aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm-project/llvm/lib/Target/AMDGPU/Disassembler/AMDGPUDisassembler.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm-project/llvm/lib/Target/AMDGPU/Disassembler/AMDGPUDisassembler.cpp')
-rw-r--r--contrib/llvm-project/llvm/lib/Target/AMDGPU/Disassembler/AMDGPUDisassembler.cpp2302
1 files changed, 2302 insertions, 0 deletions
diff --git a/contrib/llvm-project/llvm/lib/Target/AMDGPU/Disassembler/AMDGPUDisassembler.cpp b/contrib/llvm-project/llvm/lib/Target/AMDGPU/Disassembler/AMDGPUDisassembler.cpp
new file mode 100644
index 000000000000..c4e85210848a
--- /dev/null
+++ b/contrib/llvm-project/llvm/lib/Target/AMDGPU/Disassembler/AMDGPUDisassembler.cpp
@@ -0,0 +1,2302 @@
+//===- AMDGPUDisassembler.cpp - Disassembler for AMDGPU ISA ---------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+//===----------------------------------------------------------------------===//
+//
+/// \file
+///
+/// This file contains definition for AMDGPU ISA disassembler
+//
+//===----------------------------------------------------------------------===//
+
+// ToDo: What to do with instruction suffixes (v_mov_b32 vs v_mov_b32_e32)?
+
+#include "Disassembler/AMDGPUDisassembler.h"
+#include "MCTargetDesc/AMDGPUMCTargetDesc.h"
+#include "SIDefines.h"
+#include "SIRegisterInfo.h"
+#include "TargetInfo/AMDGPUTargetInfo.h"
+#include "Utils/AMDGPUBaseInfo.h"
+#include "llvm-c/DisassemblerTypes.h"
+#include "llvm/BinaryFormat/ELF.h"
+#include "llvm/MC/MCAsmInfo.h"
+#include "llvm/MC/MCContext.h"
+#include "llvm/MC/MCDecoderOps.h"
+#include "llvm/MC/MCExpr.h"
+#include "llvm/MC/MCInstrDesc.h"
+#include "llvm/MC/MCRegisterInfo.h"
+#include "llvm/MC/MCSubtargetInfo.h"
+#include "llvm/MC/TargetRegistry.h"
+#include "llvm/Support/AMDHSAKernelDescriptor.h"
+
+using namespace llvm;
+
+#define DEBUG_TYPE "amdgpu-disassembler"
+
+#define SGPR_MAX \
+ (isGFX10Plus() ? AMDGPU::EncValues::SGPR_MAX_GFX10 \
+ : AMDGPU::EncValues::SGPR_MAX_SI)
+
+using DecodeStatus = llvm::MCDisassembler::DecodeStatus;
+
+AMDGPUDisassembler::AMDGPUDisassembler(const MCSubtargetInfo &STI,
+ MCContext &Ctx,
+ MCInstrInfo const *MCII) :
+ MCDisassembler(STI, Ctx), MCII(MCII), MRI(*Ctx.getRegisterInfo()),
+ TargetMaxInstBytes(Ctx.getAsmInfo()->getMaxInstLength(&STI)) {
+
+ // ToDo: AMDGPUDisassembler supports only VI ISA.
+ if (!STI.getFeatureBits()[AMDGPU::FeatureGCN3Encoding] && !isGFX10Plus())
+ report_fatal_error("Disassembly not yet supported for subtarget");
+}
+
+inline static MCDisassembler::DecodeStatus
+addOperand(MCInst &Inst, const MCOperand& Opnd) {
+ Inst.addOperand(Opnd);
+ return Opnd.isValid() ?
+ MCDisassembler::Success :
+ MCDisassembler::Fail;
+}
+
+static int insertNamedMCOperand(MCInst &MI, const MCOperand &Op,
+ uint16_t NameIdx) {
+ int OpIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), NameIdx);
+ if (OpIdx != -1) {
+ auto I = MI.begin();
+ std::advance(I, OpIdx);
+ MI.insert(I, Op);
+ }
+ return OpIdx;
+}
+
+static DecodeStatus decodeSoppBrTarget(MCInst &Inst, unsigned Imm,
+ uint64_t Addr,
+ const MCDisassembler *Decoder) {
+ auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
+
+ // Our branches take a simm16, but we need two extra bits to account for the
+ // factor of 4.
+ APInt SignedOffset(18, Imm * 4, true);
+ int64_t Offset = (SignedOffset.sext(64) + 4 + Addr).getSExtValue();
+
+ if (DAsm->tryAddingSymbolicOperand(Inst, Offset, Addr, true, 2, 2, 0))
+ return MCDisassembler::Success;
+ return addOperand(Inst, MCOperand::createImm(Imm));
+}
+
+static DecodeStatus decodeSMEMOffset(MCInst &Inst, unsigned Imm, uint64_t Addr,
+ const MCDisassembler *Decoder) {
+ auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
+ int64_t Offset;
+ if (DAsm->isVI()) { // VI supports 20-bit unsigned offsets.
+ Offset = Imm & 0xFFFFF;
+ } else { // GFX9+ supports 21-bit signed offsets.
+ Offset = SignExtend64<21>(Imm);
+ }
+ return addOperand(Inst, MCOperand::createImm(Offset));
+}
+
+static DecodeStatus decodeBoolReg(MCInst &Inst, unsigned Val, uint64_t Addr,
+ const MCDisassembler *Decoder) {
+ auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
+ return addOperand(Inst, DAsm->decodeBoolReg(Val));
+}
+
+#define DECODE_OPERAND(StaticDecoderName, DecoderName) \
+ static DecodeStatus StaticDecoderName(MCInst &Inst, unsigned Imm, \
+ uint64_t /*Addr*/, \
+ const MCDisassembler *Decoder) { \
+ auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder); \
+ return addOperand(Inst, DAsm->DecoderName(Imm)); \
+ }
+
+#define DECODE_OPERAND_REG(RegClass) \
+DECODE_OPERAND(Decode##RegClass##RegisterClass, decodeOperand_##RegClass)
+
+DECODE_OPERAND_REG(VGPR_32)
+DECODE_OPERAND_REG(VGPR_32_Lo128)
+DECODE_OPERAND_REG(VRegOrLds_32)
+DECODE_OPERAND_REG(VS_32)
+DECODE_OPERAND_REG(VS_64)
+DECODE_OPERAND_REG(VS_128)
+
+DECODE_OPERAND_REG(VReg_64)
+DECODE_OPERAND_REG(VReg_96)
+DECODE_OPERAND_REG(VReg_128)
+DECODE_OPERAND_REG(VReg_256)
+DECODE_OPERAND_REG(VReg_288)
+DECODE_OPERAND_REG(VReg_352)
+DECODE_OPERAND_REG(VReg_384)
+DECODE_OPERAND_REG(VReg_512)
+DECODE_OPERAND_REG(VReg_1024)
+
+DECODE_OPERAND_REG(SReg_32)
+DECODE_OPERAND_REG(SReg_32_XM0_XEXEC)
+DECODE_OPERAND_REG(SReg_32_XEXEC_HI)
+DECODE_OPERAND_REG(SRegOrLds_32)
+DECODE_OPERAND_REG(SReg_64)
+DECODE_OPERAND_REG(SReg_64_XEXEC)
+DECODE_OPERAND_REG(SReg_128)
+DECODE_OPERAND_REG(SReg_256)
+DECODE_OPERAND_REG(SReg_512)
+
+DECODE_OPERAND_REG(AGPR_32)
+DECODE_OPERAND_REG(AReg_64)
+DECODE_OPERAND_REG(AReg_128)
+DECODE_OPERAND_REG(AReg_256)
+DECODE_OPERAND_REG(AReg_512)
+DECODE_OPERAND_REG(AReg_1024)
+DECODE_OPERAND_REG(AV_32)
+DECODE_OPERAND_REG(AV_64)
+DECODE_OPERAND_REG(AV_128)
+DECODE_OPERAND_REG(AVDst_128)
+DECODE_OPERAND_REG(AVDst_512)
+
+static DecodeStatus decodeOperand_VSrc16(MCInst &Inst, unsigned Imm,
+ uint64_t Addr,
+ const MCDisassembler *Decoder) {
+ auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
+ return addOperand(Inst, DAsm->decodeOperand_VSrc16(Imm));
+}
+
+static DecodeStatus decodeOperand_VSrcV216(MCInst &Inst, unsigned Imm,
+ uint64_t Addr,
+ const MCDisassembler *Decoder) {
+ auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
+ return addOperand(Inst, DAsm->decodeOperand_VSrcV216(Imm));
+}
+
+static DecodeStatus decodeOperand_VSrcV232(MCInst &Inst, unsigned Imm,
+ uint64_t Addr,
+ const MCDisassembler *Decoder) {
+ auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
+ return addOperand(Inst, DAsm->decodeOperand_VSrcV232(Imm));
+}
+
+static DecodeStatus decodeOperand_VS_16(MCInst &Inst, unsigned Imm,
+ uint64_t Addr,
+ const MCDisassembler *Decoder) {
+ auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
+ return addOperand(Inst, DAsm->decodeOperand_VSrc16(Imm));
+}
+
+static DecodeStatus decodeOperand_VS_32(MCInst &Inst, unsigned Imm,
+ uint64_t Addr,
+ const MCDisassembler *Decoder) {
+ auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
+ return addOperand(Inst, DAsm->decodeOperand_VS_32(Imm));
+}
+
+static DecodeStatus decodeOperand_AReg_64(MCInst &Inst, unsigned Imm,
+ uint64_t Addr,
+ const MCDisassembler *Decoder) {
+ auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
+ return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW64, Imm | 512));
+}
+
+static DecodeStatus decodeOperand_AReg_128(MCInst &Inst, unsigned Imm,
+ uint64_t Addr,
+ const MCDisassembler *Decoder) {
+ auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
+ return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW128, Imm | 512));
+}
+
+static DecodeStatus decodeOperand_AReg_256(MCInst &Inst, unsigned Imm,
+ uint64_t Addr,
+ const MCDisassembler *Decoder) {
+ auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
+ return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW256, Imm | 512));
+}
+
+static DecodeStatus decodeOperand_AReg_512(MCInst &Inst, unsigned Imm,
+ uint64_t Addr,
+ const MCDisassembler *Decoder) {
+ auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
+ return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW512, Imm | 512));
+}
+
+static DecodeStatus decodeOperand_AReg_1024(MCInst &Inst, unsigned Imm,
+ uint64_t Addr,
+ const MCDisassembler *Decoder) {
+ auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
+ return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW1024, Imm | 512));
+}
+
+static DecodeStatus decodeOperand_VReg_64(MCInst &Inst, unsigned Imm,
+ uint64_t Addr,
+ const MCDisassembler *Decoder) {
+ auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
+ return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW64, Imm));
+}
+
+static DecodeStatus decodeOperand_VReg_128(MCInst &Inst, unsigned Imm,
+ uint64_t Addr,
+ const MCDisassembler *Decoder) {
+ auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
+ return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW128, Imm));
+}
+
+static DecodeStatus decodeOperand_VReg_256(MCInst &Inst, unsigned Imm,
+ uint64_t Addr,
+ const MCDisassembler *Decoder) {
+ auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
+ return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW256, Imm));
+}
+
+static DecodeStatus decodeOperand_VReg_512(MCInst &Inst, unsigned Imm,
+ uint64_t Addr,
+ const MCDisassembler *Decoder) {
+ auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
+ return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW512, Imm));
+}
+
+static DecodeStatus decodeOperand_VReg_1024(MCInst &Inst, unsigned Imm,
+ uint64_t Addr,
+ const MCDisassembler *Decoder) {
+ auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
+ return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW1024, Imm));
+}
+
+static DecodeStatus decodeOperand_f32kimm(MCInst &Inst, unsigned Imm,
+ uint64_t Addr,
+ const MCDisassembler *Decoder) {
+ const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
+ return addOperand(Inst, DAsm->decodeMandatoryLiteralConstant(Imm));
+}
+
+static DecodeStatus decodeOperand_f16kimm(MCInst &Inst, unsigned Imm,
+ uint64_t Addr,
+ const MCDisassembler *Decoder) {
+ const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
+ return addOperand(Inst, DAsm->decodeMandatoryLiteralConstant(Imm));
+}
+
+static DecodeStatus
+decodeOperand_VS_16_Deferred(MCInst &Inst, unsigned Imm, uint64_t Addr,
+ const MCDisassembler *Decoder) {
+ const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
+ return addOperand(
+ Inst, DAsm->decodeSrcOp(llvm::AMDGPUDisassembler::OPW16, Imm, true));
+}
+
+static DecodeStatus
+decodeOperand_VS_32_Deferred(MCInst &Inst, unsigned Imm, uint64_t Addr,
+ const MCDisassembler *Decoder) {
+ const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
+ return addOperand(
+ Inst, DAsm->decodeSrcOp(llvm::AMDGPUDisassembler::OPW32, Imm, true));
+}
+
+static DecodeStatus decodeOperandVOPDDstY(MCInst &Inst, unsigned Val,
+ uint64_t Addr, const void *Decoder) {
+ const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
+ return addOperand(Inst, DAsm->decodeVOPDDstYOp(Inst, Val));
+}
+
+static bool IsAGPROperand(const MCInst &Inst, int OpIdx,
+ const MCRegisterInfo *MRI) {
+ if (OpIdx < 0)
+ return false;
+
+ const MCOperand &Op = Inst.getOperand(OpIdx);
+ if (!Op.isReg())
+ return false;
+
+ unsigned Sub = MRI->getSubReg(Op.getReg(), AMDGPU::sub0);
+ auto Reg = Sub ? Sub : Op.getReg();
+ return Reg >= AMDGPU::AGPR0 && Reg <= AMDGPU::AGPR255;
+}
+
+static DecodeStatus decodeOperand_AVLdSt_Any(MCInst &Inst, unsigned Imm,
+ AMDGPUDisassembler::OpWidthTy Opw,
+ const MCDisassembler *Decoder) {
+ auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
+ if (!DAsm->isGFX90A()) {
+ Imm &= 511;
+ } else {
+ // If atomic has both vdata and vdst their register classes are tied.
+ // The bit is decoded along with the vdst, first operand. We need to
+ // change register class to AGPR if vdst was AGPR.
+ // If a DS instruction has both data0 and data1 their register classes
+ // are also tied.
+ unsigned Opc = Inst.getOpcode();
+ uint64_t TSFlags = DAsm->getMCII()->get(Opc).TSFlags;
+ uint16_t DataNameIdx = (TSFlags & SIInstrFlags::DS) ? AMDGPU::OpName::data0
+ : AMDGPU::OpName::vdata;
+ const MCRegisterInfo *MRI = DAsm->getContext().getRegisterInfo();
+ int DataIdx = AMDGPU::getNamedOperandIdx(Opc, DataNameIdx);
+ if ((int)Inst.getNumOperands() == DataIdx) {
+ int DstIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::vdst);
+ if (IsAGPROperand(Inst, DstIdx, MRI))
+ Imm |= 512;
+ }
+
+ if (TSFlags & SIInstrFlags::DS) {
+ int Data2Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::data1);
+ if ((int)Inst.getNumOperands() == Data2Idx &&
+ IsAGPROperand(Inst, DataIdx, MRI))
+ Imm |= 512;
+ }
+ }
+ return addOperand(Inst, DAsm->decodeSrcOp(Opw, Imm | 256));
+}
+
+static DecodeStatus
+DecodeAVLdSt_32RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr,
+ const MCDisassembler *Decoder) {
+ return decodeOperand_AVLdSt_Any(Inst, Imm,
+ AMDGPUDisassembler::OPW32, Decoder);
+}
+
+static DecodeStatus
+DecodeAVLdSt_64RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr,
+ const MCDisassembler *Decoder) {
+ return decodeOperand_AVLdSt_Any(Inst, Imm,
+ AMDGPUDisassembler::OPW64, Decoder);
+}
+
+static DecodeStatus
+DecodeAVLdSt_96RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr,
+ const MCDisassembler *Decoder) {
+ return decodeOperand_AVLdSt_Any(Inst, Imm,
+ AMDGPUDisassembler::OPW96, Decoder);
+}
+
+static DecodeStatus
+DecodeAVLdSt_128RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr,
+ const MCDisassembler *Decoder) {
+ return decodeOperand_AVLdSt_Any(Inst, Imm,
+ AMDGPUDisassembler::OPW128, Decoder);
+}
+
+static DecodeStatus
+DecodeAVLdSt_160RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr,
+ const MCDisassembler *Decoder) {
+ return decodeOperand_AVLdSt_Any(Inst, Imm, AMDGPUDisassembler::OPW160,
+ Decoder);
+}
+
+static DecodeStatus decodeOperand_SReg_32(MCInst &Inst, unsigned Imm,
+ uint64_t Addr,
+ const MCDisassembler *Decoder) {
+ auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
+ return addOperand(Inst, DAsm->decodeOperand_SReg_32(Imm));
+}
+
+#define DECODE_SDWA(DecName) \
+DECODE_OPERAND(decodeSDWA##DecName, decodeSDWA##DecName)
+
+DECODE_SDWA(Src32)
+DECODE_SDWA(Src16)
+DECODE_SDWA(VopcDst)
+
+#include "AMDGPUGenDisassemblerTables.inc"
+
+//===----------------------------------------------------------------------===//
+//
+//===----------------------------------------------------------------------===//
+
+template <typename T> static inline T eatBytes(ArrayRef<uint8_t>& Bytes) {
+ assert(Bytes.size() >= sizeof(T));
+ const auto Res = support::endian::read<T, support::endianness::little>(Bytes.data());
+ Bytes = Bytes.slice(sizeof(T));
+ return Res;
+}
+
+static inline DecoderUInt128 eat12Bytes(ArrayRef<uint8_t> &Bytes) {
+ assert(Bytes.size() >= 12);
+ uint64_t Lo = support::endian::read<uint64_t, support::endianness::little>(
+ Bytes.data());
+ Bytes = Bytes.slice(8);
+ uint64_t Hi = support::endian::read<uint32_t, support::endianness::little>(
+ Bytes.data());
+ Bytes = Bytes.slice(4);
+ return DecoderUInt128(Lo, Hi);
+}
+
+// The disassembler is greedy, so we need to check FI operand value to
+// not parse a dpp if the correct literal is not set. For dpp16 the
+// autogenerated decoder checks the dpp literal
+static bool isValidDPP8(const MCInst &MI) {
+ using namespace llvm::AMDGPU::DPP;
+ int FiIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::fi);
+ assert(FiIdx != -1);
+ if ((unsigned)FiIdx >= MI.getNumOperands())
+ return false;
+ unsigned Fi = MI.getOperand(FiIdx).getImm();
+ return Fi == DPP8_FI_0 || Fi == DPP8_FI_1;
+}
+
+DecodeStatus AMDGPUDisassembler::getInstruction(MCInst &MI, uint64_t &Size,
+ ArrayRef<uint8_t> Bytes_,
+ uint64_t Address,
+ raw_ostream &CS) const {
+ CommentStream = &CS;
+ bool IsSDWA = false;
+
+ unsigned MaxInstBytesNum = std::min((size_t)TargetMaxInstBytes, Bytes_.size());
+ Bytes = Bytes_.slice(0, MaxInstBytesNum);
+
+ DecodeStatus Res = MCDisassembler::Fail;
+ do {
+ // ToDo: better to switch encoding length using some bit predicate
+ // but it is unknown yet, so try all we can
+
+ // Try to decode DPP and SDWA first to solve conflict with VOP1 and VOP2
+ // encodings
+ if (isGFX11Plus() && Bytes.size() >= 12 ) {
+ DecoderUInt128 DecW = eat12Bytes(Bytes);
+ Res = tryDecodeInst(DecoderTableDPP8GFX1196, MI, DecW,
+ Address);
+ if (Res && convertDPP8Inst(MI) == MCDisassembler::Success)
+ break;
+ MI = MCInst(); // clear
+ Res = tryDecodeInst(DecoderTableDPPGFX1196, MI, DecW,
+ Address);
+ if (Res) {
+ if (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VOP3P)
+ convertVOP3PDPPInst(MI);
+ else if (AMDGPU::isVOPC64DPP(MI.getOpcode()))
+ convertVOPCDPPInst(MI); // Special VOP3 case
+ else {
+ assert(MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VOP3);
+ convertVOP3DPPInst(MI); // Regular VOP3 case
+ }
+ break;
+ }
+ Res = tryDecodeInst(DecoderTableGFX1196, MI, DecW, Address);
+ if (Res)
+ break;
+ }
+ // Reinitialize Bytes
+ Bytes = Bytes_.slice(0, MaxInstBytesNum);
+
+ if (Bytes.size() >= 8) {
+ const uint64_t QW = eatBytes<uint64_t>(Bytes);
+
+ if (STI.getFeatureBits()[AMDGPU::FeatureGFX10_BEncoding]) {
+ Res = tryDecodeInst(DecoderTableGFX10_B64, MI, QW, Address);
+ if (Res) {
+ if (AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::dpp8)
+ == -1)
+ break;
+ if (convertDPP8Inst(MI) == MCDisassembler::Success)
+ break;
+ MI = MCInst(); // clear
+ }
+ }
+
+ Res = tryDecodeInst(DecoderTableDPP864, MI, QW, Address);
+ if (Res && convertDPP8Inst(MI) == MCDisassembler::Success)
+ break;
+ MI = MCInst(); // clear
+
+ Res = tryDecodeInst(DecoderTableDPP8GFX1164, MI, QW, Address);
+ if (Res && convertDPP8Inst(MI) == MCDisassembler::Success)
+ break;
+ MI = MCInst(); // clear
+
+ Res = tryDecodeInst(DecoderTableDPP64, MI, QW, Address);
+ if (Res) break;
+
+ Res = tryDecodeInst(DecoderTableDPPGFX1164, MI, QW, Address);
+ if (Res) {
+ if (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VOPC)
+ convertVOPCDPPInst(MI);
+ break;
+ }
+
+ Res = tryDecodeInst(DecoderTableSDWA64, MI, QW, Address);
+ if (Res) { IsSDWA = true; break; }
+
+ Res = tryDecodeInst(DecoderTableSDWA964, MI, QW, Address);
+ if (Res) { IsSDWA = true; break; }
+
+ Res = tryDecodeInst(DecoderTableSDWA1064, MI, QW, Address);
+ if (Res) { IsSDWA = true; break; }
+
+ if (STI.getFeatureBits()[AMDGPU::FeatureUnpackedD16VMem]) {
+ Res = tryDecodeInst(DecoderTableGFX80_UNPACKED64, MI, QW, Address);
+ if (Res)
+ break;
+ }
+
+ // Some GFX9 subtargets repurposed the v_mad_mix_f32, v_mad_mixlo_f16 and
+ // v_mad_mixhi_f16 for FMA variants. Try to decode using this special
+ // table first so we print the correct name.
+ if (STI.getFeatureBits()[AMDGPU::FeatureFmaMixInsts]) {
+ Res = tryDecodeInst(DecoderTableGFX9_DL64, MI, QW, Address);
+ if (Res)
+ break;
+ }
+ }
+
+ // Reinitialize Bytes as DPP64 could have eaten too much
+ Bytes = Bytes_.slice(0, MaxInstBytesNum);
+
+ // Try decode 32-bit instruction
+ if (Bytes.size() < 4) break;
+ const uint32_t DW = eatBytes<uint32_t>(Bytes);
+ Res = tryDecodeInst(DecoderTableGFX832, MI, DW, Address);
+ if (Res) break;
+
+ Res = tryDecodeInst(DecoderTableAMDGPU32, MI, DW, Address);
+ if (Res) break;
+
+ Res = tryDecodeInst(DecoderTableGFX932, MI, DW, Address);
+ if (Res) break;
+
+ if (STI.getFeatureBits()[AMDGPU::FeatureGFX90AInsts]) {
+ Res = tryDecodeInst(DecoderTableGFX90A32, MI, DW, Address);
+ if (Res)
+ break;
+ }
+
+ if (STI.getFeatureBits()[AMDGPU::FeatureGFX10_BEncoding]) {
+ Res = tryDecodeInst(DecoderTableGFX10_B32, MI, DW, Address);
+ if (Res) break;
+ }
+
+ Res = tryDecodeInst(DecoderTableGFX1032, MI, DW, Address);
+ if (Res) break;
+
+ Res = tryDecodeInst(DecoderTableGFX1132, MI, DW, Address);
+ if (Res) break;
+
+ if (Bytes.size() < 4) break;
+ const uint64_t QW = ((uint64_t)eatBytes<uint32_t>(Bytes) << 32) | DW;
+
+ if (STI.getFeatureBits()[AMDGPU::FeatureGFX940Insts]) {
+ Res = tryDecodeInst(DecoderTableGFX94064, MI, QW, Address);
+ if (Res)
+ break;
+ }
+
+ if (STI.getFeatureBits()[AMDGPU::FeatureGFX90AInsts]) {
+ Res = tryDecodeInst(DecoderTableGFX90A64, MI, QW, Address);
+ if (Res)
+ break;
+ }
+
+ Res = tryDecodeInst(DecoderTableGFX864, MI, QW, Address);
+ if (Res) break;
+
+ Res = tryDecodeInst(DecoderTableAMDGPU64, MI, QW, Address);
+ if (Res) break;
+
+ Res = tryDecodeInst(DecoderTableGFX964, MI, QW, Address);
+ if (Res) break;
+
+ Res = tryDecodeInst(DecoderTableGFX1064, MI, QW, Address);
+ if (Res) break;
+
+ Res = tryDecodeInst(DecoderTableGFX1164, MI, QW, Address);
+ if (Res)
+ break;
+
+ Res = tryDecodeInst(DecoderTableWMMAGFX1164, MI, QW, Address);
+ } while (false);
+
+ if (Res && AMDGPU::isMAC(MI.getOpcode())) {
+ // Insert dummy unused src2_modifiers.
+ insertNamedMCOperand(MI, MCOperand::createImm(0),
+ AMDGPU::OpName::src2_modifiers);
+ }
+
+ if (Res && (MCII->get(MI.getOpcode()).TSFlags &
+ (SIInstrFlags::MUBUF | SIInstrFlags::FLAT | SIInstrFlags::SMRD))) {
+ int CPolPos = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
+ AMDGPU::OpName::cpol);
+ if (CPolPos != -1) {
+ unsigned CPol =
+ (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::IsAtomicRet) ?
+ AMDGPU::CPol::GLC : 0;
+ if (MI.getNumOperands() <= (unsigned)CPolPos) {
+ insertNamedMCOperand(MI, MCOperand::createImm(CPol),
+ AMDGPU::OpName::cpol);
+ } else if (CPol) {
+ MI.getOperand(CPolPos).setImm(MI.getOperand(CPolPos).getImm() | CPol);
+ }
+ }
+ }
+
+ if (Res && (MCII->get(MI.getOpcode()).TSFlags &
+ (SIInstrFlags::MTBUF | SIInstrFlags::MUBUF)) &&
+ (STI.getFeatureBits()[AMDGPU::FeatureGFX90AInsts])) {
+ // GFX90A lost TFE, its place is occupied by ACC.
+ int TFEOpIdx =
+ AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::tfe);
+ if (TFEOpIdx != -1) {
+ auto TFEIter = MI.begin();
+ std::advance(TFEIter, TFEOpIdx);
+ MI.insert(TFEIter, MCOperand::createImm(0));
+ }
+ }
+
+ if (Res && (MCII->get(MI.getOpcode()).TSFlags &
+ (SIInstrFlags::MTBUF | SIInstrFlags::MUBUF))) {
+ int SWZOpIdx =
+ AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::swz);
+ if (SWZOpIdx != -1) {
+ auto SWZIter = MI.begin();
+ std::advance(SWZIter, SWZOpIdx);
+ MI.insert(SWZIter, MCOperand::createImm(0));
+ }
+ }
+
+ if (Res && (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::MIMG)) {
+ int VAddr0Idx =
+ AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vaddr0);
+ int RsrcIdx =
+ AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::srsrc);
+ unsigned NSAArgs = RsrcIdx - VAddr0Idx - 1;
+ if (VAddr0Idx >= 0 && NSAArgs > 0) {
+ unsigned NSAWords = (NSAArgs + 3) / 4;
+ if (Bytes.size() < 4 * NSAWords) {
+ Res = MCDisassembler::Fail;
+ } else {
+ for (unsigned i = 0; i < NSAArgs; ++i) {
+ const unsigned VAddrIdx = VAddr0Idx + 1 + i;
+ auto VAddrRCID =
+ MCII->get(MI.getOpcode()).operands()[VAddrIdx].RegClass;
+ MI.insert(MI.begin() + VAddrIdx,
+ createRegOperand(VAddrRCID, Bytes[i]));
+ }
+ Bytes = Bytes.slice(4 * NSAWords);
+ }
+ }
+
+ if (Res)
+ Res = convertMIMGInst(MI);
+ }
+
+ if (Res && (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::EXP))
+ Res = convertEXPInst(MI);
+
+ if (Res && (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VINTERP))
+ Res = convertVINTERPInst(MI);
+
+ if (Res && IsSDWA)
+ Res = convertSDWAInst(MI);
+
+ int VDstIn_Idx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
+ AMDGPU::OpName::vdst_in);
+ if (VDstIn_Idx != -1) {
+ int Tied = MCII->get(MI.getOpcode()).getOperandConstraint(VDstIn_Idx,
+ MCOI::OperandConstraint::TIED_TO);
+ if (Tied != -1 && (MI.getNumOperands() <= (unsigned)VDstIn_Idx ||
+ !MI.getOperand(VDstIn_Idx).isReg() ||
+ MI.getOperand(VDstIn_Idx).getReg() != MI.getOperand(Tied).getReg())) {
+ if (MI.getNumOperands() > (unsigned)VDstIn_Idx)
+ MI.erase(&MI.getOperand(VDstIn_Idx));
+ insertNamedMCOperand(MI,
+ MCOperand::createReg(MI.getOperand(Tied).getReg()),
+ AMDGPU::OpName::vdst_in);
+ }
+ }
+
+ int ImmLitIdx =
+ AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::imm);
+ bool IsSOPK = MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::SOPK;
+ if (Res && ImmLitIdx != -1 && !IsSOPK)
+ Res = convertFMAanyK(MI, ImmLitIdx);
+
+ // if the opcode was not recognized we'll assume a Size of 4 bytes
+ // (unless there are fewer bytes left)
+ Size = Res ? (MaxInstBytesNum - Bytes.size())
+ : std::min((size_t)4, Bytes_.size());
+ return Res;
+}
+
+DecodeStatus AMDGPUDisassembler::convertEXPInst(MCInst &MI) const {
+ if (STI.getFeatureBits()[AMDGPU::FeatureGFX11]) {
+ // The MCInst still has these fields even though they are no longer encoded
+ // in the GFX11 instruction.
+ insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::vm);
+ insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::compr);
+ }
+ return MCDisassembler::Success;
+}
+
+DecodeStatus AMDGPUDisassembler::convertVINTERPInst(MCInst &MI) const {
+ if (MI.getOpcode() == AMDGPU::V_INTERP_P10_F16_F32_inreg_gfx11 ||
+ MI.getOpcode() == AMDGPU::V_INTERP_P10_RTZ_F16_F32_inreg_gfx11 ||
+ MI.getOpcode() == AMDGPU::V_INTERP_P2_F16_F32_inreg_gfx11 ||
+ MI.getOpcode() == AMDGPU::V_INTERP_P2_RTZ_F16_F32_inreg_gfx11) {
+ // The MCInst has this field that is not directly encoded in the
+ // instruction.
+ insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::op_sel);
+ }
+ return MCDisassembler::Success;
+}
+
+DecodeStatus AMDGPUDisassembler::convertSDWAInst(MCInst &MI) const {
+ if (STI.getFeatureBits()[AMDGPU::FeatureGFX9] ||
+ STI.getFeatureBits()[AMDGPU::FeatureGFX10]) {
+ if (AMDGPU::hasNamedOperand(MI.getOpcode(), AMDGPU::OpName::sdst))
+ // VOPC - insert clamp
+ insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::clamp);
+ } else if (STI.getFeatureBits()[AMDGPU::FeatureVolcanicIslands]) {
+ int SDst = AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::sdst);
+ if (SDst != -1) {
+ // VOPC - insert VCC register as sdst
+ insertNamedMCOperand(MI, createRegOperand(AMDGPU::VCC),
+ AMDGPU::OpName::sdst);
+ } else {
+ // VOP1/2 - insert omod if present in instruction
+ insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::omod);
+ }
+ }
+ return MCDisassembler::Success;
+}
+
+struct VOPModifiers {
+ unsigned OpSel = 0;
+ unsigned OpSelHi = 0;
+ unsigned NegLo = 0;
+ unsigned NegHi = 0;
+};
+
+// Reconstruct values of VOP3/VOP3P operands such as op_sel.
+// Note that these values do not affect disassembler output,
+// so this is only necessary for consistency with src_modifiers.
+static VOPModifiers collectVOPModifiers(const MCInst &MI,
+ bool IsVOP3P = false) {
+ VOPModifiers Modifiers;
+ unsigned Opc = MI.getOpcode();
+ const int ModOps[] = {AMDGPU::OpName::src0_modifiers,
+ AMDGPU::OpName::src1_modifiers,
+ AMDGPU::OpName::src2_modifiers};
+ for (int J = 0; J < 3; ++J) {
+ int OpIdx = AMDGPU::getNamedOperandIdx(Opc, ModOps[J]);
+ if (OpIdx == -1)
+ continue;
+
+ unsigned Val = MI.getOperand(OpIdx).getImm();
+
+ Modifiers.OpSel |= !!(Val & SISrcMods::OP_SEL_0) << J;
+ if (IsVOP3P) {
+ Modifiers.OpSelHi |= !!(Val & SISrcMods::OP_SEL_1) << J;
+ Modifiers.NegLo |= !!(Val & SISrcMods::NEG) << J;
+ Modifiers.NegHi |= !!(Val & SISrcMods::NEG_HI) << J;
+ } else if (J == 0) {
+ Modifiers.OpSel |= !!(Val & SISrcMods::DST_OP_SEL) << 3;
+ }
+ }
+
+ return Modifiers;
+}
+
+// MAC opcodes have special old and src2 operands.
+// src2 is tied to dst, while old is not tied (but assumed to be).
+bool AMDGPUDisassembler::isMacDPP(MCInst &MI) const {
+ constexpr int DST_IDX = 0;
+ auto Opcode = MI.getOpcode();
+ const auto &Desc = MCII->get(Opcode);
+ auto OldIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::old);
+
+ if (OldIdx != -1 && Desc.getOperandConstraint(
+ OldIdx, MCOI::OperandConstraint::TIED_TO) == -1) {
+ assert(AMDGPU::hasNamedOperand(Opcode, AMDGPU::OpName::src2));
+ assert(Desc.getOperandConstraint(
+ AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src2),
+ MCOI::OperandConstraint::TIED_TO) == DST_IDX);
+ (void)DST_IDX;
+ return true;
+ }
+
+ return false;
+}
+
+// Create dummy old operand and insert dummy unused src2_modifiers
+void AMDGPUDisassembler::convertMacDPPInst(MCInst &MI) const {
+ assert(MI.getNumOperands() + 1 < MCII->get(MI.getOpcode()).getNumOperands());
+ insertNamedMCOperand(MI, MCOperand::createReg(0), AMDGPU::OpName::old);
+ insertNamedMCOperand(MI, MCOperand::createImm(0),
+ AMDGPU::OpName::src2_modifiers);
+}
+
+// We must check FI == literal to reject not genuine dpp8 insts, and we must
+// first add optional MI operands to check FI
+DecodeStatus AMDGPUDisassembler::convertDPP8Inst(MCInst &MI) const {
+ unsigned Opc = MI.getOpcode();
+ if (MCII->get(Opc).TSFlags & SIInstrFlags::VOP3P) {
+ convertVOP3PDPPInst(MI);
+ } else if ((MCII->get(Opc).TSFlags & SIInstrFlags::VOPC) ||
+ AMDGPU::isVOPC64DPP(Opc)) {
+ convertVOPCDPPInst(MI);
+ } else {
+ if (isMacDPP(MI))
+ convertMacDPPInst(MI);
+
+ unsigned DescNumOps = MCII->get(Opc).getNumOperands();
+ if (MI.getNumOperands() < DescNumOps &&
+ AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::op_sel)) {
+ auto Mods = collectVOPModifiers(MI);
+ insertNamedMCOperand(MI, MCOperand::createImm(Mods.OpSel),
+ AMDGPU::OpName::op_sel);
+ } else {
+ // Insert dummy unused src modifiers.
+ if (MI.getNumOperands() < DescNumOps &&
+ AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::src0_modifiers))
+ insertNamedMCOperand(MI, MCOperand::createImm(0),
+ AMDGPU::OpName::src0_modifiers);
+
+ if (MI.getNumOperands() < DescNumOps &&
+ AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::src1_modifiers))
+ insertNamedMCOperand(MI, MCOperand::createImm(0),
+ AMDGPU::OpName::src1_modifiers);
+ }
+ }
+ return isValidDPP8(MI) ? MCDisassembler::Success : MCDisassembler::SoftFail;
+}
+
+DecodeStatus AMDGPUDisassembler::convertVOP3DPPInst(MCInst &MI) const {
+ if (isMacDPP(MI))
+ convertMacDPPInst(MI);
+
+ unsigned Opc = MI.getOpcode();
+ unsigned DescNumOps = MCII->get(Opc).getNumOperands();
+ if (MI.getNumOperands() < DescNumOps &&
+ AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::op_sel)) {
+ auto Mods = collectVOPModifiers(MI);
+ insertNamedMCOperand(MI, MCOperand::createImm(Mods.OpSel),
+ AMDGPU::OpName::op_sel);
+ }
+ return MCDisassembler::Success;
+}
+
+// Note that before gfx10, the MIMG encoding provided no information about
+// VADDR size. Consequently, decoded instructions always show address as if it
+// has 1 dword, which could be not really so.
+DecodeStatus AMDGPUDisassembler::convertMIMGInst(MCInst &MI) const {
+
+ int VDstIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
+ AMDGPU::OpName::vdst);
+
+ int VDataIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
+ AMDGPU::OpName::vdata);
+ int VAddr0Idx =
+ AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vaddr0);
+ int DMaskIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
+ AMDGPU::OpName::dmask);
+
+ int TFEIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
+ AMDGPU::OpName::tfe);
+ int D16Idx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
+ AMDGPU::OpName::d16);
+
+ const AMDGPU::MIMGInfo *Info = AMDGPU::getMIMGInfo(MI.getOpcode());
+ const AMDGPU::MIMGBaseOpcodeInfo *BaseOpcode =
+ AMDGPU::getMIMGBaseOpcodeInfo(Info->BaseOpcode);
+
+ assert(VDataIdx != -1);
+ if (BaseOpcode->BVH) {
+ // Add A16 operand for intersect_ray instructions
+ if (AMDGPU::hasNamedOperand(MI.getOpcode(), AMDGPU::OpName::a16))
+ addOperand(MI, MCOperand::createImm(1));
+ return MCDisassembler::Success;
+ }
+
+ bool IsAtomic = (VDstIdx != -1);
+ bool IsGather4 = MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::Gather4;
+ bool IsNSA = false;
+ unsigned AddrSize = Info->VAddrDwords;
+
+ if (isGFX10Plus()) {
+ unsigned DimIdx =
+ AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::dim);
+ int A16Idx =
+ AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::a16);
+ const AMDGPU::MIMGDimInfo *Dim =
+ AMDGPU::getMIMGDimInfoByEncoding(MI.getOperand(DimIdx).getImm());
+ const bool IsA16 = (A16Idx != -1 && MI.getOperand(A16Idx).getImm());
+
+ AddrSize =
+ AMDGPU::getAddrSizeMIMGOp(BaseOpcode, Dim, IsA16, AMDGPU::hasG16(STI));
+
+ IsNSA = Info->MIMGEncoding == AMDGPU::MIMGEncGfx10NSA ||
+ Info->MIMGEncoding == AMDGPU::MIMGEncGfx11NSA;
+ if (!IsNSA) {
+ if (AddrSize > 12)
+ AddrSize = 16;
+ } else {
+ if (AddrSize > Info->VAddrDwords) {
+ // The NSA encoding does not contain enough operands for the combination
+ // of base opcode / dimension. Should this be an error?
+ return MCDisassembler::Success;
+ }
+ }
+ }
+
+ unsigned DMask = MI.getOperand(DMaskIdx).getImm() & 0xf;
+ unsigned DstSize = IsGather4 ? 4 : std::max(llvm::popcount(DMask), 1);
+
+ bool D16 = D16Idx >= 0 && MI.getOperand(D16Idx).getImm();
+ if (D16 && AMDGPU::hasPackedD16(STI)) {
+ DstSize = (DstSize + 1) / 2;
+ }
+
+ if (TFEIdx != -1 && MI.getOperand(TFEIdx).getImm())
+ DstSize += 1;
+
+ if (DstSize == Info->VDataDwords && AddrSize == Info->VAddrDwords)
+ return MCDisassembler::Success;
+
+ int NewOpcode =
+ AMDGPU::getMIMGOpcode(Info->BaseOpcode, Info->MIMGEncoding, DstSize, AddrSize);
+ if (NewOpcode == -1)
+ return MCDisassembler::Success;
+
+ // Widen the register to the correct number of enabled channels.
+ unsigned NewVdata = AMDGPU::NoRegister;
+ if (DstSize != Info->VDataDwords) {
+ auto DataRCID = MCII->get(NewOpcode).operands()[VDataIdx].RegClass;
+
+ // Get first subregister of VData
+ unsigned Vdata0 = MI.getOperand(VDataIdx).getReg();
+ unsigned VdataSub0 = MRI.getSubReg(Vdata0, AMDGPU::sub0);
+ Vdata0 = (VdataSub0 != 0)? VdataSub0 : Vdata0;
+
+ NewVdata = MRI.getMatchingSuperReg(Vdata0, AMDGPU::sub0,
+ &MRI.getRegClass(DataRCID));
+ if (NewVdata == AMDGPU::NoRegister) {
+ // It's possible to encode this such that the low register + enabled
+ // components exceeds the register count.
+ return MCDisassembler::Success;
+ }
+ }
+
+ // If not using NSA on GFX10+, widen address register to correct size.
+ unsigned NewVAddr0 = AMDGPU::NoRegister;
+ if (isGFX10Plus() && !IsNSA && AddrSize != Info->VAddrDwords) {
+ unsigned VAddr0 = MI.getOperand(VAddr0Idx).getReg();
+ unsigned VAddrSub0 = MRI.getSubReg(VAddr0, AMDGPU::sub0);
+ VAddr0 = (VAddrSub0 != 0) ? VAddrSub0 : VAddr0;
+
+ auto AddrRCID = MCII->get(NewOpcode).operands()[VAddr0Idx].RegClass;
+ NewVAddr0 = MRI.getMatchingSuperReg(VAddr0, AMDGPU::sub0,
+ &MRI.getRegClass(AddrRCID));
+ if (NewVAddr0 == AMDGPU::NoRegister)
+ return MCDisassembler::Success;
+ }
+
+ MI.setOpcode(NewOpcode);
+
+ if (NewVdata != AMDGPU::NoRegister) {
+ MI.getOperand(VDataIdx) = MCOperand::createReg(NewVdata);
+
+ if (IsAtomic) {
+ // Atomic operations have an additional operand (a copy of data)
+ MI.getOperand(VDstIdx) = MCOperand::createReg(NewVdata);
+ }
+ }
+
+ if (NewVAddr0 != AMDGPU::NoRegister) {
+ MI.getOperand(VAddr0Idx) = MCOperand::createReg(NewVAddr0);
+ } else if (IsNSA) {
+ assert(AddrSize <= Info->VAddrDwords);
+ MI.erase(MI.begin() + VAddr0Idx + AddrSize,
+ MI.begin() + VAddr0Idx + Info->VAddrDwords);
+ }
+
+ return MCDisassembler::Success;
+}
+
+// Opsel and neg bits are used in src_modifiers and standalone operands. Autogen
+// decoder only adds to src_modifiers, so manually add the bits to the other
+// operands.
+DecodeStatus AMDGPUDisassembler::convertVOP3PDPPInst(MCInst &MI) const {
+ unsigned Opc = MI.getOpcode();
+ unsigned DescNumOps = MCII->get(Opc).getNumOperands();
+ auto Mods = collectVOPModifiers(MI, true);
+
+ if (MI.getNumOperands() < DescNumOps &&
+ AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::vdst_in))
+ insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::vdst_in);
+
+ if (MI.getNumOperands() < DescNumOps &&
+ AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::op_sel))
+ insertNamedMCOperand(MI, MCOperand::createImm(Mods.OpSel),
+ AMDGPU::OpName::op_sel);
+ if (MI.getNumOperands() < DescNumOps &&
+ AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::op_sel_hi))
+ insertNamedMCOperand(MI, MCOperand::createImm(Mods.OpSelHi),
+ AMDGPU::OpName::op_sel_hi);
+ if (MI.getNumOperands() < DescNumOps &&
+ AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::neg_lo))
+ insertNamedMCOperand(MI, MCOperand::createImm(Mods.NegLo),
+ AMDGPU::OpName::neg_lo);
+ if (MI.getNumOperands() < DescNumOps &&
+ AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::neg_hi))
+ insertNamedMCOperand(MI, MCOperand::createImm(Mods.NegHi),
+ AMDGPU::OpName::neg_hi);
+
+ return MCDisassembler::Success;
+}
+
+// Create dummy old operand and insert optional operands
+DecodeStatus AMDGPUDisassembler::convertVOPCDPPInst(MCInst &MI) const {
+ unsigned Opc = MI.getOpcode();
+ unsigned DescNumOps = MCII->get(Opc).getNumOperands();
+
+ if (MI.getNumOperands() < DescNumOps &&
+ AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::old))
+ insertNamedMCOperand(MI, MCOperand::createReg(0), AMDGPU::OpName::old);
+
+ if (MI.getNumOperands() < DescNumOps &&
+ AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::src0_modifiers))
+ insertNamedMCOperand(MI, MCOperand::createImm(0),
+ AMDGPU::OpName::src0_modifiers);
+
+ if (MI.getNumOperands() < DescNumOps &&
+ AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::src1_modifiers))
+ insertNamedMCOperand(MI, MCOperand::createImm(0),
+ AMDGPU::OpName::src1_modifiers);
+ return MCDisassembler::Success;
+}
+
+DecodeStatus AMDGPUDisassembler::convertFMAanyK(MCInst &MI,
+ int ImmLitIdx) const {
+ assert(HasLiteral && "Should have decoded a literal");
+ const MCInstrDesc &Desc = MCII->get(MI.getOpcode());
+ unsigned DescNumOps = Desc.getNumOperands();
+ insertNamedMCOperand(MI, MCOperand::createImm(Literal),
+ AMDGPU::OpName::immDeferred);
+ assert(DescNumOps == MI.getNumOperands());
+ for (unsigned I = 0; I < DescNumOps; ++I) {
+ auto &Op = MI.getOperand(I);
+ auto OpType = Desc.operands()[I].OperandType;
+ bool IsDeferredOp = (OpType == AMDGPU::OPERAND_REG_IMM_FP32_DEFERRED ||
+ OpType == AMDGPU::OPERAND_REG_IMM_FP16_DEFERRED);
+ if (Op.isImm() && Op.getImm() == AMDGPU::EncValues::LITERAL_CONST &&
+ IsDeferredOp)
+ Op.setImm(Literal);
+ }
+ return MCDisassembler::Success;
+}
+
+const char* AMDGPUDisassembler::getRegClassName(unsigned RegClassID) const {
+ return getContext().getRegisterInfo()->
+ getRegClassName(&AMDGPUMCRegisterClasses[RegClassID]);
+}
+
+inline
+MCOperand AMDGPUDisassembler::errOperand(unsigned V,
+ const Twine& ErrMsg) const {
+ *CommentStream << "Error: " + ErrMsg;
+
+ // ToDo: add support for error operands to MCInst.h
+ // return MCOperand::createError(V);
+ return MCOperand();
+}
+
+inline
+MCOperand AMDGPUDisassembler::createRegOperand(unsigned int RegId) const {
+ return MCOperand::createReg(AMDGPU::getMCReg(RegId, STI));
+}
+
+inline
+MCOperand AMDGPUDisassembler::createRegOperand(unsigned RegClassID,
+ unsigned Val) const {
+ const auto& RegCl = AMDGPUMCRegisterClasses[RegClassID];
+ if (Val >= RegCl.getNumRegs())
+ return errOperand(Val, Twine(getRegClassName(RegClassID)) +
+ ": unknown register " + Twine(Val));
+ return createRegOperand(RegCl.getRegister(Val));
+}
+
+inline
+MCOperand AMDGPUDisassembler::createSRegOperand(unsigned SRegClassID,
+ unsigned Val) const {
+ // ToDo: SI/CI have 104 SGPRs, VI - 102
+ // Valery: here we accepting as much as we can, let assembler sort it out
+ int shift = 0;
+ switch (SRegClassID) {
+ case AMDGPU::SGPR_32RegClassID:
+ case AMDGPU::TTMP_32RegClassID:
+ break;
+ case AMDGPU::SGPR_64RegClassID:
+ case AMDGPU::TTMP_64RegClassID:
+ shift = 1;
+ break;
+ case AMDGPU::SGPR_128RegClassID:
+ case AMDGPU::TTMP_128RegClassID:
+ // ToDo: unclear if s[100:104] is available on VI. Can we use VCC as SGPR in
+ // this bundle?
+ case AMDGPU::SGPR_256RegClassID:
+ case AMDGPU::TTMP_256RegClassID:
+ // ToDo: unclear if s[96:104] is available on VI. Can we use VCC as SGPR in
+ // this bundle?
+ case AMDGPU::SGPR_288RegClassID:
+ case AMDGPU::TTMP_288RegClassID:
+ case AMDGPU::SGPR_320RegClassID:
+ case AMDGPU::TTMP_320RegClassID:
+ case AMDGPU::SGPR_352RegClassID:
+ case AMDGPU::TTMP_352RegClassID:
+ case AMDGPU::SGPR_384RegClassID:
+ case AMDGPU::TTMP_384RegClassID:
+ case AMDGPU::SGPR_512RegClassID:
+ case AMDGPU::TTMP_512RegClassID:
+ shift = 2;
+ break;
+ // ToDo: unclear if s[88:104] is available on VI. Can we use VCC as SGPR in
+ // this bundle?
+ default:
+ llvm_unreachable("unhandled register class");
+ }
+
+ if (Val % (1 << shift)) {
+ *CommentStream << "Warning: " << getRegClassName(SRegClassID)
+ << ": scalar reg isn't aligned " << Val;
+ }
+
+ return createRegOperand(SRegClassID, Val >> shift);
+}
+
+MCOperand AMDGPUDisassembler::decodeOperand_VS_32(unsigned Val) const {
+ return decodeSrcOp(OPW32, Val);
+}
+
+MCOperand AMDGPUDisassembler::decodeOperand_VS_64(unsigned Val) const {
+ return decodeSrcOp(OPW64, Val);
+}
+
+MCOperand AMDGPUDisassembler::decodeOperand_VS_128(unsigned Val) const {
+ return decodeSrcOp(OPW128, Val);
+}
+
+MCOperand AMDGPUDisassembler::decodeOperand_VSrc16(unsigned Val) const {
+ return decodeSrcOp(OPW16, Val);
+}
+
+MCOperand AMDGPUDisassembler::decodeOperand_VSrcV216(unsigned Val) const {
+ return decodeSrcOp(OPWV216, Val);
+}
+
+MCOperand AMDGPUDisassembler::decodeOperand_VSrcV232(unsigned Val) const {
+ return decodeSrcOp(OPWV232, Val);
+}
+
+MCOperand AMDGPUDisassembler::decodeOperand_VGPR_32_Lo128(unsigned Val) const {
+ return createRegOperand(AMDGPU::VGPR_32_Lo128RegClassID, Val);
+}
+
+MCOperand AMDGPUDisassembler::decodeOperand_VGPR_32(unsigned Val) const {
+ // Some instructions have operand restrictions beyond what the encoding
+ // allows. Some ordinarily VSrc_32 operands are VGPR_32, so clear the extra
+ // high bit.
+ Val &= 255;
+
+ return createRegOperand(AMDGPU::VGPR_32RegClassID, Val);
+}
+
+MCOperand AMDGPUDisassembler::decodeOperand_VRegOrLds_32(unsigned Val) const {
+ return decodeSrcOp(OPW32, Val);
+}
+
+MCOperand AMDGPUDisassembler::decodeOperand_AGPR_32(unsigned Val) const {
+ return createRegOperand(AMDGPU::AGPR_32RegClassID, Val & 255);
+}
+
+MCOperand AMDGPUDisassembler::decodeOperand_AReg_64(unsigned Val) const {
+ return createRegOperand(AMDGPU::AReg_64RegClassID, Val & 255);
+}
+
+MCOperand AMDGPUDisassembler::decodeOperand_AReg_128(unsigned Val) const {
+ return createRegOperand(AMDGPU::AReg_128RegClassID, Val & 255);
+}
+
+MCOperand AMDGPUDisassembler::decodeOperand_AReg_256(unsigned Val) const {
+ return createRegOperand(AMDGPU::AReg_256RegClassID, Val & 255);
+}
+
+MCOperand AMDGPUDisassembler::decodeOperand_AReg_288(unsigned Val) const {
+ return createRegOperand(AMDGPU::AReg_288RegClassID, Val & 255);
+}
+
+MCOperand AMDGPUDisassembler::decodeOperand_AReg_320(unsigned Val) const {
+ return createRegOperand(AMDGPU::AReg_320RegClassID, Val & 255);
+}
+
+MCOperand AMDGPUDisassembler::decodeOperand_AReg_352(unsigned Val) const {
+ return createRegOperand(AMDGPU::AReg_352RegClassID, Val & 255);
+}
+
+MCOperand AMDGPUDisassembler::decodeOperand_AReg_384(unsigned Val) const {
+ return createRegOperand(AMDGPU::AReg_384RegClassID, Val & 255);
+}
+
+
+MCOperand AMDGPUDisassembler::decodeOperand_AReg_512(unsigned Val) const {
+ return createRegOperand(AMDGPU::AReg_512RegClassID, Val & 255);
+}
+
+MCOperand AMDGPUDisassembler::decodeOperand_AReg_1024(unsigned Val) const {
+ return createRegOperand(AMDGPU::AReg_1024RegClassID, Val & 255);
+}
+
+MCOperand AMDGPUDisassembler::decodeOperand_AV_32(unsigned Val) const {
+ return decodeSrcOp(OPW32, Val);
+}
+
+MCOperand AMDGPUDisassembler::decodeOperand_AV_64(unsigned Val) const {
+ return decodeSrcOp(OPW64, Val);
+}
+
+MCOperand AMDGPUDisassembler::decodeOperand_AV_128(unsigned Val) const {
+ return decodeSrcOp(OPW128, Val);
+}
+
+MCOperand AMDGPUDisassembler::decodeOperand_AVDst_128(unsigned Val) const {
+ using namespace AMDGPU::EncValues;
+ assert((Val & IS_VGPR) == 0); // Val{8} is not encoded but assumed to be 1.
+ return decodeSrcOp(OPW128, Val | IS_VGPR);
+}
+
+MCOperand AMDGPUDisassembler::decodeOperand_AVDst_512(unsigned Val) const {
+ using namespace AMDGPU::EncValues;
+ assert((Val & IS_VGPR) == 0); // Val{8} is not encoded but assumed to be 1.
+ return decodeSrcOp(OPW512, Val | IS_VGPR);
+}
+
+MCOperand AMDGPUDisassembler::decodeOperand_VReg_64(unsigned Val) const {
+ return createRegOperand(AMDGPU::VReg_64RegClassID, Val);
+}
+
+MCOperand AMDGPUDisassembler::decodeOperand_VReg_96(unsigned Val) const {
+ return createRegOperand(AMDGPU::VReg_96RegClassID, Val);
+}
+
+MCOperand AMDGPUDisassembler::decodeOperand_VReg_128(unsigned Val) const {
+ return createRegOperand(AMDGPU::VReg_128RegClassID, Val);
+}
+
+MCOperand AMDGPUDisassembler::decodeOperand_VReg_256(unsigned Val) const {
+ return createRegOperand(AMDGPU::VReg_256RegClassID, Val);
+}
+
+MCOperand AMDGPUDisassembler::decodeOperand_VReg_288(unsigned Val) const {
+ return createRegOperand(AMDGPU::VReg_288RegClassID, Val);
+}
+
+MCOperand AMDGPUDisassembler::decodeOperand_VReg_320(unsigned Val) const {
+ return createRegOperand(AMDGPU::VReg_320RegClassID, Val);
+}
+
+MCOperand AMDGPUDisassembler::decodeOperand_VReg_352(unsigned Val) const {
+ return createRegOperand(AMDGPU::VReg_352RegClassID, Val);
+}
+
+MCOperand AMDGPUDisassembler::decodeOperand_VReg_384(unsigned Val) const {
+ return createRegOperand(AMDGPU::VReg_384RegClassID, Val);
+}
+
+MCOperand AMDGPUDisassembler::decodeOperand_VReg_512(unsigned Val) const {
+ return createRegOperand(AMDGPU::VReg_512RegClassID, Val);
+}
+
+MCOperand AMDGPUDisassembler::decodeOperand_VReg_1024(unsigned Val) const {
+ return createRegOperand(AMDGPU::VReg_1024RegClassID, Val);
+}
+
+MCOperand AMDGPUDisassembler::decodeOperand_SReg_32(unsigned Val) const {
+ // table-gen generated disassembler doesn't care about operand types
+ // leaving only registry class so SSrc_32 operand turns into SReg_32
+ // and therefore we accept immediates and literals here as well
+ return decodeSrcOp(OPW32, Val);
+}
+
+MCOperand AMDGPUDisassembler::decodeOperand_SReg_32_XM0_XEXEC(
+ unsigned Val) const {
+ // SReg_32_XM0 is SReg_32 without M0 or EXEC_LO/EXEC_HI
+ return decodeOperand_SReg_32(Val);
+}
+
+MCOperand AMDGPUDisassembler::decodeOperand_SReg_32_XEXEC_HI(
+ unsigned Val) const {
+ // SReg_32_XM0 is SReg_32 without EXEC_HI
+ return decodeOperand_SReg_32(Val);
+}
+
+MCOperand AMDGPUDisassembler::decodeOperand_SRegOrLds_32(unsigned Val) const {
+ // table-gen generated disassembler doesn't care about operand types
+ // leaving only registry class so SSrc_32 operand turns into SReg_32
+ // and therefore we accept immediates and literals here as well
+ return decodeSrcOp(OPW32, Val);
+}
+
+MCOperand AMDGPUDisassembler::decodeOperand_SReg_64(unsigned Val) const {
+ return decodeSrcOp(OPW64, Val);
+}
+
+MCOperand AMDGPUDisassembler::decodeOperand_SReg_64_XEXEC(unsigned Val) const {
+ return decodeSrcOp(OPW64, Val);
+}
+
+MCOperand AMDGPUDisassembler::decodeOperand_SReg_128(unsigned Val) const {
+ return decodeSrcOp(OPW128, Val);
+}
+
+MCOperand AMDGPUDisassembler::decodeOperand_SReg_256(unsigned Val) const {
+ return decodeDstOp(OPW256, Val);
+}
+
+MCOperand AMDGPUDisassembler::decodeOperand_SReg_288(unsigned Val) const {
+ return decodeDstOp(OPW288, Val);
+}
+
+MCOperand AMDGPUDisassembler::decodeOperand_SReg_320(unsigned Val) const {
+ return decodeDstOp(OPW320, Val);
+}
+
+MCOperand AMDGPUDisassembler::decodeOperand_SReg_352(unsigned Val) const {
+ return decodeDstOp(OPW352, Val);
+}
+
+MCOperand AMDGPUDisassembler::decodeOperand_SReg_384(unsigned Val) const {
+ return decodeDstOp(OPW384, Val);
+}
+
+MCOperand AMDGPUDisassembler::decodeOperand_SReg_512(unsigned Val) const {
+ return decodeDstOp(OPW512, Val);
+}
+
+// Decode Literals for insts which always have a literal in the encoding
+MCOperand
+AMDGPUDisassembler::decodeMandatoryLiteralConstant(unsigned Val) const {
+ if (HasLiteral) {
+ assert(
+ AMDGPU::hasVOPD(STI) &&
+ "Should only decode multiple kimm with VOPD, check VSrc operand types");
+ if (Literal != Val)
+ return errOperand(Val, "More than one unique literal is illegal");
+ }
+ HasLiteral = true;
+ Literal = Val;
+ return MCOperand::createImm(Literal);
+}
+
+MCOperand AMDGPUDisassembler::decodeLiteralConstant() const {
+ // For now all literal constants are supposed to be unsigned integer
+ // ToDo: deal with signed/unsigned 64-bit integer constants
+ // ToDo: deal with float/double constants
+ if (!HasLiteral) {
+ if (Bytes.size() < 4) {
+ return errOperand(0, "cannot read literal, inst bytes left " +
+ Twine(Bytes.size()));
+ }
+ HasLiteral = true;
+ Literal = eatBytes<uint32_t>(Bytes);
+ }
+ return MCOperand::createImm(Literal);
+}
+
+MCOperand AMDGPUDisassembler::decodeIntImmed(unsigned Imm) {
+ using namespace AMDGPU::EncValues;
+
+ assert(Imm >= INLINE_INTEGER_C_MIN && Imm <= INLINE_INTEGER_C_MAX);
+ return MCOperand::createImm((Imm <= INLINE_INTEGER_C_POSITIVE_MAX) ?
+ (static_cast<int64_t>(Imm) - INLINE_INTEGER_C_MIN) :
+ (INLINE_INTEGER_C_POSITIVE_MAX - static_cast<int64_t>(Imm)));
+ // Cast prevents negative overflow.
+}
+
+static int64_t getInlineImmVal32(unsigned Imm) {
+ switch (Imm) {
+ case 240:
+ return FloatToBits(0.5f);
+ case 241:
+ return FloatToBits(-0.5f);
+ case 242:
+ return FloatToBits(1.0f);
+ case 243:
+ return FloatToBits(-1.0f);
+ case 244:
+ return FloatToBits(2.0f);
+ case 245:
+ return FloatToBits(-2.0f);
+ case 246:
+ return FloatToBits(4.0f);
+ case 247:
+ return FloatToBits(-4.0f);
+ case 248: // 1 / (2 * PI)
+ return 0x3e22f983;
+ default:
+ llvm_unreachable("invalid fp inline imm");
+ }
+}
+
+static int64_t getInlineImmVal64(unsigned Imm) {
+ switch (Imm) {
+ case 240:
+ return DoubleToBits(0.5);
+ case 241:
+ return DoubleToBits(-0.5);
+ case 242:
+ return DoubleToBits(1.0);
+ case 243:
+ return DoubleToBits(-1.0);
+ case 244:
+ return DoubleToBits(2.0);
+ case 245:
+ return DoubleToBits(-2.0);
+ case 246:
+ return DoubleToBits(4.0);
+ case 247:
+ return DoubleToBits(-4.0);
+ case 248: // 1 / (2 * PI)
+ return 0x3fc45f306dc9c882;
+ default:
+ llvm_unreachable("invalid fp inline imm");
+ }
+}
+
+static int64_t getInlineImmVal16(unsigned Imm) {
+ switch (Imm) {
+ case 240:
+ return 0x3800;
+ case 241:
+ return 0xB800;
+ case 242:
+ return 0x3C00;
+ case 243:
+ return 0xBC00;
+ case 244:
+ return 0x4000;
+ case 245:
+ return 0xC000;
+ case 246:
+ return 0x4400;
+ case 247:
+ return 0xC400;
+ case 248: // 1 / (2 * PI)
+ return 0x3118;
+ default:
+ llvm_unreachable("invalid fp inline imm");
+ }
+}
+
+MCOperand AMDGPUDisassembler::decodeFPImmed(OpWidthTy Width, unsigned Imm) {
+ assert(Imm >= AMDGPU::EncValues::INLINE_FLOATING_C_MIN
+ && Imm <= AMDGPU::EncValues::INLINE_FLOATING_C_MAX);
+
+ // ToDo: case 248: 1/(2*PI) - is allowed only on VI
+ switch (Width) {
+ case OPW32:
+ case OPW128: // splat constants
+ case OPW512:
+ case OPW1024:
+ case OPWV232:
+ return MCOperand::createImm(getInlineImmVal32(Imm));
+ case OPW64:
+ case OPW256:
+ return MCOperand::createImm(getInlineImmVal64(Imm));
+ case OPW16:
+ case OPWV216:
+ return MCOperand::createImm(getInlineImmVal16(Imm));
+ default:
+ llvm_unreachable("implement me");
+ }
+}
+
+unsigned AMDGPUDisassembler::getVgprClassId(const OpWidthTy Width) const {
+ using namespace AMDGPU;
+
+ assert(OPW_FIRST_ <= Width && Width < OPW_LAST_);
+ switch (Width) {
+ default: // fall
+ case OPW32:
+ case OPW16:
+ case OPWV216:
+ return VGPR_32RegClassID;
+ case OPW64:
+ case OPWV232: return VReg_64RegClassID;
+ case OPW96: return VReg_96RegClassID;
+ case OPW128: return VReg_128RegClassID;
+ case OPW160: return VReg_160RegClassID;
+ case OPW256: return VReg_256RegClassID;
+ case OPW288: return VReg_288RegClassID;
+ case OPW320: return VReg_320RegClassID;
+ case OPW352: return VReg_352RegClassID;
+ case OPW384: return VReg_384RegClassID;
+ case OPW512: return VReg_512RegClassID;
+ case OPW1024: return VReg_1024RegClassID;
+ }
+}
+
+unsigned AMDGPUDisassembler::getAgprClassId(const OpWidthTy Width) const {
+ using namespace AMDGPU;
+
+ assert(OPW_FIRST_ <= Width && Width < OPW_LAST_);
+ switch (Width) {
+ default: // fall
+ case OPW32:
+ case OPW16:
+ case OPWV216:
+ return AGPR_32RegClassID;
+ case OPW64:
+ case OPWV232: return AReg_64RegClassID;
+ case OPW96: return AReg_96RegClassID;
+ case OPW128: return AReg_128RegClassID;
+ case OPW160: return AReg_160RegClassID;
+ case OPW256: return AReg_256RegClassID;
+ case OPW288: return AReg_288RegClassID;
+ case OPW320: return AReg_320RegClassID;
+ case OPW352: return AReg_352RegClassID;
+ case OPW384: return AReg_384RegClassID;
+ case OPW512: return AReg_512RegClassID;
+ case OPW1024: return AReg_1024RegClassID;
+ }
+}
+
+
+unsigned AMDGPUDisassembler::getSgprClassId(const OpWidthTy Width) const {
+ using namespace AMDGPU;
+
+ assert(OPW_FIRST_ <= Width && Width < OPW_LAST_);
+ switch (Width) {
+ default: // fall
+ case OPW32:
+ case OPW16:
+ case OPWV216:
+ return SGPR_32RegClassID;
+ case OPW64:
+ case OPWV232: return SGPR_64RegClassID;
+ case OPW96: return SGPR_96RegClassID;
+ case OPW128: return SGPR_128RegClassID;
+ case OPW160: return SGPR_160RegClassID;
+ case OPW256: return SGPR_256RegClassID;
+ case OPW288: return SGPR_288RegClassID;
+ case OPW320: return SGPR_320RegClassID;
+ case OPW352: return SGPR_352RegClassID;
+ case OPW384: return SGPR_384RegClassID;
+ case OPW512: return SGPR_512RegClassID;
+ }
+}
+
+unsigned AMDGPUDisassembler::getTtmpClassId(const OpWidthTy Width) const {
+ using namespace AMDGPU;
+
+ assert(OPW_FIRST_ <= Width && Width < OPW_LAST_);
+ switch (Width) {
+ default: // fall
+ case OPW32:
+ case OPW16:
+ case OPWV216:
+ return TTMP_32RegClassID;
+ case OPW64:
+ case OPWV232: return TTMP_64RegClassID;
+ case OPW128: return TTMP_128RegClassID;
+ case OPW256: return TTMP_256RegClassID;
+ case OPW288: return TTMP_288RegClassID;
+ case OPW320: return TTMP_320RegClassID;
+ case OPW352: return TTMP_352RegClassID;
+ case OPW384: return TTMP_384RegClassID;
+ case OPW512: return TTMP_512RegClassID;
+ }
+}
+
+int AMDGPUDisassembler::getTTmpIdx(unsigned Val) const {
+ using namespace AMDGPU::EncValues;
+
+ unsigned TTmpMin = isGFX9Plus() ? TTMP_GFX9PLUS_MIN : TTMP_VI_MIN;
+ unsigned TTmpMax = isGFX9Plus() ? TTMP_GFX9PLUS_MAX : TTMP_VI_MAX;
+
+ return (TTmpMin <= Val && Val <= TTmpMax)? Val - TTmpMin : -1;
+}
+
+MCOperand AMDGPUDisassembler::decodeSrcOp(const OpWidthTy Width, unsigned Val,
+ bool MandatoryLiteral) const {
+ using namespace AMDGPU::EncValues;
+
+ assert(Val < 1024); // enum10
+
+ bool IsAGPR = Val & 512;
+ Val &= 511;
+
+ if (VGPR_MIN <= Val && Val <= VGPR_MAX) {
+ return createRegOperand(IsAGPR ? getAgprClassId(Width)
+ : getVgprClassId(Width), Val - VGPR_MIN);
+ }
+ if (Val <= SGPR_MAX) {
+ // "SGPR_MIN <= Val" is always true and causes compilation warning.
+ static_assert(SGPR_MIN == 0);
+ return createSRegOperand(getSgprClassId(Width), Val - SGPR_MIN);
+ }
+
+ int TTmpIdx = getTTmpIdx(Val);
+ if (TTmpIdx >= 0) {
+ return createSRegOperand(getTtmpClassId(Width), TTmpIdx);
+ }
+
+ if (INLINE_INTEGER_C_MIN <= Val && Val <= INLINE_INTEGER_C_MAX)
+ return decodeIntImmed(Val);
+
+ if (INLINE_FLOATING_C_MIN <= Val && Val <= INLINE_FLOATING_C_MAX)
+ return decodeFPImmed(Width, Val);
+
+ if (Val == LITERAL_CONST) {
+ if (MandatoryLiteral)
+ // Keep a sentinel value for deferred setting
+ return MCOperand::createImm(LITERAL_CONST);
+ else
+ return decodeLiteralConstant();
+ }
+
+ switch (Width) {
+ case OPW32:
+ case OPW16:
+ case OPWV216:
+ return decodeSpecialReg32(Val);
+ case OPW64:
+ case OPWV232:
+ return decodeSpecialReg64(Val);
+ default:
+ llvm_unreachable("unexpected immediate type");
+ }
+}
+
+MCOperand AMDGPUDisassembler::decodeDstOp(const OpWidthTy Width, unsigned Val) const {
+ using namespace AMDGPU::EncValues;
+
+ assert(Val < 128);
+ assert(Width == OPW256 || Width == OPW512);
+
+ if (Val <= SGPR_MAX) {
+ // "SGPR_MIN <= Val" is always true and causes compilation warning.
+ static_assert(SGPR_MIN == 0);
+ return createSRegOperand(getSgprClassId(Width), Val - SGPR_MIN);
+ }
+
+ int TTmpIdx = getTTmpIdx(Val);
+ if (TTmpIdx >= 0) {
+ return createSRegOperand(getTtmpClassId(Width), TTmpIdx);
+ }
+
+ llvm_unreachable("unknown dst register");
+}
+
+// Bit 0 of DstY isn't stored in the instruction, because it's always the
+// opposite of bit 0 of DstX.
+MCOperand AMDGPUDisassembler::decodeVOPDDstYOp(MCInst &Inst,
+ unsigned Val) const {
+ int VDstXInd =
+ AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::vdstX);
+ assert(VDstXInd != -1);
+ assert(Inst.getOperand(VDstXInd).isReg());
+ unsigned XDstReg = MRI.getEncodingValue(Inst.getOperand(VDstXInd).getReg());
+ Val |= ~XDstReg & 1;
+ auto Width = llvm::AMDGPUDisassembler::OPW32;
+ return createRegOperand(getVgprClassId(Width), Val);
+}
+
+MCOperand AMDGPUDisassembler::decodeSpecialReg32(unsigned Val) const {
+ using namespace AMDGPU;
+
+ switch (Val) {
+ // clang-format off
+ case 102: return createRegOperand(FLAT_SCR_LO);
+ case 103: return createRegOperand(FLAT_SCR_HI);
+ case 104: return createRegOperand(XNACK_MASK_LO);
+ case 105: return createRegOperand(XNACK_MASK_HI);
+ case 106: return createRegOperand(VCC_LO);
+ case 107: return createRegOperand(VCC_HI);
+ case 108: return createRegOperand(TBA_LO);
+ case 109: return createRegOperand(TBA_HI);
+ case 110: return createRegOperand(TMA_LO);
+ case 111: return createRegOperand(TMA_HI);
+ case 124:
+ return isGFX11Plus() ? createRegOperand(SGPR_NULL) : createRegOperand(M0);
+ case 125:
+ return isGFX11Plus() ? createRegOperand(M0) : createRegOperand(SGPR_NULL);
+ case 126: return createRegOperand(EXEC_LO);
+ case 127: return createRegOperand(EXEC_HI);
+ case 235: return createRegOperand(SRC_SHARED_BASE_LO);
+ case 236: return createRegOperand(SRC_SHARED_LIMIT_LO);
+ case 237: return createRegOperand(SRC_PRIVATE_BASE_LO);
+ case 238: return createRegOperand(SRC_PRIVATE_LIMIT_LO);
+ case 239: return createRegOperand(SRC_POPS_EXITING_WAVE_ID);
+ case 251: return createRegOperand(SRC_VCCZ);
+ case 252: return createRegOperand(SRC_EXECZ);
+ case 253: return createRegOperand(SRC_SCC);
+ case 254: return createRegOperand(LDS_DIRECT);
+ default: break;
+ // clang-format on
+ }
+ return errOperand(Val, "unknown operand encoding " + Twine(Val));
+}
+
+MCOperand AMDGPUDisassembler::decodeSpecialReg64(unsigned Val) const {
+ using namespace AMDGPU;
+
+ switch (Val) {
+ case 102: return createRegOperand(FLAT_SCR);
+ case 104: return createRegOperand(XNACK_MASK);
+ case 106: return createRegOperand(VCC);
+ case 108: return createRegOperand(TBA);
+ case 110: return createRegOperand(TMA);
+ case 124:
+ if (isGFX11Plus())
+ return createRegOperand(SGPR_NULL);
+ break;
+ case 125:
+ if (!isGFX11Plus())
+ return createRegOperand(SGPR_NULL);
+ break;
+ case 126: return createRegOperand(EXEC);
+ case 235: return createRegOperand(SRC_SHARED_BASE);
+ case 236: return createRegOperand(SRC_SHARED_LIMIT);
+ case 237: return createRegOperand(SRC_PRIVATE_BASE);
+ case 238: return createRegOperand(SRC_PRIVATE_LIMIT);
+ case 239: return createRegOperand(SRC_POPS_EXITING_WAVE_ID);
+ case 251: return createRegOperand(SRC_VCCZ);
+ case 252: return createRegOperand(SRC_EXECZ);
+ case 253: return createRegOperand(SRC_SCC);
+ default: break;
+ }
+ return errOperand(Val, "unknown operand encoding " + Twine(Val));
+}
+
+MCOperand AMDGPUDisassembler::decodeSDWASrc(const OpWidthTy Width,
+ const unsigned Val) const {
+ using namespace AMDGPU::SDWA;
+ using namespace AMDGPU::EncValues;
+
+ if (STI.getFeatureBits()[AMDGPU::FeatureGFX9] ||
+ STI.getFeatureBits()[AMDGPU::FeatureGFX10]) {
+ // XXX: cast to int is needed to avoid stupid warning:
+ // compare with unsigned is always true
+ if (int(SDWA9EncValues::SRC_VGPR_MIN) <= int(Val) &&
+ Val <= SDWA9EncValues::SRC_VGPR_MAX) {
+ return createRegOperand(getVgprClassId(Width),
+ Val - SDWA9EncValues::SRC_VGPR_MIN);
+ }
+ if (SDWA9EncValues::SRC_SGPR_MIN <= Val &&
+ Val <= (isGFX10Plus() ? SDWA9EncValues::SRC_SGPR_MAX_GFX10
+ : SDWA9EncValues::SRC_SGPR_MAX_SI)) {
+ return createSRegOperand(getSgprClassId(Width),
+ Val - SDWA9EncValues::SRC_SGPR_MIN);
+ }
+ if (SDWA9EncValues::SRC_TTMP_MIN <= Val &&
+ Val <= SDWA9EncValues::SRC_TTMP_MAX) {
+ return createSRegOperand(getTtmpClassId(Width),
+ Val - SDWA9EncValues::SRC_TTMP_MIN);
+ }
+
+ const unsigned SVal = Val - SDWA9EncValues::SRC_SGPR_MIN;
+
+ if (INLINE_INTEGER_C_MIN <= SVal && SVal <= INLINE_INTEGER_C_MAX)
+ return decodeIntImmed(SVal);
+
+ if (INLINE_FLOATING_C_MIN <= SVal && SVal <= INLINE_FLOATING_C_MAX)
+ return decodeFPImmed(Width, SVal);
+
+ return decodeSpecialReg32(SVal);
+ } else if (STI.getFeatureBits()[AMDGPU::FeatureVolcanicIslands]) {
+ return createRegOperand(getVgprClassId(Width), Val);
+ }
+ llvm_unreachable("unsupported target");
+}
+
+MCOperand AMDGPUDisassembler::decodeSDWASrc16(unsigned Val) const {
+ return decodeSDWASrc(OPW16, Val);
+}
+
+MCOperand AMDGPUDisassembler::decodeSDWASrc32(unsigned Val) const {
+ return decodeSDWASrc(OPW32, Val);
+}
+
+MCOperand AMDGPUDisassembler::decodeSDWAVopcDst(unsigned Val) const {
+ using namespace AMDGPU::SDWA;
+
+ assert((STI.getFeatureBits()[AMDGPU::FeatureGFX9] ||
+ STI.getFeatureBits()[AMDGPU::FeatureGFX10]) &&
+ "SDWAVopcDst should be present only on GFX9+");
+
+ bool IsWave64 = STI.getFeatureBits()[AMDGPU::FeatureWavefrontSize64];
+
+ if (Val & SDWA9EncValues::VOPC_DST_VCC_MASK) {
+ Val &= SDWA9EncValues::VOPC_DST_SGPR_MASK;
+
+ int TTmpIdx = getTTmpIdx(Val);
+ if (TTmpIdx >= 0) {
+ auto TTmpClsId = getTtmpClassId(IsWave64 ? OPW64 : OPW32);
+ return createSRegOperand(TTmpClsId, TTmpIdx);
+ } else if (Val > SGPR_MAX) {
+ return IsWave64 ? decodeSpecialReg64(Val)
+ : decodeSpecialReg32(Val);
+ } else {
+ return createSRegOperand(getSgprClassId(IsWave64 ? OPW64 : OPW32), Val);
+ }
+ } else {
+ return createRegOperand(IsWave64 ? AMDGPU::VCC : AMDGPU::VCC_LO);
+ }
+}
+
+MCOperand AMDGPUDisassembler::decodeBoolReg(unsigned Val) const {
+ return STI.getFeatureBits()[AMDGPU::FeatureWavefrontSize64] ?
+ decodeOperand_SReg_64(Val) : decodeOperand_SReg_32(Val);
+}
+
+bool AMDGPUDisassembler::isVI() const {
+ return STI.getFeatureBits()[AMDGPU::FeatureVolcanicIslands];
+}
+
+bool AMDGPUDisassembler::isGFX9() const { return AMDGPU::isGFX9(STI); }
+
+bool AMDGPUDisassembler::isGFX90A() const {
+ return STI.getFeatureBits()[AMDGPU::FeatureGFX90AInsts];
+}
+
+bool AMDGPUDisassembler::isGFX9Plus() const { return AMDGPU::isGFX9Plus(STI); }
+
+bool AMDGPUDisassembler::isGFX10() const { return AMDGPU::isGFX10(STI); }
+
+bool AMDGPUDisassembler::isGFX10Plus() const {
+ return AMDGPU::isGFX10Plus(STI);
+}
+
+bool AMDGPUDisassembler::isGFX11() const {
+ return STI.getFeatureBits()[AMDGPU::FeatureGFX11];
+}
+
+bool AMDGPUDisassembler::isGFX11Plus() const {
+ return AMDGPU::isGFX11Plus(STI);
+}
+
+
+bool AMDGPUDisassembler::hasArchitectedFlatScratch() const {
+ return STI.getFeatureBits()[AMDGPU::FeatureArchitectedFlatScratch];
+}
+
+//===----------------------------------------------------------------------===//
+// AMDGPU specific symbol handling
+//===----------------------------------------------------------------------===//
+#define PRINT_DIRECTIVE(DIRECTIVE, MASK) \
+ do { \
+ KdStream << Indent << DIRECTIVE " " \
+ << ((FourByteBuffer & MASK) >> (MASK##_SHIFT)) << '\n'; \
+ } while (0)
+
+// NOLINTNEXTLINE(readability-identifier-naming)
+MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeCOMPUTE_PGM_RSRC1(
+ uint32_t FourByteBuffer, raw_string_ostream &KdStream) const {
+ using namespace amdhsa;
+ StringRef Indent = "\t";
+
+ // We cannot accurately backward compute #VGPRs used from
+ // GRANULATED_WORKITEM_VGPR_COUNT. But we are concerned with getting the same
+ // value of GRANULATED_WORKITEM_VGPR_COUNT in the reassembled binary. So we
+ // simply calculate the inverse of what the assembler does.
+
+ uint32_t GranulatedWorkitemVGPRCount =
+ (FourByteBuffer & COMPUTE_PGM_RSRC1_GRANULATED_WORKITEM_VGPR_COUNT) >>
+ COMPUTE_PGM_RSRC1_GRANULATED_WORKITEM_VGPR_COUNT_SHIFT;
+
+ uint32_t NextFreeVGPR = (GranulatedWorkitemVGPRCount + 1) *
+ AMDGPU::IsaInfo::getVGPREncodingGranule(&STI);
+
+ KdStream << Indent << ".amdhsa_next_free_vgpr " << NextFreeVGPR << '\n';
+
+ // We cannot backward compute values used to calculate
+ // GRANULATED_WAVEFRONT_SGPR_COUNT. Hence the original values for following
+ // directives can't be computed:
+ // .amdhsa_reserve_vcc
+ // .amdhsa_reserve_flat_scratch
+ // .amdhsa_reserve_xnack_mask
+ // They take their respective default values if not specified in the assembly.
+ //
+ // GRANULATED_WAVEFRONT_SGPR_COUNT
+ // = f(NEXT_FREE_SGPR + VCC + FLAT_SCRATCH + XNACK_MASK)
+ //
+ // We compute the inverse as though all directives apart from NEXT_FREE_SGPR
+ // are set to 0. So while disassembling we consider that:
+ //
+ // GRANULATED_WAVEFRONT_SGPR_COUNT
+ // = f(NEXT_FREE_SGPR + 0 + 0 + 0)
+ //
+ // The disassembler cannot recover the original values of those 3 directives.
+
+ uint32_t GranulatedWavefrontSGPRCount =
+ (FourByteBuffer & COMPUTE_PGM_RSRC1_GRANULATED_WAVEFRONT_SGPR_COUNT) >>
+ COMPUTE_PGM_RSRC1_GRANULATED_WAVEFRONT_SGPR_COUNT_SHIFT;
+
+ if (isGFX10Plus() && GranulatedWavefrontSGPRCount)
+ return MCDisassembler::Fail;
+
+ uint32_t NextFreeSGPR = (GranulatedWavefrontSGPRCount + 1) *
+ AMDGPU::IsaInfo::getSGPREncodingGranule(&STI);
+
+ KdStream << Indent << ".amdhsa_reserve_vcc " << 0 << '\n';
+ if (!hasArchitectedFlatScratch())
+ KdStream << Indent << ".amdhsa_reserve_flat_scratch " << 0 << '\n';
+ KdStream << Indent << ".amdhsa_reserve_xnack_mask " << 0 << '\n';
+ KdStream << Indent << ".amdhsa_next_free_sgpr " << NextFreeSGPR << "\n";
+
+ if (FourByteBuffer & COMPUTE_PGM_RSRC1_PRIORITY)
+ return MCDisassembler::Fail;
+
+ PRINT_DIRECTIVE(".amdhsa_float_round_mode_32",
+ COMPUTE_PGM_RSRC1_FLOAT_ROUND_MODE_32);
+ PRINT_DIRECTIVE(".amdhsa_float_round_mode_16_64",
+ COMPUTE_PGM_RSRC1_FLOAT_ROUND_MODE_16_64);
+ PRINT_DIRECTIVE(".amdhsa_float_denorm_mode_32",
+ COMPUTE_PGM_RSRC1_FLOAT_DENORM_MODE_32);
+ PRINT_DIRECTIVE(".amdhsa_float_denorm_mode_16_64",
+ COMPUTE_PGM_RSRC1_FLOAT_DENORM_MODE_16_64);
+
+ if (FourByteBuffer & COMPUTE_PGM_RSRC1_PRIV)
+ return MCDisassembler::Fail;
+
+ PRINT_DIRECTIVE(".amdhsa_dx10_clamp", COMPUTE_PGM_RSRC1_ENABLE_DX10_CLAMP);
+
+ if (FourByteBuffer & COMPUTE_PGM_RSRC1_DEBUG_MODE)
+ return MCDisassembler::Fail;
+
+ PRINT_DIRECTIVE(".amdhsa_ieee_mode", COMPUTE_PGM_RSRC1_ENABLE_IEEE_MODE);
+
+ if (FourByteBuffer & COMPUTE_PGM_RSRC1_BULKY)
+ return MCDisassembler::Fail;
+
+ if (FourByteBuffer & COMPUTE_PGM_RSRC1_CDBG_USER)
+ return MCDisassembler::Fail;
+
+ PRINT_DIRECTIVE(".amdhsa_fp16_overflow", COMPUTE_PGM_RSRC1_FP16_OVFL);
+
+ if (FourByteBuffer & COMPUTE_PGM_RSRC1_RESERVED0)
+ return MCDisassembler::Fail;
+
+ if (isGFX10Plus()) {
+ PRINT_DIRECTIVE(".amdhsa_workgroup_processor_mode",
+ COMPUTE_PGM_RSRC1_WGP_MODE);
+ PRINT_DIRECTIVE(".amdhsa_memory_ordered", COMPUTE_PGM_RSRC1_MEM_ORDERED);
+ PRINT_DIRECTIVE(".amdhsa_forward_progress", COMPUTE_PGM_RSRC1_FWD_PROGRESS);
+ }
+ return MCDisassembler::Success;
+}
+
+// NOLINTNEXTLINE(readability-identifier-naming)
+MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeCOMPUTE_PGM_RSRC2(
+ uint32_t FourByteBuffer, raw_string_ostream &KdStream) const {
+ using namespace amdhsa;
+ StringRef Indent = "\t";
+ if (hasArchitectedFlatScratch())
+ PRINT_DIRECTIVE(".amdhsa_enable_private_segment",
+ COMPUTE_PGM_RSRC2_ENABLE_PRIVATE_SEGMENT);
+ else
+ PRINT_DIRECTIVE(".amdhsa_system_sgpr_private_segment_wavefront_offset",
+ COMPUTE_PGM_RSRC2_ENABLE_PRIVATE_SEGMENT);
+ PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_id_x",
+ COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_X);
+ PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_id_y",
+ COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_Y);
+ PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_id_z",
+ COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_Z);
+ PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_info",
+ COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_INFO);
+ PRINT_DIRECTIVE(".amdhsa_system_vgpr_workitem_id",
+ COMPUTE_PGM_RSRC2_ENABLE_VGPR_WORKITEM_ID);
+
+ if (FourByteBuffer & COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_ADDRESS_WATCH)
+ return MCDisassembler::Fail;
+
+ if (FourByteBuffer & COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_MEMORY)
+ return MCDisassembler::Fail;
+
+ if (FourByteBuffer & COMPUTE_PGM_RSRC2_GRANULATED_LDS_SIZE)
+ return MCDisassembler::Fail;
+
+ PRINT_DIRECTIVE(
+ ".amdhsa_exception_fp_ieee_invalid_op",
+ COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_INVALID_OPERATION);
+ PRINT_DIRECTIVE(".amdhsa_exception_fp_denorm_src",
+ COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_FP_DENORMAL_SOURCE);
+ PRINT_DIRECTIVE(
+ ".amdhsa_exception_fp_ieee_div_zero",
+ COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_DIVISION_BY_ZERO);
+ PRINT_DIRECTIVE(".amdhsa_exception_fp_ieee_overflow",
+ COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_OVERFLOW);
+ PRINT_DIRECTIVE(".amdhsa_exception_fp_ieee_underflow",
+ COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_UNDERFLOW);
+ PRINT_DIRECTIVE(".amdhsa_exception_fp_ieee_inexact",
+ COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_INEXACT);
+ PRINT_DIRECTIVE(".amdhsa_exception_int_div_zero",
+ COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_INT_DIVIDE_BY_ZERO);
+
+ if (FourByteBuffer & COMPUTE_PGM_RSRC2_RESERVED0)
+ return MCDisassembler::Fail;
+
+ return MCDisassembler::Success;
+}
+
+#undef PRINT_DIRECTIVE
+
+MCDisassembler::DecodeStatus
+AMDGPUDisassembler::decodeKernelDescriptorDirective(
+ DataExtractor::Cursor &Cursor, ArrayRef<uint8_t> Bytes,
+ raw_string_ostream &KdStream) const {
+#define PRINT_DIRECTIVE(DIRECTIVE, MASK) \
+ do { \
+ KdStream << Indent << DIRECTIVE " " \
+ << ((TwoByteBuffer & MASK) >> (MASK##_SHIFT)) << '\n'; \
+ } while (0)
+
+ uint16_t TwoByteBuffer = 0;
+ uint32_t FourByteBuffer = 0;
+
+ StringRef ReservedBytes;
+ StringRef Indent = "\t";
+
+ assert(Bytes.size() == 64);
+ DataExtractor DE(Bytes, /*IsLittleEndian=*/true, /*AddressSize=*/8);
+
+ switch (Cursor.tell()) {
+ case amdhsa::GROUP_SEGMENT_FIXED_SIZE_OFFSET:
+ FourByteBuffer = DE.getU32(Cursor);
+ KdStream << Indent << ".amdhsa_group_segment_fixed_size " << FourByteBuffer
+ << '\n';
+ return MCDisassembler::Success;
+
+ case amdhsa::PRIVATE_SEGMENT_FIXED_SIZE_OFFSET:
+ FourByteBuffer = DE.getU32(Cursor);
+ KdStream << Indent << ".amdhsa_private_segment_fixed_size "
+ << FourByteBuffer << '\n';
+ return MCDisassembler::Success;
+
+ case amdhsa::KERNARG_SIZE_OFFSET:
+ FourByteBuffer = DE.getU32(Cursor);
+ KdStream << Indent << ".amdhsa_kernarg_size "
+ << FourByteBuffer << '\n';
+ return MCDisassembler::Success;
+
+ case amdhsa::RESERVED0_OFFSET:
+ // 4 reserved bytes, must be 0.
+ ReservedBytes = DE.getBytes(Cursor, 4);
+ for (int I = 0; I < 4; ++I) {
+ if (ReservedBytes[I] != 0) {
+ return MCDisassembler::Fail;
+ }
+ }
+ return MCDisassembler::Success;
+
+ case amdhsa::KERNEL_CODE_ENTRY_BYTE_OFFSET_OFFSET:
+ // KERNEL_CODE_ENTRY_BYTE_OFFSET
+ // So far no directive controls this for Code Object V3, so simply skip for
+ // disassembly.
+ DE.skip(Cursor, 8);
+ return MCDisassembler::Success;
+
+ case amdhsa::RESERVED1_OFFSET:
+ // 20 reserved bytes, must be 0.
+ ReservedBytes = DE.getBytes(Cursor, 20);
+ for (int I = 0; I < 20; ++I) {
+ if (ReservedBytes[I] != 0) {
+ return MCDisassembler::Fail;
+ }
+ }
+ return MCDisassembler::Success;
+
+ case amdhsa::COMPUTE_PGM_RSRC3_OFFSET:
+ // COMPUTE_PGM_RSRC3
+ // - Only set for GFX10, GFX6-9 have this to be 0.
+ // - Currently no directives directly control this.
+ FourByteBuffer = DE.getU32(Cursor);
+ if (!isGFX10Plus() && FourByteBuffer) {
+ return MCDisassembler::Fail;
+ }
+ return MCDisassembler::Success;
+
+ case amdhsa::COMPUTE_PGM_RSRC1_OFFSET:
+ FourByteBuffer = DE.getU32(Cursor);
+ if (decodeCOMPUTE_PGM_RSRC1(FourByteBuffer, KdStream) ==
+ MCDisassembler::Fail) {
+ return MCDisassembler::Fail;
+ }
+ return MCDisassembler::Success;
+
+ case amdhsa::COMPUTE_PGM_RSRC2_OFFSET:
+ FourByteBuffer = DE.getU32(Cursor);
+ if (decodeCOMPUTE_PGM_RSRC2(FourByteBuffer, KdStream) ==
+ MCDisassembler::Fail) {
+ return MCDisassembler::Fail;
+ }
+ return MCDisassembler::Success;
+
+ case amdhsa::KERNEL_CODE_PROPERTIES_OFFSET:
+ using namespace amdhsa;
+ TwoByteBuffer = DE.getU16(Cursor);
+
+ if (!hasArchitectedFlatScratch())
+ PRINT_DIRECTIVE(".amdhsa_user_sgpr_private_segment_buffer",
+ KERNEL_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_BUFFER);
+ PRINT_DIRECTIVE(".amdhsa_user_sgpr_dispatch_ptr",
+ KERNEL_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_PTR);
+ PRINT_DIRECTIVE(".amdhsa_user_sgpr_queue_ptr",
+ KERNEL_CODE_PROPERTY_ENABLE_SGPR_QUEUE_PTR);
+ PRINT_DIRECTIVE(".amdhsa_user_sgpr_kernarg_segment_ptr",
+ KERNEL_CODE_PROPERTY_ENABLE_SGPR_KERNARG_SEGMENT_PTR);
+ PRINT_DIRECTIVE(".amdhsa_user_sgpr_dispatch_id",
+ KERNEL_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_ID);
+ if (!hasArchitectedFlatScratch())
+ PRINT_DIRECTIVE(".amdhsa_user_sgpr_flat_scratch_init",
+ KERNEL_CODE_PROPERTY_ENABLE_SGPR_FLAT_SCRATCH_INIT);
+ PRINT_DIRECTIVE(".amdhsa_user_sgpr_private_segment_size",
+ KERNEL_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_SIZE);
+
+ if (TwoByteBuffer & KERNEL_CODE_PROPERTY_RESERVED0)
+ return MCDisassembler::Fail;
+
+ // Reserved for GFX9
+ if (isGFX9() &&
+ (TwoByteBuffer & KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32)) {
+ return MCDisassembler::Fail;
+ } else if (isGFX10Plus()) {
+ PRINT_DIRECTIVE(".amdhsa_wavefront_size32",
+ KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32);
+ }
+
+ if (AMDGPU::getAmdhsaCodeObjectVersion() >= 5)
+ PRINT_DIRECTIVE(".amdhsa_uses_dynamic_stack",
+ KERNEL_CODE_PROPERTY_USES_DYNAMIC_STACK);
+
+ if (TwoByteBuffer & KERNEL_CODE_PROPERTY_RESERVED1)
+ return MCDisassembler::Fail;
+
+ return MCDisassembler::Success;
+
+ case amdhsa::RESERVED2_OFFSET:
+ // 6 bytes from here are reserved, must be 0.
+ ReservedBytes = DE.getBytes(Cursor, 6);
+ for (int I = 0; I < 6; ++I) {
+ if (ReservedBytes[I] != 0)
+ return MCDisassembler::Fail;
+ }
+ return MCDisassembler::Success;
+
+ default:
+ llvm_unreachable("Unhandled index. Case statements cover everything.");
+ return MCDisassembler::Fail;
+ }
+#undef PRINT_DIRECTIVE
+}
+
+MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeKernelDescriptor(
+ StringRef KdName, ArrayRef<uint8_t> Bytes, uint64_t KdAddress) const {
+ // CP microcode requires the kernel descriptor to be 64 aligned.
+ if (Bytes.size() != 64 || KdAddress % 64 != 0)
+ return MCDisassembler::Fail;
+
+ std::string Kd;
+ raw_string_ostream KdStream(Kd);
+ KdStream << ".amdhsa_kernel " << KdName << '\n';
+
+ DataExtractor::Cursor C(0);
+ while (C && C.tell() < Bytes.size()) {
+ MCDisassembler::DecodeStatus Status =
+ decodeKernelDescriptorDirective(C, Bytes, KdStream);
+
+ cantFail(C.takeError());
+
+ if (Status == MCDisassembler::Fail)
+ return MCDisassembler::Fail;
+ }
+ KdStream << ".end_amdhsa_kernel\n";
+ outs() << KdStream.str();
+ return MCDisassembler::Success;
+}
+
+std::optional<MCDisassembler::DecodeStatus>
+AMDGPUDisassembler::onSymbolStart(SymbolInfoTy &Symbol, uint64_t &Size,
+ ArrayRef<uint8_t> Bytes, uint64_t Address,
+ raw_ostream &CStream) const {
+ // Right now only kernel descriptor needs to be handled.
+ // We ignore all other symbols for target specific handling.
+ // TODO:
+ // Fix the spurious symbol issue for AMDGPU kernels. Exists for both Code
+ // Object V2 and V3 when symbols are marked protected.
+
+ // amd_kernel_code_t for Code Object V2.
+ if (Symbol.Type == ELF::STT_AMDGPU_HSA_KERNEL) {
+ Size = 256;
+ return MCDisassembler::Fail;
+ }
+
+ // Code Object V3 kernel descriptors.
+ StringRef Name = Symbol.Name;
+ if (Symbol.Type == ELF::STT_OBJECT && Name.endswith(StringRef(".kd"))) {
+ Size = 64; // Size = 64 regardless of success or failure.
+ return decodeKernelDescriptor(Name.drop_back(3), Bytes, Address);
+ }
+ return std::nullopt;
+}
+
+//===----------------------------------------------------------------------===//
+// AMDGPUSymbolizer
+//===----------------------------------------------------------------------===//
+
+// Try to find symbol name for specified label
+bool AMDGPUSymbolizer::tryAddingSymbolicOperand(
+ MCInst &Inst, raw_ostream & /*cStream*/, int64_t Value,
+ uint64_t /*Address*/, bool IsBranch, uint64_t /*Offset*/,
+ uint64_t /*OpSize*/, uint64_t /*InstSize*/) {
+
+ if (!IsBranch) {
+ return false;
+ }
+
+ auto *Symbols = static_cast<SectionSymbolsTy *>(DisInfo);
+ if (!Symbols)
+ return false;
+
+ auto Result = llvm::find_if(*Symbols, [Value](const SymbolInfoTy &Val) {
+ return Val.Addr == static_cast<uint64_t>(Value) &&
+ Val.Type == ELF::STT_NOTYPE;
+ });
+ if (Result != Symbols->end()) {
+ auto *Sym = Ctx.getOrCreateSymbol(Result->Name);
+ const auto *Add = MCSymbolRefExpr::create(Sym, Ctx);
+ Inst.addOperand(MCOperand::createExpr(Add));
+ return true;
+ }
+ // Add to list of referenced addresses, so caller can synthesize a label.
+ ReferencedAddresses.push_back(static_cast<uint64_t>(Value));
+ return false;
+}
+
+void AMDGPUSymbolizer::tryAddingPcLoadReferenceComment(raw_ostream &cStream,
+ int64_t Value,
+ uint64_t Address) {
+ llvm_unreachable("unimplemented");
+}
+
+//===----------------------------------------------------------------------===//
+// Initialization
+//===----------------------------------------------------------------------===//
+
+static MCSymbolizer *createAMDGPUSymbolizer(const Triple &/*TT*/,
+ LLVMOpInfoCallback /*GetOpInfo*/,
+ LLVMSymbolLookupCallback /*SymbolLookUp*/,
+ void *DisInfo,
+ MCContext *Ctx,
+ std::unique_ptr<MCRelocationInfo> &&RelInfo) {
+ return new AMDGPUSymbolizer(*Ctx, std::move(RelInfo), DisInfo);
+}
+
+static MCDisassembler *createAMDGPUDisassembler(const Target &T,
+ const MCSubtargetInfo &STI,
+ MCContext &Ctx) {
+ return new AMDGPUDisassembler(STI, Ctx, T.createMCInstrInfo());
+}
+
+extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeAMDGPUDisassembler() {
+ TargetRegistry::RegisterMCDisassembler(getTheGCNTarget(),
+ createAMDGPUDisassembler);
+ TargetRegistry::RegisterMCSymbolizer(getTheGCNTarget(),
+ createAMDGPUSymbolizer);
+}