diff options
Diffstat (limited to 'contrib/llvm-project/llvm/lib/CodeGen/TargetInstrInfo.cpp')
| -rw-r--r-- | contrib/llvm-project/llvm/lib/CodeGen/TargetInstrInfo.cpp | 1855 |
1 files changed, 1855 insertions, 0 deletions
diff --git a/contrib/llvm-project/llvm/lib/CodeGen/TargetInstrInfo.cpp b/contrib/llvm-project/llvm/lib/CodeGen/TargetInstrInfo.cpp new file mode 100644 index 000000000000..4783742a14ad --- /dev/null +++ b/contrib/llvm-project/llvm/lib/CodeGen/TargetInstrInfo.cpp @@ -0,0 +1,1855 @@ +//===-- TargetInstrInfo.cpp - Target Instruction Information --------------===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// This file implements the TargetInstrInfo class. +// +//===----------------------------------------------------------------------===// + +#include "llvm/CodeGen/TargetInstrInfo.h" +#include "llvm/ADT/StringExtras.h" +#include "llvm/BinaryFormat/Dwarf.h" +#include "llvm/CodeGen/MachineCombinerPattern.h" +#include "llvm/CodeGen/MachineFrameInfo.h" +#include "llvm/CodeGen/MachineInstrBuilder.h" +#include "llvm/CodeGen/MachineMemOperand.h" +#include "llvm/CodeGen/MachineRegisterInfo.h" +#include "llvm/CodeGen/MachineScheduler.h" +#include "llvm/CodeGen/MachineTraceMetrics.h" +#include "llvm/CodeGen/PseudoSourceValue.h" +#include "llvm/CodeGen/ScoreboardHazardRecognizer.h" +#include "llvm/CodeGen/StackMaps.h" +#include "llvm/CodeGen/TargetFrameLowering.h" +#include "llvm/CodeGen/TargetLowering.h" +#include "llvm/CodeGen/TargetRegisterInfo.h" +#include "llvm/CodeGen/TargetSchedule.h" +#include "llvm/IR/DataLayout.h" +#include "llvm/IR/DebugInfoMetadata.h" +#include "llvm/MC/MCAsmInfo.h" +#include "llvm/MC/MCInstrItineraries.h" +#include "llvm/Support/CommandLine.h" +#include "llvm/Support/ErrorHandling.h" +#include "llvm/Support/raw_ostream.h" +#include "llvm/Target/TargetMachine.h" + +using namespace llvm; + +static cl::opt<bool> DisableHazardRecognizer( + "disable-sched-hazard", cl::Hidden, cl::init(false), + cl::desc("Disable hazard detection during preRA scheduling")); + +TargetInstrInfo::~TargetInstrInfo() = default; + +const TargetRegisterClass* +TargetInstrInfo::getRegClass(const MCInstrDesc &MCID, unsigned OpNum, + const TargetRegisterInfo *TRI, + const MachineFunction &MF) const { + if (OpNum >= MCID.getNumOperands()) + return nullptr; + + short RegClass = MCID.operands()[OpNum].RegClass; + if (MCID.operands()[OpNum].isLookupPtrRegClass()) + return TRI->getPointerRegClass(MF, RegClass); + + // Instructions like INSERT_SUBREG do not have fixed register classes. + if (RegClass < 0) + return nullptr; + + // Otherwise just look it up normally. + return TRI->getRegClass(RegClass); +} + +/// insertNoop - Insert a noop into the instruction stream at the specified +/// point. +void TargetInstrInfo::insertNoop(MachineBasicBlock &MBB, + MachineBasicBlock::iterator MI) const { + llvm_unreachable("Target didn't implement insertNoop!"); +} + +/// insertNoops - Insert noops into the instruction stream at the specified +/// point. +void TargetInstrInfo::insertNoops(MachineBasicBlock &MBB, + MachineBasicBlock::iterator MI, + unsigned Quantity) const { + for (unsigned i = 0; i < Quantity; ++i) + insertNoop(MBB, MI); +} + +static bool isAsmComment(const char *Str, const MCAsmInfo &MAI) { + return strncmp(Str, MAI.getCommentString().data(), + MAI.getCommentString().size()) == 0; +} + +/// Measure the specified inline asm to determine an approximation of its +/// length. +/// Comments (which run till the next SeparatorString or newline) do not +/// count as an instruction. +/// Any other non-whitespace text is considered an instruction, with +/// multiple instructions separated by SeparatorString or newlines. +/// Variable-length instructions are not handled here; this function +/// may be overloaded in the target code to do that. +/// We implement a special case of the .space directive which takes only a +/// single integer argument in base 10 that is the size in bytes. This is a +/// restricted form of the GAS directive in that we only interpret +/// simple--i.e. not a logical or arithmetic expression--size values without +/// the optional fill value. This is primarily used for creating arbitrary +/// sized inline asm blocks for testing purposes. +unsigned TargetInstrInfo::getInlineAsmLength( + const char *Str, + const MCAsmInfo &MAI, const TargetSubtargetInfo *STI) const { + // Count the number of instructions in the asm. + bool AtInsnStart = true; + unsigned Length = 0; + const unsigned MaxInstLength = MAI.getMaxInstLength(STI); + for (; *Str; ++Str) { + if (*Str == '\n' || strncmp(Str, MAI.getSeparatorString(), + strlen(MAI.getSeparatorString())) == 0) { + AtInsnStart = true; + } else if (isAsmComment(Str, MAI)) { + // Stop counting as an instruction after a comment until the next + // separator. + AtInsnStart = false; + } + + if (AtInsnStart && !isSpace(static_cast<unsigned char>(*Str))) { + unsigned AddLength = MaxInstLength; + if (strncmp(Str, ".space", 6) == 0) { + char *EStr; + int SpaceSize; + SpaceSize = strtol(Str + 6, &EStr, 10); + SpaceSize = SpaceSize < 0 ? 0 : SpaceSize; + while (*EStr != '\n' && isSpace(static_cast<unsigned char>(*EStr))) + ++EStr; + if (*EStr == '\0' || *EStr == '\n' || + isAsmComment(EStr, MAI)) // Successfully parsed .space argument + AddLength = SpaceSize; + } + Length += AddLength; + AtInsnStart = false; + } + } + + return Length; +} + +/// ReplaceTailWithBranchTo - Delete the instruction OldInst and everything +/// after it, replacing it with an unconditional branch to NewDest. +void +TargetInstrInfo::ReplaceTailWithBranchTo(MachineBasicBlock::iterator Tail, + MachineBasicBlock *NewDest) const { + MachineBasicBlock *MBB = Tail->getParent(); + + // Remove all the old successors of MBB from the CFG. + while (!MBB->succ_empty()) + MBB->removeSuccessor(MBB->succ_begin()); + + // Save off the debug loc before erasing the instruction. + DebugLoc DL = Tail->getDebugLoc(); + + // Update call site info and remove all the dead instructions + // from the end of MBB. + while (Tail != MBB->end()) { + auto MI = Tail++; + if (MI->shouldUpdateCallSiteInfo()) + MBB->getParent()->eraseCallSiteInfo(&*MI); + MBB->erase(MI); + } + + // If MBB isn't immediately before MBB, insert a branch to it. + if (++MachineFunction::iterator(MBB) != MachineFunction::iterator(NewDest)) + insertBranch(*MBB, NewDest, nullptr, SmallVector<MachineOperand, 0>(), DL); + MBB->addSuccessor(NewDest); +} + +MachineInstr *TargetInstrInfo::commuteInstructionImpl(MachineInstr &MI, + bool NewMI, unsigned Idx1, + unsigned Idx2) const { + const MCInstrDesc &MCID = MI.getDesc(); + bool HasDef = MCID.getNumDefs(); + if (HasDef && !MI.getOperand(0).isReg()) + // No idea how to commute this instruction. Target should implement its own. + return nullptr; + + unsigned CommutableOpIdx1 = Idx1; (void)CommutableOpIdx1; + unsigned CommutableOpIdx2 = Idx2; (void)CommutableOpIdx2; + assert(findCommutedOpIndices(MI, CommutableOpIdx1, CommutableOpIdx2) && + CommutableOpIdx1 == Idx1 && CommutableOpIdx2 == Idx2 && + "TargetInstrInfo::CommuteInstructionImpl(): not commutable operands."); + assert(MI.getOperand(Idx1).isReg() && MI.getOperand(Idx2).isReg() && + "This only knows how to commute register operands so far"); + + Register Reg0 = HasDef ? MI.getOperand(0).getReg() : Register(); + Register Reg1 = MI.getOperand(Idx1).getReg(); + Register Reg2 = MI.getOperand(Idx2).getReg(); + unsigned SubReg0 = HasDef ? MI.getOperand(0).getSubReg() : 0; + unsigned SubReg1 = MI.getOperand(Idx1).getSubReg(); + unsigned SubReg2 = MI.getOperand(Idx2).getSubReg(); + bool Reg1IsKill = MI.getOperand(Idx1).isKill(); + bool Reg2IsKill = MI.getOperand(Idx2).isKill(); + bool Reg1IsUndef = MI.getOperand(Idx1).isUndef(); + bool Reg2IsUndef = MI.getOperand(Idx2).isUndef(); + bool Reg1IsInternal = MI.getOperand(Idx1).isInternalRead(); + bool Reg2IsInternal = MI.getOperand(Idx2).isInternalRead(); + // Avoid calling isRenamable for virtual registers since we assert that + // renamable property is only queried/set for physical registers. + bool Reg1IsRenamable = + Reg1.isPhysical() ? MI.getOperand(Idx1).isRenamable() : false; + bool Reg2IsRenamable = + Reg2.isPhysical() ? MI.getOperand(Idx2).isRenamable() : false; + // If destination is tied to either of the commuted source register, then + // it must be updated. + if (HasDef && Reg0 == Reg1 && + MI.getDesc().getOperandConstraint(Idx1, MCOI::TIED_TO) == 0) { + Reg2IsKill = false; + Reg0 = Reg2; + SubReg0 = SubReg2; + } else if (HasDef && Reg0 == Reg2 && + MI.getDesc().getOperandConstraint(Idx2, MCOI::TIED_TO) == 0) { + Reg1IsKill = false; + Reg0 = Reg1; + SubReg0 = SubReg1; + } + + MachineInstr *CommutedMI = nullptr; + if (NewMI) { + // Create a new instruction. + MachineFunction &MF = *MI.getMF(); + CommutedMI = MF.CloneMachineInstr(&MI); + } else { + CommutedMI = &MI; + } + + if (HasDef) { + CommutedMI->getOperand(0).setReg(Reg0); + CommutedMI->getOperand(0).setSubReg(SubReg0); + } + CommutedMI->getOperand(Idx2).setReg(Reg1); + CommutedMI->getOperand(Idx1).setReg(Reg2); + CommutedMI->getOperand(Idx2).setSubReg(SubReg1); + CommutedMI->getOperand(Idx1).setSubReg(SubReg2); + CommutedMI->getOperand(Idx2).setIsKill(Reg1IsKill); + CommutedMI->getOperand(Idx1).setIsKill(Reg2IsKill); + CommutedMI->getOperand(Idx2).setIsUndef(Reg1IsUndef); + CommutedMI->getOperand(Idx1).setIsUndef(Reg2IsUndef); + CommutedMI->getOperand(Idx2).setIsInternalRead(Reg1IsInternal); + CommutedMI->getOperand(Idx1).setIsInternalRead(Reg2IsInternal); + // Avoid calling setIsRenamable for virtual registers since we assert that + // renamable property is only queried/set for physical registers. + if (Reg1.isPhysical()) + CommutedMI->getOperand(Idx2).setIsRenamable(Reg1IsRenamable); + if (Reg2.isPhysical()) + CommutedMI->getOperand(Idx1).setIsRenamable(Reg2IsRenamable); + return CommutedMI; +} + +MachineInstr *TargetInstrInfo::commuteInstruction(MachineInstr &MI, bool NewMI, + unsigned OpIdx1, + unsigned OpIdx2) const { + // If OpIdx1 or OpIdx2 is not specified, then this method is free to choose + // any commutable operand, which is done in findCommutedOpIndices() method + // called below. + if ((OpIdx1 == CommuteAnyOperandIndex || OpIdx2 == CommuteAnyOperandIndex) && + !findCommutedOpIndices(MI, OpIdx1, OpIdx2)) { + assert(MI.isCommutable() && + "Precondition violation: MI must be commutable."); + return nullptr; + } + return commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2); +} + +bool TargetInstrInfo::fixCommutedOpIndices(unsigned &ResultIdx1, + unsigned &ResultIdx2, + unsigned CommutableOpIdx1, + unsigned CommutableOpIdx2) { + if (ResultIdx1 == CommuteAnyOperandIndex && + ResultIdx2 == CommuteAnyOperandIndex) { + ResultIdx1 = CommutableOpIdx1; + ResultIdx2 = CommutableOpIdx2; + } else if (ResultIdx1 == CommuteAnyOperandIndex) { + if (ResultIdx2 == CommutableOpIdx1) + ResultIdx1 = CommutableOpIdx2; + else if (ResultIdx2 == CommutableOpIdx2) + ResultIdx1 = CommutableOpIdx1; + else + return false; + } else if (ResultIdx2 == CommuteAnyOperandIndex) { + if (ResultIdx1 == CommutableOpIdx1) + ResultIdx2 = CommutableOpIdx2; + else if (ResultIdx1 == CommutableOpIdx2) + ResultIdx2 = CommutableOpIdx1; + else + return false; + } else + // Check that the result operand indices match the given commutable + // operand indices. + return (ResultIdx1 == CommutableOpIdx1 && ResultIdx2 == CommutableOpIdx2) || + (ResultIdx1 == CommutableOpIdx2 && ResultIdx2 == CommutableOpIdx1); + + return true; +} + +bool TargetInstrInfo::findCommutedOpIndices(const MachineInstr &MI, + unsigned &SrcOpIdx1, + unsigned &SrcOpIdx2) const { + assert(!MI.isBundle() && + "TargetInstrInfo::findCommutedOpIndices() can't handle bundles"); + + const MCInstrDesc &MCID = MI.getDesc(); + if (!MCID.isCommutable()) + return false; + + // This assumes v0 = op v1, v2 and commuting would swap v1 and v2. If this + // is not true, then the target must implement this. + unsigned CommutableOpIdx1 = MCID.getNumDefs(); + unsigned CommutableOpIdx2 = CommutableOpIdx1 + 1; + if (!fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, + CommutableOpIdx1, CommutableOpIdx2)) + return false; + + if (!MI.getOperand(SrcOpIdx1).isReg() || !MI.getOperand(SrcOpIdx2).isReg()) + // No idea. + return false; + return true; +} + +bool TargetInstrInfo::isUnpredicatedTerminator(const MachineInstr &MI) const { + if (!MI.isTerminator()) return false; + + // Conditional branch is a special case. + if (MI.isBranch() && !MI.isBarrier()) + return true; + if (!MI.isPredicable()) + return true; + return !isPredicated(MI); +} + +bool TargetInstrInfo::PredicateInstruction( + MachineInstr &MI, ArrayRef<MachineOperand> Pred) const { + bool MadeChange = false; + + assert(!MI.isBundle() && + "TargetInstrInfo::PredicateInstruction() can't handle bundles"); + + const MCInstrDesc &MCID = MI.getDesc(); + if (!MI.isPredicable()) + return false; + + for (unsigned j = 0, i = 0, e = MI.getNumOperands(); i != e; ++i) { + if (MCID.operands()[i].isPredicate()) { + MachineOperand &MO = MI.getOperand(i); + if (MO.isReg()) { + MO.setReg(Pred[j].getReg()); + MadeChange = true; + } else if (MO.isImm()) { + MO.setImm(Pred[j].getImm()); + MadeChange = true; + } else if (MO.isMBB()) { + MO.setMBB(Pred[j].getMBB()); + MadeChange = true; + } + ++j; + } + } + return MadeChange; +} + +bool TargetInstrInfo::hasLoadFromStackSlot( + const MachineInstr &MI, + SmallVectorImpl<const MachineMemOperand *> &Accesses) const { + size_t StartSize = Accesses.size(); + for (MachineInstr::mmo_iterator o = MI.memoperands_begin(), + oe = MI.memoperands_end(); + o != oe; ++o) { + if ((*o)->isLoad() && + isa_and_nonnull<FixedStackPseudoSourceValue>((*o)->getPseudoValue())) + Accesses.push_back(*o); + } + return Accesses.size() != StartSize; +} + +bool TargetInstrInfo::hasStoreToStackSlot( + const MachineInstr &MI, + SmallVectorImpl<const MachineMemOperand *> &Accesses) const { + size_t StartSize = Accesses.size(); + for (MachineInstr::mmo_iterator o = MI.memoperands_begin(), + oe = MI.memoperands_end(); + o != oe; ++o) { + if ((*o)->isStore() && + isa_and_nonnull<FixedStackPseudoSourceValue>((*o)->getPseudoValue())) + Accesses.push_back(*o); + } + return Accesses.size() != StartSize; +} + +bool TargetInstrInfo::getStackSlotRange(const TargetRegisterClass *RC, + unsigned SubIdx, unsigned &Size, + unsigned &Offset, + const MachineFunction &MF) const { + const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); + if (!SubIdx) { + Size = TRI->getSpillSize(*RC); + Offset = 0; + return true; + } + unsigned BitSize = TRI->getSubRegIdxSize(SubIdx); + // Convert bit size to byte size. + if (BitSize % 8) + return false; + + int BitOffset = TRI->getSubRegIdxOffset(SubIdx); + if (BitOffset < 0 || BitOffset % 8) + return false; + + Size = BitSize / 8; + Offset = (unsigned)BitOffset / 8; + + assert(TRI->getSpillSize(*RC) >= (Offset + Size) && "bad subregister range"); + + if (!MF.getDataLayout().isLittleEndian()) { + Offset = TRI->getSpillSize(*RC) - (Offset + Size); + } + return true; +} + +void TargetInstrInfo::reMaterialize(MachineBasicBlock &MBB, + MachineBasicBlock::iterator I, + Register DestReg, unsigned SubIdx, + const MachineInstr &Orig, + const TargetRegisterInfo &TRI) const { + MachineInstr *MI = MBB.getParent()->CloneMachineInstr(&Orig); + MI->substituteRegister(MI->getOperand(0).getReg(), DestReg, SubIdx, TRI); + MBB.insert(I, MI); +} + +bool TargetInstrInfo::produceSameValue(const MachineInstr &MI0, + const MachineInstr &MI1, + const MachineRegisterInfo *MRI) const { + return MI0.isIdenticalTo(MI1, MachineInstr::IgnoreVRegDefs); +} + +MachineInstr & +TargetInstrInfo::duplicate(MachineBasicBlock &MBB, + MachineBasicBlock::iterator InsertBefore, + const MachineInstr &Orig) const { + MachineFunction &MF = *MBB.getParent(); + // CFI instructions are marked as non-duplicable, because Darwin compact + // unwind info emission can't handle multiple prologue setups. + assert((!Orig.isNotDuplicable() || + (!MF.getTarget().getTargetTriple().isOSDarwin() && + Orig.isCFIInstruction())) && + "Instruction cannot be duplicated"); + + return MF.cloneMachineInstrBundle(MBB, InsertBefore, Orig); +} + +// If the COPY instruction in MI can be folded to a stack operation, return +// the register class to use. +static const TargetRegisterClass *canFoldCopy(const MachineInstr &MI, + const TargetInstrInfo &TII, + unsigned FoldIdx) { + assert(TII.isCopyInstr(MI) && "MI must be a COPY instruction"); + if (MI.getNumOperands() != 2) + return nullptr; + assert(FoldIdx<2 && "FoldIdx refers no nonexistent operand"); + + const MachineOperand &FoldOp = MI.getOperand(FoldIdx); + const MachineOperand &LiveOp = MI.getOperand(1 - FoldIdx); + + if (FoldOp.getSubReg() || LiveOp.getSubReg()) + return nullptr; + + Register FoldReg = FoldOp.getReg(); + Register LiveReg = LiveOp.getReg(); + + assert(FoldReg.isVirtual() && "Cannot fold physregs"); + + const MachineRegisterInfo &MRI = MI.getMF()->getRegInfo(); + const TargetRegisterClass *RC = MRI.getRegClass(FoldReg); + + if (LiveOp.getReg().isPhysical()) + return RC->contains(LiveOp.getReg()) ? RC : nullptr; + + if (RC->hasSubClassEq(MRI.getRegClass(LiveReg))) + return RC; + + // FIXME: Allow folding when register classes are memory compatible. + return nullptr; +} + +MCInst TargetInstrInfo::getNop() const { llvm_unreachable("Not implemented"); } + +std::pair<unsigned, unsigned> +TargetInstrInfo::getPatchpointUnfoldableRange(const MachineInstr &MI) const { + switch (MI.getOpcode()) { + case TargetOpcode::STACKMAP: + // StackMapLiveValues are foldable + return std::make_pair(0, StackMapOpers(&MI).getVarIdx()); + case TargetOpcode::PATCHPOINT: + // For PatchPoint, the call args are not foldable (even if reported in the + // stackmap e.g. via anyregcc). + return std::make_pair(0, PatchPointOpers(&MI).getVarIdx()); + case TargetOpcode::STATEPOINT: + // For statepoints, fold deopt and gc arguments, but not call arguments. + return std::make_pair(MI.getNumDefs(), StatepointOpers(&MI).getVarIdx()); + default: + llvm_unreachable("unexpected stackmap opcode"); + } +} + +static MachineInstr *foldPatchpoint(MachineFunction &MF, MachineInstr &MI, + ArrayRef<unsigned> Ops, int FrameIndex, + const TargetInstrInfo &TII) { + unsigned StartIdx = 0; + unsigned NumDefs = 0; + // getPatchpointUnfoldableRange throws guarantee if MI is not a patchpoint. + std::tie(NumDefs, StartIdx) = TII.getPatchpointUnfoldableRange(MI); + + unsigned DefToFoldIdx = MI.getNumOperands(); + + // Return false if any operands requested for folding are not foldable (not + // part of the stackmap's live values). + for (unsigned Op : Ops) { + if (Op < NumDefs) { + assert(DefToFoldIdx == MI.getNumOperands() && "Folding multiple defs"); + DefToFoldIdx = Op; + } else if (Op < StartIdx) { + return nullptr; + } + if (MI.getOperand(Op).isTied()) + return nullptr; + } + + MachineInstr *NewMI = + MF.CreateMachineInstr(TII.get(MI.getOpcode()), MI.getDebugLoc(), true); + MachineInstrBuilder MIB(MF, NewMI); + + // No need to fold return, the meta data, and function arguments + for (unsigned i = 0; i < StartIdx; ++i) + if (i != DefToFoldIdx) + MIB.add(MI.getOperand(i)); + + for (unsigned i = StartIdx, e = MI.getNumOperands(); i < e; ++i) { + MachineOperand &MO = MI.getOperand(i); + unsigned TiedTo = e; + (void)MI.isRegTiedToDefOperand(i, &TiedTo); + + if (is_contained(Ops, i)) { + assert(TiedTo == e && "Cannot fold tied operands"); + unsigned SpillSize; + unsigned SpillOffset; + // Compute the spill slot size and offset. + const TargetRegisterClass *RC = + MF.getRegInfo().getRegClass(MO.getReg()); + bool Valid = + TII.getStackSlotRange(RC, MO.getSubReg(), SpillSize, SpillOffset, MF); + if (!Valid) + report_fatal_error("cannot spill patchpoint subregister operand"); + MIB.addImm(StackMaps::IndirectMemRefOp); + MIB.addImm(SpillSize); + MIB.addFrameIndex(FrameIndex); + MIB.addImm(SpillOffset); + } else { + MIB.add(MO); + if (TiedTo < e) { + assert(TiedTo < NumDefs && "Bad tied operand"); + if (TiedTo > DefToFoldIdx) + --TiedTo; + NewMI->tieOperands(TiedTo, NewMI->getNumOperands() - 1); + } + } + } + return NewMI; +} + +static void foldInlineAsmMemOperand(MachineInstr *MI, unsigned OpNo, int FI, + const TargetInstrInfo &TII) { + // If the machine operand is tied, untie it first. + if (MI->getOperand(OpNo).isTied()) { + unsigned TiedTo = MI->findTiedOperandIdx(OpNo); + MI->untieRegOperand(OpNo); + // Intentional recursion! + foldInlineAsmMemOperand(MI, TiedTo, FI, TII); + } + + SmallVector<MachineOperand, 5> NewOps; + TII.getFrameIndexOperands(NewOps, FI); + assert(!NewOps.empty() && "getFrameIndexOperands didn't create any operands"); + MI->removeOperand(OpNo); + MI->insert(MI->operands_begin() + OpNo, NewOps); + + // Change the previous operand to a MemKind InlineAsm::Flag. The second param + // is the per-target number of operands that represent the memory operand + // excluding this one (MD). This includes MO. + InlineAsm::Flag F(InlineAsm::Kind::Mem, NewOps.size()); + F.setMemConstraint(InlineAsm::ConstraintCode::m); + MachineOperand &MD = MI->getOperand(OpNo - 1); + MD.setImm(F); +} + +// Returns nullptr if not possible to fold. +static MachineInstr *foldInlineAsmMemOperand(MachineInstr &MI, + ArrayRef<unsigned> Ops, int FI, + const TargetInstrInfo &TII) { + assert(MI.isInlineAsm() && "wrong opcode"); + if (Ops.size() > 1) + return nullptr; + unsigned Op = Ops[0]; + assert(Op && "should never be first operand"); + assert(MI.getOperand(Op).isReg() && "shouldn't be folding non-reg operands"); + + if (!MI.mayFoldInlineAsmRegOp(Op)) + return nullptr; + + MachineInstr &NewMI = TII.duplicate(*MI.getParent(), MI.getIterator(), MI); + + foldInlineAsmMemOperand(&NewMI, Op, FI, TII); + + // Update mayload/maystore metadata, and memoperands. + const VirtRegInfo &RI = + AnalyzeVirtRegInBundle(MI, MI.getOperand(Op).getReg()); + MachineOperand &ExtraMO = NewMI.getOperand(InlineAsm::MIOp_ExtraInfo); + MachineMemOperand::Flags Flags = MachineMemOperand::MONone; + if (RI.Reads) { + ExtraMO.setImm(ExtraMO.getImm() | InlineAsm::Extra_MayLoad); + Flags |= MachineMemOperand::MOLoad; + } + if (RI.Writes) { + ExtraMO.setImm(ExtraMO.getImm() | InlineAsm::Extra_MayStore); + Flags |= MachineMemOperand::MOStore; + } + MachineFunction *MF = NewMI.getMF(); + const MachineFrameInfo &MFI = MF->getFrameInfo(); + MachineMemOperand *MMO = MF->getMachineMemOperand( + MachinePointerInfo::getFixedStack(*MF, FI), Flags, MFI.getObjectSize(FI), + MFI.getObjectAlign(FI)); + NewMI.addMemOperand(*MF, MMO); + + return &NewMI; +} + +MachineInstr *TargetInstrInfo::foldMemoryOperand(MachineInstr &MI, + ArrayRef<unsigned> Ops, int FI, + LiveIntervals *LIS, + VirtRegMap *VRM) const { + auto Flags = MachineMemOperand::MONone; + for (unsigned OpIdx : Ops) + Flags |= MI.getOperand(OpIdx).isDef() ? MachineMemOperand::MOStore + : MachineMemOperand::MOLoad; + + MachineBasicBlock *MBB = MI.getParent(); + assert(MBB && "foldMemoryOperand needs an inserted instruction"); + MachineFunction &MF = *MBB->getParent(); + + // If we're not folding a load into a subreg, the size of the load is the + // size of the spill slot. But if we are, we need to figure out what the + // actual load size is. + int64_t MemSize = 0; + const MachineFrameInfo &MFI = MF.getFrameInfo(); + const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); + + if (Flags & MachineMemOperand::MOStore) { + MemSize = MFI.getObjectSize(FI); + } else { + for (unsigned OpIdx : Ops) { + int64_t OpSize = MFI.getObjectSize(FI); + + if (auto SubReg = MI.getOperand(OpIdx).getSubReg()) { + unsigned SubRegSize = TRI->getSubRegIdxSize(SubReg); + if (SubRegSize > 0 && !(SubRegSize % 8)) + OpSize = SubRegSize / 8; + } + + MemSize = std::max(MemSize, OpSize); + } + } + + assert(MemSize && "Did not expect a zero-sized stack slot"); + + MachineInstr *NewMI = nullptr; + + if (MI.getOpcode() == TargetOpcode::STACKMAP || + MI.getOpcode() == TargetOpcode::PATCHPOINT || + MI.getOpcode() == TargetOpcode::STATEPOINT) { + // Fold stackmap/patchpoint. + NewMI = foldPatchpoint(MF, MI, Ops, FI, *this); + if (NewMI) + MBB->insert(MI, NewMI); + } else if (MI.isInlineAsm()) { + return foldInlineAsmMemOperand(MI, Ops, FI, *this); + } else { + // Ask the target to do the actual folding. + NewMI = foldMemoryOperandImpl(MF, MI, Ops, MI, FI, LIS, VRM); + } + + if (NewMI) { + NewMI->setMemRefs(MF, MI.memoperands()); + // Add a memory operand, foldMemoryOperandImpl doesn't do that. + assert((!(Flags & MachineMemOperand::MOStore) || + NewMI->mayStore()) && + "Folded a def to a non-store!"); + assert((!(Flags & MachineMemOperand::MOLoad) || + NewMI->mayLoad()) && + "Folded a use to a non-load!"); + assert(MFI.getObjectOffset(FI) != -1); + MachineMemOperand *MMO = + MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(MF, FI), + Flags, MemSize, MFI.getObjectAlign(FI)); + NewMI->addMemOperand(MF, MMO); + + // The pass "x86 speculative load hardening" always attaches symbols to + // call instructions. We need copy it form old instruction. + NewMI->cloneInstrSymbols(MF, MI); + + return NewMI; + } + + // Straight COPY may fold as load/store. + if (!isCopyInstr(MI) || Ops.size() != 1) + return nullptr; + + const TargetRegisterClass *RC = canFoldCopy(MI, *this, Ops[0]); + if (!RC) + return nullptr; + + const MachineOperand &MO = MI.getOperand(1 - Ops[0]); + MachineBasicBlock::iterator Pos = MI; + + if (Flags == MachineMemOperand::MOStore) + storeRegToStackSlot(*MBB, Pos, MO.getReg(), MO.isKill(), FI, RC, TRI, + Register()); + else + loadRegFromStackSlot(*MBB, Pos, MO.getReg(), FI, RC, TRI, Register()); + return &*--Pos; +} + +MachineInstr *TargetInstrInfo::foldMemoryOperand(MachineInstr &MI, + ArrayRef<unsigned> Ops, + MachineInstr &LoadMI, + LiveIntervals *LIS) const { + assert(LoadMI.canFoldAsLoad() && "LoadMI isn't foldable!"); +#ifndef NDEBUG + for (unsigned OpIdx : Ops) + assert(MI.getOperand(OpIdx).isUse() && "Folding load into def!"); +#endif + + MachineBasicBlock &MBB = *MI.getParent(); + MachineFunction &MF = *MBB.getParent(); + + // Ask the target to do the actual folding. + MachineInstr *NewMI = nullptr; + int FrameIndex = 0; + + if ((MI.getOpcode() == TargetOpcode::STACKMAP || + MI.getOpcode() == TargetOpcode::PATCHPOINT || + MI.getOpcode() == TargetOpcode::STATEPOINT) && + isLoadFromStackSlot(LoadMI, FrameIndex)) { + // Fold stackmap/patchpoint. + NewMI = foldPatchpoint(MF, MI, Ops, FrameIndex, *this); + if (NewMI) + NewMI = &*MBB.insert(MI, NewMI); + } else if (MI.isInlineAsm() && isLoadFromStackSlot(LoadMI, FrameIndex)) { + return foldInlineAsmMemOperand(MI, Ops, FrameIndex, *this); + } else { + // Ask the target to do the actual folding. + NewMI = foldMemoryOperandImpl(MF, MI, Ops, MI, LoadMI, LIS); + } + + if (!NewMI) + return nullptr; + + // Copy the memoperands from the load to the folded instruction. + if (MI.memoperands_empty()) { + NewMI->setMemRefs(MF, LoadMI.memoperands()); + } else { + // Handle the rare case of folding multiple loads. + NewMI->setMemRefs(MF, MI.memoperands()); + for (MachineInstr::mmo_iterator I = LoadMI.memoperands_begin(), + E = LoadMI.memoperands_end(); + I != E; ++I) { + NewMI->addMemOperand(MF, *I); + } + } + return NewMI; +} + +/// transferImplicitOperands - MI is a pseudo-instruction, and the lowered +/// replacement instructions immediately precede it. Copy any implicit +/// operands from MI to the replacement instruction. +static void transferImplicitOperands(MachineInstr *MI, + const TargetRegisterInfo *TRI) { + MachineBasicBlock::iterator CopyMI = MI; + --CopyMI; + + Register DstReg = MI->getOperand(0).getReg(); + for (const MachineOperand &MO : MI->implicit_operands()) { + CopyMI->addOperand(MO); + + // Be conservative about preserving kills when subregister defs are + // involved. If there was implicit kill of a super-register overlapping the + // copy result, we would kill the subregisters previous copies defined. + + if (MO.isKill() && TRI->regsOverlap(DstReg, MO.getReg())) + CopyMI->getOperand(CopyMI->getNumOperands() - 1).setIsKill(false); + } +} + +void TargetInstrInfo::lowerCopy(MachineInstr *MI, + const TargetRegisterInfo *TRI) const { + if (MI->allDefsAreDead()) { + MI->setDesc(get(TargetOpcode::KILL)); + return; + } + + MachineOperand &DstMO = MI->getOperand(0); + MachineOperand &SrcMO = MI->getOperand(1); + + bool IdentityCopy = (SrcMO.getReg() == DstMO.getReg()); + if (IdentityCopy || SrcMO.isUndef()) { + // No need to insert an identity copy instruction, but replace with a KILL + // if liveness is changed. + if (SrcMO.isUndef() || MI->getNumOperands() > 2) { + // We must make sure the super-register gets killed. Replace the + // instruction with KILL. + MI->setDesc(get(TargetOpcode::KILL)); + return; + } + // Vanilla identity copy. + MI->eraseFromParent(); + return; + } + + copyPhysReg(*MI->getParent(), MI, MI->getDebugLoc(), DstMO.getReg(), + SrcMO.getReg(), SrcMO.isKill()); + + if (MI->getNumOperands() > 2) + transferImplicitOperands(MI, TRI); + MI->eraseFromParent(); +} + +bool TargetInstrInfo::hasReassociableOperands( + const MachineInstr &Inst, const MachineBasicBlock *MBB) const { + const MachineOperand &Op1 = Inst.getOperand(1); + const MachineOperand &Op2 = Inst.getOperand(2); + const MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo(); + + // We need virtual register definitions for the operands that we will + // reassociate. + MachineInstr *MI1 = nullptr; + MachineInstr *MI2 = nullptr; + if (Op1.isReg() && Op1.getReg().isVirtual()) + MI1 = MRI.getUniqueVRegDef(Op1.getReg()); + if (Op2.isReg() && Op2.getReg().isVirtual()) + MI2 = MRI.getUniqueVRegDef(Op2.getReg()); + + // And at least one operand must be defined in MBB. + return MI1 && MI2 && (MI1->getParent() == MBB || MI2->getParent() == MBB); +} + +bool TargetInstrInfo::areOpcodesEqualOrInverse(unsigned Opcode1, + unsigned Opcode2) const { + return Opcode1 == Opcode2 || getInverseOpcode(Opcode1) == Opcode2; +} + +bool TargetInstrInfo::hasReassociableSibling(const MachineInstr &Inst, + bool &Commuted) const { + const MachineBasicBlock *MBB = Inst.getParent(); + const MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo(); + MachineInstr *MI1 = MRI.getUniqueVRegDef(Inst.getOperand(1).getReg()); + MachineInstr *MI2 = MRI.getUniqueVRegDef(Inst.getOperand(2).getReg()); + unsigned Opcode = Inst.getOpcode(); + + // If only one operand has the same or inverse opcode and it's the second + // source operand, the operands must be commuted. + Commuted = !areOpcodesEqualOrInverse(Opcode, MI1->getOpcode()) && + areOpcodesEqualOrInverse(Opcode, MI2->getOpcode()); + if (Commuted) + std::swap(MI1, MI2); + + // 1. The previous instruction must be the same type as Inst. + // 2. The previous instruction must also be associative/commutative or be the + // inverse of such an operation (this can be different even for + // instructions with the same opcode if traits like fast-math-flags are + // included). + // 3. The previous instruction must have virtual register definitions for its + // operands in the same basic block as Inst. + // 4. The previous instruction's result must only be used by Inst. + return areOpcodesEqualOrInverse(Opcode, MI1->getOpcode()) && + (isAssociativeAndCommutative(*MI1) || + isAssociativeAndCommutative(*MI1, /* Invert */ true)) && + hasReassociableOperands(*MI1, MBB) && + MRI.hasOneNonDBGUse(MI1->getOperand(0).getReg()); +} + +// 1. The operation must be associative and commutative or be the inverse of +// such an operation. +// 2. The instruction must have virtual register definitions for its +// operands in the same basic block. +// 3. The instruction must have a reassociable sibling. +bool TargetInstrInfo::isReassociationCandidate(const MachineInstr &Inst, + bool &Commuted) const { + return (isAssociativeAndCommutative(Inst) || + isAssociativeAndCommutative(Inst, /* Invert */ true)) && + hasReassociableOperands(Inst, Inst.getParent()) && + hasReassociableSibling(Inst, Commuted); +} + +// The concept of the reassociation pass is that these operations can benefit +// from this kind of transformation: +// +// A = ? op ? +// B = A op X (Prev) +// C = B op Y (Root) +// --> +// A = ? op ? +// B = X op Y +// C = A op B +// +// breaking the dependency between A and B, allowing them to be executed in +// parallel (or back-to-back in a pipeline) instead of depending on each other. + +// FIXME: This has the potential to be expensive (compile time) while not +// improving the code at all. Some ways to limit the overhead: +// 1. Track successful transforms; bail out if hit rate gets too low. +// 2. Only enable at -O3 or some other non-default optimization level. +// 3. Pre-screen pattern candidates here: if an operand of the previous +// instruction is known to not increase the critical path, then don't match +// that pattern. +bool TargetInstrInfo::getMachineCombinerPatterns( + MachineInstr &Root, SmallVectorImpl<MachineCombinerPattern> &Patterns, + bool DoRegPressureReduce) const { + bool Commute; + if (isReassociationCandidate(Root, Commute)) { + // We found a sequence of instructions that may be suitable for a + // reassociation of operands to increase ILP. Specify each commutation + // possibility for the Prev instruction in the sequence and let the + // machine combiner decide if changing the operands is worthwhile. + if (Commute) { + Patterns.push_back(MachineCombinerPattern::REASSOC_AX_YB); + Patterns.push_back(MachineCombinerPattern::REASSOC_XA_YB); + } else { + Patterns.push_back(MachineCombinerPattern::REASSOC_AX_BY); + Patterns.push_back(MachineCombinerPattern::REASSOC_XA_BY); + } + return true; + } + + return false; +} + +/// Return true when a code sequence can improve loop throughput. +bool +TargetInstrInfo::isThroughputPattern(MachineCombinerPattern Pattern) const { + return false; +} + +std::pair<unsigned, unsigned> +TargetInstrInfo::getReassociationOpcodes(MachineCombinerPattern Pattern, + const MachineInstr &Root, + const MachineInstr &Prev) const { + bool AssocCommutRoot = isAssociativeAndCommutative(Root); + bool AssocCommutPrev = isAssociativeAndCommutative(Prev); + + // Early exit if both opcodes are associative and commutative. It's a trivial + // reassociation when we only change operands order. In this case opcodes are + // not required to have inverse versions. + if (AssocCommutRoot && AssocCommutPrev) { + assert(Root.getOpcode() == Prev.getOpcode() && "Expected to be equal"); + return std::make_pair(Root.getOpcode(), Root.getOpcode()); + } + + // At least one instruction is not associative or commutative. + // Since we have matched one of the reassociation patterns, we expect that the + // instructions' opcodes are equal or one of them is the inversion of the + // other. + assert(areOpcodesEqualOrInverse(Root.getOpcode(), Prev.getOpcode()) && + "Incorrectly matched pattern"); + unsigned AssocCommutOpcode = Root.getOpcode(); + unsigned InverseOpcode = *getInverseOpcode(Root.getOpcode()); + if (!AssocCommutRoot) + std::swap(AssocCommutOpcode, InverseOpcode); + + // The transformation rule (`+` is any associative and commutative binary + // operation, `-` is the inverse): + // REASSOC_AX_BY: + // (A + X) + Y => A + (X + Y) + // (A + X) - Y => A + (X - Y) + // (A - X) + Y => A - (X - Y) + // (A - X) - Y => A - (X + Y) + // REASSOC_XA_BY: + // (X + A) + Y => (X + Y) + A + // (X + A) - Y => (X - Y) + A + // (X - A) + Y => (X + Y) - A + // (X - A) - Y => (X - Y) - A + // REASSOC_AX_YB: + // Y + (A + X) => (Y + X) + A + // Y - (A + X) => (Y - X) - A + // Y + (A - X) => (Y - X) + A + // Y - (A - X) => (Y + X) - A + // REASSOC_XA_YB: + // Y + (X + A) => (Y + X) + A + // Y - (X + A) => (Y - X) - A + // Y + (X - A) => (Y + X) - A + // Y - (X - A) => (Y - X) + A + switch (Pattern) { + default: + llvm_unreachable("Unexpected pattern"); + case MachineCombinerPattern::REASSOC_AX_BY: + if (!AssocCommutRoot && AssocCommutPrev) + return {AssocCommutOpcode, InverseOpcode}; + if (AssocCommutRoot && !AssocCommutPrev) + return {InverseOpcode, InverseOpcode}; + if (!AssocCommutRoot && !AssocCommutPrev) + return {InverseOpcode, AssocCommutOpcode}; + break; + case MachineCombinerPattern::REASSOC_XA_BY: + if (!AssocCommutRoot && AssocCommutPrev) + return {AssocCommutOpcode, InverseOpcode}; + if (AssocCommutRoot && !AssocCommutPrev) + return {InverseOpcode, AssocCommutOpcode}; + if (!AssocCommutRoot && !AssocCommutPrev) + return {InverseOpcode, InverseOpcode}; + break; + case MachineCombinerPattern::REASSOC_AX_YB: + if (!AssocCommutRoot && AssocCommutPrev) + return {InverseOpcode, InverseOpcode}; + if (AssocCommutRoot && !AssocCommutPrev) + return {AssocCommutOpcode, InverseOpcode}; + if (!AssocCommutRoot && !AssocCommutPrev) + return {InverseOpcode, AssocCommutOpcode}; + break; + case MachineCombinerPattern::REASSOC_XA_YB: + if (!AssocCommutRoot && AssocCommutPrev) + return {InverseOpcode, InverseOpcode}; + if (AssocCommutRoot && !AssocCommutPrev) + return {InverseOpcode, AssocCommutOpcode}; + if (!AssocCommutRoot && !AssocCommutPrev) + return {AssocCommutOpcode, InverseOpcode}; + break; + } + llvm_unreachable("Unhandled combination"); +} + +// Return a pair of boolean flags showing if the new root and new prev operands +// must be swapped. See visual example of the rule in +// TargetInstrInfo::getReassociationOpcodes. +static std::pair<bool, bool> mustSwapOperands(MachineCombinerPattern Pattern) { + switch (Pattern) { + default: + llvm_unreachable("Unexpected pattern"); + case MachineCombinerPattern::REASSOC_AX_BY: + return {false, false}; + case MachineCombinerPattern::REASSOC_XA_BY: + return {true, false}; + case MachineCombinerPattern::REASSOC_AX_YB: + return {true, true}; + case MachineCombinerPattern::REASSOC_XA_YB: + return {true, true}; + } +} + +/// Attempt the reassociation transformation to reduce critical path length. +/// See the above comments before getMachineCombinerPatterns(). +void TargetInstrInfo::reassociateOps( + MachineInstr &Root, MachineInstr &Prev, + MachineCombinerPattern Pattern, + SmallVectorImpl<MachineInstr *> &InsInstrs, + SmallVectorImpl<MachineInstr *> &DelInstrs, + DenseMap<unsigned, unsigned> &InstrIdxForVirtReg) const { + MachineFunction *MF = Root.getMF(); + MachineRegisterInfo &MRI = MF->getRegInfo(); + const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); + const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); + const TargetRegisterClass *RC = Root.getRegClassConstraint(0, TII, TRI); + + // This array encodes the operand index for each parameter because the + // operands may be commuted. Each row corresponds to a pattern value, + // and each column specifies the index of A, B, X, Y. + unsigned OpIdx[4][4] = { + { 1, 1, 2, 2 }, + { 1, 2, 2, 1 }, + { 2, 1, 1, 2 }, + { 2, 2, 1, 1 } + }; + + int Row; + switch (Pattern) { + case MachineCombinerPattern::REASSOC_AX_BY: Row = 0; break; + case MachineCombinerPattern::REASSOC_AX_YB: Row = 1; break; + case MachineCombinerPattern::REASSOC_XA_BY: Row = 2; break; + case MachineCombinerPattern::REASSOC_XA_YB: Row = 3; break; + default: llvm_unreachable("unexpected MachineCombinerPattern"); + } + + MachineOperand &OpA = Prev.getOperand(OpIdx[Row][0]); + MachineOperand &OpB = Root.getOperand(OpIdx[Row][1]); + MachineOperand &OpX = Prev.getOperand(OpIdx[Row][2]); + MachineOperand &OpY = Root.getOperand(OpIdx[Row][3]); + MachineOperand &OpC = Root.getOperand(0); + + Register RegA = OpA.getReg(); + Register RegB = OpB.getReg(); + Register RegX = OpX.getReg(); + Register RegY = OpY.getReg(); + Register RegC = OpC.getReg(); + + if (RegA.isVirtual()) + MRI.constrainRegClass(RegA, RC); + if (RegB.isVirtual()) + MRI.constrainRegClass(RegB, RC); + if (RegX.isVirtual()) + MRI.constrainRegClass(RegX, RC); + if (RegY.isVirtual()) + MRI.constrainRegClass(RegY, RC); + if (RegC.isVirtual()) + MRI.constrainRegClass(RegC, RC); + + // Create a new virtual register for the result of (X op Y) instead of + // recycling RegB because the MachineCombiner's computation of the critical + // path requires a new register definition rather than an existing one. + Register NewVR = MRI.createVirtualRegister(RC); + InstrIdxForVirtReg.insert(std::make_pair(NewVR, 0)); + + auto [NewRootOpc, NewPrevOpc] = getReassociationOpcodes(Pattern, Root, Prev); + bool KillA = OpA.isKill(); + bool KillX = OpX.isKill(); + bool KillY = OpY.isKill(); + bool KillNewVR = true; + + auto [SwapRootOperands, SwapPrevOperands] = mustSwapOperands(Pattern); + + if (SwapPrevOperands) { + std::swap(RegX, RegY); + std::swap(KillX, KillY); + } + + // Create new instructions for insertion. + MachineInstrBuilder MIB1 = + BuildMI(*MF, MIMetadata(Prev), TII->get(NewPrevOpc), NewVR) + .addReg(RegX, getKillRegState(KillX)) + .addReg(RegY, getKillRegState(KillY)); + + if (SwapRootOperands) { + std::swap(RegA, NewVR); + std::swap(KillA, KillNewVR); + } + + MachineInstrBuilder MIB2 = + BuildMI(*MF, MIMetadata(Root), TII->get(NewRootOpc), RegC) + .addReg(RegA, getKillRegState(KillA)) + .addReg(NewVR, getKillRegState(KillNewVR)); + + // Propagate FP flags from the original instructions. + // But clear poison-generating flags because those may not be valid now. + // TODO: There should be a helper function for copying only fast-math-flags. + uint32_t IntersectedFlags = Root.getFlags() & Prev.getFlags(); + MIB1->setFlags(IntersectedFlags); + MIB1->clearFlag(MachineInstr::MIFlag::NoSWrap); + MIB1->clearFlag(MachineInstr::MIFlag::NoUWrap); + MIB1->clearFlag(MachineInstr::MIFlag::IsExact); + + MIB2->setFlags(IntersectedFlags); + MIB2->clearFlag(MachineInstr::MIFlag::NoSWrap); + MIB2->clearFlag(MachineInstr::MIFlag::NoUWrap); + MIB2->clearFlag(MachineInstr::MIFlag::IsExact); + + setSpecialOperandAttr(Root, Prev, *MIB1, *MIB2); + + // Record new instructions for insertion and old instructions for deletion. + InsInstrs.push_back(MIB1); + InsInstrs.push_back(MIB2); + DelInstrs.push_back(&Prev); + DelInstrs.push_back(&Root); + + // We transformed: + // B = A op X (Prev) + // C = B op Y (Root) + // Into: + // B = X op Y (MIB1) + // C = A op B (MIB2) + // C has the same value as before, B doesn't; as such, keep the debug number + // of C but not of B. + if (unsigned OldRootNum = Root.peekDebugInstrNum()) + MIB2.getInstr()->setDebugInstrNum(OldRootNum); +} + +void TargetInstrInfo::genAlternativeCodeSequence( + MachineInstr &Root, MachineCombinerPattern Pattern, + SmallVectorImpl<MachineInstr *> &InsInstrs, + SmallVectorImpl<MachineInstr *> &DelInstrs, + DenseMap<unsigned, unsigned> &InstIdxForVirtReg) const { + MachineRegisterInfo &MRI = Root.getMF()->getRegInfo(); + + // Select the previous instruction in the sequence based on the input pattern. + MachineInstr *Prev = nullptr; + switch (Pattern) { + case MachineCombinerPattern::REASSOC_AX_BY: + case MachineCombinerPattern::REASSOC_XA_BY: + Prev = MRI.getUniqueVRegDef(Root.getOperand(1).getReg()); + break; + case MachineCombinerPattern::REASSOC_AX_YB: + case MachineCombinerPattern::REASSOC_XA_YB: + Prev = MRI.getUniqueVRegDef(Root.getOperand(2).getReg()); + break; + default: + llvm_unreachable("Unknown pattern for machine combiner"); + } + + // Don't reassociate if Prev and Root are in different blocks. + if (Prev->getParent() != Root.getParent()) + return; + + reassociateOps(Root, *Prev, Pattern, InsInstrs, DelInstrs, InstIdxForVirtReg); +} + +MachineTraceStrategy TargetInstrInfo::getMachineCombinerTraceStrategy() const { + return MachineTraceStrategy::TS_MinInstrCount; +} + +bool TargetInstrInfo::isReallyTriviallyReMaterializable( + const MachineInstr &MI) const { + const MachineFunction &MF = *MI.getMF(); + const MachineRegisterInfo &MRI = MF.getRegInfo(); + + // Remat clients assume operand 0 is the defined register. + if (!MI.getNumOperands() || !MI.getOperand(0).isReg()) + return false; + Register DefReg = MI.getOperand(0).getReg(); + + // A sub-register definition can only be rematerialized if the instruction + // doesn't read the other parts of the register. Otherwise it is really a + // read-modify-write operation on the full virtual register which cannot be + // moved safely. + if (DefReg.isVirtual() && MI.getOperand(0).getSubReg() && + MI.readsVirtualRegister(DefReg)) + return false; + + // A load from a fixed stack slot can be rematerialized. This may be + // redundant with subsequent checks, but it's target-independent, + // simple, and a common case. + int FrameIdx = 0; + if (isLoadFromStackSlot(MI, FrameIdx) && + MF.getFrameInfo().isImmutableObjectIndex(FrameIdx)) + return true; + + // Avoid instructions obviously unsafe for remat. + if (MI.isNotDuplicable() || MI.mayStore() || MI.mayRaiseFPException() || + MI.hasUnmodeledSideEffects()) + return false; + + // Don't remat inline asm. We have no idea how expensive it is + // even if it's side effect free. + if (MI.isInlineAsm()) + return false; + + // Avoid instructions which load from potentially varying memory. + if (MI.mayLoad() && !MI.isDereferenceableInvariantLoad()) + return false; + + // If any of the registers accessed are non-constant, conservatively assume + // the instruction is not rematerializable. + for (const MachineOperand &MO : MI.operands()) { + if (!MO.isReg()) continue; + Register Reg = MO.getReg(); + if (Reg == 0) + continue; + + // Check for a well-behaved physical register. + if (Reg.isPhysical()) { + if (MO.isUse()) { + // If the physreg has no defs anywhere, it's just an ambient register + // and we can freely move its uses. Alternatively, if it's allocatable, + // it could get allocated to something with a def during allocation. + if (!MRI.isConstantPhysReg(Reg)) + return false; + } else { + // A physreg def. We can't remat it. + return false; + } + continue; + } + + // Only allow one virtual-register def. There may be multiple defs of the + // same virtual register, though. + if (MO.isDef() && Reg != DefReg) + return false; + + // Don't allow any virtual-register uses. Rematting an instruction with + // virtual register uses would length the live ranges of the uses, which + // is not necessarily a good idea, certainly not "trivial". + if (MO.isUse()) + return false; + } + + // Everything checked out. + return true; +} + +int TargetInstrInfo::getSPAdjust(const MachineInstr &MI) const { + const MachineFunction *MF = MI.getMF(); + const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering(); + bool StackGrowsDown = + TFI->getStackGrowthDirection() == TargetFrameLowering::StackGrowsDown; + + unsigned FrameSetupOpcode = getCallFrameSetupOpcode(); + unsigned FrameDestroyOpcode = getCallFrameDestroyOpcode(); + + if (!isFrameInstr(MI)) + return 0; + + int SPAdj = TFI->alignSPAdjust(getFrameSize(MI)); + + if ((!StackGrowsDown && MI.getOpcode() == FrameSetupOpcode) || + (StackGrowsDown && MI.getOpcode() == FrameDestroyOpcode)) + SPAdj = -SPAdj; + + return SPAdj; +} + +/// isSchedulingBoundary - Test if the given instruction should be +/// considered a scheduling boundary. This primarily includes labels +/// and terminators. +bool TargetInstrInfo::isSchedulingBoundary(const MachineInstr &MI, + const MachineBasicBlock *MBB, + const MachineFunction &MF) const { + // Terminators and labels can't be scheduled around. + if (MI.isTerminator() || MI.isPosition()) + return true; + + // INLINEASM_BR can jump to another block + if (MI.getOpcode() == TargetOpcode::INLINEASM_BR) + return true; + + // Don't attempt to schedule around any instruction that defines + // a stack-oriented pointer, as it's unlikely to be profitable. This + // saves compile time, because it doesn't require every single + // stack slot reference to depend on the instruction that does the + // modification. + const TargetLowering &TLI = *MF.getSubtarget().getTargetLowering(); + const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); + return MI.modifiesRegister(TLI.getStackPointerRegisterToSaveRestore(), TRI); +} + +// Provide a global flag for disabling the PreRA hazard recognizer that targets +// may choose to honor. +bool TargetInstrInfo::usePreRAHazardRecognizer() const { + return !DisableHazardRecognizer; +} + +// Default implementation of CreateTargetRAHazardRecognizer. +ScheduleHazardRecognizer *TargetInstrInfo:: +CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI, + const ScheduleDAG *DAG) const { + // Dummy hazard recognizer allows all instructions to issue. + return new ScheduleHazardRecognizer(); +} + +// Default implementation of CreateTargetMIHazardRecognizer. +ScheduleHazardRecognizer *TargetInstrInfo::CreateTargetMIHazardRecognizer( + const InstrItineraryData *II, const ScheduleDAGMI *DAG) const { + return new ScoreboardHazardRecognizer(II, DAG, "machine-scheduler"); +} + +// Default implementation of CreateTargetPostRAHazardRecognizer. +ScheduleHazardRecognizer *TargetInstrInfo:: +CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II, + const ScheduleDAG *DAG) const { + return new ScoreboardHazardRecognizer(II, DAG, "post-RA-sched"); +} + +// Default implementation of getMemOperandWithOffset. +bool TargetInstrInfo::getMemOperandWithOffset( + const MachineInstr &MI, const MachineOperand *&BaseOp, int64_t &Offset, + bool &OffsetIsScalable, const TargetRegisterInfo *TRI) const { + SmallVector<const MachineOperand *, 4> BaseOps; + unsigned Width; + if (!getMemOperandsWithOffsetWidth(MI, BaseOps, Offset, OffsetIsScalable, + Width, TRI) || + BaseOps.size() != 1) + return false; + BaseOp = BaseOps.front(); + return true; +} + +//===----------------------------------------------------------------------===// +// SelectionDAG latency interface. +//===----------------------------------------------------------------------===// + +std::optional<unsigned> +TargetInstrInfo::getOperandLatency(const InstrItineraryData *ItinData, + SDNode *DefNode, unsigned DefIdx, + SDNode *UseNode, unsigned UseIdx) const { + if (!ItinData || ItinData->isEmpty()) + return std::nullopt; + + if (!DefNode->isMachineOpcode()) + return std::nullopt; + + unsigned DefClass = get(DefNode->getMachineOpcode()).getSchedClass(); + if (!UseNode->isMachineOpcode()) + return ItinData->getOperandCycle(DefClass, DefIdx); + unsigned UseClass = get(UseNode->getMachineOpcode()).getSchedClass(); + return ItinData->getOperandLatency(DefClass, DefIdx, UseClass, UseIdx); +} + +unsigned TargetInstrInfo::getInstrLatency(const InstrItineraryData *ItinData, + SDNode *N) const { + if (!ItinData || ItinData->isEmpty()) + return 1; + + if (!N->isMachineOpcode()) + return 1; + + return ItinData->getStageLatency(get(N->getMachineOpcode()).getSchedClass()); +} + +//===----------------------------------------------------------------------===// +// MachineInstr latency interface. +//===----------------------------------------------------------------------===// + +unsigned TargetInstrInfo::getNumMicroOps(const InstrItineraryData *ItinData, + const MachineInstr &MI) const { + if (!ItinData || ItinData->isEmpty()) + return 1; + + unsigned Class = MI.getDesc().getSchedClass(); + int UOps = ItinData->Itineraries[Class].NumMicroOps; + if (UOps >= 0) + return UOps; + + // The # of u-ops is dynamically determined. The specific target should + // override this function to return the right number. + return 1; +} + +/// Return the default expected latency for a def based on it's opcode. +unsigned TargetInstrInfo::defaultDefLatency(const MCSchedModel &SchedModel, + const MachineInstr &DefMI) const { + if (DefMI.isTransient()) + return 0; + if (DefMI.mayLoad()) + return SchedModel.LoadLatency; + if (isHighLatencyDef(DefMI.getOpcode())) + return SchedModel.HighLatency; + return 1; +} + +unsigned TargetInstrInfo::getPredicationCost(const MachineInstr &) const { + return 0; +} + +unsigned TargetInstrInfo::getInstrLatency(const InstrItineraryData *ItinData, + const MachineInstr &MI, + unsigned *PredCost) const { + // Default to one cycle for no itinerary. However, an "empty" itinerary may + // still have a MinLatency property, which getStageLatency checks. + if (!ItinData) + return MI.mayLoad() ? 2 : 1; + + return ItinData->getStageLatency(MI.getDesc().getSchedClass()); +} + +bool TargetInstrInfo::hasLowDefLatency(const TargetSchedModel &SchedModel, + const MachineInstr &DefMI, + unsigned DefIdx) const { + const InstrItineraryData *ItinData = SchedModel.getInstrItineraries(); + if (!ItinData || ItinData->isEmpty()) + return false; + + unsigned DefClass = DefMI.getDesc().getSchedClass(); + std::optional<unsigned> DefCycle = + ItinData->getOperandCycle(DefClass, DefIdx); + return DefCycle && DefCycle <= 1U; +} + +bool TargetInstrInfo::isFunctionSafeToSplit(const MachineFunction &MF) const { + // TODO: We don't split functions where a section attribute has been set + // since the split part may not be placed in a contiguous region. It may also + // be more beneficial to augment the linker to ensure contiguous layout of + // split functions within the same section as specified by the attribute. + if (MF.getFunction().hasSection() || + MF.getFunction().hasFnAttribute("implicit-section-name")) + return false; + + // We don't want to proceed further for cold functions + // or functions of unknown hotness. Lukewarm functions have no prefix. + std::optional<StringRef> SectionPrefix = MF.getFunction().getSectionPrefix(); + if (SectionPrefix && + (*SectionPrefix == "unlikely" || *SectionPrefix == "unknown")) { + return false; + } + + return true; +} + +std::optional<ParamLoadedValue> +TargetInstrInfo::describeLoadedValue(const MachineInstr &MI, + Register Reg) const { + const MachineFunction *MF = MI.getMF(); + const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); + DIExpression *Expr = DIExpression::get(MF->getFunction().getContext(), {}); + int64_t Offset; + bool OffsetIsScalable; + + // To simplify the sub-register handling, verify that we only need to + // consider physical registers. + assert(MF->getProperties().hasProperty( + MachineFunctionProperties::Property::NoVRegs)); + + if (auto DestSrc = isCopyInstr(MI)) { + Register DestReg = DestSrc->Destination->getReg(); + + // If the copy destination is the forwarding reg, describe the forwarding + // reg using the copy source as the backup location. Example: + // + // x0 = MOV x7 + // call callee(x0) ; x0 described as x7 + if (Reg == DestReg) + return ParamLoadedValue(*DestSrc->Source, Expr); + + // If the target's hook couldn't describe this copy, give up. + return std::nullopt; + } else if (auto RegImm = isAddImmediate(MI, Reg)) { + Register SrcReg = RegImm->Reg; + Offset = RegImm->Imm; + Expr = DIExpression::prepend(Expr, DIExpression::ApplyOffset, Offset); + return ParamLoadedValue(MachineOperand::CreateReg(SrcReg, false), Expr); + } else if (MI.hasOneMemOperand()) { + // Only describe memory which provably does not escape the function. As + // described in llvm.org/PR43343, escaped memory may be clobbered by the + // callee (or by another thread). + const auto &TII = MF->getSubtarget().getInstrInfo(); + const MachineFrameInfo &MFI = MF->getFrameInfo(); + const MachineMemOperand *MMO = MI.memoperands()[0]; + const PseudoSourceValue *PSV = MMO->getPseudoValue(); + + // If the address points to "special" memory (e.g. a spill slot), it's + // sufficient to check that it isn't aliased by any high-level IR value. + if (!PSV || PSV->mayAlias(&MFI)) + return std::nullopt; + + const MachineOperand *BaseOp; + if (!TII->getMemOperandWithOffset(MI, BaseOp, Offset, OffsetIsScalable, + TRI)) + return std::nullopt; + + // FIXME: Scalable offsets are not yet handled in the offset code below. + if (OffsetIsScalable) + return std::nullopt; + + // TODO: Can currently only handle mem instructions with a single define. + // An example from the x86 target: + // ... + // DIV64m $rsp, 1, $noreg, 24, $noreg, implicit-def dead $rax, implicit-def $rdx + // ... + // + if (MI.getNumExplicitDefs() != 1) + return std::nullopt; + + // TODO: In what way do we need to take Reg into consideration here? + + SmallVector<uint64_t, 8> Ops; + DIExpression::appendOffset(Ops, Offset); + Ops.push_back(dwarf::DW_OP_deref_size); + Ops.push_back(MMO->getSize()); + Expr = DIExpression::prependOpcodes(Expr, Ops); + return ParamLoadedValue(*BaseOp, Expr); + } + + return std::nullopt; +} + +// Get the call frame size just before MI. +unsigned TargetInstrInfo::getCallFrameSizeAt(MachineInstr &MI) const { + // Search backwards from MI for the most recent call frame instruction. + MachineBasicBlock *MBB = MI.getParent(); + for (auto &AdjI : reverse(make_range(MBB->instr_begin(), MI.getIterator()))) { + if (AdjI.getOpcode() == getCallFrameSetupOpcode()) + return getFrameTotalSize(AdjI); + if (AdjI.getOpcode() == getCallFrameDestroyOpcode()) + return 0; + } + + // If none was found, use the call frame size from the start of the basic + // block. + return MBB->getCallFrameSize(); +} + +/// Both DefMI and UseMI must be valid. By default, call directly to the +/// itinerary. This may be overriden by the target. +std::optional<unsigned> TargetInstrInfo::getOperandLatency( + const InstrItineraryData *ItinData, const MachineInstr &DefMI, + unsigned DefIdx, const MachineInstr &UseMI, unsigned UseIdx) const { + unsigned DefClass = DefMI.getDesc().getSchedClass(); + unsigned UseClass = UseMI.getDesc().getSchedClass(); + return ItinData->getOperandLatency(DefClass, DefIdx, UseClass, UseIdx); +} + +bool TargetInstrInfo::getRegSequenceInputs( + const MachineInstr &MI, unsigned DefIdx, + SmallVectorImpl<RegSubRegPairAndIdx> &InputRegs) const { + assert((MI.isRegSequence() || + MI.isRegSequenceLike()) && "Instruction do not have the proper type"); + + if (!MI.isRegSequence()) + return getRegSequenceLikeInputs(MI, DefIdx, InputRegs); + + // We are looking at: + // Def = REG_SEQUENCE v0, sub0, v1, sub1, ... + assert(DefIdx == 0 && "REG_SEQUENCE only has one def"); + for (unsigned OpIdx = 1, EndOpIdx = MI.getNumOperands(); OpIdx != EndOpIdx; + OpIdx += 2) { + const MachineOperand &MOReg = MI.getOperand(OpIdx); + if (MOReg.isUndef()) + continue; + const MachineOperand &MOSubIdx = MI.getOperand(OpIdx + 1); + assert(MOSubIdx.isImm() && + "One of the subindex of the reg_sequence is not an immediate"); + // Record Reg:SubReg, SubIdx. + InputRegs.push_back(RegSubRegPairAndIdx(MOReg.getReg(), MOReg.getSubReg(), + (unsigned)MOSubIdx.getImm())); + } + return true; +} + +bool TargetInstrInfo::getExtractSubregInputs( + const MachineInstr &MI, unsigned DefIdx, + RegSubRegPairAndIdx &InputReg) const { + assert((MI.isExtractSubreg() || + MI.isExtractSubregLike()) && "Instruction do not have the proper type"); + + if (!MI.isExtractSubreg()) + return getExtractSubregLikeInputs(MI, DefIdx, InputReg); + + // We are looking at: + // Def = EXTRACT_SUBREG v0.sub1, sub0. + assert(DefIdx == 0 && "EXTRACT_SUBREG only has one def"); + const MachineOperand &MOReg = MI.getOperand(1); + if (MOReg.isUndef()) + return false; + const MachineOperand &MOSubIdx = MI.getOperand(2); + assert(MOSubIdx.isImm() && + "The subindex of the extract_subreg is not an immediate"); + + InputReg.Reg = MOReg.getReg(); + InputReg.SubReg = MOReg.getSubReg(); + InputReg.SubIdx = (unsigned)MOSubIdx.getImm(); + return true; +} + +bool TargetInstrInfo::getInsertSubregInputs( + const MachineInstr &MI, unsigned DefIdx, + RegSubRegPair &BaseReg, RegSubRegPairAndIdx &InsertedReg) const { + assert((MI.isInsertSubreg() || + MI.isInsertSubregLike()) && "Instruction do not have the proper type"); + + if (!MI.isInsertSubreg()) + return getInsertSubregLikeInputs(MI, DefIdx, BaseReg, InsertedReg); + + // We are looking at: + // Def = INSERT_SEQUENCE v0, v1, sub0. + assert(DefIdx == 0 && "INSERT_SUBREG only has one def"); + const MachineOperand &MOBaseReg = MI.getOperand(1); + const MachineOperand &MOInsertedReg = MI.getOperand(2); + if (MOInsertedReg.isUndef()) + return false; + const MachineOperand &MOSubIdx = MI.getOperand(3); + assert(MOSubIdx.isImm() && + "One of the subindex of the reg_sequence is not an immediate"); + BaseReg.Reg = MOBaseReg.getReg(); + BaseReg.SubReg = MOBaseReg.getSubReg(); + + InsertedReg.Reg = MOInsertedReg.getReg(); + InsertedReg.SubReg = MOInsertedReg.getSubReg(); + InsertedReg.SubIdx = (unsigned)MOSubIdx.getImm(); + return true; +} + +// Returns a MIRPrinter comment for this machine operand. +std::string TargetInstrInfo::createMIROperandComment( + const MachineInstr &MI, const MachineOperand &Op, unsigned OpIdx, + const TargetRegisterInfo *TRI) const { + + if (!MI.isInlineAsm()) + return ""; + + std::string Flags; + raw_string_ostream OS(Flags); + + if (OpIdx == InlineAsm::MIOp_ExtraInfo) { + // Print HasSideEffects, MayLoad, MayStore, IsAlignStack + unsigned ExtraInfo = Op.getImm(); + bool First = true; + for (StringRef Info : InlineAsm::getExtraInfoNames(ExtraInfo)) { + if (!First) + OS << " "; + First = false; + OS << Info; + } + + return OS.str(); + } + + int FlagIdx = MI.findInlineAsmFlagIdx(OpIdx); + if (FlagIdx < 0 || (unsigned)FlagIdx != OpIdx) + return ""; + + assert(Op.isImm() && "Expected flag operand to be an immediate"); + // Pretty print the inline asm operand descriptor. + unsigned Flag = Op.getImm(); + const InlineAsm::Flag F(Flag); + OS << F.getKindName(); + + unsigned RCID; + if (!F.isImmKind() && !F.isMemKind() && F.hasRegClassConstraint(RCID)) { + if (TRI) { + OS << ':' << TRI->getRegClassName(TRI->getRegClass(RCID)); + } else + OS << ":RC" << RCID; + } + + if (F.isMemKind()) { + InlineAsm::ConstraintCode MCID = F.getMemoryConstraintID(); + OS << ":" << InlineAsm::getMemConstraintName(MCID); + } + + unsigned TiedTo; + if (F.isUseOperandTiedToDef(TiedTo)) + OS << " tiedto:$" << TiedTo; + + if ((F.isRegDefKind() || F.isRegDefEarlyClobberKind() || F.isRegUseKind()) && + F.getRegMayBeFolded()) + OS << " foldable"; + + return OS.str(); +} + +TargetInstrInfo::PipelinerLoopInfo::~PipelinerLoopInfo() = default; + +void TargetInstrInfo::mergeOutliningCandidateAttributes( + Function &F, std::vector<outliner::Candidate> &Candidates) const { + // Include target features from an arbitrary candidate for the outlined + // function. This makes sure the outlined function knows what kinds of + // instructions are going into it. This is fine, since all parent functions + // must necessarily support the instructions that are in the outlined region. + outliner::Candidate &FirstCand = Candidates.front(); + const Function &ParentFn = FirstCand.getMF()->getFunction(); + if (ParentFn.hasFnAttribute("target-features")) + F.addFnAttr(ParentFn.getFnAttribute("target-features")); + if (ParentFn.hasFnAttribute("target-cpu")) + F.addFnAttr(ParentFn.getFnAttribute("target-cpu")); + + // Set nounwind, so we don't generate eh_frame. + if (llvm::all_of(Candidates, [](const outliner::Candidate &C) { + return C.getMF()->getFunction().hasFnAttribute(Attribute::NoUnwind); + })) + F.addFnAttr(Attribute::NoUnwind); +} + +outliner::InstrType TargetInstrInfo::getOutliningType( + MachineBasicBlock::iterator &MIT, unsigned Flags) const { + MachineInstr &MI = *MIT; + + // NOTE: MI.isMetaInstruction() will match CFI_INSTRUCTION, but some targets + // have support for outlining those. Special-case that here. + if (MI.isCFIInstruction()) + // Just go right to the target implementation. + return getOutliningTypeImpl(MIT, Flags); + + // Be conservative about inline assembly. + if (MI.isInlineAsm()) + return outliner::InstrType::Illegal; + + // Labels generally can't safely be outlined. + if (MI.isLabel()) + return outliner::InstrType::Illegal; + + // Don't let debug instructions impact analysis. + if (MI.isDebugInstr()) + return outliner::InstrType::Invisible; + + // Some other special cases. + switch (MI.getOpcode()) { + case TargetOpcode::IMPLICIT_DEF: + case TargetOpcode::KILL: + case TargetOpcode::LIFETIME_START: + case TargetOpcode::LIFETIME_END: + return outliner::InstrType::Invisible; + default: + break; + } + + // Is this a terminator for a basic block? + if (MI.isTerminator()) { + // If this is a branch to another block, we can't outline it. + if (!MI.getParent()->succ_empty()) + return outliner::InstrType::Illegal; + + // Don't outline if the branch is not unconditional. + if (isPredicated(MI)) + return outliner::InstrType::Illegal; + } + + // Make sure none of the operands of this instruction do anything that + // might break if they're moved outside their current function. + // This includes MachineBasicBlock references, BlockAddressses, + // Constant pool indices and jump table indices. + // + // A quick note on MO_TargetIndex: + // This doesn't seem to be used in any of the architectures that the + // MachineOutliner supports, but it was still filtered out in all of them. + // There was one exception (RISC-V), but MO_TargetIndex also isn't used there. + // As such, this check is removed both here and in the target-specific + // implementations. Instead, we assert to make sure this doesn't + // catch anyone off-guard somewhere down the line. + for (const MachineOperand &MOP : MI.operands()) { + // If you hit this assertion, please remove it and adjust + // `getOutliningTypeImpl` for your target appropriately if necessary. + // Adding the assertion back to other supported architectures + // would be nice too :) + assert(!MOP.isTargetIndex() && "This isn't used quite yet!"); + + // CFI instructions should already have been filtered out at this point. + assert(!MOP.isCFIIndex() && "CFI instructions handled elsewhere!"); + + // PrologEpilogInserter should've already run at this point. + assert(!MOP.isFI() && "FrameIndex instructions should be gone by now!"); + + if (MOP.isMBB() || MOP.isBlockAddress() || MOP.isCPI() || MOP.isJTI()) + return outliner::InstrType::Illegal; + } + + // If we don't know, delegate to the target-specific hook. + return getOutliningTypeImpl(MIT, Flags); +} + +bool TargetInstrInfo::isMBBSafeToOutlineFrom(MachineBasicBlock &MBB, + unsigned &Flags) const { + // Some instrumentations create special TargetOpcode at the start which + // expands to special code sequences which must be present. + auto First = MBB.getFirstNonDebugInstr(); + if (First == MBB.end()) + return true; + + if (First->getOpcode() == TargetOpcode::FENTRY_CALL || + First->getOpcode() == TargetOpcode::PATCHABLE_FUNCTION_ENTER) + return false; + + // Some instrumentations create special pseudo-instructions at or just before + // the end that must be present. + auto Last = MBB.getLastNonDebugInstr(); + if (Last->getOpcode() == TargetOpcode::PATCHABLE_RET || + Last->getOpcode() == TargetOpcode::PATCHABLE_TAIL_CALL) + return false; + + if (Last != First && Last->isReturn()) { + --Last; + if (Last->getOpcode() == TargetOpcode::PATCHABLE_FUNCTION_EXIT || + Last->getOpcode() == TargetOpcode::PATCHABLE_TAIL_CALL) + return false; + } + return true; +} |
