction do not have the proper type");
+
+ if (!MI.isInsertSubreg())
+ return getInsertSubregLikeInputs(MI, DefIdx, BaseReg, InsertedReg);
+
+ // We are looking at:
+ // Def = INSERT_SEQUENCE v0, v1, sub0.
+ assert(DefIdx == 0 && "INSERT_SUBREG only has one def");
+ const MachineOperand &MOBaseReg = MI.getOperand(1);
+ const MachineOperand &MOInsertedReg = MI.getOperand(2);
+ if (MOInsertedReg.isUndef())
+ return false;
+ const MachineOperand &MOSubIdx = MI.getOperand(3);
+ assert(MOSubIdx.isImm() &&
+ "One of the subindex of the reg_sequence is not an immediate");
+ BaseReg.Reg = MOBaseReg.getReg();
+ BaseReg.SubReg = MOBaseReg.getSubReg();
+
+ InsertedReg.Reg = MOInsertedReg.getReg();
+ InsertedReg.SubReg = MOInsertedReg.getSubReg();
+ InsertedReg.SubIdx = (unsigned)MOSubIdx.getImm();
+ return true;
+}
+
+// Returns a MIRPrinter comment for this machine operand.
+std::string TargetInstrInfo::createMIROperandComment(
+ const MachineInstr &MI, const MachineOperand &Op, unsigned OpIdx,
+ const TargetRegisterInfo *TRI) const {
+
+ if (!MI.isInlineAsm())
+ return "";
+
+ std::string Flags;
+ raw_string_ostream OS(Flags);
+
+ if (OpIdx == InlineAsm::MIOp_ExtraInfo) {
+ // Print HasSideEffects, MayLoad, MayStore, IsAlignStack
+ unsigned ExtraInfo = Op.getImm();
+ bool First = true;
+ for (StringRef Info : InlineAsm::getExtraInfoNames(ExtraInfo)) {
+ if (!First)
+ OS << " ";
+ First = false;
+ OS << Info;
+ }
+
+ return OS.str();
+ }
+
+ int FlagIdx = MI.findInlineAsmFlagIdx(OpIdx);
+ if (FlagIdx < 0 || (unsigned)FlagIdx != OpIdx)
+ return "";
+
+ assert(Op.isImm() && "Expected flag operand to be an immediate");
+ // Pretty print the inline asm operand descriptor.
+ unsigned Flag = Op.getImm();
+ const InlineAsm::Flag F(Flag);
+ OS << F.getKindName();
+
+ unsigned RCID;
+ if (!F.isImmKind() && !F.isMemKind() && F.hasRegClassConstraint(RCID)) {
+ if (TRI) {
+ OS << ':' << TRI->getRegClassName(TRI->getRegClass(RCID));
+ } else
+ OS << ":RC" << RCID;
+ }
+
+ if (F.isMemKind()) {
+ InlineAsm::ConstraintCode MCID = F.getMemoryConstraintID();
+ OS << ":" << InlineAsm::getMemConstraintName(MCID);
+ }
+
+ unsigned TiedTo;
+ if (F.isUseOperandTiedToDef(TiedTo))
+ OS << " tiedto:$" << TiedTo;
+
+ if ((F.isRegDefKind() || F.isRegDefEarlyClobberKind() || F.isRegUseKind()) &&
+ F.getRegMayBeFolded())
+ OS << " foldable";
+
+ return OS.str();
+}
+
+TargetInstrInfo::PipelinerLoopInfo::~PipelinerLoopInfo() = default;
+
+void TargetInstrInfo::mergeOutliningCandidateAttributes(
+ Function &F, std::vector<outliner::Candidate> &Candidates) const {
+ // Include target features from an arbitrary candidate for the outlined
+ // function. This makes sure the outlined function knows what kinds of
+ // instructions are going into it. This is fine, since all parent functions
+ // must necessarily support the instructions that are in the outlined region.
+ outliner::Candidate &FirstCand = Candidates.front();
+ const Function &ParentFn = FirstCand.getMF()->getFunction();
+ if (ParentFn.hasFnAttribute("target-features"))
+ F.addFnAttr(ParentFn.getFnAttribute("target-features"));
+ if (ParentFn.hasFnAttribute("target-cpu"))
+ F.addFnAttr(ParentFn.getFnAttribute("target-cpu"));
+
+ // Set nounwind, so we don't generate eh_frame.
+ if (llvm::all_of(Candidates, [](const outliner::Candidate &C) {
+ return C.getMF()->getFunction().hasFnAttribute(Attribute::NoUnwind);
+ }))
+ F.addFnAttr(Attribute::NoUnwind);
+}
+
+outliner::InstrType TargetInstrInfo::getOutliningType(
+ MachineBasicBlock::iterator &MIT, unsigned Flags) const {
+ MachineInstr &MI = *MIT;
+
+ // NOTE: MI.isMetaInstruction() will match CFI_INSTRUCTION, but some targets
+ // have support for outlining those. Special-case that here.
+ if (MI.isCFIInstruction())
+ // Just go right to the target implementation.
+ return getOutliningTypeImpl(MIT, Flags);
+
+ // Be conservative about inline assembly.
+ if (MI.isInlineAsm())
+ return outliner::InstrType::Illegal;
+
+ // Labels generally can't safely be outlined.
+ if (MI.isLabel())
+ return outliner::InstrType::Illegal;
+
+ // Don't let debug instructions impact analysis.
+ if (MI.isDebugInstr())
+ return outliner::InstrType::Invisible;
+
+ // Some other special cases.
+ switch (MI.getOpcode()) {
+ case TargetOpcode::IMPLICIT_DEF:
+ case TargetOpcode::KILL:
+ case TargetOpcode::LIFETIME_START:
+ case TargetOpcode::LIFETIME_END:
+ return outliner::InstrType::Invisible;
+ default:
+ break;
+ }
+
+ // Is this a terminator for a basic block?
+ if (MI.isTerminator()) {
+ // If this is a branch to another block, we can't outline it.
+ if (!MI.getParent()->succ_empty())
+ return outliner::InstrType::Illegal;
+
+ // Don't outline if the branch is not unconditional.
+ if (isPredicated(MI))
+ return outliner::InstrType::Illegal;
+ }
+
+ // Make sure none of the operands of this instruction do anything that
+ // might break if they're moved outside their current function.
+ // This includes MachineBasicBlock references, BlockAddressses,
+ // Constant pool indices and jump table indices.
+ //
+ // A quick note on MO_TargetIndex:
+ // This doesn't seem to be used in any of the architectures that the
+ // MachineOutliner supports, but it was still filtered out in all of them.
+ // There was one exception (RISC-V), but MO_TargetIndex also isn't used there.
+ // As such, this check is removed both here and in the target-specific
+ // implementations. Instead, we assert to make sure this doesn't
+ // catch anyone off-guard somewhere down the line.
+ for (const MachineOperand &MOP : MI.operands()) {
+ // If you hit this assertion, please remove it and adjust
+ // `getOutliningTypeImpl` for your target appropriately if necessary.
+ // Adding the assertion back to other supported architectures
+ // would be nice too :)
+ assert(!MOP.isTargetIndex() && "This isn't used quite yet!");
+
+ // CFI instructions should already have been filtered out at this point.
+ assert(!MOP.isCFIIndex() && "CFI instructions handled elsewhere!");
+
+ // PrologEpilogInserter should've already run at this point.
+ assert(!MOP.isFI() && "FrameIndex instructions should be gone by now!");
+
+ if (MOP.isMBB() || MOP.isBlockAddress() || MOP.isCPI() || MOP.isJTI())
+ return outliner::InstrType::Illegal;
+ }
+
+ // If we don't know, delegate to the target-specific hook.
+ return getOutliningTypeImpl(MIT, Flags);
+}
+
+bool TargetInstrInfo::isMBBSafeToOutlineFrom(MachineBasicBlock &MBB,
+ unsigned &Flags) const {
+ // Some instrumentations create special TargetOpcode at the start which
+ // expands to special code sequences which must be present.
+ auto First = MBB.getFirstNonDebugInstr();
+ if (First == MBB.end())
+ return true;
+
+ if (First->getOpcode() == TargetOpcode::FENTRY_CALL ||
+ First->getOpcode() == TargetOpcode::PATCHABLE_FUNCTION_ENTER)
+ return false;
+
+ // Some instrumentations create special pseudo-instructions at or just before
+ // the end that must be present.
+ auto Last = MBB.getLastNonDebugInstr();
+ if (Last->getOpcode() == TargetOpcode::PATCHABLE_RET ||
+ Last->getOpcode() == TargetOpcode::PATCHABLE_TAIL_CALL)
+ return false;
+
+ if (Last != First && Last->isReturn()) {
+ --Last;
+ if (Last->getOpcode() == TargetOpcode::PATCHABLE_FUNCTION_EXIT ||
+ Last->getOpcode() == TargetOpcode::PATCHABLE_TAIL_CALL)
+ return false;
+ }
+ return true;
+}