aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm-project/llvm/lib/IR/Operator.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm-project/llvm/lib/IR/Operator.cpp')
-rw-r--r--contrib/llvm-project/llvm/lib/IR/Operator.cpp255
1 files changed, 255 insertions, 0 deletions
diff --git a/contrib/llvm-project/llvm/lib/IR/Operator.cpp b/contrib/llvm-project/llvm/lib/IR/Operator.cpp
new file mode 100644
index 000000000000..b57f3e3b2967
--- /dev/null
+++ b/contrib/llvm-project/llvm/lib/IR/Operator.cpp
@@ -0,0 +1,255 @@
+//===-- Operator.cpp - Implement the LLVM operators -----------------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the non-inline methods for the LLVM Operator classes.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/IR/Operator.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/GetElementPtrTypeIterator.h"
+#include "llvm/IR/Instructions.h"
+
+#include "ConstantsContext.h"
+
+namespace llvm {
+bool Operator::hasPoisonGeneratingFlags() const {
+ switch (getOpcode()) {
+ case Instruction::Add:
+ case Instruction::Sub:
+ case Instruction::Mul:
+ case Instruction::Shl: {
+ auto *OBO = cast<OverflowingBinaryOperator>(this);
+ return OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap();
+ }
+ case Instruction::UDiv:
+ case Instruction::SDiv:
+ case Instruction::AShr:
+ case Instruction::LShr:
+ return cast<PossiblyExactOperator>(this)->isExact();
+ case Instruction::GetElementPtr: {
+ auto *GEP = cast<GEPOperator>(this);
+ // Note: inrange exists on constexpr only
+ return GEP->isInBounds() || GEP->getInRangeIndex() != std::nullopt;
+ }
+ default:
+ if (const auto *FP = dyn_cast<FPMathOperator>(this))
+ return FP->hasNoNaNs() || FP->hasNoInfs();
+ return false;
+ }
+}
+
+bool Operator::hasPoisonGeneratingFlagsOrMetadata() const {
+ if (hasPoisonGeneratingFlags())
+ return true;
+ auto *I = dyn_cast<Instruction>(this);
+ return I && I->hasPoisonGeneratingMetadata();
+}
+
+Type *GEPOperator::getSourceElementType() const {
+ if (auto *I = dyn_cast<GetElementPtrInst>(this))
+ return I->getSourceElementType();
+ return cast<GetElementPtrConstantExpr>(this)->getSourceElementType();
+}
+
+Type *GEPOperator::getResultElementType() const {
+ if (auto *I = dyn_cast<GetElementPtrInst>(this))
+ return I->getResultElementType();
+ return cast<GetElementPtrConstantExpr>(this)->getResultElementType();
+}
+
+Align GEPOperator::getMaxPreservedAlignment(const DataLayout &DL) const {
+ /// compute the worse possible offset for every level of the GEP et accumulate
+ /// the minimum alignment into Result.
+
+ Align Result = Align(llvm::Value::MaximumAlignment);
+ for (gep_type_iterator GTI = gep_type_begin(this), GTE = gep_type_end(this);
+ GTI != GTE; ++GTI) {
+ uint64_t Offset;
+ ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand());
+
+ if (StructType *STy = GTI.getStructTypeOrNull()) {
+ const StructLayout *SL = DL.getStructLayout(STy);
+ Offset = SL->getElementOffset(OpC->getZExtValue());
+ } else {
+ assert(GTI.isSequential() && "should be sequencial");
+ /// If the index isn't known, we take 1 because it is the index that will
+ /// give the worse alignment of the offset.
+ const uint64_t ElemCount = OpC ? OpC->getZExtValue() : 1;
+ Offset = DL.getTypeAllocSize(GTI.getIndexedType()) * ElemCount;
+ }
+ Result = Align(MinAlign(Offset, Result.value()));
+ }
+ return Result;
+}
+
+bool GEPOperator::accumulateConstantOffset(
+ const DataLayout &DL, APInt &Offset,
+ function_ref<bool(Value &, APInt &)> ExternalAnalysis) const {
+ assert(Offset.getBitWidth() ==
+ DL.getIndexSizeInBits(getPointerAddressSpace()) &&
+ "The offset bit width does not match DL specification.");
+ SmallVector<const Value *> Index(llvm::drop_begin(operand_values()));
+ return GEPOperator::accumulateConstantOffset(getSourceElementType(), Index,
+ DL, Offset, ExternalAnalysis);
+}
+
+bool GEPOperator::accumulateConstantOffset(
+ Type *SourceType, ArrayRef<const Value *> Index, const DataLayout &DL,
+ APInt &Offset, function_ref<bool(Value &, APInt &)> ExternalAnalysis) {
+ bool UsedExternalAnalysis = false;
+ auto AccumulateOffset = [&](APInt Index, uint64_t Size) -> bool {
+ Index = Index.sextOrTrunc(Offset.getBitWidth());
+ APInt IndexedSize = APInt(Offset.getBitWidth(), Size);
+ // For array or vector indices, scale the index by the size of the type.
+ if (!UsedExternalAnalysis) {
+ Offset += Index * IndexedSize;
+ } else {
+ // External Analysis can return a result higher/lower than the value
+ // represents. We need to detect overflow/underflow.
+ bool Overflow = false;
+ APInt OffsetPlus = Index.smul_ov(IndexedSize, Overflow);
+ if (Overflow)
+ return false;
+ Offset = Offset.sadd_ov(OffsetPlus, Overflow);
+ if (Overflow)
+ return false;
+ }
+ return true;
+ };
+ auto begin = generic_gep_type_iterator<decltype(Index.begin())>::begin(
+ SourceType, Index.begin());
+ auto end = generic_gep_type_iterator<decltype(Index.end())>::end(Index.end());
+ for (auto GTI = begin, GTE = end; GTI != GTE; ++GTI) {
+ // Scalable vectors are multiplied by a runtime constant.
+ bool ScalableType = false;
+ if (isa<ScalableVectorType>(GTI.getIndexedType()))
+ ScalableType = true;
+
+ Value *V = GTI.getOperand();
+ StructType *STy = GTI.getStructTypeOrNull();
+ // Handle ConstantInt if possible.
+ if (auto ConstOffset = dyn_cast<ConstantInt>(V)) {
+ if (ConstOffset->isZero())
+ continue;
+ // if the type is scalable and the constant is not zero (vscale * n * 0 =
+ // 0) bailout.
+ if (ScalableType)
+ return false;
+ // Handle a struct index, which adds its field offset to the pointer.
+ if (STy) {
+ unsigned ElementIdx = ConstOffset->getZExtValue();
+ const StructLayout *SL = DL.getStructLayout(STy);
+ // Element offset is in bytes.
+ if (!AccumulateOffset(
+ APInt(Offset.getBitWidth(), SL->getElementOffset(ElementIdx)),
+ 1))
+ return false;
+ continue;
+ }
+ if (!AccumulateOffset(ConstOffset->getValue(),
+ DL.getTypeAllocSize(GTI.getIndexedType())))
+ return false;
+ continue;
+ }
+
+ // The operand is not constant, check if an external analysis was provided.
+ // External analsis is not applicable to a struct type.
+ if (!ExternalAnalysis || STy || ScalableType)
+ return false;
+ APInt AnalysisIndex;
+ if (!ExternalAnalysis(*V, AnalysisIndex))
+ return false;
+ UsedExternalAnalysis = true;
+ if (!AccumulateOffset(AnalysisIndex,
+ DL.getTypeAllocSize(GTI.getIndexedType())))
+ return false;
+ }
+ return true;
+}
+
+bool GEPOperator::collectOffset(
+ const DataLayout &DL, unsigned BitWidth,
+ MapVector<Value *, APInt> &VariableOffsets,
+ APInt &ConstantOffset) const {
+ assert(BitWidth == DL.getIndexSizeInBits(getPointerAddressSpace()) &&
+ "The offset bit width does not match DL specification.");
+
+ auto CollectConstantOffset = [&](APInt Index, uint64_t Size) {
+ Index = Index.sextOrTrunc(BitWidth);
+ APInt IndexedSize = APInt(BitWidth, Size);
+ ConstantOffset += Index * IndexedSize;
+ };
+
+ for (gep_type_iterator GTI = gep_type_begin(this), GTE = gep_type_end(this);
+ GTI != GTE; ++GTI) {
+ // Scalable vectors are multiplied by a runtime constant.
+ bool ScalableType = isa<ScalableVectorType>(GTI.getIndexedType());
+
+ Value *V = GTI.getOperand();
+ StructType *STy = GTI.getStructTypeOrNull();
+ // Handle ConstantInt if possible.
+ if (auto ConstOffset = dyn_cast<ConstantInt>(V)) {
+ if (ConstOffset->isZero())
+ continue;
+ // If the type is scalable and the constant is not zero (vscale * n * 0 =
+ // 0) bailout.
+ // TODO: If the runtime value is accessible at any point before DWARF
+ // emission, then we could potentially keep a forward reference to it
+ // in the debug value to be filled in later.
+ if (ScalableType)
+ return false;
+ // Handle a struct index, which adds its field offset to the pointer.
+ if (STy) {
+ unsigned ElementIdx = ConstOffset->getZExtValue();
+ const StructLayout *SL = DL.getStructLayout(STy);
+ // Element offset is in bytes.
+ CollectConstantOffset(APInt(BitWidth, SL->getElementOffset(ElementIdx)),
+ 1);
+ continue;
+ }
+ CollectConstantOffset(ConstOffset->getValue(),
+ DL.getTypeAllocSize(GTI.getIndexedType()));
+ continue;
+ }
+
+ if (STy || ScalableType)
+ return false;
+ APInt IndexedSize =
+ APInt(BitWidth, DL.getTypeAllocSize(GTI.getIndexedType()));
+ // Insert an initial offset of 0 for V iff none exists already, then
+ // increment the offset by IndexedSize.
+ if (!IndexedSize.isZero()) {
+ VariableOffsets.insert({V, APInt(BitWidth, 0)});
+ VariableOffsets[V] += IndexedSize;
+ }
+ }
+ return true;
+}
+
+void FastMathFlags::print(raw_ostream &O) const {
+ if (all())
+ O << " fast";
+ else {
+ if (allowReassoc())
+ O << " reassoc";
+ if (noNaNs())
+ O << " nnan";
+ if (noInfs())
+ O << " ninf";
+ if (noSignedZeros())
+ O << " nsz";
+ if (allowReciprocal())
+ O << " arcp";
+ if (allowContract())
+ O << " contract";
+ if (approxFunc())
+ O << " afn";
+ }
+}
+} // namespace llvm