diff options
Diffstat (limited to 'contrib/llvm-project/llvm/lib/Target/Hexagon/HexagonMachineScheduler.cpp')
| -rw-r--r-- | contrib/llvm-project/llvm/lib/Target/Hexagon/HexagonMachineScheduler.cpp | 1002 | 
1 files changed, 1002 insertions, 0 deletions
diff --git a/contrib/llvm-project/llvm/lib/Target/Hexagon/HexagonMachineScheduler.cpp b/contrib/llvm-project/llvm/lib/Target/Hexagon/HexagonMachineScheduler.cpp new file mode 100644 index 000000000000..0e6555024303 --- /dev/null +++ b/contrib/llvm-project/llvm/lib/Target/Hexagon/HexagonMachineScheduler.cpp @@ -0,0 +1,1002 @@ +//===- HexagonMachineScheduler.cpp - MI Scheduler for Hexagon -------------===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// MachineScheduler schedules machine instructions after phi elimination. It +// preserves LiveIntervals so it can be invoked before register allocation. +// +//===----------------------------------------------------------------------===// + +#include "HexagonMachineScheduler.h" +#include "HexagonInstrInfo.h" +#include "HexagonSubtarget.h" +#include "llvm/ADT/SmallVector.h" +#include "llvm/CodeGen/DFAPacketizer.h" +#include "llvm/CodeGen/MachineBasicBlock.h" +#include "llvm/CodeGen/MachineFunction.h" +#include "llvm/CodeGen/MachineInstr.h" +#include "llvm/CodeGen/MachineLoopInfo.h" +#include "llvm/CodeGen/RegisterClassInfo.h" +#include "llvm/CodeGen/RegisterPressure.h" +#include "llvm/CodeGen/ScheduleDAG.h" +#include "llvm/CodeGen/ScheduleHazardRecognizer.h" +#include "llvm/CodeGen/TargetInstrInfo.h" +#include "llvm/CodeGen/TargetOpcodes.h" +#include "llvm/CodeGen/TargetRegisterInfo.h" +#include "llvm/CodeGen/TargetSchedule.h" +#include "llvm/CodeGen/TargetSubtargetInfo.h" +#include "llvm/IR/Function.h" +#include "llvm/Support/CommandLine.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/raw_ostream.h" +#include <algorithm> +#include <cassert> +#include <iomanip> +#include <limits> +#include <memory> +#include <sstream> + +using namespace llvm; + +#define DEBUG_TYPE "machine-scheduler" + +static cl::opt<bool> IgnoreBBRegPressure("ignore-bb-reg-pressure", +    cl::Hidden, cl::ZeroOrMore, cl::init(false)); + +static cl::opt<bool> UseNewerCandidate("use-newer-candidate", +    cl::Hidden, cl::ZeroOrMore, cl::init(true)); + +static cl::opt<unsigned> SchedDebugVerboseLevel("misched-verbose-level", +    cl::Hidden, cl::ZeroOrMore, cl::init(1)); + +// Check if the scheduler should penalize instructions that are available to +// early due to a zero-latency dependence. +static cl::opt<bool> CheckEarlyAvail("check-early-avail", cl::Hidden, +    cl::ZeroOrMore, cl::init(true)); + +// This value is used to determine if a register class is a high pressure set. +// We compute the maximum number of registers needed and divided by the total +// available. Then, we compare the result to this value. +static cl::opt<float> RPThreshold("hexagon-reg-pressure", cl::Hidden, +    cl::init(0.75f), cl::desc("High register pressure threhold.")); + +/// Return true if there is a dependence between SUd and SUu. +static bool hasDependence(const SUnit *SUd, const SUnit *SUu, +                          const HexagonInstrInfo &QII) { +  if (SUd->Succs.size() == 0) +    return false; + +  // Enable .cur formation. +  if (QII.mayBeCurLoad(*SUd->getInstr())) +    return false; + +  if (QII.canExecuteInBundle(*SUd->getInstr(), *SUu->getInstr())) +    return false; + +  for (const auto &S : SUd->Succs) { +    // Since we do not add pseudos to packets, might as well +    // ignore order dependencies. +    if (S.isCtrl()) +      continue; + +    if (S.getSUnit() == SUu && S.getLatency() > 0) +      return true; +  } +  return false; +} + +/// Check if scheduling of this SU is possible +/// in the current packet. +/// It is _not_ precise (statefull), it is more like +/// another heuristic. Many corner cases are figured +/// empirically. +bool VLIWResourceModel::isResourceAvailable(SUnit *SU, bool IsTop) { +  if (!SU || !SU->getInstr()) +    return false; + +  // First see if the pipeline could receive this instruction +  // in the current cycle. +  switch (SU->getInstr()->getOpcode()) { +  default: +    if (!ResourcesModel->canReserveResources(*SU->getInstr())) +      return false; +    break; +  case TargetOpcode::EXTRACT_SUBREG: +  case TargetOpcode::INSERT_SUBREG: +  case TargetOpcode::SUBREG_TO_REG: +  case TargetOpcode::REG_SEQUENCE: +  case TargetOpcode::IMPLICIT_DEF: +  case TargetOpcode::COPY: +  case TargetOpcode::INLINEASM: +  case TargetOpcode::INLINEASM_BR: +    break; +  } + +  MachineBasicBlock *MBB = SU->getInstr()->getParent(); +  auto &QST = MBB->getParent()->getSubtarget<HexagonSubtarget>(); +  const auto &QII = *QST.getInstrInfo(); + +  // Now see if there are no other dependencies to instructions already +  // in the packet. +  if (IsTop) { +    for (unsigned i = 0, e = Packet.size(); i != e; ++i) +      if (hasDependence(Packet[i], SU, QII)) +        return false; +  } else { +    for (unsigned i = 0, e = Packet.size(); i != e; ++i) +      if (hasDependence(SU, Packet[i], QII)) +        return false; +  } +  return true; +} + +/// Keep track of available resources. +bool VLIWResourceModel::reserveResources(SUnit *SU, bool IsTop) { +  bool startNewCycle = false; +  // Artificially reset state. +  if (!SU) { +    ResourcesModel->clearResources(); +    Packet.clear(); +    TotalPackets++; +    return false; +  } +  // If this SU does not fit in the packet or the packet is now full +  // start a new one. +  if (!isResourceAvailable(SU, IsTop) || +      Packet.size() >= SchedModel->getIssueWidth()) { +    ResourcesModel->clearResources(); +    Packet.clear(); +    TotalPackets++; +    startNewCycle = true; +  } + +  switch (SU->getInstr()->getOpcode()) { +  default: +    ResourcesModel->reserveResources(*SU->getInstr()); +    break; +  case TargetOpcode::EXTRACT_SUBREG: +  case TargetOpcode::INSERT_SUBREG: +  case TargetOpcode::SUBREG_TO_REG: +  case TargetOpcode::REG_SEQUENCE: +  case TargetOpcode::IMPLICIT_DEF: +  case TargetOpcode::KILL: +  case TargetOpcode::CFI_INSTRUCTION: +  case TargetOpcode::EH_LABEL: +  case TargetOpcode::COPY: +  case TargetOpcode::INLINEASM: +  case TargetOpcode::INLINEASM_BR: +    break; +  } +  Packet.push_back(SU); + +#ifndef NDEBUG +  LLVM_DEBUG(dbgs() << "Packet[" << TotalPackets << "]:\n"); +  for (unsigned i = 0, e = Packet.size(); i != e; ++i) { +    LLVM_DEBUG(dbgs() << "\t[" << i << "] SU("); +    LLVM_DEBUG(dbgs() << Packet[i]->NodeNum << ")\t"); +    LLVM_DEBUG(Packet[i]->getInstr()->dump()); +  } +#endif + +  return startNewCycle; +} + +/// schedule - Called back from MachineScheduler::runOnMachineFunction +/// after setting up the current scheduling region. [RegionBegin, RegionEnd) +/// only includes instructions that have DAG nodes, not scheduling boundaries. +void VLIWMachineScheduler::schedule() { +  LLVM_DEBUG(dbgs() << "********** MI Converging Scheduling VLIW " +                    << printMBBReference(*BB) << " " << BB->getName() +                    << " in_func " << BB->getParent()->getName() +                    << " at loop depth " << MLI->getLoopDepth(BB) << " \n"); + +  buildDAGWithRegPressure(); + +  Topo.InitDAGTopologicalSorting(); + +  // Postprocess the DAG to add platform-specific artificial dependencies. +  postprocessDAG(); + +  SmallVector<SUnit*, 8> TopRoots, BotRoots; +  findRootsAndBiasEdges(TopRoots, BotRoots); + +  // Initialize the strategy before modifying the DAG. +  SchedImpl->initialize(this); + +  LLVM_DEBUG(unsigned maxH = 0; +             for (unsigned su = 0, e = SUnits.size(); su != e; +                  ++su) if (SUnits[su].getHeight() > maxH) maxH = +                 SUnits[su].getHeight(); +             dbgs() << "Max Height " << maxH << "\n";); +  LLVM_DEBUG(unsigned maxD = 0; +             for (unsigned su = 0, e = SUnits.size(); su != e; +                  ++su) if (SUnits[su].getDepth() > maxD) maxD = +                 SUnits[su].getDepth(); +             dbgs() << "Max Depth " << maxD << "\n";); +  LLVM_DEBUG(dump()); + +  initQueues(TopRoots, BotRoots); + +  bool IsTopNode = false; +  while (true) { +    LLVM_DEBUG( +        dbgs() << "** VLIWMachineScheduler::schedule picking next node\n"); +    SUnit *SU = SchedImpl->pickNode(IsTopNode); +    if (!SU) break; + +    if (!checkSchedLimit()) +      break; + +    scheduleMI(SU, IsTopNode); + +    // Notify the scheduling strategy after updating the DAG. +    SchedImpl->schedNode(SU, IsTopNode); + +    updateQueues(SU, IsTopNode); +  } +  assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone."); + +  placeDebugValues(); + +  LLVM_DEBUG({ +    dbgs() << "*** Final schedule for " +           << printMBBReference(*begin()->getParent()) << " ***\n"; +    dumpSchedule(); +    dbgs() << '\n'; +  }); +} + +void ConvergingVLIWScheduler::initialize(ScheduleDAGMI *dag) { +  DAG = static_cast<VLIWMachineScheduler*>(dag); +  SchedModel = DAG->getSchedModel(); + +  Top.init(DAG, SchedModel); +  Bot.init(DAG, SchedModel); + +  // Initialize the HazardRecognizers. If itineraries don't exist, are empty, or +  // are disabled, then these HazardRecs will be disabled. +  const InstrItineraryData *Itin = DAG->getSchedModel()->getInstrItineraries(); +  const TargetSubtargetInfo &STI = DAG->MF.getSubtarget(); +  const TargetInstrInfo *TII = STI.getInstrInfo(); +  delete Top.HazardRec; +  delete Bot.HazardRec; +  Top.HazardRec = TII->CreateTargetMIHazardRecognizer(Itin, DAG); +  Bot.HazardRec = TII->CreateTargetMIHazardRecognizer(Itin, DAG); + +  delete Top.ResourceModel; +  delete Bot.ResourceModel; +  Top.ResourceModel = new VLIWResourceModel(STI, DAG->getSchedModel()); +  Bot.ResourceModel = new VLIWResourceModel(STI, DAG->getSchedModel()); + +  const std::vector<unsigned> &MaxPressure = +    DAG->getRegPressure().MaxSetPressure; +  HighPressureSets.assign(MaxPressure.size(), 0); +  for (unsigned i = 0, e = MaxPressure.size(); i < e; ++i) { +    unsigned Limit = DAG->getRegClassInfo()->getRegPressureSetLimit(i); +    HighPressureSets[i] = +      ((float) MaxPressure[i] > ((float) Limit * RPThreshold)); +  } + +  assert((!ForceTopDown || !ForceBottomUp) && +         "-misched-topdown incompatible with -misched-bottomup"); +} + +void ConvergingVLIWScheduler::releaseTopNode(SUnit *SU) { +  if (SU->isScheduled) +    return; + +  for (const SDep &PI : SU->Preds) { +    unsigned PredReadyCycle = PI.getSUnit()->TopReadyCycle; +    unsigned MinLatency = PI.getLatency(); +#ifndef NDEBUG +    Top.MaxMinLatency = std::max(MinLatency, Top.MaxMinLatency); +#endif +    if (SU->TopReadyCycle < PredReadyCycle + MinLatency) +      SU->TopReadyCycle = PredReadyCycle + MinLatency; +  } +  Top.releaseNode(SU, SU->TopReadyCycle); +} + +void ConvergingVLIWScheduler::releaseBottomNode(SUnit *SU) { +  if (SU->isScheduled) +    return; + +  assert(SU->getInstr() && "Scheduled SUnit must have instr"); + +  for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end(); +       I != E; ++I) { +    unsigned SuccReadyCycle = I->getSUnit()->BotReadyCycle; +    unsigned MinLatency = I->getLatency(); +#ifndef NDEBUG +    Bot.MaxMinLatency = std::max(MinLatency, Bot.MaxMinLatency); +#endif +    if (SU->BotReadyCycle < SuccReadyCycle + MinLatency) +      SU->BotReadyCycle = SuccReadyCycle + MinLatency; +  } +  Bot.releaseNode(SU, SU->BotReadyCycle); +} + +/// Does this SU have a hazard within the current instruction group. +/// +/// The scheduler supports two modes of hazard recognition. The first is the +/// ScheduleHazardRecognizer API. It is a fully general hazard recognizer that +/// supports highly complicated in-order reservation tables +/// (ScoreboardHazardRecognizer) and arbitrary target-specific logic. +/// +/// The second is a streamlined mechanism that checks for hazards based on +/// simple counters that the scheduler itself maintains. It explicitly checks +/// for instruction dispatch limitations, including the number of micro-ops that +/// can dispatch per cycle. +/// +/// TODO: Also check whether the SU must start a new group. +bool ConvergingVLIWScheduler::VLIWSchedBoundary::checkHazard(SUnit *SU) { +  if (HazardRec->isEnabled()) +    return HazardRec->getHazardType(SU) != ScheduleHazardRecognizer::NoHazard; + +  unsigned uops = SchedModel->getNumMicroOps(SU->getInstr()); +  if (IssueCount + uops > SchedModel->getIssueWidth()) +    return true; + +  return false; +} + +void ConvergingVLIWScheduler::VLIWSchedBoundary::releaseNode(SUnit *SU, +                                                     unsigned ReadyCycle) { +  if (ReadyCycle < MinReadyCycle) +    MinReadyCycle = ReadyCycle; + +  // Check for interlocks first. For the purpose of other heuristics, an +  // instruction that cannot issue appears as if it's not in the ReadyQueue. +  if (ReadyCycle > CurrCycle || checkHazard(SU)) + +    Pending.push(SU); +  else +    Available.push(SU); +} + +/// Move the boundary of scheduled code by one cycle. +void ConvergingVLIWScheduler::VLIWSchedBoundary::bumpCycle() { +  unsigned Width = SchedModel->getIssueWidth(); +  IssueCount = (IssueCount <= Width) ? 0 : IssueCount - Width; + +  assert(MinReadyCycle < std::numeric_limits<unsigned>::max() && +         "MinReadyCycle uninitialized"); +  unsigned NextCycle = std::max(CurrCycle + 1, MinReadyCycle); + +  if (!HazardRec->isEnabled()) { +    // Bypass HazardRec virtual calls. +    CurrCycle = NextCycle; +  } else { +    // Bypass getHazardType calls in case of long latency. +    for (; CurrCycle != NextCycle; ++CurrCycle) { +      if (isTop()) +        HazardRec->AdvanceCycle(); +      else +        HazardRec->RecedeCycle(); +    } +  } +  CheckPending = true; + +  LLVM_DEBUG(dbgs() << "*** Next cycle " << Available.getName() << " cycle " +                    << CurrCycle << '\n'); +} + +/// Move the boundary of scheduled code by one SUnit. +void ConvergingVLIWScheduler::VLIWSchedBoundary::bumpNode(SUnit *SU) { +  bool startNewCycle = false; + +  // Update the reservation table. +  if (HazardRec->isEnabled()) { +    if (!isTop() && SU->isCall) { +      // Calls are scheduled with their preceding instructions. For bottom-up +      // scheduling, clear the pipeline state before emitting. +      HazardRec->Reset(); +    } +    HazardRec->EmitInstruction(SU); +  } + +  // Update DFA model. +  startNewCycle = ResourceModel->reserveResources(SU, isTop()); + +  // Check the instruction group dispatch limit. +  // TODO: Check if this SU must end a dispatch group. +  IssueCount += SchedModel->getNumMicroOps(SU->getInstr()); +  if (startNewCycle) { +    LLVM_DEBUG(dbgs() << "*** Max instrs at cycle " << CurrCycle << '\n'); +    bumpCycle(); +  } +  else +    LLVM_DEBUG(dbgs() << "*** IssueCount " << IssueCount << " at cycle " +                      << CurrCycle << '\n'); +} + +/// Release pending ready nodes in to the available queue. This makes them +/// visible to heuristics. +void ConvergingVLIWScheduler::VLIWSchedBoundary::releasePending() { +  // If the available queue is empty, it is safe to reset MinReadyCycle. +  if (Available.empty()) +    MinReadyCycle = std::numeric_limits<unsigned>::max(); + +  // Check to see if any of the pending instructions are ready to issue.  If +  // so, add them to the available queue. +  for (unsigned i = 0, e = Pending.size(); i != e; ++i) { +    SUnit *SU = *(Pending.begin()+i); +    unsigned ReadyCycle = isTop() ? SU->TopReadyCycle : SU->BotReadyCycle; + +    if (ReadyCycle < MinReadyCycle) +      MinReadyCycle = ReadyCycle; + +    if (ReadyCycle > CurrCycle) +      continue; + +    if (checkHazard(SU)) +      continue; + +    Available.push(SU); +    Pending.remove(Pending.begin()+i); +    --i; --e; +  } +  CheckPending = false; +} + +/// Remove SU from the ready set for this boundary. +void ConvergingVLIWScheduler::VLIWSchedBoundary::removeReady(SUnit *SU) { +  if (Available.isInQueue(SU)) +    Available.remove(Available.find(SU)); +  else { +    assert(Pending.isInQueue(SU) && "bad ready count"); +    Pending.remove(Pending.find(SU)); +  } +} + +/// If this queue only has one ready candidate, return it. As a side effect, +/// advance the cycle until at least one node is ready. If multiple instructions +/// are ready, return NULL. +SUnit *ConvergingVLIWScheduler::VLIWSchedBoundary::pickOnlyChoice() { +  if (CheckPending) +    releasePending(); + +  auto AdvanceCycle = [this]() { +    if (Available.empty()) +      return true; +    if (Available.size() == 1 && Pending.size() > 0) +      return !ResourceModel->isResourceAvailable(*Available.begin(), isTop()) || +        getWeakLeft(*Available.begin(), isTop()) != 0; +    return false; +  }; +  for (unsigned i = 0; AdvanceCycle(); ++i) { +    assert(i <= (HazardRec->getMaxLookAhead() + MaxMinLatency) && +           "permanent hazard"); (void)i; +    ResourceModel->reserveResources(nullptr, isTop()); +    bumpCycle(); +    releasePending(); +  } +  if (Available.size() == 1) +    return *Available.begin(); +  return nullptr; +} + +#ifndef NDEBUG +void ConvergingVLIWScheduler::traceCandidate(const char *Label, +      const ReadyQueue &Q, SUnit *SU, int Cost, PressureChange P) { +  dbgs() << Label << " " << Q.getName() << " "; +  if (P.isValid()) +    dbgs() << DAG->TRI->getRegPressureSetName(P.getPSet()) << ":" +           << P.getUnitInc() << " "; +  else +    dbgs() << "     "; +  dbgs() << "cost(" << Cost << ")\t"; +  DAG->dumpNode(*SU); +} + +// Very detailed queue dump, to be used with higher verbosity levels. +void ConvergingVLIWScheduler::readyQueueVerboseDump( +      const RegPressureTracker &RPTracker, SchedCandidate &Candidate, +      ReadyQueue &Q) { +  RegPressureTracker &TempTracker = const_cast<RegPressureTracker &>(RPTracker); + +  dbgs() << ">>> " << Q.getName() << "\n"; +  for (ReadyQueue::iterator I = Q.begin(), E = Q.end(); I != E; ++I) { +    RegPressureDelta RPDelta; +    TempTracker.getMaxPressureDelta((*I)->getInstr(), RPDelta, +                                    DAG->getRegionCriticalPSets(), +                                    DAG->getRegPressure().MaxSetPressure); +    std::stringstream dbgstr; +    dbgstr << "SU(" << std::setw(3) << (*I)->NodeNum << ")"; +    dbgs() << dbgstr.str(); +    SchedulingCost(Q, *I, Candidate, RPDelta, true); +    dbgs() << "\t"; +    (*I)->getInstr()->dump(); +  } +  dbgs() << "\n"; +} +#endif + +/// isSingleUnscheduledPred - If SU2 is the only unscheduled predecessor +/// of SU, return true (we may have duplicates) +static inline bool isSingleUnscheduledPred(SUnit *SU, SUnit *SU2) { +  if (SU->NumPredsLeft == 0) +    return false; + +  for (auto &Pred : SU->Preds) { +    // We found an available, but not scheduled, predecessor. +    if (!Pred.getSUnit()->isScheduled && (Pred.getSUnit() != SU2)) +      return false; +  } + +  return true; +} + +/// isSingleUnscheduledSucc - If SU2 is the only unscheduled successor +/// of SU, return true (we may have duplicates) +static inline bool isSingleUnscheduledSucc(SUnit *SU, SUnit *SU2) { +  if (SU->NumSuccsLeft == 0) +    return false; + +  for (auto &Succ : SU->Succs) { +    // We found an available, but not scheduled, successor. +    if (!Succ.getSUnit()->isScheduled && (Succ.getSUnit() != SU2)) +      return false; +  } +  return true; +} + +/// Check if the instruction changes the register pressure of a register in the +/// high pressure set. The function returns a negative value if the pressure +/// decreases and a positive value is the pressure increases. If the instruction +/// doesn't use a high pressure register or doesn't change the register +/// pressure, then return 0. +int ConvergingVLIWScheduler::pressureChange(const SUnit *SU, bool isBotUp) { +  PressureDiff &PD = DAG->getPressureDiff(SU); +  for (auto &P : PD) { +    if (!P.isValid()) +      continue; +    // The pressure differences are computed bottom-up, so the comparision for +    // an increase is positive in the bottom direction, but negative in the +    //  top-down direction. +    if (HighPressureSets[P.getPSet()]) +      return (isBotUp ? P.getUnitInc() : -P.getUnitInc()); +  } +  return 0; +} + +// Constants used to denote relative importance of +// heuristic components for cost computation. +static const unsigned PriorityOne = 200; +static const unsigned PriorityTwo = 50; +static const unsigned PriorityThree = 75; +static const unsigned ScaleTwo = 10; + +/// Single point to compute overall scheduling cost. +/// TODO: More heuristics will be used soon. +int ConvergingVLIWScheduler::SchedulingCost(ReadyQueue &Q, SUnit *SU, +                                            SchedCandidate &Candidate, +                                            RegPressureDelta &Delta, +                                            bool verbose) { +  // Initial trivial priority. +  int ResCount = 1; + +  // Do not waste time on a node that is already scheduled. +  if (!SU || SU->isScheduled) +    return ResCount; + +  LLVM_DEBUG(if (verbose) dbgs() +             << ((Q.getID() == TopQID) ? "(top|" : "(bot|")); +  // Forced priority is high. +  if (SU->isScheduleHigh) { +    ResCount += PriorityOne; +    LLVM_DEBUG(dbgs() << "H|"); +  } + +  unsigned IsAvailableAmt = 0; +  // Critical path first. +  if (Q.getID() == TopQID) { +    if (Top.isLatencyBound(SU)) { +      LLVM_DEBUG(if (verbose) dbgs() << "LB|"); +      ResCount += (SU->getHeight() * ScaleTwo); +    } + +    LLVM_DEBUG(if (verbose) { +      std::stringstream dbgstr; +      dbgstr << "h" << std::setw(3) << SU->getHeight() << "|"; +      dbgs() << dbgstr.str(); +    }); + +    // If resources are available for it, multiply the +    // chance of scheduling. +    if (Top.ResourceModel->isResourceAvailable(SU, true)) { +      IsAvailableAmt = (PriorityTwo + PriorityThree); +      ResCount += IsAvailableAmt; +      LLVM_DEBUG(if (verbose) dbgs() << "A|"); +    } else +      LLVM_DEBUG(if (verbose) dbgs() << " |"); +  } else { +    if (Bot.isLatencyBound(SU)) { +      LLVM_DEBUG(if (verbose) dbgs() << "LB|"); +      ResCount += (SU->getDepth() * ScaleTwo); +    } + +    LLVM_DEBUG(if (verbose) { +      std::stringstream dbgstr; +      dbgstr << "d" << std::setw(3) << SU->getDepth() << "|"; +      dbgs() << dbgstr.str(); +    }); + +    // If resources are available for it, multiply the +    // chance of scheduling. +    if (Bot.ResourceModel->isResourceAvailable(SU, false)) { +      IsAvailableAmt = (PriorityTwo + PriorityThree); +      ResCount += IsAvailableAmt; +      LLVM_DEBUG(if (verbose) dbgs() << "A|"); +    } else +      LLVM_DEBUG(if (verbose) dbgs() << " |"); +  } + +  unsigned NumNodesBlocking = 0; +  if (Q.getID() == TopQID) { +    // How many SUs does it block from scheduling? +    // Look at all of the successors of this node. +    // Count the number of nodes that +    // this node is the sole unscheduled node for. +    if (Top.isLatencyBound(SU)) +      for (const SDep &SI : SU->Succs) +        if (isSingleUnscheduledPred(SI.getSUnit(), SU)) +          ++NumNodesBlocking; +  } else { +    // How many unscheduled predecessors block this node? +    if (Bot.isLatencyBound(SU)) +      for (const SDep &PI : SU->Preds) +        if (isSingleUnscheduledSucc(PI.getSUnit(), SU)) +          ++NumNodesBlocking; +  } +  ResCount += (NumNodesBlocking * ScaleTwo); + +  LLVM_DEBUG(if (verbose) { +    std::stringstream dbgstr; +    dbgstr << "blk " << std::setw(2) << NumNodesBlocking << ")|"; +    dbgs() << dbgstr.str(); +  }); + +  // Factor in reg pressure as a heuristic. +  if (!IgnoreBBRegPressure) { +    // Decrease priority by the amount that register pressure exceeds the limit. +    ResCount -= (Delta.Excess.getUnitInc()*PriorityOne); +    // Decrease priority if register pressure exceeds the limit. +    ResCount -= (Delta.CriticalMax.getUnitInc()*PriorityOne); +    // Decrease priority slightly if register pressure would increase over the +    // current maximum. +    ResCount -= (Delta.CurrentMax.getUnitInc()*PriorityTwo); +    // If there are register pressure issues, then we remove the value added for +    // the instruction being available. The rationale is that we really don't +    // want to schedule an instruction that causes a spill. +    if (IsAvailableAmt && pressureChange(SU, Q.getID() != TopQID) > 0 && +        (Delta.Excess.getUnitInc() || Delta.CriticalMax.getUnitInc() || +         Delta.CurrentMax.getUnitInc())) +      ResCount -= IsAvailableAmt; +    LLVM_DEBUG(if (verbose) { +      dbgs() << "RP " << Delta.Excess.getUnitInc() << "/" +             << Delta.CriticalMax.getUnitInc() << "/" +             << Delta.CurrentMax.getUnitInc() << ")|"; +    }); +  } + +  // Give a little extra priority to a .cur instruction if there is a resource +  // available for it. +  auto &QST = DAG->MF.getSubtarget<HexagonSubtarget>(); +  auto &QII = *QST.getInstrInfo(); +  if (SU->isInstr() && QII.mayBeCurLoad(*SU->getInstr())) { +    if (Q.getID() == TopQID && +        Top.ResourceModel->isResourceAvailable(SU, true)) { +      ResCount += PriorityTwo; +      LLVM_DEBUG(if (verbose) dbgs() << "C|"); +    } else if (Q.getID() == BotQID && +               Bot.ResourceModel->isResourceAvailable(SU, false)) { +      ResCount += PriorityTwo; +      LLVM_DEBUG(if (verbose) dbgs() << "C|"); +    } +  } + +  // Give preference to a zero latency instruction if the dependent +  // instruction is in the current packet. +  if (Q.getID() == TopQID && getWeakLeft(SU, true) == 0) { +    for (const SDep &PI : SU->Preds) { +      if (!PI.getSUnit()->getInstr()->isPseudo() && PI.isAssignedRegDep() && +          PI.getLatency() == 0 && +          Top.ResourceModel->isInPacket(PI.getSUnit())) { +        ResCount += PriorityThree; +        LLVM_DEBUG(if (verbose) dbgs() << "Z|"); +      } +    } +  } else if (Q.getID() == BotQID && getWeakLeft(SU, false) == 0) { +    for (const SDep &SI : SU->Succs) { +      if (!SI.getSUnit()->getInstr()->isPseudo() && SI.isAssignedRegDep() && +          SI.getLatency() == 0 && +          Bot.ResourceModel->isInPacket(SI.getSUnit())) { +        ResCount += PriorityThree; +        LLVM_DEBUG(if (verbose) dbgs() << "Z|"); +      } +    } +  } + +  // If the instruction has a non-zero latency dependence with an instruction in +  // the current packet, then it should not be scheduled yet. The case occurs +  // when the dependent instruction is scheduled in a new packet, so the +  // scheduler updates the current cycle and pending instructions become +  // available. +  if (CheckEarlyAvail) { +    if (Q.getID() == TopQID) { +      for (const auto &PI : SU->Preds) { +        if (PI.getLatency() > 0 && +            Top.ResourceModel->isInPacket(PI.getSUnit())) { +          ResCount -= PriorityOne; +          LLVM_DEBUG(if (verbose) dbgs() << "D|"); +        } +      } +    } else { +      for (const auto &SI : SU->Succs) { +        if (SI.getLatency() > 0 && +            Bot.ResourceModel->isInPacket(SI.getSUnit())) { +          ResCount -= PriorityOne; +          LLVM_DEBUG(if (verbose) dbgs() << "D|"); +        } +      } +    } +  } + +  LLVM_DEBUG(if (verbose) { +    std::stringstream dbgstr; +    dbgstr << "Total " << std::setw(4) << ResCount << ")"; +    dbgs() << dbgstr.str(); +  }); + +  return ResCount; +} + +/// Pick the best candidate from the top queue. +/// +/// TODO: getMaxPressureDelta results can be mostly cached for each SUnit during +/// DAG building. To adjust for the current scheduling location we need to +/// maintain the number of vreg uses remaining to be top-scheduled. +ConvergingVLIWScheduler::CandResult ConvergingVLIWScheduler:: +pickNodeFromQueue(VLIWSchedBoundary &Zone, const RegPressureTracker &RPTracker, +                  SchedCandidate &Candidate) { +  ReadyQueue &Q = Zone.Available; +  LLVM_DEBUG(if (SchedDebugVerboseLevel > 1) +                 readyQueueVerboseDump(RPTracker, Candidate, Q); +             else Q.dump();); + +  // getMaxPressureDelta temporarily modifies the tracker. +  RegPressureTracker &TempTracker = const_cast<RegPressureTracker&>(RPTracker); + +  // BestSU remains NULL if no top candidates beat the best existing candidate. +  CandResult FoundCandidate = NoCand; +  for (ReadyQueue::iterator I = Q.begin(), E = Q.end(); I != E; ++I) { +    RegPressureDelta RPDelta; +    TempTracker.getMaxPressureDelta((*I)->getInstr(), RPDelta, +                                    DAG->getRegionCriticalPSets(), +                                    DAG->getRegPressure().MaxSetPressure); + +    int CurrentCost = SchedulingCost(Q, *I, Candidate, RPDelta, false); + +    // Initialize the candidate if needed. +    if (!Candidate.SU) { +      LLVM_DEBUG(traceCandidate("DCAND", Q, *I, CurrentCost)); +      Candidate.SU = *I; +      Candidate.RPDelta = RPDelta; +      Candidate.SCost = CurrentCost; +      FoundCandidate = NodeOrder; +      continue; +    } + +    // Choose node order for negative cost candidates. There is no good +    // candidate in this case. +    if (CurrentCost < 0 && Candidate.SCost < 0) { +      if ((Q.getID() == TopQID && (*I)->NodeNum < Candidate.SU->NodeNum) +          || (Q.getID() == BotQID && (*I)->NodeNum > Candidate.SU->NodeNum)) { +        LLVM_DEBUG(traceCandidate("NCAND", Q, *I, CurrentCost)); +        Candidate.SU = *I; +        Candidate.RPDelta = RPDelta; +        Candidate.SCost = CurrentCost; +        FoundCandidate = NodeOrder; +      } +      continue; +    } + +    // Best cost. +    if (CurrentCost > Candidate.SCost) { +      LLVM_DEBUG(traceCandidate("CCAND", Q, *I, CurrentCost)); +      Candidate.SU = *I; +      Candidate.RPDelta = RPDelta; +      Candidate.SCost = CurrentCost; +      FoundCandidate = BestCost; +      continue; +    } + +    // Choose an instruction that does not depend on an artificial edge. +    unsigned CurrWeak = getWeakLeft(*I, (Q.getID() == TopQID)); +    unsigned CandWeak = getWeakLeft(Candidate.SU, (Q.getID() == TopQID)); +    if (CurrWeak != CandWeak) { +      if (CurrWeak < CandWeak) { +        LLVM_DEBUG(traceCandidate("WCAND", Q, *I, CurrentCost)); +        Candidate.SU = *I; +        Candidate.RPDelta = RPDelta; +        Candidate.SCost = CurrentCost; +        FoundCandidate = Weak; +      } +      continue; +    } + +    if (CurrentCost == Candidate.SCost && Zone.isLatencyBound(*I)) { +      unsigned CurrSize, CandSize; +      if (Q.getID() == TopQID) { +        CurrSize = (*I)->Succs.size(); +        CandSize = Candidate.SU->Succs.size(); +      } else { +        CurrSize = (*I)->Preds.size(); +        CandSize = Candidate.SU->Preds.size(); +      } +      if (CurrSize > CandSize) { +        LLVM_DEBUG(traceCandidate("SPCAND", Q, *I, CurrentCost)); +        Candidate.SU = *I; +        Candidate.RPDelta = RPDelta; +        Candidate.SCost = CurrentCost; +        FoundCandidate = BestCost; +      } +      // Keep the old candidate if it's a better candidate. That is, don't use +      // the subsequent tie breaker. +      if (CurrSize != CandSize) +        continue; +    } + +    // Tie breaker. +    // To avoid scheduling indeterminism, we need a tie breaker +    // for the case when cost is identical for two nodes. +    if (UseNewerCandidate && CurrentCost == Candidate.SCost) { +      if ((Q.getID() == TopQID && (*I)->NodeNum < Candidate.SU->NodeNum) +          || (Q.getID() == BotQID && (*I)->NodeNum > Candidate.SU->NodeNum)) { +        LLVM_DEBUG(traceCandidate("TCAND", Q, *I, CurrentCost)); +        Candidate.SU = *I; +        Candidate.RPDelta = RPDelta; +        Candidate.SCost = CurrentCost; +        FoundCandidate = NodeOrder; +        continue; +      } +    } + +    // Fall through to original instruction order. +    // Only consider node order if Candidate was chosen from this Q. +    if (FoundCandidate == NoCand) +      continue; +  } +  return FoundCandidate; +} + +/// Pick the best candidate node from either the top or bottom queue. +SUnit *ConvergingVLIWScheduler::pickNodeBidrectional(bool &IsTopNode) { +  // Schedule as far as possible in the direction of no choice. This is most +  // efficient, but also provides the best heuristics for CriticalPSets. +  if (SUnit *SU = Bot.pickOnlyChoice()) { +    LLVM_DEBUG(dbgs() << "Picked only Bottom\n"); +    IsTopNode = false; +    return SU; +  } +  if (SUnit *SU = Top.pickOnlyChoice()) { +    LLVM_DEBUG(dbgs() << "Picked only Top\n"); +    IsTopNode = true; +    return SU; +  } +  SchedCandidate BotCand; +  // Prefer bottom scheduling when heuristics are silent. +  CandResult BotResult = pickNodeFromQueue(Bot, +                                           DAG->getBotRPTracker(), BotCand); +  assert(BotResult != NoCand && "failed to find the first candidate"); + +  // If either Q has a single candidate that provides the least increase in +  // Excess pressure, we can immediately schedule from that Q. +  // +  // RegionCriticalPSets summarizes the pressure within the scheduled region and +  // affects picking from either Q. If scheduling in one direction must +  // increase pressure for one of the excess PSets, then schedule in that +  // direction first to provide more freedom in the other direction. +  if (BotResult == SingleExcess || BotResult == SingleCritical) { +    LLVM_DEBUG(dbgs() << "Prefered Bottom Node\n"); +    IsTopNode = false; +    return BotCand.SU; +  } +  // Check if the top Q has a better candidate. +  SchedCandidate TopCand; +  CandResult TopResult = pickNodeFromQueue(Top, +                                           DAG->getTopRPTracker(), TopCand); +  assert(TopResult != NoCand && "failed to find the first candidate"); + +  if (TopResult == SingleExcess || TopResult == SingleCritical) { +    LLVM_DEBUG(dbgs() << "Prefered Top Node\n"); +    IsTopNode = true; +    return TopCand.SU; +  } +  // If either Q has a single candidate that minimizes pressure above the +  // original region's pressure pick it. +  if (BotResult == SingleMax) { +    LLVM_DEBUG(dbgs() << "Prefered Bottom Node SingleMax\n"); +    IsTopNode = false; +    return BotCand.SU; +  } +  if (TopResult == SingleMax) { +    LLVM_DEBUG(dbgs() << "Prefered Top Node SingleMax\n"); +    IsTopNode = true; +    return TopCand.SU; +  } +  if (TopCand.SCost > BotCand.SCost) { +    LLVM_DEBUG(dbgs() << "Prefered Top Node Cost\n"); +    IsTopNode = true; +    return TopCand.SU; +  } +  // Otherwise prefer the bottom candidate in node order. +  LLVM_DEBUG(dbgs() << "Prefered Bottom in Node order\n"); +  IsTopNode = false; +  return BotCand.SU; +} + +/// Pick the best node to balance the schedule. Implements MachineSchedStrategy. +SUnit *ConvergingVLIWScheduler::pickNode(bool &IsTopNode) { +  if (DAG->top() == DAG->bottom()) { +    assert(Top.Available.empty() && Top.Pending.empty() && +           Bot.Available.empty() && Bot.Pending.empty() && "ReadyQ garbage"); +    return nullptr; +  } +  SUnit *SU; +  if (ForceTopDown) { +    SU = Top.pickOnlyChoice(); +    if (!SU) { +      SchedCandidate TopCand; +      CandResult TopResult = +        pickNodeFromQueue(Top, DAG->getTopRPTracker(), TopCand); +      assert(TopResult != NoCand && "failed to find the first candidate"); +      (void)TopResult; +      SU = TopCand.SU; +    } +    IsTopNode = true; +  } else if (ForceBottomUp) { +    SU = Bot.pickOnlyChoice(); +    if (!SU) { +      SchedCandidate BotCand; +      CandResult BotResult = +        pickNodeFromQueue(Bot, DAG->getBotRPTracker(), BotCand); +      assert(BotResult != NoCand && "failed to find the first candidate"); +      (void)BotResult; +      SU = BotCand.SU; +    } +    IsTopNode = false; +  } else { +    SU = pickNodeBidrectional(IsTopNode); +  } +  if (SU->isTopReady()) +    Top.removeReady(SU); +  if (SU->isBottomReady()) +    Bot.removeReady(SU); + +  LLVM_DEBUG(dbgs() << "*** " << (IsTopNode ? "Top" : "Bottom") +                    << " Scheduling instruction in cycle " +                    << (IsTopNode ? Top.CurrCycle : Bot.CurrCycle) << " (" +                    << reportPackets() << ")\n"; +             DAG->dumpNode(*SU)); +  return SU; +} + +/// Update the scheduler's state after scheduling a node. This is the same node +/// that was just returned by pickNode(). However, VLIWMachineScheduler needs +/// to update it's state based on the current cycle before MachineSchedStrategy +/// does. +void ConvergingVLIWScheduler::schedNode(SUnit *SU, bool IsTopNode) { +  if (IsTopNode) { +    Top.bumpNode(SU); +    SU->TopReadyCycle = Top.CurrCycle; +  } else { +    Bot.bumpNode(SU); +    SU->BotReadyCycle = Bot.CurrCycle; +  } +}  | 
