diff options
Diffstat (limited to 'contrib/llvm-project/llvm/lib/Target/AMDGPU/SIMemoryLegalizer.cpp')
| -rw-r--r-- | contrib/llvm-project/llvm/lib/Target/AMDGPU/SIMemoryLegalizer.cpp | 1863 |
1 files changed, 1863 insertions, 0 deletions
diff --git a/contrib/llvm-project/llvm/lib/Target/AMDGPU/SIMemoryLegalizer.cpp b/contrib/llvm-project/llvm/lib/Target/AMDGPU/SIMemoryLegalizer.cpp new file mode 100644 index 000000000000..29f072ca1e6c --- /dev/null +++ b/contrib/llvm-project/llvm/lib/Target/AMDGPU/SIMemoryLegalizer.cpp @@ -0,0 +1,1863 @@ +//===- SIMemoryLegalizer.cpp ----------------------------------------------===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +/// \file +/// Memory legalizer - implements memory model. More information can be +/// found here: +/// http://llvm.org/docs/AMDGPUUsage.html#memory-model +// +//===----------------------------------------------------------------------===// + +#include "AMDGPU.h" +#include "AMDGPUMachineModuleInfo.h" +#include "GCNSubtarget.h" +#include "MCTargetDesc/AMDGPUMCTargetDesc.h" +#include "llvm/ADT/BitmaskEnum.h" +#include "llvm/CodeGen/MachineBasicBlock.h" +#include "llvm/IR/DiagnosticInfo.h" +#include "llvm/Support/AtomicOrdering.h" +#include "llvm/Support/TargetParser.h" + +using namespace llvm; +using namespace llvm::AMDGPU; + +#define DEBUG_TYPE "si-memory-legalizer" +#define PASS_NAME "SI Memory Legalizer" + +static cl::opt<bool> AmdgcnSkipCacheInvalidations( + "amdgcn-skip-cache-invalidations", cl::init(false), cl::Hidden, + cl::desc("Use this to skip inserting cache invalidating instructions.")); + +namespace { + +LLVM_ENABLE_BITMASK_ENUMS_IN_NAMESPACE(); + +/// Memory operation flags. Can be ORed together. +enum class SIMemOp { + NONE = 0u, + LOAD = 1u << 0, + STORE = 1u << 1, + LLVM_MARK_AS_BITMASK_ENUM(/* LargestFlag = */ STORE) +}; + +/// Position to insert a new instruction relative to an existing +/// instruction. +enum class Position { + BEFORE, + AFTER +}; + +/// The atomic synchronization scopes supported by the AMDGPU target. +enum class SIAtomicScope { + NONE, + SINGLETHREAD, + WAVEFRONT, + WORKGROUP, + AGENT, + SYSTEM +}; + +/// The distinct address spaces supported by the AMDGPU target for +/// atomic memory operation. Can be ORed toether. +enum class SIAtomicAddrSpace { + NONE = 0u, + GLOBAL = 1u << 0, + LDS = 1u << 1, + SCRATCH = 1u << 2, + GDS = 1u << 3, + OTHER = 1u << 4, + + /// The address spaces that can be accessed by a FLAT instruction. + FLAT = GLOBAL | LDS | SCRATCH, + + /// The address spaces that support atomic instructions. + ATOMIC = GLOBAL | LDS | SCRATCH | GDS, + + /// All address spaces. + ALL = GLOBAL | LDS | SCRATCH | GDS | OTHER, + + LLVM_MARK_AS_BITMASK_ENUM(/* LargestFlag = */ ALL) +}; + +class SIMemOpInfo final { +private: + + friend class SIMemOpAccess; + + AtomicOrdering Ordering = AtomicOrdering::NotAtomic; + AtomicOrdering FailureOrdering = AtomicOrdering::NotAtomic; + SIAtomicScope Scope = SIAtomicScope::SYSTEM; + SIAtomicAddrSpace OrderingAddrSpace = SIAtomicAddrSpace::NONE; + SIAtomicAddrSpace InstrAddrSpace = SIAtomicAddrSpace::NONE; + bool IsCrossAddressSpaceOrdering = false; + bool IsVolatile = false; + bool IsNonTemporal = false; + + SIMemOpInfo(AtomicOrdering Ordering = AtomicOrdering::SequentiallyConsistent, + SIAtomicScope Scope = SIAtomicScope::SYSTEM, + SIAtomicAddrSpace OrderingAddrSpace = SIAtomicAddrSpace::ATOMIC, + SIAtomicAddrSpace InstrAddrSpace = SIAtomicAddrSpace::ALL, + bool IsCrossAddressSpaceOrdering = true, + AtomicOrdering FailureOrdering = + AtomicOrdering::SequentiallyConsistent, + bool IsVolatile = false, + bool IsNonTemporal = false) + : Ordering(Ordering), FailureOrdering(FailureOrdering), + Scope(Scope), OrderingAddrSpace(OrderingAddrSpace), + InstrAddrSpace(InstrAddrSpace), + IsCrossAddressSpaceOrdering(IsCrossAddressSpaceOrdering), + IsVolatile(IsVolatile), + IsNonTemporal(IsNonTemporal) { + + if (Ordering == AtomicOrdering::NotAtomic) { + assert(Scope == SIAtomicScope::NONE && + OrderingAddrSpace == SIAtomicAddrSpace::NONE && + !IsCrossAddressSpaceOrdering && + FailureOrdering == AtomicOrdering::NotAtomic); + return; + } + + assert(Scope != SIAtomicScope::NONE && + (OrderingAddrSpace & SIAtomicAddrSpace::ATOMIC) != + SIAtomicAddrSpace::NONE && + (InstrAddrSpace & SIAtomicAddrSpace::ATOMIC) != + SIAtomicAddrSpace::NONE); + + // There is also no cross address space ordering if the ordering + // address space is the same as the instruction address space and + // only contains a single address space. + if ((OrderingAddrSpace == InstrAddrSpace) && + isPowerOf2_32(uint32_t(InstrAddrSpace))) + this->IsCrossAddressSpaceOrdering = false; + + // Limit the scope to the maximum supported by the instruction's address + // spaces. + if ((InstrAddrSpace & ~SIAtomicAddrSpace::SCRATCH) == + SIAtomicAddrSpace::NONE) { + this->Scope = std::min(Scope, SIAtomicScope::SINGLETHREAD); + } else if ((InstrAddrSpace & + ~(SIAtomicAddrSpace::SCRATCH | SIAtomicAddrSpace::LDS)) == + SIAtomicAddrSpace::NONE) { + this->Scope = std::min(Scope, SIAtomicScope::WORKGROUP); + } else if ((InstrAddrSpace & + ~(SIAtomicAddrSpace::SCRATCH | SIAtomicAddrSpace::LDS | + SIAtomicAddrSpace::GDS)) == SIAtomicAddrSpace::NONE) { + this->Scope = std::min(Scope, SIAtomicScope::AGENT); + } + } + +public: + /// \returns Atomic synchronization scope of the machine instruction used to + /// create this SIMemOpInfo. + SIAtomicScope getScope() const { + return Scope; + } + + /// \returns Ordering constraint of the machine instruction used to + /// create this SIMemOpInfo. + AtomicOrdering getOrdering() const { + return Ordering; + } + + /// \returns Failure ordering constraint of the machine instruction used to + /// create this SIMemOpInfo. + AtomicOrdering getFailureOrdering() const { + return FailureOrdering; + } + + /// \returns The address spaces be accessed by the machine + /// instruction used to create this SiMemOpInfo. + SIAtomicAddrSpace getInstrAddrSpace() const { + return InstrAddrSpace; + } + + /// \returns The address spaces that must be ordered by the machine + /// instruction used to create this SiMemOpInfo. + SIAtomicAddrSpace getOrderingAddrSpace() const { + return OrderingAddrSpace; + } + + /// \returns Return true iff memory ordering of operations on + /// different address spaces is required. + bool getIsCrossAddressSpaceOrdering() const { + return IsCrossAddressSpaceOrdering; + } + + /// \returns True if memory access of the machine instruction used to + /// create this SIMemOpInfo is volatile, false otherwise. + bool isVolatile() const { + return IsVolatile; + } + + /// \returns True if memory access of the machine instruction used to + /// create this SIMemOpInfo is nontemporal, false otherwise. + bool isNonTemporal() const { + return IsNonTemporal; + } + + /// \returns True if ordering constraint of the machine instruction used to + /// create this SIMemOpInfo is unordered or higher, false otherwise. + bool isAtomic() const { + return Ordering != AtomicOrdering::NotAtomic; + } + +}; + +class SIMemOpAccess final { +private: + AMDGPUMachineModuleInfo *MMI = nullptr; + + /// Reports unsupported message \p Msg for \p MI to LLVM context. + void reportUnsupported(const MachineBasicBlock::iterator &MI, + const char *Msg) const; + + /// Inspects the target synchronization scope \p SSID and determines + /// the SI atomic scope it corresponds to, the address spaces it + /// covers, and whether the memory ordering applies between address + /// spaces. + Optional<std::tuple<SIAtomicScope, SIAtomicAddrSpace, bool>> + toSIAtomicScope(SyncScope::ID SSID, SIAtomicAddrSpace InstrAddrSpace) const; + + /// \return Return a bit set of the address spaces accessed by \p AS. + SIAtomicAddrSpace toSIAtomicAddrSpace(unsigned AS) const; + + /// \returns Info constructed from \p MI, which has at least machine memory + /// operand. + Optional<SIMemOpInfo> constructFromMIWithMMO( + const MachineBasicBlock::iterator &MI) const; + +public: + /// Construct class to support accessing the machine memory operands + /// of instructions in the machine function \p MF. + SIMemOpAccess(MachineFunction &MF); + + /// \returns Load info if \p MI is a load operation, "None" otherwise. + Optional<SIMemOpInfo> getLoadInfo( + const MachineBasicBlock::iterator &MI) const; + + /// \returns Store info if \p MI is a store operation, "None" otherwise. + Optional<SIMemOpInfo> getStoreInfo( + const MachineBasicBlock::iterator &MI) const; + + /// \returns Atomic fence info if \p MI is an atomic fence operation, + /// "None" otherwise. + Optional<SIMemOpInfo> getAtomicFenceInfo( + const MachineBasicBlock::iterator &MI) const; + + /// \returns Atomic cmpxchg/rmw info if \p MI is an atomic cmpxchg or + /// rmw operation, "None" otherwise. + Optional<SIMemOpInfo> getAtomicCmpxchgOrRmwInfo( + const MachineBasicBlock::iterator &MI) const; +}; + +class SICacheControl { +protected: + + /// AMDGPU subtarget info. + const GCNSubtarget &ST; + + /// Instruction info. + const SIInstrInfo *TII = nullptr; + + IsaVersion IV; + + /// Whether to insert cache invalidating instructions. + bool InsertCacheInv; + + SICacheControl(const GCNSubtarget &ST); + + /// Sets named bit \p BitName to "true" if present in instruction \p MI. + /// \returns Returns true if \p MI is modified, false otherwise. + bool enableNamedBit(const MachineBasicBlock::iterator MI, + AMDGPU::CPol::CPol Bit) const; + +public: + + /// Create a cache control for the subtarget \p ST. + static std::unique_ptr<SICacheControl> create(const GCNSubtarget &ST); + + /// Update \p MI memory load instruction to bypass any caches up to + /// the \p Scope memory scope for address spaces \p + /// AddrSpace. Return true iff the instruction was modified. + virtual bool enableLoadCacheBypass(const MachineBasicBlock::iterator &MI, + SIAtomicScope Scope, + SIAtomicAddrSpace AddrSpace) const = 0; + + /// Update \p MI memory store instruction to bypass any caches up to + /// the \p Scope memory scope for address spaces \p + /// AddrSpace. Return true iff the instruction was modified. + virtual bool enableStoreCacheBypass(const MachineBasicBlock::iterator &MI, + SIAtomicScope Scope, + SIAtomicAddrSpace AddrSpace) const = 0; + + /// Update \p MI memory read-modify-write instruction to bypass any caches up + /// to the \p Scope memory scope for address spaces \p AddrSpace. Return true + /// iff the instruction was modified. + virtual bool enableRMWCacheBypass(const MachineBasicBlock::iterator &MI, + SIAtomicScope Scope, + SIAtomicAddrSpace AddrSpace) const = 0; + + /// Update \p MI memory instruction of kind \p Op associated with address + /// spaces \p AddrSpace to indicate it is volatile and/or nontemporal. Return + /// true iff the instruction was modified. + virtual bool enableVolatileAndOrNonTemporal(MachineBasicBlock::iterator &MI, + SIAtomicAddrSpace AddrSpace, + SIMemOp Op, bool IsVolatile, + bool IsNonTemporal) const = 0; + + /// Inserts any necessary instructions at position \p Pos relative + /// to instruction \p MI to ensure memory instructions before \p Pos of kind + /// \p Op associated with address spaces \p AddrSpace have completed. Used + /// between memory instructions to enforce the order they become visible as + /// observed by other memory instructions executing in memory scope \p Scope. + /// \p IsCrossAddrSpaceOrdering indicates if the memory ordering is between + /// address spaces. Returns true iff any instructions inserted. + virtual bool insertWait(MachineBasicBlock::iterator &MI, + SIAtomicScope Scope, + SIAtomicAddrSpace AddrSpace, + SIMemOp Op, + bool IsCrossAddrSpaceOrdering, + Position Pos) const = 0; + + /// Inserts any necessary instructions at position \p Pos relative to + /// instruction \p MI to ensure any subsequent memory instructions of this + /// thread with address spaces \p AddrSpace will observe the previous memory + /// operations by any thread for memory scopes up to memory scope \p Scope . + /// Returns true iff any instructions inserted. + virtual bool insertAcquire(MachineBasicBlock::iterator &MI, + SIAtomicScope Scope, + SIAtomicAddrSpace AddrSpace, + Position Pos) const = 0; + + /// Inserts any necessary instructions at position \p Pos relative to + /// instruction \p MI to ensure previous memory instructions by this thread + /// with address spaces \p AddrSpace have completed and can be observed by + /// subsequent memory instructions by any thread executing in memory scope \p + /// Scope. \p IsCrossAddrSpaceOrdering indicates if the memory ordering is + /// between address spaces. Returns true iff any instructions inserted. + virtual bool insertRelease(MachineBasicBlock::iterator &MI, + SIAtomicScope Scope, + SIAtomicAddrSpace AddrSpace, + bool IsCrossAddrSpaceOrdering, + Position Pos) const = 0; + + /// Virtual destructor to allow derivations to be deleted. + virtual ~SICacheControl() = default; + +}; + +class SIGfx6CacheControl : public SICacheControl { +protected: + + /// Sets GLC bit to "true" if present in \p MI. Returns true if \p MI + /// is modified, false otherwise. + bool enableGLCBit(const MachineBasicBlock::iterator &MI) const { + return enableNamedBit(MI, AMDGPU::CPol::GLC); + } + + /// Sets SLC bit to "true" if present in \p MI. Returns true if \p MI + /// is modified, false otherwise. + bool enableSLCBit(const MachineBasicBlock::iterator &MI) const { + return enableNamedBit(MI, AMDGPU::CPol::SLC); + } + +public: + + SIGfx6CacheControl(const GCNSubtarget &ST) : SICacheControl(ST) {} + + bool enableLoadCacheBypass(const MachineBasicBlock::iterator &MI, + SIAtomicScope Scope, + SIAtomicAddrSpace AddrSpace) const override; + + bool enableStoreCacheBypass(const MachineBasicBlock::iterator &MI, + SIAtomicScope Scope, + SIAtomicAddrSpace AddrSpace) const override; + + bool enableRMWCacheBypass(const MachineBasicBlock::iterator &MI, + SIAtomicScope Scope, + SIAtomicAddrSpace AddrSpace) const override; + + bool enableVolatileAndOrNonTemporal(MachineBasicBlock::iterator &MI, + SIAtomicAddrSpace AddrSpace, SIMemOp Op, + bool IsVolatile, + bool IsNonTemporal) const override; + + bool insertWait(MachineBasicBlock::iterator &MI, + SIAtomicScope Scope, + SIAtomicAddrSpace AddrSpace, + SIMemOp Op, + bool IsCrossAddrSpaceOrdering, + Position Pos) const override; + + bool insertAcquire(MachineBasicBlock::iterator &MI, + SIAtomicScope Scope, + SIAtomicAddrSpace AddrSpace, + Position Pos) const override; + + bool insertRelease(MachineBasicBlock::iterator &MI, + SIAtomicScope Scope, + SIAtomicAddrSpace AddrSpace, + bool IsCrossAddrSpaceOrdering, + Position Pos) const override; +}; + +class SIGfx7CacheControl : public SIGfx6CacheControl { +public: + + SIGfx7CacheControl(const GCNSubtarget &ST) : SIGfx6CacheControl(ST) {} + + bool insertAcquire(MachineBasicBlock::iterator &MI, + SIAtomicScope Scope, + SIAtomicAddrSpace AddrSpace, + Position Pos) const override; + +}; + +class SIGfx90ACacheControl : public SIGfx7CacheControl { +public: + + SIGfx90ACacheControl(const GCNSubtarget &ST) : SIGfx7CacheControl(ST) {} + + bool enableLoadCacheBypass(const MachineBasicBlock::iterator &MI, + SIAtomicScope Scope, + SIAtomicAddrSpace AddrSpace) const override; + + bool enableStoreCacheBypass(const MachineBasicBlock::iterator &MI, + SIAtomicScope Scope, + SIAtomicAddrSpace AddrSpace) const override; + + bool enableRMWCacheBypass(const MachineBasicBlock::iterator &MI, + SIAtomicScope Scope, + SIAtomicAddrSpace AddrSpace) const override; + + bool enableVolatileAndOrNonTemporal(MachineBasicBlock::iterator &MI, + SIAtomicAddrSpace AddrSpace, SIMemOp Op, + bool IsVolatile, + bool IsNonTemporal) const override; + + bool insertWait(MachineBasicBlock::iterator &MI, + SIAtomicScope Scope, + SIAtomicAddrSpace AddrSpace, + SIMemOp Op, + bool IsCrossAddrSpaceOrdering, + Position Pos) const override; + + bool insertAcquire(MachineBasicBlock::iterator &MI, + SIAtomicScope Scope, + SIAtomicAddrSpace AddrSpace, + Position Pos) const override; + + bool insertRelease(MachineBasicBlock::iterator &MI, + SIAtomicScope Scope, + SIAtomicAddrSpace AddrSpace, + bool IsCrossAddrSpaceOrdering, + Position Pos) const override; +}; + +class SIGfx10CacheControl : public SIGfx7CacheControl { +protected: + + /// Sets DLC bit to "true" if present in \p MI. Returns true if \p MI + /// is modified, false otherwise. + bool enableDLCBit(const MachineBasicBlock::iterator &MI) const { + return enableNamedBit(MI, AMDGPU::CPol::DLC); + } + +public: + + SIGfx10CacheControl(const GCNSubtarget &ST) : SIGfx7CacheControl(ST) {} + + bool enableLoadCacheBypass(const MachineBasicBlock::iterator &MI, + SIAtomicScope Scope, + SIAtomicAddrSpace AddrSpace) const override; + + bool enableVolatileAndOrNonTemporal(MachineBasicBlock::iterator &MI, + SIAtomicAddrSpace AddrSpace, SIMemOp Op, + bool IsVolatile, + bool IsNonTemporal) const override; + + bool insertWait(MachineBasicBlock::iterator &MI, + SIAtomicScope Scope, + SIAtomicAddrSpace AddrSpace, + SIMemOp Op, + bool IsCrossAddrSpaceOrdering, + Position Pos) const override; + + bool insertAcquire(MachineBasicBlock::iterator &MI, + SIAtomicScope Scope, + SIAtomicAddrSpace AddrSpace, + Position Pos) const override; +}; + +class SIMemoryLegalizer final : public MachineFunctionPass { +private: + + /// Cache Control. + std::unique_ptr<SICacheControl> CC = nullptr; + + /// List of atomic pseudo instructions. + std::list<MachineBasicBlock::iterator> AtomicPseudoMIs; + + /// Return true iff instruction \p MI is a atomic instruction that + /// returns a result. + bool isAtomicRet(const MachineInstr &MI) const { + return SIInstrInfo::isAtomicRet(MI); + } + + /// Removes all processed atomic pseudo instructions from the current + /// function. Returns true if current function is modified, false otherwise. + bool removeAtomicPseudoMIs(); + + /// Expands load operation \p MI. Returns true if instructions are + /// added/deleted or \p MI is modified, false otherwise. + bool expandLoad(const SIMemOpInfo &MOI, + MachineBasicBlock::iterator &MI); + /// Expands store operation \p MI. Returns true if instructions are + /// added/deleted or \p MI is modified, false otherwise. + bool expandStore(const SIMemOpInfo &MOI, + MachineBasicBlock::iterator &MI); + /// Expands atomic fence operation \p MI. Returns true if + /// instructions are added/deleted or \p MI is modified, false otherwise. + bool expandAtomicFence(const SIMemOpInfo &MOI, + MachineBasicBlock::iterator &MI); + /// Expands atomic cmpxchg or rmw operation \p MI. Returns true if + /// instructions are added/deleted or \p MI is modified, false otherwise. + bool expandAtomicCmpxchgOrRmw(const SIMemOpInfo &MOI, + MachineBasicBlock::iterator &MI); + +public: + static char ID; + + SIMemoryLegalizer() : MachineFunctionPass(ID) {} + + void getAnalysisUsage(AnalysisUsage &AU) const override { + AU.setPreservesCFG(); + MachineFunctionPass::getAnalysisUsage(AU); + } + + StringRef getPassName() const override { + return PASS_NAME; + } + + bool runOnMachineFunction(MachineFunction &MF) override; +}; + +} // end namespace anonymous + +void SIMemOpAccess::reportUnsupported(const MachineBasicBlock::iterator &MI, + const char *Msg) const { + const Function &Func = MI->getParent()->getParent()->getFunction(); + DiagnosticInfoUnsupported Diag(Func, Msg, MI->getDebugLoc()); + Func.getContext().diagnose(Diag); +} + +Optional<std::tuple<SIAtomicScope, SIAtomicAddrSpace, bool>> +SIMemOpAccess::toSIAtomicScope(SyncScope::ID SSID, + SIAtomicAddrSpace InstrAddrSpace) const { + if (SSID == SyncScope::System) + return std::make_tuple(SIAtomicScope::SYSTEM, + SIAtomicAddrSpace::ATOMIC, + true); + if (SSID == MMI->getAgentSSID()) + return std::make_tuple(SIAtomicScope::AGENT, + SIAtomicAddrSpace::ATOMIC, + true); + if (SSID == MMI->getWorkgroupSSID()) + return std::make_tuple(SIAtomicScope::WORKGROUP, + SIAtomicAddrSpace::ATOMIC, + true); + if (SSID == MMI->getWavefrontSSID()) + return std::make_tuple(SIAtomicScope::WAVEFRONT, + SIAtomicAddrSpace::ATOMIC, + true); + if (SSID == SyncScope::SingleThread) + return std::make_tuple(SIAtomicScope::SINGLETHREAD, + SIAtomicAddrSpace::ATOMIC, + true); + if (SSID == MMI->getSystemOneAddressSpaceSSID()) + return std::make_tuple(SIAtomicScope::SYSTEM, + SIAtomicAddrSpace::ATOMIC & InstrAddrSpace, + false); + if (SSID == MMI->getAgentOneAddressSpaceSSID()) + return std::make_tuple(SIAtomicScope::AGENT, + SIAtomicAddrSpace::ATOMIC & InstrAddrSpace, + false); + if (SSID == MMI->getWorkgroupOneAddressSpaceSSID()) + return std::make_tuple(SIAtomicScope::WORKGROUP, + SIAtomicAddrSpace::ATOMIC & InstrAddrSpace, + false); + if (SSID == MMI->getWavefrontOneAddressSpaceSSID()) + return std::make_tuple(SIAtomicScope::WAVEFRONT, + SIAtomicAddrSpace::ATOMIC & InstrAddrSpace, + false); + if (SSID == MMI->getSingleThreadOneAddressSpaceSSID()) + return std::make_tuple(SIAtomicScope::SINGLETHREAD, + SIAtomicAddrSpace::ATOMIC & InstrAddrSpace, + false); + return None; +} + +SIAtomicAddrSpace SIMemOpAccess::toSIAtomicAddrSpace(unsigned AS) const { + if (AS == AMDGPUAS::FLAT_ADDRESS) + return SIAtomicAddrSpace::FLAT; + if (AS == AMDGPUAS::GLOBAL_ADDRESS) + return SIAtomicAddrSpace::GLOBAL; + if (AS == AMDGPUAS::LOCAL_ADDRESS) + return SIAtomicAddrSpace::LDS; + if (AS == AMDGPUAS::PRIVATE_ADDRESS) + return SIAtomicAddrSpace::SCRATCH; + if (AS == AMDGPUAS::REGION_ADDRESS) + return SIAtomicAddrSpace::GDS; + + return SIAtomicAddrSpace::OTHER; +} + +SIMemOpAccess::SIMemOpAccess(MachineFunction &MF) { + MMI = &MF.getMMI().getObjFileInfo<AMDGPUMachineModuleInfo>(); +} + +Optional<SIMemOpInfo> SIMemOpAccess::constructFromMIWithMMO( + const MachineBasicBlock::iterator &MI) const { + assert(MI->getNumMemOperands() > 0); + + SyncScope::ID SSID = SyncScope::SingleThread; + AtomicOrdering Ordering = AtomicOrdering::NotAtomic; + AtomicOrdering FailureOrdering = AtomicOrdering::NotAtomic; + SIAtomicAddrSpace InstrAddrSpace = SIAtomicAddrSpace::NONE; + bool IsNonTemporal = true; + bool IsVolatile = false; + + // Validator should check whether or not MMOs cover the entire set of + // locations accessed by the memory instruction. + for (const auto &MMO : MI->memoperands()) { + IsNonTemporal &= MMO->isNonTemporal(); + IsVolatile |= MMO->isVolatile(); + InstrAddrSpace |= + toSIAtomicAddrSpace(MMO->getPointerInfo().getAddrSpace()); + AtomicOrdering OpOrdering = MMO->getSuccessOrdering(); + if (OpOrdering != AtomicOrdering::NotAtomic) { + const auto &IsSyncScopeInclusion = + MMI->isSyncScopeInclusion(SSID, MMO->getSyncScopeID()); + if (!IsSyncScopeInclusion) { + reportUnsupported(MI, + "Unsupported non-inclusive atomic synchronization scope"); + return None; + } + + SSID = IsSyncScopeInclusion.getValue() ? SSID : MMO->getSyncScopeID(); + Ordering = getMergedAtomicOrdering(Ordering, OpOrdering); + assert(MMO->getFailureOrdering() != AtomicOrdering::Release && + MMO->getFailureOrdering() != AtomicOrdering::AcquireRelease); + FailureOrdering = + getMergedAtomicOrdering(FailureOrdering, MMO->getFailureOrdering()); + } + } + + SIAtomicScope Scope = SIAtomicScope::NONE; + SIAtomicAddrSpace OrderingAddrSpace = SIAtomicAddrSpace::NONE; + bool IsCrossAddressSpaceOrdering = false; + if (Ordering != AtomicOrdering::NotAtomic) { + auto ScopeOrNone = toSIAtomicScope(SSID, InstrAddrSpace); + if (!ScopeOrNone) { + reportUnsupported(MI, "Unsupported atomic synchronization scope"); + return None; + } + std::tie(Scope, OrderingAddrSpace, IsCrossAddressSpaceOrdering) = + ScopeOrNone.getValue(); + if ((OrderingAddrSpace == SIAtomicAddrSpace::NONE) || + ((OrderingAddrSpace & SIAtomicAddrSpace::ATOMIC) != OrderingAddrSpace) || + ((InstrAddrSpace & SIAtomicAddrSpace::ATOMIC) == SIAtomicAddrSpace::NONE)) { + reportUnsupported(MI, "Unsupported atomic address space"); + return None; + } + } + return SIMemOpInfo(Ordering, Scope, OrderingAddrSpace, InstrAddrSpace, + IsCrossAddressSpaceOrdering, FailureOrdering, IsVolatile, + IsNonTemporal); +} + +Optional<SIMemOpInfo> SIMemOpAccess::getLoadInfo( + const MachineBasicBlock::iterator &MI) const { + assert(MI->getDesc().TSFlags & SIInstrFlags::maybeAtomic); + + if (!(MI->mayLoad() && !MI->mayStore())) + return None; + + // Be conservative if there are no memory operands. + if (MI->getNumMemOperands() == 0) + return SIMemOpInfo(); + + return constructFromMIWithMMO(MI); +} + +Optional<SIMemOpInfo> SIMemOpAccess::getStoreInfo( + const MachineBasicBlock::iterator &MI) const { + assert(MI->getDesc().TSFlags & SIInstrFlags::maybeAtomic); + + if (!(!MI->mayLoad() && MI->mayStore())) + return None; + + // Be conservative if there are no memory operands. + if (MI->getNumMemOperands() == 0) + return SIMemOpInfo(); + + return constructFromMIWithMMO(MI); +} + +Optional<SIMemOpInfo> SIMemOpAccess::getAtomicFenceInfo( + const MachineBasicBlock::iterator &MI) const { + assert(MI->getDesc().TSFlags & SIInstrFlags::maybeAtomic); + + if (MI->getOpcode() != AMDGPU::ATOMIC_FENCE) + return None; + + AtomicOrdering Ordering = + static_cast<AtomicOrdering>(MI->getOperand(0).getImm()); + + SyncScope::ID SSID = static_cast<SyncScope::ID>(MI->getOperand(1).getImm()); + auto ScopeOrNone = toSIAtomicScope(SSID, SIAtomicAddrSpace::ATOMIC); + if (!ScopeOrNone) { + reportUnsupported(MI, "Unsupported atomic synchronization scope"); + return None; + } + + SIAtomicScope Scope = SIAtomicScope::NONE; + SIAtomicAddrSpace OrderingAddrSpace = SIAtomicAddrSpace::NONE; + bool IsCrossAddressSpaceOrdering = false; + std::tie(Scope, OrderingAddrSpace, IsCrossAddressSpaceOrdering) = + ScopeOrNone.getValue(); + + if ((OrderingAddrSpace == SIAtomicAddrSpace::NONE) || + ((OrderingAddrSpace & SIAtomicAddrSpace::ATOMIC) != OrderingAddrSpace)) { + reportUnsupported(MI, "Unsupported atomic address space"); + return None; + } + + return SIMemOpInfo(Ordering, Scope, OrderingAddrSpace, SIAtomicAddrSpace::ATOMIC, + IsCrossAddressSpaceOrdering, AtomicOrdering::NotAtomic); +} + +Optional<SIMemOpInfo> SIMemOpAccess::getAtomicCmpxchgOrRmwInfo( + const MachineBasicBlock::iterator &MI) const { + assert(MI->getDesc().TSFlags & SIInstrFlags::maybeAtomic); + + if (!(MI->mayLoad() && MI->mayStore())) + return None; + + // Be conservative if there are no memory operands. + if (MI->getNumMemOperands() == 0) + return SIMemOpInfo(); + + return constructFromMIWithMMO(MI); +} + +SICacheControl::SICacheControl(const GCNSubtarget &ST) : ST(ST) { + TII = ST.getInstrInfo(); + IV = getIsaVersion(ST.getCPU()); + InsertCacheInv = !AmdgcnSkipCacheInvalidations; +} + +bool SICacheControl::enableNamedBit(const MachineBasicBlock::iterator MI, + AMDGPU::CPol::CPol Bit) const { + MachineOperand *CPol = TII->getNamedOperand(*MI, AMDGPU::OpName::cpol); + if (!CPol) + return false; + + CPol->setImm(CPol->getImm() | Bit); + return true; +} + +/* static */ +std::unique_ptr<SICacheControl> SICacheControl::create(const GCNSubtarget &ST) { + GCNSubtarget::Generation Generation = ST.getGeneration(); + if (ST.hasGFX90AInsts()) + return std::make_unique<SIGfx90ACacheControl>(ST); + if (Generation <= AMDGPUSubtarget::SOUTHERN_ISLANDS) + return std::make_unique<SIGfx6CacheControl>(ST); + if (Generation < AMDGPUSubtarget::GFX10) + return std::make_unique<SIGfx7CacheControl>(ST); + return std::make_unique<SIGfx10CacheControl>(ST); +} + +bool SIGfx6CacheControl::enableLoadCacheBypass( + const MachineBasicBlock::iterator &MI, + SIAtomicScope Scope, + SIAtomicAddrSpace AddrSpace) const { + assert(MI->mayLoad() && !MI->mayStore()); + bool Changed = false; + + if ((AddrSpace & SIAtomicAddrSpace::GLOBAL) != SIAtomicAddrSpace::NONE) { + switch (Scope) { + case SIAtomicScope::SYSTEM: + case SIAtomicScope::AGENT: + Changed |= enableGLCBit(MI); + break; + case SIAtomicScope::WORKGROUP: + case SIAtomicScope::WAVEFRONT: + case SIAtomicScope::SINGLETHREAD: + // No cache to bypass. + break; + default: + llvm_unreachable("Unsupported synchronization scope"); + } + } + + /// The scratch address space does not need the global memory caches + /// to be bypassed as all memory operations by the same thread are + /// sequentially consistent, and no other thread can access scratch + /// memory. + + /// Other address spaces do not have a cache. + + return Changed; +} + +bool SIGfx6CacheControl::enableStoreCacheBypass( + const MachineBasicBlock::iterator &MI, + SIAtomicScope Scope, + SIAtomicAddrSpace AddrSpace) const { + assert(!MI->mayLoad() && MI->mayStore()); + bool Changed = false; + + /// The L1 cache is write through so does not need to be bypassed. There is no + /// bypass control for the L2 cache at the isa level. + + return Changed; +} + +bool SIGfx6CacheControl::enableRMWCacheBypass( + const MachineBasicBlock::iterator &MI, + SIAtomicScope Scope, + SIAtomicAddrSpace AddrSpace) const { + assert(MI->mayLoad() && MI->mayStore()); + bool Changed = false; + + /// The L1 cache is write through so does not need to be bypassed. There is no + /// bypass control for the L2 cache at the isa level. + + return Changed; +} + +bool SIGfx6CacheControl::enableVolatileAndOrNonTemporal( + MachineBasicBlock::iterator &MI, SIAtomicAddrSpace AddrSpace, SIMemOp Op, + bool IsVolatile, bool IsNonTemporal) const { + // Only handle load and store, not atomic read-modify-write insructions. The + // latter use glc to indicate if the atomic returns a result and so must not + // be used for cache control. + assert(MI->mayLoad() ^ MI->mayStore()); + + // Only update load and store, not LLVM IR atomic read-modify-write + // instructions. The latter are always marked as volatile so cannot sensibly + // handle it as do not want to pessimize all atomics. Also they do not support + // the nontemporal attribute. + assert(Op == SIMemOp::LOAD || Op == SIMemOp::STORE); + + bool Changed = false; + + if (IsVolatile) { + if (Op == SIMemOp::LOAD) + Changed |= enableGLCBit(MI); + + // Ensure operation has completed at system scope to cause all volatile + // operations to be visible outside the program in a global order. Do not + // request cross address space as only the global address space can be + // observable outside the program, so no need to cause a waitcnt for LDS + // address space operations. + Changed |= insertWait(MI, SIAtomicScope::SYSTEM, AddrSpace, Op, false, + Position::AFTER); + + return Changed; + } + + if (IsNonTemporal) { + // Request L1 MISS_EVICT and L2 STREAM for load and store instructions. + Changed |= enableGLCBit(MI); + Changed |= enableSLCBit(MI); + return Changed; + } + + return Changed; +} + +bool SIGfx6CacheControl::insertWait(MachineBasicBlock::iterator &MI, + SIAtomicScope Scope, + SIAtomicAddrSpace AddrSpace, + SIMemOp Op, + bool IsCrossAddrSpaceOrdering, + Position Pos) const { + bool Changed = false; + + MachineBasicBlock &MBB = *MI->getParent(); + DebugLoc DL = MI->getDebugLoc(); + + if (Pos == Position::AFTER) + ++MI; + + bool VMCnt = false; + bool LGKMCnt = false; + + if ((AddrSpace & (SIAtomicAddrSpace::GLOBAL | SIAtomicAddrSpace::SCRATCH)) != + SIAtomicAddrSpace::NONE) { + switch (Scope) { + case SIAtomicScope::SYSTEM: + case SIAtomicScope::AGENT: + VMCnt |= true; + break; + case SIAtomicScope::WORKGROUP: + case SIAtomicScope::WAVEFRONT: + case SIAtomicScope::SINGLETHREAD: + // The L1 cache keeps all memory operations in order for + // wavefronts in the same work-group. + break; + default: + llvm_unreachable("Unsupported synchronization scope"); + } + } + + if ((AddrSpace & SIAtomicAddrSpace::LDS) != SIAtomicAddrSpace::NONE) { + switch (Scope) { + case SIAtomicScope::SYSTEM: + case SIAtomicScope::AGENT: + case SIAtomicScope::WORKGROUP: + // If no cross address space ordering then an "S_WAITCNT lgkmcnt(0)" is + // not needed as LDS operations for all waves are executed in a total + // global ordering as observed by all waves. Required if also + // synchronizing with global/GDS memory as LDS operations could be + // reordered with respect to later global/GDS memory operations of the + // same wave. + LGKMCnt |= IsCrossAddrSpaceOrdering; + break; + case SIAtomicScope::WAVEFRONT: + case SIAtomicScope::SINGLETHREAD: + // The LDS keeps all memory operations in order for + // the same wavesfront. + break; + default: + llvm_unreachable("Unsupported synchronization scope"); + } + } + + if ((AddrSpace & SIAtomicAddrSpace::GDS) != SIAtomicAddrSpace::NONE) { + switch (Scope) { + case SIAtomicScope::SYSTEM: + case SIAtomicScope::AGENT: + // If no cross address space ordering then an GDS "S_WAITCNT lgkmcnt(0)" + // is not needed as GDS operations for all waves are executed in a total + // global ordering as observed by all waves. Required if also + // synchronizing with global/LDS memory as GDS operations could be + // reordered with respect to later global/LDS memory operations of the + // same wave. + LGKMCnt |= IsCrossAddrSpaceOrdering; + break; + case SIAtomicScope::WORKGROUP: + case SIAtomicScope::WAVEFRONT: + case SIAtomicScope::SINGLETHREAD: + // The GDS keeps all memory operations in order for + // the same work-group. + break; + default: + llvm_unreachable("Unsupported synchronization scope"); + } + } + + if (VMCnt || LGKMCnt) { + unsigned WaitCntImmediate = + AMDGPU::encodeWaitcnt(IV, + VMCnt ? 0 : getVmcntBitMask(IV), + getExpcntBitMask(IV), + LGKMCnt ? 0 : getLgkmcntBitMask(IV)); + BuildMI(MBB, MI, DL, TII->get(AMDGPU::S_WAITCNT)).addImm(WaitCntImmediate); + Changed = true; + } + + if (Pos == Position::AFTER) + --MI; + + return Changed; +} + +bool SIGfx6CacheControl::insertAcquire(MachineBasicBlock::iterator &MI, + SIAtomicScope Scope, + SIAtomicAddrSpace AddrSpace, + Position Pos) const { + if (!InsertCacheInv) + return false; + + bool Changed = false; + + MachineBasicBlock &MBB = *MI->getParent(); + DebugLoc DL = MI->getDebugLoc(); + + if (Pos == Position::AFTER) + ++MI; + + if ((AddrSpace & SIAtomicAddrSpace::GLOBAL) != SIAtomicAddrSpace::NONE) { + switch (Scope) { + case SIAtomicScope::SYSTEM: + case SIAtomicScope::AGENT: + BuildMI(MBB, MI, DL, TII->get(AMDGPU::BUFFER_WBINVL1)); + Changed = true; + break; + case SIAtomicScope::WORKGROUP: + case SIAtomicScope::WAVEFRONT: + case SIAtomicScope::SINGLETHREAD: + // No cache to invalidate. + break; + default: + llvm_unreachable("Unsupported synchronization scope"); + } + } + + /// The scratch address space does not need the global memory cache + /// to be flushed as all memory operations by the same thread are + /// sequentially consistent, and no other thread can access scratch + /// memory. + + /// Other address spaces do not have a cache. + + if (Pos == Position::AFTER) + --MI; + + return Changed; +} + +bool SIGfx6CacheControl::insertRelease(MachineBasicBlock::iterator &MI, + SIAtomicScope Scope, + SIAtomicAddrSpace AddrSpace, + bool IsCrossAddrSpaceOrdering, + Position Pos) const { + return insertWait(MI, Scope, AddrSpace, SIMemOp::LOAD | SIMemOp::STORE, + IsCrossAddrSpaceOrdering, Pos); +} + +bool SIGfx7CacheControl::insertAcquire(MachineBasicBlock::iterator &MI, + SIAtomicScope Scope, + SIAtomicAddrSpace AddrSpace, + Position Pos) const { + if (!InsertCacheInv) + return false; + + bool Changed = false; + + MachineBasicBlock &MBB = *MI->getParent(); + DebugLoc DL = MI->getDebugLoc(); + + const GCNSubtarget &STM = MBB.getParent()->getSubtarget<GCNSubtarget>(); + + const unsigned InvalidateL1 = STM.isAmdPalOS() || STM.isMesa3DOS() + ? AMDGPU::BUFFER_WBINVL1 + : AMDGPU::BUFFER_WBINVL1_VOL; + + if (Pos == Position::AFTER) + ++MI; + + if ((AddrSpace & SIAtomicAddrSpace::GLOBAL) != SIAtomicAddrSpace::NONE) { + switch (Scope) { + case SIAtomicScope::SYSTEM: + case SIAtomicScope::AGENT: + BuildMI(MBB, MI, DL, TII->get(InvalidateL1)); + Changed = true; + break; + case SIAtomicScope::WORKGROUP: + case SIAtomicScope::WAVEFRONT: + case SIAtomicScope::SINGLETHREAD: + // No cache to invalidate. + break; + default: + llvm_unreachable("Unsupported synchronization scope"); + } + } + + /// The scratch address space does not need the global memory cache + /// to be flushed as all memory operations by the same thread are + /// sequentially consistent, and no other thread can access scratch + /// memory. + + /// Other address spaces do not have a cache. + + if (Pos == Position::AFTER) + --MI; + + return Changed; +} + +bool SIGfx90ACacheControl::enableLoadCacheBypass( + const MachineBasicBlock::iterator &MI, + SIAtomicScope Scope, + SIAtomicAddrSpace AddrSpace) const { + assert(MI->mayLoad() && !MI->mayStore()); + bool Changed = false; + + if ((AddrSpace & SIAtomicAddrSpace::GLOBAL) != SIAtomicAddrSpace::NONE) { + switch (Scope) { + case SIAtomicScope::SYSTEM: + case SIAtomicScope::AGENT: + Changed |= enableGLCBit(MI); + break; + case SIAtomicScope::WORKGROUP: + // In threadgroup split mode the waves of a work-group can be executing on + // different CUs. Therefore need to bypass the L1 which is per CU. + // Otherwise in non-threadgroup split mode all waves of a work-group are + // on the same CU, and so the L1 does not need to be bypassed. + if (ST.isTgSplitEnabled()) + Changed |= enableGLCBit(MI); + break; + case SIAtomicScope::WAVEFRONT: + case SIAtomicScope::SINGLETHREAD: + // No cache to bypass. + break; + default: + llvm_unreachable("Unsupported synchronization scope"); + } + } + + /// The scratch address space does not need the global memory caches + /// to be bypassed as all memory operations by the same thread are + /// sequentially consistent, and no other thread can access scratch + /// memory. + + /// Other address spaces do not have a cache. + + return Changed; +} + +bool SIGfx90ACacheControl::enableStoreCacheBypass( + const MachineBasicBlock::iterator &MI, + SIAtomicScope Scope, + SIAtomicAddrSpace AddrSpace) const { + assert(!MI->mayLoad() && MI->mayStore()); + bool Changed = false; + + if ((AddrSpace & SIAtomicAddrSpace::GLOBAL) != SIAtomicAddrSpace::NONE) { + switch (Scope) { + case SIAtomicScope::SYSTEM: + case SIAtomicScope::AGENT: + /// Do not set glc for store atomic operations as they implicitly write + /// through the L1 cache. + break; + case SIAtomicScope::WORKGROUP: + case SIAtomicScope::WAVEFRONT: + case SIAtomicScope::SINGLETHREAD: + // No cache to bypass. Store atomics implicitly write through the L1 + // cache. + break; + default: + llvm_unreachable("Unsupported synchronization scope"); + } + } + + /// The scratch address space does not need the global memory caches + /// to be bypassed as all memory operations by the same thread are + /// sequentially consistent, and no other thread can access scratch + /// memory. + + /// Other address spaces do not have a cache. + + return Changed; +} + +bool SIGfx90ACacheControl::enableRMWCacheBypass( + const MachineBasicBlock::iterator &MI, + SIAtomicScope Scope, + SIAtomicAddrSpace AddrSpace) const { + assert(MI->mayLoad() && MI->mayStore()); + bool Changed = false; + + if ((AddrSpace & SIAtomicAddrSpace::GLOBAL) != SIAtomicAddrSpace::NONE) { + switch (Scope) { + case SIAtomicScope::SYSTEM: + case SIAtomicScope::AGENT: + /// Do not set glc for RMW atomic operations as they implicitly bypass + /// the L1 cache, and the glc bit is instead used to indicate if they are + /// return or no-return. + break; + case SIAtomicScope::WORKGROUP: + case SIAtomicScope::WAVEFRONT: + case SIAtomicScope::SINGLETHREAD: + // No cache to bypass. RMW atomics implicitly bypass the L1 cache. + break; + default: + llvm_unreachable("Unsupported synchronization scope"); + } + } + + return Changed; +} + +bool SIGfx90ACacheControl::enableVolatileAndOrNonTemporal( + MachineBasicBlock::iterator &MI, SIAtomicAddrSpace AddrSpace, SIMemOp Op, + bool IsVolatile, bool IsNonTemporal) const { + // Only handle load and store, not atomic read-modify-write insructions. The + // latter use glc to indicate if the atomic returns a result and so must not + // be used for cache control. + assert(MI->mayLoad() ^ MI->mayStore()); + + // Only update load and store, not LLVM IR atomic read-modify-write + // instructions. The latter are always marked as volatile so cannot sensibly + // handle it as do not want to pessimize all atomics. Also they do not support + // the nontemporal attribute. + assert(Op == SIMemOp::LOAD || Op == SIMemOp::STORE); + + bool Changed = false; + + if (IsVolatile) { + if (Op == SIMemOp::LOAD) + Changed |= enableGLCBit(MI); + + // Ensure operation has completed at system scope to cause all volatile + // operations to be visible outside the program in a global order. Do not + // request cross address space as only the global address space can be + // observable outside the program, so no need to cause a waitcnt for LDS + // address space operations. + Changed |= insertWait(MI, SIAtomicScope::SYSTEM, AddrSpace, Op, false, + Position::AFTER); + + return Changed; + } + + if (IsNonTemporal) { + // Request L1 MISS_EVICT and L2 STREAM for load and store instructions. + Changed |= enableGLCBit(MI); + Changed |= enableSLCBit(MI); + return Changed; + } + + return Changed; +} + +bool SIGfx90ACacheControl::insertWait(MachineBasicBlock::iterator &MI, + SIAtomicScope Scope, + SIAtomicAddrSpace AddrSpace, + SIMemOp Op, + bool IsCrossAddrSpaceOrdering, + Position Pos) const { + if (ST.isTgSplitEnabled()) { + // In threadgroup split mode the waves of a work-group can be executing on + // different CUs. Therefore need to wait for global or GDS memory operations + // to complete to ensure they are visible to waves in the other CUs. + // Otherwise in non-threadgroup split mode all waves of a work-group are on + // the same CU, so no need to wait for global memory as all waves in the + // work-group access the same the L1, nor wait for GDS as access are ordered + // on a CU. + if (((AddrSpace & (SIAtomicAddrSpace::GLOBAL | SIAtomicAddrSpace::SCRATCH | + SIAtomicAddrSpace::GDS)) != SIAtomicAddrSpace::NONE) && + (Scope == SIAtomicScope::WORKGROUP)) { + // Same as GFX7 using agent scope. + Scope = SIAtomicScope::AGENT; + } + // In threadgroup split mode LDS cannot be allocated so no need to wait for + // LDS memory operations. + AddrSpace &= ~SIAtomicAddrSpace::LDS; + } + return SIGfx7CacheControl::insertWait(MI, Scope, AddrSpace, Op, + IsCrossAddrSpaceOrdering, Pos); +} + +bool SIGfx90ACacheControl::insertAcquire(MachineBasicBlock::iterator &MI, + SIAtomicScope Scope, + SIAtomicAddrSpace AddrSpace, + Position Pos) const { + if (!InsertCacheInv) + return false; + + bool Changed = false; + + MachineBasicBlock &MBB = *MI->getParent(); + DebugLoc DL = MI->getDebugLoc(); + + if (Pos == Position::AFTER) + ++MI; + + if ((AddrSpace & SIAtomicAddrSpace::GLOBAL) != SIAtomicAddrSpace::NONE) { + switch (Scope) { + case SIAtomicScope::SYSTEM: + // Ensures that following loads will not see stale remote VMEM data or + // stale local VMEM data with MTYPE NC. Local VMEM data with MTYPE RW and + // CC will never be stale due to the local memory probes. + BuildMI(MBB, MI, DL, TII->get(AMDGPU::BUFFER_INVL2)); + // Inserting a "S_WAITCNT vmcnt(0)" after is not required because the + // hardware does not reorder memory operations by the same wave with + // respect to a preceding "BUFFER_INVL2". The invalidate is guaranteed to + // remove any cache lines of earlier writes by the same wave and ensures + // later reads by the same wave will refetch the cache lines. + Changed = true; + break; + case SIAtomicScope::AGENT: + // Same as GFX7. + break; + case SIAtomicScope::WORKGROUP: + // In threadgroup split mode the waves of a work-group can be executing on + // different CUs. Therefore need to invalidate the L1 which is per CU. + // Otherwise in non-threadgroup split mode all waves of a work-group are + // on the same CU, and so the L1 does not need to be invalidated. + if (ST.isTgSplitEnabled()) { + // Same as GFX7 using agent scope. + Scope = SIAtomicScope::AGENT; + } + break; + case SIAtomicScope::WAVEFRONT: + case SIAtomicScope::SINGLETHREAD: + // Same as GFX7. + break; + default: + llvm_unreachable("Unsupported synchronization scope"); + } + } + + /// The scratch address space does not need the global memory cache + /// to be flushed as all memory operations by the same thread are + /// sequentially consistent, and no other thread can access scratch + /// memory. + + /// Other address spaces do not have a cache. + + if (Pos == Position::AFTER) + --MI; + + Changed |= SIGfx7CacheControl::insertAcquire(MI, Scope, AddrSpace, Pos); + + return Changed; +} + +bool SIGfx90ACacheControl::insertRelease(MachineBasicBlock::iterator &MI, + SIAtomicScope Scope, + SIAtomicAddrSpace AddrSpace, + bool IsCrossAddrSpaceOrdering, + Position Pos) const { + bool Changed = false; + + MachineBasicBlock &MBB = *MI->getParent(); + DebugLoc DL = MI->getDebugLoc(); + + if (Pos == Position::AFTER) + ++MI; + + if ((AddrSpace & SIAtomicAddrSpace::GLOBAL) != SIAtomicAddrSpace::NONE) { + switch (Scope) { + case SIAtomicScope::SYSTEM: + // Inserting a "S_WAITCNT vmcnt(0)" before is not required because the + // hardware does not reorder memory operations by the same wave with + // respect to a following "BUFFER_WBL2". The "BUFFER_WBL2" is guaranteed + // to initiate writeback of any dirty cache lines of earlier writes by the + // same wave. A "S_WAITCNT vmcnt(0)" is needed after to ensure the + // writeback has completed. + BuildMI(MBB, MI, DL, TII->get(AMDGPU::BUFFER_WBL2)); + // Followed by same as GFX7, which will ensure the necessary "S_WAITCNT + // vmcnt(0)" needed by the "BUFFER_WBL2". + Changed = true; + break; + case SIAtomicScope::AGENT: + case SIAtomicScope::WORKGROUP: + case SIAtomicScope::WAVEFRONT: + case SIAtomicScope::SINGLETHREAD: + // Same as GFX7. + break; + default: + llvm_unreachable("Unsupported synchronization scope"); + } + } + + if (Pos == Position::AFTER) + --MI; + + Changed |= + SIGfx7CacheControl::insertRelease(MI, Scope, AddrSpace, + IsCrossAddrSpaceOrdering, Pos); + + return Changed; +} + +bool SIGfx10CacheControl::enableLoadCacheBypass( + const MachineBasicBlock::iterator &MI, + SIAtomicScope Scope, + SIAtomicAddrSpace AddrSpace) const { + assert(MI->mayLoad() && !MI->mayStore()); + bool Changed = false; + + if ((AddrSpace & SIAtomicAddrSpace::GLOBAL) != SIAtomicAddrSpace::NONE) { + /// TODO Do not set glc for rmw atomic operations as they + /// implicitly bypass the L0/L1 caches. + + switch (Scope) { + case SIAtomicScope::SYSTEM: + case SIAtomicScope::AGENT: + Changed |= enableGLCBit(MI); + Changed |= enableDLCBit(MI); + break; + case SIAtomicScope::WORKGROUP: + // In WGP mode the waves of a work-group can be executing on either CU of + // the WGP. Therefore need to bypass the L0 which is per CU. Otherwise in + // CU mode all waves of a work-group are on the same CU, and so the L0 + // does not need to be bypassed. + if (!ST.isCuModeEnabled()) + Changed |= enableGLCBit(MI); + break; + case SIAtomicScope::WAVEFRONT: + case SIAtomicScope::SINGLETHREAD: + // No cache to bypass. + break; + default: + llvm_unreachable("Unsupported synchronization scope"); + } + } + + /// The scratch address space does not need the global memory caches + /// to be bypassed as all memory operations by the same thread are + /// sequentially consistent, and no other thread can access scratch + /// memory. + + /// Other address spaces do not have a cache. + + return Changed; +} + +bool SIGfx10CacheControl::enableVolatileAndOrNonTemporal( + MachineBasicBlock::iterator &MI, SIAtomicAddrSpace AddrSpace, SIMemOp Op, + bool IsVolatile, bool IsNonTemporal) const { + + // Only handle load and store, not atomic read-modify-write insructions. The + // latter use glc to indicate if the atomic returns a result and so must not + // be used for cache control. + assert(MI->mayLoad() ^ MI->mayStore()); + + // Only update load and store, not LLVM IR atomic read-modify-write + // instructions. The latter are always marked as volatile so cannot sensibly + // handle it as do not want to pessimize all atomics. Also they do not support + // the nontemporal attribute. + assert(Op == SIMemOp::LOAD || Op == SIMemOp::STORE); + + bool Changed = false; + + if (IsVolatile) { + if (Op == SIMemOp::LOAD) { + Changed |= enableGLCBit(MI); + Changed |= enableDLCBit(MI); + } + + // Ensure operation has completed at system scope to cause all volatile + // operations to be visible outside the program in a global order. Do not + // request cross address space as only the global address space can be + // observable outside the program, so no need to cause a waitcnt for LDS + // address space operations. + Changed |= insertWait(MI, SIAtomicScope::SYSTEM, AddrSpace, Op, false, + Position::AFTER); + return Changed; + } + + if (IsNonTemporal) { + // Request L0/L1 HIT_EVICT and L2 STREAM for load and store instructions. + Changed |= enableSLCBit(MI); + return Changed; + } + + return Changed; +} + +bool SIGfx10CacheControl::insertWait(MachineBasicBlock::iterator &MI, + SIAtomicScope Scope, + SIAtomicAddrSpace AddrSpace, + SIMemOp Op, + bool IsCrossAddrSpaceOrdering, + Position Pos) const { + bool Changed = false; + + MachineBasicBlock &MBB = *MI->getParent(); + DebugLoc DL = MI->getDebugLoc(); + + if (Pos == Position::AFTER) + ++MI; + + bool VMCnt = false; + bool VSCnt = false; + bool LGKMCnt = false; + + if ((AddrSpace & (SIAtomicAddrSpace::GLOBAL | SIAtomicAddrSpace::SCRATCH)) != + SIAtomicAddrSpace::NONE) { + switch (Scope) { + case SIAtomicScope::SYSTEM: + case SIAtomicScope::AGENT: + if ((Op & SIMemOp::LOAD) != SIMemOp::NONE) + VMCnt |= true; + if ((Op & SIMemOp::STORE) != SIMemOp::NONE) + VSCnt |= true; + break; + case SIAtomicScope::WORKGROUP: + // In WGP mode the waves of a work-group can be executing on either CU of + // the WGP. Therefore need to wait for operations to complete to ensure + // they are visible to waves in the other CU as the L0 is per CU. + // Otherwise in CU mode and all waves of a work-group are on the same CU + // which shares the same L0. + if (!ST.isCuModeEnabled()) { + if ((Op & SIMemOp::LOAD) != SIMemOp::NONE) + VMCnt |= true; + if ((Op & SIMemOp::STORE) != SIMemOp::NONE) + VSCnt |= true; + } + break; + case SIAtomicScope::WAVEFRONT: + case SIAtomicScope::SINGLETHREAD: + // The L0 cache keeps all memory operations in order for + // work-items in the same wavefront. + break; + default: + llvm_unreachable("Unsupported synchronization scope"); + } + } + + if ((AddrSpace & SIAtomicAddrSpace::LDS) != SIAtomicAddrSpace::NONE) { + switch (Scope) { + case SIAtomicScope::SYSTEM: + case SIAtomicScope::AGENT: + case SIAtomicScope::WORKGROUP: + // If no cross address space ordering then an "S_WAITCNT lgkmcnt(0)" is + // not needed as LDS operations for all waves are executed in a total + // global ordering as observed by all waves. Required if also + // synchronizing with global/GDS memory as LDS operations could be + // reordered with respect to later global/GDS memory operations of the + // same wave. + LGKMCnt |= IsCrossAddrSpaceOrdering; + break; + case SIAtomicScope::WAVEFRONT: + case SIAtomicScope::SINGLETHREAD: + // The LDS keeps all memory operations in order for + // the same wavesfront. + break; + default: + llvm_unreachable("Unsupported synchronization scope"); + } + } + + if ((AddrSpace & SIAtomicAddrSpace::GDS) != SIAtomicAddrSpace::NONE) { + switch (Scope) { + case SIAtomicScope::SYSTEM: + case SIAtomicScope::AGENT: + // If no cross address space ordering then an GDS "S_WAITCNT lgkmcnt(0)" + // is not needed as GDS operations for all waves are executed in a total + // global ordering as observed by all waves. Required if also + // synchronizing with global/LDS memory as GDS operations could be + // reordered with respect to later global/LDS memory operations of the + // same wave. + LGKMCnt |= IsCrossAddrSpaceOrdering; + break; + case SIAtomicScope::WORKGROUP: + case SIAtomicScope::WAVEFRONT: + case SIAtomicScope::SINGLETHREAD: + // The GDS keeps all memory operations in order for + // the same work-group. + break; + default: + llvm_unreachable("Unsupported synchronization scope"); + } + } + + if (VMCnt || LGKMCnt) { + unsigned WaitCntImmediate = + AMDGPU::encodeWaitcnt(IV, + VMCnt ? 0 : getVmcntBitMask(IV), + getExpcntBitMask(IV), + LGKMCnt ? 0 : getLgkmcntBitMask(IV)); + BuildMI(MBB, MI, DL, TII->get(AMDGPU::S_WAITCNT)).addImm(WaitCntImmediate); + Changed = true; + } + + if (VSCnt) { + BuildMI(MBB, MI, DL, TII->get(AMDGPU::S_WAITCNT_VSCNT)) + .addReg(AMDGPU::SGPR_NULL, RegState::Undef) + .addImm(0); + Changed = true; + } + + if (Pos == Position::AFTER) + --MI; + + return Changed; +} + +bool SIGfx10CacheControl::insertAcquire(MachineBasicBlock::iterator &MI, + SIAtomicScope Scope, + SIAtomicAddrSpace AddrSpace, + Position Pos) const { + if (!InsertCacheInv) + return false; + + bool Changed = false; + + MachineBasicBlock &MBB = *MI->getParent(); + DebugLoc DL = MI->getDebugLoc(); + + if (Pos == Position::AFTER) + ++MI; + + if ((AddrSpace & SIAtomicAddrSpace::GLOBAL) != SIAtomicAddrSpace::NONE) { + switch (Scope) { + case SIAtomicScope::SYSTEM: + case SIAtomicScope::AGENT: + BuildMI(MBB, MI, DL, TII->get(AMDGPU::BUFFER_GL0_INV)); + BuildMI(MBB, MI, DL, TII->get(AMDGPU::BUFFER_GL1_INV)); + Changed = true; + break; + case SIAtomicScope::WORKGROUP: + // In WGP mode the waves of a work-group can be executing on either CU of + // the WGP. Therefore need to invalidate the L0 which is per CU. Otherwise + // in CU mode and all waves of a work-group are on the same CU, and so the + // L0 does not need to be invalidated. + if (!ST.isCuModeEnabled()) { + BuildMI(MBB, MI, DL, TII->get(AMDGPU::BUFFER_GL0_INV)); + Changed = true; + } + break; + case SIAtomicScope::WAVEFRONT: + case SIAtomicScope::SINGLETHREAD: + // No cache to invalidate. + break; + default: + llvm_unreachable("Unsupported synchronization scope"); + } + } + + /// The scratch address space does not need the global memory cache + /// to be flushed as all memory operations by the same thread are + /// sequentially consistent, and no other thread can access scratch + /// memory. + + /// Other address spaces do not have a cache. + + if (Pos == Position::AFTER) + --MI; + + return Changed; +} + +bool SIMemoryLegalizer::removeAtomicPseudoMIs() { + if (AtomicPseudoMIs.empty()) + return false; + + for (auto &MI : AtomicPseudoMIs) + MI->eraseFromParent(); + + AtomicPseudoMIs.clear(); + return true; +} + +bool SIMemoryLegalizer::expandLoad(const SIMemOpInfo &MOI, + MachineBasicBlock::iterator &MI) { + assert(MI->mayLoad() && !MI->mayStore()); + + bool Changed = false; + + if (MOI.isAtomic()) { + if (MOI.getOrdering() == AtomicOrdering::Monotonic || + MOI.getOrdering() == AtomicOrdering::Acquire || + MOI.getOrdering() == AtomicOrdering::SequentiallyConsistent) { + Changed |= CC->enableLoadCacheBypass(MI, MOI.getScope(), + MOI.getOrderingAddrSpace()); + } + + if (MOI.getOrdering() == AtomicOrdering::SequentiallyConsistent) + Changed |= CC->insertWait(MI, MOI.getScope(), + MOI.getOrderingAddrSpace(), + SIMemOp::LOAD | SIMemOp::STORE, + MOI.getIsCrossAddressSpaceOrdering(), + Position::BEFORE); + + if (MOI.getOrdering() == AtomicOrdering::Acquire || + MOI.getOrdering() == AtomicOrdering::SequentiallyConsistent) { + Changed |= CC->insertWait(MI, MOI.getScope(), + MOI.getInstrAddrSpace(), + SIMemOp::LOAD, + MOI.getIsCrossAddressSpaceOrdering(), + Position::AFTER); + Changed |= CC->insertAcquire(MI, MOI.getScope(), + MOI.getOrderingAddrSpace(), + Position::AFTER); + } + + return Changed; + } + + // Atomic instructions already bypass caches to the scope specified by the + // SyncScope operand. Only non-atomic volatile and nontemporal instructions + // need additional treatment. + Changed |= CC->enableVolatileAndOrNonTemporal(MI, MOI.getInstrAddrSpace(), + SIMemOp::LOAD, MOI.isVolatile(), + MOI.isNonTemporal()); + return Changed; +} + +bool SIMemoryLegalizer::expandStore(const SIMemOpInfo &MOI, + MachineBasicBlock::iterator &MI) { + assert(!MI->mayLoad() && MI->mayStore()); + + bool Changed = false; + + if (MOI.isAtomic()) { + if (MOI.getOrdering() == AtomicOrdering::Monotonic || + MOI.getOrdering() == AtomicOrdering::Release || + MOI.getOrdering() == AtomicOrdering::SequentiallyConsistent) { + Changed |= CC->enableStoreCacheBypass(MI, MOI.getScope(), + MOI.getOrderingAddrSpace()); + } + + if (MOI.getOrdering() == AtomicOrdering::Release || + MOI.getOrdering() == AtomicOrdering::SequentiallyConsistent) + Changed |= CC->insertRelease(MI, MOI.getScope(), + MOI.getOrderingAddrSpace(), + MOI.getIsCrossAddressSpaceOrdering(), + Position::BEFORE); + + return Changed; + } + + // Atomic instructions already bypass caches to the scope specified by the + // SyncScope operand. Only non-atomic volatile and nontemporal instructions + // need additional treatment. + Changed |= CC->enableVolatileAndOrNonTemporal( + MI, MOI.getInstrAddrSpace(), SIMemOp::STORE, MOI.isVolatile(), + MOI.isNonTemporal()); + return Changed; +} + +bool SIMemoryLegalizer::expandAtomicFence(const SIMemOpInfo &MOI, + MachineBasicBlock::iterator &MI) { + assert(MI->getOpcode() == AMDGPU::ATOMIC_FENCE); + + AtomicPseudoMIs.push_back(MI); + bool Changed = false; + + if (MOI.isAtomic()) { + if (MOI.getOrdering() == AtomicOrdering::Acquire || + MOI.getOrdering() == AtomicOrdering::Release || + MOI.getOrdering() == AtomicOrdering::AcquireRelease || + MOI.getOrdering() == AtomicOrdering::SequentiallyConsistent) + /// TODO: This relies on a barrier always generating a waitcnt + /// for LDS to ensure it is not reordered with the completion of + /// the proceeding LDS operations. If barrier had a memory + /// ordering and memory scope, then library does not need to + /// generate a fence. Could add support in this file for + /// barrier. SIInsertWaitcnt.cpp could then stop unconditionally + /// adding S_WAITCNT before a S_BARRIER. + Changed |= CC->insertRelease(MI, MOI.getScope(), + MOI.getOrderingAddrSpace(), + MOI.getIsCrossAddressSpaceOrdering(), + Position::BEFORE); + + // TODO: If both release and invalidate are happening they could be combined + // to use the single "BUFFER_WBINV*" instruction. This could be done by + // reorganizing this code or as part of optimizing SIInsertWaitcnt pass to + // track cache invalidate and write back instructions. + + if (MOI.getOrdering() == AtomicOrdering::Acquire || + MOI.getOrdering() == AtomicOrdering::AcquireRelease || + MOI.getOrdering() == AtomicOrdering::SequentiallyConsistent) + Changed |= CC->insertAcquire(MI, MOI.getScope(), + MOI.getOrderingAddrSpace(), + Position::BEFORE); + + return Changed; + } + + return Changed; +} + +bool SIMemoryLegalizer::expandAtomicCmpxchgOrRmw(const SIMemOpInfo &MOI, + MachineBasicBlock::iterator &MI) { + assert(MI->mayLoad() && MI->mayStore()); + + bool Changed = false; + + if (MOI.isAtomic()) { + if (MOI.getOrdering() == AtomicOrdering::Monotonic || + MOI.getOrdering() == AtomicOrdering::Acquire || + MOI.getOrdering() == AtomicOrdering::Release || + MOI.getOrdering() == AtomicOrdering::AcquireRelease || + MOI.getOrdering() == AtomicOrdering::SequentiallyConsistent) { + Changed |= CC->enableRMWCacheBypass(MI, MOI.getScope(), + MOI.getInstrAddrSpace()); + } + + if (MOI.getOrdering() == AtomicOrdering::Release || + MOI.getOrdering() == AtomicOrdering::AcquireRelease || + MOI.getOrdering() == AtomicOrdering::SequentiallyConsistent || + MOI.getFailureOrdering() == AtomicOrdering::SequentiallyConsistent) + Changed |= CC->insertRelease(MI, MOI.getScope(), + MOI.getOrderingAddrSpace(), + MOI.getIsCrossAddressSpaceOrdering(), + Position::BEFORE); + + if (MOI.getOrdering() == AtomicOrdering::Acquire || + MOI.getOrdering() == AtomicOrdering::AcquireRelease || + MOI.getOrdering() == AtomicOrdering::SequentiallyConsistent || + MOI.getFailureOrdering() == AtomicOrdering::Acquire || + MOI.getFailureOrdering() == AtomicOrdering::SequentiallyConsistent) { + Changed |= CC->insertWait(MI, MOI.getScope(), + MOI.getInstrAddrSpace(), + isAtomicRet(*MI) ? SIMemOp::LOAD : + SIMemOp::STORE, + MOI.getIsCrossAddressSpaceOrdering(), + Position::AFTER); + Changed |= CC->insertAcquire(MI, MOI.getScope(), + MOI.getOrderingAddrSpace(), + Position::AFTER); + } + + return Changed; + } + + return Changed; +} + +bool SIMemoryLegalizer::runOnMachineFunction(MachineFunction &MF) { + bool Changed = false; + + SIMemOpAccess MOA(MF); + CC = SICacheControl::create(MF.getSubtarget<GCNSubtarget>()); + + for (auto &MBB : MF) { + for (auto MI = MBB.begin(); MI != MBB.end(); ++MI) { + + // Unbundle instructions after the post-RA scheduler. + if (MI->isBundle() && MI->mayLoadOrStore()) { + MachineBasicBlock::instr_iterator II(MI->getIterator()); + for (MachineBasicBlock::instr_iterator I = ++II, E = MBB.instr_end(); + I != E && I->isBundledWithPred(); ++I) { + I->unbundleFromPred(); + for (MachineOperand &MO : I->operands()) + if (MO.isReg()) + MO.setIsInternalRead(false); + } + + MI->eraseFromParent(); + MI = II->getIterator(); + } + + if (!(MI->getDesc().TSFlags & SIInstrFlags::maybeAtomic)) + continue; + + if (const auto &MOI = MOA.getLoadInfo(MI)) + Changed |= expandLoad(MOI.getValue(), MI); + else if (const auto &MOI = MOA.getStoreInfo(MI)) + Changed |= expandStore(MOI.getValue(), MI); + else if (const auto &MOI = MOA.getAtomicFenceInfo(MI)) + Changed |= expandAtomicFence(MOI.getValue(), MI); + else if (const auto &MOI = MOA.getAtomicCmpxchgOrRmwInfo(MI)) + Changed |= expandAtomicCmpxchgOrRmw(MOI.getValue(), MI); + } + } + + Changed |= removeAtomicPseudoMIs(); + return Changed; +} + +INITIALIZE_PASS(SIMemoryLegalizer, DEBUG_TYPE, PASS_NAME, false, false) + +char SIMemoryLegalizer::ID = 0; +char &llvm::SIMemoryLegalizerID = SIMemoryLegalizer::ID; + +FunctionPass *llvm::createSIMemoryLegalizerPass() { + return new SIMemoryLegalizer(); +} |
