diff options
Diffstat (limited to 'contrib/llvm-project/llvm/lib/CodeGen/TargetLoweringBase.cpp')
-rw-r--r-- | contrib/llvm-project/llvm/lib/CodeGen/TargetLoweringBase.cpp | 2372 |
1 files changed, 2372 insertions, 0 deletions
diff --git a/contrib/llvm-project/llvm/lib/CodeGen/TargetLoweringBase.cpp b/contrib/llvm-project/llvm/lib/CodeGen/TargetLoweringBase.cpp new file mode 100644 index 000000000000..fbdff4a79741 --- /dev/null +++ b/contrib/llvm-project/llvm/lib/CodeGen/TargetLoweringBase.cpp @@ -0,0 +1,2372 @@ +//===- TargetLoweringBase.cpp - Implement the TargetLoweringBase class ----===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// This implements the TargetLoweringBase class. +// +//===----------------------------------------------------------------------===// + +#include "llvm/ADT/BitVector.h" +#include "llvm/ADT/STLExtras.h" +#include "llvm/ADT/SmallVector.h" +#include "llvm/ADT/StringExtras.h" +#include "llvm/ADT/StringRef.h" +#include "llvm/ADT/Triple.h" +#include "llvm/ADT/Twine.h" +#include "llvm/Analysis/Loads.h" +#include "llvm/Analysis/TargetTransformInfo.h" +#include "llvm/CodeGen/Analysis.h" +#include "llvm/CodeGen/ISDOpcodes.h" +#include "llvm/CodeGen/MachineBasicBlock.h" +#include "llvm/CodeGen/MachineFrameInfo.h" +#include "llvm/CodeGen/MachineFunction.h" +#include "llvm/CodeGen/MachineInstr.h" +#include "llvm/CodeGen/MachineInstrBuilder.h" +#include "llvm/CodeGen/MachineMemOperand.h" +#include "llvm/CodeGen/MachineOperand.h" +#include "llvm/CodeGen/MachineRegisterInfo.h" +#include "llvm/CodeGen/RuntimeLibcalls.h" +#include "llvm/CodeGen/StackMaps.h" +#include "llvm/CodeGen/TargetLowering.h" +#include "llvm/CodeGen/TargetOpcodes.h" +#include "llvm/CodeGen/TargetRegisterInfo.h" +#include "llvm/CodeGen/ValueTypes.h" +#include "llvm/IR/Attributes.h" +#include "llvm/IR/CallingConv.h" +#include "llvm/IR/DataLayout.h" +#include "llvm/IR/DerivedTypes.h" +#include "llvm/IR/Function.h" +#include "llvm/IR/GlobalValue.h" +#include "llvm/IR/GlobalVariable.h" +#include "llvm/IR/IRBuilder.h" +#include "llvm/IR/Module.h" +#include "llvm/IR/Type.h" +#include "llvm/Support/Casting.h" +#include "llvm/Support/CommandLine.h" +#include "llvm/Support/Compiler.h" +#include "llvm/Support/ErrorHandling.h" +#include "llvm/Support/MachineValueType.h" +#include "llvm/Support/MathExtras.h" +#include "llvm/Target/TargetMachine.h" +#include "llvm/Target/TargetOptions.h" +#include "llvm/Transforms/Utils/SizeOpts.h" +#include <algorithm> +#include <cassert> +#include <cstdint> +#include <cstring> +#include <iterator> +#include <string> +#include <tuple> +#include <utility> + +using namespace llvm; + +static cl::opt<bool> JumpIsExpensiveOverride( + "jump-is-expensive", cl::init(false), + cl::desc("Do not create extra branches to split comparison logic."), + cl::Hidden); + +static cl::opt<unsigned> MinimumJumpTableEntries + ("min-jump-table-entries", cl::init(4), cl::Hidden, + cl::desc("Set minimum number of entries to use a jump table.")); + +static cl::opt<unsigned> MaximumJumpTableSize + ("max-jump-table-size", cl::init(UINT_MAX), cl::Hidden, + cl::desc("Set maximum size of jump tables.")); + +/// Minimum jump table density for normal functions. +static cl::opt<unsigned> + JumpTableDensity("jump-table-density", cl::init(10), cl::Hidden, + cl::desc("Minimum density for building a jump table in " + "a normal function")); + +/// Minimum jump table density for -Os or -Oz functions. +static cl::opt<unsigned> OptsizeJumpTableDensity( + "optsize-jump-table-density", cl::init(40), cl::Hidden, + cl::desc("Minimum density for building a jump table in " + "an optsize function")); + +// FIXME: This option is only to test if the strict fp operation processed +// correctly by preventing mutating strict fp operation to normal fp operation +// during development. When the backend supports strict float operation, this +// option will be meaningless. +static cl::opt<bool> DisableStrictNodeMutation("disable-strictnode-mutation", + cl::desc("Don't mutate strict-float node to a legalize node"), + cl::init(false), cl::Hidden); + +static bool darwinHasSinCos(const Triple &TT) { + assert(TT.isOSDarwin() && "should be called with darwin triple"); + // Don't bother with 32 bit x86. + if (TT.getArch() == Triple::x86) + return false; + // Macos < 10.9 has no sincos_stret. + if (TT.isMacOSX()) + return !TT.isMacOSXVersionLT(10, 9) && TT.isArch64Bit(); + // iOS < 7.0 has no sincos_stret. + if (TT.isiOS()) + return !TT.isOSVersionLT(7, 0); + // Any other darwin such as WatchOS/TvOS is new enough. + return true; +} + +void TargetLoweringBase::InitLibcalls(const Triple &TT) { +#define HANDLE_LIBCALL(code, name) \ + setLibcallName(RTLIB::code, name); +#include "llvm/IR/RuntimeLibcalls.def" +#undef HANDLE_LIBCALL + // Initialize calling conventions to their default. + for (int LC = 0; LC < RTLIB::UNKNOWN_LIBCALL; ++LC) + setLibcallCallingConv((RTLIB::Libcall)LC, CallingConv::C); + + // For IEEE quad-precision libcall names, PPC uses "kf" instead of "tf". + if (TT.isPPC()) { + setLibcallName(RTLIB::ADD_F128, "__addkf3"); + setLibcallName(RTLIB::SUB_F128, "__subkf3"); + setLibcallName(RTLIB::MUL_F128, "__mulkf3"); + setLibcallName(RTLIB::DIV_F128, "__divkf3"); + setLibcallName(RTLIB::POWI_F128, "__powikf2"); + setLibcallName(RTLIB::FPEXT_F32_F128, "__extendsfkf2"); + setLibcallName(RTLIB::FPEXT_F64_F128, "__extenddfkf2"); + setLibcallName(RTLIB::FPROUND_F128_F32, "__trunckfsf2"); + setLibcallName(RTLIB::FPROUND_F128_F64, "__trunckfdf2"); + setLibcallName(RTLIB::FPTOSINT_F128_I32, "__fixkfsi"); + setLibcallName(RTLIB::FPTOSINT_F128_I64, "__fixkfdi"); + setLibcallName(RTLIB::FPTOSINT_F128_I128, "__fixkfti"); + setLibcallName(RTLIB::FPTOUINT_F128_I32, "__fixunskfsi"); + setLibcallName(RTLIB::FPTOUINT_F128_I64, "__fixunskfdi"); + setLibcallName(RTLIB::FPTOUINT_F128_I128, "__fixunskfti"); + setLibcallName(RTLIB::SINTTOFP_I32_F128, "__floatsikf"); + setLibcallName(RTLIB::SINTTOFP_I64_F128, "__floatdikf"); + setLibcallName(RTLIB::SINTTOFP_I128_F128, "__floattikf"); + setLibcallName(RTLIB::UINTTOFP_I32_F128, "__floatunsikf"); + setLibcallName(RTLIB::UINTTOFP_I64_F128, "__floatundikf"); + setLibcallName(RTLIB::UINTTOFP_I128_F128, "__floatuntikf"); + setLibcallName(RTLIB::OEQ_F128, "__eqkf2"); + setLibcallName(RTLIB::UNE_F128, "__nekf2"); + setLibcallName(RTLIB::OGE_F128, "__gekf2"); + setLibcallName(RTLIB::OLT_F128, "__ltkf2"); + setLibcallName(RTLIB::OLE_F128, "__lekf2"); + setLibcallName(RTLIB::OGT_F128, "__gtkf2"); + setLibcallName(RTLIB::UO_F128, "__unordkf2"); + } + + // A few names are different on particular architectures or environments. + if (TT.isOSDarwin()) { + // For f16/f32 conversions, Darwin uses the standard naming scheme, instead + // of the gnueabi-style __gnu_*_ieee. + // FIXME: What about other targets? + setLibcallName(RTLIB::FPEXT_F16_F32, "__extendhfsf2"); + setLibcallName(RTLIB::FPROUND_F32_F16, "__truncsfhf2"); + + // Some darwins have an optimized __bzero/bzero function. + switch (TT.getArch()) { + case Triple::x86: + case Triple::x86_64: + if (TT.isMacOSX() && !TT.isMacOSXVersionLT(10, 6)) + setLibcallName(RTLIB::BZERO, "__bzero"); + break; + case Triple::aarch64: + case Triple::aarch64_32: + setLibcallName(RTLIB::BZERO, "bzero"); + break; + default: + break; + } + + if (darwinHasSinCos(TT)) { + setLibcallName(RTLIB::SINCOS_STRET_F32, "__sincosf_stret"); + setLibcallName(RTLIB::SINCOS_STRET_F64, "__sincos_stret"); + if (TT.isWatchABI()) { + setLibcallCallingConv(RTLIB::SINCOS_STRET_F32, + CallingConv::ARM_AAPCS_VFP); + setLibcallCallingConv(RTLIB::SINCOS_STRET_F64, + CallingConv::ARM_AAPCS_VFP); + } + } + } else { + setLibcallName(RTLIB::FPEXT_F16_F32, "__gnu_h2f_ieee"); + setLibcallName(RTLIB::FPROUND_F32_F16, "__gnu_f2h_ieee"); + } + + if (TT.isGNUEnvironment() || TT.isOSFuchsia() || + (TT.isAndroid() && !TT.isAndroidVersionLT(9))) { + setLibcallName(RTLIB::SINCOS_F32, "sincosf"); + setLibcallName(RTLIB::SINCOS_F64, "sincos"); + setLibcallName(RTLIB::SINCOS_F80, "sincosl"); + setLibcallName(RTLIB::SINCOS_F128, "sincosl"); + setLibcallName(RTLIB::SINCOS_PPCF128, "sincosl"); + } + + if (TT.isPS()) { + setLibcallName(RTLIB::SINCOS_F32, "sincosf"); + setLibcallName(RTLIB::SINCOS_F64, "sincos"); + } + + if (TT.isOSOpenBSD()) { + setLibcallName(RTLIB::STACKPROTECTOR_CHECK_FAIL, nullptr); + } +} + +/// GetFPLibCall - Helper to return the right libcall for the given floating +/// point type, or UNKNOWN_LIBCALL if there is none. +RTLIB::Libcall RTLIB::getFPLibCall(EVT VT, + RTLIB::Libcall Call_F32, + RTLIB::Libcall Call_F64, + RTLIB::Libcall Call_F80, + RTLIB::Libcall Call_F128, + RTLIB::Libcall Call_PPCF128) { + return + VT == MVT::f32 ? Call_F32 : + VT == MVT::f64 ? Call_F64 : + VT == MVT::f80 ? Call_F80 : + VT == MVT::f128 ? Call_F128 : + VT == MVT::ppcf128 ? Call_PPCF128 : + RTLIB::UNKNOWN_LIBCALL; +} + +/// getFPEXT - Return the FPEXT_*_* value for the given types, or +/// UNKNOWN_LIBCALL if there is none. +RTLIB::Libcall RTLIB::getFPEXT(EVT OpVT, EVT RetVT) { + if (OpVT == MVT::f16) { + if (RetVT == MVT::f32) + return FPEXT_F16_F32; + if (RetVT == MVT::f64) + return FPEXT_F16_F64; + if (RetVT == MVT::f80) + return FPEXT_F16_F80; + if (RetVT == MVT::f128) + return FPEXT_F16_F128; + } else if (OpVT == MVT::f32) { + if (RetVT == MVT::f64) + return FPEXT_F32_F64; + if (RetVT == MVT::f128) + return FPEXT_F32_F128; + if (RetVT == MVT::ppcf128) + return FPEXT_F32_PPCF128; + } else if (OpVT == MVT::f64) { + if (RetVT == MVT::f128) + return FPEXT_F64_F128; + else if (RetVT == MVT::ppcf128) + return FPEXT_F64_PPCF128; + } else if (OpVT == MVT::f80) { + if (RetVT == MVT::f128) + return FPEXT_F80_F128; + } + + return UNKNOWN_LIBCALL; +} + +/// getFPROUND - Return the FPROUND_*_* value for the given types, or +/// UNKNOWN_LIBCALL if there is none. +RTLIB::Libcall RTLIB::getFPROUND(EVT OpVT, EVT RetVT) { + if (RetVT == MVT::f16) { + if (OpVT == MVT::f32) + return FPROUND_F32_F16; + if (OpVT == MVT::f64) + return FPROUND_F64_F16; + if (OpVT == MVT::f80) + return FPROUND_F80_F16; + if (OpVT == MVT::f128) + return FPROUND_F128_F16; + if (OpVT == MVT::ppcf128) + return FPROUND_PPCF128_F16; + } else if (RetVT == MVT::bf16) { + if (OpVT == MVT::f32) + return FPROUND_F32_BF16; + if (OpVT == MVT::f64) + return FPROUND_F64_BF16; + } else if (RetVT == MVT::f32) { + if (OpVT == MVT::f64) + return FPROUND_F64_F32; + if (OpVT == MVT::f80) + return FPROUND_F80_F32; + if (OpVT == MVT::f128) + return FPROUND_F128_F32; + if (OpVT == MVT::ppcf128) + return FPROUND_PPCF128_F32; + } else if (RetVT == MVT::f64) { + if (OpVT == MVT::f80) + return FPROUND_F80_F64; + if (OpVT == MVT::f128) + return FPROUND_F128_F64; + if (OpVT == MVT::ppcf128) + return FPROUND_PPCF128_F64; + } else if (RetVT == MVT::f80) { + if (OpVT == MVT::f128) + return FPROUND_F128_F80; + } + + return UNKNOWN_LIBCALL; +} + +/// getFPTOSINT - Return the FPTOSINT_*_* value for the given types, or +/// UNKNOWN_LIBCALL if there is none. +RTLIB::Libcall RTLIB::getFPTOSINT(EVT OpVT, EVT RetVT) { + if (OpVT == MVT::f16) { + if (RetVT == MVT::i32) + return FPTOSINT_F16_I32; + if (RetVT == MVT::i64) + return FPTOSINT_F16_I64; + if (RetVT == MVT::i128) + return FPTOSINT_F16_I128; + } else if (OpVT == MVT::f32) { + if (RetVT == MVT::i32) + return FPTOSINT_F32_I32; + if (RetVT == MVT::i64) + return FPTOSINT_F32_I64; + if (RetVT == MVT::i128) + return FPTOSINT_F32_I128; + } else if (OpVT == MVT::f64) { + if (RetVT == MVT::i32) + return FPTOSINT_F64_I32; + if (RetVT == MVT::i64) + return FPTOSINT_F64_I64; + if (RetVT == MVT::i128) + return FPTOSINT_F64_I128; + } else if (OpVT == MVT::f80) { + if (RetVT == MVT::i32) + return FPTOSINT_F80_I32; + if (RetVT == MVT::i64) + return FPTOSINT_F80_I64; + if (RetVT == MVT::i128) + return FPTOSINT_F80_I128; + } else if (OpVT == MVT::f128) { + if (RetVT == MVT::i32) + return FPTOSINT_F128_I32; + if (RetVT == MVT::i64) + return FPTOSINT_F128_I64; + if (RetVT == MVT::i128) + return FPTOSINT_F128_I128; + } else if (OpVT == MVT::ppcf128) { + if (RetVT == MVT::i32) + return FPTOSINT_PPCF128_I32; + if (RetVT == MVT::i64) + return FPTOSINT_PPCF128_I64; + if (RetVT == MVT::i128) + return FPTOSINT_PPCF128_I128; + } + return UNKNOWN_LIBCALL; +} + +/// getFPTOUINT - Return the FPTOUINT_*_* value for the given types, or +/// UNKNOWN_LIBCALL if there is none. +RTLIB::Libcall RTLIB::getFPTOUINT(EVT OpVT, EVT RetVT) { + if (OpVT == MVT::f16) { + if (RetVT == MVT::i32) + return FPTOUINT_F16_I32; + if (RetVT == MVT::i64) + return FPTOUINT_F16_I64; + if (RetVT == MVT::i128) + return FPTOUINT_F16_I128; + } else if (OpVT == MVT::f32) { + if (RetVT == MVT::i32) + return FPTOUINT_F32_I32; + if (RetVT == MVT::i64) + return FPTOUINT_F32_I64; + if (RetVT == MVT::i128) + return FPTOUINT_F32_I128; + } else if (OpVT == MVT::f64) { + if (RetVT == MVT::i32) + return FPTOUINT_F64_I32; + if (RetVT == MVT::i64) + return FPTOUINT_F64_I64; + if (RetVT == MVT::i128) + return FPTOUINT_F64_I128; + } else if (OpVT == MVT::f80) { + if (RetVT == MVT::i32) + return FPTOUINT_F80_I32; + if (RetVT == MVT::i64) + return FPTOUINT_F80_I64; + if (RetVT == MVT::i128) + return FPTOUINT_F80_I128; + } else if (OpVT == MVT::f128) { + if (RetVT == MVT::i32) + return FPTOUINT_F128_I32; + if (RetVT == MVT::i64) + return FPTOUINT_F128_I64; + if (RetVT == MVT::i128) + return FPTOUINT_F128_I128; + } else if (OpVT == MVT::ppcf128) { + if (RetVT == MVT::i32) + return FPTOUINT_PPCF128_I32; + if (RetVT == MVT::i64) + return FPTOUINT_PPCF128_I64; + if (RetVT == MVT::i128) + return FPTOUINT_PPCF128_I128; + } + return UNKNOWN_LIBCALL; +} + +/// getSINTTOFP - Return the SINTTOFP_*_* value for the given types, or +/// UNKNOWN_LIBCALL if there is none. +RTLIB::Libcall RTLIB::getSINTTOFP(EVT OpVT, EVT RetVT) { + if (OpVT == MVT::i32) { + if (RetVT == MVT::f16) + return SINTTOFP_I32_F16; + if (RetVT == MVT::f32) + return SINTTOFP_I32_F32; + if (RetVT == MVT::f64) + return SINTTOFP_I32_F64; + if (RetVT == MVT::f80) + return SINTTOFP_I32_F80; + if (RetVT == MVT::f128) + return SINTTOFP_I32_F128; + if (RetVT == MVT::ppcf128) + return SINTTOFP_I32_PPCF128; + } else if (OpVT == MVT::i64) { + if (RetVT == MVT::f16) + return SINTTOFP_I64_F16; + if (RetVT == MVT::f32) + return SINTTOFP_I64_F32; + if (RetVT == MVT::f64) + return SINTTOFP_I64_F64; + if (RetVT == MVT::f80) + return SINTTOFP_I64_F80; + if (RetVT == MVT::f128) + return SINTTOFP_I64_F128; + if (RetVT == MVT::ppcf128) + return SINTTOFP_I64_PPCF128; + } else if (OpVT == MVT::i128) { + if (RetVT == MVT::f16) + return SINTTOFP_I128_F16; + if (RetVT == MVT::f32) + return SINTTOFP_I128_F32; + if (RetVT == MVT::f64) + return SINTTOFP_I128_F64; + if (RetVT == MVT::f80) + return SINTTOFP_I128_F80; + if (RetVT == MVT::f128) + return SINTTOFP_I128_F128; + if (RetVT == MVT::ppcf128) + return SINTTOFP_I128_PPCF128; + } + return UNKNOWN_LIBCALL; +} + +/// getUINTTOFP - Return the UINTTOFP_*_* value for the given types, or +/// UNKNOWN_LIBCALL if there is none. +RTLIB::Libcall RTLIB::getUINTTOFP(EVT OpVT, EVT RetVT) { + if (OpVT == MVT::i32) { + if (RetVT == MVT::f16) + return UINTTOFP_I32_F16; + if (RetVT == MVT::f32) + return UINTTOFP_I32_F32; + if (RetVT == MVT::f64) + return UINTTOFP_I32_F64; + if (RetVT == MVT::f80) + return UINTTOFP_I32_F80; + if (RetVT == MVT::f128) + return UINTTOFP_I32_F128; + if (RetVT == MVT::ppcf128) + return UINTTOFP_I32_PPCF128; + } else if (OpVT == MVT::i64) { + if (RetVT == MVT::f16) + return UINTTOFP_I64_F16; + if (RetVT == MVT::f32) + return UINTTOFP_I64_F32; + if (RetVT == MVT::f64) + return UINTTOFP_I64_F64; + if (RetVT == MVT::f80) + return UINTTOFP_I64_F80; + if (RetVT == MVT::f128) + return UINTTOFP_I64_F128; + if (RetVT == MVT::ppcf128) + return UINTTOFP_I64_PPCF128; + } else if (OpVT == MVT::i128) { + if (RetVT == MVT::f16) + return UINTTOFP_I128_F16; + if (RetVT == MVT::f32) + return UINTTOFP_I128_F32; + if (RetVT == MVT::f64) + return UINTTOFP_I128_F64; + if (RetVT == MVT::f80) + return UINTTOFP_I128_F80; + if (RetVT == MVT::f128) + return UINTTOFP_I128_F128; + if (RetVT == MVT::ppcf128) + return UINTTOFP_I128_PPCF128; + } + return UNKNOWN_LIBCALL; +} + +RTLIB::Libcall RTLIB::getPOWI(EVT RetVT) { + return getFPLibCall(RetVT, POWI_F32, POWI_F64, POWI_F80, POWI_F128, + POWI_PPCF128); +} + +RTLIB::Libcall RTLIB::getOUTLINE_ATOMIC(unsigned Opc, AtomicOrdering Order, + MVT VT) { + unsigned ModeN, ModelN; + switch (VT.SimpleTy) { + case MVT::i8: + ModeN = 0; + break; + case MVT::i16: + ModeN = 1; + break; + case MVT::i32: + ModeN = 2; + break; + case MVT::i64: + ModeN = 3; + break; + case MVT::i128: + ModeN = 4; + break; + default: + return UNKNOWN_LIBCALL; + } + + switch (Order) { + case AtomicOrdering::Monotonic: + ModelN = 0; + break; + case AtomicOrdering::Acquire: + ModelN = 1; + break; + case AtomicOrdering::Release: + ModelN = 2; + break; + case AtomicOrdering::AcquireRelease: + case AtomicOrdering::SequentiallyConsistent: + ModelN = 3; + break; + default: + return UNKNOWN_LIBCALL; + } + +#define LCALLS(A, B) \ + { A##B##_RELAX, A##B##_ACQ, A##B##_REL, A##B##_ACQ_REL } +#define LCALL5(A) \ + LCALLS(A, 1), LCALLS(A, 2), LCALLS(A, 4), LCALLS(A, 8), LCALLS(A, 16) + switch (Opc) { + case ISD::ATOMIC_CMP_SWAP: { + const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_CAS)}; + return LC[ModeN][ModelN]; + } + case ISD::ATOMIC_SWAP: { + const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_SWP)}; + return LC[ModeN][ModelN]; + } + case ISD::ATOMIC_LOAD_ADD: { + const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_LDADD)}; + return LC[ModeN][ModelN]; + } + case ISD::ATOMIC_LOAD_OR: { + const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_LDSET)}; + return LC[ModeN][ModelN]; + } + case ISD::ATOMIC_LOAD_CLR: { + const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_LDCLR)}; + return LC[ModeN][ModelN]; + } + case ISD::ATOMIC_LOAD_XOR: { + const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_LDEOR)}; + return LC[ModeN][ModelN]; + } + default: + return UNKNOWN_LIBCALL; + } +#undef LCALLS +#undef LCALL5 +} + +RTLIB::Libcall RTLIB::getSYNC(unsigned Opc, MVT VT) { +#define OP_TO_LIBCALL(Name, Enum) \ + case Name: \ + switch (VT.SimpleTy) { \ + default: \ + return UNKNOWN_LIBCALL; \ + case MVT::i8: \ + return Enum##_1; \ + case MVT::i16: \ + return Enum##_2; \ + case MVT::i32: \ + return Enum##_4; \ + case MVT::i64: \ + return Enum##_8; \ + case MVT::i128: \ + return Enum##_16; \ + } + + switch (Opc) { + OP_TO_LIBCALL(ISD::ATOMIC_SWAP, SYNC_LOCK_TEST_AND_SET) + OP_TO_LIBCALL(ISD::ATOMIC_CMP_SWAP, SYNC_VAL_COMPARE_AND_SWAP) + OP_TO_LIBCALL(ISD::ATOMIC_LOAD_ADD, SYNC_FETCH_AND_ADD) + OP_TO_LIBCALL(ISD::ATOMIC_LOAD_SUB, SYNC_FETCH_AND_SUB) + OP_TO_LIBCALL(ISD::ATOMIC_LOAD_AND, SYNC_FETCH_AND_AND) + OP_TO_LIBCALL(ISD::ATOMIC_LOAD_OR, SYNC_FETCH_AND_OR) + OP_TO_LIBCALL(ISD::ATOMIC_LOAD_XOR, SYNC_FETCH_AND_XOR) + OP_TO_LIBCALL(ISD::ATOMIC_LOAD_NAND, SYNC_FETCH_AND_NAND) + OP_TO_LIBCALL(ISD::ATOMIC_LOAD_MAX, SYNC_FETCH_AND_MAX) + OP_TO_LIBCALL(ISD::ATOMIC_LOAD_UMAX, SYNC_FETCH_AND_UMAX) + OP_TO_LIBCALL(ISD::ATOMIC_LOAD_MIN, SYNC_FETCH_AND_MIN) + OP_TO_LIBCALL(ISD::ATOMIC_LOAD_UMIN, SYNC_FETCH_AND_UMIN) + } + +#undef OP_TO_LIBCALL + + return UNKNOWN_LIBCALL; +} + +RTLIB::Libcall RTLIB::getMEMCPY_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize) { + switch (ElementSize) { + case 1: + return MEMCPY_ELEMENT_UNORDERED_ATOMIC_1; + case 2: + return MEMCPY_ELEMENT_UNORDERED_ATOMIC_2; + case 4: + return MEMCPY_ELEMENT_UNORDERED_ATOMIC_4; + case 8: + return MEMCPY_ELEMENT_UNORDERED_ATOMIC_8; + case 16: + return MEMCPY_ELEMENT_UNORDERED_ATOMIC_16; + default: + return UNKNOWN_LIBCALL; + } +} + +RTLIB::Libcall RTLIB::getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize) { + switch (ElementSize) { + case 1: + return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_1; + case 2: + return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_2; + case 4: + return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_4; + case 8: + return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_8; + case 16: + return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_16; + default: + return UNKNOWN_LIBCALL; + } +} + +RTLIB::Libcall RTLIB::getMEMSET_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize) { + switch (ElementSize) { + case 1: + return MEMSET_ELEMENT_UNORDERED_ATOMIC_1; + case 2: + return MEMSET_ELEMENT_UNORDERED_ATOMIC_2; + case 4: + return MEMSET_ELEMENT_UNORDERED_ATOMIC_4; + case 8: + return MEMSET_ELEMENT_UNORDERED_ATOMIC_8; + case 16: + return MEMSET_ELEMENT_UNORDERED_ATOMIC_16; + default: + return UNKNOWN_LIBCALL; + } +} + +/// InitCmpLibcallCCs - Set default comparison libcall CC. +static void InitCmpLibcallCCs(ISD::CondCode *CCs) { + std::fill(CCs, CCs + RTLIB::UNKNOWN_LIBCALL, ISD::SETCC_INVALID); + CCs[RTLIB::OEQ_F32] = ISD::SETEQ; + CCs[RTLIB::OEQ_F64] = ISD::SETEQ; + CCs[RTLIB::OEQ_F128] = ISD::SETEQ; + CCs[RTLIB::OEQ_PPCF128] = ISD::SETEQ; + CCs[RTLIB::UNE_F32] = ISD::SETNE; + CCs[RTLIB::UNE_F64] = ISD::SETNE; + CCs[RTLIB::UNE_F128] = ISD::SETNE; + CCs[RTLIB::UNE_PPCF128] = ISD::SETNE; + CCs[RTLIB::OGE_F32] = ISD::SETGE; + CCs[RTLIB::OGE_F64] = ISD::SETGE; + CCs[RTLIB::OGE_F128] = ISD::SETGE; + CCs[RTLIB::OGE_PPCF128] = ISD::SETGE; + CCs[RTLIB::OLT_F32] = ISD::SETLT; + CCs[RTLIB::OLT_F64] = ISD::SETLT; + CCs[RTLIB::OLT_F128] = ISD::SETLT; + CCs[RTLIB::OLT_PPCF128] = ISD::SETLT; + CCs[RTLIB::OLE_F32] = ISD::SETLE; + CCs[RTLIB::OLE_F64] = ISD::SETLE; + CCs[RTLIB::OLE_F128] = ISD::SETLE; + CCs[RTLIB::OLE_PPCF128] = ISD::SETLE; + CCs[RTLIB::OGT_F32] = ISD::SETGT; + CCs[RTLIB::OGT_F64] = ISD::SETGT; + CCs[RTLIB::OGT_F128] = ISD::SETGT; + CCs[RTLIB::OGT_PPCF128] = ISD::SETGT; + CCs[RTLIB::UO_F32] = ISD::SETNE; + CCs[RTLIB::UO_F64] = ISD::SETNE; + CCs[RTLIB::UO_F128] = ISD::SETNE; + CCs[RTLIB::UO_PPCF128] = ISD::SETNE; +} + +/// NOTE: The TargetMachine owns TLOF. +TargetLoweringBase::TargetLoweringBase(const TargetMachine &tm) : TM(tm) { + initActions(); + + // Perform these initializations only once. + MaxStoresPerMemset = MaxStoresPerMemcpy = MaxStoresPerMemmove = + MaxLoadsPerMemcmp = 8; + MaxGluedStoresPerMemcpy = 0; + MaxStoresPerMemsetOptSize = MaxStoresPerMemcpyOptSize = + MaxStoresPerMemmoveOptSize = MaxLoadsPerMemcmpOptSize = 4; + HasMultipleConditionRegisters = false; + HasExtractBitsInsn = false; + JumpIsExpensive = JumpIsExpensiveOverride; + PredictableSelectIsExpensive = false; + EnableExtLdPromotion = false; + StackPointerRegisterToSaveRestore = 0; + BooleanContents = UndefinedBooleanContent; + BooleanFloatContents = UndefinedBooleanContent; + BooleanVectorContents = UndefinedBooleanContent; + SchedPreferenceInfo = Sched::ILP; + GatherAllAliasesMaxDepth = 18; + IsStrictFPEnabled = DisableStrictNodeMutation; + MaxBytesForAlignment = 0; + // TODO: the default will be switched to 0 in the next commit, along + // with the Target-specific changes necessary. + MaxAtomicSizeInBitsSupported = 1024; + + // Assume that even with libcalls, no target supports wider than 128 bit + // division. + MaxDivRemBitWidthSupported = 128; + + MaxLargeFPConvertBitWidthSupported = llvm::IntegerType::MAX_INT_BITS; + + MinCmpXchgSizeInBits = 0; + SupportsUnalignedAtomics = false; + + std::fill(std::begin(LibcallRoutineNames), std::end(LibcallRoutineNames), nullptr); + + InitLibcalls(TM.getTargetTriple()); + InitCmpLibcallCCs(CmpLibcallCCs); +} + +void TargetLoweringBase::initActions() { + // All operations default to being supported. + memset(OpActions, 0, sizeof(OpActions)); + memset(LoadExtActions, 0, sizeof(LoadExtActions)); + memset(TruncStoreActions, 0, sizeof(TruncStoreActions)); + memset(IndexedModeActions, 0, sizeof(IndexedModeActions)); + memset(CondCodeActions, 0, sizeof(CondCodeActions)); + std::fill(std::begin(RegClassForVT), std::end(RegClassForVT), nullptr); + std::fill(std::begin(TargetDAGCombineArray), + std::end(TargetDAGCombineArray), 0); + + // We're somewhat special casing MVT::i2 and MVT::i4. Ideally we want to + // remove this and targets should individually set these types if not legal. + for (ISD::NodeType NT : enum_seq(ISD::DELETED_NODE, ISD::BUILTIN_OP_END, + force_iteration_on_noniterable_enum)) { + for (MVT VT : {MVT::i2, MVT::i4}) + OpActions[(unsigned)VT.SimpleTy][NT] = Expand; + } + for (MVT AVT : MVT::all_valuetypes()) { + for (MVT VT : {MVT::i2, MVT::i4, MVT::v128i2, MVT::v64i4}) { + setTruncStoreAction(AVT, VT, Expand); + setLoadExtAction(ISD::EXTLOAD, AVT, VT, Expand); + setLoadExtAction(ISD::ZEXTLOAD, AVT, VT, Expand); + } + } + for (unsigned IM = (unsigned)ISD::PRE_INC; + IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) { + for (MVT VT : {MVT::i2, MVT::i4}) { + setIndexedLoadAction(IM, VT, Expand); + setIndexedStoreAction(IM, VT, Expand); + setIndexedMaskedLoadAction(IM, VT, Expand); + setIndexedMaskedStoreAction(IM, VT, Expand); + } + } + + for (MVT VT : MVT::fp_valuetypes()) { + MVT IntVT = MVT::getIntegerVT(VT.getFixedSizeInBits()); + if (IntVT.isValid()) { + setOperationAction(ISD::ATOMIC_SWAP, VT, Promote); + AddPromotedToType(ISD::ATOMIC_SWAP, VT, IntVT); + } + } + + // Set default actions for various operations. + for (MVT VT : MVT::all_valuetypes()) { + // Default all indexed load / store to expand. + for (unsigned IM = (unsigned)ISD::PRE_INC; + IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) { + setIndexedLoadAction(IM, VT, Expand); + setIndexedStoreAction(IM, VT, Expand); + setIndexedMaskedLoadAction(IM, VT, Expand); + setIndexedMaskedStoreAction(IM, VT, Expand); + } + + // Most backends expect to see the node which just returns the value loaded. + setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, VT, Expand); + + // These operations default to expand. + setOperationAction({ISD::FGETSIGN, ISD::CONCAT_VECTORS, + ISD::FMINNUM, ISD::FMAXNUM, + ISD::FMINNUM_IEEE, ISD::FMAXNUM_IEEE, + ISD::FMINIMUM, ISD::FMAXIMUM, + ISD::FMAD, ISD::SMIN, + ISD::SMAX, ISD::UMIN, + ISD::UMAX, ISD::ABS, + ISD::FSHL, ISD::FSHR, + ISD::SADDSAT, ISD::UADDSAT, + ISD::SSUBSAT, ISD::USUBSAT, + ISD::SSHLSAT, ISD::USHLSAT, + ISD::SMULFIX, ISD::SMULFIXSAT, + ISD::UMULFIX, ISD::UMULFIXSAT, + ISD::SDIVFIX, ISD::SDIVFIXSAT, + ISD::UDIVFIX, ISD::UDIVFIXSAT, + ISD::FP_TO_SINT_SAT, ISD::FP_TO_UINT_SAT, + ISD::IS_FPCLASS}, + VT, Expand); + + // Overflow operations default to expand + setOperationAction({ISD::SADDO, ISD::SSUBO, ISD::UADDO, ISD::USUBO, + ISD::SMULO, ISD::UMULO}, + VT, Expand); + + // ADDCARRY operations default to expand + setOperationAction({ISD::ADDCARRY, ISD::SUBCARRY, ISD::SETCCCARRY, + ISD::SADDO_CARRY, ISD::SSUBO_CARRY}, + VT, Expand); + + // ADDC/ADDE/SUBC/SUBE default to expand. + setOperationAction({ISD::ADDC, ISD::ADDE, ISD::SUBC, ISD::SUBE}, VT, + Expand); + + // Halving adds + setOperationAction( + {ISD::AVGFLOORS, ISD::AVGFLOORU, ISD::AVGCEILS, ISD::AVGCEILU}, VT, + Expand); + + // Absolute difference + setOperationAction({ISD::ABDS, ISD::ABDU}, VT, Expand); + + // These default to Expand so they will be expanded to CTLZ/CTTZ by default. + setOperationAction({ISD::CTLZ_ZERO_UNDEF, ISD::CTTZ_ZERO_UNDEF}, VT, + Expand); + + setOperationAction({ISD::BITREVERSE, ISD::PARITY}, VT, Expand); + + // These library functions default to expand. + setOperationAction({ISD::FROUND, ISD::FROUNDEVEN, ISD::FPOWI}, VT, Expand); + + // These operations default to expand for vector types. + if (VT.isVector()) + setOperationAction({ISD::FCOPYSIGN, ISD::SIGN_EXTEND_INREG, + ISD::ANY_EXTEND_VECTOR_INREG, + ISD::SIGN_EXTEND_VECTOR_INREG, + ISD::ZERO_EXTEND_VECTOR_INREG, ISD::SPLAT_VECTOR}, + VT, Expand); + + // Constrained floating-point operations default to expand. +#define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ + setOperationAction(ISD::STRICT_##DAGN, VT, Expand); +#include "llvm/IR/ConstrainedOps.def" + + // For most targets @llvm.get.dynamic.area.offset just returns 0. + setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, VT, Expand); + + // Vector reduction default to expand. + setOperationAction( + {ISD::VECREDUCE_FADD, ISD::VECREDUCE_FMUL, ISD::VECREDUCE_ADD, + ISD::VECREDUCE_MUL, ISD::VECREDUCE_AND, ISD::VECREDUCE_OR, + ISD::VECREDUCE_XOR, ISD::VECREDUCE_SMAX, ISD::VECREDUCE_SMIN, + ISD::VECREDUCE_UMAX, ISD::VECREDUCE_UMIN, ISD::VECREDUCE_FMAX, + ISD::VECREDUCE_FMIN, ISD::VECREDUCE_SEQ_FADD, ISD::VECREDUCE_SEQ_FMUL}, + VT, Expand); + + // Named vector shuffles default to expand. + setOperationAction(ISD::VECTOR_SPLICE, VT, Expand); + + // VP_SREM/UREM default to expand. + // TODO: Expand all VP intrinsics. + setOperationAction(ISD::VP_SREM, VT, Expand); + setOperationAction(ISD::VP_UREM, VT, Expand); + } + + // Most targets ignore the @llvm.prefetch intrinsic. + setOperationAction(ISD::PREFETCH, MVT::Other, Expand); + + // Most targets also ignore the @llvm.readcyclecounter intrinsic. + setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Expand); + + // ConstantFP nodes default to expand. Targets can either change this to + // Legal, in which case all fp constants are legal, or use isFPImmLegal() + // to optimize expansions for certain constants. + setOperationAction(ISD::ConstantFP, + {MVT::f16, MVT::f32, MVT::f64, MVT::f80, MVT::f128}, + Expand); + + // These library functions default to expand. + setOperationAction({ISD::FCBRT, ISD::FLOG, ISD::FLOG2, ISD::FLOG10, ISD::FEXP, + ISD::FEXP2, ISD::FFLOOR, ISD::FNEARBYINT, ISD::FCEIL, + ISD::FRINT, ISD::FTRUNC, ISD::LROUND, ISD::LLROUND, + ISD::LRINT, ISD::LLRINT}, + {MVT::f32, MVT::f64, MVT::f128}, Expand); + + // Default ISD::TRAP to expand (which turns it into abort). + setOperationAction(ISD::TRAP, MVT::Other, Expand); + + // On most systems, DEBUGTRAP and TRAP have no difference. The "Expand" + // here is to inform DAG Legalizer to replace DEBUGTRAP with TRAP. + setOperationAction(ISD::DEBUGTRAP, MVT::Other, Expand); + + setOperationAction(ISD::UBSANTRAP, MVT::Other, Expand); +} + +MVT TargetLoweringBase::getScalarShiftAmountTy(const DataLayout &DL, + EVT) const { + return MVT::getIntegerVT(DL.getPointerSizeInBits(0)); +} + +EVT TargetLoweringBase::getShiftAmountTy(EVT LHSTy, const DataLayout &DL, + bool LegalTypes) const { + assert(LHSTy.isInteger() && "Shift amount is not an integer type!"); + if (LHSTy.isVector()) + return LHSTy; + MVT ShiftVT = + LegalTypes ? getScalarShiftAmountTy(DL, LHSTy) : getPointerTy(DL); + // If any possible shift value won't fit in the prefered type, just use + // something safe. Assume it will be legalized when the shift is expanded. + if (ShiftVT.getSizeInBits() < Log2_32_Ceil(LHSTy.getSizeInBits())) + ShiftVT = MVT::i32; + assert(ShiftVT.getSizeInBits() >= Log2_32_Ceil(LHSTy.getSizeInBits()) && + "ShiftVT is still too small!"); + return ShiftVT; +} + +bool TargetLoweringBase::canOpTrap(unsigned Op, EVT VT) const { + assert(isTypeLegal(VT)); + switch (Op) { + default: + return false; + case ISD::SDIV: + case ISD::UDIV: + case ISD::SREM: + case ISD::UREM: + return true; + } +} + +bool TargetLoweringBase::isFreeAddrSpaceCast(unsigned SrcAS, + unsigned DestAS) const { + return TM.isNoopAddrSpaceCast(SrcAS, DestAS); +} + +void TargetLoweringBase::setJumpIsExpensive(bool isExpensive) { + // If the command-line option was specified, ignore this request. + if (!JumpIsExpensiveOverride.getNumOccurrences()) + JumpIsExpensive = isExpensive; +} + +TargetLoweringBase::LegalizeKind +TargetLoweringBase::getTypeConversion(LLVMContext &Context, EVT VT) const { + // If this is a simple type, use the ComputeRegisterProp mechanism. + if (VT.isSimple()) { + MVT SVT = VT.getSimpleVT(); + assert((unsigned)SVT.SimpleTy < std::size(TransformToType)); + MVT NVT = TransformToType[SVT.SimpleTy]; + LegalizeTypeAction LA = ValueTypeActions.getTypeAction(SVT); + + assert((LA == TypeLegal || LA == TypeSoftenFloat || + LA == TypeSoftPromoteHalf || + (NVT.isVector() || + ValueTypeActions.getTypeAction(NVT) != TypePromoteInteger)) && + "Promote may not follow Expand or Promote"); + + if (LA == TypeSplitVector) + return LegalizeKind(LA, EVT(SVT).getHalfNumVectorElementsVT(Context)); + if (LA == TypeScalarizeVector) + return LegalizeKind(LA, SVT.getVectorElementType()); + return LegalizeKind(LA, NVT); + } + + // Handle Extended Scalar Types. + if (!VT.isVector()) { + assert(VT.isInteger() && "Float types must be simple"); + unsigned BitSize = VT.getSizeInBits(); + // First promote to a power-of-two size, then expand if necessary. + if (BitSize < 8 || !isPowerOf2_32(BitSize)) { + EVT NVT = VT.getRoundIntegerType(Context); + assert(NVT != VT && "Unable to round integer VT"); + LegalizeKind NextStep = getTypeConversion(Context, NVT); + // Avoid multi-step promotion. + if (NextStep.first == TypePromoteInteger) + return NextStep; + // Return rounded integer type. + return LegalizeKind(TypePromoteInteger, NVT); + } + + return LegalizeKind(TypeExpandInteger, + EVT::getIntegerVT(Context, VT.getSizeInBits() / 2)); + } + + // Handle vector types. + ElementCount NumElts = VT.getVectorElementCount(); + EVT EltVT = VT.getVectorElementType(); + + // Vectors with only one element are always scalarized. + if (NumElts.isScalar()) + return LegalizeKind(TypeScalarizeVector, EltVT); + + // Try to widen vector elements until the element type is a power of two and + // promote it to a legal type later on, for example: + // <3 x i8> -> <4 x i8> -> <4 x i32> + if (EltVT.isInteger()) { + // Vectors with a number of elements that is not a power of two are always + // widened, for example <3 x i8> -> <4 x i8>. + if (!VT.isPow2VectorType()) { + NumElts = NumElts.coefficientNextPowerOf2(); + EVT NVT = EVT::getVectorVT(Context, EltVT, NumElts); + return LegalizeKind(TypeWidenVector, NVT); + } + + // Examine the element type. + LegalizeKind LK = getTypeConversion(Context, EltVT); + + // If type is to be expanded, split the vector. + // <4 x i140> -> <2 x i140> + if (LK.first == TypeExpandInteger) { + if (VT.getVectorElementCount().isScalable()) + return LegalizeKind(TypeScalarizeScalableVector, EltVT); + return LegalizeKind(TypeSplitVector, + VT.getHalfNumVectorElementsVT(Context)); + } + + // Promote the integer element types until a legal vector type is found + // or until the element integer type is too big. If a legal type was not + // found, fallback to the usual mechanism of widening/splitting the + // vector. + EVT OldEltVT = EltVT; + while (true) { + // Increase the bitwidth of the element to the next pow-of-two + // (which is greater than 8 bits). + EltVT = EVT::getIntegerVT(Context, 1 + EltVT.getSizeInBits()) + .getRoundIntegerType(Context); + + // Stop trying when getting a non-simple element type. + // Note that vector elements may be greater than legal vector element + // types. Example: X86 XMM registers hold 64bit element on 32bit + // systems. + if (!EltVT.isSimple()) + break; + + // Build a new vector type and check if it is legal. + MVT NVT = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts); + // Found a legal promoted vector type. + if (NVT != MVT() && ValueTypeActions.getTypeAction(NVT) == TypeLegal) + return LegalizeKind(TypePromoteInteger, + EVT::getVectorVT(Context, EltVT, NumElts)); + } + + // Reset the type to the unexpanded type if we did not find a legal vector + // type with a promoted vector element type. + EltVT = OldEltVT; + } + + // Try to widen the vector until a legal type is found. + // If there is no wider legal type, split the vector. + while (true) { + // Round up to the next power of 2. + NumElts = NumElts.coefficientNextPowerOf2(); + + // If there is no simple vector type with this many elements then there + // cannot be a larger legal vector type. Note that this assumes that + // there are no skipped intermediate vector types in the simple types. + if (!EltVT.isSimple()) + break; + MVT LargerVector = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts); + if (LargerVector == MVT()) + break; + + // If this type is legal then widen the vector. + if (ValueTypeActions.getTypeAction(LargerVector) == TypeLegal) + return LegalizeKind(TypeWidenVector, LargerVector); + } + + // Widen odd vectors to next power of two. + if (!VT.isPow2VectorType()) { + EVT NVT = VT.getPow2VectorType(Context); + return LegalizeKind(TypeWidenVector, NVT); + } + + if (VT.getVectorElementCount() == ElementCount::getScalable(1)) + return LegalizeKind(TypeScalarizeScalableVector, EltVT); + + // Vectors with illegal element types are expanded. + EVT NVT = EVT::getVectorVT(Context, EltVT, + VT.getVectorElementCount().divideCoefficientBy(2)); + return LegalizeKind(TypeSplitVector, NVT); +} + +static unsigned getVectorTypeBreakdownMVT(MVT VT, MVT &IntermediateVT, + unsigned &NumIntermediates, + MVT &RegisterVT, + TargetLoweringBase *TLI) { + // Figure out the right, legal destination reg to copy into. + ElementCount EC = VT.getVectorElementCount(); + MVT EltTy = VT.getVectorElementType(); + + unsigned NumVectorRegs = 1; + + // Scalable vectors cannot be scalarized, so splitting or widening is + // required. + if (VT.isScalableVector() && !isPowerOf2_32(EC.getKnownMinValue())) + llvm_unreachable( + "Splitting or widening of non-power-of-2 MVTs is not implemented."); + + // FIXME: We don't support non-power-of-2-sized vectors for now. + // Ideally we could break down into LHS/RHS like LegalizeDAG does. + if (!isPowerOf2_32(EC.getKnownMinValue())) { + // Split EC to unit size (scalable property is preserved). + NumVectorRegs = EC.getKnownMinValue(); + EC = ElementCount::getFixed(1); + } + + // Divide the input until we get to a supported size. This will + // always end up with an EC that represent a scalar or a scalable + // scalar. + while (EC.getKnownMinValue() > 1 && + !TLI->isTypeLegal(MVT::getVectorVT(EltTy, EC))) { + EC = EC.divideCoefficientBy(2); + NumVectorRegs <<= 1; + } + + NumIntermediates = NumVectorRegs; + + MVT NewVT = MVT::getVectorVT(EltTy, EC); + if (!TLI->isTypeLegal(NewVT)) + NewVT = EltTy; + IntermediateVT = NewVT; + + unsigned LaneSizeInBits = NewVT.getScalarSizeInBits(); + + // Convert sizes such as i33 to i64. + if (!isPowerOf2_32(LaneSizeInBits)) + LaneSizeInBits = NextPowerOf2(LaneSizeInBits); + + MVT DestVT = TLI->getRegisterType(NewVT); + RegisterVT = DestVT; + if (EVT(DestVT).bitsLT(NewVT)) // Value is expanded, e.g. i64 -> i16. + return NumVectorRegs * (LaneSizeInBits / DestVT.getScalarSizeInBits()); + + // Otherwise, promotion or legal types use the same number of registers as + // the vector decimated to the appropriate level. + return NumVectorRegs; +} + +/// isLegalRC - Return true if the value types that can be represented by the +/// specified register class are all legal. +bool TargetLoweringBase::isLegalRC(const TargetRegisterInfo &TRI, + const TargetRegisterClass &RC) const { + for (const auto *I = TRI.legalclasstypes_begin(RC); *I != MVT::Other; ++I) + if (isTypeLegal(*I)) + return true; + return false; +} + +/// Replace/modify any TargetFrameIndex operands with a targte-dependent +/// sequence of memory operands that is recognized by PrologEpilogInserter. +MachineBasicBlock * +TargetLoweringBase::emitPatchPoint(MachineInstr &InitialMI, + MachineBasicBlock *MBB) const { + MachineInstr *MI = &InitialMI; + MachineFunction &MF = *MI->getMF(); + MachineFrameInfo &MFI = MF.getFrameInfo(); + + // We're handling multiple types of operands here: + // PATCHPOINT MetaArgs - live-in, read only, direct + // STATEPOINT Deopt Spill - live-through, read only, indirect + // STATEPOINT Deopt Alloca - live-through, read only, direct + // (We're currently conservative and mark the deopt slots read/write in + // practice.) + // STATEPOINT GC Spill - live-through, read/write, indirect + // STATEPOINT GC Alloca - live-through, read/write, direct + // The live-in vs live-through is handled already (the live through ones are + // all stack slots), but we need to handle the different type of stackmap + // operands and memory effects here. + + if (llvm::none_of(MI->operands(), + [](MachineOperand &Operand) { return Operand.isFI(); })) + return MBB; + + MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), MI->getDesc()); + + // Inherit previous memory operands. + MIB.cloneMemRefs(*MI); + + for (unsigned i = 0; i < MI->getNumOperands(); ++i) { + MachineOperand &MO = MI->getOperand(i); + if (!MO.isFI()) { + // Index of Def operand this Use it tied to. + // Since Defs are coming before Uses, if Use is tied, then + // index of Def must be smaller that index of that Use. + // Also, Defs preserve their position in new MI. + unsigned TiedTo = i; + if (MO.isReg() && MO.isTied()) + TiedTo = MI->findTiedOperandIdx(i); + MIB.add(MO); + if (TiedTo < i) + MIB->tieOperands(TiedTo, MIB->getNumOperands() - 1); + continue; + } + + // foldMemoryOperand builds a new MI after replacing a single FI operand + // with the canonical set of five x86 addressing-mode operands. + int FI = MO.getIndex(); + + // Add frame index operands recognized by stackmaps.cpp + if (MFI.isStatepointSpillSlotObjectIndex(FI)) { + // indirect-mem-ref tag, size, #FI, offset. + // Used for spills inserted by StatepointLowering. This codepath is not + // used for patchpoints/stackmaps at all, for these spilling is done via + // foldMemoryOperand callback only. + assert(MI->getOpcode() == TargetOpcode::STATEPOINT && "sanity"); + MIB.addImm(StackMaps::IndirectMemRefOp); + MIB.addImm(MFI.getObjectSize(FI)); + MIB.add(MO); + MIB.addImm(0); + } else { + // direct-mem-ref tag, #FI, offset. + // Used by patchpoint, and direct alloca arguments to statepoints + MIB.addImm(StackMaps::DirectMemRefOp); + MIB.add(MO); + MIB.addImm(0); + } + + assert(MIB->mayLoad() && "Folded a stackmap use to a non-load!"); + + // Add a new memory operand for this FI. + assert(MFI.getObjectOffset(FI) != -1); + + // Note: STATEPOINT MMOs are added during SelectionDAG. STACKMAP, and + // PATCHPOINT should be updated to do the same. (TODO) + if (MI->getOpcode() != TargetOpcode::STATEPOINT) { + auto Flags = MachineMemOperand::MOLoad; + MachineMemOperand *MMO = MF.getMachineMemOperand( + MachinePointerInfo::getFixedStack(MF, FI), Flags, + MF.getDataLayout().getPointerSize(), MFI.getObjectAlign(FI)); + MIB->addMemOperand(MF, MMO); + } + } + MBB->insert(MachineBasicBlock::iterator(MI), MIB); + MI->eraseFromParent(); + return MBB; +} + +/// findRepresentativeClass - Return the largest legal super-reg register class +/// of the register class for the specified type and its associated "cost". +// This function is in TargetLowering because it uses RegClassForVT which would +// need to be moved to TargetRegisterInfo and would necessitate moving +// isTypeLegal over as well - a massive change that would just require +// TargetLowering having a TargetRegisterInfo class member that it would use. +std::pair<const TargetRegisterClass *, uint8_t> +TargetLoweringBase::findRepresentativeClass(const TargetRegisterInfo *TRI, + MVT VT) const { + const TargetRegisterClass *RC = RegClassForVT[VT.SimpleTy]; + if (!RC) + return std::make_pair(RC, 0); + + // Compute the set of all super-register classes. + BitVector SuperRegRC(TRI->getNumRegClasses()); + for (SuperRegClassIterator RCI(RC, TRI); RCI.isValid(); ++RCI) + SuperRegRC.setBitsInMask(RCI.getMask()); + + // Find the first legal register class with the largest spill size. + const TargetRegisterClass *BestRC = RC; + for (unsigned i : SuperRegRC.set_bits()) { + const TargetRegisterClass *SuperRC = TRI->getRegClass(i); + // We want the largest possible spill size. + if (TRI->getSpillSize(*SuperRC) <= TRI->getSpillSize(*BestRC)) + continue; + if (!isLegalRC(*TRI, *SuperRC)) + continue; + BestRC = SuperRC; + } + return std::make_pair(BestRC, 1); +} + +/// computeRegisterProperties - Once all of the register classes are added, +/// this allows us to compute derived properties we expose. +void TargetLoweringBase::computeRegisterProperties( + const TargetRegisterInfo *TRI) { + static_assert(MVT::VALUETYPE_SIZE <= MVT::MAX_ALLOWED_VALUETYPE, + "Too many value types for ValueTypeActions to hold!"); + + // Everything defaults to needing one register. + for (unsigned i = 0; i != MVT::VALUETYPE_SIZE; ++i) { + NumRegistersForVT[i] = 1; + RegisterTypeForVT[i] = TransformToType[i] = (MVT::SimpleValueType)i; + } + // ...except isVoid, which doesn't need any registers. + NumRegistersForVT[MVT::isVoid] = 0; + + // Find the largest integer register class. + unsigned LargestIntReg = MVT::LAST_INTEGER_VALUETYPE; + for (; RegClassForVT[LargestIntReg] == nullptr; --LargestIntReg) + assert(LargestIntReg != MVT::i1 && "No integer registers defined!"); + + // Every integer value type larger than this largest register takes twice as + // many registers to represent as the previous ValueType. + for (unsigned ExpandedReg = LargestIntReg + 1; + ExpandedReg <= MVT::LAST_INTEGER_VALUETYPE; ++ExpandedReg) { + NumRegistersForVT[ExpandedReg] = 2*NumRegistersForVT[ExpandedReg-1]; + RegisterTypeForVT[ExpandedReg] = (MVT::SimpleValueType)LargestIntReg; + TransformToType[ExpandedReg] = (MVT::SimpleValueType)(ExpandedReg - 1); + ValueTypeActions.setTypeAction((MVT::SimpleValueType)ExpandedReg, + TypeExpandInteger); + } + + // Inspect all of the ValueType's smaller than the largest integer + // register to see which ones need promotion. + unsigned LegalIntReg = LargestIntReg; + for (unsigned IntReg = LargestIntReg - 1; + IntReg >= (unsigned)MVT::i1; --IntReg) { + MVT IVT = (MVT::SimpleValueType)IntReg; + if (isTypeLegal(IVT)) { + LegalIntReg = IntReg; + } else { + RegisterTypeForVT[IntReg] = TransformToType[IntReg] = + (MVT::SimpleValueType)LegalIntReg; + ValueTypeActions.setTypeAction(IVT, TypePromoteInteger); + } + } + + // ppcf128 type is really two f64's. + if (!isTypeLegal(MVT::ppcf128)) { + if (isTypeLegal(MVT::f64)) { + NumRegistersForVT[MVT::ppcf128] = 2*NumRegistersForVT[MVT::f64]; + RegisterTypeForVT[MVT::ppcf128] = MVT::f64; + TransformToType[MVT::ppcf128] = MVT::f64; + ValueTypeActions.setTypeAction(MVT::ppcf128, TypeExpandFloat); + } else { + NumRegistersForVT[MVT::ppcf128] = NumRegistersForVT[MVT::i128]; + RegisterTypeForVT[MVT::ppcf128] = RegisterTypeForVT[MVT::i128]; + TransformToType[MVT::ppcf128] = MVT::i128; + ValueTypeActions.setTypeAction(MVT::ppcf128, TypeSoftenFloat); + } + } + + // Decide how to handle f128. If the target does not have native f128 support, + // expand it to i128 and we will be generating soft float library calls. + if (!isTypeLegal(MVT::f128)) { + NumRegistersForVT[MVT::f128] = NumRegistersForVT[MVT::i128]; + RegisterTypeForVT[MVT::f128] = RegisterTypeForVT[MVT::i128]; + TransformToType[MVT::f128] = MVT::i128; + ValueTypeActions.setTypeAction(MVT::f128, TypeSoftenFloat); + } + + // Decide how to handle f80. If the target does not have native f80 support, + // expand it to i96 and we will be generating soft float library calls. + if (!isTypeLegal(MVT::f80)) { + NumRegistersForVT[MVT::f80] = 3*NumRegistersForVT[MVT::i32]; + RegisterTypeForVT[MVT::f80] = RegisterTypeForVT[MVT::i32]; + TransformToType[MVT::f80] = MVT::i32; + ValueTypeActions.setTypeAction(MVT::f80, TypeSoftenFloat); + } + + // Decide how to handle f64. If the target does not have native f64 support, + // expand it to i64 and we will be generating soft float library calls. + if (!isTypeLegal(MVT::f64)) { + NumRegistersForVT[MVT::f64] = NumRegistersForVT[MVT::i64]; + RegisterTypeForVT[MVT::f64] = RegisterTypeForVT[MVT::i64]; + TransformToType[MVT::f64] = MVT::i64; + ValueTypeActions.setTypeAction(MVT::f64, TypeSoftenFloat); + } + + // Decide how to handle f32. If the target does not have native f32 support, + // expand it to i32 and we will be generating soft float library calls. + if (!isTypeLegal(MVT::f32)) { + NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::i32]; + RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::i32]; + TransformToType[MVT::f32] = MVT::i32; + ValueTypeActions.setTypeAction(MVT::f32, TypeSoftenFloat); + } + + // Decide how to handle f16. If the target does not have native f16 support, + // promote it to f32, because there are no f16 library calls (except for + // conversions). + if (!isTypeLegal(MVT::f16)) { + // Allow targets to control how we legalize half. + if (softPromoteHalfType()) { + NumRegistersForVT[MVT::f16] = NumRegistersForVT[MVT::i16]; + RegisterTypeForVT[MVT::f16] = RegisterTypeForVT[MVT::i16]; + TransformToType[MVT::f16] = MVT::f32; + ValueTypeActions.setTypeAction(MVT::f16, TypeSoftPromoteHalf); + } else { + NumRegistersForVT[MVT::f16] = NumRegistersForVT[MVT::f32]; + RegisterTypeForVT[MVT::f16] = RegisterTypeForVT[MVT::f32]; + TransformToType[MVT::f16] = MVT::f32; + ValueTypeActions.setTypeAction(MVT::f16, TypePromoteFloat); + } + } + + // Decide how to handle bf16. If the target does not have native bf16 support, + // promote it to f32, because there are no bf16 library calls (except for + // converting from f32 to bf16). + if (!isTypeLegal(MVT::bf16)) { + NumRegistersForVT[MVT::bf16] = NumRegistersForVT[MVT::f32]; + RegisterTypeForVT[MVT::bf16] = RegisterTypeForVT[MVT::f32]; + TransformToType[MVT::bf16] = MVT::f32; + ValueTypeActions.setTypeAction(MVT::bf16, TypeSoftPromoteHalf); + } + + // Loop over all of the vector value types to see which need transformations. + for (unsigned i = MVT::FIRST_VECTOR_VALUETYPE; + i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) { + MVT VT = (MVT::SimpleValueType) i; + if (isTypeLegal(VT)) + continue; + + MVT EltVT = VT.getVectorElementType(); + ElementCount EC = VT.getVectorElementCount(); + bool IsLegalWiderType = false; + bool IsScalable = VT.isScalableVector(); + LegalizeTypeAction PreferredAction = getPreferredVectorAction(VT); + switch (PreferredAction) { + case TypePromoteInteger: { + MVT::SimpleValueType EndVT = IsScalable ? + MVT::LAST_INTEGER_SCALABLE_VECTOR_VALUETYPE : + MVT::LAST_INTEGER_FIXEDLEN_VECTOR_VALUETYPE; + // Try to promote the elements of integer vectors. If no legal + // promotion was found, fall through to the widen-vector method. + for (unsigned nVT = i + 1; + (MVT::SimpleValueType)nVT <= EndVT; ++nVT) { + MVT SVT = (MVT::SimpleValueType) nVT; + // Promote vectors of integers to vectors with the same number + // of elements, with a wider element type. + if (SVT.getScalarSizeInBits() > EltVT.getFixedSizeInBits() && + SVT.getVectorElementCount() == EC && isTypeLegal(SVT)) { + TransformToType[i] = SVT; + RegisterTypeForVT[i] = SVT; + NumRegistersForVT[i] = 1; + ValueTypeActions.setTypeAction(VT, TypePromoteInteger); + IsLegalWiderType = true; + break; + } + } + if (IsLegalWiderType) + break; + [[fallthrough]]; + } + + case TypeWidenVector: + if (isPowerOf2_32(EC.getKnownMinValue())) { + // Try to widen the vector. + for (unsigned nVT = i + 1; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) { + MVT SVT = (MVT::SimpleValueType) nVT; + if (SVT.getVectorElementType() == EltVT && + SVT.isScalableVector() == IsScalable && + SVT.getVectorElementCount().getKnownMinValue() > + EC.getKnownMinValue() && + isTypeLegal(SVT)) { + TransformToType[i] = SVT; + RegisterTypeForVT[i] = SVT; + NumRegistersForVT[i] = 1; + ValueTypeActions.setTypeAction(VT, TypeWidenVector); + IsLegalWiderType = true; + break; + } + } + if (IsLegalWiderType) + break; + } else { + // Only widen to the next power of 2 to keep consistency with EVT. + MVT NVT = VT.getPow2VectorType(); + if (isTypeLegal(NVT)) { + TransformToType[i] = NVT; + ValueTypeActions.setTypeAction(VT, TypeWidenVector); + RegisterTypeForVT[i] = NVT; + NumRegistersForVT[i] = 1; + break; + } + } + [[fallthrough]]; + + case TypeSplitVector: + case TypeScalarizeVector: { + MVT IntermediateVT; + MVT RegisterVT; + unsigned NumIntermediates; + unsigned NumRegisters = getVectorTypeBreakdownMVT(VT, IntermediateVT, + NumIntermediates, RegisterVT, this); + NumRegistersForVT[i] = NumRegisters; + assert(NumRegistersForVT[i] == NumRegisters && + "NumRegistersForVT size cannot represent NumRegisters!"); + RegisterTypeForVT[i] = RegisterVT; + + MVT NVT = VT.getPow2VectorType(); + if (NVT == VT) { + // Type is already a power of 2. The default action is to split. + TransformToType[i] = MVT::Other; + if (PreferredAction == TypeScalarizeVector) + ValueTypeActions.setTypeAction(VT, TypeScalarizeVector); + else if (PreferredAction == TypeSplitVector) + ValueTypeActions.setTypeAction(VT, TypeSplitVector); + else if (EC.getKnownMinValue() > 1) + ValueTypeActions.setTypeAction(VT, TypeSplitVector); + else + ValueTypeActions.setTypeAction(VT, EC.isScalable() + ? TypeScalarizeScalableVector + : TypeScalarizeVector); + } else { + TransformToType[i] = NVT; + ValueTypeActions.setTypeAction(VT, TypeWidenVector); + } + break; + } + default: + llvm_unreachable("Unknown vector legalization action!"); + } + } + + // Determine the 'representative' register class for each value type. + // An representative register class is the largest (meaning one which is + // not a sub-register class / subreg register class) legal register class for + // a group of value types. For example, on i386, i8, i16, and i32 + // representative would be GR32; while on x86_64 it's GR64. + for (unsigned i = 0; i != MVT::VALUETYPE_SIZE; ++i) { + const TargetRegisterClass* RRC; + uint8_t Cost; + std::tie(RRC, Cost) = findRepresentativeClass(TRI, (MVT::SimpleValueType)i); + RepRegClassForVT[i] = RRC; + RepRegClassCostForVT[i] = Cost; + } +} + +EVT TargetLoweringBase::getSetCCResultType(const DataLayout &DL, LLVMContext &, + EVT VT) const { + assert(!VT.isVector() && "No default SetCC type for vectors!"); + return getPointerTy(DL).SimpleTy; +} + +MVT::SimpleValueType TargetLoweringBase::getCmpLibcallReturnType() const { + return MVT::i32; // return the default value +} + +/// getVectorTypeBreakdown - Vector types are broken down into some number of +/// legal first class types. For example, MVT::v8f32 maps to 2 MVT::v4f32 +/// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack. +/// Similarly, MVT::v2i64 turns into 4 MVT::i32 values with both PPC and X86. +/// +/// This method returns the number of registers needed, and the VT for each +/// register. It also returns the VT and quantity of the intermediate values +/// before they are promoted/expanded. +unsigned TargetLoweringBase::getVectorTypeBreakdown(LLVMContext &Context, + EVT VT, EVT &IntermediateVT, + unsigned &NumIntermediates, + MVT &RegisterVT) const { + ElementCount EltCnt = VT.getVectorElementCount(); + + // If there is a wider vector type with the same element type as this one, + // or a promoted vector type that has the same number of elements which + // are wider, then we should convert to that legal vector type. + // This handles things like <2 x float> -> <4 x float> and + // <4 x i1> -> <4 x i32>. + LegalizeTypeAction TA = getTypeAction(Context, VT); + if (!EltCnt.isScalar() && + (TA == TypeWidenVector || TA == TypePromoteInteger)) { + EVT RegisterEVT = getTypeToTransformTo(Context, VT); + if (isTypeLegal(RegisterEVT)) { + IntermediateVT = RegisterEVT; + RegisterVT = RegisterEVT.getSimpleVT(); + NumIntermediates = 1; + return 1; + } + } + + // Figure out the right, legal destination reg to copy into. + EVT EltTy = VT.getVectorElementType(); + + unsigned NumVectorRegs = 1; + + // Scalable vectors cannot be scalarized, so handle the legalisation of the + // types like done elsewhere in SelectionDAG. + if (EltCnt.isScalable()) { + LegalizeKind LK; + EVT PartVT = VT; + do { + // Iterate until we've found a legal (part) type to hold VT. + LK = getTypeConversion(Context, PartVT); + PartVT = LK.second; + } while (LK.first != TypeLegal); + + if (!PartVT.isVector()) { + report_fatal_error( + "Don't know how to legalize this scalable vector type"); + } + + NumIntermediates = + divideCeil(VT.getVectorElementCount().getKnownMinValue(), + PartVT.getVectorElementCount().getKnownMinValue()); + IntermediateVT = PartVT; + RegisterVT = getRegisterType(Context, IntermediateVT); + return NumIntermediates; + } + + // FIXME: We don't support non-power-of-2-sized vectors for now. Ideally + // we could break down into LHS/RHS like LegalizeDAG does. + if (!isPowerOf2_32(EltCnt.getKnownMinValue())) { + NumVectorRegs = EltCnt.getKnownMinValue(); + EltCnt = ElementCount::getFixed(1); + } + + // Divide the input until we get to a supported size. This will always + // end with a scalar if the target doesn't support vectors. + while (EltCnt.getKnownMinValue() > 1 && + !isTypeLegal(EVT::getVectorVT(Context, EltTy, EltCnt))) { + EltCnt = EltCnt.divideCoefficientBy(2); + NumVectorRegs <<= 1; + } + + NumIntermediates = NumVectorRegs; + + EVT NewVT = EVT::getVectorVT(Context, EltTy, EltCnt); + if (!isTypeLegal(NewVT)) + NewVT = EltTy; + IntermediateVT = NewVT; + + MVT DestVT = getRegisterType(Context, NewVT); + RegisterVT = DestVT; + + if (EVT(DestVT).bitsLT(NewVT)) { // Value is expanded, e.g. i64 -> i16. + TypeSize NewVTSize = NewVT.getSizeInBits(); + // Convert sizes such as i33 to i64. + if (!isPowerOf2_32(NewVTSize.getKnownMinValue())) + NewVTSize = NewVTSize.coefficientNextPowerOf2(); + return NumVectorRegs*(NewVTSize/DestVT.getSizeInBits()); + } + + // Otherwise, promotion or legal types use the same number of registers as + // the vector decimated to the appropriate level. + return NumVectorRegs; +} + +bool TargetLoweringBase::isSuitableForJumpTable(const SwitchInst *SI, + uint64_t NumCases, + uint64_t Range, + ProfileSummaryInfo *PSI, + BlockFrequencyInfo *BFI) const { + // FIXME: This function check the maximum table size and density, but the + // minimum size is not checked. It would be nice if the minimum size is + // also combined within this function. Currently, the minimum size check is + // performed in findJumpTable() in SelectionDAGBuiler and + // getEstimatedNumberOfCaseClusters() in BasicTTIImpl. + const bool OptForSize = + SI->getParent()->getParent()->hasOptSize() || + llvm::shouldOptimizeForSize(SI->getParent(), PSI, BFI); + const unsigned MinDensity = getMinimumJumpTableDensity(OptForSize); + const unsigned MaxJumpTableSize = getMaximumJumpTableSize(); + + // Check whether the number of cases is small enough and + // the range is dense enough for a jump table. + return (OptForSize || Range <= MaxJumpTableSize) && + (NumCases * 100 >= Range * MinDensity); +} + +MVT TargetLoweringBase::getPreferredSwitchConditionType(LLVMContext &Context, + EVT ConditionVT) const { + return getRegisterType(Context, ConditionVT); +} + +/// Get the EVTs and ArgFlags collections that represent the legalized return +/// type of the given function. This does not require a DAG or a return value, +/// and is suitable for use before any DAGs for the function are constructed. +/// TODO: Move this out of TargetLowering.cpp. +void llvm::GetReturnInfo(CallingConv::ID CC, Type *ReturnType, + AttributeList attr, + SmallVectorImpl<ISD::OutputArg> &Outs, + const TargetLowering &TLI, const DataLayout &DL) { + SmallVector<EVT, 4> ValueVTs; + ComputeValueVTs(TLI, DL, ReturnType, ValueVTs); + unsigned NumValues = ValueVTs.size(); + if (NumValues == 0) return; + + for (unsigned j = 0, f = NumValues; j != f; ++j) { + EVT VT = ValueVTs[j]; + ISD::NodeType ExtendKind = ISD::ANY_EXTEND; + + if (attr.hasRetAttr(Attribute::SExt)) + ExtendKind = ISD::SIGN_EXTEND; + else if (attr.hasRetAttr(Attribute::ZExt)) + ExtendKind = ISD::ZERO_EXTEND; + + // FIXME: C calling convention requires the return type to be promoted to + // at least 32-bit. But this is not necessary for non-C calling + // conventions. The frontend should mark functions whose return values + // require promoting with signext or zeroext attributes. + if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) { + MVT MinVT = TLI.getRegisterType(ReturnType->getContext(), MVT::i32); + if (VT.bitsLT(MinVT)) + VT = MinVT; + } + + unsigned NumParts = + TLI.getNumRegistersForCallingConv(ReturnType->getContext(), CC, VT); + MVT PartVT = + TLI.getRegisterTypeForCallingConv(ReturnType->getContext(), CC, VT); + + // 'inreg' on function refers to return value + ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); + if (attr.hasRetAttr(Attribute::InReg)) + Flags.setInReg(); + + // Propagate extension type if any + if (attr.hasRetAttr(Attribute::SExt)) + Flags.setSExt(); + else if (attr.hasRetAttr(Attribute::ZExt)) + Flags.setZExt(); + + for (unsigned i = 0; i < NumParts; ++i) + Outs.push_back(ISD::OutputArg(Flags, PartVT, VT, /*isfixed=*/true, 0, 0)); + } +} + +/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate +/// function arguments in the caller parameter area. This is the actual +/// alignment, not its logarithm. +uint64_t TargetLoweringBase::getByValTypeAlignment(Type *Ty, + const DataLayout &DL) const { + return DL.getABITypeAlign(Ty).value(); +} + +bool TargetLoweringBase::allowsMemoryAccessForAlignment( + LLVMContext &Context, const DataLayout &DL, EVT VT, unsigned AddrSpace, + Align Alignment, MachineMemOperand::Flags Flags, unsigned *Fast) const { + // Check if the specified alignment is sufficient based on the data layout. + // TODO: While using the data layout works in practice, a better solution + // would be to implement this check directly (make this a virtual function). + // For example, the ABI alignment may change based on software platform while + // this function should only be affected by hardware implementation. + Type *Ty = VT.getTypeForEVT(Context); + if (VT.isZeroSized() || Alignment >= DL.getABITypeAlign(Ty)) { + // Assume that an access that meets the ABI-specified alignment is fast. + if (Fast != nullptr) + *Fast = 1; + return true; + } + + // This is a misaligned access. + return allowsMisalignedMemoryAccesses(VT, AddrSpace, Alignment, Flags, Fast); +} + +bool TargetLoweringBase::allowsMemoryAccessForAlignment( + LLVMContext &Context, const DataLayout &DL, EVT VT, + const MachineMemOperand &MMO, unsigned *Fast) const { + return allowsMemoryAccessForAlignment(Context, DL, VT, MMO.getAddrSpace(), + MMO.getAlign(), MMO.getFlags(), Fast); +} + +bool TargetLoweringBase::allowsMemoryAccess(LLVMContext &Context, + const DataLayout &DL, EVT VT, + unsigned AddrSpace, Align Alignment, + MachineMemOperand::Flags Flags, + unsigned *Fast) const { + return allowsMemoryAccessForAlignment(Context, DL, VT, AddrSpace, Alignment, + Flags, Fast); +} + +bool TargetLoweringBase::allowsMemoryAccess(LLVMContext &Context, + const DataLayout &DL, EVT VT, + const MachineMemOperand &MMO, + unsigned *Fast) const { + return allowsMemoryAccess(Context, DL, VT, MMO.getAddrSpace(), MMO.getAlign(), + MMO.getFlags(), Fast); +} + +bool TargetLoweringBase::allowsMemoryAccess(LLVMContext &Context, + const DataLayout &DL, LLT Ty, + const MachineMemOperand &MMO, + unsigned *Fast) const { + EVT VT = getApproximateEVTForLLT(Ty, DL, Context); + return allowsMemoryAccess(Context, DL, VT, MMO.getAddrSpace(), MMO.getAlign(), + MMO.getFlags(), Fast); +} + +//===----------------------------------------------------------------------===// +// TargetTransformInfo Helpers +//===----------------------------------------------------------------------===// + +int TargetLoweringBase::InstructionOpcodeToISD(unsigned Opcode) const { + enum InstructionOpcodes { +#define HANDLE_INST(NUM, OPCODE, CLASS) OPCODE = NUM, +#define LAST_OTHER_INST(NUM) InstructionOpcodesCount = NUM +#include "llvm/IR/Instruction.def" + }; + switch (static_cast<InstructionOpcodes>(Opcode)) { + case Ret: return 0; + case Br: return 0; + case Switch: return 0; + case IndirectBr: return 0; + case Invoke: return 0; + case CallBr: return 0; + case Resume: return 0; + case Unreachable: return 0; + case CleanupRet: return 0; + case CatchRet: return 0; + case CatchPad: return 0; + case CatchSwitch: return 0; + case CleanupPad: return 0; + case FNeg: return ISD::FNEG; + case Add: return ISD::ADD; + case FAdd: return ISD::FADD; + case Sub: return ISD::SUB; + case FSub: return ISD::FSUB; + case Mul: return ISD::MUL; + case FMul: return ISD::FMUL; + case UDiv: return ISD::UDIV; + case SDiv: return ISD::SDIV; + case FDiv: return ISD::FDIV; + case URem: return ISD::UREM; + case SRem: return ISD::SREM; + case FRem: return ISD::FREM; + case Shl: return ISD::SHL; + case LShr: return ISD::SRL; + case AShr: return ISD::SRA; + case And: return ISD::AND; + case Or: return ISD::OR; + case Xor: return ISD::XOR; + case Alloca: return 0; + case Load: return ISD::LOAD; + case Store: return ISD::STORE; + case GetElementPtr: return 0; + case Fence: return 0; + case AtomicCmpXchg: return 0; + case AtomicRMW: return 0; + case Trunc: return ISD::TRUNCATE; + case ZExt: return ISD::ZERO_EXTEND; + case SExt: return ISD::SIGN_EXTEND; + case FPToUI: return ISD::FP_TO_UINT; + case FPToSI: return ISD::FP_TO_SINT; + case UIToFP: return ISD::UINT_TO_FP; + case SIToFP: return ISD::SINT_TO_FP; + case FPTrunc: return ISD::FP_ROUND; + case FPExt: return ISD::FP_EXTEND; + case PtrToInt: return ISD::BITCAST; + case IntToPtr: return ISD::BITCAST; + case BitCast: return ISD::BITCAST; + case AddrSpaceCast: return ISD::ADDRSPACECAST; + case ICmp: return ISD::SETCC; + case FCmp: return ISD::SETCC; + case PHI: return 0; + case Call: return 0; + case Select: return ISD::SELECT; + case UserOp1: return 0; + case UserOp2: return 0; + case VAArg: return 0; + case ExtractElement: return ISD::EXTRACT_VECTOR_ELT; + case InsertElement: return ISD::INSERT_VECTOR_ELT; + case ShuffleVector: return ISD::VECTOR_SHUFFLE; + case ExtractValue: return ISD::MERGE_VALUES; + case InsertValue: return ISD::MERGE_VALUES; + case LandingPad: return 0; + case Freeze: return ISD::FREEZE; + } + + llvm_unreachable("Unknown instruction type encountered!"); +} + +Value * +TargetLoweringBase::getDefaultSafeStackPointerLocation(IRBuilderBase &IRB, + bool UseTLS) const { + // compiler-rt provides a variable with a magic name. Targets that do not + // link with compiler-rt may also provide such a variable. + Module *M = IRB.GetInsertBlock()->getParent()->getParent(); + const char *UnsafeStackPtrVar = "__safestack_unsafe_stack_ptr"; + auto UnsafeStackPtr = + dyn_cast_or_null<GlobalVariable>(M->getNamedValue(UnsafeStackPtrVar)); + + Type *StackPtrTy = Type::getInt8PtrTy(M->getContext()); + + if (!UnsafeStackPtr) { + auto TLSModel = UseTLS ? + GlobalValue::InitialExecTLSModel : + GlobalValue::NotThreadLocal; + // The global variable is not defined yet, define it ourselves. + // We use the initial-exec TLS model because we do not support the + // variable living anywhere other than in the main executable. + UnsafeStackPtr = new GlobalVariable( + *M, StackPtrTy, false, GlobalValue::ExternalLinkage, nullptr, + UnsafeStackPtrVar, nullptr, TLSModel); + } else { + // The variable exists, check its type and attributes. + if (UnsafeStackPtr->getValueType() != StackPtrTy) + report_fatal_error(Twine(UnsafeStackPtrVar) + " must have void* type"); + if (UseTLS != UnsafeStackPtr->isThreadLocal()) + report_fatal_error(Twine(UnsafeStackPtrVar) + " must " + + (UseTLS ? "" : "not ") + "be thread-local"); + } + return UnsafeStackPtr; +} + +Value * +TargetLoweringBase::getSafeStackPointerLocation(IRBuilderBase &IRB) const { + if (!TM.getTargetTriple().isAndroid()) + return getDefaultSafeStackPointerLocation(IRB, true); + + // Android provides a libc function to retrieve the address of the current + // thread's unsafe stack pointer. + Module *M = IRB.GetInsertBlock()->getParent()->getParent(); + Type *StackPtrTy = Type::getInt8PtrTy(M->getContext()); + FunctionCallee Fn = M->getOrInsertFunction("__safestack_pointer_address", + StackPtrTy->getPointerTo(0)); + return IRB.CreateCall(Fn); +} + +//===----------------------------------------------------------------------===// +// Loop Strength Reduction hooks +//===----------------------------------------------------------------------===// + +/// isLegalAddressingMode - Return true if the addressing mode represented +/// by AM is legal for this target, for a load/store of the specified type. +bool TargetLoweringBase::isLegalAddressingMode(const DataLayout &DL, + const AddrMode &AM, Type *Ty, + unsigned AS, Instruction *I) const { + // The default implementation of this implements a conservative RISCy, r+r and + // r+i addr mode. + + // Allows a sign-extended 16-bit immediate field. + if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1) + return false; + + // No global is ever allowed as a base. + if (AM.BaseGV) + return false; + + // Only support r+r, + switch (AM.Scale) { + case 0: // "r+i" or just "i", depending on HasBaseReg. + break; + case 1: + if (AM.HasBaseReg && AM.BaseOffs) // "r+r+i" is not allowed. + return false; + // Otherwise we have r+r or r+i. + break; + case 2: + if (AM.HasBaseReg || AM.BaseOffs) // 2*r+r or 2*r+i is not allowed. + return false; + // Allow 2*r as r+r. + break; + default: // Don't allow n * r + return false; + } + + return true; +} + +//===----------------------------------------------------------------------===// +// Stack Protector +//===----------------------------------------------------------------------===// + +// For OpenBSD return its special guard variable. Otherwise return nullptr, +// so that SelectionDAG handle SSP. +Value *TargetLoweringBase::getIRStackGuard(IRBuilderBase &IRB) const { + if (getTargetMachine().getTargetTriple().isOSOpenBSD()) { + Module &M = *IRB.GetInsertBlock()->getParent()->getParent(); + PointerType *PtrTy = Type::getInt8PtrTy(M.getContext()); + Constant *C = M.getOrInsertGlobal("__guard_local", PtrTy); + if (GlobalVariable *G = dyn_cast_or_null<GlobalVariable>(C)) + G->setVisibility(GlobalValue::HiddenVisibility); + return C; + } + return nullptr; +} + +// Currently only support "standard" __stack_chk_guard. +// TODO: add LOAD_STACK_GUARD support. +void TargetLoweringBase::insertSSPDeclarations(Module &M) const { + if (!M.getNamedValue("__stack_chk_guard")) { + auto *GV = new GlobalVariable(M, Type::getInt8PtrTy(M.getContext()), false, + GlobalVariable::ExternalLinkage, nullptr, + "__stack_chk_guard"); + + // FreeBSD has "__stack_chk_guard" defined externally on libc.so + if (TM.getRelocationModel() == Reloc::Static && + !TM.getTargetTriple().isWindowsGNUEnvironment() && + !(TM.getTargetTriple().isPPC64() && TM.getTargetTriple().isOSFreeBSD())) + GV->setDSOLocal(true); + } +} + +// Currently only support "standard" __stack_chk_guard. +// TODO: add LOAD_STACK_GUARD support. +Value *TargetLoweringBase::getSDagStackGuard(const Module &M) const { + return M.getNamedValue("__stack_chk_guard"); +} + +Function *TargetLoweringBase::getSSPStackGuardCheck(const Module &M) const { + return nullptr; +} + +unsigned TargetLoweringBase::getMinimumJumpTableEntries() const { + return MinimumJumpTableEntries; +} + +void TargetLoweringBase::setMinimumJumpTableEntries(unsigned Val) { + MinimumJumpTableEntries = Val; +} + +unsigned TargetLoweringBase::getMinimumJumpTableDensity(bool OptForSize) const { + return OptForSize ? OptsizeJumpTableDensity : JumpTableDensity; +} + +unsigned TargetLoweringBase::getMaximumJumpTableSize() const { + return MaximumJumpTableSize; +} + +void TargetLoweringBase::setMaximumJumpTableSize(unsigned Val) { + MaximumJumpTableSize = Val; +} + +bool TargetLoweringBase::isJumpTableRelative() const { + return getTargetMachine().isPositionIndependent(); +} + +Align TargetLoweringBase::getPrefLoopAlignment(MachineLoop *ML) const { + if (TM.Options.LoopAlignment) + return Align(TM.Options.LoopAlignment); + return PrefLoopAlignment; +} + +unsigned TargetLoweringBase::getMaxPermittedBytesForAlignment( + MachineBasicBlock *MBB) const { + return MaxBytesForAlignment; +} + +//===----------------------------------------------------------------------===// +// Reciprocal Estimates +//===----------------------------------------------------------------------===// + +/// Get the reciprocal estimate attribute string for a function that will +/// override the target defaults. +static StringRef getRecipEstimateForFunc(MachineFunction &MF) { + const Function &F = MF.getFunction(); + return F.getFnAttribute("reciprocal-estimates").getValueAsString(); +} + +/// Construct a string for the given reciprocal operation of the given type. +/// This string should match the corresponding option to the front-end's +/// "-mrecip" flag assuming those strings have been passed through in an +/// attribute string. For example, "vec-divf" for a division of a vXf32. +static std::string getReciprocalOpName(bool IsSqrt, EVT VT) { + std::string Name = VT.isVector() ? "vec-" : ""; + + Name += IsSqrt ? "sqrt" : "div"; + + // TODO: Handle other float types? + if (VT.getScalarType() == MVT::f64) { + Name += "d"; + } else if (VT.getScalarType() == MVT::f16) { + Name += "h"; + } else { + assert(VT.getScalarType() == MVT::f32 && + "Unexpected FP type for reciprocal estimate"); + Name += "f"; + } + + return Name; +} + +/// Return the character position and value (a single numeric character) of a +/// customized refinement operation in the input string if it exists. Return +/// false if there is no customized refinement step count. +static bool parseRefinementStep(StringRef In, size_t &Position, + uint8_t &Value) { + const char RefStepToken = ':'; + Position = In.find(RefStepToken); + if (Position == StringRef::npos) + return false; + + StringRef RefStepString = In.substr(Position + 1); + // Allow exactly one numeric character for the additional refinement + // step parameter. + if (RefStepString.size() == 1) { + char RefStepChar = RefStepString[0]; + if (isDigit(RefStepChar)) { + Value = RefStepChar - '0'; + return true; + } + } + report_fatal_error("Invalid refinement step for -recip."); +} + +/// For the input attribute string, return one of the ReciprocalEstimate enum +/// status values (enabled, disabled, or not specified) for this operation on +/// the specified data type. +static int getOpEnabled(bool IsSqrt, EVT VT, StringRef Override) { + if (Override.empty()) + return TargetLoweringBase::ReciprocalEstimate::Unspecified; + + SmallVector<StringRef, 4> OverrideVector; + Override.split(OverrideVector, ','); + unsigned NumArgs = OverrideVector.size(); + + // Check if "all", "none", or "default" was specified. + if (NumArgs == 1) { + // Look for an optional setting of the number of refinement steps needed + // for this type of reciprocal operation. + size_t RefPos; + uint8_t RefSteps; + if (parseRefinementStep(Override, RefPos, RefSteps)) { + // Split the string for further processing. + Override = Override.substr(0, RefPos); + } + + // All reciprocal types are enabled. + if (Override == "all") + return TargetLoweringBase::ReciprocalEstimate::Enabled; + + // All reciprocal types are disabled. + if (Override == "none") + return TargetLoweringBase::ReciprocalEstimate::Disabled; + + // Target defaults for enablement are used. + if (Override == "default") + return TargetLoweringBase::ReciprocalEstimate::Unspecified; + } + + // The attribute string may omit the size suffix ('f'/'d'). + std::string VTName = getReciprocalOpName(IsSqrt, VT); + std::string VTNameNoSize = VTName; + VTNameNoSize.pop_back(); + static const char DisabledPrefix = '!'; + + for (StringRef RecipType : OverrideVector) { + size_t RefPos; + uint8_t RefSteps; + if (parseRefinementStep(RecipType, RefPos, RefSteps)) + RecipType = RecipType.substr(0, RefPos); + + // Ignore the disablement token for string matching. + bool IsDisabled = RecipType[0] == DisabledPrefix; + if (IsDisabled) + RecipType = RecipType.substr(1); + + if (RecipType.equals(VTName) || RecipType.equals(VTNameNoSize)) + return IsDisabled ? TargetLoweringBase::ReciprocalEstimate::Disabled + : TargetLoweringBase::ReciprocalEstimate::Enabled; + } + + return TargetLoweringBase::ReciprocalEstimate::Unspecified; +} + +/// For the input attribute string, return the customized refinement step count +/// for this operation on the specified data type. If the step count does not +/// exist, return the ReciprocalEstimate enum value for unspecified. +static int getOpRefinementSteps(bool IsSqrt, EVT VT, StringRef Override) { + if (Override.empty()) + return TargetLoweringBase::ReciprocalEstimate::Unspecified; + + SmallVector<StringRef, 4> OverrideVector; + Override.split(OverrideVector, ','); + unsigned NumArgs = OverrideVector.size(); + + // Check if "all", "default", or "none" was specified. + if (NumArgs == 1) { + // Look for an optional setting of the number of refinement steps needed + // for this type of reciprocal operation. + size_t RefPos; + uint8_t RefSteps; + if (!parseRefinementStep(Override, RefPos, RefSteps)) + return TargetLoweringBase::ReciprocalEstimate::Unspecified; + + // Split the string for further processing. + Override = Override.substr(0, RefPos); + assert(Override != "none" && + "Disabled reciprocals, but specifed refinement steps?"); + + // If this is a general override, return the specified number of steps. + if (Override == "all" || Override == "default") + return RefSteps; + } + + // The attribute string may omit the size suffix ('f'/'d'). + std::string VTName = getReciprocalOpName(IsSqrt, VT); + std::string VTNameNoSize = VTName; + VTNameNoSize.pop_back(); + + for (StringRef RecipType : OverrideVector) { + size_t RefPos; + uint8_t RefSteps; + if (!parseRefinementStep(RecipType, RefPos, RefSteps)) + continue; + + RecipType = RecipType.substr(0, RefPos); + if (RecipType.equals(VTName) || RecipType.equals(VTNameNoSize)) + return RefSteps; + } + + return TargetLoweringBase::ReciprocalEstimate::Unspecified; +} + +int TargetLoweringBase::getRecipEstimateSqrtEnabled(EVT VT, + MachineFunction &MF) const { + return getOpEnabled(true, VT, getRecipEstimateForFunc(MF)); +} + +int TargetLoweringBase::getRecipEstimateDivEnabled(EVT VT, + MachineFunction &MF) const { + return getOpEnabled(false, VT, getRecipEstimateForFunc(MF)); +} + +int TargetLoweringBase::getSqrtRefinementSteps(EVT VT, + MachineFunction &MF) const { + return getOpRefinementSteps(true, VT, getRecipEstimateForFunc(MF)); +} + +int TargetLoweringBase::getDivRefinementSteps(EVT VT, + MachineFunction &MF) const { + return getOpRefinementSteps(false, VT, getRecipEstimateForFunc(MF)); +} + +bool TargetLoweringBase::isLoadBitCastBeneficial( + EVT LoadVT, EVT BitcastVT, const SelectionDAG &DAG, + const MachineMemOperand &MMO) const { + // Single-element vectors are scalarized, so we should generally avoid having + // any memory operations on such types, as they would get scalarized too. + if (LoadVT.isFixedLengthVector() && BitcastVT.isFixedLengthVector() && + BitcastVT.getVectorNumElements() == 1) + return false; + + // Don't do if we could do an indexed load on the original type, but not on + // the new one. + if (!LoadVT.isSimple() || !BitcastVT.isSimple()) + return true; + + MVT LoadMVT = LoadVT.getSimpleVT(); + + // Don't bother doing this if it's just going to be promoted again later, as + // doing so might interfere with other combines. + if (getOperationAction(ISD::LOAD, LoadMVT) == Promote && + getTypeToPromoteTo(ISD::LOAD, LoadMVT) == BitcastVT.getSimpleVT()) + return false; + + unsigned Fast = 0; + return allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), BitcastVT, + MMO, &Fast) && + Fast; +} + +void TargetLoweringBase::finalizeLowering(MachineFunction &MF) const { + MF.getRegInfo().freezeReservedRegs(MF); +} + +MachineMemOperand::Flags TargetLoweringBase::getLoadMemOperandFlags( + const LoadInst &LI, const DataLayout &DL, AssumptionCache *AC, + const TargetLibraryInfo *LibInfo) const { + MachineMemOperand::Flags Flags = MachineMemOperand::MOLoad; + if (LI.isVolatile()) + Flags |= MachineMemOperand::MOVolatile; + + if (LI.hasMetadata(LLVMContext::MD_nontemporal)) + Flags |= MachineMemOperand::MONonTemporal; + + if (LI.hasMetadata(LLVMContext::MD_invariant_load)) + Flags |= MachineMemOperand::MOInvariant; + + if (isDereferenceableAndAlignedPointer(LI.getPointerOperand(), LI.getType(), + LI.getAlign(), DL, &LI, AC, + /*DT=*/nullptr, LibInfo)) + Flags |= MachineMemOperand::MODereferenceable; + + Flags |= getTargetMMOFlags(LI); + return Flags; +} + +MachineMemOperand::Flags +TargetLoweringBase::getStoreMemOperandFlags(const StoreInst &SI, + const DataLayout &DL) const { + MachineMemOperand::Flags Flags = MachineMemOperand::MOStore; + + if (SI.isVolatile()) + Flags |= MachineMemOperand::MOVolatile; + + if (SI.hasMetadata(LLVMContext::MD_nontemporal)) + Flags |= MachineMemOperand::MONonTemporal; + + // FIXME: Not preserving dereferenceable + Flags |= getTargetMMOFlags(SI); + return Flags; +} + +MachineMemOperand::Flags +TargetLoweringBase::getAtomicMemOperandFlags(const Instruction &AI, + const DataLayout &DL) const { + auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore; + + if (const AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(&AI)) { + if (RMW->isVolatile()) + Flags |= MachineMemOperand::MOVolatile; + } else if (const AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(&AI)) { + if (CmpX->isVolatile()) + Flags |= MachineMemOperand::MOVolatile; + } else + llvm_unreachable("not an atomic instruction"); + + // FIXME: Not preserving dereferenceable + Flags |= getTargetMMOFlags(AI); + return Flags; +} + +Instruction *TargetLoweringBase::emitLeadingFence(IRBuilderBase &Builder, + Instruction *Inst, + AtomicOrdering Ord) const { + if (isReleaseOrStronger(Ord) && Inst->hasAtomicStore()) + return Builder.CreateFence(Ord); + else + return nullptr; +} + +Instruction *TargetLoweringBase::emitTrailingFence(IRBuilderBase &Builder, + Instruction *Inst, + AtomicOrdering Ord) const { + if (isAcquireOrStronger(Ord)) + return Builder.CreateFence(Ord); + else + return nullptr; +} + +//===----------------------------------------------------------------------===// +// GlobalISel Hooks +//===----------------------------------------------------------------------===// + +bool TargetLoweringBase::shouldLocalize(const MachineInstr &MI, + const TargetTransformInfo *TTI) const { + auto &MF = *MI.getMF(); + auto &MRI = MF.getRegInfo(); + // Assuming a spill and reload of a value has a cost of 1 instruction each, + // this helper function computes the maximum number of uses we should consider + // for remat. E.g. on arm64 global addresses take 2 insts to materialize. We + // break even in terms of code size when the original MI has 2 users vs + // choosing to potentially spill. Any more than 2 users we we have a net code + // size increase. This doesn't take into account register pressure though. + auto maxUses = [](unsigned RematCost) { + // A cost of 1 means remats are basically free. + if (RematCost == 1) + return std::numeric_limits<unsigned>::max(); + if (RematCost == 2) + return 2U; + + // Remat is too expensive, only sink if there's one user. + if (RematCost > 2) + return 1U; + llvm_unreachable("Unexpected remat cost"); + }; + + switch (MI.getOpcode()) { + default: + return false; + // Constants-like instructions should be close to their users. + // We don't want long live-ranges for them. + case TargetOpcode::G_CONSTANT: + case TargetOpcode::G_FCONSTANT: + case TargetOpcode::G_FRAME_INDEX: + case TargetOpcode::G_INTTOPTR: + return true; + case TargetOpcode::G_GLOBAL_VALUE: { + unsigned RematCost = TTI->getGISelRematGlobalCost(); + Register Reg = MI.getOperand(0).getReg(); + unsigned MaxUses = maxUses(RematCost); + if (MaxUses == UINT_MAX) + return true; // Remats are "free" so always localize. + return MRI.hasAtMostUserInstrs(Reg, MaxUses); + } + } +} |