aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm-project/llvm/lib/Target/CSKY/CSKYConstantIslandPass.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm-project/llvm/lib/Target/CSKY/CSKYConstantIslandPass.cpp')
-rw-r--r--contrib/llvm-project/llvm/lib/Target/CSKY/CSKYConstantIslandPass.cpp1376
1 files changed, 1376 insertions, 0 deletions
diff --git a/contrib/llvm-project/llvm/lib/Target/CSKY/CSKYConstantIslandPass.cpp b/contrib/llvm-project/llvm/lib/Target/CSKY/CSKYConstantIslandPass.cpp
new file mode 100644
index 000000000000..3ac335e2ad9d
--- /dev/null
+++ b/contrib/llvm-project/llvm/lib/Target/CSKY/CSKYConstantIslandPass.cpp
@@ -0,0 +1,1376 @@
+//===- CSKYConstantIslandPass.cpp - Emit PC Relative loads ----------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+//
+// Loading constants inline is expensive on CSKY and it's in general better
+// to place the constant nearby in code space and then it can be loaded with a
+// simple 16/32 bit load instruction like lrw.
+//
+// The constants can be not just numbers but addresses of functions and labels.
+// This can be particularly helpful in static relocation mode for embedded
+// non-linux targets.
+//
+//===----------------------------------------------------------------------===//
+
+#include "CSKY.h"
+#include "CSKYConstantPoolValue.h"
+#include "CSKYMachineFunctionInfo.h"
+#include "CSKYSubtarget.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/SmallSet.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/ADT/StringRef.h"
+#include "llvm/CodeGen/MachineBasicBlock.h"
+#include "llvm/CodeGen/MachineConstantPool.h"
+#include "llvm/CodeGen/MachineDominators.h"
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/MachineFunctionPass.h"
+#include "llvm/CodeGen/MachineInstr.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineOperand.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/Config/llvm-config.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/DebugLoc.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/Type.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Compiler.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/Format.h"
+#include "llvm/Support/MathExtras.h"
+#include "llvm/Support/raw_ostream.h"
+#include <algorithm>
+#include <cassert>
+#include <cstdint>
+#include <iterator>
+#include <vector>
+
+using namespace llvm;
+
+#define DEBUG_TYPE "CSKY-constant-islands"
+
+STATISTIC(NumCPEs, "Number of constpool entries");
+STATISTIC(NumSplit, "Number of uncond branches inserted");
+STATISTIC(NumCBrFixed, "Number of cond branches fixed");
+STATISTIC(NumUBrFixed, "Number of uncond branches fixed");
+
+namespace {
+
+using Iter = MachineBasicBlock::iterator;
+using ReverseIter = MachineBasicBlock::reverse_iterator;
+
+/// CSKYConstantIslands - Due to limited PC-relative displacements, CSKY
+/// requires constant pool entries to be scattered among the instructions
+/// inside a function. To do this, it completely ignores the normal LLVM
+/// constant pool; instead, it places constants wherever it feels like with
+/// special instructions.
+///
+/// The terminology used in this pass includes:
+/// Islands - Clumps of constants placed in the function.
+/// Water - Potential places where an island could be formed.
+/// CPE - A constant pool entry that has been placed somewhere, which
+/// tracks a list of users.
+
+class CSKYConstantIslands : public MachineFunctionPass {
+ /// BasicBlockInfo - Information about the offset and size of a single
+ /// basic block.
+ struct BasicBlockInfo {
+ /// Offset - Distance from the beginning of the function to the beginning
+ /// of this basic block.
+ ///
+ /// Offsets are computed assuming worst case padding before an aligned
+ /// block. This means that subtracting basic block offsets always gives a
+ /// conservative estimate of the real distance which may be smaller.
+ ///
+ /// Because worst case padding is used, the computed offset of an aligned
+ /// block may not actually be aligned.
+ unsigned Offset = 0;
+
+ /// Size - Size of the basic block in bytes. If the block contains
+ /// inline assembly, this is a worst case estimate.
+ ///
+ /// The size does not include any alignment padding whether from the
+ /// beginning of the block, or from an aligned jump table at the end.
+ unsigned Size = 0;
+
+ BasicBlockInfo() = default;
+
+ unsigned postOffset() const { return Offset + Size; }
+ };
+
+ std::vector<BasicBlockInfo> BBInfo;
+
+ /// WaterList - A sorted list of basic blocks where islands could be placed
+ /// (i.e. blocks that don't fall through to the following block, due
+ /// to a return, unreachable, or unconditional branch).
+ std::vector<MachineBasicBlock *> WaterList;
+
+ /// NewWaterList - The subset of WaterList that was created since the
+ /// previous iteration by inserting unconditional branches.
+ SmallSet<MachineBasicBlock *, 4> NewWaterList;
+
+ using water_iterator = std::vector<MachineBasicBlock *>::iterator;
+
+ /// CPUser - One user of a constant pool, keeping the machine instruction
+ /// pointer, the constant pool being referenced, and the max displacement
+ /// allowed from the instruction to the CP. The HighWaterMark records the
+ /// highest basic block where a new CPEntry can be placed. To ensure this
+ /// pass terminates, the CP entries are initially placed at the end of the
+ /// function and then move monotonically to lower addresses. The
+ /// exception to this rule is when the current CP entry for a particular
+ /// CPUser is out of range, but there is another CP entry for the same
+ /// constant value in range. We want to use the existing in-range CP
+ /// entry, but if it later moves out of range, the search for new water
+ /// should resume where it left off. The HighWaterMark is used to record
+ /// that point.
+ struct CPUser {
+ MachineInstr *MI;
+ MachineInstr *CPEMI;
+ MachineBasicBlock *HighWaterMark;
+
+ private:
+ unsigned MaxDisp;
+
+ public:
+ bool NegOk;
+
+ CPUser(MachineInstr *Mi, MachineInstr *Cpemi, unsigned Maxdisp, bool Neg)
+ : MI(Mi), CPEMI(Cpemi), MaxDisp(Maxdisp), NegOk(Neg) {
+ HighWaterMark = CPEMI->getParent();
+ }
+
+ /// getMaxDisp - Returns the maximum displacement supported by MI.
+ unsigned getMaxDisp() const { return MaxDisp - 16; }
+
+ void setMaxDisp(unsigned Val) { MaxDisp = Val; }
+ };
+
+ /// CPUsers - Keep track of all of the machine instructions that use various
+ /// constant pools and their max displacement.
+ std::vector<CPUser> CPUsers;
+
+ /// CPEntry - One per constant pool entry, keeping the machine instruction
+ /// pointer, the constpool index, and the number of CPUser's which
+ /// reference this entry.
+ struct CPEntry {
+ MachineInstr *CPEMI;
+ unsigned CPI;
+ unsigned RefCount;
+
+ CPEntry(MachineInstr *Cpemi, unsigned Cpi, unsigned Rc = 0)
+ : CPEMI(Cpemi), CPI(Cpi), RefCount(Rc) {}
+ };
+
+ /// CPEntries - Keep track of all of the constant pool entry machine
+ /// instructions. For each original constpool index (i.e. those that
+ /// existed upon entry to this pass), it keeps a vector of entries.
+ /// Original elements are cloned as we go along; the clones are
+ /// put in the vector of the original element, but have distinct CPIs.
+ std::vector<std::vector<CPEntry>> CPEntries;
+
+ /// ImmBranch - One per immediate branch, keeping the machine instruction
+ /// pointer, conditional or unconditional, the max displacement,
+ /// and (if isCond is true) the corresponding unconditional branch
+ /// opcode.
+ struct ImmBranch {
+ MachineInstr *MI;
+ unsigned MaxDisp : 31;
+ bool IsCond : 1;
+ int UncondBr;
+
+ ImmBranch(MachineInstr *Mi, unsigned Maxdisp, bool Cond, int Ubr)
+ : MI(Mi), MaxDisp(Maxdisp), IsCond(Cond), UncondBr(Ubr) {}
+ };
+
+ /// ImmBranches - Keep track of all the immediate branch instructions.
+ ///
+ std::vector<ImmBranch> ImmBranches;
+
+ const CSKYSubtarget *STI = nullptr;
+ const CSKYInstrInfo *TII;
+ CSKYMachineFunctionInfo *MFI;
+ MachineFunction *MF = nullptr;
+ MachineConstantPool *MCP = nullptr;
+
+ unsigned PICLabelUId;
+
+ void initPICLabelUId(unsigned UId) { PICLabelUId = UId; }
+
+ unsigned createPICLabelUId() { return PICLabelUId++; }
+
+public:
+ static char ID;
+
+ CSKYConstantIslands() : MachineFunctionPass(ID) {}
+
+ StringRef getPassName() const override { return "CSKY Constant Islands"; }
+
+ bool runOnMachineFunction(MachineFunction &F) override;
+
+ void getAnalysisUsage(AnalysisUsage &AU) const override {
+ AU.addRequired<MachineDominatorTree>();
+ MachineFunctionPass::getAnalysisUsage(AU);
+ }
+
+ MachineFunctionProperties getRequiredProperties() const override {
+ return MachineFunctionProperties().set(
+ MachineFunctionProperties::Property::NoVRegs);
+ }
+
+ void doInitialPlacement(std::vector<MachineInstr *> &CPEMIs);
+ CPEntry *findConstPoolEntry(unsigned CPI, const MachineInstr *CPEMI);
+ Align getCPEAlign(const MachineInstr &CPEMI);
+ void initializeFunctionInfo(const std::vector<MachineInstr *> &CPEMIs);
+ unsigned getOffsetOf(MachineInstr *MI) const;
+ unsigned getUserOffset(CPUser &) const;
+ void dumpBBs();
+
+ bool isOffsetInRange(unsigned UserOffset, unsigned TrialOffset, unsigned Disp,
+ bool NegativeOK);
+ bool isOffsetInRange(unsigned UserOffset, unsigned TrialOffset,
+ const CPUser &U);
+
+ void computeBlockSize(MachineBasicBlock *MBB);
+ MachineBasicBlock *splitBlockBeforeInstr(MachineInstr &MI);
+ void updateForInsertedWaterBlock(MachineBasicBlock *NewBB);
+ void adjustBBOffsetsAfter(MachineBasicBlock *BB);
+ bool decrementCPEReferenceCount(unsigned CPI, MachineInstr *CPEMI);
+ int findInRangeCPEntry(CPUser &U, unsigned UserOffset);
+ bool findAvailableWater(CPUser &U, unsigned UserOffset,
+ water_iterator &WaterIter);
+ void createNewWater(unsigned CPUserIndex, unsigned UserOffset,
+ MachineBasicBlock *&NewMBB);
+ bool handleConstantPoolUser(unsigned CPUserIndex);
+ void removeDeadCPEMI(MachineInstr *CPEMI);
+ bool removeUnusedCPEntries();
+ bool isCPEntryInRange(MachineInstr *MI, unsigned UserOffset,
+ MachineInstr *CPEMI, unsigned Disp, bool NegOk,
+ bool DoDump = false);
+ bool isWaterInRange(unsigned UserOffset, MachineBasicBlock *Water, CPUser &U,
+ unsigned &Growth);
+ bool isBBInRange(MachineInstr *MI, MachineBasicBlock *BB, unsigned Disp);
+ bool fixupImmediateBr(ImmBranch &Br);
+ bool fixupConditionalBr(ImmBranch &Br);
+ bool fixupUnconditionalBr(ImmBranch &Br);
+};
+} // end anonymous namespace
+
+char CSKYConstantIslands::ID = 0;
+
+bool CSKYConstantIslands::isOffsetInRange(unsigned UserOffset,
+ unsigned TrialOffset,
+ const CPUser &U) {
+ return isOffsetInRange(UserOffset, TrialOffset, U.getMaxDisp(), U.NegOk);
+}
+
+#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
+/// print block size and offset information - debugging
+LLVM_DUMP_METHOD void CSKYConstantIslands::dumpBBs() {
+ for (unsigned J = 0, E = BBInfo.size(); J != E; ++J) {
+ const BasicBlockInfo &BBI = BBInfo[J];
+ dbgs() << format("%08x %bb.%u\t", BBI.Offset, J)
+ << format(" size=%#x\n", BBInfo[J].Size);
+ }
+}
+#endif
+
+bool CSKYConstantIslands::runOnMachineFunction(MachineFunction &Mf) {
+ MF = &Mf;
+ MCP = Mf.getConstantPool();
+ STI = &static_cast<const CSKYSubtarget &>(Mf.getSubtarget());
+
+ LLVM_DEBUG(dbgs() << "***** CSKYConstantIslands: "
+ << MCP->getConstants().size() << " CP entries, aligned to "
+ << MCP->getConstantPoolAlign().value() << " bytes *****\n");
+
+ TII = STI->getInstrInfo();
+ MFI = MF->getInfo<CSKYMachineFunctionInfo>();
+
+ // This pass invalidates liveness information when it splits basic blocks.
+ MF->getRegInfo().invalidateLiveness();
+
+ // Renumber all of the machine basic blocks in the function, guaranteeing that
+ // the numbers agree with the position of the block in the function.
+ MF->RenumberBlocks();
+
+ bool MadeChange = false;
+
+ // Perform the initial placement of the constant pool entries. To start with,
+ // we put them all at the end of the function.
+ std::vector<MachineInstr *> CPEMIs;
+ if (!MCP->isEmpty())
+ doInitialPlacement(CPEMIs);
+
+ /// The next UID to take is the first unused one.
+ initPICLabelUId(CPEMIs.size());
+
+ // Do the initial scan of the function, building up information about the
+ // sizes of each block, the location of all the water, and finding all of the
+ // constant pool users.
+ initializeFunctionInfo(CPEMIs);
+ CPEMIs.clear();
+ LLVM_DEBUG(dumpBBs());
+
+ /// Remove dead constant pool entries.
+ MadeChange |= removeUnusedCPEntries();
+
+ // Iteratively place constant pool entries and fix up branches until there
+ // is no change.
+ unsigned NoCPIters = 0, NoBRIters = 0;
+ (void)NoBRIters;
+ while (true) {
+ LLVM_DEBUG(dbgs() << "Beginning CP iteration #" << NoCPIters << '\n');
+ bool CPChange = false;
+ for (unsigned I = 0, E = CPUsers.size(); I != E; ++I)
+ CPChange |= handleConstantPoolUser(I);
+ if (CPChange && ++NoCPIters > 30)
+ report_fatal_error("Constant Island pass failed to converge!");
+ LLVM_DEBUG(dumpBBs());
+
+ // Clear NewWaterList now. If we split a block for branches, it should
+ // appear as "new water" for the next iteration of constant pool placement.
+ NewWaterList.clear();
+
+ LLVM_DEBUG(dbgs() << "Beginning BR iteration #" << NoBRIters << '\n');
+ bool BRChange = false;
+ for (unsigned I = 0, E = ImmBranches.size(); I != E; ++I)
+ BRChange |= fixupImmediateBr(ImmBranches[I]);
+ if (BRChange && ++NoBRIters > 30)
+ report_fatal_error("Branch Fix Up pass failed to converge!");
+ LLVM_DEBUG(dumpBBs());
+ if (!CPChange && !BRChange)
+ break;
+ MadeChange = true;
+ }
+
+ LLVM_DEBUG(dbgs() << '\n'; dumpBBs());
+
+ BBInfo.clear();
+ WaterList.clear();
+ CPUsers.clear();
+ CPEntries.clear();
+ ImmBranches.clear();
+ return MadeChange;
+}
+
+/// doInitialPlacement - Perform the initial placement of the constant pool
+/// entries. To start with, we put them all at the end of the function.
+void CSKYConstantIslands::doInitialPlacement(
+ std::vector<MachineInstr *> &CPEMIs) {
+ // Create the basic block to hold the CPE's.
+ MachineBasicBlock *BB = MF->CreateMachineBasicBlock();
+ MF->push_back(BB);
+
+ // MachineConstantPool measures alignment in bytes. We measure in log2(bytes).
+ const Align MaxAlign = MCP->getConstantPoolAlign();
+
+ // Mark the basic block as required by the const-pool.
+ BB->setAlignment(Align(2));
+
+ // The function needs to be as aligned as the basic blocks. The linker may
+ // move functions around based on their alignment.
+ MF->ensureAlignment(BB->getAlignment());
+
+ // Order the entries in BB by descending alignment. That ensures correct
+ // alignment of all entries as long as BB is sufficiently aligned. Keep
+ // track of the insertion point for each alignment. We are going to bucket
+ // sort the entries as they are created.
+ SmallVector<MachineBasicBlock::iterator, 8> InsPoint(Log2(MaxAlign) + 1,
+ BB->end());
+
+ // Add all of the constants from the constant pool to the end block, use an
+ // identity mapping of CPI's to CPE's.
+ const std::vector<MachineConstantPoolEntry> &CPs = MCP->getConstants();
+
+ const DataLayout &TD = MF->getDataLayout();
+ for (unsigned I = 0, E = CPs.size(); I != E; ++I) {
+ unsigned Size = CPs[I].getSizeInBytes(TD);
+ assert(Size >= 4 && "Too small constant pool entry");
+ Align Alignment = CPs[I].getAlign();
+ // Verify that all constant pool entries are a multiple of their alignment.
+ // If not, we would have to pad them out so that instructions stay aligned.
+ assert(isAligned(Alignment, Size) && "CP Entry not multiple of 4 bytes!");
+
+ // Insert CONSTPOOL_ENTRY before entries with a smaller alignment.
+ unsigned LogAlign = Log2(Alignment);
+ MachineBasicBlock::iterator InsAt = InsPoint[LogAlign];
+
+ MachineInstr *CPEMI =
+ BuildMI(*BB, InsAt, DebugLoc(), TII->get(CSKY::CONSTPOOL_ENTRY))
+ .addImm(I)
+ .addConstantPoolIndex(I)
+ .addImm(Size);
+
+ CPEMIs.push_back(CPEMI);
+
+ // Ensure that future entries with higher alignment get inserted before
+ // CPEMI. This is bucket sort with iterators.
+ for (unsigned A = LogAlign + 1; A <= Log2(MaxAlign); ++A)
+ if (InsPoint[A] == InsAt)
+ InsPoint[A] = CPEMI;
+ // Add a new CPEntry, but no corresponding CPUser yet.
+ CPEntries.emplace_back(1, CPEntry(CPEMI, I));
+ ++NumCPEs;
+ LLVM_DEBUG(dbgs() << "Moved CPI#" << I << " to end of function, size = "
+ << Size << ", align = " << Alignment.value() << '\n');
+ }
+ LLVM_DEBUG(BB->dump());
+}
+
+/// BBHasFallthrough - Return true if the specified basic block can fallthrough
+/// into the block immediately after it.
+static bool bbHasFallthrough(MachineBasicBlock *MBB) {
+ // Get the next machine basic block in the function.
+ MachineFunction::iterator MBBI = MBB->getIterator();
+ // Can't fall off end of function.
+ if (std::next(MBBI) == MBB->getParent()->end())
+ return false;
+
+ MachineBasicBlock *NextBB = &*std::next(MBBI);
+ for (MachineBasicBlock::succ_iterator I = MBB->succ_begin(),
+ E = MBB->succ_end();
+ I != E; ++I)
+ if (*I == NextBB)
+ return true;
+
+ return false;
+}
+
+/// findConstPoolEntry - Given the constpool index and CONSTPOOL_ENTRY MI,
+/// look up the corresponding CPEntry.
+CSKYConstantIslands::CPEntry *
+CSKYConstantIslands::findConstPoolEntry(unsigned CPI,
+ const MachineInstr *CPEMI) {
+ std::vector<CPEntry> &CPEs = CPEntries[CPI];
+ // Number of entries per constpool index should be small, just do a
+ // linear search.
+ for (unsigned I = 0, E = CPEs.size(); I != E; ++I) {
+ if (CPEs[I].CPEMI == CPEMI)
+ return &CPEs[I];
+ }
+ return nullptr;
+}
+
+/// getCPEAlign - Returns the required alignment of the constant pool entry
+/// represented by CPEMI. Alignment is measured in log2(bytes) units.
+Align CSKYConstantIslands::getCPEAlign(const MachineInstr &CPEMI) {
+ assert(CPEMI.getOpcode() == CSKY::CONSTPOOL_ENTRY);
+
+ unsigned CPI = CPEMI.getOperand(1).getIndex();
+ assert(CPI < MCP->getConstants().size() && "Invalid constant pool index.");
+ return MCP->getConstants()[CPI].getAlign();
+}
+
+/// initializeFunctionInfo - Do the initial scan of the function, building up
+/// information about the sizes of each block, the location of all the water,
+/// and finding all of the constant pool users.
+void CSKYConstantIslands::initializeFunctionInfo(
+ const std::vector<MachineInstr *> &CPEMIs) {
+ BBInfo.clear();
+ BBInfo.resize(MF->getNumBlockIDs());
+
+ // First thing, compute the size of all basic blocks, and see if the function
+ // has any inline assembly in it. If so, we have to be conservative about
+ // alignment assumptions, as we don't know for sure the size of any
+ // instructions in the inline assembly.
+ for (MachineFunction::iterator I = MF->begin(), E = MF->end(); I != E; ++I)
+ computeBlockSize(&*I);
+
+ // Compute block offsets.
+ adjustBBOffsetsAfter(&MF->front());
+
+ // Now go back through the instructions and build up our data structures.
+ for (MachineBasicBlock &MBB : *MF) {
+ // If this block doesn't fall through into the next MBB, then this is
+ // 'water' that a constant pool island could be placed.
+ if (!bbHasFallthrough(&MBB))
+ WaterList.push_back(&MBB);
+ for (MachineInstr &MI : MBB) {
+ if (MI.isDebugInstr())
+ continue;
+
+ int Opc = MI.getOpcode();
+ if (MI.isBranch() && !MI.isIndirectBranch()) {
+ bool IsCond = MI.isConditionalBranch();
+ unsigned Bits = 0;
+ unsigned Scale = 1;
+ int UOpc = CSKY::BR32;
+
+ switch (MI.getOpcode()) {
+ case CSKY::BR16:
+ case CSKY::BF16:
+ case CSKY::BT16:
+ Bits = 10;
+ Scale = 2;
+ break;
+ default:
+ Bits = 16;
+ Scale = 2;
+ break;
+ }
+
+ // Record this immediate branch.
+ unsigned MaxOffs = ((1 << (Bits - 1)) - 1) * Scale;
+ ImmBranches.push_back(ImmBranch(&MI, MaxOffs, IsCond, UOpc));
+ }
+
+ if (Opc == CSKY::CONSTPOOL_ENTRY)
+ continue;
+
+ // Scan the instructions for constant pool operands.
+ for (unsigned Op = 0, E = MI.getNumOperands(); Op != E; ++Op)
+ if (MI.getOperand(Op).isCPI()) {
+ // We found one. The addressing mode tells us the max displacement
+ // from the PC that this instruction permits.
+
+ // Basic size info comes from the TSFlags field.
+ unsigned Bits = 0;
+ unsigned Scale = 1;
+ bool NegOk = false;
+
+ switch (Opc) {
+ default:
+ llvm_unreachable("Unknown addressing mode for CP reference!");
+ case CSKY::MOVIH32:
+ case CSKY::ORI32:
+ continue;
+ case CSKY::PseudoTLSLA32:
+ case CSKY::JSRI32:
+ case CSKY::JMPI32:
+ case CSKY::LRW32:
+ case CSKY::LRW32_Gen:
+ Bits = 16;
+ Scale = 4;
+ break;
+ case CSKY::f2FLRW_S:
+ case CSKY::f2FLRW_D:
+ Bits = 8;
+ Scale = 4;
+ break;
+ case CSKY::GRS32:
+ Bits = 17;
+ Scale = 2;
+ NegOk = true;
+ break;
+ }
+ // Remember that this is a user of a CP entry.
+ unsigned CPI = MI.getOperand(Op).getIndex();
+ MachineInstr *CPEMI = CPEMIs[CPI];
+ unsigned MaxOffs = ((1 << Bits) - 1) * Scale;
+ CPUsers.push_back(CPUser(&MI, CPEMI, MaxOffs, NegOk));
+
+ // Increment corresponding CPEntry reference count.
+ CPEntry *CPE = findConstPoolEntry(CPI, CPEMI);
+ assert(CPE && "Cannot find a corresponding CPEntry!");
+ CPE->RefCount++;
+
+ // Instructions can only use one CP entry, don't bother scanning the
+ // rest of the operands.
+ break;
+ }
+ }
+ }
+}
+
+/// computeBlockSize - Compute the size and some alignment information for MBB.
+/// This function updates BBInfo directly.
+void CSKYConstantIslands::computeBlockSize(MachineBasicBlock *MBB) {
+ BasicBlockInfo &BBI = BBInfo[MBB->getNumber()];
+ BBI.Size = 0;
+
+ for (const MachineInstr &MI : *MBB)
+ BBI.Size += TII->getInstSizeInBytes(MI);
+}
+
+/// getOffsetOf - Return the current offset of the specified machine instruction
+/// from the start of the function. This offset changes as stuff is moved
+/// around inside the function.
+unsigned CSKYConstantIslands::getOffsetOf(MachineInstr *MI) const {
+ MachineBasicBlock *MBB = MI->getParent();
+
+ // The offset is composed of two things: the sum of the sizes of all MBB's
+ // before this instruction's block, and the offset from the start of the block
+ // it is in.
+ unsigned Offset = BBInfo[MBB->getNumber()].Offset;
+
+ // Sum instructions before MI in MBB.
+ for (MachineBasicBlock::iterator I = MBB->begin(); &*I != MI; ++I) {
+ assert(I != MBB->end() && "Didn't find MI in its own basic block?");
+ Offset += TII->getInstSizeInBytes(*I);
+ }
+ return Offset;
+}
+
+/// CompareMBBNumbers - Little predicate function to sort the WaterList by MBB
+/// ID.
+static bool compareMbbNumbers(const MachineBasicBlock *LHS,
+ const MachineBasicBlock *RHS) {
+ return LHS->getNumber() < RHS->getNumber();
+}
+
+/// updateForInsertedWaterBlock - When a block is newly inserted into the
+/// machine function, it upsets all of the block numbers. Renumber the blocks
+/// and update the arrays that parallel this numbering.
+void CSKYConstantIslands::updateForInsertedWaterBlock(
+ MachineBasicBlock *NewBB) {
+ // Renumber the MBB's to keep them consecutive.
+ NewBB->getParent()->RenumberBlocks(NewBB);
+
+ // Insert an entry into BBInfo to align it properly with the (newly
+ // renumbered) block numbers.
+ BBInfo.insert(BBInfo.begin() + NewBB->getNumber(), BasicBlockInfo());
+
+ // Next, update WaterList. Specifically, we need to add NewMBB as having
+ // available water after it.
+ water_iterator IP = llvm::lower_bound(WaterList, NewBB, compareMbbNumbers);
+ WaterList.insert(IP, NewBB);
+}
+
+unsigned CSKYConstantIslands::getUserOffset(CPUser &U) const {
+ unsigned UserOffset = getOffsetOf(U.MI);
+
+ UserOffset &= ~3u;
+
+ return UserOffset;
+}
+
+/// Split the basic block containing MI into two blocks, which are joined by
+/// an unconditional branch. Update data structures and renumber blocks to
+/// account for this change and returns the newly created block.
+MachineBasicBlock *
+CSKYConstantIslands::splitBlockBeforeInstr(MachineInstr &MI) {
+ MachineBasicBlock *OrigBB = MI.getParent();
+
+ // Create a new MBB for the code after the OrigBB.
+ MachineBasicBlock *NewBB =
+ MF->CreateMachineBasicBlock(OrigBB->getBasicBlock());
+ MachineFunction::iterator MBBI = ++OrigBB->getIterator();
+ MF->insert(MBBI, NewBB);
+
+ // Splice the instructions starting with MI over to NewBB.
+ NewBB->splice(NewBB->end(), OrigBB, MI, OrigBB->end());
+
+ // Add an unconditional branch from OrigBB to NewBB.
+ // Note the new unconditional branch is not being recorded.
+ // There doesn't seem to be meaningful DebugInfo available; this doesn't
+ // correspond to anything in the source.
+
+ // TODO: Add support for 16bit instr.
+ BuildMI(OrigBB, DebugLoc(), TII->get(CSKY::BR32)).addMBB(NewBB);
+ ++NumSplit;
+
+ // Update the CFG. All succs of OrigBB are now succs of NewBB.
+ NewBB->transferSuccessors(OrigBB);
+
+ // OrigBB branches to NewBB.
+ OrigBB->addSuccessor(NewBB);
+
+ // Update internal data structures to account for the newly inserted MBB.
+ // This is almost the same as updateForInsertedWaterBlock, except that
+ // the Water goes after OrigBB, not NewBB.
+ MF->RenumberBlocks(NewBB);
+
+ // Insert an entry into BBInfo to align it properly with the (newly
+ // renumbered) block numbers.
+ BBInfo.insert(BBInfo.begin() + NewBB->getNumber(), BasicBlockInfo());
+
+ // Next, update WaterList. Specifically, we need to add OrigMBB as having
+ // available water after it (but not if it's already there, which happens
+ // when splitting before a conditional branch that is followed by an
+ // unconditional branch - in that case we want to insert NewBB).
+ water_iterator IP = llvm::lower_bound(WaterList, OrigBB, compareMbbNumbers);
+ MachineBasicBlock *WaterBB = *IP;
+ if (WaterBB == OrigBB)
+ WaterList.insert(std::next(IP), NewBB);
+ else
+ WaterList.insert(IP, OrigBB);
+ NewWaterList.insert(OrigBB);
+
+ // Figure out how large the OrigBB is. As the first half of the original
+ // block, it cannot contain a tablejump. The size includes
+ // the new jump we added. (It should be possible to do this without
+ // recounting everything, but it's very confusing, and this is rarely
+ // executed.)
+ computeBlockSize(OrigBB);
+
+ // Figure out how large the NewMBB is. As the second half of the original
+ // block, it may contain a tablejump.
+ computeBlockSize(NewBB);
+
+ // All BBOffsets following these blocks must be modified.
+ adjustBBOffsetsAfter(OrigBB);
+
+ return NewBB;
+}
+
+/// isOffsetInRange - Checks whether UserOffset (the location of a constant pool
+/// reference) is within MaxDisp of TrialOffset (a proposed location of a
+/// constant pool entry).
+bool CSKYConstantIslands::isOffsetInRange(unsigned UserOffset,
+ unsigned TrialOffset,
+ unsigned MaxDisp, bool NegativeOK) {
+ if (UserOffset <= TrialOffset) {
+ // User before the Trial.
+ if (TrialOffset - UserOffset <= MaxDisp)
+ return true;
+ } else if (NegativeOK) {
+ if (UserOffset - TrialOffset <= MaxDisp)
+ return true;
+ }
+ return false;
+}
+
+/// isWaterInRange - Returns true if a CPE placed after the specified
+/// Water (a basic block) will be in range for the specific MI.
+///
+/// Compute how much the function will grow by inserting a CPE after Water.
+bool CSKYConstantIslands::isWaterInRange(unsigned UserOffset,
+ MachineBasicBlock *Water, CPUser &U,
+ unsigned &Growth) {
+ unsigned CPEOffset = BBInfo[Water->getNumber()].postOffset();
+ unsigned NextBlockOffset;
+ Align NextBlockAlignment;
+ MachineFunction::const_iterator NextBlock = ++Water->getIterator();
+ if (NextBlock == MF->end()) {
+ NextBlockOffset = BBInfo[Water->getNumber()].postOffset();
+ NextBlockAlignment = Align(4);
+ } else {
+ NextBlockOffset = BBInfo[NextBlock->getNumber()].Offset;
+ NextBlockAlignment = NextBlock->getAlignment();
+ }
+ unsigned Size = U.CPEMI->getOperand(2).getImm();
+ unsigned CPEEnd = CPEOffset + Size;
+
+ // The CPE may be able to hide in the alignment padding before the next
+ // block. It may also cause more padding to be required if it is more aligned
+ // that the next block.
+ if (CPEEnd > NextBlockOffset) {
+ Growth = CPEEnd - NextBlockOffset;
+ // Compute the padding that would go at the end of the CPE to align the next
+ // block.
+ Growth += offsetToAlignment(CPEEnd, NextBlockAlignment);
+
+ // If the CPE is to be inserted before the instruction, that will raise
+ // the offset of the instruction. Also account for unknown alignment padding
+ // in blocks between CPE and the user.
+ if (CPEOffset < UserOffset)
+ UserOffset += Growth;
+ } else
+ // CPE fits in existing padding.
+ Growth = 0;
+
+ return isOffsetInRange(UserOffset, CPEOffset, U);
+}
+
+/// isCPEntryInRange - Returns true if the distance between specific MI and
+/// specific ConstPool entry instruction can fit in MI's displacement field.
+bool CSKYConstantIslands::isCPEntryInRange(MachineInstr *MI,
+ unsigned UserOffset,
+ MachineInstr *CPEMI,
+ unsigned MaxDisp, bool NegOk,
+ bool DoDump) {
+ unsigned CPEOffset = getOffsetOf(CPEMI);
+
+ if (DoDump) {
+ LLVM_DEBUG({
+ unsigned Block = MI->getParent()->getNumber();
+ const BasicBlockInfo &BBI = BBInfo[Block];
+ dbgs() << "User of CPE#" << CPEMI->getOperand(0).getImm()
+ << " max delta=" << MaxDisp
+ << format(" insn address=%#x", UserOffset) << " in "
+ << printMBBReference(*MI->getParent()) << ": "
+ << format("%#x-%x\t", BBI.Offset, BBI.postOffset()) << *MI
+ << format("CPE address=%#x offset=%+d: ", CPEOffset,
+ int(CPEOffset - UserOffset));
+ });
+ }
+
+ return isOffsetInRange(UserOffset, CPEOffset, MaxDisp, NegOk);
+}
+
+#ifndef NDEBUG
+/// BBIsJumpedOver - Return true of the specified basic block's only predecessor
+/// unconditionally branches to its only successor.
+static bool bbIsJumpedOver(MachineBasicBlock *MBB) {
+ if (MBB->pred_size() != 1 || MBB->succ_size() != 1)
+ return false;
+ MachineBasicBlock *Succ = *MBB->succ_begin();
+ MachineBasicBlock *Pred = *MBB->pred_begin();
+ MachineInstr *PredMI = &Pred->back();
+ if (PredMI->getOpcode() == CSKY::BR32 /*TODO: change to 16bit instr. */)
+ return PredMI->getOperand(0).getMBB() == Succ;
+ return false;
+}
+#endif
+
+void CSKYConstantIslands::adjustBBOffsetsAfter(MachineBasicBlock *BB) {
+ unsigned BBNum = BB->getNumber();
+ for (unsigned I = BBNum + 1, E = MF->getNumBlockIDs(); I < E; ++I) {
+ // Get the offset and known bits at the end of the layout predecessor.
+ // Include the alignment of the current block.
+ unsigned Offset = BBInfo[I - 1].Offset + BBInfo[I - 1].Size;
+ BBInfo[I].Offset = Offset;
+ }
+}
+
+/// decrementCPEReferenceCount - find the constant pool entry with index CPI
+/// and instruction CPEMI, and decrement its refcount. If the refcount
+/// becomes 0 remove the entry and instruction. Returns true if we removed
+/// the entry, false if we didn't.
+bool CSKYConstantIslands::decrementCPEReferenceCount(unsigned CPI,
+ MachineInstr *CPEMI) {
+ // Find the old entry. Eliminate it if it is no longer used.
+ CPEntry *CPE = findConstPoolEntry(CPI, CPEMI);
+ assert(CPE && "Unexpected!");
+ if (--CPE->RefCount == 0) {
+ removeDeadCPEMI(CPEMI);
+ CPE->CPEMI = nullptr;
+ --NumCPEs;
+ return true;
+ }
+ return false;
+}
+
+/// LookForCPEntryInRange - see if the currently referenced CPE is in range;
+/// if not, see if an in-range clone of the CPE is in range, and if so,
+/// change the data structures so the user references the clone. Returns:
+/// 0 = no existing entry found
+/// 1 = entry found, and there were no code insertions or deletions
+/// 2 = entry found, and there were code insertions or deletions
+int CSKYConstantIslands::findInRangeCPEntry(CPUser &U, unsigned UserOffset) {
+ MachineInstr *UserMI = U.MI;
+ MachineInstr *CPEMI = U.CPEMI;
+
+ // Check to see if the CPE is already in-range.
+ if (isCPEntryInRange(UserMI, UserOffset, CPEMI, U.getMaxDisp(), U.NegOk,
+ true)) {
+ LLVM_DEBUG(dbgs() << "In range\n");
+ return 1;
+ }
+
+ // No. Look for previously created clones of the CPE that are in range.
+ unsigned CPI = CPEMI->getOperand(1).getIndex();
+ std::vector<CPEntry> &CPEs = CPEntries[CPI];
+ for (unsigned I = 0, E = CPEs.size(); I != E; ++I) {
+ // We already tried this one
+ if (CPEs[I].CPEMI == CPEMI)
+ continue;
+ // Removing CPEs can leave empty entries, skip
+ if (CPEs[I].CPEMI == nullptr)
+ continue;
+ if (isCPEntryInRange(UserMI, UserOffset, CPEs[I].CPEMI, U.getMaxDisp(),
+ U.NegOk)) {
+ LLVM_DEBUG(dbgs() << "Replacing CPE#" << CPI << " with CPE#"
+ << CPEs[I].CPI << "\n");
+ // Point the CPUser node to the replacement
+ U.CPEMI = CPEs[I].CPEMI;
+ // Change the CPI in the instruction operand to refer to the clone.
+ for (unsigned J = 0, E = UserMI->getNumOperands(); J != E; ++J)
+ if (UserMI->getOperand(J).isCPI()) {
+ UserMI->getOperand(J).setIndex(CPEs[I].CPI);
+ break;
+ }
+ // Adjust the refcount of the clone...
+ CPEs[I].RefCount++;
+ // ...and the original. If we didn't remove the old entry, none of the
+ // addresses changed, so we don't need another pass.
+ return decrementCPEReferenceCount(CPI, CPEMI) ? 2 : 1;
+ }
+ }
+ return 0;
+}
+
+/// getUnconditionalBrDisp - Returns the maximum displacement that can fit in
+/// the specific unconditional branch instruction.
+static inline unsigned getUnconditionalBrDisp(int Opc) {
+ unsigned Bits, Scale;
+
+ switch (Opc) {
+ case CSKY::BR16:
+ Bits = 10;
+ Scale = 2;
+ break;
+ case CSKY::BR32:
+ Bits = 16;
+ Scale = 2;
+ break;
+ default:
+ assert(0);
+ break;
+ }
+
+ unsigned MaxOffs = ((1 << (Bits - 1)) - 1) * Scale;
+ return MaxOffs;
+}
+
+/// findAvailableWater - Look for an existing entry in the WaterList in which
+/// we can place the CPE referenced from U so it's within range of U's MI.
+/// Returns true if found, false if not. If it returns true, WaterIter
+/// is set to the WaterList entry.
+/// To ensure that this pass
+/// terminates, the CPE location for a particular CPUser is only allowed to
+/// move to a lower address, so search backward from the end of the list and
+/// prefer the first water that is in range.
+bool CSKYConstantIslands::findAvailableWater(CPUser &U, unsigned UserOffset,
+ water_iterator &WaterIter) {
+ if (WaterList.empty())
+ return false;
+
+ unsigned BestGrowth = ~0u;
+ for (water_iterator IP = std::prev(WaterList.end()), B = WaterList.begin();;
+ --IP) {
+ MachineBasicBlock *WaterBB = *IP;
+ // Check if water is in range and is either at a lower address than the
+ // current "high water mark" or a new water block that was created since
+ // the previous iteration by inserting an unconditional branch. In the
+ // latter case, we want to allow resetting the high water mark back to
+ // this new water since we haven't seen it before. Inserting branches
+ // should be relatively uncommon and when it does happen, we want to be
+ // sure to take advantage of it for all the CPEs near that block, so that
+ // we don't insert more branches than necessary.
+ unsigned Growth;
+ if (isWaterInRange(UserOffset, WaterBB, U, Growth) &&
+ (WaterBB->getNumber() < U.HighWaterMark->getNumber() ||
+ NewWaterList.count(WaterBB)) &&
+ Growth < BestGrowth) {
+ // This is the least amount of required padding seen so far.
+ BestGrowth = Growth;
+ WaterIter = IP;
+ LLVM_DEBUG(dbgs() << "Found water after " << printMBBReference(*WaterBB)
+ << " Growth=" << Growth << '\n');
+
+ // Keep looking unless it is perfect.
+ if (BestGrowth == 0)
+ return true;
+ }
+ if (IP == B)
+ break;
+ }
+ return BestGrowth != ~0u;
+}
+
+/// createNewWater - No existing WaterList entry will work for
+/// CPUsers[CPUserIndex], so create a place to put the CPE. The end of the
+/// block is used if in range, and the conditional branch munged so control
+/// flow is correct. Otherwise the block is split to create a hole with an
+/// unconditional branch around it. In either case NewMBB is set to a
+/// block following which the new island can be inserted (the WaterList
+/// is not adjusted).
+void CSKYConstantIslands::createNewWater(unsigned CPUserIndex,
+ unsigned UserOffset,
+ MachineBasicBlock *&NewMBB) {
+ CPUser &U = CPUsers[CPUserIndex];
+ MachineInstr *UserMI = U.MI;
+ MachineInstr *CPEMI = U.CPEMI;
+ MachineBasicBlock *UserMBB = UserMI->getParent();
+ const BasicBlockInfo &UserBBI = BBInfo[UserMBB->getNumber()];
+
+ // If the block does not end in an unconditional branch already, and if the
+ // end of the block is within range, make new water there.
+ if (bbHasFallthrough(UserMBB)) {
+ // Size of branch to insert.
+ unsigned Delta = 4;
+ // Compute the offset where the CPE will begin.
+ unsigned CPEOffset = UserBBI.postOffset() + Delta;
+
+ if (isOffsetInRange(UserOffset, CPEOffset, U)) {
+ LLVM_DEBUG(dbgs() << "Split at end of " << printMBBReference(*UserMBB)
+ << format(", expected CPE offset %#x\n", CPEOffset));
+ NewMBB = &*++UserMBB->getIterator();
+ // Add an unconditional branch from UserMBB to fallthrough block. Record
+ // it for branch lengthening; this new branch will not get out of range,
+ // but if the preceding conditional branch is out of range, the targets
+ // will be exchanged, and the altered branch may be out of range, so the
+ // machinery has to know about it.
+
+ // TODO: Add support for 16bit instr.
+ int UncondBr = CSKY::BR32;
+ auto *NewMI = BuildMI(UserMBB, DebugLoc(), TII->get(UncondBr))
+ .addMBB(NewMBB)
+ .getInstr();
+ unsigned MaxDisp = getUnconditionalBrDisp(UncondBr);
+ ImmBranches.push_back(
+ ImmBranch(&UserMBB->back(), MaxDisp, false, UncondBr));
+ BBInfo[UserMBB->getNumber()].Size += TII->getInstSizeInBytes(*NewMI);
+ adjustBBOffsetsAfter(UserMBB);
+ return;
+ }
+ }
+
+ // What a big block. Find a place within the block to split it.
+
+ // Try to split the block so it's fully aligned. Compute the latest split
+ // point where we can add a 4-byte branch instruction, and then align to
+ // Align which is the largest possible alignment in the function.
+ const Align Align = MF->getAlignment();
+ unsigned BaseInsertOffset = UserOffset + U.getMaxDisp();
+ LLVM_DEBUG(dbgs() << format("Split in middle of big block before %#x",
+ BaseInsertOffset));
+
+ // The 4 in the following is for the unconditional branch we'll be inserting
+ // Alignment of the island is handled
+ // inside isOffsetInRange.
+ BaseInsertOffset -= 4;
+
+ LLVM_DEBUG(dbgs() << format(", adjusted to %#x", BaseInsertOffset)
+ << " la=" << Log2(Align) << '\n');
+
+ // This could point off the end of the block if we've already got constant
+ // pool entries following this block; only the last one is in the water list.
+ // Back past any possible branches (allow for a conditional and a maximally
+ // long unconditional).
+ if (BaseInsertOffset + 8 >= UserBBI.postOffset()) {
+ BaseInsertOffset = UserBBI.postOffset() - 8;
+ LLVM_DEBUG(dbgs() << format("Move inside block: %#x\n", BaseInsertOffset));
+ }
+ unsigned EndInsertOffset =
+ BaseInsertOffset + 4 + CPEMI->getOperand(2).getImm();
+ MachineBasicBlock::iterator MI = UserMI;
+ ++MI;
+ unsigned CPUIndex = CPUserIndex + 1;
+ unsigned NumCPUsers = CPUsers.size();
+ for (unsigned Offset = UserOffset + TII->getInstSizeInBytes(*UserMI);
+ Offset < BaseInsertOffset;
+ Offset += TII->getInstSizeInBytes(*MI), MI = std::next(MI)) {
+ assert(MI != UserMBB->end() && "Fell off end of block");
+ if (CPUIndex < NumCPUsers && CPUsers[CPUIndex].MI == MI) {
+ CPUser &U = CPUsers[CPUIndex];
+ if (!isOffsetInRange(Offset, EndInsertOffset, U)) {
+ // Shift intertion point by one unit of alignment so it is within reach.
+ BaseInsertOffset -= Align.value();
+ EndInsertOffset -= Align.value();
+ }
+ // This is overly conservative, as we don't account for CPEMIs being
+ // reused within the block, but it doesn't matter much. Also assume CPEs
+ // are added in order with alignment padding. We may eventually be able
+ // to pack the aligned CPEs better.
+ EndInsertOffset += U.CPEMI->getOperand(2).getImm();
+ CPUIndex++;
+ }
+ }
+
+ NewMBB = splitBlockBeforeInstr(*--MI);
+}
+
+/// handleConstantPoolUser - Analyze the specified user, checking to see if it
+/// is out-of-range. If so, pick up the constant pool value and move it some
+/// place in-range. Return true if we changed any addresses (thus must run
+/// another pass of branch lengthening), false otherwise.
+bool CSKYConstantIslands::handleConstantPoolUser(unsigned CPUserIndex) {
+ CPUser &U = CPUsers[CPUserIndex];
+ MachineInstr *UserMI = U.MI;
+ MachineInstr *CPEMI = U.CPEMI;
+ unsigned CPI = CPEMI->getOperand(1).getIndex();
+ unsigned Size = CPEMI->getOperand(2).getImm();
+ // Compute this only once, it's expensive.
+ unsigned UserOffset = getUserOffset(U);
+
+ // See if the current entry is within range, or there is a clone of it
+ // in range.
+ int result = findInRangeCPEntry(U, UserOffset);
+ if (result == 1)
+ return false;
+ if (result == 2)
+ return true;
+
+ // Look for water where we can place this CPE.
+ MachineBasicBlock *NewIsland = MF->CreateMachineBasicBlock();
+ MachineBasicBlock *NewMBB;
+ water_iterator IP;
+ if (findAvailableWater(U, UserOffset, IP)) {
+ LLVM_DEBUG(dbgs() << "Found water in range\n");
+ MachineBasicBlock *WaterBB = *IP;
+
+ // If the original WaterList entry was "new water" on this iteration,
+ // propagate that to the new island. This is just keeping NewWaterList
+ // updated to match the WaterList, which will be updated below.
+ if (NewWaterList.erase(WaterBB))
+ NewWaterList.insert(NewIsland);
+
+ // The new CPE goes before the following block (NewMBB).
+ NewMBB = &*++WaterBB->getIterator();
+ } else {
+ LLVM_DEBUG(dbgs() << "No water found\n");
+ createNewWater(CPUserIndex, UserOffset, NewMBB);
+
+ // splitBlockBeforeInstr adds to WaterList, which is important when it is
+ // called while handling branches so that the water will be seen on the
+ // next iteration for constant pools, but in this context, we don't want
+ // it. Check for this so it will be removed from the WaterList.
+ // Also remove any entry from NewWaterList.
+ MachineBasicBlock *WaterBB = &*--NewMBB->getIterator();
+ IP = llvm::find(WaterList, WaterBB);
+ if (IP != WaterList.end())
+ NewWaterList.erase(WaterBB);
+
+ // We are adding new water. Update NewWaterList.
+ NewWaterList.insert(NewIsland);
+ }
+
+ // Remove the original WaterList entry; we want subsequent insertions in
+ // this vicinity to go after the one we're about to insert. This
+ // considerably reduces the number of times we have to move the same CPE
+ // more than once and is also important to ensure the algorithm terminates.
+ if (IP != WaterList.end())
+ WaterList.erase(IP);
+
+ // Okay, we know we can put an island before NewMBB now, do it!
+ MF->insert(NewMBB->getIterator(), NewIsland);
+
+ // Update internal data structures to account for the newly inserted MBB.
+ updateForInsertedWaterBlock(NewIsland);
+
+ // Decrement the old entry, and remove it if refcount becomes 0.
+ decrementCPEReferenceCount(CPI, CPEMI);
+
+ // No existing clone of this CPE is within range.
+ // We will be generating a new clone. Get a UID for it.
+ unsigned ID = createPICLabelUId();
+
+ // Now that we have an island to add the CPE to, clone the original CPE and
+ // add it to the island.
+ U.HighWaterMark = NewIsland;
+ U.CPEMI = BuildMI(NewIsland, DebugLoc(), TII->get(CSKY::CONSTPOOL_ENTRY))
+ .addImm(ID)
+ .addConstantPoolIndex(CPI)
+ .addImm(Size);
+ CPEntries[CPI].push_back(CPEntry(U.CPEMI, ID, 1));
+ ++NumCPEs;
+
+ // Mark the basic block as aligned as required by the const-pool entry.
+ NewIsland->setAlignment(getCPEAlign(*U.CPEMI));
+
+ // Increase the size of the island block to account for the new entry.
+ BBInfo[NewIsland->getNumber()].Size += Size;
+ adjustBBOffsetsAfter(&*--NewIsland->getIterator());
+
+ // Finally, change the CPI in the instruction operand to be ID.
+ for (unsigned I = 0, E = UserMI->getNumOperands(); I != E; ++I)
+ if (UserMI->getOperand(I).isCPI()) {
+ UserMI->getOperand(I).setIndex(ID);
+ break;
+ }
+
+ LLVM_DEBUG(
+ dbgs() << " Moved CPE to #" << ID << " CPI=" << CPI
+ << format(" offset=%#x\n", BBInfo[NewIsland->getNumber()].Offset));
+
+ return true;
+}
+
+/// removeDeadCPEMI - Remove a dead constant pool entry instruction. Update
+/// sizes and offsets of impacted basic blocks.
+void CSKYConstantIslands::removeDeadCPEMI(MachineInstr *CPEMI) {
+ MachineBasicBlock *CPEBB = CPEMI->getParent();
+ unsigned Size = CPEMI->getOperand(2).getImm();
+ CPEMI->eraseFromParent();
+ BBInfo[CPEBB->getNumber()].Size -= Size;
+ // All succeeding offsets have the current size value added in, fix this.
+ if (CPEBB->empty()) {
+ BBInfo[CPEBB->getNumber()].Size = 0;
+
+ // This block no longer needs to be aligned.
+ CPEBB->setAlignment(Align(4));
+ } else {
+ // Entries are sorted by descending alignment, so realign from the front.
+ CPEBB->setAlignment(getCPEAlign(*CPEBB->begin()));
+ }
+
+ adjustBBOffsetsAfter(CPEBB);
+ // An island has only one predecessor BB and one successor BB. Check if
+ // this BB's predecessor jumps directly to this BB's successor. This
+ // shouldn't happen currently.
+ assert(!bbIsJumpedOver(CPEBB) && "How did this happen?");
+ // FIXME: remove the empty blocks after all the work is done?
+}
+
+/// removeUnusedCPEntries - Remove constant pool entries whose refcounts
+/// are zero.
+bool CSKYConstantIslands::removeUnusedCPEntries() {
+ unsigned MadeChange = false;
+ for (unsigned I = 0, E = CPEntries.size(); I != E; ++I) {
+ std::vector<CPEntry> &CPEs = CPEntries[I];
+ for (unsigned J = 0, Ee = CPEs.size(); J != Ee; ++J) {
+ if (CPEs[J].RefCount == 0 && CPEs[J].CPEMI) {
+ removeDeadCPEMI(CPEs[J].CPEMI);
+ CPEs[J].CPEMI = nullptr;
+ MadeChange = true;
+ }
+ }
+ }
+ return MadeChange;
+}
+
+/// isBBInRange - Returns true if the distance between specific MI and
+/// specific BB can fit in MI's displacement field.
+bool CSKYConstantIslands::isBBInRange(MachineInstr *MI,
+ MachineBasicBlock *DestBB,
+ unsigned MaxDisp) {
+ unsigned BrOffset = getOffsetOf(MI);
+ unsigned DestOffset = BBInfo[DestBB->getNumber()].Offset;
+
+ LLVM_DEBUG(dbgs() << "Branch of destination " << printMBBReference(*DestBB)
+ << " from " << printMBBReference(*MI->getParent())
+ << " max delta=" << MaxDisp << " from " << getOffsetOf(MI)
+ << " to " << DestOffset << " offset "
+ << int(DestOffset - BrOffset) << "\t" << *MI);
+
+ if (BrOffset <= DestOffset) {
+ // Branch before the Dest.
+ if (DestOffset - BrOffset <= MaxDisp)
+ return true;
+ } else {
+ if (BrOffset - DestOffset <= MaxDisp)
+ return true;
+ }
+ return false;
+}
+
+/// fixupImmediateBr - Fix up an immediate branch whose destination is too far
+/// away to fit in its displacement field.
+bool CSKYConstantIslands::fixupImmediateBr(ImmBranch &Br) {
+ MachineInstr *MI = Br.MI;
+ MachineBasicBlock *DestBB = TII->getBranchDestBlock(*MI);
+
+ // Check to see if the DestBB is already in-range.
+ if (isBBInRange(MI, DestBB, Br.MaxDisp))
+ return false;
+
+ if (!Br.IsCond)
+ return fixupUnconditionalBr(Br);
+ return fixupConditionalBr(Br);
+}
+
+/// fixupUnconditionalBr - Fix up an unconditional branch whose destination is
+/// too far away to fit in its displacement field. If the LR register has been
+/// spilled in the epilogue, then we can use BSR to implement a far jump.
+/// Otherwise, add an intermediate branch instruction to a branch.
+bool CSKYConstantIslands::fixupUnconditionalBr(ImmBranch &Br) {
+ MachineInstr *MI = Br.MI;
+ MachineBasicBlock *MBB = MI->getParent();
+
+ if (!MFI->isLRSpilled())
+ report_fatal_error("underestimated function size");
+
+ // Use BSR to implement far jump.
+ Br.MaxDisp = ((1 << (26 - 1)) - 1) * 2;
+ MI->setDesc(TII->get(CSKY::BSR32_BR));
+ BBInfo[MBB->getNumber()].Size += 4;
+ adjustBBOffsetsAfter(MBB);
+ ++NumUBrFixed;
+
+ LLVM_DEBUG(dbgs() << " Changed B to long jump " << *MI);
+
+ return true;
+}
+
+/// fixupConditionalBr - Fix up a conditional branch whose destination is too
+/// far away to fit in its displacement field. It is converted to an inverse
+/// conditional branch + an unconditional branch to the destination.
+bool CSKYConstantIslands::fixupConditionalBr(ImmBranch &Br) {
+ MachineInstr *MI = Br.MI;
+ MachineBasicBlock *DestBB = TII->getBranchDestBlock(*MI);
+
+ SmallVector<MachineOperand, 4> Cond;
+ Cond.push_back(MachineOperand::CreateImm(MI->getOpcode()));
+ Cond.push_back(MI->getOperand(0));
+ TII->reverseBranchCondition(Cond);
+
+ // Add an unconditional branch to the destination and invert the branch
+ // condition to jump over it:
+ // bteqz L1
+ // =>
+ // bnez L2
+ // b L1
+ // L2:
+
+ // If the branch is at the end of its MBB and that has a fall-through block,
+ // direct the updated conditional branch to the fall-through block. Otherwise,
+ // split the MBB before the next instruction.
+ MachineBasicBlock *MBB = MI->getParent();
+ MachineInstr *BMI = &MBB->back();
+ bool NeedSplit = (BMI != MI) || !bbHasFallthrough(MBB);
+
+ ++NumCBrFixed;
+ if (BMI != MI) {
+ if (std::next(MachineBasicBlock::iterator(MI)) == std::prev(MBB->end()) &&
+ BMI->isUnconditionalBranch()) {
+ // Last MI in the BB is an unconditional branch. Can we simply invert the
+ // condition and swap destinations:
+ // beqz L1
+ // b L2
+ // =>
+ // bnez L2
+ // b L1
+ MachineBasicBlock *NewDest = TII->getBranchDestBlock(*BMI);
+ if (isBBInRange(MI, NewDest, Br.MaxDisp)) {
+ LLVM_DEBUG(
+ dbgs() << " Invert Bcc condition and swap its destination with "
+ << *BMI);
+ BMI->getOperand(BMI->getNumExplicitOperands() - 1).setMBB(DestBB);
+ MI->getOperand(MI->getNumExplicitOperands() - 1).setMBB(NewDest);
+
+ MI->setDesc(TII->get(Cond[0].getImm()));
+ return true;
+ }
+ }
+ }
+
+ if (NeedSplit) {
+ splitBlockBeforeInstr(*MI);
+ // No need for the branch to the next block. We're adding an unconditional
+ // branch to the destination.
+ int Delta = TII->getInstSizeInBytes(MBB->back());
+ BBInfo[MBB->getNumber()].Size -= Delta;
+ MBB->back().eraseFromParent();
+ // BBInfo[SplitBB].Offset is wrong temporarily, fixed below
+
+ // The conditional successor will be swapped between the BBs after this, so
+ // update CFG.
+ MBB->addSuccessor(DestBB);
+ std::next(MBB->getIterator())->removeSuccessor(DestBB);
+ }
+ MachineBasicBlock *NextBB = &*++MBB->getIterator();
+
+ LLVM_DEBUG(dbgs() << " Insert B to " << printMBBReference(*DestBB)
+ << " also invert condition and change dest. to "
+ << printMBBReference(*NextBB) << "\n");
+
+ // Insert a new conditional branch and a new unconditional branch.
+ // Also update the ImmBranch as well as adding a new entry for the new branch.
+
+ BuildMI(MBB, DebugLoc(), TII->get(Cond[0].getImm()))
+ .addReg(MI->getOperand(0).getReg())
+ .addMBB(NextBB);
+
+ Br.MI = &MBB->back();
+ BBInfo[MBB->getNumber()].Size += TII->getInstSizeInBytes(MBB->back());
+ BuildMI(MBB, DebugLoc(), TII->get(Br.UncondBr)).addMBB(DestBB);
+ BBInfo[MBB->getNumber()].Size += TII->getInstSizeInBytes(MBB->back());
+ unsigned MaxDisp = getUnconditionalBrDisp(Br.UncondBr);
+ ImmBranches.push_back(ImmBranch(&MBB->back(), MaxDisp, false, Br.UncondBr));
+
+ // Remove the old conditional branch. It may or may not still be in MBB.
+ BBInfo[MI->getParent()->getNumber()].Size -= TII->getInstSizeInBytes(*MI);
+ MI->eraseFromParent();
+ adjustBBOffsetsAfter(MBB);
+ return true;
+}
+
+/// Returns a pass that converts branches to long branches.
+FunctionPass *llvm::createCSKYConstantIslandPass() {
+ return new CSKYConstantIslands();
+}
+
+INITIALIZE_PASS(CSKYConstantIslands, DEBUG_TYPE,
+ "CSKY constant island placement and branch shortening pass",
+ false, false)