aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm-project/llvm/lib/Target/X86/Disassembler/X86Disassembler.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm-project/llvm/lib/Target/X86/Disassembler/X86Disassembler.cpp')
-rw-r--r--contrib/llvm-project/llvm/lib/Target/X86/Disassembler/X86Disassembler.cpp2362
1 files changed, 2362 insertions, 0 deletions
diff --git a/contrib/llvm-project/llvm/lib/Target/X86/Disassembler/X86Disassembler.cpp b/contrib/llvm-project/llvm/lib/Target/X86/Disassembler/X86Disassembler.cpp
new file mode 100644
index 000000000000..05e482a6b66e
--- /dev/null
+++ b/contrib/llvm-project/llvm/lib/Target/X86/Disassembler/X86Disassembler.cpp
@@ -0,0 +1,2362 @@
+//===-- X86Disassembler.cpp - Disassembler for x86 and x86_64 -------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This file is part of the X86 Disassembler.
+// It contains code to translate the data produced by the decoder into
+// MCInsts.
+//
+//
+// The X86 disassembler is a table-driven disassembler for the 16-, 32-, and
+// 64-bit X86 instruction sets. The main decode sequence for an assembly
+// instruction in this disassembler is:
+//
+// 1. Read the prefix bytes and determine the attributes of the instruction.
+// These attributes, recorded in enum attributeBits
+// (X86DisassemblerDecoderCommon.h), form a bitmask. The table CONTEXTS_SYM
+// provides a mapping from bitmasks to contexts, which are represented by
+// enum InstructionContext (ibid.).
+//
+// 2. Read the opcode, and determine what kind of opcode it is. The
+// disassembler distinguishes four kinds of opcodes, which are enumerated in
+// OpcodeType (X86DisassemblerDecoderCommon.h): one-byte (0xnn), two-byte
+// (0x0f 0xnn), three-byte-38 (0x0f 0x38 0xnn), or three-byte-3a
+// (0x0f 0x3a 0xnn). Mandatory prefixes are treated as part of the context.
+//
+// 3. Depending on the opcode type, look in one of four ClassDecision structures
+// (X86DisassemblerDecoderCommon.h). Use the opcode class to determine which
+// OpcodeDecision (ibid.) to look the opcode in. Look up the opcode, to get
+// a ModRMDecision (ibid.).
+//
+// 4. Some instructions, such as escape opcodes or extended opcodes, or even
+// instructions that have ModRM*Reg / ModRM*Mem forms in LLVM, need the
+// ModR/M byte to complete decode. The ModRMDecision's type is an entry from
+// ModRMDecisionType (X86DisassemblerDecoderCommon.h) that indicates if the
+// ModR/M byte is required and how to interpret it.
+//
+// 5. After resolving the ModRMDecision, the disassembler has a unique ID
+// of type InstrUID (X86DisassemblerDecoderCommon.h). Looking this ID up in
+// INSTRUCTIONS_SYM yields the name of the instruction and the encodings and
+// meanings of its operands.
+//
+// 6. For each operand, its encoding is an entry from OperandEncoding
+// (X86DisassemblerDecoderCommon.h) and its type is an entry from
+// OperandType (ibid.). The encoding indicates how to read it from the
+// instruction; the type indicates how to interpret the value once it has
+// been read. For example, a register operand could be stored in the R/M
+// field of the ModR/M byte, the REG field of the ModR/M byte, or added to
+// the main opcode. This is orthogonal from its meaning (an GPR or an XMM
+// register, for instance). Given this information, the operands can be
+// extracted and interpreted.
+//
+// 7. As the last step, the disassembler translates the instruction information
+// and operands into a format understandable by the client - in this case, an
+// MCInst for use by the MC infrastructure.
+//
+// The disassembler is broken broadly into two parts: the table emitter that
+// emits the instruction decode tables discussed above during compilation, and
+// the disassembler itself. The table emitter is documented in more detail in
+// utils/TableGen/X86DisassemblerEmitter.h.
+//
+// X86Disassembler.cpp contains the code responsible for step 7, and for
+// invoking the decoder to execute steps 1-6.
+// X86DisassemblerDecoderCommon.h contains the definitions needed by both the
+// table emitter and the disassembler.
+// X86DisassemblerDecoder.h contains the public interface of the decoder,
+// factored out into C for possible use by other projects.
+// X86DisassemblerDecoder.c contains the source code of the decoder, which is
+// responsible for steps 1-6.
+//
+//===----------------------------------------------------------------------===//
+
+#include "MCTargetDesc/X86BaseInfo.h"
+#include "MCTargetDesc/X86MCTargetDesc.h"
+#include "TargetInfo/X86TargetInfo.h"
+#include "X86DisassemblerDecoder.h"
+#include "llvm/MC/MCContext.h"
+#include "llvm/MC/MCDisassembler/MCDisassembler.h"
+#include "llvm/MC/MCExpr.h"
+#include "llvm/MC/MCInst.h"
+#include "llvm/MC/MCInstrInfo.h"
+#include "llvm/MC/MCSubtargetInfo.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/Format.h"
+#include "llvm/Support/TargetRegistry.h"
+#include "llvm/Support/raw_ostream.h"
+
+using namespace llvm;
+using namespace llvm::X86Disassembler;
+
+#define DEBUG_TYPE "x86-disassembler"
+
+#define debug(s) LLVM_DEBUG(dbgs() << __LINE__ << ": " << s);
+
+// Specifies whether a ModR/M byte is needed and (if so) which
+// instruction each possible value of the ModR/M byte corresponds to. Once
+// this information is known, we have narrowed down to a single instruction.
+struct ModRMDecision {
+ uint8_t modrm_type;
+ uint16_t instructionIDs;
+};
+
+// Specifies which set of ModR/M->instruction tables to look at
+// given a particular opcode.
+struct OpcodeDecision {
+ ModRMDecision modRMDecisions[256];
+};
+
+// Specifies which opcode->instruction tables to look at given
+// a particular context (set of attributes). Since there are many possible
+// contexts, the decoder first uses CONTEXTS_SYM to determine which context
+// applies given a specific set of attributes. Hence there are only IC_max
+// entries in this table, rather than 2^(ATTR_max).
+struct ContextDecision {
+ OpcodeDecision opcodeDecisions[IC_max];
+};
+
+#include "X86GenDisassemblerTables.inc"
+
+static InstrUID decode(OpcodeType type, InstructionContext insnContext,
+ uint8_t opcode, uint8_t modRM) {
+ const struct ModRMDecision *dec;
+
+ switch (type) {
+ case ONEBYTE:
+ dec = &ONEBYTE_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
+ break;
+ case TWOBYTE:
+ dec = &TWOBYTE_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
+ break;
+ case THREEBYTE_38:
+ dec = &THREEBYTE38_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
+ break;
+ case THREEBYTE_3A:
+ dec = &THREEBYTE3A_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
+ break;
+ case XOP8_MAP:
+ dec = &XOP8_MAP_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
+ break;
+ case XOP9_MAP:
+ dec = &XOP9_MAP_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
+ break;
+ case XOPA_MAP:
+ dec = &XOPA_MAP_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
+ break;
+ case THREEDNOW_MAP:
+ dec =
+ &THREEDNOW_MAP_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
+ break;
+ }
+
+ switch (dec->modrm_type) {
+ default:
+ llvm_unreachable("Corrupt table! Unknown modrm_type");
+ return 0;
+ case MODRM_ONEENTRY:
+ return modRMTable[dec->instructionIDs];
+ case MODRM_SPLITRM:
+ if (modFromModRM(modRM) == 0x3)
+ return modRMTable[dec->instructionIDs + 1];
+ return modRMTable[dec->instructionIDs];
+ case MODRM_SPLITREG:
+ if (modFromModRM(modRM) == 0x3)
+ return modRMTable[dec->instructionIDs + ((modRM & 0x38) >> 3) + 8];
+ return modRMTable[dec->instructionIDs + ((modRM & 0x38) >> 3)];
+ case MODRM_SPLITMISC:
+ if (modFromModRM(modRM) == 0x3)
+ return modRMTable[dec->instructionIDs + (modRM & 0x3f) + 8];
+ return modRMTable[dec->instructionIDs + ((modRM & 0x38) >> 3)];
+ case MODRM_FULL:
+ return modRMTable[dec->instructionIDs + modRM];
+ }
+}
+
+static bool peek(struct InternalInstruction *insn, uint8_t &byte) {
+ uint64_t offset = insn->readerCursor - insn->startLocation;
+ if (offset >= insn->bytes.size())
+ return true;
+ byte = insn->bytes[offset];
+ return false;
+}
+
+template <typename T> static bool consume(InternalInstruction *insn, T &ptr) {
+ auto r = insn->bytes;
+ uint64_t offset = insn->readerCursor - insn->startLocation;
+ if (offset + sizeof(T) > r.size())
+ return true;
+ T ret = 0;
+ for (unsigned i = 0; i < sizeof(T); ++i)
+ ret |= (uint64_t)r[offset + i] << (i * 8);
+ ptr = ret;
+ insn->readerCursor += sizeof(T);
+ return false;
+}
+
+static bool isREX(struct InternalInstruction *insn, uint8_t prefix) {
+ return insn->mode == MODE_64BIT && prefix >= 0x40 && prefix <= 0x4f;
+}
+
+// Consumes all of an instruction's prefix bytes, and marks the
+// instruction as having them. Also sets the instruction's default operand,
+// address, and other relevant data sizes to report operands correctly.
+//
+// insn must not be empty.
+static int readPrefixes(struct InternalInstruction *insn) {
+ bool isPrefix = true;
+ uint8_t byte = 0;
+ uint8_t nextByte;
+
+ LLVM_DEBUG(dbgs() << "readPrefixes()");
+
+ while (isPrefix) {
+ // If we fail reading prefixes, just stop here and let the opcode reader
+ // deal with it.
+ if (consume(insn, byte))
+ break;
+
+ // If the byte is a LOCK/REP/REPNE prefix and not a part of the opcode, then
+ // break and let it be disassembled as a normal "instruction".
+ if (insn->readerCursor - 1 == insn->startLocation && byte == 0xf0) // LOCK
+ break;
+
+ if ((byte == 0xf2 || byte == 0xf3) && !peek(insn, nextByte)) {
+ // If the byte is 0xf2 or 0xf3, and any of the following conditions are
+ // met:
+ // - it is followed by a LOCK (0xf0) prefix
+ // - it is followed by an xchg instruction
+ // then it should be disassembled as a xacquire/xrelease not repne/rep.
+ if (((nextByte == 0xf0) ||
+ ((nextByte & 0xfe) == 0x86 || (nextByte & 0xf8) == 0x90))) {
+ insn->xAcquireRelease = true;
+ if (!(byte == 0xf3 && nextByte == 0x90)) // PAUSE instruction support
+ break;
+ }
+ // Also if the byte is 0xf3, and the following condition is met:
+ // - it is followed by a "mov mem, reg" (opcode 0x88/0x89) or
+ // "mov mem, imm" (opcode 0xc6/0xc7) instructions.
+ // then it should be disassembled as an xrelease not rep.
+ if (byte == 0xf3 && (nextByte == 0x88 || nextByte == 0x89 ||
+ nextByte == 0xc6 || nextByte == 0xc7)) {
+ insn->xAcquireRelease = true;
+ break;
+ }
+ if (isREX(insn, nextByte)) {
+ uint8_t nnextByte;
+ // Go to REX prefix after the current one
+ if (consume(insn, nnextByte))
+ return -1;
+ // We should be able to read next byte after REX prefix
+ if (peek(insn, nnextByte))
+ return -1;
+ --insn->readerCursor;
+ }
+ }
+
+ switch (byte) {
+ case 0xf0: // LOCK
+ insn->hasLockPrefix = true;
+ break;
+ case 0xf2: // REPNE/REPNZ
+ case 0xf3: { // REP or REPE/REPZ
+ uint8_t nextByte;
+ if (peek(insn, nextByte))
+ break;
+ // TODO:
+ // 1. There could be several 0x66
+ // 2. if (nextByte == 0x66) and nextNextByte != 0x0f then
+ // it's not mandatory prefix
+ // 3. if (nextByte >= 0x40 && nextByte <= 0x4f) it's REX and we need
+ // 0x0f exactly after it to be mandatory prefix
+ if (isREX(insn, nextByte) || nextByte == 0x0f || nextByte == 0x66)
+ // The last of 0xf2 /0xf3 is mandatory prefix
+ insn->mandatoryPrefix = byte;
+ insn->repeatPrefix = byte;
+ break;
+ }
+ case 0x2e: // CS segment override -OR- Branch not taken
+ insn->segmentOverride = SEG_OVERRIDE_CS;
+ break;
+ case 0x36: // SS segment override -OR- Branch taken
+ insn->segmentOverride = SEG_OVERRIDE_SS;
+ break;
+ case 0x3e: // DS segment override
+ insn->segmentOverride = SEG_OVERRIDE_DS;
+ break;
+ case 0x26: // ES segment override
+ insn->segmentOverride = SEG_OVERRIDE_ES;
+ break;
+ case 0x64: // FS segment override
+ insn->segmentOverride = SEG_OVERRIDE_FS;
+ break;
+ case 0x65: // GS segment override
+ insn->segmentOverride = SEG_OVERRIDE_GS;
+ break;
+ case 0x66: { // Operand-size override {
+ uint8_t nextByte;
+ insn->hasOpSize = true;
+ if (peek(insn, nextByte))
+ break;
+ // 0x66 can't overwrite existing mandatory prefix and should be ignored
+ if (!insn->mandatoryPrefix && (nextByte == 0x0f || isREX(insn, nextByte)))
+ insn->mandatoryPrefix = byte;
+ break;
+ }
+ case 0x67: // Address-size override
+ insn->hasAdSize = true;
+ break;
+ default: // Not a prefix byte
+ isPrefix = false;
+ break;
+ }
+
+ if (isPrefix)
+ LLVM_DEBUG(dbgs() << format("Found prefix 0x%hhx", byte));
+ }
+
+ insn->vectorExtensionType = TYPE_NO_VEX_XOP;
+
+ if (byte == 0x62) {
+ uint8_t byte1, byte2;
+ if (consume(insn, byte1)) {
+ LLVM_DEBUG(dbgs() << "Couldn't read second byte of EVEX prefix");
+ return -1;
+ }
+
+ if (peek(insn, byte2)) {
+ LLVM_DEBUG(dbgs() << "Couldn't read third byte of EVEX prefix");
+ return -1;
+ }
+
+ if ((insn->mode == MODE_64BIT || (byte1 & 0xc0) == 0xc0) &&
+ ((~byte1 & 0xc) == 0xc) && ((byte2 & 0x4) == 0x4)) {
+ insn->vectorExtensionType = TYPE_EVEX;
+ } else {
+ --insn->readerCursor; // unconsume byte1
+ --insn->readerCursor; // unconsume byte
+ }
+
+ if (insn->vectorExtensionType == TYPE_EVEX) {
+ insn->vectorExtensionPrefix[0] = byte;
+ insn->vectorExtensionPrefix[1] = byte1;
+ if (consume(insn, insn->vectorExtensionPrefix[2])) {
+ LLVM_DEBUG(dbgs() << "Couldn't read third byte of EVEX prefix");
+ return -1;
+ }
+ if (consume(insn, insn->vectorExtensionPrefix[3])) {
+ LLVM_DEBUG(dbgs() << "Couldn't read fourth byte of EVEX prefix");
+ return -1;
+ }
+
+ // We simulate the REX prefix for simplicity's sake
+ if (insn->mode == MODE_64BIT) {
+ insn->rexPrefix = 0x40 |
+ (wFromEVEX3of4(insn->vectorExtensionPrefix[2]) << 3) |
+ (rFromEVEX2of4(insn->vectorExtensionPrefix[1]) << 2) |
+ (xFromEVEX2of4(insn->vectorExtensionPrefix[1]) << 1) |
+ (bFromEVEX2of4(insn->vectorExtensionPrefix[1]) << 0);
+ }
+
+ LLVM_DEBUG(
+ dbgs() << format(
+ "Found EVEX prefix 0x%hhx 0x%hhx 0x%hhx 0x%hhx",
+ insn->vectorExtensionPrefix[0], insn->vectorExtensionPrefix[1],
+ insn->vectorExtensionPrefix[2], insn->vectorExtensionPrefix[3]));
+ }
+ } else if (byte == 0xc4) {
+ uint8_t byte1;
+ if (peek(insn, byte1)) {
+ LLVM_DEBUG(dbgs() << "Couldn't read second byte of VEX");
+ return -1;
+ }
+
+ if (insn->mode == MODE_64BIT || (byte1 & 0xc0) == 0xc0)
+ insn->vectorExtensionType = TYPE_VEX_3B;
+ else
+ --insn->readerCursor;
+
+ if (insn->vectorExtensionType == TYPE_VEX_3B) {
+ insn->vectorExtensionPrefix[0] = byte;
+ consume(insn, insn->vectorExtensionPrefix[1]);
+ consume(insn, insn->vectorExtensionPrefix[2]);
+
+ // We simulate the REX prefix for simplicity's sake
+
+ if (insn->mode == MODE_64BIT)
+ insn->rexPrefix = 0x40 |
+ (wFromVEX3of3(insn->vectorExtensionPrefix[2]) << 3) |
+ (rFromVEX2of3(insn->vectorExtensionPrefix[1]) << 2) |
+ (xFromVEX2of3(insn->vectorExtensionPrefix[1]) << 1) |
+ (bFromVEX2of3(insn->vectorExtensionPrefix[1]) << 0);
+
+ LLVM_DEBUG(dbgs() << format("Found VEX prefix 0x%hhx 0x%hhx 0x%hhx",
+ insn->vectorExtensionPrefix[0],
+ insn->vectorExtensionPrefix[1],
+ insn->vectorExtensionPrefix[2]));
+ }
+ } else if (byte == 0xc5) {
+ uint8_t byte1;
+ if (peek(insn, byte1)) {
+ LLVM_DEBUG(dbgs() << "Couldn't read second byte of VEX");
+ return -1;
+ }
+
+ if (insn->mode == MODE_64BIT || (byte1 & 0xc0) == 0xc0)
+ insn->vectorExtensionType = TYPE_VEX_2B;
+ else
+ --insn->readerCursor;
+
+ if (insn->vectorExtensionType == TYPE_VEX_2B) {
+ insn->vectorExtensionPrefix[0] = byte;
+ consume(insn, insn->vectorExtensionPrefix[1]);
+
+ if (insn->mode == MODE_64BIT)
+ insn->rexPrefix =
+ 0x40 | (rFromVEX2of2(insn->vectorExtensionPrefix[1]) << 2);
+
+ switch (ppFromVEX2of2(insn->vectorExtensionPrefix[1])) {
+ default:
+ break;
+ case VEX_PREFIX_66:
+ insn->hasOpSize = true;
+ break;
+ }
+
+ LLVM_DEBUG(dbgs() << format("Found VEX prefix 0x%hhx 0x%hhx",
+ insn->vectorExtensionPrefix[0],
+ insn->vectorExtensionPrefix[1]));
+ }
+ } else if (byte == 0x8f) {
+ uint8_t byte1;
+ if (peek(insn, byte1)) {
+ LLVM_DEBUG(dbgs() << "Couldn't read second byte of XOP");
+ return -1;
+ }
+
+ if ((byte1 & 0x38) != 0x0) // 0 in these 3 bits is a POP instruction.
+ insn->vectorExtensionType = TYPE_XOP;
+ else
+ --insn->readerCursor;
+
+ if (insn->vectorExtensionType == TYPE_XOP) {
+ insn->vectorExtensionPrefix[0] = byte;
+ consume(insn, insn->vectorExtensionPrefix[1]);
+ consume(insn, insn->vectorExtensionPrefix[2]);
+
+ // We simulate the REX prefix for simplicity's sake
+
+ if (insn->mode == MODE_64BIT)
+ insn->rexPrefix = 0x40 |
+ (wFromXOP3of3(insn->vectorExtensionPrefix[2]) << 3) |
+ (rFromXOP2of3(insn->vectorExtensionPrefix[1]) << 2) |
+ (xFromXOP2of3(insn->vectorExtensionPrefix[1]) << 1) |
+ (bFromXOP2of3(insn->vectorExtensionPrefix[1]) << 0);
+
+ switch (ppFromXOP3of3(insn->vectorExtensionPrefix[2])) {
+ default:
+ break;
+ case VEX_PREFIX_66:
+ insn->hasOpSize = true;
+ break;
+ }
+
+ LLVM_DEBUG(dbgs() << format("Found XOP prefix 0x%hhx 0x%hhx 0x%hhx",
+ insn->vectorExtensionPrefix[0],
+ insn->vectorExtensionPrefix[1],
+ insn->vectorExtensionPrefix[2]));
+ }
+ } else if (isREX(insn, byte)) {
+ if (peek(insn, nextByte))
+ return -1;
+ insn->rexPrefix = byte;
+ LLVM_DEBUG(dbgs() << format("Found REX prefix 0x%hhx", byte));
+ } else
+ --insn->readerCursor;
+
+ if (insn->mode == MODE_16BIT) {
+ insn->registerSize = (insn->hasOpSize ? 4 : 2);
+ insn->addressSize = (insn->hasAdSize ? 4 : 2);
+ insn->displacementSize = (insn->hasAdSize ? 4 : 2);
+ insn->immediateSize = (insn->hasOpSize ? 4 : 2);
+ } else if (insn->mode == MODE_32BIT) {
+ insn->registerSize = (insn->hasOpSize ? 2 : 4);
+ insn->addressSize = (insn->hasAdSize ? 2 : 4);
+ insn->displacementSize = (insn->hasAdSize ? 2 : 4);
+ insn->immediateSize = (insn->hasOpSize ? 2 : 4);
+ } else if (insn->mode == MODE_64BIT) {
+ if (insn->rexPrefix && wFromREX(insn->rexPrefix)) {
+ insn->registerSize = 8;
+ insn->addressSize = (insn->hasAdSize ? 4 : 8);
+ insn->displacementSize = 4;
+ insn->immediateSize = 4;
+ } else {
+ insn->registerSize = (insn->hasOpSize ? 2 : 4);
+ insn->addressSize = (insn->hasAdSize ? 4 : 8);
+ insn->displacementSize = (insn->hasOpSize ? 2 : 4);
+ insn->immediateSize = (insn->hasOpSize ? 2 : 4);
+ }
+ }
+
+ return 0;
+}
+
+// Consumes the SIB byte to determine addressing information.
+static int readSIB(struct InternalInstruction *insn) {
+ SIBBase sibBaseBase = SIB_BASE_NONE;
+ uint8_t index, base;
+
+ LLVM_DEBUG(dbgs() << "readSIB()");
+ switch (insn->addressSize) {
+ case 2:
+ default:
+ llvm_unreachable("SIB-based addressing doesn't work in 16-bit mode");
+ case 4:
+ insn->sibIndexBase = SIB_INDEX_EAX;
+ sibBaseBase = SIB_BASE_EAX;
+ break;
+ case 8:
+ insn->sibIndexBase = SIB_INDEX_RAX;
+ sibBaseBase = SIB_BASE_RAX;
+ break;
+ }
+
+ if (consume(insn, insn->sib))
+ return -1;
+
+ index = indexFromSIB(insn->sib) | (xFromREX(insn->rexPrefix) << 3);
+
+ if (index == 0x4) {
+ insn->sibIndex = SIB_INDEX_NONE;
+ } else {
+ insn->sibIndex = (SIBIndex)(insn->sibIndexBase + index);
+ }
+
+ insn->sibScale = 1 << scaleFromSIB(insn->sib);
+
+ base = baseFromSIB(insn->sib) | (bFromREX(insn->rexPrefix) << 3);
+
+ switch (base) {
+ case 0x5:
+ case 0xd:
+ switch (modFromModRM(insn->modRM)) {
+ case 0x0:
+ insn->eaDisplacement = EA_DISP_32;
+ insn->sibBase = SIB_BASE_NONE;
+ break;
+ case 0x1:
+ insn->eaDisplacement = EA_DISP_8;
+ insn->sibBase = (SIBBase)(sibBaseBase + base);
+ break;
+ case 0x2:
+ insn->eaDisplacement = EA_DISP_32;
+ insn->sibBase = (SIBBase)(sibBaseBase + base);
+ break;
+ default:
+ llvm_unreachable("Cannot have Mod = 0b11 and a SIB byte");
+ }
+ break;
+ default:
+ insn->sibBase = (SIBBase)(sibBaseBase + base);
+ break;
+ }
+
+ return 0;
+}
+
+static int readDisplacement(struct InternalInstruction *insn) {
+ int8_t d8;
+ int16_t d16;
+ int32_t d32;
+ LLVM_DEBUG(dbgs() << "readDisplacement()");
+
+ insn->displacementOffset = insn->readerCursor - insn->startLocation;
+ switch (insn->eaDisplacement) {
+ case EA_DISP_NONE:
+ break;
+ case EA_DISP_8:
+ if (consume(insn, d8))
+ return -1;
+ insn->displacement = d8;
+ break;
+ case EA_DISP_16:
+ if (consume(insn, d16))
+ return -1;
+ insn->displacement = d16;
+ break;
+ case EA_DISP_32:
+ if (consume(insn, d32))
+ return -1;
+ insn->displacement = d32;
+ break;
+ }
+
+ return 0;
+}
+
+// Consumes all addressing information (ModR/M byte, SIB byte, and displacement.
+static int readModRM(struct InternalInstruction *insn) {
+ uint8_t mod, rm, reg, evexrm;
+ LLVM_DEBUG(dbgs() << "readModRM()");
+
+ if (insn->consumedModRM)
+ return 0;
+
+ if (consume(insn, insn->modRM))
+ return -1;
+ insn->consumedModRM = true;
+
+ mod = modFromModRM(insn->modRM);
+ rm = rmFromModRM(insn->modRM);
+ reg = regFromModRM(insn->modRM);
+
+ // This goes by insn->registerSize to pick the correct register, which messes
+ // up if we're using (say) XMM or 8-bit register operands. That gets fixed in
+ // fixupReg().
+ switch (insn->registerSize) {
+ case 2:
+ insn->regBase = MODRM_REG_AX;
+ insn->eaRegBase = EA_REG_AX;
+ break;
+ case 4:
+ insn->regBase = MODRM_REG_EAX;
+ insn->eaRegBase = EA_REG_EAX;
+ break;
+ case 8:
+ insn->regBase = MODRM_REG_RAX;
+ insn->eaRegBase = EA_REG_RAX;
+ break;
+ }
+
+ reg |= rFromREX(insn->rexPrefix) << 3;
+ rm |= bFromREX(insn->rexPrefix) << 3;
+
+ evexrm = 0;
+ if (insn->vectorExtensionType == TYPE_EVEX && insn->mode == MODE_64BIT) {
+ reg |= r2FromEVEX2of4(insn->vectorExtensionPrefix[1]) << 4;
+ evexrm = xFromEVEX2of4(insn->vectorExtensionPrefix[1]) << 4;
+ }
+
+ insn->reg = (Reg)(insn->regBase + reg);
+
+ switch (insn->addressSize) {
+ case 2: {
+ EABase eaBaseBase = EA_BASE_BX_SI;
+
+ switch (mod) {
+ case 0x0:
+ if (rm == 0x6) {
+ insn->eaBase = EA_BASE_NONE;
+ insn->eaDisplacement = EA_DISP_16;
+ if (readDisplacement(insn))
+ return -1;
+ } else {
+ insn->eaBase = (EABase)(eaBaseBase + rm);
+ insn->eaDisplacement = EA_DISP_NONE;
+ }
+ break;
+ case 0x1:
+ insn->eaBase = (EABase)(eaBaseBase + rm);
+ insn->eaDisplacement = EA_DISP_8;
+ insn->displacementSize = 1;
+ if (readDisplacement(insn))
+ return -1;
+ break;
+ case 0x2:
+ insn->eaBase = (EABase)(eaBaseBase + rm);
+ insn->eaDisplacement = EA_DISP_16;
+ if (readDisplacement(insn))
+ return -1;
+ break;
+ case 0x3:
+ insn->eaBase = (EABase)(insn->eaRegBase + rm);
+ if (readDisplacement(insn))
+ return -1;
+ break;
+ }
+ break;
+ }
+ case 4:
+ case 8: {
+ EABase eaBaseBase = (insn->addressSize == 4 ? EA_BASE_EAX : EA_BASE_RAX);
+
+ switch (mod) {
+ case 0x0:
+ insn->eaDisplacement = EA_DISP_NONE; // readSIB may override this
+ // In determining whether RIP-relative mode is used (rm=5),
+ // or whether a SIB byte is present (rm=4),
+ // the extension bits (REX.b and EVEX.x) are ignored.
+ switch (rm & 7) {
+ case 0x4: // SIB byte is present
+ insn->eaBase = (insn->addressSize == 4 ? EA_BASE_sib : EA_BASE_sib64);
+ if (readSIB(insn) || readDisplacement(insn))
+ return -1;
+ break;
+ case 0x5: // RIP-relative
+ insn->eaBase = EA_BASE_NONE;
+ insn->eaDisplacement = EA_DISP_32;
+ if (readDisplacement(insn))
+ return -1;
+ break;
+ default:
+ insn->eaBase = (EABase)(eaBaseBase + rm);
+ break;
+ }
+ break;
+ case 0x1:
+ insn->displacementSize = 1;
+ LLVM_FALLTHROUGH;
+ case 0x2:
+ insn->eaDisplacement = (mod == 0x1 ? EA_DISP_8 : EA_DISP_32);
+ switch (rm & 7) {
+ case 0x4: // SIB byte is present
+ insn->eaBase = EA_BASE_sib;
+ if (readSIB(insn) || readDisplacement(insn))
+ return -1;
+ break;
+ default:
+ insn->eaBase = (EABase)(eaBaseBase + rm);
+ if (readDisplacement(insn))
+ return -1;
+ break;
+ }
+ break;
+ case 0x3:
+ insn->eaDisplacement = EA_DISP_NONE;
+ insn->eaBase = (EABase)(insn->eaRegBase + rm + evexrm);
+ break;
+ }
+ break;
+ }
+ } // switch (insn->addressSize)
+
+ return 0;
+}
+
+#define GENERIC_FIXUP_FUNC(name, base, prefix, mask) \
+ static uint16_t name(struct InternalInstruction *insn, OperandType type, \
+ uint8_t index, uint8_t *valid) { \
+ *valid = 1; \
+ switch (type) { \
+ default: \
+ debug("Unhandled register type"); \
+ *valid = 0; \
+ return 0; \
+ case TYPE_Rv: \
+ return base + index; \
+ case TYPE_R8: \
+ index &= mask; \
+ if (index > 0xf) \
+ *valid = 0; \
+ if (insn->rexPrefix && index >= 4 && index <= 7) { \
+ return prefix##_SPL + (index - 4); \
+ } else { \
+ return prefix##_AL + index; \
+ } \
+ case TYPE_R16: \
+ index &= mask; \
+ if (index > 0xf) \
+ *valid = 0; \
+ return prefix##_AX + index; \
+ case TYPE_R32: \
+ index &= mask; \
+ if (index > 0xf) \
+ *valid = 0; \
+ return prefix##_EAX + index; \
+ case TYPE_R64: \
+ index &= mask; \
+ if (index > 0xf) \
+ *valid = 0; \
+ return prefix##_RAX + index; \
+ case TYPE_ZMM: \
+ return prefix##_ZMM0 + index; \
+ case TYPE_YMM: \
+ return prefix##_YMM0 + index; \
+ case TYPE_XMM: \
+ return prefix##_XMM0 + index; \
+ case TYPE_TMM: \
+ if (index > 7) \
+ *valid = 0; \
+ return prefix##_TMM0 + index; \
+ case TYPE_VK: \
+ index &= 0xf; \
+ if (index > 7) \
+ *valid = 0; \
+ return prefix##_K0 + index; \
+ case TYPE_VK_PAIR: \
+ if (index > 7) \
+ *valid = 0; \
+ return prefix##_K0_K1 + (index / 2); \
+ case TYPE_MM64: \
+ return prefix##_MM0 + (index & 0x7); \
+ case TYPE_SEGMENTREG: \
+ if ((index & 7) > 5) \
+ *valid = 0; \
+ return prefix##_ES + (index & 7); \
+ case TYPE_DEBUGREG: \
+ return prefix##_DR0 + index; \
+ case TYPE_CONTROLREG: \
+ return prefix##_CR0 + index; \
+ case TYPE_BNDR: \
+ if (index > 3) \
+ *valid = 0; \
+ return prefix##_BND0 + index; \
+ case TYPE_MVSIBX: \
+ return prefix##_XMM0 + index; \
+ case TYPE_MVSIBY: \
+ return prefix##_YMM0 + index; \
+ case TYPE_MVSIBZ: \
+ return prefix##_ZMM0 + index; \
+ } \
+ }
+
+// Consult an operand type to determine the meaning of the reg or R/M field. If
+// the operand is an XMM operand, for example, an operand would be XMM0 instead
+// of AX, which readModRM() would otherwise misinterpret it as.
+//
+// @param insn - The instruction containing the operand.
+// @param type - The operand type.
+// @param index - The existing value of the field as reported by readModRM().
+// @param valid - The address of a uint8_t. The target is set to 1 if the
+// field is valid for the register class; 0 if not.
+// @return - The proper value.
+GENERIC_FIXUP_FUNC(fixupRegValue, insn->regBase, MODRM_REG, 0x1f)
+GENERIC_FIXUP_FUNC(fixupRMValue, insn->eaRegBase, EA_REG, 0xf)
+
+// Consult an operand specifier to determine which of the fixup*Value functions
+// to use in correcting readModRM()'ss interpretation.
+//
+// @param insn - See fixup*Value().
+// @param op - The operand specifier.
+// @return - 0 if fixup was successful; -1 if the register returned was
+// invalid for its class.
+static int fixupReg(struct InternalInstruction *insn,
+ const struct OperandSpecifier *op) {
+ uint8_t valid;
+ LLVM_DEBUG(dbgs() << "fixupReg()");
+
+ switch ((OperandEncoding)op->encoding) {
+ default:
+ debug("Expected a REG or R/M encoding in fixupReg");
+ return -1;
+ case ENCODING_VVVV:
+ insn->vvvv =
+ (Reg)fixupRegValue(insn, (OperandType)op->type, insn->vvvv, &valid);
+ if (!valid)
+ return -1;
+ break;
+ case ENCODING_REG:
+ insn->reg = (Reg)fixupRegValue(insn, (OperandType)op->type,
+ insn->reg - insn->regBase, &valid);
+ if (!valid)
+ return -1;
+ break;
+ case ENCODING_SIB:
+ CASE_ENCODING_RM:
+ if (insn->eaBase >= insn->eaRegBase) {
+ insn->eaBase = (EABase)fixupRMValue(
+ insn, (OperandType)op->type, insn->eaBase - insn->eaRegBase, &valid);
+ if (!valid)
+ return -1;
+ }
+ break;
+ }
+
+ return 0;
+}
+
+// Read the opcode (except the ModR/M byte in the case of extended or escape
+// opcodes).
+static bool readOpcode(struct InternalInstruction *insn) {
+ uint8_t current;
+ LLVM_DEBUG(dbgs() << "readOpcode()");
+
+ insn->opcodeType = ONEBYTE;
+ if (insn->vectorExtensionType == TYPE_EVEX) {
+ switch (mmFromEVEX2of4(insn->vectorExtensionPrefix[1])) {
+ default:
+ LLVM_DEBUG(
+ dbgs() << format("Unhandled mm field for instruction (0x%hhx)",
+ mmFromEVEX2of4(insn->vectorExtensionPrefix[1])));
+ return true;
+ case VEX_LOB_0F:
+ insn->opcodeType = TWOBYTE;
+ return consume(insn, insn->opcode);
+ case VEX_LOB_0F38:
+ insn->opcodeType = THREEBYTE_38;
+ return consume(insn, insn->opcode);
+ case VEX_LOB_0F3A:
+ insn->opcodeType = THREEBYTE_3A;
+ return consume(insn, insn->opcode);
+ }
+ } else if (insn->vectorExtensionType == TYPE_VEX_3B) {
+ switch (mmmmmFromVEX2of3(insn->vectorExtensionPrefix[1])) {
+ default:
+ LLVM_DEBUG(
+ dbgs() << format("Unhandled m-mmmm field for instruction (0x%hhx)",
+ mmmmmFromVEX2of3(insn->vectorExtensionPrefix[1])));
+ return true;
+ case VEX_LOB_0F:
+ insn->opcodeType = TWOBYTE;
+ return consume(insn, insn->opcode);
+ case VEX_LOB_0F38:
+ insn->opcodeType = THREEBYTE_38;
+ return consume(insn, insn->opcode);
+ case VEX_LOB_0F3A:
+ insn->opcodeType = THREEBYTE_3A;
+ return consume(insn, insn->opcode);
+ }
+ } else if (insn->vectorExtensionType == TYPE_VEX_2B) {
+ insn->opcodeType = TWOBYTE;
+ return consume(insn, insn->opcode);
+ } else if (insn->vectorExtensionType == TYPE_XOP) {
+ switch (mmmmmFromXOP2of3(insn->vectorExtensionPrefix[1])) {
+ default:
+ LLVM_DEBUG(
+ dbgs() << format("Unhandled m-mmmm field for instruction (0x%hhx)",
+ mmmmmFromVEX2of3(insn->vectorExtensionPrefix[1])));
+ return true;
+ case XOP_MAP_SELECT_8:
+ insn->opcodeType = XOP8_MAP;
+ return consume(insn, insn->opcode);
+ case XOP_MAP_SELECT_9:
+ insn->opcodeType = XOP9_MAP;
+ return consume(insn, insn->opcode);
+ case XOP_MAP_SELECT_A:
+ insn->opcodeType = XOPA_MAP;
+ return consume(insn, insn->opcode);
+ }
+ }
+
+ if (consume(insn, current))
+ return true;
+
+ if (current == 0x0f) {
+ LLVM_DEBUG(
+ dbgs() << format("Found a two-byte escape prefix (0x%hhx)", current));
+ if (consume(insn, current))
+ return true;
+
+ if (current == 0x38) {
+ LLVM_DEBUG(dbgs() << format("Found a three-byte escape prefix (0x%hhx)",
+ current));
+ if (consume(insn, current))
+ return true;
+
+ insn->opcodeType = THREEBYTE_38;
+ } else if (current == 0x3a) {
+ LLVM_DEBUG(dbgs() << format("Found a three-byte escape prefix (0x%hhx)",
+ current));
+ if (consume(insn, current))
+ return true;
+
+ insn->opcodeType = THREEBYTE_3A;
+ } else if (current == 0x0f) {
+ LLVM_DEBUG(
+ dbgs() << format("Found a 3dnow escape prefix (0x%hhx)", current));
+
+ // Consume operands before the opcode to comply with the 3DNow encoding
+ if (readModRM(insn))
+ return true;
+
+ if (consume(insn, current))
+ return true;
+
+ insn->opcodeType = THREEDNOW_MAP;
+ } else {
+ LLVM_DEBUG(dbgs() << "Didn't find a three-byte escape prefix");
+ insn->opcodeType = TWOBYTE;
+ }
+ } else if (insn->mandatoryPrefix)
+ // The opcode with mandatory prefix must start with opcode escape.
+ // If not it's legacy repeat prefix
+ insn->mandatoryPrefix = 0;
+
+ // At this point we have consumed the full opcode.
+ // Anything we consume from here on must be unconsumed.
+ insn->opcode = current;
+
+ return false;
+}
+
+// Determine whether equiv is the 16-bit equivalent of orig (32-bit or 64-bit).
+static bool is16BitEquivalent(const char *orig, const char *equiv) {
+ for (int i = 0;; i++) {
+ if (orig[i] == '\0' && equiv[i] == '\0')
+ return true;
+ if (orig[i] == '\0' || equiv[i] == '\0')
+ return false;
+ if (orig[i] != equiv[i]) {
+ if ((orig[i] == 'Q' || orig[i] == 'L') && equiv[i] == 'W')
+ continue;
+ if ((orig[i] == '6' || orig[i] == '3') && equiv[i] == '1')
+ continue;
+ if ((orig[i] == '4' || orig[i] == '2') && equiv[i] == '6')
+ continue;
+ return false;
+ }
+ }
+}
+
+// Determine whether this instruction is a 64-bit instruction.
+static bool is64Bit(const char *name) {
+ for (int i = 0;; ++i) {
+ if (name[i] == '\0')
+ return false;
+ if (name[i] == '6' && name[i + 1] == '4')
+ return true;
+ }
+}
+
+// Determine the ID of an instruction, consuming the ModR/M byte as appropriate
+// for extended and escape opcodes, and using a supplied attribute mask.
+static int getInstructionIDWithAttrMask(uint16_t *instructionID,
+ struct InternalInstruction *insn,
+ uint16_t attrMask) {
+ auto insnCtx = InstructionContext(x86DisassemblerContexts[attrMask]);
+ const ContextDecision *decision;
+ switch (insn->opcodeType) {
+ case ONEBYTE:
+ decision = &ONEBYTE_SYM;
+ break;
+ case TWOBYTE:
+ decision = &TWOBYTE_SYM;
+ break;
+ case THREEBYTE_38:
+ decision = &THREEBYTE38_SYM;
+ break;
+ case THREEBYTE_3A:
+ decision = &THREEBYTE3A_SYM;
+ break;
+ case XOP8_MAP:
+ decision = &XOP8_MAP_SYM;
+ break;
+ case XOP9_MAP:
+ decision = &XOP9_MAP_SYM;
+ break;
+ case XOPA_MAP:
+ decision = &XOPA_MAP_SYM;
+ break;
+ case THREEDNOW_MAP:
+ decision = &THREEDNOW_MAP_SYM;
+ break;
+ }
+
+ if (decision->opcodeDecisions[insnCtx]
+ .modRMDecisions[insn->opcode]
+ .modrm_type != MODRM_ONEENTRY) {
+ if (readModRM(insn))
+ return -1;
+ *instructionID =
+ decode(insn->opcodeType, insnCtx, insn->opcode, insn->modRM);
+ } else {
+ *instructionID = decode(insn->opcodeType, insnCtx, insn->opcode, 0);
+ }
+
+ return 0;
+}
+
+// Determine the ID of an instruction, consuming the ModR/M byte as appropriate
+// for extended and escape opcodes. Determines the attributes and context for
+// the instruction before doing so.
+static int getInstructionID(struct InternalInstruction *insn,
+ const MCInstrInfo *mii) {
+ uint16_t attrMask;
+ uint16_t instructionID;
+
+ LLVM_DEBUG(dbgs() << "getID()");
+
+ attrMask = ATTR_NONE;
+
+ if (insn->mode == MODE_64BIT)
+ attrMask |= ATTR_64BIT;
+
+ if (insn->vectorExtensionType != TYPE_NO_VEX_XOP) {
+ attrMask |= (insn->vectorExtensionType == TYPE_EVEX) ? ATTR_EVEX : ATTR_VEX;
+
+ if (insn->vectorExtensionType == TYPE_EVEX) {
+ switch (ppFromEVEX3of4(insn->vectorExtensionPrefix[2])) {
+ case VEX_PREFIX_66:
+ attrMask |= ATTR_OPSIZE;
+ break;
+ case VEX_PREFIX_F3:
+ attrMask |= ATTR_XS;
+ break;
+ case VEX_PREFIX_F2:
+ attrMask |= ATTR_XD;
+ break;
+ }
+
+ if (zFromEVEX4of4(insn->vectorExtensionPrefix[3]))
+ attrMask |= ATTR_EVEXKZ;
+ if (bFromEVEX4of4(insn->vectorExtensionPrefix[3]))
+ attrMask |= ATTR_EVEXB;
+ if (aaaFromEVEX4of4(insn->vectorExtensionPrefix[3]))
+ attrMask |= ATTR_EVEXK;
+ if (lFromEVEX4of4(insn->vectorExtensionPrefix[3]))
+ attrMask |= ATTR_VEXL;
+ if (l2FromEVEX4of4(insn->vectorExtensionPrefix[3]))
+ attrMask |= ATTR_EVEXL2;
+ } else if (insn->vectorExtensionType == TYPE_VEX_3B) {
+ switch (ppFromVEX3of3(insn->vectorExtensionPrefix[2])) {
+ case VEX_PREFIX_66:
+ attrMask |= ATTR_OPSIZE;
+ break;
+ case VEX_PREFIX_F3:
+ attrMask |= ATTR_XS;
+ break;
+ case VEX_PREFIX_F2:
+ attrMask |= ATTR_XD;
+ break;
+ }
+
+ if (lFromVEX3of3(insn->vectorExtensionPrefix[2]))
+ attrMask |= ATTR_VEXL;
+ } else if (insn->vectorExtensionType == TYPE_VEX_2B) {
+ switch (ppFromVEX2of2(insn->vectorExtensionPrefix[1])) {
+ case VEX_PREFIX_66:
+ attrMask |= ATTR_OPSIZE;
+ break;
+ case VEX_PREFIX_F3:
+ attrMask |= ATTR_XS;
+ break;
+ case VEX_PREFIX_F2:
+ attrMask |= ATTR_XD;
+ break;
+ }
+
+ if (lFromVEX2of2(insn->vectorExtensionPrefix[1]))
+ attrMask |= ATTR_VEXL;
+ } else if (insn->vectorExtensionType == TYPE_XOP) {
+ switch (ppFromXOP3of3(insn->vectorExtensionPrefix[2])) {
+ case VEX_PREFIX_66:
+ attrMask |= ATTR_OPSIZE;
+ break;
+ case VEX_PREFIX_F3:
+ attrMask |= ATTR_XS;
+ break;
+ case VEX_PREFIX_F2:
+ attrMask |= ATTR_XD;
+ break;
+ }
+
+ if (lFromXOP3of3(insn->vectorExtensionPrefix[2]))
+ attrMask |= ATTR_VEXL;
+ } else {
+ return -1;
+ }
+ } else if (!insn->mandatoryPrefix) {
+ // If we don't have mandatory prefix we should use legacy prefixes here
+ if (insn->hasOpSize && (insn->mode != MODE_16BIT))
+ attrMask |= ATTR_OPSIZE;
+ if (insn->hasAdSize)
+ attrMask |= ATTR_ADSIZE;
+ if (insn->opcodeType == ONEBYTE) {
+ if (insn->repeatPrefix == 0xf3 && (insn->opcode == 0x90))
+ // Special support for PAUSE
+ attrMask |= ATTR_XS;
+ } else {
+ if (insn->repeatPrefix == 0xf2)
+ attrMask |= ATTR_XD;
+ else if (insn->repeatPrefix == 0xf3)
+ attrMask |= ATTR_XS;
+ }
+ } else {
+ switch (insn->mandatoryPrefix) {
+ case 0xf2:
+ attrMask |= ATTR_XD;
+ break;
+ case 0xf3:
+ attrMask |= ATTR_XS;
+ break;
+ case 0x66:
+ if (insn->mode != MODE_16BIT)
+ attrMask |= ATTR_OPSIZE;
+ break;
+ case 0x67:
+ attrMask |= ATTR_ADSIZE;
+ break;
+ }
+ }
+
+ if (insn->rexPrefix & 0x08) {
+ attrMask |= ATTR_REXW;
+ attrMask &= ~ATTR_ADSIZE;
+ }
+
+ if (insn->mode == MODE_16BIT) {
+ // JCXZ/JECXZ need special handling for 16-bit mode because the meaning
+ // of the AdSize prefix is inverted w.r.t. 32-bit mode.
+ if (insn->opcodeType == ONEBYTE && insn->opcode == 0xE3)
+ attrMask ^= ATTR_ADSIZE;
+ // If we're in 16-bit mode and this is one of the relative jumps and opsize
+ // prefix isn't present, we need to force the opsize attribute since the
+ // prefix is inverted relative to 32-bit mode.
+ if (!insn->hasOpSize && insn->opcodeType == ONEBYTE &&
+ (insn->opcode == 0xE8 || insn->opcode == 0xE9))
+ attrMask |= ATTR_OPSIZE;
+
+ if (!insn->hasOpSize && insn->opcodeType == TWOBYTE &&
+ insn->opcode >= 0x80 && insn->opcode <= 0x8F)
+ attrMask |= ATTR_OPSIZE;
+ }
+
+
+ if (getInstructionIDWithAttrMask(&instructionID, insn, attrMask))
+ return -1;
+
+ // The following clauses compensate for limitations of the tables.
+
+ if (insn->mode != MODE_64BIT &&
+ insn->vectorExtensionType != TYPE_NO_VEX_XOP) {
+ // The tables can't distinquish between cases where the W-bit is used to
+ // select register size and cases where its a required part of the opcode.
+ if ((insn->vectorExtensionType == TYPE_EVEX &&
+ wFromEVEX3of4(insn->vectorExtensionPrefix[2])) ||
+ (insn->vectorExtensionType == TYPE_VEX_3B &&
+ wFromVEX3of3(insn->vectorExtensionPrefix[2])) ||
+ (insn->vectorExtensionType == TYPE_XOP &&
+ wFromXOP3of3(insn->vectorExtensionPrefix[2]))) {
+
+ uint16_t instructionIDWithREXW;
+ if (getInstructionIDWithAttrMask(&instructionIDWithREXW, insn,
+ attrMask | ATTR_REXW)) {
+ insn->instructionID = instructionID;
+ insn->spec = &INSTRUCTIONS_SYM[instructionID];
+ return 0;
+ }
+
+ auto SpecName = mii->getName(instructionIDWithREXW);
+ // If not a 64-bit instruction. Switch the opcode.
+ if (!is64Bit(SpecName.data())) {
+ insn->instructionID = instructionIDWithREXW;
+ insn->spec = &INSTRUCTIONS_SYM[instructionIDWithREXW];
+ return 0;
+ }
+ }
+ }
+
+ // Absolute moves, umonitor, and movdir64b need special handling.
+ // -For 16-bit mode because the meaning of the AdSize and OpSize prefixes are
+ // inverted w.r.t.
+ // -For 32-bit mode we need to ensure the ADSIZE prefix is observed in
+ // any position.
+ if ((insn->opcodeType == ONEBYTE && ((insn->opcode & 0xFC) == 0xA0)) ||
+ (insn->opcodeType == TWOBYTE && (insn->opcode == 0xAE)) ||
+ (insn->opcodeType == THREEBYTE_38 && insn->opcode == 0xF8)) {
+ // Make sure we observed the prefixes in any position.
+ if (insn->hasAdSize)
+ attrMask |= ATTR_ADSIZE;
+ if (insn->hasOpSize)
+ attrMask |= ATTR_OPSIZE;
+
+ // In 16-bit, invert the attributes.
+ if (insn->mode == MODE_16BIT) {
+ attrMask ^= ATTR_ADSIZE;
+
+ // The OpSize attribute is only valid with the absolute moves.
+ if (insn->opcodeType == ONEBYTE && ((insn->opcode & 0xFC) == 0xA0))
+ attrMask ^= ATTR_OPSIZE;
+ }
+
+ if (getInstructionIDWithAttrMask(&instructionID, insn, attrMask))
+ return -1;
+
+ insn->instructionID = instructionID;
+ insn->spec = &INSTRUCTIONS_SYM[instructionID];
+ return 0;
+ }
+
+ if ((insn->mode == MODE_16BIT || insn->hasOpSize) &&
+ !(attrMask & ATTR_OPSIZE)) {
+ // The instruction tables make no distinction between instructions that
+ // allow OpSize anywhere (i.e., 16-bit operations) and that need it in a
+ // particular spot (i.e., many MMX operations). In general we're
+ // conservative, but in the specific case where OpSize is present but not in
+ // the right place we check if there's a 16-bit operation.
+ const struct InstructionSpecifier *spec;
+ uint16_t instructionIDWithOpsize;
+ llvm::StringRef specName, specWithOpSizeName;
+
+ spec = &INSTRUCTIONS_SYM[instructionID];
+
+ if (getInstructionIDWithAttrMask(&instructionIDWithOpsize, insn,
+ attrMask | ATTR_OPSIZE)) {
+ // ModRM required with OpSize but not present. Give up and return the
+ // version without OpSize set.
+ insn->instructionID = instructionID;
+ insn->spec = spec;
+ return 0;
+ }
+
+ specName = mii->getName(instructionID);
+ specWithOpSizeName = mii->getName(instructionIDWithOpsize);
+
+ if (is16BitEquivalent(specName.data(), specWithOpSizeName.data()) &&
+ (insn->mode == MODE_16BIT) ^ insn->hasOpSize) {
+ insn->instructionID = instructionIDWithOpsize;
+ insn->spec = &INSTRUCTIONS_SYM[instructionIDWithOpsize];
+ } else {
+ insn->instructionID = instructionID;
+ insn->spec = spec;
+ }
+ return 0;
+ }
+
+ if (insn->opcodeType == ONEBYTE && insn->opcode == 0x90 &&
+ insn->rexPrefix & 0x01) {
+ // NOOP shouldn't decode as NOOP if REX.b is set. Instead it should decode
+ // as XCHG %r8, %eax.
+ const struct InstructionSpecifier *spec;
+ uint16_t instructionIDWithNewOpcode;
+ const struct InstructionSpecifier *specWithNewOpcode;
+
+ spec = &INSTRUCTIONS_SYM[instructionID];
+
+ // Borrow opcode from one of the other XCHGar opcodes
+ insn->opcode = 0x91;
+
+ if (getInstructionIDWithAttrMask(&instructionIDWithNewOpcode, insn,
+ attrMask)) {
+ insn->opcode = 0x90;
+
+ insn->instructionID = instructionID;
+ insn->spec = spec;
+ return 0;
+ }
+
+ specWithNewOpcode = &INSTRUCTIONS_SYM[instructionIDWithNewOpcode];
+
+ // Change back
+ insn->opcode = 0x90;
+
+ insn->instructionID = instructionIDWithNewOpcode;
+ insn->spec = specWithNewOpcode;
+
+ return 0;
+ }
+
+ insn->instructionID = instructionID;
+ insn->spec = &INSTRUCTIONS_SYM[insn->instructionID];
+
+ return 0;
+}
+
+// Read an operand from the opcode field of an instruction and interprets it
+// appropriately given the operand width. Handles AddRegFrm instructions.
+//
+// @param insn - the instruction whose opcode field is to be read.
+// @param size - The width (in bytes) of the register being specified.
+// 1 means AL and friends, 2 means AX, 4 means EAX, and 8 means
+// RAX.
+// @return - 0 on success; nonzero otherwise.
+static int readOpcodeRegister(struct InternalInstruction *insn, uint8_t size) {
+ LLVM_DEBUG(dbgs() << "readOpcodeRegister()");
+
+ if (size == 0)
+ size = insn->registerSize;
+
+ switch (size) {
+ case 1:
+ insn->opcodeRegister = (Reg)(
+ MODRM_REG_AL + ((bFromREX(insn->rexPrefix) << 3) | (insn->opcode & 7)));
+ if (insn->rexPrefix && insn->opcodeRegister >= MODRM_REG_AL + 0x4 &&
+ insn->opcodeRegister < MODRM_REG_AL + 0x8) {
+ insn->opcodeRegister =
+ (Reg)(MODRM_REG_SPL + (insn->opcodeRegister - MODRM_REG_AL - 4));
+ }
+
+ break;
+ case 2:
+ insn->opcodeRegister = (Reg)(
+ MODRM_REG_AX + ((bFromREX(insn->rexPrefix) << 3) | (insn->opcode & 7)));
+ break;
+ case 4:
+ insn->opcodeRegister =
+ (Reg)(MODRM_REG_EAX +
+ ((bFromREX(insn->rexPrefix) << 3) | (insn->opcode & 7)));
+ break;
+ case 8:
+ insn->opcodeRegister =
+ (Reg)(MODRM_REG_RAX +
+ ((bFromREX(insn->rexPrefix) << 3) | (insn->opcode & 7)));
+ break;
+ }
+
+ return 0;
+}
+
+// Consume an immediate operand from an instruction, given the desired operand
+// size.
+//
+// @param insn - The instruction whose operand is to be read.
+// @param size - The width (in bytes) of the operand.
+// @return - 0 if the immediate was successfully consumed; nonzero
+// otherwise.
+static int readImmediate(struct InternalInstruction *insn, uint8_t size) {
+ uint8_t imm8;
+ uint16_t imm16;
+ uint32_t imm32;
+ uint64_t imm64;
+
+ LLVM_DEBUG(dbgs() << "readImmediate()");
+
+ assert(insn->numImmediatesConsumed < 2 && "Already consumed two immediates");
+
+ insn->immediateSize = size;
+ insn->immediateOffset = insn->readerCursor - insn->startLocation;
+
+ switch (size) {
+ case 1:
+ if (consume(insn, imm8))
+ return -1;
+ insn->immediates[insn->numImmediatesConsumed] = imm8;
+ break;
+ case 2:
+ if (consume(insn, imm16))
+ return -1;
+ insn->immediates[insn->numImmediatesConsumed] = imm16;
+ break;
+ case 4:
+ if (consume(insn, imm32))
+ return -1;
+ insn->immediates[insn->numImmediatesConsumed] = imm32;
+ break;
+ case 8:
+ if (consume(insn, imm64))
+ return -1;
+ insn->immediates[insn->numImmediatesConsumed] = imm64;
+ break;
+ default:
+ llvm_unreachable("invalid size");
+ }
+
+ insn->numImmediatesConsumed++;
+
+ return 0;
+}
+
+// Consume vvvv from an instruction if it has a VEX prefix.
+static int readVVVV(struct InternalInstruction *insn) {
+ LLVM_DEBUG(dbgs() << "readVVVV()");
+
+ int vvvv;
+ if (insn->vectorExtensionType == TYPE_EVEX)
+ vvvv = (v2FromEVEX4of4(insn->vectorExtensionPrefix[3]) << 4 |
+ vvvvFromEVEX3of4(insn->vectorExtensionPrefix[2]));
+ else if (insn->vectorExtensionType == TYPE_VEX_3B)
+ vvvv = vvvvFromVEX3of3(insn->vectorExtensionPrefix[2]);
+ else if (insn->vectorExtensionType == TYPE_VEX_2B)
+ vvvv = vvvvFromVEX2of2(insn->vectorExtensionPrefix[1]);
+ else if (insn->vectorExtensionType == TYPE_XOP)
+ vvvv = vvvvFromXOP3of3(insn->vectorExtensionPrefix[2]);
+ else
+ return -1;
+
+ if (insn->mode != MODE_64BIT)
+ vvvv &= 0xf; // Can only clear bit 4. Bit 3 must be cleared later.
+
+ insn->vvvv = static_cast<Reg>(vvvv);
+ return 0;
+}
+
+// Read an mask register from the opcode field of an instruction.
+//
+// @param insn - The instruction whose opcode field is to be read.
+// @return - 0 on success; nonzero otherwise.
+static int readMaskRegister(struct InternalInstruction *insn) {
+ LLVM_DEBUG(dbgs() << "readMaskRegister()");
+
+ if (insn->vectorExtensionType != TYPE_EVEX)
+ return -1;
+
+ insn->writemask =
+ static_cast<Reg>(aaaFromEVEX4of4(insn->vectorExtensionPrefix[3]));
+ return 0;
+}
+
+// Consults the specifier for an instruction and consumes all
+// operands for that instruction, interpreting them as it goes.
+static int readOperands(struct InternalInstruction *insn) {
+ int hasVVVV, needVVVV;
+ int sawRegImm = 0;
+
+ LLVM_DEBUG(dbgs() << "readOperands()");
+
+ // If non-zero vvvv specified, make sure one of the operands uses it.
+ hasVVVV = !readVVVV(insn);
+ needVVVV = hasVVVV && (insn->vvvv != 0);
+
+ for (const auto &Op : x86OperandSets[insn->spec->operands]) {
+ switch (Op.encoding) {
+ case ENCODING_NONE:
+ case ENCODING_SI:
+ case ENCODING_DI:
+ break;
+ CASE_ENCODING_VSIB:
+ // VSIB can use the V2 bit so check only the other bits.
+ if (needVVVV)
+ needVVVV = hasVVVV & ((insn->vvvv & 0xf) != 0);
+ if (readModRM(insn))
+ return -1;
+
+ // Reject if SIB wasn't used.
+ if (insn->eaBase != EA_BASE_sib && insn->eaBase != EA_BASE_sib64)
+ return -1;
+
+ // If sibIndex was set to SIB_INDEX_NONE, index offset is 4.
+ if (insn->sibIndex == SIB_INDEX_NONE)
+ insn->sibIndex = (SIBIndex)(insn->sibIndexBase + 4);
+
+ // If EVEX.v2 is set this is one of the 16-31 registers.
+ if (insn->vectorExtensionType == TYPE_EVEX && insn->mode == MODE_64BIT &&
+ v2FromEVEX4of4(insn->vectorExtensionPrefix[3]))
+ insn->sibIndex = (SIBIndex)(insn->sibIndex + 16);
+
+ // Adjust the index register to the correct size.
+ switch ((OperandType)Op.type) {
+ default:
+ debug("Unhandled VSIB index type");
+ return -1;
+ case TYPE_MVSIBX:
+ insn->sibIndex =
+ (SIBIndex)(SIB_INDEX_XMM0 + (insn->sibIndex - insn->sibIndexBase));
+ break;
+ case TYPE_MVSIBY:
+ insn->sibIndex =
+ (SIBIndex)(SIB_INDEX_YMM0 + (insn->sibIndex - insn->sibIndexBase));
+ break;
+ case TYPE_MVSIBZ:
+ insn->sibIndex =
+ (SIBIndex)(SIB_INDEX_ZMM0 + (insn->sibIndex - insn->sibIndexBase));
+ break;
+ }
+
+ // Apply the AVX512 compressed displacement scaling factor.
+ if (Op.encoding != ENCODING_REG && insn->eaDisplacement == EA_DISP_8)
+ insn->displacement *= 1 << (Op.encoding - ENCODING_VSIB);
+ break;
+ case ENCODING_SIB:
+ // Reject if SIB wasn't used.
+ if (insn->eaBase != EA_BASE_sib && insn->eaBase != EA_BASE_sib64)
+ return -1;
+ if (readModRM(insn))
+ return -1;
+ if (fixupReg(insn, &Op))
+ return -1;
+ break;
+ case ENCODING_REG:
+ CASE_ENCODING_RM:
+ if (readModRM(insn))
+ return -1;
+ if (fixupReg(insn, &Op))
+ return -1;
+ // Apply the AVX512 compressed displacement scaling factor.
+ if (Op.encoding != ENCODING_REG && insn->eaDisplacement == EA_DISP_8)
+ insn->displacement *= 1 << (Op.encoding - ENCODING_RM);
+ break;
+ case ENCODING_IB:
+ if (sawRegImm) {
+ // Saw a register immediate so don't read again and instead split the
+ // previous immediate. FIXME: This is a hack.
+ insn->immediates[insn->numImmediatesConsumed] =
+ insn->immediates[insn->numImmediatesConsumed - 1] & 0xf;
+ ++insn->numImmediatesConsumed;
+ break;
+ }
+ if (readImmediate(insn, 1))
+ return -1;
+ if (Op.type == TYPE_XMM || Op.type == TYPE_YMM)
+ sawRegImm = 1;
+ break;
+ case ENCODING_IW:
+ if (readImmediate(insn, 2))
+ return -1;
+ break;
+ case ENCODING_ID:
+ if (readImmediate(insn, 4))
+ return -1;
+ break;
+ case ENCODING_IO:
+ if (readImmediate(insn, 8))
+ return -1;
+ break;
+ case ENCODING_Iv:
+ if (readImmediate(insn, insn->immediateSize))
+ return -1;
+ break;
+ case ENCODING_Ia:
+ if (readImmediate(insn, insn->addressSize))
+ return -1;
+ break;
+ case ENCODING_IRC:
+ insn->RC = (l2FromEVEX4of4(insn->vectorExtensionPrefix[3]) << 1) |
+ lFromEVEX4of4(insn->vectorExtensionPrefix[3]);
+ break;
+ case ENCODING_RB:
+ if (readOpcodeRegister(insn, 1))
+ return -1;
+ break;
+ case ENCODING_RW:
+ if (readOpcodeRegister(insn, 2))
+ return -1;
+ break;
+ case ENCODING_RD:
+ if (readOpcodeRegister(insn, 4))
+ return -1;
+ break;
+ case ENCODING_RO:
+ if (readOpcodeRegister(insn, 8))
+ return -1;
+ break;
+ case ENCODING_Rv:
+ if (readOpcodeRegister(insn, 0))
+ return -1;
+ break;
+ case ENCODING_CC:
+ insn->immediates[1] = insn->opcode & 0xf;
+ break;
+ case ENCODING_FP:
+ break;
+ case ENCODING_VVVV:
+ needVVVV = 0; // Mark that we have found a VVVV operand.
+ if (!hasVVVV)
+ return -1;
+ if (insn->mode != MODE_64BIT)
+ insn->vvvv = static_cast<Reg>(insn->vvvv & 0x7);
+ if (fixupReg(insn, &Op))
+ return -1;
+ break;
+ case ENCODING_WRITEMASK:
+ if (readMaskRegister(insn))
+ return -1;
+ break;
+ case ENCODING_DUP:
+ break;
+ default:
+ LLVM_DEBUG(dbgs() << "Encountered an operand with an unknown encoding.");
+ return -1;
+ }
+ }
+
+ // If we didn't find ENCODING_VVVV operand, but non-zero vvvv present, fail
+ if (needVVVV)
+ return -1;
+
+ return 0;
+}
+
+namespace llvm {
+
+// Fill-ins to make the compiler happy. These constants are never actually
+// assigned; they are just filler to make an automatically-generated switch
+// statement work.
+namespace X86 {
+ enum {
+ BX_SI = 500,
+ BX_DI = 501,
+ BP_SI = 502,
+ BP_DI = 503,
+ sib = 504,
+ sib64 = 505
+ };
+} // namespace X86
+
+} // namespace llvm
+
+static bool translateInstruction(MCInst &target,
+ InternalInstruction &source,
+ const MCDisassembler *Dis);
+
+namespace {
+
+/// Generic disassembler for all X86 platforms. All each platform class should
+/// have to do is subclass the constructor, and provide a different
+/// disassemblerMode value.
+class X86GenericDisassembler : public MCDisassembler {
+ std::unique_ptr<const MCInstrInfo> MII;
+public:
+ X86GenericDisassembler(const MCSubtargetInfo &STI, MCContext &Ctx,
+ std::unique_ptr<const MCInstrInfo> MII);
+public:
+ DecodeStatus getInstruction(MCInst &instr, uint64_t &size,
+ ArrayRef<uint8_t> Bytes, uint64_t Address,
+ raw_ostream &cStream) const override;
+
+private:
+ DisassemblerMode fMode;
+};
+
+} // namespace
+
+X86GenericDisassembler::X86GenericDisassembler(
+ const MCSubtargetInfo &STI,
+ MCContext &Ctx,
+ std::unique_ptr<const MCInstrInfo> MII)
+ : MCDisassembler(STI, Ctx), MII(std::move(MII)) {
+ const FeatureBitset &FB = STI.getFeatureBits();
+ if (FB[X86::Mode16Bit]) {
+ fMode = MODE_16BIT;
+ return;
+ } else if (FB[X86::Mode32Bit]) {
+ fMode = MODE_32BIT;
+ return;
+ } else if (FB[X86::Mode64Bit]) {
+ fMode = MODE_64BIT;
+ return;
+ }
+
+ llvm_unreachable("Invalid CPU mode");
+}
+
+MCDisassembler::DecodeStatus X86GenericDisassembler::getInstruction(
+ MCInst &Instr, uint64_t &Size, ArrayRef<uint8_t> Bytes, uint64_t Address,
+ raw_ostream &CStream) const {
+ CommentStream = &CStream;
+
+ InternalInstruction Insn;
+ memset(&Insn, 0, sizeof(InternalInstruction));
+ Insn.bytes = Bytes;
+ Insn.startLocation = Address;
+ Insn.readerCursor = Address;
+ Insn.mode = fMode;
+
+ if (Bytes.empty() || readPrefixes(&Insn) || readOpcode(&Insn) ||
+ getInstructionID(&Insn, MII.get()) || Insn.instructionID == 0 ||
+ readOperands(&Insn)) {
+ Size = Insn.readerCursor - Address;
+ return Fail;
+ }
+
+ Insn.operands = x86OperandSets[Insn.spec->operands];
+ Insn.length = Insn.readerCursor - Insn.startLocation;
+ Size = Insn.length;
+ if (Size > 15)
+ LLVM_DEBUG(dbgs() << "Instruction exceeds 15-byte limit");
+
+ bool Ret = translateInstruction(Instr, Insn, this);
+ if (!Ret) {
+ unsigned Flags = X86::IP_NO_PREFIX;
+ if (Insn.hasAdSize)
+ Flags |= X86::IP_HAS_AD_SIZE;
+ if (!Insn.mandatoryPrefix) {
+ if (Insn.hasOpSize)
+ Flags |= X86::IP_HAS_OP_SIZE;
+ if (Insn.repeatPrefix == 0xf2)
+ Flags |= X86::IP_HAS_REPEAT_NE;
+ else if (Insn.repeatPrefix == 0xf3 &&
+ // It should not be 'pause' f3 90
+ Insn.opcode != 0x90)
+ Flags |= X86::IP_HAS_REPEAT;
+ if (Insn.hasLockPrefix)
+ Flags |= X86::IP_HAS_LOCK;
+ }
+ Instr.setFlags(Flags);
+ }
+ return (!Ret) ? Success : Fail;
+}
+
+//
+// Private code that translates from struct InternalInstructions to MCInsts.
+//
+
+/// translateRegister - Translates an internal register to the appropriate LLVM
+/// register, and appends it as an operand to an MCInst.
+///
+/// @param mcInst - The MCInst to append to.
+/// @param reg - The Reg to append.
+static void translateRegister(MCInst &mcInst, Reg reg) {
+#define ENTRY(x) X86::x,
+ static constexpr MCPhysReg llvmRegnums[] = {ALL_REGS};
+#undef ENTRY
+
+ MCPhysReg llvmRegnum = llvmRegnums[reg];
+ mcInst.addOperand(MCOperand::createReg(llvmRegnum));
+}
+
+/// tryAddingSymbolicOperand - trys to add a symbolic operand in place of the
+/// immediate Value in the MCInst.
+///
+/// @param Value - The immediate Value, has had any PC adjustment made by
+/// the caller.
+/// @param isBranch - If the instruction is a branch instruction
+/// @param Address - The starting address of the instruction
+/// @param Offset - The byte offset to this immediate in the instruction
+/// @param Width - The byte width of this immediate in the instruction
+///
+/// If the getOpInfo() function was set when setupForSymbolicDisassembly() was
+/// called then that function is called to get any symbolic information for the
+/// immediate in the instruction using the Address, Offset and Width. If that
+/// returns non-zero then the symbolic information it returns is used to create
+/// an MCExpr and that is added as an operand to the MCInst. If getOpInfo()
+/// returns zero and isBranch is true then a symbol look up for immediate Value
+/// is done and if a symbol is found an MCExpr is created with that, else
+/// an MCExpr with the immediate Value is created. This function returns true
+/// if it adds an operand to the MCInst and false otherwise.
+static bool tryAddingSymbolicOperand(int64_t Value, bool isBranch,
+ uint64_t Address, uint64_t Offset,
+ uint64_t Width, MCInst &MI,
+ const MCDisassembler *Dis) {
+ return Dis->tryAddingSymbolicOperand(MI, Value, Address, isBranch,
+ Offset, Width);
+}
+
+/// tryAddingPcLoadReferenceComment - trys to add a comment as to what is being
+/// referenced by a load instruction with the base register that is the rip.
+/// These can often be addresses in a literal pool. The Address of the
+/// instruction and its immediate Value are used to determine the address
+/// being referenced in the literal pool entry. The SymbolLookUp call back will
+/// return a pointer to a literal 'C' string if the referenced address is an
+/// address into a section with 'C' string literals.
+static void tryAddingPcLoadReferenceComment(uint64_t Address, uint64_t Value,
+ const void *Decoder) {
+ const MCDisassembler *Dis = static_cast<const MCDisassembler*>(Decoder);
+ Dis->tryAddingPcLoadReferenceComment(Value, Address);
+}
+
+static const uint8_t segmentRegnums[SEG_OVERRIDE_max] = {
+ 0, // SEG_OVERRIDE_NONE
+ X86::CS,
+ X86::SS,
+ X86::DS,
+ X86::ES,
+ X86::FS,
+ X86::GS
+};
+
+/// translateSrcIndex - Appends a source index operand to an MCInst.
+///
+/// @param mcInst - The MCInst to append to.
+/// @param insn - The internal instruction.
+static bool translateSrcIndex(MCInst &mcInst, InternalInstruction &insn) {
+ unsigned baseRegNo;
+
+ if (insn.mode == MODE_64BIT)
+ baseRegNo = insn.hasAdSize ? X86::ESI : X86::RSI;
+ else if (insn.mode == MODE_32BIT)
+ baseRegNo = insn.hasAdSize ? X86::SI : X86::ESI;
+ else {
+ assert(insn.mode == MODE_16BIT);
+ baseRegNo = insn.hasAdSize ? X86::ESI : X86::SI;
+ }
+ MCOperand baseReg = MCOperand::createReg(baseRegNo);
+ mcInst.addOperand(baseReg);
+
+ MCOperand segmentReg;
+ segmentReg = MCOperand::createReg(segmentRegnums[insn.segmentOverride]);
+ mcInst.addOperand(segmentReg);
+ return false;
+}
+
+/// translateDstIndex - Appends a destination index operand to an MCInst.
+///
+/// @param mcInst - The MCInst to append to.
+/// @param insn - The internal instruction.
+
+static bool translateDstIndex(MCInst &mcInst, InternalInstruction &insn) {
+ unsigned baseRegNo;
+
+ if (insn.mode == MODE_64BIT)
+ baseRegNo = insn.hasAdSize ? X86::EDI : X86::RDI;
+ else if (insn.mode == MODE_32BIT)
+ baseRegNo = insn.hasAdSize ? X86::DI : X86::EDI;
+ else {
+ assert(insn.mode == MODE_16BIT);
+ baseRegNo = insn.hasAdSize ? X86::EDI : X86::DI;
+ }
+ MCOperand baseReg = MCOperand::createReg(baseRegNo);
+ mcInst.addOperand(baseReg);
+ return false;
+}
+
+/// translateImmediate - Appends an immediate operand to an MCInst.
+///
+/// @param mcInst - The MCInst to append to.
+/// @param immediate - The immediate value to append.
+/// @param operand - The operand, as stored in the descriptor table.
+/// @param insn - The internal instruction.
+static void translateImmediate(MCInst &mcInst, uint64_t immediate,
+ const OperandSpecifier &operand,
+ InternalInstruction &insn,
+ const MCDisassembler *Dis) {
+ // Sign-extend the immediate if necessary.
+
+ OperandType type = (OperandType)operand.type;
+
+ bool isBranch = false;
+ uint64_t pcrel = 0;
+ if (type == TYPE_REL) {
+ isBranch = true;
+ pcrel = insn.startLocation +
+ insn.immediateOffset + insn.immediateSize;
+ switch (operand.encoding) {
+ default:
+ break;
+ case ENCODING_Iv:
+ switch (insn.displacementSize) {
+ default:
+ break;
+ case 1:
+ if(immediate & 0x80)
+ immediate |= ~(0xffull);
+ break;
+ case 2:
+ if(immediate & 0x8000)
+ immediate |= ~(0xffffull);
+ break;
+ case 4:
+ if(immediate & 0x80000000)
+ immediate |= ~(0xffffffffull);
+ break;
+ case 8:
+ break;
+ }
+ break;
+ case ENCODING_IB:
+ if(immediate & 0x80)
+ immediate |= ~(0xffull);
+ break;
+ case ENCODING_IW:
+ if(immediate & 0x8000)
+ immediate |= ~(0xffffull);
+ break;
+ case ENCODING_ID:
+ if(immediate & 0x80000000)
+ immediate |= ~(0xffffffffull);
+ break;
+ }
+ }
+ // By default sign-extend all X86 immediates based on their encoding.
+ else if (type == TYPE_IMM) {
+ switch (operand.encoding) {
+ default:
+ break;
+ case ENCODING_IB:
+ if(immediate & 0x80)
+ immediate |= ~(0xffull);
+ break;
+ case ENCODING_IW:
+ if(immediate & 0x8000)
+ immediate |= ~(0xffffull);
+ break;
+ case ENCODING_ID:
+ if(immediate & 0x80000000)
+ immediate |= ~(0xffffffffull);
+ break;
+ case ENCODING_IO:
+ break;
+ }
+ }
+
+ switch (type) {
+ case TYPE_XMM:
+ mcInst.addOperand(MCOperand::createReg(X86::XMM0 + (immediate >> 4)));
+ return;
+ case TYPE_YMM:
+ mcInst.addOperand(MCOperand::createReg(X86::YMM0 + (immediate >> 4)));
+ return;
+ case TYPE_ZMM:
+ mcInst.addOperand(MCOperand::createReg(X86::ZMM0 + (immediate >> 4)));
+ return;
+ default:
+ // operand is 64 bits wide. Do nothing.
+ break;
+ }
+
+ if(!tryAddingSymbolicOperand(immediate + pcrel, isBranch, insn.startLocation,
+ insn.immediateOffset, insn.immediateSize,
+ mcInst, Dis))
+ mcInst.addOperand(MCOperand::createImm(immediate));
+
+ if (type == TYPE_MOFFS) {
+ MCOperand segmentReg;
+ segmentReg = MCOperand::createReg(segmentRegnums[insn.segmentOverride]);
+ mcInst.addOperand(segmentReg);
+ }
+}
+
+/// translateRMRegister - Translates a register stored in the R/M field of the
+/// ModR/M byte to its LLVM equivalent and appends it to an MCInst.
+/// @param mcInst - The MCInst to append to.
+/// @param insn - The internal instruction to extract the R/M field
+/// from.
+/// @return - 0 on success; -1 otherwise
+static bool translateRMRegister(MCInst &mcInst,
+ InternalInstruction &insn) {
+ if (insn.eaBase == EA_BASE_sib || insn.eaBase == EA_BASE_sib64) {
+ debug("A R/M register operand may not have a SIB byte");
+ return true;
+ }
+
+ switch (insn.eaBase) {
+ default:
+ debug("Unexpected EA base register");
+ return true;
+ case EA_BASE_NONE:
+ debug("EA_BASE_NONE for ModR/M base");
+ return true;
+#define ENTRY(x) case EA_BASE_##x:
+ ALL_EA_BASES
+#undef ENTRY
+ debug("A R/M register operand may not have a base; "
+ "the operand must be a register.");
+ return true;
+#define ENTRY(x) \
+ case EA_REG_##x: \
+ mcInst.addOperand(MCOperand::createReg(X86::x)); break;
+ ALL_REGS
+#undef ENTRY
+ }
+
+ return false;
+}
+
+/// translateRMMemory - Translates a memory operand stored in the Mod and R/M
+/// fields of an internal instruction (and possibly its SIB byte) to a memory
+/// operand in LLVM's format, and appends it to an MCInst.
+///
+/// @param mcInst - The MCInst to append to.
+/// @param insn - The instruction to extract Mod, R/M, and SIB fields
+/// from.
+/// @param ForceSIB - The instruction must use SIB.
+/// @return - 0 on success; nonzero otherwise
+static bool translateRMMemory(MCInst &mcInst, InternalInstruction &insn,
+ const MCDisassembler *Dis,
+ bool ForceSIB = false) {
+ // Addresses in an MCInst are represented as five operands:
+ // 1. basereg (register) The R/M base, or (if there is a SIB) the
+ // SIB base
+ // 2. scaleamount (immediate) 1, or (if there is a SIB) the specified
+ // scale amount
+ // 3. indexreg (register) x86_registerNONE, or (if there is a SIB)
+ // the index (which is multiplied by the
+ // scale amount)
+ // 4. displacement (immediate) 0, or the displacement if there is one
+ // 5. segmentreg (register) x86_registerNONE for now, but could be set
+ // if we have segment overrides
+
+ MCOperand baseReg;
+ MCOperand scaleAmount;
+ MCOperand indexReg;
+ MCOperand displacement;
+ MCOperand segmentReg;
+ uint64_t pcrel = 0;
+
+ if (insn.eaBase == EA_BASE_sib || insn.eaBase == EA_BASE_sib64) {
+ if (insn.sibBase != SIB_BASE_NONE) {
+ switch (insn.sibBase) {
+ default:
+ debug("Unexpected sibBase");
+ return true;
+#define ENTRY(x) \
+ case SIB_BASE_##x: \
+ baseReg = MCOperand::createReg(X86::x); break;
+ ALL_SIB_BASES
+#undef ENTRY
+ }
+ } else {
+ baseReg = MCOperand::createReg(X86::NoRegister);
+ }
+
+ if (insn.sibIndex != SIB_INDEX_NONE) {
+ switch (insn.sibIndex) {
+ default:
+ debug("Unexpected sibIndex");
+ return true;
+#define ENTRY(x) \
+ case SIB_INDEX_##x: \
+ indexReg = MCOperand::createReg(X86::x); break;
+ EA_BASES_32BIT
+ EA_BASES_64BIT
+ REGS_XMM
+ REGS_YMM
+ REGS_ZMM
+#undef ENTRY
+ }
+ } else {
+ // Use EIZ/RIZ for a few ambiguous cases where the SIB byte is present,
+ // but no index is used and modrm alone should have been enough.
+ // -No base register in 32-bit mode. In 64-bit mode this is used to
+ // avoid rip-relative addressing.
+ // -Any base register used other than ESP/RSP/R12D/R12. Using these as a
+ // base always requires a SIB byte.
+ // -A scale other than 1 is used.
+ if (!ForceSIB &&
+ (insn.sibScale != 1 ||
+ (insn.sibBase == SIB_BASE_NONE && insn.mode != MODE_64BIT) ||
+ (insn.sibBase != SIB_BASE_NONE &&
+ insn.sibBase != SIB_BASE_ESP && insn.sibBase != SIB_BASE_RSP &&
+ insn.sibBase != SIB_BASE_R12D && insn.sibBase != SIB_BASE_R12))) {
+ indexReg = MCOperand::createReg(insn.addressSize == 4 ? X86::EIZ :
+ X86::RIZ);
+ } else
+ indexReg = MCOperand::createReg(X86::NoRegister);
+ }
+
+ scaleAmount = MCOperand::createImm(insn.sibScale);
+ } else {
+ switch (insn.eaBase) {
+ case EA_BASE_NONE:
+ if (insn.eaDisplacement == EA_DISP_NONE) {
+ debug("EA_BASE_NONE and EA_DISP_NONE for ModR/M base");
+ return true;
+ }
+ if (insn.mode == MODE_64BIT){
+ pcrel = insn.startLocation +
+ insn.displacementOffset + insn.displacementSize;
+ tryAddingPcLoadReferenceComment(insn.startLocation +
+ insn.displacementOffset,
+ insn.displacement + pcrel, Dis);
+ // Section 2.2.1.6
+ baseReg = MCOperand::createReg(insn.addressSize == 4 ? X86::EIP :
+ X86::RIP);
+ }
+ else
+ baseReg = MCOperand::createReg(X86::NoRegister);
+
+ indexReg = MCOperand::createReg(X86::NoRegister);
+ break;
+ case EA_BASE_BX_SI:
+ baseReg = MCOperand::createReg(X86::BX);
+ indexReg = MCOperand::createReg(X86::SI);
+ break;
+ case EA_BASE_BX_DI:
+ baseReg = MCOperand::createReg(X86::BX);
+ indexReg = MCOperand::createReg(X86::DI);
+ break;
+ case EA_BASE_BP_SI:
+ baseReg = MCOperand::createReg(X86::BP);
+ indexReg = MCOperand::createReg(X86::SI);
+ break;
+ case EA_BASE_BP_DI:
+ baseReg = MCOperand::createReg(X86::BP);
+ indexReg = MCOperand::createReg(X86::DI);
+ break;
+ default:
+ indexReg = MCOperand::createReg(X86::NoRegister);
+ switch (insn.eaBase) {
+ default:
+ debug("Unexpected eaBase");
+ return true;
+ // Here, we will use the fill-ins defined above. However,
+ // BX_SI, BX_DI, BP_SI, and BP_DI are all handled above and
+ // sib and sib64 were handled in the top-level if, so they're only
+ // placeholders to keep the compiler happy.
+#define ENTRY(x) \
+ case EA_BASE_##x: \
+ baseReg = MCOperand::createReg(X86::x); break;
+ ALL_EA_BASES
+#undef ENTRY
+#define ENTRY(x) case EA_REG_##x:
+ ALL_REGS
+#undef ENTRY
+ debug("A R/M memory operand may not be a register; "
+ "the base field must be a base.");
+ return true;
+ }
+ }
+
+ scaleAmount = MCOperand::createImm(1);
+ }
+
+ displacement = MCOperand::createImm(insn.displacement);
+
+ segmentReg = MCOperand::createReg(segmentRegnums[insn.segmentOverride]);
+
+ mcInst.addOperand(baseReg);
+ mcInst.addOperand(scaleAmount);
+ mcInst.addOperand(indexReg);
+ if(!tryAddingSymbolicOperand(insn.displacement + pcrel, false,
+ insn.startLocation, insn.displacementOffset,
+ insn.displacementSize, mcInst, Dis))
+ mcInst.addOperand(displacement);
+ mcInst.addOperand(segmentReg);
+ return false;
+}
+
+/// translateRM - Translates an operand stored in the R/M (and possibly SIB)
+/// byte of an instruction to LLVM form, and appends it to an MCInst.
+///
+/// @param mcInst - The MCInst to append to.
+/// @param operand - The operand, as stored in the descriptor table.
+/// @param insn - The instruction to extract Mod, R/M, and SIB fields
+/// from.
+/// @return - 0 on success; nonzero otherwise
+static bool translateRM(MCInst &mcInst, const OperandSpecifier &operand,
+ InternalInstruction &insn, const MCDisassembler *Dis) {
+ switch (operand.type) {
+ default:
+ debug("Unexpected type for a R/M operand");
+ return true;
+ case TYPE_R8:
+ case TYPE_R16:
+ case TYPE_R32:
+ case TYPE_R64:
+ case TYPE_Rv:
+ case TYPE_MM64:
+ case TYPE_XMM:
+ case TYPE_YMM:
+ case TYPE_ZMM:
+ case TYPE_TMM:
+ case TYPE_VK_PAIR:
+ case TYPE_VK:
+ case TYPE_DEBUGREG:
+ case TYPE_CONTROLREG:
+ case TYPE_BNDR:
+ return translateRMRegister(mcInst, insn);
+ case TYPE_M:
+ case TYPE_MVSIBX:
+ case TYPE_MVSIBY:
+ case TYPE_MVSIBZ:
+ return translateRMMemory(mcInst, insn, Dis);
+ case TYPE_MSIB:
+ return translateRMMemory(mcInst, insn, Dis, true);
+ }
+}
+
+/// translateFPRegister - Translates a stack position on the FPU stack to its
+/// LLVM form, and appends it to an MCInst.
+///
+/// @param mcInst - The MCInst to append to.
+/// @param stackPos - The stack position to translate.
+static void translateFPRegister(MCInst &mcInst,
+ uint8_t stackPos) {
+ mcInst.addOperand(MCOperand::createReg(X86::ST0 + stackPos));
+}
+
+/// translateMaskRegister - Translates a 3-bit mask register number to
+/// LLVM form, and appends it to an MCInst.
+///
+/// @param mcInst - The MCInst to append to.
+/// @param maskRegNum - Number of mask register from 0 to 7.
+/// @return - false on success; true otherwise.
+static bool translateMaskRegister(MCInst &mcInst,
+ uint8_t maskRegNum) {
+ if (maskRegNum >= 8) {
+ debug("Invalid mask register number");
+ return true;
+ }
+
+ mcInst.addOperand(MCOperand::createReg(X86::K0 + maskRegNum));
+ return false;
+}
+
+/// translateOperand - Translates an operand stored in an internal instruction
+/// to LLVM's format and appends it to an MCInst.
+///
+/// @param mcInst - The MCInst to append to.
+/// @param operand - The operand, as stored in the descriptor table.
+/// @param insn - The internal instruction.
+/// @return - false on success; true otherwise.
+static bool translateOperand(MCInst &mcInst, const OperandSpecifier &operand,
+ InternalInstruction &insn,
+ const MCDisassembler *Dis) {
+ switch (operand.encoding) {
+ default:
+ debug("Unhandled operand encoding during translation");
+ return true;
+ case ENCODING_REG:
+ translateRegister(mcInst, insn.reg);
+ return false;
+ case ENCODING_WRITEMASK:
+ return translateMaskRegister(mcInst, insn.writemask);
+ case ENCODING_SIB:
+ CASE_ENCODING_RM:
+ CASE_ENCODING_VSIB:
+ return translateRM(mcInst, operand, insn, Dis);
+ case ENCODING_IB:
+ case ENCODING_IW:
+ case ENCODING_ID:
+ case ENCODING_IO:
+ case ENCODING_Iv:
+ case ENCODING_Ia:
+ translateImmediate(mcInst,
+ insn.immediates[insn.numImmediatesTranslated++],
+ operand,
+ insn,
+ Dis);
+ return false;
+ case ENCODING_IRC:
+ mcInst.addOperand(MCOperand::createImm(insn.RC));
+ return false;
+ case ENCODING_SI:
+ return translateSrcIndex(mcInst, insn);
+ case ENCODING_DI:
+ return translateDstIndex(mcInst, insn);
+ case ENCODING_RB:
+ case ENCODING_RW:
+ case ENCODING_RD:
+ case ENCODING_RO:
+ case ENCODING_Rv:
+ translateRegister(mcInst, insn.opcodeRegister);
+ return false;
+ case ENCODING_CC:
+ mcInst.addOperand(MCOperand::createImm(insn.immediates[1]));
+ return false;
+ case ENCODING_FP:
+ translateFPRegister(mcInst, insn.modRM & 7);
+ return false;
+ case ENCODING_VVVV:
+ translateRegister(mcInst, insn.vvvv);
+ return false;
+ case ENCODING_DUP:
+ return translateOperand(mcInst, insn.operands[operand.type - TYPE_DUP0],
+ insn, Dis);
+ }
+}
+
+/// translateInstruction - Translates an internal instruction and all its
+/// operands to an MCInst.
+///
+/// @param mcInst - The MCInst to populate with the instruction's data.
+/// @param insn - The internal instruction.
+/// @return - false on success; true otherwise.
+static bool translateInstruction(MCInst &mcInst,
+ InternalInstruction &insn,
+ const MCDisassembler *Dis) {
+ if (!insn.spec) {
+ debug("Instruction has no specification");
+ return true;
+ }
+
+ mcInst.clear();
+ mcInst.setOpcode(insn.instructionID);
+ // If when reading the prefix bytes we determined the overlapping 0xf2 or 0xf3
+ // prefix bytes should be disassembled as xrelease and xacquire then set the
+ // opcode to those instead of the rep and repne opcodes.
+ if (insn.xAcquireRelease) {
+ if(mcInst.getOpcode() == X86::REP_PREFIX)
+ mcInst.setOpcode(X86::XRELEASE_PREFIX);
+ else if(mcInst.getOpcode() == X86::REPNE_PREFIX)
+ mcInst.setOpcode(X86::XACQUIRE_PREFIX);
+ }
+
+ insn.numImmediatesTranslated = 0;
+
+ for (const auto &Op : insn.operands) {
+ if (Op.encoding != ENCODING_NONE) {
+ if (translateOperand(mcInst, Op, insn, Dis)) {
+ return true;
+ }
+ }
+ }
+
+ return false;
+}
+
+static MCDisassembler *createX86Disassembler(const Target &T,
+ const MCSubtargetInfo &STI,
+ MCContext &Ctx) {
+ std::unique_ptr<const MCInstrInfo> MII(T.createMCInstrInfo());
+ return new X86GenericDisassembler(STI, Ctx, std::move(MII));
+}
+
+extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeX86Disassembler() {
+ // Register the disassembler.
+ TargetRegistry::RegisterMCDisassembler(getTheX86_32Target(),
+ createX86Disassembler);
+ TargetRegistry::RegisterMCDisassembler(getTheX86_64Target(),
+ createX86Disassembler);
+}