aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm-project/llvm/lib/Target/X86/X86TargetTransformInfo.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm-project/llvm/lib/Target/X86/X86TargetTransformInfo.cpp')
-rw-r--r--contrib/llvm-project/llvm/lib/Target/X86/X86TargetTransformInfo.cpp4515
1 files changed, 4515 insertions, 0 deletions
diff --git a/contrib/llvm-project/llvm/lib/Target/X86/X86TargetTransformInfo.cpp b/contrib/llvm-project/llvm/lib/Target/X86/X86TargetTransformInfo.cpp
new file mode 100644
index 000000000000..cc18e55656ef
--- /dev/null
+++ b/contrib/llvm-project/llvm/lib/Target/X86/X86TargetTransformInfo.cpp
@@ -0,0 +1,4515 @@
+//===-- X86TargetTransformInfo.cpp - X86 specific TTI pass ----------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+/// \file
+/// This file implements a TargetTransformInfo analysis pass specific to the
+/// X86 target machine. It uses the target's detailed information to provide
+/// more precise answers to certain TTI queries, while letting the target
+/// independent and default TTI implementations handle the rest.
+///
+//===----------------------------------------------------------------------===//
+/// About Cost Model numbers used below it's necessary to say the following:
+/// the numbers correspond to some "generic" X86 CPU instead of usage of
+/// concrete CPU model. Usually the numbers correspond to CPU where the feature
+/// apeared at the first time. For example, if we do Subtarget.hasSSE42() in
+/// the lookups below the cost is based on Nehalem as that was the first CPU
+/// to support that feature level and thus has most likely the worst case cost.
+/// Some examples of other technologies/CPUs:
+/// SSE 3 - Pentium4 / Athlon64
+/// SSE 4.1 - Penryn
+/// SSE 4.2 - Nehalem
+/// AVX - Sandy Bridge
+/// AVX2 - Haswell
+/// AVX-512 - Xeon Phi / Skylake
+/// And some examples of instruction target dependent costs (latency)
+/// divss sqrtss rsqrtss
+/// AMD K7 11-16 19 3
+/// Piledriver 9-24 13-15 5
+/// Jaguar 14 16 2
+/// Pentium II,III 18 30 2
+/// Nehalem 7-14 7-18 3
+/// Haswell 10-13 11 5
+/// TODO: Develop and implement the target dependent cost model and
+/// specialize cost numbers for different Cost Model Targets such as throughput,
+/// code size, latency and uop count.
+//===----------------------------------------------------------------------===//
+
+#include "X86TargetTransformInfo.h"
+#include "llvm/Analysis/TargetTransformInfo.h"
+#include "llvm/CodeGen/BasicTTIImpl.h"
+#include "llvm/CodeGen/CostTable.h"
+#include "llvm/CodeGen/TargetLowering.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/Support/Debug.h"
+
+using namespace llvm;
+
+#define DEBUG_TYPE "x86tti"
+
+//===----------------------------------------------------------------------===//
+//
+// X86 cost model.
+//
+//===----------------------------------------------------------------------===//
+
+TargetTransformInfo::PopcntSupportKind
+X86TTIImpl::getPopcntSupport(unsigned TyWidth) {
+ assert(isPowerOf2_32(TyWidth) && "Ty width must be power of 2");
+ // TODO: Currently the __builtin_popcount() implementation using SSE3
+ // instructions is inefficient. Once the problem is fixed, we should
+ // call ST->hasSSE3() instead of ST->hasPOPCNT().
+ return ST->hasPOPCNT() ? TTI::PSK_FastHardware : TTI::PSK_Software;
+}
+
+llvm::Optional<unsigned> X86TTIImpl::getCacheSize(
+ TargetTransformInfo::CacheLevel Level) const {
+ switch (Level) {
+ case TargetTransformInfo::CacheLevel::L1D:
+ // - Penryn
+ // - Nehalem
+ // - Westmere
+ // - Sandy Bridge
+ // - Ivy Bridge
+ // - Haswell
+ // - Broadwell
+ // - Skylake
+ // - Kabylake
+ return 32 * 1024; // 32 KByte
+ case TargetTransformInfo::CacheLevel::L2D:
+ // - Penryn
+ // - Nehalem
+ // - Westmere
+ // - Sandy Bridge
+ // - Ivy Bridge
+ // - Haswell
+ // - Broadwell
+ // - Skylake
+ // - Kabylake
+ return 256 * 1024; // 256 KByte
+ }
+
+ llvm_unreachable("Unknown TargetTransformInfo::CacheLevel");
+}
+
+llvm::Optional<unsigned> X86TTIImpl::getCacheAssociativity(
+ TargetTransformInfo::CacheLevel Level) const {
+ // - Penryn
+ // - Nehalem
+ // - Westmere
+ // - Sandy Bridge
+ // - Ivy Bridge
+ // - Haswell
+ // - Broadwell
+ // - Skylake
+ // - Kabylake
+ switch (Level) {
+ case TargetTransformInfo::CacheLevel::L1D:
+ LLVM_FALLTHROUGH;
+ case TargetTransformInfo::CacheLevel::L2D:
+ return 8;
+ }
+
+ llvm_unreachable("Unknown TargetTransformInfo::CacheLevel");
+}
+
+unsigned X86TTIImpl::getNumberOfRegisters(unsigned ClassID) const {
+ bool Vector = (ClassID == 1);
+ if (Vector && !ST->hasSSE1())
+ return 0;
+
+ if (ST->is64Bit()) {
+ if (Vector && ST->hasAVX512())
+ return 32;
+ return 16;
+ }
+ return 8;
+}
+
+unsigned X86TTIImpl::getRegisterBitWidth(bool Vector) const {
+ unsigned PreferVectorWidth = ST->getPreferVectorWidth();
+ if (Vector) {
+ if (ST->hasAVX512() && PreferVectorWidth >= 512)
+ return 512;
+ if (ST->hasAVX() && PreferVectorWidth >= 256)
+ return 256;
+ if (ST->hasSSE1() && PreferVectorWidth >= 128)
+ return 128;
+ return 0;
+ }
+
+ if (ST->is64Bit())
+ return 64;
+
+ return 32;
+}
+
+unsigned X86TTIImpl::getLoadStoreVecRegBitWidth(unsigned) const {
+ return getRegisterBitWidth(true);
+}
+
+unsigned X86TTIImpl::getMaxInterleaveFactor(unsigned VF) {
+ // If the loop will not be vectorized, don't interleave the loop.
+ // Let regular unroll to unroll the loop, which saves the overflow
+ // check and memory check cost.
+ if (VF == 1)
+ return 1;
+
+ if (ST->isAtom())
+ return 1;
+
+ // Sandybridge and Haswell have multiple execution ports and pipelined
+ // vector units.
+ if (ST->hasAVX())
+ return 4;
+
+ return 2;
+}
+
+int X86TTIImpl::getArithmeticInstrCost(unsigned Opcode, Type *Ty,
+ TTI::TargetCostKind CostKind,
+ TTI::OperandValueKind Op1Info,
+ TTI::OperandValueKind Op2Info,
+ TTI::OperandValueProperties Opd1PropInfo,
+ TTI::OperandValueProperties Opd2PropInfo,
+ ArrayRef<const Value *> Args,
+ const Instruction *CxtI) {
+ // TODO: Handle more cost kinds.
+ if (CostKind != TTI::TCK_RecipThroughput)
+ return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Op1Info,
+ Op2Info, Opd1PropInfo,
+ Opd2PropInfo, Args, CxtI);
+ // Legalize the type.
+ std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty);
+
+ int ISD = TLI->InstructionOpcodeToISD(Opcode);
+ assert(ISD && "Invalid opcode");
+
+ static const CostTblEntry GLMCostTable[] = {
+ { ISD::FDIV, MVT::f32, 18 }, // divss
+ { ISD::FDIV, MVT::v4f32, 35 }, // divps
+ { ISD::FDIV, MVT::f64, 33 }, // divsd
+ { ISD::FDIV, MVT::v2f64, 65 }, // divpd
+ };
+
+ if (ST->useGLMDivSqrtCosts())
+ if (const auto *Entry = CostTableLookup(GLMCostTable, ISD,
+ LT.second))
+ return LT.first * Entry->Cost;
+
+ static const CostTblEntry SLMCostTable[] = {
+ { ISD::MUL, MVT::v4i32, 11 }, // pmulld
+ { ISD::MUL, MVT::v8i16, 2 }, // pmullw
+ { ISD::MUL, MVT::v16i8, 14 }, // extend/pmullw/trunc sequence.
+ { ISD::FMUL, MVT::f64, 2 }, // mulsd
+ { ISD::FMUL, MVT::v2f64, 4 }, // mulpd
+ { ISD::FMUL, MVT::v4f32, 2 }, // mulps
+ { ISD::FDIV, MVT::f32, 17 }, // divss
+ { ISD::FDIV, MVT::v4f32, 39 }, // divps
+ { ISD::FDIV, MVT::f64, 32 }, // divsd
+ { ISD::FDIV, MVT::v2f64, 69 }, // divpd
+ { ISD::FADD, MVT::v2f64, 2 }, // addpd
+ { ISD::FSUB, MVT::v2f64, 2 }, // subpd
+ // v2i64/v4i64 mul is custom lowered as a series of long:
+ // multiplies(3), shifts(3) and adds(2)
+ // slm muldq version throughput is 2 and addq throughput 4
+ // thus: 3X2 (muldq throughput) + 3X1 (shift throughput) +
+ // 3X4 (addq throughput) = 17
+ { ISD::MUL, MVT::v2i64, 17 },
+ // slm addq\subq throughput is 4
+ { ISD::ADD, MVT::v2i64, 4 },
+ { ISD::SUB, MVT::v2i64, 4 },
+ };
+
+ if (ST->isSLM()) {
+ if (Args.size() == 2 && ISD == ISD::MUL && LT.second == MVT::v4i32) {
+ // Check if the operands can be shrinked into a smaller datatype.
+ bool Op1Signed = false;
+ unsigned Op1MinSize = BaseT::minRequiredElementSize(Args[0], Op1Signed);
+ bool Op2Signed = false;
+ unsigned Op2MinSize = BaseT::minRequiredElementSize(Args[1], Op2Signed);
+
+ bool signedMode = Op1Signed | Op2Signed;
+ unsigned OpMinSize = std::max(Op1MinSize, Op2MinSize);
+
+ if (OpMinSize <= 7)
+ return LT.first * 3; // pmullw/sext
+ if (!signedMode && OpMinSize <= 8)
+ return LT.first * 3; // pmullw/zext
+ if (OpMinSize <= 15)
+ return LT.first * 5; // pmullw/pmulhw/pshuf
+ if (!signedMode && OpMinSize <= 16)
+ return LT.first * 5; // pmullw/pmulhw/pshuf
+ }
+
+ if (const auto *Entry = CostTableLookup(SLMCostTable, ISD,
+ LT.second)) {
+ return LT.first * Entry->Cost;
+ }
+ }
+
+ if ((ISD == ISD::SDIV || ISD == ISD::SREM || ISD == ISD::UDIV ||
+ ISD == ISD::UREM) &&
+ (Op2Info == TargetTransformInfo::OK_UniformConstantValue ||
+ Op2Info == TargetTransformInfo::OK_NonUniformConstantValue) &&
+ Opd2PropInfo == TargetTransformInfo::OP_PowerOf2) {
+ if (ISD == ISD::SDIV || ISD == ISD::SREM) {
+ // On X86, vector signed division by constants power-of-two are
+ // normally expanded to the sequence SRA + SRL + ADD + SRA.
+ // The OperandValue properties may not be the same as that of the previous
+ // operation; conservatively assume OP_None.
+ int Cost =
+ 2 * getArithmeticInstrCost(Instruction::AShr, Ty, CostKind, Op1Info,
+ Op2Info,
+ TargetTransformInfo::OP_None,
+ TargetTransformInfo::OP_None);
+ Cost += getArithmeticInstrCost(Instruction::LShr, Ty, CostKind, Op1Info,
+ Op2Info,
+ TargetTransformInfo::OP_None,
+ TargetTransformInfo::OP_None);
+ Cost += getArithmeticInstrCost(Instruction::Add, Ty, CostKind, Op1Info,
+ Op2Info,
+ TargetTransformInfo::OP_None,
+ TargetTransformInfo::OP_None);
+
+ if (ISD == ISD::SREM) {
+ // For SREM: (X % C) is the equivalent of (X - (X/C)*C)
+ Cost += getArithmeticInstrCost(Instruction::Mul, Ty, CostKind, Op1Info,
+ Op2Info);
+ Cost += getArithmeticInstrCost(Instruction::Sub, Ty, CostKind, Op1Info,
+ Op2Info);
+ }
+
+ return Cost;
+ }
+
+ // Vector unsigned division/remainder will be simplified to shifts/masks.
+ if (ISD == ISD::UDIV)
+ return getArithmeticInstrCost(Instruction::LShr, Ty, CostKind,
+ Op1Info, Op2Info,
+ TargetTransformInfo::OP_None,
+ TargetTransformInfo::OP_None);
+
+ else // UREM
+ return getArithmeticInstrCost(Instruction::And, Ty, CostKind,
+ Op1Info, Op2Info,
+ TargetTransformInfo::OP_None,
+ TargetTransformInfo::OP_None);
+ }
+
+ static const CostTblEntry AVX512BWUniformConstCostTable[] = {
+ { ISD::SHL, MVT::v64i8, 2 }, // psllw + pand.
+ { ISD::SRL, MVT::v64i8, 2 }, // psrlw + pand.
+ { ISD::SRA, MVT::v64i8, 4 }, // psrlw, pand, pxor, psubb.
+ };
+
+ if (Op2Info == TargetTransformInfo::OK_UniformConstantValue &&
+ ST->hasBWI()) {
+ if (const auto *Entry = CostTableLookup(AVX512BWUniformConstCostTable, ISD,
+ LT.second))
+ return LT.first * Entry->Cost;
+ }
+
+ static const CostTblEntry AVX512UniformConstCostTable[] = {
+ { ISD::SRA, MVT::v2i64, 1 },
+ { ISD::SRA, MVT::v4i64, 1 },
+ { ISD::SRA, MVT::v8i64, 1 },
+
+ { ISD::SHL, MVT::v64i8, 4 }, // psllw + pand.
+ { ISD::SRL, MVT::v64i8, 4 }, // psrlw + pand.
+ { ISD::SRA, MVT::v64i8, 8 }, // psrlw, pand, pxor, psubb.
+ };
+
+ if (Op2Info == TargetTransformInfo::OK_UniformConstantValue &&
+ ST->hasAVX512()) {
+ if (const auto *Entry = CostTableLookup(AVX512UniformConstCostTable, ISD,
+ LT.second))
+ return LT.first * Entry->Cost;
+ }
+
+ static const CostTblEntry AVX2UniformConstCostTable[] = {
+ { ISD::SHL, MVT::v32i8, 2 }, // psllw + pand.
+ { ISD::SRL, MVT::v32i8, 2 }, // psrlw + pand.
+ { ISD::SRA, MVT::v32i8, 4 }, // psrlw, pand, pxor, psubb.
+
+ { ISD::SRA, MVT::v4i64, 4 }, // 2 x psrad + shuffle.
+ };
+
+ if (Op2Info == TargetTransformInfo::OK_UniformConstantValue &&
+ ST->hasAVX2()) {
+ if (const auto *Entry = CostTableLookup(AVX2UniformConstCostTable, ISD,
+ LT.second))
+ return LT.first * Entry->Cost;
+ }
+
+ static const CostTblEntry SSE2UniformConstCostTable[] = {
+ { ISD::SHL, MVT::v16i8, 2 }, // psllw + pand.
+ { ISD::SRL, MVT::v16i8, 2 }, // psrlw + pand.
+ { ISD::SRA, MVT::v16i8, 4 }, // psrlw, pand, pxor, psubb.
+
+ { ISD::SHL, MVT::v32i8, 4+2 }, // 2*(psllw + pand) + split.
+ { ISD::SRL, MVT::v32i8, 4+2 }, // 2*(psrlw + pand) + split.
+ { ISD::SRA, MVT::v32i8, 8+2 }, // 2*(psrlw, pand, pxor, psubb) + split.
+ };
+
+ // XOP has faster vXi8 shifts.
+ if (Op2Info == TargetTransformInfo::OK_UniformConstantValue &&
+ ST->hasSSE2() && !ST->hasXOP()) {
+ if (const auto *Entry =
+ CostTableLookup(SSE2UniformConstCostTable, ISD, LT.second))
+ return LT.first * Entry->Cost;
+ }
+
+ static const CostTblEntry AVX512BWConstCostTable[] = {
+ { ISD::SDIV, MVT::v64i8, 14 }, // 2*ext+2*pmulhw sequence
+ { ISD::SREM, MVT::v64i8, 16 }, // 2*ext+2*pmulhw+mul+sub sequence
+ { ISD::UDIV, MVT::v64i8, 14 }, // 2*ext+2*pmulhw sequence
+ { ISD::UREM, MVT::v64i8, 16 }, // 2*ext+2*pmulhw+mul+sub sequence
+ { ISD::SDIV, MVT::v32i16, 6 }, // vpmulhw sequence
+ { ISD::SREM, MVT::v32i16, 8 }, // vpmulhw+mul+sub sequence
+ { ISD::UDIV, MVT::v32i16, 6 }, // vpmulhuw sequence
+ { ISD::UREM, MVT::v32i16, 8 }, // vpmulhuw+mul+sub sequence
+ };
+
+ if ((Op2Info == TargetTransformInfo::OK_UniformConstantValue ||
+ Op2Info == TargetTransformInfo::OK_NonUniformConstantValue) &&
+ ST->hasBWI()) {
+ if (const auto *Entry =
+ CostTableLookup(AVX512BWConstCostTable, ISD, LT.second))
+ return LT.first * Entry->Cost;
+ }
+
+ static const CostTblEntry AVX512ConstCostTable[] = {
+ { ISD::SDIV, MVT::v16i32, 15 }, // vpmuldq sequence
+ { ISD::SREM, MVT::v16i32, 17 }, // vpmuldq+mul+sub sequence
+ { ISD::UDIV, MVT::v16i32, 15 }, // vpmuludq sequence
+ { ISD::UREM, MVT::v16i32, 17 }, // vpmuludq+mul+sub sequence
+ { ISD::SDIV, MVT::v64i8, 28 }, // 4*ext+4*pmulhw sequence
+ { ISD::SREM, MVT::v64i8, 32 }, // 4*ext+4*pmulhw+mul+sub sequence
+ { ISD::UDIV, MVT::v64i8, 28 }, // 4*ext+4*pmulhw sequence
+ { ISD::UREM, MVT::v64i8, 32 }, // 4*ext+4*pmulhw+mul+sub sequence
+ { ISD::SDIV, MVT::v32i16, 12 }, // 2*vpmulhw sequence
+ { ISD::SREM, MVT::v32i16, 16 }, // 2*vpmulhw+mul+sub sequence
+ { ISD::UDIV, MVT::v32i16, 12 }, // 2*vpmulhuw sequence
+ { ISD::UREM, MVT::v32i16, 16 }, // 2*vpmulhuw+mul+sub sequence
+ };
+
+ if ((Op2Info == TargetTransformInfo::OK_UniformConstantValue ||
+ Op2Info == TargetTransformInfo::OK_NonUniformConstantValue) &&
+ ST->hasAVX512()) {
+ if (const auto *Entry =
+ CostTableLookup(AVX512ConstCostTable, ISD, LT.second))
+ return LT.first * Entry->Cost;
+ }
+
+ static const CostTblEntry AVX2ConstCostTable[] = {
+ { ISD::SDIV, MVT::v32i8, 14 }, // 2*ext+2*pmulhw sequence
+ { ISD::SREM, MVT::v32i8, 16 }, // 2*ext+2*pmulhw+mul+sub sequence
+ { ISD::UDIV, MVT::v32i8, 14 }, // 2*ext+2*pmulhw sequence
+ { ISD::UREM, MVT::v32i8, 16 }, // 2*ext+2*pmulhw+mul+sub sequence
+ { ISD::SDIV, MVT::v16i16, 6 }, // vpmulhw sequence
+ { ISD::SREM, MVT::v16i16, 8 }, // vpmulhw+mul+sub sequence
+ { ISD::UDIV, MVT::v16i16, 6 }, // vpmulhuw sequence
+ { ISD::UREM, MVT::v16i16, 8 }, // vpmulhuw+mul+sub sequence
+ { ISD::SDIV, MVT::v8i32, 15 }, // vpmuldq sequence
+ { ISD::SREM, MVT::v8i32, 19 }, // vpmuldq+mul+sub sequence
+ { ISD::UDIV, MVT::v8i32, 15 }, // vpmuludq sequence
+ { ISD::UREM, MVT::v8i32, 19 }, // vpmuludq+mul+sub sequence
+ };
+
+ if ((Op2Info == TargetTransformInfo::OK_UniformConstantValue ||
+ Op2Info == TargetTransformInfo::OK_NonUniformConstantValue) &&
+ ST->hasAVX2()) {
+ if (const auto *Entry = CostTableLookup(AVX2ConstCostTable, ISD, LT.second))
+ return LT.first * Entry->Cost;
+ }
+
+ static const CostTblEntry SSE2ConstCostTable[] = {
+ { ISD::SDIV, MVT::v32i8, 28+2 }, // 4*ext+4*pmulhw sequence + split.
+ { ISD::SREM, MVT::v32i8, 32+2 }, // 4*ext+4*pmulhw+mul+sub sequence + split.
+ { ISD::SDIV, MVT::v16i8, 14 }, // 2*ext+2*pmulhw sequence
+ { ISD::SREM, MVT::v16i8, 16 }, // 2*ext+2*pmulhw+mul+sub sequence
+ { ISD::UDIV, MVT::v32i8, 28+2 }, // 4*ext+4*pmulhw sequence + split.
+ { ISD::UREM, MVT::v32i8, 32+2 }, // 4*ext+4*pmulhw+mul+sub sequence + split.
+ { ISD::UDIV, MVT::v16i8, 14 }, // 2*ext+2*pmulhw sequence
+ { ISD::UREM, MVT::v16i8, 16 }, // 2*ext+2*pmulhw+mul+sub sequence
+ { ISD::SDIV, MVT::v16i16, 12+2 }, // 2*pmulhw sequence + split.
+ { ISD::SREM, MVT::v16i16, 16+2 }, // 2*pmulhw+mul+sub sequence + split.
+ { ISD::SDIV, MVT::v8i16, 6 }, // pmulhw sequence
+ { ISD::SREM, MVT::v8i16, 8 }, // pmulhw+mul+sub sequence
+ { ISD::UDIV, MVT::v16i16, 12+2 }, // 2*pmulhuw sequence + split.
+ { ISD::UREM, MVT::v16i16, 16+2 }, // 2*pmulhuw+mul+sub sequence + split.
+ { ISD::UDIV, MVT::v8i16, 6 }, // pmulhuw sequence
+ { ISD::UREM, MVT::v8i16, 8 }, // pmulhuw+mul+sub sequence
+ { ISD::SDIV, MVT::v8i32, 38+2 }, // 2*pmuludq sequence + split.
+ { ISD::SREM, MVT::v8i32, 48+2 }, // 2*pmuludq+mul+sub sequence + split.
+ { ISD::SDIV, MVT::v4i32, 19 }, // pmuludq sequence
+ { ISD::SREM, MVT::v4i32, 24 }, // pmuludq+mul+sub sequence
+ { ISD::UDIV, MVT::v8i32, 30+2 }, // 2*pmuludq sequence + split.
+ { ISD::UREM, MVT::v8i32, 40+2 }, // 2*pmuludq+mul+sub sequence + split.
+ { ISD::UDIV, MVT::v4i32, 15 }, // pmuludq sequence
+ { ISD::UREM, MVT::v4i32, 20 }, // pmuludq+mul+sub sequence
+ };
+
+ if ((Op2Info == TargetTransformInfo::OK_UniformConstantValue ||
+ Op2Info == TargetTransformInfo::OK_NonUniformConstantValue) &&
+ ST->hasSSE2()) {
+ // pmuldq sequence.
+ if (ISD == ISD::SDIV && LT.second == MVT::v8i32 && ST->hasAVX())
+ return LT.first * 32;
+ if (ISD == ISD::SREM && LT.second == MVT::v8i32 && ST->hasAVX())
+ return LT.first * 38;
+ if (ISD == ISD::SDIV && LT.second == MVT::v4i32 && ST->hasSSE41())
+ return LT.first * 15;
+ if (ISD == ISD::SREM && LT.second == MVT::v4i32 && ST->hasSSE41())
+ return LT.first * 20;
+
+ if (const auto *Entry = CostTableLookup(SSE2ConstCostTable, ISD, LT.second))
+ return LT.first * Entry->Cost;
+ }
+
+ static const CostTblEntry AVX512BWShiftCostTable[] = {
+ { ISD::SHL, MVT::v8i16, 1 }, // vpsllvw
+ { ISD::SRL, MVT::v8i16, 1 }, // vpsrlvw
+ { ISD::SRA, MVT::v8i16, 1 }, // vpsravw
+
+ { ISD::SHL, MVT::v16i16, 1 }, // vpsllvw
+ { ISD::SRL, MVT::v16i16, 1 }, // vpsrlvw
+ { ISD::SRA, MVT::v16i16, 1 }, // vpsravw
+
+ { ISD::SHL, MVT::v32i16, 1 }, // vpsllvw
+ { ISD::SRL, MVT::v32i16, 1 }, // vpsrlvw
+ { ISD::SRA, MVT::v32i16, 1 }, // vpsravw
+ };
+
+ if (ST->hasBWI())
+ if (const auto *Entry = CostTableLookup(AVX512BWShiftCostTable, ISD, LT.second))
+ return LT.first * Entry->Cost;
+
+ static const CostTblEntry AVX2UniformCostTable[] = {
+ // Uniform splats are cheaper for the following instructions.
+ { ISD::SHL, MVT::v16i16, 1 }, // psllw.
+ { ISD::SRL, MVT::v16i16, 1 }, // psrlw.
+ { ISD::SRA, MVT::v16i16, 1 }, // psraw.
+ { ISD::SHL, MVT::v32i16, 2 }, // 2*psllw.
+ { ISD::SRL, MVT::v32i16, 2 }, // 2*psrlw.
+ { ISD::SRA, MVT::v32i16, 2 }, // 2*psraw.
+ };
+
+ if (ST->hasAVX2() &&
+ ((Op2Info == TargetTransformInfo::OK_UniformConstantValue) ||
+ (Op2Info == TargetTransformInfo::OK_UniformValue))) {
+ if (const auto *Entry =
+ CostTableLookup(AVX2UniformCostTable, ISD, LT.second))
+ return LT.first * Entry->Cost;
+ }
+
+ static const CostTblEntry SSE2UniformCostTable[] = {
+ // Uniform splats are cheaper for the following instructions.
+ { ISD::SHL, MVT::v8i16, 1 }, // psllw.
+ { ISD::SHL, MVT::v4i32, 1 }, // pslld
+ { ISD::SHL, MVT::v2i64, 1 }, // psllq.
+
+ { ISD::SRL, MVT::v8i16, 1 }, // psrlw.
+ { ISD::SRL, MVT::v4i32, 1 }, // psrld.
+ { ISD::SRL, MVT::v2i64, 1 }, // psrlq.
+
+ { ISD::SRA, MVT::v8i16, 1 }, // psraw.
+ { ISD::SRA, MVT::v4i32, 1 }, // psrad.
+ };
+
+ if (ST->hasSSE2() &&
+ ((Op2Info == TargetTransformInfo::OK_UniformConstantValue) ||
+ (Op2Info == TargetTransformInfo::OK_UniformValue))) {
+ if (const auto *Entry =
+ CostTableLookup(SSE2UniformCostTable, ISD, LT.second))
+ return LT.first * Entry->Cost;
+ }
+
+ static const CostTblEntry AVX512DQCostTable[] = {
+ { ISD::MUL, MVT::v2i64, 1 },
+ { ISD::MUL, MVT::v4i64, 1 },
+ { ISD::MUL, MVT::v8i64, 1 }
+ };
+
+ // Look for AVX512DQ lowering tricks for custom cases.
+ if (ST->hasDQI())
+ if (const auto *Entry = CostTableLookup(AVX512DQCostTable, ISD, LT.second))
+ return LT.first * Entry->Cost;
+
+ static const CostTblEntry AVX512BWCostTable[] = {
+ { ISD::SHL, MVT::v64i8, 11 }, // vpblendvb sequence.
+ { ISD::SRL, MVT::v64i8, 11 }, // vpblendvb sequence.
+ { ISD::SRA, MVT::v64i8, 24 }, // vpblendvb sequence.
+
+ { ISD::MUL, MVT::v64i8, 11 }, // extend/pmullw/trunc sequence.
+ { ISD::MUL, MVT::v32i8, 4 }, // extend/pmullw/trunc sequence.
+ { ISD::MUL, MVT::v16i8, 4 }, // extend/pmullw/trunc sequence.
+ };
+
+ // Look for AVX512BW lowering tricks for custom cases.
+ if (ST->hasBWI())
+ if (const auto *Entry = CostTableLookup(AVX512BWCostTable, ISD, LT.second))
+ return LT.first * Entry->Cost;
+
+ static const CostTblEntry AVX512CostTable[] = {
+ { ISD::SHL, MVT::v16i32, 1 },
+ { ISD::SRL, MVT::v16i32, 1 },
+ { ISD::SRA, MVT::v16i32, 1 },
+
+ { ISD::SHL, MVT::v8i64, 1 },
+ { ISD::SRL, MVT::v8i64, 1 },
+
+ { ISD::SRA, MVT::v2i64, 1 },
+ { ISD::SRA, MVT::v4i64, 1 },
+ { ISD::SRA, MVT::v8i64, 1 },
+
+ { ISD::MUL, MVT::v64i8, 26 }, // extend/pmullw/trunc sequence.
+ { ISD::MUL, MVT::v32i8, 13 }, // extend/pmullw/trunc sequence.
+ { ISD::MUL, MVT::v16i8, 5 }, // extend/pmullw/trunc sequence.
+ { ISD::MUL, MVT::v16i32, 1 }, // pmulld (Skylake from agner.org)
+ { ISD::MUL, MVT::v8i32, 1 }, // pmulld (Skylake from agner.org)
+ { ISD::MUL, MVT::v4i32, 1 }, // pmulld (Skylake from agner.org)
+ { ISD::MUL, MVT::v8i64, 8 }, // 3*pmuludq/3*shift/2*add
+
+ { ISD::FADD, MVT::v8f64, 1 }, // Skylake from http://www.agner.org/
+ { ISD::FSUB, MVT::v8f64, 1 }, // Skylake from http://www.agner.org/
+ { ISD::FMUL, MVT::v8f64, 1 }, // Skylake from http://www.agner.org/
+
+ { ISD::FADD, MVT::v16f32, 1 }, // Skylake from http://www.agner.org/
+ { ISD::FSUB, MVT::v16f32, 1 }, // Skylake from http://www.agner.org/
+ { ISD::FMUL, MVT::v16f32, 1 }, // Skylake from http://www.agner.org/
+ };
+
+ if (ST->hasAVX512())
+ if (const auto *Entry = CostTableLookup(AVX512CostTable, ISD, LT.second))
+ return LT.first * Entry->Cost;
+
+ static const CostTblEntry AVX2ShiftCostTable[] = {
+ // Shifts on v4i64/v8i32 on AVX2 is legal even though we declare to
+ // customize them to detect the cases where shift amount is a scalar one.
+ { ISD::SHL, MVT::v4i32, 1 },
+ { ISD::SRL, MVT::v4i32, 1 },
+ { ISD::SRA, MVT::v4i32, 1 },
+ { ISD::SHL, MVT::v8i32, 1 },
+ { ISD::SRL, MVT::v8i32, 1 },
+ { ISD::SRA, MVT::v8i32, 1 },
+ { ISD::SHL, MVT::v2i64, 1 },
+ { ISD::SRL, MVT::v2i64, 1 },
+ { ISD::SHL, MVT::v4i64, 1 },
+ { ISD::SRL, MVT::v4i64, 1 },
+ };
+
+ if (ST->hasAVX512()) {
+ if (ISD == ISD::SHL && LT.second == MVT::v32i16 &&
+ (Op2Info == TargetTransformInfo::OK_UniformConstantValue ||
+ Op2Info == TargetTransformInfo::OK_NonUniformConstantValue))
+ // On AVX512, a packed v32i16 shift left by a constant build_vector
+ // is lowered into a vector multiply (vpmullw).
+ return getArithmeticInstrCost(Instruction::Mul, Ty, CostKind,
+ Op1Info, Op2Info,
+ TargetTransformInfo::OP_None,
+ TargetTransformInfo::OP_None);
+ }
+
+ // Look for AVX2 lowering tricks.
+ if (ST->hasAVX2()) {
+ if (ISD == ISD::SHL && LT.second == MVT::v16i16 &&
+ (Op2Info == TargetTransformInfo::OK_UniformConstantValue ||
+ Op2Info == TargetTransformInfo::OK_NonUniformConstantValue))
+ // On AVX2, a packed v16i16 shift left by a constant build_vector
+ // is lowered into a vector multiply (vpmullw).
+ return getArithmeticInstrCost(Instruction::Mul, Ty, CostKind,
+ Op1Info, Op2Info,
+ TargetTransformInfo::OP_None,
+ TargetTransformInfo::OP_None);
+
+ if (const auto *Entry = CostTableLookup(AVX2ShiftCostTable, ISD, LT.second))
+ return LT.first * Entry->Cost;
+ }
+
+ static const CostTblEntry XOPShiftCostTable[] = {
+ // 128bit shifts take 1cy, but right shifts require negation beforehand.
+ { ISD::SHL, MVT::v16i8, 1 },
+ { ISD::SRL, MVT::v16i8, 2 },
+ { ISD::SRA, MVT::v16i8, 2 },
+ { ISD::SHL, MVT::v8i16, 1 },
+ { ISD::SRL, MVT::v8i16, 2 },
+ { ISD::SRA, MVT::v8i16, 2 },
+ { ISD::SHL, MVT::v4i32, 1 },
+ { ISD::SRL, MVT::v4i32, 2 },
+ { ISD::SRA, MVT::v4i32, 2 },
+ { ISD::SHL, MVT::v2i64, 1 },
+ { ISD::SRL, MVT::v2i64, 2 },
+ { ISD::SRA, MVT::v2i64, 2 },
+ // 256bit shifts require splitting if AVX2 didn't catch them above.
+ { ISD::SHL, MVT::v32i8, 2+2 },
+ { ISD::SRL, MVT::v32i8, 4+2 },
+ { ISD::SRA, MVT::v32i8, 4+2 },
+ { ISD::SHL, MVT::v16i16, 2+2 },
+ { ISD::SRL, MVT::v16i16, 4+2 },
+ { ISD::SRA, MVT::v16i16, 4+2 },
+ { ISD::SHL, MVT::v8i32, 2+2 },
+ { ISD::SRL, MVT::v8i32, 4+2 },
+ { ISD::SRA, MVT::v8i32, 4+2 },
+ { ISD::SHL, MVT::v4i64, 2+2 },
+ { ISD::SRL, MVT::v4i64, 4+2 },
+ { ISD::SRA, MVT::v4i64, 4+2 },
+ };
+
+ // Look for XOP lowering tricks.
+ if (ST->hasXOP()) {
+ // If the right shift is constant then we'll fold the negation so
+ // it's as cheap as a left shift.
+ int ShiftISD = ISD;
+ if ((ShiftISD == ISD::SRL || ShiftISD == ISD::SRA) &&
+ (Op2Info == TargetTransformInfo::OK_UniformConstantValue ||
+ Op2Info == TargetTransformInfo::OK_NonUniformConstantValue))
+ ShiftISD = ISD::SHL;
+ if (const auto *Entry =
+ CostTableLookup(XOPShiftCostTable, ShiftISD, LT.second))
+ return LT.first * Entry->Cost;
+ }
+
+ static const CostTblEntry SSE2UniformShiftCostTable[] = {
+ // Uniform splats are cheaper for the following instructions.
+ { ISD::SHL, MVT::v16i16, 2+2 }, // 2*psllw + split.
+ { ISD::SHL, MVT::v8i32, 2+2 }, // 2*pslld + split.
+ { ISD::SHL, MVT::v4i64, 2+2 }, // 2*psllq + split.
+
+ { ISD::SRL, MVT::v16i16, 2+2 }, // 2*psrlw + split.
+ { ISD::SRL, MVT::v8i32, 2+2 }, // 2*psrld + split.
+ { ISD::SRL, MVT::v4i64, 2+2 }, // 2*psrlq + split.
+
+ { ISD::SRA, MVT::v16i16, 2+2 }, // 2*psraw + split.
+ { ISD::SRA, MVT::v8i32, 2+2 }, // 2*psrad + split.
+ { ISD::SRA, MVT::v2i64, 4 }, // 2*psrad + shuffle.
+ { ISD::SRA, MVT::v4i64, 8+2 }, // 2*(2*psrad + shuffle) + split.
+ };
+
+ if (ST->hasSSE2() &&
+ ((Op2Info == TargetTransformInfo::OK_UniformConstantValue) ||
+ (Op2Info == TargetTransformInfo::OK_UniformValue))) {
+
+ // Handle AVX2 uniform v4i64 ISD::SRA, it's not worth a table.
+ if (ISD == ISD::SRA && LT.second == MVT::v4i64 && ST->hasAVX2())
+ return LT.first * 4; // 2*psrad + shuffle.
+
+ if (const auto *Entry =
+ CostTableLookup(SSE2UniformShiftCostTable, ISD, LT.second))
+ return LT.first * Entry->Cost;
+ }
+
+ if (ISD == ISD::SHL &&
+ Op2Info == TargetTransformInfo::OK_NonUniformConstantValue) {
+ MVT VT = LT.second;
+ // Vector shift left by non uniform constant can be lowered
+ // into vector multiply.
+ if (((VT == MVT::v8i16 || VT == MVT::v4i32) && ST->hasSSE2()) ||
+ ((VT == MVT::v16i16 || VT == MVT::v8i32) && ST->hasAVX()))
+ ISD = ISD::MUL;
+ }
+
+ static const CostTblEntry AVX2CostTable[] = {
+ { ISD::SHL, MVT::v32i8, 11 }, // vpblendvb sequence.
+ { ISD::SHL, MVT::v64i8, 22 }, // 2*vpblendvb sequence.
+ { ISD::SHL, MVT::v16i16, 10 }, // extend/vpsrlvd/pack sequence.
+ { ISD::SHL, MVT::v32i16, 20 }, // 2*extend/vpsrlvd/pack sequence.
+
+ { ISD::SRL, MVT::v32i8, 11 }, // vpblendvb sequence.
+ { ISD::SRL, MVT::v64i8, 22 }, // 2*vpblendvb sequence.
+ { ISD::SRL, MVT::v16i16, 10 }, // extend/vpsrlvd/pack sequence.
+ { ISD::SRL, MVT::v32i16, 20 }, // 2*extend/vpsrlvd/pack sequence.
+
+ { ISD::SRA, MVT::v32i8, 24 }, // vpblendvb sequence.
+ { ISD::SRA, MVT::v64i8, 48 }, // 2*vpblendvb sequence.
+ { ISD::SRA, MVT::v16i16, 10 }, // extend/vpsravd/pack sequence.
+ { ISD::SRA, MVT::v32i16, 20 }, // 2*extend/vpsravd/pack sequence.
+ { ISD::SRA, MVT::v2i64, 4 }, // srl/xor/sub sequence.
+ { ISD::SRA, MVT::v4i64, 4 }, // srl/xor/sub sequence.
+
+ { ISD::SUB, MVT::v32i8, 1 }, // psubb
+ { ISD::ADD, MVT::v32i8, 1 }, // paddb
+ { ISD::SUB, MVT::v16i16, 1 }, // psubw
+ { ISD::ADD, MVT::v16i16, 1 }, // paddw
+ { ISD::SUB, MVT::v8i32, 1 }, // psubd
+ { ISD::ADD, MVT::v8i32, 1 }, // paddd
+ { ISD::SUB, MVT::v4i64, 1 }, // psubq
+ { ISD::ADD, MVT::v4i64, 1 }, // paddq
+
+ { ISD::MUL, MVT::v32i8, 17 }, // extend/pmullw/trunc sequence.
+ { ISD::MUL, MVT::v16i8, 7 }, // extend/pmullw/trunc sequence.
+ { ISD::MUL, MVT::v16i16, 1 }, // pmullw
+ { ISD::MUL, MVT::v8i32, 2 }, // pmulld (Haswell from agner.org)
+ { ISD::MUL, MVT::v4i64, 8 }, // 3*pmuludq/3*shift/2*add
+
+ { ISD::FADD, MVT::v4f64, 1 }, // Haswell from http://www.agner.org/
+ { ISD::FADD, MVT::v8f32, 1 }, // Haswell from http://www.agner.org/
+ { ISD::FSUB, MVT::v4f64, 1 }, // Haswell from http://www.agner.org/
+ { ISD::FSUB, MVT::v8f32, 1 }, // Haswell from http://www.agner.org/
+ { ISD::FMUL, MVT::v4f64, 1 }, // Haswell from http://www.agner.org/
+ { ISD::FMUL, MVT::v8f32, 1 }, // Haswell from http://www.agner.org/
+
+ { ISD::FDIV, MVT::f32, 7 }, // Haswell from http://www.agner.org/
+ { ISD::FDIV, MVT::v4f32, 7 }, // Haswell from http://www.agner.org/
+ { ISD::FDIV, MVT::v8f32, 14 }, // Haswell from http://www.agner.org/
+ { ISD::FDIV, MVT::f64, 14 }, // Haswell from http://www.agner.org/
+ { ISD::FDIV, MVT::v2f64, 14 }, // Haswell from http://www.agner.org/
+ { ISD::FDIV, MVT::v4f64, 28 }, // Haswell from http://www.agner.org/
+ };
+
+ // Look for AVX2 lowering tricks for custom cases.
+ if (ST->hasAVX2())
+ if (const auto *Entry = CostTableLookup(AVX2CostTable, ISD, LT.second))
+ return LT.first * Entry->Cost;
+
+ static const CostTblEntry AVX1CostTable[] = {
+ // We don't have to scalarize unsupported ops. We can issue two half-sized
+ // operations and we only need to extract the upper YMM half.
+ // Two ops + 1 extract + 1 insert = 4.
+ { ISD::MUL, MVT::v16i16, 4 },
+ { ISD::MUL, MVT::v8i32, 4 },
+ { ISD::SUB, MVT::v32i8, 4 },
+ { ISD::ADD, MVT::v32i8, 4 },
+ { ISD::SUB, MVT::v16i16, 4 },
+ { ISD::ADD, MVT::v16i16, 4 },
+ { ISD::SUB, MVT::v8i32, 4 },
+ { ISD::ADD, MVT::v8i32, 4 },
+ { ISD::SUB, MVT::v4i64, 4 },
+ { ISD::ADD, MVT::v4i64, 4 },
+
+ // A v4i64 multiply is custom lowered as two split v2i64 vectors that then
+ // are lowered as a series of long multiplies(3), shifts(3) and adds(2)
+ // Because we believe v4i64 to be a legal type, we must also include the
+ // extract+insert in the cost table. Therefore, the cost here is 18
+ // instead of 8.
+ { ISD::MUL, MVT::v4i64, 18 },
+
+ { ISD::MUL, MVT::v32i8, 26 }, // extend/pmullw/trunc sequence.
+
+ { ISD::FDIV, MVT::f32, 14 }, // SNB from http://www.agner.org/
+ { ISD::FDIV, MVT::v4f32, 14 }, // SNB from http://www.agner.org/
+ { ISD::FDIV, MVT::v8f32, 28 }, // SNB from http://www.agner.org/
+ { ISD::FDIV, MVT::f64, 22 }, // SNB from http://www.agner.org/
+ { ISD::FDIV, MVT::v2f64, 22 }, // SNB from http://www.agner.org/
+ { ISD::FDIV, MVT::v4f64, 44 }, // SNB from http://www.agner.org/
+ };
+
+ if (ST->hasAVX())
+ if (const auto *Entry = CostTableLookup(AVX1CostTable, ISD, LT.second))
+ return LT.first * Entry->Cost;
+
+ static const CostTblEntry SSE42CostTable[] = {
+ { ISD::FADD, MVT::f64, 1 }, // Nehalem from http://www.agner.org/
+ { ISD::FADD, MVT::f32, 1 }, // Nehalem from http://www.agner.org/
+ { ISD::FADD, MVT::v2f64, 1 }, // Nehalem from http://www.agner.org/
+ { ISD::FADD, MVT::v4f32, 1 }, // Nehalem from http://www.agner.org/
+
+ { ISD::FSUB, MVT::f64, 1 }, // Nehalem from http://www.agner.org/
+ { ISD::FSUB, MVT::f32 , 1 }, // Nehalem from http://www.agner.org/
+ { ISD::FSUB, MVT::v2f64, 1 }, // Nehalem from http://www.agner.org/
+ { ISD::FSUB, MVT::v4f32, 1 }, // Nehalem from http://www.agner.org/
+
+ { ISD::FMUL, MVT::f64, 1 }, // Nehalem from http://www.agner.org/
+ { ISD::FMUL, MVT::f32, 1 }, // Nehalem from http://www.agner.org/
+ { ISD::FMUL, MVT::v2f64, 1 }, // Nehalem from http://www.agner.org/
+ { ISD::FMUL, MVT::v4f32, 1 }, // Nehalem from http://www.agner.org/
+
+ { ISD::FDIV, MVT::f32, 14 }, // Nehalem from http://www.agner.org/
+ { ISD::FDIV, MVT::v4f32, 14 }, // Nehalem from http://www.agner.org/
+ { ISD::FDIV, MVT::f64, 22 }, // Nehalem from http://www.agner.org/
+ { ISD::FDIV, MVT::v2f64, 22 }, // Nehalem from http://www.agner.org/
+ };
+
+ if (ST->hasSSE42())
+ if (const auto *Entry = CostTableLookup(SSE42CostTable, ISD, LT.second))
+ return LT.first * Entry->Cost;
+
+ static const CostTblEntry SSE41CostTable[] = {
+ { ISD::SHL, MVT::v16i8, 11 }, // pblendvb sequence.
+ { ISD::SHL, MVT::v32i8, 2*11+2 }, // pblendvb sequence + split.
+ { ISD::SHL, MVT::v8i16, 14 }, // pblendvb sequence.
+ { ISD::SHL, MVT::v16i16, 2*14+2 }, // pblendvb sequence + split.
+ { ISD::SHL, MVT::v4i32, 4 }, // pslld/paddd/cvttps2dq/pmulld
+ { ISD::SHL, MVT::v8i32, 2*4+2 }, // pslld/paddd/cvttps2dq/pmulld + split
+
+ { ISD::SRL, MVT::v16i8, 12 }, // pblendvb sequence.
+ { ISD::SRL, MVT::v32i8, 2*12+2 }, // pblendvb sequence + split.
+ { ISD::SRL, MVT::v8i16, 14 }, // pblendvb sequence.
+ { ISD::SRL, MVT::v16i16, 2*14+2 }, // pblendvb sequence + split.
+ { ISD::SRL, MVT::v4i32, 11 }, // Shift each lane + blend.
+ { ISD::SRL, MVT::v8i32, 2*11+2 }, // Shift each lane + blend + split.
+
+ { ISD::SRA, MVT::v16i8, 24 }, // pblendvb sequence.
+ { ISD::SRA, MVT::v32i8, 2*24+2 }, // pblendvb sequence + split.
+ { ISD::SRA, MVT::v8i16, 14 }, // pblendvb sequence.
+ { ISD::SRA, MVT::v16i16, 2*14+2 }, // pblendvb sequence + split.
+ { ISD::SRA, MVT::v4i32, 12 }, // Shift each lane + blend.
+ { ISD::SRA, MVT::v8i32, 2*12+2 }, // Shift each lane + blend + split.
+
+ { ISD::MUL, MVT::v4i32, 2 } // pmulld (Nehalem from agner.org)
+ };
+
+ if (ST->hasSSE41())
+ if (const auto *Entry = CostTableLookup(SSE41CostTable, ISD, LT.second))
+ return LT.first * Entry->Cost;
+
+ static const CostTblEntry SSE2CostTable[] = {
+ // We don't correctly identify costs of casts because they are marked as
+ // custom.
+ { ISD::SHL, MVT::v16i8, 26 }, // cmpgtb sequence.
+ { ISD::SHL, MVT::v8i16, 32 }, // cmpgtb sequence.
+ { ISD::SHL, MVT::v4i32, 2*5 }, // We optimized this using mul.
+ { ISD::SHL, MVT::v2i64, 4 }, // splat+shuffle sequence.
+ { ISD::SHL, MVT::v4i64, 2*4+2 }, // splat+shuffle sequence + split.
+
+ { ISD::SRL, MVT::v16i8, 26 }, // cmpgtb sequence.
+ { ISD::SRL, MVT::v8i16, 32 }, // cmpgtb sequence.
+ { ISD::SRL, MVT::v4i32, 16 }, // Shift each lane + blend.
+ { ISD::SRL, MVT::v2i64, 4 }, // splat+shuffle sequence.
+ { ISD::SRL, MVT::v4i64, 2*4+2 }, // splat+shuffle sequence + split.
+
+ { ISD::SRA, MVT::v16i8, 54 }, // unpacked cmpgtb sequence.
+ { ISD::SRA, MVT::v8i16, 32 }, // cmpgtb sequence.
+ { ISD::SRA, MVT::v4i32, 16 }, // Shift each lane + blend.
+ { ISD::SRA, MVT::v2i64, 12 }, // srl/xor/sub sequence.
+ { ISD::SRA, MVT::v4i64, 2*12+2 }, // srl/xor/sub sequence+split.
+
+ { ISD::MUL, MVT::v16i8, 12 }, // extend/pmullw/trunc sequence.
+ { ISD::MUL, MVT::v8i16, 1 }, // pmullw
+ { ISD::MUL, MVT::v4i32, 6 }, // 3*pmuludq/4*shuffle
+ { ISD::MUL, MVT::v2i64, 8 }, // 3*pmuludq/3*shift/2*add
+
+ { ISD::FDIV, MVT::f32, 23 }, // Pentium IV from http://www.agner.org/
+ { ISD::FDIV, MVT::v4f32, 39 }, // Pentium IV from http://www.agner.org/
+ { ISD::FDIV, MVT::f64, 38 }, // Pentium IV from http://www.agner.org/
+ { ISD::FDIV, MVT::v2f64, 69 }, // Pentium IV from http://www.agner.org/
+
+ { ISD::FADD, MVT::f32, 2 }, // Pentium IV from http://www.agner.org/
+ { ISD::FADD, MVT::f64, 2 }, // Pentium IV from http://www.agner.org/
+
+ { ISD::FSUB, MVT::f32, 2 }, // Pentium IV from http://www.agner.org/
+ { ISD::FSUB, MVT::f64, 2 }, // Pentium IV from http://www.agner.org/
+ };
+
+ if (ST->hasSSE2())
+ if (const auto *Entry = CostTableLookup(SSE2CostTable, ISD, LT.second))
+ return LT.first * Entry->Cost;
+
+ static const CostTblEntry SSE1CostTable[] = {
+ { ISD::FDIV, MVT::f32, 17 }, // Pentium III from http://www.agner.org/
+ { ISD::FDIV, MVT::v4f32, 34 }, // Pentium III from http://www.agner.org/
+
+ { ISD::FADD, MVT::f32, 1 }, // Pentium III from http://www.agner.org/
+ { ISD::FADD, MVT::v4f32, 2 }, // Pentium III from http://www.agner.org/
+
+ { ISD::FSUB, MVT::f32, 1 }, // Pentium III from http://www.agner.org/
+ { ISD::FSUB, MVT::v4f32, 2 }, // Pentium III from http://www.agner.org/
+
+ { ISD::ADD, MVT::i8, 1 }, // Pentium III from http://www.agner.org/
+ { ISD::ADD, MVT::i16, 1 }, // Pentium III from http://www.agner.org/
+ { ISD::ADD, MVT::i32, 1 }, // Pentium III from http://www.agner.org/
+
+ { ISD::SUB, MVT::i8, 1 }, // Pentium III from http://www.agner.org/
+ { ISD::SUB, MVT::i16, 1 }, // Pentium III from http://www.agner.org/
+ { ISD::SUB, MVT::i32, 1 }, // Pentium III from http://www.agner.org/
+ };
+
+ if (ST->hasSSE1())
+ if (const auto *Entry = CostTableLookup(SSE1CostTable, ISD, LT.second))
+ return LT.first * Entry->Cost;
+
+ // It is not a good idea to vectorize division. We have to scalarize it and
+ // in the process we will often end up having to spilling regular
+ // registers. The overhead of division is going to dominate most kernels
+ // anyways so try hard to prevent vectorization of division - it is
+ // generally a bad idea. Assume somewhat arbitrarily that we have to be able
+ // to hide "20 cycles" for each lane.
+ if (LT.second.isVector() && (ISD == ISD::SDIV || ISD == ISD::SREM ||
+ ISD == ISD::UDIV || ISD == ISD::UREM)) {
+ int ScalarCost = getArithmeticInstrCost(
+ Opcode, Ty->getScalarType(), CostKind, Op1Info, Op2Info,
+ TargetTransformInfo::OP_None, TargetTransformInfo::OP_None);
+ return 20 * LT.first * LT.second.getVectorNumElements() * ScalarCost;
+ }
+
+ // Fallback to the default implementation.
+ return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Op1Info, Op2Info);
+}
+
+int X86TTIImpl::getShuffleCost(TTI::ShuffleKind Kind, VectorType *BaseTp,
+ int Index, VectorType *SubTp) {
+ // 64-bit packed float vectors (v2f32) are widened to type v4f32.
+ // 64-bit packed integer vectors (v2i32) are widened to type v4i32.
+ std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, BaseTp);
+
+ // Treat Transpose as 2-op shuffles - there's no difference in lowering.
+ if (Kind == TTI::SK_Transpose)
+ Kind = TTI::SK_PermuteTwoSrc;
+
+ // For Broadcasts we are splatting the first element from the first input
+ // register, so only need to reference that input and all the output
+ // registers are the same.
+ if (Kind == TTI::SK_Broadcast)
+ LT.first = 1;
+
+ // Subvector extractions are free if they start at the beginning of a
+ // vector and cheap if the subvectors are aligned.
+ if (Kind == TTI::SK_ExtractSubvector && LT.second.isVector()) {
+ int NumElts = LT.second.getVectorNumElements();
+ if ((Index % NumElts) == 0)
+ return 0;
+ std::pair<int, MVT> SubLT = TLI->getTypeLegalizationCost(DL, SubTp);
+ if (SubLT.second.isVector()) {
+ int NumSubElts = SubLT.second.getVectorNumElements();
+ if ((Index % NumSubElts) == 0 && (NumElts % NumSubElts) == 0)
+ return SubLT.first;
+ // Handle some cases for widening legalization. For now we only handle
+ // cases where the original subvector was naturally aligned and evenly
+ // fit in its legalized subvector type.
+ // FIXME: Remove some of the alignment restrictions.
+ // FIXME: We can use permq for 64-bit or larger extracts from 256-bit
+ // vectors.
+ int OrigSubElts = cast<FixedVectorType>(SubTp)->getNumElements();
+ if (NumSubElts > OrigSubElts && (Index % OrigSubElts) == 0 &&
+ (NumSubElts % OrigSubElts) == 0 &&
+ LT.second.getVectorElementType() ==
+ SubLT.second.getVectorElementType() &&
+ LT.second.getVectorElementType().getSizeInBits() ==
+ BaseTp->getElementType()->getPrimitiveSizeInBits()) {
+ assert(NumElts >= NumSubElts && NumElts > OrigSubElts &&
+ "Unexpected number of elements!");
+ auto *VecTy = FixedVectorType::get(BaseTp->getElementType(),
+ LT.second.getVectorNumElements());
+ auto *SubTy = FixedVectorType::get(BaseTp->getElementType(),
+ SubLT.second.getVectorNumElements());
+ int ExtractIndex = alignDown((Index % NumElts), NumSubElts);
+ int ExtractCost = getShuffleCost(TTI::SK_ExtractSubvector, VecTy,
+ ExtractIndex, SubTy);
+
+ // If the original size is 32-bits or more, we can use pshufd. Otherwise
+ // if we have SSSE3 we can use pshufb.
+ if (SubTp->getPrimitiveSizeInBits() >= 32 || ST->hasSSSE3())
+ return ExtractCost + 1; // pshufd or pshufb
+
+ assert(SubTp->getPrimitiveSizeInBits() == 16 &&
+ "Unexpected vector size");
+
+ return ExtractCost + 2; // worst case pshufhw + pshufd
+ }
+ }
+ }
+
+ // Handle some common (illegal) sub-vector types as they are often very cheap
+ // to shuffle even on targets without PSHUFB.
+ EVT VT = TLI->getValueType(DL, BaseTp);
+ if (VT.isSimple() && VT.isVector() && VT.getSizeInBits() < 128 &&
+ !ST->hasSSSE3()) {
+ static const CostTblEntry SSE2SubVectorShuffleTbl[] = {
+ {TTI::SK_Broadcast, MVT::v4i16, 1}, // pshuflw
+ {TTI::SK_Broadcast, MVT::v2i16, 1}, // pshuflw
+ {TTI::SK_Broadcast, MVT::v8i8, 2}, // punpck/pshuflw
+ {TTI::SK_Broadcast, MVT::v4i8, 2}, // punpck/pshuflw
+ {TTI::SK_Broadcast, MVT::v2i8, 1}, // punpck
+
+ {TTI::SK_Reverse, MVT::v4i16, 1}, // pshuflw
+ {TTI::SK_Reverse, MVT::v2i16, 1}, // pshuflw
+ {TTI::SK_Reverse, MVT::v4i8, 3}, // punpck/pshuflw/packus
+ {TTI::SK_Reverse, MVT::v2i8, 1}, // punpck
+
+ {TTI::SK_PermuteTwoSrc, MVT::v4i16, 2}, // punpck/pshuflw
+ {TTI::SK_PermuteTwoSrc, MVT::v2i16, 2}, // punpck/pshuflw
+ {TTI::SK_PermuteTwoSrc, MVT::v8i8, 7}, // punpck/pshuflw
+ {TTI::SK_PermuteTwoSrc, MVT::v4i8, 4}, // punpck/pshuflw
+ {TTI::SK_PermuteTwoSrc, MVT::v2i8, 2}, // punpck
+
+ {TTI::SK_PermuteSingleSrc, MVT::v4i16, 1}, // pshuflw
+ {TTI::SK_PermuteSingleSrc, MVT::v2i16, 1}, // pshuflw
+ {TTI::SK_PermuteSingleSrc, MVT::v8i8, 5}, // punpck/pshuflw
+ {TTI::SK_PermuteSingleSrc, MVT::v4i8, 3}, // punpck/pshuflw
+ {TTI::SK_PermuteSingleSrc, MVT::v2i8, 1}, // punpck
+ };
+
+ if (ST->hasSSE2())
+ if (const auto *Entry =
+ CostTableLookup(SSE2SubVectorShuffleTbl, Kind, VT.getSimpleVT()))
+ return Entry->Cost;
+ }
+
+ // We are going to permute multiple sources and the result will be in multiple
+ // destinations. Providing an accurate cost only for splits where the element
+ // type remains the same.
+ if (Kind == TTI::SK_PermuteSingleSrc && LT.first != 1) {
+ MVT LegalVT = LT.second;
+ if (LegalVT.isVector() &&
+ LegalVT.getVectorElementType().getSizeInBits() ==
+ BaseTp->getElementType()->getPrimitiveSizeInBits() &&
+ LegalVT.getVectorNumElements() <
+ cast<FixedVectorType>(BaseTp)->getNumElements()) {
+
+ unsigned VecTySize = DL.getTypeStoreSize(BaseTp);
+ unsigned LegalVTSize = LegalVT.getStoreSize();
+ // Number of source vectors after legalization:
+ unsigned NumOfSrcs = (VecTySize + LegalVTSize - 1) / LegalVTSize;
+ // Number of destination vectors after legalization:
+ unsigned NumOfDests = LT.first;
+
+ auto *SingleOpTy = FixedVectorType::get(BaseTp->getElementType(),
+ LegalVT.getVectorNumElements());
+
+ unsigned NumOfShuffles = (NumOfSrcs - 1) * NumOfDests;
+ return NumOfShuffles *
+ getShuffleCost(TTI::SK_PermuteTwoSrc, SingleOpTy, 0, nullptr);
+ }
+
+ return BaseT::getShuffleCost(Kind, BaseTp, Index, SubTp);
+ }
+
+ // For 2-input shuffles, we must account for splitting the 2 inputs into many.
+ if (Kind == TTI::SK_PermuteTwoSrc && LT.first != 1) {
+ // We assume that source and destination have the same vector type.
+ int NumOfDests = LT.first;
+ int NumOfShufflesPerDest = LT.first * 2 - 1;
+ LT.first = NumOfDests * NumOfShufflesPerDest;
+ }
+
+ static const CostTblEntry AVX512VBMIShuffleTbl[] = {
+ {TTI::SK_Reverse, MVT::v64i8, 1}, // vpermb
+ {TTI::SK_Reverse, MVT::v32i8, 1}, // vpermb
+
+ {TTI::SK_PermuteSingleSrc, MVT::v64i8, 1}, // vpermb
+ {TTI::SK_PermuteSingleSrc, MVT::v32i8, 1}, // vpermb
+
+ {TTI::SK_PermuteTwoSrc, MVT::v64i8, 2}, // vpermt2b
+ {TTI::SK_PermuteTwoSrc, MVT::v32i8, 2}, // vpermt2b
+ {TTI::SK_PermuteTwoSrc, MVT::v16i8, 2} // vpermt2b
+ };
+
+ if (ST->hasVBMI())
+ if (const auto *Entry =
+ CostTableLookup(AVX512VBMIShuffleTbl, Kind, LT.second))
+ return LT.first * Entry->Cost;
+
+ static const CostTblEntry AVX512BWShuffleTbl[] = {
+ {TTI::SK_Broadcast, MVT::v32i16, 1}, // vpbroadcastw
+ {TTI::SK_Broadcast, MVT::v64i8, 1}, // vpbroadcastb
+
+ {TTI::SK_Reverse, MVT::v32i16, 2}, // vpermw
+ {TTI::SK_Reverse, MVT::v16i16, 2}, // vpermw
+ {TTI::SK_Reverse, MVT::v64i8, 2}, // pshufb + vshufi64x2
+
+ {TTI::SK_PermuteSingleSrc, MVT::v32i16, 2}, // vpermw
+ {TTI::SK_PermuteSingleSrc, MVT::v16i16, 2}, // vpermw
+ {TTI::SK_PermuteSingleSrc, MVT::v64i8, 8}, // extend to v32i16
+
+ {TTI::SK_PermuteTwoSrc, MVT::v32i16, 2}, // vpermt2w
+ {TTI::SK_PermuteTwoSrc, MVT::v16i16, 2}, // vpermt2w
+ {TTI::SK_PermuteTwoSrc, MVT::v8i16, 2}, // vpermt2w
+ {TTI::SK_PermuteTwoSrc, MVT::v64i8, 19}, // 6 * v32i8 + 1
+ };
+
+ if (ST->hasBWI())
+ if (const auto *Entry =
+ CostTableLookup(AVX512BWShuffleTbl, Kind, LT.second))
+ return LT.first * Entry->Cost;
+
+ static const CostTblEntry AVX512ShuffleTbl[] = {
+ {TTI::SK_Broadcast, MVT::v8f64, 1}, // vbroadcastpd
+ {TTI::SK_Broadcast, MVT::v16f32, 1}, // vbroadcastps
+ {TTI::SK_Broadcast, MVT::v8i64, 1}, // vpbroadcastq
+ {TTI::SK_Broadcast, MVT::v16i32, 1}, // vpbroadcastd
+ {TTI::SK_Broadcast, MVT::v32i16, 1}, // vpbroadcastw
+ {TTI::SK_Broadcast, MVT::v64i8, 1}, // vpbroadcastb
+
+ {TTI::SK_Reverse, MVT::v8f64, 1}, // vpermpd
+ {TTI::SK_Reverse, MVT::v16f32, 1}, // vpermps
+ {TTI::SK_Reverse, MVT::v8i64, 1}, // vpermq
+ {TTI::SK_Reverse, MVT::v16i32, 1}, // vpermd
+
+ {TTI::SK_PermuteSingleSrc, MVT::v8f64, 1}, // vpermpd
+ {TTI::SK_PermuteSingleSrc, MVT::v4f64, 1}, // vpermpd
+ {TTI::SK_PermuteSingleSrc, MVT::v2f64, 1}, // vpermpd
+ {TTI::SK_PermuteSingleSrc, MVT::v16f32, 1}, // vpermps
+ {TTI::SK_PermuteSingleSrc, MVT::v8f32, 1}, // vpermps
+ {TTI::SK_PermuteSingleSrc, MVT::v4f32, 1}, // vpermps
+ {TTI::SK_PermuteSingleSrc, MVT::v8i64, 1}, // vpermq
+ {TTI::SK_PermuteSingleSrc, MVT::v4i64, 1}, // vpermq
+ {TTI::SK_PermuteSingleSrc, MVT::v2i64, 1}, // vpermq
+ {TTI::SK_PermuteSingleSrc, MVT::v16i32, 1}, // vpermd
+ {TTI::SK_PermuteSingleSrc, MVT::v8i32, 1}, // vpermd
+ {TTI::SK_PermuteSingleSrc, MVT::v4i32, 1}, // vpermd
+ {TTI::SK_PermuteSingleSrc, MVT::v16i8, 1}, // pshufb
+
+ {TTI::SK_PermuteTwoSrc, MVT::v8f64, 1}, // vpermt2pd
+ {TTI::SK_PermuteTwoSrc, MVT::v16f32, 1}, // vpermt2ps
+ {TTI::SK_PermuteTwoSrc, MVT::v8i64, 1}, // vpermt2q
+ {TTI::SK_PermuteTwoSrc, MVT::v16i32, 1}, // vpermt2d
+ {TTI::SK_PermuteTwoSrc, MVT::v4f64, 1}, // vpermt2pd
+ {TTI::SK_PermuteTwoSrc, MVT::v8f32, 1}, // vpermt2ps
+ {TTI::SK_PermuteTwoSrc, MVT::v4i64, 1}, // vpermt2q
+ {TTI::SK_PermuteTwoSrc, MVT::v8i32, 1}, // vpermt2d
+ {TTI::SK_PermuteTwoSrc, MVT::v2f64, 1}, // vpermt2pd
+ {TTI::SK_PermuteTwoSrc, MVT::v4f32, 1}, // vpermt2ps
+ {TTI::SK_PermuteTwoSrc, MVT::v2i64, 1}, // vpermt2q
+ {TTI::SK_PermuteTwoSrc, MVT::v4i32, 1}, // vpermt2d
+
+ // FIXME: This just applies the type legalization cost rules above
+ // assuming these completely split.
+ {TTI::SK_PermuteSingleSrc, MVT::v32i16, 14},
+ {TTI::SK_PermuteSingleSrc, MVT::v64i8, 14},
+ {TTI::SK_PermuteTwoSrc, MVT::v32i16, 42},
+ {TTI::SK_PermuteTwoSrc, MVT::v64i8, 42},
+ };
+
+ if (ST->hasAVX512())
+ if (const auto *Entry = CostTableLookup(AVX512ShuffleTbl, Kind, LT.second))
+ return LT.first * Entry->Cost;
+
+ static const CostTblEntry AVX2ShuffleTbl[] = {
+ {TTI::SK_Broadcast, MVT::v4f64, 1}, // vbroadcastpd
+ {TTI::SK_Broadcast, MVT::v8f32, 1}, // vbroadcastps
+ {TTI::SK_Broadcast, MVT::v4i64, 1}, // vpbroadcastq
+ {TTI::SK_Broadcast, MVT::v8i32, 1}, // vpbroadcastd
+ {TTI::SK_Broadcast, MVT::v16i16, 1}, // vpbroadcastw
+ {TTI::SK_Broadcast, MVT::v32i8, 1}, // vpbroadcastb
+
+ {TTI::SK_Reverse, MVT::v4f64, 1}, // vpermpd
+ {TTI::SK_Reverse, MVT::v8f32, 1}, // vpermps
+ {TTI::SK_Reverse, MVT::v4i64, 1}, // vpermq
+ {TTI::SK_Reverse, MVT::v8i32, 1}, // vpermd
+ {TTI::SK_Reverse, MVT::v16i16, 2}, // vperm2i128 + pshufb
+ {TTI::SK_Reverse, MVT::v32i8, 2}, // vperm2i128 + pshufb
+
+ {TTI::SK_Select, MVT::v16i16, 1}, // vpblendvb
+ {TTI::SK_Select, MVT::v32i8, 1}, // vpblendvb
+
+ {TTI::SK_PermuteSingleSrc, MVT::v4f64, 1}, // vpermpd
+ {TTI::SK_PermuteSingleSrc, MVT::v8f32, 1}, // vpermps
+ {TTI::SK_PermuteSingleSrc, MVT::v4i64, 1}, // vpermq
+ {TTI::SK_PermuteSingleSrc, MVT::v8i32, 1}, // vpermd
+ {TTI::SK_PermuteSingleSrc, MVT::v16i16, 4}, // vperm2i128 + 2*vpshufb
+ // + vpblendvb
+ {TTI::SK_PermuteSingleSrc, MVT::v32i8, 4}, // vperm2i128 + 2*vpshufb
+ // + vpblendvb
+
+ {TTI::SK_PermuteTwoSrc, MVT::v4f64, 3}, // 2*vpermpd + vblendpd
+ {TTI::SK_PermuteTwoSrc, MVT::v8f32, 3}, // 2*vpermps + vblendps
+ {TTI::SK_PermuteTwoSrc, MVT::v4i64, 3}, // 2*vpermq + vpblendd
+ {TTI::SK_PermuteTwoSrc, MVT::v8i32, 3}, // 2*vpermd + vpblendd
+ {TTI::SK_PermuteTwoSrc, MVT::v16i16, 7}, // 2*vperm2i128 + 4*vpshufb
+ // + vpblendvb
+ {TTI::SK_PermuteTwoSrc, MVT::v32i8, 7}, // 2*vperm2i128 + 4*vpshufb
+ // + vpblendvb
+ };
+
+ if (ST->hasAVX2())
+ if (const auto *Entry = CostTableLookup(AVX2ShuffleTbl, Kind, LT.second))
+ return LT.first * Entry->Cost;
+
+ static const CostTblEntry XOPShuffleTbl[] = {
+ {TTI::SK_PermuteSingleSrc, MVT::v4f64, 2}, // vperm2f128 + vpermil2pd
+ {TTI::SK_PermuteSingleSrc, MVT::v8f32, 2}, // vperm2f128 + vpermil2ps
+ {TTI::SK_PermuteSingleSrc, MVT::v4i64, 2}, // vperm2f128 + vpermil2pd
+ {TTI::SK_PermuteSingleSrc, MVT::v8i32, 2}, // vperm2f128 + vpermil2ps
+ {TTI::SK_PermuteSingleSrc, MVT::v16i16, 4}, // vextractf128 + 2*vpperm
+ // + vinsertf128
+ {TTI::SK_PermuteSingleSrc, MVT::v32i8, 4}, // vextractf128 + 2*vpperm
+ // + vinsertf128
+
+ {TTI::SK_PermuteTwoSrc, MVT::v16i16, 9}, // 2*vextractf128 + 6*vpperm
+ // + vinsertf128
+ {TTI::SK_PermuteTwoSrc, MVT::v8i16, 1}, // vpperm
+ {TTI::SK_PermuteTwoSrc, MVT::v32i8, 9}, // 2*vextractf128 + 6*vpperm
+ // + vinsertf128
+ {TTI::SK_PermuteTwoSrc, MVT::v16i8, 1}, // vpperm
+ };
+
+ if (ST->hasXOP())
+ if (const auto *Entry = CostTableLookup(XOPShuffleTbl, Kind, LT.second))
+ return LT.first * Entry->Cost;
+
+ static const CostTblEntry AVX1ShuffleTbl[] = {
+ {TTI::SK_Broadcast, MVT::v4f64, 2}, // vperm2f128 + vpermilpd
+ {TTI::SK_Broadcast, MVT::v8f32, 2}, // vperm2f128 + vpermilps
+ {TTI::SK_Broadcast, MVT::v4i64, 2}, // vperm2f128 + vpermilpd
+ {TTI::SK_Broadcast, MVT::v8i32, 2}, // vperm2f128 + vpermilps
+ {TTI::SK_Broadcast, MVT::v16i16, 3}, // vpshuflw + vpshufd + vinsertf128
+ {TTI::SK_Broadcast, MVT::v32i8, 2}, // vpshufb + vinsertf128
+
+ {TTI::SK_Reverse, MVT::v4f64, 2}, // vperm2f128 + vpermilpd
+ {TTI::SK_Reverse, MVT::v8f32, 2}, // vperm2f128 + vpermilps
+ {TTI::SK_Reverse, MVT::v4i64, 2}, // vperm2f128 + vpermilpd
+ {TTI::SK_Reverse, MVT::v8i32, 2}, // vperm2f128 + vpermilps
+ {TTI::SK_Reverse, MVT::v16i16, 4}, // vextractf128 + 2*pshufb
+ // + vinsertf128
+ {TTI::SK_Reverse, MVT::v32i8, 4}, // vextractf128 + 2*pshufb
+ // + vinsertf128
+
+ {TTI::SK_Select, MVT::v4i64, 1}, // vblendpd
+ {TTI::SK_Select, MVT::v4f64, 1}, // vblendpd
+ {TTI::SK_Select, MVT::v8i32, 1}, // vblendps
+ {TTI::SK_Select, MVT::v8f32, 1}, // vblendps
+ {TTI::SK_Select, MVT::v16i16, 3}, // vpand + vpandn + vpor
+ {TTI::SK_Select, MVT::v32i8, 3}, // vpand + vpandn + vpor
+
+ {TTI::SK_PermuteSingleSrc, MVT::v4f64, 2}, // vperm2f128 + vshufpd
+ {TTI::SK_PermuteSingleSrc, MVT::v4i64, 2}, // vperm2f128 + vshufpd
+ {TTI::SK_PermuteSingleSrc, MVT::v8f32, 4}, // 2*vperm2f128 + 2*vshufps
+ {TTI::SK_PermuteSingleSrc, MVT::v8i32, 4}, // 2*vperm2f128 + 2*vshufps
+ {TTI::SK_PermuteSingleSrc, MVT::v16i16, 8}, // vextractf128 + 4*pshufb
+ // + 2*por + vinsertf128
+ {TTI::SK_PermuteSingleSrc, MVT::v32i8, 8}, // vextractf128 + 4*pshufb
+ // + 2*por + vinsertf128
+
+ {TTI::SK_PermuteTwoSrc, MVT::v4f64, 3}, // 2*vperm2f128 + vshufpd
+ {TTI::SK_PermuteTwoSrc, MVT::v4i64, 3}, // 2*vperm2f128 + vshufpd
+ {TTI::SK_PermuteTwoSrc, MVT::v8f32, 4}, // 2*vperm2f128 + 2*vshufps
+ {TTI::SK_PermuteTwoSrc, MVT::v8i32, 4}, // 2*vperm2f128 + 2*vshufps
+ {TTI::SK_PermuteTwoSrc, MVT::v16i16, 15}, // 2*vextractf128 + 8*pshufb
+ // + 4*por + vinsertf128
+ {TTI::SK_PermuteTwoSrc, MVT::v32i8, 15}, // 2*vextractf128 + 8*pshufb
+ // + 4*por + vinsertf128
+ };
+
+ if (ST->hasAVX())
+ if (const auto *Entry = CostTableLookup(AVX1ShuffleTbl, Kind, LT.second))
+ return LT.first * Entry->Cost;
+
+ static const CostTblEntry SSE41ShuffleTbl[] = {
+ {TTI::SK_Select, MVT::v2i64, 1}, // pblendw
+ {TTI::SK_Select, MVT::v2f64, 1}, // movsd
+ {TTI::SK_Select, MVT::v4i32, 1}, // pblendw
+ {TTI::SK_Select, MVT::v4f32, 1}, // blendps
+ {TTI::SK_Select, MVT::v8i16, 1}, // pblendw
+ {TTI::SK_Select, MVT::v16i8, 1} // pblendvb
+ };
+
+ if (ST->hasSSE41())
+ if (const auto *Entry = CostTableLookup(SSE41ShuffleTbl, Kind, LT.second))
+ return LT.first * Entry->Cost;
+
+ static const CostTblEntry SSSE3ShuffleTbl[] = {
+ {TTI::SK_Broadcast, MVT::v8i16, 1}, // pshufb
+ {TTI::SK_Broadcast, MVT::v16i8, 1}, // pshufb
+
+ {TTI::SK_Reverse, MVT::v8i16, 1}, // pshufb
+ {TTI::SK_Reverse, MVT::v16i8, 1}, // pshufb
+
+ {TTI::SK_Select, MVT::v8i16, 3}, // 2*pshufb + por
+ {TTI::SK_Select, MVT::v16i8, 3}, // 2*pshufb + por
+
+ {TTI::SK_PermuteSingleSrc, MVT::v8i16, 1}, // pshufb
+ {TTI::SK_PermuteSingleSrc, MVT::v16i8, 1}, // pshufb
+
+ {TTI::SK_PermuteTwoSrc, MVT::v8i16, 3}, // 2*pshufb + por
+ {TTI::SK_PermuteTwoSrc, MVT::v16i8, 3}, // 2*pshufb + por
+ };
+
+ if (ST->hasSSSE3())
+ if (const auto *Entry = CostTableLookup(SSSE3ShuffleTbl, Kind, LT.second))
+ return LT.first * Entry->Cost;
+
+ static const CostTblEntry SSE2ShuffleTbl[] = {
+ {TTI::SK_Broadcast, MVT::v2f64, 1}, // shufpd
+ {TTI::SK_Broadcast, MVT::v2i64, 1}, // pshufd
+ {TTI::SK_Broadcast, MVT::v4i32, 1}, // pshufd
+ {TTI::SK_Broadcast, MVT::v8i16, 2}, // pshuflw + pshufd
+ {TTI::SK_Broadcast, MVT::v16i8, 3}, // unpck + pshuflw + pshufd
+
+ {TTI::SK_Reverse, MVT::v2f64, 1}, // shufpd
+ {TTI::SK_Reverse, MVT::v2i64, 1}, // pshufd
+ {TTI::SK_Reverse, MVT::v4i32, 1}, // pshufd
+ {TTI::SK_Reverse, MVT::v8i16, 3}, // pshuflw + pshufhw + pshufd
+ {TTI::SK_Reverse, MVT::v16i8, 9}, // 2*pshuflw + 2*pshufhw
+ // + 2*pshufd + 2*unpck + packus
+
+ {TTI::SK_Select, MVT::v2i64, 1}, // movsd
+ {TTI::SK_Select, MVT::v2f64, 1}, // movsd
+ {TTI::SK_Select, MVT::v4i32, 2}, // 2*shufps
+ {TTI::SK_Select, MVT::v8i16, 3}, // pand + pandn + por
+ {TTI::SK_Select, MVT::v16i8, 3}, // pand + pandn + por
+
+ {TTI::SK_PermuteSingleSrc, MVT::v2f64, 1}, // shufpd
+ {TTI::SK_PermuteSingleSrc, MVT::v2i64, 1}, // pshufd
+ {TTI::SK_PermuteSingleSrc, MVT::v4i32, 1}, // pshufd
+ {TTI::SK_PermuteSingleSrc, MVT::v8i16, 5}, // 2*pshuflw + 2*pshufhw
+ // + pshufd/unpck
+ { TTI::SK_PermuteSingleSrc, MVT::v16i8, 10 }, // 2*pshuflw + 2*pshufhw
+ // + 2*pshufd + 2*unpck + 2*packus
+
+ { TTI::SK_PermuteTwoSrc, MVT::v2f64, 1 }, // shufpd
+ { TTI::SK_PermuteTwoSrc, MVT::v2i64, 1 }, // shufpd
+ { TTI::SK_PermuteTwoSrc, MVT::v4i32, 2 }, // 2*{unpck,movsd,pshufd}
+ { TTI::SK_PermuteTwoSrc, MVT::v8i16, 8 }, // blend+permute
+ { TTI::SK_PermuteTwoSrc, MVT::v16i8, 13 }, // blend+permute
+ };
+
+ if (ST->hasSSE2())
+ if (const auto *Entry = CostTableLookup(SSE2ShuffleTbl, Kind, LT.second))
+ return LT.first * Entry->Cost;
+
+ static const CostTblEntry SSE1ShuffleTbl[] = {
+ { TTI::SK_Broadcast, MVT::v4f32, 1 }, // shufps
+ { TTI::SK_Reverse, MVT::v4f32, 1 }, // shufps
+ { TTI::SK_Select, MVT::v4f32, 2 }, // 2*shufps
+ { TTI::SK_PermuteSingleSrc, MVT::v4f32, 1 }, // shufps
+ { TTI::SK_PermuteTwoSrc, MVT::v4f32, 2 }, // 2*shufps
+ };
+
+ if (ST->hasSSE1())
+ if (const auto *Entry = CostTableLookup(SSE1ShuffleTbl, Kind, LT.second))
+ return LT.first * Entry->Cost;
+
+ return BaseT::getShuffleCost(Kind, BaseTp, Index, SubTp);
+}
+
+int X86TTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src,
+ TTI::TargetCostKind CostKind,
+ const Instruction *I) {
+ int ISD = TLI->InstructionOpcodeToISD(Opcode);
+ assert(ISD && "Invalid opcode");
+
+ // TODO: Allow non-throughput costs that aren't binary.
+ auto AdjustCost = [&CostKind](int Cost) {
+ if (CostKind != TTI::TCK_RecipThroughput)
+ return Cost == 0 ? 0 : 1;
+ return Cost;
+ };
+
+ // FIXME: Need a better design of the cost table to handle non-simple types of
+ // potential massive combinations (elem_num x src_type x dst_type).
+
+ static const TypeConversionCostTblEntry AVX512BWConversionTbl[] {
+ { ISD::SIGN_EXTEND, MVT::v32i16, MVT::v32i8, 1 },
+ { ISD::ZERO_EXTEND, MVT::v32i16, MVT::v32i8, 1 },
+
+ // Mask sign extend has an instruction.
+ { ISD::SIGN_EXTEND, MVT::v2i8, MVT::v2i1, 1 },
+ { ISD::SIGN_EXTEND, MVT::v2i16, MVT::v2i1, 1 },
+ { ISD::SIGN_EXTEND, MVT::v4i8, MVT::v4i1, 1 },
+ { ISD::SIGN_EXTEND, MVT::v4i16, MVT::v4i1, 1 },
+ { ISD::SIGN_EXTEND, MVT::v8i8, MVT::v8i1, 1 },
+ { ISD::SIGN_EXTEND, MVT::v8i16, MVT::v8i1, 1 },
+ { ISD::SIGN_EXTEND, MVT::v16i8, MVT::v16i1, 1 },
+ { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i1, 1 },
+ { ISD::SIGN_EXTEND, MVT::v32i8, MVT::v32i1, 1 },
+ { ISD::SIGN_EXTEND, MVT::v32i16, MVT::v32i1, 1 },
+ { ISD::SIGN_EXTEND, MVT::v64i8, MVT::v64i1, 1 },
+
+ // Mask zero extend is a sext + shift.
+ { ISD::ZERO_EXTEND, MVT::v2i8, MVT::v2i1, 2 },
+ { ISD::ZERO_EXTEND, MVT::v2i16, MVT::v2i1, 2 },
+ { ISD::ZERO_EXTEND, MVT::v4i8, MVT::v4i1, 2 },
+ { ISD::ZERO_EXTEND, MVT::v4i16, MVT::v4i1, 2 },
+ { ISD::ZERO_EXTEND, MVT::v8i8, MVT::v8i1, 2 },
+ { ISD::ZERO_EXTEND, MVT::v8i16, MVT::v8i1, 2 },
+ { ISD::ZERO_EXTEND, MVT::v16i8, MVT::v16i1, 2 },
+ { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i1, 2 },
+ { ISD::ZERO_EXTEND, MVT::v32i8, MVT::v32i1, 2 },
+ { ISD::ZERO_EXTEND, MVT::v32i16, MVT::v32i1, 2 },
+ { ISD::ZERO_EXTEND, MVT::v64i8, MVT::v64i1, 2 },
+
+ { ISD::TRUNCATE, MVT::v32i8, MVT::v32i16, 2 },
+ { ISD::TRUNCATE, MVT::v16i8, MVT::v16i16, 2 }, // widen to zmm
+ { ISD::TRUNCATE, MVT::v2i1, MVT::v2i8, 2 }, // widen to zmm
+ { ISD::TRUNCATE, MVT::v2i1, MVT::v2i16, 2 }, // widen to zmm
+ { ISD::TRUNCATE, MVT::v4i1, MVT::v4i8, 2 }, // widen to zmm
+ { ISD::TRUNCATE, MVT::v4i1, MVT::v4i16, 2 }, // widen to zmm
+ { ISD::TRUNCATE, MVT::v8i1, MVT::v8i8, 2 }, // widen to zmm
+ { ISD::TRUNCATE, MVT::v8i1, MVT::v8i16, 2 }, // widen to zmm
+ { ISD::TRUNCATE, MVT::v16i1, MVT::v16i8, 2 }, // widen to zmm
+ { ISD::TRUNCATE, MVT::v16i1, MVT::v16i16, 2 }, // widen to zmm
+ { ISD::TRUNCATE, MVT::v32i1, MVT::v32i8, 2 }, // widen to zmm
+ { ISD::TRUNCATE, MVT::v32i1, MVT::v32i16, 2 },
+ { ISD::TRUNCATE, MVT::v64i1, MVT::v64i8, 2 },
+ };
+
+ static const TypeConversionCostTblEntry AVX512DQConversionTbl[] = {
+ { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i64, 1 },
+ { ISD::SINT_TO_FP, MVT::v8f64, MVT::v8i64, 1 },
+
+ { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i64, 1 },
+ { ISD::UINT_TO_FP, MVT::v8f64, MVT::v8i64, 1 },
+
+ { ISD::FP_TO_SINT, MVT::v8i64, MVT::v8f32, 1 },
+ { ISD::FP_TO_SINT, MVT::v8i64, MVT::v8f64, 1 },
+
+ { ISD::FP_TO_UINT, MVT::v8i64, MVT::v8f32, 1 },
+ { ISD::FP_TO_UINT, MVT::v8i64, MVT::v8f64, 1 },
+ };
+
+ // TODO: For AVX512DQ + AVX512VL, we also have cheap casts for 128-bit and
+ // 256-bit wide vectors.
+
+ static const TypeConversionCostTblEntry AVX512FConversionTbl[] = {
+ { ISD::FP_EXTEND, MVT::v8f64, MVT::v8f32, 1 },
+ { ISD::FP_EXTEND, MVT::v8f64, MVT::v16f32, 3 },
+ { ISD::FP_ROUND, MVT::v8f32, MVT::v8f64, 1 },
+
+ { ISD::TRUNCATE, MVT::v2i1, MVT::v2i8, 3 }, // sext+vpslld+vptestmd
+ { ISD::TRUNCATE, MVT::v4i1, MVT::v4i8, 3 }, // sext+vpslld+vptestmd
+ { ISD::TRUNCATE, MVT::v8i1, MVT::v8i8, 3 }, // sext+vpslld+vptestmd
+ { ISD::TRUNCATE, MVT::v16i1, MVT::v16i8, 3 }, // sext+vpslld+vptestmd
+ { ISD::TRUNCATE, MVT::v2i1, MVT::v2i16, 3 }, // sext+vpsllq+vptestmq
+ { ISD::TRUNCATE, MVT::v4i1, MVT::v4i16, 3 }, // sext+vpsllq+vptestmq
+ { ISD::TRUNCATE, MVT::v8i1, MVT::v8i16, 3 }, // sext+vpsllq+vptestmq
+ { ISD::TRUNCATE, MVT::v16i1, MVT::v16i16, 3 }, // sext+vpslld+vptestmd
+ { ISD::TRUNCATE, MVT::v2i1, MVT::v2i32, 2 }, // zmm vpslld+vptestmd
+ { ISD::TRUNCATE, MVT::v4i1, MVT::v4i32, 2 }, // zmm vpslld+vptestmd
+ { ISD::TRUNCATE, MVT::v8i1, MVT::v8i32, 2 }, // zmm vpslld+vptestmd
+ { ISD::TRUNCATE, MVT::v16i1, MVT::v16i32, 2 }, // vpslld+vptestmd
+ { ISD::TRUNCATE, MVT::v2i1, MVT::v2i64, 2 }, // zmm vpsllq+vptestmq
+ { ISD::TRUNCATE, MVT::v4i1, MVT::v4i64, 2 }, // zmm vpsllq+vptestmq
+ { ISD::TRUNCATE, MVT::v8i1, MVT::v8i64, 2 }, // vpsllq+vptestmq
+ { ISD::TRUNCATE, MVT::v16i8, MVT::v16i32, 2 },
+ { ISD::TRUNCATE, MVT::v16i16, MVT::v16i32, 2 },
+ { ISD::TRUNCATE, MVT::v8i8, MVT::v8i64, 2 },
+ { ISD::TRUNCATE, MVT::v8i16, MVT::v8i64, 2 },
+ { ISD::TRUNCATE, MVT::v8i32, MVT::v8i64, 1 },
+ { ISD::TRUNCATE, MVT::v4i32, MVT::v4i64, 1 }, // zmm vpmovqd
+ { ISD::TRUNCATE, MVT::v16i8, MVT::v16i64, 5 },// 2*vpmovqd+concat+vpmovdb
+
+ { ISD::TRUNCATE, MVT::v16i8, MVT::v16i16, 3 }, // extend to v16i32
+ { ISD::TRUNCATE, MVT::v32i8, MVT::v32i16, 8 },
+
+ // Sign extend is zmm vpternlogd+vptruncdb.
+ // Zero extend is zmm broadcast load+vptruncdw.
+ { ISD::SIGN_EXTEND, MVT::v2i8, MVT::v2i1, 3 },
+ { ISD::ZERO_EXTEND, MVT::v2i8, MVT::v2i1, 4 },
+ { ISD::SIGN_EXTEND, MVT::v4i8, MVT::v4i1, 3 },
+ { ISD::ZERO_EXTEND, MVT::v4i8, MVT::v4i1, 4 },
+ { ISD::SIGN_EXTEND, MVT::v8i8, MVT::v8i1, 3 },
+ { ISD::ZERO_EXTEND, MVT::v8i8, MVT::v8i1, 4 },
+ { ISD::SIGN_EXTEND, MVT::v16i8, MVT::v16i1, 3 },
+ { ISD::ZERO_EXTEND, MVT::v16i8, MVT::v16i1, 4 },
+
+ // Sign extend is zmm vpternlogd+vptruncdw.
+ // Zero extend is zmm vpternlogd+vptruncdw+vpsrlw.
+ { ISD::SIGN_EXTEND, MVT::v2i16, MVT::v2i1, 3 },
+ { ISD::ZERO_EXTEND, MVT::v2i16, MVT::v2i1, 4 },
+ { ISD::SIGN_EXTEND, MVT::v4i16, MVT::v4i1, 3 },
+ { ISD::ZERO_EXTEND, MVT::v4i16, MVT::v4i1, 4 },
+ { ISD::SIGN_EXTEND, MVT::v8i16, MVT::v8i1, 3 },
+ { ISD::ZERO_EXTEND, MVT::v8i16, MVT::v8i1, 4 },
+ { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i1, 3 },
+ { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i1, 4 },
+
+ { ISD::SIGN_EXTEND, MVT::v2i32, MVT::v2i1, 1 }, // zmm vpternlogd
+ { ISD::ZERO_EXTEND, MVT::v2i32, MVT::v2i1, 2 }, // zmm vpternlogd+psrld
+ { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i1, 1 }, // zmm vpternlogd
+ { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i1, 2 }, // zmm vpternlogd+psrld
+ { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i1, 1 }, // zmm vpternlogd
+ { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i1, 2 }, // zmm vpternlogd+psrld
+ { ISD::SIGN_EXTEND, MVT::v2i64, MVT::v2i1, 1 }, // zmm vpternlogq
+ { ISD::ZERO_EXTEND, MVT::v2i64, MVT::v2i1, 2 }, // zmm vpternlogq+psrlq
+ { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i1, 1 }, // zmm vpternlogq
+ { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i1, 2 }, // zmm vpternlogq+psrlq
+
+ { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i1, 1 }, // vpternlogd
+ { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i1, 2 }, // vpternlogd+psrld
+ { ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i1, 1 }, // vpternlogq
+ { ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i1, 2 }, // vpternlogq+psrlq
+
+ { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8, 1 },
+ { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8, 1 },
+ { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i16, 1 },
+ { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i16, 1 },
+ { ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i8, 1 },
+ { ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i8, 1 },
+ { ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i16, 1 },
+ { ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i16, 1 },
+ { ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i32, 1 },
+ { ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i32, 1 },
+
+ { ISD::SIGN_EXTEND, MVT::v32i16, MVT::v32i8, 3 }, // FIXME: May not be right
+ { ISD::ZERO_EXTEND, MVT::v32i16, MVT::v32i8, 3 }, // FIXME: May not be right
+
+ { ISD::SINT_TO_FP, MVT::v8f64, MVT::v8i1, 4 },
+ { ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i1, 3 },
+ { ISD::SINT_TO_FP, MVT::v8f64, MVT::v8i8, 2 },
+ { ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i8, 2 },
+ { ISD::SINT_TO_FP, MVT::v8f64, MVT::v8i16, 2 },
+ { ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i16, 2 },
+ { ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i32, 1 },
+ { ISD::SINT_TO_FP, MVT::v8f64, MVT::v8i32, 1 },
+
+ { ISD::UINT_TO_FP, MVT::v8f64, MVT::v8i1, 4 },
+ { ISD::UINT_TO_FP, MVT::v16f32, MVT::v16i1, 3 },
+ { ISD::UINT_TO_FP, MVT::v8f64, MVT::v8i8, 2 },
+ { ISD::UINT_TO_FP, MVT::v16f32, MVT::v16i8, 2 },
+ { ISD::UINT_TO_FP, MVT::v8f64, MVT::v8i16, 2 },
+ { ISD::UINT_TO_FP, MVT::v16f32, MVT::v16i16, 2 },
+ { ISD::UINT_TO_FP, MVT::v8f64, MVT::v8i32, 1 },
+ { ISD::UINT_TO_FP, MVT::v16f32, MVT::v16i32, 1 },
+ { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i64, 26 },
+ { ISD::UINT_TO_FP, MVT::v8f64, MVT::v8i64, 5 },
+
+ { ISD::FP_TO_SINT, MVT::v8i8, MVT::v8f64, 3 },
+ { ISD::FP_TO_SINT, MVT::v8i16, MVT::v8f64, 3 },
+ { ISD::FP_TO_SINT, MVT::v16i8, MVT::v16f32, 3 },
+ { ISD::FP_TO_SINT, MVT::v16i16, MVT::v16f32, 3 },
+
+ { ISD::FP_TO_UINT, MVT::v8i32, MVT::v8f64, 1 },
+ { ISD::FP_TO_UINT, MVT::v8i16, MVT::v8f64, 3 },
+ { ISD::FP_TO_UINT, MVT::v8i8, MVT::v8f64, 3 },
+ { ISD::FP_TO_UINT, MVT::v16i32, MVT::v16f32, 1 },
+ { ISD::FP_TO_UINT, MVT::v16i16, MVT::v16f32, 3 },
+ { ISD::FP_TO_UINT, MVT::v16i8, MVT::v16f32, 3 },
+ };
+
+ static const TypeConversionCostTblEntry AVX512BWVLConversionTbl[] {
+ // Mask sign extend has an instruction.
+ { ISD::SIGN_EXTEND, MVT::v2i8, MVT::v2i1, 1 },
+ { ISD::SIGN_EXTEND, MVT::v2i16, MVT::v2i1, 1 },
+ { ISD::SIGN_EXTEND, MVT::v4i8, MVT::v4i1, 1 },
+ { ISD::SIGN_EXTEND, MVT::v4i16, MVT::v4i1, 1 },
+ { ISD::SIGN_EXTEND, MVT::v8i8, MVT::v8i1, 1 },
+ { ISD::SIGN_EXTEND, MVT::v8i16, MVT::v8i1, 1 },
+ { ISD::SIGN_EXTEND, MVT::v16i8, MVT::v16i1, 1 },
+ { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i1, 1 },
+ { ISD::SIGN_EXTEND, MVT::v32i8, MVT::v32i1, 1 },
+
+ // Mask zero extend is a sext + shift.
+ { ISD::ZERO_EXTEND, MVT::v2i8, MVT::v2i1, 2 },
+ { ISD::ZERO_EXTEND, MVT::v2i16, MVT::v2i1, 2 },
+ { ISD::ZERO_EXTEND, MVT::v4i8, MVT::v4i1, 2 },
+ { ISD::ZERO_EXTEND, MVT::v4i16, MVT::v4i1, 2 },
+ { ISD::ZERO_EXTEND, MVT::v8i8, MVT::v8i1, 2 },
+ { ISD::ZERO_EXTEND, MVT::v8i16, MVT::v8i1, 2 },
+ { ISD::ZERO_EXTEND, MVT::v16i8, MVT::v16i1, 2 },
+ { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i1, 2 },
+ { ISD::ZERO_EXTEND, MVT::v32i8, MVT::v32i1, 2 },
+
+ { ISD::TRUNCATE, MVT::v16i8, MVT::v16i16, 2 },
+ { ISD::TRUNCATE, MVT::v2i1, MVT::v2i8, 2 }, // vpsllw+vptestmb
+ { ISD::TRUNCATE, MVT::v2i1, MVT::v2i16, 2 }, // vpsllw+vptestmw
+ { ISD::TRUNCATE, MVT::v4i1, MVT::v4i8, 2 }, // vpsllw+vptestmb
+ { ISD::TRUNCATE, MVT::v4i1, MVT::v4i16, 2 }, // vpsllw+vptestmw
+ { ISD::TRUNCATE, MVT::v8i1, MVT::v8i8, 2 }, // vpsllw+vptestmb
+ { ISD::TRUNCATE, MVT::v8i1, MVT::v8i16, 2 }, // vpsllw+vptestmw
+ { ISD::TRUNCATE, MVT::v16i1, MVT::v16i8, 2 }, // vpsllw+vptestmb
+ { ISD::TRUNCATE, MVT::v16i1, MVT::v16i16, 2 }, // vpsllw+vptestmw
+ { ISD::TRUNCATE, MVT::v32i1, MVT::v32i8, 2 }, // vpsllw+vptestmb
+ };
+
+ static const TypeConversionCostTblEntry AVX512DQVLConversionTbl[] = {
+ { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i64, 1 },
+ { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i64, 1 },
+ { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i64, 1 },
+ { ISD::SINT_TO_FP, MVT::v4f64, MVT::v4i64, 1 },
+
+ { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i64, 1 },
+ { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i64, 1 },
+ { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i64, 1 },
+ { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i64, 1 },
+
+ { ISD::FP_TO_SINT, MVT::v2i64, MVT::v2f32, 1 },
+ { ISD::FP_TO_SINT, MVT::v4i64, MVT::v4f32, 1 },
+ { ISD::FP_TO_SINT, MVT::v2i64, MVT::v2f64, 1 },
+ { ISD::FP_TO_SINT, MVT::v4i64, MVT::v4f64, 1 },
+
+ { ISD::FP_TO_UINT, MVT::v2i64, MVT::v2f32, 1 },
+ { ISD::FP_TO_UINT, MVT::v4i64, MVT::v4f32, 1 },
+ { ISD::FP_TO_UINT, MVT::v2i64, MVT::v2f64, 1 },
+ { ISD::FP_TO_UINT, MVT::v4i64, MVT::v4f64, 1 },
+ };
+
+ static const TypeConversionCostTblEntry AVX512VLConversionTbl[] = {
+ { ISD::TRUNCATE, MVT::v2i1, MVT::v2i8, 3 }, // sext+vpslld+vptestmd
+ { ISD::TRUNCATE, MVT::v4i1, MVT::v4i8, 3 }, // sext+vpslld+vptestmd
+ { ISD::TRUNCATE, MVT::v8i1, MVT::v8i8, 3 }, // sext+vpslld+vptestmd
+ { ISD::TRUNCATE, MVT::v16i1, MVT::v16i8, 8 }, // split+2*v8i8
+ { ISD::TRUNCATE, MVT::v2i1, MVT::v2i16, 3 }, // sext+vpsllq+vptestmq
+ { ISD::TRUNCATE, MVT::v4i1, MVT::v4i16, 3 }, // sext+vpsllq+vptestmq
+ { ISD::TRUNCATE, MVT::v8i1, MVT::v8i16, 3 }, // sext+vpsllq+vptestmq
+ { ISD::TRUNCATE, MVT::v16i1, MVT::v16i16, 8 }, // split+2*v8i16
+ { ISD::TRUNCATE, MVT::v2i1, MVT::v2i32, 2 }, // vpslld+vptestmd
+ { ISD::TRUNCATE, MVT::v4i1, MVT::v4i32, 2 }, // vpslld+vptestmd
+ { ISD::TRUNCATE, MVT::v8i1, MVT::v8i32, 2 }, // vpslld+vptestmd
+ { ISD::TRUNCATE, MVT::v2i1, MVT::v2i64, 2 }, // vpsllq+vptestmq
+ { ISD::TRUNCATE, MVT::v4i1, MVT::v4i64, 2 }, // vpsllq+vptestmq
+ { ISD::TRUNCATE, MVT::v4i32, MVT::v4i64, 1 }, // vpmovqd
+
+ // sign extend is vpcmpeq+maskedmove+vpmovdw+vpacksswb
+ // zero extend is vpcmpeq+maskedmove+vpmovdw+vpsrlw+vpackuswb
+ { ISD::SIGN_EXTEND, MVT::v2i8, MVT::v2i1, 5 },
+ { ISD::ZERO_EXTEND, MVT::v2i8, MVT::v2i1, 6 },
+ { ISD::SIGN_EXTEND, MVT::v4i8, MVT::v4i1, 5 },
+ { ISD::ZERO_EXTEND, MVT::v4i8, MVT::v4i1, 6 },
+ { ISD::SIGN_EXTEND, MVT::v8i8, MVT::v8i1, 5 },
+ { ISD::ZERO_EXTEND, MVT::v8i8, MVT::v8i1, 6 },
+ { ISD::SIGN_EXTEND, MVT::v16i8, MVT::v16i1, 10 },
+ { ISD::ZERO_EXTEND, MVT::v16i8, MVT::v16i1, 12 },
+
+ // sign extend is vpcmpeq+maskedmove+vpmovdw
+ // zero extend is vpcmpeq+maskedmove+vpmovdw+vpsrlw
+ { ISD::SIGN_EXTEND, MVT::v2i16, MVT::v2i1, 4 },
+ { ISD::ZERO_EXTEND, MVT::v2i16, MVT::v2i1, 5 },
+ { ISD::SIGN_EXTEND, MVT::v4i16, MVT::v4i1, 4 },
+ { ISD::ZERO_EXTEND, MVT::v4i16, MVT::v4i1, 5 },
+ { ISD::SIGN_EXTEND, MVT::v8i16, MVT::v8i1, 4 },
+ { ISD::ZERO_EXTEND, MVT::v8i16, MVT::v8i1, 5 },
+ { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i1, 10 },
+ { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i1, 12 },
+
+ { ISD::SIGN_EXTEND, MVT::v2i32, MVT::v2i1, 1 }, // vpternlogd
+ { ISD::ZERO_EXTEND, MVT::v2i32, MVT::v2i1, 2 }, // vpternlogd+psrld
+ { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i1, 1 }, // vpternlogd
+ { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i1, 2 }, // vpternlogd+psrld
+ { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i1, 1 }, // vpternlogd
+ { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i1, 2 }, // vpternlogd+psrld
+ { ISD::SIGN_EXTEND, MVT::v2i64, MVT::v2i1, 1 }, // vpternlogq
+ { ISD::ZERO_EXTEND, MVT::v2i64, MVT::v2i1, 2 }, // vpternlogq+psrlq
+ { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i1, 1 }, // vpternlogq
+ { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i1, 2 }, // vpternlogq+psrlq
+
+ { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i8, 2 },
+ { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i8, 2 },
+ { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i8, 2 },
+ { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i16, 5 },
+ { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i16, 2 },
+ { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i16, 2 },
+ { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i32, 2 },
+ { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i32, 1 },
+ { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i32, 1 },
+ { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i32, 1 },
+ { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i32, 1 },
+ { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i64, 5 },
+ { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i64, 5 },
+ { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i64, 5 },
+
+ { ISD::UINT_TO_FP, MVT::f32, MVT::i64, 1 },
+ { ISD::UINT_TO_FP, MVT::f64, MVT::i64, 1 },
+
+ { ISD::FP_TO_SINT, MVT::v8i8, MVT::v8f32, 3 },
+ { ISD::FP_TO_UINT, MVT::v8i8, MVT::v8f32, 3 },
+
+ { ISD::FP_TO_UINT, MVT::i64, MVT::f32, 1 },
+ { ISD::FP_TO_UINT, MVT::i64, MVT::f64, 1 },
+
+ { ISD::FP_TO_UINT, MVT::v2i32, MVT::v2f32, 1 },
+ { ISD::FP_TO_UINT, MVT::v4i32, MVT::v4f32, 1 },
+ { ISD::FP_TO_UINT, MVT::v2i32, MVT::v2f64, 1 },
+ { ISD::FP_TO_UINT, MVT::v4i32, MVT::v4f64, 1 },
+ { ISD::FP_TO_UINT, MVT::v8i32, MVT::v8f32, 1 },
+ };
+
+ static const TypeConversionCostTblEntry AVX2ConversionTbl[] = {
+ { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i1, 3 },
+ { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i1, 3 },
+ { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i1, 3 },
+ { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i1, 3 },
+ { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i8, 1 },
+ { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i8, 1 },
+ { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i8, 1 },
+ { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i8, 1 },
+ { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i1, 1 },
+ { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i1, 1 },
+ { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8, 1 },
+ { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8, 1 },
+ { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i16, 1 },
+ { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i16, 1 },
+ { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i16, 1 },
+ { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i16, 1 },
+ { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i32, 1 },
+ { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i32, 1 },
+ { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i16, 3 },
+ { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i16, 3 },
+
+ { ISD::TRUNCATE, MVT::v4i32, MVT::v4i64, 2 },
+ { ISD::TRUNCATE, MVT::v8i1, MVT::v8i32, 2 },
+
+ { ISD::TRUNCATE, MVT::v4i8, MVT::v4i64, 2 },
+ { ISD::TRUNCATE, MVT::v4i16, MVT::v4i64, 2 },
+ { ISD::TRUNCATE, MVT::v8i8, MVT::v8i32, 2 },
+ { ISD::TRUNCATE, MVT::v8i16, MVT::v8i32, 2 },
+
+ { ISD::FP_EXTEND, MVT::v8f64, MVT::v8f32, 3 },
+ { ISD::FP_ROUND, MVT::v8f32, MVT::v8f64, 3 },
+
+ { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i32, 8 },
+ };
+
+ static const TypeConversionCostTblEntry AVXConversionTbl[] = {
+ { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i1, 6 },
+ { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i1, 4 },
+ { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i1, 7 },
+ { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i1, 4 },
+ { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i8, 4 },
+ { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i8, 4 },
+ { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i8, 4 },
+ { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i8, 4 },
+ { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i1, 4 },
+ { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i1, 4 },
+ { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8, 4 },
+ { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8, 4 },
+ { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i16, 4 },
+ { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i16, 3 },
+ { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i16, 4 },
+ { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i16, 4 },
+ { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i32, 4 },
+ { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i32, 4 },
+
+ { ISD::TRUNCATE, MVT::v4i1, MVT::v4i64, 4 },
+ { ISD::TRUNCATE, MVT::v8i1, MVT::v8i32, 5 },
+ { ISD::TRUNCATE, MVT::v16i1, MVT::v16i16, 4 },
+ { ISD::TRUNCATE, MVT::v8i1, MVT::v8i64, 9 },
+ { ISD::TRUNCATE, MVT::v16i1, MVT::v16i64, 11 },
+
+ { ISD::TRUNCATE, MVT::v16i8, MVT::v16i16, 4 },
+ { ISD::TRUNCATE, MVT::v8i8, MVT::v8i32, 4 },
+ { ISD::TRUNCATE, MVT::v8i16, MVT::v8i32, 5 },
+ { ISD::TRUNCATE, MVT::v4i8, MVT::v4i64, 4 },
+ { ISD::TRUNCATE, MVT::v4i16, MVT::v4i64, 4 },
+ { ISD::TRUNCATE, MVT::v4i32, MVT::v4i64, 2 },
+ { ISD::TRUNCATE, MVT::v8i8, MVT::v8i64, 11 },
+ { ISD::TRUNCATE, MVT::v8i16, MVT::v8i64, 9 },
+ { ISD::TRUNCATE, MVT::v8i32, MVT::v8i64, 3 },
+ { ISD::TRUNCATE, MVT::v16i8, MVT::v16i64, 11 },
+
+ { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i1, 3 },
+ { ISD::SINT_TO_FP, MVT::v4f64, MVT::v4i1, 3 },
+ { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i1, 8 },
+ { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i8, 3 },
+ { ISD::SINT_TO_FP, MVT::v4f64, MVT::v4i8, 3 },
+ { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i8, 8 },
+ { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i16, 3 },
+ { ISD::SINT_TO_FP, MVT::v4f64, MVT::v4i16, 3 },
+ { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i16, 5 },
+ { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i32, 1 },
+ { ISD::SINT_TO_FP, MVT::v4f64, MVT::v4i32, 1 },
+ { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i32, 1 },
+
+ { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i1, 7 },
+ { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i1, 7 },
+ { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i1, 6 },
+ { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i8, 2 },
+ { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i8, 2 },
+ { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i8, 5 },
+ { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i16, 2 },
+ { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i16, 2 },
+ { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i16, 5 },
+ { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i32, 6 },
+ { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i32, 6 },
+ { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i32, 6 },
+ { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i32, 9 },
+ { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i64, 5 },
+ { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i64, 6 },
+ // The generic code to compute the scalar overhead is currently broken.
+ // Workaround this limitation by estimating the scalarization overhead
+ // here. We have roughly 10 instructions per scalar element.
+ // Multiply that by the vector width.
+ // FIXME: remove that when PR19268 is fixed.
+ { ISD::SINT_TO_FP, MVT::v4f64, MVT::v4i64, 13 },
+ { ISD::SINT_TO_FP, MVT::v4f64, MVT::v4i64, 13 },
+
+ { ISD::FP_TO_SINT, MVT::v8i8, MVT::v8f32, 4 },
+ { ISD::FP_TO_SINT, MVT::v4i8, MVT::v4f64, 3 },
+ { ISD::FP_TO_SINT, MVT::v4i16, MVT::v4f64, 2 },
+ { ISD::FP_TO_SINT, MVT::v8i16, MVT::v8f32, 3 },
+
+ { ISD::FP_TO_UINT, MVT::v4i8, MVT::v4f64, 3 },
+ { ISD::FP_TO_UINT, MVT::v4i16, MVT::v4f64, 2 },
+ { ISD::FP_TO_UINT, MVT::v8i8, MVT::v8f32, 4 },
+ { ISD::FP_TO_UINT, MVT::v8i16, MVT::v8f32, 3 },
+ // This node is expanded into scalarized operations but BasicTTI is overly
+ // optimistic estimating its cost. It computes 3 per element (one
+ // vector-extract, one scalar conversion and one vector-insert). The
+ // problem is that the inserts form a read-modify-write chain so latency
+ // should be factored in too. Inflating the cost per element by 1.
+ { ISD::FP_TO_UINT, MVT::v8i32, MVT::v8f32, 8*4 },
+ { ISD::FP_TO_UINT, MVT::v4i32, MVT::v4f64, 4*4 },
+
+ { ISD::FP_EXTEND, MVT::v4f64, MVT::v4f32, 1 },
+ { ISD::FP_ROUND, MVT::v4f32, MVT::v4f64, 1 },
+ };
+
+ static const TypeConversionCostTblEntry SSE41ConversionTbl[] = {
+ { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i8, 2 },
+ { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i8, 2 },
+ { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i16, 2 },
+ { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i16, 2 },
+ { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i32, 2 },
+ { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i32, 2 },
+
+ { ISD::ZERO_EXTEND, MVT::v4i16, MVT::v4i8, 1 },
+ { ISD::SIGN_EXTEND, MVT::v4i16, MVT::v4i8, 2 },
+ { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i8, 1 },
+ { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i8, 1 },
+ { ISD::ZERO_EXTEND, MVT::v8i16, MVT::v8i8, 1 },
+ { ISD::SIGN_EXTEND, MVT::v8i16, MVT::v8i8, 1 },
+ { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i8, 2 },
+ { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i8, 2 },
+ { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8, 2 },
+ { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8, 2 },
+ { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8, 4 },
+ { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8, 4 },
+ { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i16, 1 },
+ { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i16, 1 },
+ { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i16, 2 },
+ { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i16, 2 },
+ { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i16, 4 },
+ { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i16, 4 },
+
+ // These truncates end up widening elements.
+ { ISD::TRUNCATE, MVT::v2i1, MVT::v2i8, 1 }, // PMOVXZBQ
+ { ISD::TRUNCATE, MVT::v2i1, MVT::v2i16, 1 }, // PMOVXZWQ
+ { ISD::TRUNCATE, MVT::v4i1, MVT::v4i8, 1 }, // PMOVXZBD
+
+ { ISD::TRUNCATE, MVT::v2i8, MVT::v2i16, 1 },
+ { ISD::TRUNCATE, MVT::v4i8, MVT::v4i16, 1 },
+ { ISD::TRUNCATE, MVT::v8i8, MVT::v8i16, 1 },
+ { ISD::TRUNCATE, MVT::v4i8, MVT::v4i32, 1 },
+ { ISD::TRUNCATE, MVT::v4i16, MVT::v4i32, 1 },
+ { ISD::TRUNCATE, MVT::v8i8, MVT::v8i32, 3 },
+ { ISD::TRUNCATE, MVT::v8i16, MVT::v8i32, 3 },
+ { ISD::TRUNCATE, MVT::v16i16, MVT::v16i32, 6 },
+ { ISD::TRUNCATE, MVT::v2i8, MVT::v2i64, 1 }, // PSHUFB
+
+ { ISD::UINT_TO_FP, MVT::f32, MVT::i64, 4 },
+ { ISD::UINT_TO_FP, MVT::f64, MVT::i64, 4 },
+
+ { ISD::FP_TO_SINT, MVT::v2i8, MVT::v2f32, 3 },
+ { ISD::FP_TO_SINT, MVT::v2i8, MVT::v2f64, 3 },
+
+ { ISD::FP_TO_UINT, MVT::v2i8, MVT::v2f32, 3 },
+ { ISD::FP_TO_UINT, MVT::v2i8, MVT::v2f64, 3 },
+ { ISD::FP_TO_UINT, MVT::v4i16, MVT::v4f32, 2 },
+ };
+
+ static const TypeConversionCostTblEntry SSE2ConversionTbl[] = {
+ // These are somewhat magic numbers justified by looking at the output of
+ // Intel's IACA, running some kernels and making sure when we take
+ // legalization into account the throughput will be overestimated.
+ { ISD::SINT_TO_FP, MVT::v4f32, MVT::v16i8, 8 },
+ { ISD::SINT_TO_FP, MVT::v2f64, MVT::v16i8, 16*10 },
+ { ISD::SINT_TO_FP, MVT::v4f32, MVT::v8i16, 15 },
+ { ISD::SINT_TO_FP, MVT::v2f64, MVT::v8i16, 8*10 },
+ { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i32, 5 },
+ { ISD::SINT_TO_FP, MVT::v2f64, MVT::v4i32, 2*10 },
+ { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i32, 2*10 },
+ { ISD::SINT_TO_FP, MVT::v4f32, MVT::v2i64, 15 },
+ { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i64, 2*10 },
+
+ { ISD::UINT_TO_FP, MVT::v2f64, MVT::v16i8, 16*10 },
+ { ISD::UINT_TO_FP, MVT::v4f32, MVT::v16i8, 8 },
+ { ISD::UINT_TO_FP, MVT::v4f32, MVT::v8i16, 15 },
+ { ISD::UINT_TO_FP, MVT::v2f64, MVT::v8i16, 8*10 },
+ { ISD::UINT_TO_FP, MVT::v2f64, MVT::v4i32, 4*10 },
+ { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i32, 8 },
+ { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i64, 6 },
+ { ISD::UINT_TO_FP, MVT::v4f32, MVT::v2i64, 15 },
+
+ { ISD::FP_TO_SINT, MVT::v2i8, MVT::v2f32, 4 },
+ { ISD::FP_TO_SINT, MVT::v2i16, MVT::v2f32, 2 },
+ { ISD::FP_TO_SINT, MVT::v4i8, MVT::v4f32, 3 },
+ { ISD::FP_TO_SINT, MVT::v4i16, MVT::v4f32, 2 },
+ { ISD::FP_TO_SINT, MVT::v2i16, MVT::v2f64, 2 },
+ { ISD::FP_TO_SINT, MVT::v2i8, MVT::v2f64, 4 },
+
+ { ISD::FP_TO_SINT, MVT::v2i32, MVT::v2f64, 1 },
+
+ { ISD::UINT_TO_FP, MVT::f32, MVT::i64, 6 },
+ { ISD::UINT_TO_FP, MVT::f64, MVT::i64, 6 },
+
+ { ISD::FP_TO_UINT, MVT::i64, MVT::f32, 4 },
+ { ISD::FP_TO_UINT, MVT::i64, MVT::f64, 4 },
+ { ISD::FP_TO_UINT, MVT::v2i8, MVT::v2f32, 4 },
+ { ISD::FP_TO_UINT, MVT::v2i8, MVT::v2f64, 4 },
+ { ISD::FP_TO_UINT, MVT::v4i8, MVT::v4f32, 3 },
+ { ISD::FP_TO_UINT, MVT::v2i16, MVT::v2f32, 2 },
+ { ISD::FP_TO_UINT, MVT::v2i16, MVT::v2f64, 2 },
+ { ISD::FP_TO_UINT, MVT::v4i16, MVT::v4f32, 4 },
+
+ { ISD::ZERO_EXTEND, MVT::v4i16, MVT::v4i8, 1 },
+ { ISD::SIGN_EXTEND, MVT::v4i16, MVT::v4i8, 6 },
+ { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i8, 2 },
+ { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i8, 3 },
+ { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i8, 4 },
+ { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i8, 8 },
+ { ISD::ZERO_EXTEND, MVT::v8i16, MVT::v8i8, 1 },
+ { ISD::SIGN_EXTEND, MVT::v8i16, MVT::v8i8, 2 },
+ { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i8, 6 },
+ { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i8, 6 },
+ { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8, 3 },
+ { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8, 4 },
+ { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8, 9 },
+ { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8, 12 },
+ { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i16, 1 },
+ { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i16, 2 },
+ { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i16, 3 },
+ { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i16, 10 },
+ { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i16, 3 },
+ { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i16, 4 },
+ { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i16, 6 },
+ { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i16, 8 },
+ { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i32, 3 },
+ { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i32, 5 },
+
+ // These truncates are really widening elements.
+ { ISD::TRUNCATE, MVT::v2i1, MVT::v2i32, 1 }, // PSHUFD
+ { ISD::TRUNCATE, MVT::v2i1, MVT::v2i16, 2 }, // PUNPCKLWD+DQ
+ { ISD::TRUNCATE, MVT::v2i1, MVT::v2i8, 3 }, // PUNPCKLBW+WD+PSHUFD
+ { ISD::TRUNCATE, MVT::v4i1, MVT::v4i16, 1 }, // PUNPCKLWD
+ { ISD::TRUNCATE, MVT::v4i1, MVT::v4i8, 2 }, // PUNPCKLBW+WD
+ { ISD::TRUNCATE, MVT::v8i1, MVT::v8i8, 1 }, // PUNPCKLBW
+
+ { ISD::TRUNCATE, MVT::v2i8, MVT::v2i16, 2 }, // PAND+PACKUSWB
+ { ISD::TRUNCATE, MVT::v4i8, MVT::v4i16, 2 }, // PAND+PACKUSWB
+ { ISD::TRUNCATE, MVT::v8i8, MVT::v8i16, 2 }, // PAND+PACKUSWB
+ { ISD::TRUNCATE, MVT::v16i8, MVT::v16i16, 3 },
+ { ISD::TRUNCATE, MVT::v2i8, MVT::v2i32, 3 }, // PAND+2*PACKUSWB
+ { ISD::TRUNCATE, MVT::v2i16, MVT::v2i32, 1 },
+ { ISD::TRUNCATE, MVT::v4i8, MVT::v4i32, 3 },
+ { ISD::TRUNCATE, MVT::v4i16, MVT::v4i32, 3 },
+ { ISD::TRUNCATE, MVT::v8i8, MVT::v8i32, 4 },
+ { ISD::TRUNCATE, MVT::v16i8, MVT::v16i32, 7 },
+ { ISD::TRUNCATE, MVT::v8i16, MVT::v8i32, 5 },
+ { ISD::TRUNCATE, MVT::v16i16, MVT::v16i32, 10 },
+ { ISD::TRUNCATE, MVT::v2i8, MVT::v2i64, 4 }, // PAND+3*PACKUSWB
+ { ISD::TRUNCATE, MVT::v2i16, MVT::v2i64, 2 }, // PSHUFD+PSHUFLW
+ { ISD::TRUNCATE, MVT::v2i32, MVT::v2i64, 1 }, // PSHUFD
+ };
+
+ std::pair<int, MVT> LTSrc = TLI->getTypeLegalizationCost(DL, Src);
+ std::pair<int, MVT> LTDest = TLI->getTypeLegalizationCost(DL, Dst);
+
+ if (ST->hasSSE2() && !ST->hasAVX()) {
+ if (const auto *Entry = ConvertCostTableLookup(SSE2ConversionTbl, ISD,
+ LTDest.second, LTSrc.second))
+ return AdjustCost(LTSrc.first * Entry->Cost);
+ }
+
+ EVT SrcTy = TLI->getValueType(DL, Src);
+ EVT DstTy = TLI->getValueType(DL, Dst);
+
+ // The function getSimpleVT only handles simple value types.
+ if (!SrcTy.isSimple() || !DstTy.isSimple())
+ return AdjustCost(BaseT::getCastInstrCost(Opcode, Dst, Src, CostKind));
+
+ MVT SimpleSrcTy = SrcTy.getSimpleVT();
+ MVT SimpleDstTy = DstTy.getSimpleVT();
+
+ if (ST->useAVX512Regs()) {
+ if (ST->hasBWI())
+ if (const auto *Entry = ConvertCostTableLookup(AVX512BWConversionTbl, ISD,
+ SimpleDstTy, SimpleSrcTy))
+ return AdjustCost(Entry->Cost);
+
+ if (ST->hasDQI())
+ if (const auto *Entry = ConvertCostTableLookup(AVX512DQConversionTbl, ISD,
+ SimpleDstTy, SimpleSrcTy))
+ return AdjustCost(Entry->Cost);
+
+ if (ST->hasAVX512())
+ if (const auto *Entry = ConvertCostTableLookup(AVX512FConversionTbl, ISD,
+ SimpleDstTy, SimpleSrcTy))
+ return AdjustCost(Entry->Cost);
+ }
+
+ if (ST->hasBWI())
+ if (const auto *Entry = ConvertCostTableLookup(AVX512BWVLConversionTbl, ISD,
+ SimpleDstTy, SimpleSrcTy))
+ return AdjustCost(Entry->Cost);
+
+ if (ST->hasDQI())
+ if (const auto *Entry = ConvertCostTableLookup(AVX512DQVLConversionTbl, ISD,
+ SimpleDstTy, SimpleSrcTy))
+ return AdjustCost(Entry->Cost);
+
+ if (ST->hasAVX512())
+ if (const auto *Entry = ConvertCostTableLookup(AVX512VLConversionTbl, ISD,
+ SimpleDstTy, SimpleSrcTy))
+ return AdjustCost(Entry->Cost);
+
+ if (ST->hasAVX2()) {
+ if (const auto *Entry = ConvertCostTableLookup(AVX2ConversionTbl, ISD,
+ SimpleDstTy, SimpleSrcTy))
+ return AdjustCost(Entry->Cost);
+ }
+
+ if (ST->hasAVX()) {
+ if (const auto *Entry = ConvertCostTableLookup(AVXConversionTbl, ISD,
+ SimpleDstTy, SimpleSrcTy))
+ return AdjustCost(Entry->Cost);
+ }
+
+ if (ST->hasSSE41()) {
+ if (const auto *Entry = ConvertCostTableLookup(SSE41ConversionTbl, ISD,
+ SimpleDstTy, SimpleSrcTy))
+ return AdjustCost(Entry->Cost);
+ }
+
+ if (ST->hasSSE2()) {
+ if (const auto *Entry = ConvertCostTableLookup(SSE2ConversionTbl, ISD,
+ SimpleDstTy, SimpleSrcTy))
+ return AdjustCost(Entry->Cost);
+ }
+
+ return AdjustCost(BaseT::getCastInstrCost(Opcode, Dst, Src, CostKind, I));
+}
+
+int X86TTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy,
+ TTI::TargetCostKind CostKind,
+ const Instruction *I) {
+ // TODO: Handle other cost kinds.
+ if (CostKind != TTI::TCK_RecipThroughput)
+ return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, CostKind, I);
+
+ // Legalize the type.
+ std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, ValTy);
+
+ MVT MTy = LT.second;
+
+ int ISD = TLI->InstructionOpcodeToISD(Opcode);
+ assert(ISD && "Invalid opcode");
+
+ unsigned ExtraCost = 0;
+ if (I && (Opcode == Instruction::ICmp || Opcode == Instruction::FCmp)) {
+ // Some vector comparison predicates cost extra instructions.
+ if (MTy.isVector() &&
+ !((ST->hasXOP() && (!ST->hasAVX2() || MTy.is128BitVector())) ||
+ (ST->hasAVX512() && 32 <= MTy.getScalarSizeInBits()) ||
+ ST->hasBWI())) {
+ switch (cast<CmpInst>(I)->getPredicate()) {
+ case CmpInst::Predicate::ICMP_NE:
+ // xor(cmpeq(x,y),-1)
+ ExtraCost = 1;
+ break;
+ case CmpInst::Predicate::ICMP_SGE:
+ case CmpInst::Predicate::ICMP_SLE:
+ // xor(cmpgt(x,y),-1)
+ ExtraCost = 1;
+ break;
+ case CmpInst::Predicate::ICMP_ULT:
+ case CmpInst::Predicate::ICMP_UGT:
+ // cmpgt(xor(x,signbit),xor(y,signbit))
+ // xor(cmpeq(pmaxu(x,y),x),-1)
+ ExtraCost = 2;
+ break;
+ case CmpInst::Predicate::ICMP_ULE:
+ case CmpInst::Predicate::ICMP_UGE:
+ if ((ST->hasSSE41() && MTy.getScalarSizeInBits() == 32) ||
+ (ST->hasSSE2() && MTy.getScalarSizeInBits() < 32)) {
+ // cmpeq(psubus(x,y),0)
+ // cmpeq(pminu(x,y),x)
+ ExtraCost = 1;
+ } else {
+ // xor(cmpgt(xor(x,signbit),xor(y,signbit)),-1)
+ ExtraCost = 3;
+ }
+ break;
+ default:
+ break;
+ }
+ }
+ }
+
+ static const CostTblEntry SLMCostTbl[] = {
+ // slm pcmpeq/pcmpgt throughput is 2
+ { ISD::SETCC, MVT::v2i64, 2 },
+ };
+
+ static const CostTblEntry AVX512BWCostTbl[] = {
+ { ISD::SETCC, MVT::v32i16, 1 },
+ { ISD::SETCC, MVT::v64i8, 1 },
+
+ { ISD::SELECT, MVT::v32i16, 1 },
+ { ISD::SELECT, MVT::v64i8, 1 },
+ };
+
+ static const CostTblEntry AVX512CostTbl[] = {
+ { ISD::SETCC, MVT::v8i64, 1 },
+ { ISD::SETCC, MVT::v16i32, 1 },
+ { ISD::SETCC, MVT::v8f64, 1 },
+ { ISD::SETCC, MVT::v16f32, 1 },
+
+ { ISD::SELECT, MVT::v8i64, 1 },
+ { ISD::SELECT, MVT::v16i32, 1 },
+ { ISD::SELECT, MVT::v8f64, 1 },
+ { ISD::SELECT, MVT::v16f32, 1 },
+
+ { ISD::SETCC, MVT::v32i16, 2 }, // FIXME: should probably be 4
+ { ISD::SETCC, MVT::v64i8, 2 }, // FIXME: should probably be 4
+
+ { ISD::SELECT, MVT::v32i16, 2 }, // FIXME: should be 3
+ { ISD::SELECT, MVT::v64i8, 2 }, // FIXME: should be 3
+ };
+
+ static const CostTblEntry AVX2CostTbl[] = {
+ { ISD::SETCC, MVT::v4i64, 1 },
+ { ISD::SETCC, MVT::v8i32, 1 },
+ { ISD::SETCC, MVT::v16i16, 1 },
+ { ISD::SETCC, MVT::v32i8, 1 },
+
+ { ISD::SELECT, MVT::v4i64, 1 }, // pblendvb
+ { ISD::SELECT, MVT::v8i32, 1 }, // pblendvb
+ { ISD::SELECT, MVT::v16i16, 1 }, // pblendvb
+ { ISD::SELECT, MVT::v32i8, 1 }, // pblendvb
+ };
+
+ static const CostTblEntry AVX1CostTbl[] = {
+ { ISD::SETCC, MVT::v4f64, 1 },
+ { ISD::SETCC, MVT::v8f32, 1 },
+ // AVX1 does not support 8-wide integer compare.
+ { ISD::SETCC, MVT::v4i64, 4 },
+ { ISD::SETCC, MVT::v8i32, 4 },
+ { ISD::SETCC, MVT::v16i16, 4 },
+ { ISD::SETCC, MVT::v32i8, 4 },
+
+ { ISD::SELECT, MVT::v4f64, 1 }, // vblendvpd
+ { ISD::SELECT, MVT::v8f32, 1 }, // vblendvps
+ { ISD::SELECT, MVT::v4i64, 1 }, // vblendvpd
+ { ISD::SELECT, MVT::v8i32, 1 }, // vblendvps
+ { ISD::SELECT, MVT::v16i16, 3 }, // vandps + vandnps + vorps
+ { ISD::SELECT, MVT::v32i8, 3 }, // vandps + vandnps + vorps
+ };
+
+ static const CostTblEntry SSE42CostTbl[] = {
+ { ISD::SETCC, MVT::v2f64, 1 },
+ { ISD::SETCC, MVT::v4f32, 1 },
+ { ISD::SETCC, MVT::v2i64, 1 },
+ };
+
+ static const CostTblEntry SSE41CostTbl[] = {
+ { ISD::SELECT, MVT::v2f64, 1 }, // blendvpd
+ { ISD::SELECT, MVT::v4f32, 1 }, // blendvps
+ { ISD::SELECT, MVT::v2i64, 1 }, // pblendvb
+ { ISD::SELECT, MVT::v4i32, 1 }, // pblendvb
+ { ISD::SELECT, MVT::v8i16, 1 }, // pblendvb
+ { ISD::SELECT, MVT::v16i8, 1 }, // pblendvb
+ };
+
+ static const CostTblEntry SSE2CostTbl[] = {
+ { ISD::SETCC, MVT::v2f64, 2 },
+ { ISD::SETCC, MVT::f64, 1 },
+ { ISD::SETCC, MVT::v2i64, 8 },
+ { ISD::SETCC, MVT::v4i32, 1 },
+ { ISD::SETCC, MVT::v8i16, 1 },
+ { ISD::SETCC, MVT::v16i8, 1 },
+
+ { ISD::SELECT, MVT::v2f64, 3 }, // andpd + andnpd + orpd
+ { ISD::SELECT, MVT::v2i64, 3 }, // pand + pandn + por
+ { ISD::SELECT, MVT::v4i32, 3 }, // pand + pandn + por
+ { ISD::SELECT, MVT::v8i16, 3 }, // pand + pandn + por
+ { ISD::SELECT, MVT::v16i8, 3 }, // pand + pandn + por
+ };
+
+ static const CostTblEntry SSE1CostTbl[] = {
+ { ISD::SETCC, MVT::v4f32, 2 },
+ { ISD::SETCC, MVT::f32, 1 },
+
+ { ISD::SELECT, MVT::v4f32, 3 }, // andps + andnps + orps
+ };
+
+ if (ST->isSLM())
+ if (const auto *Entry = CostTableLookup(SLMCostTbl, ISD, MTy))
+ return LT.first * (ExtraCost + Entry->Cost);
+
+ if (ST->hasBWI())
+ if (const auto *Entry = CostTableLookup(AVX512BWCostTbl, ISD, MTy))
+ return LT.first * (ExtraCost + Entry->Cost);
+
+ if (ST->hasAVX512())
+ if (const auto *Entry = CostTableLookup(AVX512CostTbl, ISD, MTy))
+ return LT.first * (ExtraCost + Entry->Cost);
+
+ if (ST->hasAVX2())
+ if (const auto *Entry = CostTableLookup(AVX2CostTbl, ISD, MTy))
+ return LT.first * (ExtraCost + Entry->Cost);
+
+ if (ST->hasAVX())
+ if (const auto *Entry = CostTableLookup(AVX1CostTbl, ISD, MTy))
+ return LT.first * (ExtraCost + Entry->Cost);
+
+ if (ST->hasSSE42())
+ if (const auto *Entry = CostTableLookup(SSE42CostTbl, ISD, MTy))
+ return LT.first * (ExtraCost + Entry->Cost);
+
+ if (ST->hasSSE41())
+ if (const auto *Entry = CostTableLookup(SSE41CostTbl, ISD, MTy))
+ return LT.first * (ExtraCost + Entry->Cost);
+
+ if (ST->hasSSE2())
+ if (const auto *Entry = CostTableLookup(SSE2CostTbl, ISD, MTy))
+ return LT.first * (ExtraCost + Entry->Cost);
+
+ if (ST->hasSSE1())
+ if (const auto *Entry = CostTableLookup(SSE1CostTbl, ISD, MTy))
+ return LT.first * (ExtraCost + Entry->Cost);
+
+ return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, CostKind, I);
+}
+
+unsigned X86TTIImpl::getAtomicMemIntrinsicMaxElementSize() const { return 16; }
+
+int X86TTIImpl::getTypeBasedIntrinsicInstrCost(
+ const IntrinsicCostAttributes &ICA, TTI::TargetCostKind CostKind) {
+
+ // Costs should match the codegen from:
+ // BITREVERSE: llvm\test\CodeGen\X86\vector-bitreverse.ll
+ // BSWAP: llvm\test\CodeGen\X86\bswap-vector.ll
+ // CTLZ: llvm\test\CodeGen\X86\vector-lzcnt-*.ll
+ // CTPOP: llvm\test\CodeGen\X86\vector-popcnt-*.ll
+ // CTTZ: llvm\test\CodeGen\X86\vector-tzcnt-*.ll
+ static const CostTblEntry AVX512CDCostTbl[] = {
+ { ISD::CTLZ, MVT::v8i64, 1 },
+ { ISD::CTLZ, MVT::v16i32, 1 },
+ { ISD::CTLZ, MVT::v32i16, 8 },
+ { ISD::CTLZ, MVT::v64i8, 20 },
+ { ISD::CTLZ, MVT::v4i64, 1 },
+ { ISD::CTLZ, MVT::v8i32, 1 },
+ { ISD::CTLZ, MVT::v16i16, 4 },
+ { ISD::CTLZ, MVT::v32i8, 10 },
+ { ISD::CTLZ, MVT::v2i64, 1 },
+ { ISD::CTLZ, MVT::v4i32, 1 },
+ { ISD::CTLZ, MVT::v8i16, 4 },
+ { ISD::CTLZ, MVT::v16i8, 4 },
+ };
+ static const CostTblEntry AVX512BWCostTbl[] = {
+ { ISD::BITREVERSE, MVT::v8i64, 5 },
+ { ISD::BITREVERSE, MVT::v16i32, 5 },
+ { ISD::BITREVERSE, MVT::v32i16, 5 },
+ { ISD::BITREVERSE, MVT::v64i8, 5 },
+ { ISD::CTLZ, MVT::v8i64, 23 },
+ { ISD::CTLZ, MVT::v16i32, 22 },
+ { ISD::CTLZ, MVT::v32i16, 18 },
+ { ISD::CTLZ, MVT::v64i8, 17 },
+ { ISD::CTPOP, MVT::v8i64, 7 },
+ { ISD::CTPOP, MVT::v16i32, 11 },
+ { ISD::CTPOP, MVT::v32i16, 9 },
+ { ISD::CTPOP, MVT::v64i8, 6 },
+ { ISD::CTTZ, MVT::v8i64, 10 },
+ { ISD::CTTZ, MVT::v16i32, 14 },
+ { ISD::CTTZ, MVT::v32i16, 12 },
+ { ISD::CTTZ, MVT::v64i8, 9 },
+ { ISD::SADDSAT, MVT::v32i16, 1 },
+ { ISD::SADDSAT, MVT::v64i8, 1 },
+ { ISD::SSUBSAT, MVT::v32i16, 1 },
+ { ISD::SSUBSAT, MVT::v64i8, 1 },
+ { ISD::UADDSAT, MVT::v32i16, 1 },
+ { ISD::UADDSAT, MVT::v64i8, 1 },
+ { ISD::USUBSAT, MVT::v32i16, 1 },
+ { ISD::USUBSAT, MVT::v64i8, 1 },
+ };
+ static const CostTblEntry AVX512CostTbl[] = {
+ { ISD::BITREVERSE, MVT::v8i64, 36 },
+ { ISD::BITREVERSE, MVT::v16i32, 24 },
+ { ISD::BITREVERSE, MVT::v32i16, 10 },
+ { ISD::BITREVERSE, MVT::v64i8, 10 },
+ { ISD::CTLZ, MVT::v8i64, 29 },
+ { ISD::CTLZ, MVT::v16i32, 35 },
+ { ISD::CTLZ, MVT::v32i16, 28 },
+ { ISD::CTLZ, MVT::v64i8, 18 },
+ { ISD::CTPOP, MVT::v8i64, 16 },
+ { ISD::CTPOP, MVT::v16i32, 24 },
+ { ISD::CTPOP, MVT::v32i16, 18 },
+ { ISD::CTPOP, MVT::v64i8, 12 },
+ { ISD::CTTZ, MVT::v8i64, 20 },
+ { ISD::CTTZ, MVT::v16i32, 28 },
+ { ISD::CTTZ, MVT::v32i16, 24 },
+ { ISD::CTTZ, MVT::v64i8, 18 },
+ { ISD::USUBSAT, MVT::v16i32, 2 }, // pmaxud + psubd
+ { ISD::USUBSAT, MVT::v2i64, 2 }, // pmaxuq + psubq
+ { ISD::USUBSAT, MVT::v4i64, 2 }, // pmaxuq + psubq
+ { ISD::USUBSAT, MVT::v8i64, 2 }, // pmaxuq + psubq
+ { ISD::UADDSAT, MVT::v16i32, 3 }, // not + pminud + paddd
+ { ISD::UADDSAT, MVT::v2i64, 3 }, // not + pminuq + paddq
+ { ISD::UADDSAT, MVT::v4i64, 3 }, // not + pminuq + paddq
+ { ISD::UADDSAT, MVT::v8i64, 3 }, // not + pminuq + paddq
+ { ISD::SADDSAT, MVT::v32i16, 2 }, // FIXME: include split
+ { ISD::SADDSAT, MVT::v64i8, 2 }, // FIXME: include split
+ { ISD::SSUBSAT, MVT::v32i16, 2 }, // FIXME: include split
+ { ISD::SSUBSAT, MVT::v64i8, 2 }, // FIXME: include split
+ { ISD::UADDSAT, MVT::v32i16, 2 }, // FIXME: include split
+ { ISD::UADDSAT, MVT::v64i8, 2 }, // FIXME: include split
+ { ISD::USUBSAT, MVT::v32i16, 2 }, // FIXME: include split
+ { ISD::USUBSAT, MVT::v64i8, 2 }, // FIXME: include split
+ { ISD::FMAXNUM, MVT::f32, 2 },
+ { ISD::FMAXNUM, MVT::v4f32, 2 },
+ { ISD::FMAXNUM, MVT::v8f32, 2 },
+ { ISD::FMAXNUM, MVT::v16f32, 2 },
+ { ISD::FMAXNUM, MVT::f64, 2 },
+ { ISD::FMAXNUM, MVT::v2f64, 2 },
+ { ISD::FMAXNUM, MVT::v4f64, 2 },
+ { ISD::FMAXNUM, MVT::v8f64, 2 },
+ };
+ static const CostTblEntry XOPCostTbl[] = {
+ { ISD::BITREVERSE, MVT::v4i64, 4 },
+ { ISD::BITREVERSE, MVT::v8i32, 4 },
+ { ISD::BITREVERSE, MVT::v16i16, 4 },
+ { ISD::BITREVERSE, MVT::v32i8, 4 },
+ { ISD::BITREVERSE, MVT::v2i64, 1 },
+ { ISD::BITREVERSE, MVT::v4i32, 1 },
+ { ISD::BITREVERSE, MVT::v8i16, 1 },
+ { ISD::BITREVERSE, MVT::v16i8, 1 },
+ { ISD::BITREVERSE, MVT::i64, 3 },
+ { ISD::BITREVERSE, MVT::i32, 3 },
+ { ISD::BITREVERSE, MVT::i16, 3 },
+ { ISD::BITREVERSE, MVT::i8, 3 }
+ };
+ static const CostTblEntry AVX2CostTbl[] = {
+ { ISD::BITREVERSE, MVT::v4i64, 5 },
+ { ISD::BITREVERSE, MVT::v8i32, 5 },
+ { ISD::BITREVERSE, MVT::v16i16, 5 },
+ { ISD::BITREVERSE, MVT::v32i8, 5 },
+ { ISD::BSWAP, MVT::v4i64, 1 },
+ { ISD::BSWAP, MVT::v8i32, 1 },
+ { ISD::BSWAP, MVT::v16i16, 1 },
+ { ISD::CTLZ, MVT::v4i64, 23 },
+ { ISD::CTLZ, MVT::v8i32, 18 },
+ { ISD::CTLZ, MVT::v16i16, 14 },
+ { ISD::CTLZ, MVT::v32i8, 9 },
+ { ISD::CTPOP, MVT::v4i64, 7 },
+ { ISD::CTPOP, MVT::v8i32, 11 },
+ { ISD::CTPOP, MVT::v16i16, 9 },
+ { ISD::CTPOP, MVT::v32i8, 6 },
+ { ISD::CTTZ, MVT::v4i64, 10 },
+ { ISD::CTTZ, MVT::v8i32, 14 },
+ { ISD::CTTZ, MVT::v16i16, 12 },
+ { ISD::CTTZ, MVT::v32i8, 9 },
+ { ISD::SADDSAT, MVT::v16i16, 1 },
+ { ISD::SADDSAT, MVT::v32i8, 1 },
+ { ISD::SSUBSAT, MVT::v16i16, 1 },
+ { ISD::SSUBSAT, MVT::v32i8, 1 },
+ { ISD::UADDSAT, MVT::v16i16, 1 },
+ { ISD::UADDSAT, MVT::v32i8, 1 },
+ { ISD::UADDSAT, MVT::v8i32, 3 }, // not + pminud + paddd
+ { ISD::USUBSAT, MVT::v16i16, 1 },
+ { ISD::USUBSAT, MVT::v32i8, 1 },
+ { ISD::USUBSAT, MVT::v8i32, 2 }, // pmaxud + psubd
+ { ISD::FSQRT, MVT::f32, 7 }, // Haswell from http://www.agner.org/
+ { ISD::FSQRT, MVT::v4f32, 7 }, // Haswell from http://www.agner.org/
+ { ISD::FSQRT, MVT::v8f32, 14 }, // Haswell from http://www.agner.org/
+ { ISD::FSQRT, MVT::f64, 14 }, // Haswell from http://www.agner.org/
+ { ISD::FSQRT, MVT::v2f64, 14 }, // Haswell from http://www.agner.org/
+ { ISD::FSQRT, MVT::v4f64, 28 }, // Haswell from http://www.agner.org/
+ };
+ static const CostTblEntry AVX1CostTbl[] = {
+ { ISD::BITREVERSE, MVT::v4i64, 12 }, // 2 x 128-bit Op + extract/insert
+ { ISD::BITREVERSE, MVT::v8i32, 12 }, // 2 x 128-bit Op + extract/insert
+ { ISD::BITREVERSE, MVT::v16i16, 12 }, // 2 x 128-bit Op + extract/insert
+ { ISD::BITREVERSE, MVT::v32i8, 12 }, // 2 x 128-bit Op + extract/insert
+ { ISD::BSWAP, MVT::v4i64, 4 },
+ { ISD::BSWAP, MVT::v8i32, 4 },
+ { ISD::BSWAP, MVT::v16i16, 4 },
+ { ISD::CTLZ, MVT::v4i64, 48 }, // 2 x 128-bit Op + extract/insert
+ { ISD::CTLZ, MVT::v8i32, 38 }, // 2 x 128-bit Op + extract/insert
+ { ISD::CTLZ, MVT::v16i16, 30 }, // 2 x 128-bit Op + extract/insert
+ { ISD::CTLZ, MVT::v32i8, 20 }, // 2 x 128-bit Op + extract/insert
+ { ISD::CTPOP, MVT::v4i64, 16 }, // 2 x 128-bit Op + extract/insert
+ { ISD::CTPOP, MVT::v8i32, 24 }, // 2 x 128-bit Op + extract/insert
+ { ISD::CTPOP, MVT::v16i16, 20 }, // 2 x 128-bit Op + extract/insert
+ { ISD::CTPOP, MVT::v32i8, 14 }, // 2 x 128-bit Op + extract/insert
+ { ISD::CTTZ, MVT::v4i64, 22 }, // 2 x 128-bit Op + extract/insert
+ { ISD::CTTZ, MVT::v8i32, 30 }, // 2 x 128-bit Op + extract/insert
+ { ISD::CTTZ, MVT::v16i16, 26 }, // 2 x 128-bit Op + extract/insert
+ { ISD::CTTZ, MVT::v32i8, 20 }, // 2 x 128-bit Op + extract/insert
+ { ISD::SADDSAT, MVT::v16i16, 4 }, // 2 x 128-bit Op + extract/insert
+ { ISD::SADDSAT, MVT::v32i8, 4 }, // 2 x 128-bit Op + extract/insert
+ { ISD::SSUBSAT, MVT::v16i16, 4 }, // 2 x 128-bit Op + extract/insert
+ { ISD::SSUBSAT, MVT::v32i8, 4 }, // 2 x 128-bit Op + extract/insert
+ { ISD::UADDSAT, MVT::v16i16, 4 }, // 2 x 128-bit Op + extract/insert
+ { ISD::UADDSAT, MVT::v32i8, 4 }, // 2 x 128-bit Op + extract/insert
+ { ISD::UADDSAT, MVT::v8i32, 8 }, // 2 x 128-bit Op + extract/insert
+ { ISD::USUBSAT, MVT::v16i16, 4 }, // 2 x 128-bit Op + extract/insert
+ { ISD::USUBSAT, MVT::v32i8, 4 }, // 2 x 128-bit Op + extract/insert
+ { ISD::USUBSAT, MVT::v8i32, 6 }, // 2 x 128-bit Op + extract/insert
+ { ISD::FMAXNUM, MVT::f32, 3 },
+ { ISD::FMAXNUM, MVT::v4f32, 3 },
+ { ISD::FMAXNUM, MVT::v8f32, 5 },
+ { ISD::FMAXNUM, MVT::f64, 3 },
+ { ISD::FMAXNUM, MVT::v2f64, 3 },
+ { ISD::FMAXNUM, MVT::v4f64, 5 },
+ { ISD::FSQRT, MVT::f32, 14 }, // SNB from http://www.agner.org/
+ { ISD::FSQRT, MVT::v4f32, 14 }, // SNB from http://www.agner.org/
+ { ISD::FSQRT, MVT::v8f32, 28 }, // SNB from http://www.agner.org/
+ { ISD::FSQRT, MVT::f64, 21 }, // SNB from http://www.agner.org/
+ { ISD::FSQRT, MVT::v2f64, 21 }, // SNB from http://www.agner.org/
+ { ISD::FSQRT, MVT::v4f64, 43 }, // SNB from http://www.agner.org/
+ };
+ static const CostTblEntry GLMCostTbl[] = {
+ { ISD::FSQRT, MVT::f32, 19 }, // sqrtss
+ { ISD::FSQRT, MVT::v4f32, 37 }, // sqrtps
+ { ISD::FSQRT, MVT::f64, 34 }, // sqrtsd
+ { ISD::FSQRT, MVT::v2f64, 67 }, // sqrtpd
+ };
+ static const CostTblEntry SLMCostTbl[] = {
+ { ISD::FSQRT, MVT::f32, 20 }, // sqrtss
+ { ISD::FSQRT, MVT::v4f32, 40 }, // sqrtps
+ { ISD::FSQRT, MVT::f64, 35 }, // sqrtsd
+ { ISD::FSQRT, MVT::v2f64, 70 }, // sqrtpd
+ };
+ static const CostTblEntry SSE42CostTbl[] = {
+ { ISD::USUBSAT, MVT::v4i32, 2 }, // pmaxud + psubd
+ { ISD::UADDSAT, MVT::v4i32, 3 }, // not + pminud + paddd
+ { ISD::FSQRT, MVT::f32, 18 }, // Nehalem from http://www.agner.org/
+ { ISD::FSQRT, MVT::v4f32, 18 }, // Nehalem from http://www.agner.org/
+ };
+ static const CostTblEntry SSSE3CostTbl[] = {
+ { ISD::BITREVERSE, MVT::v2i64, 5 },
+ { ISD::BITREVERSE, MVT::v4i32, 5 },
+ { ISD::BITREVERSE, MVT::v8i16, 5 },
+ { ISD::BITREVERSE, MVT::v16i8, 5 },
+ { ISD::BSWAP, MVT::v2i64, 1 },
+ { ISD::BSWAP, MVT::v4i32, 1 },
+ { ISD::BSWAP, MVT::v8i16, 1 },
+ { ISD::CTLZ, MVT::v2i64, 23 },
+ { ISD::CTLZ, MVT::v4i32, 18 },
+ { ISD::CTLZ, MVT::v8i16, 14 },
+ { ISD::CTLZ, MVT::v16i8, 9 },
+ { ISD::CTPOP, MVT::v2i64, 7 },
+ { ISD::CTPOP, MVT::v4i32, 11 },
+ { ISD::CTPOP, MVT::v8i16, 9 },
+ { ISD::CTPOP, MVT::v16i8, 6 },
+ { ISD::CTTZ, MVT::v2i64, 10 },
+ { ISD::CTTZ, MVT::v4i32, 14 },
+ { ISD::CTTZ, MVT::v8i16, 12 },
+ { ISD::CTTZ, MVT::v16i8, 9 }
+ };
+ static const CostTblEntry SSE2CostTbl[] = {
+ { ISD::BITREVERSE, MVT::v2i64, 29 },
+ { ISD::BITREVERSE, MVT::v4i32, 27 },
+ { ISD::BITREVERSE, MVT::v8i16, 27 },
+ { ISD::BITREVERSE, MVT::v16i8, 20 },
+ { ISD::BSWAP, MVT::v2i64, 7 },
+ { ISD::BSWAP, MVT::v4i32, 7 },
+ { ISD::BSWAP, MVT::v8i16, 7 },
+ { ISD::CTLZ, MVT::v2i64, 25 },
+ { ISD::CTLZ, MVT::v4i32, 26 },
+ { ISD::CTLZ, MVT::v8i16, 20 },
+ { ISD::CTLZ, MVT::v16i8, 17 },
+ { ISD::CTPOP, MVT::v2i64, 12 },
+ { ISD::CTPOP, MVT::v4i32, 15 },
+ { ISD::CTPOP, MVT::v8i16, 13 },
+ { ISD::CTPOP, MVT::v16i8, 10 },
+ { ISD::CTTZ, MVT::v2i64, 14 },
+ { ISD::CTTZ, MVT::v4i32, 18 },
+ { ISD::CTTZ, MVT::v8i16, 16 },
+ { ISD::CTTZ, MVT::v16i8, 13 },
+ { ISD::SADDSAT, MVT::v8i16, 1 },
+ { ISD::SADDSAT, MVT::v16i8, 1 },
+ { ISD::SSUBSAT, MVT::v8i16, 1 },
+ { ISD::SSUBSAT, MVT::v16i8, 1 },
+ { ISD::UADDSAT, MVT::v8i16, 1 },
+ { ISD::UADDSAT, MVT::v16i8, 1 },
+ { ISD::USUBSAT, MVT::v8i16, 1 },
+ { ISD::USUBSAT, MVT::v16i8, 1 },
+ { ISD::FMAXNUM, MVT::f64, 4 },
+ { ISD::FMAXNUM, MVT::v2f64, 4 },
+ { ISD::FSQRT, MVT::f64, 32 }, // Nehalem from http://www.agner.org/
+ { ISD::FSQRT, MVT::v2f64, 32 }, // Nehalem from http://www.agner.org/
+ };
+ static const CostTblEntry SSE1CostTbl[] = {
+ { ISD::FMAXNUM, MVT::f32, 4 },
+ { ISD::FMAXNUM, MVT::v4f32, 4 },
+ { ISD::FSQRT, MVT::f32, 28 }, // Pentium III from http://www.agner.org/
+ { ISD::FSQRT, MVT::v4f32, 56 }, // Pentium III from http://www.agner.org/
+ };
+ static const CostTblEntry BMI64CostTbl[] = { // 64-bit targets
+ { ISD::CTTZ, MVT::i64, 1 },
+ };
+ static const CostTblEntry BMI32CostTbl[] = { // 32 or 64-bit targets
+ { ISD::CTTZ, MVT::i32, 1 },
+ { ISD::CTTZ, MVT::i16, 1 },
+ { ISD::CTTZ, MVT::i8, 1 },
+ };
+ static const CostTblEntry LZCNT64CostTbl[] = { // 64-bit targets
+ { ISD::CTLZ, MVT::i64, 1 },
+ };
+ static const CostTblEntry LZCNT32CostTbl[] = { // 32 or 64-bit targets
+ { ISD::CTLZ, MVT::i32, 1 },
+ { ISD::CTLZ, MVT::i16, 1 },
+ { ISD::CTLZ, MVT::i8, 1 },
+ };
+ static const CostTblEntry POPCNT64CostTbl[] = { // 64-bit targets
+ { ISD::CTPOP, MVT::i64, 1 },
+ };
+ static const CostTblEntry POPCNT32CostTbl[] = { // 32 or 64-bit targets
+ { ISD::CTPOP, MVT::i32, 1 },
+ { ISD::CTPOP, MVT::i16, 1 },
+ { ISD::CTPOP, MVT::i8, 1 },
+ };
+ static const CostTblEntry X64CostTbl[] = { // 64-bit targets
+ { ISD::BITREVERSE, MVT::i64, 14 },
+ { ISD::CTLZ, MVT::i64, 4 }, // BSR+XOR or BSR+XOR+CMOV
+ { ISD::CTTZ, MVT::i64, 3 }, // TEST+BSF+CMOV/BRANCH
+ { ISD::CTPOP, MVT::i64, 10 },
+ { ISD::SADDO, MVT::i64, 1 },
+ { ISD::UADDO, MVT::i64, 1 },
+ };
+ static const CostTblEntry X86CostTbl[] = { // 32 or 64-bit targets
+ { ISD::BITREVERSE, MVT::i32, 14 },
+ { ISD::BITREVERSE, MVT::i16, 14 },
+ { ISD::BITREVERSE, MVT::i8, 11 },
+ { ISD::CTLZ, MVT::i32, 4 }, // BSR+XOR or BSR+XOR+CMOV
+ { ISD::CTLZ, MVT::i16, 4 }, // BSR+XOR or BSR+XOR+CMOV
+ { ISD::CTLZ, MVT::i8, 4 }, // BSR+XOR or BSR+XOR+CMOV
+ { ISD::CTTZ, MVT::i32, 3 }, // TEST+BSF+CMOV/BRANCH
+ { ISD::CTTZ, MVT::i16, 3 }, // TEST+BSF+CMOV/BRANCH
+ { ISD::CTTZ, MVT::i8, 3 }, // TEST+BSF+CMOV/BRANCH
+ { ISD::CTPOP, MVT::i32, 8 },
+ { ISD::CTPOP, MVT::i16, 9 },
+ { ISD::CTPOP, MVT::i8, 7 },
+ { ISD::SADDO, MVT::i32, 1 },
+ { ISD::SADDO, MVT::i16, 1 },
+ { ISD::SADDO, MVT::i8, 1 },
+ { ISD::UADDO, MVT::i32, 1 },
+ { ISD::UADDO, MVT::i16, 1 },
+ { ISD::UADDO, MVT::i8, 1 },
+ };
+
+ Type *RetTy = ICA.getReturnType();
+ Type *OpTy = RetTy;
+ Intrinsic::ID IID = ICA.getID();
+ unsigned ISD = ISD::DELETED_NODE;
+ switch (IID) {
+ default:
+ break;
+ case Intrinsic::bitreverse:
+ ISD = ISD::BITREVERSE;
+ break;
+ case Intrinsic::bswap:
+ ISD = ISD::BSWAP;
+ break;
+ case Intrinsic::ctlz:
+ ISD = ISD::CTLZ;
+ break;
+ case Intrinsic::ctpop:
+ ISD = ISD::CTPOP;
+ break;
+ case Intrinsic::cttz:
+ ISD = ISD::CTTZ;
+ break;
+ case Intrinsic::maxnum:
+ case Intrinsic::minnum:
+ // FMINNUM has same costs so don't duplicate.
+ ISD = ISD::FMAXNUM;
+ break;
+ case Intrinsic::sadd_sat:
+ ISD = ISD::SADDSAT;
+ break;
+ case Intrinsic::ssub_sat:
+ ISD = ISD::SSUBSAT;
+ break;
+ case Intrinsic::uadd_sat:
+ ISD = ISD::UADDSAT;
+ break;
+ case Intrinsic::usub_sat:
+ ISD = ISD::USUBSAT;
+ break;
+ case Intrinsic::sqrt:
+ ISD = ISD::FSQRT;
+ break;
+ case Intrinsic::sadd_with_overflow:
+ case Intrinsic::ssub_with_overflow:
+ // SSUBO has same costs so don't duplicate.
+ ISD = ISD::SADDO;
+ OpTy = RetTy->getContainedType(0);
+ break;
+ case Intrinsic::uadd_with_overflow:
+ case Intrinsic::usub_with_overflow:
+ // USUBO has same costs so don't duplicate.
+ ISD = ISD::UADDO;
+ OpTy = RetTy->getContainedType(0);
+ break;
+ }
+
+ if (ISD != ISD::DELETED_NODE) {
+ // Legalize the type.
+ std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, OpTy);
+ MVT MTy = LT.second;
+
+ // Attempt to lookup cost.
+ if (ST->useGLMDivSqrtCosts())
+ if (const auto *Entry = CostTableLookup(GLMCostTbl, ISD, MTy))
+ return LT.first * Entry->Cost;
+
+ if (ST->isSLM())
+ if (const auto *Entry = CostTableLookup(SLMCostTbl, ISD, MTy))
+ return LT.first * Entry->Cost;
+
+ if (ST->hasCDI())
+ if (const auto *Entry = CostTableLookup(AVX512CDCostTbl, ISD, MTy))
+ return LT.first * Entry->Cost;
+
+ if (ST->hasBWI())
+ if (const auto *Entry = CostTableLookup(AVX512BWCostTbl, ISD, MTy))
+ return LT.first * Entry->Cost;
+
+ if (ST->hasAVX512())
+ if (const auto *Entry = CostTableLookup(AVX512CostTbl, ISD, MTy))
+ return LT.first * Entry->Cost;
+
+ if (ST->hasXOP())
+ if (const auto *Entry = CostTableLookup(XOPCostTbl, ISD, MTy))
+ return LT.first * Entry->Cost;
+
+ if (ST->hasAVX2())
+ if (const auto *Entry = CostTableLookup(AVX2CostTbl, ISD, MTy))
+ return LT.first * Entry->Cost;
+
+ if (ST->hasAVX())
+ if (const auto *Entry = CostTableLookup(AVX1CostTbl, ISD, MTy))
+ return LT.first * Entry->Cost;
+
+ if (ST->hasSSE42())
+ if (const auto *Entry = CostTableLookup(SSE42CostTbl, ISD, MTy))
+ return LT.first * Entry->Cost;
+
+ if (ST->hasSSSE3())
+ if (const auto *Entry = CostTableLookup(SSSE3CostTbl, ISD, MTy))
+ return LT.first * Entry->Cost;
+
+ if (ST->hasSSE2())
+ if (const auto *Entry = CostTableLookup(SSE2CostTbl, ISD, MTy))
+ return LT.first * Entry->Cost;
+
+ if (ST->hasSSE1())
+ if (const auto *Entry = CostTableLookup(SSE1CostTbl, ISD, MTy))
+ return LT.first * Entry->Cost;
+
+ if (ST->hasBMI()) {
+ if (ST->is64Bit())
+ if (const auto *Entry = CostTableLookup(BMI64CostTbl, ISD, MTy))
+ return LT.first * Entry->Cost;
+
+ if (const auto *Entry = CostTableLookup(BMI32CostTbl, ISD, MTy))
+ return LT.first * Entry->Cost;
+ }
+
+ if (ST->hasLZCNT()) {
+ if (ST->is64Bit())
+ if (const auto *Entry = CostTableLookup(LZCNT64CostTbl, ISD, MTy))
+ return LT.first * Entry->Cost;
+
+ if (const auto *Entry = CostTableLookup(LZCNT32CostTbl, ISD, MTy))
+ return LT.first * Entry->Cost;
+ }
+
+ if (ST->hasPOPCNT()) {
+ if (ST->is64Bit())
+ if (const auto *Entry = CostTableLookup(POPCNT64CostTbl, ISD, MTy))
+ return LT.first * Entry->Cost;
+
+ if (const auto *Entry = CostTableLookup(POPCNT32CostTbl, ISD, MTy))
+ return LT.first * Entry->Cost;
+ }
+
+ // TODO - add BMI (TZCNT) scalar handling
+
+ if (ST->is64Bit())
+ if (const auto *Entry = CostTableLookup(X64CostTbl, ISD, MTy))
+ return LT.first * Entry->Cost;
+
+ if (const auto *Entry = CostTableLookup(X86CostTbl, ISD, MTy))
+ return LT.first * Entry->Cost;
+ }
+
+ return BaseT::getIntrinsicInstrCost(ICA, CostKind);
+}
+
+int X86TTIImpl::getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA,
+ TTI::TargetCostKind CostKind) {
+ if (CostKind != TTI::TCK_RecipThroughput)
+ return BaseT::getIntrinsicInstrCost(ICA, CostKind);
+
+ if (ICA.isTypeBasedOnly())
+ return getTypeBasedIntrinsicInstrCost(ICA, CostKind);
+
+ static const CostTblEntry AVX512CostTbl[] = {
+ { ISD::ROTL, MVT::v8i64, 1 },
+ { ISD::ROTL, MVT::v4i64, 1 },
+ { ISD::ROTL, MVT::v2i64, 1 },
+ { ISD::ROTL, MVT::v16i32, 1 },
+ { ISD::ROTL, MVT::v8i32, 1 },
+ { ISD::ROTL, MVT::v4i32, 1 },
+ { ISD::ROTR, MVT::v8i64, 1 },
+ { ISD::ROTR, MVT::v4i64, 1 },
+ { ISD::ROTR, MVT::v2i64, 1 },
+ { ISD::ROTR, MVT::v16i32, 1 },
+ { ISD::ROTR, MVT::v8i32, 1 },
+ { ISD::ROTR, MVT::v4i32, 1 }
+ };
+ // XOP: ROTL = VPROT(X,Y), ROTR = VPROT(X,SUB(0,Y))
+ static const CostTblEntry XOPCostTbl[] = {
+ { ISD::ROTL, MVT::v4i64, 4 },
+ { ISD::ROTL, MVT::v8i32, 4 },
+ { ISD::ROTL, MVT::v16i16, 4 },
+ { ISD::ROTL, MVT::v32i8, 4 },
+ { ISD::ROTL, MVT::v2i64, 1 },
+ { ISD::ROTL, MVT::v4i32, 1 },
+ { ISD::ROTL, MVT::v8i16, 1 },
+ { ISD::ROTL, MVT::v16i8, 1 },
+ { ISD::ROTR, MVT::v4i64, 6 },
+ { ISD::ROTR, MVT::v8i32, 6 },
+ { ISD::ROTR, MVT::v16i16, 6 },
+ { ISD::ROTR, MVT::v32i8, 6 },
+ { ISD::ROTR, MVT::v2i64, 2 },
+ { ISD::ROTR, MVT::v4i32, 2 },
+ { ISD::ROTR, MVT::v8i16, 2 },
+ { ISD::ROTR, MVT::v16i8, 2 }
+ };
+ static const CostTblEntry X64CostTbl[] = { // 64-bit targets
+ { ISD::ROTL, MVT::i64, 1 },
+ { ISD::ROTR, MVT::i64, 1 },
+ { ISD::FSHL, MVT::i64, 4 }
+ };
+ static const CostTblEntry X86CostTbl[] = { // 32 or 64-bit targets
+ { ISD::ROTL, MVT::i32, 1 },
+ { ISD::ROTL, MVT::i16, 1 },
+ { ISD::ROTL, MVT::i8, 1 },
+ { ISD::ROTR, MVT::i32, 1 },
+ { ISD::ROTR, MVT::i16, 1 },
+ { ISD::ROTR, MVT::i8, 1 },
+ { ISD::FSHL, MVT::i32, 4 },
+ { ISD::FSHL, MVT::i16, 4 },
+ { ISD::FSHL, MVT::i8, 4 }
+ };
+
+ Intrinsic::ID IID = ICA.getID();
+ Type *RetTy = ICA.getReturnType();
+ const SmallVectorImpl<const Value *> &Args = ICA.getArgs();
+ unsigned ISD = ISD::DELETED_NODE;
+ switch (IID) {
+ default:
+ break;
+ case Intrinsic::fshl:
+ ISD = ISD::FSHL;
+ if (Args[0] == Args[1])
+ ISD = ISD::ROTL;
+ break;
+ case Intrinsic::fshr:
+ // FSHR has same costs so don't duplicate.
+ ISD = ISD::FSHL;
+ if (Args[0] == Args[1])
+ ISD = ISD::ROTR;
+ break;
+ }
+
+ if (ISD != ISD::DELETED_NODE) {
+ // Legalize the type.
+ std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, RetTy);
+ MVT MTy = LT.second;
+
+ // Attempt to lookup cost.
+ if (ST->hasAVX512())
+ if (const auto *Entry = CostTableLookup(AVX512CostTbl, ISD, MTy))
+ return LT.first * Entry->Cost;
+
+ if (ST->hasXOP())
+ if (const auto *Entry = CostTableLookup(XOPCostTbl, ISD, MTy))
+ return LT.first * Entry->Cost;
+
+ if (ST->is64Bit())
+ if (const auto *Entry = CostTableLookup(X64CostTbl, ISD, MTy))
+ return LT.first * Entry->Cost;
+
+ if (const auto *Entry = CostTableLookup(X86CostTbl, ISD, MTy))
+ return LT.first * Entry->Cost;
+ }
+
+ return BaseT::getIntrinsicInstrCost(ICA, CostKind);
+}
+
+int X86TTIImpl::getVectorInstrCost(unsigned Opcode, Type *Val, unsigned Index) {
+ static const CostTblEntry SLMCostTbl[] = {
+ { ISD::EXTRACT_VECTOR_ELT, MVT::i8, 4 },
+ { ISD::EXTRACT_VECTOR_ELT, MVT::i16, 4 },
+ { ISD::EXTRACT_VECTOR_ELT, MVT::i32, 4 },
+ { ISD::EXTRACT_VECTOR_ELT, MVT::i64, 7 }
+ };
+
+ assert(Val->isVectorTy() && "This must be a vector type");
+ Type *ScalarType = Val->getScalarType();
+ int RegisterFileMoveCost = 0;
+
+ if (Index != -1U && (Opcode == Instruction::ExtractElement ||
+ Opcode == Instruction::InsertElement)) {
+ // Legalize the type.
+ std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Val);
+
+ // This type is legalized to a scalar type.
+ if (!LT.second.isVector())
+ return 0;
+
+ // The type may be split. Normalize the index to the new type.
+ unsigned NumElts = LT.second.getVectorNumElements();
+ unsigned SubNumElts = NumElts;
+ Index = Index % NumElts;
+
+ // For >128-bit vectors, we need to extract higher 128-bit subvectors.
+ // For inserts, we also need to insert the subvector back.
+ if (LT.second.getSizeInBits() > 128) {
+ assert((LT.second.getSizeInBits() % 128) == 0 && "Illegal vector");
+ unsigned NumSubVecs = LT.second.getSizeInBits() / 128;
+ SubNumElts = NumElts / NumSubVecs;
+ if (SubNumElts <= Index) {
+ RegisterFileMoveCost += (Opcode == Instruction::InsertElement ? 2 : 1);
+ Index %= SubNumElts;
+ }
+ }
+
+ if (Index == 0) {
+ // Floating point scalars are already located in index #0.
+ // Many insertions to #0 can fold away for scalar fp-ops, so let's assume
+ // true for all.
+ if (ScalarType->isFloatingPointTy())
+ return RegisterFileMoveCost;
+
+ // Assume movd/movq XMM -> GPR is relatively cheap on all targets.
+ if (ScalarType->isIntegerTy() && Opcode == Instruction::ExtractElement)
+ return 1 + RegisterFileMoveCost;
+ }
+
+ int ISD = TLI->InstructionOpcodeToISD(Opcode);
+ assert(ISD && "Unexpected vector opcode");
+ MVT MScalarTy = LT.second.getScalarType();
+ if (ST->isSLM())
+ if (auto *Entry = CostTableLookup(SLMCostTbl, ISD, MScalarTy))
+ return Entry->Cost + RegisterFileMoveCost;
+
+ // Assume pinsr/pextr XMM <-> GPR is relatively cheap on all targets.
+ if ((MScalarTy == MVT::i16 && ST->hasSSE2()) ||
+ (MScalarTy.isInteger() && ST->hasSSE41()))
+ return 1 + RegisterFileMoveCost;
+
+ // Assume insertps is relatively cheap on all targets.
+ if (MScalarTy == MVT::f32 && ST->hasSSE41() &&
+ Opcode == Instruction::InsertElement)
+ return 1 + RegisterFileMoveCost;
+
+ // For extractions we just need to shuffle the element to index 0, which
+ // should be very cheap (assume cost = 1). For insertions we need to shuffle
+ // the elements to its destination. In both cases we must handle the
+ // subvector move(s).
+ // If the vector type is already less than 128-bits then don't reduce it.
+ // TODO: Under what circumstances should we shuffle using the full width?
+ int ShuffleCost = 1;
+ if (Opcode == Instruction::InsertElement) {
+ auto *SubTy = cast<VectorType>(Val);
+ EVT VT = TLI->getValueType(DL, Val);
+ if (VT.getScalarType() != MScalarTy || VT.getSizeInBits() >= 128)
+ SubTy = FixedVectorType::get(ScalarType, SubNumElts);
+ ShuffleCost = getShuffleCost(TTI::SK_PermuteTwoSrc, SubTy, 0, SubTy);
+ }
+ int IntOrFpCost = ScalarType->isFloatingPointTy() ? 0 : 1;
+ return ShuffleCost + IntOrFpCost + RegisterFileMoveCost;
+ }
+
+ // Add to the base cost if we know that the extracted element of a vector is
+ // destined to be moved to and used in the integer register file.
+ if (Opcode == Instruction::ExtractElement && ScalarType->isPointerTy())
+ RegisterFileMoveCost += 1;
+
+ return BaseT::getVectorInstrCost(Opcode, Val, Index) + RegisterFileMoveCost;
+}
+
+unsigned X86TTIImpl::getScalarizationOverhead(VectorType *Ty,
+ const APInt &DemandedElts,
+ bool Insert, bool Extract) {
+ unsigned Cost = 0;
+
+ // For insertions, a ISD::BUILD_VECTOR style vector initialization can be much
+ // cheaper than an accumulation of ISD::INSERT_VECTOR_ELT.
+ if (Insert) {
+ std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty);
+ MVT MScalarTy = LT.second.getScalarType();
+
+ if ((MScalarTy == MVT::i16 && ST->hasSSE2()) ||
+ (MScalarTy.isInteger() && ST->hasSSE41()) ||
+ (MScalarTy == MVT::f32 && ST->hasSSE41())) {
+ // For types we can insert directly, insertion into 128-bit sub vectors is
+ // cheap, followed by a cheap chain of concatenations.
+ if (LT.second.getSizeInBits() <= 128) {
+ Cost +=
+ BaseT::getScalarizationOverhead(Ty, DemandedElts, Insert, false);
+ } else {
+ unsigned NumSubVecs = LT.second.getSizeInBits() / 128;
+ Cost += (PowerOf2Ceil(NumSubVecs) - 1) * LT.first;
+ Cost += DemandedElts.countPopulation();
+
+ // For vXf32 cases, insertion into the 0'th index in each v4f32
+ // 128-bit vector is free.
+ // NOTE: This assumes legalization widens vXf32 vectors.
+ if (MScalarTy == MVT::f32)
+ for (unsigned i = 0, e = cast<FixedVectorType>(Ty)->getNumElements();
+ i < e; i += 4)
+ if (DemandedElts[i])
+ Cost--;
+ }
+ } else if (LT.second.isVector()) {
+ // Without fast insertion, we need to use MOVD/MOVQ to pass each demanded
+ // integer element as a SCALAR_TO_VECTOR, then we build the vector as a
+ // series of UNPCK followed by CONCAT_VECTORS - all of these can be
+ // considered cheap.
+ if (Ty->isIntOrIntVectorTy())
+ Cost += DemandedElts.countPopulation();
+
+ // Get the smaller of the legalized or original pow2-extended number of
+ // vector elements, which represents the number of unpacks we'll end up
+ // performing.
+ unsigned NumElts = LT.second.getVectorNumElements();
+ unsigned Pow2Elts =
+ PowerOf2Ceil(cast<FixedVectorType>(Ty)->getNumElements());
+ Cost += (std::min<unsigned>(NumElts, Pow2Elts) - 1) * LT.first;
+ }
+ }
+
+ // TODO: Use default extraction for now, but we should investigate extending this
+ // to handle repeated subvector extraction.
+ if (Extract)
+ Cost += BaseT::getScalarizationOverhead(Ty, DemandedElts, false, Extract);
+
+ return Cost;
+}
+
+int X86TTIImpl::getMemoryOpCost(unsigned Opcode, Type *Src,
+ MaybeAlign Alignment, unsigned AddressSpace,
+ TTI::TargetCostKind CostKind,
+ const Instruction *I) {
+ // TODO: Handle other cost kinds.
+ if (CostKind != TTI::TCK_RecipThroughput) {
+ if (isa_and_nonnull<StoreInst>(I)) {
+ Value *Ptr = I->getOperand(1);
+ // Store instruction with index and scale costs 2 Uops.
+ // Check the preceding GEP to identify non-const indices.
+ if (auto *GEP = dyn_cast<GetElementPtrInst>(Ptr)) {
+ if (!all_of(GEP->indices(), [](Value *V) { return isa<Constant>(V); }))
+ return TTI::TCC_Basic * 2;
+ }
+ }
+ return TTI::TCC_Basic;
+ }
+
+ // Handle non-power-of-two vectors such as <3 x float>
+ if (auto *VTy = dyn_cast<FixedVectorType>(Src)) {
+ unsigned NumElem = VTy->getNumElements();
+
+ // Handle a few common cases:
+ // <3 x float>
+ if (NumElem == 3 && VTy->getScalarSizeInBits() == 32)
+ // Cost = 64 bit store + extract + 32 bit store.
+ return 3;
+
+ // <3 x double>
+ if (NumElem == 3 && VTy->getScalarSizeInBits() == 64)
+ // Cost = 128 bit store + unpack + 64 bit store.
+ return 3;
+
+ // Assume that all other non-power-of-two numbers are scalarized.
+ if (!isPowerOf2_32(NumElem)) {
+ APInt DemandedElts = APInt::getAllOnesValue(NumElem);
+ int Cost = BaseT::getMemoryOpCost(Opcode, VTy->getScalarType(), Alignment,
+ AddressSpace, CostKind);
+ int SplitCost = getScalarizationOverhead(VTy, DemandedElts,
+ Opcode == Instruction::Load,
+ Opcode == Instruction::Store);
+ return NumElem * Cost + SplitCost;
+ }
+ }
+
+ // Type legalization can't handle structs
+ if (TLI->getValueType(DL, Src, true) == MVT::Other)
+ return BaseT::getMemoryOpCost(Opcode, Src, Alignment, AddressSpace,
+ CostKind);
+
+ // Legalize the type.
+ std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Src);
+ assert((Opcode == Instruction::Load || Opcode == Instruction::Store) &&
+ "Invalid Opcode");
+
+ // Each load/store unit costs 1.
+ int Cost = LT.first * 1;
+
+ // This isn't exactly right. We're using slow unaligned 32-byte accesses as a
+ // proxy for a double-pumped AVX memory interface such as on Sandybridge.
+ if (LT.second.getStoreSize() == 32 && ST->isUnalignedMem32Slow())
+ Cost *= 2;
+
+ return Cost;
+}
+
+int X86TTIImpl::getMaskedMemoryOpCost(unsigned Opcode, Type *SrcTy,
+ Align Alignment, unsigned AddressSpace,
+ TTI::TargetCostKind CostKind) {
+ bool IsLoad = (Instruction::Load == Opcode);
+ bool IsStore = (Instruction::Store == Opcode);
+
+ auto *SrcVTy = dyn_cast<FixedVectorType>(SrcTy);
+ if (!SrcVTy)
+ // To calculate scalar take the regular cost, without mask
+ return getMemoryOpCost(Opcode, SrcTy, Alignment, AddressSpace, CostKind);
+
+ unsigned NumElem = SrcVTy->getNumElements();
+ auto *MaskTy =
+ FixedVectorType::get(Type::getInt8Ty(SrcVTy->getContext()), NumElem);
+ if ((IsLoad && !isLegalMaskedLoad(SrcVTy, Alignment)) ||
+ (IsStore && !isLegalMaskedStore(SrcVTy, Alignment)) ||
+ !isPowerOf2_32(NumElem)) {
+ // Scalarization
+ APInt DemandedElts = APInt::getAllOnesValue(NumElem);
+ int MaskSplitCost =
+ getScalarizationOverhead(MaskTy, DemandedElts, false, true);
+ int ScalarCompareCost = getCmpSelInstrCost(
+ Instruction::ICmp, Type::getInt8Ty(SrcVTy->getContext()), nullptr,
+ CostKind);
+ int BranchCost = getCFInstrCost(Instruction::Br, CostKind);
+ int MaskCmpCost = NumElem * (BranchCost + ScalarCompareCost);
+ int ValueSplitCost =
+ getScalarizationOverhead(SrcVTy, DemandedElts, IsLoad, IsStore);
+ int MemopCost =
+ NumElem * BaseT::getMemoryOpCost(Opcode, SrcVTy->getScalarType(),
+ Alignment, AddressSpace, CostKind);
+ return MemopCost + ValueSplitCost + MaskSplitCost + MaskCmpCost;
+ }
+
+ // Legalize the type.
+ std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, SrcVTy);
+ auto VT = TLI->getValueType(DL, SrcVTy);
+ int Cost = 0;
+ if (VT.isSimple() && LT.second != VT.getSimpleVT() &&
+ LT.second.getVectorNumElements() == NumElem)
+ // Promotion requires expand/truncate for data and a shuffle for mask.
+ Cost += getShuffleCost(TTI::SK_PermuteTwoSrc, SrcVTy, 0, nullptr) +
+ getShuffleCost(TTI::SK_PermuteTwoSrc, MaskTy, 0, nullptr);
+
+ else if (LT.second.getVectorNumElements() > NumElem) {
+ auto *NewMaskTy = FixedVectorType::get(MaskTy->getElementType(),
+ LT.second.getVectorNumElements());
+ // Expanding requires fill mask with zeroes
+ Cost += getShuffleCost(TTI::SK_InsertSubvector, NewMaskTy, 0, MaskTy);
+ }
+
+ // Pre-AVX512 - each maskmov load costs 2 + store costs ~8.
+ if (!ST->hasAVX512())
+ return Cost + LT.first * (IsLoad ? 2 : 8);
+
+ // AVX-512 masked load/store is cheapper
+ return Cost + LT.first;
+}
+
+int X86TTIImpl::getAddressComputationCost(Type *Ty, ScalarEvolution *SE,
+ const SCEV *Ptr) {
+ // Address computations in vectorized code with non-consecutive addresses will
+ // likely result in more instructions compared to scalar code where the
+ // computation can more often be merged into the index mode. The resulting
+ // extra micro-ops can significantly decrease throughput.
+ const unsigned NumVectorInstToHideOverhead = 10;
+
+ // Cost modeling of Strided Access Computation is hidden by the indexing
+ // modes of X86 regardless of the stride value. We dont believe that there
+ // is a difference between constant strided access in gerenal and constant
+ // strided value which is less than or equal to 64.
+ // Even in the case of (loop invariant) stride whose value is not known at
+ // compile time, the address computation will not incur more than one extra
+ // ADD instruction.
+ if (Ty->isVectorTy() && SE) {
+ if (!BaseT::isStridedAccess(Ptr))
+ return NumVectorInstToHideOverhead;
+ if (!BaseT::getConstantStrideStep(SE, Ptr))
+ return 1;
+ }
+
+ return BaseT::getAddressComputationCost(Ty, SE, Ptr);
+}
+
+int X86TTIImpl::getArithmeticReductionCost(unsigned Opcode, VectorType *ValTy,
+ bool IsPairwise,
+ TTI::TargetCostKind CostKind) {
+ // Just use the default implementation for pair reductions.
+ if (IsPairwise)
+ return BaseT::getArithmeticReductionCost(Opcode, ValTy, IsPairwise, CostKind);
+
+ // We use the Intel Architecture Code Analyzer(IACA) to measure the throughput
+ // and make it as the cost.
+
+ static const CostTblEntry SLMCostTblNoPairWise[] = {
+ { ISD::FADD, MVT::v2f64, 3 },
+ { ISD::ADD, MVT::v2i64, 5 },
+ };
+
+ static const CostTblEntry SSE2CostTblNoPairWise[] = {
+ { ISD::FADD, MVT::v2f64, 2 },
+ { ISD::FADD, MVT::v4f32, 4 },
+ { ISD::ADD, MVT::v2i64, 2 }, // The data reported by the IACA tool is "1.6".
+ { ISD::ADD, MVT::v2i32, 2 }, // FIXME: chosen to be less than v4i32
+ { ISD::ADD, MVT::v4i32, 3 }, // The data reported by the IACA tool is "3.3".
+ { ISD::ADD, MVT::v2i16, 2 }, // The data reported by the IACA tool is "4.3".
+ { ISD::ADD, MVT::v4i16, 3 }, // The data reported by the IACA tool is "4.3".
+ { ISD::ADD, MVT::v8i16, 4 }, // The data reported by the IACA tool is "4.3".
+ { ISD::ADD, MVT::v2i8, 2 },
+ { ISD::ADD, MVT::v4i8, 2 },
+ { ISD::ADD, MVT::v8i8, 2 },
+ { ISD::ADD, MVT::v16i8, 3 },
+ };
+
+ static const CostTblEntry AVX1CostTblNoPairWise[] = {
+ { ISD::FADD, MVT::v4f64, 3 },
+ { ISD::FADD, MVT::v4f32, 3 },
+ { ISD::FADD, MVT::v8f32, 4 },
+ { ISD::ADD, MVT::v2i64, 1 }, // The data reported by the IACA tool is "1.5".
+ { ISD::ADD, MVT::v4i64, 3 },
+ { ISD::ADD, MVT::v8i32, 5 },
+ { ISD::ADD, MVT::v16i16, 5 },
+ { ISD::ADD, MVT::v32i8, 4 },
+ };
+
+ int ISD = TLI->InstructionOpcodeToISD(Opcode);
+ assert(ISD && "Invalid opcode");
+
+ // Before legalizing the type, give a chance to look up illegal narrow types
+ // in the table.
+ // FIXME: Is there a better way to do this?
+ EVT VT = TLI->getValueType(DL, ValTy);
+ if (VT.isSimple()) {
+ MVT MTy = VT.getSimpleVT();
+ if (ST->isSLM())
+ if (const auto *Entry = CostTableLookup(SLMCostTblNoPairWise, ISD, MTy))
+ return Entry->Cost;
+
+ if (ST->hasAVX())
+ if (const auto *Entry = CostTableLookup(AVX1CostTblNoPairWise, ISD, MTy))
+ return Entry->Cost;
+
+ if (ST->hasSSE2())
+ if (const auto *Entry = CostTableLookup(SSE2CostTblNoPairWise, ISD, MTy))
+ return Entry->Cost;
+ }
+
+ std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, ValTy);
+
+ MVT MTy = LT.second;
+
+ auto *ValVTy = cast<FixedVectorType>(ValTy);
+
+ unsigned ArithmeticCost = 0;
+ if (LT.first != 1 && MTy.isVector() &&
+ MTy.getVectorNumElements() < ValVTy->getNumElements()) {
+ // Type needs to be split. We need LT.first - 1 arithmetic ops.
+ auto *SingleOpTy = FixedVectorType::get(ValVTy->getElementType(),
+ MTy.getVectorNumElements());
+ ArithmeticCost = getArithmeticInstrCost(Opcode, SingleOpTy, CostKind);
+ ArithmeticCost *= LT.first - 1;
+ }
+
+ if (ST->isSLM())
+ if (const auto *Entry = CostTableLookup(SLMCostTblNoPairWise, ISD, MTy))
+ return ArithmeticCost + Entry->Cost;
+
+ if (ST->hasAVX())
+ if (const auto *Entry = CostTableLookup(AVX1CostTblNoPairWise, ISD, MTy))
+ return ArithmeticCost + Entry->Cost;
+
+ if (ST->hasSSE2())
+ if (const auto *Entry = CostTableLookup(SSE2CostTblNoPairWise, ISD, MTy))
+ return ArithmeticCost + Entry->Cost;
+
+ // FIXME: These assume a naive kshift+binop lowering, which is probably
+ // conservative in most cases.
+ static const CostTblEntry AVX512BoolReduction[] = {
+ { ISD::AND, MVT::v2i1, 3 },
+ { ISD::AND, MVT::v4i1, 5 },
+ { ISD::AND, MVT::v8i1, 7 },
+ { ISD::AND, MVT::v16i1, 9 },
+ { ISD::AND, MVT::v32i1, 11 },
+ { ISD::AND, MVT::v64i1, 13 },
+ { ISD::OR, MVT::v2i1, 3 },
+ { ISD::OR, MVT::v4i1, 5 },
+ { ISD::OR, MVT::v8i1, 7 },
+ { ISD::OR, MVT::v16i1, 9 },
+ { ISD::OR, MVT::v32i1, 11 },
+ { ISD::OR, MVT::v64i1, 13 },
+ };
+
+ static const CostTblEntry AVX2BoolReduction[] = {
+ { ISD::AND, MVT::v16i16, 2 }, // vpmovmskb + cmp
+ { ISD::AND, MVT::v32i8, 2 }, // vpmovmskb + cmp
+ { ISD::OR, MVT::v16i16, 2 }, // vpmovmskb + cmp
+ { ISD::OR, MVT::v32i8, 2 }, // vpmovmskb + cmp
+ };
+
+ static const CostTblEntry AVX1BoolReduction[] = {
+ { ISD::AND, MVT::v4i64, 2 }, // vmovmskpd + cmp
+ { ISD::AND, MVT::v8i32, 2 }, // vmovmskps + cmp
+ { ISD::AND, MVT::v16i16, 4 }, // vextractf128 + vpand + vpmovmskb + cmp
+ { ISD::AND, MVT::v32i8, 4 }, // vextractf128 + vpand + vpmovmskb + cmp
+ { ISD::OR, MVT::v4i64, 2 }, // vmovmskpd + cmp
+ { ISD::OR, MVT::v8i32, 2 }, // vmovmskps + cmp
+ { ISD::OR, MVT::v16i16, 4 }, // vextractf128 + vpor + vpmovmskb + cmp
+ { ISD::OR, MVT::v32i8, 4 }, // vextractf128 + vpor + vpmovmskb + cmp
+ };
+
+ static const CostTblEntry SSE2BoolReduction[] = {
+ { ISD::AND, MVT::v2i64, 2 }, // movmskpd + cmp
+ { ISD::AND, MVT::v4i32, 2 }, // movmskps + cmp
+ { ISD::AND, MVT::v8i16, 2 }, // pmovmskb + cmp
+ { ISD::AND, MVT::v16i8, 2 }, // pmovmskb + cmp
+ { ISD::OR, MVT::v2i64, 2 }, // movmskpd + cmp
+ { ISD::OR, MVT::v4i32, 2 }, // movmskps + cmp
+ { ISD::OR, MVT::v8i16, 2 }, // pmovmskb + cmp
+ { ISD::OR, MVT::v16i8, 2 }, // pmovmskb + cmp
+ };
+
+ // Handle bool allof/anyof patterns.
+ if (ValVTy->getElementType()->isIntegerTy(1)) {
+ unsigned ArithmeticCost = 0;
+ if (LT.first != 1 && MTy.isVector() &&
+ MTy.getVectorNumElements() < ValVTy->getNumElements()) {
+ // Type needs to be split. We need LT.first - 1 arithmetic ops.
+ auto *SingleOpTy = FixedVectorType::get(ValVTy->getElementType(),
+ MTy.getVectorNumElements());
+ ArithmeticCost = getArithmeticInstrCost(Opcode, SingleOpTy, CostKind);
+ ArithmeticCost *= LT.first - 1;
+ }
+
+ if (ST->hasAVX512())
+ if (const auto *Entry = CostTableLookup(AVX512BoolReduction, ISD, MTy))
+ return ArithmeticCost + Entry->Cost;
+ if (ST->hasAVX2())
+ if (const auto *Entry = CostTableLookup(AVX2BoolReduction, ISD, MTy))
+ return ArithmeticCost + Entry->Cost;
+ if (ST->hasAVX())
+ if (const auto *Entry = CostTableLookup(AVX1BoolReduction, ISD, MTy))
+ return ArithmeticCost + Entry->Cost;
+ if (ST->hasSSE2())
+ if (const auto *Entry = CostTableLookup(SSE2BoolReduction, ISD, MTy))
+ return ArithmeticCost + Entry->Cost;
+
+ return BaseT::getArithmeticReductionCost(Opcode, ValVTy, IsPairwise,
+ CostKind);
+ }
+
+ unsigned NumVecElts = ValVTy->getNumElements();
+ unsigned ScalarSize = ValVTy->getScalarSizeInBits();
+
+ // Special case power of 2 reductions where the scalar type isn't changed
+ // by type legalization.
+ if (!isPowerOf2_32(NumVecElts) || ScalarSize != MTy.getScalarSizeInBits())
+ return BaseT::getArithmeticReductionCost(Opcode, ValVTy, IsPairwise,
+ CostKind);
+
+ unsigned ReductionCost = 0;
+
+ auto *Ty = ValVTy;
+ if (LT.first != 1 && MTy.isVector() &&
+ MTy.getVectorNumElements() < ValVTy->getNumElements()) {
+ // Type needs to be split. We need LT.first - 1 arithmetic ops.
+ Ty = FixedVectorType::get(ValVTy->getElementType(),
+ MTy.getVectorNumElements());
+ ReductionCost = getArithmeticInstrCost(Opcode, Ty, CostKind);
+ ReductionCost *= LT.first - 1;
+ NumVecElts = MTy.getVectorNumElements();
+ }
+
+ // Now handle reduction with the legal type, taking into account size changes
+ // at each level.
+ while (NumVecElts > 1) {
+ // Determine the size of the remaining vector we need to reduce.
+ unsigned Size = NumVecElts * ScalarSize;
+ NumVecElts /= 2;
+ // If we're reducing from 256/512 bits, use an extract_subvector.
+ if (Size > 128) {
+ auto *SubTy = FixedVectorType::get(ValVTy->getElementType(), NumVecElts);
+ ReductionCost +=
+ getShuffleCost(TTI::SK_ExtractSubvector, Ty, NumVecElts, SubTy);
+ Ty = SubTy;
+ } else if (Size == 128) {
+ // Reducing from 128 bits is a permute of v2f64/v2i64.
+ FixedVectorType *ShufTy;
+ if (ValVTy->isFloatingPointTy())
+ ShufTy =
+ FixedVectorType::get(Type::getDoubleTy(ValVTy->getContext()), 2);
+ else
+ ShufTy =
+ FixedVectorType::get(Type::getInt64Ty(ValVTy->getContext()), 2);
+ ReductionCost +=
+ getShuffleCost(TTI::SK_PermuteSingleSrc, ShufTy, 0, nullptr);
+ } else if (Size == 64) {
+ // Reducing from 64 bits is a shuffle of v4f32/v4i32.
+ FixedVectorType *ShufTy;
+ if (ValVTy->isFloatingPointTy())
+ ShufTy =
+ FixedVectorType::get(Type::getFloatTy(ValVTy->getContext()), 4);
+ else
+ ShufTy =
+ FixedVectorType::get(Type::getInt32Ty(ValVTy->getContext()), 4);
+ ReductionCost +=
+ getShuffleCost(TTI::SK_PermuteSingleSrc, ShufTy, 0, nullptr);
+ } else {
+ // Reducing from smaller size is a shift by immediate.
+ auto *ShiftTy = FixedVectorType::get(
+ Type::getIntNTy(ValVTy->getContext(), Size), 128 / Size);
+ ReductionCost += getArithmeticInstrCost(
+ Instruction::LShr, ShiftTy, CostKind,
+ TargetTransformInfo::OK_AnyValue,
+ TargetTransformInfo::OK_UniformConstantValue,
+ TargetTransformInfo::OP_None, TargetTransformInfo::OP_None);
+ }
+
+ // Add the arithmetic op for this level.
+ ReductionCost += getArithmeticInstrCost(Opcode, Ty, CostKind);
+ }
+
+ // Add the final extract element to the cost.
+ return ReductionCost + getVectorInstrCost(Instruction::ExtractElement, Ty, 0);
+}
+
+int X86TTIImpl::getMinMaxCost(Type *Ty, Type *CondTy, bool IsUnsigned) {
+ std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty);
+
+ MVT MTy = LT.second;
+
+ int ISD;
+ if (Ty->isIntOrIntVectorTy()) {
+ ISD = IsUnsigned ? ISD::UMIN : ISD::SMIN;
+ } else {
+ assert(Ty->isFPOrFPVectorTy() &&
+ "Expected float point or integer vector type.");
+ ISD = ISD::FMINNUM;
+ }
+
+ static const CostTblEntry SSE1CostTbl[] = {
+ {ISD::FMINNUM, MVT::v4f32, 1},
+ };
+
+ static const CostTblEntry SSE2CostTbl[] = {
+ {ISD::FMINNUM, MVT::v2f64, 1},
+ {ISD::SMIN, MVT::v8i16, 1},
+ {ISD::UMIN, MVT::v16i8, 1},
+ };
+
+ static const CostTblEntry SSE41CostTbl[] = {
+ {ISD::SMIN, MVT::v4i32, 1},
+ {ISD::UMIN, MVT::v4i32, 1},
+ {ISD::UMIN, MVT::v8i16, 1},
+ {ISD::SMIN, MVT::v16i8, 1},
+ };
+
+ static const CostTblEntry SSE42CostTbl[] = {
+ {ISD::UMIN, MVT::v2i64, 3}, // xor+pcmpgtq+blendvpd
+ };
+
+ static const CostTblEntry AVX1CostTbl[] = {
+ {ISD::FMINNUM, MVT::v8f32, 1},
+ {ISD::FMINNUM, MVT::v4f64, 1},
+ {ISD::SMIN, MVT::v8i32, 3},
+ {ISD::UMIN, MVT::v8i32, 3},
+ {ISD::SMIN, MVT::v16i16, 3},
+ {ISD::UMIN, MVT::v16i16, 3},
+ {ISD::SMIN, MVT::v32i8, 3},
+ {ISD::UMIN, MVT::v32i8, 3},
+ };
+
+ static const CostTblEntry AVX2CostTbl[] = {
+ {ISD::SMIN, MVT::v8i32, 1},
+ {ISD::UMIN, MVT::v8i32, 1},
+ {ISD::SMIN, MVT::v16i16, 1},
+ {ISD::UMIN, MVT::v16i16, 1},
+ {ISD::SMIN, MVT::v32i8, 1},
+ {ISD::UMIN, MVT::v32i8, 1},
+ };
+
+ static const CostTblEntry AVX512CostTbl[] = {
+ {ISD::FMINNUM, MVT::v16f32, 1},
+ {ISD::FMINNUM, MVT::v8f64, 1},
+ {ISD::SMIN, MVT::v2i64, 1},
+ {ISD::UMIN, MVT::v2i64, 1},
+ {ISD::SMIN, MVT::v4i64, 1},
+ {ISD::UMIN, MVT::v4i64, 1},
+ {ISD::SMIN, MVT::v8i64, 1},
+ {ISD::UMIN, MVT::v8i64, 1},
+ {ISD::SMIN, MVT::v16i32, 1},
+ {ISD::UMIN, MVT::v16i32, 1},
+ };
+
+ static const CostTblEntry AVX512BWCostTbl[] = {
+ {ISD::SMIN, MVT::v32i16, 1},
+ {ISD::UMIN, MVT::v32i16, 1},
+ {ISD::SMIN, MVT::v64i8, 1},
+ {ISD::UMIN, MVT::v64i8, 1},
+ };
+
+ // If we have a native MIN/MAX instruction for this type, use it.
+ if (ST->hasBWI())
+ if (const auto *Entry = CostTableLookup(AVX512BWCostTbl, ISD, MTy))
+ return LT.first * Entry->Cost;
+
+ if (ST->hasAVX512())
+ if (const auto *Entry = CostTableLookup(AVX512CostTbl, ISD, MTy))
+ return LT.first * Entry->Cost;
+
+ if (ST->hasAVX2())
+ if (const auto *Entry = CostTableLookup(AVX2CostTbl, ISD, MTy))
+ return LT.first * Entry->Cost;
+
+ if (ST->hasAVX())
+ if (const auto *Entry = CostTableLookup(AVX1CostTbl, ISD, MTy))
+ return LT.first * Entry->Cost;
+
+ if (ST->hasSSE42())
+ if (const auto *Entry = CostTableLookup(SSE42CostTbl, ISD, MTy))
+ return LT.first * Entry->Cost;
+
+ if (ST->hasSSE41())
+ if (const auto *Entry = CostTableLookup(SSE41CostTbl, ISD, MTy))
+ return LT.first * Entry->Cost;
+
+ if (ST->hasSSE2())
+ if (const auto *Entry = CostTableLookup(SSE2CostTbl, ISD, MTy))
+ return LT.first * Entry->Cost;
+
+ if (ST->hasSSE1())
+ if (const auto *Entry = CostTableLookup(SSE1CostTbl, ISD, MTy))
+ return LT.first * Entry->Cost;
+
+ unsigned CmpOpcode;
+ if (Ty->isFPOrFPVectorTy()) {
+ CmpOpcode = Instruction::FCmp;
+ } else {
+ assert(Ty->isIntOrIntVectorTy() &&
+ "expecting floating point or integer type for min/max reduction");
+ CmpOpcode = Instruction::ICmp;
+ }
+
+ TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
+ // Otherwise fall back to cmp+select.
+ return getCmpSelInstrCost(CmpOpcode, Ty, CondTy, CostKind) +
+ getCmpSelInstrCost(Instruction::Select, Ty, CondTy, CostKind);
+}
+
+int X86TTIImpl::getMinMaxReductionCost(VectorType *ValTy, VectorType *CondTy,
+ bool IsPairwise, bool IsUnsigned,
+ TTI::TargetCostKind CostKind) {
+ // Just use the default implementation for pair reductions.
+ if (IsPairwise)
+ return BaseT::getMinMaxReductionCost(ValTy, CondTy, IsPairwise, IsUnsigned,
+ CostKind);
+
+ std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, ValTy);
+
+ MVT MTy = LT.second;
+
+ int ISD;
+ if (ValTy->isIntOrIntVectorTy()) {
+ ISD = IsUnsigned ? ISD::UMIN : ISD::SMIN;
+ } else {
+ assert(ValTy->isFPOrFPVectorTy() &&
+ "Expected float point or integer vector type.");
+ ISD = ISD::FMINNUM;
+ }
+
+ // We use the Intel Architecture Code Analyzer(IACA) to measure the throughput
+ // and make it as the cost.
+
+ static const CostTblEntry SSE2CostTblNoPairWise[] = {
+ {ISD::UMIN, MVT::v2i16, 5}, // need pxors to use pminsw/pmaxsw
+ {ISD::UMIN, MVT::v4i16, 7}, // need pxors to use pminsw/pmaxsw
+ {ISD::UMIN, MVT::v8i16, 9}, // need pxors to use pminsw/pmaxsw
+ };
+
+ static const CostTblEntry SSE41CostTblNoPairWise[] = {
+ {ISD::SMIN, MVT::v2i16, 3}, // same as sse2
+ {ISD::SMIN, MVT::v4i16, 5}, // same as sse2
+ {ISD::UMIN, MVT::v2i16, 5}, // same as sse2
+ {ISD::UMIN, MVT::v4i16, 7}, // same as sse2
+ {ISD::SMIN, MVT::v8i16, 4}, // phminposuw+xor
+ {ISD::UMIN, MVT::v8i16, 4}, // FIXME: umin is cheaper than umax
+ {ISD::SMIN, MVT::v2i8, 3}, // pminsb
+ {ISD::SMIN, MVT::v4i8, 5}, // pminsb
+ {ISD::SMIN, MVT::v8i8, 7}, // pminsb
+ {ISD::SMIN, MVT::v16i8, 6},
+ {ISD::UMIN, MVT::v2i8, 3}, // same as sse2
+ {ISD::UMIN, MVT::v4i8, 5}, // same as sse2
+ {ISD::UMIN, MVT::v8i8, 7}, // same as sse2
+ {ISD::UMIN, MVT::v16i8, 6}, // FIXME: umin is cheaper than umax
+ };
+
+ static const CostTblEntry AVX1CostTblNoPairWise[] = {
+ {ISD::SMIN, MVT::v16i16, 6},
+ {ISD::UMIN, MVT::v16i16, 6}, // FIXME: umin is cheaper than umax
+ {ISD::SMIN, MVT::v32i8, 8},
+ {ISD::UMIN, MVT::v32i8, 8},
+ };
+
+ static const CostTblEntry AVX512BWCostTblNoPairWise[] = {
+ {ISD::SMIN, MVT::v32i16, 8},
+ {ISD::UMIN, MVT::v32i16, 8}, // FIXME: umin is cheaper than umax
+ {ISD::SMIN, MVT::v64i8, 10},
+ {ISD::UMIN, MVT::v64i8, 10},
+ };
+
+ // Before legalizing the type, give a chance to look up illegal narrow types
+ // in the table.
+ // FIXME: Is there a better way to do this?
+ EVT VT = TLI->getValueType(DL, ValTy);
+ if (VT.isSimple()) {
+ MVT MTy = VT.getSimpleVT();
+ if (ST->hasBWI())
+ if (const auto *Entry = CostTableLookup(AVX512BWCostTblNoPairWise, ISD, MTy))
+ return Entry->Cost;
+
+ if (ST->hasAVX())
+ if (const auto *Entry = CostTableLookup(AVX1CostTblNoPairWise, ISD, MTy))
+ return Entry->Cost;
+
+ if (ST->hasSSE41())
+ if (const auto *Entry = CostTableLookup(SSE41CostTblNoPairWise, ISD, MTy))
+ return Entry->Cost;
+
+ if (ST->hasSSE2())
+ if (const auto *Entry = CostTableLookup(SSE2CostTblNoPairWise, ISD, MTy))
+ return Entry->Cost;
+ }
+
+ auto *ValVTy = cast<FixedVectorType>(ValTy);
+ unsigned NumVecElts = ValVTy->getNumElements();
+
+ auto *Ty = ValVTy;
+ unsigned MinMaxCost = 0;
+ if (LT.first != 1 && MTy.isVector() &&
+ MTy.getVectorNumElements() < ValVTy->getNumElements()) {
+ // Type needs to be split. We need LT.first - 1 operations ops.
+ Ty = FixedVectorType::get(ValVTy->getElementType(),
+ MTy.getVectorNumElements());
+ auto *SubCondTy = FixedVectorType::get(CondTy->getElementType(),
+ MTy.getVectorNumElements());
+ MinMaxCost = getMinMaxCost(Ty, SubCondTy, IsUnsigned);
+ MinMaxCost *= LT.first - 1;
+ NumVecElts = MTy.getVectorNumElements();
+ }
+
+ if (ST->hasBWI())
+ if (const auto *Entry = CostTableLookup(AVX512BWCostTblNoPairWise, ISD, MTy))
+ return MinMaxCost + Entry->Cost;
+
+ if (ST->hasAVX())
+ if (const auto *Entry = CostTableLookup(AVX1CostTblNoPairWise, ISD, MTy))
+ return MinMaxCost + Entry->Cost;
+
+ if (ST->hasSSE41())
+ if (const auto *Entry = CostTableLookup(SSE41CostTblNoPairWise, ISD, MTy))
+ return MinMaxCost + Entry->Cost;
+
+ if (ST->hasSSE2())
+ if (const auto *Entry = CostTableLookup(SSE2CostTblNoPairWise, ISD, MTy))
+ return MinMaxCost + Entry->Cost;
+
+ unsigned ScalarSize = ValTy->getScalarSizeInBits();
+
+ // Special case power of 2 reductions where the scalar type isn't changed
+ // by type legalization.
+ if (!isPowerOf2_32(ValVTy->getNumElements()) ||
+ ScalarSize != MTy.getScalarSizeInBits())
+ return BaseT::getMinMaxReductionCost(ValTy, CondTy, IsPairwise, IsUnsigned,
+ CostKind);
+
+ // Now handle reduction with the legal type, taking into account size changes
+ // at each level.
+ while (NumVecElts > 1) {
+ // Determine the size of the remaining vector we need to reduce.
+ unsigned Size = NumVecElts * ScalarSize;
+ NumVecElts /= 2;
+ // If we're reducing from 256/512 bits, use an extract_subvector.
+ if (Size > 128) {
+ auto *SubTy = FixedVectorType::get(ValVTy->getElementType(), NumVecElts);
+ MinMaxCost +=
+ getShuffleCost(TTI::SK_ExtractSubvector, Ty, NumVecElts, SubTy);
+ Ty = SubTy;
+ } else if (Size == 128) {
+ // Reducing from 128 bits is a permute of v2f64/v2i64.
+ VectorType *ShufTy;
+ if (ValTy->isFloatingPointTy())
+ ShufTy =
+ FixedVectorType::get(Type::getDoubleTy(ValTy->getContext()), 2);
+ else
+ ShufTy = FixedVectorType::get(Type::getInt64Ty(ValTy->getContext()), 2);
+ MinMaxCost +=
+ getShuffleCost(TTI::SK_PermuteSingleSrc, ShufTy, 0, nullptr);
+ } else if (Size == 64) {
+ // Reducing from 64 bits is a shuffle of v4f32/v4i32.
+ FixedVectorType *ShufTy;
+ if (ValTy->isFloatingPointTy())
+ ShufTy = FixedVectorType::get(Type::getFloatTy(ValTy->getContext()), 4);
+ else
+ ShufTy = FixedVectorType::get(Type::getInt32Ty(ValTy->getContext()), 4);
+ MinMaxCost +=
+ getShuffleCost(TTI::SK_PermuteSingleSrc, ShufTy, 0, nullptr);
+ } else {
+ // Reducing from smaller size is a shift by immediate.
+ auto *ShiftTy = FixedVectorType::get(
+ Type::getIntNTy(ValTy->getContext(), Size), 128 / Size);
+ MinMaxCost += getArithmeticInstrCost(
+ Instruction::LShr, ShiftTy, TTI::TCK_RecipThroughput,
+ TargetTransformInfo::OK_AnyValue,
+ TargetTransformInfo::OK_UniformConstantValue,
+ TargetTransformInfo::OP_None, TargetTransformInfo::OP_None);
+ }
+
+ // Add the arithmetic op for this level.
+ auto *SubCondTy =
+ FixedVectorType::get(CondTy->getElementType(), Ty->getNumElements());
+ MinMaxCost += getMinMaxCost(Ty, SubCondTy, IsUnsigned);
+ }
+
+ // Add the final extract element to the cost.
+ return MinMaxCost + getVectorInstrCost(Instruction::ExtractElement, Ty, 0);
+}
+
+/// Calculate the cost of materializing a 64-bit value. This helper
+/// method might only calculate a fraction of a larger immediate. Therefore it
+/// is valid to return a cost of ZERO.
+int X86TTIImpl::getIntImmCost(int64_t Val) {
+ if (Val == 0)
+ return TTI::TCC_Free;
+
+ if (isInt<32>(Val))
+ return TTI::TCC_Basic;
+
+ return 2 * TTI::TCC_Basic;
+}
+
+int X86TTIImpl::getIntImmCost(const APInt &Imm, Type *Ty,
+ TTI::TargetCostKind CostKind) {
+ assert(Ty->isIntegerTy());
+
+ unsigned BitSize = Ty->getPrimitiveSizeInBits();
+ if (BitSize == 0)
+ return ~0U;
+
+ // Never hoist constants larger than 128bit, because this might lead to
+ // incorrect code generation or assertions in codegen.
+ // Fixme: Create a cost model for types larger than i128 once the codegen
+ // issues have been fixed.
+ if (BitSize > 128)
+ return TTI::TCC_Free;
+
+ if (Imm == 0)
+ return TTI::TCC_Free;
+
+ // Sign-extend all constants to a multiple of 64-bit.
+ APInt ImmVal = Imm;
+ if (BitSize % 64 != 0)
+ ImmVal = Imm.sext(alignTo(BitSize, 64));
+
+ // Split the constant into 64-bit chunks and calculate the cost for each
+ // chunk.
+ int Cost = 0;
+ for (unsigned ShiftVal = 0; ShiftVal < BitSize; ShiftVal += 64) {
+ APInt Tmp = ImmVal.ashr(ShiftVal).sextOrTrunc(64);
+ int64_t Val = Tmp.getSExtValue();
+ Cost += getIntImmCost(Val);
+ }
+ // We need at least one instruction to materialize the constant.
+ return std::max(1, Cost);
+}
+
+int X86TTIImpl::getIntImmCostInst(unsigned Opcode, unsigned Idx, const APInt &Imm,
+ Type *Ty, TTI::TargetCostKind CostKind) {
+ assert(Ty->isIntegerTy());
+
+ unsigned BitSize = Ty->getPrimitiveSizeInBits();
+ // There is no cost model for constants with a bit size of 0. Return TCC_Free
+ // here, so that constant hoisting will ignore this constant.
+ if (BitSize == 0)
+ return TTI::TCC_Free;
+
+ unsigned ImmIdx = ~0U;
+ switch (Opcode) {
+ default:
+ return TTI::TCC_Free;
+ case Instruction::GetElementPtr:
+ // Always hoist the base address of a GetElementPtr. This prevents the
+ // creation of new constants for every base constant that gets constant
+ // folded with the offset.
+ if (Idx == 0)
+ return 2 * TTI::TCC_Basic;
+ return TTI::TCC_Free;
+ case Instruction::Store:
+ ImmIdx = 0;
+ break;
+ case Instruction::ICmp:
+ // This is an imperfect hack to prevent constant hoisting of
+ // compares that might be trying to check if a 64-bit value fits in
+ // 32-bits. The backend can optimize these cases using a right shift by 32.
+ // Ideally we would check the compare predicate here. There also other
+ // similar immediates the backend can use shifts for.
+ if (Idx == 1 && Imm.getBitWidth() == 64) {
+ uint64_t ImmVal = Imm.getZExtValue();
+ if (ImmVal == 0x100000000ULL || ImmVal == 0xffffffff)
+ return TTI::TCC_Free;
+ }
+ ImmIdx = 1;
+ break;
+ case Instruction::And:
+ // We support 64-bit ANDs with immediates with 32-bits of leading zeroes
+ // by using a 32-bit operation with implicit zero extension. Detect such
+ // immediates here as the normal path expects bit 31 to be sign extended.
+ if (Idx == 1 && Imm.getBitWidth() == 64 && isUInt<32>(Imm.getZExtValue()))
+ return TTI::TCC_Free;
+ ImmIdx = 1;
+ break;
+ case Instruction::Add:
+ case Instruction::Sub:
+ // For add/sub, we can use the opposite instruction for INT32_MIN.
+ if (Idx == 1 && Imm.getBitWidth() == 64 && Imm.getZExtValue() == 0x80000000)
+ return TTI::TCC_Free;
+ ImmIdx = 1;
+ break;
+ case Instruction::UDiv:
+ case Instruction::SDiv:
+ case Instruction::URem:
+ case Instruction::SRem:
+ // Division by constant is typically expanded later into a different
+ // instruction sequence. This completely changes the constants.
+ // Report them as "free" to stop ConstantHoist from marking them as opaque.
+ return TTI::TCC_Free;
+ case Instruction::Mul:
+ case Instruction::Or:
+ case Instruction::Xor:
+ ImmIdx = 1;
+ break;
+ // Always return TCC_Free for the shift value of a shift instruction.
+ case Instruction::Shl:
+ case Instruction::LShr:
+ case Instruction::AShr:
+ if (Idx == 1)
+ return TTI::TCC_Free;
+ break;
+ case Instruction::Trunc:
+ case Instruction::ZExt:
+ case Instruction::SExt:
+ case Instruction::IntToPtr:
+ case Instruction::PtrToInt:
+ case Instruction::BitCast:
+ case Instruction::PHI:
+ case Instruction::Call:
+ case Instruction::Select:
+ case Instruction::Ret:
+ case Instruction::Load:
+ break;
+ }
+
+ if (Idx == ImmIdx) {
+ int NumConstants = divideCeil(BitSize, 64);
+ int Cost = X86TTIImpl::getIntImmCost(Imm, Ty, CostKind);
+ return (Cost <= NumConstants * TTI::TCC_Basic)
+ ? static_cast<int>(TTI::TCC_Free)
+ : Cost;
+ }
+
+ return X86TTIImpl::getIntImmCost(Imm, Ty, CostKind);
+}
+
+int X86TTIImpl::getIntImmCostIntrin(Intrinsic::ID IID, unsigned Idx,
+ const APInt &Imm, Type *Ty,
+ TTI::TargetCostKind CostKind) {
+ assert(Ty->isIntegerTy());
+
+ unsigned BitSize = Ty->getPrimitiveSizeInBits();
+ // There is no cost model for constants with a bit size of 0. Return TCC_Free
+ // here, so that constant hoisting will ignore this constant.
+ if (BitSize == 0)
+ return TTI::TCC_Free;
+
+ switch (IID) {
+ default:
+ return TTI::TCC_Free;
+ case Intrinsic::sadd_with_overflow:
+ case Intrinsic::uadd_with_overflow:
+ case Intrinsic::ssub_with_overflow:
+ case Intrinsic::usub_with_overflow:
+ case Intrinsic::smul_with_overflow:
+ case Intrinsic::umul_with_overflow:
+ if ((Idx == 1) && Imm.getBitWidth() <= 64 && isInt<32>(Imm.getSExtValue()))
+ return TTI::TCC_Free;
+ break;
+ case Intrinsic::experimental_stackmap:
+ if ((Idx < 2) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
+ return TTI::TCC_Free;
+ break;
+ case Intrinsic::experimental_patchpoint_void:
+ case Intrinsic::experimental_patchpoint_i64:
+ if ((Idx < 4) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
+ return TTI::TCC_Free;
+ break;
+ }
+ return X86TTIImpl::getIntImmCost(Imm, Ty, CostKind);
+}
+
+unsigned
+X86TTIImpl::getCFInstrCost(unsigned Opcode, TTI::TargetCostKind CostKind) {
+ if (CostKind != TTI::TCK_RecipThroughput)
+ return Opcode == Instruction::PHI ? 0 : 1;
+ // Branches are assumed to be predicted.
+ return CostKind == TTI::TCK_RecipThroughput ? 0 : 1;
+}
+
+// Return an average cost of Gather / Scatter instruction, maybe improved later
+int X86TTIImpl::getGSVectorCost(unsigned Opcode, Type *SrcVTy, const Value *Ptr,
+ Align Alignment, unsigned AddressSpace) {
+
+ assert(isa<VectorType>(SrcVTy) && "Unexpected type in getGSVectorCost");
+ unsigned VF = cast<FixedVectorType>(SrcVTy)->getNumElements();
+
+ // Try to reduce index size from 64 bit (default for GEP)
+ // to 32. It is essential for VF 16. If the index can't be reduced to 32, the
+ // operation will use 16 x 64 indices which do not fit in a zmm and needs
+ // to split. Also check that the base pointer is the same for all lanes,
+ // and that there's at most one variable index.
+ auto getIndexSizeInBits = [](const Value *Ptr, const DataLayout &DL) {
+ unsigned IndexSize = DL.getPointerSizeInBits();
+ const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
+ if (IndexSize < 64 || !GEP)
+ return IndexSize;
+
+ unsigned NumOfVarIndices = 0;
+ const Value *Ptrs = GEP->getPointerOperand();
+ if (Ptrs->getType()->isVectorTy() && !getSplatValue(Ptrs))
+ return IndexSize;
+ for (unsigned i = 1; i < GEP->getNumOperands(); ++i) {
+ if (isa<Constant>(GEP->getOperand(i)))
+ continue;
+ Type *IndxTy = GEP->getOperand(i)->getType();
+ if (auto *IndexVTy = dyn_cast<VectorType>(IndxTy))
+ IndxTy = IndexVTy->getElementType();
+ if ((IndxTy->getPrimitiveSizeInBits() == 64 &&
+ !isa<SExtInst>(GEP->getOperand(i))) ||
+ ++NumOfVarIndices > 1)
+ return IndexSize; // 64
+ }
+ return (unsigned)32;
+ };
+
+ // Trying to reduce IndexSize to 32 bits for vector 16.
+ // By default the IndexSize is equal to pointer size.
+ unsigned IndexSize = (ST->hasAVX512() && VF >= 16)
+ ? getIndexSizeInBits(Ptr, DL)
+ : DL.getPointerSizeInBits();
+
+ auto *IndexVTy = FixedVectorType::get(
+ IntegerType::get(SrcVTy->getContext(), IndexSize), VF);
+ std::pair<int, MVT> IdxsLT = TLI->getTypeLegalizationCost(DL, IndexVTy);
+ std::pair<int, MVT> SrcLT = TLI->getTypeLegalizationCost(DL, SrcVTy);
+ int SplitFactor = std::max(IdxsLT.first, SrcLT.first);
+ if (SplitFactor > 1) {
+ // Handle splitting of vector of pointers
+ auto *SplitSrcTy =
+ FixedVectorType::get(SrcVTy->getScalarType(), VF / SplitFactor);
+ return SplitFactor * getGSVectorCost(Opcode, SplitSrcTy, Ptr, Alignment,
+ AddressSpace);
+ }
+
+ // The gather / scatter cost is given by Intel architects. It is a rough
+ // number since we are looking at one instruction in a time.
+ const int GSOverhead = (Opcode == Instruction::Load)
+ ? ST->getGatherOverhead()
+ : ST->getScatterOverhead();
+ return GSOverhead + VF * getMemoryOpCost(Opcode, SrcVTy->getScalarType(),
+ MaybeAlign(Alignment), AddressSpace,
+ TTI::TCK_RecipThroughput);
+}
+
+/// Return the cost of full scalarization of gather / scatter operation.
+///
+/// Opcode - Load or Store instruction.
+/// SrcVTy - The type of the data vector that should be gathered or scattered.
+/// VariableMask - The mask is non-constant at compile time.
+/// Alignment - Alignment for one element.
+/// AddressSpace - pointer[s] address space.
+///
+int X86TTIImpl::getGSScalarCost(unsigned Opcode, Type *SrcVTy,
+ bool VariableMask, Align Alignment,
+ unsigned AddressSpace) {
+ unsigned VF = cast<FixedVectorType>(SrcVTy)->getNumElements();
+ APInt DemandedElts = APInt::getAllOnesValue(VF);
+ TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
+
+ int MaskUnpackCost = 0;
+ if (VariableMask) {
+ auto *MaskTy =
+ FixedVectorType::get(Type::getInt1Ty(SrcVTy->getContext()), VF);
+ MaskUnpackCost =
+ getScalarizationOverhead(MaskTy, DemandedElts, false, true);
+ int ScalarCompareCost =
+ getCmpSelInstrCost(Instruction::ICmp, Type::getInt1Ty(SrcVTy->getContext()),
+ nullptr, CostKind);
+ int BranchCost = getCFInstrCost(Instruction::Br, CostKind);
+ MaskUnpackCost += VF * (BranchCost + ScalarCompareCost);
+ }
+
+ // The cost of the scalar loads/stores.
+ int MemoryOpCost = VF * getMemoryOpCost(Opcode, SrcVTy->getScalarType(),
+ MaybeAlign(Alignment), AddressSpace,
+ CostKind);
+
+ int InsertExtractCost = 0;
+ if (Opcode == Instruction::Load)
+ for (unsigned i = 0; i < VF; ++i)
+ // Add the cost of inserting each scalar load into the vector
+ InsertExtractCost +=
+ getVectorInstrCost(Instruction::InsertElement, SrcVTy, i);
+ else
+ for (unsigned i = 0; i < VF; ++i)
+ // Add the cost of extracting each element out of the data vector
+ InsertExtractCost +=
+ getVectorInstrCost(Instruction::ExtractElement, SrcVTy, i);
+
+ return MemoryOpCost + MaskUnpackCost + InsertExtractCost;
+}
+
+/// Calculate the cost of Gather / Scatter operation
+int X86TTIImpl::getGatherScatterOpCost(unsigned Opcode, Type *SrcVTy,
+ const Value *Ptr, bool VariableMask,
+ Align Alignment,
+ TTI::TargetCostKind CostKind,
+ const Instruction *I = nullptr) {
+
+ if (CostKind != TTI::TCK_RecipThroughput)
+ return 1;
+
+ assert(SrcVTy->isVectorTy() && "Unexpected data type for Gather/Scatter");
+ unsigned VF = cast<FixedVectorType>(SrcVTy)->getNumElements();
+ PointerType *PtrTy = dyn_cast<PointerType>(Ptr->getType());
+ if (!PtrTy && Ptr->getType()->isVectorTy())
+ PtrTy = dyn_cast<PointerType>(
+ cast<VectorType>(Ptr->getType())->getElementType());
+ assert(PtrTy && "Unexpected type for Ptr argument");
+ unsigned AddressSpace = PtrTy->getAddressSpace();
+
+ bool Scalarize = false;
+ if ((Opcode == Instruction::Load &&
+ !isLegalMaskedGather(SrcVTy, Align(Alignment))) ||
+ (Opcode == Instruction::Store &&
+ !isLegalMaskedScatter(SrcVTy, Align(Alignment))))
+ Scalarize = true;
+ // Gather / Scatter for vector 2 is not profitable on KNL / SKX
+ // Vector-4 of gather/scatter instruction does not exist on KNL.
+ // We can extend it to 8 elements, but zeroing upper bits of
+ // the mask vector will add more instructions. Right now we give the scalar
+ // cost of vector-4 for KNL. TODO: Check, maybe the gather/scatter instruction
+ // is better in the VariableMask case.
+ if (ST->hasAVX512() && (VF == 2 || (VF == 4 && !ST->hasVLX())))
+ Scalarize = true;
+
+ if (Scalarize)
+ return getGSScalarCost(Opcode, SrcVTy, VariableMask, Alignment,
+ AddressSpace);
+
+ return getGSVectorCost(Opcode, SrcVTy, Ptr, Alignment, AddressSpace);
+}
+
+bool X86TTIImpl::isLSRCostLess(TargetTransformInfo::LSRCost &C1,
+ TargetTransformInfo::LSRCost &C2) {
+ // X86 specific here are "instruction number 1st priority".
+ return std::tie(C1.Insns, C1.NumRegs, C1.AddRecCost,
+ C1.NumIVMuls, C1.NumBaseAdds,
+ C1.ScaleCost, C1.ImmCost, C1.SetupCost) <
+ std::tie(C2.Insns, C2.NumRegs, C2.AddRecCost,
+ C2.NumIVMuls, C2.NumBaseAdds,
+ C2.ScaleCost, C2.ImmCost, C2.SetupCost);
+}
+
+bool X86TTIImpl::canMacroFuseCmp() {
+ return ST->hasMacroFusion() || ST->hasBranchFusion();
+}
+
+bool X86TTIImpl::isLegalMaskedLoad(Type *DataTy, Align Alignment) {
+ if (!ST->hasAVX())
+ return false;
+
+ // The backend can't handle a single element vector.
+ if (isa<VectorType>(DataTy) &&
+ cast<FixedVectorType>(DataTy)->getNumElements() == 1)
+ return false;
+ Type *ScalarTy = DataTy->getScalarType();
+
+ if (ScalarTy->isPointerTy())
+ return true;
+
+ if (ScalarTy->isFloatTy() || ScalarTy->isDoubleTy())
+ return true;
+
+ if (!ScalarTy->isIntegerTy())
+ return false;
+
+ unsigned IntWidth = ScalarTy->getIntegerBitWidth();
+ return IntWidth == 32 || IntWidth == 64 ||
+ ((IntWidth == 8 || IntWidth == 16) && ST->hasBWI());
+}
+
+bool X86TTIImpl::isLegalMaskedStore(Type *DataType, Align Alignment) {
+ return isLegalMaskedLoad(DataType, Alignment);
+}
+
+bool X86TTIImpl::isLegalNTLoad(Type *DataType, Align Alignment) {
+ unsigned DataSize = DL.getTypeStoreSize(DataType);
+ // The only supported nontemporal loads are for aligned vectors of 16 or 32
+ // bytes. Note that 32-byte nontemporal vector loads are supported by AVX2
+ // (the equivalent stores only require AVX).
+ if (Alignment >= DataSize && (DataSize == 16 || DataSize == 32))
+ return DataSize == 16 ? ST->hasSSE1() : ST->hasAVX2();
+
+ return false;
+}
+
+bool X86TTIImpl::isLegalNTStore(Type *DataType, Align Alignment) {
+ unsigned DataSize = DL.getTypeStoreSize(DataType);
+
+ // SSE4A supports nontemporal stores of float and double at arbitrary
+ // alignment.
+ if (ST->hasSSE4A() && (DataType->isFloatTy() || DataType->isDoubleTy()))
+ return true;
+
+ // Besides the SSE4A subtarget exception above, only aligned stores are
+ // available nontemporaly on any other subtarget. And only stores with a size
+ // of 4..32 bytes (powers of 2, only) are permitted.
+ if (Alignment < DataSize || DataSize < 4 || DataSize > 32 ||
+ !isPowerOf2_32(DataSize))
+ return false;
+
+ // 32-byte vector nontemporal stores are supported by AVX (the equivalent
+ // loads require AVX2).
+ if (DataSize == 32)
+ return ST->hasAVX();
+ else if (DataSize == 16)
+ return ST->hasSSE1();
+ return true;
+}
+
+bool X86TTIImpl::isLegalMaskedExpandLoad(Type *DataTy) {
+ if (!isa<VectorType>(DataTy))
+ return false;
+
+ if (!ST->hasAVX512())
+ return false;
+
+ // The backend can't handle a single element vector.
+ if (cast<FixedVectorType>(DataTy)->getNumElements() == 1)
+ return false;
+
+ Type *ScalarTy = cast<VectorType>(DataTy)->getElementType();
+
+ if (ScalarTy->isFloatTy() || ScalarTy->isDoubleTy())
+ return true;
+
+ if (!ScalarTy->isIntegerTy())
+ return false;
+
+ unsigned IntWidth = ScalarTy->getIntegerBitWidth();
+ return IntWidth == 32 || IntWidth == 64 ||
+ ((IntWidth == 8 || IntWidth == 16) && ST->hasVBMI2());
+}
+
+bool X86TTIImpl::isLegalMaskedCompressStore(Type *DataTy) {
+ return isLegalMaskedExpandLoad(DataTy);
+}
+
+bool X86TTIImpl::isLegalMaskedGather(Type *DataTy, Align Alignment) {
+ // Some CPUs have better gather performance than others.
+ // TODO: Remove the explicit ST->hasAVX512()?, That would mean we would only
+ // enable gather with a -march.
+ if (!(ST->hasAVX512() || (ST->hasFastGather() && ST->hasAVX2())))
+ return false;
+
+ // This function is called now in two cases: from the Loop Vectorizer
+ // and from the Scalarizer.
+ // When the Loop Vectorizer asks about legality of the feature,
+ // the vectorization factor is not calculated yet. The Loop Vectorizer
+ // sends a scalar type and the decision is based on the width of the
+ // scalar element.
+ // Later on, the cost model will estimate usage this intrinsic based on
+ // the vector type.
+ // The Scalarizer asks again about legality. It sends a vector type.
+ // In this case we can reject non-power-of-2 vectors.
+ // We also reject single element vectors as the type legalizer can't
+ // scalarize it.
+ if (auto *DataVTy = dyn_cast<FixedVectorType>(DataTy)) {
+ unsigned NumElts = DataVTy->getNumElements();
+ if (NumElts == 1 || !isPowerOf2_32(NumElts))
+ return false;
+ }
+ Type *ScalarTy = DataTy->getScalarType();
+ if (ScalarTy->isPointerTy())
+ return true;
+
+ if (ScalarTy->isFloatTy() || ScalarTy->isDoubleTy())
+ return true;
+
+ if (!ScalarTy->isIntegerTy())
+ return false;
+
+ unsigned IntWidth = ScalarTy->getIntegerBitWidth();
+ return IntWidth == 32 || IntWidth == 64;
+}
+
+bool X86TTIImpl::isLegalMaskedScatter(Type *DataType, Align Alignment) {
+ // AVX2 doesn't support scatter
+ if (!ST->hasAVX512())
+ return false;
+ return isLegalMaskedGather(DataType, Alignment);
+}
+
+bool X86TTIImpl::hasDivRemOp(Type *DataType, bool IsSigned) {
+ EVT VT = TLI->getValueType(DL, DataType);
+ return TLI->isOperationLegal(IsSigned ? ISD::SDIVREM : ISD::UDIVREM, VT);
+}
+
+bool X86TTIImpl::isFCmpOrdCheaperThanFCmpZero(Type *Ty) {
+ return false;
+}
+
+bool X86TTIImpl::areInlineCompatible(const Function *Caller,
+ const Function *Callee) const {
+ const TargetMachine &TM = getTLI()->getTargetMachine();
+
+ // Work this as a subsetting of subtarget features.
+ const FeatureBitset &CallerBits =
+ TM.getSubtargetImpl(*Caller)->getFeatureBits();
+ const FeatureBitset &CalleeBits =
+ TM.getSubtargetImpl(*Callee)->getFeatureBits();
+
+ FeatureBitset RealCallerBits = CallerBits & ~InlineFeatureIgnoreList;
+ FeatureBitset RealCalleeBits = CalleeBits & ~InlineFeatureIgnoreList;
+ return (RealCallerBits & RealCalleeBits) == RealCalleeBits;
+}
+
+bool X86TTIImpl::areFunctionArgsABICompatible(
+ const Function *Caller, const Function *Callee,
+ SmallPtrSetImpl<Argument *> &Args) const {
+ if (!BaseT::areFunctionArgsABICompatible(Caller, Callee, Args))
+ return false;
+
+ // If we get here, we know the target features match. If one function
+ // considers 512-bit vectors legal and the other does not, consider them
+ // incompatible.
+ const TargetMachine &TM = getTLI()->getTargetMachine();
+
+ if (TM.getSubtarget<X86Subtarget>(*Caller).useAVX512Regs() ==
+ TM.getSubtarget<X86Subtarget>(*Callee).useAVX512Regs())
+ return true;
+
+ // Consider the arguments compatible if they aren't vectors or aggregates.
+ // FIXME: Look at the size of vectors.
+ // FIXME: Look at the element types of aggregates to see if there are vectors.
+ // FIXME: The API of this function seems intended to allow arguments
+ // to be removed from the set, but the caller doesn't check if the set
+ // becomes empty so that may not work in practice.
+ return llvm::none_of(Args, [](Argument *A) {
+ auto *EltTy = cast<PointerType>(A->getType())->getElementType();
+ return EltTy->isVectorTy() || EltTy->isAggregateType();
+ });
+}
+
+X86TTIImpl::TTI::MemCmpExpansionOptions
+X86TTIImpl::enableMemCmpExpansion(bool OptSize, bool IsZeroCmp) const {
+ TTI::MemCmpExpansionOptions Options;
+ Options.MaxNumLoads = TLI->getMaxExpandSizeMemcmp(OptSize);
+ Options.NumLoadsPerBlock = 2;
+ // All GPR and vector loads can be unaligned.
+ Options.AllowOverlappingLoads = true;
+ if (IsZeroCmp) {
+ // Only enable vector loads for equality comparison. Right now the vector
+ // version is not as fast for three way compare (see #33329).
+ const unsigned PreferredWidth = ST->getPreferVectorWidth();
+ if (PreferredWidth >= 512 && ST->hasAVX512()) Options.LoadSizes.push_back(64);
+ if (PreferredWidth >= 256 && ST->hasAVX()) Options.LoadSizes.push_back(32);
+ if (PreferredWidth >= 128 && ST->hasSSE2()) Options.LoadSizes.push_back(16);
+ }
+ if (ST->is64Bit()) {
+ Options.LoadSizes.push_back(8);
+ }
+ Options.LoadSizes.push_back(4);
+ Options.LoadSizes.push_back(2);
+ Options.LoadSizes.push_back(1);
+ return Options;
+}
+
+bool X86TTIImpl::enableInterleavedAccessVectorization() {
+ // TODO: We expect this to be beneficial regardless of arch,
+ // but there are currently some unexplained performance artifacts on Atom.
+ // As a temporary solution, disable on Atom.
+ return !(ST->isAtom());
+}
+
+// Get estimation for interleaved load/store operations for AVX2.
+// \p Factor is the interleaved-access factor (stride) - number of
+// (interleaved) elements in the group.
+// \p Indices contains the indices for a strided load: when the
+// interleaved load has gaps they indicate which elements are used.
+// If Indices is empty (or if the number of indices is equal to the size
+// of the interleaved-access as given in \p Factor) the access has no gaps.
+//
+// As opposed to AVX-512, AVX2 does not have generic shuffles that allow
+// computing the cost using a generic formula as a function of generic
+// shuffles. We therefore use a lookup table instead, filled according to
+// the instruction sequences that codegen currently generates.
+int X86TTIImpl::getInterleavedMemoryOpCostAVX2(
+ unsigned Opcode, FixedVectorType *VecTy, unsigned Factor,
+ ArrayRef<unsigned> Indices, Align Alignment, unsigned AddressSpace,
+ TTI::TargetCostKind CostKind, bool UseMaskForCond, bool UseMaskForGaps) {
+
+ if (UseMaskForCond || UseMaskForGaps)
+ return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
+ Alignment, AddressSpace, CostKind,
+ UseMaskForCond, UseMaskForGaps);
+
+ // We currently Support only fully-interleaved groups, with no gaps.
+ // TODO: Support also strided loads (interleaved-groups with gaps).
+ if (Indices.size() && Indices.size() != Factor)
+ return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
+ Alignment, AddressSpace,
+ CostKind);
+
+ // VecTy for interleave memop is <VF*Factor x Elt>.
+ // So, for VF=4, Interleave Factor = 3, Element type = i32 we have
+ // VecTy = <12 x i32>.
+ MVT LegalVT = getTLI()->getTypeLegalizationCost(DL, VecTy).second;
+
+ // This function can be called with VecTy=<6xi128>, Factor=3, in which case
+ // the VF=2, while v2i128 is an unsupported MVT vector type
+ // (see MachineValueType.h::getVectorVT()).
+ if (!LegalVT.isVector())
+ return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
+ Alignment, AddressSpace,
+ CostKind);
+
+ unsigned VF = VecTy->getNumElements() / Factor;
+ Type *ScalarTy = VecTy->getElementType();
+
+ // Calculate the number of memory operations (NumOfMemOps), required
+ // for load/store the VecTy.
+ unsigned VecTySize = DL.getTypeStoreSize(VecTy);
+ unsigned LegalVTSize = LegalVT.getStoreSize();
+ unsigned NumOfMemOps = (VecTySize + LegalVTSize - 1) / LegalVTSize;
+
+ // Get the cost of one memory operation.
+ auto *SingleMemOpTy = FixedVectorType::get(VecTy->getElementType(),
+ LegalVT.getVectorNumElements());
+ unsigned MemOpCost = getMemoryOpCost(Opcode, SingleMemOpTy,
+ MaybeAlign(Alignment), AddressSpace,
+ CostKind);
+
+ auto *VT = FixedVectorType::get(ScalarTy, VF);
+ EVT ETy = TLI->getValueType(DL, VT);
+ if (!ETy.isSimple())
+ return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
+ Alignment, AddressSpace,
+ CostKind);
+
+ // TODO: Complete for other data-types and strides.
+ // Each combination of Stride, ElementTy and VF results in a different
+ // sequence; The cost tables are therefore accessed with:
+ // Factor (stride) and VectorType=VFxElemType.
+ // The Cost accounts only for the shuffle sequence;
+ // The cost of the loads/stores is accounted for separately.
+ //
+ static const CostTblEntry AVX2InterleavedLoadTbl[] = {
+ { 2, MVT::v4i64, 6 }, //(load 8i64 and) deinterleave into 2 x 4i64
+ { 2, MVT::v4f64, 6 }, //(load 8f64 and) deinterleave into 2 x 4f64
+
+ { 3, MVT::v2i8, 10 }, //(load 6i8 and) deinterleave into 3 x 2i8
+ { 3, MVT::v4i8, 4 }, //(load 12i8 and) deinterleave into 3 x 4i8
+ { 3, MVT::v8i8, 9 }, //(load 24i8 and) deinterleave into 3 x 8i8
+ { 3, MVT::v16i8, 11}, //(load 48i8 and) deinterleave into 3 x 16i8
+ { 3, MVT::v32i8, 13}, //(load 96i8 and) deinterleave into 3 x 32i8
+ { 3, MVT::v8f32, 17 }, //(load 24f32 and)deinterleave into 3 x 8f32
+
+ { 4, MVT::v2i8, 12 }, //(load 8i8 and) deinterleave into 4 x 2i8
+ { 4, MVT::v4i8, 4 }, //(load 16i8 and) deinterleave into 4 x 4i8
+ { 4, MVT::v8i8, 20 }, //(load 32i8 and) deinterleave into 4 x 8i8
+ { 4, MVT::v16i8, 39 }, //(load 64i8 and) deinterleave into 4 x 16i8
+ { 4, MVT::v32i8, 80 }, //(load 128i8 and) deinterleave into 4 x 32i8
+
+ { 8, MVT::v8f32, 40 } //(load 64f32 and)deinterleave into 8 x 8f32
+ };
+
+ static const CostTblEntry AVX2InterleavedStoreTbl[] = {
+ { 2, MVT::v4i64, 6 }, //interleave into 2 x 4i64 into 8i64 (and store)
+ { 2, MVT::v4f64, 6 }, //interleave into 2 x 4f64 into 8f64 (and store)
+
+ { 3, MVT::v2i8, 7 }, //interleave 3 x 2i8 into 6i8 (and store)
+ { 3, MVT::v4i8, 8 }, //interleave 3 x 4i8 into 12i8 (and store)
+ { 3, MVT::v8i8, 11 }, //interleave 3 x 8i8 into 24i8 (and store)
+ { 3, MVT::v16i8, 11 }, //interleave 3 x 16i8 into 48i8 (and store)
+ { 3, MVT::v32i8, 13 }, //interleave 3 x 32i8 into 96i8 (and store)
+
+ { 4, MVT::v2i8, 12 }, //interleave 4 x 2i8 into 8i8 (and store)
+ { 4, MVT::v4i8, 9 }, //interleave 4 x 4i8 into 16i8 (and store)
+ { 4, MVT::v8i8, 10 }, //interleave 4 x 8i8 into 32i8 (and store)
+ { 4, MVT::v16i8, 10 }, //interleave 4 x 16i8 into 64i8 (and store)
+ { 4, MVT::v32i8, 12 } //interleave 4 x 32i8 into 128i8 (and store)
+ };
+
+ if (Opcode == Instruction::Load) {
+ if (const auto *Entry =
+ CostTableLookup(AVX2InterleavedLoadTbl, Factor, ETy.getSimpleVT()))
+ return NumOfMemOps * MemOpCost + Entry->Cost;
+ } else {
+ assert(Opcode == Instruction::Store &&
+ "Expected Store Instruction at this point");
+ if (const auto *Entry =
+ CostTableLookup(AVX2InterleavedStoreTbl, Factor, ETy.getSimpleVT()))
+ return NumOfMemOps * MemOpCost + Entry->Cost;
+ }
+
+ return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
+ Alignment, AddressSpace, CostKind);
+}
+
+// Get estimation for interleaved load/store operations and strided load.
+// \p Indices contains indices for strided load.
+// \p Factor - the factor of interleaving.
+// AVX-512 provides 3-src shuffles that significantly reduces the cost.
+int X86TTIImpl::getInterleavedMemoryOpCostAVX512(
+ unsigned Opcode, FixedVectorType *VecTy, unsigned Factor,
+ ArrayRef<unsigned> Indices, Align Alignment, unsigned AddressSpace,
+ TTI::TargetCostKind CostKind, bool UseMaskForCond, bool UseMaskForGaps) {
+
+ if (UseMaskForCond || UseMaskForGaps)
+ return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
+ Alignment, AddressSpace, CostKind,
+ UseMaskForCond, UseMaskForGaps);
+
+ // VecTy for interleave memop is <VF*Factor x Elt>.
+ // So, for VF=4, Interleave Factor = 3, Element type = i32 we have
+ // VecTy = <12 x i32>.
+
+ // Calculate the number of memory operations (NumOfMemOps), required
+ // for load/store the VecTy.
+ MVT LegalVT = getTLI()->getTypeLegalizationCost(DL, VecTy).second;
+ unsigned VecTySize = DL.getTypeStoreSize(VecTy);
+ unsigned LegalVTSize = LegalVT.getStoreSize();
+ unsigned NumOfMemOps = (VecTySize + LegalVTSize - 1) / LegalVTSize;
+
+ // Get the cost of one memory operation.
+ auto *SingleMemOpTy = FixedVectorType::get(VecTy->getElementType(),
+ LegalVT.getVectorNumElements());
+ unsigned MemOpCost = getMemoryOpCost(Opcode, SingleMemOpTy,
+ MaybeAlign(Alignment), AddressSpace,
+ CostKind);
+
+ unsigned VF = VecTy->getNumElements() / Factor;
+ MVT VT = MVT::getVectorVT(MVT::getVT(VecTy->getScalarType()), VF);
+
+ if (Opcode == Instruction::Load) {
+ // The tables (AVX512InterleavedLoadTbl and AVX512InterleavedStoreTbl)
+ // contain the cost of the optimized shuffle sequence that the
+ // X86InterleavedAccess pass will generate.
+ // The cost of loads and stores are computed separately from the table.
+
+ // X86InterleavedAccess support only the following interleaved-access group.
+ static const CostTblEntry AVX512InterleavedLoadTbl[] = {
+ {3, MVT::v16i8, 12}, //(load 48i8 and) deinterleave into 3 x 16i8
+ {3, MVT::v32i8, 14}, //(load 96i8 and) deinterleave into 3 x 32i8
+ {3, MVT::v64i8, 22}, //(load 96i8 and) deinterleave into 3 x 32i8
+ };
+
+ if (const auto *Entry =
+ CostTableLookup(AVX512InterleavedLoadTbl, Factor, VT))
+ return NumOfMemOps * MemOpCost + Entry->Cost;
+ //If an entry does not exist, fallback to the default implementation.
+
+ // Kind of shuffle depends on number of loaded values.
+ // If we load the entire data in one register, we can use a 1-src shuffle.
+ // Otherwise, we'll merge 2 sources in each operation.
+ TTI::ShuffleKind ShuffleKind =
+ (NumOfMemOps > 1) ? TTI::SK_PermuteTwoSrc : TTI::SK_PermuteSingleSrc;
+
+ unsigned ShuffleCost =
+ getShuffleCost(ShuffleKind, SingleMemOpTy, 0, nullptr);
+
+ unsigned NumOfLoadsInInterleaveGrp =
+ Indices.size() ? Indices.size() : Factor;
+ auto *ResultTy = FixedVectorType::get(VecTy->getElementType(),
+ VecTy->getNumElements() / Factor);
+ unsigned NumOfResults =
+ getTLI()->getTypeLegalizationCost(DL, ResultTy).first *
+ NumOfLoadsInInterleaveGrp;
+
+ // About a half of the loads may be folded in shuffles when we have only
+ // one result. If we have more than one result, we do not fold loads at all.
+ unsigned NumOfUnfoldedLoads =
+ NumOfResults > 1 ? NumOfMemOps : NumOfMemOps / 2;
+
+ // Get a number of shuffle operations per result.
+ unsigned NumOfShufflesPerResult =
+ std::max((unsigned)1, (unsigned)(NumOfMemOps - 1));
+
+ // The SK_MergeTwoSrc shuffle clobbers one of src operands.
+ // When we have more than one destination, we need additional instructions
+ // to keep sources.
+ unsigned NumOfMoves = 0;
+ if (NumOfResults > 1 && ShuffleKind == TTI::SK_PermuteTwoSrc)
+ NumOfMoves = NumOfResults * NumOfShufflesPerResult / 2;
+
+ int Cost = NumOfResults * NumOfShufflesPerResult * ShuffleCost +
+ NumOfUnfoldedLoads * MemOpCost + NumOfMoves;
+
+ return Cost;
+ }
+
+ // Store.
+ assert(Opcode == Instruction::Store &&
+ "Expected Store Instruction at this point");
+ // X86InterleavedAccess support only the following interleaved-access group.
+ static const CostTblEntry AVX512InterleavedStoreTbl[] = {
+ {3, MVT::v16i8, 12}, // interleave 3 x 16i8 into 48i8 (and store)
+ {3, MVT::v32i8, 14}, // interleave 3 x 32i8 into 96i8 (and store)
+ {3, MVT::v64i8, 26}, // interleave 3 x 64i8 into 96i8 (and store)
+
+ {4, MVT::v8i8, 10}, // interleave 4 x 8i8 into 32i8 (and store)
+ {4, MVT::v16i8, 11}, // interleave 4 x 16i8 into 64i8 (and store)
+ {4, MVT::v32i8, 14}, // interleave 4 x 32i8 into 128i8 (and store)
+ {4, MVT::v64i8, 24} // interleave 4 x 32i8 into 256i8 (and store)
+ };
+
+ if (const auto *Entry =
+ CostTableLookup(AVX512InterleavedStoreTbl, Factor, VT))
+ return NumOfMemOps * MemOpCost + Entry->Cost;
+ //If an entry does not exist, fallback to the default implementation.
+
+ // There is no strided stores meanwhile. And store can't be folded in
+ // shuffle.
+ unsigned NumOfSources = Factor; // The number of values to be merged.
+ unsigned ShuffleCost =
+ getShuffleCost(TTI::SK_PermuteTwoSrc, SingleMemOpTy, 0, nullptr);
+ unsigned NumOfShufflesPerStore = NumOfSources - 1;
+
+ // The SK_MergeTwoSrc shuffle clobbers one of src operands.
+ // We need additional instructions to keep sources.
+ unsigned NumOfMoves = NumOfMemOps * NumOfShufflesPerStore / 2;
+ int Cost = NumOfMemOps * (MemOpCost + NumOfShufflesPerStore * ShuffleCost) +
+ NumOfMoves;
+ return Cost;
+}
+
+int X86TTIImpl::getInterleavedMemoryOpCost(
+ unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices,
+ Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind,
+ bool UseMaskForCond, bool UseMaskForGaps) {
+ auto isSupportedOnAVX512 = [](Type *VecTy, bool HasBW) {
+ Type *EltTy = cast<VectorType>(VecTy)->getElementType();
+ if (EltTy->isFloatTy() || EltTy->isDoubleTy() || EltTy->isIntegerTy(64) ||
+ EltTy->isIntegerTy(32) || EltTy->isPointerTy())
+ return true;
+ if (EltTy->isIntegerTy(16) || EltTy->isIntegerTy(8))
+ return HasBW;
+ return false;
+ };
+ if (ST->hasAVX512() && isSupportedOnAVX512(VecTy, ST->hasBWI()))
+ return getInterleavedMemoryOpCostAVX512(
+ Opcode, cast<FixedVectorType>(VecTy), Factor, Indices, Alignment,
+ AddressSpace, CostKind, UseMaskForCond, UseMaskForGaps);
+ if (ST->hasAVX2())
+ return getInterleavedMemoryOpCostAVX2(
+ Opcode, cast<FixedVectorType>(VecTy), Factor, Indices, Alignment,
+ AddressSpace, CostKind, UseMaskForCond, UseMaskForGaps);
+
+ return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
+ Alignment, AddressSpace, CostKind,
+ UseMaskForCond, UseMaskForGaps);
+}