aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm-project/llvm/lib/Target/X86/X86CallingConv.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm-project/llvm/lib/Target/X86/X86CallingConv.cpp')
-rw-r--r--contrib/llvm-project/llvm/lib/Target/X86/X86CallingConv.cpp334
1 files changed, 334 insertions, 0 deletions
diff --git a/contrib/llvm-project/llvm/lib/Target/X86/X86CallingConv.cpp b/contrib/llvm-project/llvm/lib/Target/X86/X86CallingConv.cpp
new file mode 100644
index 000000000000..c899db60e016
--- /dev/null
+++ b/contrib/llvm-project/llvm/lib/Target/X86/X86CallingConv.cpp
@@ -0,0 +1,334 @@
+//=== X86CallingConv.cpp - X86 Custom Calling Convention Impl -*- C++ -*-===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains the implementation of custom routines for the X86
+// Calling Convention that aren't done by tablegen.
+//
+//===----------------------------------------------------------------------===//
+
+#include "X86CallingConv.h"
+#include "X86Subtarget.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/CodeGen/CallingConvLower.h"
+#include "llvm/IR/CallingConv.h"
+
+using namespace llvm;
+
+/// When regcall calling convention compiled to 32 bit arch, special treatment
+/// is required for 64 bit masks.
+/// The value should be assigned to two GPRs.
+/// \return true if registers were allocated and false otherwise.
+static bool CC_X86_32_RegCall_Assign2Regs(unsigned &ValNo, MVT &ValVT,
+ MVT &LocVT,
+ CCValAssign::LocInfo &LocInfo,
+ ISD::ArgFlagsTy &ArgFlags,
+ CCState &State) {
+ // List of GPR registers that are available to store values in regcall
+ // calling convention.
+ static const MCPhysReg RegList[] = {X86::EAX, X86::ECX, X86::EDX, X86::EDI,
+ X86::ESI};
+
+ // The vector will save all the available registers for allocation.
+ SmallVector<unsigned, 5> AvailableRegs;
+
+ // searching for the available registers.
+ for (auto Reg : RegList) {
+ if (!State.isAllocated(Reg))
+ AvailableRegs.push_back(Reg);
+ }
+
+ const size_t RequiredGprsUponSplit = 2;
+ if (AvailableRegs.size() < RequiredGprsUponSplit)
+ return false; // Not enough free registers - continue the search.
+
+ // Allocating the available registers.
+ for (unsigned I = 0; I < RequiredGprsUponSplit; I++) {
+
+ // Marking the register as located.
+ unsigned Reg = State.AllocateReg(AvailableRegs[I]);
+
+ // Since we previously made sure that 2 registers are available
+ // we expect that a real register number will be returned.
+ assert(Reg && "Expecting a register will be available");
+
+ // Assign the value to the allocated register
+ State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, LocInfo));
+ }
+
+ // Successful in allocating registers - stop scanning next rules.
+ return true;
+}
+
+static ArrayRef<MCPhysReg> CC_X86_VectorCallGetSSEs(const MVT &ValVT) {
+ if (ValVT.is512BitVector()) {
+ static const MCPhysReg RegListZMM[] = {X86::ZMM0, X86::ZMM1, X86::ZMM2,
+ X86::ZMM3, X86::ZMM4, X86::ZMM5};
+ return makeArrayRef(std::begin(RegListZMM), std::end(RegListZMM));
+ }
+
+ if (ValVT.is256BitVector()) {
+ static const MCPhysReg RegListYMM[] = {X86::YMM0, X86::YMM1, X86::YMM2,
+ X86::YMM3, X86::YMM4, X86::YMM5};
+ return makeArrayRef(std::begin(RegListYMM), std::end(RegListYMM));
+ }
+
+ static const MCPhysReg RegListXMM[] = {X86::XMM0, X86::XMM1, X86::XMM2,
+ X86::XMM3, X86::XMM4, X86::XMM5};
+ return makeArrayRef(std::begin(RegListXMM), std::end(RegListXMM));
+}
+
+static ArrayRef<MCPhysReg> CC_X86_64_VectorCallGetGPRs() {
+ static const MCPhysReg RegListGPR[] = {X86::RCX, X86::RDX, X86::R8, X86::R9};
+ return makeArrayRef(std::begin(RegListGPR), std::end(RegListGPR));
+}
+
+static bool CC_X86_VectorCallAssignRegister(unsigned &ValNo, MVT &ValVT,
+ MVT &LocVT,
+ CCValAssign::LocInfo &LocInfo,
+ ISD::ArgFlagsTy &ArgFlags,
+ CCState &State) {
+
+ ArrayRef<MCPhysReg> RegList = CC_X86_VectorCallGetSSEs(ValVT);
+ bool Is64bit = static_cast<const X86Subtarget &>(
+ State.getMachineFunction().getSubtarget())
+ .is64Bit();
+
+ for (auto Reg : RegList) {
+ // If the register is not marked as allocated - assign to it.
+ if (!State.isAllocated(Reg)) {
+ unsigned AssigedReg = State.AllocateReg(Reg);
+ assert(AssigedReg == Reg && "Expecting a valid register allocation");
+ State.addLoc(
+ CCValAssign::getReg(ValNo, ValVT, AssigedReg, LocVT, LocInfo));
+ return true;
+ }
+ // If the register is marked as shadow allocated - assign to it.
+ if (Is64bit && State.IsShadowAllocatedReg(Reg)) {
+ State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
+ return true;
+ }
+ }
+
+ llvm_unreachable("Clang should ensure that hva marked vectors will have "
+ "an available register.");
+ return false;
+}
+
+/// Vectorcall calling convention has special handling for vector types or
+/// HVA for 64 bit arch.
+/// For HVAs shadow registers might be allocated on the first pass
+/// and actual XMM registers are allocated on the second pass.
+/// For vector types, actual XMM registers are allocated on the first pass.
+/// \return true if registers were allocated and false otherwise.
+static bool CC_X86_64_VectorCall(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
+ CCValAssign::LocInfo &LocInfo,
+ ISD::ArgFlagsTy &ArgFlags, CCState &State) {
+ // On the second pass, go through the HVAs only.
+ if (ArgFlags.isSecArgPass()) {
+ if (ArgFlags.isHva())
+ return CC_X86_VectorCallAssignRegister(ValNo, ValVT, LocVT, LocInfo,
+ ArgFlags, State);
+ return true;
+ }
+
+ // Process only vector types as defined by vectorcall spec:
+ // "A vector type is either a floating-point type, for example,
+ // a float or double, or an SIMD vector type, for example, __m128 or __m256".
+ if (!(ValVT.isFloatingPoint() ||
+ (ValVT.isVector() && ValVT.getSizeInBits() >= 128))) {
+ // If R9 was already assigned it means that we are after the fourth element
+ // and because this is not an HVA / Vector type, we need to allocate
+ // shadow XMM register.
+ if (State.isAllocated(X86::R9)) {
+ // Assign shadow XMM register.
+ (void)State.AllocateReg(CC_X86_VectorCallGetSSEs(ValVT));
+ }
+
+ return false;
+ }
+
+ if (!ArgFlags.isHva() || ArgFlags.isHvaStart()) {
+ // Assign shadow GPR register.
+ (void)State.AllocateReg(CC_X86_64_VectorCallGetGPRs());
+
+ // Assign XMM register - (shadow for HVA and non-shadow for non HVA).
+ if (unsigned Reg = State.AllocateReg(CC_X86_VectorCallGetSSEs(ValVT))) {
+ // In Vectorcall Calling convention, additional shadow stack can be
+ // created on top of the basic 32 bytes of win64.
+ // It can happen if the fifth or sixth argument is vector type or HVA.
+ // At that case for each argument a shadow stack of 8 bytes is allocated.
+ const TargetRegisterInfo *TRI =
+ State.getMachineFunction().getSubtarget().getRegisterInfo();
+ if (TRI->regsOverlap(Reg, X86::XMM4) ||
+ TRI->regsOverlap(Reg, X86::XMM5))
+ State.AllocateStack(8, Align(8));
+
+ if (!ArgFlags.isHva()) {
+ State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
+ return true; // Allocated a register - Stop the search.
+ }
+ }
+ }
+
+ // If this is an HVA - Stop the search,
+ // otherwise continue the search.
+ return ArgFlags.isHva();
+}
+
+/// Vectorcall calling convention has special handling for vector types or
+/// HVA for 32 bit arch.
+/// For HVAs actual XMM registers are allocated on the second pass.
+/// For vector types, actual XMM registers are allocated on the first pass.
+/// \return true if registers were allocated and false otherwise.
+static bool CC_X86_32_VectorCall(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
+ CCValAssign::LocInfo &LocInfo,
+ ISD::ArgFlagsTy &ArgFlags, CCState &State) {
+ // On the second pass, go through the HVAs only.
+ if (ArgFlags.isSecArgPass()) {
+ if (ArgFlags.isHva())
+ return CC_X86_VectorCallAssignRegister(ValNo, ValVT, LocVT, LocInfo,
+ ArgFlags, State);
+ return true;
+ }
+
+ // Process only vector types as defined by vectorcall spec:
+ // "A vector type is either a floating point type, for example,
+ // a float or double, or an SIMD vector type, for example, __m128 or __m256".
+ if (!(ValVT.isFloatingPoint() ||
+ (ValVT.isVector() && ValVT.getSizeInBits() >= 128))) {
+ return false;
+ }
+
+ if (ArgFlags.isHva())
+ return true; // If this is an HVA - Stop the search.
+
+ // Assign XMM register.
+ if (unsigned Reg = State.AllocateReg(CC_X86_VectorCallGetSSEs(ValVT))) {
+ State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
+ return true;
+ }
+
+ // In case we did not find an available XMM register for a vector -
+ // pass it indirectly.
+ // It is similar to CCPassIndirect, with the addition of inreg.
+ if (!ValVT.isFloatingPoint()) {
+ LocVT = MVT::i32;
+ LocInfo = CCValAssign::Indirect;
+ ArgFlags.setInReg();
+ }
+
+ return false; // No register was assigned - Continue the search.
+}
+
+static bool CC_X86_AnyReg_Error(unsigned &, MVT &, MVT &,
+ CCValAssign::LocInfo &, ISD::ArgFlagsTy &,
+ CCState &) {
+ llvm_unreachable("The AnyReg calling convention is only supported by the "
+ "stackmap and patchpoint intrinsics.");
+ // gracefully fallback to X86 C calling convention on Release builds.
+ return false;
+}
+
+static bool CC_X86_32_MCUInReg(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
+ CCValAssign::LocInfo &LocInfo,
+ ISD::ArgFlagsTy &ArgFlags, CCState &State) {
+ // This is similar to CCAssignToReg<[EAX, EDX, ECX]>, but makes sure
+ // not to split i64 and double between a register and stack
+ static const MCPhysReg RegList[] = {X86::EAX, X86::EDX, X86::ECX};
+ static const unsigned NumRegs = sizeof(RegList) / sizeof(RegList[0]);
+
+ SmallVectorImpl<CCValAssign> &PendingMembers = State.getPendingLocs();
+
+ // If this is the first part of an double/i64/i128, or if we're already
+ // in the middle of a split, add to the pending list. If this is not
+ // the end of the split, return, otherwise go on to process the pending
+ // list
+ if (ArgFlags.isSplit() || !PendingMembers.empty()) {
+ PendingMembers.push_back(
+ CCValAssign::getPending(ValNo, ValVT, LocVT, LocInfo));
+ if (!ArgFlags.isSplitEnd())
+ return true;
+ }
+
+ // If there are no pending members, we are not in the middle of a split,
+ // so do the usual inreg stuff.
+ if (PendingMembers.empty()) {
+ if (unsigned Reg = State.AllocateReg(RegList)) {
+ State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
+ return true;
+ }
+ return false;
+ }
+
+ assert(ArgFlags.isSplitEnd());
+
+ // We now have the entire original argument in PendingMembers, so decide
+ // whether to use registers or the stack.
+ // Per the MCU ABI:
+ // a) To use registers, we need to have enough of them free to contain
+ // the entire argument.
+ // b) We never want to use more than 2 registers for a single argument.
+
+ unsigned FirstFree = State.getFirstUnallocated(RegList);
+ bool UseRegs = PendingMembers.size() <= std::min(2U, NumRegs - FirstFree);
+
+ for (auto &It : PendingMembers) {
+ if (UseRegs)
+ It.convertToReg(State.AllocateReg(RegList[FirstFree++]));
+ else
+ It.convertToMem(State.AllocateStack(4, Align(4)));
+ State.addLoc(It);
+ }
+
+ PendingMembers.clear();
+
+ return true;
+}
+
+/// X86 interrupt handlers can only take one or two stack arguments, but if
+/// there are two arguments, they are in the opposite order from the standard
+/// convention. Therefore, we have to look at the argument count up front before
+/// allocating stack for each argument.
+static bool CC_X86_Intr(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
+ CCValAssign::LocInfo &LocInfo,
+ ISD::ArgFlagsTy &ArgFlags, CCState &State) {
+ const MachineFunction &MF = State.getMachineFunction();
+ size_t ArgCount = State.getMachineFunction().getFunction().arg_size();
+ bool Is64Bit = static_cast<const X86Subtarget &>(MF.getSubtarget()).is64Bit();
+ unsigned SlotSize = Is64Bit ? 8 : 4;
+ unsigned Offset;
+ if (ArgCount == 1 && ValNo == 0) {
+ // If we have one argument, the argument is five stack slots big, at fixed
+ // offset zero.
+ Offset = State.AllocateStack(5 * SlotSize, Align(4));
+ } else if (ArgCount == 2 && ValNo == 0) {
+ // If we have two arguments, the stack slot is *after* the error code
+ // argument. Pretend it doesn't consume stack space, and account for it when
+ // we assign the second argument.
+ Offset = SlotSize;
+ } else if (ArgCount == 2 && ValNo == 1) {
+ // If this is the second of two arguments, it must be the error code. It
+ // appears first on the stack, and is then followed by the five slot
+ // interrupt struct.
+ Offset = 0;
+ (void)State.AllocateStack(6 * SlotSize, Align(4));
+ } else {
+ report_fatal_error("unsupported x86 interrupt prototype");
+ }
+
+ // FIXME: This should be accounted for in
+ // X86FrameLowering::getFrameIndexReference, not here.
+ if (Is64Bit && ArgCount == 2)
+ Offset += SlotSize;
+
+ State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
+ return true;
+}
+
+// Provides entry points of CC_X86 and RetCC_X86.
+#include "X86GenCallingConv.inc"