diff options
Diffstat (limited to 'contrib/llvm-project/llvm/lib/Target/AMDGPU/AMDGPUSubtarget.cpp')
| -rw-r--r-- | contrib/llvm-project/llvm/lib/Target/AMDGPU/AMDGPUSubtarget.cpp | 1125 |
1 files changed, 1125 insertions, 0 deletions
diff --git a/contrib/llvm-project/llvm/lib/Target/AMDGPU/AMDGPUSubtarget.cpp b/contrib/llvm-project/llvm/lib/Target/AMDGPU/AMDGPUSubtarget.cpp new file mode 100644 index 000000000000..0655b4342ba1 --- /dev/null +++ b/contrib/llvm-project/llvm/lib/Target/AMDGPU/AMDGPUSubtarget.cpp @@ -0,0 +1,1125 @@ +//===-- AMDGPUSubtarget.cpp - AMDGPU Subtarget Information ----------------===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +/// \file +/// Implements the AMDGPU specific subclass of TargetSubtarget. +// +//===----------------------------------------------------------------------===// + +#include "AMDGPUSubtarget.h" +#include "AMDGPUCallLowering.h" +#include "AMDGPUInstructionSelector.h" +#include "AMDGPULegalizerInfo.h" +#include "AMDGPURegisterBankInfo.h" +#include "AMDGPUTargetMachine.h" +#include "R600Subtarget.h" +#include "SIMachineFunctionInfo.h" +#include "Utils/AMDGPUBaseInfo.h" +#include "llvm/ADT/SmallString.h" +#include "llvm/CodeGen/GlobalISel/InlineAsmLowering.h" +#include "llvm/CodeGen/MachineScheduler.h" +#include "llvm/CodeGen/TargetFrameLowering.h" +#include "llvm/IR/IntrinsicsAMDGPU.h" +#include "llvm/IR/IntrinsicsR600.h" +#include "llvm/IR/MDBuilder.h" +#include "llvm/MC/MCSubtargetInfo.h" +#include <algorithm> + +using namespace llvm; + +#define DEBUG_TYPE "amdgpu-subtarget" + +#define GET_SUBTARGETINFO_TARGET_DESC +#define GET_SUBTARGETINFO_CTOR +#define AMDGPUSubtarget GCNSubtarget +#include "AMDGPUGenSubtargetInfo.inc" +#undef AMDGPUSubtarget + +static cl::opt<bool> DisablePowerSched( + "amdgpu-disable-power-sched", + cl::desc("Disable scheduling to minimize mAI power bursts"), + cl::init(false)); + +static cl::opt<bool> EnableVGPRIndexMode( + "amdgpu-vgpr-index-mode", + cl::desc("Use GPR indexing mode instead of movrel for vector indexing"), + cl::init(false)); + +static cl::opt<bool> EnableFlatScratch( + "amdgpu-enable-flat-scratch", + cl::desc("Use flat scratch instructions"), + cl::init(false)); + +static cl::opt<bool> UseAA("amdgpu-use-aa-in-codegen", + cl::desc("Enable the use of AA during codegen."), + cl::init(true)); + +GCNSubtarget::~GCNSubtarget() = default; + +GCNSubtarget & +GCNSubtarget::initializeSubtargetDependencies(const Triple &TT, + StringRef GPU, StringRef FS) { + // Determine default and user-specified characteristics + // + // We want to be able to turn these off, but making this a subtarget feature + // for SI has the unhelpful behavior that it unsets everything else if you + // disable it. + // + // Similarly we want enable-prt-strict-null to be on by default and not to + // unset everything else if it is disabled + + SmallString<256> FullFS("+promote-alloca,+load-store-opt,+enable-ds128,"); + + // Turn on features that HSA ABI requires. Also turn on FlatForGlobal by default + if (isAmdHsaOS()) + FullFS += "+flat-for-global,+unaligned-access-mode,+trap-handler,"; + + FullFS += "+enable-prt-strict-null,"; // This is overridden by a disable in FS + + // Disable mutually exclusive bits. + if (FS.contains_insensitive("+wavefrontsize")) { + if (!FS.contains_insensitive("wavefrontsize16")) + FullFS += "-wavefrontsize16,"; + if (!FS.contains_insensitive("wavefrontsize32")) + FullFS += "-wavefrontsize32,"; + if (!FS.contains_insensitive("wavefrontsize64")) + FullFS += "-wavefrontsize64,"; + } + + FullFS += FS; + + ParseSubtargetFeatures(GPU, /*TuneCPU*/ GPU, FullFS); + + // Implement the "generic" processors, which acts as the default when no + // generation features are enabled (e.g for -mcpu=''). HSA OS defaults to + // the first amdgcn target that supports flat addressing. Other OSes defaults + // to the first amdgcn target. + if (Gen == AMDGPUSubtarget::INVALID) { + Gen = TT.getOS() == Triple::AMDHSA ? AMDGPUSubtarget::SEA_ISLANDS + : AMDGPUSubtarget::SOUTHERN_ISLANDS; + } + + // We don't support FP64 for EG/NI atm. + assert(!hasFP64() || (getGeneration() >= AMDGPUSubtarget::SOUTHERN_ISLANDS)); + + // Targets must either support 64-bit offsets for MUBUF instructions, and/or + // support flat operations, otherwise they cannot access a 64-bit global + // address space + assert(hasAddr64() || hasFlat()); + // Unless +-flat-for-global is specified, turn on FlatForGlobal for targets + // that do not support ADDR64 variants of MUBUF instructions. Such targets + // cannot use a 64 bit offset with a MUBUF instruction to access the global + // address space + if (!hasAddr64() && !FS.contains("flat-for-global") && !FlatForGlobal) { + ToggleFeature(AMDGPU::FeatureFlatForGlobal); + FlatForGlobal = true; + } + // Unless +-flat-for-global is specified, use MUBUF instructions for global + // address space access if flat operations are not available. + if (!hasFlat() && !FS.contains("flat-for-global") && FlatForGlobal) { + ToggleFeature(AMDGPU::FeatureFlatForGlobal); + FlatForGlobal = false; + } + + // Set defaults if needed. + if (MaxPrivateElementSize == 0) + MaxPrivateElementSize = 4; + + if (LDSBankCount == 0) + LDSBankCount = 32; + + if (TT.getArch() == Triple::amdgcn) { + if (LocalMemorySize == 0) + LocalMemorySize = 32768; + + // Do something sensible for unspecified target. + if (!HasMovrel && !HasVGPRIndexMode) + HasMovrel = true; + } + + // Don't crash on invalid devices. + if (WavefrontSizeLog2 == 0) + WavefrontSizeLog2 = 5; + + HasFminFmaxLegacy = getGeneration() < AMDGPUSubtarget::VOLCANIC_ISLANDS; + HasSMulHi = getGeneration() >= AMDGPUSubtarget::GFX9; + + TargetID.setTargetIDFromFeaturesString(FS); + + LLVM_DEBUG(dbgs() << "xnack setting for subtarget: " + << TargetID.getXnackSetting() << '\n'); + LLVM_DEBUG(dbgs() << "sramecc setting for subtarget: " + << TargetID.getSramEccSetting() << '\n'); + + return *this; +} + +AMDGPUSubtarget::AMDGPUSubtarget(const Triple &TT) : + TargetTriple(TT), + GCN3Encoding(false), + Has16BitInsts(false), + HasMadMixInsts(false), + HasMadMacF32Insts(false), + HasDsSrc2Insts(false), + HasSDWA(false), + HasVOP3PInsts(false), + HasMulI24(true), + HasMulU24(true), + HasSMulHi(false), + HasInv2PiInlineImm(false), + HasFminFmaxLegacy(true), + EnablePromoteAlloca(false), + HasTrigReducedRange(false), + MaxWavesPerEU(10), + LocalMemorySize(0), + WavefrontSizeLog2(0) + { } + +GCNSubtarget::GCNSubtarget(const Triple &TT, StringRef GPU, StringRef FS, + const GCNTargetMachine &TM) + : // clang-format off + AMDGPUGenSubtargetInfo(TT, GPU, /*TuneCPU*/ GPU, FS), + AMDGPUSubtarget(TT), + TargetTriple(TT), + TargetID(*this), + Gen(INVALID), + InstrItins(getInstrItineraryForCPU(GPU)), + LDSBankCount(0), + MaxPrivateElementSize(0), + + FastFMAF32(false), + FastDenormalF32(false), + HalfRate64Ops(false), + FullRate64Ops(false), + + FlatForGlobal(false), + AutoWaitcntBeforeBarrier(false), + UnalignedScratchAccess(false), + UnalignedAccessMode(false), + + HasApertureRegs(false), + SupportsXNACK(false), + EnableXNACK(false), + EnableTgSplit(false), + EnableCuMode(false), + TrapHandler(false), + + EnableLoadStoreOpt(false), + EnableUnsafeDSOffsetFolding(false), + EnableSIScheduler(false), + EnableDS128(false), + EnablePRTStrictNull(false), + DumpCode(false), + + FP64(false), + CIInsts(false), + GFX8Insts(false), + GFX9Insts(false), + GFX90AInsts(false), + GFX10Insts(false), + GFX10_3Insts(false), + GFX7GFX8GFX9Insts(false), + SGPRInitBug(false), + NegativeScratchOffsetBug(false), + NegativeUnalignedScratchOffsetBug(false), + HasSMemRealTime(false), + HasIntClamp(false), + HasFmaMixInsts(false), + HasMovrel(false), + HasVGPRIndexMode(false), + HasScalarStores(false), + HasScalarAtomics(false), + HasSDWAOmod(false), + HasSDWAScalar(false), + HasSDWASdst(false), + HasSDWAMac(false), + HasSDWAOutModsVOPC(false), + HasDPP(false), + HasDPP8(false), + Has64BitDPP(false), + HasPackedFP32Ops(false), + HasExtendedImageInsts(false), + HasR128A16(false), + HasGFX10A16(false), + HasG16(false), + HasNSAEncoding(false), + NSAMaxSize(0), + GFX10_AEncoding(false), + GFX10_BEncoding(false), + HasDLInsts(false), + HasDot1Insts(false), + HasDot2Insts(false), + HasDot3Insts(false), + HasDot4Insts(false), + HasDot5Insts(false), + HasDot6Insts(false), + HasDot7Insts(false), + HasMAIInsts(false), + HasPkFmacF16Inst(false), + HasAtomicFaddInsts(false), + SupportsSRAMECC(false), + EnableSRAMECC(false), + HasNoSdstCMPX(false), + HasVscnt(false), + HasGetWaveIdInst(false), + HasSMemTimeInst(false), + HasShaderCyclesRegister(false), + HasRegisterBanking(false), + HasVOP3Literal(false), + HasNoDataDepHazard(false), + FlatAddressSpace(false), + FlatInstOffsets(false), + FlatGlobalInsts(false), + FlatScratchInsts(false), + ScalarFlatScratchInsts(false), + HasArchitectedFlatScratch(false), + AddNoCarryInsts(false), + HasUnpackedD16VMem(false), + LDSMisalignedBug(false), + HasMFMAInlineLiteralBug(false), + UnalignedBufferAccess(false), + UnalignedDSAccess(false), + HasPackedTID(false), + + ScalarizeGlobal(false), + + HasVcmpxPermlaneHazard(false), + HasVMEMtoScalarWriteHazard(false), + HasSMEMtoVectorWriteHazard(false), + HasInstFwdPrefetchBug(false), + HasVcmpxExecWARHazard(false), + HasLdsBranchVmemWARHazard(false), + HasNSAtoVMEMBug(false), + HasNSAClauseBug(false), + HasOffset3fBug(false), + HasFlatSegmentOffsetBug(false), + HasImageStoreD16Bug(false), + HasImageGather4D16Bug(false), + + FeatureDisable(false), + InstrInfo(initializeSubtargetDependencies(TT, GPU, FS)), + TLInfo(TM, *this), + FrameLowering(TargetFrameLowering::StackGrowsUp, getStackAlignment(), 0) { + // clang-format on + MaxWavesPerEU = AMDGPU::IsaInfo::getMaxWavesPerEU(this); + CallLoweringInfo.reset(new AMDGPUCallLowering(*getTargetLowering())); + InlineAsmLoweringInfo.reset(new InlineAsmLowering(getTargetLowering())); + Legalizer.reset(new AMDGPULegalizerInfo(*this, TM)); + RegBankInfo.reset(new AMDGPURegisterBankInfo(*this)); + InstSelector.reset(new AMDGPUInstructionSelector( + *this, *static_cast<AMDGPURegisterBankInfo *>(RegBankInfo.get()), TM)); +} + +bool GCNSubtarget::enableFlatScratch() const { + return flatScratchIsArchitected() || + (EnableFlatScratch && hasFlatScratchInsts()); +} + +unsigned GCNSubtarget::getConstantBusLimit(unsigned Opcode) const { + if (getGeneration() < GFX10) + return 1; + + switch (Opcode) { + case AMDGPU::V_LSHLREV_B64_e64: + case AMDGPU::V_LSHLREV_B64_gfx10: + case AMDGPU::V_LSHL_B64_e64: + case AMDGPU::V_LSHRREV_B64_e64: + case AMDGPU::V_LSHRREV_B64_gfx10: + case AMDGPU::V_LSHR_B64_e64: + case AMDGPU::V_ASHRREV_I64_e64: + case AMDGPU::V_ASHRREV_I64_gfx10: + case AMDGPU::V_ASHR_I64_e64: + return 1; + } + + return 2; +} + +/// This list was mostly derived from experimentation. +bool GCNSubtarget::zeroesHigh16BitsOfDest(unsigned Opcode) const { + switch (Opcode) { + case AMDGPU::V_CVT_F16_F32_e32: + case AMDGPU::V_CVT_F16_F32_e64: + case AMDGPU::V_CVT_F16_U16_e32: + case AMDGPU::V_CVT_F16_U16_e64: + case AMDGPU::V_CVT_F16_I16_e32: + case AMDGPU::V_CVT_F16_I16_e64: + case AMDGPU::V_RCP_F16_e64: + case AMDGPU::V_RCP_F16_e32: + case AMDGPU::V_RSQ_F16_e64: + case AMDGPU::V_RSQ_F16_e32: + case AMDGPU::V_SQRT_F16_e64: + case AMDGPU::V_SQRT_F16_e32: + case AMDGPU::V_LOG_F16_e64: + case AMDGPU::V_LOG_F16_e32: + case AMDGPU::V_EXP_F16_e64: + case AMDGPU::V_EXP_F16_e32: + case AMDGPU::V_SIN_F16_e64: + case AMDGPU::V_SIN_F16_e32: + case AMDGPU::V_COS_F16_e64: + case AMDGPU::V_COS_F16_e32: + case AMDGPU::V_FLOOR_F16_e64: + case AMDGPU::V_FLOOR_F16_e32: + case AMDGPU::V_CEIL_F16_e64: + case AMDGPU::V_CEIL_F16_e32: + case AMDGPU::V_TRUNC_F16_e64: + case AMDGPU::V_TRUNC_F16_e32: + case AMDGPU::V_RNDNE_F16_e64: + case AMDGPU::V_RNDNE_F16_e32: + case AMDGPU::V_FRACT_F16_e64: + case AMDGPU::V_FRACT_F16_e32: + case AMDGPU::V_FREXP_MANT_F16_e64: + case AMDGPU::V_FREXP_MANT_F16_e32: + case AMDGPU::V_FREXP_EXP_I16_F16_e64: + case AMDGPU::V_FREXP_EXP_I16_F16_e32: + case AMDGPU::V_LDEXP_F16_e64: + case AMDGPU::V_LDEXP_F16_e32: + case AMDGPU::V_LSHLREV_B16_e64: + case AMDGPU::V_LSHLREV_B16_e32: + case AMDGPU::V_LSHRREV_B16_e64: + case AMDGPU::V_LSHRREV_B16_e32: + case AMDGPU::V_ASHRREV_I16_e64: + case AMDGPU::V_ASHRREV_I16_e32: + case AMDGPU::V_ADD_U16_e64: + case AMDGPU::V_ADD_U16_e32: + case AMDGPU::V_SUB_U16_e64: + case AMDGPU::V_SUB_U16_e32: + case AMDGPU::V_SUBREV_U16_e64: + case AMDGPU::V_SUBREV_U16_e32: + case AMDGPU::V_MUL_LO_U16_e64: + case AMDGPU::V_MUL_LO_U16_e32: + case AMDGPU::V_ADD_F16_e64: + case AMDGPU::V_ADD_F16_e32: + case AMDGPU::V_SUB_F16_e64: + case AMDGPU::V_SUB_F16_e32: + case AMDGPU::V_SUBREV_F16_e64: + case AMDGPU::V_SUBREV_F16_e32: + case AMDGPU::V_MUL_F16_e64: + case AMDGPU::V_MUL_F16_e32: + case AMDGPU::V_MAX_F16_e64: + case AMDGPU::V_MAX_F16_e32: + case AMDGPU::V_MIN_F16_e64: + case AMDGPU::V_MIN_F16_e32: + case AMDGPU::V_MAX_U16_e64: + case AMDGPU::V_MAX_U16_e32: + case AMDGPU::V_MIN_U16_e64: + case AMDGPU::V_MIN_U16_e32: + case AMDGPU::V_MAX_I16_e64: + case AMDGPU::V_MAX_I16_e32: + case AMDGPU::V_MIN_I16_e64: + case AMDGPU::V_MIN_I16_e32: + // On gfx10, all 16-bit instructions preserve the high bits. + return getGeneration() <= AMDGPUSubtarget::GFX9; + case AMDGPU::V_MAD_F16_e64: + case AMDGPU::V_MADAK_F16: + case AMDGPU::V_MADMK_F16: + case AMDGPU::V_MAC_F16_e64: + case AMDGPU::V_MAC_F16_e32: + case AMDGPU::V_FMAMK_F16: + case AMDGPU::V_FMAAK_F16: + case AMDGPU::V_MAD_U16_e64: + case AMDGPU::V_MAD_I16_e64: + case AMDGPU::V_FMA_F16_e64: + case AMDGPU::V_FMAC_F16_e64: + case AMDGPU::V_FMAC_F16_e32: + case AMDGPU::V_DIV_FIXUP_F16_e64: + // In gfx9, the preferred handling of the unused high 16-bits changed. Most + // instructions maintain the legacy behavior of 0ing. Some instructions + // changed to preserving the high bits. + return getGeneration() == AMDGPUSubtarget::VOLCANIC_ISLANDS; + case AMDGPU::V_MAD_MIXLO_F16: + case AMDGPU::V_MAD_MIXHI_F16: + default: + return false; + } +} + +unsigned AMDGPUSubtarget::getMaxLocalMemSizeWithWaveCount(unsigned NWaves, + const Function &F) const { + if (NWaves == 1) + return getLocalMemorySize(); + unsigned WorkGroupSize = getFlatWorkGroupSizes(F).second; + unsigned WorkGroupsPerCu = getMaxWorkGroupsPerCU(WorkGroupSize); + if (!WorkGroupsPerCu) + return 0; + unsigned MaxWaves = getMaxWavesPerEU(); + return getLocalMemorySize() * MaxWaves / WorkGroupsPerCu / NWaves; +} + +// FIXME: Should return min,max range. +unsigned AMDGPUSubtarget::getOccupancyWithLocalMemSize(uint32_t Bytes, + const Function &F) const { + const unsigned MaxWorkGroupSize = getFlatWorkGroupSizes(F).second; + const unsigned MaxWorkGroupsPerCu = getMaxWorkGroupsPerCU(MaxWorkGroupSize); + if (!MaxWorkGroupsPerCu) + return 0; + + const unsigned WaveSize = getWavefrontSize(); + + // FIXME: Do we need to account for alignment requirement of LDS rounding the + // size up? + // Compute restriction based on LDS usage + unsigned NumGroups = getLocalMemorySize() / (Bytes ? Bytes : 1u); + + // This can be queried with more LDS than is possible, so just assume the + // worst. + if (NumGroups == 0) + return 1; + + NumGroups = std::min(MaxWorkGroupsPerCu, NumGroups); + + // Round to the number of waves. + const unsigned MaxGroupNumWaves = (MaxWorkGroupSize + WaveSize - 1) / WaveSize; + unsigned MaxWaves = NumGroups * MaxGroupNumWaves; + + // Clamp to the maximum possible number of waves. + MaxWaves = std::min(MaxWaves, getMaxWavesPerEU()); + + // FIXME: Needs to be a multiple of the group size? + //MaxWaves = MaxGroupNumWaves * (MaxWaves / MaxGroupNumWaves); + + assert(MaxWaves > 0 && MaxWaves <= getMaxWavesPerEU() && + "computed invalid occupancy"); + return MaxWaves; +} + +unsigned +AMDGPUSubtarget::getOccupancyWithLocalMemSize(const MachineFunction &MF) const { + const auto *MFI = MF.getInfo<SIMachineFunctionInfo>(); + return getOccupancyWithLocalMemSize(MFI->getLDSSize(), MF.getFunction()); +} + +std::pair<unsigned, unsigned> +AMDGPUSubtarget::getDefaultFlatWorkGroupSize(CallingConv::ID CC) const { + switch (CC) { + case CallingConv::AMDGPU_VS: + case CallingConv::AMDGPU_LS: + case CallingConv::AMDGPU_HS: + case CallingConv::AMDGPU_ES: + case CallingConv::AMDGPU_GS: + case CallingConv::AMDGPU_PS: + return std::make_pair(1, getWavefrontSize()); + default: + return std::make_pair(1u, getMaxFlatWorkGroupSize()); + } +} + +std::pair<unsigned, unsigned> AMDGPUSubtarget::getFlatWorkGroupSizes( + const Function &F) const { + // Default minimum/maximum flat work group sizes. + std::pair<unsigned, unsigned> Default = + getDefaultFlatWorkGroupSize(F.getCallingConv()); + + // Requested minimum/maximum flat work group sizes. + std::pair<unsigned, unsigned> Requested = AMDGPU::getIntegerPairAttribute( + F, "amdgpu-flat-work-group-size", Default); + + // Make sure requested minimum is less than requested maximum. + if (Requested.first > Requested.second) + return Default; + + // Make sure requested values do not violate subtarget's specifications. + if (Requested.first < getMinFlatWorkGroupSize()) + return Default; + if (Requested.second > getMaxFlatWorkGroupSize()) + return Default; + + return Requested; +} + +std::pair<unsigned, unsigned> AMDGPUSubtarget::getWavesPerEU( + const Function &F, std::pair<unsigned, unsigned> FlatWorkGroupSizes) const { + // Default minimum/maximum number of waves per execution unit. + std::pair<unsigned, unsigned> Default(1, getMaxWavesPerEU()); + + // If minimum/maximum flat work group sizes were explicitly requested using + // "amdgpu-flat-work-group-size" attribute, then set default minimum/maximum + // number of waves per execution unit to values implied by requested + // minimum/maximum flat work group sizes. + unsigned MinImpliedByFlatWorkGroupSize = + getWavesPerEUForWorkGroup(FlatWorkGroupSizes.second); + Default.first = MinImpliedByFlatWorkGroupSize; + + // Requested minimum/maximum number of waves per execution unit. + std::pair<unsigned, unsigned> Requested = AMDGPU::getIntegerPairAttribute( + F, "amdgpu-waves-per-eu", Default, true); + + // Make sure requested minimum is less than requested maximum. + if (Requested.second && Requested.first > Requested.second) + return Default; + + // Make sure requested values do not violate subtarget's specifications. + if (Requested.first < getMinWavesPerEU() || + Requested.second > getMaxWavesPerEU()) + return Default; + + // Make sure requested values are compatible with values implied by requested + // minimum/maximum flat work group sizes. + if (Requested.first < MinImpliedByFlatWorkGroupSize) + return Default; + + return Requested; +} + +static unsigned getReqdWorkGroupSize(const Function &Kernel, unsigned Dim) { + auto Node = Kernel.getMetadata("reqd_work_group_size"); + if (Node && Node->getNumOperands() == 3) + return mdconst::extract<ConstantInt>(Node->getOperand(Dim))->getZExtValue(); + return std::numeric_limits<unsigned>::max(); +} + +bool AMDGPUSubtarget::isMesaKernel(const Function &F) const { + return isMesa3DOS() && !AMDGPU::isShader(F.getCallingConv()); +} + +unsigned AMDGPUSubtarget::getMaxWorkitemID(const Function &Kernel, + unsigned Dimension) const { + unsigned ReqdSize = getReqdWorkGroupSize(Kernel, Dimension); + if (ReqdSize != std::numeric_limits<unsigned>::max()) + return ReqdSize - 1; + return getFlatWorkGroupSizes(Kernel).second - 1; +} + +bool AMDGPUSubtarget::makeLIDRangeMetadata(Instruction *I) const { + Function *Kernel = I->getParent()->getParent(); + unsigned MinSize = 0; + unsigned MaxSize = getFlatWorkGroupSizes(*Kernel).second; + bool IdQuery = false; + + // If reqd_work_group_size is present it narrows value down. + if (auto *CI = dyn_cast<CallInst>(I)) { + const Function *F = CI->getCalledFunction(); + if (F) { + unsigned Dim = UINT_MAX; + switch (F->getIntrinsicID()) { + case Intrinsic::amdgcn_workitem_id_x: + case Intrinsic::r600_read_tidig_x: + IdQuery = true; + LLVM_FALLTHROUGH; + case Intrinsic::r600_read_local_size_x: + Dim = 0; + break; + case Intrinsic::amdgcn_workitem_id_y: + case Intrinsic::r600_read_tidig_y: + IdQuery = true; + LLVM_FALLTHROUGH; + case Intrinsic::r600_read_local_size_y: + Dim = 1; + break; + case Intrinsic::amdgcn_workitem_id_z: + case Intrinsic::r600_read_tidig_z: + IdQuery = true; + LLVM_FALLTHROUGH; + case Intrinsic::r600_read_local_size_z: + Dim = 2; + break; + default: + break; + } + + if (Dim <= 3) { + unsigned ReqdSize = getReqdWorkGroupSize(*Kernel, Dim); + if (ReqdSize != std::numeric_limits<unsigned>::max()) + MinSize = MaxSize = ReqdSize; + } + } + } + + if (!MaxSize) + return false; + + // Range metadata is [Lo, Hi). For ID query we need to pass max size + // as Hi. For size query we need to pass Hi + 1. + if (IdQuery) + MinSize = 0; + else + ++MaxSize; + + MDBuilder MDB(I->getContext()); + MDNode *MaxWorkGroupSizeRange = MDB.createRange(APInt(32, MinSize), + APInt(32, MaxSize)); + I->setMetadata(LLVMContext::MD_range, MaxWorkGroupSizeRange); + return true; +} + +unsigned AMDGPUSubtarget::getImplicitArgNumBytes(const Function &F) const { + if (isMesaKernel(F)) + return 16; + return AMDGPU::getIntegerAttribute(F, "amdgpu-implicitarg-num-bytes", 0); +} + +uint64_t AMDGPUSubtarget::getExplicitKernArgSize(const Function &F, + Align &MaxAlign) const { + assert(F.getCallingConv() == CallingConv::AMDGPU_KERNEL || + F.getCallingConv() == CallingConv::SPIR_KERNEL); + + const DataLayout &DL = F.getParent()->getDataLayout(); + uint64_t ExplicitArgBytes = 0; + MaxAlign = Align(1); + + for (const Argument &Arg : F.args()) { + const bool IsByRef = Arg.hasByRefAttr(); + Type *ArgTy = IsByRef ? Arg.getParamByRefType() : Arg.getType(); + MaybeAlign Alignment = IsByRef ? Arg.getParamAlign() : None; + if (!Alignment) + Alignment = DL.getABITypeAlign(ArgTy); + + uint64_t AllocSize = DL.getTypeAllocSize(ArgTy); + ExplicitArgBytes = alignTo(ExplicitArgBytes, Alignment) + AllocSize; + MaxAlign = max(MaxAlign, Alignment); + } + + return ExplicitArgBytes; +} + +unsigned AMDGPUSubtarget::getKernArgSegmentSize(const Function &F, + Align &MaxAlign) const { + uint64_t ExplicitArgBytes = getExplicitKernArgSize(F, MaxAlign); + + unsigned ExplicitOffset = getExplicitKernelArgOffset(F); + + uint64_t TotalSize = ExplicitOffset + ExplicitArgBytes; + unsigned ImplicitBytes = getImplicitArgNumBytes(F); + if (ImplicitBytes != 0) { + const Align Alignment = getAlignmentForImplicitArgPtr(); + TotalSize = alignTo(ExplicitArgBytes, Alignment) + ImplicitBytes; + MaxAlign = std::max(MaxAlign, Alignment); + } + + // Being able to dereference past the end is useful for emitting scalar loads. + return alignTo(TotalSize, 4); +} + +AMDGPUDwarfFlavour AMDGPUSubtarget::getAMDGPUDwarfFlavour() const { + return getWavefrontSize() == 32 ? AMDGPUDwarfFlavour::Wave32 + : AMDGPUDwarfFlavour::Wave64; +} + +void GCNSubtarget::overrideSchedPolicy(MachineSchedPolicy &Policy, + unsigned NumRegionInstrs) const { + // Track register pressure so the scheduler can try to decrease + // pressure once register usage is above the threshold defined by + // SIRegisterInfo::getRegPressureSetLimit() + Policy.ShouldTrackPressure = true; + + // Enabling both top down and bottom up scheduling seems to give us less + // register spills than just using one of these approaches on its own. + Policy.OnlyTopDown = false; + Policy.OnlyBottomUp = false; + + // Enabling ShouldTrackLaneMasks crashes the SI Machine Scheduler. + if (!enableSIScheduler()) + Policy.ShouldTrackLaneMasks = true; +} + +bool GCNSubtarget::hasMadF16() const { + return InstrInfo.pseudoToMCOpcode(AMDGPU::V_MAD_F16_e64) != -1; +} + +bool GCNSubtarget::useVGPRIndexMode() const { + return !hasMovrel() || (EnableVGPRIndexMode && hasVGPRIndexMode()); +} + +bool GCNSubtarget::useAA() const { return UseAA; } + +unsigned GCNSubtarget::getOccupancyWithNumSGPRs(unsigned SGPRs) const { + if (getGeneration() >= AMDGPUSubtarget::GFX10) + return getMaxWavesPerEU(); + + if (getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS) { + if (SGPRs <= 80) + return 10; + if (SGPRs <= 88) + return 9; + if (SGPRs <= 100) + return 8; + return 7; + } + if (SGPRs <= 48) + return 10; + if (SGPRs <= 56) + return 9; + if (SGPRs <= 64) + return 8; + if (SGPRs <= 72) + return 7; + if (SGPRs <= 80) + return 6; + return 5; +} + +unsigned GCNSubtarget::getOccupancyWithNumVGPRs(unsigned VGPRs) const { + unsigned MaxWaves = getMaxWavesPerEU(); + unsigned Granule = getVGPRAllocGranule(); + if (VGPRs < Granule) + return MaxWaves; + unsigned RoundedRegs = ((VGPRs + Granule - 1) / Granule) * Granule; + return std::min(std::max(getTotalNumVGPRs() / RoundedRegs, 1u), MaxWaves); +} + +unsigned +GCNSubtarget::getBaseReservedNumSGPRs(const bool HasFlatScratchInit) const { + if (getGeneration() >= AMDGPUSubtarget::GFX10) + return 2; // VCC. FLAT_SCRATCH and XNACK are no longer in SGPRs. + + if (HasFlatScratchInit || HasArchitectedFlatScratch) { + if (getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS) + return 6; // FLAT_SCRATCH, XNACK, VCC (in that order). + if (getGeneration() == AMDGPUSubtarget::SEA_ISLANDS) + return 4; // FLAT_SCRATCH, VCC (in that order). + } + + if (isXNACKEnabled()) + return 4; // XNACK, VCC (in that order). + return 2; // VCC. +} + +unsigned GCNSubtarget::getReservedNumSGPRs(const MachineFunction &MF) const { + const SIMachineFunctionInfo &MFI = *MF.getInfo<SIMachineFunctionInfo>(); + return getBaseReservedNumSGPRs(MFI.hasFlatScratchInit()); +} + +unsigned GCNSubtarget::getReservedNumSGPRs(const Function &F) const { + // The logic to detect if the function has + // flat scratch init is slightly different than how + // SIMachineFunctionInfo constructor derives. + // We don't use amdgpu-calls, amdgpu-stack-objects + // attributes and isAmdHsaOrMesa here as it doesn't really matter. + // TODO: Outline this derivation logic and have just + // one common function in the backend to avoid duplication. + bool isEntry = AMDGPU::isEntryFunctionCC(F.getCallingConv()); + bool FunctionHasFlatScratchInit = false; + if (hasFlatAddressSpace() && isEntry && !flatScratchIsArchitected() && + enableFlatScratch()) { + FunctionHasFlatScratchInit = true; + } + return getBaseReservedNumSGPRs(FunctionHasFlatScratchInit); +} + +unsigned GCNSubtarget::computeOccupancy(const Function &F, unsigned LDSSize, + unsigned NumSGPRs, + unsigned NumVGPRs) const { + unsigned Occupancy = + std::min(getMaxWavesPerEU(), + getOccupancyWithLocalMemSize(LDSSize, F)); + if (NumSGPRs) + Occupancy = std::min(Occupancy, getOccupancyWithNumSGPRs(NumSGPRs)); + if (NumVGPRs) + Occupancy = std::min(Occupancy, getOccupancyWithNumVGPRs(NumVGPRs)); + return Occupancy; +} + +unsigned GCNSubtarget::getBaseMaxNumSGPRs( + const Function &F, std::pair<unsigned, unsigned> WavesPerEU, + unsigned PreloadedSGPRs, unsigned ReservedNumSGPRs) const { + // Compute maximum number of SGPRs function can use using default/requested + // minimum number of waves per execution unit. + unsigned MaxNumSGPRs = getMaxNumSGPRs(WavesPerEU.first, false); + unsigned MaxAddressableNumSGPRs = getMaxNumSGPRs(WavesPerEU.first, true); + + // Check if maximum number of SGPRs was explicitly requested using + // "amdgpu-num-sgpr" attribute. + if (F.hasFnAttribute("amdgpu-num-sgpr")) { + unsigned Requested = AMDGPU::getIntegerAttribute( + F, "amdgpu-num-sgpr", MaxNumSGPRs); + + // Make sure requested value does not violate subtarget's specifications. + if (Requested && (Requested <= ReservedNumSGPRs)) + Requested = 0; + + // If more SGPRs are required to support the input user/system SGPRs, + // increase to accommodate them. + // + // FIXME: This really ends up using the requested number of SGPRs + number + // of reserved special registers in total. Theoretically you could re-use + // the last input registers for these special registers, but this would + // require a lot of complexity to deal with the weird aliasing. + unsigned InputNumSGPRs = PreloadedSGPRs; + if (Requested && Requested < InputNumSGPRs) + Requested = InputNumSGPRs; + + // Make sure requested value is compatible with values implied by + // default/requested minimum/maximum number of waves per execution unit. + if (Requested && Requested > getMaxNumSGPRs(WavesPerEU.first, false)) + Requested = 0; + if (WavesPerEU.second && + Requested && Requested < getMinNumSGPRs(WavesPerEU.second)) + Requested = 0; + + if (Requested) + MaxNumSGPRs = Requested; + } + + if (hasSGPRInitBug()) + MaxNumSGPRs = AMDGPU::IsaInfo::FIXED_NUM_SGPRS_FOR_INIT_BUG; + + return std::min(MaxNumSGPRs - ReservedNumSGPRs, MaxAddressableNumSGPRs); +} + +unsigned GCNSubtarget::getMaxNumSGPRs(const MachineFunction &MF) const { + const Function &F = MF.getFunction(); + const SIMachineFunctionInfo &MFI = *MF.getInfo<SIMachineFunctionInfo>(); + return getBaseMaxNumSGPRs(F, MFI.getWavesPerEU(), MFI.getNumPreloadedSGPRs(), + getReservedNumSGPRs(MF)); +} + +static unsigned getMaxNumPreloadedSGPRs() { + // Max number of user SGPRs + unsigned MaxUserSGPRs = 4 + // private segment buffer + 2 + // Dispatch ptr + 2 + // queue ptr + 2 + // kernel segment ptr + 2 + // dispatch ID + 2 + // flat scratch init + 2; // Implicit buffer ptr + // Max number of system SGPRs + unsigned MaxSystemSGPRs = 1 + // WorkGroupIDX + 1 + // WorkGroupIDY + 1 + // WorkGroupIDZ + 1 + // WorkGroupInfo + 1; // private segment wave byte offset + return MaxUserSGPRs + MaxSystemSGPRs; +} + +unsigned GCNSubtarget::getMaxNumSGPRs(const Function &F) const { + return getBaseMaxNumSGPRs(F, getWavesPerEU(F), getMaxNumPreloadedSGPRs(), + getReservedNumSGPRs(F)); +} + +unsigned GCNSubtarget::getBaseMaxNumVGPRs( + const Function &F, std::pair<unsigned, unsigned> WavesPerEU) const { + // Compute maximum number of VGPRs function can use using default/requested + // minimum number of waves per execution unit. + unsigned MaxNumVGPRs = getMaxNumVGPRs(WavesPerEU.first); + + // Check if maximum number of VGPRs was explicitly requested using + // "amdgpu-num-vgpr" attribute. + if (F.hasFnAttribute("amdgpu-num-vgpr")) { + unsigned Requested = AMDGPU::getIntegerAttribute( + F, "amdgpu-num-vgpr", MaxNumVGPRs); + + if (hasGFX90AInsts()) + Requested *= 2; + + // Make sure requested value is compatible with values implied by + // default/requested minimum/maximum number of waves per execution unit. + if (Requested && Requested > getMaxNumVGPRs(WavesPerEU.first)) + Requested = 0; + if (WavesPerEU.second && + Requested && Requested < getMinNumVGPRs(WavesPerEU.second)) + Requested = 0; + + if (Requested) + MaxNumVGPRs = Requested; + } + + return MaxNumVGPRs; +} + +unsigned GCNSubtarget::getMaxNumVGPRs(const Function &F) const { + return getBaseMaxNumVGPRs(F, getWavesPerEU(F)); +} + +unsigned GCNSubtarget::getMaxNumVGPRs(const MachineFunction &MF) const { + const Function &F = MF.getFunction(); + const SIMachineFunctionInfo &MFI = *MF.getInfo<SIMachineFunctionInfo>(); + return getBaseMaxNumVGPRs(F, MFI.getWavesPerEU()); +} + +void GCNSubtarget::adjustSchedDependency(SUnit *Def, int DefOpIdx, SUnit *Use, + int UseOpIdx, SDep &Dep) const { + if (Dep.getKind() != SDep::Kind::Data || !Dep.getReg() || + !Def->isInstr() || !Use->isInstr()) + return; + + MachineInstr *DefI = Def->getInstr(); + MachineInstr *UseI = Use->getInstr(); + + if (DefI->isBundle()) { + const SIRegisterInfo *TRI = getRegisterInfo(); + auto Reg = Dep.getReg(); + MachineBasicBlock::const_instr_iterator I(DefI->getIterator()); + MachineBasicBlock::const_instr_iterator E(DefI->getParent()->instr_end()); + unsigned Lat = 0; + for (++I; I != E && I->isBundledWithPred(); ++I) { + if (I->modifiesRegister(Reg, TRI)) + Lat = InstrInfo.getInstrLatency(getInstrItineraryData(), *I); + else if (Lat) + --Lat; + } + Dep.setLatency(Lat); + } else if (UseI->isBundle()) { + const SIRegisterInfo *TRI = getRegisterInfo(); + auto Reg = Dep.getReg(); + MachineBasicBlock::const_instr_iterator I(UseI->getIterator()); + MachineBasicBlock::const_instr_iterator E(UseI->getParent()->instr_end()); + unsigned Lat = InstrInfo.getInstrLatency(getInstrItineraryData(), *DefI); + for (++I; I != E && I->isBundledWithPred() && Lat; ++I) { + if (I->readsRegister(Reg, TRI)) + break; + --Lat; + } + Dep.setLatency(Lat); + } else if (Dep.getLatency() == 0 && Dep.getReg() == AMDGPU::VCC_LO) { + // Work around the fact that SIInstrInfo::fixImplicitOperands modifies + // implicit operands which come from the MCInstrDesc, which can fool + // ScheduleDAGInstrs::addPhysRegDataDeps into treating them as implicit + // pseudo operands. + Dep.setLatency(InstrInfo.getSchedModel().computeOperandLatency( + DefI, DefOpIdx, UseI, UseOpIdx)); + } +} + +namespace { +struct FillMFMAShadowMutation : ScheduleDAGMutation { + const SIInstrInfo *TII; + + ScheduleDAGMI *DAG; + + FillMFMAShadowMutation(const SIInstrInfo *tii) : TII(tii) {} + + bool isSALU(const SUnit *SU) const { + const MachineInstr *MI = SU->getInstr(); + return MI && TII->isSALU(*MI) && !MI->isTerminator(); + } + + bool isVALU(const SUnit *SU) const { + const MachineInstr *MI = SU->getInstr(); + return MI && TII->isVALU(*MI); + } + + bool canAddEdge(const SUnit *Succ, const SUnit *Pred) const { + if (Pred->NodeNum < Succ->NodeNum) + return true; + + SmallVector<const SUnit*, 64> Succs({Succ}), Preds({Pred}); + + for (unsigned I = 0; I < Succs.size(); ++I) { + for (const SDep &SI : Succs[I]->Succs) { + const SUnit *SU = SI.getSUnit(); + if (SU != Succs[I] && !llvm::is_contained(Succs, SU)) + Succs.push_back(SU); + } + } + + SmallPtrSet<const SUnit*, 32> Visited; + while (!Preds.empty()) { + const SUnit *SU = Preds.pop_back_val(); + if (llvm::is_contained(Succs, SU)) + return false; + Visited.insert(SU); + for (const SDep &SI : SU->Preds) + if (SI.getSUnit() != SU && !Visited.count(SI.getSUnit())) + Preds.push_back(SI.getSUnit()); + } + + return true; + } + + // Link as many SALU instructions in chain as possible. Return the size + // of the chain. Links up to MaxChain instructions. + unsigned linkSALUChain(SUnit *From, SUnit *To, unsigned MaxChain, + SmallPtrSetImpl<SUnit *> &Visited) const { + SmallVector<SUnit *, 8> Worklist({To}); + unsigned Linked = 0; + + while (!Worklist.empty() && MaxChain-- > 0) { + SUnit *SU = Worklist.pop_back_val(); + if (!Visited.insert(SU).second) + continue; + + LLVM_DEBUG(dbgs() << "Inserting edge from\n" ; DAG->dumpNode(*From); + dbgs() << "to\n"; DAG->dumpNode(*SU); dbgs() << '\n'); + + if (SU->addPred(SDep(From, SDep::Artificial), false)) + ++Linked; + + for (SDep &SI : From->Succs) { + SUnit *SUv = SI.getSUnit(); + if (SUv != From && isVALU(SUv) && canAddEdge(SUv, SU)) + SUv->addPred(SDep(SU, SDep::Artificial), false); + } + + for (SDep &SI : SU->Succs) { + SUnit *Succ = SI.getSUnit(); + if (Succ != SU && isSALU(Succ) && canAddEdge(From, Succ)) + Worklist.push_back(Succ); + } + } + + return Linked; + } + + void apply(ScheduleDAGInstrs *DAGInstrs) override { + const GCNSubtarget &ST = DAGInstrs->MF.getSubtarget<GCNSubtarget>(); + if (!ST.hasMAIInsts() || DisablePowerSched) + return; + DAG = static_cast<ScheduleDAGMI*>(DAGInstrs); + const TargetSchedModel *TSchedModel = DAGInstrs->getSchedModel(); + if (!TSchedModel || DAG->SUnits.empty()) + return; + + // Scan for MFMA long latency instructions and try to add a dependency + // of available SALU instructions to give them a chance to fill MFMA + // shadow. That is desirable to fill MFMA shadow with SALU instructions + // rather than VALU to prevent power consumption bursts and throttle. + auto LastSALU = DAG->SUnits.begin(); + auto E = DAG->SUnits.end(); + SmallPtrSet<SUnit*, 32> Visited; + for (SUnit &SU : DAG->SUnits) { + MachineInstr &MAI = *SU.getInstr(); + if (!TII->isMAI(MAI) || + MAI.getOpcode() == AMDGPU::V_ACCVGPR_WRITE_B32_e64 || + MAI.getOpcode() == AMDGPU::V_ACCVGPR_READ_B32_e64) + continue; + + unsigned Lat = TSchedModel->computeInstrLatency(&MAI) - 1; + + LLVM_DEBUG(dbgs() << "Found MFMA: "; DAG->dumpNode(SU); + dbgs() << "Need " << Lat + << " instructions to cover latency.\n"); + + // Find up to Lat independent scalar instructions as early as + // possible such that they can be scheduled after this MFMA. + for ( ; Lat && LastSALU != E; ++LastSALU) { + if (Visited.count(&*LastSALU)) + continue; + + if (!isSALU(&*LastSALU) || !canAddEdge(&*LastSALU, &SU)) + continue; + + Lat -= linkSALUChain(&SU, &*LastSALU, Lat, Visited); + } + } + } +}; +} // namespace + +void GCNSubtarget::getPostRAMutations( + std::vector<std::unique_ptr<ScheduleDAGMutation>> &Mutations) const { + Mutations.push_back(std::make_unique<FillMFMAShadowMutation>(&InstrInfo)); +} + +std::unique_ptr<ScheduleDAGMutation> +GCNSubtarget::createFillMFMAShadowMutation(const TargetInstrInfo *TII) const { + return std::make_unique<FillMFMAShadowMutation>(&InstrInfo); +} + +const AMDGPUSubtarget &AMDGPUSubtarget::get(const MachineFunction &MF) { + if (MF.getTarget().getTargetTriple().getArch() == Triple::amdgcn) + return static_cast<const AMDGPUSubtarget&>(MF.getSubtarget<GCNSubtarget>()); + else + return static_cast<const AMDGPUSubtarget&>(MF.getSubtarget<R600Subtarget>()); +} + +const AMDGPUSubtarget &AMDGPUSubtarget::get(const TargetMachine &TM, const Function &F) { + if (TM.getTargetTriple().getArch() == Triple::amdgcn) + return static_cast<const AMDGPUSubtarget&>(TM.getSubtarget<GCNSubtarget>(F)); + else + return static_cast<const AMDGPUSubtarget&>(TM.getSubtarget<R600Subtarget>(F)); +} |
