diff options
Diffstat (limited to 'contrib/llvm-project/llvm/lib/Target/AMDGPU/AMDGPULibCalls.cpp')
| -rw-r--r-- | contrib/llvm-project/llvm/lib/Target/AMDGPU/AMDGPULibCalls.cpp | 1771 | 
1 files changed, 1771 insertions, 0 deletions
diff --git a/contrib/llvm-project/llvm/lib/Target/AMDGPU/AMDGPULibCalls.cpp b/contrib/llvm-project/llvm/lib/Target/AMDGPU/AMDGPULibCalls.cpp new file mode 100644 index 000000000000..4a14259f1bdb --- /dev/null +++ b/contrib/llvm-project/llvm/lib/Target/AMDGPU/AMDGPULibCalls.cpp @@ -0,0 +1,1771 @@ +//===- AMDGPULibCalls.cpp -------------------------------------------------===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +/// \file +/// This file does AMD library function optimizations. +// +//===----------------------------------------------------------------------===// + +#include "AMDGPU.h" +#include "AMDGPULibFunc.h" +#include "AMDGPUSubtarget.h" +#include "llvm/ADT/StringRef.h" +#include "llvm/ADT/StringSet.h" +#include "llvm/Analysis/AliasAnalysis.h" +#include "llvm/Analysis/Loads.h" +#include "llvm/IR/Constants.h" +#include "llvm/IR/DerivedTypes.h" +#include "llvm/IR/Function.h" +#include "llvm/IR/IRBuilder.h" +#include "llvm/IR/Instructions.h" +#include "llvm/IR/Intrinsics.h" +#include "llvm/IR/LLVMContext.h" +#include "llvm/IR/Module.h" +#include "llvm/IR/ValueSymbolTable.h" +#include "llvm/InitializePasses.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/MathExtras.h" +#include "llvm/Support/raw_ostream.h" +#include "llvm/Target/TargetMachine.h" +#include <cmath> +#include <vector> + +#define DEBUG_TYPE "amdgpu-simplifylib" + +using namespace llvm; + +static cl::opt<bool> EnablePreLink("amdgpu-prelink", +  cl::desc("Enable pre-link mode optimizations"), +  cl::init(false), +  cl::Hidden); + +static cl::list<std::string> UseNative("amdgpu-use-native", +  cl::desc("Comma separated list of functions to replace with native, or all"), +  cl::CommaSeparated, cl::ValueOptional, +  cl::Hidden); + +#define MATH_PI      numbers::pi +#define MATH_E       numbers::e +#define MATH_SQRT2   numbers::sqrt2 +#define MATH_SQRT1_2 numbers::inv_sqrt2 + +namespace llvm { + +class AMDGPULibCalls { +private: + +  typedef llvm::AMDGPULibFunc FuncInfo; + +  const TargetMachine *TM; + +  // -fuse-native. +  bool AllNative = false; + +  bool useNativeFunc(const StringRef F) const; + +  // Return a pointer (pointer expr) to the function if function defintion with +  // "FuncName" exists. It may create a new function prototype in pre-link mode. +  FunctionCallee getFunction(Module *M, const FuncInfo &fInfo); + +  // Replace a normal function with its native version. +  bool replaceWithNative(CallInst *CI, const FuncInfo &FInfo); + +  bool parseFunctionName(const StringRef& FMangledName, +                         FuncInfo *FInfo=nullptr /*out*/); + +  bool TDOFold(CallInst *CI, const FuncInfo &FInfo); + +  /* Specialized optimizations */ + +  // recip (half or native) +  bool fold_recip(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo); + +  // divide (half or native) +  bool fold_divide(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo); + +  // pow/powr/pown +  bool fold_pow(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo); + +  // rootn +  bool fold_rootn(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo); + +  // fma/mad +  bool fold_fma_mad(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo); + +  // -fuse-native for sincos +  bool sincosUseNative(CallInst *aCI, const FuncInfo &FInfo); + +  // evaluate calls if calls' arguments are constants. +  bool evaluateScalarMathFunc(FuncInfo &FInfo, double& Res0, +    double& Res1, Constant *copr0, Constant *copr1, Constant *copr2); +  bool evaluateCall(CallInst *aCI, FuncInfo &FInfo); + +  // exp +  bool fold_exp(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo); + +  // exp2 +  bool fold_exp2(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo); + +  // exp10 +  bool fold_exp10(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo); + +  // log +  bool fold_log(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo); + +  // log2 +  bool fold_log2(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo); + +  // log10 +  bool fold_log10(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo); + +  // sqrt +  bool fold_sqrt(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo); + +  // sin/cos +  bool fold_sincos(CallInst * CI, IRBuilder<> &B, AliasAnalysis * AA); + +  // __read_pipe/__write_pipe +  bool fold_read_write_pipe(CallInst *CI, IRBuilder<> &B, FuncInfo &FInfo); + +  // llvm.amdgcn.wavefrontsize +  bool fold_wavefrontsize(CallInst *CI, IRBuilder<> &B); + +  // Get insertion point at entry. +  BasicBlock::iterator getEntryIns(CallInst * UI); +  // Insert an Alloc instruction. +  AllocaInst* insertAlloca(CallInst * UI, IRBuilder<> &B, const char *prefix); +  // Get a scalar native builtin signle argument FP function +  FunctionCallee getNativeFunction(Module *M, const FuncInfo &FInfo); + +protected: +  CallInst *CI; + +  bool isUnsafeMath(const CallInst *CI) const; + +  void replaceCall(Value *With) { +    CI->replaceAllUsesWith(With); +    CI->eraseFromParent(); +  } + +public: +  AMDGPULibCalls(const TargetMachine *TM_ = nullptr) : TM(TM_) {} + +  bool fold(CallInst *CI, AliasAnalysis *AA = nullptr); + +  void initNativeFuncs(); + +  // Replace a normal math function call with that native version +  bool useNative(CallInst *CI); +}; + +} // end llvm namespace + +namespace { + +  class AMDGPUSimplifyLibCalls : public FunctionPass { + +  AMDGPULibCalls Simplifier; + +  public: +    static char ID; // Pass identification + +    AMDGPUSimplifyLibCalls(const TargetMachine *TM = nullptr) +      : FunctionPass(ID), Simplifier(TM) { +      initializeAMDGPUSimplifyLibCallsPass(*PassRegistry::getPassRegistry()); +    } + +    void getAnalysisUsage(AnalysisUsage &AU) const override { +      AU.addRequired<AAResultsWrapperPass>(); +    } + +    bool runOnFunction(Function &M) override; +  }; + +  class AMDGPUUseNativeCalls : public FunctionPass { + +  AMDGPULibCalls Simplifier; + +  public: +    static char ID; // Pass identification + +    AMDGPUUseNativeCalls() : FunctionPass(ID) { +      initializeAMDGPUUseNativeCallsPass(*PassRegistry::getPassRegistry()); +      Simplifier.initNativeFuncs(); +    } + +    bool runOnFunction(Function &F) override; +  }; + +} // end anonymous namespace. + +char AMDGPUSimplifyLibCalls::ID = 0; +char AMDGPUUseNativeCalls::ID = 0; + +INITIALIZE_PASS_BEGIN(AMDGPUSimplifyLibCalls, "amdgpu-simplifylib", +                      "Simplify well-known AMD library calls", false, false) +INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) +INITIALIZE_PASS_END(AMDGPUSimplifyLibCalls, "amdgpu-simplifylib", +                    "Simplify well-known AMD library calls", false, false) + +INITIALIZE_PASS(AMDGPUUseNativeCalls, "amdgpu-usenative", +                "Replace builtin math calls with that native versions.", +                false, false) + +template <typename IRB> +static CallInst *CreateCallEx(IRB &B, FunctionCallee Callee, Value *Arg, +                              const Twine &Name = "") { +  CallInst *R = B.CreateCall(Callee, Arg, Name); +  if (Function *F = dyn_cast<Function>(Callee.getCallee())) +    R->setCallingConv(F->getCallingConv()); +  return R; +} + +template <typename IRB> +static CallInst *CreateCallEx2(IRB &B, FunctionCallee Callee, Value *Arg1, +                               Value *Arg2, const Twine &Name = "") { +  CallInst *R = B.CreateCall(Callee, {Arg1, Arg2}, Name); +  if (Function *F = dyn_cast<Function>(Callee.getCallee())) +    R->setCallingConv(F->getCallingConv()); +  return R; +} + +//  Data structures for table-driven optimizations. +//  FuncTbl works for both f32 and f64 functions with 1 input argument + +struct TableEntry { +  double   result; +  double   input; +}; + +/* a list of {result, input} */ +static const TableEntry tbl_acos[] = { +  {MATH_PI / 2.0, 0.0}, +  {MATH_PI / 2.0, -0.0}, +  {0.0, 1.0}, +  {MATH_PI, -1.0} +}; +static const TableEntry tbl_acosh[] = { +  {0.0, 1.0} +}; +static const TableEntry tbl_acospi[] = { +  {0.5, 0.0}, +  {0.5, -0.0}, +  {0.0, 1.0}, +  {1.0, -1.0} +}; +static const TableEntry tbl_asin[] = { +  {0.0, 0.0}, +  {-0.0, -0.0}, +  {MATH_PI / 2.0, 1.0}, +  {-MATH_PI / 2.0, -1.0} +}; +static const TableEntry tbl_asinh[] = { +  {0.0, 0.0}, +  {-0.0, -0.0} +}; +static const TableEntry tbl_asinpi[] = { +  {0.0, 0.0}, +  {-0.0, -0.0}, +  {0.5, 1.0}, +  {-0.5, -1.0} +}; +static const TableEntry tbl_atan[] = { +  {0.0, 0.0}, +  {-0.0, -0.0}, +  {MATH_PI / 4.0, 1.0}, +  {-MATH_PI / 4.0, -1.0} +}; +static const TableEntry tbl_atanh[] = { +  {0.0, 0.0}, +  {-0.0, -0.0} +}; +static const TableEntry tbl_atanpi[] = { +  {0.0, 0.0}, +  {-0.0, -0.0}, +  {0.25, 1.0}, +  {-0.25, -1.0} +}; +static const TableEntry tbl_cbrt[] = { +  {0.0, 0.0}, +  {-0.0, -0.0}, +  {1.0, 1.0}, +  {-1.0, -1.0}, +}; +static const TableEntry tbl_cos[] = { +  {1.0, 0.0}, +  {1.0, -0.0} +}; +static const TableEntry tbl_cosh[] = { +  {1.0, 0.0}, +  {1.0, -0.0} +}; +static const TableEntry tbl_cospi[] = { +  {1.0, 0.0}, +  {1.0, -0.0} +}; +static const TableEntry tbl_erfc[] = { +  {1.0, 0.0}, +  {1.0, -0.0} +}; +static const TableEntry tbl_erf[] = { +  {0.0, 0.0}, +  {-0.0, -0.0} +}; +static const TableEntry tbl_exp[] = { +  {1.0, 0.0}, +  {1.0, -0.0}, +  {MATH_E, 1.0} +}; +static const TableEntry tbl_exp2[] = { +  {1.0, 0.0}, +  {1.0, -0.0}, +  {2.0, 1.0} +}; +static const TableEntry tbl_exp10[] = { +  {1.0, 0.0}, +  {1.0, -0.0}, +  {10.0, 1.0} +}; +static const TableEntry tbl_expm1[] = { +  {0.0, 0.0}, +  {-0.0, -0.0} +}; +static const TableEntry tbl_log[] = { +  {0.0, 1.0}, +  {1.0, MATH_E} +}; +static const TableEntry tbl_log2[] = { +  {0.0, 1.0}, +  {1.0, 2.0} +}; +static const TableEntry tbl_log10[] = { +  {0.0, 1.0}, +  {1.0, 10.0} +}; +static const TableEntry tbl_rsqrt[] = { +  {1.0, 1.0}, +  {MATH_SQRT1_2, 2.0} +}; +static const TableEntry tbl_sin[] = { +  {0.0, 0.0}, +  {-0.0, -0.0} +}; +static const TableEntry tbl_sinh[] = { +  {0.0, 0.0}, +  {-0.0, -0.0} +}; +static const TableEntry tbl_sinpi[] = { +  {0.0, 0.0}, +  {-0.0, -0.0} +}; +static const TableEntry tbl_sqrt[] = { +  {0.0, 0.0}, +  {1.0, 1.0}, +  {MATH_SQRT2, 2.0} +}; +static const TableEntry tbl_tan[] = { +  {0.0, 0.0}, +  {-0.0, -0.0} +}; +static const TableEntry tbl_tanh[] = { +  {0.0, 0.0}, +  {-0.0, -0.0} +}; +static const TableEntry tbl_tanpi[] = { +  {0.0, 0.0}, +  {-0.0, -0.0} +}; +static const TableEntry tbl_tgamma[] = { +  {1.0, 1.0}, +  {1.0, 2.0}, +  {2.0, 3.0}, +  {6.0, 4.0} +}; + +static bool HasNative(AMDGPULibFunc::EFuncId id) { +  switch(id) { +  case AMDGPULibFunc::EI_DIVIDE: +  case AMDGPULibFunc::EI_COS: +  case AMDGPULibFunc::EI_EXP: +  case AMDGPULibFunc::EI_EXP2: +  case AMDGPULibFunc::EI_EXP10: +  case AMDGPULibFunc::EI_LOG: +  case AMDGPULibFunc::EI_LOG2: +  case AMDGPULibFunc::EI_LOG10: +  case AMDGPULibFunc::EI_POWR: +  case AMDGPULibFunc::EI_RECIP: +  case AMDGPULibFunc::EI_RSQRT: +  case AMDGPULibFunc::EI_SIN: +  case AMDGPULibFunc::EI_SINCOS: +  case AMDGPULibFunc::EI_SQRT: +  case AMDGPULibFunc::EI_TAN: +    return true; +  default:; +  } +  return false; +} + +struct TableRef { +  size_t size; +  const TableEntry *table; // variable size: from 0 to (size - 1) + +  TableRef() : size(0), table(nullptr) {} + +  template <size_t N> +  TableRef(const TableEntry (&tbl)[N]) : size(N), table(&tbl[0]) {} +}; + +static TableRef getOptTable(AMDGPULibFunc::EFuncId id) { +  switch(id) { +  case AMDGPULibFunc::EI_ACOS:    return TableRef(tbl_acos); +  case AMDGPULibFunc::EI_ACOSH:   return TableRef(tbl_acosh); +  case AMDGPULibFunc::EI_ACOSPI:  return TableRef(tbl_acospi); +  case AMDGPULibFunc::EI_ASIN:    return TableRef(tbl_asin); +  case AMDGPULibFunc::EI_ASINH:   return TableRef(tbl_asinh); +  case AMDGPULibFunc::EI_ASINPI:  return TableRef(tbl_asinpi); +  case AMDGPULibFunc::EI_ATAN:    return TableRef(tbl_atan); +  case AMDGPULibFunc::EI_ATANH:   return TableRef(tbl_atanh); +  case AMDGPULibFunc::EI_ATANPI:  return TableRef(tbl_atanpi); +  case AMDGPULibFunc::EI_CBRT:    return TableRef(tbl_cbrt); +  case AMDGPULibFunc::EI_NCOS: +  case AMDGPULibFunc::EI_COS:     return TableRef(tbl_cos); +  case AMDGPULibFunc::EI_COSH:    return TableRef(tbl_cosh); +  case AMDGPULibFunc::EI_COSPI:   return TableRef(tbl_cospi); +  case AMDGPULibFunc::EI_ERFC:    return TableRef(tbl_erfc); +  case AMDGPULibFunc::EI_ERF:     return TableRef(tbl_erf); +  case AMDGPULibFunc::EI_EXP:     return TableRef(tbl_exp); +  case AMDGPULibFunc::EI_NEXP2: +  case AMDGPULibFunc::EI_EXP2:    return TableRef(tbl_exp2); +  case AMDGPULibFunc::EI_EXP10:   return TableRef(tbl_exp10); +  case AMDGPULibFunc::EI_EXPM1:   return TableRef(tbl_expm1); +  case AMDGPULibFunc::EI_LOG:     return TableRef(tbl_log); +  case AMDGPULibFunc::EI_NLOG2: +  case AMDGPULibFunc::EI_LOG2:    return TableRef(tbl_log2); +  case AMDGPULibFunc::EI_LOG10:   return TableRef(tbl_log10); +  case AMDGPULibFunc::EI_NRSQRT: +  case AMDGPULibFunc::EI_RSQRT:   return TableRef(tbl_rsqrt); +  case AMDGPULibFunc::EI_NSIN: +  case AMDGPULibFunc::EI_SIN:     return TableRef(tbl_sin); +  case AMDGPULibFunc::EI_SINH:    return TableRef(tbl_sinh); +  case AMDGPULibFunc::EI_SINPI:   return TableRef(tbl_sinpi); +  case AMDGPULibFunc::EI_NSQRT: +  case AMDGPULibFunc::EI_SQRT:    return TableRef(tbl_sqrt); +  case AMDGPULibFunc::EI_TAN:     return TableRef(tbl_tan); +  case AMDGPULibFunc::EI_TANH:    return TableRef(tbl_tanh); +  case AMDGPULibFunc::EI_TANPI:   return TableRef(tbl_tanpi); +  case AMDGPULibFunc::EI_TGAMMA:  return TableRef(tbl_tgamma); +  default:; +  } +  return TableRef(); +} + +static inline int getVecSize(const AMDGPULibFunc& FInfo) { +  return FInfo.getLeads()[0].VectorSize; +} + +static inline AMDGPULibFunc::EType getArgType(const AMDGPULibFunc& FInfo) { +  return (AMDGPULibFunc::EType)FInfo.getLeads()[0].ArgType; +} + +FunctionCallee AMDGPULibCalls::getFunction(Module *M, const FuncInfo &fInfo) { +  // If we are doing PreLinkOpt, the function is external. So it is safe to +  // use getOrInsertFunction() at this stage. + +  return EnablePreLink ? AMDGPULibFunc::getOrInsertFunction(M, fInfo) +                       : AMDGPULibFunc::getFunction(M, fInfo); +} + +bool AMDGPULibCalls::parseFunctionName(const StringRef& FMangledName, +                                    FuncInfo *FInfo) { +  return AMDGPULibFunc::parse(FMangledName, *FInfo); +} + +bool AMDGPULibCalls::isUnsafeMath(const CallInst *CI) const { +  if (auto Op = dyn_cast<FPMathOperator>(CI)) +    if (Op->isFast()) +      return true; +  const Function *F = CI->getParent()->getParent(); +  Attribute Attr = F->getFnAttribute("unsafe-fp-math"); +  return Attr.getValueAsString() == "true"; +} + +bool AMDGPULibCalls::useNativeFunc(const StringRef F) const { +  return AllNative || +         std::find(UseNative.begin(), UseNative.end(), F) != UseNative.end(); +} + +void AMDGPULibCalls::initNativeFuncs() { +  AllNative = useNativeFunc("all") || +              (UseNative.getNumOccurrences() && UseNative.size() == 1 && +               UseNative.begin()->empty()); +} + +bool AMDGPULibCalls::sincosUseNative(CallInst *aCI, const FuncInfo &FInfo) { +  bool native_sin = useNativeFunc("sin"); +  bool native_cos = useNativeFunc("cos"); + +  if (native_sin && native_cos) { +    Module *M = aCI->getModule(); +    Value *opr0 = aCI->getArgOperand(0); + +    AMDGPULibFunc nf; +    nf.getLeads()[0].ArgType = FInfo.getLeads()[0].ArgType; +    nf.getLeads()[0].VectorSize = FInfo.getLeads()[0].VectorSize; + +    nf.setPrefix(AMDGPULibFunc::NATIVE); +    nf.setId(AMDGPULibFunc::EI_SIN); +    FunctionCallee sinExpr = getFunction(M, nf); + +    nf.setPrefix(AMDGPULibFunc::NATIVE); +    nf.setId(AMDGPULibFunc::EI_COS); +    FunctionCallee cosExpr = getFunction(M, nf); +    if (sinExpr && cosExpr) { +      Value *sinval = CallInst::Create(sinExpr, opr0, "splitsin", aCI); +      Value *cosval = CallInst::Create(cosExpr, opr0, "splitcos", aCI); +      new StoreInst(cosval, aCI->getArgOperand(1), aCI); + +      DEBUG_WITH_TYPE("usenative", dbgs() << "<useNative> replace " << *aCI +                                          << " with native version of sin/cos"); + +      replaceCall(sinval); +      return true; +    } +  } +  return false; +} + +bool AMDGPULibCalls::useNative(CallInst *aCI) { +  CI = aCI; +  Function *Callee = aCI->getCalledFunction(); + +  FuncInfo FInfo; +  if (!parseFunctionName(Callee->getName(), &FInfo) || !FInfo.isMangled() || +      FInfo.getPrefix() != AMDGPULibFunc::NOPFX || +      getArgType(FInfo) == AMDGPULibFunc::F64 || !HasNative(FInfo.getId()) || +      !(AllNative || useNativeFunc(FInfo.getName()))) { +    return false; +  } + +  if (FInfo.getId() == AMDGPULibFunc::EI_SINCOS) +    return sincosUseNative(aCI, FInfo); + +  FInfo.setPrefix(AMDGPULibFunc::NATIVE); +  FunctionCallee F = getFunction(aCI->getModule(), FInfo); +  if (!F) +    return false; + +  aCI->setCalledFunction(F); +  DEBUG_WITH_TYPE("usenative", dbgs() << "<useNative> replace " << *aCI +                                      << " with native version"); +  return true; +} + +// Clang emits call of __read_pipe_2 or __read_pipe_4 for OpenCL read_pipe +// builtin, with appended type size and alignment arguments, where 2 or 4 +// indicates the original number of arguments. The library has optimized version +// of __read_pipe_2/__read_pipe_4 when the type size and alignment has the same +// power of 2 value. This function transforms __read_pipe_2 to __read_pipe_2_N +// for such cases where N is the size in bytes of the type (N = 1, 2, 4, 8, ..., +// 128). The same for __read_pipe_4, write_pipe_2, and write_pipe_4. +bool AMDGPULibCalls::fold_read_write_pipe(CallInst *CI, IRBuilder<> &B, +                                          FuncInfo &FInfo) { +  auto *Callee = CI->getCalledFunction(); +  if (!Callee->isDeclaration()) +    return false; + +  assert(Callee->hasName() && "Invalid read_pipe/write_pipe function"); +  auto *M = Callee->getParent(); +  auto &Ctx = M->getContext(); +  std::string Name = std::string(Callee->getName()); +  auto NumArg = CI->getNumArgOperands(); +  if (NumArg != 4 && NumArg != 6) +    return false; +  auto *PacketSize = CI->getArgOperand(NumArg - 2); +  auto *PacketAlign = CI->getArgOperand(NumArg - 1); +  if (!isa<ConstantInt>(PacketSize) || !isa<ConstantInt>(PacketAlign)) +    return false; +  unsigned Size = cast<ConstantInt>(PacketSize)->getZExtValue(); +  Align Alignment = cast<ConstantInt>(PacketAlign)->getAlignValue(); +  if (Alignment != Size) +    return false; + +  Type *PtrElemTy; +  if (Size <= 8) +    PtrElemTy = Type::getIntNTy(Ctx, Size * 8); +  else +    PtrElemTy = FixedVectorType::get(Type::getInt64Ty(Ctx), Size / 8); +  unsigned PtrArgLoc = CI->getNumArgOperands() - 3; +  auto PtrArg = CI->getArgOperand(PtrArgLoc); +  unsigned PtrArgAS = PtrArg->getType()->getPointerAddressSpace(); +  auto *PtrTy = llvm::PointerType::get(PtrElemTy, PtrArgAS); + +  SmallVector<llvm::Type *, 6> ArgTys; +  for (unsigned I = 0; I != PtrArgLoc; ++I) +    ArgTys.push_back(CI->getArgOperand(I)->getType()); +  ArgTys.push_back(PtrTy); + +  Name = Name + "_" + std::to_string(Size); +  auto *FTy = FunctionType::get(Callee->getReturnType(), +                                ArrayRef<Type *>(ArgTys), false); +  AMDGPULibFunc NewLibFunc(Name, FTy); +  FunctionCallee F = AMDGPULibFunc::getOrInsertFunction(M, NewLibFunc); +  if (!F) +    return false; + +  auto *BCast = B.CreatePointerCast(PtrArg, PtrTy); +  SmallVector<Value *, 6> Args; +  for (unsigned I = 0; I != PtrArgLoc; ++I) +    Args.push_back(CI->getArgOperand(I)); +  Args.push_back(BCast); + +  auto *NCI = B.CreateCall(F, Args); +  NCI->setAttributes(CI->getAttributes()); +  CI->replaceAllUsesWith(NCI); +  CI->dropAllReferences(); +  CI->eraseFromParent(); + +  return true; +} + +// This function returns false if no change; return true otherwise. +bool AMDGPULibCalls::fold(CallInst *CI, AliasAnalysis *AA) { +  this->CI = CI; +  Function *Callee = CI->getCalledFunction(); + +  // Ignore indirect calls. +  if (Callee == 0) return false; + +  BasicBlock *BB = CI->getParent(); +  LLVMContext &Context = CI->getParent()->getContext(); +  IRBuilder<> B(Context); + +  // Set the builder to the instruction after the call. +  B.SetInsertPoint(BB, CI->getIterator()); + +  // Copy fast flags from the original call. +  if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(CI)) +    B.setFastMathFlags(FPOp->getFastMathFlags()); + +  switch (Callee->getIntrinsicID()) { +  default: +    break; +  case Intrinsic::amdgcn_wavefrontsize: +    return !EnablePreLink && fold_wavefrontsize(CI, B); +  } + +  FuncInfo FInfo; +  if (!parseFunctionName(Callee->getName(), &FInfo)) +    return false; + +  // Further check the number of arguments to see if they match. +  if (CI->getNumArgOperands() != FInfo.getNumArgs()) +    return false; + +  if (TDOFold(CI, FInfo)) +    return true; + +  // Under unsafe-math, evaluate calls if possible. +  // According to Brian Sumner, we can do this for all f32 function calls +  // using host's double function calls. +  if (isUnsafeMath(CI) && evaluateCall(CI, FInfo)) +    return true; + +  // Specilized optimizations for each function call +  switch (FInfo.getId()) { +  case AMDGPULibFunc::EI_RECIP: +    // skip vector function +    assert ((FInfo.getPrefix() == AMDGPULibFunc::NATIVE || +             FInfo.getPrefix() == AMDGPULibFunc::HALF) && +            "recip must be an either native or half function"); +    return (getVecSize(FInfo) != 1) ? false : fold_recip(CI, B, FInfo); + +  case AMDGPULibFunc::EI_DIVIDE: +    // skip vector function +    assert ((FInfo.getPrefix() == AMDGPULibFunc::NATIVE || +             FInfo.getPrefix() == AMDGPULibFunc::HALF) && +            "divide must be an either native or half function"); +    return (getVecSize(FInfo) != 1) ? false : fold_divide(CI, B, FInfo); + +  case AMDGPULibFunc::EI_POW: +  case AMDGPULibFunc::EI_POWR: +  case AMDGPULibFunc::EI_POWN: +    return fold_pow(CI, B, FInfo); + +  case AMDGPULibFunc::EI_ROOTN: +    // skip vector function +    return (getVecSize(FInfo) != 1) ? false : fold_rootn(CI, B, FInfo); + +  case AMDGPULibFunc::EI_FMA: +  case AMDGPULibFunc::EI_MAD: +  case AMDGPULibFunc::EI_NFMA: +    // skip vector function +    return (getVecSize(FInfo) != 1) ? false : fold_fma_mad(CI, B, FInfo); + +  case AMDGPULibFunc::EI_SQRT: +    return isUnsafeMath(CI) && fold_sqrt(CI, B, FInfo); +  case AMDGPULibFunc::EI_COS: +  case AMDGPULibFunc::EI_SIN: +    if ((getArgType(FInfo) == AMDGPULibFunc::F32 || +         getArgType(FInfo) == AMDGPULibFunc::F64) +        && (FInfo.getPrefix() == AMDGPULibFunc::NOPFX)) +      return fold_sincos(CI, B, AA); + +    break; +  case AMDGPULibFunc::EI_READ_PIPE_2: +  case AMDGPULibFunc::EI_READ_PIPE_4: +  case AMDGPULibFunc::EI_WRITE_PIPE_2: +  case AMDGPULibFunc::EI_WRITE_PIPE_4: +    return fold_read_write_pipe(CI, B, FInfo); + +  default: +    break; +  } + +  return false; +} + +bool AMDGPULibCalls::TDOFold(CallInst *CI, const FuncInfo &FInfo) { +  // Table-Driven optimization +  const TableRef tr = getOptTable(FInfo.getId()); +  if (tr.size==0) +    return false; + +  int const sz = (int)tr.size; +  const TableEntry * const ftbl = tr.table; +  Value *opr0 = CI->getArgOperand(0); + +  if (getVecSize(FInfo) > 1) { +    if (ConstantDataVector *CV = dyn_cast<ConstantDataVector>(opr0)) { +      SmallVector<double, 0> DVal; +      for (int eltNo = 0; eltNo < getVecSize(FInfo); ++eltNo) { +        ConstantFP *eltval = dyn_cast<ConstantFP>( +                               CV->getElementAsConstant((unsigned)eltNo)); +        assert(eltval && "Non-FP arguments in math function!"); +        bool found = false; +        for (int i=0; i < sz; ++i) { +          if (eltval->isExactlyValue(ftbl[i].input)) { +            DVal.push_back(ftbl[i].result); +            found = true; +            break; +          } +        } +        if (!found) { +          // This vector constants not handled yet. +          return false; +        } +      } +      LLVMContext &context = CI->getParent()->getParent()->getContext(); +      Constant *nval; +      if (getArgType(FInfo) == AMDGPULibFunc::F32) { +        SmallVector<float, 0> FVal; +        for (unsigned i = 0; i < DVal.size(); ++i) { +          FVal.push_back((float)DVal[i]); +        } +        ArrayRef<float> tmp(FVal); +        nval = ConstantDataVector::get(context, tmp); +      } else { // F64 +        ArrayRef<double> tmp(DVal); +        nval = ConstantDataVector::get(context, tmp); +      } +      LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *nval << "\n"); +      replaceCall(nval); +      return true; +    } +  } else { +    // Scalar version +    if (ConstantFP *CF = dyn_cast<ConstantFP>(opr0)) { +      for (int i = 0; i < sz; ++i) { +        if (CF->isExactlyValue(ftbl[i].input)) { +          Value *nval = ConstantFP::get(CF->getType(), ftbl[i].result); +          LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *nval << "\n"); +          replaceCall(nval); +          return true; +        } +      } +    } +  } + +  return false; +} + +bool AMDGPULibCalls::replaceWithNative(CallInst *CI, const FuncInfo &FInfo) { +  Module *M = CI->getModule(); +  if (getArgType(FInfo) != AMDGPULibFunc::F32 || +      FInfo.getPrefix() != AMDGPULibFunc::NOPFX || +      !HasNative(FInfo.getId())) +    return false; + +  AMDGPULibFunc nf = FInfo; +  nf.setPrefix(AMDGPULibFunc::NATIVE); +  if (FunctionCallee FPExpr = getFunction(M, nf)) { +    LLVM_DEBUG(dbgs() << "AMDIC: " << *CI << " ---> "); + +    CI->setCalledFunction(FPExpr); + +    LLVM_DEBUG(dbgs() << *CI << '\n'); + +    return true; +  } +  return false; +} + +//  [native_]half_recip(c) ==> 1.0/c +bool AMDGPULibCalls::fold_recip(CallInst *CI, IRBuilder<> &B, +                                const FuncInfo &FInfo) { +  Value *opr0 = CI->getArgOperand(0); +  if (ConstantFP *CF = dyn_cast<ConstantFP>(opr0)) { +    // Just create a normal div. Later, InstCombine will be able +    // to compute the divide into a constant (avoid check float infinity +    // or subnormal at this point). +    Value *nval = B.CreateFDiv(ConstantFP::get(CF->getType(), 1.0), +                               opr0, +                               "recip2div"); +    LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *nval << "\n"); +    replaceCall(nval); +    return true; +  } +  return false; +} + +//  [native_]half_divide(x, c) ==> x/c +bool AMDGPULibCalls::fold_divide(CallInst *CI, IRBuilder<> &B, +                                 const FuncInfo &FInfo) { +  Value *opr0 = CI->getArgOperand(0); +  Value *opr1 = CI->getArgOperand(1); +  ConstantFP *CF0 = dyn_cast<ConstantFP>(opr0); +  ConstantFP *CF1 = dyn_cast<ConstantFP>(opr1); + +  if ((CF0 && CF1) ||  // both are constants +      (CF1 && (getArgType(FInfo) == AMDGPULibFunc::F32))) +      // CF1 is constant && f32 divide +  { +    Value *nval1 = B.CreateFDiv(ConstantFP::get(opr1->getType(), 1.0), +                                opr1, "__div2recip"); +    Value *nval  = B.CreateFMul(opr0, nval1, "__div2mul"); +    replaceCall(nval); +    return true; +  } +  return false; +} + +namespace llvm { +static double log2(double V) { +#if _XOPEN_SOURCE >= 600 || defined(_ISOC99_SOURCE) || _POSIX_C_SOURCE >= 200112L +  return ::log2(V); +#else +  return log(V) / numbers::ln2; +#endif +} +} + +bool AMDGPULibCalls::fold_pow(CallInst *CI, IRBuilder<> &B, +                              const FuncInfo &FInfo) { +  assert((FInfo.getId() == AMDGPULibFunc::EI_POW || +          FInfo.getId() == AMDGPULibFunc::EI_POWR || +          FInfo.getId() == AMDGPULibFunc::EI_POWN) && +         "fold_pow: encounter a wrong function call"); + +  Value *opr0, *opr1; +  ConstantFP *CF; +  ConstantInt *CINT; +  ConstantAggregateZero *CZero; +  Type *eltType; + +  opr0 = CI->getArgOperand(0); +  opr1 = CI->getArgOperand(1); +  CZero = dyn_cast<ConstantAggregateZero>(opr1); +  if (getVecSize(FInfo) == 1) { +    eltType = opr0->getType(); +    CF = dyn_cast<ConstantFP>(opr1); +    CINT = dyn_cast<ConstantInt>(opr1); +  } else { +    VectorType *VTy = dyn_cast<VectorType>(opr0->getType()); +    assert(VTy && "Oprand of vector function should be of vectortype"); +    eltType = VTy->getElementType(); +    ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(opr1); + +    // Now, only Handle vector const whose elements have the same value. +    CF = CDV ? dyn_cast_or_null<ConstantFP>(CDV->getSplatValue()) : nullptr; +    CINT = CDV ? dyn_cast_or_null<ConstantInt>(CDV->getSplatValue()) : nullptr; +  } + +  // No unsafe math , no constant argument, do nothing +  if (!isUnsafeMath(CI) && !CF && !CINT && !CZero) +    return false; + +  // 0x1111111 means that we don't do anything for this call. +  int ci_opr1 = (CINT ? (int)CINT->getSExtValue() : 0x1111111); + +  if ((CF && CF->isZero()) || (CINT && ci_opr1 == 0) || CZero) { +    //  pow/powr/pown(x, 0) == 1 +    LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> 1\n"); +    Constant *cnval = ConstantFP::get(eltType, 1.0); +    if (getVecSize(FInfo) > 1) { +      cnval = ConstantDataVector::getSplat(getVecSize(FInfo), cnval); +    } +    replaceCall(cnval); +    return true; +  } +  if ((CF && CF->isExactlyValue(1.0)) || (CINT && ci_opr1 == 1)) { +    // pow/powr/pown(x, 1.0) = x +    LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *opr0 << "\n"); +    replaceCall(opr0); +    return true; +  } +  if ((CF && CF->isExactlyValue(2.0)) || (CINT && ci_opr1 == 2)) { +    // pow/powr/pown(x, 2.0) = x*x +    LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *opr0 << " * " << *opr0 +                      << "\n"); +    Value *nval = B.CreateFMul(opr0, opr0, "__pow2"); +    replaceCall(nval); +    return true; +  } +  if ((CF && CF->isExactlyValue(-1.0)) || (CINT && ci_opr1 == -1)) { +    // pow/powr/pown(x, -1.0) = 1.0/x +    LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> 1 / " << *opr0 << "\n"); +    Constant *cnval = ConstantFP::get(eltType, 1.0); +    if (getVecSize(FInfo) > 1) { +      cnval = ConstantDataVector::getSplat(getVecSize(FInfo), cnval); +    } +    Value *nval = B.CreateFDiv(cnval, opr0, "__powrecip"); +    replaceCall(nval); +    return true; +  } + +  Module *M = CI->getModule(); +  if (CF && (CF->isExactlyValue(0.5) || CF->isExactlyValue(-0.5))) { +    // pow[r](x, [-]0.5) = sqrt(x) +    bool issqrt = CF->isExactlyValue(0.5); +    if (FunctionCallee FPExpr = +            getFunction(M, AMDGPULibFunc(issqrt ? AMDGPULibFunc::EI_SQRT +                                                : AMDGPULibFunc::EI_RSQRT, +                                         FInfo))) { +      LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " +                        << FInfo.getName().c_str() << "(" << *opr0 << ")\n"); +      Value *nval = CreateCallEx(B,FPExpr, opr0, issqrt ? "__pow2sqrt" +                                                        : "__pow2rsqrt"); +      replaceCall(nval); +      return true; +    } +  } + +  if (!isUnsafeMath(CI)) +    return false; + +  // Unsafe Math optimization + +  // Remember that ci_opr1 is set if opr1 is integral +  if (CF) { +    double dval = (getArgType(FInfo) == AMDGPULibFunc::F32) +                    ? (double)CF->getValueAPF().convertToFloat() +                    : CF->getValueAPF().convertToDouble(); +    int ival = (int)dval; +    if ((double)ival == dval) { +      ci_opr1 = ival; +    } else +      ci_opr1 = 0x11111111; +  } + +  // pow/powr/pown(x, c) = [1/](x*x*..x); where +  //   trunc(c) == c && the number of x == c && |c| <= 12 +  unsigned abs_opr1 = (ci_opr1 < 0) ? -ci_opr1 : ci_opr1; +  if (abs_opr1 <= 12) { +    Constant *cnval; +    Value *nval; +    if (abs_opr1 == 0) { +      cnval = ConstantFP::get(eltType, 1.0); +      if (getVecSize(FInfo) > 1) { +        cnval = ConstantDataVector::getSplat(getVecSize(FInfo), cnval); +      } +      nval = cnval; +    } else { +      Value *valx2 = nullptr; +      nval = nullptr; +      while (abs_opr1 > 0) { +        valx2 = valx2 ? B.CreateFMul(valx2, valx2, "__powx2") : opr0; +        if (abs_opr1 & 1) { +          nval = nval ? B.CreateFMul(nval, valx2, "__powprod") : valx2; +        } +        abs_opr1 >>= 1; +      } +    } + +    if (ci_opr1 < 0) { +      cnval = ConstantFP::get(eltType, 1.0); +      if (getVecSize(FInfo) > 1) { +        cnval = ConstantDataVector::getSplat(getVecSize(FInfo), cnval); +      } +      nval = B.CreateFDiv(cnval, nval, "__1powprod"); +    } +    LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " +                      << ((ci_opr1 < 0) ? "1/prod(" : "prod(") << *opr0 +                      << ")\n"); +    replaceCall(nval); +    return true; +  } + +  // powr ---> exp2(y * log2(x)) +  // pown/pow ---> powr(fabs(x), y) | (x & ((int)y << 31)) +  FunctionCallee ExpExpr = +      getFunction(M, AMDGPULibFunc(AMDGPULibFunc::EI_EXP2, FInfo)); +  if (!ExpExpr) +    return false; + +  bool needlog = false; +  bool needabs = false; +  bool needcopysign = false; +  Constant *cnval = nullptr; +  if (getVecSize(FInfo) == 1) { +    CF = dyn_cast<ConstantFP>(opr0); + +    if (CF) { +      double V = (getArgType(FInfo) == AMDGPULibFunc::F32) +                   ? (double)CF->getValueAPF().convertToFloat() +                   : CF->getValueAPF().convertToDouble(); + +      V = log2(std::abs(V)); +      cnval = ConstantFP::get(eltType, V); +      needcopysign = (FInfo.getId() != AMDGPULibFunc::EI_POWR) && +                     CF->isNegative(); +    } else { +      needlog = true; +      needcopysign = needabs = FInfo.getId() != AMDGPULibFunc::EI_POWR && +                               (!CF || CF->isNegative()); +    } +  } else { +    ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(opr0); + +    if (!CDV) { +      needlog = true; +      needcopysign = needabs = FInfo.getId() != AMDGPULibFunc::EI_POWR; +    } else { +      assert ((int)CDV->getNumElements() == getVecSize(FInfo) && +              "Wrong vector size detected"); + +      SmallVector<double, 0> DVal; +      for (int i=0; i < getVecSize(FInfo); ++i) { +        double V = (getArgType(FInfo) == AMDGPULibFunc::F32) +                     ? (double)CDV->getElementAsFloat(i) +                     : CDV->getElementAsDouble(i); +        if (V < 0.0) needcopysign = true; +        V = log2(std::abs(V)); +        DVal.push_back(V); +      } +      if (getArgType(FInfo) == AMDGPULibFunc::F32) { +        SmallVector<float, 0> FVal; +        for (unsigned i=0; i < DVal.size(); ++i) { +          FVal.push_back((float)DVal[i]); +        } +        ArrayRef<float> tmp(FVal); +        cnval = ConstantDataVector::get(M->getContext(), tmp); +      } else { +        ArrayRef<double> tmp(DVal); +        cnval = ConstantDataVector::get(M->getContext(), tmp); +      } +    } +  } + +  if (needcopysign && (FInfo.getId() == AMDGPULibFunc::EI_POW)) { +    // We cannot handle corner cases for a general pow() function, give up +    // unless y is a constant integral value. Then proceed as if it were pown. +    if (getVecSize(FInfo) == 1) { +      if (const ConstantFP *CF = dyn_cast<ConstantFP>(opr1)) { +        double y = (getArgType(FInfo) == AMDGPULibFunc::F32) +                   ? (double)CF->getValueAPF().convertToFloat() +                   : CF->getValueAPF().convertToDouble(); +        if (y != (double)(int64_t)y) +          return false; +      } else +        return false; +    } else { +      if (const ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(opr1)) { +        for (int i=0; i < getVecSize(FInfo); ++i) { +          double y = (getArgType(FInfo) == AMDGPULibFunc::F32) +                     ? (double)CDV->getElementAsFloat(i) +                     : CDV->getElementAsDouble(i); +          if (y != (double)(int64_t)y) +            return false; +        } +      } else +        return false; +    } +  } + +  Value *nval; +  if (needabs) { +    FunctionCallee AbsExpr = +        getFunction(M, AMDGPULibFunc(AMDGPULibFunc::EI_FABS, FInfo)); +    if (!AbsExpr) +      return false; +    nval = CreateCallEx(B, AbsExpr, opr0, "__fabs"); +  } else { +    nval = cnval ? cnval : opr0; +  } +  if (needlog) { +    FunctionCallee LogExpr = +        getFunction(M, AMDGPULibFunc(AMDGPULibFunc::EI_LOG2, FInfo)); +    if (!LogExpr) +      return false; +    nval = CreateCallEx(B,LogExpr, nval, "__log2"); +  } + +  if (FInfo.getId() == AMDGPULibFunc::EI_POWN) { +    // convert int(32) to fp(f32 or f64) +    opr1 = B.CreateSIToFP(opr1, nval->getType(), "pownI2F"); +  } +  nval = B.CreateFMul(opr1, nval, "__ylogx"); +  nval = CreateCallEx(B,ExpExpr, nval, "__exp2"); + +  if (needcopysign) { +    Value *opr_n; +    Type* rTy = opr0->getType(); +    Type* nTyS = eltType->isDoubleTy() ? B.getInt64Ty() : B.getInt32Ty(); +    Type *nTy = nTyS; +    if (const auto *vTy = dyn_cast<FixedVectorType>(rTy)) +      nTy = FixedVectorType::get(nTyS, vTy); +    unsigned size = nTy->getScalarSizeInBits(); +    opr_n = CI->getArgOperand(1); +    if (opr_n->getType()->isIntegerTy()) +      opr_n = B.CreateZExtOrBitCast(opr_n, nTy, "__ytou"); +    else +      opr_n = B.CreateFPToSI(opr1, nTy, "__ytou"); + +    Value *sign = B.CreateShl(opr_n, size-1, "__yeven"); +    sign = B.CreateAnd(B.CreateBitCast(opr0, nTy), sign, "__pow_sign"); +    nval = B.CreateOr(B.CreateBitCast(nval, nTy), sign); +    nval = B.CreateBitCast(nval, opr0->getType()); +  } + +  LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " +                    << "exp2(" << *opr1 << " * log2(" << *opr0 << "))\n"); +  replaceCall(nval); + +  return true; +} + +bool AMDGPULibCalls::fold_rootn(CallInst *CI, IRBuilder<> &B, +                                const FuncInfo &FInfo) { +  Value *opr0 = CI->getArgOperand(0); +  Value *opr1 = CI->getArgOperand(1); + +  ConstantInt *CINT = dyn_cast<ConstantInt>(opr1); +  if (!CINT) { +    return false; +  } +  int ci_opr1 = (int)CINT->getSExtValue(); +  if (ci_opr1 == 1) {  // rootn(x, 1) = x +    LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *opr0 << "\n"); +    replaceCall(opr0); +    return true; +  } +  if (ci_opr1 == 2) {  // rootn(x, 2) = sqrt(x) +    Module *M = CI->getModule(); +    if (FunctionCallee FPExpr = +            getFunction(M, AMDGPULibFunc(AMDGPULibFunc::EI_SQRT, FInfo))) { +      LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> sqrt(" << *opr0 << ")\n"); +      Value *nval = CreateCallEx(B,FPExpr, opr0, "__rootn2sqrt"); +      replaceCall(nval); +      return true; +    } +  } else if (ci_opr1 == 3) { // rootn(x, 3) = cbrt(x) +    Module *M = CI->getModule(); +    if (FunctionCallee FPExpr = +            getFunction(M, AMDGPULibFunc(AMDGPULibFunc::EI_CBRT, FInfo))) { +      LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> cbrt(" << *opr0 << ")\n"); +      Value *nval = CreateCallEx(B,FPExpr, opr0, "__rootn2cbrt"); +      replaceCall(nval); +      return true; +    } +  } else if (ci_opr1 == -1) { // rootn(x, -1) = 1.0/x +    LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> 1.0 / " << *opr0 << "\n"); +    Value *nval = B.CreateFDiv(ConstantFP::get(opr0->getType(), 1.0), +                               opr0, +                               "__rootn2div"); +    replaceCall(nval); +    return true; +  } else if (ci_opr1 == -2) {  // rootn(x, -2) = rsqrt(x) +    Module *M = CI->getModule(); +    if (FunctionCallee FPExpr = +            getFunction(M, AMDGPULibFunc(AMDGPULibFunc::EI_RSQRT, FInfo))) { +      LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> rsqrt(" << *opr0 +                        << ")\n"); +      Value *nval = CreateCallEx(B,FPExpr, opr0, "__rootn2rsqrt"); +      replaceCall(nval); +      return true; +    } +  } +  return false; +} + +bool AMDGPULibCalls::fold_fma_mad(CallInst *CI, IRBuilder<> &B, +                                  const FuncInfo &FInfo) { +  Value *opr0 = CI->getArgOperand(0); +  Value *opr1 = CI->getArgOperand(1); +  Value *opr2 = CI->getArgOperand(2); + +  ConstantFP *CF0 = dyn_cast<ConstantFP>(opr0); +  ConstantFP *CF1 = dyn_cast<ConstantFP>(opr1); +  if ((CF0 && CF0->isZero()) || (CF1 && CF1->isZero())) { +    // fma/mad(a, b, c) = c if a=0 || b=0 +    LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *opr2 << "\n"); +    replaceCall(opr2); +    return true; +  } +  if (CF0 && CF0->isExactlyValue(1.0f)) { +    // fma/mad(a, b, c) = b+c if a=1 +    LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *opr1 << " + " << *opr2 +                      << "\n"); +    Value *nval = B.CreateFAdd(opr1, opr2, "fmaadd"); +    replaceCall(nval); +    return true; +  } +  if (CF1 && CF1->isExactlyValue(1.0f)) { +    // fma/mad(a, b, c) = a+c if b=1 +    LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *opr0 << " + " << *opr2 +                      << "\n"); +    Value *nval = B.CreateFAdd(opr0, opr2, "fmaadd"); +    replaceCall(nval); +    return true; +  } +  if (ConstantFP *CF = dyn_cast<ConstantFP>(opr2)) { +    if (CF->isZero()) { +      // fma/mad(a, b, c) = a*b if c=0 +      LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *opr0 << " * " +                        << *opr1 << "\n"); +      Value *nval = B.CreateFMul(opr0, opr1, "fmamul"); +      replaceCall(nval); +      return true; +    } +  } + +  return false; +} + +// Get a scalar native builtin signle argument FP function +FunctionCallee AMDGPULibCalls::getNativeFunction(Module *M, +                                                 const FuncInfo &FInfo) { +  if (getArgType(FInfo) == AMDGPULibFunc::F64 || !HasNative(FInfo.getId())) +    return nullptr; +  FuncInfo nf = FInfo; +  nf.setPrefix(AMDGPULibFunc::NATIVE); +  return getFunction(M, nf); +} + +// fold sqrt -> native_sqrt (x) +bool AMDGPULibCalls::fold_sqrt(CallInst *CI, IRBuilder<> &B, +                               const FuncInfo &FInfo) { +  if (getArgType(FInfo) == AMDGPULibFunc::F32 && (getVecSize(FInfo) == 1) && +      (FInfo.getPrefix() != AMDGPULibFunc::NATIVE)) { +    if (FunctionCallee FPExpr = getNativeFunction( +            CI->getModule(), AMDGPULibFunc(AMDGPULibFunc::EI_SQRT, FInfo))) { +      Value *opr0 = CI->getArgOperand(0); +      LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " +                        << "sqrt(" << *opr0 << ")\n"); +      Value *nval = CreateCallEx(B,FPExpr, opr0, "__sqrt"); +      replaceCall(nval); +      return true; +    } +  } +  return false; +} + +// fold sin, cos -> sincos. +bool AMDGPULibCalls::fold_sincos(CallInst *CI, IRBuilder<> &B, +                                 AliasAnalysis *AA) { +  AMDGPULibFunc fInfo; +  if (!AMDGPULibFunc::parse(CI->getCalledFunction()->getName(), fInfo)) +    return false; + +  assert(fInfo.getId() == AMDGPULibFunc::EI_SIN || +         fInfo.getId() == AMDGPULibFunc::EI_COS); +  bool const isSin = fInfo.getId() == AMDGPULibFunc::EI_SIN; + +  Value *CArgVal = CI->getArgOperand(0); +  BasicBlock * const CBB = CI->getParent(); + +  int const MaxScan = 30; + +  { // fold in load value. +    LoadInst *LI = dyn_cast<LoadInst>(CArgVal); +    if (LI && LI->getParent() == CBB) { +      BasicBlock::iterator BBI = LI->getIterator(); +      Value *AvailableVal = FindAvailableLoadedValue(LI, CBB, BBI, MaxScan, AA); +      if (AvailableVal) { +        CArgVal->replaceAllUsesWith(AvailableVal); +        if (CArgVal->getNumUses() == 0) +          LI->eraseFromParent(); +        CArgVal = CI->getArgOperand(0); +      } +    } +  } + +  Module *M = CI->getModule(); +  fInfo.setId(isSin ? AMDGPULibFunc::EI_COS : AMDGPULibFunc::EI_SIN); +  std::string const PairName = fInfo.mangle(); + +  CallInst *UI = nullptr; +  for (User* U : CArgVal->users()) { +    CallInst *XI = dyn_cast_or_null<CallInst>(U); +    if (!XI || XI == CI || XI->getParent() != CBB) +      continue; + +    Function *UCallee = XI->getCalledFunction(); +    if (!UCallee || !UCallee->getName().equals(PairName)) +      continue; + +    BasicBlock::iterator BBI = CI->getIterator(); +    if (BBI == CI->getParent()->begin()) +      break; +    --BBI; +    for (int I = MaxScan; I > 0 && BBI != CBB->begin(); --BBI, --I) { +      if (cast<Instruction>(BBI) == XI) { +        UI = XI; +        break; +      } +    } +    if (UI) break; +  } + +  if (!UI) return false; + +  // Merge the sin and cos. + +  // for OpenCL 2.0 we have only generic implementation of sincos +  // function. +  AMDGPULibFunc nf(AMDGPULibFunc::EI_SINCOS, fInfo); +  nf.getLeads()[0].PtrKind = AMDGPULibFunc::getEPtrKindFromAddrSpace(AMDGPUAS::FLAT_ADDRESS); +  FunctionCallee Fsincos = getFunction(M, nf); +  if (!Fsincos) return false; + +  BasicBlock::iterator ItOld = B.GetInsertPoint(); +  AllocaInst *Alloc = insertAlloca(UI, B, "__sincos_"); +  B.SetInsertPoint(UI); + +  Value *P = Alloc; +  Type *PTy = Fsincos.getFunctionType()->getParamType(1); +  // The allocaInst allocates the memory in private address space. This need +  // to be bitcasted to point to the address space of cos pointer type. +  // In OpenCL 2.0 this is generic, while in 1.2 that is private. +  if (PTy->getPointerAddressSpace() != AMDGPUAS::PRIVATE_ADDRESS) +    P = B.CreateAddrSpaceCast(Alloc, PTy); +  CallInst *Call = CreateCallEx2(B, Fsincos, UI->getArgOperand(0), P); + +  LLVM_DEBUG(errs() << "AMDIC: fold_sincos (" << *CI << ", " << *UI << ") with " +                    << *Call << "\n"); + +  if (!isSin) { // CI->cos, UI->sin +    B.SetInsertPoint(&*ItOld); +    UI->replaceAllUsesWith(&*Call); +    Instruction *Reload = B.CreateLoad(Alloc->getAllocatedType(), Alloc); +    CI->replaceAllUsesWith(Reload); +    UI->eraseFromParent(); +    CI->eraseFromParent(); +  } else { // CI->sin, UI->cos +    Instruction *Reload = B.CreateLoad(Alloc->getAllocatedType(), Alloc); +    UI->replaceAllUsesWith(Reload); +    CI->replaceAllUsesWith(Call); +    UI->eraseFromParent(); +    CI->eraseFromParent(); +  } +  return true; +} + +bool AMDGPULibCalls::fold_wavefrontsize(CallInst *CI, IRBuilder<> &B) { +  if (!TM) +    return false; + +  StringRef CPU = TM->getTargetCPU(); +  StringRef Features = TM->getTargetFeatureString(); +  if ((CPU.empty() || CPU.equals_lower("generic")) && +      (Features.empty() || +       Features.find_lower("wavefrontsize") == StringRef::npos)) +    return false; + +  Function *F = CI->getParent()->getParent(); +  const GCNSubtarget &ST = TM->getSubtarget<GCNSubtarget>(*F); +  unsigned N = ST.getWavefrontSize(); + +  LLVM_DEBUG(errs() << "AMDIC: fold_wavefrontsize (" << *CI << ") with " +               << N << "\n"); + +  CI->replaceAllUsesWith(ConstantInt::get(B.getInt32Ty(), N)); +  CI->eraseFromParent(); +  return true; +} + +// Get insertion point at entry. +BasicBlock::iterator AMDGPULibCalls::getEntryIns(CallInst * UI) { +  Function * Func = UI->getParent()->getParent(); +  BasicBlock * BB = &Func->getEntryBlock(); +  assert(BB && "Entry block not found!"); +  BasicBlock::iterator ItNew = BB->begin(); +  return ItNew; +} + +// Insert a AllocsInst at the beginning of function entry block. +AllocaInst* AMDGPULibCalls::insertAlloca(CallInst *UI, IRBuilder<> &B, +                                         const char *prefix) { +  BasicBlock::iterator ItNew = getEntryIns(UI); +  Function *UCallee = UI->getCalledFunction(); +  Type *RetType = UCallee->getReturnType(); +  B.SetInsertPoint(&*ItNew); +  AllocaInst *Alloc = B.CreateAlloca(RetType, 0, +    std::string(prefix) + UI->getName()); +  Alloc->setAlignment( +      Align(UCallee->getParent()->getDataLayout().getTypeAllocSize(RetType))); +  return Alloc; +} + +bool AMDGPULibCalls::evaluateScalarMathFunc(FuncInfo &FInfo, +                                            double& Res0, double& Res1, +                                            Constant *copr0, Constant *copr1, +                                            Constant *copr2) { +  // By default, opr0/opr1/opr3 holds values of float/double type. +  // If they are not float/double, each function has to its +  // operand separately. +  double opr0=0.0, opr1=0.0, opr2=0.0; +  ConstantFP *fpopr0 = dyn_cast_or_null<ConstantFP>(copr0); +  ConstantFP *fpopr1 = dyn_cast_or_null<ConstantFP>(copr1); +  ConstantFP *fpopr2 = dyn_cast_or_null<ConstantFP>(copr2); +  if (fpopr0) { +    opr0 = (getArgType(FInfo) == AMDGPULibFunc::F64) +             ? fpopr0->getValueAPF().convertToDouble() +             : (double)fpopr0->getValueAPF().convertToFloat(); +  } + +  if (fpopr1) { +    opr1 = (getArgType(FInfo) == AMDGPULibFunc::F64) +             ? fpopr1->getValueAPF().convertToDouble() +             : (double)fpopr1->getValueAPF().convertToFloat(); +  } + +  if (fpopr2) { +    opr2 = (getArgType(FInfo) == AMDGPULibFunc::F64) +             ? fpopr2->getValueAPF().convertToDouble() +             : (double)fpopr2->getValueAPF().convertToFloat(); +  } + +  switch (FInfo.getId()) { +  default : return false; + +  case AMDGPULibFunc::EI_ACOS: +    Res0 = acos(opr0); +    return true; + +  case AMDGPULibFunc::EI_ACOSH: +    // acosh(x) == log(x + sqrt(x*x - 1)) +    Res0 = log(opr0 + sqrt(opr0*opr0 - 1.0)); +    return true; + +  case AMDGPULibFunc::EI_ACOSPI: +    Res0 = acos(opr0) / MATH_PI; +    return true; + +  case AMDGPULibFunc::EI_ASIN: +    Res0 = asin(opr0); +    return true; + +  case AMDGPULibFunc::EI_ASINH: +    // asinh(x) == log(x + sqrt(x*x + 1)) +    Res0 = log(opr0 + sqrt(opr0*opr0 + 1.0)); +    return true; + +  case AMDGPULibFunc::EI_ASINPI: +    Res0 = asin(opr0) / MATH_PI; +    return true; + +  case AMDGPULibFunc::EI_ATAN: +    Res0 = atan(opr0); +    return true; + +  case AMDGPULibFunc::EI_ATANH: +    // atanh(x) == (log(x+1) - log(x-1))/2; +    Res0 = (log(opr0 + 1.0) - log(opr0 - 1.0))/2.0; +    return true; + +  case AMDGPULibFunc::EI_ATANPI: +    Res0 = atan(opr0) / MATH_PI; +    return true; + +  case AMDGPULibFunc::EI_CBRT: +    Res0 = (opr0 < 0.0) ? -pow(-opr0, 1.0/3.0) : pow(opr0, 1.0/3.0); +    return true; + +  case AMDGPULibFunc::EI_COS: +    Res0 = cos(opr0); +    return true; + +  case AMDGPULibFunc::EI_COSH: +    Res0 = cosh(opr0); +    return true; + +  case AMDGPULibFunc::EI_COSPI: +    Res0 = cos(MATH_PI * opr0); +    return true; + +  case AMDGPULibFunc::EI_EXP: +    Res0 = exp(opr0); +    return true; + +  case AMDGPULibFunc::EI_EXP2: +    Res0 = pow(2.0, opr0); +    return true; + +  case AMDGPULibFunc::EI_EXP10: +    Res0 = pow(10.0, opr0); +    return true; + +  case AMDGPULibFunc::EI_EXPM1: +    Res0 = exp(opr0) - 1.0; +    return true; + +  case AMDGPULibFunc::EI_LOG: +    Res0 = log(opr0); +    return true; + +  case AMDGPULibFunc::EI_LOG2: +    Res0 = log(opr0) / log(2.0); +    return true; + +  case AMDGPULibFunc::EI_LOG10: +    Res0 = log(opr0) / log(10.0); +    return true; + +  case AMDGPULibFunc::EI_RSQRT: +    Res0 = 1.0 / sqrt(opr0); +    return true; + +  case AMDGPULibFunc::EI_SIN: +    Res0 = sin(opr0); +    return true; + +  case AMDGPULibFunc::EI_SINH: +    Res0 = sinh(opr0); +    return true; + +  case AMDGPULibFunc::EI_SINPI: +    Res0 = sin(MATH_PI * opr0); +    return true; + +  case AMDGPULibFunc::EI_SQRT: +    Res0 = sqrt(opr0); +    return true; + +  case AMDGPULibFunc::EI_TAN: +    Res0 = tan(opr0); +    return true; + +  case AMDGPULibFunc::EI_TANH: +    Res0 = tanh(opr0); +    return true; + +  case AMDGPULibFunc::EI_TANPI: +    Res0 = tan(MATH_PI * opr0); +    return true; + +  case AMDGPULibFunc::EI_RECIP: +    Res0 = 1.0 / opr0; +    return true; + +  // two-arg functions +  case AMDGPULibFunc::EI_DIVIDE: +    Res0 = opr0 / opr1; +    return true; + +  case AMDGPULibFunc::EI_POW: +  case AMDGPULibFunc::EI_POWR: +    Res0 = pow(opr0, opr1); +    return true; + +  case AMDGPULibFunc::EI_POWN: { +    if (ConstantInt *iopr1 = dyn_cast_or_null<ConstantInt>(copr1)) { +      double val = (double)iopr1->getSExtValue(); +      Res0 = pow(opr0, val); +      return true; +    } +    return false; +  } + +  case AMDGPULibFunc::EI_ROOTN: { +    if (ConstantInt *iopr1 = dyn_cast_or_null<ConstantInt>(copr1)) { +      double val = (double)iopr1->getSExtValue(); +      Res0 = pow(opr0, 1.0 / val); +      return true; +    } +    return false; +  } + +  // with ptr arg +  case AMDGPULibFunc::EI_SINCOS: +    Res0 = sin(opr0); +    Res1 = cos(opr0); +    return true; + +  // three-arg functions +  case AMDGPULibFunc::EI_FMA: +  case AMDGPULibFunc::EI_MAD: +    Res0 = opr0 * opr1 + opr2; +    return true; +  } + +  return false; +} + +bool AMDGPULibCalls::evaluateCall(CallInst *aCI, FuncInfo &FInfo) { +  int numArgs = (int)aCI->getNumArgOperands(); +  if (numArgs > 3) +    return false; + +  Constant *copr0 = nullptr; +  Constant *copr1 = nullptr; +  Constant *copr2 = nullptr; +  if (numArgs > 0) { +    if ((copr0 = dyn_cast<Constant>(aCI->getArgOperand(0))) == nullptr) +      return false; +  } + +  if (numArgs > 1) { +    if ((copr1 = dyn_cast<Constant>(aCI->getArgOperand(1))) == nullptr) { +      if (FInfo.getId() != AMDGPULibFunc::EI_SINCOS) +        return false; +    } +  } + +  if (numArgs > 2) { +    if ((copr2 = dyn_cast<Constant>(aCI->getArgOperand(2))) == nullptr) +      return false; +  } + +  // At this point, all arguments to aCI are constants. + +  // max vector size is 16, and sincos will generate two results. +  double DVal0[16], DVal1[16]; +  bool hasTwoResults = (FInfo.getId() == AMDGPULibFunc::EI_SINCOS); +  if (getVecSize(FInfo) == 1) { +    if (!evaluateScalarMathFunc(FInfo, DVal0[0], +                                DVal1[0], copr0, copr1, copr2)) { +      return false; +    } +  } else { +    ConstantDataVector *CDV0 = dyn_cast_or_null<ConstantDataVector>(copr0); +    ConstantDataVector *CDV1 = dyn_cast_or_null<ConstantDataVector>(copr1); +    ConstantDataVector *CDV2 = dyn_cast_or_null<ConstantDataVector>(copr2); +    for (int i=0; i < getVecSize(FInfo); ++i) { +      Constant *celt0 = CDV0 ? CDV0->getElementAsConstant(i) : nullptr; +      Constant *celt1 = CDV1 ? CDV1->getElementAsConstant(i) : nullptr; +      Constant *celt2 = CDV2 ? CDV2->getElementAsConstant(i) : nullptr; +      if (!evaluateScalarMathFunc(FInfo, DVal0[i], +                                  DVal1[i], celt0, celt1, celt2)) { +        return false; +      } +    } +  } + +  LLVMContext &context = CI->getParent()->getParent()->getContext(); +  Constant *nval0, *nval1; +  if (getVecSize(FInfo) == 1) { +    nval0 = ConstantFP::get(CI->getType(), DVal0[0]); +    if (hasTwoResults) +      nval1 = ConstantFP::get(CI->getType(), DVal1[0]); +  } else { +    if (getArgType(FInfo) == AMDGPULibFunc::F32) { +      SmallVector <float, 0> FVal0, FVal1; +      for (int i=0; i < getVecSize(FInfo); ++i) +        FVal0.push_back((float)DVal0[i]); +      ArrayRef<float> tmp0(FVal0); +      nval0 = ConstantDataVector::get(context, tmp0); +      if (hasTwoResults) { +        for (int i=0; i < getVecSize(FInfo); ++i) +          FVal1.push_back((float)DVal1[i]); +        ArrayRef<float> tmp1(FVal1); +        nval1 = ConstantDataVector::get(context, tmp1); +      } +    } else { +      ArrayRef<double> tmp0(DVal0); +      nval0 = ConstantDataVector::get(context, tmp0); +      if (hasTwoResults) { +        ArrayRef<double> tmp1(DVal1); +        nval1 = ConstantDataVector::get(context, tmp1); +      } +    } +  } + +  if (hasTwoResults) { +    // sincos +    assert(FInfo.getId() == AMDGPULibFunc::EI_SINCOS && +           "math function with ptr arg not supported yet"); +    new StoreInst(nval1, aCI->getArgOperand(1), aCI); +  } + +  replaceCall(nval0); +  return true; +} + +// Public interface to the Simplify LibCalls pass. +FunctionPass *llvm::createAMDGPUSimplifyLibCallsPass(const TargetMachine *TM) { +  return new AMDGPUSimplifyLibCalls(TM); +} + +FunctionPass *llvm::createAMDGPUUseNativeCallsPass() { +  return new AMDGPUUseNativeCalls(); +} + +bool AMDGPUSimplifyLibCalls::runOnFunction(Function &F) { +  if (skipFunction(F)) +    return false; + +  bool Changed = false; +  auto AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); + +  LLVM_DEBUG(dbgs() << "AMDIC: process function "; +             F.printAsOperand(dbgs(), false, F.getParent()); dbgs() << '\n';); + +  for (auto &BB : F) { +    for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E; ) { +      // Ignore non-calls. +      CallInst *CI = dyn_cast<CallInst>(I); +      ++I; +      // Ignore intrinsics that do not become real instructions. +      if (!CI || isa<DbgInfoIntrinsic>(CI) || CI->isLifetimeStartOrEnd()) +        continue; + +      // Ignore indirect calls. +      Function *Callee = CI->getCalledFunction(); +      if (Callee == 0) continue; + +      LLVM_DEBUG(dbgs() << "AMDIC: try folding " << *CI << "\n"; +                 dbgs().flush()); +      if(Simplifier.fold(CI, AA)) +        Changed = true; +    } +  } +  return Changed; +} + +bool AMDGPUUseNativeCalls::runOnFunction(Function &F) { +  if (skipFunction(F) || UseNative.empty()) +    return false; + +  bool Changed = false; +  for (auto &BB : F) { +    for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E; ) { +      // Ignore non-calls. +      CallInst *CI = dyn_cast<CallInst>(I); +      ++I; +      if (!CI) continue; + +      // Ignore indirect calls. +      Function *Callee = CI->getCalledFunction(); +      if (Callee == 0) continue; + +      if(Simplifier.useNative(CI)) +        Changed = true; +    } +  } +  return Changed; +}  | 
