aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm-project/llvm/lib/Target/AMDGPU/AMDGPUSubtarget.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm-project/llvm/lib/Target/AMDGPU/AMDGPUSubtarget.cpp')
-rw-r--r--contrib/llvm-project/llvm/lib/Target/AMDGPU/AMDGPUSubtarget.cpp1125
1 files changed, 1125 insertions, 0 deletions
diff --git a/contrib/llvm-project/llvm/lib/Target/AMDGPU/AMDGPUSubtarget.cpp b/contrib/llvm-project/llvm/lib/Target/AMDGPU/AMDGPUSubtarget.cpp
new file mode 100644
index 000000000000..0655b4342ba1
--- /dev/null
+++ b/contrib/llvm-project/llvm/lib/Target/AMDGPU/AMDGPUSubtarget.cpp
@@ -0,0 +1,1125 @@
+//===-- AMDGPUSubtarget.cpp - AMDGPU Subtarget Information ----------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+/// \file
+/// Implements the AMDGPU specific subclass of TargetSubtarget.
+//
+//===----------------------------------------------------------------------===//
+
+#include "AMDGPUSubtarget.h"
+#include "AMDGPUCallLowering.h"
+#include "AMDGPUInstructionSelector.h"
+#include "AMDGPULegalizerInfo.h"
+#include "AMDGPURegisterBankInfo.h"
+#include "AMDGPUTargetMachine.h"
+#include "R600Subtarget.h"
+#include "SIMachineFunctionInfo.h"
+#include "Utils/AMDGPUBaseInfo.h"
+#include "llvm/ADT/SmallString.h"
+#include "llvm/CodeGen/GlobalISel/InlineAsmLowering.h"
+#include "llvm/CodeGen/MachineScheduler.h"
+#include "llvm/CodeGen/TargetFrameLowering.h"
+#include "llvm/IR/IntrinsicsAMDGPU.h"
+#include "llvm/IR/IntrinsicsR600.h"
+#include "llvm/IR/MDBuilder.h"
+#include "llvm/MC/MCSubtargetInfo.h"
+#include <algorithm>
+
+using namespace llvm;
+
+#define DEBUG_TYPE "amdgpu-subtarget"
+
+#define GET_SUBTARGETINFO_TARGET_DESC
+#define GET_SUBTARGETINFO_CTOR
+#define AMDGPUSubtarget GCNSubtarget
+#include "AMDGPUGenSubtargetInfo.inc"
+#undef AMDGPUSubtarget
+
+static cl::opt<bool> DisablePowerSched(
+ "amdgpu-disable-power-sched",
+ cl::desc("Disable scheduling to minimize mAI power bursts"),
+ cl::init(false));
+
+static cl::opt<bool> EnableVGPRIndexMode(
+ "amdgpu-vgpr-index-mode",
+ cl::desc("Use GPR indexing mode instead of movrel for vector indexing"),
+ cl::init(false));
+
+static cl::opt<bool> EnableFlatScratch(
+ "amdgpu-enable-flat-scratch",
+ cl::desc("Use flat scratch instructions"),
+ cl::init(false));
+
+static cl::opt<bool> UseAA("amdgpu-use-aa-in-codegen",
+ cl::desc("Enable the use of AA during codegen."),
+ cl::init(true));
+
+GCNSubtarget::~GCNSubtarget() = default;
+
+GCNSubtarget &
+GCNSubtarget::initializeSubtargetDependencies(const Triple &TT,
+ StringRef GPU, StringRef FS) {
+ // Determine default and user-specified characteristics
+ //
+ // We want to be able to turn these off, but making this a subtarget feature
+ // for SI has the unhelpful behavior that it unsets everything else if you
+ // disable it.
+ //
+ // Similarly we want enable-prt-strict-null to be on by default and not to
+ // unset everything else if it is disabled
+
+ SmallString<256> FullFS("+promote-alloca,+load-store-opt,+enable-ds128,");
+
+ // Turn on features that HSA ABI requires. Also turn on FlatForGlobal by default
+ if (isAmdHsaOS())
+ FullFS += "+flat-for-global,+unaligned-access-mode,+trap-handler,";
+
+ FullFS += "+enable-prt-strict-null,"; // This is overridden by a disable in FS
+
+ // Disable mutually exclusive bits.
+ if (FS.contains_insensitive("+wavefrontsize")) {
+ if (!FS.contains_insensitive("wavefrontsize16"))
+ FullFS += "-wavefrontsize16,";
+ if (!FS.contains_insensitive("wavefrontsize32"))
+ FullFS += "-wavefrontsize32,";
+ if (!FS.contains_insensitive("wavefrontsize64"))
+ FullFS += "-wavefrontsize64,";
+ }
+
+ FullFS += FS;
+
+ ParseSubtargetFeatures(GPU, /*TuneCPU*/ GPU, FullFS);
+
+ // Implement the "generic" processors, which acts as the default when no
+ // generation features are enabled (e.g for -mcpu=''). HSA OS defaults to
+ // the first amdgcn target that supports flat addressing. Other OSes defaults
+ // to the first amdgcn target.
+ if (Gen == AMDGPUSubtarget::INVALID) {
+ Gen = TT.getOS() == Triple::AMDHSA ? AMDGPUSubtarget::SEA_ISLANDS
+ : AMDGPUSubtarget::SOUTHERN_ISLANDS;
+ }
+
+ // We don't support FP64 for EG/NI atm.
+ assert(!hasFP64() || (getGeneration() >= AMDGPUSubtarget::SOUTHERN_ISLANDS));
+
+ // Targets must either support 64-bit offsets for MUBUF instructions, and/or
+ // support flat operations, otherwise they cannot access a 64-bit global
+ // address space
+ assert(hasAddr64() || hasFlat());
+ // Unless +-flat-for-global is specified, turn on FlatForGlobal for targets
+ // that do not support ADDR64 variants of MUBUF instructions. Such targets
+ // cannot use a 64 bit offset with a MUBUF instruction to access the global
+ // address space
+ if (!hasAddr64() && !FS.contains("flat-for-global") && !FlatForGlobal) {
+ ToggleFeature(AMDGPU::FeatureFlatForGlobal);
+ FlatForGlobal = true;
+ }
+ // Unless +-flat-for-global is specified, use MUBUF instructions for global
+ // address space access if flat operations are not available.
+ if (!hasFlat() && !FS.contains("flat-for-global") && FlatForGlobal) {
+ ToggleFeature(AMDGPU::FeatureFlatForGlobal);
+ FlatForGlobal = false;
+ }
+
+ // Set defaults if needed.
+ if (MaxPrivateElementSize == 0)
+ MaxPrivateElementSize = 4;
+
+ if (LDSBankCount == 0)
+ LDSBankCount = 32;
+
+ if (TT.getArch() == Triple::amdgcn) {
+ if (LocalMemorySize == 0)
+ LocalMemorySize = 32768;
+
+ // Do something sensible for unspecified target.
+ if (!HasMovrel && !HasVGPRIndexMode)
+ HasMovrel = true;
+ }
+
+ // Don't crash on invalid devices.
+ if (WavefrontSizeLog2 == 0)
+ WavefrontSizeLog2 = 5;
+
+ HasFminFmaxLegacy = getGeneration() < AMDGPUSubtarget::VOLCANIC_ISLANDS;
+ HasSMulHi = getGeneration() >= AMDGPUSubtarget::GFX9;
+
+ TargetID.setTargetIDFromFeaturesString(FS);
+
+ LLVM_DEBUG(dbgs() << "xnack setting for subtarget: "
+ << TargetID.getXnackSetting() << '\n');
+ LLVM_DEBUG(dbgs() << "sramecc setting for subtarget: "
+ << TargetID.getSramEccSetting() << '\n');
+
+ return *this;
+}
+
+AMDGPUSubtarget::AMDGPUSubtarget(const Triple &TT) :
+ TargetTriple(TT),
+ GCN3Encoding(false),
+ Has16BitInsts(false),
+ HasMadMixInsts(false),
+ HasMadMacF32Insts(false),
+ HasDsSrc2Insts(false),
+ HasSDWA(false),
+ HasVOP3PInsts(false),
+ HasMulI24(true),
+ HasMulU24(true),
+ HasSMulHi(false),
+ HasInv2PiInlineImm(false),
+ HasFminFmaxLegacy(true),
+ EnablePromoteAlloca(false),
+ HasTrigReducedRange(false),
+ MaxWavesPerEU(10),
+ LocalMemorySize(0),
+ WavefrontSizeLog2(0)
+ { }
+
+GCNSubtarget::GCNSubtarget(const Triple &TT, StringRef GPU, StringRef FS,
+ const GCNTargetMachine &TM)
+ : // clang-format off
+ AMDGPUGenSubtargetInfo(TT, GPU, /*TuneCPU*/ GPU, FS),
+ AMDGPUSubtarget(TT),
+ TargetTriple(TT),
+ TargetID(*this),
+ Gen(INVALID),
+ InstrItins(getInstrItineraryForCPU(GPU)),
+ LDSBankCount(0),
+ MaxPrivateElementSize(0),
+
+ FastFMAF32(false),
+ FastDenormalF32(false),
+ HalfRate64Ops(false),
+ FullRate64Ops(false),
+
+ FlatForGlobal(false),
+ AutoWaitcntBeforeBarrier(false),
+ UnalignedScratchAccess(false),
+ UnalignedAccessMode(false),
+
+ HasApertureRegs(false),
+ SupportsXNACK(false),
+ EnableXNACK(false),
+ EnableTgSplit(false),
+ EnableCuMode(false),
+ TrapHandler(false),
+
+ EnableLoadStoreOpt(false),
+ EnableUnsafeDSOffsetFolding(false),
+ EnableSIScheduler(false),
+ EnableDS128(false),
+ EnablePRTStrictNull(false),
+ DumpCode(false),
+
+ FP64(false),
+ CIInsts(false),
+ GFX8Insts(false),
+ GFX9Insts(false),
+ GFX90AInsts(false),
+ GFX10Insts(false),
+ GFX10_3Insts(false),
+ GFX7GFX8GFX9Insts(false),
+ SGPRInitBug(false),
+ NegativeScratchOffsetBug(false),
+ NegativeUnalignedScratchOffsetBug(false),
+ HasSMemRealTime(false),
+ HasIntClamp(false),
+ HasFmaMixInsts(false),
+ HasMovrel(false),
+ HasVGPRIndexMode(false),
+ HasScalarStores(false),
+ HasScalarAtomics(false),
+ HasSDWAOmod(false),
+ HasSDWAScalar(false),
+ HasSDWASdst(false),
+ HasSDWAMac(false),
+ HasSDWAOutModsVOPC(false),
+ HasDPP(false),
+ HasDPP8(false),
+ Has64BitDPP(false),
+ HasPackedFP32Ops(false),
+ HasExtendedImageInsts(false),
+ HasR128A16(false),
+ HasGFX10A16(false),
+ HasG16(false),
+ HasNSAEncoding(false),
+ NSAMaxSize(0),
+ GFX10_AEncoding(false),
+ GFX10_BEncoding(false),
+ HasDLInsts(false),
+ HasDot1Insts(false),
+ HasDot2Insts(false),
+ HasDot3Insts(false),
+ HasDot4Insts(false),
+ HasDot5Insts(false),
+ HasDot6Insts(false),
+ HasDot7Insts(false),
+ HasMAIInsts(false),
+ HasPkFmacF16Inst(false),
+ HasAtomicFaddInsts(false),
+ SupportsSRAMECC(false),
+ EnableSRAMECC(false),
+ HasNoSdstCMPX(false),
+ HasVscnt(false),
+ HasGetWaveIdInst(false),
+ HasSMemTimeInst(false),
+ HasShaderCyclesRegister(false),
+ HasRegisterBanking(false),
+ HasVOP3Literal(false),
+ HasNoDataDepHazard(false),
+ FlatAddressSpace(false),
+ FlatInstOffsets(false),
+ FlatGlobalInsts(false),
+ FlatScratchInsts(false),
+ ScalarFlatScratchInsts(false),
+ HasArchitectedFlatScratch(false),
+ AddNoCarryInsts(false),
+ HasUnpackedD16VMem(false),
+ LDSMisalignedBug(false),
+ HasMFMAInlineLiteralBug(false),
+ UnalignedBufferAccess(false),
+ UnalignedDSAccess(false),
+ HasPackedTID(false),
+
+ ScalarizeGlobal(false),
+
+ HasVcmpxPermlaneHazard(false),
+ HasVMEMtoScalarWriteHazard(false),
+ HasSMEMtoVectorWriteHazard(false),
+ HasInstFwdPrefetchBug(false),
+ HasVcmpxExecWARHazard(false),
+ HasLdsBranchVmemWARHazard(false),
+ HasNSAtoVMEMBug(false),
+ HasNSAClauseBug(false),
+ HasOffset3fBug(false),
+ HasFlatSegmentOffsetBug(false),
+ HasImageStoreD16Bug(false),
+ HasImageGather4D16Bug(false),
+
+ FeatureDisable(false),
+ InstrInfo(initializeSubtargetDependencies(TT, GPU, FS)),
+ TLInfo(TM, *this),
+ FrameLowering(TargetFrameLowering::StackGrowsUp, getStackAlignment(), 0) {
+ // clang-format on
+ MaxWavesPerEU = AMDGPU::IsaInfo::getMaxWavesPerEU(this);
+ CallLoweringInfo.reset(new AMDGPUCallLowering(*getTargetLowering()));
+ InlineAsmLoweringInfo.reset(new InlineAsmLowering(getTargetLowering()));
+ Legalizer.reset(new AMDGPULegalizerInfo(*this, TM));
+ RegBankInfo.reset(new AMDGPURegisterBankInfo(*this));
+ InstSelector.reset(new AMDGPUInstructionSelector(
+ *this, *static_cast<AMDGPURegisterBankInfo *>(RegBankInfo.get()), TM));
+}
+
+bool GCNSubtarget::enableFlatScratch() const {
+ return flatScratchIsArchitected() ||
+ (EnableFlatScratch && hasFlatScratchInsts());
+}
+
+unsigned GCNSubtarget::getConstantBusLimit(unsigned Opcode) const {
+ if (getGeneration() < GFX10)
+ return 1;
+
+ switch (Opcode) {
+ case AMDGPU::V_LSHLREV_B64_e64:
+ case AMDGPU::V_LSHLREV_B64_gfx10:
+ case AMDGPU::V_LSHL_B64_e64:
+ case AMDGPU::V_LSHRREV_B64_e64:
+ case AMDGPU::V_LSHRREV_B64_gfx10:
+ case AMDGPU::V_LSHR_B64_e64:
+ case AMDGPU::V_ASHRREV_I64_e64:
+ case AMDGPU::V_ASHRREV_I64_gfx10:
+ case AMDGPU::V_ASHR_I64_e64:
+ return 1;
+ }
+
+ return 2;
+}
+
+/// This list was mostly derived from experimentation.
+bool GCNSubtarget::zeroesHigh16BitsOfDest(unsigned Opcode) const {
+ switch (Opcode) {
+ case AMDGPU::V_CVT_F16_F32_e32:
+ case AMDGPU::V_CVT_F16_F32_e64:
+ case AMDGPU::V_CVT_F16_U16_e32:
+ case AMDGPU::V_CVT_F16_U16_e64:
+ case AMDGPU::V_CVT_F16_I16_e32:
+ case AMDGPU::V_CVT_F16_I16_e64:
+ case AMDGPU::V_RCP_F16_e64:
+ case AMDGPU::V_RCP_F16_e32:
+ case AMDGPU::V_RSQ_F16_e64:
+ case AMDGPU::V_RSQ_F16_e32:
+ case AMDGPU::V_SQRT_F16_e64:
+ case AMDGPU::V_SQRT_F16_e32:
+ case AMDGPU::V_LOG_F16_e64:
+ case AMDGPU::V_LOG_F16_e32:
+ case AMDGPU::V_EXP_F16_e64:
+ case AMDGPU::V_EXP_F16_e32:
+ case AMDGPU::V_SIN_F16_e64:
+ case AMDGPU::V_SIN_F16_e32:
+ case AMDGPU::V_COS_F16_e64:
+ case AMDGPU::V_COS_F16_e32:
+ case AMDGPU::V_FLOOR_F16_e64:
+ case AMDGPU::V_FLOOR_F16_e32:
+ case AMDGPU::V_CEIL_F16_e64:
+ case AMDGPU::V_CEIL_F16_e32:
+ case AMDGPU::V_TRUNC_F16_e64:
+ case AMDGPU::V_TRUNC_F16_e32:
+ case AMDGPU::V_RNDNE_F16_e64:
+ case AMDGPU::V_RNDNE_F16_e32:
+ case AMDGPU::V_FRACT_F16_e64:
+ case AMDGPU::V_FRACT_F16_e32:
+ case AMDGPU::V_FREXP_MANT_F16_e64:
+ case AMDGPU::V_FREXP_MANT_F16_e32:
+ case AMDGPU::V_FREXP_EXP_I16_F16_e64:
+ case AMDGPU::V_FREXP_EXP_I16_F16_e32:
+ case AMDGPU::V_LDEXP_F16_e64:
+ case AMDGPU::V_LDEXP_F16_e32:
+ case AMDGPU::V_LSHLREV_B16_e64:
+ case AMDGPU::V_LSHLREV_B16_e32:
+ case AMDGPU::V_LSHRREV_B16_e64:
+ case AMDGPU::V_LSHRREV_B16_e32:
+ case AMDGPU::V_ASHRREV_I16_e64:
+ case AMDGPU::V_ASHRREV_I16_e32:
+ case AMDGPU::V_ADD_U16_e64:
+ case AMDGPU::V_ADD_U16_e32:
+ case AMDGPU::V_SUB_U16_e64:
+ case AMDGPU::V_SUB_U16_e32:
+ case AMDGPU::V_SUBREV_U16_e64:
+ case AMDGPU::V_SUBREV_U16_e32:
+ case AMDGPU::V_MUL_LO_U16_e64:
+ case AMDGPU::V_MUL_LO_U16_e32:
+ case AMDGPU::V_ADD_F16_e64:
+ case AMDGPU::V_ADD_F16_e32:
+ case AMDGPU::V_SUB_F16_e64:
+ case AMDGPU::V_SUB_F16_e32:
+ case AMDGPU::V_SUBREV_F16_e64:
+ case AMDGPU::V_SUBREV_F16_e32:
+ case AMDGPU::V_MUL_F16_e64:
+ case AMDGPU::V_MUL_F16_e32:
+ case AMDGPU::V_MAX_F16_e64:
+ case AMDGPU::V_MAX_F16_e32:
+ case AMDGPU::V_MIN_F16_e64:
+ case AMDGPU::V_MIN_F16_e32:
+ case AMDGPU::V_MAX_U16_e64:
+ case AMDGPU::V_MAX_U16_e32:
+ case AMDGPU::V_MIN_U16_e64:
+ case AMDGPU::V_MIN_U16_e32:
+ case AMDGPU::V_MAX_I16_e64:
+ case AMDGPU::V_MAX_I16_e32:
+ case AMDGPU::V_MIN_I16_e64:
+ case AMDGPU::V_MIN_I16_e32:
+ // On gfx10, all 16-bit instructions preserve the high bits.
+ return getGeneration() <= AMDGPUSubtarget::GFX9;
+ case AMDGPU::V_MAD_F16_e64:
+ case AMDGPU::V_MADAK_F16:
+ case AMDGPU::V_MADMK_F16:
+ case AMDGPU::V_MAC_F16_e64:
+ case AMDGPU::V_MAC_F16_e32:
+ case AMDGPU::V_FMAMK_F16:
+ case AMDGPU::V_FMAAK_F16:
+ case AMDGPU::V_MAD_U16_e64:
+ case AMDGPU::V_MAD_I16_e64:
+ case AMDGPU::V_FMA_F16_e64:
+ case AMDGPU::V_FMAC_F16_e64:
+ case AMDGPU::V_FMAC_F16_e32:
+ case AMDGPU::V_DIV_FIXUP_F16_e64:
+ // In gfx9, the preferred handling of the unused high 16-bits changed. Most
+ // instructions maintain the legacy behavior of 0ing. Some instructions
+ // changed to preserving the high bits.
+ return getGeneration() == AMDGPUSubtarget::VOLCANIC_ISLANDS;
+ case AMDGPU::V_MAD_MIXLO_F16:
+ case AMDGPU::V_MAD_MIXHI_F16:
+ default:
+ return false;
+ }
+}
+
+unsigned AMDGPUSubtarget::getMaxLocalMemSizeWithWaveCount(unsigned NWaves,
+ const Function &F) const {
+ if (NWaves == 1)
+ return getLocalMemorySize();
+ unsigned WorkGroupSize = getFlatWorkGroupSizes(F).second;
+ unsigned WorkGroupsPerCu = getMaxWorkGroupsPerCU(WorkGroupSize);
+ if (!WorkGroupsPerCu)
+ return 0;
+ unsigned MaxWaves = getMaxWavesPerEU();
+ return getLocalMemorySize() * MaxWaves / WorkGroupsPerCu / NWaves;
+}
+
+// FIXME: Should return min,max range.
+unsigned AMDGPUSubtarget::getOccupancyWithLocalMemSize(uint32_t Bytes,
+ const Function &F) const {
+ const unsigned MaxWorkGroupSize = getFlatWorkGroupSizes(F).second;
+ const unsigned MaxWorkGroupsPerCu = getMaxWorkGroupsPerCU(MaxWorkGroupSize);
+ if (!MaxWorkGroupsPerCu)
+ return 0;
+
+ const unsigned WaveSize = getWavefrontSize();
+
+ // FIXME: Do we need to account for alignment requirement of LDS rounding the
+ // size up?
+ // Compute restriction based on LDS usage
+ unsigned NumGroups = getLocalMemorySize() / (Bytes ? Bytes : 1u);
+
+ // This can be queried with more LDS than is possible, so just assume the
+ // worst.
+ if (NumGroups == 0)
+ return 1;
+
+ NumGroups = std::min(MaxWorkGroupsPerCu, NumGroups);
+
+ // Round to the number of waves.
+ const unsigned MaxGroupNumWaves = (MaxWorkGroupSize + WaveSize - 1) / WaveSize;
+ unsigned MaxWaves = NumGroups * MaxGroupNumWaves;
+
+ // Clamp to the maximum possible number of waves.
+ MaxWaves = std::min(MaxWaves, getMaxWavesPerEU());
+
+ // FIXME: Needs to be a multiple of the group size?
+ //MaxWaves = MaxGroupNumWaves * (MaxWaves / MaxGroupNumWaves);
+
+ assert(MaxWaves > 0 && MaxWaves <= getMaxWavesPerEU() &&
+ "computed invalid occupancy");
+ return MaxWaves;
+}
+
+unsigned
+AMDGPUSubtarget::getOccupancyWithLocalMemSize(const MachineFunction &MF) const {
+ const auto *MFI = MF.getInfo<SIMachineFunctionInfo>();
+ return getOccupancyWithLocalMemSize(MFI->getLDSSize(), MF.getFunction());
+}
+
+std::pair<unsigned, unsigned>
+AMDGPUSubtarget::getDefaultFlatWorkGroupSize(CallingConv::ID CC) const {
+ switch (CC) {
+ case CallingConv::AMDGPU_VS:
+ case CallingConv::AMDGPU_LS:
+ case CallingConv::AMDGPU_HS:
+ case CallingConv::AMDGPU_ES:
+ case CallingConv::AMDGPU_GS:
+ case CallingConv::AMDGPU_PS:
+ return std::make_pair(1, getWavefrontSize());
+ default:
+ return std::make_pair(1u, getMaxFlatWorkGroupSize());
+ }
+}
+
+std::pair<unsigned, unsigned> AMDGPUSubtarget::getFlatWorkGroupSizes(
+ const Function &F) const {
+ // Default minimum/maximum flat work group sizes.
+ std::pair<unsigned, unsigned> Default =
+ getDefaultFlatWorkGroupSize(F.getCallingConv());
+
+ // Requested minimum/maximum flat work group sizes.
+ std::pair<unsigned, unsigned> Requested = AMDGPU::getIntegerPairAttribute(
+ F, "amdgpu-flat-work-group-size", Default);
+
+ // Make sure requested minimum is less than requested maximum.
+ if (Requested.first > Requested.second)
+ return Default;
+
+ // Make sure requested values do not violate subtarget's specifications.
+ if (Requested.first < getMinFlatWorkGroupSize())
+ return Default;
+ if (Requested.second > getMaxFlatWorkGroupSize())
+ return Default;
+
+ return Requested;
+}
+
+std::pair<unsigned, unsigned> AMDGPUSubtarget::getWavesPerEU(
+ const Function &F, std::pair<unsigned, unsigned> FlatWorkGroupSizes) const {
+ // Default minimum/maximum number of waves per execution unit.
+ std::pair<unsigned, unsigned> Default(1, getMaxWavesPerEU());
+
+ // If minimum/maximum flat work group sizes were explicitly requested using
+ // "amdgpu-flat-work-group-size" attribute, then set default minimum/maximum
+ // number of waves per execution unit to values implied by requested
+ // minimum/maximum flat work group sizes.
+ unsigned MinImpliedByFlatWorkGroupSize =
+ getWavesPerEUForWorkGroup(FlatWorkGroupSizes.second);
+ Default.first = MinImpliedByFlatWorkGroupSize;
+
+ // Requested minimum/maximum number of waves per execution unit.
+ std::pair<unsigned, unsigned> Requested = AMDGPU::getIntegerPairAttribute(
+ F, "amdgpu-waves-per-eu", Default, true);
+
+ // Make sure requested minimum is less than requested maximum.
+ if (Requested.second && Requested.first > Requested.second)
+ return Default;
+
+ // Make sure requested values do not violate subtarget's specifications.
+ if (Requested.first < getMinWavesPerEU() ||
+ Requested.second > getMaxWavesPerEU())
+ return Default;
+
+ // Make sure requested values are compatible with values implied by requested
+ // minimum/maximum flat work group sizes.
+ if (Requested.first < MinImpliedByFlatWorkGroupSize)
+ return Default;
+
+ return Requested;
+}
+
+static unsigned getReqdWorkGroupSize(const Function &Kernel, unsigned Dim) {
+ auto Node = Kernel.getMetadata("reqd_work_group_size");
+ if (Node && Node->getNumOperands() == 3)
+ return mdconst::extract<ConstantInt>(Node->getOperand(Dim))->getZExtValue();
+ return std::numeric_limits<unsigned>::max();
+}
+
+bool AMDGPUSubtarget::isMesaKernel(const Function &F) const {
+ return isMesa3DOS() && !AMDGPU::isShader(F.getCallingConv());
+}
+
+unsigned AMDGPUSubtarget::getMaxWorkitemID(const Function &Kernel,
+ unsigned Dimension) const {
+ unsigned ReqdSize = getReqdWorkGroupSize(Kernel, Dimension);
+ if (ReqdSize != std::numeric_limits<unsigned>::max())
+ return ReqdSize - 1;
+ return getFlatWorkGroupSizes(Kernel).second - 1;
+}
+
+bool AMDGPUSubtarget::makeLIDRangeMetadata(Instruction *I) const {
+ Function *Kernel = I->getParent()->getParent();
+ unsigned MinSize = 0;
+ unsigned MaxSize = getFlatWorkGroupSizes(*Kernel).second;
+ bool IdQuery = false;
+
+ // If reqd_work_group_size is present it narrows value down.
+ if (auto *CI = dyn_cast<CallInst>(I)) {
+ const Function *F = CI->getCalledFunction();
+ if (F) {
+ unsigned Dim = UINT_MAX;
+ switch (F->getIntrinsicID()) {
+ case Intrinsic::amdgcn_workitem_id_x:
+ case Intrinsic::r600_read_tidig_x:
+ IdQuery = true;
+ LLVM_FALLTHROUGH;
+ case Intrinsic::r600_read_local_size_x:
+ Dim = 0;
+ break;
+ case Intrinsic::amdgcn_workitem_id_y:
+ case Intrinsic::r600_read_tidig_y:
+ IdQuery = true;
+ LLVM_FALLTHROUGH;
+ case Intrinsic::r600_read_local_size_y:
+ Dim = 1;
+ break;
+ case Intrinsic::amdgcn_workitem_id_z:
+ case Intrinsic::r600_read_tidig_z:
+ IdQuery = true;
+ LLVM_FALLTHROUGH;
+ case Intrinsic::r600_read_local_size_z:
+ Dim = 2;
+ break;
+ default:
+ break;
+ }
+
+ if (Dim <= 3) {
+ unsigned ReqdSize = getReqdWorkGroupSize(*Kernel, Dim);
+ if (ReqdSize != std::numeric_limits<unsigned>::max())
+ MinSize = MaxSize = ReqdSize;
+ }
+ }
+ }
+
+ if (!MaxSize)
+ return false;
+
+ // Range metadata is [Lo, Hi). For ID query we need to pass max size
+ // as Hi. For size query we need to pass Hi + 1.
+ if (IdQuery)
+ MinSize = 0;
+ else
+ ++MaxSize;
+
+ MDBuilder MDB(I->getContext());
+ MDNode *MaxWorkGroupSizeRange = MDB.createRange(APInt(32, MinSize),
+ APInt(32, MaxSize));
+ I->setMetadata(LLVMContext::MD_range, MaxWorkGroupSizeRange);
+ return true;
+}
+
+unsigned AMDGPUSubtarget::getImplicitArgNumBytes(const Function &F) const {
+ if (isMesaKernel(F))
+ return 16;
+ return AMDGPU::getIntegerAttribute(F, "amdgpu-implicitarg-num-bytes", 0);
+}
+
+uint64_t AMDGPUSubtarget::getExplicitKernArgSize(const Function &F,
+ Align &MaxAlign) const {
+ assert(F.getCallingConv() == CallingConv::AMDGPU_KERNEL ||
+ F.getCallingConv() == CallingConv::SPIR_KERNEL);
+
+ const DataLayout &DL = F.getParent()->getDataLayout();
+ uint64_t ExplicitArgBytes = 0;
+ MaxAlign = Align(1);
+
+ for (const Argument &Arg : F.args()) {
+ const bool IsByRef = Arg.hasByRefAttr();
+ Type *ArgTy = IsByRef ? Arg.getParamByRefType() : Arg.getType();
+ MaybeAlign Alignment = IsByRef ? Arg.getParamAlign() : None;
+ if (!Alignment)
+ Alignment = DL.getABITypeAlign(ArgTy);
+
+ uint64_t AllocSize = DL.getTypeAllocSize(ArgTy);
+ ExplicitArgBytes = alignTo(ExplicitArgBytes, Alignment) + AllocSize;
+ MaxAlign = max(MaxAlign, Alignment);
+ }
+
+ return ExplicitArgBytes;
+}
+
+unsigned AMDGPUSubtarget::getKernArgSegmentSize(const Function &F,
+ Align &MaxAlign) const {
+ uint64_t ExplicitArgBytes = getExplicitKernArgSize(F, MaxAlign);
+
+ unsigned ExplicitOffset = getExplicitKernelArgOffset(F);
+
+ uint64_t TotalSize = ExplicitOffset + ExplicitArgBytes;
+ unsigned ImplicitBytes = getImplicitArgNumBytes(F);
+ if (ImplicitBytes != 0) {
+ const Align Alignment = getAlignmentForImplicitArgPtr();
+ TotalSize = alignTo(ExplicitArgBytes, Alignment) + ImplicitBytes;
+ MaxAlign = std::max(MaxAlign, Alignment);
+ }
+
+ // Being able to dereference past the end is useful for emitting scalar loads.
+ return alignTo(TotalSize, 4);
+}
+
+AMDGPUDwarfFlavour AMDGPUSubtarget::getAMDGPUDwarfFlavour() const {
+ return getWavefrontSize() == 32 ? AMDGPUDwarfFlavour::Wave32
+ : AMDGPUDwarfFlavour::Wave64;
+}
+
+void GCNSubtarget::overrideSchedPolicy(MachineSchedPolicy &Policy,
+ unsigned NumRegionInstrs) const {
+ // Track register pressure so the scheduler can try to decrease
+ // pressure once register usage is above the threshold defined by
+ // SIRegisterInfo::getRegPressureSetLimit()
+ Policy.ShouldTrackPressure = true;
+
+ // Enabling both top down and bottom up scheduling seems to give us less
+ // register spills than just using one of these approaches on its own.
+ Policy.OnlyTopDown = false;
+ Policy.OnlyBottomUp = false;
+
+ // Enabling ShouldTrackLaneMasks crashes the SI Machine Scheduler.
+ if (!enableSIScheduler())
+ Policy.ShouldTrackLaneMasks = true;
+}
+
+bool GCNSubtarget::hasMadF16() const {
+ return InstrInfo.pseudoToMCOpcode(AMDGPU::V_MAD_F16_e64) != -1;
+}
+
+bool GCNSubtarget::useVGPRIndexMode() const {
+ return !hasMovrel() || (EnableVGPRIndexMode && hasVGPRIndexMode());
+}
+
+bool GCNSubtarget::useAA() const { return UseAA; }
+
+unsigned GCNSubtarget::getOccupancyWithNumSGPRs(unsigned SGPRs) const {
+ if (getGeneration() >= AMDGPUSubtarget::GFX10)
+ return getMaxWavesPerEU();
+
+ if (getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS) {
+ if (SGPRs <= 80)
+ return 10;
+ if (SGPRs <= 88)
+ return 9;
+ if (SGPRs <= 100)
+ return 8;
+ return 7;
+ }
+ if (SGPRs <= 48)
+ return 10;
+ if (SGPRs <= 56)
+ return 9;
+ if (SGPRs <= 64)
+ return 8;
+ if (SGPRs <= 72)
+ return 7;
+ if (SGPRs <= 80)
+ return 6;
+ return 5;
+}
+
+unsigned GCNSubtarget::getOccupancyWithNumVGPRs(unsigned VGPRs) const {
+ unsigned MaxWaves = getMaxWavesPerEU();
+ unsigned Granule = getVGPRAllocGranule();
+ if (VGPRs < Granule)
+ return MaxWaves;
+ unsigned RoundedRegs = ((VGPRs + Granule - 1) / Granule) * Granule;
+ return std::min(std::max(getTotalNumVGPRs() / RoundedRegs, 1u), MaxWaves);
+}
+
+unsigned
+GCNSubtarget::getBaseReservedNumSGPRs(const bool HasFlatScratchInit) const {
+ if (getGeneration() >= AMDGPUSubtarget::GFX10)
+ return 2; // VCC. FLAT_SCRATCH and XNACK are no longer in SGPRs.
+
+ if (HasFlatScratchInit || HasArchitectedFlatScratch) {
+ if (getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS)
+ return 6; // FLAT_SCRATCH, XNACK, VCC (in that order).
+ if (getGeneration() == AMDGPUSubtarget::SEA_ISLANDS)
+ return 4; // FLAT_SCRATCH, VCC (in that order).
+ }
+
+ if (isXNACKEnabled())
+ return 4; // XNACK, VCC (in that order).
+ return 2; // VCC.
+}
+
+unsigned GCNSubtarget::getReservedNumSGPRs(const MachineFunction &MF) const {
+ const SIMachineFunctionInfo &MFI = *MF.getInfo<SIMachineFunctionInfo>();
+ return getBaseReservedNumSGPRs(MFI.hasFlatScratchInit());
+}
+
+unsigned GCNSubtarget::getReservedNumSGPRs(const Function &F) const {
+ // The logic to detect if the function has
+ // flat scratch init is slightly different than how
+ // SIMachineFunctionInfo constructor derives.
+ // We don't use amdgpu-calls, amdgpu-stack-objects
+ // attributes and isAmdHsaOrMesa here as it doesn't really matter.
+ // TODO: Outline this derivation logic and have just
+ // one common function in the backend to avoid duplication.
+ bool isEntry = AMDGPU::isEntryFunctionCC(F.getCallingConv());
+ bool FunctionHasFlatScratchInit = false;
+ if (hasFlatAddressSpace() && isEntry && !flatScratchIsArchitected() &&
+ enableFlatScratch()) {
+ FunctionHasFlatScratchInit = true;
+ }
+ return getBaseReservedNumSGPRs(FunctionHasFlatScratchInit);
+}
+
+unsigned GCNSubtarget::computeOccupancy(const Function &F, unsigned LDSSize,
+ unsigned NumSGPRs,
+ unsigned NumVGPRs) const {
+ unsigned Occupancy =
+ std::min(getMaxWavesPerEU(),
+ getOccupancyWithLocalMemSize(LDSSize, F));
+ if (NumSGPRs)
+ Occupancy = std::min(Occupancy, getOccupancyWithNumSGPRs(NumSGPRs));
+ if (NumVGPRs)
+ Occupancy = std::min(Occupancy, getOccupancyWithNumVGPRs(NumVGPRs));
+ return Occupancy;
+}
+
+unsigned GCNSubtarget::getBaseMaxNumSGPRs(
+ const Function &F, std::pair<unsigned, unsigned> WavesPerEU,
+ unsigned PreloadedSGPRs, unsigned ReservedNumSGPRs) const {
+ // Compute maximum number of SGPRs function can use using default/requested
+ // minimum number of waves per execution unit.
+ unsigned MaxNumSGPRs = getMaxNumSGPRs(WavesPerEU.first, false);
+ unsigned MaxAddressableNumSGPRs = getMaxNumSGPRs(WavesPerEU.first, true);
+
+ // Check if maximum number of SGPRs was explicitly requested using
+ // "amdgpu-num-sgpr" attribute.
+ if (F.hasFnAttribute("amdgpu-num-sgpr")) {
+ unsigned Requested = AMDGPU::getIntegerAttribute(
+ F, "amdgpu-num-sgpr", MaxNumSGPRs);
+
+ // Make sure requested value does not violate subtarget's specifications.
+ if (Requested && (Requested <= ReservedNumSGPRs))
+ Requested = 0;
+
+ // If more SGPRs are required to support the input user/system SGPRs,
+ // increase to accommodate them.
+ //
+ // FIXME: This really ends up using the requested number of SGPRs + number
+ // of reserved special registers in total. Theoretically you could re-use
+ // the last input registers for these special registers, but this would
+ // require a lot of complexity to deal with the weird aliasing.
+ unsigned InputNumSGPRs = PreloadedSGPRs;
+ if (Requested && Requested < InputNumSGPRs)
+ Requested = InputNumSGPRs;
+
+ // Make sure requested value is compatible with values implied by
+ // default/requested minimum/maximum number of waves per execution unit.
+ if (Requested && Requested > getMaxNumSGPRs(WavesPerEU.first, false))
+ Requested = 0;
+ if (WavesPerEU.second &&
+ Requested && Requested < getMinNumSGPRs(WavesPerEU.second))
+ Requested = 0;
+
+ if (Requested)
+ MaxNumSGPRs = Requested;
+ }
+
+ if (hasSGPRInitBug())
+ MaxNumSGPRs = AMDGPU::IsaInfo::FIXED_NUM_SGPRS_FOR_INIT_BUG;
+
+ return std::min(MaxNumSGPRs - ReservedNumSGPRs, MaxAddressableNumSGPRs);
+}
+
+unsigned GCNSubtarget::getMaxNumSGPRs(const MachineFunction &MF) const {
+ const Function &F = MF.getFunction();
+ const SIMachineFunctionInfo &MFI = *MF.getInfo<SIMachineFunctionInfo>();
+ return getBaseMaxNumSGPRs(F, MFI.getWavesPerEU(), MFI.getNumPreloadedSGPRs(),
+ getReservedNumSGPRs(MF));
+}
+
+static unsigned getMaxNumPreloadedSGPRs() {
+ // Max number of user SGPRs
+ unsigned MaxUserSGPRs = 4 + // private segment buffer
+ 2 + // Dispatch ptr
+ 2 + // queue ptr
+ 2 + // kernel segment ptr
+ 2 + // dispatch ID
+ 2 + // flat scratch init
+ 2; // Implicit buffer ptr
+ // Max number of system SGPRs
+ unsigned MaxSystemSGPRs = 1 + // WorkGroupIDX
+ 1 + // WorkGroupIDY
+ 1 + // WorkGroupIDZ
+ 1 + // WorkGroupInfo
+ 1; // private segment wave byte offset
+ return MaxUserSGPRs + MaxSystemSGPRs;
+}
+
+unsigned GCNSubtarget::getMaxNumSGPRs(const Function &F) const {
+ return getBaseMaxNumSGPRs(F, getWavesPerEU(F), getMaxNumPreloadedSGPRs(),
+ getReservedNumSGPRs(F));
+}
+
+unsigned GCNSubtarget::getBaseMaxNumVGPRs(
+ const Function &F, std::pair<unsigned, unsigned> WavesPerEU) const {
+ // Compute maximum number of VGPRs function can use using default/requested
+ // minimum number of waves per execution unit.
+ unsigned MaxNumVGPRs = getMaxNumVGPRs(WavesPerEU.first);
+
+ // Check if maximum number of VGPRs was explicitly requested using
+ // "amdgpu-num-vgpr" attribute.
+ if (F.hasFnAttribute("amdgpu-num-vgpr")) {
+ unsigned Requested = AMDGPU::getIntegerAttribute(
+ F, "amdgpu-num-vgpr", MaxNumVGPRs);
+
+ if (hasGFX90AInsts())
+ Requested *= 2;
+
+ // Make sure requested value is compatible with values implied by
+ // default/requested minimum/maximum number of waves per execution unit.
+ if (Requested && Requested > getMaxNumVGPRs(WavesPerEU.first))
+ Requested = 0;
+ if (WavesPerEU.second &&
+ Requested && Requested < getMinNumVGPRs(WavesPerEU.second))
+ Requested = 0;
+
+ if (Requested)
+ MaxNumVGPRs = Requested;
+ }
+
+ return MaxNumVGPRs;
+}
+
+unsigned GCNSubtarget::getMaxNumVGPRs(const Function &F) const {
+ return getBaseMaxNumVGPRs(F, getWavesPerEU(F));
+}
+
+unsigned GCNSubtarget::getMaxNumVGPRs(const MachineFunction &MF) const {
+ const Function &F = MF.getFunction();
+ const SIMachineFunctionInfo &MFI = *MF.getInfo<SIMachineFunctionInfo>();
+ return getBaseMaxNumVGPRs(F, MFI.getWavesPerEU());
+}
+
+void GCNSubtarget::adjustSchedDependency(SUnit *Def, int DefOpIdx, SUnit *Use,
+ int UseOpIdx, SDep &Dep) const {
+ if (Dep.getKind() != SDep::Kind::Data || !Dep.getReg() ||
+ !Def->isInstr() || !Use->isInstr())
+ return;
+
+ MachineInstr *DefI = Def->getInstr();
+ MachineInstr *UseI = Use->getInstr();
+
+ if (DefI->isBundle()) {
+ const SIRegisterInfo *TRI = getRegisterInfo();
+ auto Reg = Dep.getReg();
+ MachineBasicBlock::const_instr_iterator I(DefI->getIterator());
+ MachineBasicBlock::const_instr_iterator E(DefI->getParent()->instr_end());
+ unsigned Lat = 0;
+ for (++I; I != E && I->isBundledWithPred(); ++I) {
+ if (I->modifiesRegister(Reg, TRI))
+ Lat = InstrInfo.getInstrLatency(getInstrItineraryData(), *I);
+ else if (Lat)
+ --Lat;
+ }
+ Dep.setLatency(Lat);
+ } else if (UseI->isBundle()) {
+ const SIRegisterInfo *TRI = getRegisterInfo();
+ auto Reg = Dep.getReg();
+ MachineBasicBlock::const_instr_iterator I(UseI->getIterator());
+ MachineBasicBlock::const_instr_iterator E(UseI->getParent()->instr_end());
+ unsigned Lat = InstrInfo.getInstrLatency(getInstrItineraryData(), *DefI);
+ for (++I; I != E && I->isBundledWithPred() && Lat; ++I) {
+ if (I->readsRegister(Reg, TRI))
+ break;
+ --Lat;
+ }
+ Dep.setLatency(Lat);
+ } else if (Dep.getLatency() == 0 && Dep.getReg() == AMDGPU::VCC_LO) {
+ // Work around the fact that SIInstrInfo::fixImplicitOperands modifies
+ // implicit operands which come from the MCInstrDesc, which can fool
+ // ScheduleDAGInstrs::addPhysRegDataDeps into treating them as implicit
+ // pseudo operands.
+ Dep.setLatency(InstrInfo.getSchedModel().computeOperandLatency(
+ DefI, DefOpIdx, UseI, UseOpIdx));
+ }
+}
+
+namespace {
+struct FillMFMAShadowMutation : ScheduleDAGMutation {
+ const SIInstrInfo *TII;
+
+ ScheduleDAGMI *DAG;
+
+ FillMFMAShadowMutation(const SIInstrInfo *tii) : TII(tii) {}
+
+ bool isSALU(const SUnit *SU) const {
+ const MachineInstr *MI = SU->getInstr();
+ return MI && TII->isSALU(*MI) && !MI->isTerminator();
+ }
+
+ bool isVALU(const SUnit *SU) const {
+ const MachineInstr *MI = SU->getInstr();
+ return MI && TII->isVALU(*MI);
+ }
+
+ bool canAddEdge(const SUnit *Succ, const SUnit *Pred) const {
+ if (Pred->NodeNum < Succ->NodeNum)
+ return true;
+
+ SmallVector<const SUnit*, 64> Succs({Succ}), Preds({Pred});
+
+ for (unsigned I = 0; I < Succs.size(); ++I) {
+ for (const SDep &SI : Succs[I]->Succs) {
+ const SUnit *SU = SI.getSUnit();
+ if (SU != Succs[I] && !llvm::is_contained(Succs, SU))
+ Succs.push_back(SU);
+ }
+ }
+
+ SmallPtrSet<const SUnit*, 32> Visited;
+ while (!Preds.empty()) {
+ const SUnit *SU = Preds.pop_back_val();
+ if (llvm::is_contained(Succs, SU))
+ return false;
+ Visited.insert(SU);
+ for (const SDep &SI : SU->Preds)
+ if (SI.getSUnit() != SU && !Visited.count(SI.getSUnit()))
+ Preds.push_back(SI.getSUnit());
+ }
+
+ return true;
+ }
+
+ // Link as many SALU instructions in chain as possible. Return the size
+ // of the chain. Links up to MaxChain instructions.
+ unsigned linkSALUChain(SUnit *From, SUnit *To, unsigned MaxChain,
+ SmallPtrSetImpl<SUnit *> &Visited) const {
+ SmallVector<SUnit *, 8> Worklist({To});
+ unsigned Linked = 0;
+
+ while (!Worklist.empty() && MaxChain-- > 0) {
+ SUnit *SU = Worklist.pop_back_val();
+ if (!Visited.insert(SU).second)
+ continue;
+
+ LLVM_DEBUG(dbgs() << "Inserting edge from\n" ; DAG->dumpNode(*From);
+ dbgs() << "to\n"; DAG->dumpNode(*SU); dbgs() << '\n');
+
+ if (SU->addPred(SDep(From, SDep::Artificial), false))
+ ++Linked;
+
+ for (SDep &SI : From->Succs) {
+ SUnit *SUv = SI.getSUnit();
+ if (SUv != From && isVALU(SUv) && canAddEdge(SUv, SU))
+ SUv->addPred(SDep(SU, SDep::Artificial), false);
+ }
+
+ for (SDep &SI : SU->Succs) {
+ SUnit *Succ = SI.getSUnit();
+ if (Succ != SU && isSALU(Succ) && canAddEdge(From, Succ))
+ Worklist.push_back(Succ);
+ }
+ }
+
+ return Linked;
+ }
+
+ void apply(ScheduleDAGInstrs *DAGInstrs) override {
+ const GCNSubtarget &ST = DAGInstrs->MF.getSubtarget<GCNSubtarget>();
+ if (!ST.hasMAIInsts() || DisablePowerSched)
+ return;
+ DAG = static_cast<ScheduleDAGMI*>(DAGInstrs);
+ const TargetSchedModel *TSchedModel = DAGInstrs->getSchedModel();
+ if (!TSchedModel || DAG->SUnits.empty())
+ return;
+
+ // Scan for MFMA long latency instructions and try to add a dependency
+ // of available SALU instructions to give them a chance to fill MFMA
+ // shadow. That is desirable to fill MFMA shadow with SALU instructions
+ // rather than VALU to prevent power consumption bursts and throttle.
+ auto LastSALU = DAG->SUnits.begin();
+ auto E = DAG->SUnits.end();
+ SmallPtrSet<SUnit*, 32> Visited;
+ for (SUnit &SU : DAG->SUnits) {
+ MachineInstr &MAI = *SU.getInstr();
+ if (!TII->isMAI(MAI) ||
+ MAI.getOpcode() == AMDGPU::V_ACCVGPR_WRITE_B32_e64 ||
+ MAI.getOpcode() == AMDGPU::V_ACCVGPR_READ_B32_e64)
+ continue;
+
+ unsigned Lat = TSchedModel->computeInstrLatency(&MAI) - 1;
+
+ LLVM_DEBUG(dbgs() << "Found MFMA: "; DAG->dumpNode(SU);
+ dbgs() << "Need " << Lat
+ << " instructions to cover latency.\n");
+
+ // Find up to Lat independent scalar instructions as early as
+ // possible such that they can be scheduled after this MFMA.
+ for ( ; Lat && LastSALU != E; ++LastSALU) {
+ if (Visited.count(&*LastSALU))
+ continue;
+
+ if (!isSALU(&*LastSALU) || !canAddEdge(&*LastSALU, &SU))
+ continue;
+
+ Lat -= linkSALUChain(&SU, &*LastSALU, Lat, Visited);
+ }
+ }
+ }
+};
+} // namespace
+
+void GCNSubtarget::getPostRAMutations(
+ std::vector<std::unique_ptr<ScheduleDAGMutation>> &Mutations) const {
+ Mutations.push_back(std::make_unique<FillMFMAShadowMutation>(&InstrInfo));
+}
+
+std::unique_ptr<ScheduleDAGMutation>
+GCNSubtarget::createFillMFMAShadowMutation(const TargetInstrInfo *TII) const {
+ return std::make_unique<FillMFMAShadowMutation>(&InstrInfo);
+}
+
+const AMDGPUSubtarget &AMDGPUSubtarget::get(const MachineFunction &MF) {
+ if (MF.getTarget().getTargetTriple().getArch() == Triple::amdgcn)
+ return static_cast<const AMDGPUSubtarget&>(MF.getSubtarget<GCNSubtarget>());
+ else
+ return static_cast<const AMDGPUSubtarget&>(MF.getSubtarget<R600Subtarget>());
+}
+
+const AMDGPUSubtarget &AMDGPUSubtarget::get(const TargetMachine &TM, const Function &F) {
+ if (TM.getTargetTriple().getArch() == Triple::amdgcn)
+ return static_cast<const AMDGPUSubtarget&>(TM.getSubtarget<GCNSubtarget>(F));
+ else
+ return static_cast<const AMDGPUSubtarget&>(TM.getSubtarget<R600Subtarget>(F));
+}