aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm-project/llvm/lib/ObjCopy/ELF/ELFObject.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm-project/llvm/lib/ObjCopy/ELF/ELFObject.cpp')
-rw-r--r--contrib/llvm-project/llvm/lib/ObjCopy/ELF/ELFObject.cpp2782
1 files changed, 2782 insertions, 0 deletions
diff --git a/contrib/llvm-project/llvm/lib/ObjCopy/ELF/ELFObject.cpp b/contrib/llvm-project/llvm/lib/ObjCopy/ELF/ELFObject.cpp
new file mode 100644
index 000000000000..ea6dadabace6
--- /dev/null
+++ b/contrib/llvm-project/llvm/lib/ObjCopy/ELF/ELFObject.cpp
@@ -0,0 +1,2782 @@
+//===- ELFObject.cpp ------------------------------------------------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+
+#include "ELFObject.h"
+#include "llvm/ADT/ArrayRef.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/StringRef.h"
+#include "llvm/ADT/Twine.h"
+#include "llvm/ADT/iterator_range.h"
+#include "llvm/BinaryFormat/ELF.h"
+#include "llvm/MC/MCTargetOptions.h"
+#include "llvm/Object/ELF.h"
+#include "llvm/Object/ELFObjectFile.h"
+#include "llvm/Support/Compression.h"
+#include "llvm/Support/Endian.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/FileOutputBuffer.h"
+#include "llvm/Support/Path.h"
+#include <algorithm>
+#include <cstddef>
+#include <cstdint>
+#include <iterator>
+#include <unordered_set>
+#include <utility>
+#include <vector>
+
+using namespace llvm;
+using namespace llvm::ELF;
+using namespace llvm::objcopy::elf;
+using namespace llvm::object;
+
+template <class ELFT> void ELFWriter<ELFT>::writePhdr(const Segment &Seg) {
+ uint8_t *B = reinterpret_cast<uint8_t *>(Buf->getBufferStart()) +
+ Obj.ProgramHdrSegment.Offset + Seg.Index * sizeof(Elf_Phdr);
+ Elf_Phdr &Phdr = *reinterpret_cast<Elf_Phdr *>(B);
+ Phdr.p_type = Seg.Type;
+ Phdr.p_flags = Seg.Flags;
+ Phdr.p_offset = Seg.Offset;
+ Phdr.p_vaddr = Seg.VAddr;
+ Phdr.p_paddr = Seg.PAddr;
+ Phdr.p_filesz = Seg.FileSize;
+ Phdr.p_memsz = Seg.MemSize;
+ Phdr.p_align = Seg.Align;
+}
+
+Error SectionBase::removeSectionReferences(
+ bool, function_ref<bool(const SectionBase *)>) {
+ return Error::success();
+}
+
+Error SectionBase::removeSymbols(function_ref<bool(const Symbol &)>) {
+ return Error::success();
+}
+
+Error SectionBase::initialize(SectionTableRef) { return Error::success(); }
+void SectionBase::finalize() {}
+void SectionBase::markSymbols() {}
+void SectionBase::replaceSectionReferences(
+ const DenseMap<SectionBase *, SectionBase *> &) {}
+void SectionBase::onRemove() {}
+
+template <class ELFT> void ELFWriter<ELFT>::writeShdr(const SectionBase &Sec) {
+ uint8_t *B =
+ reinterpret_cast<uint8_t *>(Buf->getBufferStart()) + Sec.HeaderOffset;
+ Elf_Shdr &Shdr = *reinterpret_cast<Elf_Shdr *>(B);
+ Shdr.sh_name = Sec.NameIndex;
+ Shdr.sh_type = Sec.Type;
+ Shdr.sh_flags = Sec.Flags;
+ Shdr.sh_addr = Sec.Addr;
+ Shdr.sh_offset = Sec.Offset;
+ Shdr.sh_size = Sec.Size;
+ Shdr.sh_link = Sec.Link;
+ Shdr.sh_info = Sec.Info;
+ Shdr.sh_addralign = Sec.Align;
+ Shdr.sh_entsize = Sec.EntrySize;
+}
+
+template <class ELFT> Error ELFSectionSizer<ELFT>::visit(Section &) {
+ return Error::success();
+}
+
+template <class ELFT> Error ELFSectionSizer<ELFT>::visit(OwnedDataSection &) {
+ return Error::success();
+}
+
+template <class ELFT> Error ELFSectionSizer<ELFT>::visit(StringTableSection &) {
+ return Error::success();
+}
+
+template <class ELFT>
+Error ELFSectionSizer<ELFT>::visit(DynamicRelocationSection &) {
+ return Error::success();
+}
+
+template <class ELFT>
+Error ELFSectionSizer<ELFT>::visit(SymbolTableSection &Sec) {
+ Sec.EntrySize = sizeof(Elf_Sym);
+ Sec.Size = Sec.Symbols.size() * Sec.EntrySize;
+ // Align to the largest field in Elf_Sym.
+ Sec.Align = ELFT::Is64Bits ? sizeof(Elf_Xword) : sizeof(Elf_Word);
+ return Error::success();
+}
+
+template <class ELFT>
+Error ELFSectionSizer<ELFT>::visit(RelocationSection &Sec) {
+ Sec.EntrySize = Sec.Type == SHT_REL ? sizeof(Elf_Rel) : sizeof(Elf_Rela);
+ Sec.Size = Sec.Relocations.size() * Sec.EntrySize;
+ // Align to the largest field in Elf_Rel(a).
+ Sec.Align = ELFT::Is64Bits ? sizeof(Elf_Xword) : sizeof(Elf_Word);
+ return Error::success();
+}
+
+template <class ELFT>
+Error ELFSectionSizer<ELFT>::visit(GnuDebugLinkSection &) {
+ return Error::success();
+}
+
+template <class ELFT> Error ELFSectionSizer<ELFT>::visit(GroupSection &Sec) {
+ Sec.Size = sizeof(Elf_Word) + Sec.GroupMembers.size() * sizeof(Elf_Word);
+ return Error::success();
+}
+
+template <class ELFT>
+Error ELFSectionSizer<ELFT>::visit(SectionIndexSection &) {
+ return Error::success();
+}
+
+template <class ELFT> Error ELFSectionSizer<ELFT>::visit(CompressedSection &) {
+ return Error::success();
+}
+
+template <class ELFT>
+Error ELFSectionSizer<ELFT>::visit(DecompressedSection &) {
+ return Error::success();
+}
+
+Error BinarySectionWriter::visit(const SectionIndexSection &Sec) {
+ return createStringError(errc::operation_not_permitted,
+ "cannot write symbol section index table '" +
+ Sec.Name + "' ");
+}
+
+Error BinarySectionWriter::visit(const SymbolTableSection &Sec) {
+ return createStringError(errc::operation_not_permitted,
+ "cannot write symbol table '" + Sec.Name +
+ "' out to binary");
+}
+
+Error BinarySectionWriter::visit(const RelocationSection &Sec) {
+ return createStringError(errc::operation_not_permitted,
+ "cannot write relocation section '" + Sec.Name +
+ "' out to binary");
+}
+
+Error BinarySectionWriter::visit(const GnuDebugLinkSection &Sec) {
+ return createStringError(errc::operation_not_permitted,
+ "cannot write '" + Sec.Name + "' out to binary");
+}
+
+Error BinarySectionWriter::visit(const GroupSection &Sec) {
+ return createStringError(errc::operation_not_permitted,
+ "cannot write '" + Sec.Name + "' out to binary");
+}
+
+Error SectionWriter::visit(const Section &Sec) {
+ if (Sec.Type != SHT_NOBITS)
+ llvm::copy(Sec.Contents, Out.getBufferStart() + Sec.Offset);
+
+ return Error::success();
+}
+
+static bool addressOverflows32bit(uint64_t Addr) {
+ // Sign extended 32 bit addresses (e.g 0xFFFFFFFF80000000) are ok
+ return Addr > UINT32_MAX && Addr + 0x80000000 > UINT32_MAX;
+}
+
+template <class T> static T checkedGetHex(StringRef S) {
+ T Value;
+ bool Fail = S.getAsInteger(16, Value);
+ assert(!Fail);
+ (void)Fail;
+ return Value;
+}
+
+// Fills exactly Len bytes of buffer with hexadecimal characters
+// representing value 'X'
+template <class T, class Iterator>
+static Iterator toHexStr(T X, Iterator It, size_t Len) {
+ // Fill range with '0'
+ std::fill(It, It + Len, '0');
+
+ for (long I = Len - 1; I >= 0; --I) {
+ unsigned char Mod = static_cast<unsigned char>(X) & 15;
+ *(It + I) = hexdigit(Mod, false);
+ X >>= 4;
+ }
+ assert(X == 0);
+ return It + Len;
+}
+
+uint8_t IHexRecord::getChecksum(StringRef S) {
+ assert((S.size() & 1) == 0);
+ uint8_t Checksum = 0;
+ while (!S.empty()) {
+ Checksum += checkedGetHex<uint8_t>(S.take_front(2));
+ S = S.drop_front(2);
+ }
+ return -Checksum;
+}
+
+IHexLineData IHexRecord::getLine(uint8_t Type, uint16_t Addr,
+ ArrayRef<uint8_t> Data) {
+ IHexLineData Line(getLineLength(Data.size()));
+ assert(Line.size());
+ auto Iter = Line.begin();
+ *Iter++ = ':';
+ Iter = toHexStr(Data.size(), Iter, 2);
+ Iter = toHexStr(Addr, Iter, 4);
+ Iter = toHexStr(Type, Iter, 2);
+ for (uint8_t X : Data)
+ Iter = toHexStr(X, Iter, 2);
+ StringRef S(Line.data() + 1, std::distance(Line.begin() + 1, Iter));
+ Iter = toHexStr(getChecksum(S), Iter, 2);
+ *Iter++ = '\r';
+ *Iter++ = '\n';
+ assert(Iter == Line.end());
+ return Line;
+}
+
+static Error checkRecord(const IHexRecord &R) {
+ switch (R.Type) {
+ case IHexRecord::Data:
+ if (R.HexData.size() == 0)
+ return createStringError(
+ errc::invalid_argument,
+ "zero data length is not allowed for data records");
+ break;
+ case IHexRecord::EndOfFile:
+ break;
+ case IHexRecord::SegmentAddr:
+ // 20-bit segment address. Data length must be 2 bytes
+ // (4 bytes in hex)
+ if (R.HexData.size() != 4)
+ return createStringError(
+ errc::invalid_argument,
+ "segment address data should be 2 bytes in size");
+ break;
+ case IHexRecord::StartAddr80x86:
+ case IHexRecord::StartAddr:
+ if (R.HexData.size() != 8)
+ return createStringError(errc::invalid_argument,
+ "start address data should be 4 bytes in size");
+ // According to Intel HEX specification '03' record
+ // only specifies the code address within the 20-bit
+ // segmented address space of the 8086/80186. This
+ // means 12 high order bits should be zeroes.
+ if (R.Type == IHexRecord::StartAddr80x86 &&
+ R.HexData.take_front(3) != "000")
+ return createStringError(errc::invalid_argument,
+ "start address exceeds 20 bit for 80x86");
+ break;
+ case IHexRecord::ExtendedAddr:
+ // 16-31 bits of linear base address
+ if (R.HexData.size() != 4)
+ return createStringError(
+ errc::invalid_argument,
+ "extended address data should be 2 bytes in size");
+ break;
+ default:
+ // Unknown record type
+ return createStringError(errc::invalid_argument, "unknown record type: %u",
+ static_cast<unsigned>(R.Type));
+ }
+ return Error::success();
+}
+
+// Checks that IHEX line contains valid characters.
+// This allows converting hexadecimal data to integers
+// without extra verification.
+static Error checkChars(StringRef Line) {
+ assert(!Line.empty());
+ if (Line[0] != ':')
+ return createStringError(errc::invalid_argument,
+ "missing ':' in the beginning of line.");
+
+ for (size_t Pos = 1; Pos < Line.size(); ++Pos)
+ if (hexDigitValue(Line[Pos]) == -1U)
+ return createStringError(errc::invalid_argument,
+ "invalid character at position %zu.", Pos + 1);
+ return Error::success();
+}
+
+Expected<IHexRecord> IHexRecord::parse(StringRef Line) {
+ assert(!Line.empty());
+
+ // ':' + Length + Address + Type + Checksum with empty data ':LLAAAATTCC'
+ if (Line.size() < 11)
+ return createStringError(errc::invalid_argument,
+ "line is too short: %zu chars.", Line.size());
+
+ if (Error E = checkChars(Line))
+ return std::move(E);
+
+ IHexRecord Rec;
+ size_t DataLen = checkedGetHex<uint8_t>(Line.substr(1, 2));
+ if (Line.size() != getLength(DataLen))
+ return createStringError(errc::invalid_argument,
+ "invalid line length %zu (should be %zu)",
+ Line.size(), getLength(DataLen));
+
+ Rec.Addr = checkedGetHex<uint16_t>(Line.substr(3, 4));
+ Rec.Type = checkedGetHex<uint8_t>(Line.substr(7, 2));
+ Rec.HexData = Line.substr(9, DataLen * 2);
+
+ if (getChecksum(Line.drop_front(1)) != 0)
+ return createStringError(errc::invalid_argument, "incorrect checksum.");
+ if (Error E = checkRecord(Rec))
+ return std::move(E);
+ return Rec;
+}
+
+static uint64_t sectionPhysicalAddr(const SectionBase *Sec) {
+ Segment *Seg = Sec->ParentSegment;
+ if (Seg && Seg->Type != ELF::PT_LOAD)
+ Seg = nullptr;
+ return Seg ? Seg->PAddr + Sec->OriginalOffset - Seg->OriginalOffset
+ : Sec->Addr;
+}
+
+void IHexSectionWriterBase::writeSection(const SectionBase *Sec,
+ ArrayRef<uint8_t> Data) {
+ assert(Data.size() == Sec->Size);
+ const uint32_t ChunkSize = 16;
+ uint32_t Addr = sectionPhysicalAddr(Sec) & 0xFFFFFFFFU;
+ while (!Data.empty()) {
+ uint64_t DataSize = std::min<uint64_t>(Data.size(), ChunkSize);
+ if (Addr > SegmentAddr + BaseAddr + 0xFFFFU) {
+ if (Addr > 0xFFFFFU) {
+ // Write extended address record, zeroing segment address
+ // if needed.
+ if (SegmentAddr != 0)
+ SegmentAddr = writeSegmentAddr(0U);
+ BaseAddr = writeBaseAddr(Addr);
+ } else {
+ // We can still remain 16-bit
+ SegmentAddr = writeSegmentAddr(Addr);
+ }
+ }
+ uint64_t SegOffset = Addr - BaseAddr - SegmentAddr;
+ assert(SegOffset <= 0xFFFFU);
+ DataSize = std::min(DataSize, 0x10000U - SegOffset);
+ writeData(0, SegOffset, Data.take_front(DataSize));
+ Addr += DataSize;
+ Data = Data.drop_front(DataSize);
+ }
+}
+
+uint64_t IHexSectionWriterBase::writeSegmentAddr(uint64_t Addr) {
+ assert(Addr <= 0xFFFFFU);
+ uint8_t Data[] = {static_cast<uint8_t>((Addr & 0xF0000U) >> 12), 0};
+ writeData(2, 0, Data);
+ return Addr & 0xF0000U;
+}
+
+uint64_t IHexSectionWriterBase::writeBaseAddr(uint64_t Addr) {
+ assert(Addr <= 0xFFFFFFFFU);
+ uint64_t Base = Addr & 0xFFFF0000U;
+ uint8_t Data[] = {static_cast<uint8_t>(Base >> 24),
+ static_cast<uint8_t>((Base >> 16) & 0xFF)};
+ writeData(4, 0, Data);
+ return Base;
+}
+
+void IHexSectionWriterBase::writeData(uint8_t, uint16_t,
+ ArrayRef<uint8_t> Data) {
+ Offset += IHexRecord::getLineLength(Data.size());
+}
+
+Error IHexSectionWriterBase::visit(const Section &Sec) {
+ writeSection(&Sec, Sec.Contents);
+ return Error::success();
+}
+
+Error IHexSectionWriterBase::visit(const OwnedDataSection &Sec) {
+ writeSection(&Sec, Sec.Data);
+ return Error::success();
+}
+
+Error IHexSectionWriterBase::visit(const StringTableSection &Sec) {
+ // Check that sizer has already done its work
+ assert(Sec.Size == Sec.StrTabBuilder.getSize());
+ // We are free to pass an invalid pointer to writeSection as long
+ // as we don't actually write any data. The real writer class has
+ // to override this method .
+ writeSection(&Sec, {nullptr, static_cast<size_t>(Sec.Size)});
+ return Error::success();
+}
+
+Error IHexSectionWriterBase::visit(const DynamicRelocationSection &Sec) {
+ writeSection(&Sec, Sec.Contents);
+ return Error::success();
+}
+
+void IHexSectionWriter::writeData(uint8_t Type, uint16_t Addr,
+ ArrayRef<uint8_t> Data) {
+ IHexLineData HexData = IHexRecord::getLine(Type, Addr, Data);
+ memcpy(Out.getBufferStart() + Offset, HexData.data(), HexData.size());
+ Offset += HexData.size();
+}
+
+Error IHexSectionWriter::visit(const StringTableSection &Sec) {
+ assert(Sec.Size == Sec.StrTabBuilder.getSize());
+ std::vector<uint8_t> Data(Sec.Size);
+ Sec.StrTabBuilder.write(Data.data());
+ writeSection(&Sec, Data);
+ return Error::success();
+}
+
+Error Section::accept(SectionVisitor &Visitor) const {
+ return Visitor.visit(*this);
+}
+
+Error Section::accept(MutableSectionVisitor &Visitor) {
+ return Visitor.visit(*this);
+}
+
+Error SectionWriter::visit(const OwnedDataSection &Sec) {
+ llvm::copy(Sec.Data, Out.getBufferStart() + Sec.Offset);
+ return Error::success();
+}
+
+template <class ELFT>
+Error ELFSectionWriter<ELFT>::visit(const DecompressedSection &Sec) {
+ ArrayRef<uint8_t> Compressed =
+ Sec.OriginalData.slice(sizeof(Elf_Chdr_Impl<ELFT>));
+ SmallVector<uint8_t, 128> Decompressed;
+ DebugCompressionType Type;
+ switch (Sec.ChType) {
+ case ELFCOMPRESS_ZLIB:
+ Type = DebugCompressionType::Zlib;
+ break;
+ case ELFCOMPRESS_ZSTD:
+ Type = DebugCompressionType::Zstd;
+ break;
+ default:
+ return createStringError(errc::invalid_argument,
+ "--decompress-debug-sections: ch_type (" +
+ Twine(Sec.ChType) + ") of section '" +
+ Sec.Name + "' is unsupported");
+ }
+ if (auto *Reason =
+ compression::getReasonIfUnsupported(compression::formatFor(Type)))
+ return createStringError(errc::invalid_argument,
+ "failed to decompress section '" + Sec.Name +
+ "': " + Reason);
+ if (Error E = compression::decompress(Type, Compressed, Decompressed,
+ static_cast<size_t>(Sec.Size)))
+ return createStringError(errc::invalid_argument,
+ "failed to decompress section '" + Sec.Name +
+ "': " + toString(std::move(E)));
+
+ uint8_t *Buf = reinterpret_cast<uint8_t *>(Out.getBufferStart()) + Sec.Offset;
+ std::copy(Decompressed.begin(), Decompressed.end(), Buf);
+
+ return Error::success();
+}
+
+Error BinarySectionWriter::visit(const DecompressedSection &Sec) {
+ return createStringError(errc::operation_not_permitted,
+ "cannot write compressed section '" + Sec.Name +
+ "' ");
+}
+
+Error DecompressedSection::accept(SectionVisitor &Visitor) const {
+ return Visitor.visit(*this);
+}
+
+Error DecompressedSection::accept(MutableSectionVisitor &Visitor) {
+ return Visitor.visit(*this);
+}
+
+Error OwnedDataSection::accept(SectionVisitor &Visitor) const {
+ return Visitor.visit(*this);
+}
+
+Error OwnedDataSection::accept(MutableSectionVisitor &Visitor) {
+ return Visitor.visit(*this);
+}
+
+void OwnedDataSection::appendHexData(StringRef HexData) {
+ assert((HexData.size() & 1) == 0);
+ while (!HexData.empty()) {
+ Data.push_back(checkedGetHex<uint8_t>(HexData.take_front(2)));
+ HexData = HexData.drop_front(2);
+ }
+ Size = Data.size();
+}
+
+Error BinarySectionWriter::visit(const CompressedSection &Sec) {
+ return createStringError(errc::operation_not_permitted,
+ "cannot write compressed section '" + Sec.Name +
+ "' ");
+}
+
+template <class ELFT>
+Error ELFSectionWriter<ELFT>::visit(const CompressedSection &Sec) {
+ uint8_t *Buf = reinterpret_cast<uint8_t *>(Out.getBufferStart()) + Sec.Offset;
+ Elf_Chdr_Impl<ELFT> Chdr = {};
+ switch (Sec.CompressionType) {
+ case DebugCompressionType::None:
+ std::copy(Sec.OriginalData.begin(), Sec.OriginalData.end(), Buf);
+ return Error::success();
+ case DebugCompressionType::Zlib:
+ Chdr.ch_type = ELF::ELFCOMPRESS_ZLIB;
+ break;
+ case DebugCompressionType::Zstd:
+ Chdr.ch_type = ELF::ELFCOMPRESS_ZSTD;
+ break;
+ }
+ Chdr.ch_size = Sec.DecompressedSize;
+ Chdr.ch_addralign = Sec.DecompressedAlign;
+ memcpy(Buf, &Chdr, sizeof(Chdr));
+ Buf += sizeof(Chdr);
+
+ std::copy(Sec.CompressedData.begin(), Sec.CompressedData.end(), Buf);
+ return Error::success();
+}
+
+CompressedSection::CompressedSection(const SectionBase &Sec,
+ DebugCompressionType CompressionType,
+ bool Is64Bits)
+ : SectionBase(Sec), CompressionType(CompressionType),
+ DecompressedSize(Sec.OriginalData.size()), DecompressedAlign(Sec.Align) {
+ compression::compress(compression::Params(CompressionType), OriginalData,
+ CompressedData);
+
+ Flags |= ELF::SHF_COMPRESSED;
+ size_t ChdrSize = Is64Bits ? sizeof(object::Elf_Chdr_Impl<object::ELF64LE>)
+ : sizeof(object::Elf_Chdr_Impl<object::ELF32LE>);
+ Size = ChdrSize + CompressedData.size();
+ Align = 8;
+}
+
+CompressedSection::CompressedSection(ArrayRef<uint8_t> CompressedData,
+ uint32_t ChType, uint64_t DecompressedSize,
+ uint64_t DecompressedAlign)
+ : ChType(ChType), CompressionType(DebugCompressionType::None),
+ DecompressedSize(DecompressedSize), DecompressedAlign(DecompressedAlign) {
+ OriginalData = CompressedData;
+}
+
+Error CompressedSection::accept(SectionVisitor &Visitor) const {
+ return Visitor.visit(*this);
+}
+
+Error CompressedSection::accept(MutableSectionVisitor &Visitor) {
+ return Visitor.visit(*this);
+}
+
+void StringTableSection::addString(StringRef Name) { StrTabBuilder.add(Name); }
+
+uint32_t StringTableSection::findIndex(StringRef Name) const {
+ return StrTabBuilder.getOffset(Name);
+}
+
+void StringTableSection::prepareForLayout() {
+ StrTabBuilder.finalize();
+ Size = StrTabBuilder.getSize();
+}
+
+Error SectionWriter::visit(const StringTableSection &Sec) {
+ Sec.StrTabBuilder.write(reinterpret_cast<uint8_t *>(Out.getBufferStart()) +
+ Sec.Offset);
+ return Error::success();
+}
+
+Error StringTableSection::accept(SectionVisitor &Visitor) const {
+ return Visitor.visit(*this);
+}
+
+Error StringTableSection::accept(MutableSectionVisitor &Visitor) {
+ return Visitor.visit(*this);
+}
+
+template <class ELFT>
+Error ELFSectionWriter<ELFT>::visit(const SectionIndexSection &Sec) {
+ uint8_t *Buf = reinterpret_cast<uint8_t *>(Out.getBufferStart()) + Sec.Offset;
+ llvm::copy(Sec.Indexes, reinterpret_cast<Elf_Word *>(Buf));
+ return Error::success();
+}
+
+Error SectionIndexSection::initialize(SectionTableRef SecTable) {
+ Size = 0;
+ Expected<SymbolTableSection *> Sec =
+ SecTable.getSectionOfType<SymbolTableSection>(
+ Link,
+ "Link field value " + Twine(Link) + " in section " + Name +
+ " is invalid",
+ "Link field value " + Twine(Link) + " in section " + Name +
+ " is not a symbol table");
+ if (!Sec)
+ return Sec.takeError();
+
+ setSymTab(*Sec);
+ Symbols->setShndxTable(this);
+ return Error::success();
+}
+
+void SectionIndexSection::finalize() { Link = Symbols->Index; }
+
+Error SectionIndexSection::accept(SectionVisitor &Visitor) const {
+ return Visitor.visit(*this);
+}
+
+Error SectionIndexSection::accept(MutableSectionVisitor &Visitor) {
+ return Visitor.visit(*this);
+}
+
+static bool isValidReservedSectionIndex(uint16_t Index, uint16_t Machine) {
+ switch (Index) {
+ case SHN_ABS:
+ case SHN_COMMON:
+ return true;
+ }
+
+ if (Machine == EM_AMDGPU) {
+ return Index == SHN_AMDGPU_LDS;
+ }
+
+ if (Machine == EM_MIPS) {
+ switch (Index) {
+ case SHN_MIPS_ACOMMON:
+ case SHN_MIPS_SCOMMON:
+ case SHN_MIPS_SUNDEFINED:
+ return true;
+ }
+ }
+
+ if (Machine == EM_HEXAGON) {
+ switch (Index) {
+ case SHN_HEXAGON_SCOMMON:
+ case SHN_HEXAGON_SCOMMON_1:
+ case SHN_HEXAGON_SCOMMON_2:
+ case SHN_HEXAGON_SCOMMON_4:
+ case SHN_HEXAGON_SCOMMON_8:
+ return true;
+ }
+ }
+ return false;
+}
+
+// Large indexes force us to clarify exactly what this function should do. This
+// function should return the value that will appear in st_shndx when written
+// out.
+uint16_t Symbol::getShndx() const {
+ if (DefinedIn != nullptr) {
+ if (DefinedIn->Index >= SHN_LORESERVE)
+ return SHN_XINDEX;
+ return DefinedIn->Index;
+ }
+
+ if (ShndxType == SYMBOL_SIMPLE_INDEX) {
+ // This means that we don't have a defined section but we do need to
+ // output a legitimate section index.
+ return SHN_UNDEF;
+ }
+
+ assert(ShndxType == SYMBOL_ABS || ShndxType == SYMBOL_COMMON ||
+ (ShndxType >= SYMBOL_LOPROC && ShndxType <= SYMBOL_HIPROC) ||
+ (ShndxType >= SYMBOL_LOOS && ShndxType <= SYMBOL_HIOS));
+ return static_cast<uint16_t>(ShndxType);
+}
+
+bool Symbol::isCommon() const { return getShndx() == SHN_COMMON; }
+
+void SymbolTableSection::assignIndices() {
+ uint32_t Index = 0;
+ for (auto &Sym : Symbols)
+ Sym->Index = Index++;
+}
+
+void SymbolTableSection::addSymbol(Twine Name, uint8_t Bind, uint8_t Type,
+ SectionBase *DefinedIn, uint64_t Value,
+ uint8_t Visibility, uint16_t Shndx,
+ uint64_t SymbolSize) {
+ Symbol Sym;
+ Sym.Name = Name.str();
+ Sym.Binding = Bind;
+ Sym.Type = Type;
+ Sym.DefinedIn = DefinedIn;
+ if (DefinedIn != nullptr)
+ DefinedIn->HasSymbol = true;
+ if (DefinedIn == nullptr) {
+ if (Shndx >= SHN_LORESERVE)
+ Sym.ShndxType = static_cast<SymbolShndxType>(Shndx);
+ else
+ Sym.ShndxType = SYMBOL_SIMPLE_INDEX;
+ }
+ Sym.Value = Value;
+ Sym.Visibility = Visibility;
+ Sym.Size = SymbolSize;
+ Sym.Index = Symbols.size();
+ Symbols.emplace_back(std::make_unique<Symbol>(Sym));
+ Size += this->EntrySize;
+}
+
+Error SymbolTableSection::removeSectionReferences(
+ bool AllowBrokenLinks, function_ref<bool(const SectionBase *)> ToRemove) {
+ if (ToRemove(SectionIndexTable))
+ SectionIndexTable = nullptr;
+ if (ToRemove(SymbolNames)) {
+ if (!AllowBrokenLinks)
+ return createStringError(
+ llvm::errc::invalid_argument,
+ "string table '%s' cannot be removed because it is "
+ "referenced by the symbol table '%s'",
+ SymbolNames->Name.data(), this->Name.data());
+ SymbolNames = nullptr;
+ }
+ return removeSymbols(
+ [ToRemove](const Symbol &Sym) { return ToRemove(Sym.DefinedIn); });
+}
+
+void SymbolTableSection::updateSymbols(function_ref<void(Symbol &)> Callable) {
+ for (SymPtr &Sym : llvm::drop_begin(Symbols))
+ Callable(*Sym);
+ std::stable_partition(
+ std::begin(Symbols), std::end(Symbols),
+ [](const SymPtr &Sym) { return Sym->Binding == STB_LOCAL; });
+ assignIndices();
+}
+
+Error SymbolTableSection::removeSymbols(
+ function_ref<bool(const Symbol &)> ToRemove) {
+ Symbols.erase(
+ std::remove_if(std::begin(Symbols) + 1, std::end(Symbols),
+ [ToRemove](const SymPtr &Sym) { return ToRemove(*Sym); }),
+ std::end(Symbols));
+ Size = Symbols.size() * EntrySize;
+ assignIndices();
+ return Error::success();
+}
+
+void SymbolTableSection::replaceSectionReferences(
+ const DenseMap<SectionBase *, SectionBase *> &FromTo) {
+ for (std::unique_ptr<Symbol> &Sym : Symbols)
+ if (SectionBase *To = FromTo.lookup(Sym->DefinedIn))
+ Sym->DefinedIn = To;
+}
+
+Error SymbolTableSection::initialize(SectionTableRef SecTable) {
+ Size = 0;
+ Expected<StringTableSection *> Sec =
+ SecTable.getSectionOfType<StringTableSection>(
+ Link,
+ "Symbol table has link index of " + Twine(Link) +
+ " which is not a valid index",
+ "Symbol table has link index of " + Twine(Link) +
+ " which is not a string table");
+ if (!Sec)
+ return Sec.takeError();
+
+ setStrTab(*Sec);
+ return Error::success();
+}
+
+void SymbolTableSection::finalize() {
+ uint32_t MaxLocalIndex = 0;
+ for (std::unique_ptr<Symbol> &Sym : Symbols) {
+ Sym->NameIndex =
+ SymbolNames == nullptr ? 0 : SymbolNames->findIndex(Sym->Name);
+ if (Sym->Binding == STB_LOCAL)
+ MaxLocalIndex = std::max(MaxLocalIndex, Sym->Index);
+ }
+ // Now we need to set the Link and Info fields.
+ Link = SymbolNames == nullptr ? 0 : SymbolNames->Index;
+ Info = MaxLocalIndex + 1;
+}
+
+void SymbolTableSection::prepareForLayout() {
+ // Reserve proper amount of space in section index table, so we can
+ // layout sections correctly. We will fill the table with correct
+ // indexes later in fillShdnxTable.
+ if (SectionIndexTable)
+ SectionIndexTable->reserve(Symbols.size());
+
+ // Add all of our strings to SymbolNames so that SymbolNames has the right
+ // size before layout is decided.
+ // If the symbol names section has been removed, don't try to add strings to
+ // the table.
+ if (SymbolNames != nullptr)
+ for (std::unique_ptr<Symbol> &Sym : Symbols)
+ SymbolNames->addString(Sym->Name);
+}
+
+void SymbolTableSection::fillShndxTable() {
+ if (SectionIndexTable == nullptr)
+ return;
+ // Fill section index table with real section indexes. This function must
+ // be called after assignOffsets.
+ for (const std::unique_ptr<Symbol> &Sym : Symbols) {
+ if (Sym->DefinedIn != nullptr && Sym->DefinedIn->Index >= SHN_LORESERVE)
+ SectionIndexTable->addIndex(Sym->DefinedIn->Index);
+ else
+ SectionIndexTable->addIndex(SHN_UNDEF);
+ }
+}
+
+Expected<const Symbol *>
+SymbolTableSection::getSymbolByIndex(uint32_t Index) const {
+ if (Symbols.size() <= Index)
+ return createStringError(errc::invalid_argument,
+ "invalid symbol index: " + Twine(Index));
+ return Symbols[Index].get();
+}
+
+Expected<Symbol *> SymbolTableSection::getSymbolByIndex(uint32_t Index) {
+ Expected<const Symbol *> Sym =
+ static_cast<const SymbolTableSection *>(this)->getSymbolByIndex(Index);
+ if (!Sym)
+ return Sym.takeError();
+
+ return const_cast<Symbol *>(*Sym);
+}
+
+template <class ELFT>
+Error ELFSectionWriter<ELFT>::visit(const SymbolTableSection &Sec) {
+ Elf_Sym *Sym = reinterpret_cast<Elf_Sym *>(Out.getBufferStart() + Sec.Offset);
+ // Loop though symbols setting each entry of the symbol table.
+ for (const std::unique_ptr<Symbol> &Symbol : Sec.Symbols) {
+ Sym->st_name = Symbol->NameIndex;
+ Sym->st_value = Symbol->Value;
+ Sym->st_size = Symbol->Size;
+ Sym->st_other = Symbol->Visibility;
+ Sym->setBinding(Symbol->Binding);
+ Sym->setType(Symbol->Type);
+ Sym->st_shndx = Symbol->getShndx();
+ ++Sym;
+ }
+ return Error::success();
+}
+
+Error SymbolTableSection::accept(SectionVisitor &Visitor) const {
+ return Visitor.visit(*this);
+}
+
+Error SymbolTableSection::accept(MutableSectionVisitor &Visitor) {
+ return Visitor.visit(*this);
+}
+
+StringRef RelocationSectionBase::getNamePrefix() const {
+ switch (Type) {
+ case SHT_REL:
+ return ".rel";
+ case SHT_RELA:
+ return ".rela";
+ default:
+ llvm_unreachable("not a relocation section");
+ }
+}
+
+Error RelocationSection::removeSectionReferences(
+ bool AllowBrokenLinks, function_ref<bool(const SectionBase *)> ToRemove) {
+ if (ToRemove(Symbols)) {
+ if (!AllowBrokenLinks)
+ return createStringError(
+ llvm::errc::invalid_argument,
+ "symbol table '%s' cannot be removed because it is "
+ "referenced by the relocation section '%s'",
+ Symbols->Name.data(), this->Name.data());
+ Symbols = nullptr;
+ }
+
+ for (const Relocation &R : Relocations) {
+ if (!R.RelocSymbol || !R.RelocSymbol->DefinedIn ||
+ !ToRemove(R.RelocSymbol->DefinedIn))
+ continue;
+ return createStringError(llvm::errc::invalid_argument,
+ "section '%s' cannot be removed: (%s+0x%" PRIx64
+ ") has relocation against symbol '%s'",
+ R.RelocSymbol->DefinedIn->Name.data(),
+ SecToApplyRel->Name.data(), R.Offset,
+ R.RelocSymbol->Name.c_str());
+ }
+
+ return Error::success();
+}
+
+template <class SymTabType>
+Error RelocSectionWithSymtabBase<SymTabType>::initialize(
+ SectionTableRef SecTable) {
+ if (Link != SHN_UNDEF) {
+ Expected<SymTabType *> Sec = SecTable.getSectionOfType<SymTabType>(
+ Link,
+ "Link field value " + Twine(Link) + " in section " + Name +
+ " is invalid",
+ "Link field value " + Twine(Link) + " in section " + Name +
+ " is not a symbol table");
+ if (!Sec)
+ return Sec.takeError();
+
+ setSymTab(*Sec);
+ }
+
+ if (Info != SHN_UNDEF) {
+ Expected<SectionBase *> Sec =
+ SecTable.getSection(Info, "Info field value " + Twine(Info) +
+ " in section " + Name + " is invalid");
+ if (!Sec)
+ return Sec.takeError();
+
+ setSection(*Sec);
+ } else
+ setSection(nullptr);
+
+ return Error::success();
+}
+
+template <class SymTabType>
+void RelocSectionWithSymtabBase<SymTabType>::finalize() {
+ this->Link = Symbols ? Symbols->Index : 0;
+
+ if (SecToApplyRel != nullptr)
+ this->Info = SecToApplyRel->Index;
+}
+
+template <class ELFT>
+static void setAddend(Elf_Rel_Impl<ELFT, false> &, uint64_t) {}
+
+template <class ELFT>
+static void setAddend(Elf_Rel_Impl<ELFT, true> &Rela, uint64_t Addend) {
+ Rela.r_addend = Addend;
+}
+
+template <class RelRange, class T>
+static void writeRel(const RelRange &Relocations, T *Buf, bool IsMips64EL) {
+ for (const auto &Reloc : Relocations) {
+ Buf->r_offset = Reloc.Offset;
+ setAddend(*Buf, Reloc.Addend);
+ Buf->setSymbolAndType(Reloc.RelocSymbol ? Reloc.RelocSymbol->Index : 0,
+ Reloc.Type, IsMips64EL);
+ ++Buf;
+ }
+}
+
+template <class ELFT>
+Error ELFSectionWriter<ELFT>::visit(const RelocationSection &Sec) {
+ uint8_t *Buf = reinterpret_cast<uint8_t *>(Out.getBufferStart()) + Sec.Offset;
+ if (Sec.Type == SHT_REL)
+ writeRel(Sec.Relocations, reinterpret_cast<Elf_Rel *>(Buf),
+ Sec.getObject().IsMips64EL);
+ else
+ writeRel(Sec.Relocations, reinterpret_cast<Elf_Rela *>(Buf),
+ Sec.getObject().IsMips64EL);
+ return Error::success();
+}
+
+Error RelocationSection::accept(SectionVisitor &Visitor) const {
+ return Visitor.visit(*this);
+}
+
+Error RelocationSection::accept(MutableSectionVisitor &Visitor) {
+ return Visitor.visit(*this);
+}
+
+Error RelocationSection::removeSymbols(
+ function_ref<bool(const Symbol &)> ToRemove) {
+ for (const Relocation &Reloc : Relocations)
+ if (Reloc.RelocSymbol && ToRemove(*Reloc.RelocSymbol))
+ return createStringError(
+ llvm::errc::invalid_argument,
+ "not stripping symbol '%s' because it is named in a relocation",
+ Reloc.RelocSymbol->Name.data());
+ return Error::success();
+}
+
+void RelocationSection::markSymbols() {
+ for (const Relocation &Reloc : Relocations)
+ if (Reloc.RelocSymbol)
+ Reloc.RelocSymbol->Referenced = true;
+}
+
+void RelocationSection::replaceSectionReferences(
+ const DenseMap<SectionBase *, SectionBase *> &FromTo) {
+ // Update the target section if it was replaced.
+ if (SectionBase *To = FromTo.lookup(SecToApplyRel))
+ SecToApplyRel = To;
+}
+
+Error SectionWriter::visit(const DynamicRelocationSection &Sec) {
+ llvm::copy(Sec.Contents, Out.getBufferStart() + Sec.Offset);
+ return Error::success();
+}
+
+Error DynamicRelocationSection::accept(SectionVisitor &Visitor) const {
+ return Visitor.visit(*this);
+}
+
+Error DynamicRelocationSection::accept(MutableSectionVisitor &Visitor) {
+ return Visitor.visit(*this);
+}
+
+Error DynamicRelocationSection::removeSectionReferences(
+ bool AllowBrokenLinks, function_ref<bool(const SectionBase *)> ToRemove) {
+ if (ToRemove(Symbols)) {
+ if (!AllowBrokenLinks)
+ return createStringError(
+ llvm::errc::invalid_argument,
+ "symbol table '%s' cannot be removed because it is "
+ "referenced by the relocation section '%s'",
+ Symbols->Name.data(), this->Name.data());
+ Symbols = nullptr;
+ }
+
+ // SecToApplyRel contains a section referenced by sh_info field. It keeps
+ // a section to which the relocation section applies. When we remove any
+ // sections we also remove their relocation sections. Since we do that much
+ // earlier, this assert should never be triggered.
+ assert(!SecToApplyRel || !ToRemove(SecToApplyRel));
+ return Error::success();
+}
+
+Error Section::removeSectionReferences(
+ bool AllowBrokenDependency,
+ function_ref<bool(const SectionBase *)> ToRemove) {
+ if (ToRemove(LinkSection)) {
+ if (!AllowBrokenDependency)
+ return createStringError(llvm::errc::invalid_argument,
+ "section '%s' cannot be removed because it is "
+ "referenced by the section '%s'",
+ LinkSection->Name.data(), this->Name.data());
+ LinkSection = nullptr;
+ }
+ return Error::success();
+}
+
+void GroupSection::finalize() {
+ this->Info = Sym ? Sym->Index : 0;
+ this->Link = SymTab ? SymTab->Index : 0;
+ // Linker deduplication for GRP_COMDAT is based on Sym->Name. The local/global
+ // status is not part of the equation. If Sym is localized, the intention is
+ // likely to make the group fully localized. Drop GRP_COMDAT to suppress
+ // deduplication. See https://groups.google.com/g/generic-abi/c/2X6mR-s2zoc
+ if ((FlagWord & GRP_COMDAT) && Sym && Sym->Binding == STB_LOCAL)
+ this->FlagWord &= ~GRP_COMDAT;
+}
+
+Error GroupSection::removeSectionReferences(
+ bool AllowBrokenLinks, function_ref<bool(const SectionBase *)> ToRemove) {
+ if (ToRemove(SymTab)) {
+ if (!AllowBrokenLinks)
+ return createStringError(
+ llvm::errc::invalid_argument,
+ "section '.symtab' cannot be removed because it is "
+ "referenced by the group section '%s'",
+ this->Name.data());
+ SymTab = nullptr;
+ Sym = nullptr;
+ }
+ llvm::erase_if(GroupMembers, ToRemove);
+ return Error::success();
+}
+
+Error GroupSection::removeSymbols(function_ref<bool(const Symbol &)> ToRemove) {
+ if (ToRemove(*Sym))
+ return createStringError(llvm::errc::invalid_argument,
+ "symbol '%s' cannot be removed because it is "
+ "referenced by the section '%s[%d]'",
+ Sym->Name.data(), this->Name.data(), this->Index);
+ return Error::success();
+}
+
+void GroupSection::markSymbols() {
+ if (Sym)
+ Sym->Referenced = true;
+}
+
+void GroupSection::replaceSectionReferences(
+ const DenseMap<SectionBase *, SectionBase *> &FromTo) {
+ for (SectionBase *&Sec : GroupMembers)
+ if (SectionBase *To = FromTo.lookup(Sec))
+ Sec = To;
+}
+
+void GroupSection::onRemove() {
+ // As the header section of the group is removed, drop the Group flag in its
+ // former members.
+ for (SectionBase *Sec : GroupMembers)
+ Sec->Flags &= ~SHF_GROUP;
+}
+
+Error Section::initialize(SectionTableRef SecTable) {
+ if (Link == ELF::SHN_UNDEF)
+ return Error::success();
+
+ Expected<SectionBase *> Sec =
+ SecTable.getSection(Link, "Link field value " + Twine(Link) +
+ " in section " + Name + " is invalid");
+ if (!Sec)
+ return Sec.takeError();
+
+ LinkSection = *Sec;
+
+ if (LinkSection->Type == ELF::SHT_SYMTAB)
+ LinkSection = nullptr;
+
+ return Error::success();
+}
+
+void Section::finalize() { this->Link = LinkSection ? LinkSection->Index : 0; }
+
+void GnuDebugLinkSection::init(StringRef File) {
+ FileName = sys::path::filename(File);
+ // The format for the .gnu_debuglink starts with the file name and is
+ // followed by a null terminator and then the CRC32 of the file. The CRC32
+ // should be 4 byte aligned. So we add the FileName size, a 1 for the null
+ // byte, and then finally push the size to alignment and add 4.
+ Size = alignTo(FileName.size() + 1, 4) + 4;
+ // The CRC32 will only be aligned if we align the whole section.
+ Align = 4;
+ Type = OriginalType = ELF::SHT_PROGBITS;
+ Name = ".gnu_debuglink";
+ // For sections not found in segments, OriginalOffset is only used to
+ // establish the order that sections should go in. By using the maximum
+ // possible offset we cause this section to wind up at the end.
+ OriginalOffset = std::numeric_limits<uint64_t>::max();
+}
+
+GnuDebugLinkSection::GnuDebugLinkSection(StringRef File,
+ uint32_t PrecomputedCRC)
+ : FileName(File), CRC32(PrecomputedCRC) {
+ init(File);
+}
+
+template <class ELFT>
+Error ELFSectionWriter<ELFT>::visit(const GnuDebugLinkSection &Sec) {
+ unsigned char *Buf =
+ reinterpret_cast<uint8_t *>(Out.getBufferStart()) + Sec.Offset;
+ Elf_Word *CRC =
+ reinterpret_cast<Elf_Word *>(Buf + Sec.Size - sizeof(Elf_Word));
+ *CRC = Sec.CRC32;
+ llvm::copy(Sec.FileName, Buf);
+ return Error::success();
+}
+
+Error GnuDebugLinkSection::accept(SectionVisitor &Visitor) const {
+ return Visitor.visit(*this);
+}
+
+Error GnuDebugLinkSection::accept(MutableSectionVisitor &Visitor) {
+ return Visitor.visit(*this);
+}
+
+template <class ELFT>
+Error ELFSectionWriter<ELFT>::visit(const GroupSection &Sec) {
+ ELF::Elf32_Word *Buf =
+ reinterpret_cast<ELF::Elf32_Word *>(Out.getBufferStart() + Sec.Offset);
+ support::endian::write32<ELFT::TargetEndianness>(Buf++, Sec.FlagWord);
+ for (SectionBase *S : Sec.GroupMembers)
+ support::endian::write32<ELFT::TargetEndianness>(Buf++, S->Index);
+ return Error::success();
+}
+
+Error GroupSection::accept(SectionVisitor &Visitor) const {
+ return Visitor.visit(*this);
+}
+
+Error GroupSection::accept(MutableSectionVisitor &Visitor) {
+ return Visitor.visit(*this);
+}
+
+// Returns true IFF a section is wholly inside the range of a segment
+static bool sectionWithinSegment(const SectionBase &Sec, const Segment &Seg) {
+ // If a section is empty it should be treated like it has a size of 1. This is
+ // to clarify the case when an empty section lies on a boundary between two
+ // segments and ensures that the section "belongs" to the second segment and
+ // not the first.
+ uint64_t SecSize = Sec.Size ? Sec.Size : 1;
+
+ // Ignore just added sections.
+ if (Sec.OriginalOffset == std::numeric_limits<uint64_t>::max())
+ return false;
+
+ if (Sec.Type == SHT_NOBITS) {
+ if (!(Sec.Flags & SHF_ALLOC))
+ return false;
+
+ bool SectionIsTLS = Sec.Flags & SHF_TLS;
+ bool SegmentIsTLS = Seg.Type == PT_TLS;
+ if (SectionIsTLS != SegmentIsTLS)
+ return false;
+
+ return Seg.VAddr <= Sec.Addr &&
+ Seg.VAddr + Seg.MemSize >= Sec.Addr + SecSize;
+ }
+
+ return Seg.Offset <= Sec.OriginalOffset &&
+ Seg.Offset + Seg.FileSize >= Sec.OriginalOffset + SecSize;
+}
+
+// Returns true IFF a segment's original offset is inside of another segment's
+// range.
+static bool segmentOverlapsSegment(const Segment &Child,
+ const Segment &Parent) {
+
+ return Parent.OriginalOffset <= Child.OriginalOffset &&
+ Parent.OriginalOffset + Parent.FileSize > Child.OriginalOffset;
+}
+
+static bool compareSegmentsByOffset(const Segment *A, const Segment *B) {
+ // Any segment without a parent segment should come before a segment
+ // that has a parent segment.
+ if (A->OriginalOffset < B->OriginalOffset)
+ return true;
+ if (A->OriginalOffset > B->OriginalOffset)
+ return false;
+ return A->Index < B->Index;
+}
+
+void BasicELFBuilder::initFileHeader() {
+ Obj->Flags = 0x0;
+ Obj->Type = ET_REL;
+ Obj->OSABI = ELFOSABI_NONE;
+ Obj->ABIVersion = 0;
+ Obj->Entry = 0x0;
+ Obj->Machine = EM_NONE;
+ Obj->Version = 1;
+}
+
+void BasicELFBuilder::initHeaderSegment() { Obj->ElfHdrSegment.Index = 0; }
+
+StringTableSection *BasicELFBuilder::addStrTab() {
+ auto &StrTab = Obj->addSection<StringTableSection>();
+ StrTab.Name = ".strtab";
+
+ Obj->SectionNames = &StrTab;
+ return &StrTab;
+}
+
+SymbolTableSection *BasicELFBuilder::addSymTab(StringTableSection *StrTab) {
+ auto &SymTab = Obj->addSection<SymbolTableSection>();
+
+ SymTab.Name = ".symtab";
+ SymTab.Link = StrTab->Index;
+
+ // The symbol table always needs a null symbol
+ SymTab.addSymbol("", 0, 0, nullptr, 0, 0, 0, 0);
+
+ Obj->SymbolTable = &SymTab;
+ return &SymTab;
+}
+
+Error BasicELFBuilder::initSections() {
+ for (SectionBase &Sec : Obj->sections())
+ if (Error Err = Sec.initialize(Obj->sections()))
+ return Err;
+
+ return Error::success();
+}
+
+void BinaryELFBuilder::addData(SymbolTableSection *SymTab) {
+ auto Data = ArrayRef<uint8_t>(
+ reinterpret_cast<const uint8_t *>(MemBuf->getBufferStart()),
+ MemBuf->getBufferSize());
+ auto &DataSection = Obj->addSection<Section>(Data);
+ DataSection.Name = ".data";
+ DataSection.Type = ELF::SHT_PROGBITS;
+ DataSection.Size = Data.size();
+ DataSection.Flags = ELF::SHF_ALLOC | ELF::SHF_WRITE;
+
+ std::string SanitizedFilename = MemBuf->getBufferIdentifier().str();
+ std::replace_if(
+ std::begin(SanitizedFilename), std::end(SanitizedFilename),
+ [](char C) { return !isAlnum(C); }, '_');
+ Twine Prefix = Twine("_binary_") + SanitizedFilename;
+
+ SymTab->addSymbol(Prefix + "_start", STB_GLOBAL, STT_NOTYPE, &DataSection,
+ /*Value=*/0, NewSymbolVisibility, 0, 0);
+ SymTab->addSymbol(Prefix + "_end", STB_GLOBAL, STT_NOTYPE, &DataSection,
+ /*Value=*/DataSection.Size, NewSymbolVisibility, 0, 0);
+ SymTab->addSymbol(Prefix + "_size", STB_GLOBAL, STT_NOTYPE, nullptr,
+ /*Value=*/DataSection.Size, NewSymbolVisibility, SHN_ABS,
+ 0);
+}
+
+Expected<std::unique_ptr<Object>> BinaryELFBuilder::build() {
+ initFileHeader();
+ initHeaderSegment();
+
+ SymbolTableSection *SymTab = addSymTab(addStrTab());
+ if (Error Err = initSections())
+ return std::move(Err);
+ addData(SymTab);
+
+ return std::move(Obj);
+}
+
+// Adds sections from IHEX data file. Data should have been
+// fully validated by this time.
+void IHexELFBuilder::addDataSections() {
+ OwnedDataSection *Section = nullptr;
+ uint64_t SegmentAddr = 0, BaseAddr = 0;
+ uint32_t SecNo = 1;
+
+ for (const IHexRecord &R : Records) {
+ uint64_t RecAddr;
+ switch (R.Type) {
+ case IHexRecord::Data:
+ // Ignore empty data records
+ if (R.HexData.empty())
+ continue;
+ RecAddr = R.Addr + SegmentAddr + BaseAddr;
+ if (!Section || Section->Addr + Section->Size != RecAddr) {
+ // OriginalOffset field is only used to sort sections before layout, so
+ // instead of keeping track of real offsets in IHEX file, and as
+ // layoutSections() and layoutSectionsForOnlyKeepDebug() use
+ // llvm::stable_sort(), we can just set it to a constant (zero).
+ Section = &Obj->addSection<OwnedDataSection>(
+ ".sec" + std::to_string(SecNo), RecAddr,
+ ELF::SHF_ALLOC | ELF::SHF_WRITE, 0);
+ SecNo++;
+ }
+ Section->appendHexData(R.HexData);
+ break;
+ case IHexRecord::EndOfFile:
+ break;
+ case IHexRecord::SegmentAddr:
+ // 20-bit segment address.
+ SegmentAddr = checkedGetHex<uint16_t>(R.HexData) << 4;
+ break;
+ case IHexRecord::StartAddr80x86:
+ case IHexRecord::StartAddr:
+ Obj->Entry = checkedGetHex<uint32_t>(R.HexData);
+ assert(Obj->Entry <= 0xFFFFFU);
+ break;
+ case IHexRecord::ExtendedAddr:
+ // 16-31 bits of linear base address
+ BaseAddr = checkedGetHex<uint16_t>(R.HexData) << 16;
+ break;
+ default:
+ llvm_unreachable("unknown record type");
+ }
+ }
+}
+
+Expected<std::unique_ptr<Object>> IHexELFBuilder::build() {
+ initFileHeader();
+ initHeaderSegment();
+ StringTableSection *StrTab = addStrTab();
+ addSymTab(StrTab);
+ if (Error Err = initSections())
+ return std::move(Err);
+ addDataSections();
+
+ return std::move(Obj);
+}
+
+template <class ELFT>
+ELFBuilder<ELFT>::ELFBuilder(const ELFObjectFile<ELFT> &ElfObj, Object &Obj,
+ std::optional<StringRef> ExtractPartition)
+ : ElfFile(ElfObj.getELFFile()), Obj(Obj),
+ ExtractPartition(ExtractPartition) {
+ Obj.IsMips64EL = ElfFile.isMips64EL();
+}
+
+template <class ELFT> void ELFBuilder<ELFT>::setParentSegment(Segment &Child) {
+ for (Segment &Parent : Obj.segments()) {
+ // Every segment will overlap with itself but we don't want a segment to
+ // be its own parent so we avoid that situation.
+ if (&Child != &Parent && segmentOverlapsSegment(Child, Parent)) {
+ // We want a canonical "most parental" segment but this requires
+ // inspecting the ParentSegment.
+ if (compareSegmentsByOffset(&Parent, &Child))
+ if (Child.ParentSegment == nullptr ||
+ compareSegmentsByOffset(&Parent, Child.ParentSegment)) {
+ Child.ParentSegment = &Parent;
+ }
+ }
+ }
+}
+
+template <class ELFT> Error ELFBuilder<ELFT>::findEhdrOffset() {
+ if (!ExtractPartition)
+ return Error::success();
+
+ for (const SectionBase &Sec : Obj.sections()) {
+ if (Sec.Type == SHT_LLVM_PART_EHDR && Sec.Name == *ExtractPartition) {
+ EhdrOffset = Sec.Offset;
+ return Error::success();
+ }
+ }
+ return createStringError(errc::invalid_argument,
+ "could not find partition named '" +
+ *ExtractPartition + "'");
+}
+
+template <class ELFT>
+Error ELFBuilder<ELFT>::readProgramHeaders(const ELFFile<ELFT> &HeadersFile) {
+ uint32_t Index = 0;
+
+ Expected<typename ELFFile<ELFT>::Elf_Phdr_Range> Headers =
+ HeadersFile.program_headers();
+ if (!Headers)
+ return Headers.takeError();
+
+ for (const typename ELFFile<ELFT>::Elf_Phdr &Phdr : *Headers) {
+ if (Phdr.p_offset + Phdr.p_filesz > HeadersFile.getBufSize())
+ return createStringError(
+ errc::invalid_argument,
+ "program header with offset 0x" + Twine::utohexstr(Phdr.p_offset) +
+ " and file size 0x" + Twine::utohexstr(Phdr.p_filesz) +
+ " goes past the end of the file");
+
+ ArrayRef<uint8_t> Data{HeadersFile.base() + Phdr.p_offset,
+ (size_t)Phdr.p_filesz};
+ Segment &Seg = Obj.addSegment(Data);
+ Seg.Type = Phdr.p_type;
+ Seg.Flags = Phdr.p_flags;
+ Seg.OriginalOffset = Phdr.p_offset + EhdrOffset;
+ Seg.Offset = Phdr.p_offset + EhdrOffset;
+ Seg.VAddr = Phdr.p_vaddr;
+ Seg.PAddr = Phdr.p_paddr;
+ Seg.FileSize = Phdr.p_filesz;
+ Seg.MemSize = Phdr.p_memsz;
+ Seg.Align = Phdr.p_align;
+ Seg.Index = Index++;
+ for (SectionBase &Sec : Obj.sections())
+ if (sectionWithinSegment(Sec, Seg)) {
+ Seg.addSection(&Sec);
+ if (!Sec.ParentSegment || Sec.ParentSegment->Offset > Seg.Offset)
+ Sec.ParentSegment = &Seg;
+ }
+ }
+
+ auto &ElfHdr = Obj.ElfHdrSegment;
+ ElfHdr.Index = Index++;
+ ElfHdr.OriginalOffset = ElfHdr.Offset = EhdrOffset;
+
+ const typename ELFT::Ehdr &Ehdr = HeadersFile.getHeader();
+ auto &PrHdr = Obj.ProgramHdrSegment;
+ PrHdr.Type = PT_PHDR;
+ PrHdr.Flags = 0;
+ // The spec requires us to have p_vaddr % p_align == p_offset % p_align.
+ // Whereas this works automatically for ElfHdr, here OriginalOffset is
+ // always non-zero and to ensure the equation we assign the same value to
+ // VAddr as well.
+ PrHdr.OriginalOffset = PrHdr.Offset = PrHdr.VAddr = EhdrOffset + Ehdr.e_phoff;
+ PrHdr.PAddr = 0;
+ PrHdr.FileSize = PrHdr.MemSize = Ehdr.e_phentsize * Ehdr.e_phnum;
+ // The spec requires us to naturally align all the fields.
+ PrHdr.Align = sizeof(Elf_Addr);
+ PrHdr.Index = Index++;
+
+ // Now we do an O(n^2) loop through the segments in order to match up
+ // segments.
+ for (Segment &Child : Obj.segments())
+ setParentSegment(Child);
+ setParentSegment(ElfHdr);
+ setParentSegment(PrHdr);
+
+ return Error::success();
+}
+
+template <class ELFT>
+Error ELFBuilder<ELFT>::initGroupSection(GroupSection *GroupSec) {
+ if (GroupSec->Align % sizeof(ELF::Elf32_Word) != 0)
+ return createStringError(errc::invalid_argument,
+ "invalid alignment " + Twine(GroupSec->Align) +
+ " of group section '" + GroupSec->Name + "'");
+ SectionTableRef SecTable = Obj.sections();
+ if (GroupSec->Link != SHN_UNDEF) {
+ auto SymTab = SecTable.template getSectionOfType<SymbolTableSection>(
+ GroupSec->Link,
+ "link field value '" + Twine(GroupSec->Link) + "' in section '" +
+ GroupSec->Name + "' is invalid",
+ "link field value '" + Twine(GroupSec->Link) + "' in section '" +
+ GroupSec->Name + "' is not a symbol table");
+ if (!SymTab)
+ return SymTab.takeError();
+
+ Expected<Symbol *> Sym = (*SymTab)->getSymbolByIndex(GroupSec->Info);
+ if (!Sym)
+ return createStringError(errc::invalid_argument,
+ "info field value '" + Twine(GroupSec->Info) +
+ "' in section '" + GroupSec->Name +
+ "' is not a valid symbol index");
+ GroupSec->setSymTab(*SymTab);
+ GroupSec->setSymbol(*Sym);
+ }
+ if (GroupSec->Contents.size() % sizeof(ELF::Elf32_Word) ||
+ GroupSec->Contents.empty())
+ return createStringError(errc::invalid_argument,
+ "the content of the section " + GroupSec->Name +
+ " is malformed");
+ const ELF::Elf32_Word *Word =
+ reinterpret_cast<const ELF::Elf32_Word *>(GroupSec->Contents.data());
+ const ELF::Elf32_Word *End =
+ Word + GroupSec->Contents.size() / sizeof(ELF::Elf32_Word);
+ GroupSec->setFlagWord(
+ support::endian::read32<ELFT::TargetEndianness>(Word++));
+ for (; Word != End; ++Word) {
+ uint32_t Index = support::endian::read32<ELFT::TargetEndianness>(Word);
+ Expected<SectionBase *> Sec = SecTable.getSection(
+ Index, "group member index " + Twine(Index) + " in section '" +
+ GroupSec->Name + "' is invalid");
+ if (!Sec)
+ return Sec.takeError();
+
+ GroupSec->addMember(*Sec);
+ }
+
+ return Error::success();
+}
+
+template <class ELFT>
+Error ELFBuilder<ELFT>::initSymbolTable(SymbolTableSection *SymTab) {
+ Expected<const Elf_Shdr *> Shdr = ElfFile.getSection(SymTab->Index);
+ if (!Shdr)
+ return Shdr.takeError();
+
+ Expected<StringRef> StrTabData = ElfFile.getStringTableForSymtab(**Shdr);
+ if (!StrTabData)
+ return StrTabData.takeError();
+
+ ArrayRef<Elf_Word> ShndxData;
+
+ Expected<typename ELFFile<ELFT>::Elf_Sym_Range> Symbols =
+ ElfFile.symbols(*Shdr);
+ if (!Symbols)
+ return Symbols.takeError();
+
+ for (const typename ELFFile<ELFT>::Elf_Sym &Sym : *Symbols) {
+ SectionBase *DefSection = nullptr;
+
+ Expected<StringRef> Name = Sym.getName(*StrTabData);
+ if (!Name)
+ return Name.takeError();
+
+ if (Sym.st_shndx == SHN_XINDEX) {
+ if (SymTab->getShndxTable() == nullptr)
+ return createStringError(errc::invalid_argument,
+ "symbol '" + *Name +
+ "' has index SHN_XINDEX but no "
+ "SHT_SYMTAB_SHNDX section exists");
+ if (ShndxData.data() == nullptr) {
+ Expected<const Elf_Shdr *> ShndxSec =
+ ElfFile.getSection(SymTab->getShndxTable()->Index);
+ if (!ShndxSec)
+ return ShndxSec.takeError();
+
+ Expected<ArrayRef<Elf_Word>> Data =
+ ElfFile.template getSectionContentsAsArray<Elf_Word>(**ShndxSec);
+ if (!Data)
+ return Data.takeError();
+
+ ShndxData = *Data;
+ if (ShndxData.size() != Symbols->size())
+ return createStringError(
+ errc::invalid_argument,
+ "symbol section index table does not have the same number of "
+ "entries as the symbol table");
+ }
+ Elf_Word Index = ShndxData[&Sym - Symbols->begin()];
+ Expected<SectionBase *> Sec = Obj.sections().getSection(
+ Index,
+ "symbol '" + *Name + "' has invalid section index " + Twine(Index));
+ if (!Sec)
+ return Sec.takeError();
+
+ DefSection = *Sec;
+ } else if (Sym.st_shndx >= SHN_LORESERVE) {
+ if (!isValidReservedSectionIndex(Sym.st_shndx, Obj.Machine)) {
+ return createStringError(
+ errc::invalid_argument,
+ "symbol '" + *Name +
+ "' has unsupported value greater than or equal "
+ "to SHN_LORESERVE: " +
+ Twine(Sym.st_shndx));
+ }
+ } else if (Sym.st_shndx != SHN_UNDEF) {
+ Expected<SectionBase *> Sec = Obj.sections().getSection(
+ Sym.st_shndx, "symbol '" + *Name +
+ "' is defined has invalid section index " +
+ Twine(Sym.st_shndx));
+ if (!Sec)
+ return Sec.takeError();
+
+ DefSection = *Sec;
+ }
+
+ SymTab->addSymbol(*Name, Sym.getBinding(), Sym.getType(), DefSection,
+ Sym.getValue(), Sym.st_other, Sym.st_shndx, Sym.st_size);
+ }
+
+ return Error::success();
+}
+
+template <class ELFT>
+static void getAddend(uint64_t &, const Elf_Rel_Impl<ELFT, false> &) {}
+
+template <class ELFT>
+static void getAddend(uint64_t &ToSet, const Elf_Rel_Impl<ELFT, true> &Rela) {
+ ToSet = Rela.r_addend;
+}
+
+template <class T>
+static Error initRelocations(RelocationSection *Relocs, T RelRange) {
+ for (const auto &Rel : RelRange) {
+ Relocation ToAdd;
+ ToAdd.Offset = Rel.r_offset;
+ getAddend(ToAdd.Addend, Rel);
+ ToAdd.Type = Rel.getType(Relocs->getObject().IsMips64EL);
+
+ if (uint32_t Sym = Rel.getSymbol(Relocs->getObject().IsMips64EL)) {
+ if (!Relocs->getObject().SymbolTable)
+ return createStringError(
+ errc::invalid_argument,
+ "'" + Relocs->Name + "': relocation references symbol with index " +
+ Twine(Sym) + ", but there is no symbol table");
+ Expected<Symbol *> SymByIndex =
+ Relocs->getObject().SymbolTable->getSymbolByIndex(Sym);
+ if (!SymByIndex)
+ return SymByIndex.takeError();
+
+ ToAdd.RelocSymbol = *SymByIndex;
+ }
+
+ Relocs->addRelocation(ToAdd);
+ }
+
+ return Error::success();
+}
+
+Expected<SectionBase *> SectionTableRef::getSection(uint32_t Index,
+ Twine ErrMsg) {
+ if (Index == SHN_UNDEF || Index > Sections.size())
+ return createStringError(errc::invalid_argument, ErrMsg);
+ return Sections[Index - 1].get();
+}
+
+template <class T>
+Expected<T *> SectionTableRef::getSectionOfType(uint32_t Index,
+ Twine IndexErrMsg,
+ Twine TypeErrMsg) {
+ Expected<SectionBase *> BaseSec = getSection(Index, IndexErrMsg);
+ if (!BaseSec)
+ return BaseSec.takeError();
+
+ if (T *Sec = dyn_cast<T>(*BaseSec))
+ return Sec;
+
+ return createStringError(errc::invalid_argument, TypeErrMsg);
+}
+
+template <class ELFT>
+Expected<SectionBase &> ELFBuilder<ELFT>::makeSection(const Elf_Shdr &Shdr) {
+ switch (Shdr.sh_type) {
+ case SHT_REL:
+ case SHT_RELA:
+ if (Shdr.sh_flags & SHF_ALLOC) {
+ if (Expected<ArrayRef<uint8_t>> Data = ElfFile.getSectionContents(Shdr))
+ return Obj.addSection<DynamicRelocationSection>(*Data);
+ else
+ return Data.takeError();
+ }
+ return Obj.addSection<RelocationSection>(Obj);
+ case SHT_STRTAB:
+ // If a string table is allocated we don't want to mess with it. That would
+ // mean altering the memory image. There are no special link types or
+ // anything so we can just use a Section.
+ if (Shdr.sh_flags & SHF_ALLOC) {
+ if (Expected<ArrayRef<uint8_t>> Data = ElfFile.getSectionContents(Shdr))
+ return Obj.addSection<Section>(*Data);
+ else
+ return Data.takeError();
+ }
+ return Obj.addSection<StringTableSection>();
+ case SHT_HASH:
+ case SHT_GNU_HASH:
+ // Hash tables should refer to SHT_DYNSYM which we're not going to change.
+ // Because of this we don't need to mess with the hash tables either.
+ if (Expected<ArrayRef<uint8_t>> Data = ElfFile.getSectionContents(Shdr))
+ return Obj.addSection<Section>(*Data);
+ else
+ return Data.takeError();
+ case SHT_GROUP:
+ if (Expected<ArrayRef<uint8_t>> Data = ElfFile.getSectionContents(Shdr))
+ return Obj.addSection<GroupSection>(*Data);
+ else
+ return Data.takeError();
+ case SHT_DYNSYM:
+ if (Expected<ArrayRef<uint8_t>> Data = ElfFile.getSectionContents(Shdr))
+ return Obj.addSection<DynamicSymbolTableSection>(*Data);
+ else
+ return Data.takeError();
+ case SHT_DYNAMIC:
+ if (Expected<ArrayRef<uint8_t>> Data = ElfFile.getSectionContents(Shdr))
+ return Obj.addSection<DynamicSection>(*Data);
+ else
+ return Data.takeError();
+ case SHT_SYMTAB: {
+ auto &SymTab = Obj.addSection<SymbolTableSection>();
+ Obj.SymbolTable = &SymTab;
+ return SymTab;
+ }
+ case SHT_SYMTAB_SHNDX: {
+ auto &ShndxSection = Obj.addSection<SectionIndexSection>();
+ Obj.SectionIndexTable = &ShndxSection;
+ return ShndxSection;
+ }
+ case SHT_NOBITS:
+ return Obj.addSection<Section>(ArrayRef<uint8_t>());
+ default: {
+ Expected<ArrayRef<uint8_t>> Data = ElfFile.getSectionContents(Shdr);
+ if (!Data)
+ return Data.takeError();
+
+ Expected<StringRef> Name = ElfFile.getSectionName(Shdr);
+ if (!Name)
+ return Name.takeError();
+
+ if (!(Shdr.sh_flags & ELF::SHF_COMPRESSED))
+ return Obj.addSection<Section>(*Data);
+ auto *Chdr = reinterpret_cast<const Elf_Chdr_Impl<ELFT> *>(Data->data());
+ return Obj.addSection<CompressedSection>(CompressedSection(
+ *Data, Chdr->ch_type, Chdr->ch_size, Chdr->ch_addralign));
+ }
+ }
+}
+
+template <class ELFT> Error ELFBuilder<ELFT>::readSectionHeaders() {
+ uint32_t Index = 0;
+ Expected<typename ELFFile<ELFT>::Elf_Shdr_Range> Sections =
+ ElfFile.sections();
+ if (!Sections)
+ return Sections.takeError();
+
+ for (const typename ELFFile<ELFT>::Elf_Shdr &Shdr : *Sections) {
+ if (Index == 0) {
+ ++Index;
+ continue;
+ }
+ Expected<SectionBase &> Sec = makeSection(Shdr);
+ if (!Sec)
+ return Sec.takeError();
+
+ Expected<StringRef> SecName = ElfFile.getSectionName(Shdr);
+ if (!SecName)
+ return SecName.takeError();
+ Sec->Name = SecName->str();
+ Sec->Type = Sec->OriginalType = Shdr.sh_type;
+ Sec->Flags = Sec->OriginalFlags = Shdr.sh_flags;
+ Sec->Addr = Shdr.sh_addr;
+ Sec->Offset = Shdr.sh_offset;
+ Sec->OriginalOffset = Shdr.sh_offset;
+ Sec->Size = Shdr.sh_size;
+ Sec->Link = Shdr.sh_link;
+ Sec->Info = Shdr.sh_info;
+ Sec->Align = Shdr.sh_addralign;
+ Sec->EntrySize = Shdr.sh_entsize;
+ Sec->Index = Index++;
+ Sec->OriginalIndex = Sec->Index;
+ Sec->OriginalData = ArrayRef<uint8_t>(
+ ElfFile.base() + Shdr.sh_offset,
+ (Shdr.sh_type == SHT_NOBITS) ? (size_t)0 : Shdr.sh_size);
+ }
+
+ return Error::success();
+}
+
+template <class ELFT> Error ELFBuilder<ELFT>::readSections(bool EnsureSymtab) {
+ uint32_t ShstrIndex = ElfFile.getHeader().e_shstrndx;
+ if (ShstrIndex == SHN_XINDEX) {
+ Expected<const Elf_Shdr *> Sec = ElfFile.getSection(0);
+ if (!Sec)
+ return Sec.takeError();
+
+ ShstrIndex = (*Sec)->sh_link;
+ }
+
+ if (ShstrIndex == SHN_UNDEF)
+ Obj.HadShdrs = false;
+ else {
+ Expected<StringTableSection *> Sec =
+ Obj.sections().template getSectionOfType<StringTableSection>(
+ ShstrIndex,
+ "e_shstrndx field value " + Twine(ShstrIndex) + " in elf header " +
+ " is invalid",
+ "e_shstrndx field value " + Twine(ShstrIndex) + " in elf header " +
+ " does not reference a string table");
+ if (!Sec)
+ return Sec.takeError();
+
+ Obj.SectionNames = *Sec;
+ }
+
+ // If a section index table exists we'll need to initialize it before we
+ // initialize the symbol table because the symbol table might need to
+ // reference it.
+ if (Obj.SectionIndexTable)
+ if (Error Err = Obj.SectionIndexTable->initialize(Obj.sections()))
+ return Err;
+
+ // Now that all of the sections have been added we can fill out some extra
+ // details about symbol tables. We need the symbol table filled out before
+ // any relocations.
+ if (Obj.SymbolTable) {
+ if (Error Err = Obj.SymbolTable->initialize(Obj.sections()))
+ return Err;
+ if (Error Err = initSymbolTable(Obj.SymbolTable))
+ return Err;
+ } else if (EnsureSymtab) {
+ if (Error Err = Obj.addNewSymbolTable())
+ return Err;
+ }
+
+ // Now that all sections and symbols have been added we can add
+ // relocations that reference symbols and set the link and info fields for
+ // relocation sections.
+ for (SectionBase &Sec : Obj.sections()) {
+ if (&Sec == Obj.SymbolTable)
+ continue;
+ if (Error Err = Sec.initialize(Obj.sections()))
+ return Err;
+ if (auto RelSec = dyn_cast<RelocationSection>(&Sec)) {
+ Expected<typename ELFFile<ELFT>::Elf_Shdr_Range> Sections =
+ ElfFile.sections();
+ if (!Sections)
+ return Sections.takeError();
+
+ const typename ELFFile<ELFT>::Elf_Shdr *Shdr =
+ Sections->begin() + RelSec->Index;
+ if (RelSec->Type == SHT_REL) {
+ Expected<typename ELFFile<ELFT>::Elf_Rel_Range> Rels =
+ ElfFile.rels(*Shdr);
+ if (!Rels)
+ return Rels.takeError();
+
+ if (Error Err = initRelocations(RelSec, *Rels))
+ return Err;
+ } else {
+ Expected<typename ELFFile<ELFT>::Elf_Rela_Range> Relas =
+ ElfFile.relas(*Shdr);
+ if (!Relas)
+ return Relas.takeError();
+
+ if (Error Err = initRelocations(RelSec, *Relas))
+ return Err;
+ }
+ } else if (auto GroupSec = dyn_cast<GroupSection>(&Sec)) {
+ if (Error Err = initGroupSection(GroupSec))
+ return Err;
+ }
+ }
+
+ return Error::success();
+}
+
+template <class ELFT> Error ELFBuilder<ELFT>::build(bool EnsureSymtab) {
+ if (Error E = readSectionHeaders())
+ return E;
+ if (Error E = findEhdrOffset())
+ return E;
+
+ // The ELFFile whose ELF headers and program headers are copied into the
+ // output file. Normally the same as ElfFile, but if we're extracting a
+ // loadable partition it will point to the partition's headers.
+ Expected<ELFFile<ELFT>> HeadersFile = ELFFile<ELFT>::create(toStringRef(
+ {ElfFile.base() + EhdrOffset, ElfFile.getBufSize() - EhdrOffset}));
+ if (!HeadersFile)
+ return HeadersFile.takeError();
+
+ const typename ELFFile<ELFT>::Elf_Ehdr &Ehdr = HeadersFile->getHeader();
+ Obj.Is64Bits = Ehdr.e_ident[EI_CLASS] == ELFCLASS64;
+ Obj.OSABI = Ehdr.e_ident[EI_OSABI];
+ Obj.ABIVersion = Ehdr.e_ident[EI_ABIVERSION];
+ Obj.Type = Ehdr.e_type;
+ Obj.Machine = Ehdr.e_machine;
+ Obj.Version = Ehdr.e_version;
+ Obj.Entry = Ehdr.e_entry;
+ Obj.Flags = Ehdr.e_flags;
+
+ if (Error E = readSections(EnsureSymtab))
+ return E;
+ return readProgramHeaders(*HeadersFile);
+}
+
+Writer::~Writer() = default;
+
+Reader::~Reader() = default;
+
+Expected<std::unique_ptr<Object>>
+BinaryReader::create(bool /*EnsureSymtab*/) const {
+ return BinaryELFBuilder(MemBuf, NewSymbolVisibility).build();
+}
+
+Expected<std::vector<IHexRecord>> IHexReader::parse() const {
+ SmallVector<StringRef, 16> Lines;
+ std::vector<IHexRecord> Records;
+ bool HasSections = false;
+
+ MemBuf->getBuffer().split(Lines, '\n');
+ Records.reserve(Lines.size());
+ for (size_t LineNo = 1; LineNo <= Lines.size(); ++LineNo) {
+ StringRef Line = Lines[LineNo - 1].trim();
+ if (Line.empty())
+ continue;
+
+ Expected<IHexRecord> R = IHexRecord::parse(Line);
+ if (!R)
+ return parseError(LineNo, R.takeError());
+ if (R->Type == IHexRecord::EndOfFile)
+ break;
+ HasSections |= (R->Type == IHexRecord::Data);
+ Records.push_back(*R);
+ }
+ if (!HasSections)
+ return parseError(-1U, "no sections");
+
+ return std::move(Records);
+}
+
+Expected<std::unique_ptr<Object>>
+IHexReader::create(bool /*EnsureSymtab*/) const {
+ Expected<std::vector<IHexRecord>> Records = parse();
+ if (!Records)
+ return Records.takeError();
+
+ return IHexELFBuilder(*Records).build();
+}
+
+Expected<std::unique_ptr<Object>> ELFReader::create(bool EnsureSymtab) const {
+ auto Obj = std::make_unique<Object>();
+ if (auto *O = dyn_cast<ELFObjectFile<ELF32LE>>(Bin)) {
+ ELFBuilder<ELF32LE> Builder(*O, *Obj, ExtractPartition);
+ if (Error Err = Builder.build(EnsureSymtab))
+ return std::move(Err);
+ return std::move(Obj);
+ } else if (auto *O = dyn_cast<ELFObjectFile<ELF64LE>>(Bin)) {
+ ELFBuilder<ELF64LE> Builder(*O, *Obj, ExtractPartition);
+ if (Error Err = Builder.build(EnsureSymtab))
+ return std::move(Err);
+ return std::move(Obj);
+ } else if (auto *O = dyn_cast<ELFObjectFile<ELF32BE>>(Bin)) {
+ ELFBuilder<ELF32BE> Builder(*O, *Obj, ExtractPartition);
+ if (Error Err = Builder.build(EnsureSymtab))
+ return std::move(Err);
+ return std::move(Obj);
+ } else if (auto *O = dyn_cast<ELFObjectFile<ELF64BE>>(Bin)) {
+ ELFBuilder<ELF64BE> Builder(*O, *Obj, ExtractPartition);
+ if (Error Err = Builder.build(EnsureSymtab))
+ return std::move(Err);
+ return std::move(Obj);
+ }
+ return createStringError(errc::invalid_argument, "invalid file type");
+}
+
+template <class ELFT> void ELFWriter<ELFT>::writeEhdr() {
+ Elf_Ehdr &Ehdr = *reinterpret_cast<Elf_Ehdr *>(Buf->getBufferStart());
+ std::fill(Ehdr.e_ident, Ehdr.e_ident + 16, 0);
+ Ehdr.e_ident[EI_MAG0] = 0x7f;
+ Ehdr.e_ident[EI_MAG1] = 'E';
+ Ehdr.e_ident[EI_MAG2] = 'L';
+ Ehdr.e_ident[EI_MAG3] = 'F';
+ Ehdr.e_ident[EI_CLASS] = ELFT::Is64Bits ? ELFCLASS64 : ELFCLASS32;
+ Ehdr.e_ident[EI_DATA] =
+ ELFT::TargetEndianness == support::big ? ELFDATA2MSB : ELFDATA2LSB;
+ Ehdr.e_ident[EI_VERSION] = EV_CURRENT;
+ Ehdr.e_ident[EI_OSABI] = Obj.OSABI;
+ Ehdr.e_ident[EI_ABIVERSION] = Obj.ABIVersion;
+
+ Ehdr.e_type = Obj.Type;
+ Ehdr.e_machine = Obj.Machine;
+ Ehdr.e_version = Obj.Version;
+ Ehdr.e_entry = Obj.Entry;
+ // We have to use the fully-qualified name llvm::size
+ // since some compilers complain on ambiguous resolution.
+ Ehdr.e_phnum = llvm::size(Obj.segments());
+ Ehdr.e_phoff = (Ehdr.e_phnum != 0) ? Obj.ProgramHdrSegment.Offset : 0;
+ Ehdr.e_phentsize = (Ehdr.e_phnum != 0) ? sizeof(Elf_Phdr) : 0;
+ Ehdr.e_flags = Obj.Flags;
+ Ehdr.e_ehsize = sizeof(Elf_Ehdr);
+ if (WriteSectionHeaders && Obj.sections().size() != 0) {
+ Ehdr.e_shentsize = sizeof(Elf_Shdr);
+ Ehdr.e_shoff = Obj.SHOff;
+ // """
+ // If the number of sections is greater than or equal to
+ // SHN_LORESERVE (0xff00), this member has the value zero and the actual
+ // number of section header table entries is contained in the sh_size field
+ // of the section header at index 0.
+ // """
+ auto Shnum = Obj.sections().size() + 1;
+ if (Shnum >= SHN_LORESERVE)
+ Ehdr.e_shnum = 0;
+ else
+ Ehdr.e_shnum = Shnum;
+ // """
+ // If the section name string table section index is greater than or equal
+ // to SHN_LORESERVE (0xff00), this member has the value SHN_XINDEX (0xffff)
+ // and the actual index of the section name string table section is
+ // contained in the sh_link field of the section header at index 0.
+ // """
+ if (Obj.SectionNames->Index >= SHN_LORESERVE)
+ Ehdr.e_shstrndx = SHN_XINDEX;
+ else
+ Ehdr.e_shstrndx = Obj.SectionNames->Index;
+ } else {
+ Ehdr.e_shentsize = 0;
+ Ehdr.e_shoff = 0;
+ Ehdr.e_shnum = 0;
+ Ehdr.e_shstrndx = 0;
+ }
+}
+
+template <class ELFT> void ELFWriter<ELFT>::writePhdrs() {
+ for (auto &Seg : Obj.segments())
+ writePhdr(Seg);
+}
+
+template <class ELFT> void ELFWriter<ELFT>::writeShdrs() {
+ // This reference serves to write the dummy section header at the begining
+ // of the file. It is not used for anything else
+ Elf_Shdr &Shdr =
+ *reinterpret_cast<Elf_Shdr *>(Buf->getBufferStart() + Obj.SHOff);
+ Shdr.sh_name = 0;
+ Shdr.sh_type = SHT_NULL;
+ Shdr.sh_flags = 0;
+ Shdr.sh_addr = 0;
+ Shdr.sh_offset = 0;
+ // See writeEhdr for why we do this.
+ uint64_t Shnum = Obj.sections().size() + 1;
+ if (Shnum >= SHN_LORESERVE)
+ Shdr.sh_size = Shnum;
+ else
+ Shdr.sh_size = 0;
+ // See writeEhdr for why we do this.
+ if (Obj.SectionNames != nullptr && Obj.SectionNames->Index >= SHN_LORESERVE)
+ Shdr.sh_link = Obj.SectionNames->Index;
+ else
+ Shdr.sh_link = 0;
+ Shdr.sh_info = 0;
+ Shdr.sh_addralign = 0;
+ Shdr.sh_entsize = 0;
+
+ for (SectionBase &Sec : Obj.sections())
+ writeShdr(Sec);
+}
+
+template <class ELFT> Error ELFWriter<ELFT>::writeSectionData() {
+ for (SectionBase &Sec : Obj.sections())
+ // Segments are responsible for writing their contents, so only write the
+ // section data if the section is not in a segment. Note that this renders
+ // sections in segments effectively immutable.
+ if (Sec.ParentSegment == nullptr)
+ if (Error Err = Sec.accept(*SecWriter))
+ return Err;
+
+ return Error::success();
+}
+
+template <class ELFT> void ELFWriter<ELFT>::writeSegmentData() {
+ for (Segment &Seg : Obj.segments()) {
+ size_t Size = std::min<size_t>(Seg.FileSize, Seg.getContents().size());
+ std::memcpy(Buf->getBufferStart() + Seg.Offset, Seg.getContents().data(),
+ Size);
+ }
+
+ for (auto it : Obj.getUpdatedSections()) {
+ SectionBase *Sec = it.first;
+ ArrayRef<uint8_t> Data = it.second;
+
+ auto *Parent = Sec->ParentSegment;
+ assert(Parent && "This section should've been part of a segment.");
+ uint64_t Offset =
+ Sec->OriginalOffset - Parent->OriginalOffset + Parent->Offset;
+ llvm::copy(Data, Buf->getBufferStart() + Offset);
+ }
+
+ // Iterate over removed sections and overwrite their old data with zeroes.
+ for (auto &Sec : Obj.removedSections()) {
+ Segment *Parent = Sec.ParentSegment;
+ if (Parent == nullptr || Sec.Type == SHT_NOBITS || Sec.Size == 0)
+ continue;
+ uint64_t Offset =
+ Sec.OriginalOffset - Parent->OriginalOffset + Parent->Offset;
+ std::memset(Buf->getBufferStart() + Offset, 0, Sec.Size);
+ }
+}
+
+template <class ELFT>
+ELFWriter<ELFT>::ELFWriter(Object &Obj, raw_ostream &Buf, bool WSH,
+ bool OnlyKeepDebug)
+ : Writer(Obj, Buf), WriteSectionHeaders(WSH && Obj.HadShdrs),
+ OnlyKeepDebug(OnlyKeepDebug) {}
+
+Error Object::updateSection(StringRef Name, ArrayRef<uint8_t> Data) {
+ auto It = llvm::find_if(Sections,
+ [&](const SecPtr &Sec) { return Sec->Name == Name; });
+ if (It == Sections.end())
+ return createStringError(errc::invalid_argument, "section '%s' not found",
+ Name.str().c_str());
+
+ auto *OldSec = It->get();
+ if (!OldSec->hasContents())
+ return createStringError(
+ errc::invalid_argument,
+ "section '%s' cannot be updated because it does not have contents",
+ Name.str().c_str());
+
+ if (Data.size() > OldSec->Size && OldSec->ParentSegment)
+ return createStringError(errc::invalid_argument,
+ "cannot fit data of size %zu into section '%s' "
+ "with size %" PRIu64 " that is part of a segment",
+ Data.size(), Name.str().c_str(), OldSec->Size);
+
+ if (!OldSec->ParentSegment) {
+ *It = std::make_unique<OwnedDataSection>(*OldSec, Data);
+ } else {
+ // The segment writer will be in charge of updating these contents.
+ OldSec->Size = Data.size();
+ UpdatedSections[OldSec] = Data;
+ }
+
+ return Error::success();
+}
+
+Error Object::removeSections(
+ bool AllowBrokenLinks, std::function<bool(const SectionBase &)> ToRemove) {
+
+ auto Iter = std::stable_partition(
+ std::begin(Sections), std::end(Sections), [=](const SecPtr &Sec) {
+ if (ToRemove(*Sec))
+ return false;
+ if (auto RelSec = dyn_cast<RelocationSectionBase>(Sec.get())) {
+ if (auto ToRelSec = RelSec->getSection())
+ return !ToRemove(*ToRelSec);
+ }
+ return true;
+ });
+ if (SymbolTable != nullptr && ToRemove(*SymbolTable))
+ SymbolTable = nullptr;
+ if (SectionNames != nullptr && ToRemove(*SectionNames))
+ SectionNames = nullptr;
+ if (SectionIndexTable != nullptr && ToRemove(*SectionIndexTable))
+ SectionIndexTable = nullptr;
+ // Now make sure there are no remaining references to the sections that will
+ // be removed. Sometimes it is impossible to remove a reference so we emit
+ // an error here instead.
+ std::unordered_set<const SectionBase *> RemoveSections;
+ RemoveSections.reserve(std::distance(Iter, std::end(Sections)));
+ for (auto &RemoveSec : make_range(Iter, std::end(Sections))) {
+ for (auto &Segment : Segments)
+ Segment->removeSection(RemoveSec.get());
+ RemoveSec->onRemove();
+ RemoveSections.insert(RemoveSec.get());
+ }
+
+ // For each section that remains alive, we want to remove the dead references.
+ // This either might update the content of the section (e.g. remove symbols
+ // from symbol table that belongs to removed section) or trigger an error if
+ // a live section critically depends on a section being removed somehow
+ // (e.g. the removed section is referenced by a relocation).
+ for (auto &KeepSec : make_range(std::begin(Sections), Iter)) {
+ if (Error E = KeepSec->removeSectionReferences(
+ AllowBrokenLinks, [&RemoveSections](const SectionBase *Sec) {
+ return RemoveSections.find(Sec) != RemoveSections.end();
+ }))
+ return E;
+ }
+
+ // Transfer removed sections into the Object RemovedSections container for use
+ // later.
+ std::move(Iter, Sections.end(), std::back_inserter(RemovedSections));
+ // Now finally get rid of them all together.
+ Sections.erase(Iter, std::end(Sections));
+ return Error::success();
+}
+
+Error Object::replaceSections(
+ const DenseMap<SectionBase *, SectionBase *> &FromTo) {
+ auto SectionIndexLess = [](const SecPtr &Lhs, const SecPtr &Rhs) {
+ return Lhs->Index < Rhs->Index;
+ };
+ assert(llvm::is_sorted(Sections, SectionIndexLess) &&
+ "Sections are expected to be sorted by Index");
+ // Set indices of new sections so that they can be later sorted into positions
+ // of removed ones.
+ for (auto &I : FromTo)
+ I.second->Index = I.first->Index;
+
+ // Notify all sections about the replacement.
+ for (auto &Sec : Sections)
+ Sec->replaceSectionReferences(FromTo);
+
+ if (Error E = removeSections(
+ /*AllowBrokenLinks=*/false,
+ [=](const SectionBase &Sec) { return FromTo.count(&Sec) > 0; }))
+ return E;
+ llvm::sort(Sections, SectionIndexLess);
+ return Error::success();
+}
+
+Error Object::removeSymbols(function_ref<bool(const Symbol &)> ToRemove) {
+ if (SymbolTable)
+ for (const SecPtr &Sec : Sections)
+ if (Error E = Sec->removeSymbols(ToRemove))
+ return E;
+ return Error::success();
+}
+
+Error Object::addNewSymbolTable() {
+ assert(!SymbolTable && "Object must not has a SymbolTable.");
+
+ // Reuse an existing SHT_STRTAB section if it exists.
+ StringTableSection *StrTab = nullptr;
+ for (SectionBase &Sec : sections()) {
+ if (Sec.Type == ELF::SHT_STRTAB && !(Sec.Flags & SHF_ALLOC)) {
+ StrTab = static_cast<StringTableSection *>(&Sec);
+
+ // Prefer a string table that is not the section header string table, if
+ // such a table exists.
+ if (SectionNames != &Sec)
+ break;
+ }
+ }
+ if (!StrTab)
+ StrTab = &addSection<StringTableSection>();
+
+ SymbolTableSection &SymTab = addSection<SymbolTableSection>();
+ SymTab.Name = ".symtab";
+ SymTab.Link = StrTab->Index;
+ if (Error Err = SymTab.initialize(sections()))
+ return Err;
+ SymTab.addSymbol("", 0, 0, nullptr, 0, 0, 0, 0);
+
+ SymbolTable = &SymTab;
+
+ return Error::success();
+}
+
+// Orders segments such that if x = y->ParentSegment then y comes before x.
+static void orderSegments(std::vector<Segment *> &Segments) {
+ llvm::stable_sort(Segments, compareSegmentsByOffset);
+}
+
+// This function finds a consistent layout for a list of segments starting from
+// an Offset. It assumes that Segments have been sorted by orderSegments and
+// returns an Offset one past the end of the last segment.
+static uint64_t layoutSegments(std::vector<Segment *> &Segments,
+ uint64_t Offset) {
+ assert(llvm::is_sorted(Segments, compareSegmentsByOffset));
+ // The only way a segment should move is if a section was between two
+ // segments and that section was removed. If that section isn't in a segment
+ // then it's acceptable, but not ideal, to simply move it to after the
+ // segments. So we can simply layout segments one after the other accounting
+ // for alignment.
+ for (Segment *Seg : Segments) {
+ // We assume that segments have been ordered by OriginalOffset and Index
+ // such that a parent segment will always come before a child segment in
+ // OrderedSegments. This means that the Offset of the ParentSegment should
+ // already be set and we can set our offset relative to it.
+ if (Seg->ParentSegment != nullptr) {
+ Segment *Parent = Seg->ParentSegment;
+ Seg->Offset =
+ Parent->Offset + Seg->OriginalOffset - Parent->OriginalOffset;
+ } else {
+ Seg->Offset =
+ alignTo(Offset, std::max<uint64_t>(Seg->Align, 1), Seg->VAddr);
+ }
+ Offset = std::max(Offset, Seg->Offset + Seg->FileSize);
+ }
+ return Offset;
+}
+
+// This function finds a consistent layout for a list of sections. It assumes
+// that the ->ParentSegment of each section has already been laid out. The
+// supplied starting Offset is used for the starting offset of any section that
+// does not have a ParentSegment. It returns either the offset given if all
+// sections had a ParentSegment or an offset one past the last section if there
+// was a section that didn't have a ParentSegment.
+template <class Range>
+static uint64_t layoutSections(Range Sections, uint64_t Offset) {
+ // Now the offset of every segment has been set we can assign the offsets
+ // of each section. For sections that are covered by a segment we should use
+ // the segment's original offset and the section's original offset to compute
+ // the offset from the start of the segment. Using the offset from the start
+ // of the segment we can assign a new offset to the section. For sections not
+ // covered by segments we can just bump Offset to the next valid location.
+ // While it is not necessary, layout the sections in the order based on their
+ // original offsets to resemble the input file as close as possible.
+ std::vector<SectionBase *> OutOfSegmentSections;
+ uint32_t Index = 1;
+ for (auto &Sec : Sections) {
+ Sec.Index = Index++;
+ if (Sec.ParentSegment != nullptr) {
+ auto Segment = *Sec.ParentSegment;
+ Sec.Offset =
+ Segment.Offset + (Sec.OriginalOffset - Segment.OriginalOffset);
+ } else
+ OutOfSegmentSections.push_back(&Sec);
+ }
+
+ llvm::stable_sort(OutOfSegmentSections,
+ [](const SectionBase *Lhs, const SectionBase *Rhs) {
+ return Lhs->OriginalOffset < Rhs->OriginalOffset;
+ });
+ for (auto *Sec : OutOfSegmentSections) {
+ Offset = alignTo(Offset, Sec->Align == 0 ? 1 : Sec->Align);
+ Sec->Offset = Offset;
+ if (Sec->Type != SHT_NOBITS)
+ Offset += Sec->Size;
+ }
+ return Offset;
+}
+
+// Rewrite sh_offset after some sections are changed to SHT_NOBITS and thus
+// occupy no space in the file.
+static uint64_t layoutSectionsForOnlyKeepDebug(Object &Obj, uint64_t Off) {
+ // The layout algorithm requires the sections to be handled in the order of
+ // their offsets in the input file, at least inside segments.
+ std::vector<SectionBase *> Sections;
+ Sections.reserve(Obj.sections().size());
+ uint32_t Index = 1;
+ for (auto &Sec : Obj.sections()) {
+ Sec.Index = Index++;
+ Sections.push_back(&Sec);
+ }
+ llvm::stable_sort(Sections,
+ [](const SectionBase *Lhs, const SectionBase *Rhs) {
+ return Lhs->OriginalOffset < Rhs->OriginalOffset;
+ });
+
+ for (auto *Sec : Sections) {
+ auto *FirstSec = Sec->ParentSegment && Sec->ParentSegment->Type == PT_LOAD
+ ? Sec->ParentSegment->firstSection()
+ : nullptr;
+
+ // The first section in a PT_LOAD has to have congruent offset and address
+ // modulo the alignment, which usually equals the maximum page size.
+ if (FirstSec && FirstSec == Sec)
+ Off = alignTo(Off, Sec->ParentSegment->Align, Sec->Addr);
+
+ // sh_offset is not significant for SHT_NOBITS sections, but the congruence
+ // rule must be followed if it is the first section in a PT_LOAD. Do not
+ // advance Off.
+ if (Sec->Type == SHT_NOBITS) {
+ Sec->Offset = Off;
+ continue;
+ }
+
+ if (!FirstSec) {
+ // FirstSec being nullptr generally means that Sec does not have the
+ // SHF_ALLOC flag.
+ Off = Sec->Align ? alignTo(Off, Sec->Align) : Off;
+ } else if (FirstSec != Sec) {
+ // The offset is relative to the first section in the PT_LOAD segment. Use
+ // sh_offset for non-SHF_ALLOC sections.
+ Off = Sec->OriginalOffset - FirstSec->OriginalOffset + FirstSec->Offset;
+ }
+ Sec->Offset = Off;
+ Off += Sec->Size;
+ }
+ return Off;
+}
+
+// Rewrite p_offset and p_filesz of non-PT_PHDR segments after sh_offset values
+// have been updated.
+static uint64_t layoutSegmentsForOnlyKeepDebug(std::vector<Segment *> &Segments,
+ uint64_t HdrEnd) {
+ uint64_t MaxOffset = 0;
+ for (Segment *Seg : Segments) {
+ if (Seg->Type == PT_PHDR)
+ continue;
+
+ // The segment offset is generally the offset of the first section.
+ //
+ // For a segment containing no section (see sectionWithinSegment), if it has
+ // a parent segment, copy the parent segment's offset field. This works for
+ // empty PT_TLS. If no parent segment, use 0: the segment is not useful for
+ // debugging anyway.
+ const SectionBase *FirstSec = Seg->firstSection();
+ uint64_t Offset =
+ FirstSec ? FirstSec->Offset
+ : (Seg->ParentSegment ? Seg->ParentSegment->Offset : 0);
+ uint64_t FileSize = 0;
+ for (const SectionBase *Sec : Seg->Sections) {
+ uint64_t Size = Sec->Type == SHT_NOBITS ? 0 : Sec->Size;
+ if (Sec->Offset + Size > Offset)
+ FileSize = std::max(FileSize, Sec->Offset + Size - Offset);
+ }
+
+ // If the segment includes EHDR and program headers, don't make it smaller
+ // than the headers.
+ if (Seg->Offset < HdrEnd && HdrEnd <= Seg->Offset + Seg->FileSize) {
+ FileSize += Offset - Seg->Offset;
+ Offset = Seg->Offset;
+ FileSize = std::max(FileSize, HdrEnd - Offset);
+ }
+
+ Seg->Offset = Offset;
+ Seg->FileSize = FileSize;
+ MaxOffset = std::max(MaxOffset, Offset + FileSize);
+ }
+ return MaxOffset;
+}
+
+template <class ELFT> void ELFWriter<ELFT>::initEhdrSegment() {
+ Segment &ElfHdr = Obj.ElfHdrSegment;
+ ElfHdr.Type = PT_PHDR;
+ ElfHdr.Flags = 0;
+ ElfHdr.VAddr = 0;
+ ElfHdr.PAddr = 0;
+ ElfHdr.FileSize = ElfHdr.MemSize = sizeof(Elf_Ehdr);
+ ElfHdr.Align = 0;
+}
+
+template <class ELFT> void ELFWriter<ELFT>::assignOffsets() {
+ // We need a temporary list of segments that has a special order to it
+ // so that we know that anytime ->ParentSegment is set that segment has
+ // already had its offset properly set.
+ std::vector<Segment *> OrderedSegments;
+ for (Segment &Segment : Obj.segments())
+ OrderedSegments.push_back(&Segment);
+ OrderedSegments.push_back(&Obj.ElfHdrSegment);
+ OrderedSegments.push_back(&Obj.ProgramHdrSegment);
+ orderSegments(OrderedSegments);
+
+ uint64_t Offset;
+ if (OnlyKeepDebug) {
+ // For --only-keep-debug, the sections that did not preserve contents were
+ // changed to SHT_NOBITS. We now rewrite sh_offset fields of sections, and
+ // then rewrite p_offset/p_filesz of program headers.
+ uint64_t HdrEnd =
+ sizeof(Elf_Ehdr) + llvm::size(Obj.segments()) * sizeof(Elf_Phdr);
+ Offset = layoutSectionsForOnlyKeepDebug(Obj, HdrEnd);
+ Offset = std::max(Offset,
+ layoutSegmentsForOnlyKeepDebug(OrderedSegments, HdrEnd));
+ } else {
+ // Offset is used as the start offset of the first segment to be laid out.
+ // Since the ELF Header (ElfHdrSegment) must be at the start of the file,
+ // we start at offset 0.
+ Offset = layoutSegments(OrderedSegments, 0);
+ Offset = layoutSections(Obj.sections(), Offset);
+ }
+ // If we need to write the section header table out then we need to align the
+ // Offset so that SHOffset is valid.
+ if (WriteSectionHeaders)
+ Offset = alignTo(Offset, sizeof(Elf_Addr));
+ Obj.SHOff = Offset;
+}
+
+template <class ELFT> size_t ELFWriter<ELFT>::totalSize() const {
+ // We already have the section header offset so we can calculate the total
+ // size by just adding up the size of each section header.
+ if (!WriteSectionHeaders)
+ return Obj.SHOff;
+ size_t ShdrCount = Obj.sections().size() + 1; // Includes null shdr.
+ return Obj.SHOff + ShdrCount * sizeof(Elf_Shdr);
+}
+
+template <class ELFT> Error ELFWriter<ELFT>::write() {
+ // Segment data must be written first, so that the ELF header and program
+ // header tables can overwrite it, if covered by a segment.
+ writeSegmentData();
+ writeEhdr();
+ writePhdrs();
+ if (Error E = writeSectionData())
+ return E;
+ if (WriteSectionHeaders)
+ writeShdrs();
+
+ // TODO: Implement direct writing to the output stream (without intermediate
+ // memory buffer Buf).
+ Out.write(Buf->getBufferStart(), Buf->getBufferSize());
+ return Error::success();
+}
+
+static Error removeUnneededSections(Object &Obj) {
+ // We can remove an empty symbol table from non-relocatable objects.
+ // Relocatable objects typically have relocation sections whose
+ // sh_link field points to .symtab, so we can't remove .symtab
+ // even if it is empty.
+ if (Obj.isRelocatable() || Obj.SymbolTable == nullptr ||
+ !Obj.SymbolTable->empty())
+ return Error::success();
+
+ // .strtab can be used for section names. In such a case we shouldn't
+ // remove it.
+ auto *StrTab = Obj.SymbolTable->getStrTab() == Obj.SectionNames
+ ? nullptr
+ : Obj.SymbolTable->getStrTab();
+ return Obj.removeSections(false, [&](const SectionBase &Sec) {
+ return &Sec == Obj.SymbolTable || &Sec == StrTab;
+ });
+}
+
+template <class ELFT> Error ELFWriter<ELFT>::finalize() {
+ // It could happen that SectionNames has been removed and yet the user wants
+ // a section header table output. We need to throw an error if a user tries
+ // to do that.
+ if (Obj.SectionNames == nullptr && WriteSectionHeaders)
+ return createStringError(llvm::errc::invalid_argument,
+ "cannot write section header table because "
+ "section header string table was removed");
+
+ if (Error E = removeUnneededSections(Obj))
+ return E;
+
+ // We need to assign indexes before we perform layout because we need to know
+ // if we need large indexes or not. We can assign indexes first and check as
+ // we go to see if we will actully need large indexes.
+ bool NeedsLargeIndexes = false;
+ if (Obj.sections().size() >= SHN_LORESERVE) {
+ SectionTableRef Sections = Obj.sections();
+ // Sections doesn't include the null section header, so account for this
+ // when skipping the first N sections.
+ NeedsLargeIndexes =
+ any_of(drop_begin(Sections, SHN_LORESERVE - 1),
+ [](const SectionBase &Sec) { return Sec.HasSymbol; });
+ // TODO: handle case where only one section needs the large index table but
+ // only needs it because the large index table hasn't been removed yet.
+ }
+
+ if (NeedsLargeIndexes) {
+ // This means we definitely need to have a section index table but if we
+ // already have one then we should use it instead of making a new one.
+ if (Obj.SymbolTable != nullptr && Obj.SectionIndexTable == nullptr) {
+ // Addition of a section to the end does not invalidate the indexes of
+ // other sections and assigns the correct index to the new section.
+ auto &Shndx = Obj.addSection<SectionIndexSection>();
+ Obj.SymbolTable->setShndxTable(&Shndx);
+ Shndx.setSymTab(Obj.SymbolTable);
+ }
+ } else {
+ // Since we don't need SectionIndexTable we should remove it and all
+ // references to it.
+ if (Obj.SectionIndexTable != nullptr) {
+ // We do not support sections referring to the section index table.
+ if (Error E = Obj.removeSections(false /*AllowBrokenLinks*/,
+ [this](const SectionBase &Sec) {
+ return &Sec == Obj.SectionIndexTable;
+ }))
+ return E;
+ }
+ }
+
+ // Make sure we add the names of all the sections. Importantly this must be
+ // done after we decide to add or remove SectionIndexes.
+ if (Obj.SectionNames != nullptr)
+ for (const SectionBase &Sec : Obj.sections())
+ Obj.SectionNames->addString(Sec.Name);
+
+ initEhdrSegment();
+
+ // Before we can prepare for layout the indexes need to be finalized.
+ // Also, the output arch may not be the same as the input arch, so fix up
+ // size-related fields before doing layout calculations.
+ uint64_t Index = 0;
+ auto SecSizer = std::make_unique<ELFSectionSizer<ELFT>>();
+ for (SectionBase &Sec : Obj.sections()) {
+ Sec.Index = Index++;
+ if (Error Err = Sec.accept(*SecSizer))
+ return Err;
+ }
+
+ // The symbol table does not update all other sections on update. For
+ // instance, symbol names are not added as new symbols are added. This means
+ // that some sections, like .strtab, don't yet have their final size.
+ if (Obj.SymbolTable != nullptr)
+ Obj.SymbolTable->prepareForLayout();
+
+ // Now that all strings are added we want to finalize string table builders,
+ // because that affects section sizes which in turn affects section offsets.
+ for (SectionBase &Sec : Obj.sections())
+ if (auto StrTab = dyn_cast<StringTableSection>(&Sec))
+ StrTab->prepareForLayout();
+
+ assignOffsets();
+
+ // layoutSections could have modified section indexes, so we need
+ // to fill the index table after assignOffsets.
+ if (Obj.SymbolTable != nullptr)
+ Obj.SymbolTable->fillShndxTable();
+
+ // Finally now that all offsets and indexes have been set we can finalize any
+ // remaining issues.
+ uint64_t Offset = Obj.SHOff + sizeof(Elf_Shdr);
+ for (SectionBase &Sec : Obj.sections()) {
+ Sec.HeaderOffset = Offset;
+ Offset += sizeof(Elf_Shdr);
+ if (WriteSectionHeaders)
+ Sec.NameIndex = Obj.SectionNames->findIndex(Sec.Name);
+ Sec.finalize();
+ }
+
+ size_t TotalSize = totalSize();
+ Buf = WritableMemoryBuffer::getNewMemBuffer(TotalSize);
+ if (!Buf)
+ return createStringError(errc::not_enough_memory,
+ "failed to allocate memory buffer of " +
+ Twine::utohexstr(TotalSize) + " bytes");
+
+ SecWriter = std::make_unique<ELFSectionWriter<ELFT>>(*Buf);
+ return Error::success();
+}
+
+Error BinaryWriter::write() {
+ for (const SectionBase &Sec : Obj.allocSections())
+ if (Error Err = Sec.accept(*SecWriter))
+ return Err;
+
+ // TODO: Implement direct writing to the output stream (without intermediate
+ // memory buffer Buf).
+ Out.write(Buf->getBufferStart(), Buf->getBufferSize());
+ return Error::success();
+}
+
+Error BinaryWriter::finalize() {
+ // Compute the section LMA based on its sh_offset and the containing segment's
+ // p_offset and p_paddr. Also compute the minimum LMA of all non-empty
+ // sections as MinAddr. In the output, the contents between address 0 and
+ // MinAddr will be skipped.
+ uint64_t MinAddr = UINT64_MAX;
+ for (SectionBase &Sec : Obj.allocSections()) {
+ // If Sec's type is changed from SHT_NOBITS due to --set-section-flags,
+ // Offset may not be aligned. Align it to max(Align, 1).
+ if (Sec.ParentSegment != nullptr)
+ Sec.Addr = alignTo(Sec.Offset - Sec.ParentSegment->Offset +
+ Sec.ParentSegment->PAddr,
+ std::max(Sec.Align, uint64_t(1)));
+ if (Sec.Type != SHT_NOBITS && Sec.Size > 0)
+ MinAddr = std::min(MinAddr, Sec.Addr);
+ }
+
+ // Now that every section has been laid out we just need to compute the total
+ // file size. This might not be the same as the offset returned by
+ // layoutSections, because we want to truncate the last segment to the end of
+ // its last non-empty section, to match GNU objcopy's behaviour.
+ TotalSize = 0;
+ for (SectionBase &Sec : Obj.allocSections())
+ if (Sec.Type != SHT_NOBITS && Sec.Size > 0) {
+ Sec.Offset = Sec.Addr - MinAddr;
+ TotalSize = std::max(TotalSize, Sec.Offset + Sec.Size);
+ }
+
+ Buf = WritableMemoryBuffer::getNewMemBuffer(TotalSize);
+ if (!Buf)
+ return createStringError(errc::not_enough_memory,
+ "failed to allocate memory buffer of " +
+ Twine::utohexstr(TotalSize) + " bytes");
+ SecWriter = std::make_unique<BinarySectionWriter>(*Buf);
+ return Error::success();
+}
+
+bool IHexWriter::SectionCompare::operator()(const SectionBase *Lhs,
+ const SectionBase *Rhs) const {
+ return (sectionPhysicalAddr(Lhs) & 0xFFFFFFFFU) <
+ (sectionPhysicalAddr(Rhs) & 0xFFFFFFFFU);
+}
+
+uint64_t IHexWriter::writeEntryPointRecord(uint8_t *Buf) {
+ IHexLineData HexData;
+ uint8_t Data[4] = {};
+ // We don't write entry point record if entry is zero.
+ if (Obj.Entry == 0)
+ return 0;
+
+ if (Obj.Entry <= 0xFFFFFU) {
+ Data[0] = ((Obj.Entry & 0xF0000U) >> 12) & 0xFF;
+ support::endian::write(&Data[2], static_cast<uint16_t>(Obj.Entry),
+ support::big);
+ HexData = IHexRecord::getLine(IHexRecord::StartAddr80x86, 0, Data);
+ } else {
+ support::endian::write(Data, static_cast<uint32_t>(Obj.Entry),
+ support::big);
+ HexData = IHexRecord::getLine(IHexRecord::StartAddr, 0, Data);
+ }
+ memcpy(Buf, HexData.data(), HexData.size());
+ return HexData.size();
+}
+
+uint64_t IHexWriter::writeEndOfFileRecord(uint8_t *Buf) {
+ IHexLineData HexData = IHexRecord::getLine(IHexRecord::EndOfFile, 0, {});
+ memcpy(Buf, HexData.data(), HexData.size());
+ return HexData.size();
+}
+
+Error IHexWriter::write() {
+ IHexSectionWriter Writer(*Buf);
+ // Write sections.
+ for (const SectionBase *Sec : Sections)
+ if (Error Err = Sec->accept(Writer))
+ return Err;
+
+ uint64_t Offset = Writer.getBufferOffset();
+ // Write entry point address.
+ Offset += writeEntryPointRecord(
+ reinterpret_cast<uint8_t *>(Buf->getBufferStart()) + Offset);
+ // Write EOF.
+ Offset += writeEndOfFileRecord(
+ reinterpret_cast<uint8_t *>(Buf->getBufferStart()) + Offset);
+ assert(Offset == TotalSize);
+
+ // TODO: Implement direct writing to the output stream (without intermediate
+ // memory buffer Buf).
+ Out.write(Buf->getBufferStart(), Buf->getBufferSize());
+ return Error::success();
+}
+
+Error IHexWriter::checkSection(const SectionBase &Sec) {
+ uint64_t Addr = sectionPhysicalAddr(&Sec);
+ if (addressOverflows32bit(Addr) || addressOverflows32bit(Addr + Sec.Size - 1))
+ return createStringError(
+ errc::invalid_argument,
+ "Section '%s' address range [0x%llx, 0x%llx] is not 32 bit",
+ Sec.Name.c_str(), Addr, Addr + Sec.Size - 1);
+ return Error::success();
+}
+
+Error IHexWriter::finalize() {
+ // We can't write 64-bit addresses.
+ if (addressOverflows32bit(Obj.Entry))
+ return createStringError(errc::invalid_argument,
+ "Entry point address 0x%llx overflows 32 bits",
+ Obj.Entry);
+
+ for (const SectionBase &Sec : Obj.sections())
+ if ((Sec.Flags & ELF::SHF_ALLOC) && Sec.Type != ELF::SHT_NOBITS &&
+ Sec.Size > 0) {
+ if (Error E = checkSection(Sec))
+ return E;
+ Sections.insert(&Sec);
+ }
+
+ std::unique_ptr<WritableMemoryBuffer> EmptyBuffer =
+ WritableMemoryBuffer::getNewMemBuffer(0);
+ if (!EmptyBuffer)
+ return createStringError(errc::not_enough_memory,
+ "failed to allocate memory buffer of 0 bytes");
+
+ IHexSectionWriterBase LengthCalc(*EmptyBuffer);
+ for (const SectionBase *Sec : Sections)
+ if (Error Err = Sec->accept(LengthCalc))
+ return Err;
+
+ // We need space to write section records + StartAddress record
+ // (if start adress is not zero) + EndOfFile record.
+ TotalSize = LengthCalc.getBufferOffset() +
+ (Obj.Entry ? IHexRecord::getLineLength(4) : 0) +
+ IHexRecord::getLineLength(0);
+
+ Buf = WritableMemoryBuffer::getNewMemBuffer(TotalSize);
+ if (!Buf)
+ return createStringError(errc::not_enough_memory,
+ "failed to allocate memory buffer of " +
+ Twine::utohexstr(TotalSize) + " bytes");
+
+ return Error::success();
+}
+
+namespace llvm {
+namespace objcopy {
+namespace elf {
+
+template class ELFBuilder<ELF64LE>;
+template class ELFBuilder<ELF64BE>;
+template class ELFBuilder<ELF32LE>;
+template class ELFBuilder<ELF32BE>;
+
+template class ELFWriter<ELF64LE>;
+template class ELFWriter<ELF64BE>;
+template class ELFWriter<ELF32LE>;
+template class ELFWriter<ELF32BE>;
+
+} // end namespace elf
+} // end namespace objcopy
+} // end namespace llvm