diff options
Diffstat (limited to 'contrib/llvm-project/llvm/lib/ExecutionEngine/Interpreter/Execution.cpp')
| -rw-r--r-- | contrib/llvm-project/llvm/lib/ExecutionEngine/Interpreter/Execution.cpp | 2168 | 
1 files changed, 2168 insertions, 0 deletions
diff --git a/contrib/llvm-project/llvm/lib/ExecutionEngine/Interpreter/Execution.cpp b/contrib/llvm-project/llvm/lib/ExecutionEngine/Interpreter/Execution.cpp new file mode 100644 index 000000000000..770fc9349083 --- /dev/null +++ b/contrib/llvm-project/llvm/lib/ExecutionEngine/Interpreter/Execution.cpp @@ -0,0 +1,2168 @@ +//===-- Execution.cpp - Implement code to simulate the program ------------===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +//  This file contains the actual instruction interpreter. +// +//===----------------------------------------------------------------------===// + +#include "Interpreter.h" +#include "llvm/ADT/APInt.h" +#include "llvm/ADT/Statistic.h" +#include "llvm/CodeGen/IntrinsicLowering.h" +#include "llvm/IR/Constants.h" +#include "llvm/IR/DerivedTypes.h" +#include "llvm/IR/GetElementPtrTypeIterator.h" +#include "llvm/IR/Instructions.h" +#include "llvm/Support/CommandLine.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/ErrorHandling.h" +#include "llvm/Support/MathExtras.h" +#include "llvm/Support/raw_ostream.h" +#include <algorithm> +#include <cmath> +using namespace llvm; + +#define DEBUG_TYPE "interpreter" + +STATISTIC(NumDynamicInsts, "Number of dynamic instructions executed"); + +static cl::opt<bool> PrintVolatile("interpreter-print-volatile", cl::Hidden, +          cl::desc("make the interpreter print every volatile load and store")); + +//===----------------------------------------------------------------------===// +//                     Various Helper Functions +//===----------------------------------------------------------------------===// + +static void SetValue(Value *V, GenericValue Val, ExecutionContext &SF) { +  SF.Values[V] = Val; +} + +//===----------------------------------------------------------------------===// +//                    Unary Instruction Implementations +//===----------------------------------------------------------------------===// + +static void executeFNegInst(GenericValue &Dest, GenericValue Src, Type *Ty) { +  switch (Ty->getTypeID()) { +  case Type::FloatTyID: +    Dest.FloatVal = -Src.FloatVal; +    break; +  case Type::DoubleTyID: +    Dest.DoubleVal = -Src.DoubleVal; +    break; +  default: +    llvm_unreachable("Unhandled type for FNeg instruction"); +  } +} + +void Interpreter::visitUnaryOperator(UnaryOperator &I) { +  ExecutionContext &SF = ECStack.back(); +  Type *Ty = I.getOperand(0)->getType(); +  GenericValue Src = getOperandValue(I.getOperand(0), SF); +  GenericValue R; // Result + +  // First process vector operation +  if (Ty->isVectorTy()) { +    R.AggregateVal.resize(Src.AggregateVal.size()); + +    switch(I.getOpcode()) { +    default: +      llvm_unreachable("Don't know how to handle this unary operator"); +      break; +    case Instruction::FNeg: +      if (cast<VectorType>(Ty)->getElementType()->isFloatTy()) { +        for (unsigned i = 0; i < R.AggregateVal.size(); ++i) +          R.AggregateVal[i].FloatVal = -Src.AggregateVal[i].FloatVal; +      } else if (cast<VectorType>(Ty)->getElementType()->isDoubleTy()) { +        for (unsigned i = 0; i < R.AggregateVal.size(); ++i) +          R.AggregateVal[i].DoubleVal = -Src.AggregateVal[i].DoubleVal; +      } else { +        llvm_unreachable("Unhandled type for FNeg instruction"); +      } +      break; +    } +  } else { +    switch (I.getOpcode()) { +    default: +      llvm_unreachable("Don't know how to handle this unary operator"); +      break; +    case Instruction::FNeg: executeFNegInst(R, Src, Ty); break; +    } +  } +  SetValue(&I, R, SF); +} + +//===----------------------------------------------------------------------===// +//                    Binary Instruction Implementations +//===----------------------------------------------------------------------===// + +#define IMPLEMENT_BINARY_OPERATOR(OP, TY) \ +   case Type::TY##TyID: \ +     Dest.TY##Val = Src1.TY##Val OP Src2.TY##Val; \ +     break + +static void executeFAddInst(GenericValue &Dest, GenericValue Src1, +                            GenericValue Src2, Type *Ty) { +  switch (Ty->getTypeID()) { +    IMPLEMENT_BINARY_OPERATOR(+, Float); +    IMPLEMENT_BINARY_OPERATOR(+, Double); +  default: +    dbgs() << "Unhandled type for FAdd instruction: " << *Ty << "\n"; +    llvm_unreachable(nullptr); +  } +} + +static void executeFSubInst(GenericValue &Dest, GenericValue Src1, +                            GenericValue Src2, Type *Ty) { +  switch (Ty->getTypeID()) { +    IMPLEMENT_BINARY_OPERATOR(-, Float); +    IMPLEMENT_BINARY_OPERATOR(-, Double); +  default: +    dbgs() << "Unhandled type for FSub instruction: " << *Ty << "\n"; +    llvm_unreachable(nullptr); +  } +} + +static void executeFMulInst(GenericValue &Dest, GenericValue Src1, +                            GenericValue Src2, Type *Ty) { +  switch (Ty->getTypeID()) { +    IMPLEMENT_BINARY_OPERATOR(*, Float); +    IMPLEMENT_BINARY_OPERATOR(*, Double); +  default: +    dbgs() << "Unhandled type for FMul instruction: " << *Ty << "\n"; +    llvm_unreachable(nullptr); +  } +} + +static void executeFDivInst(GenericValue &Dest, GenericValue Src1, +                            GenericValue Src2, Type *Ty) { +  switch (Ty->getTypeID()) { +    IMPLEMENT_BINARY_OPERATOR(/, Float); +    IMPLEMENT_BINARY_OPERATOR(/, Double); +  default: +    dbgs() << "Unhandled type for FDiv instruction: " << *Ty << "\n"; +    llvm_unreachable(nullptr); +  } +} + +static void executeFRemInst(GenericValue &Dest, GenericValue Src1, +                            GenericValue Src2, Type *Ty) { +  switch (Ty->getTypeID()) { +  case Type::FloatTyID: +    Dest.FloatVal = fmod(Src1.FloatVal, Src2.FloatVal); +    break; +  case Type::DoubleTyID: +    Dest.DoubleVal = fmod(Src1.DoubleVal, Src2.DoubleVal); +    break; +  default: +    dbgs() << "Unhandled type for Rem instruction: " << *Ty << "\n"; +    llvm_unreachable(nullptr); +  } +} + +#define IMPLEMENT_INTEGER_ICMP(OP, TY) \ +   case Type::IntegerTyID:  \ +      Dest.IntVal = APInt(1,Src1.IntVal.OP(Src2.IntVal)); \ +      break; + +#define IMPLEMENT_VECTOR_INTEGER_ICMP(OP, TY)                                  \ +  case Type::FixedVectorTyID:                                                  \ +  case Type::ScalableVectorTyID: {                                             \ +    assert(Src1.AggregateVal.size() == Src2.AggregateVal.size());              \ +    Dest.AggregateVal.resize(Src1.AggregateVal.size());                        \ +    for (uint32_t _i = 0; _i < Src1.AggregateVal.size(); _i++)                 \ +      Dest.AggregateVal[_i].IntVal = APInt(                                    \ +          1, Src1.AggregateVal[_i].IntVal.OP(Src2.AggregateVal[_i].IntVal));   \ +  } break; + +// Handle pointers specially because they must be compared with only as much +// width as the host has.  We _do not_ want to be comparing 64 bit values when +// running on a 32-bit target, otherwise the upper 32 bits might mess up +// comparisons if they contain garbage. +#define IMPLEMENT_POINTER_ICMP(OP) \ +   case Type::PointerTyID: \ +      Dest.IntVal = APInt(1,(void*)(intptr_t)Src1.PointerVal OP \ +                            (void*)(intptr_t)Src2.PointerVal); \ +      break; + +static GenericValue executeICMP_EQ(GenericValue Src1, GenericValue Src2, +                                   Type *Ty) { +  GenericValue Dest; +  switch (Ty->getTypeID()) { +    IMPLEMENT_INTEGER_ICMP(eq,Ty); +    IMPLEMENT_VECTOR_INTEGER_ICMP(eq,Ty); +    IMPLEMENT_POINTER_ICMP(==); +  default: +    dbgs() << "Unhandled type for ICMP_EQ predicate: " << *Ty << "\n"; +    llvm_unreachable(nullptr); +  } +  return Dest; +} + +static GenericValue executeICMP_NE(GenericValue Src1, GenericValue Src2, +                                   Type *Ty) { +  GenericValue Dest; +  switch (Ty->getTypeID()) { +    IMPLEMENT_INTEGER_ICMP(ne,Ty); +    IMPLEMENT_VECTOR_INTEGER_ICMP(ne,Ty); +    IMPLEMENT_POINTER_ICMP(!=); +  default: +    dbgs() << "Unhandled type for ICMP_NE predicate: " << *Ty << "\n"; +    llvm_unreachable(nullptr); +  } +  return Dest; +} + +static GenericValue executeICMP_ULT(GenericValue Src1, GenericValue Src2, +                                    Type *Ty) { +  GenericValue Dest; +  switch (Ty->getTypeID()) { +    IMPLEMENT_INTEGER_ICMP(ult,Ty); +    IMPLEMENT_VECTOR_INTEGER_ICMP(ult,Ty); +    IMPLEMENT_POINTER_ICMP(<); +  default: +    dbgs() << "Unhandled type for ICMP_ULT predicate: " << *Ty << "\n"; +    llvm_unreachable(nullptr); +  } +  return Dest; +} + +static GenericValue executeICMP_SLT(GenericValue Src1, GenericValue Src2, +                                    Type *Ty) { +  GenericValue Dest; +  switch (Ty->getTypeID()) { +    IMPLEMENT_INTEGER_ICMP(slt,Ty); +    IMPLEMENT_VECTOR_INTEGER_ICMP(slt,Ty); +    IMPLEMENT_POINTER_ICMP(<); +  default: +    dbgs() << "Unhandled type for ICMP_SLT predicate: " << *Ty << "\n"; +    llvm_unreachable(nullptr); +  } +  return Dest; +} + +static GenericValue executeICMP_UGT(GenericValue Src1, GenericValue Src2, +                                    Type *Ty) { +  GenericValue Dest; +  switch (Ty->getTypeID()) { +    IMPLEMENT_INTEGER_ICMP(ugt,Ty); +    IMPLEMENT_VECTOR_INTEGER_ICMP(ugt,Ty); +    IMPLEMENT_POINTER_ICMP(>); +  default: +    dbgs() << "Unhandled type for ICMP_UGT predicate: " << *Ty << "\n"; +    llvm_unreachable(nullptr); +  } +  return Dest; +} + +static GenericValue executeICMP_SGT(GenericValue Src1, GenericValue Src2, +                                    Type *Ty) { +  GenericValue Dest; +  switch (Ty->getTypeID()) { +    IMPLEMENT_INTEGER_ICMP(sgt,Ty); +    IMPLEMENT_VECTOR_INTEGER_ICMP(sgt,Ty); +    IMPLEMENT_POINTER_ICMP(>); +  default: +    dbgs() << "Unhandled type for ICMP_SGT predicate: " << *Ty << "\n"; +    llvm_unreachable(nullptr); +  } +  return Dest; +} + +static GenericValue executeICMP_ULE(GenericValue Src1, GenericValue Src2, +                                    Type *Ty) { +  GenericValue Dest; +  switch (Ty->getTypeID()) { +    IMPLEMENT_INTEGER_ICMP(ule,Ty); +    IMPLEMENT_VECTOR_INTEGER_ICMP(ule,Ty); +    IMPLEMENT_POINTER_ICMP(<=); +  default: +    dbgs() << "Unhandled type for ICMP_ULE predicate: " << *Ty << "\n"; +    llvm_unreachable(nullptr); +  } +  return Dest; +} + +static GenericValue executeICMP_SLE(GenericValue Src1, GenericValue Src2, +                                    Type *Ty) { +  GenericValue Dest; +  switch (Ty->getTypeID()) { +    IMPLEMENT_INTEGER_ICMP(sle,Ty); +    IMPLEMENT_VECTOR_INTEGER_ICMP(sle,Ty); +    IMPLEMENT_POINTER_ICMP(<=); +  default: +    dbgs() << "Unhandled type for ICMP_SLE predicate: " << *Ty << "\n"; +    llvm_unreachable(nullptr); +  } +  return Dest; +} + +static GenericValue executeICMP_UGE(GenericValue Src1, GenericValue Src2, +                                    Type *Ty) { +  GenericValue Dest; +  switch (Ty->getTypeID()) { +    IMPLEMENT_INTEGER_ICMP(uge,Ty); +    IMPLEMENT_VECTOR_INTEGER_ICMP(uge,Ty); +    IMPLEMENT_POINTER_ICMP(>=); +  default: +    dbgs() << "Unhandled type for ICMP_UGE predicate: " << *Ty << "\n"; +    llvm_unreachable(nullptr); +  } +  return Dest; +} + +static GenericValue executeICMP_SGE(GenericValue Src1, GenericValue Src2, +                                    Type *Ty) { +  GenericValue Dest; +  switch (Ty->getTypeID()) { +    IMPLEMENT_INTEGER_ICMP(sge,Ty); +    IMPLEMENT_VECTOR_INTEGER_ICMP(sge,Ty); +    IMPLEMENT_POINTER_ICMP(>=); +  default: +    dbgs() << "Unhandled type for ICMP_SGE predicate: " << *Ty << "\n"; +    llvm_unreachable(nullptr); +  } +  return Dest; +} + +void Interpreter::visitICmpInst(ICmpInst &I) { +  ExecutionContext &SF = ECStack.back(); +  Type *Ty    = I.getOperand(0)->getType(); +  GenericValue Src1 = getOperandValue(I.getOperand(0), SF); +  GenericValue Src2 = getOperandValue(I.getOperand(1), SF); +  GenericValue R;   // Result + +  switch (I.getPredicate()) { +  case ICmpInst::ICMP_EQ:  R = executeICMP_EQ(Src1,  Src2, Ty); break; +  case ICmpInst::ICMP_NE:  R = executeICMP_NE(Src1,  Src2, Ty); break; +  case ICmpInst::ICMP_ULT: R = executeICMP_ULT(Src1, Src2, Ty); break; +  case ICmpInst::ICMP_SLT: R = executeICMP_SLT(Src1, Src2, Ty); break; +  case ICmpInst::ICMP_UGT: R = executeICMP_UGT(Src1, Src2, Ty); break; +  case ICmpInst::ICMP_SGT: R = executeICMP_SGT(Src1, Src2, Ty); break; +  case ICmpInst::ICMP_ULE: R = executeICMP_ULE(Src1, Src2, Ty); break; +  case ICmpInst::ICMP_SLE: R = executeICMP_SLE(Src1, Src2, Ty); break; +  case ICmpInst::ICMP_UGE: R = executeICMP_UGE(Src1, Src2, Ty); break; +  case ICmpInst::ICMP_SGE: R = executeICMP_SGE(Src1, Src2, Ty); break; +  default: +    dbgs() << "Don't know how to handle this ICmp predicate!\n-->" << I; +    llvm_unreachable(nullptr); +  } + +  SetValue(&I, R, SF); +} + +#define IMPLEMENT_FCMP(OP, TY) \ +   case Type::TY##TyID: \ +     Dest.IntVal = APInt(1,Src1.TY##Val OP Src2.TY##Val); \ +     break + +#define IMPLEMENT_VECTOR_FCMP_T(OP, TY)                             \ +  assert(Src1.AggregateVal.size() == Src2.AggregateVal.size());     \ +  Dest.AggregateVal.resize( Src1.AggregateVal.size() );             \ +  for( uint32_t _i=0;_i<Src1.AggregateVal.size();_i++)              \ +    Dest.AggregateVal[_i].IntVal = APInt(1,                         \ +    Src1.AggregateVal[_i].TY##Val OP Src2.AggregateVal[_i].TY##Val);\ +  break; + +#define IMPLEMENT_VECTOR_FCMP(OP)                                              \ +  case Type::FixedVectorTyID:                                                  \ +  case Type::ScalableVectorTyID:                                               \ +    if (cast<VectorType>(Ty)->getElementType()->isFloatTy()) {                 \ +      IMPLEMENT_VECTOR_FCMP_T(OP, Float);                                      \ +    } else {                                                                   \ +      IMPLEMENT_VECTOR_FCMP_T(OP, Double);                                     \ +    } + +static GenericValue executeFCMP_OEQ(GenericValue Src1, GenericValue Src2, +                                   Type *Ty) { +  GenericValue Dest; +  switch (Ty->getTypeID()) { +    IMPLEMENT_FCMP(==, Float); +    IMPLEMENT_FCMP(==, Double); +    IMPLEMENT_VECTOR_FCMP(==); +  default: +    dbgs() << "Unhandled type for FCmp EQ instruction: " << *Ty << "\n"; +    llvm_unreachable(nullptr); +  } +  return Dest; +} + +#define IMPLEMENT_SCALAR_NANS(TY, X,Y)                                      \ +  if (TY->isFloatTy()) {                                                    \ +    if (X.FloatVal != X.FloatVal || Y.FloatVal != Y.FloatVal) {             \ +      Dest.IntVal = APInt(1,false);                                         \ +      return Dest;                                                          \ +    }                                                                       \ +  } else {                                                                  \ +    if (X.DoubleVal != X.DoubleVal || Y.DoubleVal != Y.DoubleVal) {         \ +      Dest.IntVal = APInt(1,false);                                         \ +      return Dest;                                                          \ +    }                                                                       \ +  } + +#define MASK_VECTOR_NANS_T(X,Y, TZ, FLAG)                                   \ +  assert(X.AggregateVal.size() == Y.AggregateVal.size());                   \ +  Dest.AggregateVal.resize( X.AggregateVal.size() );                        \ +  for( uint32_t _i=0;_i<X.AggregateVal.size();_i++) {                       \ +    if (X.AggregateVal[_i].TZ##Val != X.AggregateVal[_i].TZ##Val ||         \ +        Y.AggregateVal[_i].TZ##Val != Y.AggregateVal[_i].TZ##Val)           \ +      Dest.AggregateVal[_i].IntVal = APInt(1,FLAG);                         \ +    else  {                                                                 \ +      Dest.AggregateVal[_i].IntVal = APInt(1,!FLAG);                        \ +    }                                                                       \ +  } + +#define MASK_VECTOR_NANS(TY, X,Y, FLAG)                                     \ +  if (TY->isVectorTy()) {                                                   \ +    if (cast<VectorType>(TY)->getElementType()->isFloatTy()) {              \ +      MASK_VECTOR_NANS_T(X, Y, Float, FLAG)                                 \ +    } else {                                                                \ +      MASK_VECTOR_NANS_T(X, Y, Double, FLAG)                                \ +    }                                                                       \ +  }                                                                         \ + + + +static GenericValue executeFCMP_ONE(GenericValue Src1, GenericValue Src2, +                                    Type *Ty) +{ +  GenericValue Dest; +  // if input is scalar value and Src1 or Src2 is NaN return false +  IMPLEMENT_SCALAR_NANS(Ty, Src1, Src2) +  // if vector input detect NaNs and fill mask +  MASK_VECTOR_NANS(Ty, Src1, Src2, false) +  GenericValue DestMask = Dest; +  switch (Ty->getTypeID()) { +    IMPLEMENT_FCMP(!=, Float); +    IMPLEMENT_FCMP(!=, Double); +    IMPLEMENT_VECTOR_FCMP(!=); +    default: +      dbgs() << "Unhandled type for FCmp NE instruction: " << *Ty << "\n"; +      llvm_unreachable(nullptr); +  } +  // in vector case mask out NaN elements +  if (Ty->isVectorTy()) +    for( size_t _i=0; _i<Src1.AggregateVal.size(); _i++) +      if (DestMask.AggregateVal[_i].IntVal == false) +        Dest.AggregateVal[_i].IntVal = APInt(1,false); + +  return Dest; +} + +static GenericValue executeFCMP_OLE(GenericValue Src1, GenericValue Src2, +                                   Type *Ty) { +  GenericValue Dest; +  switch (Ty->getTypeID()) { +    IMPLEMENT_FCMP(<=, Float); +    IMPLEMENT_FCMP(<=, Double); +    IMPLEMENT_VECTOR_FCMP(<=); +  default: +    dbgs() << "Unhandled type for FCmp LE instruction: " << *Ty << "\n"; +    llvm_unreachable(nullptr); +  } +  return Dest; +} + +static GenericValue executeFCMP_OGE(GenericValue Src1, GenericValue Src2, +                                   Type *Ty) { +  GenericValue Dest; +  switch (Ty->getTypeID()) { +    IMPLEMENT_FCMP(>=, Float); +    IMPLEMENT_FCMP(>=, Double); +    IMPLEMENT_VECTOR_FCMP(>=); +  default: +    dbgs() << "Unhandled type for FCmp GE instruction: " << *Ty << "\n"; +    llvm_unreachable(nullptr); +  } +  return Dest; +} + +static GenericValue executeFCMP_OLT(GenericValue Src1, GenericValue Src2, +                                   Type *Ty) { +  GenericValue Dest; +  switch (Ty->getTypeID()) { +    IMPLEMENT_FCMP(<, Float); +    IMPLEMENT_FCMP(<, Double); +    IMPLEMENT_VECTOR_FCMP(<); +  default: +    dbgs() << "Unhandled type for FCmp LT instruction: " << *Ty << "\n"; +    llvm_unreachable(nullptr); +  } +  return Dest; +} + +static GenericValue executeFCMP_OGT(GenericValue Src1, GenericValue Src2, +                                     Type *Ty) { +  GenericValue Dest; +  switch (Ty->getTypeID()) { +    IMPLEMENT_FCMP(>, Float); +    IMPLEMENT_FCMP(>, Double); +    IMPLEMENT_VECTOR_FCMP(>); +  default: +    dbgs() << "Unhandled type for FCmp GT instruction: " << *Ty << "\n"; +    llvm_unreachable(nullptr); +  } +  return Dest; +} + +#define IMPLEMENT_UNORDERED(TY, X,Y)                                     \ +  if (TY->isFloatTy()) {                                                 \ +    if (X.FloatVal != X.FloatVal || Y.FloatVal != Y.FloatVal) {          \ +      Dest.IntVal = APInt(1,true);                                       \ +      return Dest;                                                       \ +    }                                                                    \ +  } else if (X.DoubleVal != X.DoubleVal || Y.DoubleVal != Y.DoubleVal) { \ +    Dest.IntVal = APInt(1,true);                                         \ +    return Dest;                                                         \ +  } + +#define IMPLEMENT_VECTOR_UNORDERED(TY, X, Y, FUNC)                             \ +  if (TY->isVectorTy()) {                                                      \ +    GenericValue DestMask = Dest;                                              \ +    Dest = FUNC(Src1, Src2, Ty);                                               \ +    for (size_t _i = 0; _i < Src1.AggregateVal.size(); _i++)                   \ +      if (DestMask.AggregateVal[_i].IntVal == true)                            \ +        Dest.AggregateVal[_i].IntVal = APInt(1, true);                         \ +    return Dest;                                                               \ +  } + +static GenericValue executeFCMP_UEQ(GenericValue Src1, GenericValue Src2, +                                   Type *Ty) { +  GenericValue Dest; +  IMPLEMENT_UNORDERED(Ty, Src1, Src2) +  MASK_VECTOR_NANS(Ty, Src1, Src2, true) +  IMPLEMENT_VECTOR_UNORDERED(Ty, Src1, Src2, executeFCMP_OEQ) +  return executeFCMP_OEQ(Src1, Src2, Ty); + +} + +static GenericValue executeFCMP_UNE(GenericValue Src1, GenericValue Src2, +                                   Type *Ty) { +  GenericValue Dest; +  IMPLEMENT_UNORDERED(Ty, Src1, Src2) +  MASK_VECTOR_NANS(Ty, Src1, Src2, true) +  IMPLEMENT_VECTOR_UNORDERED(Ty, Src1, Src2, executeFCMP_ONE) +  return executeFCMP_ONE(Src1, Src2, Ty); +} + +static GenericValue executeFCMP_ULE(GenericValue Src1, GenericValue Src2, +                                   Type *Ty) { +  GenericValue Dest; +  IMPLEMENT_UNORDERED(Ty, Src1, Src2) +  MASK_VECTOR_NANS(Ty, Src1, Src2, true) +  IMPLEMENT_VECTOR_UNORDERED(Ty, Src1, Src2, executeFCMP_OLE) +  return executeFCMP_OLE(Src1, Src2, Ty); +} + +static GenericValue executeFCMP_UGE(GenericValue Src1, GenericValue Src2, +                                   Type *Ty) { +  GenericValue Dest; +  IMPLEMENT_UNORDERED(Ty, Src1, Src2) +  MASK_VECTOR_NANS(Ty, Src1, Src2, true) +  IMPLEMENT_VECTOR_UNORDERED(Ty, Src1, Src2, executeFCMP_OGE) +  return executeFCMP_OGE(Src1, Src2, Ty); +} + +static GenericValue executeFCMP_ULT(GenericValue Src1, GenericValue Src2, +                                   Type *Ty) { +  GenericValue Dest; +  IMPLEMENT_UNORDERED(Ty, Src1, Src2) +  MASK_VECTOR_NANS(Ty, Src1, Src2, true) +  IMPLEMENT_VECTOR_UNORDERED(Ty, Src1, Src2, executeFCMP_OLT) +  return executeFCMP_OLT(Src1, Src2, Ty); +} + +static GenericValue executeFCMP_UGT(GenericValue Src1, GenericValue Src2, +                                     Type *Ty) { +  GenericValue Dest; +  IMPLEMENT_UNORDERED(Ty, Src1, Src2) +  MASK_VECTOR_NANS(Ty, Src1, Src2, true) +  IMPLEMENT_VECTOR_UNORDERED(Ty, Src1, Src2, executeFCMP_OGT) +  return executeFCMP_OGT(Src1, Src2, Ty); +} + +static GenericValue executeFCMP_ORD(GenericValue Src1, GenericValue Src2, +                                     Type *Ty) { +  GenericValue Dest; +  if(Ty->isVectorTy()) { +    assert(Src1.AggregateVal.size() == Src2.AggregateVal.size()); +    Dest.AggregateVal.resize( Src1.AggregateVal.size() ); +    if (cast<VectorType>(Ty)->getElementType()->isFloatTy()) { +      for( size_t _i=0;_i<Src1.AggregateVal.size();_i++) +        Dest.AggregateVal[_i].IntVal = APInt(1, +        ( (Src1.AggregateVal[_i].FloatVal == +        Src1.AggregateVal[_i].FloatVal) && +        (Src2.AggregateVal[_i].FloatVal == +        Src2.AggregateVal[_i].FloatVal))); +    } else { +      for( size_t _i=0;_i<Src1.AggregateVal.size();_i++) +        Dest.AggregateVal[_i].IntVal = APInt(1, +        ( (Src1.AggregateVal[_i].DoubleVal == +        Src1.AggregateVal[_i].DoubleVal) && +        (Src2.AggregateVal[_i].DoubleVal == +        Src2.AggregateVal[_i].DoubleVal))); +    } +  } else if (Ty->isFloatTy()) +    Dest.IntVal = APInt(1,(Src1.FloatVal == Src1.FloatVal && +                           Src2.FloatVal == Src2.FloatVal)); +  else { +    Dest.IntVal = APInt(1,(Src1.DoubleVal == Src1.DoubleVal && +                           Src2.DoubleVal == Src2.DoubleVal)); +  } +  return Dest; +} + +static GenericValue executeFCMP_UNO(GenericValue Src1, GenericValue Src2, +                                     Type *Ty) { +  GenericValue Dest; +  if(Ty->isVectorTy()) { +    assert(Src1.AggregateVal.size() == Src2.AggregateVal.size()); +    Dest.AggregateVal.resize( Src1.AggregateVal.size() ); +    if (cast<VectorType>(Ty)->getElementType()->isFloatTy()) { +      for( size_t _i=0;_i<Src1.AggregateVal.size();_i++) +        Dest.AggregateVal[_i].IntVal = APInt(1, +        ( (Src1.AggregateVal[_i].FloatVal != +           Src1.AggregateVal[_i].FloatVal) || +          (Src2.AggregateVal[_i].FloatVal != +           Src2.AggregateVal[_i].FloatVal))); +      } else { +        for( size_t _i=0;_i<Src1.AggregateVal.size();_i++) +          Dest.AggregateVal[_i].IntVal = APInt(1, +          ( (Src1.AggregateVal[_i].DoubleVal != +             Src1.AggregateVal[_i].DoubleVal) || +            (Src2.AggregateVal[_i].DoubleVal != +             Src2.AggregateVal[_i].DoubleVal))); +      } +  } else if (Ty->isFloatTy()) +    Dest.IntVal = APInt(1,(Src1.FloatVal != Src1.FloatVal || +                           Src2.FloatVal != Src2.FloatVal)); +  else { +    Dest.IntVal = APInt(1,(Src1.DoubleVal != Src1.DoubleVal || +                           Src2.DoubleVal != Src2.DoubleVal)); +  } +  return Dest; +} + +static GenericValue executeFCMP_BOOL(GenericValue Src1, GenericValue Src2, +                                     Type *Ty, const bool val) { +  GenericValue Dest; +    if(Ty->isVectorTy()) { +      assert(Src1.AggregateVal.size() == Src2.AggregateVal.size()); +      Dest.AggregateVal.resize( Src1.AggregateVal.size() ); +      for( size_t _i=0; _i<Src1.AggregateVal.size(); _i++) +        Dest.AggregateVal[_i].IntVal = APInt(1,val); +    } else { +      Dest.IntVal = APInt(1, val); +    } + +    return Dest; +} + +void Interpreter::visitFCmpInst(FCmpInst &I) { +  ExecutionContext &SF = ECStack.back(); +  Type *Ty    = I.getOperand(0)->getType(); +  GenericValue Src1 = getOperandValue(I.getOperand(0), SF); +  GenericValue Src2 = getOperandValue(I.getOperand(1), SF); +  GenericValue R;   // Result + +  switch (I.getPredicate()) { +  default: +    dbgs() << "Don't know how to handle this FCmp predicate!\n-->" << I; +    llvm_unreachable(nullptr); +  break; +  case FCmpInst::FCMP_FALSE: R = executeFCMP_BOOL(Src1, Src2, Ty, false); +  break; +  case FCmpInst::FCMP_TRUE:  R = executeFCMP_BOOL(Src1, Src2, Ty, true); +  break; +  case FCmpInst::FCMP_ORD:   R = executeFCMP_ORD(Src1, Src2, Ty); break; +  case FCmpInst::FCMP_UNO:   R = executeFCMP_UNO(Src1, Src2, Ty); break; +  case FCmpInst::FCMP_UEQ:   R = executeFCMP_UEQ(Src1, Src2, Ty); break; +  case FCmpInst::FCMP_OEQ:   R = executeFCMP_OEQ(Src1, Src2, Ty); break; +  case FCmpInst::FCMP_UNE:   R = executeFCMP_UNE(Src1, Src2, Ty); break; +  case FCmpInst::FCMP_ONE:   R = executeFCMP_ONE(Src1, Src2, Ty); break; +  case FCmpInst::FCMP_ULT:   R = executeFCMP_ULT(Src1, Src2, Ty); break; +  case FCmpInst::FCMP_OLT:   R = executeFCMP_OLT(Src1, Src2, Ty); break; +  case FCmpInst::FCMP_UGT:   R = executeFCMP_UGT(Src1, Src2, Ty); break; +  case FCmpInst::FCMP_OGT:   R = executeFCMP_OGT(Src1, Src2, Ty); break; +  case FCmpInst::FCMP_ULE:   R = executeFCMP_ULE(Src1, Src2, Ty); break; +  case FCmpInst::FCMP_OLE:   R = executeFCMP_OLE(Src1, Src2, Ty); break; +  case FCmpInst::FCMP_UGE:   R = executeFCMP_UGE(Src1, Src2, Ty); break; +  case FCmpInst::FCMP_OGE:   R = executeFCMP_OGE(Src1, Src2, Ty); break; +  } + +  SetValue(&I, R, SF); +} + +static GenericValue executeCmpInst(unsigned predicate, GenericValue Src1, +                                   GenericValue Src2, Type *Ty) { +  GenericValue Result; +  switch (predicate) { +  case ICmpInst::ICMP_EQ:    return executeICMP_EQ(Src1, Src2, Ty); +  case ICmpInst::ICMP_NE:    return executeICMP_NE(Src1, Src2, Ty); +  case ICmpInst::ICMP_UGT:   return executeICMP_UGT(Src1, Src2, Ty); +  case ICmpInst::ICMP_SGT:   return executeICMP_SGT(Src1, Src2, Ty); +  case ICmpInst::ICMP_ULT:   return executeICMP_ULT(Src1, Src2, Ty); +  case ICmpInst::ICMP_SLT:   return executeICMP_SLT(Src1, Src2, Ty); +  case ICmpInst::ICMP_UGE:   return executeICMP_UGE(Src1, Src2, Ty); +  case ICmpInst::ICMP_SGE:   return executeICMP_SGE(Src1, Src2, Ty); +  case ICmpInst::ICMP_ULE:   return executeICMP_ULE(Src1, Src2, Ty); +  case ICmpInst::ICMP_SLE:   return executeICMP_SLE(Src1, Src2, Ty); +  case FCmpInst::FCMP_ORD:   return executeFCMP_ORD(Src1, Src2, Ty); +  case FCmpInst::FCMP_UNO:   return executeFCMP_UNO(Src1, Src2, Ty); +  case FCmpInst::FCMP_OEQ:   return executeFCMP_OEQ(Src1, Src2, Ty); +  case FCmpInst::FCMP_UEQ:   return executeFCMP_UEQ(Src1, Src2, Ty); +  case FCmpInst::FCMP_ONE:   return executeFCMP_ONE(Src1, Src2, Ty); +  case FCmpInst::FCMP_UNE:   return executeFCMP_UNE(Src1, Src2, Ty); +  case FCmpInst::FCMP_OLT:   return executeFCMP_OLT(Src1, Src2, Ty); +  case FCmpInst::FCMP_ULT:   return executeFCMP_ULT(Src1, Src2, Ty); +  case FCmpInst::FCMP_OGT:   return executeFCMP_OGT(Src1, Src2, Ty); +  case FCmpInst::FCMP_UGT:   return executeFCMP_UGT(Src1, Src2, Ty); +  case FCmpInst::FCMP_OLE:   return executeFCMP_OLE(Src1, Src2, Ty); +  case FCmpInst::FCMP_ULE:   return executeFCMP_ULE(Src1, Src2, Ty); +  case FCmpInst::FCMP_OGE:   return executeFCMP_OGE(Src1, Src2, Ty); +  case FCmpInst::FCMP_UGE:   return executeFCMP_UGE(Src1, Src2, Ty); +  case FCmpInst::FCMP_FALSE: return executeFCMP_BOOL(Src1, Src2, Ty, false); +  case FCmpInst::FCMP_TRUE:  return executeFCMP_BOOL(Src1, Src2, Ty, true); +  default: +    dbgs() << "Unhandled Cmp predicate\n"; +    llvm_unreachable(nullptr); +  } +} + +void Interpreter::visitBinaryOperator(BinaryOperator &I) { +  ExecutionContext &SF = ECStack.back(); +  Type *Ty    = I.getOperand(0)->getType(); +  GenericValue Src1 = getOperandValue(I.getOperand(0), SF); +  GenericValue Src2 = getOperandValue(I.getOperand(1), SF); +  GenericValue R;   // Result + +  // First process vector operation +  if (Ty->isVectorTy()) { +    assert(Src1.AggregateVal.size() == Src2.AggregateVal.size()); +    R.AggregateVal.resize(Src1.AggregateVal.size()); + +    // Macros to execute binary operation 'OP' over integer vectors +#define INTEGER_VECTOR_OPERATION(OP)                               \ +    for (unsigned i = 0; i < R.AggregateVal.size(); ++i)           \ +      R.AggregateVal[i].IntVal =                                   \ +      Src1.AggregateVal[i].IntVal OP Src2.AggregateVal[i].IntVal; + +    // Additional macros to execute binary operations udiv/sdiv/urem/srem since +    // they have different notation. +#define INTEGER_VECTOR_FUNCTION(OP)                                \ +    for (unsigned i = 0; i < R.AggregateVal.size(); ++i)           \ +      R.AggregateVal[i].IntVal =                                   \ +      Src1.AggregateVal[i].IntVal.OP(Src2.AggregateVal[i].IntVal); + +    // Macros to execute binary operation 'OP' over floating point type TY +    // (float or double) vectors +#define FLOAT_VECTOR_FUNCTION(OP, TY)                               \ +      for (unsigned i = 0; i < R.AggregateVal.size(); ++i)          \ +        R.AggregateVal[i].TY =                                      \ +        Src1.AggregateVal[i].TY OP Src2.AggregateVal[i].TY; + +    // Macros to choose appropriate TY: float or double and run operation +    // execution +#define FLOAT_VECTOR_OP(OP) {                                         \ +  if (cast<VectorType>(Ty)->getElementType()->isFloatTy())            \ +    FLOAT_VECTOR_FUNCTION(OP, FloatVal)                               \ +  else {                                                              \ +    if (cast<VectorType>(Ty)->getElementType()->isDoubleTy())         \ +      FLOAT_VECTOR_FUNCTION(OP, DoubleVal)                            \ +    else {                                                            \ +      dbgs() << "Unhandled type for OP instruction: " << *Ty << "\n"; \ +      llvm_unreachable(0);                                            \ +    }                                                                 \ +  }                                                                   \ +} + +    switch(I.getOpcode()){ +    default: +      dbgs() << "Don't know how to handle this binary operator!\n-->" << I; +      llvm_unreachable(nullptr); +      break; +    case Instruction::Add:   INTEGER_VECTOR_OPERATION(+) break; +    case Instruction::Sub:   INTEGER_VECTOR_OPERATION(-) break; +    case Instruction::Mul:   INTEGER_VECTOR_OPERATION(*) break; +    case Instruction::UDiv:  INTEGER_VECTOR_FUNCTION(udiv) break; +    case Instruction::SDiv:  INTEGER_VECTOR_FUNCTION(sdiv) break; +    case Instruction::URem:  INTEGER_VECTOR_FUNCTION(urem) break; +    case Instruction::SRem:  INTEGER_VECTOR_FUNCTION(srem) break; +    case Instruction::And:   INTEGER_VECTOR_OPERATION(&) break; +    case Instruction::Or:    INTEGER_VECTOR_OPERATION(|) break; +    case Instruction::Xor:   INTEGER_VECTOR_OPERATION(^) break; +    case Instruction::FAdd:  FLOAT_VECTOR_OP(+) break; +    case Instruction::FSub:  FLOAT_VECTOR_OP(-) break; +    case Instruction::FMul:  FLOAT_VECTOR_OP(*) break; +    case Instruction::FDiv:  FLOAT_VECTOR_OP(/) break; +    case Instruction::FRem: +      if (cast<VectorType>(Ty)->getElementType()->isFloatTy()) +        for (unsigned i = 0; i < R.AggregateVal.size(); ++i) +          R.AggregateVal[i].FloatVal = +          fmod(Src1.AggregateVal[i].FloatVal, Src2.AggregateVal[i].FloatVal); +      else { +        if (cast<VectorType>(Ty)->getElementType()->isDoubleTy()) +          for (unsigned i = 0; i < R.AggregateVal.size(); ++i) +            R.AggregateVal[i].DoubleVal = +            fmod(Src1.AggregateVal[i].DoubleVal, Src2.AggregateVal[i].DoubleVal); +        else { +          dbgs() << "Unhandled type for Rem instruction: " << *Ty << "\n"; +          llvm_unreachable(nullptr); +        } +      } +      break; +    } +  } else { +    switch (I.getOpcode()) { +    default: +      dbgs() << "Don't know how to handle this binary operator!\n-->" << I; +      llvm_unreachable(nullptr); +      break; +    case Instruction::Add:   R.IntVal = Src1.IntVal + Src2.IntVal; break; +    case Instruction::Sub:   R.IntVal = Src1.IntVal - Src2.IntVal; break; +    case Instruction::Mul:   R.IntVal = Src1.IntVal * Src2.IntVal; break; +    case Instruction::FAdd:  executeFAddInst(R, Src1, Src2, Ty); break; +    case Instruction::FSub:  executeFSubInst(R, Src1, Src2, Ty); break; +    case Instruction::FMul:  executeFMulInst(R, Src1, Src2, Ty); break; +    case Instruction::FDiv:  executeFDivInst(R, Src1, Src2, Ty); break; +    case Instruction::FRem:  executeFRemInst(R, Src1, Src2, Ty); break; +    case Instruction::UDiv:  R.IntVal = Src1.IntVal.udiv(Src2.IntVal); break; +    case Instruction::SDiv:  R.IntVal = Src1.IntVal.sdiv(Src2.IntVal); break; +    case Instruction::URem:  R.IntVal = Src1.IntVal.urem(Src2.IntVal); break; +    case Instruction::SRem:  R.IntVal = Src1.IntVal.srem(Src2.IntVal); break; +    case Instruction::And:   R.IntVal = Src1.IntVal & Src2.IntVal; break; +    case Instruction::Or:    R.IntVal = Src1.IntVal | Src2.IntVal; break; +    case Instruction::Xor:   R.IntVal = Src1.IntVal ^ Src2.IntVal; break; +    } +  } +  SetValue(&I, R, SF); +} + +static GenericValue executeSelectInst(GenericValue Src1, GenericValue Src2, +                                      GenericValue Src3, Type *Ty) { +    GenericValue Dest; +    if(Ty->isVectorTy()) { +      assert(Src1.AggregateVal.size() == Src2.AggregateVal.size()); +      assert(Src2.AggregateVal.size() == Src3.AggregateVal.size()); +      Dest.AggregateVal.resize( Src1.AggregateVal.size() ); +      for (size_t i = 0; i < Src1.AggregateVal.size(); ++i) +        Dest.AggregateVal[i] = (Src1.AggregateVal[i].IntVal == 0) ? +          Src3.AggregateVal[i] : Src2.AggregateVal[i]; +    } else { +      Dest = (Src1.IntVal == 0) ? Src3 : Src2; +    } +    return Dest; +} + +void Interpreter::visitSelectInst(SelectInst &I) { +  ExecutionContext &SF = ECStack.back(); +  Type * Ty = I.getOperand(0)->getType(); +  GenericValue Src1 = getOperandValue(I.getOperand(0), SF); +  GenericValue Src2 = getOperandValue(I.getOperand(1), SF); +  GenericValue Src3 = getOperandValue(I.getOperand(2), SF); +  GenericValue R = executeSelectInst(Src1, Src2, Src3, Ty); +  SetValue(&I, R, SF); +} + +//===----------------------------------------------------------------------===// +//                     Terminator Instruction Implementations +//===----------------------------------------------------------------------===// + +void Interpreter::exitCalled(GenericValue GV) { +  // runAtExitHandlers() assumes there are no stack frames, but +  // if exit() was called, then it had a stack frame. Blow away +  // the stack before interpreting atexit handlers. +  ECStack.clear(); +  runAtExitHandlers(); +  exit(GV.IntVal.zextOrTrunc(32).getZExtValue()); +} + +/// Pop the last stack frame off of ECStack and then copy the result +/// back into the result variable if we are not returning void. The +/// result variable may be the ExitValue, or the Value of the calling +/// CallInst if there was a previous stack frame. This method may +/// invalidate any ECStack iterators you have. This method also takes +/// care of switching to the normal destination BB, if we are returning +/// from an invoke. +/// +void Interpreter::popStackAndReturnValueToCaller(Type *RetTy, +                                                 GenericValue Result) { +  // Pop the current stack frame. +  ECStack.pop_back(); + +  if (ECStack.empty()) {  // Finished main.  Put result into exit code... +    if (RetTy && !RetTy->isVoidTy()) {          // Nonvoid return type? +      ExitValue = Result;   // Capture the exit value of the program +    } else { +      memset(&ExitValue.Untyped, 0, sizeof(ExitValue.Untyped)); +    } +  } else { +    // If we have a previous stack frame, and we have a previous call, +    // fill in the return value... +    ExecutionContext &CallingSF = ECStack.back(); +    if (CallingSF.Caller) { +      // Save result... +      if (!CallingSF.Caller->getType()->isVoidTy()) +        SetValue(CallingSF.Caller, Result, CallingSF); +      if (InvokeInst *II = dyn_cast<InvokeInst>(CallingSF.Caller)) +        SwitchToNewBasicBlock (II->getNormalDest (), CallingSF); +      CallingSF.Caller = nullptr;             // We returned from the call... +    } +  } +} + +void Interpreter::visitReturnInst(ReturnInst &I) { +  ExecutionContext &SF = ECStack.back(); +  Type *RetTy = Type::getVoidTy(I.getContext()); +  GenericValue Result; + +  // Save away the return value... (if we are not 'ret void') +  if (I.getNumOperands()) { +    RetTy  = I.getReturnValue()->getType(); +    Result = getOperandValue(I.getReturnValue(), SF); +  } + +  popStackAndReturnValueToCaller(RetTy, Result); +} + +void Interpreter::visitUnreachableInst(UnreachableInst &I) { +  report_fatal_error("Program executed an 'unreachable' instruction!"); +} + +void Interpreter::visitBranchInst(BranchInst &I) { +  ExecutionContext &SF = ECStack.back(); +  BasicBlock *Dest; + +  Dest = I.getSuccessor(0);          // Uncond branches have a fixed dest... +  if (!I.isUnconditional()) { +    Value *Cond = I.getCondition(); +    if (getOperandValue(Cond, SF).IntVal == 0) // If false cond... +      Dest = I.getSuccessor(1); +  } +  SwitchToNewBasicBlock(Dest, SF); +} + +void Interpreter::visitSwitchInst(SwitchInst &I) { +  ExecutionContext &SF = ECStack.back(); +  Value* Cond = I.getCondition(); +  Type *ElTy = Cond->getType(); +  GenericValue CondVal = getOperandValue(Cond, SF); + +  // Check to see if any of the cases match... +  BasicBlock *Dest = nullptr; +  for (auto Case : I.cases()) { +    GenericValue CaseVal = getOperandValue(Case.getCaseValue(), SF); +    if (executeICMP_EQ(CondVal, CaseVal, ElTy).IntVal != 0) { +      Dest = cast<BasicBlock>(Case.getCaseSuccessor()); +      break; +    } +  } +  if (!Dest) Dest = I.getDefaultDest();   // No cases matched: use default +  SwitchToNewBasicBlock(Dest, SF); +} + +void Interpreter::visitIndirectBrInst(IndirectBrInst &I) { +  ExecutionContext &SF = ECStack.back(); +  void *Dest = GVTOP(getOperandValue(I.getAddress(), SF)); +  SwitchToNewBasicBlock((BasicBlock*)Dest, SF); +} + + +// SwitchToNewBasicBlock - This method is used to jump to a new basic block. +// This function handles the actual updating of block and instruction iterators +// as well as execution of all of the PHI nodes in the destination block. +// +// This method does this because all of the PHI nodes must be executed +// atomically, reading their inputs before any of the results are updated.  Not +// doing this can cause problems if the PHI nodes depend on other PHI nodes for +// their inputs.  If the input PHI node is updated before it is read, incorrect +// results can happen.  Thus we use a two phase approach. +// +void Interpreter::SwitchToNewBasicBlock(BasicBlock *Dest, ExecutionContext &SF){ +  BasicBlock *PrevBB = SF.CurBB;      // Remember where we came from... +  SF.CurBB   = Dest;                  // Update CurBB to branch destination +  SF.CurInst = SF.CurBB->begin();     // Update new instruction ptr... + +  if (!isa<PHINode>(SF.CurInst)) return;  // Nothing fancy to do + +  // Loop over all of the PHI nodes in the current block, reading their inputs. +  std::vector<GenericValue> ResultValues; + +  for (; PHINode *PN = dyn_cast<PHINode>(SF.CurInst); ++SF.CurInst) { +    // Search for the value corresponding to this previous bb... +    int i = PN->getBasicBlockIndex(PrevBB); +    assert(i != -1 && "PHINode doesn't contain entry for predecessor??"); +    Value *IncomingValue = PN->getIncomingValue(i); + +    // Save the incoming value for this PHI node... +    ResultValues.push_back(getOperandValue(IncomingValue, SF)); +  } + +  // Now loop over all of the PHI nodes setting their values... +  SF.CurInst = SF.CurBB->begin(); +  for (unsigned i = 0; isa<PHINode>(SF.CurInst); ++SF.CurInst, ++i) { +    PHINode *PN = cast<PHINode>(SF.CurInst); +    SetValue(PN, ResultValues[i], SF); +  } +} + +//===----------------------------------------------------------------------===// +//                     Memory Instruction Implementations +//===----------------------------------------------------------------------===// + +void Interpreter::visitAllocaInst(AllocaInst &I) { +  ExecutionContext &SF = ECStack.back(); + +  Type *Ty = I.getAllocatedType(); // Type to be allocated + +  // Get the number of elements being allocated by the array... +  unsigned NumElements = +    getOperandValue(I.getOperand(0), SF).IntVal.getZExtValue(); + +  unsigned TypeSize = (size_t)getDataLayout().getTypeAllocSize(Ty); + +  // Avoid malloc-ing zero bytes, use max()... +  unsigned MemToAlloc = std::max(1U, NumElements * TypeSize); + +  // Allocate enough memory to hold the type... +  void *Memory = safe_malloc(MemToAlloc); + +  LLVM_DEBUG(dbgs() << "Allocated Type: " << *Ty << " (" << TypeSize +                    << " bytes) x " << NumElements << " (Total: " << MemToAlloc +                    << ") at " << uintptr_t(Memory) << '\n'); + +  GenericValue Result = PTOGV(Memory); +  assert(Result.PointerVal && "Null pointer returned by malloc!"); +  SetValue(&I, Result, SF); + +  if (I.getOpcode() == Instruction::Alloca) +    ECStack.back().Allocas.add(Memory); +} + +// getElementOffset - The workhorse for getelementptr. +// +GenericValue Interpreter::executeGEPOperation(Value *Ptr, gep_type_iterator I, +                                              gep_type_iterator E, +                                              ExecutionContext &SF) { +  assert(Ptr->getType()->isPointerTy() && +         "Cannot getElementOffset of a nonpointer type!"); + +  uint64_t Total = 0; + +  for (; I != E; ++I) { +    if (StructType *STy = I.getStructTypeOrNull()) { +      const StructLayout *SLO = getDataLayout().getStructLayout(STy); + +      const ConstantInt *CPU = cast<ConstantInt>(I.getOperand()); +      unsigned Index = unsigned(CPU->getZExtValue()); + +      Total += SLO->getElementOffset(Index); +    } else { +      // Get the index number for the array... which must be long type... +      GenericValue IdxGV = getOperandValue(I.getOperand(), SF); + +      int64_t Idx; +      unsigned BitWidth = +        cast<IntegerType>(I.getOperand()->getType())->getBitWidth(); +      if (BitWidth == 32) +        Idx = (int64_t)(int32_t)IdxGV.IntVal.getZExtValue(); +      else { +        assert(BitWidth == 64 && "Invalid index type for getelementptr"); +        Idx = (int64_t)IdxGV.IntVal.getZExtValue(); +      } +      Total += getDataLayout().getTypeAllocSize(I.getIndexedType()) * Idx; +    } +  } + +  GenericValue Result; +  Result.PointerVal = ((char*)getOperandValue(Ptr, SF).PointerVal) + Total; +  LLVM_DEBUG(dbgs() << "GEP Index " << Total << " bytes.\n"); +  return Result; +} + +void Interpreter::visitGetElementPtrInst(GetElementPtrInst &I) { +  ExecutionContext &SF = ECStack.back(); +  SetValue(&I, executeGEPOperation(I.getPointerOperand(), +                                   gep_type_begin(I), gep_type_end(I), SF), SF); +} + +void Interpreter::visitLoadInst(LoadInst &I) { +  ExecutionContext &SF = ECStack.back(); +  GenericValue SRC = getOperandValue(I.getPointerOperand(), SF); +  GenericValue *Ptr = (GenericValue*)GVTOP(SRC); +  GenericValue Result; +  LoadValueFromMemory(Result, Ptr, I.getType()); +  SetValue(&I, Result, SF); +  if (I.isVolatile() && PrintVolatile) +    dbgs() << "Volatile load " << I; +} + +void Interpreter::visitStoreInst(StoreInst &I) { +  ExecutionContext &SF = ECStack.back(); +  GenericValue Val = getOperandValue(I.getOperand(0), SF); +  GenericValue SRC = getOperandValue(I.getPointerOperand(), SF); +  StoreValueToMemory(Val, (GenericValue *)GVTOP(SRC), +                     I.getOperand(0)->getType()); +  if (I.isVolatile() && PrintVolatile) +    dbgs() << "Volatile store: " << I; +} + +//===----------------------------------------------------------------------===// +//                 Miscellaneous Instruction Implementations +//===----------------------------------------------------------------------===// + +void Interpreter::visitVAStartInst(VAStartInst &I) { +  ExecutionContext &SF = ECStack.back(); +  GenericValue ArgIndex; +  ArgIndex.UIntPairVal.first = ECStack.size() - 1; +  ArgIndex.UIntPairVal.second = 0; +  SetValue(&I, ArgIndex, SF); +} + +void Interpreter::visitVAEndInst(VAEndInst &I) { +  // va_end is a noop for the interpreter +} + +void Interpreter::visitVACopyInst(VACopyInst &I) { +  ExecutionContext &SF = ECStack.back(); +  SetValue(&I, getOperandValue(*I.arg_begin(), SF), SF); +} + +void Interpreter::visitIntrinsicInst(IntrinsicInst &I) { +  ExecutionContext &SF = ECStack.back(); + +  // If it is an unknown intrinsic function, use the intrinsic lowering +  // class to transform it into hopefully tasty LLVM code. +  // +  BasicBlock::iterator Me(&I); +  BasicBlock *Parent = I.getParent(); +  bool atBegin(Parent->begin() == Me); +  if (!atBegin) +    --Me; +  IL->LowerIntrinsicCall(&I); + +  // Restore the CurInst pointer to the first instruction newly inserted, if +  // any. +  if (atBegin) { +    SF.CurInst = Parent->begin(); +  } else { +    SF.CurInst = Me; +    ++SF.CurInst; +  } +} + +void Interpreter::visitCallBase(CallBase &I) { +  ExecutionContext &SF = ECStack.back(); + +  SF.Caller = &I; +  std::vector<GenericValue> ArgVals; +  const unsigned NumArgs = SF.Caller->arg_size(); +  ArgVals.reserve(NumArgs); +  for (Value *V : SF.Caller->args()) +    ArgVals.push_back(getOperandValue(V, SF)); + +  // To handle indirect calls, we must get the pointer value from the argument +  // and treat it as a function pointer. +  GenericValue SRC = getOperandValue(SF.Caller->getCalledOperand(), SF); +  callFunction((Function*)GVTOP(SRC), ArgVals); +} + +// auxiliary function for shift operations +static unsigned getShiftAmount(uint64_t orgShiftAmount, +                               llvm::APInt valueToShift) { +  unsigned valueWidth = valueToShift.getBitWidth(); +  if (orgShiftAmount < (uint64_t)valueWidth) +    return orgShiftAmount; +  // according to the llvm documentation, if orgShiftAmount > valueWidth, +  // the result is undfeined. but we do shift by this rule: +  return (NextPowerOf2(valueWidth-1) - 1) & orgShiftAmount; +} + + +void Interpreter::visitShl(BinaryOperator &I) { +  ExecutionContext &SF = ECStack.back(); +  GenericValue Src1 = getOperandValue(I.getOperand(0), SF); +  GenericValue Src2 = getOperandValue(I.getOperand(1), SF); +  GenericValue Dest; +  Type *Ty = I.getType(); + +  if (Ty->isVectorTy()) { +    uint32_t src1Size = uint32_t(Src1.AggregateVal.size()); +    assert(src1Size == Src2.AggregateVal.size()); +    for (unsigned i = 0; i < src1Size; i++) { +      GenericValue Result; +      uint64_t shiftAmount = Src2.AggregateVal[i].IntVal.getZExtValue(); +      llvm::APInt valueToShift = Src1.AggregateVal[i].IntVal; +      Result.IntVal = valueToShift.shl(getShiftAmount(shiftAmount, valueToShift)); +      Dest.AggregateVal.push_back(Result); +    } +  } else { +    // scalar +    uint64_t shiftAmount = Src2.IntVal.getZExtValue(); +    llvm::APInt valueToShift = Src1.IntVal; +    Dest.IntVal = valueToShift.shl(getShiftAmount(shiftAmount, valueToShift)); +  } + +  SetValue(&I, Dest, SF); +} + +void Interpreter::visitLShr(BinaryOperator &I) { +  ExecutionContext &SF = ECStack.back(); +  GenericValue Src1 = getOperandValue(I.getOperand(0), SF); +  GenericValue Src2 = getOperandValue(I.getOperand(1), SF); +  GenericValue Dest; +  Type *Ty = I.getType(); + +  if (Ty->isVectorTy()) { +    uint32_t src1Size = uint32_t(Src1.AggregateVal.size()); +    assert(src1Size == Src2.AggregateVal.size()); +    for (unsigned i = 0; i < src1Size; i++) { +      GenericValue Result; +      uint64_t shiftAmount = Src2.AggregateVal[i].IntVal.getZExtValue(); +      llvm::APInt valueToShift = Src1.AggregateVal[i].IntVal; +      Result.IntVal = valueToShift.lshr(getShiftAmount(shiftAmount, valueToShift)); +      Dest.AggregateVal.push_back(Result); +    } +  } else { +    // scalar +    uint64_t shiftAmount = Src2.IntVal.getZExtValue(); +    llvm::APInt valueToShift = Src1.IntVal; +    Dest.IntVal = valueToShift.lshr(getShiftAmount(shiftAmount, valueToShift)); +  } + +  SetValue(&I, Dest, SF); +} + +void Interpreter::visitAShr(BinaryOperator &I) { +  ExecutionContext &SF = ECStack.back(); +  GenericValue Src1 = getOperandValue(I.getOperand(0), SF); +  GenericValue Src2 = getOperandValue(I.getOperand(1), SF); +  GenericValue Dest; +  Type *Ty = I.getType(); + +  if (Ty->isVectorTy()) { +    size_t src1Size = Src1.AggregateVal.size(); +    assert(src1Size == Src2.AggregateVal.size()); +    for (unsigned i = 0; i < src1Size; i++) { +      GenericValue Result; +      uint64_t shiftAmount = Src2.AggregateVal[i].IntVal.getZExtValue(); +      llvm::APInt valueToShift = Src1.AggregateVal[i].IntVal; +      Result.IntVal = valueToShift.ashr(getShiftAmount(shiftAmount, valueToShift)); +      Dest.AggregateVal.push_back(Result); +    } +  } else { +    // scalar +    uint64_t shiftAmount = Src2.IntVal.getZExtValue(); +    llvm::APInt valueToShift = Src1.IntVal; +    Dest.IntVal = valueToShift.ashr(getShiftAmount(shiftAmount, valueToShift)); +  } + +  SetValue(&I, Dest, SF); +} + +GenericValue Interpreter::executeTruncInst(Value *SrcVal, Type *DstTy, +                                           ExecutionContext &SF) { +  GenericValue Dest, Src = getOperandValue(SrcVal, SF); +  Type *SrcTy = SrcVal->getType(); +  if (SrcTy->isVectorTy()) { +    Type *DstVecTy = DstTy->getScalarType(); +    unsigned DBitWidth = cast<IntegerType>(DstVecTy)->getBitWidth(); +    unsigned NumElts = Src.AggregateVal.size(); +    // the sizes of src and dst vectors must be equal +    Dest.AggregateVal.resize(NumElts); +    for (unsigned i = 0; i < NumElts; i++) +      Dest.AggregateVal[i].IntVal = Src.AggregateVal[i].IntVal.trunc(DBitWidth); +  } else { +    IntegerType *DITy = cast<IntegerType>(DstTy); +    unsigned DBitWidth = DITy->getBitWidth(); +    Dest.IntVal = Src.IntVal.trunc(DBitWidth); +  } +  return Dest; +} + +GenericValue Interpreter::executeSExtInst(Value *SrcVal, Type *DstTy, +                                          ExecutionContext &SF) { +  Type *SrcTy = SrcVal->getType(); +  GenericValue Dest, Src = getOperandValue(SrcVal, SF); +  if (SrcTy->isVectorTy()) { +    Type *DstVecTy = DstTy->getScalarType(); +    unsigned DBitWidth = cast<IntegerType>(DstVecTy)->getBitWidth(); +    unsigned size = Src.AggregateVal.size(); +    // the sizes of src and dst vectors must be equal. +    Dest.AggregateVal.resize(size); +    for (unsigned i = 0; i < size; i++) +      Dest.AggregateVal[i].IntVal = Src.AggregateVal[i].IntVal.sext(DBitWidth); +  } else { +    auto *DITy = cast<IntegerType>(DstTy); +    unsigned DBitWidth = DITy->getBitWidth(); +    Dest.IntVal = Src.IntVal.sext(DBitWidth); +  } +  return Dest; +} + +GenericValue Interpreter::executeZExtInst(Value *SrcVal, Type *DstTy, +                                          ExecutionContext &SF) { +  Type *SrcTy = SrcVal->getType(); +  GenericValue Dest, Src = getOperandValue(SrcVal, SF); +  if (SrcTy->isVectorTy()) { +    Type *DstVecTy = DstTy->getScalarType(); +    unsigned DBitWidth = cast<IntegerType>(DstVecTy)->getBitWidth(); + +    unsigned size = Src.AggregateVal.size(); +    // the sizes of src and dst vectors must be equal. +    Dest.AggregateVal.resize(size); +    for (unsigned i = 0; i < size; i++) +      Dest.AggregateVal[i].IntVal = Src.AggregateVal[i].IntVal.zext(DBitWidth); +  } else { +    auto *DITy = cast<IntegerType>(DstTy); +    unsigned DBitWidth = DITy->getBitWidth(); +    Dest.IntVal = Src.IntVal.zext(DBitWidth); +  } +  return Dest; +} + +GenericValue Interpreter::executeFPTruncInst(Value *SrcVal, Type *DstTy, +                                             ExecutionContext &SF) { +  GenericValue Dest, Src = getOperandValue(SrcVal, SF); + +  if (isa<VectorType>(SrcVal->getType())) { +    assert(SrcVal->getType()->getScalarType()->isDoubleTy() && +           DstTy->getScalarType()->isFloatTy() && +           "Invalid FPTrunc instruction"); + +    unsigned size = Src.AggregateVal.size(); +    // the sizes of src and dst vectors must be equal. +    Dest.AggregateVal.resize(size); +    for (unsigned i = 0; i < size; i++) +      Dest.AggregateVal[i].FloatVal = (float)Src.AggregateVal[i].DoubleVal; +  } else { +    assert(SrcVal->getType()->isDoubleTy() && DstTy->isFloatTy() && +           "Invalid FPTrunc instruction"); +    Dest.FloatVal = (float)Src.DoubleVal; +  } + +  return Dest; +} + +GenericValue Interpreter::executeFPExtInst(Value *SrcVal, Type *DstTy, +                                           ExecutionContext &SF) { +  GenericValue Dest, Src = getOperandValue(SrcVal, SF); + +  if (isa<VectorType>(SrcVal->getType())) { +    assert(SrcVal->getType()->getScalarType()->isFloatTy() && +           DstTy->getScalarType()->isDoubleTy() && "Invalid FPExt instruction"); + +    unsigned size = Src.AggregateVal.size(); +    // the sizes of src and dst vectors must be equal. +    Dest.AggregateVal.resize(size); +    for (unsigned i = 0; i < size; i++) +      Dest.AggregateVal[i].DoubleVal = (double)Src.AggregateVal[i].FloatVal; +  } else { +    assert(SrcVal->getType()->isFloatTy() && DstTy->isDoubleTy() && +           "Invalid FPExt instruction"); +    Dest.DoubleVal = (double)Src.FloatVal; +  } + +  return Dest; +} + +GenericValue Interpreter::executeFPToUIInst(Value *SrcVal, Type *DstTy, +                                            ExecutionContext &SF) { +  Type *SrcTy = SrcVal->getType(); +  GenericValue Dest, Src = getOperandValue(SrcVal, SF); + +  if (isa<VectorType>(SrcTy)) { +    Type *DstVecTy = DstTy->getScalarType(); +    Type *SrcVecTy = SrcTy->getScalarType(); +    uint32_t DBitWidth = cast<IntegerType>(DstVecTy)->getBitWidth(); +    unsigned size = Src.AggregateVal.size(); +    // the sizes of src and dst vectors must be equal. +    Dest.AggregateVal.resize(size); + +    if (SrcVecTy->getTypeID() == Type::FloatTyID) { +      assert(SrcVecTy->isFloatingPointTy() && "Invalid FPToUI instruction"); +      for (unsigned i = 0; i < size; i++) +        Dest.AggregateVal[i].IntVal = APIntOps::RoundFloatToAPInt( +            Src.AggregateVal[i].FloatVal, DBitWidth); +    } else { +      for (unsigned i = 0; i < size; i++) +        Dest.AggregateVal[i].IntVal = APIntOps::RoundDoubleToAPInt( +            Src.AggregateVal[i].DoubleVal, DBitWidth); +    } +  } else { +    // scalar +    uint32_t DBitWidth = cast<IntegerType>(DstTy)->getBitWidth(); +    assert(SrcTy->isFloatingPointTy() && "Invalid FPToUI instruction"); + +    if (SrcTy->getTypeID() == Type::FloatTyID) +      Dest.IntVal = APIntOps::RoundFloatToAPInt(Src.FloatVal, DBitWidth); +    else { +      Dest.IntVal = APIntOps::RoundDoubleToAPInt(Src.DoubleVal, DBitWidth); +    } +  } + +  return Dest; +} + +GenericValue Interpreter::executeFPToSIInst(Value *SrcVal, Type *DstTy, +                                            ExecutionContext &SF) { +  Type *SrcTy = SrcVal->getType(); +  GenericValue Dest, Src = getOperandValue(SrcVal, SF); + +  if (isa<VectorType>(SrcTy)) { +    Type *DstVecTy = DstTy->getScalarType(); +    Type *SrcVecTy = SrcTy->getScalarType(); +    uint32_t DBitWidth = cast<IntegerType>(DstVecTy)->getBitWidth(); +    unsigned size = Src.AggregateVal.size(); +    // the sizes of src and dst vectors must be equal +    Dest.AggregateVal.resize(size); + +    if (SrcVecTy->getTypeID() == Type::FloatTyID) { +      assert(SrcVecTy->isFloatingPointTy() && "Invalid FPToSI instruction"); +      for (unsigned i = 0; i < size; i++) +        Dest.AggregateVal[i].IntVal = APIntOps::RoundFloatToAPInt( +            Src.AggregateVal[i].FloatVal, DBitWidth); +    } else { +      for (unsigned i = 0; i < size; i++) +        Dest.AggregateVal[i].IntVal = APIntOps::RoundDoubleToAPInt( +            Src.AggregateVal[i].DoubleVal, DBitWidth); +    } +  } else { +    // scalar +    unsigned DBitWidth = cast<IntegerType>(DstTy)->getBitWidth(); +    assert(SrcTy->isFloatingPointTy() && "Invalid FPToSI instruction"); + +    if (SrcTy->getTypeID() == Type::FloatTyID) +      Dest.IntVal = APIntOps::RoundFloatToAPInt(Src.FloatVal, DBitWidth); +    else { +      Dest.IntVal = APIntOps::RoundDoubleToAPInt(Src.DoubleVal, DBitWidth); +    } +  } +  return Dest; +} + +GenericValue Interpreter::executeUIToFPInst(Value *SrcVal, Type *DstTy, +                                            ExecutionContext &SF) { +  GenericValue Dest, Src = getOperandValue(SrcVal, SF); + +  if (isa<VectorType>(SrcVal->getType())) { +    Type *DstVecTy = DstTy->getScalarType(); +    unsigned size = Src.AggregateVal.size(); +    // the sizes of src and dst vectors must be equal +    Dest.AggregateVal.resize(size); + +    if (DstVecTy->getTypeID() == Type::FloatTyID) { +      assert(DstVecTy->isFloatingPointTy() && "Invalid UIToFP instruction"); +      for (unsigned i = 0; i < size; i++) +        Dest.AggregateVal[i].FloatVal = +            APIntOps::RoundAPIntToFloat(Src.AggregateVal[i].IntVal); +    } else { +      for (unsigned i = 0; i < size; i++) +        Dest.AggregateVal[i].DoubleVal = +            APIntOps::RoundAPIntToDouble(Src.AggregateVal[i].IntVal); +    } +  } else { +    // scalar +    assert(DstTy->isFloatingPointTy() && "Invalid UIToFP instruction"); +    if (DstTy->getTypeID() == Type::FloatTyID) +      Dest.FloatVal = APIntOps::RoundAPIntToFloat(Src.IntVal); +    else { +      Dest.DoubleVal = APIntOps::RoundAPIntToDouble(Src.IntVal); +    } +  } +  return Dest; +} + +GenericValue Interpreter::executeSIToFPInst(Value *SrcVal, Type *DstTy, +                                            ExecutionContext &SF) { +  GenericValue Dest, Src = getOperandValue(SrcVal, SF); + +  if (isa<VectorType>(SrcVal->getType())) { +    Type *DstVecTy = DstTy->getScalarType(); +    unsigned size = Src.AggregateVal.size(); +    // the sizes of src and dst vectors must be equal +    Dest.AggregateVal.resize(size); + +    if (DstVecTy->getTypeID() == Type::FloatTyID) { +      assert(DstVecTy->isFloatingPointTy() && "Invalid SIToFP instruction"); +      for (unsigned i = 0; i < size; i++) +        Dest.AggregateVal[i].FloatVal = +            APIntOps::RoundSignedAPIntToFloat(Src.AggregateVal[i].IntVal); +    } else { +      for (unsigned i = 0; i < size; i++) +        Dest.AggregateVal[i].DoubleVal = +            APIntOps::RoundSignedAPIntToDouble(Src.AggregateVal[i].IntVal); +    } +  } else { +    // scalar +    assert(DstTy->isFloatingPointTy() && "Invalid SIToFP instruction"); + +    if (DstTy->getTypeID() == Type::FloatTyID) +      Dest.FloatVal = APIntOps::RoundSignedAPIntToFloat(Src.IntVal); +    else { +      Dest.DoubleVal = APIntOps::RoundSignedAPIntToDouble(Src.IntVal); +    } +  } + +  return Dest; +} + +GenericValue Interpreter::executePtrToIntInst(Value *SrcVal, Type *DstTy, +                                              ExecutionContext &SF) { +  uint32_t DBitWidth = cast<IntegerType>(DstTy)->getBitWidth(); +  GenericValue Dest, Src = getOperandValue(SrcVal, SF); +  assert(SrcVal->getType()->isPointerTy() && "Invalid PtrToInt instruction"); + +  Dest.IntVal = APInt(DBitWidth, (intptr_t) Src.PointerVal); +  return Dest; +} + +GenericValue Interpreter::executeIntToPtrInst(Value *SrcVal, Type *DstTy, +                                              ExecutionContext &SF) { +  GenericValue Dest, Src = getOperandValue(SrcVal, SF); +  assert(DstTy->isPointerTy() && "Invalid PtrToInt instruction"); + +  uint32_t PtrSize = getDataLayout().getPointerSizeInBits(); +  if (PtrSize != Src.IntVal.getBitWidth()) +    Src.IntVal = Src.IntVal.zextOrTrunc(PtrSize); + +  Dest.PointerVal = PointerTy(intptr_t(Src.IntVal.getZExtValue())); +  return Dest; +} + +GenericValue Interpreter::executeBitCastInst(Value *SrcVal, Type *DstTy, +                                             ExecutionContext &SF) { + +  // This instruction supports bitwise conversion of vectors to integers and +  // to vectors of other types (as long as they have the same size) +  Type *SrcTy = SrcVal->getType(); +  GenericValue Dest, Src = getOperandValue(SrcVal, SF); + +  if (isa<VectorType>(SrcTy) || isa<VectorType>(DstTy)) { +    // vector src bitcast to vector dst or vector src bitcast to scalar dst or +    // scalar src bitcast to vector dst +    bool isLittleEndian = getDataLayout().isLittleEndian(); +    GenericValue TempDst, TempSrc, SrcVec; +    Type *SrcElemTy; +    Type *DstElemTy; +    unsigned SrcBitSize; +    unsigned DstBitSize; +    unsigned SrcNum; +    unsigned DstNum; + +    if (isa<VectorType>(SrcTy)) { +      SrcElemTy = SrcTy->getScalarType(); +      SrcBitSize = SrcTy->getScalarSizeInBits(); +      SrcNum = Src.AggregateVal.size(); +      SrcVec = Src; +    } else { +      // if src is scalar value, make it vector <1 x type> +      SrcElemTy = SrcTy; +      SrcBitSize = SrcTy->getPrimitiveSizeInBits(); +      SrcNum = 1; +      SrcVec.AggregateVal.push_back(Src); +    } + +    if (isa<VectorType>(DstTy)) { +      DstElemTy = DstTy->getScalarType(); +      DstBitSize = DstTy->getScalarSizeInBits(); +      DstNum = (SrcNum * SrcBitSize) / DstBitSize; +    } else { +      DstElemTy = DstTy; +      DstBitSize = DstTy->getPrimitiveSizeInBits(); +      DstNum = 1; +    } + +    if (SrcNum * SrcBitSize != DstNum * DstBitSize) +      llvm_unreachable("Invalid BitCast"); + +    // If src is floating point, cast to integer first. +    TempSrc.AggregateVal.resize(SrcNum); +    if (SrcElemTy->isFloatTy()) { +      for (unsigned i = 0; i < SrcNum; i++) +        TempSrc.AggregateVal[i].IntVal = +            APInt::floatToBits(SrcVec.AggregateVal[i].FloatVal); + +    } else if (SrcElemTy->isDoubleTy()) { +      for (unsigned i = 0; i < SrcNum; i++) +        TempSrc.AggregateVal[i].IntVal = +            APInt::doubleToBits(SrcVec.AggregateVal[i].DoubleVal); +    } else if (SrcElemTy->isIntegerTy()) { +      for (unsigned i = 0; i < SrcNum; i++) +        TempSrc.AggregateVal[i].IntVal = SrcVec.AggregateVal[i].IntVal; +    } else { +      // Pointers are not allowed as the element type of vector. +      llvm_unreachable("Invalid Bitcast"); +    } + +    // now TempSrc is integer type vector +    if (DstNum < SrcNum) { +      // Example: bitcast <4 x i32> <i32 0, i32 1, i32 2, i32 3> to <2 x i64> +      unsigned Ratio = SrcNum / DstNum; +      unsigned SrcElt = 0; +      for (unsigned i = 0; i < DstNum; i++) { +        GenericValue Elt; +        Elt.IntVal = 0; +        Elt.IntVal = Elt.IntVal.zext(DstBitSize); +        unsigned ShiftAmt = isLittleEndian ? 0 : SrcBitSize * (Ratio - 1); +        for (unsigned j = 0; j < Ratio; j++) { +          APInt Tmp; +          Tmp = Tmp.zext(SrcBitSize); +          Tmp = TempSrc.AggregateVal[SrcElt++].IntVal; +          Tmp = Tmp.zext(DstBitSize); +          Tmp <<= ShiftAmt; +          ShiftAmt += isLittleEndian ? SrcBitSize : -SrcBitSize; +          Elt.IntVal |= Tmp; +        } +        TempDst.AggregateVal.push_back(Elt); +      } +    } else { +      // Example: bitcast <2 x i64> <i64 0, i64 1> to <4 x i32> +      unsigned Ratio = DstNum / SrcNum; +      for (unsigned i = 0; i < SrcNum; i++) { +        unsigned ShiftAmt = isLittleEndian ? 0 : DstBitSize * (Ratio - 1); +        for (unsigned j = 0; j < Ratio; j++) { +          GenericValue Elt; +          Elt.IntVal = Elt.IntVal.zext(SrcBitSize); +          Elt.IntVal = TempSrc.AggregateVal[i].IntVal; +          Elt.IntVal.lshrInPlace(ShiftAmt); +          // it could be DstBitSize == SrcBitSize, so check it +          if (DstBitSize < SrcBitSize) +            Elt.IntVal = Elt.IntVal.trunc(DstBitSize); +          ShiftAmt += isLittleEndian ? DstBitSize : -DstBitSize; +          TempDst.AggregateVal.push_back(Elt); +        } +      } +    } + +    // convert result from integer to specified type +    if (isa<VectorType>(DstTy)) { +      if (DstElemTy->isDoubleTy()) { +        Dest.AggregateVal.resize(DstNum); +        for (unsigned i = 0; i < DstNum; i++) +          Dest.AggregateVal[i].DoubleVal = +              TempDst.AggregateVal[i].IntVal.bitsToDouble(); +      } else if (DstElemTy->isFloatTy()) { +        Dest.AggregateVal.resize(DstNum); +        for (unsigned i = 0; i < DstNum; i++) +          Dest.AggregateVal[i].FloatVal = +              TempDst.AggregateVal[i].IntVal.bitsToFloat(); +      } else { +        Dest = TempDst; +      } +    } else { +      if (DstElemTy->isDoubleTy()) +        Dest.DoubleVal = TempDst.AggregateVal[0].IntVal.bitsToDouble(); +      else if (DstElemTy->isFloatTy()) { +        Dest.FloatVal = TempDst.AggregateVal[0].IntVal.bitsToFloat(); +      } else { +        Dest.IntVal = TempDst.AggregateVal[0].IntVal; +      } +    } +  } else { //  if (isa<VectorType>(SrcTy)) || isa<VectorType>(DstTy)) + +    // scalar src bitcast to scalar dst +    if (DstTy->isPointerTy()) { +      assert(SrcTy->isPointerTy() && "Invalid BitCast"); +      Dest.PointerVal = Src.PointerVal; +    } else if (DstTy->isIntegerTy()) { +      if (SrcTy->isFloatTy()) +        Dest.IntVal = APInt::floatToBits(Src.FloatVal); +      else if (SrcTy->isDoubleTy()) { +        Dest.IntVal = APInt::doubleToBits(Src.DoubleVal); +      } else if (SrcTy->isIntegerTy()) { +        Dest.IntVal = Src.IntVal; +      } else { +        llvm_unreachable("Invalid BitCast"); +      } +    } else if (DstTy->isFloatTy()) { +      if (SrcTy->isIntegerTy()) +        Dest.FloatVal = Src.IntVal.bitsToFloat(); +      else { +        Dest.FloatVal = Src.FloatVal; +      } +    } else if (DstTy->isDoubleTy()) { +      if (SrcTy->isIntegerTy()) +        Dest.DoubleVal = Src.IntVal.bitsToDouble(); +      else { +        Dest.DoubleVal = Src.DoubleVal; +      } +    } else { +      llvm_unreachable("Invalid Bitcast"); +    } +  } + +  return Dest; +} + +void Interpreter::visitTruncInst(TruncInst &I) { +  ExecutionContext &SF = ECStack.back(); +  SetValue(&I, executeTruncInst(I.getOperand(0), I.getType(), SF), SF); +} + +void Interpreter::visitSExtInst(SExtInst &I) { +  ExecutionContext &SF = ECStack.back(); +  SetValue(&I, executeSExtInst(I.getOperand(0), I.getType(), SF), SF); +} + +void Interpreter::visitZExtInst(ZExtInst &I) { +  ExecutionContext &SF = ECStack.back(); +  SetValue(&I, executeZExtInst(I.getOperand(0), I.getType(), SF), SF); +} + +void Interpreter::visitFPTruncInst(FPTruncInst &I) { +  ExecutionContext &SF = ECStack.back(); +  SetValue(&I, executeFPTruncInst(I.getOperand(0), I.getType(), SF), SF); +} + +void Interpreter::visitFPExtInst(FPExtInst &I) { +  ExecutionContext &SF = ECStack.back(); +  SetValue(&I, executeFPExtInst(I.getOperand(0), I.getType(), SF), SF); +} + +void Interpreter::visitUIToFPInst(UIToFPInst &I) { +  ExecutionContext &SF = ECStack.back(); +  SetValue(&I, executeUIToFPInst(I.getOperand(0), I.getType(), SF), SF); +} + +void Interpreter::visitSIToFPInst(SIToFPInst &I) { +  ExecutionContext &SF = ECStack.back(); +  SetValue(&I, executeSIToFPInst(I.getOperand(0), I.getType(), SF), SF); +} + +void Interpreter::visitFPToUIInst(FPToUIInst &I) { +  ExecutionContext &SF = ECStack.back(); +  SetValue(&I, executeFPToUIInst(I.getOperand(0), I.getType(), SF), SF); +} + +void Interpreter::visitFPToSIInst(FPToSIInst &I) { +  ExecutionContext &SF = ECStack.back(); +  SetValue(&I, executeFPToSIInst(I.getOperand(0), I.getType(), SF), SF); +} + +void Interpreter::visitPtrToIntInst(PtrToIntInst &I) { +  ExecutionContext &SF = ECStack.back(); +  SetValue(&I, executePtrToIntInst(I.getOperand(0), I.getType(), SF), SF); +} + +void Interpreter::visitIntToPtrInst(IntToPtrInst &I) { +  ExecutionContext &SF = ECStack.back(); +  SetValue(&I, executeIntToPtrInst(I.getOperand(0), I.getType(), SF), SF); +} + +void Interpreter::visitBitCastInst(BitCastInst &I) { +  ExecutionContext &SF = ECStack.back(); +  SetValue(&I, executeBitCastInst(I.getOperand(0), I.getType(), SF), SF); +} + +#define IMPLEMENT_VAARG(TY) \ +   case Type::TY##TyID: Dest.TY##Val = Src.TY##Val; break + +void Interpreter::visitVAArgInst(VAArgInst &I) { +  ExecutionContext &SF = ECStack.back(); + +  // Get the incoming valist parameter.  LLI treats the valist as a +  // (ec-stack-depth var-arg-index) pair. +  GenericValue VAList = getOperandValue(I.getOperand(0), SF); +  GenericValue Dest; +  GenericValue Src = ECStack[VAList.UIntPairVal.first] +                      .VarArgs[VAList.UIntPairVal.second]; +  Type *Ty = I.getType(); +  switch (Ty->getTypeID()) { +  case Type::IntegerTyID: +    Dest.IntVal = Src.IntVal; +    break; +  IMPLEMENT_VAARG(Pointer); +  IMPLEMENT_VAARG(Float); +  IMPLEMENT_VAARG(Double); +  default: +    dbgs() << "Unhandled dest type for vaarg instruction: " << *Ty << "\n"; +    llvm_unreachable(nullptr); +  } + +  // Set the Value of this Instruction. +  SetValue(&I, Dest, SF); + +  // Move the pointer to the next vararg. +  ++VAList.UIntPairVal.second; +} + +void Interpreter::visitExtractElementInst(ExtractElementInst &I) { +  ExecutionContext &SF = ECStack.back(); +  GenericValue Src1 = getOperandValue(I.getOperand(0), SF); +  GenericValue Src2 = getOperandValue(I.getOperand(1), SF); +  GenericValue Dest; + +  Type *Ty = I.getType(); +  const unsigned indx = unsigned(Src2.IntVal.getZExtValue()); + +  if(Src1.AggregateVal.size() > indx) { +    switch (Ty->getTypeID()) { +    default: +      dbgs() << "Unhandled destination type for extractelement instruction: " +      << *Ty << "\n"; +      llvm_unreachable(nullptr); +      break; +    case Type::IntegerTyID: +      Dest.IntVal = Src1.AggregateVal[indx].IntVal; +      break; +    case Type::FloatTyID: +      Dest.FloatVal = Src1.AggregateVal[indx].FloatVal; +      break; +    case Type::DoubleTyID: +      Dest.DoubleVal = Src1.AggregateVal[indx].DoubleVal; +      break; +    } +  } else { +    dbgs() << "Invalid index in extractelement instruction\n"; +  } + +  SetValue(&I, Dest, SF); +} + +void Interpreter::visitInsertElementInst(InsertElementInst &I) { +  ExecutionContext &SF = ECStack.back(); +  VectorType *Ty = cast<VectorType>(I.getType()); + +  GenericValue Src1 = getOperandValue(I.getOperand(0), SF); +  GenericValue Src2 = getOperandValue(I.getOperand(1), SF); +  GenericValue Src3 = getOperandValue(I.getOperand(2), SF); +  GenericValue Dest; + +  Type *TyContained = Ty->getElementType(); + +  const unsigned indx = unsigned(Src3.IntVal.getZExtValue()); +  Dest.AggregateVal = Src1.AggregateVal; + +  if(Src1.AggregateVal.size() <= indx) +      llvm_unreachable("Invalid index in insertelement instruction"); +  switch (TyContained->getTypeID()) { +    default: +      llvm_unreachable("Unhandled dest type for insertelement instruction"); +    case Type::IntegerTyID: +      Dest.AggregateVal[indx].IntVal = Src2.IntVal; +      break; +    case Type::FloatTyID: +      Dest.AggregateVal[indx].FloatVal = Src2.FloatVal; +      break; +    case Type::DoubleTyID: +      Dest.AggregateVal[indx].DoubleVal = Src2.DoubleVal; +      break; +  } +  SetValue(&I, Dest, SF); +} + +void Interpreter::visitShuffleVectorInst(ShuffleVectorInst &I){ +  ExecutionContext &SF = ECStack.back(); + +  VectorType *Ty = cast<VectorType>(I.getType()); + +  GenericValue Src1 = getOperandValue(I.getOperand(0), SF); +  GenericValue Src2 = getOperandValue(I.getOperand(1), SF); +  GenericValue Dest; + +  // There is no need to check types of src1 and src2, because the compiled +  // bytecode can't contain different types for src1 and src2 for a +  // shufflevector instruction. + +  Type *TyContained = Ty->getElementType(); +  unsigned src1Size = (unsigned)Src1.AggregateVal.size(); +  unsigned src2Size = (unsigned)Src2.AggregateVal.size(); +  unsigned src3Size = I.getShuffleMask().size(); + +  Dest.AggregateVal.resize(src3Size); + +  switch (TyContained->getTypeID()) { +    default: +      llvm_unreachable("Unhandled dest type for insertelement instruction"); +      break; +    case Type::IntegerTyID: +      for( unsigned i=0; i<src3Size; i++) { +        unsigned j = std::max(0, I.getMaskValue(i)); +        if(j < src1Size) +          Dest.AggregateVal[i].IntVal = Src1.AggregateVal[j].IntVal; +        else if(j < src1Size + src2Size) +          Dest.AggregateVal[i].IntVal = Src2.AggregateVal[j-src1Size].IntVal; +        else +          // The selector may not be greater than sum of lengths of first and +          // second operands and llasm should not allow situation like +          // %tmp = shufflevector <2 x i32> <i32 3, i32 4>, <2 x i32> undef, +          //                      <2 x i32> < i32 0, i32 5 >, +          // where i32 5 is invalid, but let it be additional check here: +          llvm_unreachable("Invalid mask in shufflevector instruction"); +      } +      break; +    case Type::FloatTyID: +      for( unsigned i=0; i<src3Size; i++) { +        unsigned j = std::max(0, I.getMaskValue(i)); +        if(j < src1Size) +          Dest.AggregateVal[i].FloatVal = Src1.AggregateVal[j].FloatVal; +        else if(j < src1Size + src2Size) +          Dest.AggregateVal[i].FloatVal = Src2.AggregateVal[j-src1Size].FloatVal; +        else +          llvm_unreachable("Invalid mask in shufflevector instruction"); +        } +      break; +    case Type::DoubleTyID: +      for( unsigned i=0; i<src3Size; i++) { +        unsigned j = std::max(0, I.getMaskValue(i)); +        if(j < src1Size) +          Dest.AggregateVal[i].DoubleVal = Src1.AggregateVal[j].DoubleVal; +        else if(j < src1Size + src2Size) +          Dest.AggregateVal[i].DoubleVal = +            Src2.AggregateVal[j-src1Size].DoubleVal; +        else +          llvm_unreachable("Invalid mask in shufflevector instruction"); +      } +      break; +  } +  SetValue(&I, Dest, SF); +} + +void Interpreter::visitExtractValueInst(ExtractValueInst &I) { +  ExecutionContext &SF = ECStack.back(); +  Value *Agg = I.getAggregateOperand(); +  GenericValue Dest; +  GenericValue Src = getOperandValue(Agg, SF); + +  ExtractValueInst::idx_iterator IdxBegin = I.idx_begin(); +  unsigned Num = I.getNumIndices(); +  GenericValue *pSrc = &Src; + +  for (unsigned i = 0 ; i < Num; ++i) { +    pSrc = &pSrc->AggregateVal[*IdxBegin]; +    ++IdxBegin; +  } + +  Type *IndexedType = ExtractValueInst::getIndexedType(Agg->getType(), I.getIndices()); +  switch (IndexedType->getTypeID()) { +    default: +      llvm_unreachable("Unhandled dest type for extractelement instruction"); +    break; +    case Type::IntegerTyID: +      Dest.IntVal = pSrc->IntVal; +    break; +    case Type::FloatTyID: +      Dest.FloatVal = pSrc->FloatVal; +    break; +    case Type::DoubleTyID: +      Dest.DoubleVal = pSrc->DoubleVal; +    break; +    case Type::ArrayTyID: +    case Type::StructTyID: +    case Type::FixedVectorTyID: +    case Type::ScalableVectorTyID: +      Dest.AggregateVal = pSrc->AggregateVal; +    break; +    case Type::PointerTyID: +      Dest.PointerVal = pSrc->PointerVal; +    break; +  } + +  SetValue(&I, Dest, SF); +} + +void Interpreter::visitInsertValueInst(InsertValueInst &I) { + +  ExecutionContext &SF = ECStack.back(); +  Value *Agg = I.getAggregateOperand(); + +  GenericValue Src1 = getOperandValue(Agg, SF); +  GenericValue Src2 = getOperandValue(I.getOperand(1), SF); +  GenericValue Dest = Src1; // Dest is a slightly changed Src1 + +  ExtractValueInst::idx_iterator IdxBegin = I.idx_begin(); +  unsigned Num = I.getNumIndices(); + +  GenericValue *pDest = &Dest; +  for (unsigned i = 0 ; i < Num; ++i) { +    pDest = &pDest->AggregateVal[*IdxBegin]; +    ++IdxBegin; +  } +  // pDest points to the target value in the Dest now + +  Type *IndexedType = ExtractValueInst::getIndexedType(Agg->getType(), I.getIndices()); + +  switch (IndexedType->getTypeID()) { +    default: +      llvm_unreachable("Unhandled dest type for insertelement instruction"); +    break; +    case Type::IntegerTyID: +      pDest->IntVal = Src2.IntVal; +    break; +    case Type::FloatTyID: +      pDest->FloatVal = Src2.FloatVal; +    break; +    case Type::DoubleTyID: +      pDest->DoubleVal = Src2.DoubleVal; +    break; +    case Type::ArrayTyID: +    case Type::StructTyID: +    case Type::FixedVectorTyID: +    case Type::ScalableVectorTyID: +      pDest->AggregateVal = Src2.AggregateVal; +    break; +    case Type::PointerTyID: +      pDest->PointerVal = Src2.PointerVal; +    break; +  } + +  SetValue(&I, Dest, SF); +} + +GenericValue Interpreter::getConstantExprValue (ConstantExpr *CE, +                                                ExecutionContext &SF) { +  switch (CE->getOpcode()) { +  case Instruction::Trunc: +      return executeTruncInst(CE->getOperand(0), CE->getType(), SF); +  case Instruction::ZExt: +      return executeZExtInst(CE->getOperand(0), CE->getType(), SF); +  case Instruction::SExt: +      return executeSExtInst(CE->getOperand(0), CE->getType(), SF); +  case Instruction::FPTrunc: +      return executeFPTruncInst(CE->getOperand(0), CE->getType(), SF); +  case Instruction::FPExt: +      return executeFPExtInst(CE->getOperand(0), CE->getType(), SF); +  case Instruction::UIToFP: +      return executeUIToFPInst(CE->getOperand(0), CE->getType(), SF); +  case Instruction::SIToFP: +      return executeSIToFPInst(CE->getOperand(0), CE->getType(), SF); +  case Instruction::FPToUI: +      return executeFPToUIInst(CE->getOperand(0), CE->getType(), SF); +  case Instruction::FPToSI: +      return executeFPToSIInst(CE->getOperand(0), CE->getType(), SF); +  case Instruction::PtrToInt: +      return executePtrToIntInst(CE->getOperand(0), CE->getType(), SF); +  case Instruction::IntToPtr: +      return executeIntToPtrInst(CE->getOperand(0), CE->getType(), SF); +  case Instruction::BitCast: +      return executeBitCastInst(CE->getOperand(0), CE->getType(), SF); +  case Instruction::GetElementPtr: +    return executeGEPOperation(CE->getOperand(0), gep_type_begin(CE), +                               gep_type_end(CE), SF); +  case Instruction::FCmp: +  case Instruction::ICmp: +    return executeCmpInst(CE->getPredicate(), +                          getOperandValue(CE->getOperand(0), SF), +                          getOperandValue(CE->getOperand(1), SF), +                          CE->getOperand(0)->getType()); +  case Instruction::Select: +    return executeSelectInst(getOperandValue(CE->getOperand(0), SF), +                             getOperandValue(CE->getOperand(1), SF), +                             getOperandValue(CE->getOperand(2), SF), +                             CE->getOperand(0)->getType()); +  default : +    break; +  } + +  // The cases below here require a GenericValue parameter for the result +  // so we initialize one, compute it and then return it. +  GenericValue Op0 = getOperandValue(CE->getOperand(0), SF); +  GenericValue Op1 = getOperandValue(CE->getOperand(1), SF); +  GenericValue Dest; +  Type * Ty = CE->getOperand(0)->getType(); +  switch (CE->getOpcode()) { +  case Instruction::Add:  Dest.IntVal = Op0.IntVal + Op1.IntVal; break; +  case Instruction::Sub:  Dest.IntVal = Op0.IntVal - Op1.IntVal; break; +  case Instruction::Mul:  Dest.IntVal = Op0.IntVal * Op1.IntVal; break; +  case Instruction::FAdd: executeFAddInst(Dest, Op0, Op1, Ty); break; +  case Instruction::FSub: executeFSubInst(Dest, Op0, Op1, Ty); break; +  case Instruction::FMul: executeFMulInst(Dest, Op0, Op1, Ty); break; +  case Instruction::FDiv: executeFDivInst(Dest, Op0, Op1, Ty); break; +  case Instruction::FRem: executeFRemInst(Dest, Op0, Op1, Ty); break; +  case Instruction::SDiv: Dest.IntVal = Op0.IntVal.sdiv(Op1.IntVal); break; +  case Instruction::UDiv: Dest.IntVal = Op0.IntVal.udiv(Op1.IntVal); break; +  case Instruction::URem: Dest.IntVal = Op0.IntVal.urem(Op1.IntVal); break; +  case Instruction::SRem: Dest.IntVal = Op0.IntVal.srem(Op1.IntVal); break; +  case Instruction::And:  Dest.IntVal = Op0.IntVal & Op1.IntVal; break; +  case Instruction::Or:   Dest.IntVal = Op0.IntVal | Op1.IntVal; break; +  case Instruction::Xor:  Dest.IntVal = Op0.IntVal ^ Op1.IntVal; break; +  case Instruction::Shl: +    Dest.IntVal = Op0.IntVal.shl(Op1.IntVal.getZExtValue()); +    break; +  case Instruction::LShr: +    Dest.IntVal = Op0.IntVal.lshr(Op1.IntVal.getZExtValue()); +    break; +  case Instruction::AShr: +    Dest.IntVal = Op0.IntVal.ashr(Op1.IntVal.getZExtValue()); +    break; +  default: +    dbgs() << "Unhandled ConstantExpr: " << *CE << "\n"; +    llvm_unreachable("Unhandled ConstantExpr"); +  } +  return Dest; +} + +GenericValue Interpreter::getOperandValue(Value *V, ExecutionContext &SF) { +  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) { +    return getConstantExprValue(CE, SF); +  } else if (Constant *CPV = dyn_cast<Constant>(V)) { +    return getConstantValue(CPV); +  } else if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) { +    return PTOGV(getPointerToGlobal(GV)); +  } else { +    return SF.Values[V]; +  } +} + +//===----------------------------------------------------------------------===// +//                        Dispatch and Execution Code +//===----------------------------------------------------------------------===// + +//===----------------------------------------------------------------------===// +// callFunction - Execute the specified function... +// +void Interpreter::callFunction(Function *F, ArrayRef<GenericValue> ArgVals) { +  assert((ECStack.empty() || !ECStack.back().Caller || +          ECStack.back().Caller->arg_size() == ArgVals.size()) && +         "Incorrect number of arguments passed into function call!"); +  // Make a new stack frame... and fill it in. +  ECStack.emplace_back(); +  ExecutionContext &StackFrame = ECStack.back(); +  StackFrame.CurFunction = F; + +  // Special handling for external functions. +  if (F->isDeclaration()) { +    GenericValue Result = callExternalFunction (F, ArgVals); +    // Simulate a 'ret' instruction of the appropriate type. +    popStackAndReturnValueToCaller (F->getReturnType (), Result); +    return; +  } + +  // Get pointers to first LLVM BB & Instruction in function. +  StackFrame.CurBB     = &F->front(); +  StackFrame.CurInst   = StackFrame.CurBB->begin(); + +  // Run through the function arguments and initialize their values... +  assert((ArgVals.size() == F->arg_size() || +         (ArgVals.size() > F->arg_size() && F->getFunctionType()->isVarArg()))&& +         "Invalid number of values passed to function invocation!"); + +  // Handle non-varargs arguments... +  unsigned i = 0; +  for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end(); +       AI != E; ++AI, ++i) +    SetValue(&*AI, ArgVals[i], StackFrame); + +  // Handle varargs arguments... +  StackFrame.VarArgs.assign(ArgVals.begin()+i, ArgVals.end()); +} + + +void Interpreter::run() { +  while (!ECStack.empty()) { +    // Interpret a single instruction & increment the "PC". +    ExecutionContext &SF = ECStack.back();  // Current stack frame +    Instruction &I = *SF.CurInst++;         // Increment before execute + +    // Track the number of dynamic instructions executed. +    ++NumDynamicInsts; + +    LLVM_DEBUG(dbgs() << "About to interpret: " << I << "\n"); +    visit(I);   // Dispatch to one of the visit* methods... +  } +}  | 
