aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm-project/llvm/lib/Target/AMDGPU/Utils/AMDGPUBaseInfo.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm-project/llvm/lib/Target/AMDGPU/Utils/AMDGPUBaseInfo.cpp')
-rw-r--r--contrib/llvm-project/llvm/lib/Target/AMDGPU/Utils/AMDGPUBaseInfo.cpp2043
1 files changed, 2043 insertions, 0 deletions
diff --git a/contrib/llvm-project/llvm/lib/Target/AMDGPU/Utils/AMDGPUBaseInfo.cpp b/contrib/llvm-project/llvm/lib/Target/AMDGPU/Utils/AMDGPUBaseInfo.cpp
new file mode 100644
index 000000000000..9da7b9f5145d
--- /dev/null
+++ b/contrib/llvm-project/llvm/lib/Target/AMDGPU/Utils/AMDGPUBaseInfo.cpp
@@ -0,0 +1,2043 @@
+//===- AMDGPUBaseInfo.cpp - AMDGPU Base encoding information --------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+
+#include "AMDGPUBaseInfo.h"
+#include "AMDGPU.h"
+#include "AMDGPUAsmUtils.h"
+#include "AMDKernelCodeT.h"
+#include "GCNSubtarget.h"
+#include "MCTargetDesc/AMDGPUMCTargetDesc.h"
+#include "llvm/BinaryFormat/ELF.h"
+#include "llvm/IR/Attributes.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/GlobalValue.h"
+#include "llvm/IR/IntrinsicsAMDGPU.h"
+#include "llvm/IR/IntrinsicsR600.h"
+#include "llvm/IR/LLVMContext.h"
+#include "llvm/MC/MCSubtargetInfo.h"
+#include "llvm/Support/AMDHSAKernelDescriptor.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/TargetParser.h"
+
+#define GET_INSTRINFO_NAMED_OPS
+#define GET_INSTRMAP_INFO
+#include "AMDGPUGenInstrInfo.inc"
+
+static llvm::cl::opt<unsigned> AmdhsaCodeObjectVersion(
+ "amdhsa-code-object-version", llvm::cl::Hidden,
+ llvm::cl::desc("AMDHSA Code Object Version"), llvm::cl::init(4),
+ llvm::cl::ZeroOrMore);
+
+namespace {
+
+/// \returns Bit mask for given bit \p Shift and bit \p Width.
+unsigned getBitMask(unsigned Shift, unsigned Width) {
+ return ((1 << Width) - 1) << Shift;
+}
+
+/// Packs \p Src into \p Dst for given bit \p Shift and bit \p Width.
+///
+/// \returns Packed \p Dst.
+unsigned packBits(unsigned Src, unsigned Dst, unsigned Shift, unsigned Width) {
+ Dst &= ~(1 << Shift) & ~getBitMask(Shift, Width);
+ Dst |= (Src << Shift) & getBitMask(Shift, Width);
+ return Dst;
+}
+
+/// Unpacks bits from \p Src for given bit \p Shift and bit \p Width.
+///
+/// \returns Unpacked bits.
+unsigned unpackBits(unsigned Src, unsigned Shift, unsigned Width) {
+ return (Src & getBitMask(Shift, Width)) >> Shift;
+}
+
+/// \returns Vmcnt bit shift (lower bits).
+unsigned getVmcntBitShiftLo() { return 0; }
+
+/// \returns Vmcnt bit width (lower bits).
+unsigned getVmcntBitWidthLo() { return 4; }
+
+/// \returns Expcnt bit shift.
+unsigned getExpcntBitShift() { return 4; }
+
+/// \returns Expcnt bit width.
+unsigned getExpcntBitWidth() { return 3; }
+
+/// \returns Lgkmcnt bit shift.
+unsigned getLgkmcntBitShift() { return 8; }
+
+/// \returns Lgkmcnt bit width.
+unsigned getLgkmcntBitWidth(unsigned VersionMajor) {
+ return (VersionMajor >= 10) ? 6 : 4;
+}
+
+/// \returns Vmcnt bit shift (higher bits).
+unsigned getVmcntBitShiftHi() { return 14; }
+
+/// \returns Vmcnt bit width (higher bits).
+unsigned getVmcntBitWidthHi() { return 2; }
+
+} // end namespace anonymous
+
+namespace llvm {
+
+namespace AMDGPU {
+
+Optional<uint8_t> getHsaAbiVersion(const MCSubtargetInfo *STI) {
+ if (STI && STI->getTargetTriple().getOS() != Triple::AMDHSA)
+ return None;
+
+ switch (AmdhsaCodeObjectVersion) {
+ case 2:
+ return ELF::ELFABIVERSION_AMDGPU_HSA_V2;
+ case 3:
+ return ELF::ELFABIVERSION_AMDGPU_HSA_V3;
+ case 4:
+ return ELF::ELFABIVERSION_AMDGPU_HSA_V4;
+ default:
+ report_fatal_error(Twine("Unsupported AMDHSA Code Object Version ") +
+ Twine(AmdhsaCodeObjectVersion));
+ }
+}
+
+bool isHsaAbiVersion2(const MCSubtargetInfo *STI) {
+ if (Optional<uint8_t> HsaAbiVer = getHsaAbiVersion(STI))
+ return *HsaAbiVer == ELF::ELFABIVERSION_AMDGPU_HSA_V2;
+ return false;
+}
+
+bool isHsaAbiVersion3(const MCSubtargetInfo *STI) {
+ if (Optional<uint8_t> HsaAbiVer = getHsaAbiVersion(STI))
+ return *HsaAbiVer == ELF::ELFABIVERSION_AMDGPU_HSA_V3;
+ return false;
+}
+
+bool isHsaAbiVersion4(const MCSubtargetInfo *STI) {
+ if (Optional<uint8_t> HsaAbiVer = getHsaAbiVersion(STI))
+ return *HsaAbiVer == ELF::ELFABIVERSION_AMDGPU_HSA_V4;
+ return false;
+}
+
+bool isHsaAbiVersion3Or4(const MCSubtargetInfo *STI) {
+ return isHsaAbiVersion3(STI) || isHsaAbiVersion4(STI);
+}
+
+#define GET_MIMGBaseOpcodesTable_IMPL
+#define GET_MIMGDimInfoTable_IMPL
+#define GET_MIMGInfoTable_IMPL
+#define GET_MIMGLZMappingTable_IMPL
+#define GET_MIMGMIPMappingTable_IMPL
+#define GET_MIMGG16MappingTable_IMPL
+#include "AMDGPUGenSearchableTables.inc"
+
+int getMIMGOpcode(unsigned BaseOpcode, unsigned MIMGEncoding,
+ unsigned VDataDwords, unsigned VAddrDwords) {
+ const MIMGInfo *Info = getMIMGOpcodeHelper(BaseOpcode, MIMGEncoding,
+ VDataDwords, VAddrDwords);
+ return Info ? Info->Opcode : -1;
+}
+
+const MIMGBaseOpcodeInfo *getMIMGBaseOpcode(unsigned Opc) {
+ const MIMGInfo *Info = getMIMGInfo(Opc);
+ return Info ? getMIMGBaseOpcodeInfo(Info->BaseOpcode) : nullptr;
+}
+
+int getMaskedMIMGOp(unsigned Opc, unsigned NewChannels) {
+ const MIMGInfo *OrigInfo = getMIMGInfo(Opc);
+ const MIMGInfo *NewInfo =
+ getMIMGOpcodeHelper(OrigInfo->BaseOpcode, OrigInfo->MIMGEncoding,
+ NewChannels, OrigInfo->VAddrDwords);
+ return NewInfo ? NewInfo->Opcode : -1;
+}
+
+unsigned getAddrSizeMIMGOp(const MIMGBaseOpcodeInfo *BaseOpcode,
+ const MIMGDimInfo *Dim, bool IsA16,
+ bool IsG16Supported) {
+ unsigned AddrWords = BaseOpcode->NumExtraArgs;
+ unsigned AddrComponents = (BaseOpcode->Coordinates ? Dim->NumCoords : 0) +
+ (BaseOpcode->LodOrClampOrMip ? 1 : 0);
+ if (IsA16)
+ AddrWords += divideCeil(AddrComponents, 2);
+ else
+ AddrWords += AddrComponents;
+
+ // Note: For subtargets that support A16 but not G16, enabling A16 also
+ // enables 16 bit gradients.
+ // For subtargets that support A16 (operand) and G16 (done with a different
+ // instruction encoding), they are independent.
+
+ if (BaseOpcode->Gradients) {
+ if ((IsA16 && !IsG16Supported) || BaseOpcode->G16)
+ // There are two gradients per coordinate, we pack them separately.
+ // For the 3d case,
+ // we get (dy/du, dx/du) (-, dz/du) (dy/dv, dx/dv) (-, dz/dv)
+ AddrWords += alignTo<2>(Dim->NumGradients / 2);
+ else
+ AddrWords += Dim->NumGradients;
+ }
+ return AddrWords;
+}
+
+struct MUBUFInfo {
+ uint16_t Opcode;
+ uint16_t BaseOpcode;
+ uint8_t elements;
+ bool has_vaddr;
+ bool has_srsrc;
+ bool has_soffset;
+ bool IsBufferInv;
+};
+
+struct MTBUFInfo {
+ uint16_t Opcode;
+ uint16_t BaseOpcode;
+ uint8_t elements;
+ bool has_vaddr;
+ bool has_srsrc;
+ bool has_soffset;
+};
+
+struct SMInfo {
+ uint16_t Opcode;
+ bool IsBuffer;
+};
+
+struct VOPInfo {
+ uint16_t Opcode;
+ bool IsSingle;
+};
+
+#define GET_MTBUFInfoTable_DECL
+#define GET_MTBUFInfoTable_IMPL
+#define GET_MUBUFInfoTable_DECL
+#define GET_MUBUFInfoTable_IMPL
+#define GET_SMInfoTable_DECL
+#define GET_SMInfoTable_IMPL
+#define GET_VOP1InfoTable_DECL
+#define GET_VOP1InfoTable_IMPL
+#define GET_VOP2InfoTable_DECL
+#define GET_VOP2InfoTable_IMPL
+#define GET_VOP3InfoTable_DECL
+#define GET_VOP3InfoTable_IMPL
+#include "AMDGPUGenSearchableTables.inc"
+
+int getMTBUFBaseOpcode(unsigned Opc) {
+ const MTBUFInfo *Info = getMTBUFInfoFromOpcode(Opc);
+ return Info ? Info->BaseOpcode : -1;
+}
+
+int getMTBUFOpcode(unsigned BaseOpc, unsigned Elements) {
+ const MTBUFInfo *Info = getMTBUFInfoFromBaseOpcodeAndElements(BaseOpc, Elements);
+ return Info ? Info->Opcode : -1;
+}
+
+int getMTBUFElements(unsigned Opc) {
+ const MTBUFInfo *Info = getMTBUFOpcodeHelper(Opc);
+ return Info ? Info->elements : 0;
+}
+
+bool getMTBUFHasVAddr(unsigned Opc) {
+ const MTBUFInfo *Info = getMTBUFOpcodeHelper(Opc);
+ return Info ? Info->has_vaddr : false;
+}
+
+bool getMTBUFHasSrsrc(unsigned Opc) {
+ const MTBUFInfo *Info = getMTBUFOpcodeHelper(Opc);
+ return Info ? Info->has_srsrc : false;
+}
+
+bool getMTBUFHasSoffset(unsigned Opc) {
+ const MTBUFInfo *Info = getMTBUFOpcodeHelper(Opc);
+ return Info ? Info->has_soffset : false;
+}
+
+int getMUBUFBaseOpcode(unsigned Opc) {
+ const MUBUFInfo *Info = getMUBUFInfoFromOpcode(Opc);
+ return Info ? Info->BaseOpcode : -1;
+}
+
+int getMUBUFOpcode(unsigned BaseOpc, unsigned Elements) {
+ const MUBUFInfo *Info = getMUBUFInfoFromBaseOpcodeAndElements(BaseOpc, Elements);
+ return Info ? Info->Opcode : -1;
+}
+
+int getMUBUFElements(unsigned Opc) {
+ const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc);
+ return Info ? Info->elements : 0;
+}
+
+bool getMUBUFHasVAddr(unsigned Opc) {
+ const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc);
+ return Info ? Info->has_vaddr : false;
+}
+
+bool getMUBUFHasSrsrc(unsigned Opc) {
+ const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc);
+ return Info ? Info->has_srsrc : false;
+}
+
+bool getMUBUFHasSoffset(unsigned Opc) {
+ const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc);
+ return Info ? Info->has_soffset : false;
+}
+
+bool getMUBUFIsBufferInv(unsigned Opc) {
+ const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc);
+ return Info ? Info->IsBufferInv : false;
+}
+
+bool getSMEMIsBuffer(unsigned Opc) {
+ const SMInfo *Info = getSMEMOpcodeHelper(Opc);
+ return Info ? Info->IsBuffer : false;
+}
+
+bool getVOP1IsSingle(unsigned Opc) {
+ const VOPInfo *Info = getVOP1OpcodeHelper(Opc);
+ return Info ? Info->IsSingle : false;
+}
+
+bool getVOP2IsSingle(unsigned Opc) {
+ const VOPInfo *Info = getVOP2OpcodeHelper(Opc);
+ return Info ? Info->IsSingle : false;
+}
+
+bool getVOP3IsSingle(unsigned Opc) {
+ const VOPInfo *Info = getVOP3OpcodeHelper(Opc);
+ return Info ? Info->IsSingle : false;
+}
+
+// Wrapper for Tablegen'd function. enum Subtarget is not defined in any
+// header files, so we need to wrap it in a function that takes unsigned
+// instead.
+int getMCOpcode(uint16_t Opcode, unsigned Gen) {
+ return getMCOpcodeGen(Opcode, static_cast<Subtarget>(Gen));
+}
+
+namespace IsaInfo {
+
+AMDGPUTargetID::AMDGPUTargetID(const MCSubtargetInfo &STI)
+ : STI(STI), XnackSetting(TargetIDSetting::Any),
+ SramEccSetting(TargetIDSetting::Any) {
+ if (!STI.getFeatureBits().test(FeatureSupportsXNACK))
+ XnackSetting = TargetIDSetting::Unsupported;
+ if (!STI.getFeatureBits().test(FeatureSupportsSRAMECC))
+ SramEccSetting = TargetIDSetting::Unsupported;
+}
+
+void AMDGPUTargetID::setTargetIDFromFeaturesString(StringRef FS) {
+ // Check if xnack or sramecc is explicitly enabled or disabled. In the
+ // absence of the target features we assume we must generate code that can run
+ // in any environment.
+ SubtargetFeatures Features(FS);
+ Optional<bool> XnackRequested;
+ Optional<bool> SramEccRequested;
+
+ for (const std::string &Feature : Features.getFeatures()) {
+ if (Feature == "+xnack")
+ XnackRequested = true;
+ else if (Feature == "-xnack")
+ XnackRequested = false;
+ else if (Feature == "+sramecc")
+ SramEccRequested = true;
+ else if (Feature == "-sramecc")
+ SramEccRequested = false;
+ }
+
+ bool XnackSupported = isXnackSupported();
+ bool SramEccSupported = isSramEccSupported();
+
+ if (XnackRequested) {
+ if (XnackSupported) {
+ XnackSetting =
+ *XnackRequested ? TargetIDSetting::On : TargetIDSetting::Off;
+ } else {
+ // If a specific xnack setting was requested and this GPU does not support
+ // xnack emit a warning. Setting will remain set to "Unsupported".
+ if (*XnackRequested) {
+ errs() << "warning: xnack 'On' was requested for a processor that does "
+ "not support it!\n";
+ } else {
+ errs() << "warning: xnack 'Off' was requested for a processor that "
+ "does not support it!\n";
+ }
+ }
+ }
+
+ if (SramEccRequested) {
+ if (SramEccSupported) {
+ SramEccSetting =
+ *SramEccRequested ? TargetIDSetting::On : TargetIDSetting::Off;
+ } else {
+ // If a specific sramecc setting was requested and this GPU does not
+ // support sramecc emit a warning. Setting will remain set to
+ // "Unsupported".
+ if (*SramEccRequested) {
+ errs() << "warning: sramecc 'On' was requested for a processor that "
+ "does not support it!\n";
+ } else {
+ errs() << "warning: sramecc 'Off' was requested for a processor that "
+ "does not support it!\n";
+ }
+ }
+ }
+}
+
+static TargetIDSetting
+getTargetIDSettingFromFeatureString(StringRef FeatureString) {
+ if (FeatureString.endswith("-"))
+ return TargetIDSetting::Off;
+ if (FeatureString.endswith("+"))
+ return TargetIDSetting::On;
+
+ llvm_unreachable("Malformed feature string");
+}
+
+void AMDGPUTargetID::setTargetIDFromTargetIDStream(StringRef TargetID) {
+ SmallVector<StringRef, 3> TargetIDSplit;
+ TargetID.split(TargetIDSplit, ':');
+
+ for (const auto &FeatureString : TargetIDSplit) {
+ if (FeatureString.startswith("xnack"))
+ XnackSetting = getTargetIDSettingFromFeatureString(FeatureString);
+ if (FeatureString.startswith("sramecc"))
+ SramEccSetting = getTargetIDSettingFromFeatureString(FeatureString);
+ }
+}
+
+std::string AMDGPUTargetID::toString() const {
+ std::string StringRep = "";
+ raw_string_ostream StreamRep(StringRep);
+
+ auto TargetTriple = STI.getTargetTriple();
+ auto Version = getIsaVersion(STI.getCPU());
+
+ StreamRep << TargetTriple.getArchName() << '-'
+ << TargetTriple.getVendorName() << '-'
+ << TargetTriple.getOSName() << '-'
+ << TargetTriple.getEnvironmentName() << '-';
+
+ std::string Processor = "";
+ // TODO: Following else statement is present here because we used various
+ // alias names for GPUs up until GFX9 (e.g. 'fiji' is same as 'gfx803').
+ // Remove once all aliases are removed from GCNProcessors.td.
+ if (Version.Major >= 9)
+ Processor = STI.getCPU().str();
+ else
+ Processor = (Twine("gfx") + Twine(Version.Major) + Twine(Version.Minor) +
+ Twine(Version.Stepping))
+ .str();
+
+ std::string Features = "";
+ if (Optional<uint8_t> HsaAbiVersion = getHsaAbiVersion(&STI)) {
+ switch (*HsaAbiVersion) {
+ case ELF::ELFABIVERSION_AMDGPU_HSA_V2:
+ // Code object V2 only supported specific processors and had fixed
+ // settings for the XNACK.
+ if (Processor == "gfx600") {
+ } else if (Processor == "gfx601") {
+ } else if (Processor == "gfx602") {
+ } else if (Processor == "gfx700") {
+ } else if (Processor == "gfx701") {
+ } else if (Processor == "gfx702") {
+ } else if (Processor == "gfx703") {
+ } else if (Processor == "gfx704") {
+ } else if (Processor == "gfx705") {
+ } else if (Processor == "gfx801") {
+ if (!isXnackOnOrAny())
+ report_fatal_error(
+ "AMD GPU code object V2 does not support processor " +
+ Twine(Processor) + " without XNACK");
+ } else if (Processor == "gfx802") {
+ } else if (Processor == "gfx803") {
+ } else if (Processor == "gfx805") {
+ } else if (Processor == "gfx810") {
+ if (!isXnackOnOrAny())
+ report_fatal_error(
+ "AMD GPU code object V2 does not support processor " +
+ Twine(Processor) + " without XNACK");
+ } else if (Processor == "gfx900") {
+ if (isXnackOnOrAny())
+ Processor = "gfx901";
+ } else if (Processor == "gfx902") {
+ if (isXnackOnOrAny())
+ Processor = "gfx903";
+ } else if (Processor == "gfx904") {
+ if (isXnackOnOrAny())
+ Processor = "gfx905";
+ } else if (Processor == "gfx906") {
+ if (isXnackOnOrAny())
+ Processor = "gfx907";
+ } else if (Processor == "gfx90c") {
+ if (isXnackOnOrAny())
+ report_fatal_error(
+ "AMD GPU code object V2 does not support processor " +
+ Twine(Processor) + " with XNACK being ON or ANY");
+ } else {
+ report_fatal_error(
+ "AMD GPU code object V2 does not support processor " +
+ Twine(Processor));
+ }
+ break;
+ case ELF::ELFABIVERSION_AMDGPU_HSA_V3:
+ // xnack.
+ if (isXnackOnOrAny())
+ Features += "+xnack";
+ // In code object v2 and v3, "sramecc" feature was spelled with a
+ // hyphen ("sram-ecc").
+ if (isSramEccOnOrAny())
+ Features += "+sram-ecc";
+ break;
+ case ELF::ELFABIVERSION_AMDGPU_HSA_V4:
+ // sramecc.
+ if (getSramEccSetting() == TargetIDSetting::Off)
+ Features += ":sramecc-";
+ else if (getSramEccSetting() == TargetIDSetting::On)
+ Features += ":sramecc+";
+ // xnack.
+ if (getXnackSetting() == TargetIDSetting::Off)
+ Features += ":xnack-";
+ else if (getXnackSetting() == TargetIDSetting::On)
+ Features += ":xnack+";
+ break;
+ default:
+ break;
+ }
+ }
+
+ StreamRep << Processor << Features;
+
+ StreamRep.flush();
+ return StringRep;
+}
+
+unsigned getWavefrontSize(const MCSubtargetInfo *STI) {
+ if (STI->getFeatureBits().test(FeatureWavefrontSize16))
+ return 16;
+ if (STI->getFeatureBits().test(FeatureWavefrontSize32))
+ return 32;
+
+ return 64;
+}
+
+unsigned getLocalMemorySize(const MCSubtargetInfo *STI) {
+ if (STI->getFeatureBits().test(FeatureLocalMemorySize32768))
+ return 32768;
+ if (STI->getFeatureBits().test(FeatureLocalMemorySize65536))
+ return 65536;
+
+ return 0;
+}
+
+unsigned getEUsPerCU(const MCSubtargetInfo *STI) {
+ // "Per CU" really means "per whatever functional block the waves of a
+ // workgroup must share". For gfx10 in CU mode this is the CU, which contains
+ // two SIMDs.
+ if (isGFX10Plus(*STI) && STI->getFeatureBits().test(FeatureCuMode))
+ return 2;
+ // Pre-gfx10 a CU contains four SIMDs. For gfx10 in WGP mode the WGP contains
+ // two CUs, so a total of four SIMDs.
+ return 4;
+}
+
+unsigned getMaxWorkGroupsPerCU(const MCSubtargetInfo *STI,
+ unsigned FlatWorkGroupSize) {
+ assert(FlatWorkGroupSize != 0);
+ if (STI->getTargetTriple().getArch() != Triple::amdgcn)
+ return 8;
+ unsigned N = getWavesPerWorkGroup(STI, FlatWorkGroupSize);
+ if (N == 1)
+ return 40;
+ N = 40 / N;
+ return std::min(N, 16u);
+}
+
+unsigned getMinWavesPerEU(const MCSubtargetInfo *STI) {
+ return 1;
+}
+
+unsigned getMaxWavesPerEU(const MCSubtargetInfo *STI) {
+ // FIXME: Need to take scratch memory into account.
+ if (isGFX90A(*STI))
+ return 8;
+ if (!isGFX10Plus(*STI))
+ return 10;
+ return hasGFX10_3Insts(*STI) ? 16 : 20;
+}
+
+unsigned getWavesPerEUForWorkGroup(const MCSubtargetInfo *STI,
+ unsigned FlatWorkGroupSize) {
+ return divideCeil(getWavesPerWorkGroup(STI, FlatWorkGroupSize),
+ getEUsPerCU(STI));
+}
+
+unsigned getMinFlatWorkGroupSize(const MCSubtargetInfo *STI) {
+ return 1;
+}
+
+unsigned getMaxFlatWorkGroupSize(const MCSubtargetInfo *STI) {
+ // Some subtargets allow encoding 2048, but this isn't tested or supported.
+ return 1024;
+}
+
+unsigned getWavesPerWorkGroup(const MCSubtargetInfo *STI,
+ unsigned FlatWorkGroupSize) {
+ return divideCeil(FlatWorkGroupSize, getWavefrontSize(STI));
+}
+
+unsigned getSGPRAllocGranule(const MCSubtargetInfo *STI) {
+ IsaVersion Version = getIsaVersion(STI->getCPU());
+ if (Version.Major >= 10)
+ return getAddressableNumSGPRs(STI);
+ if (Version.Major >= 8)
+ return 16;
+ return 8;
+}
+
+unsigned getSGPREncodingGranule(const MCSubtargetInfo *STI) {
+ return 8;
+}
+
+unsigned getTotalNumSGPRs(const MCSubtargetInfo *STI) {
+ IsaVersion Version = getIsaVersion(STI->getCPU());
+ if (Version.Major >= 8)
+ return 800;
+ return 512;
+}
+
+unsigned getAddressableNumSGPRs(const MCSubtargetInfo *STI) {
+ if (STI->getFeatureBits().test(FeatureSGPRInitBug))
+ return FIXED_NUM_SGPRS_FOR_INIT_BUG;
+
+ IsaVersion Version = getIsaVersion(STI->getCPU());
+ if (Version.Major >= 10)
+ return 106;
+ if (Version.Major >= 8)
+ return 102;
+ return 104;
+}
+
+unsigned getMinNumSGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU) {
+ assert(WavesPerEU != 0);
+
+ IsaVersion Version = getIsaVersion(STI->getCPU());
+ if (Version.Major >= 10)
+ return 0;
+
+ if (WavesPerEU >= getMaxWavesPerEU(STI))
+ return 0;
+
+ unsigned MinNumSGPRs = getTotalNumSGPRs(STI) / (WavesPerEU + 1);
+ if (STI->getFeatureBits().test(FeatureTrapHandler))
+ MinNumSGPRs -= std::min(MinNumSGPRs, (unsigned)TRAP_NUM_SGPRS);
+ MinNumSGPRs = alignDown(MinNumSGPRs, getSGPRAllocGranule(STI)) + 1;
+ return std::min(MinNumSGPRs, getAddressableNumSGPRs(STI));
+}
+
+unsigned getMaxNumSGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU,
+ bool Addressable) {
+ assert(WavesPerEU != 0);
+
+ unsigned AddressableNumSGPRs = getAddressableNumSGPRs(STI);
+ IsaVersion Version = getIsaVersion(STI->getCPU());
+ if (Version.Major >= 10)
+ return Addressable ? AddressableNumSGPRs : 108;
+ if (Version.Major >= 8 && !Addressable)
+ AddressableNumSGPRs = 112;
+ unsigned MaxNumSGPRs = getTotalNumSGPRs(STI) / WavesPerEU;
+ if (STI->getFeatureBits().test(FeatureTrapHandler))
+ MaxNumSGPRs -= std::min(MaxNumSGPRs, (unsigned)TRAP_NUM_SGPRS);
+ MaxNumSGPRs = alignDown(MaxNumSGPRs, getSGPRAllocGranule(STI));
+ return std::min(MaxNumSGPRs, AddressableNumSGPRs);
+}
+
+unsigned getNumExtraSGPRs(const MCSubtargetInfo *STI, bool VCCUsed,
+ bool FlatScrUsed, bool XNACKUsed) {
+ unsigned ExtraSGPRs = 0;
+ if (VCCUsed)
+ ExtraSGPRs = 2;
+
+ IsaVersion Version = getIsaVersion(STI->getCPU());
+ if (Version.Major >= 10)
+ return ExtraSGPRs;
+
+ if (Version.Major < 8) {
+ if (FlatScrUsed)
+ ExtraSGPRs = 4;
+ } else {
+ if (XNACKUsed)
+ ExtraSGPRs = 4;
+
+ if (FlatScrUsed ||
+ STI->getFeatureBits().test(AMDGPU::FeatureArchitectedFlatScratch))
+ ExtraSGPRs = 6;
+ }
+
+ return ExtraSGPRs;
+}
+
+unsigned getNumExtraSGPRs(const MCSubtargetInfo *STI, bool VCCUsed,
+ bool FlatScrUsed) {
+ return getNumExtraSGPRs(STI, VCCUsed, FlatScrUsed,
+ STI->getFeatureBits().test(AMDGPU::FeatureXNACK));
+}
+
+unsigned getNumSGPRBlocks(const MCSubtargetInfo *STI, unsigned NumSGPRs) {
+ NumSGPRs = alignTo(std::max(1u, NumSGPRs), getSGPREncodingGranule(STI));
+ // SGPRBlocks is actual number of SGPR blocks minus 1.
+ return NumSGPRs / getSGPREncodingGranule(STI) - 1;
+}
+
+unsigned getVGPRAllocGranule(const MCSubtargetInfo *STI,
+ Optional<bool> EnableWavefrontSize32) {
+ if (STI->getFeatureBits().test(FeatureGFX90AInsts))
+ return 8;
+
+ bool IsWave32 = EnableWavefrontSize32 ?
+ *EnableWavefrontSize32 :
+ STI->getFeatureBits().test(FeatureWavefrontSize32);
+
+ if (hasGFX10_3Insts(*STI))
+ return IsWave32 ? 16 : 8;
+
+ return IsWave32 ? 8 : 4;
+}
+
+unsigned getVGPREncodingGranule(const MCSubtargetInfo *STI,
+ Optional<bool> EnableWavefrontSize32) {
+ if (STI->getFeatureBits().test(FeatureGFX90AInsts))
+ return 8;
+
+ bool IsWave32 = EnableWavefrontSize32 ?
+ *EnableWavefrontSize32 :
+ STI->getFeatureBits().test(FeatureWavefrontSize32);
+
+ return IsWave32 ? 8 : 4;
+}
+
+unsigned getTotalNumVGPRs(const MCSubtargetInfo *STI) {
+ if (STI->getFeatureBits().test(FeatureGFX90AInsts))
+ return 512;
+ if (!isGFX10Plus(*STI))
+ return 256;
+ return STI->getFeatureBits().test(FeatureWavefrontSize32) ? 1024 : 512;
+}
+
+unsigned getAddressableNumVGPRs(const MCSubtargetInfo *STI) {
+ if (STI->getFeatureBits().test(FeatureGFX90AInsts))
+ return 512;
+ return 256;
+}
+
+unsigned getMinNumVGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU) {
+ assert(WavesPerEU != 0);
+
+ if (WavesPerEU >= getMaxWavesPerEU(STI))
+ return 0;
+ unsigned MinNumVGPRs =
+ alignDown(getTotalNumVGPRs(STI) / (WavesPerEU + 1),
+ getVGPRAllocGranule(STI)) + 1;
+ return std::min(MinNumVGPRs, getAddressableNumVGPRs(STI));
+}
+
+unsigned getMaxNumVGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU) {
+ assert(WavesPerEU != 0);
+
+ unsigned MaxNumVGPRs = alignDown(getTotalNumVGPRs(STI) / WavesPerEU,
+ getVGPRAllocGranule(STI));
+ unsigned AddressableNumVGPRs = getAddressableNumVGPRs(STI);
+ return std::min(MaxNumVGPRs, AddressableNumVGPRs);
+}
+
+unsigned getNumVGPRBlocks(const MCSubtargetInfo *STI, unsigned NumVGPRs,
+ Optional<bool> EnableWavefrontSize32) {
+ NumVGPRs = alignTo(std::max(1u, NumVGPRs),
+ getVGPREncodingGranule(STI, EnableWavefrontSize32));
+ // VGPRBlocks is actual number of VGPR blocks minus 1.
+ return NumVGPRs / getVGPREncodingGranule(STI, EnableWavefrontSize32) - 1;
+}
+
+} // end namespace IsaInfo
+
+void initDefaultAMDKernelCodeT(amd_kernel_code_t &Header,
+ const MCSubtargetInfo *STI) {
+ IsaVersion Version = getIsaVersion(STI->getCPU());
+
+ memset(&Header, 0, sizeof(Header));
+
+ Header.amd_kernel_code_version_major = 1;
+ Header.amd_kernel_code_version_minor = 2;
+ Header.amd_machine_kind = 1; // AMD_MACHINE_KIND_AMDGPU
+ Header.amd_machine_version_major = Version.Major;
+ Header.amd_machine_version_minor = Version.Minor;
+ Header.amd_machine_version_stepping = Version.Stepping;
+ Header.kernel_code_entry_byte_offset = sizeof(Header);
+ Header.wavefront_size = 6;
+
+ // If the code object does not support indirect functions, then the value must
+ // be 0xffffffff.
+ Header.call_convention = -1;
+
+ // These alignment values are specified in powers of two, so alignment =
+ // 2^n. The minimum alignment is 2^4 = 16.
+ Header.kernarg_segment_alignment = 4;
+ Header.group_segment_alignment = 4;
+ Header.private_segment_alignment = 4;
+
+ if (Version.Major >= 10) {
+ if (STI->getFeatureBits().test(FeatureWavefrontSize32)) {
+ Header.wavefront_size = 5;
+ Header.code_properties |= AMD_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32;
+ }
+ Header.compute_pgm_resource_registers |=
+ S_00B848_WGP_MODE(STI->getFeatureBits().test(FeatureCuMode) ? 0 : 1) |
+ S_00B848_MEM_ORDERED(1);
+ }
+}
+
+amdhsa::kernel_descriptor_t getDefaultAmdhsaKernelDescriptor(
+ const MCSubtargetInfo *STI) {
+ IsaVersion Version = getIsaVersion(STI->getCPU());
+
+ amdhsa::kernel_descriptor_t KD;
+ memset(&KD, 0, sizeof(KD));
+
+ AMDHSA_BITS_SET(KD.compute_pgm_rsrc1,
+ amdhsa::COMPUTE_PGM_RSRC1_FLOAT_DENORM_MODE_16_64,
+ amdhsa::FLOAT_DENORM_MODE_FLUSH_NONE);
+ AMDHSA_BITS_SET(KD.compute_pgm_rsrc1,
+ amdhsa::COMPUTE_PGM_RSRC1_ENABLE_DX10_CLAMP, 1);
+ AMDHSA_BITS_SET(KD.compute_pgm_rsrc1,
+ amdhsa::COMPUTE_PGM_RSRC1_ENABLE_IEEE_MODE, 1);
+ AMDHSA_BITS_SET(KD.compute_pgm_rsrc2,
+ amdhsa::COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_X, 1);
+ if (Version.Major >= 10) {
+ AMDHSA_BITS_SET(KD.kernel_code_properties,
+ amdhsa::KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32,
+ STI->getFeatureBits().test(FeatureWavefrontSize32) ? 1 : 0);
+ AMDHSA_BITS_SET(KD.compute_pgm_rsrc1,
+ amdhsa::COMPUTE_PGM_RSRC1_WGP_MODE,
+ STI->getFeatureBits().test(FeatureCuMode) ? 0 : 1);
+ AMDHSA_BITS_SET(KD.compute_pgm_rsrc1,
+ amdhsa::COMPUTE_PGM_RSRC1_MEM_ORDERED, 1);
+ }
+ if (AMDGPU::isGFX90A(*STI)) {
+ AMDHSA_BITS_SET(KD.compute_pgm_rsrc3,
+ amdhsa::COMPUTE_PGM_RSRC3_GFX90A_TG_SPLIT,
+ STI->getFeatureBits().test(FeatureTgSplit) ? 1 : 0);
+ }
+ return KD;
+}
+
+bool isGroupSegment(const GlobalValue *GV) {
+ return GV->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS;
+}
+
+bool isGlobalSegment(const GlobalValue *GV) {
+ return GV->getAddressSpace() == AMDGPUAS::GLOBAL_ADDRESS;
+}
+
+bool isReadOnlySegment(const GlobalValue *GV) {
+ unsigned AS = GV->getAddressSpace();
+ return AS == AMDGPUAS::CONSTANT_ADDRESS ||
+ AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT;
+}
+
+bool shouldEmitConstantsToTextSection(const Triple &TT) {
+ return TT.getArch() == Triple::r600;
+}
+
+int getIntegerAttribute(const Function &F, StringRef Name, int Default) {
+ Attribute A = F.getFnAttribute(Name);
+ int Result = Default;
+
+ if (A.isStringAttribute()) {
+ StringRef Str = A.getValueAsString();
+ if (Str.getAsInteger(0, Result)) {
+ LLVMContext &Ctx = F.getContext();
+ Ctx.emitError("can't parse integer attribute " + Name);
+ }
+ }
+
+ return Result;
+}
+
+std::pair<int, int> getIntegerPairAttribute(const Function &F,
+ StringRef Name,
+ std::pair<int, int> Default,
+ bool OnlyFirstRequired) {
+ Attribute A = F.getFnAttribute(Name);
+ if (!A.isStringAttribute())
+ return Default;
+
+ LLVMContext &Ctx = F.getContext();
+ std::pair<int, int> Ints = Default;
+ std::pair<StringRef, StringRef> Strs = A.getValueAsString().split(',');
+ if (Strs.first.trim().getAsInteger(0, Ints.first)) {
+ Ctx.emitError("can't parse first integer attribute " + Name);
+ return Default;
+ }
+ if (Strs.second.trim().getAsInteger(0, Ints.second)) {
+ if (!OnlyFirstRequired || !Strs.second.trim().empty()) {
+ Ctx.emitError("can't parse second integer attribute " + Name);
+ return Default;
+ }
+ }
+
+ return Ints;
+}
+
+unsigned getVmcntBitMask(const IsaVersion &Version) {
+ unsigned VmcntLo = (1 << getVmcntBitWidthLo()) - 1;
+ if (Version.Major < 9)
+ return VmcntLo;
+
+ unsigned VmcntHi = ((1 << getVmcntBitWidthHi()) - 1) << getVmcntBitWidthLo();
+ return VmcntLo | VmcntHi;
+}
+
+unsigned getExpcntBitMask(const IsaVersion &Version) {
+ return (1 << getExpcntBitWidth()) - 1;
+}
+
+unsigned getLgkmcntBitMask(const IsaVersion &Version) {
+ return (1 << getLgkmcntBitWidth(Version.Major)) - 1;
+}
+
+unsigned getWaitcntBitMask(const IsaVersion &Version) {
+ unsigned VmcntLo = getBitMask(getVmcntBitShiftLo(), getVmcntBitWidthLo());
+ unsigned Expcnt = getBitMask(getExpcntBitShift(), getExpcntBitWidth());
+ unsigned Lgkmcnt = getBitMask(getLgkmcntBitShift(),
+ getLgkmcntBitWidth(Version.Major));
+ unsigned Waitcnt = VmcntLo | Expcnt | Lgkmcnt;
+ if (Version.Major < 9)
+ return Waitcnt;
+
+ unsigned VmcntHi = getBitMask(getVmcntBitShiftHi(), getVmcntBitWidthHi());
+ return Waitcnt | VmcntHi;
+}
+
+unsigned decodeVmcnt(const IsaVersion &Version, unsigned Waitcnt) {
+ unsigned VmcntLo =
+ unpackBits(Waitcnt, getVmcntBitShiftLo(), getVmcntBitWidthLo());
+ if (Version.Major < 9)
+ return VmcntLo;
+
+ unsigned VmcntHi =
+ unpackBits(Waitcnt, getVmcntBitShiftHi(), getVmcntBitWidthHi());
+ VmcntHi <<= getVmcntBitWidthLo();
+ return VmcntLo | VmcntHi;
+}
+
+unsigned decodeExpcnt(const IsaVersion &Version, unsigned Waitcnt) {
+ return unpackBits(Waitcnt, getExpcntBitShift(), getExpcntBitWidth());
+}
+
+unsigned decodeLgkmcnt(const IsaVersion &Version, unsigned Waitcnt) {
+ return unpackBits(Waitcnt, getLgkmcntBitShift(),
+ getLgkmcntBitWidth(Version.Major));
+}
+
+void decodeWaitcnt(const IsaVersion &Version, unsigned Waitcnt,
+ unsigned &Vmcnt, unsigned &Expcnt, unsigned &Lgkmcnt) {
+ Vmcnt = decodeVmcnt(Version, Waitcnt);
+ Expcnt = decodeExpcnt(Version, Waitcnt);
+ Lgkmcnt = decodeLgkmcnt(Version, Waitcnt);
+}
+
+Waitcnt decodeWaitcnt(const IsaVersion &Version, unsigned Encoded) {
+ Waitcnt Decoded;
+ Decoded.VmCnt = decodeVmcnt(Version, Encoded);
+ Decoded.ExpCnt = decodeExpcnt(Version, Encoded);
+ Decoded.LgkmCnt = decodeLgkmcnt(Version, Encoded);
+ return Decoded;
+}
+
+unsigned encodeVmcnt(const IsaVersion &Version, unsigned Waitcnt,
+ unsigned Vmcnt) {
+ Waitcnt =
+ packBits(Vmcnt, Waitcnt, getVmcntBitShiftLo(), getVmcntBitWidthLo());
+ if (Version.Major < 9)
+ return Waitcnt;
+
+ Vmcnt >>= getVmcntBitWidthLo();
+ return packBits(Vmcnt, Waitcnt, getVmcntBitShiftHi(), getVmcntBitWidthHi());
+}
+
+unsigned encodeExpcnt(const IsaVersion &Version, unsigned Waitcnt,
+ unsigned Expcnt) {
+ return packBits(Expcnt, Waitcnt, getExpcntBitShift(), getExpcntBitWidth());
+}
+
+unsigned encodeLgkmcnt(const IsaVersion &Version, unsigned Waitcnt,
+ unsigned Lgkmcnt) {
+ return packBits(Lgkmcnt, Waitcnt, getLgkmcntBitShift(),
+ getLgkmcntBitWidth(Version.Major));
+}
+
+unsigned encodeWaitcnt(const IsaVersion &Version,
+ unsigned Vmcnt, unsigned Expcnt, unsigned Lgkmcnt) {
+ unsigned Waitcnt = getWaitcntBitMask(Version);
+ Waitcnt = encodeVmcnt(Version, Waitcnt, Vmcnt);
+ Waitcnt = encodeExpcnt(Version, Waitcnt, Expcnt);
+ Waitcnt = encodeLgkmcnt(Version, Waitcnt, Lgkmcnt);
+ return Waitcnt;
+}
+
+unsigned encodeWaitcnt(const IsaVersion &Version, const Waitcnt &Decoded) {
+ return encodeWaitcnt(Version, Decoded.VmCnt, Decoded.ExpCnt, Decoded.LgkmCnt);
+}
+
+//===----------------------------------------------------------------------===//
+// hwreg
+//===----------------------------------------------------------------------===//
+
+namespace Hwreg {
+
+int64_t getHwregId(const StringRef Name) {
+ for (int Id = ID_SYMBOLIC_FIRST_; Id < ID_SYMBOLIC_LAST_; ++Id) {
+ if (IdSymbolic[Id] && Name == IdSymbolic[Id])
+ return Id;
+ }
+ return ID_UNKNOWN_;
+}
+
+static unsigned getLastSymbolicHwreg(const MCSubtargetInfo &STI) {
+ if (isSI(STI) || isCI(STI) || isVI(STI))
+ return ID_SYMBOLIC_FIRST_GFX9_;
+ else if (isGFX9(STI))
+ return ID_SYMBOLIC_FIRST_GFX10_;
+ else if (isGFX10(STI) && !isGFX10_BEncoding(STI))
+ return ID_SYMBOLIC_FIRST_GFX1030_;
+ else
+ return ID_SYMBOLIC_LAST_;
+}
+
+bool isValidHwreg(int64_t Id, const MCSubtargetInfo &STI) {
+ return
+ ID_SYMBOLIC_FIRST_ <= Id && Id < getLastSymbolicHwreg(STI) &&
+ IdSymbolic[Id] && (Id != ID_XNACK_MASK || !AMDGPU::isGFX10_BEncoding(STI));
+}
+
+bool isValidHwreg(int64_t Id) {
+ return 0 <= Id && isUInt<ID_WIDTH_>(Id);
+}
+
+bool isValidHwregOffset(int64_t Offset) {
+ return 0 <= Offset && isUInt<OFFSET_WIDTH_>(Offset);
+}
+
+bool isValidHwregWidth(int64_t Width) {
+ return 0 <= (Width - 1) && isUInt<WIDTH_M1_WIDTH_>(Width - 1);
+}
+
+uint64_t encodeHwreg(uint64_t Id, uint64_t Offset, uint64_t Width) {
+ return (Id << ID_SHIFT_) |
+ (Offset << OFFSET_SHIFT_) |
+ ((Width - 1) << WIDTH_M1_SHIFT_);
+}
+
+StringRef getHwreg(unsigned Id, const MCSubtargetInfo &STI) {
+ return isValidHwreg(Id, STI) ? IdSymbolic[Id] : "";
+}
+
+void decodeHwreg(unsigned Val, unsigned &Id, unsigned &Offset, unsigned &Width) {
+ Id = (Val & ID_MASK_) >> ID_SHIFT_;
+ Offset = (Val & OFFSET_MASK_) >> OFFSET_SHIFT_;
+ Width = ((Val & WIDTH_M1_MASK_) >> WIDTH_M1_SHIFT_) + 1;
+}
+
+} // namespace Hwreg
+
+//===----------------------------------------------------------------------===//
+// exp tgt
+//===----------------------------------------------------------------------===//
+
+namespace Exp {
+
+struct ExpTgt {
+ StringLiteral Name;
+ unsigned Tgt;
+ unsigned MaxIndex;
+};
+
+static constexpr ExpTgt ExpTgtInfo[] = {
+ {{"null"}, ET_NULL, ET_NULL_MAX_IDX},
+ {{"mrtz"}, ET_MRTZ, ET_MRTZ_MAX_IDX},
+ {{"prim"}, ET_PRIM, ET_PRIM_MAX_IDX},
+ {{"mrt"}, ET_MRT0, ET_MRT_MAX_IDX},
+ {{"pos"}, ET_POS0, ET_POS_MAX_IDX},
+ {{"param"}, ET_PARAM0, ET_PARAM_MAX_IDX},
+};
+
+bool getTgtName(unsigned Id, StringRef &Name, int &Index) {
+ for (const ExpTgt &Val : ExpTgtInfo) {
+ if (Val.Tgt <= Id && Id <= Val.Tgt + Val.MaxIndex) {
+ Index = (Val.MaxIndex == 0) ? -1 : (Id - Val.Tgt);
+ Name = Val.Name;
+ return true;
+ }
+ }
+ return false;
+}
+
+unsigned getTgtId(const StringRef Name) {
+
+ for (const ExpTgt &Val : ExpTgtInfo) {
+ if (Val.MaxIndex == 0 && Name == Val.Name)
+ return Val.Tgt;
+
+ if (Val.MaxIndex > 0 && Name.startswith(Val.Name)) {
+ StringRef Suffix = Name.drop_front(Val.Name.size());
+
+ unsigned Id;
+ if (Suffix.getAsInteger(10, Id) || Id > Val.MaxIndex)
+ return ET_INVALID;
+
+ // Disable leading zeroes
+ if (Suffix.size() > 1 && Suffix[0] == '0')
+ return ET_INVALID;
+
+ return Val.Tgt + Id;
+ }
+ }
+ return ET_INVALID;
+}
+
+bool isSupportedTgtId(unsigned Id, const MCSubtargetInfo &STI) {
+ return (Id != ET_POS4 && Id != ET_PRIM) || isGFX10Plus(STI);
+}
+
+} // namespace Exp
+
+//===----------------------------------------------------------------------===//
+// MTBUF Format
+//===----------------------------------------------------------------------===//
+
+namespace MTBUFFormat {
+
+int64_t getDfmt(const StringRef Name) {
+ for (int Id = DFMT_MIN; Id <= DFMT_MAX; ++Id) {
+ if (Name == DfmtSymbolic[Id])
+ return Id;
+ }
+ return DFMT_UNDEF;
+}
+
+StringRef getDfmtName(unsigned Id) {
+ assert(Id <= DFMT_MAX);
+ return DfmtSymbolic[Id];
+}
+
+static StringLiteral const *getNfmtLookupTable(const MCSubtargetInfo &STI) {
+ if (isSI(STI) || isCI(STI))
+ return NfmtSymbolicSICI;
+ if (isVI(STI) || isGFX9(STI))
+ return NfmtSymbolicVI;
+ return NfmtSymbolicGFX10;
+}
+
+int64_t getNfmt(const StringRef Name, const MCSubtargetInfo &STI) {
+ auto lookupTable = getNfmtLookupTable(STI);
+ for (int Id = NFMT_MIN; Id <= NFMT_MAX; ++Id) {
+ if (Name == lookupTable[Id])
+ return Id;
+ }
+ return NFMT_UNDEF;
+}
+
+StringRef getNfmtName(unsigned Id, const MCSubtargetInfo &STI) {
+ assert(Id <= NFMT_MAX);
+ return getNfmtLookupTable(STI)[Id];
+}
+
+bool isValidDfmtNfmt(unsigned Id, const MCSubtargetInfo &STI) {
+ unsigned Dfmt;
+ unsigned Nfmt;
+ decodeDfmtNfmt(Id, Dfmt, Nfmt);
+ return isValidNfmt(Nfmt, STI);
+}
+
+bool isValidNfmt(unsigned Id, const MCSubtargetInfo &STI) {
+ return !getNfmtName(Id, STI).empty();
+}
+
+int64_t encodeDfmtNfmt(unsigned Dfmt, unsigned Nfmt) {
+ return (Dfmt << DFMT_SHIFT) | (Nfmt << NFMT_SHIFT);
+}
+
+void decodeDfmtNfmt(unsigned Format, unsigned &Dfmt, unsigned &Nfmt) {
+ Dfmt = (Format >> DFMT_SHIFT) & DFMT_MASK;
+ Nfmt = (Format >> NFMT_SHIFT) & NFMT_MASK;
+}
+
+int64_t getUnifiedFormat(const StringRef Name) {
+ for (int Id = UFMT_FIRST; Id <= UFMT_LAST; ++Id) {
+ if (Name == UfmtSymbolic[Id])
+ return Id;
+ }
+ return UFMT_UNDEF;
+}
+
+StringRef getUnifiedFormatName(unsigned Id) {
+ return isValidUnifiedFormat(Id) ? UfmtSymbolic[Id] : "";
+}
+
+bool isValidUnifiedFormat(unsigned Id) {
+ return Id <= UFMT_LAST;
+}
+
+int64_t convertDfmtNfmt2Ufmt(unsigned Dfmt, unsigned Nfmt) {
+ int64_t Fmt = encodeDfmtNfmt(Dfmt, Nfmt);
+ for (int Id = UFMT_FIRST; Id <= UFMT_LAST; ++Id) {
+ if (Fmt == DfmtNfmt2UFmt[Id])
+ return Id;
+ }
+ return UFMT_UNDEF;
+}
+
+bool isValidFormatEncoding(unsigned Val, const MCSubtargetInfo &STI) {
+ return isGFX10Plus(STI) ? (Val <= UFMT_MAX) : (Val <= DFMT_NFMT_MAX);
+}
+
+unsigned getDefaultFormatEncoding(const MCSubtargetInfo &STI) {
+ if (isGFX10Plus(STI))
+ return UFMT_DEFAULT;
+ return DFMT_NFMT_DEFAULT;
+}
+
+} // namespace MTBUFFormat
+
+//===----------------------------------------------------------------------===//
+// SendMsg
+//===----------------------------------------------------------------------===//
+
+namespace SendMsg {
+
+int64_t getMsgId(const StringRef Name) {
+ for (int i = ID_GAPS_FIRST_; i < ID_GAPS_LAST_; ++i) {
+ if (IdSymbolic[i] && Name == IdSymbolic[i])
+ return i;
+ }
+ return ID_UNKNOWN_;
+}
+
+bool isValidMsgId(int64_t MsgId, const MCSubtargetInfo &STI, bool Strict) {
+ if (Strict) {
+ switch (MsgId) {
+ case ID_SAVEWAVE:
+ return isVI(STI) || isGFX9Plus(STI);
+ case ID_STALL_WAVE_GEN:
+ case ID_HALT_WAVES:
+ case ID_ORDERED_PS_DONE:
+ case ID_GS_ALLOC_REQ:
+ case ID_GET_DOORBELL:
+ return isGFX9Plus(STI);
+ case ID_EARLY_PRIM_DEALLOC:
+ return isGFX9(STI);
+ case ID_GET_DDID:
+ return isGFX10Plus(STI);
+ default:
+ return 0 <= MsgId && MsgId < ID_GAPS_LAST_ && IdSymbolic[MsgId];
+ }
+ } else {
+ return 0 <= MsgId && isUInt<ID_WIDTH_>(MsgId);
+ }
+}
+
+StringRef getMsgName(int64_t MsgId) {
+ assert(0 <= MsgId && MsgId < ID_GAPS_LAST_);
+ return IdSymbolic[MsgId];
+}
+
+int64_t getMsgOpId(int64_t MsgId, const StringRef Name) {
+ const char* const *S = (MsgId == ID_SYSMSG) ? OpSysSymbolic : OpGsSymbolic;
+ const int F = (MsgId == ID_SYSMSG) ? OP_SYS_FIRST_ : OP_GS_FIRST_;
+ const int L = (MsgId == ID_SYSMSG) ? OP_SYS_LAST_ : OP_GS_LAST_;
+ for (int i = F; i < L; ++i) {
+ if (Name == S[i]) {
+ return i;
+ }
+ }
+ return OP_UNKNOWN_;
+}
+
+bool isValidMsgOp(int64_t MsgId, int64_t OpId, const MCSubtargetInfo &STI,
+ bool Strict) {
+ assert(isValidMsgId(MsgId, STI, Strict));
+
+ if (!Strict)
+ return 0 <= OpId && isUInt<OP_WIDTH_>(OpId);
+
+ switch(MsgId)
+ {
+ case ID_GS:
+ return (OP_GS_FIRST_ <= OpId && OpId < OP_GS_LAST_) && OpId != OP_GS_NOP;
+ case ID_GS_DONE:
+ return OP_GS_FIRST_ <= OpId && OpId < OP_GS_LAST_;
+ case ID_SYSMSG:
+ return OP_SYS_FIRST_ <= OpId && OpId < OP_SYS_LAST_;
+ default:
+ return OpId == OP_NONE_;
+ }
+}
+
+StringRef getMsgOpName(int64_t MsgId, int64_t OpId) {
+ assert(msgRequiresOp(MsgId));
+ return (MsgId == ID_SYSMSG)? OpSysSymbolic[OpId] : OpGsSymbolic[OpId];
+}
+
+bool isValidMsgStream(int64_t MsgId, int64_t OpId, int64_t StreamId,
+ const MCSubtargetInfo &STI, bool Strict) {
+ assert(isValidMsgOp(MsgId, OpId, STI, Strict));
+
+ if (!Strict)
+ return 0 <= StreamId && isUInt<STREAM_ID_WIDTH_>(StreamId);
+
+ switch(MsgId)
+ {
+ case ID_GS:
+ return STREAM_ID_FIRST_ <= StreamId && StreamId < STREAM_ID_LAST_;
+ case ID_GS_DONE:
+ return (OpId == OP_GS_NOP)?
+ (StreamId == STREAM_ID_NONE_) :
+ (STREAM_ID_FIRST_ <= StreamId && StreamId < STREAM_ID_LAST_);
+ default:
+ return StreamId == STREAM_ID_NONE_;
+ }
+}
+
+bool msgRequiresOp(int64_t MsgId) {
+ return MsgId == ID_GS || MsgId == ID_GS_DONE || MsgId == ID_SYSMSG;
+}
+
+bool msgSupportsStream(int64_t MsgId, int64_t OpId) {
+ return (MsgId == ID_GS || MsgId == ID_GS_DONE) && OpId != OP_GS_NOP;
+}
+
+void decodeMsg(unsigned Val,
+ uint16_t &MsgId,
+ uint16_t &OpId,
+ uint16_t &StreamId) {
+ MsgId = Val & ID_MASK_;
+ OpId = (Val & OP_MASK_) >> OP_SHIFT_;
+ StreamId = (Val & STREAM_ID_MASK_) >> STREAM_ID_SHIFT_;
+}
+
+uint64_t encodeMsg(uint64_t MsgId,
+ uint64_t OpId,
+ uint64_t StreamId) {
+ return (MsgId << ID_SHIFT_) |
+ (OpId << OP_SHIFT_) |
+ (StreamId << STREAM_ID_SHIFT_);
+}
+
+} // namespace SendMsg
+
+//===----------------------------------------------------------------------===//
+//
+//===----------------------------------------------------------------------===//
+
+unsigned getInitialPSInputAddr(const Function &F) {
+ return getIntegerAttribute(F, "InitialPSInputAddr", 0);
+}
+
+bool getHasColorExport(const Function &F) {
+ // As a safe default always respond as if PS has color exports.
+ return getIntegerAttribute(
+ F, "amdgpu-color-export",
+ F.getCallingConv() == CallingConv::AMDGPU_PS ? 1 : 0) != 0;
+}
+
+bool getHasDepthExport(const Function &F) {
+ return getIntegerAttribute(F, "amdgpu-depth-export", 0) != 0;
+}
+
+bool isShader(CallingConv::ID cc) {
+ switch(cc) {
+ case CallingConv::AMDGPU_VS:
+ case CallingConv::AMDGPU_LS:
+ case CallingConv::AMDGPU_HS:
+ case CallingConv::AMDGPU_ES:
+ case CallingConv::AMDGPU_GS:
+ case CallingConv::AMDGPU_PS:
+ case CallingConv::AMDGPU_CS:
+ return true;
+ default:
+ return false;
+ }
+}
+
+bool isGraphics(CallingConv::ID cc) {
+ return isShader(cc) || cc == CallingConv::AMDGPU_Gfx;
+}
+
+bool isCompute(CallingConv::ID cc) {
+ return !isGraphics(cc) || cc == CallingConv::AMDGPU_CS;
+}
+
+bool isEntryFunctionCC(CallingConv::ID CC) {
+ switch (CC) {
+ case CallingConv::AMDGPU_KERNEL:
+ case CallingConv::SPIR_KERNEL:
+ case CallingConv::AMDGPU_VS:
+ case CallingConv::AMDGPU_GS:
+ case CallingConv::AMDGPU_PS:
+ case CallingConv::AMDGPU_CS:
+ case CallingConv::AMDGPU_ES:
+ case CallingConv::AMDGPU_HS:
+ case CallingConv::AMDGPU_LS:
+ return true;
+ default:
+ return false;
+ }
+}
+
+bool isModuleEntryFunctionCC(CallingConv::ID CC) {
+ switch (CC) {
+ case CallingConv::AMDGPU_Gfx:
+ return true;
+ default:
+ return isEntryFunctionCC(CC);
+ }
+}
+
+bool hasXNACK(const MCSubtargetInfo &STI) {
+ return STI.getFeatureBits()[AMDGPU::FeatureXNACK];
+}
+
+bool hasSRAMECC(const MCSubtargetInfo &STI) {
+ return STI.getFeatureBits()[AMDGPU::FeatureSRAMECC];
+}
+
+bool hasMIMG_R128(const MCSubtargetInfo &STI) {
+ return STI.getFeatureBits()[AMDGPU::FeatureMIMG_R128] && !STI.getFeatureBits()[AMDGPU::FeatureR128A16];
+}
+
+bool hasGFX10A16(const MCSubtargetInfo &STI) {
+ return STI.getFeatureBits()[AMDGPU::FeatureGFX10A16];
+}
+
+bool hasG16(const MCSubtargetInfo &STI) {
+ return STI.getFeatureBits()[AMDGPU::FeatureG16];
+}
+
+bool hasPackedD16(const MCSubtargetInfo &STI) {
+ return !STI.getFeatureBits()[AMDGPU::FeatureUnpackedD16VMem];
+}
+
+bool isSI(const MCSubtargetInfo &STI) {
+ return STI.getFeatureBits()[AMDGPU::FeatureSouthernIslands];
+}
+
+bool isCI(const MCSubtargetInfo &STI) {
+ return STI.getFeatureBits()[AMDGPU::FeatureSeaIslands];
+}
+
+bool isVI(const MCSubtargetInfo &STI) {
+ return STI.getFeatureBits()[AMDGPU::FeatureVolcanicIslands];
+}
+
+bool isGFX9(const MCSubtargetInfo &STI) {
+ return STI.getFeatureBits()[AMDGPU::FeatureGFX9];
+}
+
+bool isGFX9Plus(const MCSubtargetInfo &STI) {
+ return isGFX9(STI) || isGFX10Plus(STI);
+}
+
+bool isGFX10(const MCSubtargetInfo &STI) {
+ return STI.getFeatureBits()[AMDGPU::FeatureGFX10];
+}
+
+bool isGFX10Plus(const MCSubtargetInfo &STI) { return isGFX10(STI); }
+
+bool isGCN3Encoding(const MCSubtargetInfo &STI) {
+ return STI.getFeatureBits()[AMDGPU::FeatureGCN3Encoding];
+}
+
+bool isGFX10_AEncoding(const MCSubtargetInfo &STI) {
+ return STI.getFeatureBits()[AMDGPU::FeatureGFX10_AEncoding];
+}
+
+bool isGFX10_BEncoding(const MCSubtargetInfo &STI) {
+ return STI.getFeatureBits()[AMDGPU::FeatureGFX10_BEncoding];
+}
+
+bool hasGFX10_3Insts(const MCSubtargetInfo &STI) {
+ return STI.getFeatureBits()[AMDGPU::FeatureGFX10_3Insts];
+}
+
+bool isGFX90A(const MCSubtargetInfo &STI) {
+ return STI.getFeatureBits()[AMDGPU::FeatureGFX90AInsts];
+}
+
+bool hasArchitectedFlatScratch(const MCSubtargetInfo &STI) {
+ return STI.getFeatureBits()[AMDGPU::FeatureArchitectedFlatScratch];
+}
+
+bool isSGPR(unsigned Reg, const MCRegisterInfo* TRI) {
+ const MCRegisterClass SGPRClass = TRI->getRegClass(AMDGPU::SReg_32RegClassID);
+ const unsigned FirstSubReg = TRI->getSubReg(Reg, AMDGPU::sub0);
+ return SGPRClass.contains(FirstSubReg != 0 ? FirstSubReg : Reg) ||
+ Reg == AMDGPU::SCC;
+}
+
+bool isRegIntersect(unsigned Reg0, unsigned Reg1, const MCRegisterInfo* TRI) {
+ for (MCRegAliasIterator R(Reg0, TRI, true); R.isValid(); ++R) {
+ if (*R == Reg1) return true;
+ }
+ return false;
+}
+
+#define MAP_REG2REG \
+ using namespace AMDGPU; \
+ switch(Reg) { \
+ default: return Reg; \
+ CASE_CI_VI(FLAT_SCR) \
+ CASE_CI_VI(FLAT_SCR_LO) \
+ CASE_CI_VI(FLAT_SCR_HI) \
+ CASE_VI_GFX9PLUS(TTMP0) \
+ CASE_VI_GFX9PLUS(TTMP1) \
+ CASE_VI_GFX9PLUS(TTMP2) \
+ CASE_VI_GFX9PLUS(TTMP3) \
+ CASE_VI_GFX9PLUS(TTMP4) \
+ CASE_VI_GFX9PLUS(TTMP5) \
+ CASE_VI_GFX9PLUS(TTMP6) \
+ CASE_VI_GFX9PLUS(TTMP7) \
+ CASE_VI_GFX9PLUS(TTMP8) \
+ CASE_VI_GFX9PLUS(TTMP9) \
+ CASE_VI_GFX9PLUS(TTMP10) \
+ CASE_VI_GFX9PLUS(TTMP11) \
+ CASE_VI_GFX9PLUS(TTMP12) \
+ CASE_VI_GFX9PLUS(TTMP13) \
+ CASE_VI_GFX9PLUS(TTMP14) \
+ CASE_VI_GFX9PLUS(TTMP15) \
+ CASE_VI_GFX9PLUS(TTMP0_TTMP1) \
+ CASE_VI_GFX9PLUS(TTMP2_TTMP3) \
+ CASE_VI_GFX9PLUS(TTMP4_TTMP5) \
+ CASE_VI_GFX9PLUS(TTMP6_TTMP7) \
+ CASE_VI_GFX9PLUS(TTMP8_TTMP9) \
+ CASE_VI_GFX9PLUS(TTMP10_TTMP11) \
+ CASE_VI_GFX9PLUS(TTMP12_TTMP13) \
+ CASE_VI_GFX9PLUS(TTMP14_TTMP15) \
+ CASE_VI_GFX9PLUS(TTMP0_TTMP1_TTMP2_TTMP3) \
+ CASE_VI_GFX9PLUS(TTMP4_TTMP5_TTMP6_TTMP7) \
+ CASE_VI_GFX9PLUS(TTMP8_TTMP9_TTMP10_TTMP11) \
+ CASE_VI_GFX9PLUS(TTMP12_TTMP13_TTMP14_TTMP15) \
+ CASE_VI_GFX9PLUS(TTMP0_TTMP1_TTMP2_TTMP3_TTMP4_TTMP5_TTMP6_TTMP7) \
+ CASE_VI_GFX9PLUS(TTMP4_TTMP5_TTMP6_TTMP7_TTMP8_TTMP9_TTMP10_TTMP11) \
+ CASE_VI_GFX9PLUS(TTMP8_TTMP9_TTMP10_TTMP11_TTMP12_TTMP13_TTMP14_TTMP15) \
+ CASE_VI_GFX9PLUS(TTMP0_TTMP1_TTMP2_TTMP3_TTMP4_TTMP5_TTMP6_TTMP7_TTMP8_TTMP9_TTMP10_TTMP11_TTMP12_TTMP13_TTMP14_TTMP15) \
+ }
+
+#define CASE_CI_VI(node) \
+ assert(!isSI(STI)); \
+ case node: return isCI(STI) ? node##_ci : node##_vi;
+
+#define CASE_VI_GFX9PLUS(node) \
+ case node: return isGFX9Plus(STI) ? node##_gfx9plus : node##_vi;
+
+unsigned getMCReg(unsigned Reg, const MCSubtargetInfo &STI) {
+ if (STI.getTargetTriple().getArch() == Triple::r600)
+ return Reg;
+ MAP_REG2REG
+}
+
+#undef CASE_CI_VI
+#undef CASE_VI_GFX9PLUS
+
+#define CASE_CI_VI(node) case node##_ci: case node##_vi: return node;
+#define CASE_VI_GFX9PLUS(node) case node##_vi: case node##_gfx9plus: return node;
+
+unsigned mc2PseudoReg(unsigned Reg) {
+ MAP_REG2REG
+}
+
+#undef CASE_CI_VI
+#undef CASE_VI_GFX9PLUS
+#undef MAP_REG2REG
+
+bool isSISrcOperand(const MCInstrDesc &Desc, unsigned OpNo) {
+ assert(OpNo < Desc.NumOperands);
+ unsigned OpType = Desc.OpInfo[OpNo].OperandType;
+ return OpType >= AMDGPU::OPERAND_SRC_FIRST &&
+ OpType <= AMDGPU::OPERAND_SRC_LAST;
+}
+
+bool isSISrcFPOperand(const MCInstrDesc &Desc, unsigned OpNo) {
+ assert(OpNo < Desc.NumOperands);
+ unsigned OpType = Desc.OpInfo[OpNo].OperandType;
+ switch (OpType) {
+ case AMDGPU::OPERAND_REG_IMM_FP32:
+ case AMDGPU::OPERAND_REG_IMM_FP32_DEFERRED:
+ case AMDGPU::OPERAND_REG_IMM_FP64:
+ case AMDGPU::OPERAND_REG_IMM_FP16:
+ case AMDGPU::OPERAND_REG_IMM_FP16_DEFERRED:
+ case AMDGPU::OPERAND_REG_IMM_V2FP16:
+ case AMDGPU::OPERAND_REG_IMM_V2INT16:
+ case AMDGPU::OPERAND_REG_INLINE_C_FP32:
+ case AMDGPU::OPERAND_REG_INLINE_C_FP64:
+ case AMDGPU::OPERAND_REG_INLINE_C_FP16:
+ case AMDGPU::OPERAND_REG_INLINE_C_V2FP16:
+ case AMDGPU::OPERAND_REG_INLINE_C_V2INT16:
+ case AMDGPU::OPERAND_REG_INLINE_AC_FP32:
+ case AMDGPU::OPERAND_REG_INLINE_AC_FP16:
+ case AMDGPU::OPERAND_REG_INLINE_AC_V2FP16:
+ case AMDGPU::OPERAND_REG_INLINE_AC_V2INT16:
+ case AMDGPU::OPERAND_REG_IMM_V2FP32:
+ case AMDGPU::OPERAND_REG_INLINE_C_V2FP32:
+ case AMDGPU::OPERAND_REG_INLINE_AC_FP64:
+ return true;
+ default:
+ return false;
+ }
+}
+
+bool isSISrcInlinableOperand(const MCInstrDesc &Desc, unsigned OpNo) {
+ assert(OpNo < Desc.NumOperands);
+ unsigned OpType = Desc.OpInfo[OpNo].OperandType;
+ return OpType >= AMDGPU::OPERAND_REG_INLINE_C_FIRST &&
+ OpType <= AMDGPU::OPERAND_REG_INLINE_C_LAST;
+}
+
+// Avoid using MCRegisterClass::getSize, since that function will go away
+// (move from MC* level to Target* level). Return size in bits.
+unsigned getRegBitWidth(unsigned RCID) {
+ switch (RCID) {
+ case AMDGPU::VGPR_LO16RegClassID:
+ case AMDGPU::VGPR_HI16RegClassID:
+ case AMDGPU::SGPR_LO16RegClassID:
+ case AMDGPU::AGPR_LO16RegClassID:
+ return 16;
+ case AMDGPU::SGPR_32RegClassID:
+ case AMDGPU::VGPR_32RegClassID:
+ case AMDGPU::VRegOrLds_32RegClassID:
+ case AMDGPU::AGPR_32RegClassID:
+ case AMDGPU::VS_32RegClassID:
+ case AMDGPU::AV_32RegClassID:
+ case AMDGPU::SReg_32RegClassID:
+ case AMDGPU::SReg_32_XM0RegClassID:
+ case AMDGPU::SRegOrLds_32RegClassID:
+ return 32;
+ case AMDGPU::SGPR_64RegClassID:
+ case AMDGPU::VS_64RegClassID:
+ case AMDGPU::AV_64RegClassID:
+ case AMDGPU::SReg_64RegClassID:
+ case AMDGPU::VReg_64RegClassID:
+ case AMDGPU::AReg_64RegClassID:
+ case AMDGPU::SReg_64_XEXECRegClassID:
+ case AMDGPU::VReg_64_Align2RegClassID:
+ case AMDGPU::AReg_64_Align2RegClassID:
+ return 64;
+ case AMDGPU::SGPR_96RegClassID:
+ case AMDGPU::SReg_96RegClassID:
+ case AMDGPU::VReg_96RegClassID:
+ case AMDGPU::AReg_96RegClassID:
+ case AMDGPU::VReg_96_Align2RegClassID:
+ case AMDGPU::AReg_96_Align2RegClassID:
+ case AMDGPU::AV_96RegClassID:
+ return 96;
+ case AMDGPU::SGPR_128RegClassID:
+ case AMDGPU::SReg_128RegClassID:
+ case AMDGPU::VReg_128RegClassID:
+ case AMDGPU::AReg_128RegClassID:
+ case AMDGPU::VReg_128_Align2RegClassID:
+ case AMDGPU::AReg_128_Align2RegClassID:
+ case AMDGPU::AV_128RegClassID:
+ return 128;
+ case AMDGPU::SGPR_160RegClassID:
+ case AMDGPU::SReg_160RegClassID:
+ case AMDGPU::VReg_160RegClassID:
+ case AMDGPU::AReg_160RegClassID:
+ case AMDGPU::VReg_160_Align2RegClassID:
+ case AMDGPU::AReg_160_Align2RegClassID:
+ case AMDGPU::AV_160RegClassID:
+ return 160;
+ case AMDGPU::SGPR_192RegClassID:
+ case AMDGPU::SReg_192RegClassID:
+ case AMDGPU::VReg_192RegClassID:
+ case AMDGPU::AReg_192RegClassID:
+ case AMDGPU::VReg_192_Align2RegClassID:
+ case AMDGPU::AReg_192_Align2RegClassID:
+ return 192;
+ case AMDGPU::SGPR_224RegClassID:
+ case AMDGPU::SReg_224RegClassID:
+ case AMDGPU::VReg_224RegClassID:
+ case AMDGPU::AReg_224RegClassID:
+ case AMDGPU::VReg_224_Align2RegClassID:
+ case AMDGPU::AReg_224_Align2RegClassID:
+ return 224;
+ case AMDGPU::SGPR_256RegClassID:
+ case AMDGPU::SReg_256RegClassID:
+ case AMDGPU::VReg_256RegClassID:
+ case AMDGPU::AReg_256RegClassID:
+ case AMDGPU::VReg_256_Align2RegClassID:
+ case AMDGPU::AReg_256_Align2RegClassID:
+ return 256;
+ case AMDGPU::SGPR_512RegClassID:
+ case AMDGPU::SReg_512RegClassID:
+ case AMDGPU::VReg_512RegClassID:
+ case AMDGPU::AReg_512RegClassID:
+ case AMDGPU::VReg_512_Align2RegClassID:
+ case AMDGPU::AReg_512_Align2RegClassID:
+ return 512;
+ case AMDGPU::SGPR_1024RegClassID:
+ case AMDGPU::SReg_1024RegClassID:
+ case AMDGPU::VReg_1024RegClassID:
+ case AMDGPU::AReg_1024RegClassID:
+ case AMDGPU::VReg_1024_Align2RegClassID:
+ case AMDGPU::AReg_1024_Align2RegClassID:
+ return 1024;
+ default:
+ llvm_unreachable("Unexpected register class");
+ }
+}
+
+unsigned getRegBitWidth(const MCRegisterClass &RC) {
+ return getRegBitWidth(RC.getID());
+}
+
+unsigned getRegOperandSize(const MCRegisterInfo *MRI, const MCInstrDesc &Desc,
+ unsigned OpNo) {
+ assert(OpNo < Desc.NumOperands);
+ unsigned RCID = Desc.OpInfo[OpNo].RegClass;
+ return getRegBitWidth(MRI->getRegClass(RCID)) / 8;
+}
+
+bool isInlinableLiteral64(int64_t Literal, bool HasInv2Pi) {
+ if (isInlinableIntLiteral(Literal))
+ return true;
+
+ uint64_t Val = static_cast<uint64_t>(Literal);
+ return (Val == DoubleToBits(0.0)) ||
+ (Val == DoubleToBits(1.0)) ||
+ (Val == DoubleToBits(-1.0)) ||
+ (Val == DoubleToBits(0.5)) ||
+ (Val == DoubleToBits(-0.5)) ||
+ (Val == DoubleToBits(2.0)) ||
+ (Val == DoubleToBits(-2.0)) ||
+ (Val == DoubleToBits(4.0)) ||
+ (Val == DoubleToBits(-4.0)) ||
+ (Val == 0x3fc45f306dc9c882 && HasInv2Pi);
+}
+
+bool isInlinableLiteral32(int32_t Literal, bool HasInv2Pi) {
+ if (isInlinableIntLiteral(Literal))
+ return true;
+
+ // The actual type of the operand does not seem to matter as long
+ // as the bits match one of the inline immediate values. For example:
+ //
+ // -nan has the hexadecimal encoding of 0xfffffffe which is -2 in decimal,
+ // so it is a legal inline immediate.
+ //
+ // 1065353216 has the hexadecimal encoding 0x3f800000 which is 1.0f in
+ // floating-point, so it is a legal inline immediate.
+
+ uint32_t Val = static_cast<uint32_t>(Literal);
+ return (Val == FloatToBits(0.0f)) ||
+ (Val == FloatToBits(1.0f)) ||
+ (Val == FloatToBits(-1.0f)) ||
+ (Val == FloatToBits(0.5f)) ||
+ (Val == FloatToBits(-0.5f)) ||
+ (Val == FloatToBits(2.0f)) ||
+ (Val == FloatToBits(-2.0f)) ||
+ (Val == FloatToBits(4.0f)) ||
+ (Val == FloatToBits(-4.0f)) ||
+ (Val == 0x3e22f983 && HasInv2Pi);
+}
+
+bool isInlinableLiteral16(int16_t Literal, bool HasInv2Pi) {
+ if (!HasInv2Pi)
+ return false;
+
+ if (isInlinableIntLiteral(Literal))
+ return true;
+
+ uint16_t Val = static_cast<uint16_t>(Literal);
+ return Val == 0x3C00 || // 1.0
+ Val == 0xBC00 || // -1.0
+ Val == 0x3800 || // 0.5
+ Val == 0xB800 || // -0.5
+ Val == 0x4000 || // 2.0
+ Val == 0xC000 || // -2.0
+ Val == 0x4400 || // 4.0
+ Val == 0xC400 || // -4.0
+ Val == 0x3118; // 1/2pi
+}
+
+bool isInlinableLiteralV216(int32_t Literal, bool HasInv2Pi) {
+ assert(HasInv2Pi);
+
+ if (isInt<16>(Literal) || isUInt<16>(Literal)) {
+ int16_t Trunc = static_cast<int16_t>(Literal);
+ return AMDGPU::isInlinableLiteral16(Trunc, HasInv2Pi);
+ }
+ if (!(Literal & 0xffff))
+ return AMDGPU::isInlinableLiteral16(Literal >> 16, HasInv2Pi);
+
+ int16_t Lo16 = static_cast<int16_t>(Literal);
+ int16_t Hi16 = static_cast<int16_t>(Literal >> 16);
+ return Lo16 == Hi16 && isInlinableLiteral16(Lo16, HasInv2Pi);
+}
+
+bool isInlinableIntLiteralV216(int32_t Literal) {
+ int16_t Lo16 = static_cast<int16_t>(Literal);
+ if (isInt<16>(Literal) || isUInt<16>(Literal))
+ return isInlinableIntLiteral(Lo16);
+
+ int16_t Hi16 = static_cast<int16_t>(Literal >> 16);
+ if (!(Literal & 0xffff))
+ return isInlinableIntLiteral(Hi16);
+ return Lo16 == Hi16 && isInlinableIntLiteral(Lo16);
+}
+
+bool isFoldableLiteralV216(int32_t Literal, bool HasInv2Pi) {
+ assert(HasInv2Pi);
+
+ int16_t Lo16 = static_cast<int16_t>(Literal);
+ if (isInt<16>(Literal) || isUInt<16>(Literal))
+ return true;
+
+ int16_t Hi16 = static_cast<int16_t>(Literal >> 16);
+ if (!(Literal & 0xffff))
+ return true;
+ return Lo16 == Hi16;
+}
+
+bool isArgPassedInSGPR(const Argument *A) {
+ const Function *F = A->getParent();
+
+ // Arguments to compute shaders are never a source of divergence.
+ CallingConv::ID CC = F->getCallingConv();
+ switch (CC) {
+ case CallingConv::AMDGPU_KERNEL:
+ case CallingConv::SPIR_KERNEL:
+ return true;
+ case CallingConv::AMDGPU_VS:
+ case CallingConv::AMDGPU_LS:
+ case CallingConv::AMDGPU_HS:
+ case CallingConv::AMDGPU_ES:
+ case CallingConv::AMDGPU_GS:
+ case CallingConv::AMDGPU_PS:
+ case CallingConv::AMDGPU_CS:
+ case CallingConv::AMDGPU_Gfx:
+ // For non-compute shaders, SGPR inputs are marked with either inreg or byval.
+ // Everything else is in VGPRs.
+ return F->getAttributes().hasParamAttr(A->getArgNo(), Attribute::InReg) ||
+ F->getAttributes().hasParamAttr(A->getArgNo(), Attribute::ByVal);
+ default:
+ // TODO: Should calls support inreg for SGPR inputs?
+ return false;
+ }
+}
+
+static bool hasSMEMByteOffset(const MCSubtargetInfo &ST) {
+ return isGCN3Encoding(ST) || isGFX10Plus(ST);
+}
+
+static bool hasSMRDSignedImmOffset(const MCSubtargetInfo &ST) {
+ return isGFX9Plus(ST);
+}
+
+bool isLegalSMRDEncodedUnsignedOffset(const MCSubtargetInfo &ST,
+ int64_t EncodedOffset) {
+ return hasSMEMByteOffset(ST) ? isUInt<20>(EncodedOffset)
+ : isUInt<8>(EncodedOffset);
+}
+
+bool isLegalSMRDEncodedSignedOffset(const MCSubtargetInfo &ST,
+ int64_t EncodedOffset,
+ bool IsBuffer) {
+ return !IsBuffer &&
+ hasSMRDSignedImmOffset(ST) &&
+ isInt<21>(EncodedOffset);
+}
+
+static bool isDwordAligned(uint64_t ByteOffset) {
+ return (ByteOffset & 3) == 0;
+}
+
+uint64_t convertSMRDOffsetUnits(const MCSubtargetInfo &ST,
+ uint64_t ByteOffset) {
+ if (hasSMEMByteOffset(ST))
+ return ByteOffset;
+
+ assert(isDwordAligned(ByteOffset));
+ return ByteOffset >> 2;
+}
+
+Optional<int64_t> getSMRDEncodedOffset(const MCSubtargetInfo &ST,
+ int64_t ByteOffset, bool IsBuffer) {
+ // The signed version is always a byte offset.
+ if (!IsBuffer && hasSMRDSignedImmOffset(ST)) {
+ assert(hasSMEMByteOffset(ST));
+ return isInt<20>(ByteOffset) ? Optional<int64_t>(ByteOffset) : None;
+ }
+
+ if (!isDwordAligned(ByteOffset) && !hasSMEMByteOffset(ST))
+ return None;
+
+ int64_t EncodedOffset = convertSMRDOffsetUnits(ST, ByteOffset);
+ return isLegalSMRDEncodedUnsignedOffset(ST, EncodedOffset)
+ ? Optional<int64_t>(EncodedOffset)
+ : None;
+}
+
+Optional<int64_t> getSMRDEncodedLiteralOffset32(const MCSubtargetInfo &ST,
+ int64_t ByteOffset) {
+ if (!isCI(ST) || !isDwordAligned(ByteOffset))
+ return None;
+
+ int64_t EncodedOffset = convertSMRDOffsetUnits(ST, ByteOffset);
+ return isUInt<32>(EncodedOffset) ? Optional<int64_t>(EncodedOffset) : None;
+}
+
+unsigned getNumFlatOffsetBits(const MCSubtargetInfo &ST, bool Signed) {
+ // Address offset is 12-bit signed for GFX10, 13-bit for GFX9.
+ if (AMDGPU::isGFX10(ST))
+ return Signed ? 12 : 11;
+
+ return Signed ? 13 : 12;
+}
+
+// Given Imm, split it into the values to put into the SOffset and ImmOffset
+// fields in an MUBUF instruction. Return false if it is not possible (due to a
+// hardware bug needing a workaround).
+//
+// The required alignment ensures that individual address components remain
+// aligned if they are aligned to begin with. It also ensures that additional
+// offsets within the given alignment can be added to the resulting ImmOffset.
+bool splitMUBUFOffset(uint32_t Imm, uint32_t &SOffset, uint32_t &ImmOffset,
+ const GCNSubtarget *Subtarget, Align Alignment) {
+ const uint32_t MaxImm = alignDown(4095, Alignment.value());
+ uint32_t Overflow = 0;
+
+ if (Imm > MaxImm) {
+ if (Imm <= MaxImm + 64) {
+ // Use an SOffset inline constant for 4..64
+ Overflow = Imm - MaxImm;
+ Imm = MaxImm;
+ } else {
+ // Try to keep the same value in SOffset for adjacent loads, so that
+ // the corresponding register contents can be re-used.
+ //
+ // Load values with all low-bits (except for alignment bits) set into
+ // SOffset, so that a larger range of values can be covered using
+ // s_movk_i32.
+ //
+ // Atomic operations fail to work correctly when individual address
+ // components are unaligned, even if their sum is aligned.
+ uint32_t High = (Imm + Alignment.value()) & ~4095;
+ uint32_t Low = (Imm + Alignment.value()) & 4095;
+ Imm = Low;
+ Overflow = High - Alignment.value();
+ }
+ }
+
+ // There is a hardware bug in SI and CI which prevents address clamping in
+ // MUBUF instructions from working correctly with SOffsets. The immediate
+ // offset is unaffected.
+ if (Overflow > 0 &&
+ Subtarget->getGeneration() <= AMDGPUSubtarget::SEA_ISLANDS)
+ return false;
+
+ ImmOffset = Imm;
+ SOffset = Overflow;
+ return true;
+}
+
+SIModeRegisterDefaults::SIModeRegisterDefaults(const Function &F) {
+ *this = getDefaultForCallingConv(F.getCallingConv());
+
+ StringRef IEEEAttr = F.getFnAttribute("amdgpu-ieee").getValueAsString();
+ if (!IEEEAttr.empty())
+ IEEE = IEEEAttr == "true";
+
+ StringRef DX10ClampAttr
+ = F.getFnAttribute("amdgpu-dx10-clamp").getValueAsString();
+ if (!DX10ClampAttr.empty())
+ DX10Clamp = DX10ClampAttr == "true";
+
+ StringRef DenormF32Attr = F.getFnAttribute("denormal-fp-math-f32").getValueAsString();
+ if (!DenormF32Attr.empty()) {
+ DenormalMode DenormMode = parseDenormalFPAttribute(DenormF32Attr);
+ FP32InputDenormals = DenormMode.Input == DenormalMode::IEEE;
+ FP32OutputDenormals = DenormMode.Output == DenormalMode::IEEE;
+ }
+
+ StringRef DenormAttr = F.getFnAttribute("denormal-fp-math").getValueAsString();
+ if (!DenormAttr.empty()) {
+ DenormalMode DenormMode = parseDenormalFPAttribute(DenormAttr);
+
+ if (DenormF32Attr.empty()) {
+ FP32InputDenormals = DenormMode.Input == DenormalMode::IEEE;
+ FP32OutputDenormals = DenormMode.Output == DenormalMode::IEEE;
+ }
+
+ FP64FP16InputDenormals = DenormMode.Input == DenormalMode::IEEE;
+ FP64FP16OutputDenormals = DenormMode.Output == DenormalMode::IEEE;
+ }
+}
+
+namespace {
+
+struct SourceOfDivergence {
+ unsigned Intr;
+};
+const SourceOfDivergence *lookupSourceOfDivergence(unsigned Intr);
+
+#define GET_SourcesOfDivergence_IMPL
+#define GET_Gfx9BufferFormat_IMPL
+#define GET_Gfx10PlusBufferFormat_IMPL
+#include "AMDGPUGenSearchableTables.inc"
+
+} // end anonymous namespace
+
+bool isIntrinsicSourceOfDivergence(unsigned IntrID) {
+ return lookupSourceOfDivergence(IntrID);
+}
+
+const GcnBufferFormatInfo *getGcnBufferFormatInfo(uint8_t BitsPerComp,
+ uint8_t NumComponents,
+ uint8_t NumFormat,
+ const MCSubtargetInfo &STI) {
+ return isGFX10Plus(STI)
+ ? getGfx10PlusBufferFormatInfo(BitsPerComp, NumComponents,
+ NumFormat)
+ : getGfx9BufferFormatInfo(BitsPerComp, NumComponents, NumFormat);
+}
+
+const GcnBufferFormatInfo *getGcnBufferFormatInfo(uint8_t Format,
+ const MCSubtargetInfo &STI) {
+ return isGFX10Plus(STI) ? getGfx10PlusBufferFormatInfo(Format)
+ : getGfx9BufferFormatInfo(Format);
+}
+
+} // namespace AMDGPU
+
+raw_ostream &operator<<(raw_ostream &OS,
+ const AMDGPU::IsaInfo::TargetIDSetting S) {
+ switch (S) {
+ case (AMDGPU::IsaInfo::TargetIDSetting::Unsupported):
+ OS << "Unsupported";
+ break;
+ case (AMDGPU::IsaInfo::TargetIDSetting::Any):
+ OS << "Any";
+ break;
+ case (AMDGPU::IsaInfo::TargetIDSetting::Off):
+ OS << "Off";
+ break;
+ case (AMDGPU::IsaInfo::TargetIDSetting::On):
+ OS << "On";
+ break;
+ }
+ return OS;
+}
+
+} // namespace llvm