aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm-project/llvm/lib/Transforms/IPO/ArgumentPromotion.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm-project/llvm/lib/Transforms/IPO/ArgumentPromotion.cpp')
-rw-r--r--contrib/llvm-project/llvm/lib/Transforms/IPO/ArgumentPromotion.cpp1175
1 files changed, 1175 insertions, 0 deletions
diff --git a/contrib/llvm-project/llvm/lib/Transforms/IPO/ArgumentPromotion.cpp b/contrib/llvm-project/llvm/lib/Transforms/IPO/ArgumentPromotion.cpp
new file mode 100644
index 000000000000..7998a1ae5c6e
--- /dev/null
+++ b/contrib/llvm-project/llvm/lib/Transforms/IPO/ArgumentPromotion.cpp
@@ -0,0 +1,1175 @@
+//===- ArgumentPromotion.cpp - Promote by-reference arguments -------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This pass promotes "by reference" arguments to be "by value" arguments. In
+// practice, this means looking for internal functions that have pointer
+// arguments. If it can prove, through the use of alias analysis, that an
+// argument is *only* loaded, then it can pass the value into the function
+// instead of the address of the value. This can cause recursive simplification
+// of code and lead to the elimination of allocas (especially in C++ template
+// code like the STL).
+//
+// This pass also handles aggregate arguments that are passed into a function,
+// scalarizing them if the elements of the aggregate are only loaded. Note that
+// by default it refuses to scalarize aggregates which would require passing in
+// more than three operands to the function, because passing thousands of
+// operands for a large array or structure is unprofitable! This limit can be
+// configured or disabled, however.
+//
+// Note that this transformation could also be done for arguments that are only
+// stored to (returning the value instead), but does not currently. This case
+// would be best handled when and if LLVM begins supporting multiple return
+// values from functions.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Transforms/IPO/ArgumentPromotion.h"
+#include "llvm/ADT/DepthFirstIterator.h"
+#include "llvm/ADT/None.h"
+#include "llvm/ADT/Optional.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/ScopeExit.h"
+#include "llvm/ADT/SmallPtrSet.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/ADT/Twine.h"
+#include "llvm/Analysis/AssumptionCache.h"
+#include "llvm/Analysis/BasicAliasAnalysis.h"
+#include "llvm/Analysis/CGSCCPassManager.h"
+#include "llvm/Analysis/CallGraph.h"
+#include "llvm/Analysis/CallGraphSCCPass.h"
+#include "llvm/Analysis/LazyCallGraph.h"
+#include "llvm/Analysis/Loads.h"
+#include "llvm/Analysis/MemoryLocation.h"
+#include "llvm/Analysis/TargetLibraryInfo.h"
+#include "llvm/Analysis/TargetTransformInfo.h"
+#include "llvm/IR/Argument.h"
+#include "llvm/IR/Attributes.h"
+#include "llvm/IR/BasicBlock.h"
+#include "llvm/IR/CFG.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/IRBuilder.h"
+#include "llvm/IR/InstrTypes.h"
+#include "llvm/IR/Instruction.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/Metadata.h"
+#include "llvm/IR/Module.h"
+#include "llvm/IR/NoFolder.h"
+#include "llvm/IR/PassManager.h"
+#include "llvm/IR/Type.h"
+#include "llvm/IR/Use.h"
+#include "llvm/IR/User.h"
+#include "llvm/IR/Value.h"
+#include "llvm/InitializePasses.h"
+#include "llvm/Pass.h"
+#include "llvm/Support/Casting.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/FormatVariadic.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Transforms/IPO.h"
+#include <algorithm>
+#include <cassert>
+#include <cstdint>
+#include <functional>
+#include <iterator>
+#include <map>
+#include <set>
+#include <string>
+#include <utility>
+#include <vector>
+
+using namespace llvm;
+
+#define DEBUG_TYPE "argpromotion"
+
+STATISTIC(NumArgumentsPromoted, "Number of pointer arguments promoted");
+STATISTIC(NumAggregatesPromoted, "Number of aggregate arguments promoted");
+STATISTIC(NumByValArgsPromoted, "Number of byval arguments promoted");
+STATISTIC(NumArgumentsDead, "Number of dead pointer args eliminated");
+
+/// A vector used to hold the indices of a single GEP instruction
+using IndicesVector = std::vector<uint64_t>;
+
+/// DoPromotion - This method actually performs the promotion of the specified
+/// arguments, and returns the new function. At this point, we know that it's
+/// safe to do so.
+static Function *
+doPromotion(Function *F, SmallPtrSetImpl<Argument *> &ArgsToPromote,
+ SmallPtrSetImpl<Argument *> &ByValArgsToTransform,
+ Optional<function_ref<void(CallBase &OldCS, CallBase &NewCS)>>
+ ReplaceCallSite) {
+ // Start by computing a new prototype for the function, which is the same as
+ // the old function, but has modified arguments.
+ FunctionType *FTy = F->getFunctionType();
+ std::vector<Type *> Params;
+
+ using ScalarizeTable = std::set<std::pair<Type *, IndicesVector>>;
+
+ // ScalarizedElements - If we are promoting a pointer that has elements
+ // accessed out of it, keep track of which elements are accessed so that we
+ // can add one argument for each.
+ //
+ // Arguments that are directly loaded will have a zero element value here, to
+ // handle cases where there are both a direct load and GEP accesses.
+ std::map<Argument *, ScalarizeTable> ScalarizedElements;
+
+ // OriginalLoads - Keep track of a representative load instruction from the
+ // original function so that we can tell the alias analysis implementation
+ // what the new GEP/Load instructions we are inserting look like.
+ // We need to keep the original loads for each argument and the elements
+ // of the argument that are accessed.
+ std::map<std::pair<Argument *, IndicesVector>, LoadInst *> OriginalLoads;
+
+ // Attribute - Keep track of the parameter attributes for the arguments
+ // that we are *not* promoting. For the ones that we do promote, the parameter
+ // attributes are lost
+ SmallVector<AttributeSet, 8> ArgAttrVec;
+ AttributeList PAL = F->getAttributes();
+
+ // First, determine the new argument list
+ unsigned ArgNo = 0;
+ for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E;
+ ++I, ++ArgNo) {
+ if (ByValArgsToTransform.count(&*I)) {
+ // Simple byval argument? Just add all the struct element types.
+ Type *AgTy = cast<PointerType>(I->getType())->getElementType();
+ StructType *STy = cast<StructType>(AgTy);
+ llvm::append_range(Params, STy->elements());
+ ArgAttrVec.insert(ArgAttrVec.end(), STy->getNumElements(),
+ AttributeSet());
+ ++NumByValArgsPromoted;
+ } else if (!ArgsToPromote.count(&*I)) {
+ // Unchanged argument
+ Params.push_back(I->getType());
+ ArgAttrVec.push_back(PAL.getParamAttributes(ArgNo));
+ } else if (I->use_empty()) {
+ // Dead argument (which are always marked as promotable)
+ ++NumArgumentsDead;
+ } else {
+ // Okay, this is being promoted. This means that the only uses are loads
+ // or GEPs which are only used by loads
+
+ // In this table, we will track which indices are loaded from the argument
+ // (where direct loads are tracked as no indices).
+ ScalarizeTable &ArgIndices = ScalarizedElements[&*I];
+ for (User *U : make_early_inc_range(I->users())) {
+ Instruction *UI = cast<Instruction>(U);
+ Type *SrcTy;
+ if (LoadInst *L = dyn_cast<LoadInst>(UI))
+ SrcTy = L->getType();
+ else
+ SrcTy = cast<GetElementPtrInst>(UI)->getSourceElementType();
+ // Skip dead GEPs and remove them.
+ if (isa<GetElementPtrInst>(UI) && UI->use_empty()) {
+ UI->eraseFromParent();
+ continue;
+ }
+
+ IndicesVector Indices;
+ Indices.reserve(UI->getNumOperands() - 1);
+ // Since loads will only have a single operand, and GEPs only a single
+ // non-index operand, this will record direct loads without any indices,
+ // and gep+loads with the GEP indices.
+ for (User::op_iterator II = UI->op_begin() + 1, IE = UI->op_end();
+ II != IE; ++II)
+ Indices.push_back(cast<ConstantInt>(*II)->getSExtValue());
+ // GEPs with a single 0 index can be merged with direct loads
+ if (Indices.size() == 1 && Indices.front() == 0)
+ Indices.clear();
+ ArgIndices.insert(std::make_pair(SrcTy, Indices));
+ LoadInst *OrigLoad;
+ if (LoadInst *L = dyn_cast<LoadInst>(UI))
+ OrigLoad = L;
+ else
+ // Take any load, we will use it only to update Alias Analysis
+ OrigLoad = cast<LoadInst>(UI->user_back());
+ OriginalLoads[std::make_pair(&*I, Indices)] = OrigLoad;
+ }
+
+ // Add a parameter to the function for each element passed in.
+ for (const auto &ArgIndex : ArgIndices) {
+ // not allowed to dereference ->begin() if size() is 0
+ Params.push_back(GetElementPtrInst::getIndexedType(
+ cast<PointerType>(I->getType())->getElementType(),
+ ArgIndex.second));
+ ArgAttrVec.push_back(AttributeSet());
+ assert(Params.back());
+ }
+
+ if (ArgIndices.size() == 1 && ArgIndices.begin()->second.empty())
+ ++NumArgumentsPromoted;
+ else
+ ++NumAggregatesPromoted;
+ }
+ }
+
+ Type *RetTy = FTy->getReturnType();
+
+ // Construct the new function type using the new arguments.
+ FunctionType *NFTy = FunctionType::get(RetTy, Params, FTy->isVarArg());
+
+ // Create the new function body and insert it into the module.
+ Function *NF = Function::Create(NFTy, F->getLinkage(), F->getAddressSpace(),
+ F->getName());
+ NF->copyAttributesFrom(F);
+ NF->copyMetadata(F, 0);
+
+ // The new function will have the !dbg metadata copied from the original
+ // function. The original function may not be deleted, and dbg metadata need
+ // to be unique so we need to drop it.
+ F->setSubprogram(nullptr);
+
+ LLVM_DEBUG(dbgs() << "ARG PROMOTION: Promoting to:" << *NF << "\n"
+ << "From: " << *F);
+
+ // Recompute the parameter attributes list based on the new arguments for
+ // the function.
+ NF->setAttributes(AttributeList::get(F->getContext(), PAL.getFnAttributes(),
+ PAL.getRetAttributes(), ArgAttrVec));
+ ArgAttrVec.clear();
+
+ F->getParent()->getFunctionList().insert(F->getIterator(), NF);
+ NF->takeName(F);
+
+ // Loop over all of the callers of the function, transforming the call sites
+ // to pass in the loaded pointers.
+ //
+ SmallVector<Value *, 16> Args;
+ while (!F->use_empty()) {
+ CallBase &CB = cast<CallBase>(*F->user_back());
+ assert(CB.getCalledFunction() == F);
+ const AttributeList &CallPAL = CB.getAttributes();
+ IRBuilder<NoFolder> IRB(&CB);
+
+ // Loop over the operands, inserting GEP and loads in the caller as
+ // appropriate.
+ auto AI = CB.arg_begin();
+ ArgNo = 0;
+ for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E;
+ ++I, ++AI, ++ArgNo)
+ if (!ArgsToPromote.count(&*I) && !ByValArgsToTransform.count(&*I)) {
+ Args.push_back(*AI); // Unmodified argument
+ ArgAttrVec.push_back(CallPAL.getParamAttributes(ArgNo));
+ } else if (ByValArgsToTransform.count(&*I)) {
+ // Emit a GEP and load for each element of the struct.
+ Type *AgTy = cast<PointerType>(I->getType())->getElementType();
+ StructType *STy = cast<StructType>(AgTy);
+ Value *Idxs[2] = {
+ ConstantInt::get(Type::getInt32Ty(F->getContext()), 0), nullptr};
+ for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
+ Idxs[1] = ConstantInt::get(Type::getInt32Ty(F->getContext()), i);
+ auto *Idx =
+ IRB.CreateGEP(STy, *AI, Idxs, (*AI)->getName() + "." + Twine(i));
+ // TODO: Tell AA about the new values?
+ Args.push_back(IRB.CreateLoad(STy->getElementType(i), Idx,
+ Idx->getName() + ".val"));
+ ArgAttrVec.push_back(AttributeSet());
+ }
+ } else if (!I->use_empty()) {
+ // Non-dead argument: insert GEPs and loads as appropriate.
+ ScalarizeTable &ArgIndices = ScalarizedElements[&*I];
+ // Store the Value* version of the indices in here, but declare it now
+ // for reuse.
+ std::vector<Value *> Ops;
+ for (const auto &ArgIndex : ArgIndices) {
+ Value *V = *AI;
+ LoadInst *OrigLoad =
+ OriginalLoads[std::make_pair(&*I, ArgIndex.second)];
+ if (!ArgIndex.second.empty()) {
+ Ops.reserve(ArgIndex.second.size());
+ Type *ElTy = V->getType();
+ for (auto II : ArgIndex.second) {
+ // Use i32 to index structs, and i64 for others (pointers/arrays).
+ // This satisfies GEP constraints.
+ Type *IdxTy =
+ (ElTy->isStructTy() ? Type::getInt32Ty(F->getContext())
+ : Type::getInt64Ty(F->getContext()));
+ Ops.push_back(ConstantInt::get(IdxTy, II));
+ // Keep track of the type we're currently indexing.
+ if (auto *ElPTy = dyn_cast<PointerType>(ElTy))
+ ElTy = ElPTy->getElementType();
+ else
+ ElTy = GetElementPtrInst::getTypeAtIndex(ElTy, II);
+ }
+ // And create a GEP to extract those indices.
+ V = IRB.CreateGEP(ArgIndex.first, V, Ops, V->getName() + ".idx");
+ Ops.clear();
+ }
+ // Since we're replacing a load make sure we take the alignment
+ // of the previous load.
+ LoadInst *newLoad =
+ IRB.CreateLoad(OrigLoad->getType(), V, V->getName() + ".val");
+ newLoad->setAlignment(OrigLoad->getAlign());
+ // Transfer the AA info too.
+ AAMDNodes AAInfo;
+ OrigLoad->getAAMetadata(AAInfo);
+ newLoad->setAAMetadata(AAInfo);
+
+ Args.push_back(newLoad);
+ ArgAttrVec.push_back(AttributeSet());
+ }
+ }
+
+ // Push any varargs arguments on the list.
+ for (; AI != CB.arg_end(); ++AI, ++ArgNo) {
+ Args.push_back(*AI);
+ ArgAttrVec.push_back(CallPAL.getParamAttributes(ArgNo));
+ }
+
+ SmallVector<OperandBundleDef, 1> OpBundles;
+ CB.getOperandBundlesAsDefs(OpBundles);
+
+ CallBase *NewCS = nullptr;
+ if (InvokeInst *II = dyn_cast<InvokeInst>(&CB)) {
+ NewCS = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(),
+ Args, OpBundles, "", &CB);
+ } else {
+ auto *NewCall = CallInst::Create(NF, Args, OpBundles, "", &CB);
+ NewCall->setTailCallKind(cast<CallInst>(&CB)->getTailCallKind());
+ NewCS = NewCall;
+ }
+ NewCS->setCallingConv(CB.getCallingConv());
+ NewCS->setAttributes(
+ AttributeList::get(F->getContext(), CallPAL.getFnAttributes(),
+ CallPAL.getRetAttributes(), ArgAttrVec));
+ NewCS->copyMetadata(CB, {LLVMContext::MD_prof, LLVMContext::MD_dbg});
+ Args.clear();
+ ArgAttrVec.clear();
+
+ // Update the callgraph to know that the callsite has been transformed.
+ if (ReplaceCallSite)
+ (*ReplaceCallSite)(CB, *NewCS);
+
+ if (!CB.use_empty()) {
+ CB.replaceAllUsesWith(NewCS);
+ NewCS->takeName(&CB);
+ }
+
+ // Finally, remove the old call from the program, reducing the use-count of
+ // F.
+ CB.eraseFromParent();
+ }
+
+ const DataLayout &DL = F->getParent()->getDataLayout();
+
+ // Since we have now created the new function, splice the body of the old
+ // function right into the new function, leaving the old rotting hulk of the
+ // function empty.
+ NF->getBasicBlockList().splice(NF->begin(), F->getBasicBlockList());
+
+ // Loop over the argument list, transferring uses of the old arguments over to
+ // the new arguments, also transferring over the names as well.
+ for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(),
+ I2 = NF->arg_begin();
+ I != E; ++I) {
+ if (!ArgsToPromote.count(&*I) && !ByValArgsToTransform.count(&*I)) {
+ // If this is an unmodified argument, move the name and users over to the
+ // new version.
+ I->replaceAllUsesWith(&*I2);
+ I2->takeName(&*I);
+ ++I2;
+ continue;
+ }
+
+ if (ByValArgsToTransform.count(&*I)) {
+ // In the callee, we create an alloca, and store each of the new incoming
+ // arguments into the alloca.
+ Instruction *InsertPt = &NF->begin()->front();
+
+ // Just add all the struct element types.
+ Type *AgTy = cast<PointerType>(I->getType())->getElementType();
+ Value *TheAlloca = new AllocaInst(
+ AgTy, DL.getAllocaAddrSpace(), nullptr,
+ I->getParamAlign().getValueOr(DL.getPrefTypeAlign(AgTy)), "",
+ InsertPt);
+ StructType *STy = cast<StructType>(AgTy);
+ Value *Idxs[2] = {ConstantInt::get(Type::getInt32Ty(F->getContext()), 0),
+ nullptr};
+
+ for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
+ Idxs[1] = ConstantInt::get(Type::getInt32Ty(F->getContext()), i);
+ Value *Idx = GetElementPtrInst::Create(
+ AgTy, TheAlloca, Idxs, TheAlloca->getName() + "." + Twine(i),
+ InsertPt);
+ I2->setName(I->getName() + "." + Twine(i));
+ new StoreInst(&*I2++, Idx, InsertPt);
+ }
+
+ // Anything that used the arg should now use the alloca.
+ I->replaceAllUsesWith(TheAlloca);
+ TheAlloca->takeName(&*I);
+
+ // If the alloca is used in a call, we must clear the tail flag since
+ // the callee now uses an alloca from the caller.
+ for (User *U : TheAlloca->users()) {
+ CallInst *Call = dyn_cast<CallInst>(U);
+ if (!Call)
+ continue;
+ Call->setTailCall(false);
+ }
+ continue;
+ }
+
+ // There potentially are metadata uses for things like llvm.dbg.value.
+ // Replace them with undef, after handling the other regular uses.
+ auto RauwUndefMetadata = make_scope_exit(
+ [&]() { I->replaceAllUsesWith(UndefValue::get(I->getType())); });
+
+ if (I->use_empty())
+ continue;
+
+ // Otherwise, if we promoted this argument, then all users are load
+ // instructions (or GEPs with only load users), and all loads should be
+ // using the new argument that we added.
+ ScalarizeTable &ArgIndices = ScalarizedElements[&*I];
+
+ while (!I->use_empty()) {
+ if (LoadInst *LI = dyn_cast<LoadInst>(I->user_back())) {
+ assert(ArgIndices.begin()->second.empty() &&
+ "Load element should sort to front!");
+ I2->setName(I->getName() + ".val");
+ LI->replaceAllUsesWith(&*I2);
+ LI->eraseFromParent();
+ LLVM_DEBUG(dbgs() << "*** Promoted load of argument '" << I->getName()
+ << "' in function '" << F->getName() << "'\n");
+ } else {
+ GetElementPtrInst *GEP = cast<GetElementPtrInst>(I->user_back());
+ assert(!GEP->use_empty() &&
+ "GEPs without uses should be cleaned up already");
+ IndicesVector Operands;
+ Operands.reserve(GEP->getNumIndices());
+ for (User::op_iterator II = GEP->idx_begin(), IE = GEP->idx_end();
+ II != IE; ++II)
+ Operands.push_back(cast<ConstantInt>(*II)->getSExtValue());
+
+ // GEPs with a single 0 index can be merged with direct loads
+ if (Operands.size() == 1 && Operands.front() == 0)
+ Operands.clear();
+
+ Function::arg_iterator TheArg = I2;
+ for (ScalarizeTable::iterator It = ArgIndices.begin();
+ It->second != Operands; ++It, ++TheArg) {
+ assert(It != ArgIndices.end() && "GEP not handled??");
+ }
+
+ TheArg->setName(formatv("{0}.{1:$[.]}.val", I->getName(),
+ make_range(Operands.begin(), Operands.end())));
+
+ LLVM_DEBUG(dbgs() << "*** Promoted agg argument '" << TheArg->getName()
+ << "' of function '" << NF->getName() << "'\n");
+
+ // All of the uses must be load instructions. Replace them all with
+ // the argument specified by ArgNo.
+ while (!GEP->use_empty()) {
+ LoadInst *L = cast<LoadInst>(GEP->user_back());
+ L->replaceAllUsesWith(&*TheArg);
+ L->eraseFromParent();
+ }
+ GEP->eraseFromParent();
+ }
+ }
+ // Increment I2 past all of the arguments added for this promoted pointer.
+ std::advance(I2, ArgIndices.size());
+ }
+
+ return NF;
+}
+
+/// Return true if we can prove that all callees pass in a valid pointer for the
+/// specified function argument.
+static bool allCallersPassValidPointerForArgument(Argument *Arg, Type *Ty) {
+ Function *Callee = Arg->getParent();
+ const DataLayout &DL = Callee->getParent()->getDataLayout();
+
+ unsigned ArgNo = Arg->getArgNo();
+
+ // Look at all call sites of the function. At this point we know we only have
+ // direct callees.
+ for (User *U : Callee->users()) {
+ CallBase &CB = cast<CallBase>(*U);
+
+ if (!isDereferenceablePointer(CB.getArgOperand(ArgNo), Ty, DL))
+ return false;
+ }
+ return true;
+}
+
+/// Returns true if Prefix is a prefix of longer. That means, Longer has a size
+/// that is greater than or equal to the size of prefix, and each of the
+/// elements in Prefix is the same as the corresponding elements in Longer.
+///
+/// This means it also returns true when Prefix and Longer are equal!
+static bool isPrefix(const IndicesVector &Prefix, const IndicesVector &Longer) {
+ if (Prefix.size() > Longer.size())
+ return false;
+ return std::equal(Prefix.begin(), Prefix.end(), Longer.begin());
+}
+
+/// Checks if Indices, or a prefix of Indices, is in Set.
+static bool prefixIn(const IndicesVector &Indices,
+ std::set<IndicesVector> &Set) {
+ std::set<IndicesVector>::iterator Low;
+ Low = Set.upper_bound(Indices);
+ if (Low != Set.begin())
+ Low--;
+ // Low is now the last element smaller than or equal to Indices. This means
+ // it points to a prefix of Indices (possibly Indices itself), if such
+ // prefix exists.
+ //
+ // This load is safe if any prefix of its operands is safe to load.
+ return Low != Set.end() && isPrefix(*Low, Indices);
+}
+
+/// Mark the given indices (ToMark) as safe in the given set of indices
+/// (Safe). Marking safe usually means adding ToMark to Safe. However, if there
+/// is already a prefix of Indices in Safe, Indices are implicitely marked safe
+/// already. Furthermore, any indices that Indices is itself a prefix of, are
+/// removed from Safe (since they are implicitely safe because of Indices now).
+static void markIndicesSafe(const IndicesVector &ToMark,
+ std::set<IndicesVector> &Safe) {
+ std::set<IndicesVector>::iterator Low;
+ Low = Safe.upper_bound(ToMark);
+ // Guard against the case where Safe is empty
+ if (Low != Safe.begin())
+ Low--;
+ // Low is now the last element smaller than or equal to Indices. This
+ // means it points to a prefix of Indices (possibly Indices itself), if
+ // such prefix exists.
+ if (Low != Safe.end()) {
+ if (isPrefix(*Low, ToMark))
+ // If there is already a prefix of these indices (or exactly these
+ // indices) marked a safe, don't bother adding these indices
+ return;
+
+ // Increment Low, so we can use it as a "insert before" hint
+ ++Low;
+ }
+ // Insert
+ Low = Safe.insert(Low, ToMark);
+ ++Low;
+ // If there we're a prefix of longer index list(s), remove those
+ std::set<IndicesVector>::iterator End = Safe.end();
+ while (Low != End && isPrefix(ToMark, *Low)) {
+ std::set<IndicesVector>::iterator Remove = Low;
+ ++Low;
+ Safe.erase(Remove);
+ }
+}
+
+/// isSafeToPromoteArgument - As you might guess from the name of this method,
+/// it checks to see if it is both safe and useful to promote the argument.
+/// This method limits promotion of aggregates to only promote up to three
+/// elements of the aggregate in order to avoid exploding the number of
+/// arguments passed in.
+static bool isSafeToPromoteArgument(Argument *Arg, Type *ByValTy, AAResults &AAR,
+ unsigned MaxElements) {
+ using GEPIndicesSet = std::set<IndicesVector>;
+
+ // Quick exit for unused arguments
+ if (Arg->use_empty())
+ return true;
+
+ // We can only promote this argument if all of the uses are loads, or are GEP
+ // instructions (with constant indices) that are subsequently loaded.
+ //
+ // Promoting the argument causes it to be loaded in the caller
+ // unconditionally. This is only safe if we can prove that either the load
+ // would have happened in the callee anyway (ie, there is a load in the entry
+ // block) or the pointer passed in at every call site is guaranteed to be
+ // valid.
+ // In the former case, invalid loads can happen, but would have happened
+ // anyway, in the latter case, invalid loads won't happen. This prevents us
+ // from introducing an invalid load that wouldn't have happened in the
+ // original code.
+ //
+ // This set will contain all sets of indices that are loaded in the entry
+ // block, and thus are safe to unconditionally load in the caller.
+ GEPIndicesSet SafeToUnconditionallyLoad;
+
+ // This set contains all the sets of indices that we are planning to promote.
+ // This makes it possible to limit the number of arguments added.
+ GEPIndicesSet ToPromote;
+
+ // If the pointer is always valid, any load with first index 0 is valid.
+
+ if (ByValTy)
+ SafeToUnconditionallyLoad.insert(IndicesVector(1, 0));
+
+ // Whenever a new underlying type for the operand is found, make sure it's
+ // consistent with the GEPs and loads we've already seen and, if necessary,
+ // use it to see if all incoming pointers are valid (which implies the 0-index
+ // is safe).
+ Type *BaseTy = ByValTy;
+ auto UpdateBaseTy = [&](Type *NewBaseTy) {
+ if (BaseTy)
+ return BaseTy == NewBaseTy;
+
+ BaseTy = NewBaseTy;
+ if (allCallersPassValidPointerForArgument(Arg, BaseTy)) {
+ assert(SafeToUnconditionallyLoad.empty());
+ SafeToUnconditionallyLoad.insert(IndicesVector(1, 0));
+ }
+
+ return true;
+ };
+
+ // First, iterate the entry block and mark loads of (geps of) arguments as
+ // safe.
+ BasicBlock &EntryBlock = Arg->getParent()->front();
+ // Declare this here so we can reuse it
+ IndicesVector Indices;
+ for (Instruction &I : EntryBlock)
+ if (LoadInst *LI = dyn_cast<LoadInst>(&I)) {
+ Value *V = LI->getPointerOperand();
+ if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(V)) {
+ V = GEP->getPointerOperand();
+ if (V == Arg) {
+ // This load actually loads (part of) Arg? Check the indices then.
+ Indices.reserve(GEP->getNumIndices());
+ for (User::op_iterator II = GEP->idx_begin(), IE = GEP->idx_end();
+ II != IE; ++II)
+ if (ConstantInt *CI = dyn_cast<ConstantInt>(*II))
+ Indices.push_back(CI->getSExtValue());
+ else
+ // We found a non-constant GEP index for this argument? Bail out
+ // right away, can't promote this argument at all.
+ return false;
+
+ if (!UpdateBaseTy(GEP->getSourceElementType()))
+ return false;
+
+ // Indices checked out, mark them as safe
+ markIndicesSafe(Indices, SafeToUnconditionallyLoad);
+ Indices.clear();
+ }
+ } else if (V == Arg) {
+ // Direct loads are equivalent to a GEP with a single 0 index.
+ markIndicesSafe(IndicesVector(1, 0), SafeToUnconditionallyLoad);
+
+ if (BaseTy && LI->getType() != BaseTy)
+ return false;
+
+ BaseTy = LI->getType();
+ }
+ }
+
+ // Now, iterate all uses of the argument to see if there are any uses that are
+ // not (GEP+)loads, or any (GEP+)loads that are not safe to promote.
+ SmallVector<LoadInst *, 16> Loads;
+ IndicesVector Operands;
+ for (Use &U : Arg->uses()) {
+ User *UR = U.getUser();
+ Operands.clear();
+ if (LoadInst *LI = dyn_cast<LoadInst>(UR)) {
+ // Don't hack volatile/atomic loads
+ if (!LI->isSimple())
+ return false;
+ Loads.push_back(LI);
+ // Direct loads are equivalent to a GEP with a zero index and then a load.
+ Operands.push_back(0);
+
+ if (!UpdateBaseTy(LI->getType()))
+ return false;
+ } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(UR)) {
+ if (GEP->use_empty()) {
+ // Dead GEP's cause trouble later. Just remove them if we run into
+ // them.
+ continue;
+ }
+
+ if (!UpdateBaseTy(GEP->getSourceElementType()))
+ return false;
+
+ // Ensure that all of the indices are constants.
+ for (User::op_iterator i = GEP->idx_begin(), e = GEP->idx_end(); i != e;
+ ++i)
+ if (ConstantInt *C = dyn_cast<ConstantInt>(*i))
+ Operands.push_back(C->getSExtValue());
+ else
+ return false; // Not a constant operand GEP!
+
+ // Ensure that the only users of the GEP are load instructions.
+ for (User *GEPU : GEP->users())
+ if (LoadInst *LI = dyn_cast<LoadInst>(GEPU)) {
+ // Don't hack volatile/atomic loads
+ if (!LI->isSimple())
+ return false;
+ Loads.push_back(LI);
+ } else {
+ // Other uses than load?
+ return false;
+ }
+ } else {
+ return false; // Not a load or a GEP.
+ }
+
+ // Now, see if it is safe to promote this load / loads of this GEP. Loading
+ // is safe if Operands, or a prefix of Operands, is marked as safe.
+ if (!prefixIn(Operands, SafeToUnconditionallyLoad))
+ return false;
+
+ // See if we are already promoting a load with these indices. If not, check
+ // to make sure that we aren't promoting too many elements. If so, nothing
+ // to do.
+ if (ToPromote.find(Operands) == ToPromote.end()) {
+ if (MaxElements > 0 && ToPromote.size() == MaxElements) {
+ LLVM_DEBUG(dbgs() << "argpromotion not promoting argument '"
+ << Arg->getName()
+ << "' because it would require adding more "
+ << "than " << MaxElements
+ << " arguments to the function.\n");
+ // We limit aggregate promotion to only promoting up to a fixed number
+ // of elements of the aggregate.
+ return false;
+ }
+ ToPromote.insert(std::move(Operands));
+ }
+ }
+
+ if (Loads.empty())
+ return true; // No users, this is a dead argument.
+
+ // Okay, now we know that the argument is only used by load instructions and
+ // it is safe to unconditionally perform all of them. Use alias analysis to
+ // check to see if the pointer is guaranteed to not be modified from entry of
+ // the function to each of the load instructions.
+
+ // Because there could be several/many load instructions, remember which
+ // blocks we know to be transparent to the load.
+ df_iterator_default_set<BasicBlock *, 16> TranspBlocks;
+
+ for (LoadInst *Load : Loads) {
+ // Check to see if the load is invalidated from the start of the block to
+ // the load itself.
+ BasicBlock *BB = Load->getParent();
+
+ MemoryLocation Loc = MemoryLocation::get(Load);
+ if (AAR.canInstructionRangeModRef(BB->front(), *Load, Loc, ModRefInfo::Mod))
+ return false; // Pointer is invalidated!
+
+ // Now check every path from the entry block to the load for transparency.
+ // To do this, we perform a depth first search on the inverse CFG from the
+ // loading block.
+ for (BasicBlock *P : predecessors(BB)) {
+ for (BasicBlock *TranspBB : inverse_depth_first_ext(P, TranspBlocks))
+ if (AAR.canBasicBlockModify(*TranspBB, Loc))
+ return false;
+ }
+ }
+
+ // If the path from the entry of the function to each load is free of
+ // instructions that potentially invalidate the load, we can make the
+ // transformation!
+ return true;
+}
+
+bool ArgumentPromotionPass::isDenselyPacked(Type *type, const DataLayout &DL) {
+ // There is no size information, so be conservative.
+ if (!type->isSized())
+ return false;
+
+ // If the alloc size is not equal to the storage size, then there are padding
+ // bytes. For x86_fp80 on x86-64, size: 80 alloc size: 128.
+ if (DL.getTypeSizeInBits(type) != DL.getTypeAllocSizeInBits(type))
+ return false;
+
+ // FIXME: This isn't the right way to check for padding in vectors with
+ // non-byte-size elements.
+ if (VectorType *seqTy = dyn_cast<VectorType>(type))
+ return isDenselyPacked(seqTy->getElementType(), DL);
+
+ // For array types, check for padding within members.
+ if (ArrayType *seqTy = dyn_cast<ArrayType>(type))
+ return isDenselyPacked(seqTy->getElementType(), DL);
+
+ if (!isa<StructType>(type))
+ return true;
+
+ // Check for padding within and between elements of a struct.
+ StructType *StructTy = cast<StructType>(type);
+ const StructLayout *Layout = DL.getStructLayout(StructTy);
+ uint64_t StartPos = 0;
+ for (unsigned i = 0, E = StructTy->getNumElements(); i < E; ++i) {
+ Type *ElTy = StructTy->getElementType(i);
+ if (!isDenselyPacked(ElTy, DL))
+ return false;
+ if (StartPos != Layout->getElementOffsetInBits(i))
+ return false;
+ StartPos += DL.getTypeAllocSizeInBits(ElTy);
+ }
+
+ return true;
+}
+
+/// Checks if the padding bytes of an argument could be accessed.
+static bool canPaddingBeAccessed(Argument *arg) {
+ assert(arg->hasByValAttr());
+
+ // Track all the pointers to the argument to make sure they are not captured.
+ SmallPtrSet<Value *, 16> PtrValues;
+ PtrValues.insert(arg);
+
+ // Track all of the stores.
+ SmallVector<StoreInst *, 16> Stores;
+
+ // Scan through the uses recursively to make sure the pointer is always used
+ // sanely.
+ SmallVector<Value *, 16> WorkList(arg->users());
+ while (!WorkList.empty()) {
+ Value *V = WorkList.pop_back_val();
+ if (isa<GetElementPtrInst>(V) || isa<PHINode>(V)) {
+ if (PtrValues.insert(V).second)
+ llvm::append_range(WorkList, V->users());
+ } else if (StoreInst *Store = dyn_cast<StoreInst>(V)) {
+ Stores.push_back(Store);
+ } else if (!isa<LoadInst>(V)) {
+ return true;
+ }
+ }
+
+ // Check to make sure the pointers aren't captured
+ for (StoreInst *Store : Stores)
+ if (PtrValues.count(Store->getValueOperand()))
+ return true;
+
+ return false;
+}
+
+bool ArgumentPromotionPass::areFunctionArgsABICompatible(
+ const Function &F, const TargetTransformInfo &TTI,
+ SmallPtrSetImpl<Argument *> &ArgsToPromote,
+ SmallPtrSetImpl<Argument *> &ByValArgsToTransform) {
+ for (const Use &U : F.uses()) {
+ CallBase *CB = dyn_cast<CallBase>(U.getUser());
+ if (!CB)
+ return false;
+ const Function *Caller = CB->getCaller();
+ const Function *Callee = CB->getCalledFunction();
+ if (!TTI.areFunctionArgsABICompatible(Caller, Callee, ArgsToPromote) ||
+ !TTI.areFunctionArgsABICompatible(Caller, Callee, ByValArgsToTransform))
+ return false;
+ }
+ return true;
+}
+
+/// PromoteArguments - This method checks the specified function to see if there
+/// are any promotable arguments and if it is safe to promote the function (for
+/// example, all callers are direct). If safe to promote some arguments, it
+/// calls the DoPromotion method.
+static Function *
+promoteArguments(Function *F, function_ref<AAResults &(Function &F)> AARGetter,
+ unsigned MaxElements,
+ Optional<function_ref<void(CallBase &OldCS, CallBase &NewCS)>>
+ ReplaceCallSite,
+ const TargetTransformInfo &TTI) {
+ // Don't perform argument promotion for naked functions; otherwise we can end
+ // up removing parameters that are seemingly 'not used' as they are referred
+ // to in the assembly.
+ if(F->hasFnAttribute(Attribute::Naked))
+ return nullptr;
+
+ // Make sure that it is local to this module.
+ if (!F->hasLocalLinkage())
+ return nullptr;
+
+ // Don't promote arguments for variadic functions. Adding, removing, or
+ // changing non-pack parameters can change the classification of pack
+ // parameters. Frontends encode that classification at the call site in the
+ // IR, while in the callee the classification is determined dynamically based
+ // on the number of registers consumed so far.
+ if (F->isVarArg())
+ return nullptr;
+
+ // Don't transform functions that receive inallocas, as the transformation may
+ // not be safe depending on calling convention.
+ if (F->getAttributes().hasAttrSomewhere(Attribute::InAlloca))
+ return nullptr;
+
+ // First check: see if there are any pointer arguments! If not, quick exit.
+ SmallVector<Argument *, 16> PointerArgs;
+ for (Argument &I : F->args())
+ if (I.getType()->isPointerTy())
+ PointerArgs.push_back(&I);
+ if (PointerArgs.empty())
+ return nullptr;
+
+ // Second check: make sure that all callers are direct callers. We can't
+ // transform functions that have indirect callers. Also see if the function
+ // is self-recursive and check that target features are compatible.
+ bool isSelfRecursive = false;
+ for (Use &U : F->uses()) {
+ CallBase *CB = dyn_cast<CallBase>(U.getUser());
+ // Must be a direct call.
+ if (CB == nullptr || !CB->isCallee(&U))
+ return nullptr;
+
+ // Can't change signature of musttail callee
+ if (CB->isMustTailCall())
+ return nullptr;
+
+ if (CB->getParent()->getParent() == F)
+ isSelfRecursive = true;
+ }
+
+ // Can't change signature of musttail caller
+ // FIXME: Support promoting whole chain of musttail functions
+ for (BasicBlock &BB : *F)
+ if (BB.getTerminatingMustTailCall())
+ return nullptr;
+
+ const DataLayout &DL = F->getParent()->getDataLayout();
+
+ AAResults &AAR = AARGetter(*F);
+
+ // Check to see which arguments are promotable. If an argument is promotable,
+ // add it to ArgsToPromote.
+ SmallPtrSet<Argument *, 8> ArgsToPromote;
+ SmallPtrSet<Argument *, 8> ByValArgsToTransform;
+ for (Argument *PtrArg : PointerArgs) {
+ Type *AgTy = cast<PointerType>(PtrArg->getType())->getElementType();
+
+ // Replace sret attribute with noalias. This reduces register pressure by
+ // avoiding a register copy.
+ if (PtrArg->hasStructRetAttr()) {
+ unsigned ArgNo = PtrArg->getArgNo();
+ F->removeParamAttr(ArgNo, Attribute::StructRet);
+ F->addParamAttr(ArgNo, Attribute::NoAlias);
+ for (Use &U : F->uses()) {
+ CallBase &CB = cast<CallBase>(*U.getUser());
+ CB.removeParamAttr(ArgNo, Attribute::StructRet);
+ CB.addParamAttr(ArgNo, Attribute::NoAlias);
+ }
+ }
+
+ // If this is a byval argument, and if the aggregate type is small, just
+ // pass the elements, which is always safe, if the passed value is densely
+ // packed or if we can prove the padding bytes are never accessed.
+ bool isSafeToPromote = PtrArg->hasByValAttr() &&
+ (ArgumentPromotionPass::isDenselyPacked(AgTy, DL) ||
+ !canPaddingBeAccessed(PtrArg));
+ if (isSafeToPromote) {
+ if (StructType *STy = dyn_cast<StructType>(AgTy)) {
+ if (MaxElements > 0 && STy->getNumElements() > MaxElements) {
+ LLVM_DEBUG(dbgs() << "argpromotion disable promoting argument '"
+ << PtrArg->getName()
+ << "' because it would require adding more"
+ << " than " << MaxElements
+ << " arguments to the function.\n");
+ continue;
+ }
+
+ // If all the elements are single-value types, we can promote it.
+ bool AllSimple = true;
+ for (const auto *EltTy : STy->elements()) {
+ if (!EltTy->isSingleValueType()) {
+ AllSimple = false;
+ break;
+ }
+ }
+
+ // Safe to transform, don't even bother trying to "promote" it.
+ // Passing the elements as a scalar will allow sroa to hack on
+ // the new alloca we introduce.
+ if (AllSimple) {
+ ByValArgsToTransform.insert(PtrArg);
+ continue;
+ }
+ }
+ }
+
+ // If the argument is a recursive type and we're in a recursive
+ // function, we could end up infinitely peeling the function argument.
+ if (isSelfRecursive) {
+ if (StructType *STy = dyn_cast<StructType>(AgTy)) {
+ bool RecursiveType = false;
+ for (const auto *EltTy : STy->elements()) {
+ if (EltTy == PtrArg->getType()) {
+ RecursiveType = true;
+ break;
+ }
+ }
+ if (RecursiveType)
+ continue;
+ }
+ }
+
+ // Otherwise, see if we can promote the pointer to its value.
+ Type *ByValTy =
+ PtrArg->hasByValAttr() ? PtrArg->getParamByValType() : nullptr;
+ if (isSafeToPromoteArgument(PtrArg, ByValTy, AAR, MaxElements))
+ ArgsToPromote.insert(PtrArg);
+ }
+
+ // No promotable pointer arguments.
+ if (ArgsToPromote.empty() && ByValArgsToTransform.empty())
+ return nullptr;
+
+ if (!ArgumentPromotionPass::areFunctionArgsABICompatible(
+ *F, TTI, ArgsToPromote, ByValArgsToTransform))
+ return nullptr;
+
+ return doPromotion(F, ArgsToPromote, ByValArgsToTransform, ReplaceCallSite);
+}
+
+PreservedAnalyses ArgumentPromotionPass::run(LazyCallGraph::SCC &C,
+ CGSCCAnalysisManager &AM,
+ LazyCallGraph &CG,
+ CGSCCUpdateResult &UR) {
+ bool Changed = false, LocalChange;
+
+ // Iterate until we stop promoting from this SCC.
+ do {
+ LocalChange = false;
+
+ for (LazyCallGraph::Node &N : C) {
+ Function &OldF = N.getFunction();
+
+ FunctionAnalysisManager &FAM =
+ AM.getResult<FunctionAnalysisManagerCGSCCProxy>(C, CG).getManager();
+ // FIXME: This lambda must only be used with this function. We should
+ // skip the lambda and just get the AA results directly.
+ auto AARGetter = [&](Function &F) -> AAResults & {
+ assert(&F == &OldF && "Called with an unexpected function!");
+ return FAM.getResult<AAManager>(F);
+ };
+
+ const TargetTransformInfo &TTI = FAM.getResult<TargetIRAnalysis>(OldF);
+ Function *NewF =
+ promoteArguments(&OldF, AARGetter, MaxElements, None, TTI);
+ if (!NewF)
+ continue;
+ LocalChange = true;
+
+ // Directly substitute the functions in the call graph. Note that this
+ // requires the old function to be completely dead and completely
+ // replaced by the new function. It does no call graph updates, it merely
+ // swaps out the particular function mapped to a particular node in the
+ // graph.
+ C.getOuterRefSCC().replaceNodeFunction(N, *NewF);
+ OldF.eraseFromParent();
+ }
+
+ Changed |= LocalChange;
+ } while (LocalChange);
+
+ if (!Changed)
+ return PreservedAnalyses::all();
+
+ return PreservedAnalyses::none();
+}
+
+namespace {
+
+/// ArgPromotion - The 'by reference' to 'by value' argument promotion pass.
+struct ArgPromotion : public CallGraphSCCPass {
+ // Pass identification, replacement for typeid
+ static char ID;
+
+ explicit ArgPromotion(unsigned MaxElements = 3)
+ : CallGraphSCCPass(ID), MaxElements(MaxElements) {
+ initializeArgPromotionPass(*PassRegistry::getPassRegistry());
+ }
+
+ void getAnalysisUsage(AnalysisUsage &AU) const override {
+ AU.addRequired<AssumptionCacheTracker>();
+ AU.addRequired<TargetLibraryInfoWrapperPass>();
+ AU.addRequired<TargetTransformInfoWrapperPass>();
+ getAAResultsAnalysisUsage(AU);
+ CallGraphSCCPass::getAnalysisUsage(AU);
+ }
+
+ bool runOnSCC(CallGraphSCC &SCC) override;
+
+private:
+ using llvm::Pass::doInitialization;
+
+ bool doInitialization(CallGraph &CG) override;
+
+ /// The maximum number of elements to expand, or 0 for unlimited.
+ unsigned MaxElements;
+};
+
+} // end anonymous namespace
+
+char ArgPromotion::ID = 0;
+
+INITIALIZE_PASS_BEGIN(ArgPromotion, "argpromotion",
+ "Promote 'by reference' arguments to scalars", false,
+ false)
+INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
+INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass)
+INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
+INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
+INITIALIZE_PASS_END(ArgPromotion, "argpromotion",
+ "Promote 'by reference' arguments to scalars", false, false)
+
+Pass *llvm::createArgumentPromotionPass(unsigned MaxElements) {
+ return new ArgPromotion(MaxElements);
+}
+
+bool ArgPromotion::runOnSCC(CallGraphSCC &SCC) {
+ if (skipSCC(SCC))
+ return false;
+
+ // Get the callgraph information that we need to update to reflect our
+ // changes.
+ CallGraph &CG = getAnalysis<CallGraphWrapperPass>().getCallGraph();
+
+ LegacyAARGetter AARGetter(*this);
+
+ bool Changed = false, LocalChange;
+
+ // Iterate until we stop promoting from this SCC.
+ do {
+ LocalChange = false;
+ // Attempt to promote arguments from all functions in this SCC.
+ for (CallGraphNode *OldNode : SCC) {
+ Function *OldF = OldNode->getFunction();
+ if (!OldF)
+ continue;
+
+ auto ReplaceCallSite = [&](CallBase &OldCS, CallBase &NewCS) {
+ Function *Caller = OldCS.getParent()->getParent();
+ CallGraphNode *NewCalleeNode =
+ CG.getOrInsertFunction(NewCS.getCalledFunction());
+ CallGraphNode *CallerNode = CG[Caller];
+ CallerNode->replaceCallEdge(cast<CallBase>(OldCS),
+ cast<CallBase>(NewCS), NewCalleeNode);
+ };
+
+ const TargetTransformInfo &TTI =
+ getAnalysis<TargetTransformInfoWrapperPass>().getTTI(*OldF);
+ if (Function *NewF = promoteArguments(OldF, AARGetter, MaxElements,
+ {ReplaceCallSite}, TTI)) {
+ LocalChange = true;
+
+ // Update the call graph for the newly promoted function.
+ CallGraphNode *NewNode = CG.getOrInsertFunction(NewF);
+ NewNode->stealCalledFunctionsFrom(OldNode);
+ if (OldNode->getNumReferences() == 0)
+ delete CG.removeFunctionFromModule(OldNode);
+ else
+ OldF->setLinkage(Function::ExternalLinkage);
+
+ // And updat ethe SCC we're iterating as well.
+ SCC.ReplaceNode(OldNode, NewNode);
+ }
+ }
+ // Remember that we changed something.
+ Changed |= LocalChange;
+ } while (LocalChange);
+
+ return Changed;
+}
+
+bool ArgPromotion::doInitialization(CallGraph &CG) {
+ return CallGraphSCCPass::doInitialization(CG);
+}