aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm-project/llvm/lib/Target/AMDGPU/SIMemoryLegalizer.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm-project/llvm/lib/Target/AMDGPU/SIMemoryLegalizer.cpp')
-rw-r--r--contrib/llvm-project/llvm/lib/Target/AMDGPU/SIMemoryLegalizer.cpp1863
1 files changed, 1863 insertions, 0 deletions
diff --git a/contrib/llvm-project/llvm/lib/Target/AMDGPU/SIMemoryLegalizer.cpp b/contrib/llvm-project/llvm/lib/Target/AMDGPU/SIMemoryLegalizer.cpp
new file mode 100644
index 000000000000..29f072ca1e6c
--- /dev/null
+++ b/contrib/llvm-project/llvm/lib/Target/AMDGPU/SIMemoryLegalizer.cpp
@@ -0,0 +1,1863 @@
+//===- SIMemoryLegalizer.cpp ----------------------------------------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+/// \file
+/// Memory legalizer - implements memory model. More information can be
+/// found here:
+/// http://llvm.org/docs/AMDGPUUsage.html#memory-model
+//
+//===----------------------------------------------------------------------===//
+
+#include "AMDGPU.h"
+#include "AMDGPUMachineModuleInfo.h"
+#include "GCNSubtarget.h"
+#include "MCTargetDesc/AMDGPUMCTargetDesc.h"
+#include "llvm/ADT/BitmaskEnum.h"
+#include "llvm/CodeGen/MachineBasicBlock.h"
+#include "llvm/IR/DiagnosticInfo.h"
+#include "llvm/Support/AtomicOrdering.h"
+#include "llvm/Support/TargetParser.h"
+
+using namespace llvm;
+using namespace llvm::AMDGPU;
+
+#define DEBUG_TYPE "si-memory-legalizer"
+#define PASS_NAME "SI Memory Legalizer"
+
+static cl::opt<bool> AmdgcnSkipCacheInvalidations(
+ "amdgcn-skip-cache-invalidations", cl::init(false), cl::Hidden,
+ cl::desc("Use this to skip inserting cache invalidating instructions."));
+
+namespace {
+
+LLVM_ENABLE_BITMASK_ENUMS_IN_NAMESPACE();
+
+/// Memory operation flags. Can be ORed together.
+enum class SIMemOp {
+ NONE = 0u,
+ LOAD = 1u << 0,
+ STORE = 1u << 1,
+ LLVM_MARK_AS_BITMASK_ENUM(/* LargestFlag = */ STORE)
+};
+
+/// Position to insert a new instruction relative to an existing
+/// instruction.
+enum class Position {
+ BEFORE,
+ AFTER
+};
+
+/// The atomic synchronization scopes supported by the AMDGPU target.
+enum class SIAtomicScope {
+ NONE,
+ SINGLETHREAD,
+ WAVEFRONT,
+ WORKGROUP,
+ AGENT,
+ SYSTEM
+};
+
+/// The distinct address spaces supported by the AMDGPU target for
+/// atomic memory operation. Can be ORed toether.
+enum class SIAtomicAddrSpace {
+ NONE = 0u,
+ GLOBAL = 1u << 0,
+ LDS = 1u << 1,
+ SCRATCH = 1u << 2,
+ GDS = 1u << 3,
+ OTHER = 1u << 4,
+
+ /// The address spaces that can be accessed by a FLAT instruction.
+ FLAT = GLOBAL | LDS | SCRATCH,
+
+ /// The address spaces that support atomic instructions.
+ ATOMIC = GLOBAL | LDS | SCRATCH | GDS,
+
+ /// All address spaces.
+ ALL = GLOBAL | LDS | SCRATCH | GDS | OTHER,
+
+ LLVM_MARK_AS_BITMASK_ENUM(/* LargestFlag = */ ALL)
+};
+
+class SIMemOpInfo final {
+private:
+
+ friend class SIMemOpAccess;
+
+ AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
+ AtomicOrdering FailureOrdering = AtomicOrdering::NotAtomic;
+ SIAtomicScope Scope = SIAtomicScope::SYSTEM;
+ SIAtomicAddrSpace OrderingAddrSpace = SIAtomicAddrSpace::NONE;
+ SIAtomicAddrSpace InstrAddrSpace = SIAtomicAddrSpace::NONE;
+ bool IsCrossAddressSpaceOrdering = false;
+ bool IsVolatile = false;
+ bool IsNonTemporal = false;
+
+ SIMemOpInfo(AtomicOrdering Ordering = AtomicOrdering::SequentiallyConsistent,
+ SIAtomicScope Scope = SIAtomicScope::SYSTEM,
+ SIAtomicAddrSpace OrderingAddrSpace = SIAtomicAddrSpace::ATOMIC,
+ SIAtomicAddrSpace InstrAddrSpace = SIAtomicAddrSpace::ALL,
+ bool IsCrossAddressSpaceOrdering = true,
+ AtomicOrdering FailureOrdering =
+ AtomicOrdering::SequentiallyConsistent,
+ bool IsVolatile = false,
+ bool IsNonTemporal = false)
+ : Ordering(Ordering), FailureOrdering(FailureOrdering),
+ Scope(Scope), OrderingAddrSpace(OrderingAddrSpace),
+ InstrAddrSpace(InstrAddrSpace),
+ IsCrossAddressSpaceOrdering(IsCrossAddressSpaceOrdering),
+ IsVolatile(IsVolatile),
+ IsNonTemporal(IsNonTemporal) {
+
+ if (Ordering == AtomicOrdering::NotAtomic) {
+ assert(Scope == SIAtomicScope::NONE &&
+ OrderingAddrSpace == SIAtomicAddrSpace::NONE &&
+ !IsCrossAddressSpaceOrdering &&
+ FailureOrdering == AtomicOrdering::NotAtomic);
+ return;
+ }
+
+ assert(Scope != SIAtomicScope::NONE &&
+ (OrderingAddrSpace & SIAtomicAddrSpace::ATOMIC) !=
+ SIAtomicAddrSpace::NONE &&
+ (InstrAddrSpace & SIAtomicAddrSpace::ATOMIC) !=
+ SIAtomicAddrSpace::NONE);
+
+ // There is also no cross address space ordering if the ordering
+ // address space is the same as the instruction address space and
+ // only contains a single address space.
+ if ((OrderingAddrSpace == InstrAddrSpace) &&
+ isPowerOf2_32(uint32_t(InstrAddrSpace)))
+ this->IsCrossAddressSpaceOrdering = false;
+
+ // Limit the scope to the maximum supported by the instruction's address
+ // spaces.
+ if ((InstrAddrSpace & ~SIAtomicAddrSpace::SCRATCH) ==
+ SIAtomicAddrSpace::NONE) {
+ this->Scope = std::min(Scope, SIAtomicScope::SINGLETHREAD);
+ } else if ((InstrAddrSpace &
+ ~(SIAtomicAddrSpace::SCRATCH | SIAtomicAddrSpace::LDS)) ==
+ SIAtomicAddrSpace::NONE) {
+ this->Scope = std::min(Scope, SIAtomicScope::WORKGROUP);
+ } else if ((InstrAddrSpace &
+ ~(SIAtomicAddrSpace::SCRATCH | SIAtomicAddrSpace::LDS |
+ SIAtomicAddrSpace::GDS)) == SIAtomicAddrSpace::NONE) {
+ this->Scope = std::min(Scope, SIAtomicScope::AGENT);
+ }
+ }
+
+public:
+ /// \returns Atomic synchronization scope of the machine instruction used to
+ /// create this SIMemOpInfo.
+ SIAtomicScope getScope() const {
+ return Scope;
+ }
+
+ /// \returns Ordering constraint of the machine instruction used to
+ /// create this SIMemOpInfo.
+ AtomicOrdering getOrdering() const {
+ return Ordering;
+ }
+
+ /// \returns Failure ordering constraint of the machine instruction used to
+ /// create this SIMemOpInfo.
+ AtomicOrdering getFailureOrdering() const {
+ return FailureOrdering;
+ }
+
+ /// \returns The address spaces be accessed by the machine
+ /// instruction used to create this SiMemOpInfo.
+ SIAtomicAddrSpace getInstrAddrSpace() const {
+ return InstrAddrSpace;
+ }
+
+ /// \returns The address spaces that must be ordered by the machine
+ /// instruction used to create this SiMemOpInfo.
+ SIAtomicAddrSpace getOrderingAddrSpace() const {
+ return OrderingAddrSpace;
+ }
+
+ /// \returns Return true iff memory ordering of operations on
+ /// different address spaces is required.
+ bool getIsCrossAddressSpaceOrdering() const {
+ return IsCrossAddressSpaceOrdering;
+ }
+
+ /// \returns True if memory access of the machine instruction used to
+ /// create this SIMemOpInfo is volatile, false otherwise.
+ bool isVolatile() const {
+ return IsVolatile;
+ }
+
+ /// \returns True if memory access of the machine instruction used to
+ /// create this SIMemOpInfo is nontemporal, false otherwise.
+ bool isNonTemporal() const {
+ return IsNonTemporal;
+ }
+
+ /// \returns True if ordering constraint of the machine instruction used to
+ /// create this SIMemOpInfo is unordered or higher, false otherwise.
+ bool isAtomic() const {
+ return Ordering != AtomicOrdering::NotAtomic;
+ }
+
+};
+
+class SIMemOpAccess final {
+private:
+ AMDGPUMachineModuleInfo *MMI = nullptr;
+
+ /// Reports unsupported message \p Msg for \p MI to LLVM context.
+ void reportUnsupported(const MachineBasicBlock::iterator &MI,
+ const char *Msg) const;
+
+ /// Inspects the target synchronization scope \p SSID and determines
+ /// the SI atomic scope it corresponds to, the address spaces it
+ /// covers, and whether the memory ordering applies between address
+ /// spaces.
+ Optional<std::tuple<SIAtomicScope, SIAtomicAddrSpace, bool>>
+ toSIAtomicScope(SyncScope::ID SSID, SIAtomicAddrSpace InstrAddrSpace) const;
+
+ /// \return Return a bit set of the address spaces accessed by \p AS.
+ SIAtomicAddrSpace toSIAtomicAddrSpace(unsigned AS) const;
+
+ /// \returns Info constructed from \p MI, which has at least machine memory
+ /// operand.
+ Optional<SIMemOpInfo> constructFromMIWithMMO(
+ const MachineBasicBlock::iterator &MI) const;
+
+public:
+ /// Construct class to support accessing the machine memory operands
+ /// of instructions in the machine function \p MF.
+ SIMemOpAccess(MachineFunction &MF);
+
+ /// \returns Load info if \p MI is a load operation, "None" otherwise.
+ Optional<SIMemOpInfo> getLoadInfo(
+ const MachineBasicBlock::iterator &MI) const;
+
+ /// \returns Store info if \p MI is a store operation, "None" otherwise.
+ Optional<SIMemOpInfo> getStoreInfo(
+ const MachineBasicBlock::iterator &MI) const;
+
+ /// \returns Atomic fence info if \p MI is an atomic fence operation,
+ /// "None" otherwise.
+ Optional<SIMemOpInfo> getAtomicFenceInfo(
+ const MachineBasicBlock::iterator &MI) const;
+
+ /// \returns Atomic cmpxchg/rmw info if \p MI is an atomic cmpxchg or
+ /// rmw operation, "None" otherwise.
+ Optional<SIMemOpInfo> getAtomicCmpxchgOrRmwInfo(
+ const MachineBasicBlock::iterator &MI) const;
+};
+
+class SICacheControl {
+protected:
+
+ /// AMDGPU subtarget info.
+ const GCNSubtarget &ST;
+
+ /// Instruction info.
+ const SIInstrInfo *TII = nullptr;
+
+ IsaVersion IV;
+
+ /// Whether to insert cache invalidating instructions.
+ bool InsertCacheInv;
+
+ SICacheControl(const GCNSubtarget &ST);
+
+ /// Sets named bit \p BitName to "true" if present in instruction \p MI.
+ /// \returns Returns true if \p MI is modified, false otherwise.
+ bool enableNamedBit(const MachineBasicBlock::iterator MI,
+ AMDGPU::CPol::CPol Bit) const;
+
+public:
+
+ /// Create a cache control for the subtarget \p ST.
+ static std::unique_ptr<SICacheControl> create(const GCNSubtarget &ST);
+
+ /// Update \p MI memory load instruction to bypass any caches up to
+ /// the \p Scope memory scope for address spaces \p
+ /// AddrSpace. Return true iff the instruction was modified.
+ virtual bool enableLoadCacheBypass(const MachineBasicBlock::iterator &MI,
+ SIAtomicScope Scope,
+ SIAtomicAddrSpace AddrSpace) const = 0;
+
+ /// Update \p MI memory store instruction to bypass any caches up to
+ /// the \p Scope memory scope for address spaces \p
+ /// AddrSpace. Return true iff the instruction was modified.
+ virtual bool enableStoreCacheBypass(const MachineBasicBlock::iterator &MI,
+ SIAtomicScope Scope,
+ SIAtomicAddrSpace AddrSpace) const = 0;
+
+ /// Update \p MI memory read-modify-write instruction to bypass any caches up
+ /// to the \p Scope memory scope for address spaces \p AddrSpace. Return true
+ /// iff the instruction was modified.
+ virtual bool enableRMWCacheBypass(const MachineBasicBlock::iterator &MI,
+ SIAtomicScope Scope,
+ SIAtomicAddrSpace AddrSpace) const = 0;
+
+ /// Update \p MI memory instruction of kind \p Op associated with address
+ /// spaces \p AddrSpace to indicate it is volatile and/or nontemporal. Return
+ /// true iff the instruction was modified.
+ virtual bool enableVolatileAndOrNonTemporal(MachineBasicBlock::iterator &MI,
+ SIAtomicAddrSpace AddrSpace,
+ SIMemOp Op, bool IsVolatile,
+ bool IsNonTemporal) const = 0;
+
+ /// Inserts any necessary instructions at position \p Pos relative
+ /// to instruction \p MI to ensure memory instructions before \p Pos of kind
+ /// \p Op associated with address spaces \p AddrSpace have completed. Used
+ /// between memory instructions to enforce the order they become visible as
+ /// observed by other memory instructions executing in memory scope \p Scope.
+ /// \p IsCrossAddrSpaceOrdering indicates if the memory ordering is between
+ /// address spaces. Returns true iff any instructions inserted.
+ virtual bool insertWait(MachineBasicBlock::iterator &MI,
+ SIAtomicScope Scope,
+ SIAtomicAddrSpace AddrSpace,
+ SIMemOp Op,
+ bool IsCrossAddrSpaceOrdering,
+ Position Pos) const = 0;
+
+ /// Inserts any necessary instructions at position \p Pos relative to
+ /// instruction \p MI to ensure any subsequent memory instructions of this
+ /// thread with address spaces \p AddrSpace will observe the previous memory
+ /// operations by any thread for memory scopes up to memory scope \p Scope .
+ /// Returns true iff any instructions inserted.
+ virtual bool insertAcquire(MachineBasicBlock::iterator &MI,
+ SIAtomicScope Scope,
+ SIAtomicAddrSpace AddrSpace,
+ Position Pos) const = 0;
+
+ /// Inserts any necessary instructions at position \p Pos relative to
+ /// instruction \p MI to ensure previous memory instructions by this thread
+ /// with address spaces \p AddrSpace have completed and can be observed by
+ /// subsequent memory instructions by any thread executing in memory scope \p
+ /// Scope. \p IsCrossAddrSpaceOrdering indicates if the memory ordering is
+ /// between address spaces. Returns true iff any instructions inserted.
+ virtual bool insertRelease(MachineBasicBlock::iterator &MI,
+ SIAtomicScope Scope,
+ SIAtomicAddrSpace AddrSpace,
+ bool IsCrossAddrSpaceOrdering,
+ Position Pos) const = 0;
+
+ /// Virtual destructor to allow derivations to be deleted.
+ virtual ~SICacheControl() = default;
+
+};
+
+class SIGfx6CacheControl : public SICacheControl {
+protected:
+
+ /// Sets GLC bit to "true" if present in \p MI. Returns true if \p MI
+ /// is modified, false otherwise.
+ bool enableGLCBit(const MachineBasicBlock::iterator &MI) const {
+ return enableNamedBit(MI, AMDGPU::CPol::GLC);
+ }
+
+ /// Sets SLC bit to "true" if present in \p MI. Returns true if \p MI
+ /// is modified, false otherwise.
+ bool enableSLCBit(const MachineBasicBlock::iterator &MI) const {
+ return enableNamedBit(MI, AMDGPU::CPol::SLC);
+ }
+
+public:
+
+ SIGfx6CacheControl(const GCNSubtarget &ST) : SICacheControl(ST) {}
+
+ bool enableLoadCacheBypass(const MachineBasicBlock::iterator &MI,
+ SIAtomicScope Scope,
+ SIAtomicAddrSpace AddrSpace) const override;
+
+ bool enableStoreCacheBypass(const MachineBasicBlock::iterator &MI,
+ SIAtomicScope Scope,
+ SIAtomicAddrSpace AddrSpace) const override;
+
+ bool enableRMWCacheBypass(const MachineBasicBlock::iterator &MI,
+ SIAtomicScope Scope,
+ SIAtomicAddrSpace AddrSpace) const override;
+
+ bool enableVolatileAndOrNonTemporal(MachineBasicBlock::iterator &MI,
+ SIAtomicAddrSpace AddrSpace, SIMemOp Op,
+ bool IsVolatile,
+ bool IsNonTemporal) const override;
+
+ bool insertWait(MachineBasicBlock::iterator &MI,
+ SIAtomicScope Scope,
+ SIAtomicAddrSpace AddrSpace,
+ SIMemOp Op,
+ bool IsCrossAddrSpaceOrdering,
+ Position Pos) const override;
+
+ bool insertAcquire(MachineBasicBlock::iterator &MI,
+ SIAtomicScope Scope,
+ SIAtomicAddrSpace AddrSpace,
+ Position Pos) const override;
+
+ bool insertRelease(MachineBasicBlock::iterator &MI,
+ SIAtomicScope Scope,
+ SIAtomicAddrSpace AddrSpace,
+ bool IsCrossAddrSpaceOrdering,
+ Position Pos) const override;
+};
+
+class SIGfx7CacheControl : public SIGfx6CacheControl {
+public:
+
+ SIGfx7CacheControl(const GCNSubtarget &ST) : SIGfx6CacheControl(ST) {}
+
+ bool insertAcquire(MachineBasicBlock::iterator &MI,
+ SIAtomicScope Scope,
+ SIAtomicAddrSpace AddrSpace,
+ Position Pos) const override;
+
+};
+
+class SIGfx90ACacheControl : public SIGfx7CacheControl {
+public:
+
+ SIGfx90ACacheControl(const GCNSubtarget &ST) : SIGfx7CacheControl(ST) {}
+
+ bool enableLoadCacheBypass(const MachineBasicBlock::iterator &MI,
+ SIAtomicScope Scope,
+ SIAtomicAddrSpace AddrSpace) const override;
+
+ bool enableStoreCacheBypass(const MachineBasicBlock::iterator &MI,
+ SIAtomicScope Scope,
+ SIAtomicAddrSpace AddrSpace) const override;
+
+ bool enableRMWCacheBypass(const MachineBasicBlock::iterator &MI,
+ SIAtomicScope Scope,
+ SIAtomicAddrSpace AddrSpace) const override;
+
+ bool enableVolatileAndOrNonTemporal(MachineBasicBlock::iterator &MI,
+ SIAtomicAddrSpace AddrSpace, SIMemOp Op,
+ bool IsVolatile,
+ bool IsNonTemporal) const override;
+
+ bool insertWait(MachineBasicBlock::iterator &MI,
+ SIAtomicScope Scope,
+ SIAtomicAddrSpace AddrSpace,
+ SIMemOp Op,
+ bool IsCrossAddrSpaceOrdering,
+ Position Pos) const override;
+
+ bool insertAcquire(MachineBasicBlock::iterator &MI,
+ SIAtomicScope Scope,
+ SIAtomicAddrSpace AddrSpace,
+ Position Pos) const override;
+
+ bool insertRelease(MachineBasicBlock::iterator &MI,
+ SIAtomicScope Scope,
+ SIAtomicAddrSpace AddrSpace,
+ bool IsCrossAddrSpaceOrdering,
+ Position Pos) const override;
+};
+
+class SIGfx10CacheControl : public SIGfx7CacheControl {
+protected:
+
+ /// Sets DLC bit to "true" if present in \p MI. Returns true if \p MI
+ /// is modified, false otherwise.
+ bool enableDLCBit(const MachineBasicBlock::iterator &MI) const {
+ return enableNamedBit(MI, AMDGPU::CPol::DLC);
+ }
+
+public:
+
+ SIGfx10CacheControl(const GCNSubtarget &ST) : SIGfx7CacheControl(ST) {}
+
+ bool enableLoadCacheBypass(const MachineBasicBlock::iterator &MI,
+ SIAtomicScope Scope,
+ SIAtomicAddrSpace AddrSpace) const override;
+
+ bool enableVolatileAndOrNonTemporal(MachineBasicBlock::iterator &MI,
+ SIAtomicAddrSpace AddrSpace, SIMemOp Op,
+ bool IsVolatile,
+ bool IsNonTemporal) const override;
+
+ bool insertWait(MachineBasicBlock::iterator &MI,
+ SIAtomicScope Scope,
+ SIAtomicAddrSpace AddrSpace,
+ SIMemOp Op,
+ bool IsCrossAddrSpaceOrdering,
+ Position Pos) const override;
+
+ bool insertAcquire(MachineBasicBlock::iterator &MI,
+ SIAtomicScope Scope,
+ SIAtomicAddrSpace AddrSpace,
+ Position Pos) const override;
+};
+
+class SIMemoryLegalizer final : public MachineFunctionPass {
+private:
+
+ /// Cache Control.
+ std::unique_ptr<SICacheControl> CC = nullptr;
+
+ /// List of atomic pseudo instructions.
+ std::list<MachineBasicBlock::iterator> AtomicPseudoMIs;
+
+ /// Return true iff instruction \p MI is a atomic instruction that
+ /// returns a result.
+ bool isAtomicRet(const MachineInstr &MI) const {
+ return SIInstrInfo::isAtomicRet(MI);
+ }
+
+ /// Removes all processed atomic pseudo instructions from the current
+ /// function. Returns true if current function is modified, false otherwise.
+ bool removeAtomicPseudoMIs();
+
+ /// Expands load operation \p MI. Returns true if instructions are
+ /// added/deleted or \p MI is modified, false otherwise.
+ bool expandLoad(const SIMemOpInfo &MOI,
+ MachineBasicBlock::iterator &MI);
+ /// Expands store operation \p MI. Returns true if instructions are
+ /// added/deleted or \p MI is modified, false otherwise.
+ bool expandStore(const SIMemOpInfo &MOI,
+ MachineBasicBlock::iterator &MI);
+ /// Expands atomic fence operation \p MI. Returns true if
+ /// instructions are added/deleted or \p MI is modified, false otherwise.
+ bool expandAtomicFence(const SIMemOpInfo &MOI,
+ MachineBasicBlock::iterator &MI);
+ /// Expands atomic cmpxchg or rmw operation \p MI. Returns true if
+ /// instructions are added/deleted or \p MI is modified, false otherwise.
+ bool expandAtomicCmpxchgOrRmw(const SIMemOpInfo &MOI,
+ MachineBasicBlock::iterator &MI);
+
+public:
+ static char ID;
+
+ SIMemoryLegalizer() : MachineFunctionPass(ID) {}
+
+ void getAnalysisUsage(AnalysisUsage &AU) const override {
+ AU.setPreservesCFG();
+ MachineFunctionPass::getAnalysisUsage(AU);
+ }
+
+ StringRef getPassName() const override {
+ return PASS_NAME;
+ }
+
+ bool runOnMachineFunction(MachineFunction &MF) override;
+};
+
+} // end namespace anonymous
+
+void SIMemOpAccess::reportUnsupported(const MachineBasicBlock::iterator &MI,
+ const char *Msg) const {
+ const Function &Func = MI->getParent()->getParent()->getFunction();
+ DiagnosticInfoUnsupported Diag(Func, Msg, MI->getDebugLoc());
+ Func.getContext().diagnose(Diag);
+}
+
+Optional<std::tuple<SIAtomicScope, SIAtomicAddrSpace, bool>>
+SIMemOpAccess::toSIAtomicScope(SyncScope::ID SSID,
+ SIAtomicAddrSpace InstrAddrSpace) const {
+ if (SSID == SyncScope::System)
+ return std::make_tuple(SIAtomicScope::SYSTEM,
+ SIAtomicAddrSpace::ATOMIC,
+ true);
+ if (SSID == MMI->getAgentSSID())
+ return std::make_tuple(SIAtomicScope::AGENT,
+ SIAtomicAddrSpace::ATOMIC,
+ true);
+ if (SSID == MMI->getWorkgroupSSID())
+ return std::make_tuple(SIAtomicScope::WORKGROUP,
+ SIAtomicAddrSpace::ATOMIC,
+ true);
+ if (SSID == MMI->getWavefrontSSID())
+ return std::make_tuple(SIAtomicScope::WAVEFRONT,
+ SIAtomicAddrSpace::ATOMIC,
+ true);
+ if (SSID == SyncScope::SingleThread)
+ return std::make_tuple(SIAtomicScope::SINGLETHREAD,
+ SIAtomicAddrSpace::ATOMIC,
+ true);
+ if (SSID == MMI->getSystemOneAddressSpaceSSID())
+ return std::make_tuple(SIAtomicScope::SYSTEM,
+ SIAtomicAddrSpace::ATOMIC & InstrAddrSpace,
+ false);
+ if (SSID == MMI->getAgentOneAddressSpaceSSID())
+ return std::make_tuple(SIAtomicScope::AGENT,
+ SIAtomicAddrSpace::ATOMIC & InstrAddrSpace,
+ false);
+ if (SSID == MMI->getWorkgroupOneAddressSpaceSSID())
+ return std::make_tuple(SIAtomicScope::WORKGROUP,
+ SIAtomicAddrSpace::ATOMIC & InstrAddrSpace,
+ false);
+ if (SSID == MMI->getWavefrontOneAddressSpaceSSID())
+ return std::make_tuple(SIAtomicScope::WAVEFRONT,
+ SIAtomicAddrSpace::ATOMIC & InstrAddrSpace,
+ false);
+ if (SSID == MMI->getSingleThreadOneAddressSpaceSSID())
+ return std::make_tuple(SIAtomicScope::SINGLETHREAD,
+ SIAtomicAddrSpace::ATOMIC & InstrAddrSpace,
+ false);
+ return None;
+}
+
+SIAtomicAddrSpace SIMemOpAccess::toSIAtomicAddrSpace(unsigned AS) const {
+ if (AS == AMDGPUAS::FLAT_ADDRESS)
+ return SIAtomicAddrSpace::FLAT;
+ if (AS == AMDGPUAS::GLOBAL_ADDRESS)
+ return SIAtomicAddrSpace::GLOBAL;
+ if (AS == AMDGPUAS::LOCAL_ADDRESS)
+ return SIAtomicAddrSpace::LDS;
+ if (AS == AMDGPUAS::PRIVATE_ADDRESS)
+ return SIAtomicAddrSpace::SCRATCH;
+ if (AS == AMDGPUAS::REGION_ADDRESS)
+ return SIAtomicAddrSpace::GDS;
+
+ return SIAtomicAddrSpace::OTHER;
+}
+
+SIMemOpAccess::SIMemOpAccess(MachineFunction &MF) {
+ MMI = &MF.getMMI().getObjFileInfo<AMDGPUMachineModuleInfo>();
+}
+
+Optional<SIMemOpInfo> SIMemOpAccess::constructFromMIWithMMO(
+ const MachineBasicBlock::iterator &MI) const {
+ assert(MI->getNumMemOperands() > 0);
+
+ SyncScope::ID SSID = SyncScope::SingleThread;
+ AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
+ AtomicOrdering FailureOrdering = AtomicOrdering::NotAtomic;
+ SIAtomicAddrSpace InstrAddrSpace = SIAtomicAddrSpace::NONE;
+ bool IsNonTemporal = true;
+ bool IsVolatile = false;
+
+ // Validator should check whether or not MMOs cover the entire set of
+ // locations accessed by the memory instruction.
+ for (const auto &MMO : MI->memoperands()) {
+ IsNonTemporal &= MMO->isNonTemporal();
+ IsVolatile |= MMO->isVolatile();
+ InstrAddrSpace |=
+ toSIAtomicAddrSpace(MMO->getPointerInfo().getAddrSpace());
+ AtomicOrdering OpOrdering = MMO->getSuccessOrdering();
+ if (OpOrdering != AtomicOrdering::NotAtomic) {
+ const auto &IsSyncScopeInclusion =
+ MMI->isSyncScopeInclusion(SSID, MMO->getSyncScopeID());
+ if (!IsSyncScopeInclusion) {
+ reportUnsupported(MI,
+ "Unsupported non-inclusive atomic synchronization scope");
+ return None;
+ }
+
+ SSID = IsSyncScopeInclusion.getValue() ? SSID : MMO->getSyncScopeID();
+ Ordering = getMergedAtomicOrdering(Ordering, OpOrdering);
+ assert(MMO->getFailureOrdering() != AtomicOrdering::Release &&
+ MMO->getFailureOrdering() != AtomicOrdering::AcquireRelease);
+ FailureOrdering =
+ getMergedAtomicOrdering(FailureOrdering, MMO->getFailureOrdering());
+ }
+ }
+
+ SIAtomicScope Scope = SIAtomicScope::NONE;
+ SIAtomicAddrSpace OrderingAddrSpace = SIAtomicAddrSpace::NONE;
+ bool IsCrossAddressSpaceOrdering = false;
+ if (Ordering != AtomicOrdering::NotAtomic) {
+ auto ScopeOrNone = toSIAtomicScope(SSID, InstrAddrSpace);
+ if (!ScopeOrNone) {
+ reportUnsupported(MI, "Unsupported atomic synchronization scope");
+ return None;
+ }
+ std::tie(Scope, OrderingAddrSpace, IsCrossAddressSpaceOrdering) =
+ ScopeOrNone.getValue();
+ if ((OrderingAddrSpace == SIAtomicAddrSpace::NONE) ||
+ ((OrderingAddrSpace & SIAtomicAddrSpace::ATOMIC) != OrderingAddrSpace) ||
+ ((InstrAddrSpace & SIAtomicAddrSpace::ATOMIC) == SIAtomicAddrSpace::NONE)) {
+ reportUnsupported(MI, "Unsupported atomic address space");
+ return None;
+ }
+ }
+ return SIMemOpInfo(Ordering, Scope, OrderingAddrSpace, InstrAddrSpace,
+ IsCrossAddressSpaceOrdering, FailureOrdering, IsVolatile,
+ IsNonTemporal);
+}
+
+Optional<SIMemOpInfo> SIMemOpAccess::getLoadInfo(
+ const MachineBasicBlock::iterator &MI) const {
+ assert(MI->getDesc().TSFlags & SIInstrFlags::maybeAtomic);
+
+ if (!(MI->mayLoad() && !MI->mayStore()))
+ return None;
+
+ // Be conservative if there are no memory operands.
+ if (MI->getNumMemOperands() == 0)
+ return SIMemOpInfo();
+
+ return constructFromMIWithMMO(MI);
+}
+
+Optional<SIMemOpInfo> SIMemOpAccess::getStoreInfo(
+ const MachineBasicBlock::iterator &MI) const {
+ assert(MI->getDesc().TSFlags & SIInstrFlags::maybeAtomic);
+
+ if (!(!MI->mayLoad() && MI->mayStore()))
+ return None;
+
+ // Be conservative if there are no memory operands.
+ if (MI->getNumMemOperands() == 0)
+ return SIMemOpInfo();
+
+ return constructFromMIWithMMO(MI);
+}
+
+Optional<SIMemOpInfo> SIMemOpAccess::getAtomicFenceInfo(
+ const MachineBasicBlock::iterator &MI) const {
+ assert(MI->getDesc().TSFlags & SIInstrFlags::maybeAtomic);
+
+ if (MI->getOpcode() != AMDGPU::ATOMIC_FENCE)
+ return None;
+
+ AtomicOrdering Ordering =
+ static_cast<AtomicOrdering>(MI->getOperand(0).getImm());
+
+ SyncScope::ID SSID = static_cast<SyncScope::ID>(MI->getOperand(1).getImm());
+ auto ScopeOrNone = toSIAtomicScope(SSID, SIAtomicAddrSpace::ATOMIC);
+ if (!ScopeOrNone) {
+ reportUnsupported(MI, "Unsupported atomic synchronization scope");
+ return None;
+ }
+
+ SIAtomicScope Scope = SIAtomicScope::NONE;
+ SIAtomicAddrSpace OrderingAddrSpace = SIAtomicAddrSpace::NONE;
+ bool IsCrossAddressSpaceOrdering = false;
+ std::tie(Scope, OrderingAddrSpace, IsCrossAddressSpaceOrdering) =
+ ScopeOrNone.getValue();
+
+ if ((OrderingAddrSpace == SIAtomicAddrSpace::NONE) ||
+ ((OrderingAddrSpace & SIAtomicAddrSpace::ATOMIC) != OrderingAddrSpace)) {
+ reportUnsupported(MI, "Unsupported atomic address space");
+ return None;
+ }
+
+ return SIMemOpInfo(Ordering, Scope, OrderingAddrSpace, SIAtomicAddrSpace::ATOMIC,
+ IsCrossAddressSpaceOrdering, AtomicOrdering::NotAtomic);
+}
+
+Optional<SIMemOpInfo> SIMemOpAccess::getAtomicCmpxchgOrRmwInfo(
+ const MachineBasicBlock::iterator &MI) const {
+ assert(MI->getDesc().TSFlags & SIInstrFlags::maybeAtomic);
+
+ if (!(MI->mayLoad() && MI->mayStore()))
+ return None;
+
+ // Be conservative if there are no memory operands.
+ if (MI->getNumMemOperands() == 0)
+ return SIMemOpInfo();
+
+ return constructFromMIWithMMO(MI);
+}
+
+SICacheControl::SICacheControl(const GCNSubtarget &ST) : ST(ST) {
+ TII = ST.getInstrInfo();
+ IV = getIsaVersion(ST.getCPU());
+ InsertCacheInv = !AmdgcnSkipCacheInvalidations;
+}
+
+bool SICacheControl::enableNamedBit(const MachineBasicBlock::iterator MI,
+ AMDGPU::CPol::CPol Bit) const {
+ MachineOperand *CPol = TII->getNamedOperand(*MI, AMDGPU::OpName::cpol);
+ if (!CPol)
+ return false;
+
+ CPol->setImm(CPol->getImm() | Bit);
+ return true;
+}
+
+/* static */
+std::unique_ptr<SICacheControl> SICacheControl::create(const GCNSubtarget &ST) {
+ GCNSubtarget::Generation Generation = ST.getGeneration();
+ if (ST.hasGFX90AInsts())
+ return std::make_unique<SIGfx90ACacheControl>(ST);
+ if (Generation <= AMDGPUSubtarget::SOUTHERN_ISLANDS)
+ return std::make_unique<SIGfx6CacheControl>(ST);
+ if (Generation < AMDGPUSubtarget::GFX10)
+ return std::make_unique<SIGfx7CacheControl>(ST);
+ return std::make_unique<SIGfx10CacheControl>(ST);
+}
+
+bool SIGfx6CacheControl::enableLoadCacheBypass(
+ const MachineBasicBlock::iterator &MI,
+ SIAtomicScope Scope,
+ SIAtomicAddrSpace AddrSpace) const {
+ assert(MI->mayLoad() && !MI->mayStore());
+ bool Changed = false;
+
+ if ((AddrSpace & SIAtomicAddrSpace::GLOBAL) != SIAtomicAddrSpace::NONE) {
+ switch (Scope) {
+ case SIAtomicScope::SYSTEM:
+ case SIAtomicScope::AGENT:
+ Changed |= enableGLCBit(MI);
+ break;
+ case SIAtomicScope::WORKGROUP:
+ case SIAtomicScope::WAVEFRONT:
+ case SIAtomicScope::SINGLETHREAD:
+ // No cache to bypass.
+ break;
+ default:
+ llvm_unreachable("Unsupported synchronization scope");
+ }
+ }
+
+ /// The scratch address space does not need the global memory caches
+ /// to be bypassed as all memory operations by the same thread are
+ /// sequentially consistent, and no other thread can access scratch
+ /// memory.
+
+ /// Other address spaces do not have a cache.
+
+ return Changed;
+}
+
+bool SIGfx6CacheControl::enableStoreCacheBypass(
+ const MachineBasicBlock::iterator &MI,
+ SIAtomicScope Scope,
+ SIAtomicAddrSpace AddrSpace) const {
+ assert(!MI->mayLoad() && MI->mayStore());
+ bool Changed = false;
+
+ /// The L1 cache is write through so does not need to be bypassed. There is no
+ /// bypass control for the L2 cache at the isa level.
+
+ return Changed;
+}
+
+bool SIGfx6CacheControl::enableRMWCacheBypass(
+ const MachineBasicBlock::iterator &MI,
+ SIAtomicScope Scope,
+ SIAtomicAddrSpace AddrSpace) const {
+ assert(MI->mayLoad() && MI->mayStore());
+ bool Changed = false;
+
+ /// The L1 cache is write through so does not need to be bypassed. There is no
+ /// bypass control for the L2 cache at the isa level.
+
+ return Changed;
+}
+
+bool SIGfx6CacheControl::enableVolatileAndOrNonTemporal(
+ MachineBasicBlock::iterator &MI, SIAtomicAddrSpace AddrSpace, SIMemOp Op,
+ bool IsVolatile, bool IsNonTemporal) const {
+ // Only handle load and store, not atomic read-modify-write insructions. The
+ // latter use glc to indicate if the atomic returns a result and so must not
+ // be used for cache control.
+ assert(MI->mayLoad() ^ MI->mayStore());
+
+ // Only update load and store, not LLVM IR atomic read-modify-write
+ // instructions. The latter are always marked as volatile so cannot sensibly
+ // handle it as do not want to pessimize all atomics. Also they do not support
+ // the nontemporal attribute.
+ assert(Op == SIMemOp::LOAD || Op == SIMemOp::STORE);
+
+ bool Changed = false;
+
+ if (IsVolatile) {
+ if (Op == SIMemOp::LOAD)
+ Changed |= enableGLCBit(MI);
+
+ // Ensure operation has completed at system scope to cause all volatile
+ // operations to be visible outside the program in a global order. Do not
+ // request cross address space as only the global address space can be
+ // observable outside the program, so no need to cause a waitcnt for LDS
+ // address space operations.
+ Changed |= insertWait(MI, SIAtomicScope::SYSTEM, AddrSpace, Op, false,
+ Position::AFTER);
+
+ return Changed;
+ }
+
+ if (IsNonTemporal) {
+ // Request L1 MISS_EVICT and L2 STREAM for load and store instructions.
+ Changed |= enableGLCBit(MI);
+ Changed |= enableSLCBit(MI);
+ return Changed;
+ }
+
+ return Changed;
+}
+
+bool SIGfx6CacheControl::insertWait(MachineBasicBlock::iterator &MI,
+ SIAtomicScope Scope,
+ SIAtomicAddrSpace AddrSpace,
+ SIMemOp Op,
+ bool IsCrossAddrSpaceOrdering,
+ Position Pos) const {
+ bool Changed = false;
+
+ MachineBasicBlock &MBB = *MI->getParent();
+ DebugLoc DL = MI->getDebugLoc();
+
+ if (Pos == Position::AFTER)
+ ++MI;
+
+ bool VMCnt = false;
+ bool LGKMCnt = false;
+
+ if ((AddrSpace & (SIAtomicAddrSpace::GLOBAL | SIAtomicAddrSpace::SCRATCH)) !=
+ SIAtomicAddrSpace::NONE) {
+ switch (Scope) {
+ case SIAtomicScope::SYSTEM:
+ case SIAtomicScope::AGENT:
+ VMCnt |= true;
+ break;
+ case SIAtomicScope::WORKGROUP:
+ case SIAtomicScope::WAVEFRONT:
+ case SIAtomicScope::SINGLETHREAD:
+ // The L1 cache keeps all memory operations in order for
+ // wavefronts in the same work-group.
+ break;
+ default:
+ llvm_unreachable("Unsupported synchronization scope");
+ }
+ }
+
+ if ((AddrSpace & SIAtomicAddrSpace::LDS) != SIAtomicAddrSpace::NONE) {
+ switch (Scope) {
+ case SIAtomicScope::SYSTEM:
+ case SIAtomicScope::AGENT:
+ case SIAtomicScope::WORKGROUP:
+ // If no cross address space ordering then an "S_WAITCNT lgkmcnt(0)" is
+ // not needed as LDS operations for all waves are executed in a total
+ // global ordering as observed by all waves. Required if also
+ // synchronizing with global/GDS memory as LDS operations could be
+ // reordered with respect to later global/GDS memory operations of the
+ // same wave.
+ LGKMCnt |= IsCrossAddrSpaceOrdering;
+ break;
+ case SIAtomicScope::WAVEFRONT:
+ case SIAtomicScope::SINGLETHREAD:
+ // The LDS keeps all memory operations in order for
+ // the same wavesfront.
+ break;
+ default:
+ llvm_unreachable("Unsupported synchronization scope");
+ }
+ }
+
+ if ((AddrSpace & SIAtomicAddrSpace::GDS) != SIAtomicAddrSpace::NONE) {
+ switch (Scope) {
+ case SIAtomicScope::SYSTEM:
+ case SIAtomicScope::AGENT:
+ // If no cross address space ordering then an GDS "S_WAITCNT lgkmcnt(0)"
+ // is not needed as GDS operations for all waves are executed in a total
+ // global ordering as observed by all waves. Required if also
+ // synchronizing with global/LDS memory as GDS operations could be
+ // reordered with respect to later global/LDS memory operations of the
+ // same wave.
+ LGKMCnt |= IsCrossAddrSpaceOrdering;
+ break;
+ case SIAtomicScope::WORKGROUP:
+ case SIAtomicScope::WAVEFRONT:
+ case SIAtomicScope::SINGLETHREAD:
+ // The GDS keeps all memory operations in order for
+ // the same work-group.
+ break;
+ default:
+ llvm_unreachable("Unsupported synchronization scope");
+ }
+ }
+
+ if (VMCnt || LGKMCnt) {
+ unsigned WaitCntImmediate =
+ AMDGPU::encodeWaitcnt(IV,
+ VMCnt ? 0 : getVmcntBitMask(IV),
+ getExpcntBitMask(IV),
+ LGKMCnt ? 0 : getLgkmcntBitMask(IV));
+ BuildMI(MBB, MI, DL, TII->get(AMDGPU::S_WAITCNT)).addImm(WaitCntImmediate);
+ Changed = true;
+ }
+
+ if (Pos == Position::AFTER)
+ --MI;
+
+ return Changed;
+}
+
+bool SIGfx6CacheControl::insertAcquire(MachineBasicBlock::iterator &MI,
+ SIAtomicScope Scope,
+ SIAtomicAddrSpace AddrSpace,
+ Position Pos) const {
+ if (!InsertCacheInv)
+ return false;
+
+ bool Changed = false;
+
+ MachineBasicBlock &MBB = *MI->getParent();
+ DebugLoc DL = MI->getDebugLoc();
+
+ if (Pos == Position::AFTER)
+ ++MI;
+
+ if ((AddrSpace & SIAtomicAddrSpace::GLOBAL) != SIAtomicAddrSpace::NONE) {
+ switch (Scope) {
+ case SIAtomicScope::SYSTEM:
+ case SIAtomicScope::AGENT:
+ BuildMI(MBB, MI, DL, TII->get(AMDGPU::BUFFER_WBINVL1));
+ Changed = true;
+ break;
+ case SIAtomicScope::WORKGROUP:
+ case SIAtomicScope::WAVEFRONT:
+ case SIAtomicScope::SINGLETHREAD:
+ // No cache to invalidate.
+ break;
+ default:
+ llvm_unreachable("Unsupported synchronization scope");
+ }
+ }
+
+ /// The scratch address space does not need the global memory cache
+ /// to be flushed as all memory operations by the same thread are
+ /// sequentially consistent, and no other thread can access scratch
+ /// memory.
+
+ /// Other address spaces do not have a cache.
+
+ if (Pos == Position::AFTER)
+ --MI;
+
+ return Changed;
+}
+
+bool SIGfx6CacheControl::insertRelease(MachineBasicBlock::iterator &MI,
+ SIAtomicScope Scope,
+ SIAtomicAddrSpace AddrSpace,
+ bool IsCrossAddrSpaceOrdering,
+ Position Pos) const {
+ return insertWait(MI, Scope, AddrSpace, SIMemOp::LOAD | SIMemOp::STORE,
+ IsCrossAddrSpaceOrdering, Pos);
+}
+
+bool SIGfx7CacheControl::insertAcquire(MachineBasicBlock::iterator &MI,
+ SIAtomicScope Scope,
+ SIAtomicAddrSpace AddrSpace,
+ Position Pos) const {
+ if (!InsertCacheInv)
+ return false;
+
+ bool Changed = false;
+
+ MachineBasicBlock &MBB = *MI->getParent();
+ DebugLoc DL = MI->getDebugLoc();
+
+ const GCNSubtarget &STM = MBB.getParent()->getSubtarget<GCNSubtarget>();
+
+ const unsigned InvalidateL1 = STM.isAmdPalOS() || STM.isMesa3DOS()
+ ? AMDGPU::BUFFER_WBINVL1
+ : AMDGPU::BUFFER_WBINVL1_VOL;
+
+ if (Pos == Position::AFTER)
+ ++MI;
+
+ if ((AddrSpace & SIAtomicAddrSpace::GLOBAL) != SIAtomicAddrSpace::NONE) {
+ switch (Scope) {
+ case SIAtomicScope::SYSTEM:
+ case SIAtomicScope::AGENT:
+ BuildMI(MBB, MI, DL, TII->get(InvalidateL1));
+ Changed = true;
+ break;
+ case SIAtomicScope::WORKGROUP:
+ case SIAtomicScope::WAVEFRONT:
+ case SIAtomicScope::SINGLETHREAD:
+ // No cache to invalidate.
+ break;
+ default:
+ llvm_unreachable("Unsupported synchronization scope");
+ }
+ }
+
+ /// The scratch address space does not need the global memory cache
+ /// to be flushed as all memory operations by the same thread are
+ /// sequentially consistent, and no other thread can access scratch
+ /// memory.
+
+ /// Other address spaces do not have a cache.
+
+ if (Pos == Position::AFTER)
+ --MI;
+
+ return Changed;
+}
+
+bool SIGfx90ACacheControl::enableLoadCacheBypass(
+ const MachineBasicBlock::iterator &MI,
+ SIAtomicScope Scope,
+ SIAtomicAddrSpace AddrSpace) const {
+ assert(MI->mayLoad() && !MI->mayStore());
+ bool Changed = false;
+
+ if ((AddrSpace & SIAtomicAddrSpace::GLOBAL) != SIAtomicAddrSpace::NONE) {
+ switch (Scope) {
+ case SIAtomicScope::SYSTEM:
+ case SIAtomicScope::AGENT:
+ Changed |= enableGLCBit(MI);
+ break;
+ case SIAtomicScope::WORKGROUP:
+ // In threadgroup split mode the waves of a work-group can be executing on
+ // different CUs. Therefore need to bypass the L1 which is per CU.
+ // Otherwise in non-threadgroup split mode all waves of a work-group are
+ // on the same CU, and so the L1 does not need to be bypassed.
+ if (ST.isTgSplitEnabled())
+ Changed |= enableGLCBit(MI);
+ break;
+ case SIAtomicScope::WAVEFRONT:
+ case SIAtomicScope::SINGLETHREAD:
+ // No cache to bypass.
+ break;
+ default:
+ llvm_unreachable("Unsupported synchronization scope");
+ }
+ }
+
+ /// The scratch address space does not need the global memory caches
+ /// to be bypassed as all memory operations by the same thread are
+ /// sequentially consistent, and no other thread can access scratch
+ /// memory.
+
+ /// Other address spaces do not have a cache.
+
+ return Changed;
+}
+
+bool SIGfx90ACacheControl::enableStoreCacheBypass(
+ const MachineBasicBlock::iterator &MI,
+ SIAtomicScope Scope,
+ SIAtomicAddrSpace AddrSpace) const {
+ assert(!MI->mayLoad() && MI->mayStore());
+ bool Changed = false;
+
+ if ((AddrSpace & SIAtomicAddrSpace::GLOBAL) != SIAtomicAddrSpace::NONE) {
+ switch (Scope) {
+ case SIAtomicScope::SYSTEM:
+ case SIAtomicScope::AGENT:
+ /// Do not set glc for store atomic operations as they implicitly write
+ /// through the L1 cache.
+ break;
+ case SIAtomicScope::WORKGROUP:
+ case SIAtomicScope::WAVEFRONT:
+ case SIAtomicScope::SINGLETHREAD:
+ // No cache to bypass. Store atomics implicitly write through the L1
+ // cache.
+ break;
+ default:
+ llvm_unreachable("Unsupported synchronization scope");
+ }
+ }
+
+ /// The scratch address space does not need the global memory caches
+ /// to be bypassed as all memory operations by the same thread are
+ /// sequentially consistent, and no other thread can access scratch
+ /// memory.
+
+ /// Other address spaces do not have a cache.
+
+ return Changed;
+}
+
+bool SIGfx90ACacheControl::enableRMWCacheBypass(
+ const MachineBasicBlock::iterator &MI,
+ SIAtomicScope Scope,
+ SIAtomicAddrSpace AddrSpace) const {
+ assert(MI->mayLoad() && MI->mayStore());
+ bool Changed = false;
+
+ if ((AddrSpace & SIAtomicAddrSpace::GLOBAL) != SIAtomicAddrSpace::NONE) {
+ switch (Scope) {
+ case SIAtomicScope::SYSTEM:
+ case SIAtomicScope::AGENT:
+ /// Do not set glc for RMW atomic operations as they implicitly bypass
+ /// the L1 cache, and the glc bit is instead used to indicate if they are
+ /// return or no-return.
+ break;
+ case SIAtomicScope::WORKGROUP:
+ case SIAtomicScope::WAVEFRONT:
+ case SIAtomicScope::SINGLETHREAD:
+ // No cache to bypass. RMW atomics implicitly bypass the L1 cache.
+ break;
+ default:
+ llvm_unreachable("Unsupported synchronization scope");
+ }
+ }
+
+ return Changed;
+}
+
+bool SIGfx90ACacheControl::enableVolatileAndOrNonTemporal(
+ MachineBasicBlock::iterator &MI, SIAtomicAddrSpace AddrSpace, SIMemOp Op,
+ bool IsVolatile, bool IsNonTemporal) const {
+ // Only handle load and store, not atomic read-modify-write insructions. The
+ // latter use glc to indicate if the atomic returns a result and so must not
+ // be used for cache control.
+ assert(MI->mayLoad() ^ MI->mayStore());
+
+ // Only update load and store, not LLVM IR atomic read-modify-write
+ // instructions. The latter are always marked as volatile so cannot sensibly
+ // handle it as do not want to pessimize all atomics. Also they do not support
+ // the nontemporal attribute.
+ assert(Op == SIMemOp::LOAD || Op == SIMemOp::STORE);
+
+ bool Changed = false;
+
+ if (IsVolatile) {
+ if (Op == SIMemOp::LOAD)
+ Changed |= enableGLCBit(MI);
+
+ // Ensure operation has completed at system scope to cause all volatile
+ // operations to be visible outside the program in a global order. Do not
+ // request cross address space as only the global address space can be
+ // observable outside the program, so no need to cause a waitcnt for LDS
+ // address space operations.
+ Changed |= insertWait(MI, SIAtomicScope::SYSTEM, AddrSpace, Op, false,
+ Position::AFTER);
+
+ return Changed;
+ }
+
+ if (IsNonTemporal) {
+ // Request L1 MISS_EVICT and L2 STREAM for load and store instructions.
+ Changed |= enableGLCBit(MI);
+ Changed |= enableSLCBit(MI);
+ return Changed;
+ }
+
+ return Changed;
+}
+
+bool SIGfx90ACacheControl::insertWait(MachineBasicBlock::iterator &MI,
+ SIAtomicScope Scope,
+ SIAtomicAddrSpace AddrSpace,
+ SIMemOp Op,
+ bool IsCrossAddrSpaceOrdering,
+ Position Pos) const {
+ if (ST.isTgSplitEnabled()) {
+ // In threadgroup split mode the waves of a work-group can be executing on
+ // different CUs. Therefore need to wait for global or GDS memory operations
+ // to complete to ensure they are visible to waves in the other CUs.
+ // Otherwise in non-threadgroup split mode all waves of a work-group are on
+ // the same CU, so no need to wait for global memory as all waves in the
+ // work-group access the same the L1, nor wait for GDS as access are ordered
+ // on a CU.
+ if (((AddrSpace & (SIAtomicAddrSpace::GLOBAL | SIAtomicAddrSpace::SCRATCH |
+ SIAtomicAddrSpace::GDS)) != SIAtomicAddrSpace::NONE) &&
+ (Scope == SIAtomicScope::WORKGROUP)) {
+ // Same as GFX7 using agent scope.
+ Scope = SIAtomicScope::AGENT;
+ }
+ // In threadgroup split mode LDS cannot be allocated so no need to wait for
+ // LDS memory operations.
+ AddrSpace &= ~SIAtomicAddrSpace::LDS;
+ }
+ return SIGfx7CacheControl::insertWait(MI, Scope, AddrSpace, Op,
+ IsCrossAddrSpaceOrdering, Pos);
+}
+
+bool SIGfx90ACacheControl::insertAcquire(MachineBasicBlock::iterator &MI,
+ SIAtomicScope Scope,
+ SIAtomicAddrSpace AddrSpace,
+ Position Pos) const {
+ if (!InsertCacheInv)
+ return false;
+
+ bool Changed = false;
+
+ MachineBasicBlock &MBB = *MI->getParent();
+ DebugLoc DL = MI->getDebugLoc();
+
+ if (Pos == Position::AFTER)
+ ++MI;
+
+ if ((AddrSpace & SIAtomicAddrSpace::GLOBAL) != SIAtomicAddrSpace::NONE) {
+ switch (Scope) {
+ case SIAtomicScope::SYSTEM:
+ // Ensures that following loads will not see stale remote VMEM data or
+ // stale local VMEM data with MTYPE NC. Local VMEM data with MTYPE RW and
+ // CC will never be stale due to the local memory probes.
+ BuildMI(MBB, MI, DL, TII->get(AMDGPU::BUFFER_INVL2));
+ // Inserting a "S_WAITCNT vmcnt(0)" after is not required because the
+ // hardware does not reorder memory operations by the same wave with
+ // respect to a preceding "BUFFER_INVL2". The invalidate is guaranteed to
+ // remove any cache lines of earlier writes by the same wave and ensures
+ // later reads by the same wave will refetch the cache lines.
+ Changed = true;
+ break;
+ case SIAtomicScope::AGENT:
+ // Same as GFX7.
+ break;
+ case SIAtomicScope::WORKGROUP:
+ // In threadgroup split mode the waves of a work-group can be executing on
+ // different CUs. Therefore need to invalidate the L1 which is per CU.
+ // Otherwise in non-threadgroup split mode all waves of a work-group are
+ // on the same CU, and so the L1 does not need to be invalidated.
+ if (ST.isTgSplitEnabled()) {
+ // Same as GFX7 using agent scope.
+ Scope = SIAtomicScope::AGENT;
+ }
+ break;
+ case SIAtomicScope::WAVEFRONT:
+ case SIAtomicScope::SINGLETHREAD:
+ // Same as GFX7.
+ break;
+ default:
+ llvm_unreachable("Unsupported synchronization scope");
+ }
+ }
+
+ /// The scratch address space does not need the global memory cache
+ /// to be flushed as all memory operations by the same thread are
+ /// sequentially consistent, and no other thread can access scratch
+ /// memory.
+
+ /// Other address spaces do not have a cache.
+
+ if (Pos == Position::AFTER)
+ --MI;
+
+ Changed |= SIGfx7CacheControl::insertAcquire(MI, Scope, AddrSpace, Pos);
+
+ return Changed;
+}
+
+bool SIGfx90ACacheControl::insertRelease(MachineBasicBlock::iterator &MI,
+ SIAtomicScope Scope,
+ SIAtomicAddrSpace AddrSpace,
+ bool IsCrossAddrSpaceOrdering,
+ Position Pos) const {
+ bool Changed = false;
+
+ MachineBasicBlock &MBB = *MI->getParent();
+ DebugLoc DL = MI->getDebugLoc();
+
+ if (Pos == Position::AFTER)
+ ++MI;
+
+ if ((AddrSpace & SIAtomicAddrSpace::GLOBAL) != SIAtomicAddrSpace::NONE) {
+ switch (Scope) {
+ case SIAtomicScope::SYSTEM:
+ // Inserting a "S_WAITCNT vmcnt(0)" before is not required because the
+ // hardware does not reorder memory operations by the same wave with
+ // respect to a following "BUFFER_WBL2". The "BUFFER_WBL2" is guaranteed
+ // to initiate writeback of any dirty cache lines of earlier writes by the
+ // same wave. A "S_WAITCNT vmcnt(0)" is needed after to ensure the
+ // writeback has completed.
+ BuildMI(MBB, MI, DL, TII->get(AMDGPU::BUFFER_WBL2));
+ // Followed by same as GFX7, which will ensure the necessary "S_WAITCNT
+ // vmcnt(0)" needed by the "BUFFER_WBL2".
+ Changed = true;
+ break;
+ case SIAtomicScope::AGENT:
+ case SIAtomicScope::WORKGROUP:
+ case SIAtomicScope::WAVEFRONT:
+ case SIAtomicScope::SINGLETHREAD:
+ // Same as GFX7.
+ break;
+ default:
+ llvm_unreachable("Unsupported synchronization scope");
+ }
+ }
+
+ if (Pos == Position::AFTER)
+ --MI;
+
+ Changed |=
+ SIGfx7CacheControl::insertRelease(MI, Scope, AddrSpace,
+ IsCrossAddrSpaceOrdering, Pos);
+
+ return Changed;
+}
+
+bool SIGfx10CacheControl::enableLoadCacheBypass(
+ const MachineBasicBlock::iterator &MI,
+ SIAtomicScope Scope,
+ SIAtomicAddrSpace AddrSpace) const {
+ assert(MI->mayLoad() && !MI->mayStore());
+ bool Changed = false;
+
+ if ((AddrSpace & SIAtomicAddrSpace::GLOBAL) != SIAtomicAddrSpace::NONE) {
+ /// TODO Do not set glc for rmw atomic operations as they
+ /// implicitly bypass the L0/L1 caches.
+
+ switch (Scope) {
+ case SIAtomicScope::SYSTEM:
+ case SIAtomicScope::AGENT:
+ Changed |= enableGLCBit(MI);
+ Changed |= enableDLCBit(MI);
+ break;
+ case SIAtomicScope::WORKGROUP:
+ // In WGP mode the waves of a work-group can be executing on either CU of
+ // the WGP. Therefore need to bypass the L0 which is per CU. Otherwise in
+ // CU mode all waves of a work-group are on the same CU, and so the L0
+ // does not need to be bypassed.
+ if (!ST.isCuModeEnabled())
+ Changed |= enableGLCBit(MI);
+ break;
+ case SIAtomicScope::WAVEFRONT:
+ case SIAtomicScope::SINGLETHREAD:
+ // No cache to bypass.
+ break;
+ default:
+ llvm_unreachable("Unsupported synchronization scope");
+ }
+ }
+
+ /// The scratch address space does not need the global memory caches
+ /// to be bypassed as all memory operations by the same thread are
+ /// sequentially consistent, and no other thread can access scratch
+ /// memory.
+
+ /// Other address spaces do not have a cache.
+
+ return Changed;
+}
+
+bool SIGfx10CacheControl::enableVolatileAndOrNonTemporal(
+ MachineBasicBlock::iterator &MI, SIAtomicAddrSpace AddrSpace, SIMemOp Op,
+ bool IsVolatile, bool IsNonTemporal) const {
+
+ // Only handle load and store, not atomic read-modify-write insructions. The
+ // latter use glc to indicate if the atomic returns a result and so must not
+ // be used for cache control.
+ assert(MI->mayLoad() ^ MI->mayStore());
+
+ // Only update load and store, not LLVM IR atomic read-modify-write
+ // instructions. The latter are always marked as volatile so cannot sensibly
+ // handle it as do not want to pessimize all atomics. Also they do not support
+ // the nontemporal attribute.
+ assert(Op == SIMemOp::LOAD || Op == SIMemOp::STORE);
+
+ bool Changed = false;
+
+ if (IsVolatile) {
+ if (Op == SIMemOp::LOAD) {
+ Changed |= enableGLCBit(MI);
+ Changed |= enableDLCBit(MI);
+ }
+
+ // Ensure operation has completed at system scope to cause all volatile
+ // operations to be visible outside the program in a global order. Do not
+ // request cross address space as only the global address space can be
+ // observable outside the program, so no need to cause a waitcnt for LDS
+ // address space operations.
+ Changed |= insertWait(MI, SIAtomicScope::SYSTEM, AddrSpace, Op, false,
+ Position::AFTER);
+ return Changed;
+ }
+
+ if (IsNonTemporal) {
+ // Request L0/L1 HIT_EVICT and L2 STREAM for load and store instructions.
+ Changed |= enableSLCBit(MI);
+ return Changed;
+ }
+
+ return Changed;
+}
+
+bool SIGfx10CacheControl::insertWait(MachineBasicBlock::iterator &MI,
+ SIAtomicScope Scope,
+ SIAtomicAddrSpace AddrSpace,
+ SIMemOp Op,
+ bool IsCrossAddrSpaceOrdering,
+ Position Pos) const {
+ bool Changed = false;
+
+ MachineBasicBlock &MBB = *MI->getParent();
+ DebugLoc DL = MI->getDebugLoc();
+
+ if (Pos == Position::AFTER)
+ ++MI;
+
+ bool VMCnt = false;
+ bool VSCnt = false;
+ bool LGKMCnt = false;
+
+ if ((AddrSpace & (SIAtomicAddrSpace::GLOBAL | SIAtomicAddrSpace::SCRATCH)) !=
+ SIAtomicAddrSpace::NONE) {
+ switch (Scope) {
+ case SIAtomicScope::SYSTEM:
+ case SIAtomicScope::AGENT:
+ if ((Op & SIMemOp::LOAD) != SIMemOp::NONE)
+ VMCnt |= true;
+ if ((Op & SIMemOp::STORE) != SIMemOp::NONE)
+ VSCnt |= true;
+ break;
+ case SIAtomicScope::WORKGROUP:
+ // In WGP mode the waves of a work-group can be executing on either CU of
+ // the WGP. Therefore need to wait for operations to complete to ensure
+ // they are visible to waves in the other CU as the L0 is per CU.
+ // Otherwise in CU mode and all waves of a work-group are on the same CU
+ // which shares the same L0.
+ if (!ST.isCuModeEnabled()) {
+ if ((Op & SIMemOp::LOAD) != SIMemOp::NONE)
+ VMCnt |= true;
+ if ((Op & SIMemOp::STORE) != SIMemOp::NONE)
+ VSCnt |= true;
+ }
+ break;
+ case SIAtomicScope::WAVEFRONT:
+ case SIAtomicScope::SINGLETHREAD:
+ // The L0 cache keeps all memory operations in order for
+ // work-items in the same wavefront.
+ break;
+ default:
+ llvm_unreachable("Unsupported synchronization scope");
+ }
+ }
+
+ if ((AddrSpace & SIAtomicAddrSpace::LDS) != SIAtomicAddrSpace::NONE) {
+ switch (Scope) {
+ case SIAtomicScope::SYSTEM:
+ case SIAtomicScope::AGENT:
+ case SIAtomicScope::WORKGROUP:
+ // If no cross address space ordering then an "S_WAITCNT lgkmcnt(0)" is
+ // not needed as LDS operations for all waves are executed in a total
+ // global ordering as observed by all waves. Required if also
+ // synchronizing with global/GDS memory as LDS operations could be
+ // reordered with respect to later global/GDS memory operations of the
+ // same wave.
+ LGKMCnt |= IsCrossAddrSpaceOrdering;
+ break;
+ case SIAtomicScope::WAVEFRONT:
+ case SIAtomicScope::SINGLETHREAD:
+ // The LDS keeps all memory operations in order for
+ // the same wavesfront.
+ break;
+ default:
+ llvm_unreachable("Unsupported synchronization scope");
+ }
+ }
+
+ if ((AddrSpace & SIAtomicAddrSpace::GDS) != SIAtomicAddrSpace::NONE) {
+ switch (Scope) {
+ case SIAtomicScope::SYSTEM:
+ case SIAtomicScope::AGENT:
+ // If no cross address space ordering then an GDS "S_WAITCNT lgkmcnt(0)"
+ // is not needed as GDS operations for all waves are executed in a total
+ // global ordering as observed by all waves. Required if also
+ // synchronizing with global/LDS memory as GDS operations could be
+ // reordered with respect to later global/LDS memory operations of the
+ // same wave.
+ LGKMCnt |= IsCrossAddrSpaceOrdering;
+ break;
+ case SIAtomicScope::WORKGROUP:
+ case SIAtomicScope::WAVEFRONT:
+ case SIAtomicScope::SINGLETHREAD:
+ // The GDS keeps all memory operations in order for
+ // the same work-group.
+ break;
+ default:
+ llvm_unreachable("Unsupported synchronization scope");
+ }
+ }
+
+ if (VMCnt || LGKMCnt) {
+ unsigned WaitCntImmediate =
+ AMDGPU::encodeWaitcnt(IV,
+ VMCnt ? 0 : getVmcntBitMask(IV),
+ getExpcntBitMask(IV),
+ LGKMCnt ? 0 : getLgkmcntBitMask(IV));
+ BuildMI(MBB, MI, DL, TII->get(AMDGPU::S_WAITCNT)).addImm(WaitCntImmediate);
+ Changed = true;
+ }
+
+ if (VSCnt) {
+ BuildMI(MBB, MI, DL, TII->get(AMDGPU::S_WAITCNT_VSCNT))
+ .addReg(AMDGPU::SGPR_NULL, RegState::Undef)
+ .addImm(0);
+ Changed = true;
+ }
+
+ if (Pos == Position::AFTER)
+ --MI;
+
+ return Changed;
+}
+
+bool SIGfx10CacheControl::insertAcquire(MachineBasicBlock::iterator &MI,
+ SIAtomicScope Scope,
+ SIAtomicAddrSpace AddrSpace,
+ Position Pos) const {
+ if (!InsertCacheInv)
+ return false;
+
+ bool Changed = false;
+
+ MachineBasicBlock &MBB = *MI->getParent();
+ DebugLoc DL = MI->getDebugLoc();
+
+ if (Pos == Position::AFTER)
+ ++MI;
+
+ if ((AddrSpace & SIAtomicAddrSpace::GLOBAL) != SIAtomicAddrSpace::NONE) {
+ switch (Scope) {
+ case SIAtomicScope::SYSTEM:
+ case SIAtomicScope::AGENT:
+ BuildMI(MBB, MI, DL, TII->get(AMDGPU::BUFFER_GL0_INV));
+ BuildMI(MBB, MI, DL, TII->get(AMDGPU::BUFFER_GL1_INV));
+ Changed = true;
+ break;
+ case SIAtomicScope::WORKGROUP:
+ // In WGP mode the waves of a work-group can be executing on either CU of
+ // the WGP. Therefore need to invalidate the L0 which is per CU. Otherwise
+ // in CU mode and all waves of a work-group are on the same CU, and so the
+ // L0 does not need to be invalidated.
+ if (!ST.isCuModeEnabled()) {
+ BuildMI(MBB, MI, DL, TII->get(AMDGPU::BUFFER_GL0_INV));
+ Changed = true;
+ }
+ break;
+ case SIAtomicScope::WAVEFRONT:
+ case SIAtomicScope::SINGLETHREAD:
+ // No cache to invalidate.
+ break;
+ default:
+ llvm_unreachable("Unsupported synchronization scope");
+ }
+ }
+
+ /// The scratch address space does not need the global memory cache
+ /// to be flushed as all memory operations by the same thread are
+ /// sequentially consistent, and no other thread can access scratch
+ /// memory.
+
+ /// Other address spaces do not have a cache.
+
+ if (Pos == Position::AFTER)
+ --MI;
+
+ return Changed;
+}
+
+bool SIMemoryLegalizer::removeAtomicPseudoMIs() {
+ if (AtomicPseudoMIs.empty())
+ return false;
+
+ for (auto &MI : AtomicPseudoMIs)
+ MI->eraseFromParent();
+
+ AtomicPseudoMIs.clear();
+ return true;
+}
+
+bool SIMemoryLegalizer::expandLoad(const SIMemOpInfo &MOI,
+ MachineBasicBlock::iterator &MI) {
+ assert(MI->mayLoad() && !MI->mayStore());
+
+ bool Changed = false;
+
+ if (MOI.isAtomic()) {
+ if (MOI.getOrdering() == AtomicOrdering::Monotonic ||
+ MOI.getOrdering() == AtomicOrdering::Acquire ||
+ MOI.getOrdering() == AtomicOrdering::SequentiallyConsistent) {
+ Changed |= CC->enableLoadCacheBypass(MI, MOI.getScope(),
+ MOI.getOrderingAddrSpace());
+ }
+
+ if (MOI.getOrdering() == AtomicOrdering::SequentiallyConsistent)
+ Changed |= CC->insertWait(MI, MOI.getScope(),
+ MOI.getOrderingAddrSpace(),
+ SIMemOp::LOAD | SIMemOp::STORE,
+ MOI.getIsCrossAddressSpaceOrdering(),
+ Position::BEFORE);
+
+ if (MOI.getOrdering() == AtomicOrdering::Acquire ||
+ MOI.getOrdering() == AtomicOrdering::SequentiallyConsistent) {
+ Changed |= CC->insertWait(MI, MOI.getScope(),
+ MOI.getInstrAddrSpace(),
+ SIMemOp::LOAD,
+ MOI.getIsCrossAddressSpaceOrdering(),
+ Position::AFTER);
+ Changed |= CC->insertAcquire(MI, MOI.getScope(),
+ MOI.getOrderingAddrSpace(),
+ Position::AFTER);
+ }
+
+ return Changed;
+ }
+
+ // Atomic instructions already bypass caches to the scope specified by the
+ // SyncScope operand. Only non-atomic volatile and nontemporal instructions
+ // need additional treatment.
+ Changed |= CC->enableVolatileAndOrNonTemporal(MI, MOI.getInstrAddrSpace(),
+ SIMemOp::LOAD, MOI.isVolatile(),
+ MOI.isNonTemporal());
+ return Changed;
+}
+
+bool SIMemoryLegalizer::expandStore(const SIMemOpInfo &MOI,
+ MachineBasicBlock::iterator &MI) {
+ assert(!MI->mayLoad() && MI->mayStore());
+
+ bool Changed = false;
+
+ if (MOI.isAtomic()) {
+ if (MOI.getOrdering() == AtomicOrdering::Monotonic ||
+ MOI.getOrdering() == AtomicOrdering::Release ||
+ MOI.getOrdering() == AtomicOrdering::SequentiallyConsistent) {
+ Changed |= CC->enableStoreCacheBypass(MI, MOI.getScope(),
+ MOI.getOrderingAddrSpace());
+ }
+
+ if (MOI.getOrdering() == AtomicOrdering::Release ||
+ MOI.getOrdering() == AtomicOrdering::SequentiallyConsistent)
+ Changed |= CC->insertRelease(MI, MOI.getScope(),
+ MOI.getOrderingAddrSpace(),
+ MOI.getIsCrossAddressSpaceOrdering(),
+ Position::BEFORE);
+
+ return Changed;
+ }
+
+ // Atomic instructions already bypass caches to the scope specified by the
+ // SyncScope operand. Only non-atomic volatile and nontemporal instructions
+ // need additional treatment.
+ Changed |= CC->enableVolatileAndOrNonTemporal(
+ MI, MOI.getInstrAddrSpace(), SIMemOp::STORE, MOI.isVolatile(),
+ MOI.isNonTemporal());
+ return Changed;
+}
+
+bool SIMemoryLegalizer::expandAtomicFence(const SIMemOpInfo &MOI,
+ MachineBasicBlock::iterator &MI) {
+ assert(MI->getOpcode() == AMDGPU::ATOMIC_FENCE);
+
+ AtomicPseudoMIs.push_back(MI);
+ bool Changed = false;
+
+ if (MOI.isAtomic()) {
+ if (MOI.getOrdering() == AtomicOrdering::Acquire ||
+ MOI.getOrdering() == AtomicOrdering::Release ||
+ MOI.getOrdering() == AtomicOrdering::AcquireRelease ||
+ MOI.getOrdering() == AtomicOrdering::SequentiallyConsistent)
+ /// TODO: This relies on a barrier always generating a waitcnt
+ /// for LDS to ensure it is not reordered with the completion of
+ /// the proceeding LDS operations. If barrier had a memory
+ /// ordering and memory scope, then library does not need to
+ /// generate a fence. Could add support in this file for
+ /// barrier. SIInsertWaitcnt.cpp could then stop unconditionally
+ /// adding S_WAITCNT before a S_BARRIER.
+ Changed |= CC->insertRelease(MI, MOI.getScope(),
+ MOI.getOrderingAddrSpace(),
+ MOI.getIsCrossAddressSpaceOrdering(),
+ Position::BEFORE);
+
+ // TODO: If both release and invalidate are happening they could be combined
+ // to use the single "BUFFER_WBINV*" instruction. This could be done by
+ // reorganizing this code or as part of optimizing SIInsertWaitcnt pass to
+ // track cache invalidate and write back instructions.
+
+ if (MOI.getOrdering() == AtomicOrdering::Acquire ||
+ MOI.getOrdering() == AtomicOrdering::AcquireRelease ||
+ MOI.getOrdering() == AtomicOrdering::SequentiallyConsistent)
+ Changed |= CC->insertAcquire(MI, MOI.getScope(),
+ MOI.getOrderingAddrSpace(),
+ Position::BEFORE);
+
+ return Changed;
+ }
+
+ return Changed;
+}
+
+bool SIMemoryLegalizer::expandAtomicCmpxchgOrRmw(const SIMemOpInfo &MOI,
+ MachineBasicBlock::iterator &MI) {
+ assert(MI->mayLoad() && MI->mayStore());
+
+ bool Changed = false;
+
+ if (MOI.isAtomic()) {
+ if (MOI.getOrdering() == AtomicOrdering::Monotonic ||
+ MOI.getOrdering() == AtomicOrdering::Acquire ||
+ MOI.getOrdering() == AtomicOrdering::Release ||
+ MOI.getOrdering() == AtomicOrdering::AcquireRelease ||
+ MOI.getOrdering() == AtomicOrdering::SequentiallyConsistent) {
+ Changed |= CC->enableRMWCacheBypass(MI, MOI.getScope(),
+ MOI.getInstrAddrSpace());
+ }
+
+ if (MOI.getOrdering() == AtomicOrdering::Release ||
+ MOI.getOrdering() == AtomicOrdering::AcquireRelease ||
+ MOI.getOrdering() == AtomicOrdering::SequentiallyConsistent ||
+ MOI.getFailureOrdering() == AtomicOrdering::SequentiallyConsistent)
+ Changed |= CC->insertRelease(MI, MOI.getScope(),
+ MOI.getOrderingAddrSpace(),
+ MOI.getIsCrossAddressSpaceOrdering(),
+ Position::BEFORE);
+
+ if (MOI.getOrdering() == AtomicOrdering::Acquire ||
+ MOI.getOrdering() == AtomicOrdering::AcquireRelease ||
+ MOI.getOrdering() == AtomicOrdering::SequentiallyConsistent ||
+ MOI.getFailureOrdering() == AtomicOrdering::Acquire ||
+ MOI.getFailureOrdering() == AtomicOrdering::SequentiallyConsistent) {
+ Changed |= CC->insertWait(MI, MOI.getScope(),
+ MOI.getInstrAddrSpace(),
+ isAtomicRet(*MI) ? SIMemOp::LOAD :
+ SIMemOp::STORE,
+ MOI.getIsCrossAddressSpaceOrdering(),
+ Position::AFTER);
+ Changed |= CC->insertAcquire(MI, MOI.getScope(),
+ MOI.getOrderingAddrSpace(),
+ Position::AFTER);
+ }
+
+ return Changed;
+ }
+
+ return Changed;
+}
+
+bool SIMemoryLegalizer::runOnMachineFunction(MachineFunction &MF) {
+ bool Changed = false;
+
+ SIMemOpAccess MOA(MF);
+ CC = SICacheControl::create(MF.getSubtarget<GCNSubtarget>());
+
+ for (auto &MBB : MF) {
+ for (auto MI = MBB.begin(); MI != MBB.end(); ++MI) {
+
+ // Unbundle instructions after the post-RA scheduler.
+ if (MI->isBundle() && MI->mayLoadOrStore()) {
+ MachineBasicBlock::instr_iterator II(MI->getIterator());
+ for (MachineBasicBlock::instr_iterator I = ++II, E = MBB.instr_end();
+ I != E && I->isBundledWithPred(); ++I) {
+ I->unbundleFromPred();
+ for (MachineOperand &MO : I->operands())
+ if (MO.isReg())
+ MO.setIsInternalRead(false);
+ }
+
+ MI->eraseFromParent();
+ MI = II->getIterator();
+ }
+
+ if (!(MI->getDesc().TSFlags & SIInstrFlags::maybeAtomic))
+ continue;
+
+ if (const auto &MOI = MOA.getLoadInfo(MI))
+ Changed |= expandLoad(MOI.getValue(), MI);
+ else if (const auto &MOI = MOA.getStoreInfo(MI))
+ Changed |= expandStore(MOI.getValue(), MI);
+ else if (const auto &MOI = MOA.getAtomicFenceInfo(MI))
+ Changed |= expandAtomicFence(MOI.getValue(), MI);
+ else if (const auto &MOI = MOA.getAtomicCmpxchgOrRmwInfo(MI))
+ Changed |= expandAtomicCmpxchgOrRmw(MOI.getValue(), MI);
+ }
+ }
+
+ Changed |= removeAtomicPseudoMIs();
+ return Changed;
+}
+
+INITIALIZE_PASS(SIMemoryLegalizer, DEBUG_TYPE, PASS_NAME, false, false)
+
+char SIMemoryLegalizer::ID = 0;
+char &llvm::SIMemoryLegalizerID = SIMemoryLegalizer::ID;
+
+FunctionPass *llvm::createSIMemoryLegalizerPass() {
+ return new SIMemoryLegalizer();
+}