diff options
Diffstat (limited to 'contrib/llvm-project/llvm/lib/IR/Operator.cpp')
| -rw-r--r-- | contrib/llvm-project/llvm/lib/IR/Operator.cpp | 255 |
1 files changed, 255 insertions, 0 deletions
diff --git a/contrib/llvm-project/llvm/lib/IR/Operator.cpp b/contrib/llvm-project/llvm/lib/IR/Operator.cpp new file mode 100644 index 000000000000..b57f3e3b2967 --- /dev/null +++ b/contrib/llvm-project/llvm/lib/IR/Operator.cpp @@ -0,0 +1,255 @@ +//===-- Operator.cpp - Implement the LLVM operators -----------------------===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// This file implements the non-inline methods for the LLVM Operator classes. +// +//===----------------------------------------------------------------------===// + +#include "llvm/IR/Operator.h" +#include "llvm/IR/DataLayout.h" +#include "llvm/IR/GetElementPtrTypeIterator.h" +#include "llvm/IR/Instructions.h" + +#include "ConstantsContext.h" + +namespace llvm { +bool Operator::hasPoisonGeneratingFlags() const { + switch (getOpcode()) { + case Instruction::Add: + case Instruction::Sub: + case Instruction::Mul: + case Instruction::Shl: { + auto *OBO = cast<OverflowingBinaryOperator>(this); + return OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap(); + } + case Instruction::UDiv: + case Instruction::SDiv: + case Instruction::AShr: + case Instruction::LShr: + return cast<PossiblyExactOperator>(this)->isExact(); + case Instruction::GetElementPtr: { + auto *GEP = cast<GEPOperator>(this); + // Note: inrange exists on constexpr only + return GEP->isInBounds() || GEP->getInRangeIndex() != std::nullopt; + } + default: + if (const auto *FP = dyn_cast<FPMathOperator>(this)) + return FP->hasNoNaNs() || FP->hasNoInfs(); + return false; + } +} + +bool Operator::hasPoisonGeneratingFlagsOrMetadata() const { + if (hasPoisonGeneratingFlags()) + return true; + auto *I = dyn_cast<Instruction>(this); + return I && I->hasPoisonGeneratingMetadata(); +} + +Type *GEPOperator::getSourceElementType() const { + if (auto *I = dyn_cast<GetElementPtrInst>(this)) + return I->getSourceElementType(); + return cast<GetElementPtrConstantExpr>(this)->getSourceElementType(); +} + +Type *GEPOperator::getResultElementType() const { + if (auto *I = dyn_cast<GetElementPtrInst>(this)) + return I->getResultElementType(); + return cast<GetElementPtrConstantExpr>(this)->getResultElementType(); +} + +Align GEPOperator::getMaxPreservedAlignment(const DataLayout &DL) const { + /// compute the worse possible offset for every level of the GEP et accumulate + /// the minimum alignment into Result. + + Align Result = Align(llvm::Value::MaximumAlignment); + for (gep_type_iterator GTI = gep_type_begin(this), GTE = gep_type_end(this); + GTI != GTE; ++GTI) { + uint64_t Offset; + ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand()); + + if (StructType *STy = GTI.getStructTypeOrNull()) { + const StructLayout *SL = DL.getStructLayout(STy); + Offset = SL->getElementOffset(OpC->getZExtValue()); + } else { + assert(GTI.isSequential() && "should be sequencial"); + /// If the index isn't known, we take 1 because it is the index that will + /// give the worse alignment of the offset. + const uint64_t ElemCount = OpC ? OpC->getZExtValue() : 1; + Offset = DL.getTypeAllocSize(GTI.getIndexedType()) * ElemCount; + } + Result = Align(MinAlign(Offset, Result.value())); + } + return Result; +} + +bool GEPOperator::accumulateConstantOffset( + const DataLayout &DL, APInt &Offset, + function_ref<bool(Value &, APInt &)> ExternalAnalysis) const { + assert(Offset.getBitWidth() == + DL.getIndexSizeInBits(getPointerAddressSpace()) && + "The offset bit width does not match DL specification."); + SmallVector<const Value *> Index(llvm::drop_begin(operand_values())); + return GEPOperator::accumulateConstantOffset(getSourceElementType(), Index, + DL, Offset, ExternalAnalysis); +} + +bool GEPOperator::accumulateConstantOffset( + Type *SourceType, ArrayRef<const Value *> Index, const DataLayout &DL, + APInt &Offset, function_ref<bool(Value &, APInt &)> ExternalAnalysis) { + bool UsedExternalAnalysis = false; + auto AccumulateOffset = [&](APInt Index, uint64_t Size) -> bool { + Index = Index.sextOrTrunc(Offset.getBitWidth()); + APInt IndexedSize = APInt(Offset.getBitWidth(), Size); + // For array or vector indices, scale the index by the size of the type. + if (!UsedExternalAnalysis) { + Offset += Index * IndexedSize; + } else { + // External Analysis can return a result higher/lower than the value + // represents. We need to detect overflow/underflow. + bool Overflow = false; + APInt OffsetPlus = Index.smul_ov(IndexedSize, Overflow); + if (Overflow) + return false; + Offset = Offset.sadd_ov(OffsetPlus, Overflow); + if (Overflow) + return false; + } + return true; + }; + auto begin = generic_gep_type_iterator<decltype(Index.begin())>::begin( + SourceType, Index.begin()); + auto end = generic_gep_type_iterator<decltype(Index.end())>::end(Index.end()); + for (auto GTI = begin, GTE = end; GTI != GTE; ++GTI) { + // Scalable vectors are multiplied by a runtime constant. + bool ScalableType = false; + if (isa<ScalableVectorType>(GTI.getIndexedType())) + ScalableType = true; + + Value *V = GTI.getOperand(); + StructType *STy = GTI.getStructTypeOrNull(); + // Handle ConstantInt if possible. + if (auto ConstOffset = dyn_cast<ConstantInt>(V)) { + if (ConstOffset->isZero()) + continue; + // if the type is scalable and the constant is not zero (vscale * n * 0 = + // 0) bailout. + if (ScalableType) + return false; + // Handle a struct index, which adds its field offset to the pointer. + if (STy) { + unsigned ElementIdx = ConstOffset->getZExtValue(); + const StructLayout *SL = DL.getStructLayout(STy); + // Element offset is in bytes. + if (!AccumulateOffset( + APInt(Offset.getBitWidth(), SL->getElementOffset(ElementIdx)), + 1)) + return false; + continue; + } + if (!AccumulateOffset(ConstOffset->getValue(), + DL.getTypeAllocSize(GTI.getIndexedType()))) + return false; + continue; + } + + // The operand is not constant, check if an external analysis was provided. + // External analsis is not applicable to a struct type. + if (!ExternalAnalysis || STy || ScalableType) + return false; + APInt AnalysisIndex; + if (!ExternalAnalysis(*V, AnalysisIndex)) + return false; + UsedExternalAnalysis = true; + if (!AccumulateOffset(AnalysisIndex, + DL.getTypeAllocSize(GTI.getIndexedType()))) + return false; + } + return true; +} + +bool GEPOperator::collectOffset( + const DataLayout &DL, unsigned BitWidth, + MapVector<Value *, APInt> &VariableOffsets, + APInt &ConstantOffset) const { + assert(BitWidth == DL.getIndexSizeInBits(getPointerAddressSpace()) && + "The offset bit width does not match DL specification."); + + auto CollectConstantOffset = [&](APInt Index, uint64_t Size) { + Index = Index.sextOrTrunc(BitWidth); + APInt IndexedSize = APInt(BitWidth, Size); + ConstantOffset += Index * IndexedSize; + }; + + for (gep_type_iterator GTI = gep_type_begin(this), GTE = gep_type_end(this); + GTI != GTE; ++GTI) { + // Scalable vectors are multiplied by a runtime constant. + bool ScalableType = isa<ScalableVectorType>(GTI.getIndexedType()); + + Value *V = GTI.getOperand(); + StructType *STy = GTI.getStructTypeOrNull(); + // Handle ConstantInt if possible. + if (auto ConstOffset = dyn_cast<ConstantInt>(V)) { + if (ConstOffset->isZero()) + continue; + // If the type is scalable and the constant is not zero (vscale * n * 0 = + // 0) bailout. + // TODO: If the runtime value is accessible at any point before DWARF + // emission, then we could potentially keep a forward reference to it + // in the debug value to be filled in later. + if (ScalableType) + return false; + // Handle a struct index, which adds its field offset to the pointer. + if (STy) { + unsigned ElementIdx = ConstOffset->getZExtValue(); + const StructLayout *SL = DL.getStructLayout(STy); + // Element offset is in bytes. + CollectConstantOffset(APInt(BitWidth, SL->getElementOffset(ElementIdx)), + 1); + continue; + } + CollectConstantOffset(ConstOffset->getValue(), + DL.getTypeAllocSize(GTI.getIndexedType())); + continue; + } + + if (STy || ScalableType) + return false; + APInt IndexedSize = + APInt(BitWidth, DL.getTypeAllocSize(GTI.getIndexedType())); + // Insert an initial offset of 0 for V iff none exists already, then + // increment the offset by IndexedSize. + if (!IndexedSize.isZero()) { + VariableOffsets.insert({V, APInt(BitWidth, 0)}); + VariableOffsets[V] += IndexedSize; + } + } + return true; +} + +void FastMathFlags::print(raw_ostream &O) const { + if (all()) + O << " fast"; + else { + if (allowReassoc()) + O << " reassoc"; + if (noNaNs()) + O << " nnan"; + if (noInfs()) + O << " ninf"; + if (noSignedZeros()) + O << " nsz"; + if (allowReciprocal()) + O << " arcp"; + if (allowContract()) + O << " contract"; + if (approxFunc()) + O << " afn"; + } +} +} // namespace llvm |
