aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm-project/llvm/lib/Target/X86/X86OptimizeLEAs.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm-project/llvm/lib/Target/X86/X86OptimizeLEAs.cpp')
-rw-r--r--contrib/llvm-project/llvm/lib/Target/X86/X86OptimizeLEAs.cpp723
1 files changed, 723 insertions, 0 deletions
diff --git a/contrib/llvm-project/llvm/lib/Target/X86/X86OptimizeLEAs.cpp b/contrib/llvm-project/llvm/lib/Target/X86/X86OptimizeLEAs.cpp
new file mode 100644
index 000000000000..c8899a85118e
--- /dev/null
+++ b/contrib/llvm-project/llvm/lib/Target/X86/X86OptimizeLEAs.cpp
@@ -0,0 +1,723 @@
+//===- X86OptimizeLEAs.cpp - optimize usage of LEA instructions -----------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines the pass that performs some optimizations with LEA
+// instructions in order to improve performance and code size.
+// Currently, it does two things:
+// 1) If there are two LEA instructions calculating addresses which only differ
+// by displacement inside a basic block, one of them is removed.
+// 2) Address calculations in load and store instructions are replaced by
+// existing LEA def registers where possible.
+//
+//===----------------------------------------------------------------------===//
+
+#include "MCTargetDesc/X86BaseInfo.h"
+#include "X86.h"
+#include "X86InstrInfo.h"
+#include "X86Subtarget.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/DenseMapInfo.h"
+#include "llvm/ADT/Hashing.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/Analysis/ProfileSummaryInfo.h"
+#include "llvm/CodeGen/LazyMachineBlockFrequencyInfo.h"
+#include "llvm/CodeGen/MachineBasicBlock.h"
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/MachineFunctionPass.h"
+#include "llvm/CodeGen/MachineInstr.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineOperand.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/CodeGen/MachineSizeOpts.h"
+#include "llvm/CodeGen/TargetOpcodes.h"
+#include "llvm/CodeGen/TargetRegisterInfo.h"
+#include "llvm/IR/DebugInfoMetadata.h"
+#include "llvm/IR/DebugLoc.h"
+#include "llvm/IR/Function.h"
+#include "llvm/MC/MCInstrDesc.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/MathExtras.h"
+#include "llvm/Support/raw_ostream.h"
+#include <cassert>
+#include <cstdint>
+#include <iterator>
+
+using namespace llvm;
+
+#define DEBUG_TYPE "x86-optimize-LEAs"
+
+static cl::opt<bool>
+ DisableX86LEAOpt("disable-x86-lea-opt", cl::Hidden,
+ cl::desc("X86: Disable LEA optimizations."),
+ cl::init(false));
+
+STATISTIC(NumSubstLEAs, "Number of LEA instruction substitutions");
+STATISTIC(NumRedundantLEAs, "Number of redundant LEA instructions removed");
+
+/// Returns true if two machine operands are identical and they are not
+/// physical registers.
+static inline bool isIdenticalOp(const MachineOperand &MO1,
+ const MachineOperand &MO2);
+
+/// Returns true if two address displacement operands are of the same
+/// type and use the same symbol/index/address regardless of the offset.
+static bool isSimilarDispOp(const MachineOperand &MO1,
+ const MachineOperand &MO2);
+
+/// Returns true if the instruction is LEA.
+static inline bool isLEA(const MachineInstr &MI);
+
+namespace {
+
+/// A key based on instruction's memory operands.
+class MemOpKey {
+public:
+ MemOpKey(const MachineOperand *Base, const MachineOperand *Scale,
+ const MachineOperand *Index, const MachineOperand *Segment,
+ const MachineOperand *Disp)
+ : Disp(Disp) {
+ Operands[0] = Base;
+ Operands[1] = Scale;
+ Operands[2] = Index;
+ Operands[3] = Segment;
+ }
+
+ bool operator==(const MemOpKey &Other) const {
+ // Addresses' bases, scales, indices and segments must be identical.
+ for (int i = 0; i < 4; ++i)
+ if (!isIdenticalOp(*Operands[i], *Other.Operands[i]))
+ return false;
+
+ // Addresses' displacements don't have to be exactly the same. It only
+ // matters that they use the same symbol/index/address. Immediates' or
+ // offsets' differences will be taken care of during instruction
+ // substitution.
+ return isSimilarDispOp(*Disp, *Other.Disp);
+ }
+
+ // Address' base, scale, index and segment operands.
+ const MachineOperand *Operands[4];
+
+ // Address' displacement operand.
+ const MachineOperand *Disp;
+};
+
+} // end anonymous namespace
+
+/// Provide DenseMapInfo for MemOpKey.
+namespace llvm {
+
+template <> struct DenseMapInfo<MemOpKey> {
+ using PtrInfo = DenseMapInfo<const MachineOperand *>;
+
+ static inline MemOpKey getEmptyKey() {
+ return MemOpKey(PtrInfo::getEmptyKey(), PtrInfo::getEmptyKey(),
+ PtrInfo::getEmptyKey(), PtrInfo::getEmptyKey(),
+ PtrInfo::getEmptyKey());
+ }
+
+ static inline MemOpKey getTombstoneKey() {
+ return MemOpKey(PtrInfo::getTombstoneKey(), PtrInfo::getTombstoneKey(),
+ PtrInfo::getTombstoneKey(), PtrInfo::getTombstoneKey(),
+ PtrInfo::getTombstoneKey());
+ }
+
+ static unsigned getHashValue(const MemOpKey &Val) {
+ // Checking any field of MemOpKey is enough to determine if the key is
+ // empty or tombstone.
+ assert(Val.Disp != PtrInfo::getEmptyKey() && "Cannot hash the empty key");
+ assert(Val.Disp != PtrInfo::getTombstoneKey() &&
+ "Cannot hash the tombstone key");
+
+ hash_code Hash = hash_combine(*Val.Operands[0], *Val.Operands[1],
+ *Val.Operands[2], *Val.Operands[3]);
+
+ // If the address displacement is an immediate, it should not affect the
+ // hash so that memory operands which differ only be immediate displacement
+ // would have the same hash. If the address displacement is something else,
+ // we should reflect symbol/index/address in the hash.
+ switch (Val.Disp->getType()) {
+ case MachineOperand::MO_Immediate:
+ break;
+ case MachineOperand::MO_ConstantPoolIndex:
+ case MachineOperand::MO_JumpTableIndex:
+ Hash = hash_combine(Hash, Val.Disp->getIndex());
+ break;
+ case MachineOperand::MO_ExternalSymbol:
+ Hash = hash_combine(Hash, Val.Disp->getSymbolName());
+ break;
+ case MachineOperand::MO_GlobalAddress:
+ Hash = hash_combine(Hash, Val.Disp->getGlobal());
+ break;
+ case MachineOperand::MO_BlockAddress:
+ Hash = hash_combine(Hash, Val.Disp->getBlockAddress());
+ break;
+ case MachineOperand::MO_MCSymbol:
+ Hash = hash_combine(Hash, Val.Disp->getMCSymbol());
+ break;
+ case MachineOperand::MO_MachineBasicBlock:
+ Hash = hash_combine(Hash, Val.Disp->getMBB());
+ break;
+ default:
+ llvm_unreachable("Invalid address displacement operand");
+ }
+
+ return (unsigned)Hash;
+ }
+
+ static bool isEqual(const MemOpKey &LHS, const MemOpKey &RHS) {
+ // Checking any field of MemOpKey is enough to determine if the key is
+ // empty or tombstone.
+ if (RHS.Disp == PtrInfo::getEmptyKey())
+ return LHS.Disp == PtrInfo::getEmptyKey();
+ if (RHS.Disp == PtrInfo::getTombstoneKey())
+ return LHS.Disp == PtrInfo::getTombstoneKey();
+ return LHS == RHS;
+ }
+};
+
+} // end namespace llvm
+
+/// Returns a hash table key based on memory operands of \p MI. The
+/// number of the first memory operand of \p MI is specified through \p N.
+static inline MemOpKey getMemOpKey(const MachineInstr &MI, unsigned N) {
+ assert((isLEA(MI) || MI.mayLoadOrStore()) &&
+ "The instruction must be a LEA, a load or a store");
+ return MemOpKey(&MI.getOperand(N + X86::AddrBaseReg),
+ &MI.getOperand(N + X86::AddrScaleAmt),
+ &MI.getOperand(N + X86::AddrIndexReg),
+ &MI.getOperand(N + X86::AddrSegmentReg),
+ &MI.getOperand(N + X86::AddrDisp));
+}
+
+static inline bool isIdenticalOp(const MachineOperand &MO1,
+ const MachineOperand &MO2) {
+ return MO1.isIdenticalTo(MO2) &&
+ (!MO1.isReg() || !Register::isPhysicalRegister(MO1.getReg()));
+}
+
+#ifndef NDEBUG
+static bool isValidDispOp(const MachineOperand &MO) {
+ return MO.isImm() || MO.isCPI() || MO.isJTI() || MO.isSymbol() ||
+ MO.isGlobal() || MO.isBlockAddress() || MO.isMCSymbol() || MO.isMBB();
+}
+#endif
+
+static bool isSimilarDispOp(const MachineOperand &MO1,
+ const MachineOperand &MO2) {
+ assert(isValidDispOp(MO1) && isValidDispOp(MO2) &&
+ "Address displacement operand is not valid");
+ return (MO1.isImm() && MO2.isImm()) ||
+ (MO1.isCPI() && MO2.isCPI() && MO1.getIndex() == MO2.getIndex()) ||
+ (MO1.isJTI() && MO2.isJTI() && MO1.getIndex() == MO2.getIndex()) ||
+ (MO1.isSymbol() && MO2.isSymbol() &&
+ MO1.getSymbolName() == MO2.getSymbolName()) ||
+ (MO1.isGlobal() && MO2.isGlobal() &&
+ MO1.getGlobal() == MO2.getGlobal()) ||
+ (MO1.isBlockAddress() && MO2.isBlockAddress() &&
+ MO1.getBlockAddress() == MO2.getBlockAddress()) ||
+ (MO1.isMCSymbol() && MO2.isMCSymbol() &&
+ MO1.getMCSymbol() == MO2.getMCSymbol()) ||
+ (MO1.isMBB() && MO2.isMBB() && MO1.getMBB() == MO2.getMBB());
+}
+
+static inline bool isLEA(const MachineInstr &MI) {
+ unsigned Opcode = MI.getOpcode();
+ return Opcode == X86::LEA16r || Opcode == X86::LEA32r ||
+ Opcode == X86::LEA64r || Opcode == X86::LEA64_32r;
+}
+
+namespace {
+
+class X86OptimizeLEAPass : public MachineFunctionPass {
+public:
+ X86OptimizeLEAPass() : MachineFunctionPass(ID) {}
+
+ StringRef getPassName() const override { return "X86 LEA Optimize"; }
+
+ /// Loop over all of the basic blocks, replacing address
+ /// calculations in load and store instructions, if it's already
+ /// been calculated by LEA. Also, remove redundant LEAs.
+ bool runOnMachineFunction(MachineFunction &MF) override;
+
+ static char ID;
+
+ void getAnalysisUsage(AnalysisUsage &AU) const override {
+ AU.addRequired<ProfileSummaryInfoWrapperPass>();
+ AU.addRequired<LazyMachineBlockFrequencyInfoPass>();
+ MachineFunctionPass::getAnalysisUsage(AU);
+ }
+
+private:
+ using MemOpMap = DenseMap<MemOpKey, SmallVector<MachineInstr *, 16>>;
+
+ /// Returns a distance between two instructions inside one basic block.
+ /// Negative result means, that instructions occur in reverse order.
+ int calcInstrDist(const MachineInstr &First, const MachineInstr &Last);
+
+ /// Choose the best \p LEA instruction from the \p List to replace
+ /// address calculation in \p MI instruction. Return the address displacement
+ /// and the distance between \p MI and the chosen \p BestLEA in
+ /// \p AddrDispShift and \p Dist.
+ bool chooseBestLEA(const SmallVectorImpl<MachineInstr *> &List,
+ const MachineInstr &MI, MachineInstr *&BestLEA,
+ int64_t &AddrDispShift, int &Dist);
+
+ /// Returns the difference between addresses' displacements of \p MI1
+ /// and \p MI2. The numbers of the first memory operands for the instructions
+ /// are specified through \p N1 and \p N2.
+ int64_t getAddrDispShift(const MachineInstr &MI1, unsigned N1,
+ const MachineInstr &MI2, unsigned N2) const;
+
+ /// Returns true if the \p Last LEA instruction can be replaced by the
+ /// \p First. The difference between displacements of the addresses calculated
+ /// by these LEAs is returned in \p AddrDispShift. It'll be used for proper
+ /// replacement of the \p Last LEA's uses with the \p First's def register.
+ bool isReplaceable(const MachineInstr &First, const MachineInstr &Last,
+ int64_t &AddrDispShift) const;
+
+ /// Find all LEA instructions in the basic block. Also, assign position
+ /// numbers to all instructions in the basic block to speed up calculation of
+ /// distance between them.
+ void findLEAs(const MachineBasicBlock &MBB, MemOpMap &LEAs);
+
+ /// Removes redundant address calculations.
+ bool removeRedundantAddrCalc(MemOpMap &LEAs);
+
+ /// Replace debug value MI with a new debug value instruction using register
+ /// VReg with an appropriate offset and DIExpression to incorporate the
+ /// address displacement AddrDispShift. Return new debug value instruction.
+ MachineInstr *replaceDebugValue(MachineInstr &MI, unsigned VReg,
+ int64_t AddrDispShift);
+
+ /// Removes LEAs which calculate similar addresses.
+ bool removeRedundantLEAs(MemOpMap &LEAs);
+
+ DenseMap<const MachineInstr *, unsigned> InstrPos;
+
+ MachineRegisterInfo *MRI = nullptr;
+ const X86InstrInfo *TII = nullptr;
+ const X86RegisterInfo *TRI = nullptr;
+};
+
+} // end anonymous namespace
+
+char X86OptimizeLEAPass::ID = 0;
+
+FunctionPass *llvm::createX86OptimizeLEAs() { return new X86OptimizeLEAPass(); }
+INITIALIZE_PASS(X86OptimizeLEAPass, DEBUG_TYPE, "X86 optimize LEA pass", false,
+ false)
+
+int X86OptimizeLEAPass::calcInstrDist(const MachineInstr &First,
+ const MachineInstr &Last) {
+ // Both instructions must be in the same basic block and they must be
+ // presented in InstrPos.
+ assert(Last.getParent() == First.getParent() &&
+ "Instructions are in different basic blocks");
+ assert(InstrPos.find(&First) != InstrPos.end() &&
+ InstrPos.find(&Last) != InstrPos.end() &&
+ "Instructions' positions are undefined");
+
+ return InstrPos[&Last] - InstrPos[&First];
+}
+
+// Find the best LEA instruction in the List to replace address recalculation in
+// MI. Such LEA must meet these requirements:
+// 1) The address calculated by the LEA differs only by the displacement from
+// the address used in MI.
+// 2) The register class of the definition of the LEA is compatible with the
+// register class of the address base register of MI.
+// 3) Displacement of the new memory operand should fit in 1 byte if possible.
+// 4) The LEA should be as close to MI as possible, and prior to it if
+// possible.
+bool X86OptimizeLEAPass::chooseBestLEA(
+ const SmallVectorImpl<MachineInstr *> &List, const MachineInstr &MI,
+ MachineInstr *&BestLEA, int64_t &AddrDispShift, int &Dist) {
+ const MachineFunction *MF = MI.getParent()->getParent();
+ const MCInstrDesc &Desc = MI.getDesc();
+ int MemOpNo = X86II::getMemoryOperandNo(Desc.TSFlags) +
+ X86II::getOperandBias(Desc);
+
+ BestLEA = nullptr;
+
+ // Loop over all LEA instructions.
+ for (auto DefMI : List) {
+ // Get new address displacement.
+ int64_t AddrDispShiftTemp = getAddrDispShift(MI, MemOpNo, *DefMI, 1);
+
+ // Make sure address displacement fits 4 bytes.
+ if (!isInt<32>(AddrDispShiftTemp))
+ continue;
+
+ // Check that LEA def register can be used as MI address base. Some
+ // instructions can use a limited set of registers as address base, for
+ // example MOV8mr_NOREX. We could constrain the register class of the LEA
+ // def to suit MI, however since this case is very rare and hard to
+ // reproduce in a test it's just more reliable to skip the LEA.
+ if (TII->getRegClass(Desc, MemOpNo + X86::AddrBaseReg, TRI, *MF) !=
+ MRI->getRegClass(DefMI->getOperand(0).getReg()))
+ continue;
+
+ // Choose the closest LEA instruction from the list, prior to MI if
+ // possible. Note that we took into account resulting address displacement
+ // as well. Also note that the list is sorted by the order in which the LEAs
+ // occur, so the break condition is pretty simple.
+ int DistTemp = calcInstrDist(*DefMI, MI);
+ assert(DistTemp != 0 &&
+ "The distance between two different instructions cannot be zero");
+ if (DistTemp > 0 || BestLEA == nullptr) {
+ // Do not update return LEA, if the current one provides a displacement
+ // which fits in 1 byte, while the new candidate does not.
+ if (BestLEA != nullptr && !isInt<8>(AddrDispShiftTemp) &&
+ isInt<8>(AddrDispShift))
+ continue;
+
+ BestLEA = DefMI;
+ AddrDispShift = AddrDispShiftTemp;
+ Dist = DistTemp;
+ }
+
+ // FIXME: Maybe we should not always stop at the first LEA after MI.
+ if (DistTemp < 0)
+ break;
+ }
+
+ return BestLEA != nullptr;
+}
+
+// Get the difference between the addresses' displacements of the two
+// instructions \p MI1 and \p MI2. The numbers of the first memory operands are
+// passed through \p N1 and \p N2.
+int64_t X86OptimizeLEAPass::getAddrDispShift(const MachineInstr &MI1,
+ unsigned N1,
+ const MachineInstr &MI2,
+ unsigned N2) const {
+ const MachineOperand &Op1 = MI1.getOperand(N1 + X86::AddrDisp);
+ const MachineOperand &Op2 = MI2.getOperand(N2 + X86::AddrDisp);
+
+ assert(isSimilarDispOp(Op1, Op2) &&
+ "Address displacement operands are not compatible");
+
+ // After the assert above we can be sure that both operands are of the same
+ // valid type and use the same symbol/index/address, thus displacement shift
+ // calculation is rather simple.
+ if (Op1.isJTI())
+ return 0;
+ return Op1.isImm() ? Op1.getImm() - Op2.getImm()
+ : Op1.getOffset() - Op2.getOffset();
+}
+
+// Check that the Last LEA can be replaced by the First LEA. To be so,
+// these requirements must be met:
+// 1) Addresses calculated by LEAs differ only by displacement.
+// 2) Def registers of LEAs belong to the same class.
+// 3) All uses of the Last LEA def register are replaceable, thus the
+// register is used only as address base.
+bool X86OptimizeLEAPass::isReplaceable(const MachineInstr &First,
+ const MachineInstr &Last,
+ int64_t &AddrDispShift) const {
+ assert(isLEA(First) && isLEA(Last) &&
+ "The function works only with LEA instructions");
+
+ // Make sure that LEA def registers belong to the same class. There may be
+ // instructions (like MOV8mr_NOREX) which allow a limited set of registers to
+ // be used as their operands, so we must be sure that replacing one LEA
+ // with another won't lead to putting a wrong register in the instruction.
+ if (MRI->getRegClass(First.getOperand(0).getReg()) !=
+ MRI->getRegClass(Last.getOperand(0).getReg()))
+ return false;
+
+ // Get new address displacement.
+ AddrDispShift = getAddrDispShift(Last, 1, First, 1);
+
+ // Loop over all uses of the Last LEA to check that its def register is
+ // used only as address base for memory accesses. If so, it can be
+ // replaced, otherwise - no.
+ for (auto &MO : MRI->use_nodbg_operands(Last.getOperand(0).getReg())) {
+ MachineInstr &MI = *MO.getParent();
+
+ // Get the number of the first memory operand.
+ const MCInstrDesc &Desc = MI.getDesc();
+ int MemOpNo = X86II::getMemoryOperandNo(Desc.TSFlags);
+
+ // If the use instruction has no memory operand - the LEA is not
+ // replaceable.
+ if (MemOpNo < 0)
+ return false;
+
+ MemOpNo += X86II::getOperandBias(Desc);
+
+ // If the address base of the use instruction is not the LEA def register -
+ // the LEA is not replaceable.
+ if (!isIdenticalOp(MI.getOperand(MemOpNo + X86::AddrBaseReg), MO))
+ return false;
+
+ // If the LEA def register is used as any other operand of the use
+ // instruction - the LEA is not replaceable.
+ for (unsigned i = 0; i < MI.getNumOperands(); i++)
+ if (i != (unsigned)(MemOpNo + X86::AddrBaseReg) &&
+ isIdenticalOp(MI.getOperand(i), MO))
+ return false;
+
+ // Check that the new address displacement will fit 4 bytes.
+ if (MI.getOperand(MemOpNo + X86::AddrDisp).isImm() &&
+ !isInt<32>(MI.getOperand(MemOpNo + X86::AddrDisp).getImm() +
+ AddrDispShift))
+ return false;
+ }
+
+ return true;
+}
+
+void X86OptimizeLEAPass::findLEAs(const MachineBasicBlock &MBB,
+ MemOpMap &LEAs) {
+ unsigned Pos = 0;
+ for (auto &MI : MBB) {
+ // Assign the position number to the instruction. Note that we are going to
+ // move some instructions during the optimization however there will never
+ // be a need to move two instructions before any selected instruction. So to
+ // avoid multiple positions' updates during moves we just increase position
+ // counter by two leaving a free space for instructions which will be moved.
+ InstrPos[&MI] = Pos += 2;
+
+ if (isLEA(MI))
+ LEAs[getMemOpKey(MI, 1)].push_back(const_cast<MachineInstr *>(&MI));
+ }
+}
+
+// Try to find load and store instructions which recalculate addresses already
+// calculated by some LEA and replace their memory operands with its def
+// register.
+bool X86OptimizeLEAPass::removeRedundantAddrCalc(MemOpMap &LEAs) {
+ bool Changed = false;
+
+ assert(!LEAs.empty());
+ MachineBasicBlock *MBB = (*LEAs.begin()->second.begin())->getParent();
+
+ // Process all instructions in basic block.
+ for (auto I = MBB->begin(), E = MBB->end(); I != E;) {
+ MachineInstr &MI = *I++;
+
+ // Instruction must be load or store.
+ if (!MI.mayLoadOrStore())
+ continue;
+
+ // Get the number of the first memory operand.
+ const MCInstrDesc &Desc = MI.getDesc();
+ int MemOpNo = X86II::getMemoryOperandNo(Desc.TSFlags);
+
+ // If instruction has no memory operand - skip it.
+ if (MemOpNo < 0)
+ continue;
+
+ MemOpNo += X86II::getOperandBias(Desc);
+
+ // Do not call chooseBestLEA if there was no matching LEA
+ auto Insns = LEAs.find(getMemOpKey(MI, MemOpNo));
+ if (Insns == LEAs.end())
+ continue;
+
+ // Get the best LEA instruction to replace address calculation.
+ MachineInstr *DefMI;
+ int64_t AddrDispShift;
+ int Dist;
+ if (!chooseBestLEA(Insns->second, MI, DefMI, AddrDispShift, Dist))
+ continue;
+
+ // If LEA occurs before current instruction, we can freely replace
+ // the instruction. If LEA occurs after, we can lift LEA above the
+ // instruction and this way to be able to replace it. Since LEA and the
+ // instruction have similar memory operands (thus, the same def
+ // instructions for these operands), we can always do that, without
+ // worries of using registers before their defs.
+ if (Dist < 0) {
+ DefMI->removeFromParent();
+ MBB->insert(MachineBasicBlock::iterator(&MI), DefMI);
+ InstrPos[DefMI] = InstrPos[&MI] - 1;
+
+ // Make sure the instructions' position numbers are sane.
+ assert(((InstrPos[DefMI] == 1 &&
+ MachineBasicBlock::iterator(DefMI) == MBB->begin()) ||
+ InstrPos[DefMI] >
+ InstrPos[&*std::prev(MachineBasicBlock::iterator(DefMI))]) &&
+ "Instruction positioning is broken");
+ }
+
+ // Since we can possibly extend register lifetime, clear kill flags.
+ MRI->clearKillFlags(DefMI->getOperand(0).getReg());
+
+ ++NumSubstLEAs;
+ LLVM_DEBUG(dbgs() << "OptimizeLEAs: Candidate to replace: "; MI.dump(););
+
+ // Change instruction operands.
+ MI.getOperand(MemOpNo + X86::AddrBaseReg)
+ .ChangeToRegister(DefMI->getOperand(0).getReg(), false);
+ MI.getOperand(MemOpNo + X86::AddrScaleAmt).ChangeToImmediate(1);
+ MI.getOperand(MemOpNo + X86::AddrIndexReg)
+ .ChangeToRegister(X86::NoRegister, false);
+ MI.getOperand(MemOpNo + X86::AddrDisp).ChangeToImmediate(AddrDispShift);
+ MI.getOperand(MemOpNo + X86::AddrSegmentReg)
+ .ChangeToRegister(X86::NoRegister, false);
+
+ LLVM_DEBUG(dbgs() << "OptimizeLEAs: Replaced by: "; MI.dump(););
+
+ Changed = true;
+ }
+
+ return Changed;
+}
+
+MachineInstr *X86OptimizeLEAPass::replaceDebugValue(MachineInstr &MI,
+ unsigned VReg,
+ int64_t AddrDispShift) {
+ const DIExpression *Expr = MI.getDebugExpression();
+ if (AddrDispShift != 0)
+ Expr = DIExpression::prepend(Expr, DIExpression::StackValue, AddrDispShift);
+
+ // Replace DBG_VALUE instruction with modified version.
+ MachineBasicBlock *MBB = MI.getParent();
+ DebugLoc DL = MI.getDebugLoc();
+ bool IsIndirect = MI.isIndirectDebugValue();
+ const MDNode *Var = MI.getDebugVariable();
+ if (IsIndirect)
+ assert(MI.getOperand(1).getImm() == 0 && "DBG_VALUE with nonzero offset");
+ return BuildMI(*MBB, MBB->erase(&MI), DL, TII->get(TargetOpcode::DBG_VALUE),
+ IsIndirect, VReg, Var, Expr);
+}
+
+// Try to find similar LEAs in the list and replace one with another.
+bool X86OptimizeLEAPass::removeRedundantLEAs(MemOpMap &LEAs) {
+ bool Changed = false;
+
+ // Loop over all entries in the table.
+ for (auto &E : LEAs) {
+ auto &List = E.second;
+
+ // Loop over all LEA pairs.
+ auto I1 = List.begin();
+ while (I1 != List.end()) {
+ MachineInstr &First = **I1;
+ auto I2 = std::next(I1);
+ while (I2 != List.end()) {
+ MachineInstr &Last = **I2;
+ int64_t AddrDispShift;
+
+ // LEAs should be in occurrence order in the list, so we can freely
+ // replace later LEAs with earlier ones.
+ assert(calcInstrDist(First, Last) > 0 &&
+ "LEAs must be in occurrence order in the list");
+
+ // Check that the Last LEA instruction can be replaced by the First.
+ if (!isReplaceable(First, Last, AddrDispShift)) {
+ ++I2;
+ continue;
+ }
+
+ // Loop over all uses of the Last LEA and update their operands. Note
+ // that the correctness of this has already been checked in the
+ // isReplaceable function.
+ Register FirstVReg = First.getOperand(0).getReg();
+ Register LastVReg = Last.getOperand(0).getReg();
+ for (auto UI = MRI->use_begin(LastVReg), UE = MRI->use_end();
+ UI != UE;) {
+ MachineOperand &MO = *UI++;
+ MachineInstr &MI = *MO.getParent();
+
+ if (MI.isDebugValue()) {
+ // Replace DBG_VALUE instruction with modified version using the
+ // register from the replacing LEA and the address displacement
+ // between the LEA instructions.
+ replaceDebugValue(MI, FirstVReg, AddrDispShift);
+ continue;
+ }
+
+ // Get the number of the first memory operand.
+ const MCInstrDesc &Desc = MI.getDesc();
+ int MemOpNo =
+ X86II::getMemoryOperandNo(Desc.TSFlags) +
+ X86II::getOperandBias(Desc);
+
+ // Update address base.
+ MO.setReg(FirstVReg);
+
+ // Update address disp.
+ MachineOperand &Op = MI.getOperand(MemOpNo + X86::AddrDisp);
+ if (Op.isImm())
+ Op.setImm(Op.getImm() + AddrDispShift);
+ else if (!Op.isJTI())
+ Op.setOffset(Op.getOffset() + AddrDispShift);
+ }
+
+ // Since we can possibly extend register lifetime, clear kill flags.
+ MRI->clearKillFlags(FirstVReg);
+
+ ++NumRedundantLEAs;
+ LLVM_DEBUG(dbgs() << "OptimizeLEAs: Remove redundant LEA: ";
+ Last.dump(););
+
+ // By this moment, all of the Last LEA's uses must be replaced. So we
+ // can freely remove it.
+ assert(MRI->use_empty(LastVReg) &&
+ "The LEA's def register must have no uses");
+ Last.eraseFromParent();
+
+ // Erase removed LEA from the list.
+ I2 = List.erase(I2);
+
+ Changed = true;
+ }
+ ++I1;
+ }
+ }
+
+ return Changed;
+}
+
+bool X86OptimizeLEAPass::runOnMachineFunction(MachineFunction &MF) {
+ bool Changed = false;
+
+ if (DisableX86LEAOpt || skipFunction(MF.getFunction()))
+ return false;
+
+ MRI = &MF.getRegInfo();
+ TII = MF.getSubtarget<X86Subtarget>().getInstrInfo();
+ TRI = MF.getSubtarget<X86Subtarget>().getRegisterInfo();
+ auto *PSI =
+ &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
+ auto *MBFI = (PSI && PSI->hasProfileSummary()) ?
+ &getAnalysis<LazyMachineBlockFrequencyInfoPass>().getBFI() :
+ nullptr;
+
+ // Process all basic blocks.
+ for (auto &MBB : MF) {
+ MemOpMap LEAs;
+ InstrPos.clear();
+
+ // Find all LEA instructions in basic block.
+ findLEAs(MBB, LEAs);
+
+ // If current basic block has no LEAs, move on to the next one.
+ if (LEAs.empty())
+ continue;
+
+ // Remove redundant LEA instructions.
+ Changed |= removeRedundantLEAs(LEAs);
+
+ // Remove redundant address calculations. Do it only for -Os/-Oz since only
+ // a code size gain is expected from this part of the pass.
+ bool OptForSize = MF.getFunction().hasOptSize() ||
+ llvm::shouldOptimizeForSize(&MBB, PSI, MBFI);
+ if (OptForSize)
+ Changed |= removeRedundantAddrCalc(LEAs);
+ }
+
+ return Changed;
+}