diff options
Diffstat (limited to 'contrib/llvm-project/llvm/lib/Target/X86/X86OptimizeLEAs.cpp')
| -rw-r--r-- | contrib/llvm-project/llvm/lib/Target/X86/X86OptimizeLEAs.cpp | 723 | 
1 files changed, 723 insertions, 0 deletions
diff --git a/contrib/llvm-project/llvm/lib/Target/X86/X86OptimizeLEAs.cpp b/contrib/llvm-project/llvm/lib/Target/X86/X86OptimizeLEAs.cpp new file mode 100644 index 000000000000..c8899a85118e --- /dev/null +++ b/contrib/llvm-project/llvm/lib/Target/X86/X86OptimizeLEAs.cpp @@ -0,0 +1,723 @@ +//===- X86OptimizeLEAs.cpp - optimize usage of LEA instructions -----------===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// This file defines the pass that performs some optimizations with LEA +// instructions in order to improve performance and code size. +// Currently, it does two things: +// 1) If there are two LEA instructions calculating addresses which only differ +//    by displacement inside a basic block, one of them is removed. +// 2) Address calculations in load and store instructions are replaced by +//    existing LEA def registers where possible. +// +//===----------------------------------------------------------------------===// + +#include "MCTargetDesc/X86BaseInfo.h" +#include "X86.h" +#include "X86InstrInfo.h" +#include "X86Subtarget.h" +#include "llvm/ADT/DenseMap.h" +#include "llvm/ADT/DenseMapInfo.h" +#include "llvm/ADT/Hashing.h" +#include "llvm/ADT/SmallVector.h" +#include "llvm/ADT/Statistic.h" +#include "llvm/Analysis/ProfileSummaryInfo.h" +#include "llvm/CodeGen/LazyMachineBlockFrequencyInfo.h" +#include "llvm/CodeGen/MachineBasicBlock.h" +#include "llvm/CodeGen/MachineFunction.h" +#include "llvm/CodeGen/MachineFunctionPass.h" +#include "llvm/CodeGen/MachineInstr.h" +#include "llvm/CodeGen/MachineInstrBuilder.h" +#include "llvm/CodeGen/MachineOperand.h" +#include "llvm/CodeGen/MachineRegisterInfo.h" +#include "llvm/CodeGen/MachineSizeOpts.h" +#include "llvm/CodeGen/TargetOpcodes.h" +#include "llvm/CodeGen/TargetRegisterInfo.h" +#include "llvm/IR/DebugInfoMetadata.h" +#include "llvm/IR/DebugLoc.h" +#include "llvm/IR/Function.h" +#include "llvm/MC/MCInstrDesc.h" +#include "llvm/Support/CommandLine.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/ErrorHandling.h" +#include "llvm/Support/MathExtras.h" +#include "llvm/Support/raw_ostream.h" +#include <cassert> +#include <cstdint> +#include <iterator> + +using namespace llvm; + +#define DEBUG_TYPE "x86-optimize-LEAs" + +static cl::opt<bool> +    DisableX86LEAOpt("disable-x86-lea-opt", cl::Hidden, +                     cl::desc("X86: Disable LEA optimizations."), +                     cl::init(false)); + +STATISTIC(NumSubstLEAs, "Number of LEA instruction substitutions"); +STATISTIC(NumRedundantLEAs, "Number of redundant LEA instructions removed"); + +/// Returns true if two machine operands are identical and they are not +/// physical registers. +static inline bool isIdenticalOp(const MachineOperand &MO1, +                                 const MachineOperand &MO2); + +/// Returns true if two address displacement operands are of the same +/// type and use the same symbol/index/address regardless of the offset. +static bool isSimilarDispOp(const MachineOperand &MO1, +                            const MachineOperand &MO2); + +/// Returns true if the instruction is LEA. +static inline bool isLEA(const MachineInstr &MI); + +namespace { + +/// A key based on instruction's memory operands. +class MemOpKey { +public: +  MemOpKey(const MachineOperand *Base, const MachineOperand *Scale, +           const MachineOperand *Index, const MachineOperand *Segment, +           const MachineOperand *Disp) +      : Disp(Disp) { +    Operands[0] = Base; +    Operands[1] = Scale; +    Operands[2] = Index; +    Operands[3] = Segment; +  } + +  bool operator==(const MemOpKey &Other) const { +    // Addresses' bases, scales, indices and segments must be identical. +    for (int i = 0; i < 4; ++i) +      if (!isIdenticalOp(*Operands[i], *Other.Operands[i])) +        return false; + +    // Addresses' displacements don't have to be exactly the same. It only +    // matters that they use the same symbol/index/address. Immediates' or +    // offsets' differences will be taken care of during instruction +    // substitution. +    return isSimilarDispOp(*Disp, *Other.Disp); +  } + +  // Address' base, scale, index and segment operands. +  const MachineOperand *Operands[4]; + +  // Address' displacement operand. +  const MachineOperand *Disp; +}; + +} // end anonymous namespace + +/// Provide DenseMapInfo for MemOpKey. +namespace llvm { + +template <> struct DenseMapInfo<MemOpKey> { +  using PtrInfo = DenseMapInfo<const MachineOperand *>; + +  static inline MemOpKey getEmptyKey() { +    return MemOpKey(PtrInfo::getEmptyKey(), PtrInfo::getEmptyKey(), +                    PtrInfo::getEmptyKey(), PtrInfo::getEmptyKey(), +                    PtrInfo::getEmptyKey()); +  } + +  static inline MemOpKey getTombstoneKey() { +    return MemOpKey(PtrInfo::getTombstoneKey(), PtrInfo::getTombstoneKey(), +                    PtrInfo::getTombstoneKey(), PtrInfo::getTombstoneKey(), +                    PtrInfo::getTombstoneKey()); +  } + +  static unsigned getHashValue(const MemOpKey &Val) { +    // Checking any field of MemOpKey is enough to determine if the key is +    // empty or tombstone. +    assert(Val.Disp != PtrInfo::getEmptyKey() && "Cannot hash the empty key"); +    assert(Val.Disp != PtrInfo::getTombstoneKey() && +           "Cannot hash the tombstone key"); + +    hash_code Hash = hash_combine(*Val.Operands[0], *Val.Operands[1], +                                  *Val.Operands[2], *Val.Operands[3]); + +    // If the address displacement is an immediate, it should not affect the +    // hash so that memory operands which differ only be immediate displacement +    // would have the same hash. If the address displacement is something else, +    // we should reflect symbol/index/address in the hash. +    switch (Val.Disp->getType()) { +    case MachineOperand::MO_Immediate: +      break; +    case MachineOperand::MO_ConstantPoolIndex: +    case MachineOperand::MO_JumpTableIndex: +      Hash = hash_combine(Hash, Val.Disp->getIndex()); +      break; +    case MachineOperand::MO_ExternalSymbol: +      Hash = hash_combine(Hash, Val.Disp->getSymbolName()); +      break; +    case MachineOperand::MO_GlobalAddress: +      Hash = hash_combine(Hash, Val.Disp->getGlobal()); +      break; +    case MachineOperand::MO_BlockAddress: +      Hash = hash_combine(Hash, Val.Disp->getBlockAddress()); +      break; +    case MachineOperand::MO_MCSymbol: +      Hash = hash_combine(Hash, Val.Disp->getMCSymbol()); +      break; +    case MachineOperand::MO_MachineBasicBlock: +      Hash = hash_combine(Hash, Val.Disp->getMBB()); +      break; +    default: +      llvm_unreachable("Invalid address displacement operand"); +    } + +    return (unsigned)Hash; +  } + +  static bool isEqual(const MemOpKey &LHS, const MemOpKey &RHS) { +    // Checking any field of MemOpKey is enough to determine if the key is +    // empty or tombstone. +    if (RHS.Disp == PtrInfo::getEmptyKey()) +      return LHS.Disp == PtrInfo::getEmptyKey(); +    if (RHS.Disp == PtrInfo::getTombstoneKey()) +      return LHS.Disp == PtrInfo::getTombstoneKey(); +    return LHS == RHS; +  } +}; + +} // end namespace llvm + +/// Returns a hash table key based on memory operands of \p MI. The +/// number of the first memory operand of \p MI is specified through \p N. +static inline MemOpKey getMemOpKey(const MachineInstr &MI, unsigned N) { +  assert((isLEA(MI) || MI.mayLoadOrStore()) && +         "The instruction must be a LEA, a load or a store"); +  return MemOpKey(&MI.getOperand(N + X86::AddrBaseReg), +                  &MI.getOperand(N + X86::AddrScaleAmt), +                  &MI.getOperand(N + X86::AddrIndexReg), +                  &MI.getOperand(N + X86::AddrSegmentReg), +                  &MI.getOperand(N + X86::AddrDisp)); +} + +static inline bool isIdenticalOp(const MachineOperand &MO1, +                                 const MachineOperand &MO2) { +  return MO1.isIdenticalTo(MO2) && +         (!MO1.isReg() || !Register::isPhysicalRegister(MO1.getReg())); +} + +#ifndef NDEBUG +static bool isValidDispOp(const MachineOperand &MO) { +  return MO.isImm() || MO.isCPI() || MO.isJTI() || MO.isSymbol() || +         MO.isGlobal() || MO.isBlockAddress() || MO.isMCSymbol() || MO.isMBB(); +} +#endif + +static bool isSimilarDispOp(const MachineOperand &MO1, +                            const MachineOperand &MO2) { +  assert(isValidDispOp(MO1) && isValidDispOp(MO2) && +         "Address displacement operand is not valid"); +  return (MO1.isImm() && MO2.isImm()) || +         (MO1.isCPI() && MO2.isCPI() && MO1.getIndex() == MO2.getIndex()) || +         (MO1.isJTI() && MO2.isJTI() && MO1.getIndex() == MO2.getIndex()) || +         (MO1.isSymbol() && MO2.isSymbol() && +          MO1.getSymbolName() == MO2.getSymbolName()) || +         (MO1.isGlobal() && MO2.isGlobal() && +          MO1.getGlobal() == MO2.getGlobal()) || +         (MO1.isBlockAddress() && MO2.isBlockAddress() && +          MO1.getBlockAddress() == MO2.getBlockAddress()) || +         (MO1.isMCSymbol() && MO2.isMCSymbol() && +          MO1.getMCSymbol() == MO2.getMCSymbol()) || +         (MO1.isMBB() && MO2.isMBB() && MO1.getMBB() == MO2.getMBB()); +} + +static inline bool isLEA(const MachineInstr &MI) { +  unsigned Opcode = MI.getOpcode(); +  return Opcode == X86::LEA16r || Opcode == X86::LEA32r || +         Opcode == X86::LEA64r || Opcode == X86::LEA64_32r; +} + +namespace { + +class X86OptimizeLEAPass : public MachineFunctionPass { +public: +  X86OptimizeLEAPass() : MachineFunctionPass(ID) {} + +  StringRef getPassName() const override { return "X86 LEA Optimize"; } + +  /// Loop over all of the basic blocks, replacing address +  /// calculations in load and store instructions, if it's already +  /// been calculated by LEA. Also, remove redundant LEAs. +  bool runOnMachineFunction(MachineFunction &MF) override; + +  static char ID; + +  void getAnalysisUsage(AnalysisUsage &AU) const override { +    AU.addRequired<ProfileSummaryInfoWrapperPass>(); +    AU.addRequired<LazyMachineBlockFrequencyInfoPass>(); +    MachineFunctionPass::getAnalysisUsage(AU); +  } + +private: +  using MemOpMap = DenseMap<MemOpKey, SmallVector<MachineInstr *, 16>>; + +  /// Returns a distance between two instructions inside one basic block. +  /// Negative result means, that instructions occur in reverse order. +  int calcInstrDist(const MachineInstr &First, const MachineInstr &Last); + +  /// Choose the best \p LEA instruction from the \p List to replace +  /// address calculation in \p MI instruction. Return the address displacement +  /// and the distance between \p MI and the chosen \p BestLEA in +  /// \p AddrDispShift and \p Dist. +  bool chooseBestLEA(const SmallVectorImpl<MachineInstr *> &List, +                     const MachineInstr &MI, MachineInstr *&BestLEA, +                     int64_t &AddrDispShift, int &Dist); + +  /// Returns the difference between addresses' displacements of \p MI1 +  /// and \p MI2. The numbers of the first memory operands for the instructions +  /// are specified through \p N1 and \p N2. +  int64_t getAddrDispShift(const MachineInstr &MI1, unsigned N1, +                           const MachineInstr &MI2, unsigned N2) const; + +  /// Returns true if the \p Last LEA instruction can be replaced by the +  /// \p First. The difference between displacements of the addresses calculated +  /// by these LEAs is returned in \p AddrDispShift. It'll be used for proper +  /// replacement of the \p Last LEA's uses with the \p First's def register. +  bool isReplaceable(const MachineInstr &First, const MachineInstr &Last, +                     int64_t &AddrDispShift) const; + +  /// Find all LEA instructions in the basic block. Also, assign position +  /// numbers to all instructions in the basic block to speed up calculation of +  /// distance between them. +  void findLEAs(const MachineBasicBlock &MBB, MemOpMap &LEAs); + +  /// Removes redundant address calculations. +  bool removeRedundantAddrCalc(MemOpMap &LEAs); + +  /// Replace debug value MI with a new debug value instruction using register +  /// VReg with an appropriate offset and DIExpression to incorporate the +  /// address displacement AddrDispShift. Return new debug value instruction. +  MachineInstr *replaceDebugValue(MachineInstr &MI, unsigned VReg, +                                  int64_t AddrDispShift); + +  /// Removes LEAs which calculate similar addresses. +  bool removeRedundantLEAs(MemOpMap &LEAs); + +  DenseMap<const MachineInstr *, unsigned> InstrPos; + +  MachineRegisterInfo *MRI = nullptr; +  const X86InstrInfo *TII = nullptr; +  const X86RegisterInfo *TRI = nullptr; +}; + +} // end anonymous namespace + +char X86OptimizeLEAPass::ID = 0; + +FunctionPass *llvm::createX86OptimizeLEAs() { return new X86OptimizeLEAPass(); } +INITIALIZE_PASS(X86OptimizeLEAPass, DEBUG_TYPE, "X86 optimize LEA pass", false, +                false) + +int X86OptimizeLEAPass::calcInstrDist(const MachineInstr &First, +                                      const MachineInstr &Last) { +  // Both instructions must be in the same basic block and they must be +  // presented in InstrPos. +  assert(Last.getParent() == First.getParent() && +         "Instructions are in different basic blocks"); +  assert(InstrPos.find(&First) != InstrPos.end() && +         InstrPos.find(&Last) != InstrPos.end() && +         "Instructions' positions are undefined"); + +  return InstrPos[&Last] - InstrPos[&First]; +} + +// Find the best LEA instruction in the List to replace address recalculation in +// MI. Such LEA must meet these requirements: +// 1) The address calculated by the LEA differs only by the displacement from +//    the address used in MI. +// 2) The register class of the definition of the LEA is compatible with the +//    register class of the address base register of MI. +// 3) Displacement of the new memory operand should fit in 1 byte if possible. +// 4) The LEA should be as close to MI as possible, and prior to it if +//    possible. +bool X86OptimizeLEAPass::chooseBestLEA( +    const SmallVectorImpl<MachineInstr *> &List, const MachineInstr &MI, +    MachineInstr *&BestLEA, int64_t &AddrDispShift, int &Dist) { +  const MachineFunction *MF = MI.getParent()->getParent(); +  const MCInstrDesc &Desc = MI.getDesc(); +  int MemOpNo = X86II::getMemoryOperandNo(Desc.TSFlags) + +                X86II::getOperandBias(Desc); + +  BestLEA = nullptr; + +  // Loop over all LEA instructions. +  for (auto DefMI : List) { +    // Get new address displacement. +    int64_t AddrDispShiftTemp = getAddrDispShift(MI, MemOpNo, *DefMI, 1); + +    // Make sure address displacement fits 4 bytes. +    if (!isInt<32>(AddrDispShiftTemp)) +      continue; + +    // Check that LEA def register can be used as MI address base. Some +    // instructions can use a limited set of registers as address base, for +    // example MOV8mr_NOREX. We could constrain the register class of the LEA +    // def to suit MI, however since this case is very rare and hard to +    // reproduce in a test it's just more reliable to skip the LEA. +    if (TII->getRegClass(Desc, MemOpNo + X86::AddrBaseReg, TRI, *MF) != +        MRI->getRegClass(DefMI->getOperand(0).getReg())) +      continue; + +    // Choose the closest LEA instruction from the list, prior to MI if +    // possible. Note that we took into account resulting address displacement +    // as well. Also note that the list is sorted by the order in which the LEAs +    // occur, so the break condition is pretty simple. +    int DistTemp = calcInstrDist(*DefMI, MI); +    assert(DistTemp != 0 && +           "The distance between two different instructions cannot be zero"); +    if (DistTemp > 0 || BestLEA == nullptr) { +      // Do not update return LEA, if the current one provides a displacement +      // which fits in 1 byte, while the new candidate does not. +      if (BestLEA != nullptr && !isInt<8>(AddrDispShiftTemp) && +          isInt<8>(AddrDispShift)) +        continue; + +      BestLEA = DefMI; +      AddrDispShift = AddrDispShiftTemp; +      Dist = DistTemp; +    } + +    // FIXME: Maybe we should not always stop at the first LEA after MI. +    if (DistTemp < 0) +      break; +  } + +  return BestLEA != nullptr; +} + +// Get the difference between the addresses' displacements of the two +// instructions \p MI1 and \p MI2. The numbers of the first memory operands are +// passed through \p N1 and \p N2. +int64_t X86OptimizeLEAPass::getAddrDispShift(const MachineInstr &MI1, +                                             unsigned N1, +                                             const MachineInstr &MI2, +                                             unsigned N2) const { +  const MachineOperand &Op1 = MI1.getOperand(N1 + X86::AddrDisp); +  const MachineOperand &Op2 = MI2.getOperand(N2 + X86::AddrDisp); + +  assert(isSimilarDispOp(Op1, Op2) && +         "Address displacement operands are not compatible"); + +  // After the assert above we can be sure that both operands are of the same +  // valid type and use the same symbol/index/address, thus displacement shift +  // calculation is rather simple. +  if (Op1.isJTI()) +    return 0; +  return Op1.isImm() ? Op1.getImm() - Op2.getImm() +                     : Op1.getOffset() - Op2.getOffset(); +} + +// Check that the Last LEA can be replaced by the First LEA. To be so, +// these requirements must be met: +// 1) Addresses calculated by LEAs differ only by displacement. +// 2) Def registers of LEAs belong to the same class. +// 3) All uses of the Last LEA def register are replaceable, thus the +//    register is used only as address base. +bool X86OptimizeLEAPass::isReplaceable(const MachineInstr &First, +                                       const MachineInstr &Last, +                                       int64_t &AddrDispShift) const { +  assert(isLEA(First) && isLEA(Last) && +         "The function works only with LEA instructions"); + +  // Make sure that LEA def registers belong to the same class. There may be +  // instructions (like MOV8mr_NOREX) which allow a limited set of registers to +  // be used as their operands, so we must be sure that replacing one LEA +  // with another won't lead to putting a wrong register in the instruction. +  if (MRI->getRegClass(First.getOperand(0).getReg()) != +      MRI->getRegClass(Last.getOperand(0).getReg())) +    return false; + +  // Get new address displacement. +  AddrDispShift = getAddrDispShift(Last, 1, First, 1); + +  // Loop over all uses of the Last LEA to check that its def register is +  // used only as address base for memory accesses. If so, it can be +  // replaced, otherwise - no. +  for (auto &MO : MRI->use_nodbg_operands(Last.getOperand(0).getReg())) { +    MachineInstr &MI = *MO.getParent(); + +    // Get the number of the first memory operand. +    const MCInstrDesc &Desc = MI.getDesc(); +    int MemOpNo = X86II::getMemoryOperandNo(Desc.TSFlags); + +    // If the use instruction has no memory operand - the LEA is not +    // replaceable. +    if (MemOpNo < 0) +      return false; + +    MemOpNo += X86II::getOperandBias(Desc); + +    // If the address base of the use instruction is not the LEA def register - +    // the LEA is not replaceable. +    if (!isIdenticalOp(MI.getOperand(MemOpNo + X86::AddrBaseReg), MO)) +      return false; + +    // If the LEA def register is used as any other operand of the use +    // instruction - the LEA is not replaceable. +    for (unsigned i = 0; i < MI.getNumOperands(); i++) +      if (i != (unsigned)(MemOpNo + X86::AddrBaseReg) && +          isIdenticalOp(MI.getOperand(i), MO)) +        return false; + +    // Check that the new address displacement will fit 4 bytes. +    if (MI.getOperand(MemOpNo + X86::AddrDisp).isImm() && +        !isInt<32>(MI.getOperand(MemOpNo + X86::AddrDisp).getImm() + +                   AddrDispShift)) +      return false; +  } + +  return true; +} + +void X86OptimizeLEAPass::findLEAs(const MachineBasicBlock &MBB, +                                  MemOpMap &LEAs) { +  unsigned Pos = 0; +  for (auto &MI : MBB) { +    // Assign the position number to the instruction. Note that we are going to +    // move some instructions during the optimization however there will never +    // be a need to move two instructions before any selected instruction. So to +    // avoid multiple positions' updates during moves we just increase position +    // counter by two leaving a free space for instructions which will be moved. +    InstrPos[&MI] = Pos += 2; + +    if (isLEA(MI)) +      LEAs[getMemOpKey(MI, 1)].push_back(const_cast<MachineInstr *>(&MI)); +  } +} + +// Try to find load and store instructions which recalculate addresses already +// calculated by some LEA and replace their memory operands with its def +// register. +bool X86OptimizeLEAPass::removeRedundantAddrCalc(MemOpMap &LEAs) { +  bool Changed = false; + +  assert(!LEAs.empty()); +  MachineBasicBlock *MBB = (*LEAs.begin()->second.begin())->getParent(); + +  // Process all instructions in basic block. +  for (auto I = MBB->begin(), E = MBB->end(); I != E;) { +    MachineInstr &MI = *I++; + +    // Instruction must be load or store. +    if (!MI.mayLoadOrStore()) +      continue; + +    // Get the number of the first memory operand. +    const MCInstrDesc &Desc = MI.getDesc(); +    int MemOpNo = X86II::getMemoryOperandNo(Desc.TSFlags); + +    // If instruction has no memory operand - skip it. +    if (MemOpNo < 0) +      continue; + +    MemOpNo += X86II::getOperandBias(Desc); + +    // Do not call chooseBestLEA if there was no matching LEA +    auto Insns = LEAs.find(getMemOpKey(MI, MemOpNo)); +    if (Insns == LEAs.end()) +      continue; + +    // Get the best LEA instruction to replace address calculation. +    MachineInstr *DefMI; +    int64_t AddrDispShift; +    int Dist; +    if (!chooseBestLEA(Insns->second, MI, DefMI, AddrDispShift, Dist)) +      continue; + +    // If LEA occurs before current instruction, we can freely replace +    // the instruction. If LEA occurs after, we can lift LEA above the +    // instruction and this way to be able to replace it. Since LEA and the +    // instruction have similar memory operands (thus, the same def +    // instructions for these operands), we can always do that, without +    // worries of using registers before their defs. +    if (Dist < 0) { +      DefMI->removeFromParent(); +      MBB->insert(MachineBasicBlock::iterator(&MI), DefMI); +      InstrPos[DefMI] = InstrPos[&MI] - 1; + +      // Make sure the instructions' position numbers are sane. +      assert(((InstrPos[DefMI] == 1 && +               MachineBasicBlock::iterator(DefMI) == MBB->begin()) || +              InstrPos[DefMI] > +                  InstrPos[&*std::prev(MachineBasicBlock::iterator(DefMI))]) && +             "Instruction positioning is broken"); +    } + +    // Since we can possibly extend register lifetime, clear kill flags. +    MRI->clearKillFlags(DefMI->getOperand(0).getReg()); + +    ++NumSubstLEAs; +    LLVM_DEBUG(dbgs() << "OptimizeLEAs: Candidate to replace: "; MI.dump();); + +    // Change instruction operands. +    MI.getOperand(MemOpNo + X86::AddrBaseReg) +        .ChangeToRegister(DefMI->getOperand(0).getReg(), false); +    MI.getOperand(MemOpNo + X86::AddrScaleAmt).ChangeToImmediate(1); +    MI.getOperand(MemOpNo + X86::AddrIndexReg) +        .ChangeToRegister(X86::NoRegister, false); +    MI.getOperand(MemOpNo + X86::AddrDisp).ChangeToImmediate(AddrDispShift); +    MI.getOperand(MemOpNo + X86::AddrSegmentReg) +        .ChangeToRegister(X86::NoRegister, false); + +    LLVM_DEBUG(dbgs() << "OptimizeLEAs: Replaced by: "; MI.dump();); + +    Changed = true; +  } + +  return Changed; +} + +MachineInstr *X86OptimizeLEAPass::replaceDebugValue(MachineInstr &MI, +                                                    unsigned VReg, +                                                    int64_t AddrDispShift) { +  const DIExpression *Expr = MI.getDebugExpression(); +  if (AddrDispShift != 0) +    Expr = DIExpression::prepend(Expr, DIExpression::StackValue, AddrDispShift); + +  // Replace DBG_VALUE instruction with modified version. +  MachineBasicBlock *MBB = MI.getParent(); +  DebugLoc DL = MI.getDebugLoc(); +  bool IsIndirect = MI.isIndirectDebugValue(); +  const MDNode *Var = MI.getDebugVariable(); +  if (IsIndirect) +    assert(MI.getOperand(1).getImm() == 0 && "DBG_VALUE with nonzero offset"); +  return BuildMI(*MBB, MBB->erase(&MI), DL, TII->get(TargetOpcode::DBG_VALUE), +                 IsIndirect, VReg, Var, Expr); +} + +// Try to find similar LEAs in the list and replace one with another. +bool X86OptimizeLEAPass::removeRedundantLEAs(MemOpMap &LEAs) { +  bool Changed = false; + +  // Loop over all entries in the table. +  for (auto &E : LEAs) { +    auto &List = E.second; + +    // Loop over all LEA pairs. +    auto I1 = List.begin(); +    while (I1 != List.end()) { +      MachineInstr &First = **I1; +      auto I2 = std::next(I1); +      while (I2 != List.end()) { +        MachineInstr &Last = **I2; +        int64_t AddrDispShift; + +        // LEAs should be in occurrence order in the list, so we can freely +        // replace later LEAs with earlier ones. +        assert(calcInstrDist(First, Last) > 0 && +               "LEAs must be in occurrence order in the list"); + +        // Check that the Last LEA instruction can be replaced by the First. +        if (!isReplaceable(First, Last, AddrDispShift)) { +          ++I2; +          continue; +        } + +        // Loop over all uses of the Last LEA and update their operands. Note +        // that the correctness of this has already been checked in the +        // isReplaceable function. +        Register FirstVReg = First.getOperand(0).getReg(); +        Register LastVReg = Last.getOperand(0).getReg(); +        for (auto UI = MRI->use_begin(LastVReg), UE = MRI->use_end(); +             UI != UE;) { +          MachineOperand &MO = *UI++; +          MachineInstr &MI = *MO.getParent(); + +          if (MI.isDebugValue()) { +            // Replace DBG_VALUE instruction with modified version using the +            // register from the replacing LEA and the address displacement +            // between the LEA instructions. +            replaceDebugValue(MI, FirstVReg, AddrDispShift); +            continue; +          } + +          // Get the number of the first memory operand. +          const MCInstrDesc &Desc = MI.getDesc(); +          int MemOpNo = +              X86II::getMemoryOperandNo(Desc.TSFlags) + +              X86II::getOperandBias(Desc); + +          // Update address base. +          MO.setReg(FirstVReg); + +          // Update address disp. +          MachineOperand &Op = MI.getOperand(MemOpNo + X86::AddrDisp); +          if (Op.isImm()) +            Op.setImm(Op.getImm() + AddrDispShift); +          else if (!Op.isJTI()) +            Op.setOffset(Op.getOffset() + AddrDispShift); +        } + +        // Since we can possibly extend register lifetime, clear kill flags. +        MRI->clearKillFlags(FirstVReg); + +        ++NumRedundantLEAs; +        LLVM_DEBUG(dbgs() << "OptimizeLEAs: Remove redundant LEA: "; +                   Last.dump();); + +        // By this moment, all of the Last LEA's uses must be replaced. So we +        // can freely remove it. +        assert(MRI->use_empty(LastVReg) && +               "The LEA's def register must have no uses"); +        Last.eraseFromParent(); + +        // Erase removed LEA from the list. +        I2 = List.erase(I2); + +        Changed = true; +      } +      ++I1; +    } +  } + +  return Changed; +} + +bool X86OptimizeLEAPass::runOnMachineFunction(MachineFunction &MF) { +  bool Changed = false; + +  if (DisableX86LEAOpt || skipFunction(MF.getFunction())) +    return false; + +  MRI = &MF.getRegInfo(); +  TII = MF.getSubtarget<X86Subtarget>().getInstrInfo(); +  TRI = MF.getSubtarget<X86Subtarget>().getRegisterInfo(); +  auto *PSI = +      &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); +  auto *MBFI = (PSI && PSI->hasProfileSummary()) ? +               &getAnalysis<LazyMachineBlockFrequencyInfoPass>().getBFI() : +               nullptr; + +  // Process all basic blocks. +  for (auto &MBB : MF) { +    MemOpMap LEAs; +    InstrPos.clear(); + +    // Find all LEA instructions in basic block. +    findLEAs(MBB, LEAs); + +    // If current basic block has no LEAs, move on to the next one. +    if (LEAs.empty()) +      continue; + +    // Remove redundant LEA instructions. +    Changed |= removeRedundantLEAs(LEAs); + +    // Remove redundant address calculations. Do it only for -Os/-Oz since only +    // a code size gain is expected from this part of the pass. +    bool OptForSize = MF.getFunction().hasOptSize() || +                      llvm::shouldOptimizeForSize(&MBB, PSI, MBFI); +    if (OptForSize) +      Changed |= removeRedundantAddrCalc(LEAs); +  } + +  return Changed; +}  | 
