diff options
Diffstat (limited to 'contrib/llvm-project/llvm/lib/Target/X86/Disassembler/X86Disassembler.cpp')
-rw-r--r-- | contrib/llvm-project/llvm/lib/Target/X86/Disassembler/X86Disassembler.cpp | 2362 |
1 files changed, 2362 insertions, 0 deletions
diff --git a/contrib/llvm-project/llvm/lib/Target/X86/Disassembler/X86Disassembler.cpp b/contrib/llvm-project/llvm/lib/Target/X86/Disassembler/X86Disassembler.cpp new file mode 100644 index 000000000000..05e482a6b66e --- /dev/null +++ b/contrib/llvm-project/llvm/lib/Target/X86/Disassembler/X86Disassembler.cpp @@ -0,0 +1,2362 @@ +//===-- X86Disassembler.cpp - Disassembler for x86 and x86_64 -------------===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// This file is part of the X86 Disassembler. +// It contains code to translate the data produced by the decoder into +// MCInsts. +// +// +// The X86 disassembler is a table-driven disassembler for the 16-, 32-, and +// 64-bit X86 instruction sets. The main decode sequence for an assembly +// instruction in this disassembler is: +// +// 1. Read the prefix bytes and determine the attributes of the instruction. +// These attributes, recorded in enum attributeBits +// (X86DisassemblerDecoderCommon.h), form a bitmask. The table CONTEXTS_SYM +// provides a mapping from bitmasks to contexts, which are represented by +// enum InstructionContext (ibid.). +// +// 2. Read the opcode, and determine what kind of opcode it is. The +// disassembler distinguishes four kinds of opcodes, which are enumerated in +// OpcodeType (X86DisassemblerDecoderCommon.h): one-byte (0xnn), two-byte +// (0x0f 0xnn), three-byte-38 (0x0f 0x38 0xnn), or three-byte-3a +// (0x0f 0x3a 0xnn). Mandatory prefixes are treated as part of the context. +// +// 3. Depending on the opcode type, look in one of four ClassDecision structures +// (X86DisassemblerDecoderCommon.h). Use the opcode class to determine which +// OpcodeDecision (ibid.) to look the opcode in. Look up the opcode, to get +// a ModRMDecision (ibid.). +// +// 4. Some instructions, such as escape opcodes or extended opcodes, or even +// instructions that have ModRM*Reg / ModRM*Mem forms in LLVM, need the +// ModR/M byte to complete decode. The ModRMDecision's type is an entry from +// ModRMDecisionType (X86DisassemblerDecoderCommon.h) that indicates if the +// ModR/M byte is required and how to interpret it. +// +// 5. After resolving the ModRMDecision, the disassembler has a unique ID +// of type InstrUID (X86DisassemblerDecoderCommon.h). Looking this ID up in +// INSTRUCTIONS_SYM yields the name of the instruction and the encodings and +// meanings of its operands. +// +// 6. For each operand, its encoding is an entry from OperandEncoding +// (X86DisassemblerDecoderCommon.h) and its type is an entry from +// OperandType (ibid.). The encoding indicates how to read it from the +// instruction; the type indicates how to interpret the value once it has +// been read. For example, a register operand could be stored in the R/M +// field of the ModR/M byte, the REG field of the ModR/M byte, or added to +// the main opcode. This is orthogonal from its meaning (an GPR or an XMM +// register, for instance). Given this information, the operands can be +// extracted and interpreted. +// +// 7. As the last step, the disassembler translates the instruction information +// and operands into a format understandable by the client - in this case, an +// MCInst for use by the MC infrastructure. +// +// The disassembler is broken broadly into two parts: the table emitter that +// emits the instruction decode tables discussed above during compilation, and +// the disassembler itself. The table emitter is documented in more detail in +// utils/TableGen/X86DisassemblerEmitter.h. +// +// X86Disassembler.cpp contains the code responsible for step 7, and for +// invoking the decoder to execute steps 1-6. +// X86DisassemblerDecoderCommon.h contains the definitions needed by both the +// table emitter and the disassembler. +// X86DisassemblerDecoder.h contains the public interface of the decoder, +// factored out into C for possible use by other projects. +// X86DisassemblerDecoder.c contains the source code of the decoder, which is +// responsible for steps 1-6. +// +//===----------------------------------------------------------------------===// + +#include "MCTargetDesc/X86BaseInfo.h" +#include "MCTargetDesc/X86MCTargetDesc.h" +#include "TargetInfo/X86TargetInfo.h" +#include "X86DisassemblerDecoder.h" +#include "llvm/MC/MCContext.h" +#include "llvm/MC/MCDisassembler/MCDisassembler.h" +#include "llvm/MC/MCExpr.h" +#include "llvm/MC/MCInst.h" +#include "llvm/MC/MCInstrInfo.h" +#include "llvm/MC/MCSubtargetInfo.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/Format.h" +#include "llvm/Support/TargetRegistry.h" +#include "llvm/Support/raw_ostream.h" + +using namespace llvm; +using namespace llvm::X86Disassembler; + +#define DEBUG_TYPE "x86-disassembler" + +#define debug(s) LLVM_DEBUG(dbgs() << __LINE__ << ": " << s); + +// Specifies whether a ModR/M byte is needed and (if so) which +// instruction each possible value of the ModR/M byte corresponds to. Once +// this information is known, we have narrowed down to a single instruction. +struct ModRMDecision { + uint8_t modrm_type; + uint16_t instructionIDs; +}; + +// Specifies which set of ModR/M->instruction tables to look at +// given a particular opcode. +struct OpcodeDecision { + ModRMDecision modRMDecisions[256]; +}; + +// Specifies which opcode->instruction tables to look at given +// a particular context (set of attributes). Since there are many possible +// contexts, the decoder first uses CONTEXTS_SYM to determine which context +// applies given a specific set of attributes. Hence there are only IC_max +// entries in this table, rather than 2^(ATTR_max). +struct ContextDecision { + OpcodeDecision opcodeDecisions[IC_max]; +}; + +#include "X86GenDisassemblerTables.inc" + +static InstrUID decode(OpcodeType type, InstructionContext insnContext, + uint8_t opcode, uint8_t modRM) { + const struct ModRMDecision *dec; + + switch (type) { + case ONEBYTE: + dec = &ONEBYTE_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode]; + break; + case TWOBYTE: + dec = &TWOBYTE_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode]; + break; + case THREEBYTE_38: + dec = &THREEBYTE38_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode]; + break; + case THREEBYTE_3A: + dec = &THREEBYTE3A_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode]; + break; + case XOP8_MAP: + dec = &XOP8_MAP_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode]; + break; + case XOP9_MAP: + dec = &XOP9_MAP_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode]; + break; + case XOPA_MAP: + dec = &XOPA_MAP_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode]; + break; + case THREEDNOW_MAP: + dec = + &THREEDNOW_MAP_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode]; + break; + } + + switch (dec->modrm_type) { + default: + llvm_unreachable("Corrupt table! Unknown modrm_type"); + return 0; + case MODRM_ONEENTRY: + return modRMTable[dec->instructionIDs]; + case MODRM_SPLITRM: + if (modFromModRM(modRM) == 0x3) + return modRMTable[dec->instructionIDs + 1]; + return modRMTable[dec->instructionIDs]; + case MODRM_SPLITREG: + if (modFromModRM(modRM) == 0x3) + return modRMTable[dec->instructionIDs + ((modRM & 0x38) >> 3) + 8]; + return modRMTable[dec->instructionIDs + ((modRM & 0x38) >> 3)]; + case MODRM_SPLITMISC: + if (modFromModRM(modRM) == 0x3) + return modRMTable[dec->instructionIDs + (modRM & 0x3f) + 8]; + return modRMTable[dec->instructionIDs + ((modRM & 0x38) >> 3)]; + case MODRM_FULL: + return modRMTable[dec->instructionIDs + modRM]; + } +} + +static bool peek(struct InternalInstruction *insn, uint8_t &byte) { + uint64_t offset = insn->readerCursor - insn->startLocation; + if (offset >= insn->bytes.size()) + return true; + byte = insn->bytes[offset]; + return false; +} + +template <typename T> static bool consume(InternalInstruction *insn, T &ptr) { + auto r = insn->bytes; + uint64_t offset = insn->readerCursor - insn->startLocation; + if (offset + sizeof(T) > r.size()) + return true; + T ret = 0; + for (unsigned i = 0; i < sizeof(T); ++i) + ret |= (uint64_t)r[offset + i] << (i * 8); + ptr = ret; + insn->readerCursor += sizeof(T); + return false; +} + +static bool isREX(struct InternalInstruction *insn, uint8_t prefix) { + return insn->mode == MODE_64BIT && prefix >= 0x40 && prefix <= 0x4f; +} + +// Consumes all of an instruction's prefix bytes, and marks the +// instruction as having them. Also sets the instruction's default operand, +// address, and other relevant data sizes to report operands correctly. +// +// insn must not be empty. +static int readPrefixes(struct InternalInstruction *insn) { + bool isPrefix = true; + uint8_t byte = 0; + uint8_t nextByte; + + LLVM_DEBUG(dbgs() << "readPrefixes()"); + + while (isPrefix) { + // If we fail reading prefixes, just stop here and let the opcode reader + // deal with it. + if (consume(insn, byte)) + break; + + // If the byte is a LOCK/REP/REPNE prefix and not a part of the opcode, then + // break and let it be disassembled as a normal "instruction". + if (insn->readerCursor - 1 == insn->startLocation && byte == 0xf0) // LOCK + break; + + if ((byte == 0xf2 || byte == 0xf3) && !peek(insn, nextByte)) { + // If the byte is 0xf2 or 0xf3, and any of the following conditions are + // met: + // - it is followed by a LOCK (0xf0) prefix + // - it is followed by an xchg instruction + // then it should be disassembled as a xacquire/xrelease not repne/rep. + if (((nextByte == 0xf0) || + ((nextByte & 0xfe) == 0x86 || (nextByte & 0xf8) == 0x90))) { + insn->xAcquireRelease = true; + if (!(byte == 0xf3 && nextByte == 0x90)) // PAUSE instruction support + break; + } + // Also if the byte is 0xf3, and the following condition is met: + // - it is followed by a "mov mem, reg" (opcode 0x88/0x89) or + // "mov mem, imm" (opcode 0xc6/0xc7) instructions. + // then it should be disassembled as an xrelease not rep. + if (byte == 0xf3 && (nextByte == 0x88 || nextByte == 0x89 || + nextByte == 0xc6 || nextByte == 0xc7)) { + insn->xAcquireRelease = true; + break; + } + if (isREX(insn, nextByte)) { + uint8_t nnextByte; + // Go to REX prefix after the current one + if (consume(insn, nnextByte)) + return -1; + // We should be able to read next byte after REX prefix + if (peek(insn, nnextByte)) + return -1; + --insn->readerCursor; + } + } + + switch (byte) { + case 0xf0: // LOCK + insn->hasLockPrefix = true; + break; + case 0xf2: // REPNE/REPNZ + case 0xf3: { // REP or REPE/REPZ + uint8_t nextByte; + if (peek(insn, nextByte)) + break; + // TODO: + // 1. There could be several 0x66 + // 2. if (nextByte == 0x66) and nextNextByte != 0x0f then + // it's not mandatory prefix + // 3. if (nextByte >= 0x40 && nextByte <= 0x4f) it's REX and we need + // 0x0f exactly after it to be mandatory prefix + if (isREX(insn, nextByte) || nextByte == 0x0f || nextByte == 0x66) + // The last of 0xf2 /0xf3 is mandatory prefix + insn->mandatoryPrefix = byte; + insn->repeatPrefix = byte; + break; + } + case 0x2e: // CS segment override -OR- Branch not taken + insn->segmentOverride = SEG_OVERRIDE_CS; + break; + case 0x36: // SS segment override -OR- Branch taken + insn->segmentOverride = SEG_OVERRIDE_SS; + break; + case 0x3e: // DS segment override + insn->segmentOverride = SEG_OVERRIDE_DS; + break; + case 0x26: // ES segment override + insn->segmentOverride = SEG_OVERRIDE_ES; + break; + case 0x64: // FS segment override + insn->segmentOverride = SEG_OVERRIDE_FS; + break; + case 0x65: // GS segment override + insn->segmentOverride = SEG_OVERRIDE_GS; + break; + case 0x66: { // Operand-size override { + uint8_t nextByte; + insn->hasOpSize = true; + if (peek(insn, nextByte)) + break; + // 0x66 can't overwrite existing mandatory prefix and should be ignored + if (!insn->mandatoryPrefix && (nextByte == 0x0f || isREX(insn, nextByte))) + insn->mandatoryPrefix = byte; + break; + } + case 0x67: // Address-size override + insn->hasAdSize = true; + break; + default: // Not a prefix byte + isPrefix = false; + break; + } + + if (isPrefix) + LLVM_DEBUG(dbgs() << format("Found prefix 0x%hhx", byte)); + } + + insn->vectorExtensionType = TYPE_NO_VEX_XOP; + + if (byte == 0x62) { + uint8_t byte1, byte2; + if (consume(insn, byte1)) { + LLVM_DEBUG(dbgs() << "Couldn't read second byte of EVEX prefix"); + return -1; + } + + if (peek(insn, byte2)) { + LLVM_DEBUG(dbgs() << "Couldn't read third byte of EVEX prefix"); + return -1; + } + + if ((insn->mode == MODE_64BIT || (byte1 & 0xc0) == 0xc0) && + ((~byte1 & 0xc) == 0xc) && ((byte2 & 0x4) == 0x4)) { + insn->vectorExtensionType = TYPE_EVEX; + } else { + --insn->readerCursor; // unconsume byte1 + --insn->readerCursor; // unconsume byte + } + + if (insn->vectorExtensionType == TYPE_EVEX) { + insn->vectorExtensionPrefix[0] = byte; + insn->vectorExtensionPrefix[1] = byte1; + if (consume(insn, insn->vectorExtensionPrefix[2])) { + LLVM_DEBUG(dbgs() << "Couldn't read third byte of EVEX prefix"); + return -1; + } + if (consume(insn, insn->vectorExtensionPrefix[3])) { + LLVM_DEBUG(dbgs() << "Couldn't read fourth byte of EVEX prefix"); + return -1; + } + + // We simulate the REX prefix for simplicity's sake + if (insn->mode == MODE_64BIT) { + insn->rexPrefix = 0x40 | + (wFromEVEX3of4(insn->vectorExtensionPrefix[2]) << 3) | + (rFromEVEX2of4(insn->vectorExtensionPrefix[1]) << 2) | + (xFromEVEX2of4(insn->vectorExtensionPrefix[1]) << 1) | + (bFromEVEX2of4(insn->vectorExtensionPrefix[1]) << 0); + } + + LLVM_DEBUG( + dbgs() << format( + "Found EVEX prefix 0x%hhx 0x%hhx 0x%hhx 0x%hhx", + insn->vectorExtensionPrefix[0], insn->vectorExtensionPrefix[1], + insn->vectorExtensionPrefix[2], insn->vectorExtensionPrefix[3])); + } + } else if (byte == 0xc4) { + uint8_t byte1; + if (peek(insn, byte1)) { + LLVM_DEBUG(dbgs() << "Couldn't read second byte of VEX"); + return -1; + } + + if (insn->mode == MODE_64BIT || (byte1 & 0xc0) == 0xc0) + insn->vectorExtensionType = TYPE_VEX_3B; + else + --insn->readerCursor; + + if (insn->vectorExtensionType == TYPE_VEX_3B) { + insn->vectorExtensionPrefix[0] = byte; + consume(insn, insn->vectorExtensionPrefix[1]); + consume(insn, insn->vectorExtensionPrefix[2]); + + // We simulate the REX prefix for simplicity's sake + + if (insn->mode == MODE_64BIT) + insn->rexPrefix = 0x40 | + (wFromVEX3of3(insn->vectorExtensionPrefix[2]) << 3) | + (rFromVEX2of3(insn->vectorExtensionPrefix[1]) << 2) | + (xFromVEX2of3(insn->vectorExtensionPrefix[1]) << 1) | + (bFromVEX2of3(insn->vectorExtensionPrefix[1]) << 0); + + LLVM_DEBUG(dbgs() << format("Found VEX prefix 0x%hhx 0x%hhx 0x%hhx", + insn->vectorExtensionPrefix[0], + insn->vectorExtensionPrefix[1], + insn->vectorExtensionPrefix[2])); + } + } else if (byte == 0xc5) { + uint8_t byte1; + if (peek(insn, byte1)) { + LLVM_DEBUG(dbgs() << "Couldn't read second byte of VEX"); + return -1; + } + + if (insn->mode == MODE_64BIT || (byte1 & 0xc0) == 0xc0) + insn->vectorExtensionType = TYPE_VEX_2B; + else + --insn->readerCursor; + + if (insn->vectorExtensionType == TYPE_VEX_2B) { + insn->vectorExtensionPrefix[0] = byte; + consume(insn, insn->vectorExtensionPrefix[1]); + + if (insn->mode == MODE_64BIT) + insn->rexPrefix = + 0x40 | (rFromVEX2of2(insn->vectorExtensionPrefix[1]) << 2); + + switch (ppFromVEX2of2(insn->vectorExtensionPrefix[1])) { + default: + break; + case VEX_PREFIX_66: + insn->hasOpSize = true; + break; + } + + LLVM_DEBUG(dbgs() << format("Found VEX prefix 0x%hhx 0x%hhx", + insn->vectorExtensionPrefix[0], + insn->vectorExtensionPrefix[1])); + } + } else if (byte == 0x8f) { + uint8_t byte1; + if (peek(insn, byte1)) { + LLVM_DEBUG(dbgs() << "Couldn't read second byte of XOP"); + return -1; + } + + if ((byte1 & 0x38) != 0x0) // 0 in these 3 bits is a POP instruction. + insn->vectorExtensionType = TYPE_XOP; + else + --insn->readerCursor; + + if (insn->vectorExtensionType == TYPE_XOP) { + insn->vectorExtensionPrefix[0] = byte; + consume(insn, insn->vectorExtensionPrefix[1]); + consume(insn, insn->vectorExtensionPrefix[2]); + + // We simulate the REX prefix for simplicity's sake + + if (insn->mode == MODE_64BIT) + insn->rexPrefix = 0x40 | + (wFromXOP3of3(insn->vectorExtensionPrefix[2]) << 3) | + (rFromXOP2of3(insn->vectorExtensionPrefix[1]) << 2) | + (xFromXOP2of3(insn->vectorExtensionPrefix[1]) << 1) | + (bFromXOP2of3(insn->vectorExtensionPrefix[1]) << 0); + + switch (ppFromXOP3of3(insn->vectorExtensionPrefix[2])) { + default: + break; + case VEX_PREFIX_66: + insn->hasOpSize = true; + break; + } + + LLVM_DEBUG(dbgs() << format("Found XOP prefix 0x%hhx 0x%hhx 0x%hhx", + insn->vectorExtensionPrefix[0], + insn->vectorExtensionPrefix[1], + insn->vectorExtensionPrefix[2])); + } + } else if (isREX(insn, byte)) { + if (peek(insn, nextByte)) + return -1; + insn->rexPrefix = byte; + LLVM_DEBUG(dbgs() << format("Found REX prefix 0x%hhx", byte)); + } else + --insn->readerCursor; + + if (insn->mode == MODE_16BIT) { + insn->registerSize = (insn->hasOpSize ? 4 : 2); + insn->addressSize = (insn->hasAdSize ? 4 : 2); + insn->displacementSize = (insn->hasAdSize ? 4 : 2); + insn->immediateSize = (insn->hasOpSize ? 4 : 2); + } else if (insn->mode == MODE_32BIT) { + insn->registerSize = (insn->hasOpSize ? 2 : 4); + insn->addressSize = (insn->hasAdSize ? 2 : 4); + insn->displacementSize = (insn->hasAdSize ? 2 : 4); + insn->immediateSize = (insn->hasOpSize ? 2 : 4); + } else if (insn->mode == MODE_64BIT) { + if (insn->rexPrefix && wFromREX(insn->rexPrefix)) { + insn->registerSize = 8; + insn->addressSize = (insn->hasAdSize ? 4 : 8); + insn->displacementSize = 4; + insn->immediateSize = 4; + } else { + insn->registerSize = (insn->hasOpSize ? 2 : 4); + insn->addressSize = (insn->hasAdSize ? 4 : 8); + insn->displacementSize = (insn->hasOpSize ? 2 : 4); + insn->immediateSize = (insn->hasOpSize ? 2 : 4); + } + } + + return 0; +} + +// Consumes the SIB byte to determine addressing information. +static int readSIB(struct InternalInstruction *insn) { + SIBBase sibBaseBase = SIB_BASE_NONE; + uint8_t index, base; + + LLVM_DEBUG(dbgs() << "readSIB()"); + switch (insn->addressSize) { + case 2: + default: + llvm_unreachable("SIB-based addressing doesn't work in 16-bit mode"); + case 4: + insn->sibIndexBase = SIB_INDEX_EAX; + sibBaseBase = SIB_BASE_EAX; + break; + case 8: + insn->sibIndexBase = SIB_INDEX_RAX; + sibBaseBase = SIB_BASE_RAX; + break; + } + + if (consume(insn, insn->sib)) + return -1; + + index = indexFromSIB(insn->sib) | (xFromREX(insn->rexPrefix) << 3); + + if (index == 0x4) { + insn->sibIndex = SIB_INDEX_NONE; + } else { + insn->sibIndex = (SIBIndex)(insn->sibIndexBase + index); + } + + insn->sibScale = 1 << scaleFromSIB(insn->sib); + + base = baseFromSIB(insn->sib) | (bFromREX(insn->rexPrefix) << 3); + + switch (base) { + case 0x5: + case 0xd: + switch (modFromModRM(insn->modRM)) { + case 0x0: + insn->eaDisplacement = EA_DISP_32; + insn->sibBase = SIB_BASE_NONE; + break; + case 0x1: + insn->eaDisplacement = EA_DISP_8; + insn->sibBase = (SIBBase)(sibBaseBase + base); + break; + case 0x2: + insn->eaDisplacement = EA_DISP_32; + insn->sibBase = (SIBBase)(sibBaseBase + base); + break; + default: + llvm_unreachable("Cannot have Mod = 0b11 and a SIB byte"); + } + break; + default: + insn->sibBase = (SIBBase)(sibBaseBase + base); + break; + } + + return 0; +} + +static int readDisplacement(struct InternalInstruction *insn) { + int8_t d8; + int16_t d16; + int32_t d32; + LLVM_DEBUG(dbgs() << "readDisplacement()"); + + insn->displacementOffset = insn->readerCursor - insn->startLocation; + switch (insn->eaDisplacement) { + case EA_DISP_NONE: + break; + case EA_DISP_8: + if (consume(insn, d8)) + return -1; + insn->displacement = d8; + break; + case EA_DISP_16: + if (consume(insn, d16)) + return -1; + insn->displacement = d16; + break; + case EA_DISP_32: + if (consume(insn, d32)) + return -1; + insn->displacement = d32; + break; + } + + return 0; +} + +// Consumes all addressing information (ModR/M byte, SIB byte, and displacement. +static int readModRM(struct InternalInstruction *insn) { + uint8_t mod, rm, reg, evexrm; + LLVM_DEBUG(dbgs() << "readModRM()"); + + if (insn->consumedModRM) + return 0; + + if (consume(insn, insn->modRM)) + return -1; + insn->consumedModRM = true; + + mod = modFromModRM(insn->modRM); + rm = rmFromModRM(insn->modRM); + reg = regFromModRM(insn->modRM); + + // This goes by insn->registerSize to pick the correct register, which messes + // up if we're using (say) XMM or 8-bit register operands. That gets fixed in + // fixupReg(). + switch (insn->registerSize) { + case 2: + insn->regBase = MODRM_REG_AX; + insn->eaRegBase = EA_REG_AX; + break; + case 4: + insn->regBase = MODRM_REG_EAX; + insn->eaRegBase = EA_REG_EAX; + break; + case 8: + insn->regBase = MODRM_REG_RAX; + insn->eaRegBase = EA_REG_RAX; + break; + } + + reg |= rFromREX(insn->rexPrefix) << 3; + rm |= bFromREX(insn->rexPrefix) << 3; + + evexrm = 0; + if (insn->vectorExtensionType == TYPE_EVEX && insn->mode == MODE_64BIT) { + reg |= r2FromEVEX2of4(insn->vectorExtensionPrefix[1]) << 4; + evexrm = xFromEVEX2of4(insn->vectorExtensionPrefix[1]) << 4; + } + + insn->reg = (Reg)(insn->regBase + reg); + + switch (insn->addressSize) { + case 2: { + EABase eaBaseBase = EA_BASE_BX_SI; + + switch (mod) { + case 0x0: + if (rm == 0x6) { + insn->eaBase = EA_BASE_NONE; + insn->eaDisplacement = EA_DISP_16; + if (readDisplacement(insn)) + return -1; + } else { + insn->eaBase = (EABase)(eaBaseBase + rm); + insn->eaDisplacement = EA_DISP_NONE; + } + break; + case 0x1: + insn->eaBase = (EABase)(eaBaseBase + rm); + insn->eaDisplacement = EA_DISP_8; + insn->displacementSize = 1; + if (readDisplacement(insn)) + return -1; + break; + case 0x2: + insn->eaBase = (EABase)(eaBaseBase + rm); + insn->eaDisplacement = EA_DISP_16; + if (readDisplacement(insn)) + return -1; + break; + case 0x3: + insn->eaBase = (EABase)(insn->eaRegBase + rm); + if (readDisplacement(insn)) + return -1; + break; + } + break; + } + case 4: + case 8: { + EABase eaBaseBase = (insn->addressSize == 4 ? EA_BASE_EAX : EA_BASE_RAX); + + switch (mod) { + case 0x0: + insn->eaDisplacement = EA_DISP_NONE; // readSIB may override this + // In determining whether RIP-relative mode is used (rm=5), + // or whether a SIB byte is present (rm=4), + // the extension bits (REX.b and EVEX.x) are ignored. + switch (rm & 7) { + case 0x4: // SIB byte is present + insn->eaBase = (insn->addressSize == 4 ? EA_BASE_sib : EA_BASE_sib64); + if (readSIB(insn) || readDisplacement(insn)) + return -1; + break; + case 0x5: // RIP-relative + insn->eaBase = EA_BASE_NONE; + insn->eaDisplacement = EA_DISP_32; + if (readDisplacement(insn)) + return -1; + break; + default: + insn->eaBase = (EABase)(eaBaseBase + rm); + break; + } + break; + case 0x1: + insn->displacementSize = 1; + LLVM_FALLTHROUGH; + case 0x2: + insn->eaDisplacement = (mod == 0x1 ? EA_DISP_8 : EA_DISP_32); + switch (rm & 7) { + case 0x4: // SIB byte is present + insn->eaBase = EA_BASE_sib; + if (readSIB(insn) || readDisplacement(insn)) + return -1; + break; + default: + insn->eaBase = (EABase)(eaBaseBase + rm); + if (readDisplacement(insn)) + return -1; + break; + } + break; + case 0x3: + insn->eaDisplacement = EA_DISP_NONE; + insn->eaBase = (EABase)(insn->eaRegBase + rm + evexrm); + break; + } + break; + } + } // switch (insn->addressSize) + + return 0; +} + +#define GENERIC_FIXUP_FUNC(name, base, prefix, mask) \ + static uint16_t name(struct InternalInstruction *insn, OperandType type, \ + uint8_t index, uint8_t *valid) { \ + *valid = 1; \ + switch (type) { \ + default: \ + debug("Unhandled register type"); \ + *valid = 0; \ + return 0; \ + case TYPE_Rv: \ + return base + index; \ + case TYPE_R8: \ + index &= mask; \ + if (index > 0xf) \ + *valid = 0; \ + if (insn->rexPrefix && index >= 4 && index <= 7) { \ + return prefix##_SPL + (index - 4); \ + } else { \ + return prefix##_AL + index; \ + } \ + case TYPE_R16: \ + index &= mask; \ + if (index > 0xf) \ + *valid = 0; \ + return prefix##_AX + index; \ + case TYPE_R32: \ + index &= mask; \ + if (index > 0xf) \ + *valid = 0; \ + return prefix##_EAX + index; \ + case TYPE_R64: \ + index &= mask; \ + if (index > 0xf) \ + *valid = 0; \ + return prefix##_RAX + index; \ + case TYPE_ZMM: \ + return prefix##_ZMM0 + index; \ + case TYPE_YMM: \ + return prefix##_YMM0 + index; \ + case TYPE_XMM: \ + return prefix##_XMM0 + index; \ + case TYPE_TMM: \ + if (index > 7) \ + *valid = 0; \ + return prefix##_TMM0 + index; \ + case TYPE_VK: \ + index &= 0xf; \ + if (index > 7) \ + *valid = 0; \ + return prefix##_K0 + index; \ + case TYPE_VK_PAIR: \ + if (index > 7) \ + *valid = 0; \ + return prefix##_K0_K1 + (index / 2); \ + case TYPE_MM64: \ + return prefix##_MM0 + (index & 0x7); \ + case TYPE_SEGMENTREG: \ + if ((index & 7) > 5) \ + *valid = 0; \ + return prefix##_ES + (index & 7); \ + case TYPE_DEBUGREG: \ + return prefix##_DR0 + index; \ + case TYPE_CONTROLREG: \ + return prefix##_CR0 + index; \ + case TYPE_BNDR: \ + if (index > 3) \ + *valid = 0; \ + return prefix##_BND0 + index; \ + case TYPE_MVSIBX: \ + return prefix##_XMM0 + index; \ + case TYPE_MVSIBY: \ + return prefix##_YMM0 + index; \ + case TYPE_MVSIBZ: \ + return prefix##_ZMM0 + index; \ + } \ + } + +// Consult an operand type to determine the meaning of the reg or R/M field. If +// the operand is an XMM operand, for example, an operand would be XMM0 instead +// of AX, which readModRM() would otherwise misinterpret it as. +// +// @param insn - The instruction containing the operand. +// @param type - The operand type. +// @param index - The existing value of the field as reported by readModRM(). +// @param valid - The address of a uint8_t. The target is set to 1 if the +// field is valid for the register class; 0 if not. +// @return - The proper value. +GENERIC_FIXUP_FUNC(fixupRegValue, insn->regBase, MODRM_REG, 0x1f) +GENERIC_FIXUP_FUNC(fixupRMValue, insn->eaRegBase, EA_REG, 0xf) + +// Consult an operand specifier to determine which of the fixup*Value functions +// to use in correcting readModRM()'ss interpretation. +// +// @param insn - See fixup*Value(). +// @param op - The operand specifier. +// @return - 0 if fixup was successful; -1 if the register returned was +// invalid for its class. +static int fixupReg(struct InternalInstruction *insn, + const struct OperandSpecifier *op) { + uint8_t valid; + LLVM_DEBUG(dbgs() << "fixupReg()"); + + switch ((OperandEncoding)op->encoding) { + default: + debug("Expected a REG or R/M encoding in fixupReg"); + return -1; + case ENCODING_VVVV: + insn->vvvv = + (Reg)fixupRegValue(insn, (OperandType)op->type, insn->vvvv, &valid); + if (!valid) + return -1; + break; + case ENCODING_REG: + insn->reg = (Reg)fixupRegValue(insn, (OperandType)op->type, + insn->reg - insn->regBase, &valid); + if (!valid) + return -1; + break; + case ENCODING_SIB: + CASE_ENCODING_RM: + if (insn->eaBase >= insn->eaRegBase) { + insn->eaBase = (EABase)fixupRMValue( + insn, (OperandType)op->type, insn->eaBase - insn->eaRegBase, &valid); + if (!valid) + return -1; + } + break; + } + + return 0; +} + +// Read the opcode (except the ModR/M byte in the case of extended or escape +// opcodes). +static bool readOpcode(struct InternalInstruction *insn) { + uint8_t current; + LLVM_DEBUG(dbgs() << "readOpcode()"); + + insn->opcodeType = ONEBYTE; + if (insn->vectorExtensionType == TYPE_EVEX) { + switch (mmFromEVEX2of4(insn->vectorExtensionPrefix[1])) { + default: + LLVM_DEBUG( + dbgs() << format("Unhandled mm field for instruction (0x%hhx)", + mmFromEVEX2of4(insn->vectorExtensionPrefix[1]))); + return true; + case VEX_LOB_0F: + insn->opcodeType = TWOBYTE; + return consume(insn, insn->opcode); + case VEX_LOB_0F38: + insn->opcodeType = THREEBYTE_38; + return consume(insn, insn->opcode); + case VEX_LOB_0F3A: + insn->opcodeType = THREEBYTE_3A; + return consume(insn, insn->opcode); + } + } else if (insn->vectorExtensionType == TYPE_VEX_3B) { + switch (mmmmmFromVEX2of3(insn->vectorExtensionPrefix[1])) { + default: + LLVM_DEBUG( + dbgs() << format("Unhandled m-mmmm field for instruction (0x%hhx)", + mmmmmFromVEX2of3(insn->vectorExtensionPrefix[1]))); + return true; + case VEX_LOB_0F: + insn->opcodeType = TWOBYTE; + return consume(insn, insn->opcode); + case VEX_LOB_0F38: + insn->opcodeType = THREEBYTE_38; + return consume(insn, insn->opcode); + case VEX_LOB_0F3A: + insn->opcodeType = THREEBYTE_3A; + return consume(insn, insn->opcode); + } + } else if (insn->vectorExtensionType == TYPE_VEX_2B) { + insn->opcodeType = TWOBYTE; + return consume(insn, insn->opcode); + } else if (insn->vectorExtensionType == TYPE_XOP) { + switch (mmmmmFromXOP2of3(insn->vectorExtensionPrefix[1])) { + default: + LLVM_DEBUG( + dbgs() << format("Unhandled m-mmmm field for instruction (0x%hhx)", + mmmmmFromVEX2of3(insn->vectorExtensionPrefix[1]))); + return true; + case XOP_MAP_SELECT_8: + insn->opcodeType = XOP8_MAP; + return consume(insn, insn->opcode); + case XOP_MAP_SELECT_9: + insn->opcodeType = XOP9_MAP; + return consume(insn, insn->opcode); + case XOP_MAP_SELECT_A: + insn->opcodeType = XOPA_MAP; + return consume(insn, insn->opcode); + } + } + + if (consume(insn, current)) + return true; + + if (current == 0x0f) { + LLVM_DEBUG( + dbgs() << format("Found a two-byte escape prefix (0x%hhx)", current)); + if (consume(insn, current)) + return true; + + if (current == 0x38) { + LLVM_DEBUG(dbgs() << format("Found a three-byte escape prefix (0x%hhx)", + current)); + if (consume(insn, current)) + return true; + + insn->opcodeType = THREEBYTE_38; + } else if (current == 0x3a) { + LLVM_DEBUG(dbgs() << format("Found a three-byte escape prefix (0x%hhx)", + current)); + if (consume(insn, current)) + return true; + + insn->opcodeType = THREEBYTE_3A; + } else if (current == 0x0f) { + LLVM_DEBUG( + dbgs() << format("Found a 3dnow escape prefix (0x%hhx)", current)); + + // Consume operands before the opcode to comply with the 3DNow encoding + if (readModRM(insn)) + return true; + + if (consume(insn, current)) + return true; + + insn->opcodeType = THREEDNOW_MAP; + } else { + LLVM_DEBUG(dbgs() << "Didn't find a three-byte escape prefix"); + insn->opcodeType = TWOBYTE; + } + } else if (insn->mandatoryPrefix) + // The opcode with mandatory prefix must start with opcode escape. + // If not it's legacy repeat prefix + insn->mandatoryPrefix = 0; + + // At this point we have consumed the full opcode. + // Anything we consume from here on must be unconsumed. + insn->opcode = current; + + return false; +} + +// Determine whether equiv is the 16-bit equivalent of orig (32-bit or 64-bit). +static bool is16BitEquivalent(const char *orig, const char *equiv) { + for (int i = 0;; i++) { + if (orig[i] == '\0' && equiv[i] == '\0') + return true; + if (orig[i] == '\0' || equiv[i] == '\0') + return false; + if (orig[i] != equiv[i]) { + if ((orig[i] == 'Q' || orig[i] == 'L') && equiv[i] == 'W') + continue; + if ((orig[i] == '6' || orig[i] == '3') && equiv[i] == '1') + continue; + if ((orig[i] == '4' || orig[i] == '2') && equiv[i] == '6') + continue; + return false; + } + } +} + +// Determine whether this instruction is a 64-bit instruction. +static bool is64Bit(const char *name) { + for (int i = 0;; ++i) { + if (name[i] == '\0') + return false; + if (name[i] == '6' && name[i + 1] == '4') + return true; + } +} + +// Determine the ID of an instruction, consuming the ModR/M byte as appropriate +// for extended and escape opcodes, and using a supplied attribute mask. +static int getInstructionIDWithAttrMask(uint16_t *instructionID, + struct InternalInstruction *insn, + uint16_t attrMask) { + auto insnCtx = InstructionContext(x86DisassemblerContexts[attrMask]); + const ContextDecision *decision; + switch (insn->opcodeType) { + case ONEBYTE: + decision = &ONEBYTE_SYM; + break; + case TWOBYTE: + decision = &TWOBYTE_SYM; + break; + case THREEBYTE_38: + decision = &THREEBYTE38_SYM; + break; + case THREEBYTE_3A: + decision = &THREEBYTE3A_SYM; + break; + case XOP8_MAP: + decision = &XOP8_MAP_SYM; + break; + case XOP9_MAP: + decision = &XOP9_MAP_SYM; + break; + case XOPA_MAP: + decision = &XOPA_MAP_SYM; + break; + case THREEDNOW_MAP: + decision = &THREEDNOW_MAP_SYM; + break; + } + + if (decision->opcodeDecisions[insnCtx] + .modRMDecisions[insn->opcode] + .modrm_type != MODRM_ONEENTRY) { + if (readModRM(insn)) + return -1; + *instructionID = + decode(insn->opcodeType, insnCtx, insn->opcode, insn->modRM); + } else { + *instructionID = decode(insn->opcodeType, insnCtx, insn->opcode, 0); + } + + return 0; +} + +// Determine the ID of an instruction, consuming the ModR/M byte as appropriate +// for extended and escape opcodes. Determines the attributes and context for +// the instruction before doing so. +static int getInstructionID(struct InternalInstruction *insn, + const MCInstrInfo *mii) { + uint16_t attrMask; + uint16_t instructionID; + + LLVM_DEBUG(dbgs() << "getID()"); + + attrMask = ATTR_NONE; + + if (insn->mode == MODE_64BIT) + attrMask |= ATTR_64BIT; + + if (insn->vectorExtensionType != TYPE_NO_VEX_XOP) { + attrMask |= (insn->vectorExtensionType == TYPE_EVEX) ? ATTR_EVEX : ATTR_VEX; + + if (insn->vectorExtensionType == TYPE_EVEX) { + switch (ppFromEVEX3of4(insn->vectorExtensionPrefix[2])) { + case VEX_PREFIX_66: + attrMask |= ATTR_OPSIZE; + break; + case VEX_PREFIX_F3: + attrMask |= ATTR_XS; + break; + case VEX_PREFIX_F2: + attrMask |= ATTR_XD; + break; + } + + if (zFromEVEX4of4(insn->vectorExtensionPrefix[3])) + attrMask |= ATTR_EVEXKZ; + if (bFromEVEX4of4(insn->vectorExtensionPrefix[3])) + attrMask |= ATTR_EVEXB; + if (aaaFromEVEX4of4(insn->vectorExtensionPrefix[3])) + attrMask |= ATTR_EVEXK; + if (lFromEVEX4of4(insn->vectorExtensionPrefix[3])) + attrMask |= ATTR_VEXL; + if (l2FromEVEX4of4(insn->vectorExtensionPrefix[3])) + attrMask |= ATTR_EVEXL2; + } else if (insn->vectorExtensionType == TYPE_VEX_3B) { + switch (ppFromVEX3of3(insn->vectorExtensionPrefix[2])) { + case VEX_PREFIX_66: + attrMask |= ATTR_OPSIZE; + break; + case VEX_PREFIX_F3: + attrMask |= ATTR_XS; + break; + case VEX_PREFIX_F2: + attrMask |= ATTR_XD; + break; + } + + if (lFromVEX3of3(insn->vectorExtensionPrefix[2])) + attrMask |= ATTR_VEXL; + } else if (insn->vectorExtensionType == TYPE_VEX_2B) { + switch (ppFromVEX2of2(insn->vectorExtensionPrefix[1])) { + case VEX_PREFIX_66: + attrMask |= ATTR_OPSIZE; + break; + case VEX_PREFIX_F3: + attrMask |= ATTR_XS; + break; + case VEX_PREFIX_F2: + attrMask |= ATTR_XD; + break; + } + + if (lFromVEX2of2(insn->vectorExtensionPrefix[1])) + attrMask |= ATTR_VEXL; + } else if (insn->vectorExtensionType == TYPE_XOP) { + switch (ppFromXOP3of3(insn->vectorExtensionPrefix[2])) { + case VEX_PREFIX_66: + attrMask |= ATTR_OPSIZE; + break; + case VEX_PREFIX_F3: + attrMask |= ATTR_XS; + break; + case VEX_PREFIX_F2: + attrMask |= ATTR_XD; + break; + } + + if (lFromXOP3of3(insn->vectorExtensionPrefix[2])) + attrMask |= ATTR_VEXL; + } else { + return -1; + } + } else if (!insn->mandatoryPrefix) { + // If we don't have mandatory prefix we should use legacy prefixes here + if (insn->hasOpSize && (insn->mode != MODE_16BIT)) + attrMask |= ATTR_OPSIZE; + if (insn->hasAdSize) + attrMask |= ATTR_ADSIZE; + if (insn->opcodeType == ONEBYTE) { + if (insn->repeatPrefix == 0xf3 && (insn->opcode == 0x90)) + // Special support for PAUSE + attrMask |= ATTR_XS; + } else { + if (insn->repeatPrefix == 0xf2) + attrMask |= ATTR_XD; + else if (insn->repeatPrefix == 0xf3) + attrMask |= ATTR_XS; + } + } else { + switch (insn->mandatoryPrefix) { + case 0xf2: + attrMask |= ATTR_XD; + break; + case 0xf3: + attrMask |= ATTR_XS; + break; + case 0x66: + if (insn->mode != MODE_16BIT) + attrMask |= ATTR_OPSIZE; + break; + case 0x67: + attrMask |= ATTR_ADSIZE; + break; + } + } + + if (insn->rexPrefix & 0x08) { + attrMask |= ATTR_REXW; + attrMask &= ~ATTR_ADSIZE; + } + + if (insn->mode == MODE_16BIT) { + // JCXZ/JECXZ need special handling for 16-bit mode because the meaning + // of the AdSize prefix is inverted w.r.t. 32-bit mode. + if (insn->opcodeType == ONEBYTE && insn->opcode == 0xE3) + attrMask ^= ATTR_ADSIZE; + // If we're in 16-bit mode and this is one of the relative jumps and opsize + // prefix isn't present, we need to force the opsize attribute since the + // prefix is inverted relative to 32-bit mode. + if (!insn->hasOpSize && insn->opcodeType == ONEBYTE && + (insn->opcode == 0xE8 || insn->opcode == 0xE9)) + attrMask |= ATTR_OPSIZE; + + if (!insn->hasOpSize && insn->opcodeType == TWOBYTE && + insn->opcode >= 0x80 && insn->opcode <= 0x8F) + attrMask |= ATTR_OPSIZE; + } + + + if (getInstructionIDWithAttrMask(&instructionID, insn, attrMask)) + return -1; + + // The following clauses compensate for limitations of the tables. + + if (insn->mode != MODE_64BIT && + insn->vectorExtensionType != TYPE_NO_VEX_XOP) { + // The tables can't distinquish between cases where the W-bit is used to + // select register size and cases where its a required part of the opcode. + if ((insn->vectorExtensionType == TYPE_EVEX && + wFromEVEX3of4(insn->vectorExtensionPrefix[2])) || + (insn->vectorExtensionType == TYPE_VEX_3B && + wFromVEX3of3(insn->vectorExtensionPrefix[2])) || + (insn->vectorExtensionType == TYPE_XOP && + wFromXOP3of3(insn->vectorExtensionPrefix[2]))) { + + uint16_t instructionIDWithREXW; + if (getInstructionIDWithAttrMask(&instructionIDWithREXW, insn, + attrMask | ATTR_REXW)) { + insn->instructionID = instructionID; + insn->spec = &INSTRUCTIONS_SYM[instructionID]; + return 0; + } + + auto SpecName = mii->getName(instructionIDWithREXW); + // If not a 64-bit instruction. Switch the opcode. + if (!is64Bit(SpecName.data())) { + insn->instructionID = instructionIDWithREXW; + insn->spec = &INSTRUCTIONS_SYM[instructionIDWithREXW]; + return 0; + } + } + } + + // Absolute moves, umonitor, and movdir64b need special handling. + // -For 16-bit mode because the meaning of the AdSize and OpSize prefixes are + // inverted w.r.t. + // -For 32-bit mode we need to ensure the ADSIZE prefix is observed in + // any position. + if ((insn->opcodeType == ONEBYTE && ((insn->opcode & 0xFC) == 0xA0)) || + (insn->opcodeType == TWOBYTE && (insn->opcode == 0xAE)) || + (insn->opcodeType == THREEBYTE_38 && insn->opcode == 0xF8)) { + // Make sure we observed the prefixes in any position. + if (insn->hasAdSize) + attrMask |= ATTR_ADSIZE; + if (insn->hasOpSize) + attrMask |= ATTR_OPSIZE; + + // In 16-bit, invert the attributes. + if (insn->mode == MODE_16BIT) { + attrMask ^= ATTR_ADSIZE; + + // The OpSize attribute is only valid with the absolute moves. + if (insn->opcodeType == ONEBYTE && ((insn->opcode & 0xFC) == 0xA0)) + attrMask ^= ATTR_OPSIZE; + } + + if (getInstructionIDWithAttrMask(&instructionID, insn, attrMask)) + return -1; + + insn->instructionID = instructionID; + insn->spec = &INSTRUCTIONS_SYM[instructionID]; + return 0; + } + + if ((insn->mode == MODE_16BIT || insn->hasOpSize) && + !(attrMask & ATTR_OPSIZE)) { + // The instruction tables make no distinction between instructions that + // allow OpSize anywhere (i.e., 16-bit operations) and that need it in a + // particular spot (i.e., many MMX operations). In general we're + // conservative, but in the specific case where OpSize is present but not in + // the right place we check if there's a 16-bit operation. + const struct InstructionSpecifier *spec; + uint16_t instructionIDWithOpsize; + llvm::StringRef specName, specWithOpSizeName; + + spec = &INSTRUCTIONS_SYM[instructionID]; + + if (getInstructionIDWithAttrMask(&instructionIDWithOpsize, insn, + attrMask | ATTR_OPSIZE)) { + // ModRM required with OpSize but not present. Give up and return the + // version without OpSize set. + insn->instructionID = instructionID; + insn->spec = spec; + return 0; + } + + specName = mii->getName(instructionID); + specWithOpSizeName = mii->getName(instructionIDWithOpsize); + + if (is16BitEquivalent(specName.data(), specWithOpSizeName.data()) && + (insn->mode == MODE_16BIT) ^ insn->hasOpSize) { + insn->instructionID = instructionIDWithOpsize; + insn->spec = &INSTRUCTIONS_SYM[instructionIDWithOpsize]; + } else { + insn->instructionID = instructionID; + insn->spec = spec; + } + return 0; + } + + if (insn->opcodeType == ONEBYTE && insn->opcode == 0x90 && + insn->rexPrefix & 0x01) { + // NOOP shouldn't decode as NOOP if REX.b is set. Instead it should decode + // as XCHG %r8, %eax. + const struct InstructionSpecifier *spec; + uint16_t instructionIDWithNewOpcode; + const struct InstructionSpecifier *specWithNewOpcode; + + spec = &INSTRUCTIONS_SYM[instructionID]; + + // Borrow opcode from one of the other XCHGar opcodes + insn->opcode = 0x91; + + if (getInstructionIDWithAttrMask(&instructionIDWithNewOpcode, insn, + attrMask)) { + insn->opcode = 0x90; + + insn->instructionID = instructionID; + insn->spec = spec; + return 0; + } + + specWithNewOpcode = &INSTRUCTIONS_SYM[instructionIDWithNewOpcode]; + + // Change back + insn->opcode = 0x90; + + insn->instructionID = instructionIDWithNewOpcode; + insn->spec = specWithNewOpcode; + + return 0; + } + + insn->instructionID = instructionID; + insn->spec = &INSTRUCTIONS_SYM[insn->instructionID]; + + return 0; +} + +// Read an operand from the opcode field of an instruction and interprets it +// appropriately given the operand width. Handles AddRegFrm instructions. +// +// @param insn - the instruction whose opcode field is to be read. +// @param size - The width (in bytes) of the register being specified. +// 1 means AL and friends, 2 means AX, 4 means EAX, and 8 means +// RAX. +// @return - 0 on success; nonzero otherwise. +static int readOpcodeRegister(struct InternalInstruction *insn, uint8_t size) { + LLVM_DEBUG(dbgs() << "readOpcodeRegister()"); + + if (size == 0) + size = insn->registerSize; + + switch (size) { + case 1: + insn->opcodeRegister = (Reg)( + MODRM_REG_AL + ((bFromREX(insn->rexPrefix) << 3) | (insn->opcode & 7))); + if (insn->rexPrefix && insn->opcodeRegister >= MODRM_REG_AL + 0x4 && + insn->opcodeRegister < MODRM_REG_AL + 0x8) { + insn->opcodeRegister = + (Reg)(MODRM_REG_SPL + (insn->opcodeRegister - MODRM_REG_AL - 4)); + } + + break; + case 2: + insn->opcodeRegister = (Reg)( + MODRM_REG_AX + ((bFromREX(insn->rexPrefix) << 3) | (insn->opcode & 7))); + break; + case 4: + insn->opcodeRegister = + (Reg)(MODRM_REG_EAX + + ((bFromREX(insn->rexPrefix) << 3) | (insn->opcode & 7))); + break; + case 8: + insn->opcodeRegister = + (Reg)(MODRM_REG_RAX + + ((bFromREX(insn->rexPrefix) << 3) | (insn->opcode & 7))); + break; + } + + return 0; +} + +// Consume an immediate operand from an instruction, given the desired operand +// size. +// +// @param insn - The instruction whose operand is to be read. +// @param size - The width (in bytes) of the operand. +// @return - 0 if the immediate was successfully consumed; nonzero +// otherwise. +static int readImmediate(struct InternalInstruction *insn, uint8_t size) { + uint8_t imm8; + uint16_t imm16; + uint32_t imm32; + uint64_t imm64; + + LLVM_DEBUG(dbgs() << "readImmediate()"); + + assert(insn->numImmediatesConsumed < 2 && "Already consumed two immediates"); + + insn->immediateSize = size; + insn->immediateOffset = insn->readerCursor - insn->startLocation; + + switch (size) { + case 1: + if (consume(insn, imm8)) + return -1; + insn->immediates[insn->numImmediatesConsumed] = imm8; + break; + case 2: + if (consume(insn, imm16)) + return -1; + insn->immediates[insn->numImmediatesConsumed] = imm16; + break; + case 4: + if (consume(insn, imm32)) + return -1; + insn->immediates[insn->numImmediatesConsumed] = imm32; + break; + case 8: + if (consume(insn, imm64)) + return -1; + insn->immediates[insn->numImmediatesConsumed] = imm64; + break; + default: + llvm_unreachable("invalid size"); + } + + insn->numImmediatesConsumed++; + + return 0; +} + +// Consume vvvv from an instruction if it has a VEX prefix. +static int readVVVV(struct InternalInstruction *insn) { + LLVM_DEBUG(dbgs() << "readVVVV()"); + + int vvvv; + if (insn->vectorExtensionType == TYPE_EVEX) + vvvv = (v2FromEVEX4of4(insn->vectorExtensionPrefix[3]) << 4 | + vvvvFromEVEX3of4(insn->vectorExtensionPrefix[2])); + else if (insn->vectorExtensionType == TYPE_VEX_3B) + vvvv = vvvvFromVEX3of3(insn->vectorExtensionPrefix[2]); + else if (insn->vectorExtensionType == TYPE_VEX_2B) + vvvv = vvvvFromVEX2of2(insn->vectorExtensionPrefix[1]); + else if (insn->vectorExtensionType == TYPE_XOP) + vvvv = vvvvFromXOP3of3(insn->vectorExtensionPrefix[2]); + else + return -1; + + if (insn->mode != MODE_64BIT) + vvvv &= 0xf; // Can only clear bit 4. Bit 3 must be cleared later. + + insn->vvvv = static_cast<Reg>(vvvv); + return 0; +} + +// Read an mask register from the opcode field of an instruction. +// +// @param insn - The instruction whose opcode field is to be read. +// @return - 0 on success; nonzero otherwise. +static int readMaskRegister(struct InternalInstruction *insn) { + LLVM_DEBUG(dbgs() << "readMaskRegister()"); + + if (insn->vectorExtensionType != TYPE_EVEX) + return -1; + + insn->writemask = + static_cast<Reg>(aaaFromEVEX4of4(insn->vectorExtensionPrefix[3])); + return 0; +} + +// Consults the specifier for an instruction and consumes all +// operands for that instruction, interpreting them as it goes. +static int readOperands(struct InternalInstruction *insn) { + int hasVVVV, needVVVV; + int sawRegImm = 0; + + LLVM_DEBUG(dbgs() << "readOperands()"); + + // If non-zero vvvv specified, make sure one of the operands uses it. + hasVVVV = !readVVVV(insn); + needVVVV = hasVVVV && (insn->vvvv != 0); + + for (const auto &Op : x86OperandSets[insn->spec->operands]) { + switch (Op.encoding) { + case ENCODING_NONE: + case ENCODING_SI: + case ENCODING_DI: + break; + CASE_ENCODING_VSIB: + // VSIB can use the V2 bit so check only the other bits. + if (needVVVV) + needVVVV = hasVVVV & ((insn->vvvv & 0xf) != 0); + if (readModRM(insn)) + return -1; + + // Reject if SIB wasn't used. + if (insn->eaBase != EA_BASE_sib && insn->eaBase != EA_BASE_sib64) + return -1; + + // If sibIndex was set to SIB_INDEX_NONE, index offset is 4. + if (insn->sibIndex == SIB_INDEX_NONE) + insn->sibIndex = (SIBIndex)(insn->sibIndexBase + 4); + + // If EVEX.v2 is set this is one of the 16-31 registers. + if (insn->vectorExtensionType == TYPE_EVEX && insn->mode == MODE_64BIT && + v2FromEVEX4of4(insn->vectorExtensionPrefix[3])) + insn->sibIndex = (SIBIndex)(insn->sibIndex + 16); + + // Adjust the index register to the correct size. + switch ((OperandType)Op.type) { + default: + debug("Unhandled VSIB index type"); + return -1; + case TYPE_MVSIBX: + insn->sibIndex = + (SIBIndex)(SIB_INDEX_XMM0 + (insn->sibIndex - insn->sibIndexBase)); + break; + case TYPE_MVSIBY: + insn->sibIndex = + (SIBIndex)(SIB_INDEX_YMM0 + (insn->sibIndex - insn->sibIndexBase)); + break; + case TYPE_MVSIBZ: + insn->sibIndex = + (SIBIndex)(SIB_INDEX_ZMM0 + (insn->sibIndex - insn->sibIndexBase)); + break; + } + + // Apply the AVX512 compressed displacement scaling factor. + if (Op.encoding != ENCODING_REG && insn->eaDisplacement == EA_DISP_8) + insn->displacement *= 1 << (Op.encoding - ENCODING_VSIB); + break; + case ENCODING_SIB: + // Reject if SIB wasn't used. + if (insn->eaBase != EA_BASE_sib && insn->eaBase != EA_BASE_sib64) + return -1; + if (readModRM(insn)) + return -1; + if (fixupReg(insn, &Op)) + return -1; + break; + case ENCODING_REG: + CASE_ENCODING_RM: + if (readModRM(insn)) + return -1; + if (fixupReg(insn, &Op)) + return -1; + // Apply the AVX512 compressed displacement scaling factor. + if (Op.encoding != ENCODING_REG && insn->eaDisplacement == EA_DISP_8) + insn->displacement *= 1 << (Op.encoding - ENCODING_RM); + break; + case ENCODING_IB: + if (sawRegImm) { + // Saw a register immediate so don't read again and instead split the + // previous immediate. FIXME: This is a hack. + insn->immediates[insn->numImmediatesConsumed] = + insn->immediates[insn->numImmediatesConsumed - 1] & 0xf; + ++insn->numImmediatesConsumed; + break; + } + if (readImmediate(insn, 1)) + return -1; + if (Op.type == TYPE_XMM || Op.type == TYPE_YMM) + sawRegImm = 1; + break; + case ENCODING_IW: + if (readImmediate(insn, 2)) + return -1; + break; + case ENCODING_ID: + if (readImmediate(insn, 4)) + return -1; + break; + case ENCODING_IO: + if (readImmediate(insn, 8)) + return -1; + break; + case ENCODING_Iv: + if (readImmediate(insn, insn->immediateSize)) + return -1; + break; + case ENCODING_Ia: + if (readImmediate(insn, insn->addressSize)) + return -1; + break; + case ENCODING_IRC: + insn->RC = (l2FromEVEX4of4(insn->vectorExtensionPrefix[3]) << 1) | + lFromEVEX4of4(insn->vectorExtensionPrefix[3]); + break; + case ENCODING_RB: + if (readOpcodeRegister(insn, 1)) + return -1; + break; + case ENCODING_RW: + if (readOpcodeRegister(insn, 2)) + return -1; + break; + case ENCODING_RD: + if (readOpcodeRegister(insn, 4)) + return -1; + break; + case ENCODING_RO: + if (readOpcodeRegister(insn, 8)) + return -1; + break; + case ENCODING_Rv: + if (readOpcodeRegister(insn, 0)) + return -1; + break; + case ENCODING_CC: + insn->immediates[1] = insn->opcode & 0xf; + break; + case ENCODING_FP: + break; + case ENCODING_VVVV: + needVVVV = 0; // Mark that we have found a VVVV operand. + if (!hasVVVV) + return -1; + if (insn->mode != MODE_64BIT) + insn->vvvv = static_cast<Reg>(insn->vvvv & 0x7); + if (fixupReg(insn, &Op)) + return -1; + break; + case ENCODING_WRITEMASK: + if (readMaskRegister(insn)) + return -1; + break; + case ENCODING_DUP: + break; + default: + LLVM_DEBUG(dbgs() << "Encountered an operand with an unknown encoding."); + return -1; + } + } + + // If we didn't find ENCODING_VVVV operand, but non-zero vvvv present, fail + if (needVVVV) + return -1; + + return 0; +} + +namespace llvm { + +// Fill-ins to make the compiler happy. These constants are never actually +// assigned; they are just filler to make an automatically-generated switch +// statement work. +namespace X86 { + enum { + BX_SI = 500, + BX_DI = 501, + BP_SI = 502, + BP_DI = 503, + sib = 504, + sib64 = 505 + }; +} // namespace X86 + +} // namespace llvm + +static bool translateInstruction(MCInst &target, + InternalInstruction &source, + const MCDisassembler *Dis); + +namespace { + +/// Generic disassembler for all X86 platforms. All each platform class should +/// have to do is subclass the constructor, and provide a different +/// disassemblerMode value. +class X86GenericDisassembler : public MCDisassembler { + std::unique_ptr<const MCInstrInfo> MII; +public: + X86GenericDisassembler(const MCSubtargetInfo &STI, MCContext &Ctx, + std::unique_ptr<const MCInstrInfo> MII); +public: + DecodeStatus getInstruction(MCInst &instr, uint64_t &size, + ArrayRef<uint8_t> Bytes, uint64_t Address, + raw_ostream &cStream) const override; + +private: + DisassemblerMode fMode; +}; + +} // namespace + +X86GenericDisassembler::X86GenericDisassembler( + const MCSubtargetInfo &STI, + MCContext &Ctx, + std::unique_ptr<const MCInstrInfo> MII) + : MCDisassembler(STI, Ctx), MII(std::move(MII)) { + const FeatureBitset &FB = STI.getFeatureBits(); + if (FB[X86::Mode16Bit]) { + fMode = MODE_16BIT; + return; + } else if (FB[X86::Mode32Bit]) { + fMode = MODE_32BIT; + return; + } else if (FB[X86::Mode64Bit]) { + fMode = MODE_64BIT; + return; + } + + llvm_unreachable("Invalid CPU mode"); +} + +MCDisassembler::DecodeStatus X86GenericDisassembler::getInstruction( + MCInst &Instr, uint64_t &Size, ArrayRef<uint8_t> Bytes, uint64_t Address, + raw_ostream &CStream) const { + CommentStream = &CStream; + + InternalInstruction Insn; + memset(&Insn, 0, sizeof(InternalInstruction)); + Insn.bytes = Bytes; + Insn.startLocation = Address; + Insn.readerCursor = Address; + Insn.mode = fMode; + + if (Bytes.empty() || readPrefixes(&Insn) || readOpcode(&Insn) || + getInstructionID(&Insn, MII.get()) || Insn.instructionID == 0 || + readOperands(&Insn)) { + Size = Insn.readerCursor - Address; + return Fail; + } + + Insn.operands = x86OperandSets[Insn.spec->operands]; + Insn.length = Insn.readerCursor - Insn.startLocation; + Size = Insn.length; + if (Size > 15) + LLVM_DEBUG(dbgs() << "Instruction exceeds 15-byte limit"); + + bool Ret = translateInstruction(Instr, Insn, this); + if (!Ret) { + unsigned Flags = X86::IP_NO_PREFIX; + if (Insn.hasAdSize) + Flags |= X86::IP_HAS_AD_SIZE; + if (!Insn.mandatoryPrefix) { + if (Insn.hasOpSize) + Flags |= X86::IP_HAS_OP_SIZE; + if (Insn.repeatPrefix == 0xf2) + Flags |= X86::IP_HAS_REPEAT_NE; + else if (Insn.repeatPrefix == 0xf3 && + // It should not be 'pause' f3 90 + Insn.opcode != 0x90) + Flags |= X86::IP_HAS_REPEAT; + if (Insn.hasLockPrefix) + Flags |= X86::IP_HAS_LOCK; + } + Instr.setFlags(Flags); + } + return (!Ret) ? Success : Fail; +} + +// +// Private code that translates from struct InternalInstructions to MCInsts. +// + +/// translateRegister - Translates an internal register to the appropriate LLVM +/// register, and appends it as an operand to an MCInst. +/// +/// @param mcInst - The MCInst to append to. +/// @param reg - The Reg to append. +static void translateRegister(MCInst &mcInst, Reg reg) { +#define ENTRY(x) X86::x, + static constexpr MCPhysReg llvmRegnums[] = {ALL_REGS}; +#undef ENTRY + + MCPhysReg llvmRegnum = llvmRegnums[reg]; + mcInst.addOperand(MCOperand::createReg(llvmRegnum)); +} + +/// tryAddingSymbolicOperand - trys to add a symbolic operand in place of the +/// immediate Value in the MCInst. +/// +/// @param Value - The immediate Value, has had any PC adjustment made by +/// the caller. +/// @param isBranch - If the instruction is a branch instruction +/// @param Address - The starting address of the instruction +/// @param Offset - The byte offset to this immediate in the instruction +/// @param Width - The byte width of this immediate in the instruction +/// +/// If the getOpInfo() function was set when setupForSymbolicDisassembly() was +/// called then that function is called to get any symbolic information for the +/// immediate in the instruction using the Address, Offset and Width. If that +/// returns non-zero then the symbolic information it returns is used to create +/// an MCExpr and that is added as an operand to the MCInst. If getOpInfo() +/// returns zero and isBranch is true then a symbol look up for immediate Value +/// is done and if a symbol is found an MCExpr is created with that, else +/// an MCExpr with the immediate Value is created. This function returns true +/// if it adds an operand to the MCInst and false otherwise. +static bool tryAddingSymbolicOperand(int64_t Value, bool isBranch, + uint64_t Address, uint64_t Offset, + uint64_t Width, MCInst &MI, + const MCDisassembler *Dis) { + return Dis->tryAddingSymbolicOperand(MI, Value, Address, isBranch, + Offset, Width); +} + +/// tryAddingPcLoadReferenceComment - trys to add a comment as to what is being +/// referenced by a load instruction with the base register that is the rip. +/// These can often be addresses in a literal pool. The Address of the +/// instruction and its immediate Value are used to determine the address +/// being referenced in the literal pool entry. The SymbolLookUp call back will +/// return a pointer to a literal 'C' string if the referenced address is an +/// address into a section with 'C' string literals. +static void tryAddingPcLoadReferenceComment(uint64_t Address, uint64_t Value, + const void *Decoder) { + const MCDisassembler *Dis = static_cast<const MCDisassembler*>(Decoder); + Dis->tryAddingPcLoadReferenceComment(Value, Address); +} + +static const uint8_t segmentRegnums[SEG_OVERRIDE_max] = { + 0, // SEG_OVERRIDE_NONE + X86::CS, + X86::SS, + X86::DS, + X86::ES, + X86::FS, + X86::GS +}; + +/// translateSrcIndex - Appends a source index operand to an MCInst. +/// +/// @param mcInst - The MCInst to append to. +/// @param insn - The internal instruction. +static bool translateSrcIndex(MCInst &mcInst, InternalInstruction &insn) { + unsigned baseRegNo; + + if (insn.mode == MODE_64BIT) + baseRegNo = insn.hasAdSize ? X86::ESI : X86::RSI; + else if (insn.mode == MODE_32BIT) + baseRegNo = insn.hasAdSize ? X86::SI : X86::ESI; + else { + assert(insn.mode == MODE_16BIT); + baseRegNo = insn.hasAdSize ? X86::ESI : X86::SI; + } + MCOperand baseReg = MCOperand::createReg(baseRegNo); + mcInst.addOperand(baseReg); + + MCOperand segmentReg; + segmentReg = MCOperand::createReg(segmentRegnums[insn.segmentOverride]); + mcInst.addOperand(segmentReg); + return false; +} + +/// translateDstIndex - Appends a destination index operand to an MCInst. +/// +/// @param mcInst - The MCInst to append to. +/// @param insn - The internal instruction. + +static bool translateDstIndex(MCInst &mcInst, InternalInstruction &insn) { + unsigned baseRegNo; + + if (insn.mode == MODE_64BIT) + baseRegNo = insn.hasAdSize ? X86::EDI : X86::RDI; + else if (insn.mode == MODE_32BIT) + baseRegNo = insn.hasAdSize ? X86::DI : X86::EDI; + else { + assert(insn.mode == MODE_16BIT); + baseRegNo = insn.hasAdSize ? X86::EDI : X86::DI; + } + MCOperand baseReg = MCOperand::createReg(baseRegNo); + mcInst.addOperand(baseReg); + return false; +} + +/// translateImmediate - Appends an immediate operand to an MCInst. +/// +/// @param mcInst - The MCInst to append to. +/// @param immediate - The immediate value to append. +/// @param operand - The operand, as stored in the descriptor table. +/// @param insn - The internal instruction. +static void translateImmediate(MCInst &mcInst, uint64_t immediate, + const OperandSpecifier &operand, + InternalInstruction &insn, + const MCDisassembler *Dis) { + // Sign-extend the immediate if necessary. + + OperandType type = (OperandType)operand.type; + + bool isBranch = false; + uint64_t pcrel = 0; + if (type == TYPE_REL) { + isBranch = true; + pcrel = insn.startLocation + + insn.immediateOffset + insn.immediateSize; + switch (operand.encoding) { + default: + break; + case ENCODING_Iv: + switch (insn.displacementSize) { + default: + break; + case 1: + if(immediate & 0x80) + immediate |= ~(0xffull); + break; + case 2: + if(immediate & 0x8000) + immediate |= ~(0xffffull); + break; + case 4: + if(immediate & 0x80000000) + immediate |= ~(0xffffffffull); + break; + case 8: + break; + } + break; + case ENCODING_IB: + if(immediate & 0x80) + immediate |= ~(0xffull); + break; + case ENCODING_IW: + if(immediate & 0x8000) + immediate |= ~(0xffffull); + break; + case ENCODING_ID: + if(immediate & 0x80000000) + immediate |= ~(0xffffffffull); + break; + } + } + // By default sign-extend all X86 immediates based on their encoding. + else if (type == TYPE_IMM) { + switch (operand.encoding) { + default: + break; + case ENCODING_IB: + if(immediate & 0x80) + immediate |= ~(0xffull); + break; + case ENCODING_IW: + if(immediate & 0x8000) + immediate |= ~(0xffffull); + break; + case ENCODING_ID: + if(immediate & 0x80000000) + immediate |= ~(0xffffffffull); + break; + case ENCODING_IO: + break; + } + } + + switch (type) { + case TYPE_XMM: + mcInst.addOperand(MCOperand::createReg(X86::XMM0 + (immediate >> 4))); + return; + case TYPE_YMM: + mcInst.addOperand(MCOperand::createReg(X86::YMM0 + (immediate >> 4))); + return; + case TYPE_ZMM: + mcInst.addOperand(MCOperand::createReg(X86::ZMM0 + (immediate >> 4))); + return; + default: + // operand is 64 bits wide. Do nothing. + break; + } + + if(!tryAddingSymbolicOperand(immediate + pcrel, isBranch, insn.startLocation, + insn.immediateOffset, insn.immediateSize, + mcInst, Dis)) + mcInst.addOperand(MCOperand::createImm(immediate)); + + if (type == TYPE_MOFFS) { + MCOperand segmentReg; + segmentReg = MCOperand::createReg(segmentRegnums[insn.segmentOverride]); + mcInst.addOperand(segmentReg); + } +} + +/// translateRMRegister - Translates a register stored in the R/M field of the +/// ModR/M byte to its LLVM equivalent and appends it to an MCInst. +/// @param mcInst - The MCInst to append to. +/// @param insn - The internal instruction to extract the R/M field +/// from. +/// @return - 0 on success; -1 otherwise +static bool translateRMRegister(MCInst &mcInst, + InternalInstruction &insn) { + if (insn.eaBase == EA_BASE_sib || insn.eaBase == EA_BASE_sib64) { + debug("A R/M register operand may not have a SIB byte"); + return true; + } + + switch (insn.eaBase) { + default: + debug("Unexpected EA base register"); + return true; + case EA_BASE_NONE: + debug("EA_BASE_NONE for ModR/M base"); + return true; +#define ENTRY(x) case EA_BASE_##x: + ALL_EA_BASES +#undef ENTRY + debug("A R/M register operand may not have a base; " + "the operand must be a register."); + return true; +#define ENTRY(x) \ + case EA_REG_##x: \ + mcInst.addOperand(MCOperand::createReg(X86::x)); break; + ALL_REGS +#undef ENTRY + } + + return false; +} + +/// translateRMMemory - Translates a memory operand stored in the Mod and R/M +/// fields of an internal instruction (and possibly its SIB byte) to a memory +/// operand in LLVM's format, and appends it to an MCInst. +/// +/// @param mcInst - The MCInst to append to. +/// @param insn - The instruction to extract Mod, R/M, and SIB fields +/// from. +/// @param ForceSIB - The instruction must use SIB. +/// @return - 0 on success; nonzero otherwise +static bool translateRMMemory(MCInst &mcInst, InternalInstruction &insn, + const MCDisassembler *Dis, + bool ForceSIB = false) { + // Addresses in an MCInst are represented as five operands: + // 1. basereg (register) The R/M base, or (if there is a SIB) the + // SIB base + // 2. scaleamount (immediate) 1, or (if there is a SIB) the specified + // scale amount + // 3. indexreg (register) x86_registerNONE, or (if there is a SIB) + // the index (which is multiplied by the + // scale amount) + // 4. displacement (immediate) 0, or the displacement if there is one + // 5. segmentreg (register) x86_registerNONE for now, but could be set + // if we have segment overrides + + MCOperand baseReg; + MCOperand scaleAmount; + MCOperand indexReg; + MCOperand displacement; + MCOperand segmentReg; + uint64_t pcrel = 0; + + if (insn.eaBase == EA_BASE_sib || insn.eaBase == EA_BASE_sib64) { + if (insn.sibBase != SIB_BASE_NONE) { + switch (insn.sibBase) { + default: + debug("Unexpected sibBase"); + return true; +#define ENTRY(x) \ + case SIB_BASE_##x: \ + baseReg = MCOperand::createReg(X86::x); break; + ALL_SIB_BASES +#undef ENTRY + } + } else { + baseReg = MCOperand::createReg(X86::NoRegister); + } + + if (insn.sibIndex != SIB_INDEX_NONE) { + switch (insn.sibIndex) { + default: + debug("Unexpected sibIndex"); + return true; +#define ENTRY(x) \ + case SIB_INDEX_##x: \ + indexReg = MCOperand::createReg(X86::x); break; + EA_BASES_32BIT + EA_BASES_64BIT + REGS_XMM + REGS_YMM + REGS_ZMM +#undef ENTRY + } + } else { + // Use EIZ/RIZ for a few ambiguous cases where the SIB byte is present, + // but no index is used and modrm alone should have been enough. + // -No base register in 32-bit mode. In 64-bit mode this is used to + // avoid rip-relative addressing. + // -Any base register used other than ESP/RSP/R12D/R12. Using these as a + // base always requires a SIB byte. + // -A scale other than 1 is used. + if (!ForceSIB && + (insn.sibScale != 1 || + (insn.sibBase == SIB_BASE_NONE && insn.mode != MODE_64BIT) || + (insn.sibBase != SIB_BASE_NONE && + insn.sibBase != SIB_BASE_ESP && insn.sibBase != SIB_BASE_RSP && + insn.sibBase != SIB_BASE_R12D && insn.sibBase != SIB_BASE_R12))) { + indexReg = MCOperand::createReg(insn.addressSize == 4 ? X86::EIZ : + X86::RIZ); + } else + indexReg = MCOperand::createReg(X86::NoRegister); + } + + scaleAmount = MCOperand::createImm(insn.sibScale); + } else { + switch (insn.eaBase) { + case EA_BASE_NONE: + if (insn.eaDisplacement == EA_DISP_NONE) { + debug("EA_BASE_NONE and EA_DISP_NONE for ModR/M base"); + return true; + } + if (insn.mode == MODE_64BIT){ + pcrel = insn.startLocation + + insn.displacementOffset + insn.displacementSize; + tryAddingPcLoadReferenceComment(insn.startLocation + + insn.displacementOffset, + insn.displacement + pcrel, Dis); + // Section 2.2.1.6 + baseReg = MCOperand::createReg(insn.addressSize == 4 ? X86::EIP : + X86::RIP); + } + else + baseReg = MCOperand::createReg(X86::NoRegister); + + indexReg = MCOperand::createReg(X86::NoRegister); + break; + case EA_BASE_BX_SI: + baseReg = MCOperand::createReg(X86::BX); + indexReg = MCOperand::createReg(X86::SI); + break; + case EA_BASE_BX_DI: + baseReg = MCOperand::createReg(X86::BX); + indexReg = MCOperand::createReg(X86::DI); + break; + case EA_BASE_BP_SI: + baseReg = MCOperand::createReg(X86::BP); + indexReg = MCOperand::createReg(X86::SI); + break; + case EA_BASE_BP_DI: + baseReg = MCOperand::createReg(X86::BP); + indexReg = MCOperand::createReg(X86::DI); + break; + default: + indexReg = MCOperand::createReg(X86::NoRegister); + switch (insn.eaBase) { + default: + debug("Unexpected eaBase"); + return true; + // Here, we will use the fill-ins defined above. However, + // BX_SI, BX_DI, BP_SI, and BP_DI are all handled above and + // sib and sib64 were handled in the top-level if, so they're only + // placeholders to keep the compiler happy. +#define ENTRY(x) \ + case EA_BASE_##x: \ + baseReg = MCOperand::createReg(X86::x); break; + ALL_EA_BASES +#undef ENTRY +#define ENTRY(x) case EA_REG_##x: + ALL_REGS +#undef ENTRY + debug("A R/M memory operand may not be a register; " + "the base field must be a base."); + return true; + } + } + + scaleAmount = MCOperand::createImm(1); + } + + displacement = MCOperand::createImm(insn.displacement); + + segmentReg = MCOperand::createReg(segmentRegnums[insn.segmentOverride]); + + mcInst.addOperand(baseReg); + mcInst.addOperand(scaleAmount); + mcInst.addOperand(indexReg); + if(!tryAddingSymbolicOperand(insn.displacement + pcrel, false, + insn.startLocation, insn.displacementOffset, + insn.displacementSize, mcInst, Dis)) + mcInst.addOperand(displacement); + mcInst.addOperand(segmentReg); + return false; +} + +/// translateRM - Translates an operand stored in the R/M (and possibly SIB) +/// byte of an instruction to LLVM form, and appends it to an MCInst. +/// +/// @param mcInst - The MCInst to append to. +/// @param operand - The operand, as stored in the descriptor table. +/// @param insn - The instruction to extract Mod, R/M, and SIB fields +/// from. +/// @return - 0 on success; nonzero otherwise +static bool translateRM(MCInst &mcInst, const OperandSpecifier &operand, + InternalInstruction &insn, const MCDisassembler *Dis) { + switch (operand.type) { + default: + debug("Unexpected type for a R/M operand"); + return true; + case TYPE_R8: + case TYPE_R16: + case TYPE_R32: + case TYPE_R64: + case TYPE_Rv: + case TYPE_MM64: + case TYPE_XMM: + case TYPE_YMM: + case TYPE_ZMM: + case TYPE_TMM: + case TYPE_VK_PAIR: + case TYPE_VK: + case TYPE_DEBUGREG: + case TYPE_CONTROLREG: + case TYPE_BNDR: + return translateRMRegister(mcInst, insn); + case TYPE_M: + case TYPE_MVSIBX: + case TYPE_MVSIBY: + case TYPE_MVSIBZ: + return translateRMMemory(mcInst, insn, Dis); + case TYPE_MSIB: + return translateRMMemory(mcInst, insn, Dis, true); + } +} + +/// translateFPRegister - Translates a stack position on the FPU stack to its +/// LLVM form, and appends it to an MCInst. +/// +/// @param mcInst - The MCInst to append to. +/// @param stackPos - The stack position to translate. +static void translateFPRegister(MCInst &mcInst, + uint8_t stackPos) { + mcInst.addOperand(MCOperand::createReg(X86::ST0 + stackPos)); +} + +/// translateMaskRegister - Translates a 3-bit mask register number to +/// LLVM form, and appends it to an MCInst. +/// +/// @param mcInst - The MCInst to append to. +/// @param maskRegNum - Number of mask register from 0 to 7. +/// @return - false on success; true otherwise. +static bool translateMaskRegister(MCInst &mcInst, + uint8_t maskRegNum) { + if (maskRegNum >= 8) { + debug("Invalid mask register number"); + return true; + } + + mcInst.addOperand(MCOperand::createReg(X86::K0 + maskRegNum)); + return false; +} + +/// translateOperand - Translates an operand stored in an internal instruction +/// to LLVM's format and appends it to an MCInst. +/// +/// @param mcInst - The MCInst to append to. +/// @param operand - The operand, as stored in the descriptor table. +/// @param insn - The internal instruction. +/// @return - false on success; true otherwise. +static bool translateOperand(MCInst &mcInst, const OperandSpecifier &operand, + InternalInstruction &insn, + const MCDisassembler *Dis) { + switch (operand.encoding) { + default: + debug("Unhandled operand encoding during translation"); + return true; + case ENCODING_REG: + translateRegister(mcInst, insn.reg); + return false; + case ENCODING_WRITEMASK: + return translateMaskRegister(mcInst, insn.writemask); + case ENCODING_SIB: + CASE_ENCODING_RM: + CASE_ENCODING_VSIB: + return translateRM(mcInst, operand, insn, Dis); + case ENCODING_IB: + case ENCODING_IW: + case ENCODING_ID: + case ENCODING_IO: + case ENCODING_Iv: + case ENCODING_Ia: + translateImmediate(mcInst, + insn.immediates[insn.numImmediatesTranslated++], + operand, + insn, + Dis); + return false; + case ENCODING_IRC: + mcInst.addOperand(MCOperand::createImm(insn.RC)); + return false; + case ENCODING_SI: + return translateSrcIndex(mcInst, insn); + case ENCODING_DI: + return translateDstIndex(mcInst, insn); + case ENCODING_RB: + case ENCODING_RW: + case ENCODING_RD: + case ENCODING_RO: + case ENCODING_Rv: + translateRegister(mcInst, insn.opcodeRegister); + return false; + case ENCODING_CC: + mcInst.addOperand(MCOperand::createImm(insn.immediates[1])); + return false; + case ENCODING_FP: + translateFPRegister(mcInst, insn.modRM & 7); + return false; + case ENCODING_VVVV: + translateRegister(mcInst, insn.vvvv); + return false; + case ENCODING_DUP: + return translateOperand(mcInst, insn.operands[operand.type - TYPE_DUP0], + insn, Dis); + } +} + +/// translateInstruction - Translates an internal instruction and all its +/// operands to an MCInst. +/// +/// @param mcInst - The MCInst to populate with the instruction's data. +/// @param insn - The internal instruction. +/// @return - false on success; true otherwise. +static bool translateInstruction(MCInst &mcInst, + InternalInstruction &insn, + const MCDisassembler *Dis) { + if (!insn.spec) { + debug("Instruction has no specification"); + return true; + } + + mcInst.clear(); + mcInst.setOpcode(insn.instructionID); + // If when reading the prefix bytes we determined the overlapping 0xf2 or 0xf3 + // prefix bytes should be disassembled as xrelease and xacquire then set the + // opcode to those instead of the rep and repne opcodes. + if (insn.xAcquireRelease) { + if(mcInst.getOpcode() == X86::REP_PREFIX) + mcInst.setOpcode(X86::XRELEASE_PREFIX); + else if(mcInst.getOpcode() == X86::REPNE_PREFIX) + mcInst.setOpcode(X86::XACQUIRE_PREFIX); + } + + insn.numImmediatesTranslated = 0; + + for (const auto &Op : insn.operands) { + if (Op.encoding != ENCODING_NONE) { + if (translateOperand(mcInst, Op, insn, Dis)) { + return true; + } + } + } + + return false; +} + +static MCDisassembler *createX86Disassembler(const Target &T, + const MCSubtargetInfo &STI, + MCContext &Ctx) { + std::unique_ptr<const MCInstrInfo> MII(T.createMCInstrInfo()); + return new X86GenericDisassembler(STI, Ctx, std::move(MII)); +} + +extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeX86Disassembler() { + // Register the disassembler. + TargetRegistry::RegisterMCDisassembler(getTheX86_32Target(), + createX86Disassembler); + TargetRegistry::RegisterMCDisassembler(getTheX86_64Target(), + createX86Disassembler); +} |