aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm-project/llvm/lib/Target/AMDGPU/AMDGPULibCalls.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm-project/llvm/lib/Target/AMDGPU/AMDGPULibCalls.cpp')
-rw-r--r--contrib/llvm-project/llvm/lib/Target/AMDGPU/AMDGPULibCalls.cpp1771
1 files changed, 1771 insertions, 0 deletions
diff --git a/contrib/llvm-project/llvm/lib/Target/AMDGPU/AMDGPULibCalls.cpp b/contrib/llvm-project/llvm/lib/Target/AMDGPU/AMDGPULibCalls.cpp
new file mode 100644
index 000000000000..4a14259f1bdb
--- /dev/null
+++ b/contrib/llvm-project/llvm/lib/Target/AMDGPU/AMDGPULibCalls.cpp
@@ -0,0 +1,1771 @@
+//===- AMDGPULibCalls.cpp -------------------------------------------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+/// \file
+/// This file does AMD library function optimizations.
+//
+//===----------------------------------------------------------------------===//
+
+#include "AMDGPU.h"
+#include "AMDGPULibFunc.h"
+#include "AMDGPUSubtarget.h"
+#include "llvm/ADT/StringRef.h"
+#include "llvm/ADT/StringSet.h"
+#include "llvm/Analysis/AliasAnalysis.h"
+#include "llvm/Analysis/Loads.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/IRBuilder.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/Intrinsics.h"
+#include "llvm/IR/LLVMContext.h"
+#include "llvm/IR/Module.h"
+#include "llvm/IR/ValueSymbolTable.h"
+#include "llvm/InitializePasses.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/MathExtras.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Target/TargetMachine.h"
+#include <cmath>
+#include <vector>
+
+#define DEBUG_TYPE "amdgpu-simplifylib"
+
+using namespace llvm;
+
+static cl::opt<bool> EnablePreLink("amdgpu-prelink",
+ cl::desc("Enable pre-link mode optimizations"),
+ cl::init(false),
+ cl::Hidden);
+
+static cl::list<std::string> UseNative("amdgpu-use-native",
+ cl::desc("Comma separated list of functions to replace with native, or all"),
+ cl::CommaSeparated, cl::ValueOptional,
+ cl::Hidden);
+
+#define MATH_PI numbers::pi
+#define MATH_E numbers::e
+#define MATH_SQRT2 numbers::sqrt2
+#define MATH_SQRT1_2 numbers::inv_sqrt2
+
+namespace llvm {
+
+class AMDGPULibCalls {
+private:
+
+ typedef llvm::AMDGPULibFunc FuncInfo;
+
+ const TargetMachine *TM;
+
+ // -fuse-native.
+ bool AllNative = false;
+
+ bool useNativeFunc(const StringRef F) const;
+
+ // Return a pointer (pointer expr) to the function if function defintion with
+ // "FuncName" exists. It may create a new function prototype in pre-link mode.
+ FunctionCallee getFunction(Module *M, const FuncInfo &fInfo);
+
+ // Replace a normal function with its native version.
+ bool replaceWithNative(CallInst *CI, const FuncInfo &FInfo);
+
+ bool parseFunctionName(const StringRef& FMangledName,
+ FuncInfo *FInfo=nullptr /*out*/);
+
+ bool TDOFold(CallInst *CI, const FuncInfo &FInfo);
+
+ /* Specialized optimizations */
+
+ // recip (half or native)
+ bool fold_recip(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo);
+
+ // divide (half or native)
+ bool fold_divide(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo);
+
+ // pow/powr/pown
+ bool fold_pow(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo);
+
+ // rootn
+ bool fold_rootn(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo);
+
+ // fma/mad
+ bool fold_fma_mad(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo);
+
+ // -fuse-native for sincos
+ bool sincosUseNative(CallInst *aCI, const FuncInfo &FInfo);
+
+ // evaluate calls if calls' arguments are constants.
+ bool evaluateScalarMathFunc(FuncInfo &FInfo, double& Res0,
+ double& Res1, Constant *copr0, Constant *copr1, Constant *copr2);
+ bool evaluateCall(CallInst *aCI, FuncInfo &FInfo);
+
+ // exp
+ bool fold_exp(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo);
+
+ // exp2
+ bool fold_exp2(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo);
+
+ // exp10
+ bool fold_exp10(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo);
+
+ // log
+ bool fold_log(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo);
+
+ // log2
+ bool fold_log2(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo);
+
+ // log10
+ bool fold_log10(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo);
+
+ // sqrt
+ bool fold_sqrt(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo);
+
+ // sin/cos
+ bool fold_sincos(CallInst * CI, IRBuilder<> &B, AliasAnalysis * AA);
+
+ // __read_pipe/__write_pipe
+ bool fold_read_write_pipe(CallInst *CI, IRBuilder<> &B, FuncInfo &FInfo);
+
+ // llvm.amdgcn.wavefrontsize
+ bool fold_wavefrontsize(CallInst *CI, IRBuilder<> &B);
+
+ // Get insertion point at entry.
+ BasicBlock::iterator getEntryIns(CallInst * UI);
+ // Insert an Alloc instruction.
+ AllocaInst* insertAlloca(CallInst * UI, IRBuilder<> &B, const char *prefix);
+ // Get a scalar native builtin signle argument FP function
+ FunctionCallee getNativeFunction(Module *M, const FuncInfo &FInfo);
+
+protected:
+ CallInst *CI;
+
+ bool isUnsafeMath(const CallInst *CI) const;
+
+ void replaceCall(Value *With) {
+ CI->replaceAllUsesWith(With);
+ CI->eraseFromParent();
+ }
+
+public:
+ AMDGPULibCalls(const TargetMachine *TM_ = nullptr) : TM(TM_) {}
+
+ bool fold(CallInst *CI, AliasAnalysis *AA = nullptr);
+
+ void initNativeFuncs();
+
+ // Replace a normal math function call with that native version
+ bool useNative(CallInst *CI);
+};
+
+} // end llvm namespace
+
+namespace {
+
+ class AMDGPUSimplifyLibCalls : public FunctionPass {
+
+ AMDGPULibCalls Simplifier;
+
+ public:
+ static char ID; // Pass identification
+
+ AMDGPUSimplifyLibCalls(const TargetMachine *TM = nullptr)
+ : FunctionPass(ID), Simplifier(TM) {
+ initializeAMDGPUSimplifyLibCallsPass(*PassRegistry::getPassRegistry());
+ }
+
+ void getAnalysisUsage(AnalysisUsage &AU) const override {
+ AU.addRequired<AAResultsWrapperPass>();
+ }
+
+ bool runOnFunction(Function &M) override;
+ };
+
+ class AMDGPUUseNativeCalls : public FunctionPass {
+
+ AMDGPULibCalls Simplifier;
+
+ public:
+ static char ID; // Pass identification
+
+ AMDGPUUseNativeCalls() : FunctionPass(ID) {
+ initializeAMDGPUUseNativeCallsPass(*PassRegistry::getPassRegistry());
+ Simplifier.initNativeFuncs();
+ }
+
+ bool runOnFunction(Function &F) override;
+ };
+
+} // end anonymous namespace.
+
+char AMDGPUSimplifyLibCalls::ID = 0;
+char AMDGPUUseNativeCalls::ID = 0;
+
+INITIALIZE_PASS_BEGIN(AMDGPUSimplifyLibCalls, "amdgpu-simplifylib",
+ "Simplify well-known AMD library calls", false, false)
+INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
+INITIALIZE_PASS_END(AMDGPUSimplifyLibCalls, "amdgpu-simplifylib",
+ "Simplify well-known AMD library calls", false, false)
+
+INITIALIZE_PASS(AMDGPUUseNativeCalls, "amdgpu-usenative",
+ "Replace builtin math calls with that native versions.",
+ false, false)
+
+template <typename IRB>
+static CallInst *CreateCallEx(IRB &B, FunctionCallee Callee, Value *Arg,
+ const Twine &Name = "") {
+ CallInst *R = B.CreateCall(Callee, Arg, Name);
+ if (Function *F = dyn_cast<Function>(Callee.getCallee()))
+ R->setCallingConv(F->getCallingConv());
+ return R;
+}
+
+template <typename IRB>
+static CallInst *CreateCallEx2(IRB &B, FunctionCallee Callee, Value *Arg1,
+ Value *Arg2, const Twine &Name = "") {
+ CallInst *R = B.CreateCall(Callee, {Arg1, Arg2}, Name);
+ if (Function *F = dyn_cast<Function>(Callee.getCallee()))
+ R->setCallingConv(F->getCallingConv());
+ return R;
+}
+
+// Data structures for table-driven optimizations.
+// FuncTbl works for both f32 and f64 functions with 1 input argument
+
+struct TableEntry {
+ double result;
+ double input;
+};
+
+/* a list of {result, input} */
+static const TableEntry tbl_acos[] = {
+ {MATH_PI / 2.0, 0.0},
+ {MATH_PI / 2.0, -0.0},
+ {0.0, 1.0},
+ {MATH_PI, -1.0}
+};
+static const TableEntry tbl_acosh[] = {
+ {0.0, 1.0}
+};
+static const TableEntry tbl_acospi[] = {
+ {0.5, 0.0},
+ {0.5, -0.0},
+ {0.0, 1.0},
+ {1.0, -1.0}
+};
+static const TableEntry tbl_asin[] = {
+ {0.0, 0.0},
+ {-0.0, -0.0},
+ {MATH_PI / 2.0, 1.0},
+ {-MATH_PI / 2.0, -1.0}
+};
+static const TableEntry tbl_asinh[] = {
+ {0.0, 0.0},
+ {-0.0, -0.0}
+};
+static const TableEntry tbl_asinpi[] = {
+ {0.0, 0.0},
+ {-0.0, -0.0},
+ {0.5, 1.0},
+ {-0.5, -1.0}
+};
+static const TableEntry tbl_atan[] = {
+ {0.0, 0.0},
+ {-0.0, -0.0},
+ {MATH_PI / 4.0, 1.0},
+ {-MATH_PI / 4.0, -1.0}
+};
+static const TableEntry tbl_atanh[] = {
+ {0.0, 0.0},
+ {-0.0, -0.0}
+};
+static const TableEntry tbl_atanpi[] = {
+ {0.0, 0.0},
+ {-0.0, -0.0},
+ {0.25, 1.0},
+ {-0.25, -1.0}
+};
+static const TableEntry tbl_cbrt[] = {
+ {0.0, 0.0},
+ {-0.0, -0.0},
+ {1.0, 1.0},
+ {-1.0, -1.0},
+};
+static const TableEntry tbl_cos[] = {
+ {1.0, 0.0},
+ {1.0, -0.0}
+};
+static const TableEntry tbl_cosh[] = {
+ {1.0, 0.0},
+ {1.0, -0.0}
+};
+static const TableEntry tbl_cospi[] = {
+ {1.0, 0.0},
+ {1.0, -0.0}
+};
+static const TableEntry tbl_erfc[] = {
+ {1.0, 0.0},
+ {1.0, -0.0}
+};
+static const TableEntry tbl_erf[] = {
+ {0.0, 0.0},
+ {-0.0, -0.0}
+};
+static const TableEntry tbl_exp[] = {
+ {1.0, 0.0},
+ {1.0, -0.0},
+ {MATH_E, 1.0}
+};
+static const TableEntry tbl_exp2[] = {
+ {1.0, 0.0},
+ {1.0, -0.0},
+ {2.0, 1.0}
+};
+static const TableEntry tbl_exp10[] = {
+ {1.0, 0.0},
+ {1.0, -0.0},
+ {10.0, 1.0}
+};
+static const TableEntry tbl_expm1[] = {
+ {0.0, 0.0},
+ {-0.0, -0.0}
+};
+static const TableEntry tbl_log[] = {
+ {0.0, 1.0},
+ {1.0, MATH_E}
+};
+static const TableEntry tbl_log2[] = {
+ {0.0, 1.0},
+ {1.0, 2.0}
+};
+static const TableEntry tbl_log10[] = {
+ {0.0, 1.0},
+ {1.0, 10.0}
+};
+static const TableEntry tbl_rsqrt[] = {
+ {1.0, 1.0},
+ {MATH_SQRT1_2, 2.0}
+};
+static const TableEntry tbl_sin[] = {
+ {0.0, 0.0},
+ {-0.0, -0.0}
+};
+static const TableEntry tbl_sinh[] = {
+ {0.0, 0.0},
+ {-0.0, -0.0}
+};
+static const TableEntry tbl_sinpi[] = {
+ {0.0, 0.0},
+ {-0.0, -0.0}
+};
+static const TableEntry tbl_sqrt[] = {
+ {0.0, 0.0},
+ {1.0, 1.0},
+ {MATH_SQRT2, 2.0}
+};
+static const TableEntry tbl_tan[] = {
+ {0.0, 0.0},
+ {-0.0, -0.0}
+};
+static const TableEntry tbl_tanh[] = {
+ {0.0, 0.0},
+ {-0.0, -0.0}
+};
+static const TableEntry tbl_tanpi[] = {
+ {0.0, 0.0},
+ {-0.0, -0.0}
+};
+static const TableEntry tbl_tgamma[] = {
+ {1.0, 1.0},
+ {1.0, 2.0},
+ {2.0, 3.0},
+ {6.0, 4.0}
+};
+
+static bool HasNative(AMDGPULibFunc::EFuncId id) {
+ switch(id) {
+ case AMDGPULibFunc::EI_DIVIDE:
+ case AMDGPULibFunc::EI_COS:
+ case AMDGPULibFunc::EI_EXP:
+ case AMDGPULibFunc::EI_EXP2:
+ case AMDGPULibFunc::EI_EXP10:
+ case AMDGPULibFunc::EI_LOG:
+ case AMDGPULibFunc::EI_LOG2:
+ case AMDGPULibFunc::EI_LOG10:
+ case AMDGPULibFunc::EI_POWR:
+ case AMDGPULibFunc::EI_RECIP:
+ case AMDGPULibFunc::EI_RSQRT:
+ case AMDGPULibFunc::EI_SIN:
+ case AMDGPULibFunc::EI_SINCOS:
+ case AMDGPULibFunc::EI_SQRT:
+ case AMDGPULibFunc::EI_TAN:
+ return true;
+ default:;
+ }
+ return false;
+}
+
+struct TableRef {
+ size_t size;
+ const TableEntry *table; // variable size: from 0 to (size - 1)
+
+ TableRef() : size(0), table(nullptr) {}
+
+ template <size_t N>
+ TableRef(const TableEntry (&tbl)[N]) : size(N), table(&tbl[0]) {}
+};
+
+static TableRef getOptTable(AMDGPULibFunc::EFuncId id) {
+ switch(id) {
+ case AMDGPULibFunc::EI_ACOS: return TableRef(tbl_acos);
+ case AMDGPULibFunc::EI_ACOSH: return TableRef(tbl_acosh);
+ case AMDGPULibFunc::EI_ACOSPI: return TableRef(tbl_acospi);
+ case AMDGPULibFunc::EI_ASIN: return TableRef(tbl_asin);
+ case AMDGPULibFunc::EI_ASINH: return TableRef(tbl_asinh);
+ case AMDGPULibFunc::EI_ASINPI: return TableRef(tbl_asinpi);
+ case AMDGPULibFunc::EI_ATAN: return TableRef(tbl_atan);
+ case AMDGPULibFunc::EI_ATANH: return TableRef(tbl_atanh);
+ case AMDGPULibFunc::EI_ATANPI: return TableRef(tbl_atanpi);
+ case AMDGPULibFunc::EI_CBRT: return TableRef(tbl_cbrt);
+ case AMDGPULibFunc::EI_NCOS:
+ case AMDGPULibFunc::EI_COS: return TableRef(tbl_cos);
+ case AMDGPULibFunc::EI_COSH: return TableRef(tbl_cosh);
+ case AMDGPULibFunc::EI_COSPI: return TableRef(tbl_cospi);
+ case AMDGPULibFunc::EI_ERFC: return TableRef(tbl_erfc);
+ case AMDGPULibFunc::EI_ERF: return TableRef(tbl_erf);
+ case AMDGPULibFunc::EI_EXP: return TableRef(tbl_exp);
+ case AMDGPULibFunc::EI_NEXP2:
+ case AMDGPULibFunc::EI_EXP2: return TableRef(tbl_exp2);
+ case AMDGPULibFunc::EI_EXP10: return TableRef(tbl_exp10);
+ case AMDGPULibFunc::EI_EXPM1: return TableRef(tbl_expm1);
+ case AMDGPULibFunc::EI_LOG: return TableRef(tbl_log);
+ case AMDGPULibFunc::EI_NLOG2:
+ case AMDGPULibFunc::EI_LOG2: return TableRef(tbl_log2);
+ case AMDGPULibFunc::EI_LOG10: return TableRef(tbl_log10);
+ case AMDGPULibFunc::EI_NRSQRT:
+ case AMDGPULibFunc::EI_RSQRT: return TableRef(tbl_rsqrt);
+ case AMDGPULibFunc::EI_NSIN:
+ case AMDGPULibFunc::EI_SIN: return TableRef(tbl_sin);
+ case AMDGPULibFunc::EI_SINH: return TableRef(tbl_sinh);
+ case AMDGPULibFunc::EI_SINPI: return TableRef(tbl_sinpi);
+ case AMDGPULibFunc::EI_NSQRT:
+ case AMDGPULibFunc::EI_SQRT: return TableRef(tbl_sqrt);
+ case AMDGPULibFunc::EI_TAN: return TableRef(tbl_tan);
+ case AMDGPULibFunc::EI_TANH: return TableRef(tbl_tanh);
+ case AMDGPULibFunc::EI_TANPI: return TableRef(tbl_tanpi);
+ case AMDGPULibFunc::EI_TGAMMA: return TableRef(tbl_tgamma);
+ default:;
+ }
+ return TableRef();
+}
+
+static inline int getVecSize(const AMDGPULibFunc& FInfo) {
+ return FInfo.getLeads()[0].VectorSize;
+}
+
+static inline AMDGPULibFunc::EType getArgType(const AMDGPULibFunc& FInfo) {
+ return (AMDGPULibFunc::EType)FInfo.getLeads()[0].ArgType;
+}
+
+FunctionCallee AMDGPULibCalls::getFunction(Module *M, const FuncInfo &fInfo) {
+ // If we are doing PreLinkOpt, the function is external. So it is safe to
+ // use getOrInsertFunction() at this stage.
+
+ return EnablePreLink ? AMDGPULibFunc::getOrInsertFunction(M, fInfo)
+ : AMDGPULibFunc::getFunction(M, fInfo);
+}
+
+bool AMDGPULibCalls::parseFunctionName(const StringRef& FMangledName,
+ FuncInfo *FInfo) {
+ return AMDGPULibFunc::parse(FMangledName, *FInfo);
+}
+
+bool AMDGPULibCalls::isUnsafeMath(const CallInst *CI) const {
+ if (auto Op = dyn_cast<FPMathOperator>(CI))
+ if (Op->isFast())
+ return true;
+ const Function *F = CI->getParent()->getParent();
+ Attribute Attr = F->getFnAttribute("unsafe-fp-math");
+ return Attr.getValueAsString() == "true";
+}
+
+bool AMDGPULibCalls::useNativeFunc(const StringRef F) const {
+ return AllNative ||
+ std::find(UseNative.begin(), UseNative.end(), F) != UseNative.end();
+}
+
+void AMDGPULibCalls::initNativeFuncs() {
+ AllNative = useNativeFunc("all") ||
+ (UseNative.getNumOccurrences() && UseNative.size() == 1 &&
+ UseNative.begin()->empty());
+}
+
+bool AMDGPULibCalls::sincosUseNative(CallInst *aCI, const FuncInfo &FInfo) {
+ bool native_sin = useNativeFunc("sin");
+ bool native_cos = useNativeFunc("cos");
+
+ if (native_sin && native_cos) {
+ Module *M = aCI->getModule();
+ Value *opr0 = aCI->getArgOperand(0);
+
+ AMDGPULibFunc nf;
+ nf.getLeads()[0].ArgType = FInfo.getLeads()[0].ArgType;
+ nf.getLeads()[0].VectorSize = FInfo.getLeads()[0].VectorSize;
+
+ nf.setPrefix(AMDGPULibFunc::NATIVE);
+ nf.setId(AMDGPULibFunc::EI_SIN);
+ FunctionCallee sinExpr = getFunction(M, nf);
+
+ nf.setPrefix(AMDGPULibFunc::NATIVE);
+ nf.setId(AMDGPULibFunc::EI_COS);
+ FunctionCallee cosExpr = getFunction(M, nf);
+ if (sinExpr && cosExpr) {
+ Value *sinval = CallInst::Create(sinExpr, opr0, "splitsin", aCI);
+ Value *cosval = CallInst::Create(cosExpr, opr0, "splitcos", aCI);
+ new StoreInst(cosval, aCI->getArgOperand(1), aCI);
+
+ DEBUG_WITH_TYPE("usenative", dbgs() << "<useNative> replace " << *aCI
+ << " with native version of sin/cos");
+
+ replaceCall(sinval);
+ return true;
+ }
+ }
+ return false;
+}
+
+bool AMDGPULibCalls::useNative(CallInst *aCI) {
+ CI = aCI;
+ Function *Callee = aCI->getCalledFunction();
+
+ FuncInfo FInfo;
+ if (!parseFunctionName(Callee->getName(), &FInfo) || !FInfo.isMangled() ||
+ FInfo.getPrefix() != AMDGPULibFunc::NOPFX ||
+ getArgType(FInfo) == AMDGPULibFunc::F64 || !HasNative(FInfo.getId()) ||
+ !(AllNative || useNativeFunc(FInfo.getName()))) {
+ return false;
+ }
+
+ if (FInfo.getId() == AMDGPULibFunc::EI_SINCOS)
+ return sincosUseNative(aCI, FInfo);
+
+ FInfo.setPrefix(AMDGPULibFunc::NATIVE);
+ FunctionCallee F = getFunction(aCI->getModule(), FInfo);
+ if (!F)
+ return false;
+
+ aCI->setCalledFunction(F);
+ DEBUG_WITH_TYPE("usenative", dbgs() << "<useNative> replace " << *aCI
+ << " with native version");
+ return true;
+}
+
+// Clang emits call of __read_pipe_2 or __read_pipe_4 for OpenCL read_pipe
+// builtin, with appended type size and alignment arguments, where 2 or 4
+// indicates the original number of arguments. The library has optimized version
+// of __read_pipe_2/__read_pipe_4 when the type size and alignment has the same
+// power of 2 value. This function transforms __read_pipe_2 to __read_pipe_2_N
+// for such cases where N is the size in bytes of the type (N = 1, 2, 4, 8, ...,
+// 128). The same for __read_pipe_4, write_pipe_2, and write_pipe_4.
+bool AMDGPULibCalls::fold_read_write_pipe(CallInst *CI, IRBuilder<> &B,
+ FuncInfo &FInfo) {
+ auto *Callee = CI->getCalledFunction();
+ if (!Callee->isDeclaration())
+ return false;
+
+ assert(Callee->hasName() && "Invalid read_pipe/write_pipe function");
+ auto *M = Callee->getParent();
+ auto &Ctx = M->getContext();
+ std::string Name = std::string(Callee->getName());
+ auto NumArg = CI->getNumArgOperands();
+ if (NumArg != 4 && NumArg != 6)
+ return false;
+ auto *PacketSize = CI->getArgOperand(NumArg - 2);
+ auto *PacketAlign = CI->getArgOperand(NumArg - 1);
+ if (!isa<ConstantInt>(PacketSize) || !isa<ConstantInt>(PacketAlign))
+ return false;
+ unsigned Size = cast<ConstantInt>(PacketSize)->getZExtValue();
+ Align Alignment = cast<ConstantInt>(PacketAlign)->getAlignValue();
+ if (Alignment != Size)
+ return false;
+
+ Type *PtrElemTy;
+ if (Size <= 8)
+ PtrElemTy = Type::getIntNTy(Ctx, Size * 8);
+ else
+ PtrElemTy = FixedVectorType::get(Type::getInt64Ty(Ctx), Size / 8);
+ unsigned PtrArgLoc = CI->getNumArgOperands() - 3;
+ auto PtrArg = CI->getArgOperand(PtrArgLoc);
+ unsigned PtrArgAS = PtrArg->getType()->getPointerAddressSpace();
+ auto *PtrTy = llvm::PointerType::get(PtrElemTy, PtrArgAS);
+
+ SmallVector<llvm::Type *, 6> ArgTys;
+ for (unsigned I = 0; I != PtrArgLoc; ++I)
+ ArgTys.push_back(CI->getArgOperand(I)->getType());
+ ArgTys.push_back(PtrTy);
+
+ Name = Name + "_" + std::to_string(Size);
+ auto *FTy = FunctionType::get(Callee->getReturnType(),
+ ArrayRef<Type *>(ArgTys), false);
+ AMDGPULibFunc NewLibFunc(Name, FTy);
+ FunctionCallee F = AMDGPULibFunc::getOrInsertFunction(M, NewLibFunc);
+ if (!F)
+ return false;
+
+ auto *BCast = B.CreatePointerCast(PtrArg, PtrTy);
+ SmallVector<Value *, 6> Args;
+ for (unsigned I = 0; I != PtrArgLoc; ++I)
+ Args.push_back(CI->getArgOperand(I));
+ Args.push_back(BCast);
+
+ auto *NCI = B.CreateCall(F, Args);
+ NCI->setAttributes(CI->getAttributes());
+ CI->replaceAllUsesWith(NCI);
+ CI->dropAllReferences();
+ CI->eraseFromParent();
+
+ return true;
+}
+
+// This function returns false if no change; return true otherwise.
+bool AMDGPULibCalls::fold(CallInst *CI, AliasAnalysis *AA) {
+ this->CI = CI;
+ Function *Callee = CI->getCalledFunction();
+
+ // Ignore indirect calls.
+ if (Callee == 0) return false;
+
+ BasicBlock *BB = CI->getParent();
+ LLVMContext &Context = CI->getParent()->getContext();
+ IRBuilder<> B(Context);
+
+ // Set the builder to the instruction after the call.
+ B.SetInsertPoint(BB, CI->getIterator());
+
+ // Copy fast flags from the original call.
+ if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(CI))
+ B.setFastMathFlags(FPOp->getFastMathFlags());
+
+ switch (Callee->getIntrinsicID()) {
+ default:
+ break;
+ case Intrinsic::amdgcn_wavefrontsize:
+ return !EnablePreLink && fold_wavefrontsize(CI, B);
+ }
+
+ FuncInfo FInfo;
+ if (!parseFunctionName(Callee->getName(), &FInfo))
+ return false;
+
+ // Further check the number of arguments to see if they match.
+ if (CI->getNumArgOperands() != FInfo.getNumArgs())
+ return false;
+
+ if (TDOFold(CI, FInfo))
+ return true;
+
+ // Under unsafe-math, evaluate calls if possible.
+ // According to Brian Sumner, we can do this for all f32 function calls
+ // using host's double function calls.
+ if (isUnsafeMath(CI) && evaluateCall(CI, FInfo))
+ return true;
+
+ // Specilized optimizations for each function call
+ switch (FInfo.getId()) {
+ case AMDGPULibFunc::EI_RECIP:
+ // skip vector function
+ assert ((FInfo.getPrefix() == AMDGPULibFunc::NATIVE ||
+ FInfo.getPrefix() == AMDGPULibFunc::HALF) &&
+ "recip must be an either native or half function");
+ return (getVecSize(FInfo) != 1) ? false : fold_recip(CI, B, FInfo);
+
+ case AMDGPULibFunc::EI_DIVIDE:
+ // skip vector function
+ assert ((FInfo.getPrefix() == AMDGPULibFunc::NATIVE ||
+ FInfo.getPrefix() == AMDGPULibFunc::HALF) &&
+ "divide must be an either native or half function");
+ return (getVecSize(FInfo) != 1) ? false : fold_divide(CI, B, FInfo);
+
+ case AMDGPULibFunc::EI_POW:
+ case AMDGPULibFunc::EI_POWR:
+ case AMDGPULibFunc::EI_POWN:
+ return fold_pow(CI, B, FInfo);
+
+ case AMDGPULibFunc::EI_ROOTN:
+ // skip vector function
+ return (getVecSize(FInfo) != 1) ? false : fold_rootn(CI, B, FInfo);
+
+ case AMDGPULibFunc::EI_FMA:
+ case AMDGPULibFunc::EI_MAD:
+ case AMDGPULibFunc::EI_NFMA:
+ // skip vector function
+ return (getVecSize(FInfo) != 1) ? false : fold_fma_mad(CI, B, FInfo);
+
+ case AMDGPULibFunc::EI_SQRT:
+ return isUnsafeMath(CI) && fold_sqrt(CI, B, FInfo);
+ case AMDGPULibFunc::EI_COS:
+ case AMDGPULibFunc::EI_SIN:
+ if ((getArgType(FInfo) == AMDGPULibFunc::F32 ||
+ getArgType(FInfo) == AMDGPULibFunc::F64)
+ && (FInfo.getPrefix() == AMDGPULibFunc::NOPFX))
+ return fold_sincos(CI, B, AA);
+
+ break;
+ case AMDGPULibFunc::EI_READ_PIPE_2:
+ case AMDGPULibFunc::EI_READ_PIPE_4:
+ case AMDGPULibFunc::EI_WRITE_PIPE_2:
+ case AMDGPULibFunc::EI_WRITE_PIPE_4:
+ return fold_read_write_pipe(CI, B, FInfo);
+
+ default:
+ break;
+ }
+
+ return false;
+}
+
+bool AMDGPULibCalls::TDOFold(CallInst *CI, const FuncInfo &FInfo) {
+ // Table-Driven optimization
+ const TableRef tr = getOptTable(FInfo.getId());
+ if (tr.size==0)
+ return false;
+
+ int const sz = (int)tr.size;
+ const TableEntry * const ftbl = tr.table;
+ Value *opr0 = CI->getArgOperand(0);
+
+ if (getVecSize(FInfo) > 1) {
+ if (ConstantDataVector *CV = dyn_cast<ConstantDataVector>(opr0)) {
+ SmallVector<double, 0> DVal;
+ for (int eltNo = 0; eltNo < getVecSize(FInfo); ++eltNo) {
+ ConstantFP *eltval = dyn_cast<ConstantFP>(
+ CV->getElementAsConstant((unsigned)eltNo));
+ assert(eltval && "Non-FP arguments in math function!");
+ bool found = false;
+ for (int i=0; i < sz; ++i) {
+ if (eltval->isExactlyValue(ftbl[i].input)) {
+ DVal.push_back(ftbl[i].result);
+ found = true;
+ break;
+ }
+ }
+ if (!found) {
+ // This vector constants not handled yet.
+ return false;
+ }
+ }
+ LLVMContext &context = CI->getParent()->getParent()->getContext();
+ Constant *nval;
+ if (getArgType(FInfo) == AMDGPULibFunc::F32) {
+ SmallVector<float, 0> FVal;
+ for (unsigned i = 0; i < DVal.size(); ++i) {
+ FVal.push_back((float)DVal[i]);
+ }
+ ArrayRef<float> tmp(FVal);
+ nval = ConstantDataVector::get(context, tmp);
+ } else { // F64
+ ArrayRef<double> tmp(DVal);
+ nval = ConstantDataVector::get(context, tmp);
+ }
+ LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *nval << "\n");
+ replaceCall(nval);
+ return true;
+ }
+ } else {
+ // Scalar version
+ if (ConstantFP *CF = dyn_cast<ConstantFP>(opr0)) {
+ for (int i = 0; i < sz; ++i) {
+ if (CF->isExactlyValue(ftbl[i].input)) {
+ Value *nval = ConstantFP::get(CF->getType(), ftbl[i].result);
+ LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *nval << "\n");
+ replaceCall(nval);
+ return true;
+ }
+ }
+ }
+ }
+
+ return false;
+}
+
+bool AMDGPULibCalls::replaceWithNative(CallInst *CI, const FuncInfo &FInfo) {
+ Module *M = CI->getModule();
+ if (getArgType(FInfo) != AMDGPULibFunc::F32 ||
+ FInfo.getPrefix() != AMDGPULibFunc::NOPFX ||
+ !HasNative(FInfo.getId()))
+ return false;
+
+ AMDGPULibFunc nf = FInfo;
+ nf.setPrefix(AMDGPULibFunc::NATIVE);
+ if (FunctionCallee FPExpr = getFunction(M, nf)) {
+ LLVM_DEBUG(dbgs() << "AMDIC: " << *CI << " ---> ");
+
+ CI->setCalledFunction(FPExpr);
+
+ LLVM_DEBUG(dbgs() << *CI << '\n');
+
+ return true;
+ }
+ return false;
+}
+
+// [native_]half_recip(c) ==> 1.0/c
+bool AMDGPULibCalls::fold_recip(CallInst *CI, IRBuilder<> &B,
+ const FuncInfo &FInfo) {
+ Value *opr0 = CI->getArgOperand(0);
+ if (ConstantFP *CF = dyn_cast<ConstantFP>(opr0)) {
+ // Just create a normal div. Later, InstCombine will be able
+ // to compute the divide into a constant (avoid check float infinity
+ // or subnormal at this point).
+ Value *nval = B.CreateFDiv(ConstantFP::get(CF->getType(), 1.0),
+ opr0,
+ "recip2div");
+ LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *nval << "\n");
+ replaceCall(nval);
+ return true;
+ }
+ return false;
+}
+
+// [native_]half_divide(x, c) ==> x/c
+bool AMDGPULibCalls::fold_divide(CallInst *CI, IRBuilder<> &B,
+ const FuncInfo &FInfo) {
+ Value *opr0 = CI->getArgOperand(0);
+ Value *opr1 = CI->getArgOperand(1);
+ ConstantFP *CF0 = dyn_cast<ConstantFP>(opr0);
+ ConstantFP *CF1 = dyn_cast<ConstantFP>(opr1);
+
+ if ((CF0 && CF1) || // both are constants
+ (CF1 && (getArgType(FInfo) == AMDGPULibFunc::F32)))
+ // CF1 is constant && f32 divide
+ {
+ Value *nval1 = B.CreateFDiv(ConstantFP::get(opr1->getType(), 1.0),
+ opr1, "__div2recip");
+ Value *nval = B.CreateFMul(opr0, nval1, "__div2mul");
+ replaceCall(nval);
+ return true;
+ }
+ return false;
+}
+
+namespace llvm {
+static double log2(double V) {
+#if _XOPEN_SOURCE >= 600 || defined(_ISOC99_SOURCE) || _POSIX_C_SOURCE >= 200112L
+ return ::log2(V);
+#else
+ return log(V) / numbers::ln2;
+#endif
+}
+}
+
+bool AMDGPULibCalls::fold_pow(CallInst *CI, IRBuilder<> &B,
+ const FuncInfo &FInfo) {
+ assert((FInfo.getId() == AMDGPULibFunc::EI_POW ||
+ FInfo.getId() == AMDGPULibFunc::EI_POWR ||
+ FInfo.getId() == AMDGPULibFunc::EI_POWN) &&
+ "fold_pow: encounter a wrong function call");
+
+ Value *opr0, *opr1;
+ ConstantFP *CF;
+ ConstantInt *CINT;
+ ConstantAggregateZero *CZero;
+ Type *eltType;
+
+ opr0 = CI->getArgOperand(0);
+ opr1 = CI->getArgOperand(1);
+ CZero = dyn_cast<ConstantAggregateZero>(opr1);
+ if (getVecSize(FInfo) == 1) {
+ eltType = opr0->getType();
+ CF = dyn_cast<ConstantFP>(opr1);
+ CINT = dyn_cast<ConstantInt>(opr1);
+ } else {
+ VectorType *VTy = dyn_cast<VectorType>(opr0->getType());
+ assert(VTy && "Oprand of vector function should be of vectortype");
+ eltType = VTy->getElementType();
+ ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(opr1);
+
+ // Now, only Handle vector const whose elements have the same value.
+ CF = CDV ? dyn_cast_or_null<ConstantFP>(CDV->getSplatValue()) : nullptr;
+ CINT = CDV ? dyn_cast_or_null<ConstantInt>(CDV->getSplatValue()) : nullptr;
+ }
+
+ // No unsafe math , no constant argument, do nothing
+ if (!isUnsafeMath(CI) && !CF && !CINT && !CZero)
+ return false;
+
+ // 0x1111111 means that we don't do anything for this call.
+ int ci_opr1 = (CINT ? (int)CINT->getSExtValue() : 0x1111111);
+
+ if ((CF && CF->isZero()) || (CINT && ci_opr1 == 0) || CZero) {
+ // pow/powr/pown(x, 0) == 1
+ LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> 1\n");
+ Constant *cnval = ConstantFP::get(eltType, 1.0);
+ if (getVecSize(FInfo) > 1) {
+ cnval = ConstantDataVector::getSplat(getVecSize(FInfo), cnval);
+ }
+ replaceCall(cnval);
+ return true;
+ }
+ if ((CF && CF->isExactlyValue(1.0)) || (CINT && ci_opr1 == 1)) {
+ // pow/powr/pown(x, 1.0) = x
+ LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *opr0 << "\n");
+ replaceCall(opr0);
+ return true;
+ }
+ if ((CF && CF->isExactlyValue(2.0)) || (CINT && ci_opr1 == 2)) {
+ // pow/powr/pown(x, 2.0) = x*x
+ LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *opr0 << " * " << *opr0
+ << "\n");
+ Value *nval = B.CreateFMul(opr0, opr0, "__pow2");
+ replaceCall(nval);
+ return true;
+ }
+ if ((CF && CF->isExactlyValue(-1.0)) || (CINT && ci_opr1 == -1)) {
+ // pow/powr/pown(x, -1.0) = 1.0/x
+ LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> 1 / " << *opr0 << "\n");
+ Constant *cnval = ConstantFP::get(eltType, 1.0);
+ if (getVecSize(FInfo) > 1) {
+ cnval = ConstantDataVector::getSplat(getVecSize(FInfo), cnval);
+ }
+ Value *nval = B.CreateFDiv(cnval, opr0, "__powrecip");
+ replaceCall(nval);
+ return true;
+ }
+
+ Module *M = CI->getModule();
+ if (CF && (CF->isExactlyValue(0.5) || CF->isExactlyValue(-0.5))) {
+ // pow[r](x, [-]0.5) = sqrt(x)
+ bool issqrt = CF->isExactlyValue(0.5);
+ if (FunctionCallee FPExpr =
+ getFunction(M, AMDGPULibFunc(issqrt ? AMDGPULibFunc::EI_SQRT
+ : AMDGPULibFunc::EI_RSQRT,
+ FInfo))) {
+ LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> "
+ << FInfo.getName().c_str() << "(" << *opr0 << ")\n");
+ Value *nval = CreateCallEx(B,FPExpr, opr0, issqrt ? "__pow2sqrt"
+ : "__pow2rsqrt");
+ replaceCall(nval);
+ return true;
+ }
+ }
+
+ if (!isUnsafeMath(CI))
+ return false;
+
+ // Unsafe Math optimization
+
+ // Remember that ci_opr1 is set if opr1 is integral
+ if (CF) {
+ double dval = (getArgType(FInfo) == AMDGPULibFunc::F32)
+ ? (double)CF->getValueAPF().convertToFloat()
+ : CF->getValueAPF().convertToDouble();
+ int ival = (int)dval;
+ if ((double)ival == dval) {
+ ci_opr1 = ival;
+ } else
+ ci_opr1 = 0x11111111;
+ }
+
+ // pow/powr/pown(x, c) = [1/](x*x*..x); where
+ // trunc(c) == c && the number of x == c && |c| <= 12
+ unsigned abs_opr1 = (ci_opr1 < 0) ? -ci_opr1 : ci_opr1;
+ if (abs_opr1 <= 12) {
+ Constant *cnval;
+ Value *nval;
+ if (abs_opr1 == 0) {
+ cnval = ConstantFP::get(eltType, 1.0);
+ if (getVecSize(FInfo) > 1) {
+ cnval = ConstantDataVector::getSplat(getVecSize(FInfo), cnval);
+ }
+ nval = cnval;
+ } else {
+ Value *valx2 = nullptr;
+ nval = nullptr;
+ while (abs_opr1 > 0) {
+ valx2 = valx2 ? B.CreateFMul(valx2, valx2, "__powx2") : opr0;
+ if (abs_opr1 & 1) {
+ nval = nval ? B.CreateFMul(nval, valx2, "__powprod") : valx2;
+ }
+ abs_opr1 >>= 1;
+ }
+ }
+
+ if (ci_opr1 < 0) {
+ cnval = ConstantFP::get(eltType, 1.0);
+ if (getVecSize(FInfo) > 1) {
+ cnval = ConstantDataVector::getSplat(getVecSize(FInfo), cnval);
+ }
+ nval = B.CreateFDiv(cnval, nval, "__1powprod");
+ }
+ LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> "
+ << ((ci_opr1 < 0) ? "1/prod(" : "prod(") << *opr0
+ << ")\n");
+ replaceCall(nval);
+ return true;
+ }
+
+ // powr ---> exp2(y * log2(x))
+ // pown/pow ---> powr(fabs(x), y) | (x & ((int)y << 31))
+ FunctionCallee ExpExpr =
+ getFunction(M, AMDGPULibFunc(AMDGPULibFunc::EI_EXP2, FInfo));
+ if (!ExpExpr)
+ return false;
+
+ bool needlog = false;
+ bool needabs = false;
+ bool needcopysign = false;
+ Constant *cnval = nullptr;
+ if (getVecSize(FInfo) == 1) {
+ CF = dyn_cast<ConstantFP>(opr0);
+
+ if (CF) {
+ double V = (getArgType(FInfo) == AMDGPULibFunc::F32)
+ ? (double)CF->getValueAPF().convertToFloat()
+ : CF->getValueAPF().convertToDouble();
+
+ V = log2(std::abs(V));
+ cnval = ConstantFP::get(eltType, V);
+ needcopysign = (FInfo.getId() != AMDGPULibFunc::EI_POWR) &&
+ CF->isNegative();
+ } else {
+ needlog = true;
+ needcopysign = needabs = FInfo.getId() != AMDGPULibFunc::EI_POWR &&
+ (!CF || CF->isNegative());
+ }
+ } else {
+ ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(opr0);
+
+ if (!CDV) {
+ needlog = true;
+ needcopysign = needabs = FInfo.getId() != AMDGPULibFunc::EI_POWR;
+ } else {
+ assert ((int)CDV->getNumElements() == getVecSize(FInfo) &&
+ "Wrong vector size detected");
+
+ SmallVector<double, 0> DVal;
+ for (int i=0; i < getVecSize(FInfo); ++i) {
+ double V = (getArgType(FInfo) == AMDGPULibFunc::F32)
+ ? (double)CDV->getElementAsFloat(i)
+ : CDV->getElementAsDouble(i);
+ if (V < 0.0) needcopysign = true;
+ V = log2(std::abs(V));
+ DVal.push_back(V);
+ }
+ if (getArgType(FInfo) == AMDGPULibFunc::F32) {
+ SmallVector<float, 0> FVal;
+ for (unsigned i=0; i < DVal.size(); ++i) {
+ FVal.push_back((float)DVal[i]);
+ }
+ ArrayRef<float> tmp(FVal);
+ cnval = ConstantDataVector::get(M->getContext(), tmp);
+ } else {
+ ArrayRef<double> tmp(DVal);
+ cnval = ConstantDataVector::get(M->getContext(), tmp);
+ }
+ }
+ }
+
+ if (needcopysign && (FInfo.getId() == AMDGPULibFunc::EI_POW)) {
+ // We cannot handle corner cases for a general pow() function, give up
+ // unless y is a constant integral value. Then proceed as if it were pown.
+ if (getVecSize(FInfo) == 1) {
+ if (const ConstantFP *CF = dyn_cast<ConstantFP>(opr1)) {
+ double y = (getArgType(FInfo) == AMDGPULibFunc::F32)
+ ? (double)CF->getValueAPF().convertToFloat()
+ : CF->getValueAPF().convertToDouble();
+ if (y != (double)(int64_t)y)
+ return false;
+ } else
+ return false;
+ } else {
+ if (const ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(opr1)) {
+ for (int i=0; i < getVecSize(FInfo); ++i) {
+ double y = (getArgType(FInfo) == AMDGPULibFunc::F32)
+ ? (double)CDV->getElementAsFloat(i)
+ : CDV->getElementAsDouble(i);
+ if (y != (double)(int64_t)y)
+ return false;
+ }
+ } else
+ return false;
+ }
+ }
+
+ Value *nval;
+ if (needabs) {
+ FunctionCallee AbsExpr =
+ getFunction(M, AMDGPULibFunc(AMDGPULibFunc::EI_FABS, FInfo));
+ if (!AbsExpr)
+ return false;
+ nval = CreateCallEx(B, AbsExpr, opr0, "__fabs");
+ } else {
+ nval = cnval ? cnval : opr0;
+ }
+ if (needlog) {
+ FunctionCallee LogExpr =
+ getFunction(M, AMDGPULibFunc(AMDGPULibFunc::EI_LOG2, FInfo));
+ if (!LogExpr)
+ return false;
+ nval = CreateCallEx(B,LogExpr, nval, "__log2");
+ }
+
+ if (FInfo.getId() == AMDGPULibFunc::EI_POWN) {
+ // convert int(32) to fp(f32 or f64)
+ opr1 = B.CreateSIToFP(opr1, nval->getType(), "pownI2F");
+ }
+ nval = B.CreateFMul(opr1, nval, "__ylogx");
+ nval = CreateCallEx(B,ExpExpr, nval, "__exp2");
+
+ if (needcopysign) {
+ Value *opr_n;
+ Type* rTy = opr0->getType();
+ Type* nTyS = eltType->isDoubleTy() ? B.getInt64Ty() : B.getInt32Ty();
+ Type *nTy = nTyS;
+ if (const auto *vTy = dyn_cast<FixedVectorType>(rTy))
+ nTy = FixedVectorType::get(nTyS, vTy);
+ unsigned size = nTy->getScalarSizeInBits();
+ opr_n = CI->getArgOperand(1);
+ if (opr_n->getType()->isIntegerTy())
+ opr_n = B.CreateZExtOrBitCast(opr_n, nTy, "__ytou");
+ else
+ opr_n = B.CreateFPToSI(opr1, nTy, "__ytou");
+
+ Value *sign = B.CreateShl(opr_n, size-1, "__yeven");
+ sign = B.CreateAnd(B.CreateBitCast(opr0, nTy), sign, "__pow_sign");
+ nval = B.CreateOr(B.CreateBitCast(nval, nTy), sign);
+ nval = B.CreateBitCast(nval, opr0->getType());
+ }
+
+ LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> "
+ << "exp2(" << *opr1 << " * log2(" << *opr0 << "))\n");
+ replaceCall(nval);
+
+ return true;
+}
+
+bool AMDGPULibCalls::fold_rootn(CallInst *CI, IRBuilder<> &B,
+ const FuncInfo &FInfo) {
+ Value *opr0 = CI->getArgOperand(0);
+ Value *opr1 = CI->getArgOperand(1);
+
+ ConstantInt *CINT = dyn_cast<ConstantInt>(opr1);
+ if (!CINT) {
+ return false;
+ }
+ int ci_opr1 = (int)CINT->getSExtValue();
+ if (ci_opr1 == 1) { // rootn(x, 1) = x
+ LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *opr0 << "\n");
+ replaceCall(opr0);
+ return true;
+ }
+ if (ci_opr1 == 2) { // rootn(x, 2) = sqrt(x)
+ Module *M = CI->getModule();
+ if (FunctionCallee FPExpr =
+ getFunction(M, AMDGPULibFunc(AMDGPULibFunc::EI_SQRT, FInfo))) {
+ LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> sqrt(" << *opr0 << ")\n");
+ Value *nval = CreateCallEx(B,FPExpr, opr0, "__rootn2sqrt");
+ replaceCall(nval);
+ return true;
+ }
+ } else if (ci_opr1 == 3) { // rootn(x, 3) = cbrt(x)
+ Module *M = CI->getModule();
+ if (FunctionCallee FPExpr =
+ getFunction(M, AMDGPULibFunc(AMDGPULibFunc::EI_CBRT, FInfo))) {
+ LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> cbrt(" << *opr0 << ")\n");
+ Value *nval = CreateCallEx(B,FPExpr, opr0, "__rootn2cbrt");
+ replaceCall(nval);
+ return true;
+ }
+ } else if (ci_opr1 == -1) { // rootn(x, -1) = 1.0/x
+ LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> 1.0 / " << *opr0 << "\n");
+ Value *nval = B.CreateFDiv(ConstantFP::get(opr0->getType(), 1.0),
+ opr0,
+ "__rootn2div");
+ replaceCall(nval);
+ return true;
+ } else if (ci_opr1 == -2) { // rootn(x, -2) = rsqrt(x)
+ Module *M = CI->getModule();
+ if (FunctionCallee FPExpr =
+ getFunction(M, AMDGPULibFunc(AMDGPULibFunc::EI_RSQRT, FInfo))) {
+ LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> rsqrt(" << *opr0
+ << ")\n");
+ Value *nval = CreateCallEx(B,FPExpr, opr0, "__rootn2rsqrt");
+ replaceCall(nval);
+ return true;
+ }
+ }
+ return false;
+}
+
+bool AMDGPULibCalls::fold_fma_mad(CallInst *CI, IRBuilder<> &B,
+ const FuncInfo &FInfo) {
+ Value *opr0 = CI->getArgOperand(0);
+ Value *opr1 = CI->getArgOperand(1);
+ Value *opr2 = CI->getArgOperand(2);
+
+ ConstantFP *CF0 = dyn_cast<ConstantFP>(opr0);
+ ConstantFP *CF1 = dyn_cast<ConstantFP>(opr1);
+ if ((CF0 && CF0->isZero()) || (CF1 && CF1->isZero())) {
+ // fma/mad(a, b, c) = c if a=0 || b=0
+ LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *opr2 << "\n");
+ replaceCall(opr2);
+ return true;
+ }
+ if (CF0 && CF0->isExactlyValue(1.0f)) {
+ // fma/mad(a, b, c) = b+c if a=1
+ LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *opr1 << " + " << *opr2
+ << "\n");
+ Value *nval = B.CreateFAdd(opr1, opr2, "fmaadd");
+ replaceCall(nval);
+ return true;
+ }
+ if (CF1 && CF1->isExactlyValue(1.0f)) {
+ // fma/mad(a, b, c) = a+c if b=1
+ LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *opr0 << " + " << *opr2
+ << "\n");
+ Value *nval = B.CreateFAdd(opr0, opr2, "fmaadd");
+ replaceCall(nval);
+ return true;
+ }
+ if (ConstantFP *CF = dyn_cast<ConstantFP>(opr2)) {
+ if (CF->isZero()) {
+ // fma/mad(a, b, c) = a*b if c=0
+ LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *opr0 << " * "
+ << *opr1 << "\n");
+ Value *nval = B.CreateFMul(opr0, opr1, "fmamul");
+ replaceCall(nval);
+ return true;
+ }
+ }
+
+ return false;
+}
+
+// Get a scalar native builtin signle argument FP function
+FunctionCallee AMDGPULibCalls::getNativeFunction(Module *M,
+ const FuncInfo &FInfo) {
+ if (getArgType(FInfo) == AMDGPULibFunc::F64 || !HasNative(FInfo.getId()))
+ return nullptr;
+ FuncInfo nf = FInfo;
+ nf.setPrefix(AMDGPULibFunc::NATIVE);
+ return getFunction(M, nf);
+}
+
+// fold sqrt -> native_sqrt (x)
+bool AMDGPULibCalls::fold_sqrt(CallInst *CI, IRBuilder<> &B,
+ const FuncInfo &FInfo) {
+ if (getArgType(FInfo) == AMDGPULibFunc::F32 && (getVecSize(FInfo) == 1) &&
+ (FInfo.getPrefix() != AMDGPULibFunc::NATIVE)) {
+ if (FunctionCallee FPExpr = getNativeFunction(
+ CI->getModule(), AMDGPULibFunc(AMDGPULibFunc::EI_SQRT, FInfo))) {
+ Value *opr0 = CI->getArgOperand(0);
+ LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> "
+ << "sqrt(" << *opr0 << ")\n");
+ Value *nval = CreateCallEx(B,FPExpr, opr0, "__sqrt");
+ replaceCall(nval);
+ return true;
+ }
+ }
+ return false;
+}
+
+// fold sin, cos -> sincos.
+bool AMDGPULibCalls::fold_sincos(CallInst *CI, IRBuilder<> &B,
+ AliasAnalysis *AA) {
+ AMDGPULibFunc fInfo;
+ if (!AMDGPULibFunc::parse(CI->getCalledFunction()->getName(), fInfo))
+ return false;
+
+ assert(fInfo.getId() == AMDGPULibFunc::EI_SIN ||
+ fInfo.getId() == AMDGPULibFunc::EI_COS);
+ bool const isSin = fInfo.getId() == AMDGPULibFunc::EI_SIN;
+
+ Value *CArgVal = CI->getArgOperand(0);
+ BasicBlock * const CBB = CI->getParent();
+
+ int const MaxScan = 30;
+
+ { // fold in load value.
+ LoadInst *LI = dyn_cast<LoadInst>(CArgVal);
+ if (LI && LI->getParent() == CBB) {
+ BasicBlock::iterator BBI = LI->getIterator();
+ Value *AvailableVal = FindAvailableLoadedValue(LI, CBB, BBI, MaxScan, AA);
+ if (AvailableVal) {
+ CArgVal->replaceAllUsesWith(AvailableVal);
+ if (CArgVal->getNumUses() == 0)
+ LI->eraseFromParent();
+ CArgVal = CI->getArgOperand(0);
+ }
+ }
+ }
+
+ Module *M = CI->getModule();
+ fInfo.setId(isSin ? AMDGPULibFunc::EI_COS : AMDGPULibFunc::EI_SIN);
+ std::string const PairName = fInfo.mangle();
+
+ CallInst *UI = nullptr;
+ for (User* U : CArgVal->users()) {
+ CallInst *XI = dyn_cast_or_null<CallInst>(U);
+ if (!XI || XI == CI || XI->getParent() != CBB)
+ continue;
+
+ Function *UCallee = XI->getCalledFunction();
+ if (!UCallee || !UCallee->getName().equals(PairName))
+ continue;
+
+ BasicBlock::iterator BBI = CI->getIterator();
+ if (BBI == CI->getParent()->begin())
+ break;
+ --BBI;
+ for (int I = MaxScan; I > 0 && BBI != CBB->begin(); --BBI, --I) {
+ if (cast<Instruction>(BBI) == XI) {
+ UI = XI;
+ break;
+ }
+ }
+ if (UI) break;
+ }
+
+ if (!UI) return false;
+
+ // Merge the sin and cos.
+
+ // for OpenCL 2.0 we have only generic implementation of sincos
+ // function.
+ AMDGPULibFunc nf(AMDGPULibFunc::EI_SINCOS, fInfo);
+ nf.getLeads()[0].PtrKind = AMDGPULibFunc::getEPtrKindFromAddrSpace(AMDGPUAS::FLAT_ADDRESS);
+ FunctionCallee Fsincos = getFunction(M, nf);
+ if (!Fsincos) return false;
+
+ BasicBlock::iterator ItOld = B.GetInsertPoint();
+ AllocaInst *Alloc = insertAlloca(UI, B, "__sincos_");
+ B.SetInsertPoint(UI);
+
+ Value *P = Alloc;
+ Type *PTy = Fsincos.getFunctionType()->getParamType(1);
+ // The allocaInst allocates the memory in private address space. This need
+ // to be bitcasted to point to the address space of cos pointer type.
+ // In OpenCL 2.0 this is generic, while in 1.2 that is private.
+ if (PTy->getPointerAddressSpace() != AMDGPUAS::PRIVATE_ADDRESS)
+ P = B.CreateAddrSpaceCast(Alloc, PTy);
+ CallInst *Call = CreateCallEx2(B, Fsincos, UI->getArgOperand(0), P);
+
+ LLVM_DEBUG(errs() << "AMDIC: fold_sincos (" << *CI << ", " << *UI << ") with "
+ << *Call << "\n");
+
+ if (!isSin) { // CI->cos, UI->sin
+ B.SetInsertPoint(&*ItOld);
+ UI->replaceAllUsesWith(&*Call);
+ Instruction *Reload = B.CreateLoad(Alloc->getAllocatedType(), Alloc);
+ CI->replaceAllUsesWith(Reload);
+ UI->eraseFromParent();
+ CI->eraseFromParent();
+ } else { // CI->sin, UI->cos
+ Instruction *Reload = B.CreateLoad(Alloc->getAllocatedType(), Alloc);
+ UI->replaceAllUsesWith(Reload);
+ CI->replaceAllUsesWith(Call);
+ UI->eraseFromParent();
+ CI->eraseFromParent();
+ }
+ return true;
+}
+
+bool AMDGPULibCalls::fold_wavefrontsize(CallInst *CI, IRBuilder<> &B) {
+ if (!TM)
+ return false;
+
+ StringRef CPU = TM->getTargetCPU();
+ StringRef Features = TM->getTargetFeatureString();
+ if ((CPU.empty() || CPU.equals_lower("generic")) &&
+ (Features.empty() ||
+ Features.find_lower("wavefrontsize") == StringRef::npos))
+ return false;
+
+ Function *F = CI->getParent()->getParent();
+ const GCNSubtarget &ST = TM->getSubtarget<GCNSubtarget>(*F);
+ unsigned N = ST.getWavefrontSize();
+
+ LLVM_DEBUG(errs() << "AMDIC: fold_wavefrontsize (" << *CI << ") with "
+ << N << "\n");
+
+ CI->replaceAllUsesWith(ConstantInt::get(B.getInt32Ty(), N));
+ CI->eraseFromParent();
+ return true;
+}
+
+// Get insertion point at entry.
+BasicBlock::iterator AMDGPULibCalls::getEntryIns(CallInst * UI) {
+ Function * Func = UI->getParent()->getParent();
+ BasicBlock * BB = &Func->getEntryBlock();
+ assert(BB && "Entry block not found!");
+ BasicBlock::iterator ItNew = BB->begin();
+ return ItNew;
+}
+
+// Insert a AllocsInst at the beginning of function entry block.
+AllocaInst* AMDGPULibCalls::insertAlloca(CallInst *UI, IRBuilder<> &B,
+ const char *prefix) {
+ BasicBlock::iterator ItNew = getEntryIns(UI);
+ Function *UCallee = UI->getCalledFunction();
+ Type *RetType = UCallee->getReturnType();
+ B.SetInsertPoint(&*ItNew);
+ AllocaInst *Alloc = B.CreateAlloca(RetType, 0,
+ std::string(prefix) + UI->getName());
+ Alloc->setAlignment(
+ Align(UCallee->getParent()->getDataLayout().getTypeAllocSize(RetType)));
+ return Alloc;
+}
+
+bool AMDGPULibCalls::evaluateScalarMathFunc(FuncInfo &FInfo,
+ double& Res0, double& Res1,
+ Constant *copr0, Constant *copr1,
+ Constant *copr2) {
+ // By default, opr0/opr1/opr3 holds values of float/double type.
+ // If they are not float/double, each function has to its
+ // operand separately.
+ double opr0=0.0, opr1=0.0, opr2=0.0;
+ ConstantFP *fpopr0 = dyn_cast_or_null<ConstantFP>(copr0);
+ ConstantFP *fpopr1 = dyn_cast_or_null<ConstantFP>(copr1);
+ ConstantFP *fpopr2 = dyn_cast_or_null<ConstantFP>(copr2);
+ if (fpopr0) {
+ opr0 = (getArgType(FInfo) == AMDGPULibFunc::F64)
+ ? fpopr0->getValueAPF().convertToDouble()
+ : (double)fpopr0->getValueAPF().convertToFloat();
+ }
+
+ if (fpopr1) {
+ opr1 = (getArgType(FInfo) == AMDGPULibFunc::F64)
+ ? fpopr1->getValueAPF().convertToDouble()
+ : (double)fpopr1->getValueAPF().convertToFloat();
+ }
+
+ if (fpopr2) {
+ opr2 = (getArgType(FInfo) == AMDGPULibFunc::F64)
+ ? fpopr2->getValueAPF().convertToDouble()
+ : (double)fpopr2->getValueAPF().convertToFloat();
+ }
+
+ switch (FInfo.getId()) {
+ default : return false;
+
+ case AMDGPULibFunc::EI_ACOS:
+ Res0 = acos(opr0);
+ return true;
+
+ case AMDGPULibFunc::EI_ACOSH:
+ // acosh(x) == log(x + sqrt(x*x - 1))
+ Res0 = log(opr0 + sqrt(opr0*opr0 - 1.0));
+ return true;
+
+ case AMDGPULibFunc::EI_ACOSPI:
+ Res0 = acos(opr0) / MATH_PI;
+ return true;
+
+ case AMDGPULibFunc::EI_ASIN:
+ Res0 = asin(opr0);
+ return true;
+
+ case AMDGPULibFunc::EI_ASINH:
+ // asinh(x) == log(x + sqrt(x*x + 1))
+ Res0 = log(opr0 + sqrt(opr0*opr0 + 1.0));
+ return true;
+
+ case AMDGPULibFunc::EI_ASINPI:
+ Res0 = asin(opr0) / MATH_PI;
+ return true;
+
+ case AMDGPULibFunc::EI_ATAN:
+ Res0 = atan(opr0);
+ return true;
+
+ case AMDGPULibFunc::EI_ATANH:
+ // atanh(x) == (log(x+1) - log(x-1))/2;
+ Res0 = (log(opr0 + 1.0) - log(opr0 - 1.0))/2.0;
+ return true;
+
+ case AMDGPULibFunc::EI_ATANPI:
+ Res0 = atan(opr0) / MATH_PI;
+ return true;
+
+ case AMDGPULibFunc::EI_CBRT:
+ Res0 = (opr0 < 0.0) ? -pow(-opr0, 1.0/3.0) : pow(opr0, 1.0/3.0);
+ return true;
+
+ case AMDGPULibFunc::EI_COS:
+ Res0 = cos(opr0);
+ return true;
+
+ case AMDGPULibFunc::EI_COSH:
+ Res0 = cosh(opr0);
+ return true;
+
+ case AMDGPULibFunc::EI_COSPI:
+ Res0 = cos(MATH_PI * opr0);
+ return true;
+
+ case AMDGPULibFunc::EI_EXP:
+ Res0 = exp(opr0);
+ return true;
+
+ case AMDGPULibFunc::EI_EXP2:
+ Res0 = pow(2.0, opr0);
+ return true;
+
+ case AMDGPULibFunc::EI_EXP10:
+ Res0 = pow(10.0, opr0);
+ return true;
+
+ case AMDGPULibFunc::EI_EXPM1:
+ Res0 = exp(opr0) - 1.0;
+ return true;
+
+ case AMDGPULibFunc::EI_LOG:
+ Res0 = log(opr0);
+ return true;
+
+ case AMDGPULibFunc::EI_LOG2:
+ Res0 = log(opr0) / log(2.0);
+ return true;
+
+ case AMDGPULibFunc::EI_LOG10:
+ Res0 = log(opr0) / log(10.0);
+ return true;
+
+ case AMDGPULibFunc::EI_RSQRT:
+ Res0 = 1.0 / sqrt(opr0);
+ return true;
+
+ case AMDGPULibFunc::EI_SIN:
+ Res0 = sin(opr0);
+ return true;
+
+ case AMDGPULibFunc::EI_SINH:
+ Res0 = sinh(opr0);
+ return true;
+
+ case AMDGPULibFunc::EI_SINPI:
+ Res0 = sin(MATH_PI * opr0);
+ return true;
+
+ case AMDGPULibFunc::EI_SQRT:
+ Res0 = sqrt(opr0);
+ return true;
+
+ case AMDGPULibFunc::EI_TAN:
+ Res0 = tan(opr0);
+ return true;
+
+ case AMDGPULibFunc::EI_TANH:
+ Res0 = tanh(opr0);
+ return true;
+
+ case AMDGPULibFunc::EI_TANPI:
+ Res0 = tan(MATH_PI * opr0);
+ return true;
+
+ case AMDGPULibFunc::EI_RECIP:
+ Res0 = 1.0 / opr0;
+ return true;
+
+ // two-arg functions
+ case AMDGPULibFunc::EI_DIVIDE:
+ Res0 = opr0 / opr1;
+ return true;
+
+ case AMDGPULibFunc::EI_POW:
+ case AMDGPULibFunc::EI_POWR:
+ Res0 = pow(opr0, opr1);
+ return true;
+
+ case AMDGPULibFunc::EI_POWN: {
+ if (ConstantInt *iopr1 = dyn_cast_or_null<ConstantInt>(copr1)) {
+ double val = (double)iopr1->getSExtValue();
+ Res0 = pow(opr0, val);
+ return true;
+ }
+ return false;
+ }
+
+ case AMDGPULibFunc::EI_ROOTN: {
+ if (ConstantInt *iopr1 = dyn_cast_or_null<ConstantInt>(copr1)) {
+ double val = (double)iopr1->getSExtValue();
+ Res0 = pow(opr0, 1.0 / val);
+ return true;
+ }
+ return false;
+ }
+
+ // with ptr arg
+ case AMDGPULibFunc::EI_SINCOS:
+ Res0 = sin(opr0);
+ Res1 = cos(opr0);
+ return true;
+
+ // three-arg functions
+ case AMDGPULibFunc::EI_FMA:
+ case AMDGPULibFunc::EI_MAD:
+ Res0 = opr0 * opr1 + opr2;
+ return true;
+ }
+
+ return false;
+}
+
+bool AMDGPULibCalls::evaluateCall(CallInst *aCI, FuncInfo &FInfo) {
+ int numArgs = (int)aCI->getNumArgOperands();
+ if (numArgs > 3)
+ return false;
+
+ Constant *copr0 = nullptr;
+ Constant *copr1 = nullptr;
+ Constant *copr2 = nullptr;
+ if (numArgs > 0) {
+ if ((copr0 = dyn_cast<Constant>(aCI->getArgOperand(0))) == nullptr)
+ return false;
+ }
+
+ if (numArgs > 1) {
+ if ((copr1 = dyn_cast<Constant>(aCI->getArgOperand(1))) == nullptr) {
+ if (FInfo.getId() != AMDGPULibFunc::EI_SINCOS)
+ return false;
+ }
+ }
+
+ if (numArgs > 2) {
+ if ((copr2 = dyn_cast<Constant>(aCI->getArgOperand(2))) == nullptr)
+ return false;
+ }
+
+ // At this point, all arguments to aCI are constants.
+
+ // max vector size is 16, and sincos will generate two results.
+ double DVal0[16], DVal1[16];
+ bool hasTwoResults = (FInfo.getId() == AMDGPULibFunc::EI_SINCOS);
+ if (getVecSize(FInfo) == 1) {
+ if (!evaluateScalarMathFunc(FInfo, DVal0[0],
+ DVal1[0], copr0, copr1, copr2)) {
+ return false;
+ }
+ } else {
+ ConstantDataVector *CDV0 = dyn_cast_or_null<ConstantDataVector>(copr0);
+ ConstantDataVector *CDV1 = dyn_cast_or_null<ConstantDataVector>(copr1);
+ ConstantDataVector *CDV2 = dyn_cast_or_null<ConstantDataVector>(copr2);
+ for (int i=0; i < getVecSize(FInfo); ++i) {
+ Constant *celt0 = CDV0 ? CDV0->getElementAsConstant(i) : nullptr;
+ Constant *celt1 = CDV1 ? CDV1->getElementAsConstant(i) : nullptr;
+ Constant *celt2 = CDV2 ? CDV2->getElementAsConstant(i) : nullptr;
+ if (!evaluateScalarMathFunc(FInfo, DVal0[i],
+ DVal1[i], celt0, celt1, celt2)) {
+ return false;
+ }
+ }
+ }
+
+ LLVMContext &context = CI->getParent()->getParent()->getContext();
+ Constant *nval0, *nval1;
+ if (getVecSize(FInfo) == 1) {
+ nval0 = ConstantFP::get(CI->getType(), DVal0[0]);
+ if (hasTwoResults)
+ nval1 = ConstantFP::get(CI->getType(), DVal1[0]);
+ } else {
+ if (getArgType(FInfo) == AMDGPULibFunc::F32) {
+ SmallVector <float, 0> FVal0, FVal1;
+ for (int i=0; i < getVecSize(FInfo); ++i)
+ FVal0.push_back((float)DVal0[i]);
+ ArrayRef<float> tmp0(FVal0);
+ nval0 = ConstantDataVector::get(context, tmp0);
+ if (hasTwoResults) {
+ for (int i=0; i < getVecSize(FInfo); ++i)
+ FVal1.push_back((float)DVal1[i]);
+ ArrayRef<float> tmp1(FVal1);
+ nval1 = ConstantDataVector::get(context, tmp1);
+ }
+ } else {
+ ArrayRef<double> tmp0(DVal0);
+ nval0 = ConstantDataVector::get(context, tmp0);
+ if (hasTwoResults) {
+ ArrayRef<double> tmp1(DVal1);
+ nval1 = ConstantDataVector::get(context, tmp1);
+ }
+ }
+ }
+
+ if (hasTwoResults) {
+ // sincos
+ assert(FInfo.getId() == AMDGPULibFunc::EI_SINCOS &&
+ "math function with ptr arg not supported yet");
+ new StoreInst(nval1, aCI->getArgOperand(1), aCI);
+ }
+
+ replaceCall(nval0);
+ return true;
+}
+
+// Public interface to the Simplify LibCalls pass.
+FunctionPass *llvm::createAMDGPUSimplifyLibCallsPass(const TargetMachine *TM) {
+ return new AMDGPUSimplifyLibCalls(TM);
+}
+
+FunctionPass *llvm::createAMDGPUUseNativeCallsPass() {
+ return new AMDGPUUseNativeCalls();
+}
+
+bool AMDGPUSimplifyLibCalls::runOnFunction(Function &F) {
+ if (skipFunction(F))
+ return false;
+
+ bool Changed = false;
+ auto AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
+
+ LLVM_DEBUG(dbgs() << "AMDIC: process function ";
+ F.printAsOperand(dbgs(), false, F.getParent()); dbgs() << '\n';);
+
+ for (auto &BB : F) {
+ for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E; ) {
+ // Ignore non-calls.
+ CallInst *CI = dyn_cast<CallInst>(I);
+ ++I;
+ // Ignore intrinsics that do not become real instructions.
+ if (!CI || isa<DbgInfoIntrinsic>(CI) || CI->isLifetimeStartOrEnd())
+ continue;
+
+ // Ignore indirect calls.
+ Function *Callee = CI->getCalledFunction();
+ if (Callee == 0) continue;
+
+ LLVM_DEBUG(dbgs() << "AMDIC: try folding " << *CI << "\n";
+ dbgs().flush());
+ if(Simplifier.fold(CI, AA))
+ Changed = true;
+ }
+ }
+ return Changed;
+}
+
+bool AMDGPUUseNativeCalls::runOnFunction(Function &F) {
+ if (skipFunction(F) || UseNative.empty())
+ return false;
+
+ bool Changed = false;
+ for (auto &BB : F) {
+ for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E; ) {
+ // Ignore non-calls.
+ CallInst *CI = dyn_cast<CallInst>(I);
+ ++I;
+ if (!CI) continue;
+
+ // Ignore indirect calls.
+ Function *Callee = CI->getCalledFunction();
+ if (Callee == 0) continue;
+
+ if(Simplifier.useNative(CI))
+ Changed = true;
+ }
+ }
+ return Changed;
+}