aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm-project/llvm/lib/Target/SystemZ/SystemZInstrVector.td
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm-project/llvm/lib/Target/SystemZ/SystemZInstrVector.td')
-rw-r--r--contrib/llvm-project/llvm/lib/Target/SystemZ/SystemZInstrVector.td1788
1 files changed, 1788 insertions, 0 deletions
diff --git a/contrib/llvm-project/llvm/lib/Target/SystemZ/SystemZInstrVector.td b/contrib/llvm-project/llvm/lib/Target/SystemZ/SystemZInstrVector.td
new file mode 100644
index 000000000000..a85eb1623e1c
--- /dev/null
+++ b/contrib/llvm-project/llvm/lib/Target/SystemZ/SystemZInstrVector.td
@@ -0,0 +1,1788 @@
+//==- SystemZInstrVector.td - SystemZ Vector instructions ------*- tblgen-*-==//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+
+//===----------------------------------------------------------------------===//
+// Move instructions
+//===----------------------------------------------------------------------===//
+
+let Predicates = [FeatureVector] in {
+ // Register move.
+ def VLR : UnaryVRRa<"vlr", 0xE756, null_frag, v128any, v128any>;
+ def VLR32 : UnaryAliasVRR<null_frag, v32sb, v32sb>;
+ def VLR64 : UnaryAliasVRR<null_frag, v64db, v64db>;
+
+ // Load GR from VR element.
+ def VLGV : BinaryVRScGeneric<"vlgv", 0xE721>;
+ def VLGVB : BinaryVRSc<"vlgvb", 0xE721, null_frag, v128b, 0>;
+ def VLGVH : BinaryVRSc<"vlgvh", 0xE721, null_frag, v128h, 1>;
+ def VLGVF : BinaryVRSc<"vlgvf", 0xE721, null_frag, v128f, 2>;
+ def VLGVG : BinaryVRSc<"vlgvg", 0xE721, z_vector_extract, v128g, 3>;
+
+ // Load VR element from GR.
+ def VLVG : TernaryVRSbGeneric<"vlvg", 0xE722>;
+ def VLVGB : TernaryVRSb<"vlvgb", 0xE722, z_vector_insert,
+ v128b, v128b, GR32, 0>;
+ def VLVGH : TernaryVRSb<"vlvgh", 0xE722, z_vector_insert,
+ v128h, v128h, GR32, 1>;
+ def VLVGF : TernaryVRSb<"vlvgf", 0xE722, z_vector_insert,
+ v128f, v128f, GR32, 2>;
+ def VLVGG : TernaryVRSb<"vlvgg", 0xE722, z_vector_insert,
+ v128g, v128g, GR64, 3>;
+
+ // Load VR from GRs disjoint.
+ def VLVGP : BinaryVRRf<"vlvgp", 0xE762, z_join_dwords, v128g>;
+ def VLVGP32 : BinaryAliasVRRf<GR32>;
+}
+
+// Extractions always assign to the full GR64, even if the element would
+// fit in the lower 32 bits. Sub-i64 extracts therefore need to take a
+// subreg of the result.
+class VectorExtractSubreg<ValueType type, Instruction insn>
+ : Pat<(i32 (z_vector_extract (type VR128:$vec), shift12only:$index)),
+ (EXTRACT_SUBREG (insn VR128:$vec, shift12only:$index), subreg_l32)>;
+
+def : VectorExtractSubreg<v16i8, VLGVB>;
+def : VectorExtractSubreg<v8i16, VLGVH>;
+def : VectorExtractSubreg<v4i32, VLGVF>;
+
+//===----------------------------------------------------------------------===//
+// Immediate instructions
+//===----------------------------------------------------------------------===//
+
+let Predicates = [FeatureVector] in {
+ let isAsCheapAsAMove = 1, isMoveImm = 1, isReMaterializable = 1 in {
+
+ // Generate byte mask.
+ def VZERO : InherentVRIa<"vzero", 0xE744, 0>;
+ def VONE : InherentVRIa<"vone", 0xE744, 0xffff>;
+ def VGBM : UnaryVRIa<"vgbm", 0xE744, z_byte_mask, v128b, imm32zx16_timm>;
+
+ // Generate mask.
+ def VGM : BinaryVRIbGeneric<"vgm", 0xE746>;
+ def VGMB : BinaryVRIb<"vgmb", 0xE746, z_rotate_mask, v128b, 0>;
+ def VGMH : BinaryVRIb<"vgmh", 0xE746, z_rotate_mask, v128h, 1>;
+ def VGMF : BinaryVRIb<"vgmf", 0xE746, z_rotate_mask, v128f, 2>;
+ def VGMG : BinaryVRIb<"vgmg", 0xE746, z_rotate_mask, v128g, 3>;
+
+ // Replicate immediate.
+ def VREPI : UnaryVRIaGeneric<"vrepi", 0xE745, imm32sx16>;
+ def VREPIB : UnaryVRIa<"vrepib", 0xE745, z_replicate, v128b, imm32sx16_timm, 0>;
+ def VREPIH : UnaryVRIa<"vrepih", 0xE745, z_replicate, v128h, imm32sx16_timm, 1>;
+ def VREPIF : UnaryVRIa<"vrepif", 0xE745, z_replicate, v128f, imm32sx16_timm, 2>;
+ def VREPIG : UnaryVRIa<"vrepig", 0xE745, z_replicate, v128g, imm32sx16_timm, 3>;
+ }
+
+ // Load element immediate.
+ //
+ // We want these instructions to be used ahead of VLVG* where possible.
+ // However, VLVG* takes a variable BD-format index whereas VLEI takes
+ // a plain immediate index. This means that VLVG* has an extra "base"
+ // register operand and is 3 units more complex. Bumping the complexity
+ // of the VLEI* instructions by 4 means that they are strictly better
+ // than VLVG* in cases where both forms match.
+ let AddedComplexity = 4 in {
+ def VLEIB : TernaryVRIa<"vleib", 0xE740, z_vector_insert,
+ v128b, v128b, imm32sx16trunc, imm32zx4>;
+ def VLEIH : TernaryVRIa<"vleih", 0xE741, z_vector_insert,
+ v128h, v128h, imm32sx16trunc, imm32zx3>;
+ def VLEIF : TernaryVRIa<"vleif", 0xE743, z_vector_insert,
+ v128f, v128f, imm32sx16, imm32zx2>;
+ def VLEIG : TernaryVRIa<"vleig", 0xE742, z_vector_insert,
+ v128g, v128g, imm64sx16, imm32zx1>;
+ }
+}
+
+//===----------------------------------------------------------------------===//
+// Loads
+//===----------------------------------------------------------------------===//
+
+let Predicates = [FeatureVector] in {
+ // Load.
+ defm VL : UnaryVRXAlign<"vl", 0xE706>;
+
+ // Load to block boundary. The number of loaded bytes is only known
+ // at run time. The instruction is really polymorphic, but v128b matches
+ // the return type of the associated intrinsic.
+ def VLBB : BinaryVRX<"vlbb", 0xE707, int_s390_vlbb, v128b, 0>;
+
+ // Load count to block boundary.
+ let Defs = [CC] in
+ def LCBB : InstRXE<0xE727, (outs GR32:$R1),
+ (ins bdxaddr12only:$XBD2, imm32zx4:$M3),
+ "lcbb\t$R1, $XBD2, $M3",
+ [(set GR32:$R1, (int_s390_lcbb bdxaddr12only:$XBD2,
+ imm32zx4_timm:$M3))]>;
+
+ // Load with length. The number of loaded bytes is only known at run time.
+ def VLL : BinaryVRSb<"vll", 0xE737, int_s390_vll, 0>;
+
+ // Load multiple.
+ defm VLM : LoadMultipleVRSaAlign<"vlm", 0xE736>;
+
+ // Load and replicate
+ def VLREP : UnaryVRXGeneric<"vlrep", 0xE705>;
+ def VLREPB : UnaryVRX<"vlrepb", 0xE705, z_replicate_loadi8, v128b, 1, 0>;
+ def VLREPH : UnaryVRX<"vlreph", 0xE705, z_replicate_loadi16, v128h, 2, 1>;
+ def VLREPF : UnaryVRX<"vlrepf", 0xE705, z_replicate_loadi32, v128f, 4, 2>;
+ def VLREPG : UnaryVRX<"vlrepg", 0xE705, z_replicate_loadi64, v128g, 8, 3>;
+ def : Pat<(v4f32 (z_replicate_loadf32 bdxaddr12only:$addr)),
+ (VLREPF bdxaddr12only:$addr)>;
+ def : Pat<(v2f64 (z_replicate_loadf64 bdxaddr12only:$addr)),
+ (VLREPG bdxaddr12only:$addr)>;
+
+ // Use VLREP to load subvectors. These patterns use "12pair" because
+ // LEY and LDY offer full 20-bit displacement fields. It's often better
+ // to use those instructions rather than force a 20-bit displacement
+ // into a GPR temporary.
+ let mayLoad = 1 in {
+ def VL32 : UnaryAliasVRX<load, v32sb, bdxaddr12pair>;
+ def VL64 : UnaryAliasVRX<load, v64db, bdxaddr12pair>;
+ }
+
+ // Load logical element and zero.
+ def VLLEZ : UnaryVRXGeneric<"vllez", 0xE704>;
+ def VLLEZB : UnaryVRX<"vllezb", 0xE704, z_vllezi8, v128b, 1, 0>;
+ def VLLEZH : UnaryVRX<"vllezh", 0xE704, z_vllezi16, v128h, 2, 1>;
+ def VLLEZF : UnaryVRX<"vllezf", 0xE704, z_vllezi32, v128f, 4, 2>;
+ def VLLEZG : UnaryVRX<"vllezg", 0xE704, z_vllezi64, v128g, 8, 3>;
+ def : Pat<(z_vllezf32 bdxaddr12only:$addr),
+ (VLLEZF bdxaddr12only:$addr)>;
+ def : Pat<(z_vllezf64 bdxaddr12only:$addr),
+ (VLLEZG bdxaddr12only:$addr)>;
+ let Predicates = [FeatureVectorEnhancements1] in {
+ def VLLEZLF : UnaryVRX<"vllezlf", 0xE704, z_vllezli32, v128f, 4, 6>;
+ def : Pat<(z_vllezlf32 bdxaddr12only:$addr),
+ (VLLEZLF bdxaddr12only:$addr)>;
+ }
+
+ // Load element.
+ def VLEB : TernaryVRX<"vleb", 0xE700, z_vlei8, v128b, v128b, 1, imm32zx4>;
+ def VLEH : TernaryVRX<"vleh", 0xE701, z_vlei16, v128h, v128h, 2, imm32zx3>;
+ def VLEF : TernaryVRX<"vlef", 0xE703, z_vlei32, v128f, v128f, 4, imm32zx2>;
+ def VLEG : TernaryVRX<"vleg", 0xE702, z_vlei64, v128g, v128g, 8, imm32zx1>;
+ def : Pat<(z_vlef32 (v4f32 VR128:$val), bdxaddr12only:$addr, imm32zx2:$index),
+ (VLEF VR128:$val, bdxaddr12only:$addr, imm32zx2:$index)>;
+ def : Pat<(z_vlef64 (v2f64 VR128:$val), bdxaddr12only:$addr, imm32zx1:$index),
+ (VLEG VR128:$val, bdxaddr12only:$addr, imm32zx1:$index)>;
+
+ // Gather element.
+ def VGEF : TernaryVRV<"vgef", 0xE713, 4, imm32zx2>;
+ def VGEG : TernaryVRV<"vgeg", 0xE712, 8, imm32zx1>;
+}
+
+let Predicates = [FeatureVectorPackedDecimal] in {
+ // Load rightmost with length. The number of loaded bytes is only known
+ // at run time. Note that while the instruction will accept immediate
+ // lengths larger that 15 at runtime, those will always result in a trap,
+ // so we never emit them here.
+ def VLRL : BinaryVSI<"vlrl", 0xE635, null_frag, 0>;
+ def VLRLR : BinaryVRSd<"vlrlr", 0xE637, int_s390_vlrl, 0>;
+ def : Pat<(int_s390_vlrl imm32zx4:$len, bdaddr12only:$addr),
+ (VLRL bdaddr12only:$addr, imm32zx4:$len)>;
+}
+
+// Use replicating loads if we're inserting a single element into an
+// undefined vector. This avoids a false dependency on the previous
+// register contents.
+multiclass ReplicatePeephole<Instruction vlrep, ValueType vectype,
+ SDPatternOperator load, ValueType scalartype> {
+ def : Pat<(vectype (z_vector_insert
+ (undef), (scalartype (load bdxaddr12only:$addr)), 0)),
+ (vlrep bdxaddr12only:$addr)>;
+ def : Pat<(vectype (scalar_to_vector
+ (scalartype (load bdxaddr12only:$addr)))),
+ (vlrep bdxaddr12only:$addr)>;
+}
+defm : ReplicatePeephole<VLREPB, v16i8, anyextloadi8, i32>;
+defm : ReplicatePeephole<VLREPH, v8i16, anyextloadi16, i32>;
+defm : ReplicatePeephole<VLREPF, v4i32, load, i32>;
+defm : ReplicatePeephole<VLREPG, v2i64, load, i64>;
+defm : ReplicatePeephole<VLREPF, v4f32, load, f32>;
+defm : ReplicatePeephole<VLREPG, v2f64, load, f64>;
+
+//===----------------------------------------------------------------------===//
+// Stores
+//===----------------------------------------------------------------------===//
+
+let Predicates = [FeatureVector] in {
+ // Store.
+ defm VST : StoreVRXAlign<"vst", 0xE70E>;
+
+ // Store with length. The number of stored bytes is only known at run time.
+ def VSTL : StoreLengthVRSb<"vstl", 0xE73F, int_s390_vstl, 0>;
+
+ // Store multiple.
+ defm VSTM : StoreMultipleVRSaAlign<"vstm", 0xE73E>;
+
+ // Store element.
+ def VSTEB : StoreBinaryVRX<"vsteb", 0xE708, z_vstei8, v128b, 1, imm32zx4>;
+ def VSTEH : StoreBinaryVRX<"vsteh", 0xE709, z_vstei16, v128h, 2, imm32zx3>;
+ def VSTEF : StoreBinaryVRX<"vstef", 0xE70B, z_vstei32, v128f, 4, imm32zx2>;
+ def VSTEG : StoreBinaryVRX<"vsteg", 0xE70A, z_vstei64, v128g, 8, imm32zx1>;
+ def : Pat<(z_vstef32 (v4f32 VR128:$val), bdxaddr12only:$addr,
+ imm32zx2:$index),
+ (VSTEF VR128:$val, bdxaddr12only:$addr, imm32zx2:$index)>;
+ def : Pat<(z_vstef64 (v2f64 VR128:$val), bdxaddr12only:$addr,
+ imm32zx1:$index),
+ (VSTEG VR128:$val, bdxaddr12only:$addr, imm32zx1:$index)>;
+
+ // Use VSTE to store subvectors. These patterns use "12pair" because
+ // STEY and STDY offer full 20-bit displacement fields. It's often better
+ // to use those instructions rather than force a 20-bit displacement
+ // into a GPR temporary.
+ let mayStore = 1 in {
+ def VST32 : StoreAliasVRX<store, v32sb, bdxaddr12pair>;
+ def VST64 : StoreAliasVRX<store, v64db, bdxaddr12pair>;
+ }
+
+ // Scatter element.
+ def VSCEF : StoreBinaryVRV<"vscef", 0xE71B, 4, imm32zx2>;
+ def VSCEG : StoreBinaryVRV<"vsceg", 0xE71A, 8, imm32zx1>;
+}
+
+let Predicates = [FeatureVectorPackedDecimal] in {
+ // Store rightmost with length. The number of stored bytes is only known
+ // at run time. Note that while the instruction will accept immediate
+ // lengths larger that 15 at runtime, those will always result in a trap,
+ // so we never emit them here.
+ def VSTRL : StoreLengthVSI<"vstrl", 0xE63D, null_frag, 0>;
+ def VSTRLR : StoreLengthVRSd<"vstrlr", 0xE63F, int_s390_vstrl, 0>;
+ def : Pat<(int_s390_vstrl VR128:$val, imm32zx4:$len, bdaddr12only:$addr),
+ (VSTRL VR128:$val, bdaddr12only:$addr, imm32zx4:$len)>;
+}
+
+//===----------------------------------------------------------------------===//
+// Byte swaps
+//===----------------------------------------------------------------------===//
+
+let Predicates = [FeatureVectorEnhancements2] in {
+ // Load byte-reversed elements.
+ def VLBR : UnaryVRXGeneric<"vlbr", 0xE606>;
+ def VLBRH : UnaryVRX<"vlbrh", 0xE606, z_loadbswap, v128h, 16, 1>;
+ def VLBRF : UnaryVRX<"vlbrf", 0xE606, z_loadbswap, v128f, 16, 2>;
+ def VLBRG : UnaryVRX<"vlbrg", 0xE606, z_loadbswap, v128g, 16, 3>;
+ def VLBRQ : UnaryVRX<"vlbrq", 0xE606, null_frag, v128q, 16, 4>;
+
+ // Load elements reversed.
+ def VLER : UnaryVRXGeneric<"vler", 0xE607>;
+ def VLERH : UnaryVRX<"vlerh", 0xE607, z_loadeswap, v128h, 16, 1>;
+ def VLERF : UnaryVRX<"vlerf", 0xE607, z_loadeswap, v128f, 16, 2>;
+ def VLERG : UnaryVRX<"vlerg", 0xE607, z_loadeswap, v128g, 16, 3>;
+ def : Pat<(v4f32 (z_loadeswap bdxaddr12only:$addr)),
+ (VLERF bdxaddr12only:$addr)>;
+ def : Pat<(v2f64 (z_loadeswap bdxaddr12only:$addr)),
+ (VLERG bdxaddr12only:$addr)>;
+ def : Pat<(v16i8 (z_loadeswap bdxaddr12only:$addr)),
+ (VLBRQ bdxaddr12only:$addr)>;
+
+ // Load byte-reversed element.
+ def VLEBRH : TernaryVRX<"vlebrh", 0xE601, z_vlebri16, v128h, v128h, 2, imm32zx3>;
+ def VLEBRF : TernaryVRX<"vlebrf", 0xE603, z_vlebri32, v128f, v128f, 4, imm32zx2>;
+ def VLEBRG : TernaryVRX<"vlebrg", 0xE602, z_vlebri64, v128g, v128g, 8, imm32zx1>;
+
+ // Load byte-reversed element and zero.
+ def VLLEBRZ : UnaryVRXGeneric<"vllebrz", 0xE604>;
+ def VLLEBRZH : UnaryVRX<"vllebrzh", 0xE604, z_vllebrzi16, v128h, 2, 1>;
+ def VLLEBRZF : UnaryVRX<"vllebrzf", 0xE604, z_vllebrzi32, v128f, 4, 2>;
+ def VLLEBRZG : UnaryVRX<"vllebrzg", 0xE604, z_vllebrzi64, v128g, 8, 3>;
+ def VLLEBRZE : UnaryVRX<"vllebrze", 0xE604, z_vllebrzli32, v128f, 4, 6>;
+ def : InstAlias<"lerv\t$V1, $XBD2",
+ (VLLEBRZE VR128:$V1, bdxaddr12only:$XBD2), 0>;
+ def : InstAlias<"ldrv\t$V1, $XBD2",
+ (VLLEBRZG VR128:$V1, bdxaddr12only:$XBD2), 0>;
+
+ // Load byte-reversed element and replicate.
+ def VLBRREP : UnaryVRXGeneric<"vlbrrep", 0xE605>;
+ def VLBRREPH : UnaryVRX<"vlbrreph", 0xE605, z_replicate_loadbswapi16, v128h, 2, 1>;
+ def VLBRREPF : UnaryVRX<"vlbrrepf", 0xE605, z_replicate_loadbswapi32, v128f, 4, 2>;
+ def VLBRREPG : UnaryVRX<"vlbrrepg", 0xE605, z_replicate_loadbswapi64, v128g, 8, 3>;
+
+ // Store byte-reversed elements.
+ def VSTBR : StoreVRXGeneric<"vstbr", 0xE60E>;
+ def VSTBRH : StoreVRX<"vstbrh", 0xE60E, z_storebswap, v128h, 16, 1>;
+ def VSTBRF : StoreVRX<"vstbrf", 0xE60E, z_storebswap, v128f, 16, 2>;
+ def VSTBRG : StoreVRX<"vstbrg", 0xE60E, z_storebswap, v128g, 16, 3>;
+ def VSTBRQ : StoreVRX<"vstbrq", 0xE60E, null_frag, v128q, 16, 4>;
+
+ // Store elements reversed.
+ def VSTER : StoreVRXGeneric<"vster", 0xE60F>;
+ def VSTERH : StoreVRX<"vsterh", 0xE60F, z_storeeswap, v128h, 16, 1>;
+ def VSTERF : StoreVRX<"vsterf", 0xE60F, z_storeeswap, v128f, 16, 2>;
+ def VSTERG : StoreVRX<"vsterg", 0xE60F, z_storeeswap, v128g, 16, 3>;
+ def : Pat<(z_storeeswap (v4f32 VR128:$val), bdxaddr12only:$addr),
+ (VSTERF VR128:$val, bdxaddr12only:$addr)>;
+ def : Pat<(z_storeeswap (v2f64 VR128:$val), bdxaddr12only:$addr),
+ (VSTERG VR128:$val, bdxaddr12only:$addr)>;
+ def : Pat<(z_storeeswap (v16i8 VR128:$val), bdxaddr12only:$addr),
+ (VSTBRQ VR128:$val, bdxaddr12only:$addr)>;
+
+ // Store byte-reversed element.
+ def VSTEBRH : StoreBinaryVRX<"vstebrh", 0xE609, z_vstebri16, v128h, 2, imm32zx3>;
+ def VSTEBRF : StoreBinaryVRX<"vstebrf", 0xE60B, z_vstebri32, v128f, 4, imm32zx2>;
+ def VSTEBRG : StoreBinaryVRX<"vstebrg", 0xE60A, z_vstebri64, v128g, 8, imm32zx1>;
+ def : InstAlias<"sterv\t$V1, $XBD2",
+ (VSTEBRF VR128:$V1, bdxaddr12only:$XBD2, 0), 0>;
+ def : InstAlias<"stdrv\t$V1, $XBD2",
+ (VSTEBRG VR128:$V1, bdxaddr12only:$XBD2, 0), 0>;
+}
+
+//===----------------------------------------------------------------------===//
+// Selects and permutes
+//===----------------------------------------------------------------------===//
+
+let Predicates = [FeatureVector] in {
+ // Merge high.
+ def VMRH: BinaryVRRcGeneric<"vmrh", 0xE761>;
+ def VMRHB : BinaryVRRc<"vmrhb", 0xE761, z_merge_high, v128b, v128b, 0>;
+ def VMRHH : BinaryVRRc<"vmrhh", 0xE761, z_merge_high, v128h, v128h, 1>;
+ def VMRHF : BinaryVRRc<"vmrhf", 0xE761, z_merge_high, v128f, v128f, 2>;
+ def VMRHG : BinaryVRRc<"vmrhg", 0xE761, z_merge_high, v128g, v128g, 3>;
+ def : BinaryRRWithType<VMRHF, VR128, z_merge_high, v4f32>;
+ def : BinaryRRWithType<VMRHG, VR128, z_merge_high, v2f64>;
+
+ // Merge low.
+ def VMRL: BinaryVRRcGeneric<"vmrl", 0xE760>;
+ def VMRLB : BinaryVRRc<"vmrlb", 0xE760, z_merge_low, v128b, v128b, 0>;
+ def VMRLH : BinaryVRRc<"vmrlh", 0xE760, z_merge_low, v128h, v128h, 1>;
+ def VMRLF : BinaryVRRc<"vmrlf", 0xE760, z_merge_low, v128f, v128f, 2>;
+ def VMRLG : BinaryVRRc<"vmrlg", 0xE760, z_merge_low, v128g, v128g, 3>;
+ def : BinaryRRWithType<VMRLF, VR128, z_merge_low, v4f32>;
+ def : BinaryRRWithType<VMRLG, VR128, z_merge_low, v2f64>;
+
+ // Permute.
+ def VPERM : TernaryVRRe<"vperm", 0xE78C, z_permute, v128b, v128b>;
+
+ // Permute doubleword immediate.
+ def VPDI : TernaryVRRc<"vpdi", 0xE784, z_permute_dwords, v128g, v128g>;
+
+ // Bit Permute.
+ let Predicates = [FeatureVectorEnhancements1] in
+ def VBPERM : BinaryVRRc<"vbperm", 0xE785, int_s390_vbperm, v128g, v128b>;
+
+ // Replicate.
+ def VREP: BinaryVRIcGeneric<"vrep", 0xE74D>;
+ def VREPB : BinaryVRIc<"vrepb", 0xE74D, z_splat, v128b, v128b, 0>;
+ def VREPH : BinaryVRIc<"vreph", 0xE74D, z_splat, v128h, v128h, 1>;
+ def VREPF : BinaryVRIc<"vrepf", 0xE74D, z_splat, v128f, v128f, 2>;
+ def VREPG : BinaryVRIc<"vrepg", 0xE74D, z_splat, v128g, v128g, 3>;
+ def : Pat<(v4f32 (z_splat VR128:$vec, imm32zx16_timm:$index)),
+ (VREPF VR128:$vec, imm32zx16:$index)>;
+ def : Pat<(v2f64 (z_splat VR128:$vec, imm32zx16_timm:$index)),
+ (VREPG VR128:$vec, imm32zx16:$index)>;
+
+ // Select.
+ def VSEL : TernaryVRRe<"vsel", 0xE78D, null_frag, v128any, v128any>;
+}
+
+//===----------------------------------------------------------------------===//
+// Widening and narrowing
+//===----------------------------------------------------------------------===//
+
+let Predicates = [FeatureVector] in {
+ // Pack
+ def VPK : BinaryVRRcGeneric<"vpk", 0xE794>;
+ def VPKH : BinaryVRRc<"vpkh", 0xE794, z_pack, v128b, v128h, 1>;
+ def VPKF : BinaryVRRc<"vpkf", 0xE794, z_pack, v128h, v128f, 2>;
+ def VPKG : BinaryVRRc<"vpkg", 0xE794, z_pack, v128f, v128g, 3>;
+
+ // Pack saturate.
+ def VPKS : BinaryVRRbSPairGeneric<"vpks", 0xE797>;
+ defm VPKSH : BinaryVRRbSPair<"vpksh", 0xE797, int_s390_vpksh, z_packs_cc,
+ v128b, v128h, 1>;
+ defm VPKSF : BinaryVRRbSPair<"vpksf", 0xE797, int_s390_vpksf, z_packs_cc,
+ v128h, v128f, 2>;
+ defm VPKSG : BinaryVRRbSPair<"vpksg", 0xE797, int_s390_vpksg, z_packs_cc,
+ v128f, v128g, 3>;
+
+ // Pack saturate logical.
+ def VPKLS : BinaryVRRbSPairGeneric<"vpkls", 0xE795>;
+ defm VPKLSH : BinaryVRRbSPair<"vpklsh", 0xE795, int_s390_vpklsh, z_packls_cc,
+ v128b, v128h, 1>;
+ defm VPKLSF : BinaryVRRbSPair<"vpklsf", 0xE795, int_s390_vpklsf, z_packls_cc,
+ v128h, v128f, 2>;
+ defm VPKLSG : BinaryVRRbSPair<"vpklsg", 0xE795, int_s390_vpklsg, z_packls_cc,
+ v128f, v128g, 3>;
+
+ // Sign-extend to doubleword.
+ def VSEG : UnaryVRRaGeneric<"vseg", 0xE75F>;
+ def VSEGB : UnaryVRRa<"vsegb", 0xE75F, z_vsei8, v128g, v128g, 0>;
+ def VSEGH : UnaryVRRa<"vsegh", 0xE75F, z_vsei16, v128g, v128g, 1>;
+ def VSEGF : UnaryVRRa<"vsegf", 0xE75F, z_vsei32, v128g, v128g, 2>;
+ def : Pat<(z_vsei8_by_parts (v16i8 VR128:$src)), (VSEGB VR128:$src)>;
+ def : Pat<(z_vsei16_by_parts (v8i16 VR128:$src)), (VSEGH VR128:$src)>;
+ def : Pat<(z_vsei32_by_parts (v4i32 VR128:$src)), (VSEGF VR128:$src)>;
+
+ // Unpack high.
+ def VUPH : UnaryVRRaGeneric<"vuph", 0xE7D7>;
+ def VUPHB : UnaryVRRa<"vuphb", 0xE7D7, z_unpack_high, v128h, v128b, 0>;
+ def VUPHH : UnaryVRRa<"vuphh", 0xE7D7, z_unpack_high, v128f, v128h, 1>;
+ def VUPHF : UnaryVRRa<"vuphf", 0xE7D7, z_unpack_high, v128g, v128f, 2>;
+
+ // Unpack logical high.
+ def VUPLH : UnaryVRRaGeneric<"vuplh", 0xE7D5>;
+ def VUPLHB : UnaryVRRa<"vuplhb", 0xE7D5, z_unpackl_high, v128h, v128b, 0>;
+ def VUPLHH : UnaryVRRa<"vuplhh", 0xE7D5, z_unpackl_high, v128f, v128h, 1>;
+ def VUPLHF : UnaryVRRa<"vuplhf", 0xE7D5, z_unpackl_high, v128g, v128f, 2>;
+
+ // Unpack low.
+ def VUPL : UnaryVRRaGeneric<"vupl", 0xE7D6>;
+ def VUPLB : UnaryVRRa<"vuplb", 0xE7D6, z_unpack_low, v128h, v128b, 0>;
+ def VUPLHW : UnaryVRRa<"vuplhw", 0xE7D6, z_unpack_low, v128f, v128h, 1>;
+ def VUPLF : UnaryVRRa<"vuplf", 0xE7D6, z_unpack_low, v128g, v128f, 2>;
+
+ // Unpack logical low.
+ def VUPLL : UnaryVRRaGeneric<"vupll", 0xE7D4>;
+ def VUPLLB : UnaryVRRa<"vupllb", 0xE7D4, z_unpackl_low, v128h, v128b, 0>;
+ def VUPLLH : UnaryVRRa<"vupllh", 0xE7D4, z_unpackl_low, v128f, v128h, 1>;
+ def VUPLLF : UnaryVRRa<"vupllf", 0xE7D4, z_unpackl_low, v128g, v128f, 2>;
+}
+
+//===----------------------------------------------------------------------===//
+// Instantiating generic operations for specific types.
+//===----------------------------------------------------------------------===//
+
+multiclass GenericVectorOps<ValueType type, ValueType inttype> {
+ let Predicates = [FeatureVector] in {
+ def : Pat<(type (load bdxaddr12only:$addr)),
+ (VL bdxaddr12only:$addr)>;
+ def : Pat<(store (type VR128:$src), bdxaddr12only:$addr),
+ (VST VR128:$src, bdxaddr12only:$addr)>;
+ def : Pat<(type (vselect (inttype VR128:$x), VR128:$y, VR128:$z)),
+ (VSEL VR128:$y, VR128:$z, VR128:$x)>;
+ def : Pat<(type (vselect (inttype (z_vnot VR128:$x)), VR128:$y, VR128:$z)),
+ (VSEL VR128:$z, VR128:$y, VR128:$x)>;
+ }
+}
+
+defm : GenericVectorOps<v16i8, v16i8>;
+defm : GenericVectorOps<v8i16, v8i16>;
+defm : GenericVectorOps<v4i32, v4i32>;
+defm : GenericVectorOps<v2i64, v2i64>;
+defm : GenericVectorOps<v4f32, v4i32>;
+defm : GenericVectorOps<v2f64, v2i64>;
+
+//===----------------------------------------------------------------------===//
+// Integer arithmetic
+//===----------------------------------------------------------------------===//
+
+let Predicates = [FeatureVector] in {
+ let isCommutable = 1 in {
+ // Add.
+ def VA : BinaryVRRcGeneric<"va", 0xE7F3>;
+ def VAB : BinaryVRRc<"vab", 0xE7F3, add, v128b, v128b, 0>;
+ def VAH : BinaryVRRc<"vah", 0xE7F3, add, v128h, v128h, 1>;
+ def VAF : BinaryVRRc<"vaf", 0xE7F3, add, v128f, v128f, 2>;
+ def VAG : BinaryVRRc<"vag", 0xE7F3, add, v128g, v128g, 3>;
+ def VAQ : BinaryVRRc<"vaq", 0xE7F3, int_s390_vaq, v128q, v128q, 4>;
+ }
+
+ let isCommutable = 1 in {
+ // Add compute carry.
+ def VACC : BinaryVRRcGeneric<"vacc", 0xE7F1>;
+ def VACCB : BinaryVRRc<"vaccb", 0xE7F1, int_s390_vaccb, v128b, v128b, 0>;
+ def VACCH : BinaryVRRc<"vacch", 0xE7F1, int_s390_vacch, v128h, v128h, 1>;
+ def VACCF : BinaryVRRc<"vaccf", 0xE7F1, int_s390_vaccf, v128f, v128f, 2>;
+ def VACCG : BinaryVRRc<"vaccg", 0xE7F1, int_s390_vaccg, v128g, v128g, 3>;
+ def VACCQ : BinaryVRRc<"vaccq", 0xE7F1, int_s390_vaccq, v128q, v128q, 4>;
+
+ // Add with carry.
+ def VAC : TernaryVRRdGeneric<"vac", 0xE7BB>;
+ def VACQ : TernaryVRRd<"vacq", 0xE7BB, int_s390_vacq, v128q, v128q, 4>;
+
+ // Add with carry compute carry.
+ def VACCC : TernaryVRRdGeneric<"vaccc", 0xE7B9>;
+ def VACCCQ : TernaryVRRd<"vacccq", 0xE7B9, int_s390_vacccq, v128q, v128q, 4>;
+ }
+
+ // And.
+ let isCommutable = 1 in
+ def VN : BinaryVRRc<"vn", 0xE768, null_frag, v128any, v128any>;
+
+ // And with complement.
+ def VNC : BinaryVRRc<"vnc", 0xE769, null_frag, v128any, v128any>;
+
+ let isCommutable = 1 in {
+ // Average.
+ def VAVG : BinaryVRRcGeneric<"vavg", 0xE7F2>;
+ def VAVGB : BinaryVRRc<"vavgb", 0xE7F2, int_s390_vavgb, v128b, v128b, 0>;
+ def VAVGH : BinaryVRRc<"vavgh", 0xE7F2, int_s390_vavgh, v128h, v128h, 1>;
+ def VAVGF : BinaryVRRc<"vavgf", 0xE7F2, int_s390_vavgf, v128f, v128f, 2>;
+ def VAVGG : BinaryVRRc<"vavgg", 0xE7F2, int_s390_vavgg, v128g, v128g, 3>;
+
+ // Average logical.
+ def VAVGL : BinaryVRRcGeneric<"vavgl", 0xE7F0>;
+ def VAVGLB : BinaryVRRc<"vavglb", 0xE7F0, int_s390_vavglb, v128b, v128b, 0>;
+ def VAVGLH : BinaryVRRc<"vavglh", 0xE7F0, int_s390_vavglh, v128h, v128h, 1>;
+ def VAVGLF : BinaryVRRc<"vavglf", 0xE7F0, int_s390_vavglf, v128f, v128f, 2>;
+ def VAVGLG : BinaryVRRc<"vavglg", 0xE7F0, int_s390_vavglg, v128g, v128g, 3>;
+ }
+
+ // Checksum.
+ def VCKSM : BinaryVRRc<"vcksm", 0xE766, int_s390_vcksm, v128f, v128f>;
+
+ // Count leading zeros.
+ def VCLZ : UnaryVRRaGeneric<"vclz", 0xE753>;
+ def VCLZB : UnaryVRRa<"vclzb", 0xE753, ctlz, v128b, v128b, 0>;
+ def VCLZH : UnaryVRRa<"vclzh", 0xE753, ctlz, v128h, v128h, 1>;
+ def VCLZF : UnaryVRRa<"vclzf", 0xE753, ctlz, v128f, v128f, 2>;
+ def VCLZG : UnaryVRRa<"vclzg", 0xE753, ctlz, v128g, v128g, 3>;
+
+ // Count trailing zeros.
+ def VCTZ : UnaryVRRaGeneric<"vctz", 0xE752>;
+ def VCTZB : UnaryVRRa<"vctzb", 0xE752, cttz, v128b, v128b, 0>;
+ def VCTZH : UnaryVRRa<"vctzh", 0xE752, cttz, v128h, v128h, 1>;
+ def VCTZF : UnaryVRRa<"vctzf", 0xE752, cttz, v128f, v128f, 2>;
+ def VCTZG : UnaryVRRa<"vctzg", 0xE752, cttz, v128g, v128g, 3>;
+
+ let isCommutable = 1 in {
+ // Not exclusive or.
+ let Predicates = [FeatureVectorEnhancements1] in
+ def VNX : BinaryVRRc<"vnx", 0xE76C, null_frag, v128any, v128any>;
+
+ // Exclusive or.
+ def VX : BinaryVRRc<"vx", 0xE76D, null_frag, v128any, v128any>;
+ }
+
+ // Galois field multiply sum.
+ def VGFM : BinaryVRRcGeneric<"vgfm", 0xE7B4>;
+ def VGFMB : BinaryVRRc<"vgfmb", 0xE7B4, int_s390_vgfmb, v128h, v128b, 0>;
+ def VGFMH : BinaryVRRc<"vgfmh", 0xE7B4, int_s390_vgfmh, v128f, v128h, 1>;
+ def VGFMF : BinaryVRRc<"vgfmf", 0xE7B4, int_s390_vgfmf, v128g, v128f, 2>;
+ def VGFMG : BinaryVRRc<"vgfmg", 0xE7B4, int_s390_vgfmg, v128q, v128g, 3>;
+
+ // Galois field multiply sum and accumulate.
+ def VGFMA : TernaryVRRdGeneric<"vgfma", 0xE7BC>;
+ def VGFMAB : TernaryVRRd<"vgfmab", 0xE7BC, int_s390_vgfmab, v128h, v128b, 0>;
+ def VGFMAH : TernaryVRRd<"vgfmah", 0xE7BC, int_s390_vgfmah, v128f, v128h, 1>;
+ def VGFMAF : TernaryVRRd<"vgfmaf", 0xE7BC, int_s390_vgfmaf, v128g, v128f, 2>;
+ def VGFMAG : TernaryVRRd<"vgfmag", 0xE7BC, int_s390_vgfmag, v128q, v128g, 3>;
+
+ // Load complement.
+ def VLC : UnaryVRRaGeneric<"vlc", 0xE7DE>;
+ def VLCB : UnaryVRRa<"vlcb", 0xE7DE, z_vneg, v128b, v128b, 0>;
+ def VLCH : UnaryVRRa<"vlch", 0xE7DE, z_vneg, v128h, v128h, 1>;
+ def VLCF : UnaryVRRa<"vlcf", 0xE7DE, z_vneg, v128f, v128f, 2>;
+ def VLCG : UnaryVRRa<"vlcg", 0xE7DE, z_vneg, v128g, v128g, 3>;
+
+ // Load positive.
+ def VLP : UnaryVRRaGeneric<"vlp", 0xE7DF>;
+ def VLPB : UnaryVRRa<"vlpb", 0xE7DF, abs, v128b, v128b, 0>;
+ def VLPH : UnaryVRRa<"vlph", 0xE7DF, abs, v128h, v128h, 1>;
+ def VLPF : UnaryVRRa<"vlpf", 0xE7DF, abs, v128f, v128f, 2>;
+ def VLPG : UnaryVRRa<"vlpg", 0xE7DF, abs, v128g, v128g, 3>;
+
+ let isCommutable = 1 in {
+ // Maximum.
+ def VMX : BinaryVRRcGeneric<"vmx", 0xE7FF>;
+ def VMXB : BinaryVRRc<"vmxb", 0xE7FF, null_frag, v128b, v128b, 0>;
+ def VMXH : BinaryVRRc<"vmxh", 0xE7FF, null_frag, v128h, v128h, 1>;
+ def VMXF : BinaryVRRc<"vmxf", 0xE7FF, null_frag, v128f, v128f, 2>;
+ def VMXG : BinaryVRRc<"vmxg", 0xE7FF, null_frag, v128g, v128g, 3>;
+
+ // Maximum logical.
+ def VMXL : BinaryVRRcGeneric<"vmxl", 0xE7FD>;
+ def VMXLB : BinaryVRRc<"vmxlb", 0xE7FD, null_frag, v128b, v128b, 0>;
+ def VMXLH : BinaryVRRc<"vmxlh", 0xE7FD, null_frag, v128h, v128h, 1>;
+ def VMXLF : BinaryVRRc<"vmxlf", 0xE7FD, null_frag, v128f, v128f, 2>;
+ def VMXLG : BinaryVRRc<"vmxlg", 0xE7FD, null_frag, v128g, v128g, 3>;
+ }
+
+ let isCommutable = 1 in {
+ // Minimum.
+ def VMN : BinaryVRRcGeneric<"vmn", 0xE7FE>;
+ def VMNB : BinaryVRRc<"vmnb", 0xE7FE, null_frag, v128b, v128b, 0>;
+ def VMNH : BinaryVRRc<"vmnh", 0xE7FE, null_frag, v128h, v128h, 1>;
+ def VMNF : BinaryVRRc<"vmnf", 0xE7FE, null_frag, v128f, v128f, 2>;
+ def VMNG : BinaryVRRc<"vmng", 0xE7FE, null_frag, v128g, v128g, 3>;
+
+ // Minimum logical.
+ def VMNL : BinaryVRRcGeneric<"vmnl", 0xE7FC>;
+ def VMNLB : BinaryVRRc<"vmnlb", 0xE7FC, null_frag, v128b, v128b, 0>;
+ def VMNLH : BinaryVRRc<"vmnlh", 0xE7FC, null_frag, v128h, v128h, 1>;
+ def VMNLF : BinaryVRRc<"vmnlf", 0xE7FC, null_frag, v128f, v128f, 2>;
+ def VMNLG : BinaryVRRc<"vmnlg", 0xE7FC, null_frag, v128g, v128g, 3>;
+ }
+
+ let isCommutable = 1 in {
+ // Multiply and add low.
+ def VMAL : TernaryVRRdGeneric<"vmal", 0xE7AA>;
+ def VMALB : TernaryVRRd<"vmalb", 0xE7AA, z_muladd, v128b, v128b, 0>;
+ def VMALHW : TernaryVRRd<"vmalhw", 0xE7AA, z_muladd, v128h, v128h, 1>;
+ def VMALF : TernaryVRRd<"vmalf", 0xE7AA, z_muladd, v128f, v128f, 2>;
+
+ // Multiply and add high.
+ def VMAH : TernaryVRRdGeneric<"vmah", 0xE7AB>;
+ def VMAHB : TernaryVRRd<"vmahb", 0xE7AB, int_s390_vmahb, v128b, v128b, 0>;
+ def VMAHH : TernaryVRRd<"vmahh", 0xE7AB, int_s390_vmahh, v128h, v128h, 1>;
+ def VMAHF : TernaryVRRd<"vmahf", 0xE7AB, int_s390_vmahf, v128f, v128f, 2>;
+
+ // Multiply and add logical high.
+ def VMALH : TernaryVRRdGeneric<"vmalh", 0xE7A9>;
+ def VMALHB : TernaryVRRd<"vmalhb", 0xE7A9, int_s390_vmalhb, v128b, v128b, 0>;
+ def VMALHH : TernaryVRRd<"vmalhh", 0xE7A9, int_s390_vmalhh, v128h, v128h, 1>;
+ def VMALHF : TernaryVRRd<"vmalhf", 0xE7A9, int_s390_vmalhf, v128f, v128f, 2>;
+
+ // Multiply and add even.
+ def VMAE : TernaryVRRdGeneric<"vmae", 0xE7AE>;
+ def VMAEB : TernaryVRRd<"vmaeb", 0xE7AE, int_s390_vmaeb, v128h, v128b, 0>;
+ def VMAEH : TernaryVRRd<"vmaeh", 0xE7AE, int_s390_vmaeh, v128f, v128h, 1>;
+ def VMAEF : TernaryVRRd<"vmaef", 0xE7AE, int_s390_vmaef, v128g, v128f, 2>;
+
+ // Multiply and add logical even.
+ def VMALE : TernaryVRRdGeneric<"vmale", 0xE7AC>;
+ def VMALEB : TernaryVRRd<"vmaleb", 0xE7AC, int_s390_vmaleb, v128h, v128b, 0>;
+ def VMALEH : TernaryVRRd<"vmaleh", 0xE7AC, int_s390_vmaleh, v128f, v128h, 1>;
+ def VMALEF : TernaryVRRd<"vmalef", 0xE7AC, int_s390_vmalef, v128g, v128f, 2>;
+
+ // Multiply and add odd.
+ def VMAO : TernaryVRRdGeneric<"vmao", 0xE7AF>;
+ def VMAOB : TernaryVRRd<"vmaob", 0xE7AF, int_s390_vmaob, v128h, v128b, 0>;
+ def VMAOH : TernaryVRRd<"vmaoh", 0xE7AF, int_s390_vmaoh, v128f, v128h, 1>;
+ def VMAOF : TernaryVRRd<"vmaof", 0xE7AF, int_s390_vmaof, v128g, v128f, 2>;
+
+ // Multiply and add logical odd.
+ def VMALO : TernaryVRRdGeneric<"vmalo", 0xE7AD>;
+ def VMALOB : TernaryVRRd<"vmalob", 0xE7AD, int_s390_vmalob, v128h, v128b, 0>;
+ def VMALOH : TernaryVRRd<"vmaloh", 0xE7AD, int_s390_vmaloh, v128f, v128h, 1>;
+ def VMALOF : TernaryVRRd<"vmalof", 0xE7AD, int_s390_vmalof, v128g, v128f, 2>;
+ }
+
+ let isCommutable = 1 in {
+ // Multiply high.
+ def VMH : BinaryVRRcGeneric<"vmh", 0xE7A3>;
+ def VMHB : BinaryVRRc<"vmhb", 0xE7A3, int_s390_vmhb, v128b, v128b, 0>;
+ def VMHH : BinaryVRRc<"vmhh", 0xE7A3, int_s390_vmhh, v128h, v128h, 1>;
+ def VMHF : BinaryVRRc<"vmhf", 0xE7A3, int_s390_vmhf, v128f, v128f, 2>;
+
+ // Multiply logical high.
+ def VMLH : BinaryVRRcGeneric<"vmlh", 0xE7A1>;
+ def VMLHB : BinaryVRRc<"vmlhb", 0xE7A1, int_s390_vmlhb, v128b, v128b, 0>;
+ def VMLHH : BinaryVRRc<"vmlhh", 0xE7A1, int_s390_vmlhh, v128h, v128h, 1>;
+ def VMLHF : BinaryVRRc<"vmlhf", 0xE7A1, int_s390_vmlhf, v128f, v128f, 2>;
+
+ // Multiply low.
+ def VML : BinaryVRRcGeneric<"vml", 0xE7A2>;
+ def VMLB : BinaryVRRc<"vmlb", 0xE7A2, mul, v128b, v128b, 0>;
+ def VMLHW : BinaryVRRc<"vmlhw", 0xE7A2, mul, v128h, v128h, 1>;
+ def VMLF : BinaryVRRc<"vmlf", 0xE7A2, mul, v128f, v128f, 2>;
+
+ // Multiply even.
+ def VME : BinaryVRRcGeneric<"vme", 0xE7A6>;
+ def VMEB : BinaryVRRc<"vmeb", 0xE7A6, int_s390_vmeb, v128h, v128b, 0>;
+ def VMEH : BinaryVRRc<"vmeh", 0xE7A6, int_s390_vmeh, v128f, v128h, 1>;
+ def VMEF : BinaryVRRc<"vmef", 0xE7A6, int_s390_vmef, v128g, v128f, 2>;
+
+ // Multiply logical even.
+ def VMLE : BinaryVRRcGeneric<"vmle", 0xE7A4>;
+ def VMLEB : BinaryVRRc<"vmleb", 0xE7A4, int_s390_vmleb, v128h, v128b, 0>;
+ def VMLEH : BinaryVRRc<"vmleh", 0xE7A4, int_s390_vmleh, v128f, v128h, 1>;
+ def VMLEF : BinaryVRRc<"vmlef", 0xE7A4, int_s390_vmlef, v128g, v128f, 2>;
+
+ // Multiply odd.
+ def VMO : BinaryVRRcGeneric<"vmo", 0xE7A7>;
+ def VMOB : BinaryVRRc<"vmob", 0xE7A7, int_s390_vmob, v128h, v128b, 0>;
+ def VMOH : BinaryVRRc<"vmoh", 0xE7A7, int_s390_vmoh, v128f, v128h, 1>;
+ def VMOF : BinaryVRRc<"vmof", 0xE7A7, int_s390_vmof, v128g, v128f, 2>;
+
+ // Multiply logical odd.
+ def VMLO : BinaryVRRcGeneric<"vmlo", 0xE7A5>;
+ def VMLOB : BinaryVRRc<"vmlob", 0xE7A5, int_s390_vmlob, v128h, v128b, 0>;
+ def VMLOH : BinaryVRRc<"vmloh", 0xE7A5, int_s390_vmloh, v128f, v128h, 1>;
+ def VMLOF : BinaryVRRc<"vmlof", 0xE7A5, int_s390_vmlof, v128g, v128f, 2>;
+ }
+
+ // Multiply sum logical.
+ let Predicates = [FeatureVectorEnhancements1], isCommutable = 1 in {
+ def VMSL : QuaternaryVRRdGeneric<"vmsl", 0xE7B8>;
+ def VMSLG : QuaternaryVRRd<"vmslg", 0xE7B8, int_s390_vmslg,
+ v128q, v128g, v128g, v128q, 3>;
+ }
+
+ // Nand.
+ let Predicates = [FeatureVectorEnhancements1], isCommutable = 1 in
+ def VNN : BinaryVRRc<"vnn", 0xE76E, null_frag, v128any, v128any>;
+
+ // Nor.
+ let isCommutable = 1 in
+ def VNO : BinaryVRRc<"vno", 0xE76B, null_frag, v128any, v128any>;
+ def : InstAlias<"vnot\t$V1, $V2", (VNO VR128:$V1, VR128:$V2, VR128:$V2), 0>;
+
+ // Or.
+ let isCommutable = 1 in
+ def VO : BinaryVRRc<"vo", 0xE76A, null_frag, v128any, v128any>;
+
+ // Or with complement.
+ let Predicates = [FeatureVectorEnhancements1] in
+ def VOC : BinaryVRRc<"voc", 0xE76F, null_frag, v128any, v128any>;
+
+ // Population count.
+ def VPOPCT : UnaryVRRaGeneric<"vpopct", 0xE750>;
+ def : Pat<(v16i8 (z_popcnt VR128:$x)), (VPOPCT VR128:$x, 0)>;
+ let Predicates = [FeatureVectorEnhancements1] in {
+ def VPOPCTB : UnaryVRRa<"vpopctb", 0xE750, ctpop, v128b, v128b, 0>;
+ def VPOPCTH : UnaryVRRa<"vpopcth", 0xE750, ctpop, v128h, v128h, 1>;
+ def VPOPCTF : UnaryVRRa<"vpopctf", 0xE750, ctpop, v128f, v128f, 2>;
+ def VPOPCTG : UnaryVRRa<"vpopctg", 0xE750, ctpop, v128g, v128g, 3>;
+ }
+
+ // Element rotate left logical (with vector shift amount).
+ def VERLLV : BinaryVRRcGeneric<"verllv", 0xE773>;
+ def VERLLVB : BinaryVRRc<"verllvb", 0xE773, int_s390_verllvb,
+ v128b, v128b, 0>;
+ def VERLLVH : BinaryVRRc<"verllvh", 0xE773, int_s390_verllvh,
+ v128h, v128h, 1>;
+ def VERLLVF : BinaryVRRc<"verllvf", 0xE773, int_s390_verllvf,
+ v128f, v128f, 2>;
+ def VERLLVG : BinaryVRRc<"verllvg", 0xE773, int_s390_verllvg,
+ v128g, v128g, 3>;
+
+ // Element rotate left logical (with scalar shift amount).
+ def VERLL : BinaryVRSaGeneric<"verll", 0xE733>;
+ def VERLLB : BinaryVRSa<"verllb", 0xE733, int_s390_verllb, v128b, v128b, 0>;
+ def VERLLH : BinaryVRSa<"verllh", 0xE733, int_s390_verllh, v128h, v128h, 1>;
+ def VERLLF : BinaryVRSa<"verllf", 0xE733, int_s390_verllf, v128f, v128f, 2>;
+ def VERLLG : BinaryVRSa<"verllg", 0xE733, int_s390_verllg, v128g, v128g, 3>;
+
+ // Element rotate and insert under mask.
+ def VERIM : QuaternaryVRIdGeneric<"verim", 0xE772>;
+ def VERIMB : QuaternaryVRId<"verimb", 0xE772, int_s390_verimb, v128b, v128b, 0>;
+ def VERIMH : QuaternaryVRId<"verimh", 0xE772, int_s390_verimh, v128h, v128h, 1>;
+ def VERIMF : QuaternaryVRId<"verimf", 0xE772, int_s390_verimf, v128f, v128f, 2>;
+ def VERIMG : QuaternaryVRId<"verimg", 0xE772, int_s390_verimg, v128g, v128g, 3>;
+
+ // Element shift left (with vector shift amount).
+ def VESLV : BinaryVRRcGeneric<"veslv", 0xE770>;
+ def VESLVB : BinaryVRRc<"veslvb", 0xE770, z_vshl, v128b, v128b, 0>;
+ def VESLVH : BinaryVRRc<"veslvh", 0xE770, z_vshl, v128h, v128h, 1>;
+ def VESLVF : BinaryVRRc<"veslvf", 0xE770, z_vshl, v128f, v128f, 2>;
+ def VESLVG : BinaryVRRc<"veslvg", 0xE770, z_vshl, v128g, v128g, 3>;
+
+ // Element shift left (with scalar shift amount).
+ def VESL : BinaryVRSaGeneric<"vesl", 0xE730>;
+ def VESLB : BinaryVRSa<"veslb", 0xE730, z_vshl_by_scalar, v128b, v128b, 0>;
+ def VESLH : BinaryVRSa<"veslh", 0xE730, z_vshl_by_scalar, v128h, v128h, 1>;
+ def VESLF : BinaryVRSa<"veslf", 0xE730, z_vshl_by_scalar, v128f, v128f, 2>;
+ def VESLG : BinaryVRSa<"veslg", 0xE730, z_vshl_by_scalar, v128g, v128g, 3>;
+
+ // Element shift right arithmetic (with vector shift amount).
+ def VESRAV : BinaryVRRcGeneric<"vesrav", 0xE77A>;
+ def VESRAVB : BinaryVRRc<"vesravb", 0xE77A, z_vsra, v128b, v128b, 0>;
+ def VESRAVH : BinaryVRRc<"vesravh", 0xE77A, z_vsra, v128h, v128h, 1>;
+ def VESRAVF : BinaryVRRc<"vesravf", 0xE77A, z_vsra, v128f, v128f, 2>;
+ def VESRAVG : BinaryVRRc<"vesravg", 0xE77A, z_vsra, v128g, v128g, 3>;
+
+ // Element shift right arithmetic (with scalar shift amount).
+ def VESRA : BinaryVRSaGeneric<"vesra", 0xE73A>;
+ def VESRAB : BinaryVRSa<"vesrab", 0xE73A, z_vsra_by_scalar, v128b, v128b, 0>;
+ def VESRAH : BinaryVRSa<"vesrah", 0xE73A, z_vsra_by_scalar, v128h, v128h, 1>;
+ def VESRAF : BinaryVRSa<"vesraf", 0xE73A, z_vsra_by_scalar, v128f, v128f, 2>;
+ def VESRAG : BinaryVRSa<"vesrag", 0xE73A, z_vsra_by_scalar, v128g, v128g, 3>;
+
+ // Element shift right logical (with vector shift amount).
+ def VESRLV : BinaryVRRcGeneric<"vesrlv", 0xE778>;
+ def VESRLVB : BinaryVRRc<"vesrlvb", 0xE778, z_vsrl, v128b, v128b, 0>;
+ def VESRLVH : BinaryVRRc<"vesrlvh", 0xE778, z_vsrl, v128h, v128h, 1>;
+ def VESRLVF : BinaryVRRc<"vesrlvf", 0xE778, z_vsrl, v128f, v128f, 2>;
+ def VESRLVG : BinaryVRRc<"vesrlvg", 0xE778, z_vsrl, v128g, v128g, 3>;
+
+ // Element shift right logical (with scalar shift amount).
+ def VESRL : BinaryVRSaGeneric<"vesrl", 0xE738>;
+ def VESRLB : BinaryVRSa<"vesrlb", 0xE738, z_vsrl_by_scalar, v128b, v128b, 0>;
+ def VESRLH : BinaryVRSa<"vesrlh", 0xE738, z_vsrl_by_scalar, v128h, v128h, 1>;
+ def VESRLF : BinaryVRSa<"vesrlf", 0xE738, z_vsrl_by_scalar, v128f, v128f, 2>;
+ def VESRLG : BinaryVRSa<"vesrlg", 0xE738, z_vsrl_by_scalar, v128g, v128g, 3>;
+
+ // Shift left.
+ def VSL : BinaryVRRc<"vsl", 0xE774, int_s390_vsl, v128b, v128b>;
+
+ // Shift left by byte.
+ def VSLB : BinaryVRRc<"vslb", 0xE775, int_s390_vslb, v128b, v128b>;
+
+ // Shift left double by byte.
+ def VSLDB : TernaryVRId<"vsldb", 0xE777, z_shl_double, v128b, v128b, 0>;
+ def : Pat<(int_s390_vsldb VR128:$x, VR128:$y, imm32zx8_timm:$z),
+ (VSLDB VR128:$x, VR128:$y, imm32zx8:$z)>;
+
+ // Shift left double by bit.
+ let Predicates = [FeatureVectorEnhancements2] in
+ def VSLD : TernaryVRId<"vsld", 0xE786, int_s390_vsld, v128b, v128b, 0>;
+
+ // Shift right arithmetic.
+ def VSRA : BinaryVRRc<"vsra", 0xE77E, int_s390_vsra, v128b, v128b>;
+
+ // Shift right arithmetic by byte.
+ def VSRAB : BinaryVRRc<"vsrab", 0xE77F, int_s390_vsrab, v128b, v128b>;
+
+ // Shift right logical.
+ def VSRL : BinaryVRRc<"vsrl", 0xE77C, int_s390_vsrl, v128b, v128b>;
+
+ // Shift right logical by byte.
+ def VSRLB : BinaryVRRc<"vsrlb", 0xE77D, int_s390_vsrlb, v128b, v128b>;
+
+ // Shift right double by bit.
+ let Predicates = [FeatureVectorEnhancements2] in
+ def VSRD : TernaryVRId<"vsrd", 0xE787, int_s390_vsrd, v128b, v128b, 0>;
+
+ // Subtract.
+ def VS : BinaryVRRcGeneric<"vs", 0xE7F7>;
+ def VSB : BinaryVRRc<"vsb", 0xE7F7, sub, v128b, v128b, 0>;
+ def VSH : BinaryVRRc<"vsh", 0xE7F7, sub, v128h, v128h, 1>;
+ def VSF : BinaryVRRc<"vsf", 0xE7F7, sub, v128f, v128f, 2>;
+ def VSG : BinaryVRRc<"vsg", 0xE7F7, sub, v128g, v128g, 3>;
+ def VSQ : BinaryVRRc<"vsq", 0xE7F7, int_s390_vsq, v128q, v128q, 4>;
+
+ // Subtract compute borrow indication.
+ def VSCBI : BinaryVRRcGeneric<"vscbi", 0xE7F5>;
+ def VSCBIB : BinaryVRRc<"vscbib", 0xE7F5, int_s390_vscbib, v128b, v128b, 0>;
+ def VSCBIH : BinaryVRRc<"vscbih", 0xE7F5, int_s390_vscbih, v128h, v128h, 1>;
+ def VSCBIF : BinaryVRRc<"vscbif", 0xE7F5, int_s390_vscbif, v128f, v128f, 2>;
+ def VSCBIG : BinaryVRRc<"vscbig", 0xE7F5, int_s390_vscbig, v128g, v128g, 3>;
+ def VSCBIQ : BinaryVRRc<"vscbiq", 0xE7F5, int_s390_vscbiq, v128q, v128q, 4>;
+
+ // Subtract with borrow indication.
+ def VSBI : TernaryVRRdGeneric<"vsbi", 0xE7BF>;
+ def VSBIQ : TernaryVRRd<"vsbiq", 0xE7BF, int_s390_vsbiq, v128q, v128q, 4>;
+
+ // Subtract with borrow compute borrow indication.
+ def VSBCBI : TernaryVRRdGeneric<"vsbcbi", 0xE7BD>;
+ def VSBCBIQ : TernaryVRRd<"vsbcbiq", 0xE7BD, int_s390_vsbcbiq,
+ v128q, v128q, 4>;
+
+ // Sum across doubleword.
+ def VSUMG : BinaryVRRcGeneric<"vsumg", 0xE765>;
+ def VSUMGH : BinaryVRRc<"vsumgh", 0xE765, z_vsum, v128g, v128h, 1>;
+ def VSUMGF : BinaryVRRc<"vsumgf", 0xE765, z_vsum, v128g, v128f, 2>;
+
+ // Sum across quadword.
+ def VSUMQ : BinaryVRRcGeneric<"vsumq", 0xE767>;
+ def VSUMQF : BinaryVRRc<"vsumqf", 0xE767, z_vsum, v128q, v128f, 2>;
+ def VSUMQG : BinaryVRRc<"vsumqg", 0xE767, z_vsum, v128q, v128g, 3>;
+
+ // Sum across word.
+ def VSUM : BinaryVRRcGeneric<"vsum", 0xE764>;
+ def VSUMB : BinaryVRRc<"vsumb", 0xE764, z_vsum, v128f, v128b, 0>;
+ def VSUMH : BinaryVRRc<"vsumh", 0xE764, z_vsum, v128f, v128h, 1>;
+}
+
+// Instantiate the bitwise ops for type TYPE.
+multiclass BitwiseVectorOps<ValueType type> {
+ let Predicates = [FeatureVector] in {
+ def : Pat<(type (and VR128:$x, VR128:$y)), (VN VR128:$x, VR128:$y)>;
+ def : Pat<(type (and VR128:$x, (z_vnot VR128:$y))),
+ (VNC VR128:$x, VR128:$y)>;
+ def : Pat<(type (or VR128:$x, VR128:$y)), (VO VR128:$x, VR128:$y)>;
+ def : Pat<(type (xor VR128:$x, VR128:$y)), (VX VR128:$x, VR128:$y)>;
+ def : Pat<(type (or (and VR128:$x, VR128:$z),
+ (and VR128:$y, (z_vnot VR128:$z)))),
+ (VSEL VR128:$x, VR128:$y, VR128:$z)>;
+ def : Pat<(type (z_vnot (or VR128:$x, VR128:$y))),
+ (VNO VR128:$x, VR128:$y)>;
+ def : Pat<(type (z_vnot VR128:$x)), (VNO VR128:$x, VR128:$x)>;
+ }
+ let Predicates = [FeatureVectorEnhancements1] in {
+ def : Pat<(type (z_vnot (xor VR128:$x, VR128:$y))),
+ (VNX VR128:$x, VR128:$y)>;
+ def : Pat<(type (z_vnot (and VR128:$x, VR128:$y))),
+ (VNN VR128:$x, VR128:$y)>;
+ def : Pat<(type (or VR128:$x, (z_vnot VR128:$y))),
+ (VOC VR128:$x, VR128:$y)>;
+ }
+}
+
+defm : BitwiseVectorOps<v16i8>;
+defm : BitwiseVectorOps<v8i16>;
+defm : BitwiseVectorOps<v4i32>;
+defm : BitwiseVectorOps<v2i64>;
+
+// Instantiate additional patterns for absolute-related expressions on
+// type TYPE. LC is the negate instruction for TYPE and LP is the absolute
+// instruction.
+multiclass IntegerAbsoluteVectorOps<ValueType type, Instruction lc,
+ Instruction lp, int shift> {
+ let Predicates = [FeatureVector] in {
+ def : Pat<(type (vselect (type (z_vicmph_zero VR128:$x)),
+ (z_vneg VR128:$x), VR128:$x)),
+ (lc (lp VR128:$x))>;
+ def : Pat<(type (vselect (type (z_vnot (z_vicmph_zero VR128:$x))),
+ VR128:$x, (z_vneg VR128:$x))),
+ (lc (lp VR128:$x))>;
+ def : Pat<(type (vselect (type (z_vicmpl_zero VR128:$x)),
+ VR128:$x, (z_vneg VR128:$x))),
+ (lc (lp VR128:$x))>;
+ def : Pat<(type (vselect (type (z_vnot (z_vicmpl_zero VR128:$x))),
+ (z_vneg VR128:$x), VR128:$x)),
+ (lc (lp VR128:$x))>;
+ def : Pat<(type (or (and (z_vsra_by_scalar VR128:$x, (i32 shift)),
+ (z_vneg VR128:$x)),
+ (and (z_vnot (z_vsra_by_scalar VR128:$x, (i32 shift))),
+ VR128:$x))),
+ (lp VR128:$x)>;
+ def : Pat<(type (or (and (z_vsra_by_scalar VR128:$x, (i32 shift)),
+ VR128:$x),
+ (and (z_vnot (z_vsra_by_scalar VR128:$x, (i32 shift))),
+ (z_vneg VR128:$x)))),
+ (lc (lp VR128:$x))>;
+ }
+}
+
+defm : IntegerAbsoluteVectorOps<v16i8, VLCB, VLPB, 7>;
+defm : IntegerAbsoluteVectorOps<v8i16, VLCH, VLPH, 15>;
+defm : IntegerAbsoluteVectorOps<v4i32, VLCF, VLPF, 31>;
+defm : IntegerAbsoluteVectorOps<v2i64, VLCG, VLPG, 63>;
+
+// Instantiate minimum- and maximum-related patterns for TYPE. CMPH is the
+// signed or unsigned "set if greater than" comparison instruction and
+// MIN and MAX are the associated minimum and maximum instructions.
+multiclass IntegerMinMaxVectorOps<ValueType type, SDPatternOperator cmph,
+ Instruction min, Instruction max> {
+ let Predicates = [FeatureVector] in {
+ def : Pat<(type (vselect (cmph VR128:$x, VR128:$y), VR128:$x, VR128:$y)),
+ (max VR128:$x, VR128:$y)>;
+ def : Pat<(type (vselect (cmph VR128:$x, VR128:$y), VR128:$y, VR128:$x)),
+ (min VR128:$x, VR128:$y)>;
+ def : Pat<(type (vselect (z_vnot (cmph VR128:$x, VR128:$y)),
+ VR128:$x, VR128:$y)),
+ (min VR128:$x, VR128:$y)>;
+ def : Pat<(type (vselect (z_vnot (cmph VR128:$x, VR128:$y)),
+ VR128:$y, VR128:$x)),
+ (max VR128:$x, VR128:$y)>;
+ }
+}
+
+// Signed min/max.
+defm : IntegerMinMaxVectorOps<v16i8, z_vicmph, VMNB, VMXB>;
+defm : IntegerMinMaxVectorOps<v8i16, z_vicmph, VMNH, VMXH>;
+defm : IntegerMinMaxVectorOps<v4i32, z_vicmph, VMNF, VMXF>;
+defm : IntegerMinMaxVectorOps<v2i64, z_vicmph, VMNG, VMXG>;
+
+// Unsigned min/max.
+defm : IntegerMinMaxVectorOps<v16i8, z_vicmphl, VMNLB, VMXLB>;
+defm : IntegerMinMaxVectorOps<v8i16, z_vicmphl, VMNLH, VMXLH>;
+defm : IntegerMinMaxVectorOps<v4i32, z_vicmphl, VMNLF, VMXLF>;
+defm : IntegerMinMaxVectorOps<v2i64, z_vicmphl, VMNLG, VMXLG>;
+
+//===----------------------------------------------------------------------===//
+// Integer comparison
+//===----------------------------------------------------------------------===//
+
+let Predicates = [FeatureVector] in {
+ // Element compare.
+ let Defs = [CC] in {
+ def VEC : CompareVRRaGeneric<"vec", 0xE7DB>;
+ def VECB : CompareVRRa<"vecb", 0xE7DB, null_frag, v128b, 0>;
+ def VECH : CompareVRRa<"vech", 0xE7DB, null_frag, v128h, 1>;
+ def VECF : CompareVRRa<"vecf", 0xE7DB, null_frag, v128f, 2>;
+ def VECG : CompareVRRa<"vecg", 0xE7DB, null_frag, v128g, 3>;
+ }
+
+ // Element compare logical.
+ let Defs = [CC] in {
+ def VECL : CompareVRRaGeneric<"vecl", 0xE7D9>;
+ def VECLB : CompareVRRa<"veclb", 0xE7D9, null_frag, v128b, 0>;
+ def VECLH : CompareVRRa<"veclh", 0xE7D9, null_frag, v128h, 1>;
+ def VECLF : CompareVRRa<"veclf", 0xE7D9, null_frag, v128f, 2>;
+ def VECLG : CompareVRRa<"veclg", 0xE7D9, null_frag, v128g, 3>;
+ }
+
+ // Compare equal.
+ def VCEQ : BinaryVRRbSPairGeneric<"vceq", 0xE7F8>;
+ defm VCEQB : BinaryVRRbSPair<"vceqb", 0xE7F8, z_vicmpe, z_vicmpes,
+ v128b, v128b, 0>;
+ defm VCEQH : BinaryVRRbSPair<"vceqh", 0xE7F8, z_vicmpe, z_vicmpes,
+ v128h, v128h, 1>;
+ defm VCEQF : BinaryVRRbSPair<"vceqf", 0xE7F8, z_vicmpe, z_vicmpes,
+ v128f, v128f, 2>;
+ defm VCEQG : BinaryVRRbSPair<"vceqg", 0xE7F8, z_vicmpe, z_vicmpes,
+ v128g, v128g, 3>;
+
+ // Compare high.
+ def VCH : BinaryVRRbSPairGeneric<"vch", 0xE7FB>;
+ defm VCHB : BinaryVRRbSPair<"vchb", 0xE7FB, z_vicmph, z_vicmphs,
+ v128b, v128b, 0>;
+ defm VCHH : BinaryVRRbSPair<"vchh", 0xE7FB, z_vicmph, z_vicmphs,
+ v128h, v128h, 1>;
+ defm VCHF : BinaryVRRbSPair<"vchf", 0xE7FB, z_vicmph, z_vicmphs,
+ v128f, v128f, 2>;
+ defm VCHG : BinaryVRRbSPair<"vchg", 0xE7FB, z_vicmph, z_vicmphs,
+ v128g, v128g, 3>;
+
+ // Compare high logical.
+ def VCHL : BinaryVRRbSPairGeneric<"vchl", 0xE7F9>;
+ defm VCHLB : BinaryVRRbSPair<"vchlb", 0xE7F9, z_vicmphl, z_vicmphls,
+ v128b, v128b, 0>;
+ defm VCHLH : BinaryVRRbSPair<"vchlh", 0xE7F9, z_vicmphl, z_vicmphls,
+ v128h, v128h, 1>;
+ defm VCHLF : BinaryVRRbSPair<"vchlf", 0xE7F9, z_vicmphl, z_vicmphls,
+ v128f, v128f, 2>;
+ defm VCHLG : BinaryVRRbSPair<"vchlg", 0xE7F9, z_vicmphl, z_vicmphls,
+ v128g, v128g, 3>;
+
+ // Test under mask.
+ let Defs = [CC] in
+ def VTM : CompareVRRa<"vtm", 0xE7D8, z_vtm, v128b, 0>;
+}
+
+//===----------------------------------------------------------------------===//
+// Floating-point arithmetic
+//===----------------------------------------------------------------------===//
+
+// See comments in SystemZInstrFP.td for the suppression flags and
+// rounding modes.
+multiclass VectorRounding<Instruction insn, TypedReg tr> {
+ def : FPConversion<insn, any_frint, tr, tr, 0, 0>;
+ def : FPConversion<insn, any_fnearbyint, tr, tr, 4, 0>;
+ def : FPConversion<insn, any_ffloor, tr, tr, 4, 7>;
+ def : FPConversion<insn, any_fceil, tr, tr, 4, 6>;
+ def : FPConversion<insn, any_ftrunc, tr, tr, 4, 5>;
+ def : FPConversion<insn, any_fround, tr, tr, 4, 1>;
+}
+
+let Predicates = [FeatureVector] in {
+ // Add.
+ let Uses = [FPC], mayRaiseFPException = 1, isCommutable = 1 in {
+ def VFA : BinaryVRRcFloatGeneric<"vfa", 0xE7E3>;
+ def VFADB : BinaryVRRc<"vfadb", 0xE7E3, any_fadd, v128db, v128db, 3, 0>;
+ def WFADB : BinaryVRRc<"wfadb", 0xE7E3, any_fadd, v64db, v64db, 3, 8, 0,
+ "adbr">;
+ let Predicates = [FeatureVectorEnhancements1] in {
+ def VFASB : BinaryVRRc<"vfasb", 0xE7E3, any_fadd, v128sb, v128sb, 2, 0>;
+ def WFASB : BinaryVRRc<"wfasb", 0xE7E3, any_fadd, v32sb, v32sb, 2, 8, 0,
+ "aebr">;
+ def WFAXB : BinaryVRRc<"wfaxb", 0xE7E3, any_fadd, v128xb, v128xb, 4, 8>;
+ }
+ }
+
+ // Convert from fixed.
+ let Uses = [FPC], mayRaiseFPException = 1 in {
+ def VCDG : TernaryVRRaFloatGeneric<"vcdg", 0xE7C3>;
+ def VCDGB : TernaryVRRa<"vcdgb", 0xE7C3, null_frag, v128db, v128g, 3, 0>;
+ def WCDGB : TernaryVRRa<"wcdgb", 0xE7C3, null_frag, v64db, v64g, 3, 8>;
+ }
+ def : FPConversion<VCDGB, any_sint_to_fp, v128db, v128g, 0, 0>;
+ let Predicates = [FeatureVectorEnhancements2] in {
+ let Uses = [FPC], mayRaiseFPException = 1 in {
+ let isAsmParserOnly = 1 in
+ def VCFPS : TernaryVRRaFloatGeneric<"vcfps", 0xE7C3>;
+ def VCEFB : TernaryVRRa<"vcefb", 0xE7C3, null_frag, v128sb, v128g, 2, 0>;
+ def WCEFB : TernaryVRRa<"wcefb", 0xE7C3, null_frag, v32sb, v32f, 2, 8>;
+ }
+ def : FPConversion<VCEFB, any_sint_to_fp, v128sb, v128f, 0, 0>;
+ }
+
+ // Convert from logical.
+ let Uses = [FPC], mayRaiseFPException = 1 in {
+ def VCDLG : TernaryVRRaFloatGeneric<"vcdlg", 0xE7C1>;
+ def VCDLGB : TernaryVRRa<"vcdlgb", 0xE7C1, null_frag, v128db, v128g, 3, 0>;
+ def WCDLGB : TernaryVRRa<"wcdlgb", 0xE7C1, null_frag, v64db, v64g, 3, 8>;
+ }
+ def : FPConversion<VCDLGB, any_uint_to_fp, v128db, v128g, 0, 0>;
+ let Predicates = [FeatureVectorEnhancements2] in {
+ let Uses = [FPC], mayRaiseFPException = 1 in {
+ let isAsmParserOnly = 1 in
+ def VCFPL : TernaryVRRaFloatGeneric<"vcfpl", 0xE7C1>;
+ def VCELFB : TernaryVRRa<"vcelfb", 0xE7C1, null_frag, v128sb, v128g, 2, 0>;
+ def WCELFB : TernaryVRRa<"wcelfb", 0xE7C1, null_frag, v32sb, v32f, 2, 8>;
+ }
+ def : FPConversion<VCELFB, any_uint_to_fp, v128sb, v128f, 0, 0>;
+ }
+
+ // Convert to fixed.
+ let Uses = [FPC], mayRaiseFPException = 1 in {
+ def VCGD : TernaryVRRaFloatGeneric<"vcgd", 0xE7C2>;
+ def VCGDB : TernaryVRRa<"vcgdb", 0xE7C2, null_frag, v128g, v128db, 3, 0>;
+ def WCGDB : TernaryVRRa<"wcgdb", 0xE7C2, null_frag, v64g, v64db, 3, 8>;
+ }
+ // Rounding mode should agree with SystemZInstrFP.td.
+ def : FPConversion<VCGDB, any_fp_to_sint, v128g, v128db, 0, 5>;
+ let Predicates = [FeatureVectorEnhancements2] in {
+ let Uses = [FPC], mayRaiseFPException = 1 in {
+ let isAsmParserOnly = 1 in
+ def VCSFP : TernaryVRRaFloatGeneric<"vcsfp", 0xE7C2>;
+ def VCFEB : TernaryVRRa<"vcfeb", 0xE7C2, null_frag, v128sb, v128g, 2, 0>;
+ def WCFEB : TernaryVRRa<"wcfeb", 0xE7C2, null_frag, v32sb, v32f, 2, 8>;
+ }
+ // Rounding mode should agree with SystemZInstrFP.td.
+ def : FPConversion<VCFEB, any_fp_to_sint, v128f, v128sb, 0, 5>;
+ }
+
+ // Convert to logical.
+ let Uses = [FPC], mayRaiseFPException = 1 in {
+ def VCLGD : TernaryVRRaFloatGeneric<"vclgd", 0xE7C0>;
+ def VCLGDB : TernaryVRRa<"vclgdb", 0xE7C0, null_frag, v128g, v128db, 3, 0>;
+ def WCLGDB : TernaryVRRa<"wclgdb", 0xE7C0, null_frag, v64g, v64db, 3, 8>;
+ }
+ // Rounding mode should agree with SystemZInstrFP.td.
+ def : FPConversion<VCLGDB, any_fp_to_uint, v128g, v128db, 0, 5>;
+ let Predicates = [FeatureVectorEnhancements2] in {
+ let Uses = [FPC], mayRaiseFPException = 1 in {
+ let isAsmParserOnly = 1 in
+ def VCLFP : TernaryVRRaFloatGeneric<"vclfp", 0xE7C0>;
+ def VCLFEB : TernaryVRRa<"vclfeb", 0xE7C0, null_frag, v128sb, v128g, 2, 0>;
+ def WCLFEB : TernaryVRRa<"wclfeb", 0xE7C0, null_frag, v32sb, v32f, 2, 8>;
+ }
+ // Rounding mode should agree with SystemZInstrFP.td.
+ def : FPConversion<VCLFEB, any_fp_to_uint, v128f, v128sb, 0, 5>;
+ }
+
+ // Divide.
+ let Uses = [FPC], mayRaiseFPException = 1 in {
+ def VFD : BinaryVRRcFloatGeneric<"vfd", 0xE7E5>;
+ def VFDDB : BinaryVRRc<"vfddb", 0xE7E5, any_fdiv, v128db, v128db, 3, 0>;
+ def WFDDB : BinaryVRRc<"wfddb", 0xE7E5, any_fdiv, v64db, v64db, 3, 8, 0,
+ "ddbr">;
+ let Predicates = [FeatureVectorEnhancements1] in {
+ def VFDSB : BinaryVRRc<"vfdsb", 0xE7E5, any_fdiv, v128sb, v128sb, 2, 0>;
+ def WFDSB : BinaryVRRc<"wfdsb", 0xE7E5, any_fdiv, v32sb, v32sb, 2, 8, 0,
+ "debr">;
+ def WFDXB : BinaryVRRc<"wfdxb", 0xE7E5, any_fdiv, v128xb, v128xb, 4, 8>;
+ }
+ }
+
+ // Load FP integer.
+ let Uses = [FPC], mayRaiseFPException = 1 in {
+ def VFI : TernaryVRRaFloatGeneric<"vfi", 0xE7C7>;
+ def VFIDB : TernaryVRRa<"vfidb", 0xE7C7, int_s390_vfidb, v128db, v128db, 3, 0>;
+ def WFIDB : TernaryVRRa<"wfidb", 0xE7C7, null_frag, v64db, v64db, 3, 8>;
+ }
+ defm : VectorRounding<VFIDB, v128db>;
+ defm : VectorRounding<WFIDB, v64db>;
+ let Predicates = [FeatureVectorEnhancements1] in {
+ let Uses = [FPC], mayRaiseFPException = 1 in {
+ def VFISB : TernaryVRRa<"vfisb", 0xE7C7, int_s390_vfisb, v128sb, v128sb, 2, 0>;
+ def WFISB : TernaryVRRa<"wfisb", 0xE7C7, null_frag, v32sb, v32sb, 2, 8>;
+ def WFIXB : TernaryVRRa<"wfixb", 0xE7C7, null_frag, v128xb, v128xb, 4, 8>;
+ }
+ defm : VectorRounding<VFISB, v128sb>;
+ defm : VectorRounding<WFISB, v32sb>;
+ defm : VectorRounding<WFIXB, v128xb>;
+ }
+
+ // Load lengthened.
+ let Uses = [FPC], mayRaiseFPException = 1 in {
+ def VLDE : UnaryVRRaFloatGeneric<"vlde", 0xE7C4>;
+ def VLDEB : UnaryVRRa<"vldeb", 0xE7C4, z_any_vextend, v128db, v128sb, 2, 0>;
+ def WLDEB : UnaryVRRa<"wldeb", 0xE7C4, any_fpextend, v64db, v32sb, 2, 8, 0,
+ "ldebr">;
+ }
+ let Predicates = [FeatureVectorEnhancements1] in {
+ let Uses = [FPC], mayRaiseFPException = 1 in {
+ let isAsmParserOnly = 1 in {
+ def VFLL : UnaryVRRaFloatGeneric<"vfll", 0xE7C4>;
+ def VFLLS : UnaryVRRa<"vflls", 0xE7C4, null_frag, v128db, v128sb, 2, 0>;
+ def WFLLS : UnaryVRRa<"wflls", 0xE7C4, null_frag, v64db, v32sb, 2, 8>;
+ }
+ def WFLLD : UnaryVRRa<"wflld", 0xE7C4, any_fpextend, v128xb, v64db, 3, 8>;
+ }
+ def : Pat<(f128 (any_fpextend (f32 VR32:$src))),
+ (WFLLD (WLDEB VR32:$src))>;
+ }
+
+ // Load rounded.
+ let Uses = [FPC], mayRaiseFPException = 1 in {
+ def VLED : TernaryVRRaFloatGeneric<"vled", 0xE7C5>;
+ def VLEDB : TernaryVRRa<"vledb", 0xE7C5, null_frag, v128sb, v128db, 3, 0>;
+ def WLEDB : TernaryVRRa<"wledb", 0xE7C5, null_frag, v32sb, v64db, 3, 8>;
+ }
+ def : Pat<(v4f32 (z_any_vround (v2f64 VR128:$src))), (VLEDB VR128:$src, 0, 0)>;
+ def : FPConversion<WLEDB, any_fpround, v32sb, v64db, 0, 0>;
+ let Predicates = [FeatureVectorEnhancements1] in {
+ let Uses = [FPC], mayRaiseFPException = 1 in {
+ let isAsmParserOnly = 1 in {
+ def VFLR : TernaryVRRaFloatGeneric<"vflr", 0xE7C5>;
+ def VFLRD : TernaryVRRa<"vflrd", 0xE7C5, null_frag, v128sb, v128db, 3, 0>;
+ def WFLRD : TernaryVRRa<"wflrd", 0xE7C5, null_frag, v32sb, v64db, 3, 8>;
+ }
+ def WFLRX : TernaryVRRa<"wflrx", 0xE7C5, null_frag, v64db, v128xb, 4, 8>;
+ }
+ def : FPConversion<WFLRX, any_fpround, v64db, v128xb, 0, 0>;
+ def : Pat<(f32 (any_fpround (f128 VR128:$src))),
+ (WLEDB (WFLRX VR128:$src, 0, 3), 0, 0)>;
+ }
+
+ // Maximum.
+ multiclass VectorMax<Instruction insn, TypedReg tr> {
+ def : FPMinMax<insn, any_fmaxnum, tr, 4>;
+ def : FPMinMax<insn, any_fmaximum, tr, 1>;
+ }
+ let Predicates = [FeatureVectorEnhancements1] in {
+ let Uses = [FPC], mayRaiseFPException = 1, isCommutable = 1 in {
+ def VFMAX : TernaryVRRcFloatGeneric<"vfmax", 0xE7EF>;
+ def VFMAXDB : TernaryVRRcFloat<"vfmaxdb", 0xE7EF, int_s390_vfmaxdb,
+ v128db, v128db, 3, 0>;
+ def WFMAXDB : TernaryVRRcFloat<"wfmaxdb", 0xE7EF, null_frag,
+ v64db, v64db, 3, 8>;
+ def VFMAXSB : TernaryVRRcFloat<"vfmaxsb", 0xE7EF, int_s390_vfmaxsb,
+ v128sb, v128sb, 2, 0>;
+ def WFMAXSB : TernaryVRRcFloat<"wfmaxsb", 0xE7EF, null_frag,
+ v32sb, v32sb, 2, 8>;
+ def WFMAXXB : TernaryVRRcFloat<"wfmaxxb", 0xE7EF, null_frag,
+ v128xb, v128xb, 4, 8>;
+ }
+ defm : VectorMax<VFMAXDB, v128db>;
+ defm : VectorMax<WFMAXDB, v64db>;
+ defm : VectorMax<VFMAXSB, v128sb>;
+ defm : VectorMax<WFMAXSB, v32sb>;
+ defm : VectorMax<WFMAXXB, v128xb>;
+ }
+
+ // Minimum.
+ multiclass VectorMin<Instruction insn, TypedReg tr> {
+ def : FPMinMax<insn, any_fminnum, tr, 4>;
+ def : FPMinMax<insn, any_fminimum, tr, 1>;
+ }
+ let Predicates = [FeatureVectorEnhancements1] in {
+ let Uses = [FPC], mayRaiseFPException = 1, isCommutable = 1 in {
+ def VFMIN : TernaryVRRcFloatGeneric<"vfmin", 0xE7EE>;
+ def VFMINDB : TernaryVRRcFloat<"vfmindb", 0xE7EE, int_s390_vfmindb,
+ v128db, v128db, 3, 0>;
+ def WFMINDB : TernaryVRRcFloat<"wfmindb", 0xE7EE, null_frag,
+ v64db, v64db, 3, 8>;
+ def VFMINSB : TernaryVRRcFloat<"vfminsb", 0xE7EE, int_s390_vfminsb,
+ v128sb, v128sb, 2, 0>;
+ def WFMINSB : TernaryVRRcFloat<"wfminsb", 0xE7EE, null_frag,
+ v32sb, v32sb, 2, 8>;
+ def WFMINXB : TernaryVRRcFloat<"wfminxb", 0xE7EE, null_frag,
+ v128xb, v128xb, 4, 8>;
+ }
+ defm : VectorMin<VFMINDB, v128db>;
+ defm : VectorMin<WFMINDB, v64db>;
+ defm : VectorMin<VFMINSB, v128sb>;
+ defm : VectorMin<WFMINSB, v32sb>;
+ defm : VectorMin<WFMINXB, v128xb>;
+ }
+
+ // Multiply.
+ let Uses = [FPC], mayRaiseFPException = 1, isCommutable = 1 in {
+ def VFM : BinaryVRRcFloatGeneric<"vfm", 0xE7E7>;
+ def VFMDB : BinaryVRRc<"vfmdb", 0xE7E7, any_fmul, v128db, v128db, 3, 0>;
+ def WFMDB : BinaryVRRc<"wfmdb", 0xE7E7, any_fmul, v64db, v64db, 3, 8, 0,
+ "mdbr">;
+ let Predicates = [FeatureVectorEnhancements1] in {
+ def VFMSB : BinaryVRRc<"vfmsb", 0xE7E7, any_fmul, v128sb, v128sb, 2, 0>;
+ def WFMSB : BinaryVRRc<"wfmsb", 0xE7E7, any_fmul, v32sb, v32sb, 2, 8, 0,
+ "meebr">;
+ def WFMXB : BinaryVRRc<"wfmxb", 0xE7E7, any_fmul, v128xb, v128xb, 4, 8>;
+ }
+ }
+
+ // Multiply and add.
+ let Uses = [FPC], mayRaiseFPException = 1, isCommutable = 1 in {
+ def VFMA : TernaryVRReFloatGeneric<"vfma", 0xE78F>;
+ def VFMADB : TernaryVRRe<"vfmadb", 0xE78F, any_fma, v128db, v128db, 0, 3>;
+ def WFMADB : TernaryVRRe<"wfmadb", 0xE78F, any_fma, v64db, v64db, 8, 3,
+ "madbr">;
+ let Predicates = [FeatureVectorEnhancements1] in {
+ def VFMASB : TernaryVRRe<"vfmasb", 0xE78F, any_fma, v128sb, v128sb, 0, 2>;
+ def WFMASB : TernaryVRRe<"wfmasb", 0xE78F, any_fma, v32sb, v32sb, 8, 2,
+ "maebr">;
+ def WFMAXB : TernaryVRRe<"wfmaxb", 0xE78F, any_fma, v128xb, v128xb, 8, 4>;
+ }
+ }
+
+ // Multiply and subtract.
+ let Uses = [FPC], mayRaiseFPException = 1, isCommutable = 1 in {
+ def VFMS : TernaryVRReFloatGeneric<"vfms", 0xE78E>;
+ def VFMSDB : TernaryVRRe<"vfmsdb", 0xE78E, any_fms, v128db, v128db, 0, 3>;
+ def WFMSDB : TernaryVRRe<"wfmsdb", 0xE78E, any_fms, v64db, v64db, 8, 3,
+ "msdbr">;
+ let Predicates = [FeatureVectorEnhancements1] in {
+ def VFMSSB : TernaryVRRe<"vfmssb", 0xE78E, any_fms, v128sb, v128sb, 0, 2>;
+ def WFMSSB : TernaryVRRe<"wfmssb", 0xE78E, any_fms, v32sb, v32sb, 8, 2,
+ "msebr">;
+ def WFMSXB : TernaryVRRe<"wfmsxb", 0xE78E, any_fms, v128xb, v128xb, 8, 4>;
+ }
+ }
+
+ // Negative multiply and add.
+ let Uses = [FPC], mayRaiseFPException = 1, isCommutable = 1,
+ Predicates = [FeatureVectorEnhancements1] in {
+ def VFNMA : TernaryVRReFloatGeneric<"vfnma", 0xE79F>;
+ def VFNMADB : TernaryVRRe<"vfnmadb", 0xE79F, any_fnma, v128db, v128db, 0, 3>;
+ def WFNMADB : TernaryVRRe<"wfnmadb", 0xE79F, any_fnma, v64db, v64db, 8, 3>;
+ def VFNMASB : TernaryVRRe<"vfnmasb", 0xE79F, any_fnma, v128sb, v128sb, 0, 2>;
+ def WFNMASB : TernaryVRRe<"wfnmasb", 0xE79F, any_fnma, v32sb, v32sb, 8, 2>;
+ def WFNMAXB : TernaryVRRe<"wfnmaxb", 0xE79F, any_fnma, v128xb, v128xb, 8, 4>;
+ }
+
+ // Negative multiply and subtract.
+ let Uses = [FPC], mayRaiseFPException = 1, isCommutable = 1,
+ Predicates = [FeatureVectorEnhancements1] in {
+ def VFNMS : TernaryVRReFloatGeneric<"vfnms", 0xE79E>;
+ def VFNMSDB : TernaryVRRe<"vfnmsdb", 0xE79E, any_fnms, v128db, v128db, 0, 3>;
+ def WFNMSDB : TernaryVRRe<"wfnmsdb", 0xE79E, any_fnms, v64db, v64db, 8, 3>;
+ def VFNMSSB : TernaryVRRe<"vfnmssb", 0xE79E, any_fnms, v128sb, v128sb, 0, 2>;
+ def WFNMSSB : TernaryVRRe<"wfnmssb", 0xE79E, any_fnms, v32sb, v32sb, 8, 2>;
+ def WFNMSXB : TernaryVRRe<"wfnmsxb", 0xE79E, any_fnms, v128xb, v128xb, 8, 4>;
+ }
+
+ // Perform sign operation.
+ def VFPSO : BinaryVRRaFloatGeneric<"vfpso", 0xE7CC>;
+ def VFPSODB : BinaryVRRa<"vfpsodb", 0xE7CC, null_frag, v128db, v128db, 3, 0>;
+ def WFPSODB : BinaryVRRa<"wfpsodb", 0xE7CC, null_frag, v64db, v64db, 3, 8>;
+ let Predicates = [FeatureVectorEnhancements1] in {
+ def VFPSOSB : BinaryVRRa<"vfpsosb", 0xE7CC, null_frag, v128sb, v128sb, 2, 0>;
+ def WFPSOSB : BinaryVRRa<"wfpsosb", 0xE7CC, null_frag, v32sb, v32sb, 2, 8>;
+ def WFPSOXB : BinaryVRRa<"wfpsoxb", 0xE7CC, null_frag, v128xb, v128xb, 4, 8>;
+ }
+
+ // Load complement.
+ def VFLCDB : UnaryVRRa<"vflcdb", 0xE7CC, fneg, v128db, v128db, 3, 0, 0>;
+ def WFLCDB : UnaryVRRa<"wflcdb", 0xE7CC, fneg, v64db, v64db, 3, 8, 0>;
+ let Predicates = [FeatureVectorEnhancements1] in {
+ def VFLCSB : UnaryVRRa<"vflcsb", 0xE7CC, fneg, v128sb, v128sb, 2, 0, 0>;
+ def WFLCSB : UnaryVRRa<"wflcsb", 0xE7CC, fneg, v32sb, v32sb, 2, 8, 0>;
+ def WFLCXB : UnaryVRRa<"wflcxb", 0xE7CC, fneg, v128xb, v128xb, 4, 8, 0>;
+ }
+
+ // Load negative.
+ def VFLNDB : UnaryVRRa<"vflndb", 0xE7CC, fnabs, v128db, v128db, 3, 0, 1>;
+ def WFLNDB : UnaryVRRa<"wflndb", 0xE7CC, fnabs, v64db, v64db, 3, 8, 1>;
+ let Predicates = [FeatureVectorEnhancements1] in {
+ def VFLNSB : UnaryVRRa<"vflnsb", 0xE7CC, fnabs, v128sb, v128sb, 2, 0, 1>;
+ def WFLNSB : UnaryVRRa<"wflnsb", 0xE7CC, fnabs, v32sb, v32sb, 2, 8, 1>;
+ def WFLNXB : UnaryVRRa<"wflnxb", 0xE7CC, fnabs, v128xb, v128xb, 4, 8, 1>;
+ }
+
+ // Load positive.
+ def VFLPDB : UnaryVRRa<"vflpdb", 0xE7CC, fabs, v128db, v128db, 3, 0, 2>;
+ def WFLPDB : UnaryVRRa<"wflpdb", 0xE7CC, fabs, v64db, v64db, 3, 8, 2>;
+ let Predicates = [FeatureVectorEnhancements1] in {
+ def VFLPSB : UnaryVRRa<"vflpsb", 0xE7CC, fabs, v128sb, v128sb, 2, 0, 2>;
+ def WFLPSB : UnaryVRRa<"wflpsb", 0xE7CC, fabs, v32sb, v32sb, 2, 8, 2>;
+ def WFLPXB : UnaryVRRa<"wflpxb", 0xE7CC, fabs, v128xb, v128xb, 4, 8, 2>;
+ }
+
+ // Square root.
+ let Uses = [FPC], mayRaiseFPException = 1 in {
+ def VFSQ : UnaryVRRaFloatGeneric<"vfsq", 0xE7CE>;
+ def VFSQDB : UnaryVRRa<"vfsqdb", 0xE7CE, any_fsqrt, v128db, v128db, 3, 0>;
+ def WFSQDB : UnaryVRRa<"wfsqdb", 0xE7CE, any_fsqrt, v64db, v64db, 3, 8, 0,
+ "sqdbr">;
+ let Predicates = [FeatureVectorEnhancements1] in {
+ def VFSQSB : UnaryVRRa<"vfsqsb", 0xE7CE, any_fsqrt, v128sb, v128sb, 2, 0>;
+ def WFSQSB : UnaryVRRa<"wfsqsb", 0xE7CE, any_fsqrt, v32sb, v32sb, 2, 8, 0,
+ "sqebr">;
+ def WFSQXB : UnaryVRRa<"wfsqxb", 0xE7CE, any_fsqrt, v128xb, v128xb, 4, 8>;
+ }
+ }
+
+ // Subtract.
+ let Uses = [FPC], mayRaiseFPException = 1 in {
+ def VFS : BinaryVRRcFloatGeneric<"vfs", 0xE7E2>;
+ def VFSDB : BinaryVRRc<"vfsdb", 0xE7E2, any_fsub, v128db, v128db, 3, 0>;
+ def WFSDB : BinaryVRRc<"wfsdb", 0xE7E2, any_fsub, v64db, v64db, 3, 8, 0,
+ "sdbr">;
+ let Predicates = [FeatureVectorEnhancements1] in {
+ def VFSSB : BinaryVRRc<"vfssb", 0xE7E2, any_fsub, v128sb, v128sb, 2, 0>;
+ def WFSSB : BinaryVRRc<"wfssb", 0xE7E2, any_fsub, v32sb, v32sb, 2, 8, 0,
+ "sebr">;
+ def WFSXB : BinaryVRRc<"wfsxb", 0xE7E2, any_fsub, v128xb, v128xb, 4, 8>;
+ }
+ }
+
+ // Test data class immediate.
+ let Defs = [CC] in {
+ def VFTCI : BinaryVRIeFloatGeneric<"vftci", 0xE74A>;
+ def VFTCIDB : BinaryVRIe<"vftcidb", 0xE74A, z_vftci, v128g, v128db, 3, 0>;
+ def WFTCIDB : BinaryVRIe<"wftcidb", 0xE74A, null_frag, v64g, v64db, 3, 8>;
+ let Predicates = [FeatureVectorEnhancements1] in {
+ def VFTCISB : BinaryVRIe<"vftcisb", 0xE74A, z_vftci, v128f, v128sb, 2, 0>;
+ def WFTCISB : BinaryVRIe<"wftcisb", 0xE74A, null_frag, v32f, v32sb, 2, 8>;
+ def WFTCIXB : BinaryVRIe<"wftcixb", 0xE74A, null_frag, v128q, v128xb, 4, 8>;
+ }
+ }
+}
+
+//===----------------------------------------------------------------------===//
+// Floating-point comparison
+//===----------------------------------------------------------------------===//
+
+let Predicates = [FeatureVector] in {
+ // Compare scalar.
+ let Uses = [FPC], mayRaiseFPException = 1, Defs = [CC] in {
+ def WFC : CompareVRRaFloatGeneric<"wfc", 0xE7CB>;
+ def WFCDB : CompareVRRa<"wfcdb", 0xE7CB, z_any_fcmp, v64db, 3, "cdbr">;
+ let Predicates = [FeatureVectorEnhancements1] in {
+ def WFCSB : CompareVRRa<"wfcsb", 0xE7CB, z_any_fcmp, v32sb, 2, "cebr">;
+ def WFCXB : CompareVRRa<"wfcxb", 0xE7CB, z_any_fcmp, v128xb, 4>;
+ }
+ }
+
+ // Compare and signal scalar.
+ let Uses = [FPC], mayRaiseFPException = 1, Defs = [CC] in {
+ def WFK : CompareVRRaFloatGeneric<"wfk", 0xE7CA>;
+ def WFKDB : CompareVRRa<"wfkdb", 0xE7CA, z_strict_fcmps, v64db, 3, "kdbr">;
+ let Predicates = [FeatureVectorEnhancements1] in {
+ def WFKSB : CompareVRRa<"wfksb", 0xE7CA, z_strict_fcmps, v32sb, 2, "kebr">;
+ def WFKXB : CompareVRRa<"wfkxb", 0xE7CA, z_strict_fcmps, v128xb, 4>;
+ }
+ }
+
+ // Compare equal.
+ let Uses = [FPC], mayRaiseFPException = 1 in {
+ def VFCE : BinaryVRRcSPairFloatGeneric<"vfce", 0xE7E8>;
+ defm VFCEDB : BinaryVRRcSPair<"vfcedb", 0xE7E8, z_any_vfcmpe, z_vfcmpes,
+ v128g, v128db, 3, 0>;
+ defm WFCEDB : BinaryVRRcSPair<"wfcedb", 0xE7E8, null_frag, null_frag,
+ v64g, v64db, 3, 8>;
+ let Predicates = [FeatureVectorEnhancements1] in {
+ defm VFCESB : BinaryVRRcSPair<"vfcesb", 0xE7E8, z_any_vfcmpe, z_vfcmpes,
+ v128f, v128sb, 2, 0>;
+ defm WFCESB : BinaryVRRcSPair<"wfcesb", 0xE7E8, null_frag, null_frag,
+ v32f, v32sb, 2, 8>;
+ defm WFCEXB : BinaryVRRcSPair<"wfcexb", 0xE7E8, null_frag, null_frag,
+ v128q, v128xb, 4, 8>;
+ }
+ }
+
+ // Compare and signal equal.
+ let Uses = [FPC], mayRaiseFPException = 1,
+ Predicates = [FeatureVectorEnhancements1] in {
+ defm VFKEDB : BinaryVRRcSPair<"vfkedb", 0xE7E8, z_strict_vfcmpes, null_frag,
+ v128g, v128db, 3, 4>;
+ defm WFKEDB : BinaryVRRcSPair<"wfkedb", 0xE7E8, null_frag, null_frag,
+ v64g, v64db, 3, 12>;
+ defm VFKESB : BinaryVRRcSPair<"vfkesb", 0xE7E8, z_strict_vfcmpes, null_frag,
+ v128f, v128sb, 2, 4>;
+ defm WFKESB : BinaryVRRcSPair<"wfkesb", 0xE7E8, null_frag, null_frag,
+ v32f, v32sb, 2, 12>;
+ defm WFKEXB : BinaryVRRcSPair<"wfkexb", 0xE7E8, null_frag, null_frag,
+ v128q, v128xb, 4, 12>;
+ }
+
+ // Compare high.
+ let Uses = [FPC], mayRaiseFPException = 1 in {
+ def VFCH : BinaryVRRcSPairFloatGeneric<"vfch", 0xE7EB>;
+ defm VFCHDB : BinaryVRRcSPair<"vfchdb", 0xE7EB, z_any_vfcmph, z_vfcmphs,
+ v128g, v128db, 3, 0>;
+ defm WFCHDB : BinaryVRRcSPair<"wfchdb", 0xE7EB, null_frag, null_frag,
+ v64g, v64db, 3, 8>;
+ let Predicates = [FeatureVectorEnhancements1] in {
+ defm VFCHSB : BinaryVRRcSPair<"vfchsb", 0xE7EB, z_any_vfcmph, z_vfcmphs,
+ v128f, v128sb, 2, 0>;
+ defm WFCHSB : BinaryVRRcSPair<"wfchsb", 0xE7EB, null_frag, null_frag,
+ v32f, v32sb, 2, 8>;
+ defm WFCHXB : BinaryVRRcSPair<"wfchxb", 0xE7EB, null_frag, null_frag,
+ v128q, v128xb, 4, 8>;
+ }
+ }
+
+ // Compare and signal high.
+ let Uses = [FPC], mayRaiseFPException = 1,
+ Predicates = [FeatureVectorEnhancements1] in {
+ defm VFKHDB : BinaryVRRcSPair<"vfkhdb", 0xE7EB, z_strict_vfcmphs, null_frag,
+ v128g, v128db, 3, 4>;
+ defm WFKHDB : BinaryVRRcSPair<"wfkhdb", 0xE7EB, null_frag, null_frag,
+ v64g, v64db, 3, 12>;
+ defm VFKHSB : BinaryVRRcSPair<"vfkhsb", 0xE7EB, z_strict_vfcmphs, null_frag,
+ v128f, v128sb, 2, 4>;
+ defm WFKHSB : BinaryVRRcSPair<"wfkhsb", 0xE7EB, null_frag, null_frag,
+ v32f, v32sb, 2, 12>;
+ defm WFKHXB : BinaryVRRcSPair<"wfkhxb", 0xE7EB, null_frag, null_frag,
+ v128q, v128xb, 4, 12>;
+ }
+
+ // Compare high or equal.
+ let Uses = [FPC], mayRaiseFPException = 1 in {
+ def VFCHE : BinaryVRRcSPairFloatGeneric<"vfche", 0xE7EA>;
+ defm VFCHEDB : BinaryVRRcSPair<"vfchedb", 0xE7EA, z_any_vfcmphe, z_vfcmphes,
+ v128g, v128db, 3, 0>;
+ defm WFCHEDB : BinaryVRRcSPair<"wfchedb", 0xE7EA, null_frag, null_frag,
+ v64g, v64db, 3, 8>;
+ let Predicates = [FeatureVectorEnhancements1] in {
+ defm VFCHESB : BinaryVRRcSPair<"vfchesb", 0xE7EA, z_any_vfcmphe, z_vfcmphes,
+ v128f, v128sb, 2, 0>;
+ defm WFCHESB : BinaryVRRcSPair<"wfchesb", 0xE7EA, null_frag, null_frag,
+ v32f, v32sb, 2, 8>;
+ defm WFCHEXB : BinaryVRRcSPair<"wfchexb", 0xE7EA, null_frag, null_frag,
+ v128q, v128xb, 4, 8>;
+ }
+ }
+
+ // Compare and signal high or equal.
+ let Uses = [FPC], mayRaiseFPException = 1,
+ Predicates = [FeatureVectorEnhancements1] in {
+ defm VFKHEDB : BinaryVRRcSPair<"vfkhedb", 0xE7EA, z_strict_vfcmphes, null_frag,
+ v128g, v128db, 3, 4>;
+ defm WFKHEDB : BinaryVRRcSPair<"wfkhedb", 0xE7EA, null_frag, null_frag,
+ v64g, v64db, 3, 12>;
+ defm VFKHESB : BinaryVRRcSPair<"vfkhesb", 0xE7EA, z_strict_vfcmphes, null_frag,
+ v128f, v128sb, 2, 4>;
+ defm WFKHESB : BinaryVRRcSPair<"wfkhesb", 0xE7EA, null_frag, null_frag,
+ v32f, v32sb, 2, 12>;
+ defm WFKHEXB : BinaryVRRcSPair<"wfkhexb", 0xE7EA, null_frag, null_frag,
+ v128q, v128xb, 4, 12>;
+ }
+}
+
+//===----------------------------------------------------------------------===//
+// Conversions
+//===----------------------------------------------------------------------===//
+
+def : Pat<(v16i8 (bitconvert (v8i16 VR128:$src))), (v16i8 VR128:$src)>;
+def : Pat<(v16i8 (bitconvert (v4i32 VR128:$src))), (v16i8 VR128:$src)>;
+def : Pat<(v16i8 (bitconvert (v2i64 VR128:$src))), (v16i8 VR128:$src)>;
+def : Pat<(v16i8 (bitconvert (v4f32 VR128:$src))), (v16i8 VR128:$src)>;
+def : Pat<(v16i8 (bitconvert (v2f64 VR128:$src))), (v16i8 VR128:$src)>;
+def : Pat<(v16i8 (bitconvert (f128 VR128:$src))), (v16i8 VR128:$src)>;
+
+def : Pat<(v8i16 (bitconvert (v16i8 VR128:$src))), (v8i16 VR128:$src)>;
+def : Pat<(v8i16 (bitconvert (v4i32 VR128:$src))), (v8i16 VR128:$src)>;
+def : Pat<(v8i16 (bitconvert (v2i64 VR128:$src))), (v8i16 VR128:$src)>;
+def : Pat<(v8i16 (bitconvert (v4f32 VR128:$src))), (v8i16 VR128:$src)>;
+def : Pat<(v8i16 (bitconvert (v2f64 VR128:$src))), (v8i16 VR128:$src)>;
+def : Pat<(v8i16 (bitconvert (f128 VR128:$src))), (v8i16 VR128:$src)>;
+
+def : Pat<(v4i32 (bitconvert (v16i8 VR128:$src))), (v4i32 VR128:$src)>;
+def : Pat<(v4i32 (bitconvert (v8i16 VR128:$src))), (v4i32 VR128:$src)>;
+def : Pat<(v4i32 (bitconvert (v2i64 VR128:$src))), (v4i32 VR128:$src)>;
+def : Pat<(v4i32 (bitconvert (v4f32 VR128:$src))), (v4i32 VR128:$src)>;
+def : Pat<(v4i32 (bitconvert (v2f64 VR128:$src))), (v4i32 VR128:$src)>;
+def : Pat<(v4i32 (bitconvert (f128 VR128:$src))), (v4i32 VR128:$src)>;
+
+def : Pat<(v2i64 (bitconvert (v16i8 VR128:$src))), (v2i64 VR128:$src)>;
+def : Pat<(v2i64 (bitconvert (v8i16 VR128:$src))), (v2i64 VR128:$src)>;
+def : Pat<(v2i64 (bitconvert (v4i32 VR128:$src))), (v2i64 VR128:$src)>;
+def : Pat<(v2i64 (bitconvert (v4f32 VR128:$src))), (v2i64 VR128:$src)>;
+def : Pat<(v2i64 (bitconvert (v2f64 VR128:$src))), (v2i64 VR128:$src)>;
+def : Pat<(v2i64 (bitconvert (f128 VR128:$src))), (v2i64 VR128:$src)>;
+
+def : Pat<(v4f32 (bitconvert (v16i8 VR128:$src))), (v4f32 VR128:$src)>;
+def : Pat<(v4f32 (bitconvert (v8i16 VR128:$src))), (v4f32 VR128:$src)>;
+def : Pat<(v4f32 (bitconvert (v4i32 VR128:$src))), (v4f32 VR128:$src)>;
+def : Pat<(v4f32 (bitconvert (v2i64 VR128:$src))), (v4f32 VR128:$src)>;
+def : Pat<(v4f32 (bitconvert (v2f64 VR128:$src))), (v4f32 VR128:$src)>;
+def : Pat<(v4f32 (bitconvert (f128 VR128:$src))), (v4f32 VR128:$src)>;
+
+def : Pat<(v2f64 (bitconvert (v16i8 VR128:$src))), (v2f64 VR128:$src)>;
+def : Pat<(v2f64 (bitconvert (v8i16 VR128:$src))), (v2f64 VR128:$src)>;
+def : Pat<(v2f64 (bitconvert (v4i32 VR128:$src))), (v2f64 VR128:$src)>;
+def : Pat<(v2f64 (bitconvert (v2i64 VR128:$src))), (v2f64 VR128:$src)>;
+def : Pat<(v2f64 (bitconvert (v4f32 VR128:$src))), (v2f64 VR128:$src)>;
+def : Pat<(v2f64 (bitconvert (f128 VR128:$src))), (v2f64 VR128:$src)>;
+
+def : Pat<(f128 (bitconvert (v16i8 VR128:$src))), (f128 VR128:$src)>;
+def : Pat<(f128 (bitconvert (v8i16 VR128:$src))), (f128 VR128:$src)>;
+def : Pat<(f128 (bitconvert (v4i32 VR128:$src))), (f128 VR128:$src)>;
+def : Pat<(f128 (bitconvert (v2i64 VR128:$src))), (f128 VR128:$src)>;
+def : Pat<(f128 (bitconvert (v4f32 VR128:$src))), (f128 VR128:$src)>;
+def : Pat<(f128 (bitconvert (v2f64 VR128:$src))), (f128 VR128:$src)>;
+
+//===----------------------------------------------------------------------===//
+// Replicating scalars
+//===----------------------------------------------------------------------===//
+
+// Define patterns for replicating a scalar GR32 into a vector of type TYPE.
+// INDEX is 8 minus the element size in bytes.
+class VectorReplicateScalar<ValueType type, Instruction insn, bits<16> index>
+ : Pat<(type (z_replicate GR32:$scalar)),
+ (insn (VLVGP32 GR32:$scalar, GR32:$scalar), index)>;
+
+def : VectorReplicateScalar<v16i8, VREPB, 7>;
+def : VectorReplicateScalar<v8i16, VREPH, 3>;
+def : VectorReplicateScalar<v4i32, VREPF, 1>;
+
+// i64 replications are just a single instruction.
+def : Pat<(v2i64 (z_replicate GR64:$scalar)),
+ (VLVGP GR64:$scalar, GR64:$scalar)>;
+
+//===----------------------------------------------------------------------===//
+// Floating-point insertion and extraction
+//===----------------------------------------------------------------------===//
+
+// Moving 32-bit values between GPRs and FPRs can be done using VLVGF
+// and VLGVF.
+let Predicates = [FeatureVector] in {
+ def LEFR : UnaryAliasVRS<VR32, GR32>;
+ def LFER : UnaryAliasVRS<GR64, VR32>;
+ def : Pat<(f32 (bitconvert (i32 GR32:$src))), (LEFR GR32:$src)>;
+ def : Pat<(i32 (bitconvert (f32 VR32:$src))),
+ (EXTRACT_SUBREG (LFER VR32:$src), subreg_l32)>;
+}
+
+// Floating-point values are stored in element 0 of the corresponding
+// vector register. Scalar to vector conversion is just a subreg and
+// scalar replication can just replicate element 0 of the vector register.
+multiclass ScalarToVectorFP<Instruction vrep, ValueType vt, RegisterOperand cls,
+ SubRegIndex subreg> {
+ def : Pat<(vt (scalar_to_vector cls:$scalar)),
+ (INSERT_SUBREG (vt (IMPLICIT_DEF)), cls:$scalar, subreg)>;
+ def : Pat<(vt (z_replicate cls:$scalar)),
+ (vrep (INSERT_SUBREG (vt (IMPLICIT_DEF)), cls:$scalar,
+ subreg), 0)>;
+}
+defm : ScalarToVectorFP<VREPF, v4f32, FP32, subreg_h32>;
+defm : ScalarToVectorFP<VREPG, v2f64, FP64, subreg_h64>;
+
+// Match v2f64 insertions. The AddedComplexity counters the 3 added by
+// TableGen for the base register operand in VLVG-based integer insertions
+// and ensures that this version is strictly better.
+let AddedComplexity = 4 in {
+ def : Pat<(z_vector_insert (v2f64 VR128:$vec), FP64:$elt, 0),
+ (VPDI (INSERT_SUBREG (v2f64 (IMPLICIT_DEF)), FP64:$elt,
+ subreg_h64), VR128:$vec, 1)>;
+ def : Pat<(z_vector_insert (v2f64 VR128:$vec), FP64:$elt, 1),
+ (VPDI VR128:$vec, (INSERT_SUBREG (v2f64 (IMPLICIT_DEF)), FP64:$elt,
+ subreg_h64), 0)>;
+}
+
+// We extract floating-point element X by replicating (for elements other
+// than 0) and then taking a high subreg. The AddedComplexity counters the
+// 3 added by TableGen for the base register operand in VLGV-based integer
+// extractions and ensures that this version is strictly better.
+let AddedComplexity = 4 in {
+ def : Pat<(f32 (z_vector_extract (v4f32 VR128:$vec), 0)),
+ (EXTRACT_SUBREG VR128:$vec, subreg_h32)>;
+ def : Pat<(f32 (z_vector_extract (v4f32 VR128:$vec), imm32zx2:$index)),
+ (EXTRACT_SUBREG (VREPF VR128:$vec, imm32zx2:$index), subreg_h32)>;
+
+ def : Pat<(f64 (z_vector_extract (v2f64 VR128:$vec), 0)),
+ (EXTRACT_SUBREG VR128:$vec, subreg_h64)>;
+ def : Pat<(f64 (z_vector_extract (v2f64 VR128:$vec), imm32zx1:$index)),
+ (EXTRACT_SUBREG (VREPG VR128:$vec, imm32zx1:$index), subreg_h64)>;
+}
+
+//===----------------------------------------------------------------------===//
+// Support for 128-bit floating-point values in vector registers
+//===----------------------------------------------------------------------===//
+
+let Predicates = [FeatureVectorEnhancements1] in {
+ def : Pat<(f128 (load bdxaddr12only:$addr)),
+ (VL bdxaddr12only:$addr)>;
+ def : Pat<(store (f128 VR128:$src), bdxaddr12only:$addr),
+ (VST VR128:$src, bdxaddr12only:$addr)>;
+
+ def : Pat<(f128 fpimm0), (VZERO)>;
+ def : Pat<(f128 fpimmneg0), (WFLNXB (VZERO))>;
+}
+
+//===----------------------------------------------------------------------===//
+// String instructions
+//===----------------------------------------------------------------------===//
+
+let Predicates = [FeatureVector] in {
+ defm VFAE : TernaryOptVRRbSPairGeneric<"vfae", 0xE782>;
+ defm VFAEB : TernaryOptVRRbSPair<"vfaeb", 0xE782, int_s390_vfaeb,
+ z_vfae_cc, v128b, v128b, 0>;
+ defm VFAEH : TernaryOptVRRbSPair<"vfaeh", 0xE782, int_s390_vfaeh,
+ z_vfae_cc, v128h, v128h, 1>;
+ defm VFAEF : TernaryOptVRRbSPair<"vfaef", 0xE782, int_s390_vfaef,
+ z_vfae_cc, v128f, v128f, 2>;
+ defm VFAEZB : TernaryOptVRRbSPair<"vfaezb", 0xE782, int_s390_vfaezb,
+ z_vfaez_cc, v128b, v128b, 0, 2>;
+ defm VFAEZH : TernaryOptVRRbSPair<"vfaezh", 0xE782, int_s390_vfaezh,
+ z_vfaez_cc, v128h, v128h, 1, 2>;
+ defm VFAEZF : TernaryOptVRRbSPair<"vfaezf", 0xE782, int_s390_vfaezf,
+ z_vfaez_cc, v128f, v128f, 2, 2>;
+
+ defm VFEE : BinaryExtraVRRbSPairGeneric<"vfee", 0xE780>;
+ defm VFEEB : BinaryExtraVRRbSPair<"vfeeb", 0xE780, int_s390_vfeeb,
+ z_vfee_cc, v128b, v128b, 0>;
+ defm VFEEH : BinaryExtraVRRbSPair<"vfeeh", 0xE780, int_s390_vfeeh,
+ z_vfee_cc, v128h, v128h, 1>;
+ defm VFEEF : BinaryExtraVRRbSPair<"vfeef", 0xE780, int_s390_vfeef,
+ z_vfee_cc, v128f, v128f, 2>;
+ defm VFEEZB : BinaryVRRbSPair<"vfeezb", 0xE780, int_s390_vfeezb,
+ z_vfeez_cc, v128b, v128b, 0, 2>;
+ defm VFEEZH : BinaryVRRbSPair<"vfeezh", 0xE780, int_s390_vfeezh,
+ z_vfeez_cc, v128h, v128h, 1, 2>;
+ defm VFEEZF : BinaryVRRbSPair<"vfeezf", 0xE780, int_s390_vfeezf,
+ z_vfeez_cc, v128f, v128f, 2, 2>;
+
+ defm VFENE : BinaryExtraVRRbSPairGeneric<"vfene", 0xE781>;
+ defm VFENEB : BinaryExtraVRRbSPair<"vfeneb", 0xE781, int_s390_vfeneb,
+ z_vfene_cc, v128b, v128b, 0>;
+ defm VFENEH : BinaryExtraVRRbSPair<"vfeneh", 0xE781, int_s390_vfeneh,
+ z_vfene_cc, v128h, v128h, 1>;
+ defm VFENEF : BinaryExtraVRRbSPair<"vfenef", 0xE781, int_s390_vfenef,
+ z_vfene_cc, v128f, v128f, 2>;
+ defm VFENEZB : BinaryVRRbSPair<"vfenezb", 0xE781, int_s390_vfenezb,
+ z_vfenez_cc, v128b, v128b, 0, 2>;
+ defm VFENEZH : BinaryVRRbSPair<"vfenezh", 0xE781, int_s390_vfenezh,
+ z_vfenez_cc, v128h, v128h, 1, 2>;
+ defm VFENEZF : BinaryVRRbSPair<"vfenezf", 0xE781, int_s390_vfenezf,
+ z_vfenez_cc, v128f, v128f, 2, 2>;
+
+ defm VISTR : UnaryExtraVRRaSPairGeneric<"vistr", 0xE75C>;
+ defm VISTRB : UnaryExtraVRRaSPair<"vistrb", 0xE75C, int_s390_vistrb,
+ z_vistr_cc, v128b, v128b, 0>;
+ defm VISTRH : UnaryExtraVRRaSPair<"vistrh", 0xE75C, int_s390_vistrh,
+ z_vistr_cc, v128h, v128h, 1>;
+ defm VISTRF : UnaryExtraVRRaSPair<"vistrf", 0xE75C, int_s390_vistrf,
+ z_vistr_cc, v128f, v128f, 2>;
+
+ defm VSTRC : QuaternaryOptVRRdSPairGeneric<"vstrc", 0xE78A>;
+ defm VSTRCB : QuaternaryOptVRRdSPair<"vstrcb", 0xE78A, int_s390_vstrcb,
+ z_vstrc_cc, v128b, v128b, 0>;
+ defm VSTRCH : QuaternaryOptVRRdSPair<"vstrch", 0xE78A, int_s390_vstrch,
+ z_vstrc_cc, v128h, v128h, 1>;
+ defm VSTRCF : QuaternaryOptVRRdSPair<"vstrcf", 0xE78A, int_s390_vstrcf,
+ z_vstrc_cc, v128f, v128f, 2>;
+ defm VSTRCZB : QuaternaryOptVRRdSPair<"vstrczb", 0xE78A, int_s390_vstrczb,
+ z_vstrcz_cc, v128b, v128b, 0, 2>;
+ defm VSTRCZH : QuaternaryOptVRRdSPair<"vstrczh", 0xE78A, int_s390_vstrczh,
+ z_vstrcz_cc, v128h, v128h, 1, 2>;
+ defm VSTRCZF : QuaternaryOptVRRdSPair<"vstrczf", 0xE78A, int_s390_vstrczf,
+ z_vstrcz_cc, v128f, v128f, 2, 2>;
+}
+
+let Predicates = [FeatureVectorEnhancements2] in {
+ defm VSTRS : TernaryExtraVRRdGeneric<"vstrs", 0xE78B>;
+ defm VSTRSB : TernaryExtraVRRd<"vstrsb", 0xE78B,
+ z_vstrs_cc, v128b, v128b, 0>;
+ defm VSTRSH : TernaryExtraVRRd<"vstrsh", 0xE78B,
+ z_vstrs_cc, v128b, v128h, 1>;
+ defm VSTRSF : TernaryExtraVRRd<"vstrsf", 0xE78B,
+ z_vstrs_cc, v128b, v128f, 2>;
+ let Defs = [CC] in {
+ def VSTRSZB : TernaryVRRd<"vstrszb", 0xE78B,
+ z_vstrsz_cc, v128b, v128b, 0, 2>;
+ def VSTRSZH : TernaryVRRd<"vstrszh", 0xE78B,
+ z_vstrsz_cc, v128b, v128h, 1, 2>;
+ def VSTRSZF : TernaryVRRd<"vstrszf", 0xE78B,
+ z_vstrsz_cc, v128b, v128f, 2, 2>;
+ }
+}
+
+//===----------------------------------------------------------------------===//
+// Packed-decimal instructions
+//===----------------------------------------------------------------------===//
+
+let Predicates = [FeatureVectorPackedDecimal] in {
+ def VLIP : BinaryVRIh<"vlip", 0xE649>;
+
+ def VPKZ : BinaryVSI<"vpkz", 0xE634, null_frag, 0>;
+ def VUPKZ : StoreLengthVSI<"vupkz", 0xE63C, null_frag, 0>;
+
+ let Defs = [CC] in {
+ let Predicates = [FeatureVectorPackedDecimalEnhancement] in {
+ def VCVBOpt : TernaryVRRi<"vcvb", 0xE650, GR32>;
+ def VCVBGOpt : TernaryVRRi<"vcvbg", 0xE652, GR64>;
+ }
+ def VCVB : BinaryVRRi<"vcvb", 0xE650, GR32>;
+ def VCVBG : BinaryVRRi<"vcvbg", 0xE652, GR64>;
+ def VCVD : TernaryVRIi<"vcvd", 0xE658, GR32>;
+ def VCVDG : TernaryVRIi<"vcvdg", 0xE65A, GR64>;
+
+ def VAP : QuaternaryVRIf<"vap", 0xE671>;
+ def VSP : QuaternaryVRIf<"vsp", 0xE673>;
+
+ def VMP : QuaternaryVRIf<"vmp", 0xE678>;
+ def VMSP : QuaternaryVRIf<"vmsp", 0xE679>;
+
+ def VDP : QuaternaryVRIf<"vdp", 0xE67A>;
+ def VRP : QuaternaryVRIf<"vrp", 0xE67B>;
+ def VSDP : QuaternaryVRIf<"vsdp", 0xE67E>;
+
+ def VSRP : QuaternaryVRIg<"vsrp", 0xE659>;
+ def VPSOP : QuaternaryVRIg<"vpsop", 0xE65B>;
+
+ def VTP : TestVRRg<"vtp", 0xE65F>;
+ def VCP : CompareVRRh<"vcp", 0xE677>;
+ }
+}