aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm-project/llvm/lib/IR/Function.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm-project/llvm/lib/IR/Function.cpp')
-rw-r--r--contrib/llvm-project/llvm/lib/IR/Function.cpp2144
1 files changed, 2144 insertions, 0 deletions
diff --git a/contrib/llvm-project/llvm/lib/IR/Function.cpp b/contrib/llvm-project/llvm/lib/IR/Function.cpp
new file mode 100644
index 000000000000..677db46124e4
--- /dev/null
+++ b/contrib/llvm-project/llvm/lib/IR/Function.cpp
@@ -0,0 +1,2144 @@
+//===- Function.cpp - Implement the Global object classes -----------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the Function class for the IR library.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/IR/Function.h"
+#include "SymbolTableListTraitsImpl.h"
+#include "llvm/ADT/ArrayRef.h"
+#include "llvm/ADT/DenseSet.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/SmallString.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/StringExtras.h"
+#include "llvm/ADT/StringRef.h"
+#include "llvm/IR/AbstractCallSite.h"
+#include "llvm/IR/Argument.h"
+#include "llvm/IR/Attributes.h"
+#include "llvm/IR/BasicBlock.h"
+#include "llvm/IR/Constant.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/GlobalValue.h"
+#include "llvm/IR/InstIterator.h"
+#include "llvm/IR/Instruction.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/Intrinsics.h"
+#include "llvm/IR/IntrinsicsAArch64.h"
+#include "llvm/IR/IntrinsicsAMDGPU.h"
+#include "llvm/IR/IntrinsicsARM.h"
+#include "llvm/IR/IntrinsicsBPF.h"
+#include "llvm/IR/IntrinsicsDirectX.h"
+#include "llvm/IR/IntrinsicsHexagon.h"
+#include "llvm/IR/IntrinsicsMips.h"
+#include "llvm/IR/IntrinsicsNVPTX.h"
+#include "llvm/IR/IntrinsicsPowerPC.h"
+#include "llvm/IR/IntrinsicsR600.h"
+#include "llvm/IR/IntrinsicsRISCV.h"
+#include "llvm/IR/IntrinsicsS390.h"
+#include "llvm/IR/IntrinsicsVE.h"
+#include "llvm/IR/IntrinsicsWebAssembly.h"
+#include "llvm/IR/IntrinsicsX86.h"
+#include "llvm/IR/IntrinsicsXCore.h"
+#include "llvm/IR/LLVMContext.h"
+#include "llvm/IR/MDBuilder.h"
+#include "llvm/IR/Metadata.h"
+#include "llvm/IR/Module.h"
+#include "llvm/IR/Operator.h"
+#include "llvm/IR/SymbolTableListTraits.h"
+#include "llvm/IR/Type.h"
+#include "llvm/IR/Use.h"
+#include "llvm/IR/User.h"
+#include "llvm/IR/Value.h"
+#include "llvm/IR/ValueSymbolTable.h"
+#include "llvm/Support/Casting.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Compiler.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/ModRef.h"
+#include <cassert>
+#include <cstddef>
+#include <cstdint>
+#include <cstring>
+#include <string>
+
+using namespace llvm;
+using ProfileCount = Function::ProfileCount;
+
+// Explicit instantiations of SymbolTableListTraits since some of the methods
+// are not in the public header file...
+template class llvm::SymbolTableListTraits<BasicBlock>;
+
+static cl::opt<unsigned> NonGlobalValueMaxNameSize(
+ "non-global-value-max-name-size", cl::Hidden, cl::init(1024),
+ cl::desc("Maximum size for the name of non-global values."));
+
+//===----------------------------------------------------------------------===//
+// Argument Implementation
+//===----------------------------------------------------------------------===//
+
+Argument::Argument(Type *Ty, const Twine &Name, Function *Par, unsigned ArgNo)
+ : Value(Ty, Value::ArgumentVal), Parent(Par), ArgNo(ArgNo) {
+ setName(Name);
+}
+
+void Argument::setParent(Function *parent) {
+ Parent = parent;
+}
+
+bool Argument::hasNonNullAttr(bool AllowUndefOrPoison) const {
+ if (!getType()->isPointerTy()) return false;
+ if (getParent()->hasParamAttribute(getArgNo(), Attribute::NonNull) &&
+ (AllowUndefOrPoison ||
+ getParent()->hasParamAttribute(getArgNo(), Attribute::NoUndef)))
+ return true;
+ else if (getDereferenceableBytes() > 0 &&
+ !NullPointerIsDefined(getParent(),
+ getType()->getPointerAddressSpace()))
+ return true;
+ return false;
+}
+
+bool Argument::hasByValAttr() const {
+ if (!getType()->isPointerTy()) return false;
+ return hasAttribute(Attribute::ByVal);
+}
+
+bool Argument::hasByRefAttr() const {
+ if (!getType()->isPointerTy())
+ return false;
+ return hasAttribute(Attribute::ByRef);
+}
+
+bool Argument::hasSwiftSelfAttr() const {
+ return getParent()->hasParamAttribute(getArgNo(), Attribute::SwiftSelf);
+}
+
+bool Argument::hasSwiftErrorAttr() const {
+ return getParent()->hasParamAttribute(getArgNo(), Attribute::SwiftError);
+}
+
+bool Argument::hasInAllocaAttr() const {
+ if (!getType()->isPointerTy()) return false;
+ return hasAttribute(Attribute::InAlloca);
+}
+
+bool Argument::hasPreallocatedAttr() const {
+ if (!getType()->isPointerTy())
+ return false;
+ return hasAttribute(Attribute::Preallocated);
+}
+
+bool Argument::hasPassPointeeByValueCopyAttr() const {
+ if (!getType()->isPointerTy()) return false;
+ AttributeList Attrs = getParent()->getAttributes();
+ return Attrs.hasParamAttr(getArgNo(), Attribute::ByVal) ||
+ Attrs.hasParamAttr(getArgNo(), Attribute::InAlloca) ||
+ Attrs.hasParamAttr(getArgNo(), Attribute::Preallocated);
+}
+
+bool Argument::hasPointeeInMemoryValueAttr() const {
+ if (!getType()->isPointerTy())
+ return false;
+ AttributeList Attrs = getParent()->getAttributes();
+ return Attrs.hasParamAttr(getArgNo(), Attribute::ByVal) ||
+ Attrs.hasParamAttr(getArgNo(), Attribute::StructRet) ||
+ Attrs.hasParamAttr(getArgNo(), Attribute::InAlloca) ||
+ Attrs.hasParamAttr(getArgNo(), Attribute::Preallocated) ||
+ Attrs.hasParamAttr(getArgNo(), Attribute::ByRef);
+}
+
+/// For a byval, sret, inalloca, or preallocated parameter, get the in-memory
+/// parameter type.
+static Type *getMemoryParamAllocType(AttributeSet ParamAttrs) {
+ // FIXME: All the type carrying attributes are mutually exclusive, so there
+ // should be a single query to get the stored type that handles any of them.
+ if (Type *ByValTy = ParamAttrs.getByValType())
+ return ByValTy;
+ if (Type *ByRefTy = ParamAttrs.getByRefType())
+ return ByRefTy;
+ if (Type *PreAllocTy = ParamAttrs.getPreallocatedType())
+ return PreAllocTy;
+ if (Type *InAllocaTy = ParamAttrs.getInAllocaType())
+ return InAllocaTy;
+ if (Type *SRetTy = ParamAttrs.getStructRetType())
+ return SRetTy;
+
+ return nullptr;
+}
+
+uint64_t Argument::getPassPointeeByValueCopySize(const DataLayout &DL) const {
+ AttributeSet ParamAttrs =
+ getParent()->getAttributes().getParamAttrs(getArgNo());
+ if (Type *MemTy = getMemoryParamAllocType(ParamAttrs))
+ return DL.getTypeAllocSize(MemTy);
+ return 0;
+}
+
+Type *Argument::getPointeeInMemoryValueType() const {
+ AttributeSet ParamAttrs =
+ getParent()->getAttributes().getParamAttrs(getArgNo());
+ return getMemoryParamAllocType(ParamAttrs);
+}
+
+MaybeAlign Argument::getParamAlign() const {
+ assert(getType()->isPointerTy() && "Only pointers have alignments");
+ return getParent()->getParamAlign(getArgNo());
+}
+
+MaybeAlign Argument::getParamStackAlign() const {
+ return getParent()->getParamStackAlign(getArgNo());
+}
+
+Type *Argument::getParamByValType() const {
+ assert(getType()->isPointerTy() && "Only pointers have byval types");
+ return getParent()->getParamByValType(getArgNo());
+}
+
+Type *Argument::getParamStructRetType() const {
+ assert(getType()->isPointerTy() && "Only pointers have sret types");
+ return getParent()->getParamStructRetType(getArgNo());
+}
+
+Type *Argument::getParamByRefType() const {
+ assert(getType()->isPointerTy() && "Only pointers have byref types");
+ return getParent()->getParamByRefType(getArgNo());
+}
+
+Type *Argument::getParamInAllocaType() const {
+ assert(getType()->isPointerTy() && "Only pointers have inalloca types");
+ return getParent()->getParamInAllocaType(getArgNo());
+}
+
+uint64_t Argument::getDereferenceableBytes() const {
+ assert(getType()->isPointerTy() &&
+ "Only pointers have dereferenceable bytes");
+ return getParent()->getParamDereferenceableBytes(getArgNo());
+}
+
+uint64_t Argument::getDereferenceableOrNullBytes() const {
+ assert(getType()->isPointerTy() &&
+ "Only pointers have dereferenceable bytes");
+ return getParent()->getParamDereferenceableOrNullBytes(getArgNo());
+}
+
+bool Argument::hasNestAttr() const {
+ if (!getType()->isPointerTy()) return false;
+ return hasAttribute(Attribute::Nest);
+}
+
+bool Argument::hasNoAliasAttr() const {
+ if (!getType()->isPointerTy()) return false;
+ return hasAttribute(Attribute::NoAlias);
+}
+
+bool Argument::hasNoCaptureAttr() const {
+ if (!getType()->isPointerTy()) return false;
+ return hasAttribute(Attribute::NoCapture);
+}
+
+bool Argument::hasNoFreeAttr() const {
+ if (!getType()->isPointerTy()) return false;
+ return hasAttribute(Attribute::NoFree);
+}
+
+bool Argument::hasStructRetAttr() const {
+ if (!getType()->isPointerTy()) return false;
+ return hasAttribute(Attribute::StructRet);
+}
+
+bool Argument::hasInRegAttr() const {
+ return hasAttribute(Attribute::InReg);
+}
+
+bool Argument::hasReturnedAttr() const {
+ return hasAttribute(Attribute::Returned);
+}
+
+bool Argument::hasZExtAttr() const {
+ return hasAttribute(Attribute::ZExt);
+}
+
+bool Argument::hasSExtAttr() const {
+ return hasAttribute(Attribute::SExt);
+}
+
+bool Argument::onlyReadsMemory() const {
+ AttributeList Attrs = getParent()->getAttributes();
+ return Attrs.hasParamAttr(getArgNo(), Attribute::ReadOnly) ||
+ Attrs.hasParamAttr(getArgNo(), Attribute::ReadNone);
+}
+
+void Argument::addAttrs(AttrBuilder &B) {
+ AttributeList AL = getParent()->getAttributes();
+ AL = AL.addParamAttributes(Parent->getContext(), getArgNo(), B);
+ getParent()->setAttributes(AL);
+}
+
+void Argument::addAttr(Attribute::AttrKind Kind) {
+ getParent()->addParamAttr(getArgNo(), Kind);
+}
+
+void Argument::addAttr(Attribute Attr) {
+ getParent()->addParamAttr(getArgNo(), Attr);
+}
+
+void Argument::removeAttr(Attribute::AttrKind Kind) {
+ getParent()->removeParamAttr(getArgNo(), Kind);
+}
+
+void Argument::removeAttrs(const AttributeMask &AM) {
+ AttributeList AL = getParent()->getAttributes();
+ AL = AL.removeParamAttributes(Parent->getContext(), getArgNo(), AM);
+ getParent()->setAttributes(AL);
+}
+
+bool Argument::hasAttribute(Attribute::AttrKind Kind) const {
+ return getParent()->hasParamAttribute(getArgNo(), Kind);
+}
+
+Attribute Argument::getAttribute(Attribute::AttrKind Kind) const {
+ return getParent()->getParamAttribute(getArgNo(), Kind);
+}
+
+//===----------------------------------------------------------------------===//
+// Helper Methods in Function
+//===----------------------------------------------------------------------===//
+
+LLVMContext &Function::getContext() const {
+ return getType()->getContext();
+}
+
+unsigned Function::getInstructionCount() const {
+ unsigned NumInstrs = 0;
+ for (const BasicBlock &BB : BasicBlocks)
+ NumInstrs += std::distance(BB.instructionsWithoutDebug().begin(),
+ BB.instructionsWithoutDebug().end());
+ return NumInstrs;
+}
+
+Function *Function::Create(FunctionType *Ty, LinkageTypes Linkage,
+ const Twine &N, Module &M) {
+ return Create(Ty, Linkage, M.getDataLayout().getProgramAddressSpace(), N, &M);
+}
+
+Function *Function::createWithDefaultAttr(FunctionType *Ty,
+ LinkageTypes Linkage,
+ unsigned AddrSpace, const Twine &N,
+ Module *M) {
+ auto *F = new Function(Ty, Linkage, AddrSpace, N, M);
+ AttrBuilder B(F->getContext());
+ UWTableKind UWTable = M->getUwtable();
+ if (UWTable != UWTableKind::None)
+ B.addUWTableAttr(UWTable);
+ switch (M->getFramePointer()) {
+ case FramePointerKind::None:
+ // 0 ("none") is the default.
+ break;
+ case FramePointerKind::NonLeaf:
+ B.addAttribute("frame-pointer", "non-leaf");
+ break;
+ case FramePointerKind::All:
+ B.addAttribute("frame-pointer", "all");
+ break;
+ }
+ if (M->getModuleFlag("function_return_thunk_extern"))
+ B.addAttribute(Attribute::FnRetThunkExtern);
+ F->addFnAttrs(B);
+ return F;
+}
+
+void Function::removeFromParent() {
+ getParent()->getFunctionList().remove(getIterator());
+}
+
+void Function::eraseFromParent() {
+ getParent()->getFunctionList().erase(getIterator());
+}
+
+void Function::splice(Function::iterator ToIt, Function *FromF,
+ Function::iterator FromBeginIt,
+ Function::iterator FromEndIt) {
+#ifdef EXPENSIVE_CHECKS
+ // Check that FromBeginIt is before FromEndIt.
+ auto FromFEnd = FromF->end();
+ for (auto It = FromBeginIt; It != FromEndIt; ++It)
+ assert(It != FromFEnd && "FromBeginIt not before FromEndIt!");
+#endif // EXPENSIVE_CHECKS
+ BasicBlocks.splice(ToIt, FromF->BasicBlocks, FromBeginIt, FromEndIt);
+}
+
+Function::iterator Function::erase(Function::iterator FromIt,
+ Function::iterator ToIt) {
+ return BasicBlocks.erase(FromIt, ToIt);
+}
+
+//===----------------------------------------------------------------------===//
+// Function Implementation
+//===----------------------------------------------------------------------===//
+
+static unsigned computeAddrSpace(unsigned AddrSpace, Module *M) {
+ // If AS == -1 and we are passed a valid module pointer we place the function
+ // in the program address space. Otherwise we default to AS0.
+ if (AddrSpace == static_cast<unsigned>(-1))
+ return M ? M->getDataLayout().getProgramAddressSpace() : 0;
+ return AddrSpace;
+}
+
+Function::Function(FunctionType *Ty, LinkageTypes Linkage, unsigned AddrSpace,
+ const Twine &name, Module *ParentModule)
+ : GlobalObject(Ty, Value::FunctionVal,
+ OperandTraits<Function>::op_begin(this), 0, Linkage, name,
+ computeAddrSpace(AddrSpace, ParentModule)),
+ NumArgs(Ty->getNumParams()) {
+ assert(FunctionType::isValidReturnType(getReturnType()) &&
+ "invalid return type");
+ setGlobalObjectSubClassData(0);
+
+ // We only need a symbol table for a function if the context keeps value names
+ if (!getContext().shouldDiscardValueNames())
+ SymTab = std::make_unique<ValueSymbolTable>(NonGlobalValueMaxNameSize);
+
+ // If the function has arguments, mark them as lazily built.
+ if (Ty->getNumParams())
+ setValueSubclassData(1); // Set the "has lazy arguments" bit.
+
+ if (ParentModule)
+ ParentModule->getFunctionList().push_back(this);
+
+ HasLLVMReservedName = getName().startswith("llvm.");
+ // Ensure intrinsics have the right parameter attributes.
+ // Note, the IntID field will have been set in Value::setName if this function
+ // name is a valid intrinsic ID.
+ if (IntID)
+ setAttributes(Intrinsic::getAttributes(getContext(), IntID));
+}
+
+Function::~Function() {
+ dropAllReferences(); // After this it is safe to delete instructions.
+
+ // Delete all of the method arguments and unlink from symbol table...
+ if (Arguments)
+ clearArguments();
+
+ // Remove the function from the on-the-side GC table.
+ clearGC();
+}
+
+void Function::BuildLazyArguments() const {
+ // Create the arguments vector, all arguments start out unnamed.
+ auto *FT = getFunctionType();
+ if (NumArgs > 0) {
+ Arguments = std::allocator<Argument>().allocate(NumArgs);
+ for (unsigned i = 0, e = NumArgs; i != e; ++i) {
+ Type *ArgTy = FT->getParamType(i);
+ assert(!ArgTy->isVoidTy() && "Cannot have void typed arguments!");
+ new (Arguments + i) Argument(ArgTy, "", const_cast<Function *>(this), i);
+ }
+ }
+
+ // Clear the lazy arguments bit.
+ unsigned SDC = getSubclassDataFromValue();
+ SDC &= ~(1 << 0);
+ const_cast<Function*>(this)->setValueSubclassData(SDC);
+ assert(!hasLazyArguments());
+}
+
+static MutableArrayRef<Argument> makeArgArray(Argument *Args, size_t Count) {
+ return MutableArrayRef<Argument>(Args, Count);
+}
+
+bool Function::isConstrainedFPIntrinsic() const {
+ switch (getIntrinsicID()) {
+#define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC) \
+ case Intrinsic::INTRINSIC:
+#include "llvm/IR/ConstrainedOps.def"
+ return true;
+#undef INSTRUCTION
+ default:
+ return false;
+ }
+}
+
+void Function::clearArguments() {
+ for (Argument &A : makeArgArray(Arguments, NumArgs)) {
+ A.setName("");
+ A.~Argument();
+ }
+ std::allocator<Argument>().deallocate(Arguments, NumArgs);
+ Arguments = nullptr;
+}
+
+void Function::stealArgumentListFrom(Function &Src) {
+ assert(isDeclaration() && "Expected no references to current arguments");
+
+ // Drop the current arguments, if any, and set the lazy argument bit.
+ if (!hasLazyArguments()) {
+ assert(llvm::all_of(makeArgArray(Arguments, NumArgs),
+ [](const Argument &A) { return A.use_empty(); }) &&
+ "Expected arguments to be unused in declaration");
+ clearArguments();
+ setValueSubclassData(getSubclassDataFromValue() | (1 << 0));
+ }
+
+ // Nothing to steal if Src has lazy arguments.
+ if (Src.hasLazyArguments())
+ return;
+
+ // Steal arguments from Src, and fix the lazy argument bits.
+ assert(arg_size() == Src.arg_size());
+ Arguments = Src.Arguments;
+ Src.Arguments = nullptr;
+ for (Argument &A : makeArgArray(Arguments, NumArgs)) {
+ // FIXME: This does the work of transferNodesFromList inefficiently.
+ SmallString<128> Name;
+ if (A.hasName())
+ Name = A.getName();
+ if (!Name.empty())
+ A.setName("");
+ A.setParent(this);
+ if (!Name.empty())
+ A.setName(Name);
+ }
+
+ setValueSubclassData(getSubclassDataFromValue() & ~(1 << 0));
+ assert(!hasLazyArguments());
+ Src.setValueSubclassData(Src.getSubclassDataFromValue() | (1 << 0));
+}
+
+// dropAllReferences() - This function causes all the subinstructions to "let
+// go" of all references that they are maintaining. This allows one to
+// 'delete' a whole class at a time, even though there may be circular
+// references... first all references are dropped, and all use counts go to
+// zero. Then everything is deleted for real. Note that no operations are
+// valid on an object that has "dropped all references", except operator
+// delete.
+//
+void Function::dropAllReferences() {
+ setIsMaterializable(false);
+
+ for (BasicBlock &BB : *this)
+ BB.dropAllReferences();
+
+ // Delete all basic blocks. They are now unused, except possibly by
+ // blockaddresses, but BasicBlock's destructor takes care of those.
+ while (!BasicBlocks.empty())
+ BasicBlocks.begin()->eraseFromParent();
+
+ // Drop uses of any optional data (real or placeholder).
+ if (getNumOperands()) {
+ User::dropAllReferences();
+ setNumHungOffUseOperands(0);
+ setValueSubclassData(getSubclassDataFromValue() & ~0xe);
+ }
+
+ // Metadata is stored in a side-table.
+ clearMetadata();
+}
+
+void Function::addAttributeAtIndex(unsigned i, Attribute Attr) {
+ AttributeSets = AttributeSets.addAttributeAtIndex(getContext(), i, Attr);
+}
+
+void Function::addFnAttr(Attribute::AttrKind Kind) {
+ AttributeSets = AttributeSets.addFnAttribute(getContext(), Kind);
+}
+
+void Function::addFnAttr(StringRef Kind, StringRef Val) {
+ AttributeSets = AttributeSets.addFnAttribute(getContext(), Kind, Val);
+}
+
+void Function::addFnAttr(Attribute Attr) {
+ AttributeSets = AttributeSets.addFnAttribute(getContext(), Attr);
+}
+
+void Function::addFnAttrs(const AttrBuilder &Attrs) {
+ AttributeSets = AttributeSets.addFnAttributes(getContext(), Attrs);
+}
+
+void Function::addRetAttr(Attribute::AttrKind Kind) {
+ AttributeSets = AttributeSets.addRetAttribute(getContext(), Kind);
+}
+
+void Function::addRetAttr(Attribute Attr) {
+ AttributeSets = AttributeSets.addRetAttribute(getContext(), Attr);
+}
+
+void Function::addRetAttrs(const AttrBuilder &Attrs) {
+ AttributeSets = AttributeSets.addRetAttributes(getContext(), Attrs);
+}
+
+void Function::addParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) {
+ AttributeSets = AttributeSets.addParamAttribute(getContext(), ArgNo, Kind);
+}
+
+void Function::addParamAttr(unsigned ArgNo, Attribute Attr) {
+ AttributeSets = AttributeSets.addParamAttribute(getContext(), ArgNo, Attr);
+}
+
+void Function::addParamAttrs(unsigned ArgNo, const AttrBuilder &Attrs) {
+ AttributeSets = AttributeSets.addParamAttributes(getContext(), ArgNo, Attrs);
+}
+
+void Function::removeAttributeAtIndex(unsigned i, Attribute::AttrKind Kind) {
+ AttributeSets = AttributeSets.removeAttributeAtIndex(getContext(), i, Kind);
+}
+
+void Function::removeAttributeAtIndex(unsigned i, StringRef Kind) {
+ AttributeSets = AttributeSets.removeAttributeAtIndex(getContext(), i, Kind);
+}
+
+void Function::removeFnAttr(Attribute::AttrKind Kind) {
+ AttributeSets = AttributeSets.removeFnAttribute(getContext(), Kind);
+}
+
+void Function::removeFnAttr(StringRef Kind) {
+ AttributeSets = AttributeSets.removeFnAttribute(getContext(), Kind);
+}
+
+void Function::removeFnAttrs(const AttributeMask &AM) {
+ AttributeSets = AttributeSets.removeFnAttributes(getContext(), AM);
+}
+
+void Function::removeRetAttr(Attribute::AttrKind Kind) {
+ AttributeSets = AttributeSets.removeRetAttribute(getContext(), Kind);
+}
+
+void Function::removeRetAttr(StringRef Kind) {
+ AttributeSets = AttributeSets.removeRetAttribute(getContext(), Kind);
+}
+
+void Function::removeRetAttrs(const AttributeMask &Attrs) {
+ AttributeSets = AttributeSets.removeRetAttributes(getContext(), Attrs);
+}
+
+void Function::removeParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) {
+ AttributeSets = AttributeSets.removeParamAttribute(getContext(), ArgNo, Kind);
+}
+
+void Function::removeParamAttr(unsigned ArgNo, StringRef Kind) {
+ AttributeSets = AttributeSets.removeParamAttribute(getContext(), ArgNo, Kind);
+}
+
+void Function::removeParamAttrs(unsigned ArgNo, const AttributeMask &Attrs) {
+ AttributeSets =
+ AttributeSets.removeParamAttributes(getContext(), ArgNo, Attrs);
+}
+
+void Function::addDereferenceableParamAttr(unsigned ArgNo, uint64_t Bytes) {
+ AttributeSets =
+ AttributeSets.addDereferenceableParamAttr(getContext(), ArgNo, Bytes);
+}
+
+bool Function::hasFnAttribute(Attribute::AttrKind Kind) const {
+ return AttributeSets.hasFnAttr(Kind);
+}
+
+bool Function::hasFnAttribute(StringRef Kind) const {
+ return AttributeSets.hasFnAttr(Kind);
+}
+
+bool Function::hasRetAttribute(Attribute::AttrKind Kind) const {
+ return AttributeSets.hasRetAttr(Kind);
+}
+
+bool Function::hasParamAttribute(unsigned ArgNo,
+ Attribute::AttrKind Kind) const {
+ return AttributeSets.hasParamAttr(ArgNo, Kind);
+}
+
+Attribute Function::getAttributeAtIndex(unsigned i,
+ Attribute::AttrKind Kind) const {
+ return AttributeSets.getAttributeAtIndex(i, Kind);
+}
+
+Attribute Function::getAttributeAtIndex(unsigned i, StringRef Kind) const {
+ return AttributeSets.getAttributeAtIndex(i, Kind);
+}
+
+Attribute Function::getFnAttribute(Attribute::AttrKind Kind) const {
+ return AttributeSets.getFnAttr(Kind);
+}
+
+Attribute Function::getFnAttribute(StringRef Kind) const {
+ return AttributeSets.getFnAttr(Kind);
+}
+
+uint64_t Function::getFnAttributeAsParsedInteger(StringRef Name,
+ uint64_t Default) const {
+ Attribute A = getFnAttribute(Name);
+ uint64_t Result = Default;
+ if (A.isStringAttribute()) {
+ StringRef Str = A.getValueAsString();
+ if (Str.getAsInteger(0, Result))
+ getContext().emitError("cannot parse integer attribute " + Name);
+ }
+
+ return Result;
+}
+
+/// gets the specified attribute from the list of attributes.
+Attribute Function::getParamAttribute(unsigned ArgNo,
+ Attribute::AttrKind Kind) const {
+ return AttributeSets.getParamAttr(ArgNo, Kind);
+}
+
+void Function::addDereferenceableOrNullParamAttr(unsigned ArgNo,
+ uint64_t Bytes) {
+ AttributeSets = AttributeSets.addDereferenceableOrNullParamAttr(getContext(),
+ ArgNo, Bytes);
+}
+
+DenormalMode Function::getDenormalMode(const fltSemantics &FPType) const {
+ if (&FPType == &APFloat::IEEEsingle()) {
+ Attribute Attr = getFnAttribute("denormal-fp-math-f32");
+ StringRef Val = Attr.getValueAsString();
+ if (!Val.empty())
+ return parseDenormalFPAttribute(Val);
+
+ // If the f32 variant of the attribute isn't specified, try to use the
+ // generic one.
+ }
+
+ Attribute Attr = getFnAttribute("denormal-fp-math");
+ return parseDenormalFPAttribute(Attr.getValueAsString());
+}
+
+const std::string &Function::getGC() const {
+ assert(hasGC() && "Function has no collector");
+ return getContext().getGC(*this);
+}
+
+void Function::setGC(std::string Str) {
+ setValueSubclassDataBit(14, !Str.empty());
+ getContext().setGC(*this, std::move(Str));
+}
+
+void Function::clearGC() {
+ if (!hasGC())
+ return;
+ getContext().deleteGC(*this);
+ setValueSubclassDataBit(14, false);
+}
+
+bool Function::hasStackProtectorFnAttr() const {
+ return hasFnAttribute(Attribute::StackProtect) ||
+ hasFnAttribute(Attribute::StackProtectStrong) ||
+ hasFnAttribute(Attribute::StackProtectReq);
+}
+
+/// Copy all additional attributes (those not needed to create a Function) from
+/// the Function Src to this one.
+void Function::copyAttributesFrom(const Function *Src) {
+ GlobalObject::copyAttributesFrom(Src);
+ setCallingConv(Src->getCallingConv());
+ setAttributes(Src->getAttributes());
+ if (Src->hasGC())
+ setGC(Src->getGC());
+ else
+ clearGC();
+ if (Src->hasPersonalityFn())
+ setPersonalityFn(Src->getPersonalityFn());
+ if (Src->hasPrefixData())
+ setPrefixData(Src->getPrefixData());
+ if (Src->hasPrologueData())
+ setPrologueData(Src->getPrologueData());
+}
+
+MemoryEffects Function::getMemoryEffects() const {
+ return getAttributes().getMemoryEffects();
+}
+void Function::setMemoryEffects(MemoryEffects ME) {
+ addFnAttr(Attribute::getWithMemoryEffects(getContext(), ME));
+}
+
+/// Determine if the function does not access memory.
+bool Function::doesNotAccessMemory() const {
+ return getMemoryEffects().doesNotAccessMemory();
+}
+void Function::setDoesNotAccessMemory() {
+ setMemoryEffects(MemoryEffects::none());
+}
+
+/// Determine if the function does not access or only reads memory.
+bool Function::onlyReadsMemory() const {
+ return getMemoryEffects().onlyReadsMemory();
+}
+void Function::setOnlyReadsMemory() {
+ setMemoryEffects(getMemoryEffects() & MemoryEffects::readOnly());
+}
+
+/// Determine if the function does not access or only writes memory.
+bool Function::onlyWritesMemory() const {
+ return getMemoryEffects().onlyWritesMemory();
+}
+void Function::setOnlyWritesMemory() {
+ setMemoryEffects(getMemoryEffects() & MemoryEffects::writeOnly());
+}
+
+/// Determine if the call can access memmory only using pointers based
+/// on its arguments.
+bool Function::onlyAccessesArgMemory() const {
+ return getMemoryEffects().onlyAccessesArgPointees();
+}
+void Function::setOnlyAccessesArgMemory() {
+ setMemoryEffects(getMemoryEffects() & MemoryEffects::argMemOnly());
+}
+
+/// Determine if the function may only access memory that is
+/// inaccessible from the IR.
+bool Function::onlyAccessesInaccessibleMemory() const {
+ return getMemoryEffects().onlyAccessesInaccessibleMem();
+}
+void Function::setOnlyAccessesInaccessibleMemory() {
+ setMemoryEffects(getMemoryEffects() & MemoryEffects::inaccessibleMemOnly());
+}
+
+/// Determine if the function may only access memory that is
+/// either inaccessible from the IR or pointed to by its arguments.
+bool Function::onlyAccessesInaccessibleMemOrArgMem() const {
+ return getMemoryEffects().onlyAccessesInaccessibleOrArgMem();
+}
+void Function::setOnlyAccessesInaccessibleMemOrArgMem() {
+ setMemoryEffects(getMemoryEffects() &
+ MemoryEffects::inaccessibleOrArgMemOnly());
+}
+
+/// Table of string intrinsic names indexed by enum value.
+static const char * const IntrinsicNameTable[] = {
+ "not_intrinsic",
+#define GET_INTRINSIC_NAME_TABLE
+#include "llvm/IR/IntrinsicImpl.inc"
+#undef GET_INTRINSIC_NAME_TABLE
+};
+
+/// Table of per-target intrinsic name tables.
+#define GET_INTRINSIC_TARGET_DATA
+#include "llvm/IR/IntrinsicImpl.inc"
+#undef GET_INTRINSIC_TARGET_DATA
+
+bool Function::isTargetIntrinsic(Intrinsic::ID IID) {
+ return IID > TargetInfos[0].Count;
+}
+
+bool Function::isTargetIntrinsic() const {
+ return isTargetIntrinsic(IntID);
+}
+
+/// Find the segment of \c IntrinsicNameTable for intrinsics with the same
+/// target as \c Name, or the generic table if \c Name is not target specific.
+///
+/// Returns the relevant slice of \c IntrinsicNameTable
+static ArrayRef<const char *> findTargetSubtable(StringRef Name) {
+ assert(Name.startswith("llvm."));
+
+ ArrayRef<IntrinsicTargetInfo> Targets(TargetInfos);
+ // Drop "llvm." and take the first dotted component. That will be the target
+ // if this is target specific.
+ StringRef Target = Name.drop_front(5).split('.').first;
+ auto It = partition_point(
+ Targets, [=](const IntrinsicTargetInfo &TI) { return TI.Name < Target; });
+ // We've either found the target or just fall back to the generic set, which
+ // is always first.
+ const auto &TI = It != Targets.end() && It->Name == Target ? *It : Targets[0];
+ return ArrayRef(&IntrinsicNameTable[1] + TI.Offset, TI.Count);
+}
+
+/// This does the actual lookup of an intrinsic ID which
+/// matches the given function name.
+Intrinsic::ID Function::lookupIntrinsicID(StringRef Name) {
+ ArrayRef<const char *> NameTable = findTargetSubtable(Name);
+ int Idx = Intrinsic::lookupLLVMIntrinsicByName(NameTable, Name);
+ if (Idx == -1)
+ return Intrinsic::not_intrinsic;
+
+ // Intrinsic IDs correspond to the location in IntrinsicNameTable, but we have
+ // an index into a sub-table.
+ int Adjust = NameTable.data() - IntrinsicNameTable;
+ Intrinsic::ID ID = static_cast<Intrinsic::ID>(Idx + Adjust);
+
+ // If the intrinsic is not overloaded, require an exact match. If it is
+ // overloaded, require either exact or prefix match.
+ const auto MatchSize = strlen(NameTable[Idx]);
+ assert(Name.size() >= MatchSize && "Expected either exact or prefix match");
+ bool IsExactMatch = Name.size() == MatchSize;
+ return IsExactMatch || Intrinsic::isOverloaded(ID) ? ID
+ : Intrinsic::not_intrinsic;
+}
+
+void Function::recalculateIntrinsicID() {
+ StringRef Name = getName();
+ if (!Name.startswith("llvm.")) {
+ HasLLVMReservedName = false;
+ IntID = Intrinsic::not_intrinsic;
+ return;
+ }
+ HasLLVMReservedName = true;
+ IntID = lookupIntrinsicID(Name);
+}
+
+/// Returns a stable mangling for the type specified for use in the name
+/// mangling scheme used by 'any' types in intrinsic signatures. The mangling
+/// of named types is simply their name. Manglings for unnamed types consist
+/// of a prefix ('p' for pointers, 'a' for arrays, 'f_' for functions)
+/// combined with the mangling of their component types. A vararg function
+/// type will have a suffix of 'vararg'. Since function types can contain
+/// other function types, we close a function type mangling with suffix 'f'
+/// which can't be confused with it's prefix. This ensures we don't have
+/// collisions between two unrelated function types. Otherwise, you might
+/// parse ffXX as f(fXX) or f(fX)X. (X is a placeholder for any other type.)
+/// The HasUnnamedType boolean is set if an unnamed type was encountered,
+/// indicating that extra care must be taken to ensure a unique name.
+static std::string getMangledTypeStr(Type *Ty, bool &HasUnnamedType) {
+ std::string Result;
+ if (PointerType *PTyp = dyn_cast<PointerType>(Ty)) {
+ Result += "p" + utostr(PTyp->getAddressSpace());
+ // Opaque pointer doesn't have pointee type information, so we just mangle
+ // address space for opaque pointer.
+ if (!PTyp->isOpaque())
+ Result += getMangledTypeStr(PTyp->getNonOpaquePointerElementType(),
+ HasUnnamedType);
+ } else if (ArrayType *ATyp = dyn_cast<ArrayType>(Ty)) {
+ Result += "a" + utostr(ATyp->getNumElements()) +
+ getMangledTypeStr(ATyp->getElementType(), HasUnnamedType);
+ } else if (StructType *STyp = dyn_cast<StructType>(Ty)) {
+ if (!STyp->isLiteral()) {
+ Result += "s_";
+ if (STyp->hasName())
+ Result += STyp->getName();
+ else
+ HasUnnamedType = true;
+ } else {
+ Result += "sl_";
+ for (auto *Elem : STyp->elements())
+ Result += getMangledTypeStr(Elem, HasUnnamedType);
+ }
+ // Ensure nested structs are distinguishable.
+ Result += "s";
+ } else if (FunctionType *FT = dyn_cast<FunctionType>(Ty)) {
+ Result += "f_" + getMangledTypeStr(FT->getReturnType(), HasUnnamedType);
+ for (size_t i = 0; i < FT->getNumParams(); i++)
+ Result += getMangledTypeStr(FT->getParamType(i), HasUnnamedType);
+ if (FT->isVarArg())
+ Result += "vararg";
+ // Ensure nested function types are distinguishable.
+ Result += "f";
+ } else if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
+ ElementCount EC = VTy->getElementCount();
+ if (EC.isScalable())
+ Result += "nx";
+ Result += "v" + utostr(EC.getKnownMinValue()) +
+ getMangledTypeStr(VTy->getElementType(), HasUnnamedType);
+ } else if (TargetExtType *TETy = dyn_cast<TargetExtType>(Ty)) {
+ Result += "t";
+ Result += TETy->getName();
+ for (Type *ParamTy : TETy->type_params())
+ Result += "_" + getMangledTypeStr(ParamTy, HasUnnamedType);
+ for (unsigned IntParam : TETy->int_params())
+ Result += "_" + utostr(IntParam);
+ // Ensure nested target extension types are distinguishable.
+ Result += "t";
+ } else if (Ty) {
+ switch (Ty->getTypeID()) {
+ default: llvm_unreachable("Unhandled type");
+ case Type::VoidTyID: Result += "isVoid"; break;
+ case Type::MetadataTyID: Result += "Metadata"; break;
+ case Type::HalfTyID: Result += "f16"; break;
+ case Type::BFloatTyID: Result += "bf16"; break;
+ case Type::FloatTyID: Result += "f32"; break;
+ case Type::DoubleTyID: Result += "f64"; break;
+ case Type::X86_FP80TyID: Result += "f80"; break;
+ case Type::FP128TyID: Result += "f128"; break;
+ case Type::PPC_FP128TyID: Result += "ppcf128"; break;
+ case Type::X86_MMXTyID: Result += "x86mmx"; break;
+ case Type::X86_AMXTyID: Result += "x86amx"; break;
+ case Type::IntegerTyID:
+ Result += "i" + utostr(cast<IntegerType>(Ty)->getBitWidth());
+ break;
+ }
+ }
+ return Result;
+}
+
+StringRef Intrinsic::getBaseName(ID id) {
+ assert(id < num_intrinsics && "Invalid intrinsic ID!");
+ return IntrinsicNameTable[id];
+}
+
+StringRef Intrinsic::getName(ID id) {
+ assert(id < num_intrinsics && "Invalid intrinsic ID!");
+ assert(!Intrinsic::isOverloaded(id) &&
+ "This version of getName does not support overloading");
+ return getBaseName(id);
+}
+
+static std::string getIntrinsicNameImpl(Intrinsic::ID Id, ArrayRef<Type *> Tys,
+ Module *M, FunctionType *FT,
+ bool EarlyModuleCheck) {
+
+ assert(Id < Intrinsic::num_intrinsics && "Invalid intrinsic ID!");
+ assert((Tys.empty() || Intrinsic::isOverloaded(Id)) &&
+ "This version of getName is for overloaded intrinsics only");
+ (void)EarlyModuleCheck;
+ assert((!EarlyModuleCheck || M ||
+ !any_of(Tys, [](Type *T) { return isa<PointerType>(T); })) &&
+ "Intrinsic overloading on pointer types need to provide a Module");
+ bool HasUnnamedType = false;
+ std::string Result(Intrinsic::getBaseName(Id));
+ for (Type *Ty : Tys)
+ Result += "." + getMangledTypeStr(Ty, HasUnnamedType);
+ if (HasUnnamedType) {
+ assert(M && "unnamed types need a module");
+ if (!FT)
+ FT = Intrinsic::getType(M->getContext(), Id, Tys);
+ else
+ assert((FT == Intrinsic::getType(M->getContext(), Id, Tys)) &&
+ "Provided FunctionType must match arguments");
+ return M->getUniqueIntrinsicName(Result, Id, FT);
+ }
+ return Result;
+}
+
+std::string Intrinsic::getName(ID Id, ArrayRef<Type *> Tys, Module *M,
+ FunctionType *FT) {
+ assert(M && "We need to have a Module");
+ return getIntrinsicNameImpl(Id, Tys, M, FT, true);
+}
+
+std::string Intrinsic::getNameNoUnnamedTypes(ID Id, ArrayRef<Type *> Tys) {
+ return getIntrinsicNameImpl(Id, Tys, nullptr, nullptr, false);
+}
+
+/// IIT_Info - These are enumerators that describe the entries returned by the
+/// getIntrinsicInfoTableEntries function.
+///
+/// NOTE: This must be kept in synch with the copy in TblGen/IntrinsicEmitter!
+enum IIT_Info {
+ // Common values should be encoded with 0-15.
+ IIT_Done = 0,
+ IIT_I1 = 1,
+ IIT_I8 = 2,
+ IIT_I16 = 3,
+ IIT_I32 = 4,
+ IIT_I64 = 5,
+ IIT_F16 = 6,
+ IIT_F32 = 7,
+ IIT_F64 = 8,
+ IIT_V2 = 9,
+ IIT_V4 = 10,
+ IIT_V8 = 11,
+ IIT_V16 = 12,
+ IIT_V32 = 13,
+ IIT_PTR = 14,
+ IIT_ARG = 15,
+
+ // Values from 16+ are only encodable with the inefficient encoding.
+ IIT_V64 = 16,
+ IIT_MMX = 17,
+ IIT_TOKEN = 18,
+ IIT_METADATA = 19,
+ IIT_EMPTYSTRUCT = 20,
+ IIT_STRUCT2 = 21,
+ IIT_STRUCT3 = 22,
+ IIT_STRUCT4 = 23,
+ IIT_STRUCT5 = 24,
+ IIT_EXTEND_ARG = 25,
+ IIT_TRUNC_ARG = 26,
+ IIT_ANYPTR = 27,
+ IIT_V1 = 28,
+ IIT_VARARG = 29,
+ IIT_HALF_VEC_ARG = 30,
+ IIT_SAME_VEC_WIDTH_ARG = 31,
+ IIT_PTR_TO_ARG = 32,
+ IIT_PTR_TO_ELT = 33,
+ IIT_VEC_OF_ANYPTRS_TO_ELT = 34,
+ IIT_I128 = 35,
+ IIT_V512 = 36,
+ IIT_V1024 = 37,
+ IIT_STRUCT6 = 38,
+ IIT_STRUCT7 = 39,
+ IIT_STRUCT8 = 40,
+ IIT_F128 = 41,
+ IIT_VEC_ELEMENT = 42,
+ IIT_SCALABLE_VEC = 43,
+ IIT_SUBDIVIDE2_ARG = 44,
+ IIT_SUBDIVIDE4_ARG = 45,
+ IIT_VEC_OF_BITCASTS_TO_INT = 46,
+ IIT_V128 = 47,
+ IIT_BF16 = 48,
+ IIT_STRUCT9 = 49,
+ IIT_V256 = 50,
+ IIT_AMX = 51,
+ IIT_PPCF128 = 52,
+ IIT_V3 = 53,
+ IIT_EXTERNREF = 54,
+ IIT_FUNCREF = 55,
+ IIT_ANYPTR_TO_ELT = 56,
+ IIT_I2 = 57,
+ IIT_I4 = 58,
+};
+
+static void DecodeIITType(unsigned &NextElt, ArrayRef<unsigned char> Infos,
+ IIT_Info LastInfo,
+ SmallVectorImpl<Intrinsic::IITDescriptor> &OutputTable) {
+ using namespace Intrinsic;
+
+ bool IsScalableVector = (LastInfo == IIT_SCALABLE_VEC);
+
+ IIT_Info Info = IIT_Info(Infos[NextElt++]);
+ unsigned StructElts = 2;
+
+ switch (Info) {
+ case IIT_Done:
+ OutputTable.push_back(IITDescriptor::get(IITDescriptor::Void, 0));
+ return;
+ case IIT_VARARG:
+ OutputTable.push_back(IITDescriptor::get(IITDescriptor::VarArg, 0));
+ return;
+ case IIT_MMX:
+ OutputTable.push_back(IITDescriptor::get(IITDescriptor::MMX, 0));
+ return;
+ case IIT_AMX:
+ OutputTable.push_back(IITDescriptor::get(IITDescriptor::AMX, 0));
+ return;
+ case IIT_TOKEN:
+ OutputTable.push_back(IITDescriptor::get(IITDescriptor::Token, 0));
+ return;
+ case IIT_METADATA:
+ OutputTable.push_back(IITDescriptor::get(IITDescriptor::Metadata, 0));
+ return;
+ case IIT_F16:
+ OutputTable.push_back(IITDescriptor::get(IITDescriptor::Half, 0));
+ return;
+ case IIT_BF16:
+ OutputTable.push_back(IITDescriptor::get(IITDescriptor::BFloat, 0));
+ return;
+ case IIT_F32:
+ OutputTable.push_back(IITDescriptor::get(IITDescriptor::Float, 0));
+ return;
+ case IIT_F64:
+ OutputTable.push_back(IITDescriptor::get(IITDescriptor::Double, 0));
+ return;
+ case IIT_F128:
+ OutputTable.push_back(IITDescriptor::get(IITDescriptor::Quad, 0));
+ return;
+ case IIT_PPCF128:
+ OutputTable.push_back(IITDescriptor::get(IITDescriptor::PPCQuad, 0));
+ return;
+ case IIT_I1:
+ OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 1));
+ return;
+ case IIT_I2:
+ OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 2));
+ return;
+ case IIT_I4:
+ OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 4));
+ return;
+ case IIT_I8:
+ OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 8));
+ return;
+ case IIT_I16:
+ OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer,16));
+ return;
+ case IIT_I32:
+ OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 32));
+ return;
+ case IIT_I64:
+ OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 64));
+ return;
+ case IIT_I128:
+ OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 128));
+ return;
+ case IIT_V1:
+ OutputTable.push_back(IITDescriptor::getVector(1, IsScalableVector));
+ DecodeIITType(NextElt, Infos, Info, OutputTable);
+ return;
+ case IIT_V2:
+ OutputTable.push_back(IITDescriptor::getVector(2, IsScalableVector));
+ DecodeIITType(NextElt, Infos, Info, OutputTable);
+ return;
+ case IIT_V3:
+ OutputTable.push_back(IITDescriptor::getVector(3, IsScalableVector));
+ DecodeIITType(NextElt, Infos, Info, OutputTable);
+ return;
+ case IIT_V4:
+ OutputTable.push_back(IITDescriptor::getVector(4, IsScalableVector));
+ DecodeIITType(NextElt, Infos, Info, OutputTable);
+ return;
+ case IIT_V8:
+ OutputTable.push_back(IITDescriptor::getVector(8, IsScalableVector));
+ DecodeIITType(NextElt, Infos, Info, OutputTable);
+ return;
+ case IIT_V16:
+ OutputTable.push_back(IITDescriptor::getVector(16, IsScalableVector));
+ DecodeIITType(NextElt, Infos, Info, OutputTable);
+ return;
+ case IIT_V32:
+ OutputTable.push_back(IITDescriptor::getVector(32, IsScalableVector));
+ DecodeIITType(NextElt, Infos, Info, OutputTable);
+ return;
+ case IIT_V64:
+ OutputTable.push_back(IITDescriptor::getVector(64, IsScalableVector));
+ DecodeIITType(NextElt, Infos, Info, OutputTable);
+ return;
+ case IIT_V128:
+ OutputTable.push_back(IITDescriptor::getVector(128, IsScalableVector));
+ DecodeIITType(NextElt, Infos, Info, OutputTable);
+ return;
+ case IIT_V256:
+ OutputTable.push_back(IITDescriptor::getVector(256, IsScalableVector));
+ DecodeIITType(NextElt, Infos, Info, OutputTable);
+ return;
+ case IIT_V512:
+ OutputTable.push_back(IITDescriptor::getVector(512, IsScalableVector));
+ DecodeIITType(NextElt, Infos, Info, OutputTable);
+ return;
+ case IIT_V1024:
+ OutputTable.push_back(IITDescriptor::getVector(1024, IsScalableVector));
+ DecodeIITType(NextElt, Infos, Info, OutputTable);
+ return;
+ case IIT_EXTERNREF:
+ OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 10));
+ OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct, 0));
+ return;
+ case IIT_FUNCREF:
+ OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 20));
+ OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 8));
+ return;
+ case IIT_PTR:
+ OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 0));
+ DecodeIITType(NextElt, Infos, Info, OutputTable);
+ return;
+ case IIT_ANYPTR: { // [ANYPTR addrspace, subtype]
+ OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer,
+ Infos[NextElt++]));
+ DecodeIITType(NextElt, Infos, Info, OutputTable);
+ return;
+ }
+ case IIT_ARG: {
+ unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
+ OutputTable.push_back(IITDescriptor::get(IITDescriptor::Argument, ArgInfo));
+ return;
+ }
+ case IIT_EXTEND_ARG: {
+ unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
+ OutputTable.push_back(IITDescriptor::get(IITDescriptor::ExtendArgument,
+ ArgInfo));
+ return;
+ }
+ case IIT_TRUNC_ARG: {
+ unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
+ OutputTable.push_back(IITDescriptor::get(IITDescriptor::TruncArgument,
+ ArgInfo));
+ return;
+ }
+ case IIT_HALF_VEC_ARG: {
+ unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
+ OutputTable.push_back(IITDescriptor::get(IITDescriptor::HalfVecArgument,
+ ArgInfo));
+ return;
+ }
+ case IIT_SAME_VEC_WIDTH_ARG: {
+ unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
+ OutputTable.push_back(IITDescriptor::get(IITDescriptor::SameVecWidthArgument,
+ ArgInfo));
+ return;
+ }
+ case IIT_PTR_TO_ARG: {
+ unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
+ OutputTable.push_back(IITDescriptor::get(IITDescriptor::PtrToArgument,
+ ArgInfo));
+ return;
+ }
+ case IIT_PTR_TO_ELT: {
+ unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
+ OutputTable.push_back(IITDescriptor::get(IITDescriptor::PtrToElt, ArgInfo));
+ return;
+ }
+ case IIT_ANYPTR_TO_ELT: {
+ unsigned short ArgNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
+ unsigned short RefNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
+ OutputTable.push_back(
+ IITDescriptor::get(IITDescriptor::AnyPtrToElt, ArgNo, RefNo));
+ return;
+ }
+ case IIT_VEC_OF_ANYPTRS_TO_ELT: {
+ unsigned short ArgNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
+ unsigned short RefNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
+ OutputTable.push_back(
+ IITDescriptor::get(IITDescriptor::VecOfAnyPtrsToElt, ArgNo, RefNo));
+ return;
+ }
+ case IIT_EMPTYSTRUCT:
+ OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct, 0));
+ return;
+ case IIT_STRUCT9: ++StructElts; [[fallthrough]];
+ case IIT_STRUCT8: ++StructElts; [[fallthrough]];
+ case IIT_STRUCT7: ++StructElts; [[fallthrough]];
+ case IIT_STRUCT6: ++StructElts; [[fallthrough]];
+ case IIT_STRUCT5: ++StructElts; [[fallthrough]];
+ case IIT_STRUCT4: ++StructElts; [[fallthrough]];
+ case IIT_STRUCT3: ++StructElts; [[fallthrough]];
+ case IIT_STRUCT2: {
+ OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct,StructElts));
+
+ for (unsigned i = 0; i != StructElts; ++i)
+ DecodeIITType(NextElt, Infos, Info, OutputTable);
+ return;
+ }
+ case IIT_SUBDIVIDE2_ARG: {
+ unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
+ OutputTable.push_back(IITDescriptor::get(IITDescriptor::Subdivide2Argument,
+ ArgInfo));
+ return;
+ }
+ case IIT_SUBDIVIDE4_ARG: {
+ unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
+ OutputTable.push_back(IITDescriptor::get(IITDescriptor::Subdivide4Argument,
+ ArgInfo));
+ return;
+ }
+ case IIT_VEC_ELEMENT: {
+ unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
+ OutputTable.push_back(IITDescriptor::get(IITDescriptor::VecElementArgument,
+ ArgInfo));
+ return;
+ }
+ case IIT_SCALABLE_VEC: {
+ DecodeIITType(NextElt, Infos, Info, OutputTable);
+ return;
+ }
+ case IIT_VEC_OF_BITCASTS_TO_INT: {
+ unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
+ OutputTable.push_back(IITDescriptor::get(IITDescriptor::VecOfBitcastsToInt,
+ ArgInfo));
+ return;
+ }
+ }
+ llvm_unreachable("unhandled");
+}
+
+#define GET_INTRINSIC_GENERATOR_GLOBAL
+#include "llvm/IR/IntrinsicImpl.inc"
+#undef GET_INTRINSIC_GENERATOR_GLOBAL
+
+void Intrinsic::getIntrinsicInfoTableEntries(ID id,
+ SmallVectorImpl<IITDescriptor> &T){
+ // Check to see if the intrinsic's type was expressible by the table.
+ unsigned TableVal = IIT_Table[id-1];
+
+ // Decode the TableVal into an array of IITValues.
+ SmallVector<unsigned char, 8> IITValues;
+ ArrayRef<unsigned char> IITEntries;
+ unsigned NextElt = 0;
+ if ((TableVal >> 31) != 0) {
+ // This is an offset into the IIT_LongEncodingTable.
+ IITEntries = IIT_LongEncodingTable;
+
+ // Strip sentinel bit.
+ NextElt = (TableVal << 1) >> 1;
+ } else {
+ // Decode the TableVal into an array of IITValues. If the entry was encoded
+ // into a single word in the table itself, decode it now.
+ do {
+ IITValues.push_back(TableVal & 0xF);
+ TableVal >>= 4;
+ } while (TableVal);
+
+ IITEntries = IITValues;
+ NextElt = 0;
+ }
+
+ // Okay, decode the table into the output vector of IITDescriptors.
+ DecodeIITType(NextElt, IITEntries, IIT_Done, T);
+ while (NextElt != IITEntries.size() && IITEntries[NextElt] != 0)
+ DecodeIITType(NextElt, IITEntries, IIT_Done, T);
+}
+
+static Type *DecodeFixedType(ArrayRef<Intrinsic::IITDescriptor> &Infos,
+ ArrayRef<Type*> Tys, LLVMContext &Context) {
+ using namespace Intrinsic;
+
+ IITDescriptor D = Infos.front();
+ Infos = Infos.slice(1);
+
+ switch (D.Kind) {
+ case IITDescriptor::Void: return Type::getVoidTy(Context);
+ case IITDescriptor::VarArg: return Type::getVoidTy(Context);
+ case IITDescriptor::MMX: return Type::getX86_MMXTy(Context);
+ case IITDescriptor::AMX: return Type::getX86_AMXTy(Context);
+ case IITDescriptor::Token: return Type::getTokenTy(Context);
+ case IITDescriptor::Metadata: return Type::getMetadataTy(Context);
+ case IITDescriptor::Half: return Type::getHalfTy(Context);
+ case IITDescriptor::BFloat: return Type::getBFloatTy(Context);
+ case IITDescriptor::Float: return Type::getFloatTy(Context);
+ case IITDescriptor::Double: return Type::getDoubleTy(Context);
+ case IITDescriptor::Quad: return Type::getFP128Ty(Context);
+ case IITDescriptor::PPCQuad: return Type::getPPC_FP128Ty(Context);
+
+ case IITDescriptor::Integer:
+ return IntegerType::get(Context, D.Integer_Width);
+ case IITDescriptor::Vector:
+ return VectorType::get(DecodeFixedType(Infos, Tys, Context),
+ D.Vector_Width);
+ case IITDescriptor::Pointer:
+ return PointerType::get(DecodeFixedType(Infos, Tys, Context),
+ D.Pointer_AddressSpace);
+ case IITDescriptor::Struct: {
+ SmallVector<Type *, 8> Elts;
+ for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i)
+ Elts.push_back(DecodeFixedType(Infos, Tys, Context));
+ return StructType::get(Context, Elts);
+ }
+ case IITDescriptor::Argument:
+ return Tys[D.getArgumentNumber()];
+ case IITDescriptor::ExtendArgument: {
+ Type *Ty = Tys[D.getArgumentNumber()];
+ if (VectorType *VTy = dyn_cast<VectorType>(Ty))
+ return VectorType::getExtendedElementVectorType(VTy);
+
+ return IntegerType::get(Context, 2 * cast<IntegerType>(Ty)->getBitWidth());
+ }
+ case IITDescriptor::TruncArgument: {
+ Type *Ty = Tys[D.getArgumentNumber()];
+ if (VectorType *VTy = dyn_cast<VectorType>(Ty))
+ return VectorType::getTruncatedElementVectorType(VTy);
+
+ IntegerType *ITy = cast<IntegerType>(Ty);
+ assert(ITy->getBitWidth() % 2 == 0);
+ return IntegerType::get(Context, ITy->getBitWidth() / 2);
+ }
+ case IITDescriptor::Subdivide2Argument:
+ case IITDescriptor::Subdivide4Argument: {
+ Type *Ty = Tys[D.getArgumentNumber()];
+ VectorType *VTy = dyn_cast<VectorType>(Ty);
+ assert(VTy && "Expected an argument of Vector Type");
+ int SubDivs = D.Kind == IITDescriptor::Subdivide2Argument ? 1 : 2;
+ return VectorType::getSubdividedVectorType(VTy, SubDivs);
+ }
+ case IITDescriptor::HalfVecArgument:
+ return VectorType::getHalfElementsVectorType(cast<VectorType>(
+ Tys[D.getArgumentNumber()]));
+ case IITDescriptor::SameVecWidthArgument: {
+ Type *EltTy = DecodeFixedType(Infos, Tys, Context);
+ Type *Ty = Tys[D.getArgumentNumber()];
+ if (auto *VTy = dyn_cast<VectorType>(Ty))
+ return VectorType::get(EltTy, VTy->getElementCount());
+ return EltTy;
+ }
+ case IITDescriptor::PtrToArgument: {
+ Type *Ty = Tys[D.getArgumentNumber()];
+ return PointerType::getUnqual(Ty);
+ }
+ case IITDescriptor::PtrToElt: {
+ Type *Ty = Tys[D.getArgumentNumber()];
+ VectorType *VTy = dyn_cast<VectorType>(Ty);
+ if (!VTy)
+ llvm_unreachable("Expected an argument of Vector Type");
+ Type *EltTy = VTy->getElementType();
+ return PointerType::getUnqual(EltTy);
+ }
+ case IITDescriptor::VecElementArgument: {
+ Type *Ty = Tys[D.getArgumentNumber()];
+ if (VectorType *VTy = dyn_cast<VectorType>(Ty))
+ return VTy->getElementType();
+ llvm_unreachable("Expected an argument of Vector Type");
+ }
+ case IITDescriptor::VecOfBitcastsToInt: {
+ Type *Ty = Tys[D.getArgumentNumber()];
+ VectorType *VTy = dyn_cast<VectorType>(Ty);
+ assert(VTy && "Expected an argument of Vector Type");
+ return VectorType::getInteger(VTy);
+ }
+ case IITDescriptor::VecOfAnyPtrsToElt:
+ // Return the overloaded type (which determines the pointers address space)
+ return Tys[D.getOverloadArgNumber()];
+ case IITDescriptor::AnyPtrToElt:
+ // Return the overloaded type (which determines the pointers address space)
+ return Tys[D.getOverloadArgNumber()];
+ }
+ llvm_unreachable("unhandled");
+}
+
+FunctionType *Intrinsic::getType(LLVMContext &Context,
+ ID id, ArrayRef<Type*> Tys) {
+ SmallVector<IITDescriptor, 8> Table;
+ getIntrinsicInfoTableEntries(id, Table);
+
+ ArrayRef<IITDescriptor> TableRef = Table;
+ Type *ResultTy = DecodeFixedType(TableRef, Tys, Context);
+
+ SmallVector<Type*, 8> ArgTys;
+ while (!TableRef.empty())
+ ArgTys.push_back(DecodeFixedType(TableRef, Tys, Context));
+
+ // DecodeFixedType returns Void for IITDescriptor::Void and IITDescriptor::VarArg
+ // If we see void type as the type of the last argument, it is vararg intrinsic
+ if (!ArgTys.empty() && ArgTys.back()->isVoidTy()) {
+ ArgTys.pop_back();
+ return FunctionType::get(ResultTy, ArgTys, true);
+ }
+ return FunctionType::get(ResultTy, ArgTys, false);
+}
+
+bool Intrinsic::isOverloaded(ID id) {
+#define GET_INTRINSIC_OVERLOAD_TABLE
+#include "llvm/IR/IntrinsicImpl.inc"
+#undef GET_INTRINSIC_OVERLOAD_TABLE
+}
+
+/// This defines the "Intrinsic::getAttributes(ID id)" method.
+#define GET_INTRINSIC_ATTRIBUTES
+#include "llvm/IR/IntrinsicImpl.inc"
+#undef GET_INTRINSIC_ATTRIBUTES
+
+Function *Intrinsic::getDeclaration(Module *M, ID id, ArrayRef<Type*> Tys) {
+ // There can never be multiple globals with the same name of different types,
+ // because intrinsics must be a specific type.
+ auto *FT = getType(M->getContext(), id, Tys);
+ return cast<Function>(
+ M->getOrInsertFunction(
+ Tys.empty() ? getName(id) : getName(id, Tys, M, FT), FT)
+ .getCallee());
+}
+
+// This defines the "Intrinsic::getIntrinsicForClangBuiltin()" method.
+#define GET_LLVM_INTRINSIC_FOR_CLANG_BUILTIN
+#include "llvm/IR/IntrinsicImpl.inc"
+#undef GET_LLVM_INTRINSIC_FOR_CLANG_BUILTIN
+
+// This defines the "Intrinsic::getIntrinsicForMSBuiltin()" method.
+#define GET_LLVM_INTRINSIC_FOR_MS_BUILTIN
+#include "llvm/IR/IntrinsicImpl.inc"
+#undef GET_LLVM_INTRINSIC_FOR_MS_BUILTIN
+
+using DeferredIntrinsicMatchPair =
+ std::pair<Type *, ArrayRef<Intrinsic::IITDescriptor>>;
+
+static bool matchIntrinsicType(
+ Type *Ty, ArrayRef<Intrinsic::IITDescriptor> &Infos,
+ SmallVectorImpl<Type *> &ArgTys,
+ SmallVectorImpl<DeferredIntrinsicMatchPair> &DeferredChecks,
+ bool IsDeferredCheck) {
+ using namespace Intrinsic;
+
+ // If we ran out of descriptors, there are too many arguments.
+ if (Infos.empty()) return true;
+
+ // Do this before slicing off the 'front' part
+ auto InfosRef = Infos;
+ auto DeferCheck = [&DeferredChecks, &InfosRef](Type *T) {
+ DeferredChecks.emplace_back(T, InfosRef);
+ return false;
+ };
+
+ IITDescriptor D = Infos.front();
+ Infos = Infos.slice(1);
+
+ switch (D.Kind) {
+ case IITDescriptor::Void: return !Ty->isVoidTy();
+ case IITDescriptor::VarArg: return true;
+ case IITDescriptor::MMX: return !Ty->isX86_MMXTy();
+ case IITDescriptor::AMX: return !Ty->isX86_AMXTy();
+ case IITDescriptor::Token: return !Ty->isTokenTy();
+ case IITDescriptor::Metadata: return !Ty->isMetadataTy();
+ case IITDescriptor::Half: return !Ty->isHalfTy();
+ case IITDescriptor::BFloat: return !Ty->isBFloatTy();
+ case IITDescriptor::Float: return !Ty->isFloatTy();
+ case IITDescriptor::Double: return !Ty->isDoubleTy();
+ case IITDescriptor::Quad: return !Ty->isFP128Ty();
+ case IITDescriptor::PPCQuad: return !Ty->isPPC_FP128Ty();
+ case IITDescriptor::Integer: return !Ty->isIntegerTy(D.Integer_Width);
+ case IITDescriptor::Vector: {
+ VectorType *VT = dyn_cast<VectorType>(Ty);
+ return !VT || VT->getElementCount() != D.Vector_Width ||
+ matchIntrinsicType(VT->getElementType(), Infos, ArgTys,
+ DeferredChecks, IsDeferredCheck);
+ }
+ case IITDescriptor::Pointer: {
+ PointerType *PT = dyn_cast<PointerType>(Ty);
+ if (!PT || PT->getAddressSpace() != D.Pointer_AddressSpace)
+ return true;
+ if (!PT->isOpaque()) {
+ /* Manually consume a pointer to empty struct descriptor, which is
+ * used for externref. We don't want to enforce that the struct is
+ * anonymous in this case. (This renders externref intrinsics
+ * non-unique, but this will go away with opaque pointers anyway.) */
+ if (Infos.front().Kind == IITDescriptor::Struct &&
+ Infos.front().Struct_NumElements == 0) {
+ Infos = Infos.slice(1);
+ return false;
+ }
+ return matchIntrinsicType(PT->getNonOpaquePointerElementType(), Infos,
+ ArgTys, DeferredChecks, IsDeferredCheck);
+ }
+ // Consume IIT descriptors relating to the pointer element type.
+ // FIXME: Intrinsic type matching of nested single value types or even
+ // aggregates doesn't work properly with opaque pointers but hopefully
+ // doesn't happen in practice.
+ while (Infos.front().Kind == IITDescriptor::Pointer ||
+ Infos.front().Kind == IITDescriptor::Vector)
+ Infos = Infos.slice(1);
+ assert((Infos.front().Kind != IITDescriptor::Argument ||
+ Infos.front().getArgumentKind() == IITDescriptor::AK_MatchType) &&
+ "Unsupported polymorphic pointer type with opaque pointer");
+ Infos = Infos.slice(1);
+ return false;
+ }
+
+ case IITDescriptor::Struct: {
+ StructType *ST = dyn_cast<StructType>(Ty);
+ if (!ST || !ST->isLiteral() || ST->isPacked() ||
+ ST->getNumElements() != D.Struct_NumElements)
+ return true;
+
+ for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i)
+ if (matchIntrinsicType(ST->getElementType(i), Infos, ArgTys,
+ DeferredChecks, IsDeferredCheck))
+ return true;
+ return false;
+ }
+
+ case IITDescriptor::Argument:
+ // If this is the second occurrence of an argument,
+ // verify that the later instance matches the previous instance.
+ if (D.getArgumentNumber() < ArgTys.size())
+ return Ty != ArgTys[D.getArgumentNumber()];
+
+ if (D.getArgumentNumber() > ArgTys.size() ||
+ D.getArgumentKind() == IITDescriptor::AK_MatchType)
+ return IsDeferredCheck || DeferCheck(Ty);
+
+ assert(D.getArgumentNumber() == ArgTys.size() && !IsDeferredCheck &&
+ "Table consistency error");
+ ArgTys.push_back(Ty);
+
+ switch (D.getArgumentKind()) {
+ case IITDescriptor::AK_Any: return false; // Success
+ case IITDescriptor::AK_AnyInteger: return !Ty->isIntOrIntVectorTy();
+ case IITDescriptor::AK_AnyFloat: return !Ty->isFPOrFPVectorTy();
+ case IITDescriptor::AK_AnyVector: return !isa<VectorType>(Ty);
+ case IITDescriptor::AK_AnyPointer: return !isa<PointerType>(Ty);
+ default: break;
+ }
+ llvm_unreachable("all argument kinds not covered");
+
+ case IITDescriptor::ExtendArgument: {
+ // If this is a forward reference, defer the check for later.
+ if (D.getArgumentNumber() >= ArgTys.size())
+ return IsDeferredCheck || DeferCheck(Ty);
+
+ Type *NewTy = ArgTys[D.getArgumentNumber()];
+ if (VectorType *VTy = dyn_cast<VectorType>(NewTy))
+ NewTy = VectorType::getExtendedElementVectorType(VTy);
+ else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy))
+ NewTy = IntegerType::get(ITy->getContext(), 2 * ITy->getBitWidth());
+ else
+ return true;
+
+ return Ty != NewTy;
+ }
+ case IITDescriptor::TruncArgument: {
+ // If this is a forward reference, defer the check for later.
+ if (D.getArgumentNumber() >= ArgTys.size())
+ return IsDeferredCheck || DeferCheck(Ty);
+
+ Type *NewTy = ArgTys[D.getArgumentNumber()];
+ if (VectorType *VTy = dyn_cast<VectorType>(NewTy))
+ NewTy = VectorType::getTruncatedElementVectorType(VTy);
+ else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy))
+ NewTy = IntegerType::get(ITy->getContext(), ITy->getBitWidth() / 2);
+ else
+ return true;
+
+ return Ty != NewTy;
+ }
+ case IITDescriptor::HalfVecArgument:
+ // If this is a forward reference, defer the check for later.
+ if (D.getArgumentNumber() >= ArgTys.size())
+ return IsDeferredCheck || DeferCheck(Ty);
+ return !isa<VectorType>(ArgTys[D.getArgumentNumber()]) ||
+ VectorType::getHalfElementsVectorType(
+ cast<VectorType>(ArgTys[D.getArgumentNumber()])) != Ty;
+ case IITDescriptor::SameVecWidthArgument: {
+ if (D.getArgumentNumber() >= ArgTys.size()) {
+ // Defer check and subsequent check for the vector element type.
+ Infos = Infos.slice(1);
+ return IsDeferredCheck || DeferCheck(Ty);
+ }
+ auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]);
+ auto *ThisArgType = dyn_cast<VectorType>(Ty);
+ // Both must be vectors of the same number of elements or neither.
+ if ((ReferenceType != nullptr) != (ThisArgType != nullptr))
+ return true;
+ Type *EltTy = Ty;
+ if (ThisArgType) {
+ if (ReferenceType->getElementCount() !=
+ ThisArgType->getElementCount())
+ return true;
+ EltTy = ThisArgType->getElementType();
+ }
+ return matchIntrinsicType(EltTy, Infos, ArgTys, DeferredChecks,
+ IsDeferredCheck);
+ }
+ case IITDescriptor::PtrToArgument: {
+ if (D.getArgumentNumber() >= ArgTys.size())
+ return IsDeferredCheck || DeferCheck(Ty);
+ Type * ReferenceType = ArgTys[D.getArgumentNumber()];
+ PointerType *ThisArgType = dyn_cast<PointerType>(Ty);
+ return (!ThisArgType ||
+ !ThisArgType->isOpaqueOrPointeeTypeMatches(ReferenceType));
+ }
+ case IITDescriptor::PtrToElt: {
+ if (D.getArgumentNumber() >= ArgTys.size())
+ return IsDeferredCheck || DeferCheck(Ty);
+ VectorType * ReferenceType =
+ dyn_cast<VectorType> (ArgTys[D.getArgumentNumber()]);
+ PointerType *ThisArgType = dyn_cast<PointerType>(Ty);
+
+ if (!ThisArgType || !ReferenceType)
+ return true;
+ return !ThisArgType->isOpaqueOrPointeeTypeMatches(
+ ReferenceType->getElementType());
+ }
+ case IITDescriptor::AnyPtrToElt: {
+ unsigned RefArgNumber = D.getRefArgNumber();
+ if (RefArgNumber >= ArgTys.size()) {
+ if (IsDeferredCheck)
+ return true;
+ // If forward referencing, already add the pointer type and
+ // defer the checks for later.
+ ArgTys.push_back(Ty);
+ return DeferCheck(Ty);
+ }
+
+ if (!IsDeferredCheck) {
+ assert(D.getOverloadArgNumber() == ArgTys.size() &&
+ "Table consistency error");
+ ArgTys.push_back(Ty);
+ }
+
+ auto *ReferenceType = dyn_cast<VectorType>(ArgTys[RefArgNumber]);
+ auto *ThisArgType = dyn_cast<PointerType>(Ty);
+ if (!ThisArgType || !ReferenceType)
+ return true;
+ return !ThisArgType->isOpaqueOrPointeeTypeMatches(
+ ReferenceType->getElementType());
+ }
+ case IITDescriptor::VecOfAnyPtrsToElt: {
+ unsigned RefArgNumber = D.getRefArgNumber();
+ if (RefArgNumber >= ArgTys.size()) {
+ if (IsDeferredCheck)
+ return true;
+ // If forward referencing, already add the pointer-vector type and
+ // defer the checks for later.
+ ArgTys.push_back(Ty);
+ return DeferCheck(Ty);
+ }
+
+ if (!IsDeferredCheck){
+ assert(D.getOverloadArgNumber() == ArgTys.size() &&
+ "Table consistency error");
+ ArgTys.push_back(Ty);
+ }
+
+ // Verify the overloaded type "matches" the Ref type.
+ // i.e. Ty is a vector with the same width as Ref.
+ // Composed of pointers to the same element type as Ref.
+ auto *ReferenceType = dyn_cast<VectorType>(ArgTys[RefArgNumber]);
+ auto *ThisArgVecTy = dyn_cast<VectorType>(Ty);
+ if (!ThisArgVecTy || !ReferenceType ||
+ (ReferenceType->getElementCount() != ThisArgVecTy->getElementCount()))
+ return true;
+ PointerType *ThisArgEltTy =
+ dyn_cast<PointerType>(ThisArgVecTy->getElementType());
+ if (!ThisArgEltTy)
+ return true;
+ return !ThisArgEltTy->isOpaqueOrPointeeTypeMatches(
+ ReferenceType->getElementType());
+ }
+ case IITDescriptor::VecElementArgument: {
+ if (D.getArgumentNumber() >= ArgTys.size())
+ return IsDeferredCheck ? true : DeferCheck(Ty);
+ auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]);
+ return !ReferenceType || Ty != ReferenceType->getElementType();
+ }
+ case IITDescriptor::Subdivide2Argument:
+ case IITDescriptor::Subdivide4Argument: {
+ // If this is a forward reference, defer the check for later.
+ if (D.getArgumentNumber() >= ArgTys.size())
+ return IsDeferredCheck || DeferCheck(Ty);
+
+ Type *NewTy = ArgTys[D.getArgumentNumber()];
+ if (auto *VTy = dyn_cast<VectorType>(NewTy)) {
+ int SubDivs = D.Kind == IITDescriptor::Subdivide2Argument ? 1 : 2;
+ NewTy = VectorType::getSubdividedVectorType(VTy, SubDivs);
+ return Ty != NewTy;
+ }
+ return true;
+ }
+ case IITDescriptor::VecOfBitcastsToInt: {
+ if (D.getArgumentNumber() >= ArgTys.size())
+ return IsDeferredCheck || DeferCheck(Ty);
+ auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]);
+ auto *ThisArgVecTy = dyn_cast<VectorType>(Ty);
+ if (!ThisArgVecTy || !ReferenceType)
+ return true;
+ return ThisArgVecTy != VectorType::getInteger(ReferenceType);
+ }
+ }
+ llvm_unreachable("unhandled");
+}
+
+Intrinsic::MatchIntrinsicTypesResult
+Intrinsic::matchIntrinsicSignature(FunctionType *FTy,
+ ArrayRef<Intrinsic::IITDescriptor> &Infos,
+ SmallVectorImpl<Type *> &ArgTys) {
+ SmallVector<DeferredIntrinsicMatchPair, 2> DeferredChecks;
+ if (matchIntrinsicType(FTy->getReturnType(), Infos, ArgTys, DeferredChecks,
+ false))
+ return MatchIntrinsicTypes_NoMatchRet;
+
+ unsigned NumDeferredReturnChecks = DeferredChecks.size();
+
+ for (auto *Ty : FTy->params())
+ if (matchIntrinsicType(Ty, Infos, ArgTys, DeferredChecks, false))
+ return MatchIntrinsicTypes_NoMatchArg;
+
+ for (unsigned I = 0, E = DeferredChecks.size(); I != E; ++I) {
+ DeferredIntrinsicMatchPair &Check = DeferredChecks[I];
+ if (matchIntrinsicType(Check.first, Check.second, ArgTys, DeferredChecks,
+ true))
+ return I < NumDeferredReturnChecks ? MatchIntrinsicTypes_NoMatchRet
+ : MatchIntrinsicTypes_NoMatchArg;
+ }
+
+ return MatchIntrinsicTypes_Match;
+}
+
+bool
+Intrinsic::matchIntrinsicVarArg(bool isVarArg,
+ ArrayRef<Intrinsic::IITDescriptor> &Infos) {
+ // If there are no descriptors left, then it can't be a vararg.
+ if (Infos.empty())
+ return isVarArg;
+
+ // There should be only one descriptor remaining at this point.
+ if (Infos.size() != 1)
+ return true;
+
+ // Check and verify the descriptor.
+ IITDescriptor D = Infos.front();
+ Infos = Infos.slice(1);
+ if (D.Kind == IITDescriptor::VarArg)
+ return !isVarArg;
+
+ return true;
+}
+
+bool Intrinsic::getIntrinsicSignature(Function *F,
+ SmallVectorImpl<Type *> &ArgTys) {
+ Intrinsic::ID ID = F->getIntrinsicID();
+ if (!ID)
+ return false;
+
+ SmallVector<Intrinsic::IITDescriptor, 8> Table;
+ getIntrinsicInfoTableEntries(ID, Table);
+ ArrayRef<Intrinsic::IITDescriptor> TableRef = Table;
+
+ if (Intrinsic::matchIntrinsicSignature(F->getFunctionType(), TableRef,
+ ArgTys) !=
+ Intrinsic::MatchIntrinsicTypesResult::MatchIntrinsicTypes_Match) {
+ return false;
+ }
+ if (Intrinsic::matchIntrinsicVarArg(F->getFunctionType()->isVarArg(),
+ TableRef))
+ return false;
+ return true;
+}
+
+std::optional<Function *> Intrinsic::remangleIntrinsicFunction(Function *F) {
+ SmallVector<Type *, 4> ArgTys;
+ if (!getIntrinsicSignature(F, ArgTys))
+ return std::nullopt;
+
+ Intrinsic::ID ID = F->getIntrinsicID();
+ StringRef Name = F->getName();
+ std::string WantedName =
+ Intrinsic::getName(ID, ArgTys, F->getParent(), F->getFunctionType());
+ if (Name == WantedName)
+ return std::nullopt;
+
+ Function *NewDecl = [&] {
+ if (auto *ExistingGV = F->getParent()->getNamedValue(WantedName)) {
+ if (auto *ExistingF = dyn_cast<Function>(ExistingGV))
+ if (ExistingF->getFunctionType() == F->getFunctionType())
+ return ExistingF;
+
+ // The name already exists, but is not a function or has the wrong
+ // prototype. Make place for the new one by renaming the old version.
+ // Either this old version will be removed later on or the module is
+ // invalid and we'll get an error.
+ ExistingGV->setName(WantedName + ".renamed");
+ }
+ return Intrinsic::getDeclaration(F->getParent(), ID, ArgTys);
+ }();
+
+ NewDecl->setCallingConv(F->getCallingConv());
+ assert(NewDecl->getFunctionType() == F->getFunctionType() &&
+ "Shouldn't change the signature");
+ return NewDecl;
+}
+
+/// hasAddressTaken - returns true if there are any uses of this function
+/// other than direct calls or invokes to it. Optionally ignores callback
+/// uses, assume like pointer annotation calls, and references in llvm.used
+/// and llvm.compiler.used variables.
+bool Function::hasAddressTaken(const User **PutOffender,
+ bool IgnoreCallbackUses,
+ bool IgnoreAssumeLikeCalls, bool IgnoreLLVMUsed,
+ bool IgnoreARCAttachedCall) const {
+ for (const Use &U : uses()) {
+ const User *FU = U.getUser();
+ if (isa<BlockAddress>(FU))
+ continue;
+
+ if (IgnoreCallbackUses) {
+ AbstractCallSite ACS(&U);
+ if (ACS && ACS.isCallbackCall())
+ continue;
+ }
+
+ const auto *Call = dyn_cast<CallBase>(FU);
+ if (!Call) {
+ if (IgnoreAssumeLikeCalls &&
+ isa<BitCastOperator, AddrSpaceCastOperator>(FU) &&
+ all_of(FU->users(), [](const User *U) {
+ if (const auto *I = dyn_cast<IntrinsicInst>(U))
+ return I->isAssumeLikeIntrinsic();
+ return false;
+ })) {
+ continue;
+ }
+
+ if (IgnoreLLVMUsed && !FU->user_empty()) {
+ const User *FUU = FU;
+ if (isa<BitCastOperator, AddrSpaceCastOperator>(FU) &&
+ FU->hasOneUse() && !FU->user_begin()->user_empty())
+ FUU = *FU->user_begin();
+ if (llvm::all_of(FUU->users(), [](const User *U) {
+ if (const auto *GV = dyn_cast<GlobalVariable>(U))
+ return GV->hasName() &&
+ (GV->getName().equals("llvm.compiler.used") ||
+ GV->getName().equals("llvm.used"));
+ return false;
+ }))
+ continue;
+ }
+ if (PutOffender)
+ *PutOffender = FU;
+ return true;
+ }
+
+ if (IgnoreAssumeLikeCalls) {
+ if (const auto *I = dyn_cast<IntrinsicInst>(Call))
+ if (I->isAssumeLikeIntrinsic())
+ continue;
+ }
+
+ if (!Call->isCallee(&U) || Call->getFunctionType() != getFunctionType()) {
+ if (IgnoreARCAttachedCall &&
+ Call->isOperandBundleOfType(LLVMContext::OB_clang_arc_attachedcall,
+ U.getOperandNo()))
+ continue;
+
+ if (PutOffender)
+ *PutOffender = FU;
+ return true;
+ }
+ }
+ return false;
+}
+
+bool Function::isDefTriviallyDead() const {
+ // Check the linkage
+ if (!hasLinkOnceLinkage() && !hasLocalLinkage() &&
+ !hasAvailableExternallyLinkage())
+ return false;
+
+ // Check if the function is used by anything other than a blockaddress.
+ for (const User *U : users())
+ if (!isa<BlockAddress>(U))
+ return false;
+
+ return true;
+}
+
+/// callsFunctionThatReturnsTwice - Return true if the function has a call to
+/// setjmp or other function that gcc recognizes as "returning twice".
+bool Function::callsFunctionThatReturnsTwice() const {
+ for (const Instruction &I : instructions(this))
+ if (const auto *Call = dyn_cast<CallBase>(&I))
+ if (Call->hasFnAttr(Attribute::ReturnsTwice))
+ return true;
+
+ return false;
+}
+
+Constant *Function::getPersonalityFn() const {
+ assert(hasPersonalityFn() && getNumOperands());
+ return cast<Constant>(Op<0>());
+}
+
+void Function::setPersonalityFn(Constant *Fn) {
+ setHungoffOperand<0>(Fn);
+ setValueSubclassDataBit(3, Fn != nullptr);
+}
+
+Constant *Function::getPrefixData() const {
+ assert(hasPrefixData() && getNumOperands());
+ return cast<Constant>(Op<1>());
+}
+
+void Function::setPrefixData(Constant *PrefixData) {
+ setHungoffOperand<1>(PrefixData);
+ setValueSubclassDataBit(1, PrefixData != nullptr);
+}
+
+Constant *Function::getPrologueData() const {
+ assert(hasPrologueData() && getNumOperands());
+ return cast<Constant>(Op<2>());
+}
+
+void Function::setPrologueData(Constant *PrologueData) {
+ setHungoffOperand<2>(PrologueData);
+ setValueSubclassDataBit(2, PrologueData != nullptr);
+}
+
+void Function::allocHungoffUselist() {
+ // If we've already allocated a uselist, stop here.
+ if (getNumOperands())
+ return;
+
+ allocHungoffUses(3, /*IsPhi=*/ false);
+ setNumHungOffUseOperands(3);
+
+ // Initialize the uselist with placeholder operands to allow traversal.
+ auto *CPN = ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0));
+ Op<0>().set(CPN);
+ Op<1>().set(CPN);
+ Op<2>().set(CPN);
+}
+
+template <int Idx>
+void Function::setHungoffOperand(Constant *C) {
+ if (C) {
+ allocHungoffUselist();
+ Op<Idx>().set(C);
+ } else if (getNumOperands()) {
+ Op<Idx>().set(
+ ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0)));
+ }
+}
+
+void Function::setValueSubclassDataBit(unsigned Bit, bool On) {
+ assert(Bit < 16 && "SubclassData contains only 16 bits");
+ if (On)
+ setValueSubclassData(getSubclassDataFromValue() | (1 << Bit));
+ else
+ setValueSubclassData(getSubclassDataFromValue() & ~(1 << Bit));
+}
+
+void Function::setEntryCount(ProfileCount Count,
+ const DenseSet<GlobalValue::GUID> *S) {
+#if !defined(NDEBUG)
+ auto PrevCount = getEntryCount();
+ assert(!PrevCount || PrevCount->getType() == Count.getType());
+#endif
+
+ auto ImportGUIDs = getImportGUIDs();
+ if (S == nullptr && ImportGUIDs.size())
+ S = &ImportGUIDs;
+
+ MDBuilder MDB(getContext());
+ setMetadata(
+ LLVMContext::MD_prof,
+ MDB.createFunctionEntryCount(Count.getCount(), Count.isSynthetic(), S));
+}
+
+void Function::setEntryCount(uint64_t Count, Function::ProfileCountType Type,
+ const DenseSet<GlobalValue::GUID> *Imports) {
+ setEntryCount(ProfileCount(Count, Type), Imports);
+}
+
+std::optional<ProfileCount> Function::getEntryCount(bool AllowSynthetic) const {
+ MDNode *MD = getMetadata(LLVMContext::MD_prof);
+ if (MD && MD->getOperand(0))
+ if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0))) {
+ if (MDS->getString().equals("function_entry_count")) {
+ ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1));
+ uint64_t Count = CI->getValue().getZExtValue();
+ // A value of -1 is used for SamplePGO when there were no samples.
+ // Treat this the same as unknown.
+ if (Count == (uint64_t)-1)
+ return std::nullopt;
+ return ProfileCount(Count, PCT_Real);
+ } else if (AllowSynthetic &&
+ MDS->getString().equals("synthetic_function_entry_count")) {
+ ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1));
+ uint64_t Count = CI->getValue().getZExtValue();
+ return ProfileCount(Count, PCT_Synthetic);
+ }
+ }
+ return std::nullopt;
+}
+
+DenseSet<GlobalValue::GUID> Function::getImportGUIDs() const {
+ DenseSet<GlobalValue::GUID> R;
+ if (MDNode *MD = getMetadata(LLVMContext::MD_prof))
+ if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0)))
+ if (MDS->getString().equals("function_entry_count"))
+ for (unsigned i = 2; i < MD->getNumOperands(); i++)
+ R.insert(mdconst::extract<ConstantInt>(MD->getOperand(i))
+ ->getValue()
+ .getZExtValue());
+ return R;
+}
+
+void Function::setSectionPrefix(StringRef Prefix) {
+ MDBuilder MDB(getContext());
+ setMetadata(LLVMContext::MD_section_prefix,
+ MDB.createFunctionSectionPrefix(Prefix));
+}
+
+std::optional<StringRef> Function::getSectionPrefix() const {
+ if (MDNode *MD = getMetadata(LLVMContext::MD_section_prefix)) {
+ assert(cast<MDString>(MD->getOperand(0))
+ ->getString()
+ .equals("function_section_prefix") &&
+ "Metadata not match");
+ return cast<MDString>(MD->getOperand(1))->getString();
+ }
+ return std::nullopt;
+}
+
+bool Function::nullPointerIsDefined() const {
+ return hasFnAttribute(Attribute::NullPointerIsValid);
+}
+
+bool llvm::NullPointerIsDefined(const Function *F, unsigned AS) {
+ if (F && F->nullPointerIsDefined())
+ return true;
+
+ if (AS != 0)
+ return true;
+
+ return false;
+}